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ABSTRACT

In spite of increasingly sophisticated workforce management tools, a significant

gap remains between the goal of effective staffing and the present difficulty in predict-

ing the stochastic demand of inbound calls. We have investigated the hypothesized

nonhomogeneous Poisson process model of modem pool callers of the University com-

munity. In our case, we tested if the arrivals could be approximated by a piecewise

constant rate over short intervals. For each of 1 and 10-minute intervals, based on

the close relationship between the Poisson process of arrivals and the exponential dis-

tribution of interarrival times, the test results did not show any sign of homogeneous

Poisson process. We have examined the hypothesis of a nonhomogeneous Poisson

process by a transformed statistic. Quantitative and graphical goodness-of-fit tests

have confirmed nonhomogeneous Poisson process.

Further analysis on the intensity function revealed that linear rate intensity was

woefully inadequate in predicting time varying arrivals. For sinusoidal rate model,

difficulty arose in setting the period parameter. Spline models, as an alternative, had

more control of balance between data fitting and smoothness, which was appealing

to our analysis on call arrival process.
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Chapter 1

INTRODUCTION

1.1 Growing Call Centre Industry

As its name suggests, a call centre is a place where customers via phone lines seek

help or services provided by a company or an organization. Traditionally, a call centre

has a physical location and is composed of telephone equipment and representatives

capable of delivering services by telephone. A modern definition extends a call centre

to a centralized service entity, known as the contact centre, which can sell things or

offer services through an automatic voice unit, fax, email or even an interactive online

website [10]. A contact centre need not be a single work place but can be a network

of multi-task units perhaps all over the world.

Twenty or thirty years ago, call centres were first introduced as tele-wired kiosks

for financial institutions, airline and catalog ordering companies [10]. Nowadays,

call centres have become one of the fastest growing industries in North America.

Estimates of the number of call centres in North America range from 20,000 to as

high as 200,000 depending on what definition of call centre is used [10]. Some experts

only count centres that have above a certain number of representatives or agents. One

typical example of a large scale call centre is for toll-free call service, which counts

104 million daily requests on the AT&T network [15]. Some experts also count the

call centres that might only have four of five agents, because these small centres can

probably handle all kinds of jobs with a much reduced request load when compared



to a large scale toll-free call centre.

Regardless of the size, call centres face workforce and service management chal-

lenges, such as problems of recruiting, training and staffing of representatives and

quality assurance of service. In 1999 in the United States there were 1.55 million

representatives working in call centres with an unprecedented employment growth

rate of more than 8% per year [7, 33]. The call centre has indeed evolved as one of

the fastest growing industries in North America.

1.2 Modelling Stochastic Inbound Calls

There are call centres that handle outbound, inbound or both types of calls. Out-

bound calls are defined to be those calls that are initiated within a call centre. There-

fore, the schedule for outbound calls is determined by the call centre. Examples of

outbound services are telephone surveys and tele-marketing. In contrast, inbound

calls are those initiated from outside a call centre, the call demand of which is un-

known to the call centre. The managers at the inbound call centres have difficulty in

scheduling the appropriate number of agents to handle incoming calls.

Both operational and quality efficiencies are essential to a call centre. In most call

centres, the costs of hiring, training and retention of agents account for 60%-70% of

operating expenses [15]. Given this kind of large costs, a good-practice call centre of

high efficiency would like to achieve an average 90% to 95% agent utilization level so

that in most of the time agents are busy answering the phone calls.

Meanwhile, on the quality side, a call centre should have an adequate number of

2



agents so that, ideally speaking, almost no customers have to wait. In practice, the

quality of a call centre can be measured by the average waiting time of customers. At

an emergency 911 call centre, as an interesting example of service quality measured

by the waiting time, one does not want to see any caller unanswered simply because

there are not enough agents scheduled. To balance between utilization requirements

and quality efficiency, one needs an optimal plan of scheduling for agents being able

to handle phone calls during busy and non-busy times. For practical purposes, one

might aim at accurate forecasts for call loads, at least down to the half hour as a

good practice for hiring, so one would be able to schedule the agents accordingly.

1.3 Objectives

The primary purpose of this thesis is to provide input to the short term scheduling

process of agent staffing, which has two aspects:

1. Difficulty in understanding and modelling the arrival process of a call centre is

prevailing. We investigate the hypothesized nonhomogeneous Poisson process

with respect to our data set.

2. Once the arrival process is deemed appropriate, we are mainly interested in

modelling the time varying arrival rate. We examine the current modelling

approaches.

3



1.4 Thesis Outline

A strong need for routine staff scheduling motivates our investigation of methods

of forecasting for stochastic inbound call load. This chapter introduces the call centre

as one of the most rapidly growing industries in North America. Research objectives

are also presented in this chapter. As an overview, the thesis is composed of the

following chapters,

In Chapter 2, we sketch a picture of the time varying arrival pattern of the Uni-

versity’s dial-up service and present a viewpoint from a queueing perspective.

In Chapter 3, we survey methods of modelling time varying arrival rates with a

review of nonhomogeneous Poisson processes. A number of estimation procedures for

linear and sinusoidal rate models are discussed. A spline-based modelling scheme is

also provided as an alternative to the linear and sinusoidal models.

In Chapter 4, we empirically test the homogeneous and nonhomogeneous Poisson

models with respect to our dial-up call arrivals. A set of goodness-of-fit tests are

performed. Graphical methods are provided to explore and examine the nature of

data that purely quantitative tests might miss.

In Chapter 5, we compare the fit of the linear, sinusoidal and spline models to

the intensity rate with a discussion about likelihood ratio test results. Estimates

of parameters computed by ordinary least squares (OLS), iterative weighted least

squares (IWLS) and maximum likelihood (ML) procedures are also presented for the

parametric linear and sinusoidal rate models.

4



In Chapter 6, we highlight results regarding the underlying arrival process and the

intensity rate. Limitations and future research directions are discussed in the end.

5



Chapter 2

MODEM POOL DATA: AN ANALOG OF A

CALL CENTRE

2.1 Introduction

The University dial up remote access service (U-Connect) enables faculty, staff,

and students to access the campus network for many network-based services, such

as electronic mail, web servers, the library, shared servers, and the Internet, from

their home and other off-campus locations as if they were on-campus. The service

consists of a group of modems rented from the local phone company and a high speed

connection from the modems to the University campus network, which represents an

analog of an inbound call centre as shown in Figure 2.1.

Figure 2.1 Network Layout

Unlike the traditional call centres, this service does not have to be staffed by any

human representatives as a result of the modern technological network revolution.

The service makes use of the fastest commonly available 56K modems and currently



charges a reduced subscription cost of $11.95 per month for 60 hours to the University

community users.

However, the dial-up service faces a harsh competitor, high speed internet. In

2002, commercial internet providers (ISP) like Shaw Cable introduced a $22.95 un-

limited high-speed Internet service to the students, while the dial up lines caused a

high degree of annoyance among the users, since the lines were almost always con-

gested. In this situation, a cost and benefit analysis of resources allocated to the

dial-up services such as modem renting, becomes more essential to the University.

2.2 The Raw Calling Record

The U-Connect service runs 24 hours a day, 7 days a week. The raw data consists

of a five year record of dial-up user calling history since 1999. In terms of the number

of transactions, the volume is huge. In 2000, for example, there were on average

over half a million transactions, equivalent to 1,693 daily transactions. The physical

volume of data files for all years can take up 1.4GB of a hard drive.

Figure 2.2 presents a snapshot of a raw calling record with minor modifications

applied such as underlining the headings. Each row provides a complete connection

record of a dial-up user, comprised of ID, start time, port number, assigned local

IP and session length. In the first column, each USER is identified by a unique

network service ID (NSID). Each NSID consists of 3 letters followed by 3 digits,

which corresponds to an individual affiliated with the University, a student, a staff or

a faculty member. For privacy reasons, we have removed 2 of 3 letters and all digits

7



of the actual NSIDs from Figure 2.2. The second heading is START-TIME listed in

columns as day of week, month of year, date, time and year. We usually call it arrival

time. The subsequent columns are assigned PORT and local IP. The last heading

is SESSION-LENGTH which is the total amount of time a user is connected.

Figure 2.2 A Snapshot of a Raw Record

2.3 Data Cleaning

The accuracy of the recorded times of arrivals and session length, and the counts

of users summarised by each time interval are essential to our statistical analysis of

the process of calls. In practice, the data set is not always ready to use. We devoted

a substantial amount of effort in data cleaning to reconcile any inconsistencies in the

raw data set. Technical recording errors or exceptions were found quite often. Some

examples of inconsistency that have been successfully dealt with (see Appendix A for

8



scripts used for data cleaning) include:

• Incomplete call history: We found various instances of missing data. We re-

moved the records which lack START-TIME, because our analysis of arrivals

of dial-up user is concerned about times of arrivals. For the other missing

records, for example, which do not contain IP addresses, we left them in the

data set, since our analysis has nothing to do with IP address.

• Extreme values: We encountered a great number of extreme values in recording

times. In one case, we found that a few records of SESSION-LENGTH in

one day were extremely large. We implemented a script to detect and remove

the extreme recording times (See Appendix A for details) with any session time

beyond 72 hours being considered extreme.

• Repeated records: If there is indeed any repeated record in the same file, we

only keep one record. We removed redundant records by matching call request

attributes such as USER, IP and START-TIME.

• Corrupted data structure: We found some information was placed under a

wrong heading. In one day’s record, all columns of records were shifted. For

example, user names were shifted one column to the right under the heading

of START-TIME. To be safe, we wrote a UNIX script to read in all the

information from all the raw data files and placed it under the correct headings

into new files (See script MyCleaner in Appendix A for details).
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• 24/7 call history: Call load was recorded on a continuous time scale. Each

day was stored in one single file, containing 24 hours of records. However, it

happened quite often that a call extends overnight. As one can see from the

first few lines of Figure 2.2, February 6th contained calls initialized on the 5th

and spanned over midnight. As our primary interest was the arrival process,

we regrouped arrivals initiated on the same day into the same file, regardless of

the session length.

• Embedded in an HTML environment: Since the records were embedded by

HTML tags such as Content-type, HTML, HEAD, PRE, BODY, TITLE

and USER, the script MyCleaner (in Appendix A) was used to remove these

marks.

2.4 Elements of Time Varying Arrivals

The dial-up user call volume is neither constant nor easily predictable over time.

The arrival pattern exhibits many elements of a time varying rate.

At the aggregate level, Figure 2.3 shows the number of arrivals in each month from

January 2000 to June 2003. Call volume exhibited strong seasonal trends throughout

the years. The kind of patterns clearly repeated from year to year. The call volume

reached the global peak in 2000 and the overall trend was decreasing throughout the

years. In the summer of 2002, it reached the global minimum, which is probably due

to the introduction of the special student rate high speed offered by commercial ISPs.

(Since no data is available after May 2003, the figure shows no arrivals at that point.)
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Given the yearly patterns, one would like to go one step further. As one example,

Figure 2.4 zooms in on calls in 2000. The figure presents a number of signs of season-

ality. The seasonality, which is common amongst the other years, can be summarised

as follows,

• In winter, the number of calls climbs up from January when people get back

from Christmas holidays. It reaches the peak in March when it is close to the

end of winter term. As we know the regular academic year usually ends at the

start of April, March is the peak dial-up call time as the faculty and students

might rush through unfinished materials and get prepared for final exams.

• In the spring and summer terms (from May through August) call volume is

decreasing while there is a slight increase after July. In general, the spring and

summer terms have lighter loads because of lower enrollment at the University.

• In September, the regular term resumes. It starts climbing up again until No-

vember when it reaches another peak.

This trend has a good match with the university academic calendar: three typical

periods throughout a year. Namely, Period 1: from January to April (winter term);

Period 2: from May to August (summer and spring term); Period 3: September to

December (fall term).

Figure 2.5 shows a comparison amongst years. As we can see, these years share a

common monthly pattern. The number of calls reaches a peak in March and November
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Figure 2.4 An Example of Annual Calls
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except in 2002. Note that since the data is dated up to July 7th, 2003, the 2003 plot

drops to zero after July 2003. This pattern also reinforces the conclusion we drew

from Figure 2.4 that March and November are the busiest times of the year and

during summer very few people use the dial-up service.
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Figure 2.5 Annual Call Comparison

Based on these similar patterns amongst years, we can focus on one year’s data.

Interestingly, the number of arrivals in 2002 did not climb up after September as the

previous years. One possibility for no climb-up is that people switched from dial-up to

faster and not-so-expensive high speed internet as both Sasktel and Shaw (commercial

ISPs) each offered a special deal for high speed internet to students/falculty members

for $25/month at the time.

Based on the previous analysis of the call pattern, we pick three typical months
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to represent Period 1, Period 2 and Period 3, respectively. Each of Figures 2.6, 2.7

and 2.8 shows a comparison of the number of calls for three selected months in a year

(i.e., 2000, 2001 and 2002). We do not consider 2003 due to its incomplete data. (For

those months that do not have the 31st day, it shows zero on that day in the figures.)
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Figure 2.6 Monthly Comparison 2000

Based on these comparisons, we can see that the number of arrivals is directly

related to day of week but not date of month. In Figure 2.7, for example, on the 10th

of January, the number of arrivals reaches the monthly peak, while on the same date

of November, the number of arrivals is close to the monthly minimum. One should

note that the reason that in 2000 the arrival trend of these months looks almost

identical in Figure 2.6 is not because of the same dates but the fact that the dates

coincide with the same day of the week. For example, March 1st and November 1st
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Figure 2.9 An Example of Weekly Comparison 2000

are both Tuesdays.

Given the day of week pattern, let’s examine the weekly calls a bit closer. Figures

2.9, 2.10 and 2.11 sample three months, respectively, for years 2000, 2001 and 2002.

These figures illustrate the dramatic differences in call volume between the peak

volume time (on a week day) and the minimum volume time (at the weekend). They

also indicate a similar weekly pattern.
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Figure 2.12 compares two work days with two holidays. According to this figure, a

work day generally possesses a higher call volume than a holiday. Christmas and New

Years days tend to have a smaller number of call requests. Nonetheless, they do share

a common hourly pattern, in which the number of arrivals reaches the maximum after

supper and the minimum before breakfast.
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Figure 2.12 Holiday and Weekday Comparison

The influence of time of day on arrivals throughout a day is demonstrated more

clearly on January 1st, 2000. Figure 2.13, 2.14 and 2.15 represent three versions of

arrivals in the same day, namely by hour, half-hour and quarter-hour.
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Figure 2.13 Hourly Calls

Once we zoom in, we see more fluctuations of arrivals in shorter intervals moving

from hour to quarter-hour. Since our research models the unknown arrivals as con-

trolled by factors such as time of day, day of week and academic season, in the next

section, a review of the relevant literature on methods of modelling is conducted for

this challenge.
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Figure 2.14 Half-hour Calls
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Figure 2.15 Quarter-hour Calls
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Chapter 3

METHODS OF MODELLING STOCHASTIC

ARRIVALS

This chapter provides a review of the development of modelling a stochastic ar-

rival process at a call centre. As outlined by Whitt [34], it is useful to classify

the modelling strategies based on sources of uncertainty: (1) model uncertainty, (2)

parameter uncertainty or (3) process uncertainty. One of these three stochastic com-

ponents can govern another with respect to the arrival process being studied. One

would be interested in comparing these components by quantifying their randomness.

Recently, Brown et al. [5] investigated the arrival process of an Israeli bank call centre

and developed a statistical test to determine if the calls followed a nonhomogeneous

Poisson process with a slowly varying arrival rate. In accommodating the unknown

parameters of the arrival rate, Massey et al. [27] confined themselves to a linear

arrival model. Another approach to tackling model and parameter uncertainty is by

employing nonparametric methods. For example, Leemis [23] was interested in non-

parametric techniques for estimating the arrival rate if the parent intensity function

can be well defined such as, piecewise linear, sinusoidal, power and exponential-like.

Similar to Whitt’s outline, our review does not attempt to be comprehensive, but

rather focuses on the arrival process and the common practice of modelling the ar-

rival rate in the context of call centres.



3.1 A Systematic View From A Queueing Perspective

3.1.1 Characteristics of queueing systems

Danish engineer and mathematician A.K. Erlang, in 1909, applied queueing mod-

els to telephone switches [18]. Since then, queueing theory has been used very exten-

sively in various applications. A queueing system can be described using the following

characteristics [18]:

1. arrival pattern of customers,

2. service pattern of servers,

3. queue discipline,

4. system capacity,

5. number of service channels,

6. number of service stages.

A queueing system is represented by five symbols namely,

A/B/X/Y/Z, (3.1)

where
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A provides the description of the arrival process in terms of the interarrival times.

Some of the commonly used arrival processes are M (Markovian), D (Deter-

ministic), GI (Renewal) and G (General).

B describes the service times which can be exponential (M) or deterministic (D) or

general (G).

X represents the number of servers.

Y is the system capacity restriction which is usually represented by the waiting space.

Z represents the service discipline used in the system. The service discipline could be

FCFS (first come first served), LCFS (last come last served) or priority-based.

For example, in an M/M/N/N queue known as the Erlang B model, arrivals form

a Poisson process with a constant arrival rate and the service times are assumed to

be independently identically distributed exponential random variables. No waiting is

possible and the service discipline is FCFS that is usually suppressed in the standard

notation .

In practice, however, the queueing system is fairly complex and most of the char-

acteristics are time-dependent, in which case we add a t subscript to the standard

notations. For example, for the Mt/M/N/N queue [20] the arrival process is nonho-

mogeneous Poisson and the arrival rate is characterized by a time-dependent arrival

rate function.
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3.2 Poisson Arrival Model

3.2.1 Poisson process

Since Erlang used the Poisson process in applications of telecommunication sys-

tems, it has become prevalent in modelling a great number of arrival processes beyond

its use in telecommunication [18]. The Poisson process is an example of a stochastic

process known as a counting process. Call arrivals at a call centre can be modelled as

a counting process {N(t), t ≥ 0} which counts the cumulative number of arrivals at

time t. If the number of calls in any time interval of length t is governed by a Poisson

process with rate λ, then the process satisfies the following:

(i) N(0) = 0.

(ii) The process has independent increments, which implies that [N(t4) − N(t3)]

is independent of [N(t2)−N(t1)] for t4 > t3 > t2 > t1.

(iii) The number of arrivals in any interval of length t has a Poisson distribution,

i.e.,

P{N(t + s)−N(s) = n} = exp(−λt)
(λt)n

n!
, n = 0, 1, . . . (3.2)

with the mean and variance both equal to λt. One should also note that immediately

following (iii), a Poisson process has stationary increments [31], which means the

distribution of the number of arrivals over a given time interval only depends on the

length of the interval.
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3.2.2 Exponential interarrival time

The Poisson process and the exponential distribution are closely related, i.e., if

events occur corresponding to a Poisson process, then the interarrival times between

these events are independent and identical (i.i.d.) exponentially distributed random

variables [22]. In order to test whether the dial-up session traffic can be modelled by a

Poisson process, we investigate if the interarrival times between the sessions are i.i.d.

exponentially distributed. Using f(x) and F (x) to denote the probability density

and cumulative distribution functions respectively, for an exponential distribution

with mean 1/λ (λ > 0), we have

f(x) = λ exp(−λx) for x ≥ 0 and 0 elsewhere, and

F (x) = 1− exp(−λx) for x ≥ 0 and 0 elsewhere. (3.3)

The variance of an exponentially distributed random variable is 1/λ2.

3.2.3 Nonhomogeneous Poisson process

It is often assumed that call arrivals follow a homogeneous Poisson process with

a constant arrival rate λ. With this assumption, the blocking probability known

as Erlang B formula can be obtained using M/M/N/N. This blocking probability

is used in practice as one measure of quality efficiency. However, the real situation

quite often becomes complicated when the arrival rate is λ(t), a function of time t.

In the case of operating a call centre during peak hours, the stationary assumption

25



60 80 100 120 140 160 180 200 220 240 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index of Time Intervals, by Minute

Mean and Variance Comparison, Non−busy Time

mean
variance

Figure 3.1 Undistinguishable Mean and Variance, Non-busy Time

of a Poisson process can be easily violated. It is likely to observe abrupt changes in

arrivals where the constant arrival rate λ is barely in place. On January 1st, 2000, the

mean and variance are apparently unequal during the peak hours shown in Figure 3.2

but hardly distinguishable during the low traffic hours shown in Figure 3.1. Given the

large variation of call volume in incoming traffic across different time frames, it would

be very problematic to schedule staffing in achieving a “no-wait” standard using the

traditional M/M/N/N model.

The solution to this problem is to use the nonhomogeneous Poisson model. Nu-

merous authors [31], [22] and [32] have advocated the use of the nonhomogeneous

Poisson process. The nonhomogeneous Poisson process comes in handy, as an al-

26



900 920 940 960 980 1000 1020 1040 1060 1080 1100
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Mean and Variance Comparison, Busy Time

Index of Time Interval, by Minute

mean
variance

Figure 3.2 Unequal Mean and Variance, Busy Time

ternative to the homogeneous Poisson process, to tackle the time varying property

of call arrivals. The nonhomogeneous Poisson process allows us to analyse arrivals

by differentiating by time of the day and day of the week. Let {N(t), t ≥ 0} be a

nonhomogeneous Poisson process which counts the number of arrivals up to time t

with intensity function λ(t). Thus it has the following properties:

(i) N(0) = 0.

(ii) The process has independent increments as in the homogeneous case.

(iii) The number of arrivals in any interval of length t has a Poisson distribu-

tion, i.e.,
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P{N(t + s)−N(s) = n} = exp{−[Λ(t + s)−Λ(s)]} [Λ(t + s)− Λ(s)]n

n!
, n = 0, 1, . . .

(3.4)

with mean Λ(t + s) − Λ(s) where Λ(t) = E[N(t)] =
∫ t
0 λ(τ)dτ [31]. E[N(t)] is the

expected number of arrivals up to t.

The form of the intensity function λ(t) is considered one of the key differences

between homogeneous and nonhomogeneous Poisson processes. In the case of the

homogeneous Poisson process, λ(t) is constant, say equal to λ. Then, the expected

number arrivals up to t is E[N(t)] =
∫ t
0 λ(τ)dτ =

∫ t
0 λdτ = λt. On the other hand,

where arrivals follow a nonhomogeneous Poisson process, λ(t) , the form of which

needs to be determined from the data.

3.3 Parametric Estimation of Intensity Rate

As pointed out by Whitt [34], if the nonhomogeneous model is deemed appropriate,

then the concern is whether we can reduce the infinite-dimensional parameter space

due to λ(t). Many approaches exist in the literature for modelling the time varying

arrival rate. While λ(t) is nonconstant, the question of interest is if the form of λ(t)

can be determined by some simple model.

3.3.1 Linear rate model by Massey et al.

If the intensity rate varies proportional to time, it makes good sense to regard this

rate as linear across time spans. As proposed by Massey et al. [27], a piecewise linear
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model fits well within single hours, especially with the arrivals summarised by counts

over short subintervals, say 5 minutes, for the data from the AT & T long distance

network. The motivation to approximate it linearly also lies at simplification of the

model which reduces the infinite-dimensional parameter space. Of course, the arrival

rate of our modem pool data can vary significantly from hour to hour, but the linear

rate might have a good fit to the dial-up user arrivals within an hour.

Massey et al. [27] compared three different estimators in fitting the linear rate.

They were OLS, IWLS and ML estimators.

Simple linear regression and the OLS estimator

To fit a piecewise linear model over a time span T , one assumes

λ(t) = a + bt, 0 ≤ t ≤ T (3.5)

To carry out the estimation procedure, we partition the given time span (say, T ) into

n equal subintervals with xi being the midpoint of each subinterval i. Then, we count

the number of arrivals yi in each of these n subintervals where the expected number

of arrivals for each interval is [27]

E[yi] = λi =
∫ T

n

0
λ(τ)dτ =

T

n
(a + bxi). (3.6)

For the simple linear regression model yi = α + βxi + εi, with the random error

εi ∼ N(0, σ2), the OLS procedure is often used to estimate the regression coefficients.

We would like to present it here in order to compare it with IWLS later. We can
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compute the estimates α̂ and β̂ based on the paired data (xi, yi) in the following

fashion,

x =
1

n

n∑

i=1

xi and y =
1

n

n∑

i=1

yi. (3.7)

The sums of squares are

Sxx =
n∑

i=1

(xi − x)2 and Syy =
n∑

i=1

(yi − y)2, (3.8)

and the sum of cross-product is

Sxy =
n∑

i=1

(xi − x)(yi − y). (3.9)

α̂ and β̂ are given by

β̂ =
Sxy

Sxx

and α̂ =y − β̂x. (3.10)

Then, using the means λi = T
n
(a+bxi) of the Poisson random variables yi, subject

to λi ≥ 0, we obtain

b̂ =
n

T
β̂ and â =

n

T
α̂. (3.11)

Heteroscedasticity and the IWLS estimator

Heteroscedasticity refers to nonconstant error variance. Recall that for Poisson

random variables yi, mean and variance are equal. In the time nonhomogeneous

model, we do not expect constant error variance throughout T when regressing on yi.
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Thus the Gauss-Markov theorem which asserts OLS estimators are the best linear

unbiased estimators (known as BLUE) is no longer applicable, since the underlying

assumption of constant variance is violated. Now the regression model becomes yi =

α′ + β′xi + εi with εi distributed with different variance σ2
i , which deviates slightly

from OLS. If the unequal variance structure is known, we use positive weight wi to

minimize the weighted sum of squared residuals,
∑n

i=1 wiε
2
i . Since the variance is not

known in advance, Massey et al. [27] used the weights that produced the minimum

variance estimator amongst linear functions of yi. Namely, the weights were

wi =
n

λi

/
n∑

i=1

(
1

λi

) with mean of yi, λi =
T

n
(a + bxi). (3.12)

Similarly, α′ and β′ can be estimated as follows,

x′ =
1

n

n∑

i=1

wixi and y′ =
1

n

n∑

i=1

wiyi. (3.13)

The sums of squares become

S ′xx =
n∑

i=1

wi(xi − x′)2 and S ′yy =
n∑

i=1

wi(yi − y′)2, (3.14)

and the sum of cross-product becomes

S ′xy =
n∑

i=1

wi(xi − x′)(yi − y′). (3.15)

α̂′ and β̂′ are given by
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β̂′ =
S ′xy

S ′xx

and α̂′ =y′ − β̂′x′. (3.16)

Then, obtain

b̂ =
n

T
β̂ and â =

n

T
α̂. (3.17)

The error variance, a and b were unknown in advance. To estimate parameters

a and b using wi, Massey et al. employed the iterative method (IWLS) to approach

wi. The IWLS procedure is discussed in detail by Carroll and Ruppert [6], and is

as follows: First, estimate a and b using OLS. Second, use the estimated a and b

to compute estimates for λi and wi from Equation 3.12. Third, use these estimates

to initiate the weighted least square approach as described by Equations 3.13, 3.14,

3.15, 3.16 and 3.17. Fourth, iteratively update the estimates for a, b and wi until a

preset error tolerance (i.e., 10−6 was used in our codes) for stabilizing wi has achieved.

The iterative procedure usually took at most 5 iterations to converge as reported by

Massey et al. [27].

The ML estimator

The third procedure they [27] presented was to estimate a and b so as to maximize

the likelihood of the Poisson random variable yi, i = 1, 2, . . . , n. Let L(λ|y) denote

the likelihood function with parameter vector λ = (λi, . . . , λn). Thus,
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L(λ|y) =
exp(− n∑

i=1
λi)

n∏
i=1

λyi
i

n∏
i=1

(yi!)
. (3.18)

Then, the log likelihood is

ln L(λ|y) = −
n∑

i=1

λi +
n∑

i=1

yi ln λi −
n∑

i=1

ln(yi!). (3.19)

For the linear rate model, we still replace λi by T
n
(a+ bxi) and apply the midpoint

rule that xi = (i− 1/2)T
n
. Then, the log likelihood becomes [27]

ln L(a, b|y) = −
n∑

i=1

T

n
(a + bxi) +

n∑

i=1

yi ln[
T

n
(a + bxi)]−

n∑

i=1

ln(yi!)

= −aT − bT 2

2
+

n∑

i=1

yi ln[
T

n
(a + bxi)]−

n∑

i=1

ln(yi!). (3.20)

Taking advantage of the monotonic increasing property of the log function, Massey

et al. [27] obtained the ML estimates âM as solution to Equation 3.21 and b̂M by the

following scheme, with

g(a) ≡
n∑

i=1

yi

ax + xi(
S
T
− a)

= 2 where S ≡
n∑

i=1

yi (3.21)

(i) find the root a of g(a) = 2 in (0, S/T ), b = 2(S − aT )/T 2;

(ii) if no root is found, then a = a∗ + bT, b = −b∗ for the root a∗ of g∗(a) = 2 in

(0, S/T ) and b∗ = 2(S − a∗T )/T 2 where g∗ is g in Equation 3.21,
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(iii) if no root can be found in (i) or (ii), evaluate Expression 3.22 with solutions

(1) a = S/T and b = 0, (2) a = 0 and b = 2S/T 2 and (3) a = −bT and b = −2S/T 2

n∑

i=1

yi ln(a + bxi) (3.22)

and choose the one that produces the maximum.

Asymptotic likelihood ratio test for linear rate

In addition to estimating the parameters, we can rely on the asymptotic likelihood

ratio test (LRT) for testing the linear rate model. The rationale behind the LRT is

that we would like to evaluate the deviance of the hypothesized model from a more

general model by the ratio of their likelihood in order to test

H0 : θ ∈ Θ0

Ha : θ ∈ ΘC
0 .

where Θ0 ⊆ Θ and Θ is the general parameter space.

The numerator of the ratio is the maximum probability of the observed sample

under the null hypothesis, whereas the denominator is the maximum probability of

the observed sample over all possible parameters. If this ratio is small, then given

the data it is less likely to accept the null hypothesis than the alternative. To use

the asymptotic distribution, we let the sample size go to infinity, which allows us

to simplify calculations or to acquire properties that arise from large samples. In

our case, we do not know any particular test designed to assess the fitness of the
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linear rate model. The asymptotic distribution of the likelihood ratio of the model

in question over all possible models gives us an explicit expression in doing so. The

likelihood ratio is defined by

l(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)
(3.23)

where supΘ0
L(θ|x) is the supremum of the likelihood over the hypothesized parameter

space (i.e., Θ0). Then, by the following theorem, the distribution of the test statistic

−2 ln l(x) converges to a χ2 distribution as the sample size n →∞ [3].

Theorem 1 (Berger and Casella, 2002) Let X1, . . . , Xn be a random sample from

a pdf or pmf f(x|θ). Under the regularity conditions (see Miscellanea 10.6.2 in [3]),

Reject H0 : θ ∈ Θ0 if and only if − 2 ln l(X) ≥ χ2
ν,α (3.24)

where the degrees of freedom ν is the difference between the number of free parameters

specified by θ ∈ Θ0 and the number of free parameters specified by Θ.

In the language of statistical testing, our hypothesis can be formulated by

H0 : λi =
T

n
(a + bxi) (3.25)

Ha : Otherwise. (3.26)

To find the numerator supΘ0
L(θ|x), we can use âM and b̂M for the linear rate,

which can be calculated from the ML scheme given earlier. Similarly, to find the
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denominator supΘ L(θ|x), we need to find the ML estimator of λi under the full

model. It means we differentiate the log likelihood ln L(λ|y′is) in Equation 3.19 with

respect to λi. Then,

∂

∂λi

ln L(λ|y) =
∂

∂λi

[−
n∑

i=1

λi +
n∑

i=1

yi ln λi −
n∑

i=1

ln(yi!)] = −1 +
yi

λi

. (3.27)

After setting the equation to zero, we find yi is the ML estimator of λi. The resulted

test statistic having χ2 distribution with degrees of freedom ν = n− 2 becomes

−2 ln l(X) = −2 ln(
exp[− n∑

i=1

T
n
(âM + b̂Mxi)]

n∏
i=1

T
n
(âM + b̂Mxi)

yi

exp(− n∑
i=1

yi)
n∏

i=1
yyi

i

). (3.28)

For a large sample, the test statistic approximates a χ2 distribution. What hap-

pens if our sample size is small? For testing one parameter, McCullagh and Nelder

pointed out that this large sample approximation is usually quite accurate even for

small samples [28]. We apply LRT to our data using this approximation and the

results are presented in Section 5.1.2, Chapter 5.

3.3.2 Sinusoidal model

A natural question is what if the arrival rate is not linear. It is likely that arrivals

oscillate very much even within an hour. In this case, the rate is too fluctuating to

be captured by the linear model. As cited in Leemis [23], attempts such as using the

so-called power law or Weibull process

E[N(t)] = Λ(t) = (αt)β (3.29)
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Figure 3.3 An Example Beyond Linear Rate Model, 10:00am-12:00am

have been made. A general model extends the power law to an exponential-polynomial-

trigonometric function. The general model for intensity rate function which is sug-

gested by Crawford et al. [8], has the form

λ(t) = exp[
m∑

i=1

αit
i + γ sin($t + φ)]. (3.30)

Figure 3.3 presents us a situation beyond the capacity of a linear rate model. The

figure shows a 2-hour call arrivals on Monday, March 8, 2000. Each data point rep-

resents the number of arrivals within 5 minutes, spanning from 10:00am to 12:00am.

Roughly speaking, within each hour, there is a global minimum of 4 arrivals each in-

dexed by 12 and 87, meaning 2 valleys occur around 10:12am and 11:17am. Similarly,

a global maximum, at least each within 1 hour span, of 16 and 13 arrivals, indexed by

37 and 92, suggesting 2 peaks are at 10:37am and 11:32am. Both valleys and peaks
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are almost 1 hour apart. Regarding this hourly pattern which Figure 3.3 exhibits, a

sinusoidal model can do well in capturing the fluctuations. We can set a cycle of 1

hour, to model the cyclic behaviour of the arrivals. The sinusoidal model, which we

propose, has the following form

λ(t) = a + b1 sin(ct) + b2 cos(ct). (3.31)

Although the general form as in Equation 3.30 seems more flexible, difficulties

arise when one attempts to estimate the model parameters. The sinusoidal form has

a couple of advantages over the general one:

• It preserves the properties that we have developed from the linear rate model: it

is still linear in terms of the trigonometric dependent variables; since it is linear,

we can apply the OLS, IWLS and MLE procedures to estimate the intercept

and coefficients using the linear regression model

yi = a + b1 sin(cxi) + b2 cos(cxi) + εi. (3.32)

• The cyclic behaviour can be easily modelled by adjusting parameter ‘c’. The

sinusoidal rate has the cycle 2π/c. As shown previously in Figure 3.3, if we let

c = 2π/60, then the sinusoidal model will approximate the arrivals with a cycle

of 1 hour (i.e., 60 minutes).

It is common that one breaks the cycle into subintervals, say 5 minutes each, so

one can estimate the parameters based on the sample within that cycle. Then, one
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can extend the procedure to the subsequential cycles. Green, Kolesar and Soares [16]

applied a sinusoidal model of the form λ(t) = λ+A sin(2πt/24) with a 24-hour cycle,

because of the many applications where a daily cyclic effect is evident. In contrast,

we sample a 2-hour realization simply to demonstrate the cyclic effect of arrivals. We

can still use the sinusoidal rate to model any other time span as long as the cyclicity

can be well captured by setting the period parameter c in the model.

The sinusoidal ML estimator

As has been noted, the OLS and IWLS procedures for the sinusoidal model are

exactly the same as for the linear rate model. However, we need to compute the ML

estimates. As in Equation 3.19, we replace λi by T
n
(a + b1 sin cxi + b2 cos cxi), the log

likelihood becomes

ln L(a, b|y) = −
n∑

i=1

T

n
(a + b1 sin cxi + b2 cos cxi)

+
n∑

i=1

yi ln
[
T

n
(a + b1 sin cxi + b2 cos cxi)

]
−

n∑

i=1

ln(yi!)

= −aT − T

n
(b1

n∑

i=1

sin cxi +
n∑

i=1

cos cxi)

+
n∑

i=1

yi ln
[
T

n
(a + b1 sin cxi + b2 cos cxi)

]
−

n∑

i=1

ln(yi!). (3.33)

After differentiating the log likelihood with respect to a, b1 and b2 and setting the

results to zero, we obtain equations

n∑

i=1

yi

a + b1 sin cxi + b2 cos cxi

= T (3.34)

n∑

i=1

yi sin cxi

a + b1 sin cxi + b2 cos cxi

=
T

n

n∑

i=1

sin cxi (3.35)
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n∑

i=1

yi cos cxi

a + b1 sin cxi + b2 cos cxi

=
T

n

n∑

i=1

cos cxi. (3.36)

In contrast to the linear rate case, analytically solving this system of equations

raises a number of technical difficulties. However, the solutions can be computed

numerically. We use fsolve in MATLAB to solve for the ML estimates âM , b̂M
1 and

b̂M
2 (see Appendix G for a review of the numerical algorithm used by fsolve).

Asymptotic likelihood ratio test for sinusoidal rate

Similar to OLS and IWLS procedures, the asymptotic LRT for sinusoidal rate

preserves the structure of the linear rate case. In other words, the hypothesis becomes

H0 : λi =
T

n
(a + b1 sin cxi + b2 cos cxi) (3.37)

Ha : Otherwise. (3.38)

The corresponding test statistic −2 ln l(X) equals

−2 ln(
exp[− n∑

i=1

T
n
(âM + b̂M

1 sin cxi + b̂M
2 cos cxi)]

n∏
i=1

T
n
(âM + b̂M

1 sin cxi + b̂M
2 cos cxi)

yi

exp(− n∑
i=1

yi)
n∏

i=1
yyi

i

)

(3.39)

with the degrees of freedom ν = n − 3, where âM , b̂M
1 and b̂M

2 are the ML estimates

and can be obtained numerically.
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3.4 Spline Models

Spline regression is a method for fitting and smoothing the twists and turns (local

characteristics) of a time varying process. We choose this approach because it is the

simplest when the knots are few and known in advance. Note that the number of

arrivals are summarised by every 5 minutes or so. If we treat each 5-minute point

on the time span as a knot, and the subintervals between the knots are fixed (e.g., 5

minutes), then we can model the arrivals using splines.

3.4.1 An introduction to splines

The method of splines is traditionally more familiar to numerical analysis than

to be used by statisticians. We can interpolate or extrapolate data using splines. We

would like to review data interpolation using splines here in order to appreciate its

nice properties. A spline is a segmented polynomial separated by knots, an ordered

set of points {ξi}. The segmented nature allows splines more flexibility than a simple

polynomial to adjust the local characteristics of data. Also, splines have a set of

certain continuity properties at the local points. A more precise definition of a spline

of order r with knots at ξ1, . . . , ξk is given by Eubank [11],

s(t) =
r−1∑

i=0

θit
i +

k∑

i=1

δi(t− ξi)
r−1
+ (3.40)

for some set of real coefficients θ0 ,. . . , θr−1, δ1 ,. . . , δk, where
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(t− ξi)
r−1
+ =





(t− ξi)
r−1, t≥ ξi,

0, t < ξi.

(3.41)

This definition is also equivalent to the following conditions,

1. s is a piecewise polynomial of order r on any subinterval [ξi, ξk].

2. s has r − 2 continuous derivatives.

3. s has an (r − 1)st derivative that is a step function with jumps at ξ1 ,. . . ,ξk.

Restrained by the above conditions, a spline is indeed a piecewise polynomial whose

different polynomial segments have been joined together at the knots ξ1, . . . , ξk.

3.4.2 Cubic spline interpolation

A cubic spline, for example, by the definition above can be expressed by

s(t) =
3∑

i=0

αit
i +

N−1∑

i=1

βi(t− ξi)
3
+ (3.42)

for a partition on [a, b], a = t0 < t1 < . . . < tN = b, where

(t− ξi)
3
+ =





(t− ξi)
3, t≥ ξi,

0, t < ξi.

(3.43)

Given values y(ξ1), . . . , y(ξN) at the knots, we choose the coefficients αi (i =

0, 1, 2 and 3) and βi (i = 0, 1,. . . , N − 1) to satisfy the continuity conditions such

that,

s−(ξi) = y(ξi) = s+(ξi) (3.44)
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s−
′
(ξi) = s+′(ξi) (3.45)

s−′′(ξi) = s+′′(ξi) for i = 1, . . . , N (3.46)

where s−(ξi) and s+(ξi) are the splines to the left and right of the knot ξi, respec-

tively. That is to say, cubic splines are smooth curves by forcing the first and second

derivatives of the function to agree at the knots.

A natural cubic spline imposes zero first and second derivatives at the boundary

points x = a and b. This natural boundary condition ensures the fitted curve becomes

linear beyond the boundary, which avoids wild behaviour of the curve. Green and

Silverman [17] also provided proofs of its attractive properties regarding smoothness

in detail. The properties can be summarised by the following two points:

1. Amongst all curves f that interpolates the data, a natural cubic spline minimizes

∫ b
a (f ′′(x))2, which quantifies the roughness of the curve. (minimum property)

2. Provided N ≥ 2, there is exactly one such cubic spline. (uniqueness property)

As a result, we can always find a unique minimizer of
∫

f
′′2 which interpolates any

given set of data. Our data are arrival counts generated by a stochastic process, and

this result provides us with the natural cubic spline regression to model the arrival

rate which does not exhibit wild fluctuations.

3.4.3 Spline regression model

Replacing the linear function a + bt in Equation 3.5 by a nonlinear function f(t)

becomes,
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λ(t) = f(t). (3.47)

Instead of estimating model parameters in a linear model, we are interested in

modelling f(t) itself. If we model f(t) using a natural cubic spline, then the corre-

sponding natural cubic spline regression model is

yi =
3∑

i=0

αit
i +

N−1∑

i=1

βi(t− ξi)
3
+ + εi (3.48)

with the random error εi ∼ N(0, σ2).

Spline regression helps relax the assumption of linearity, but may raise difficulty

in interpreting the model, whereas parametric models often allow us to explain the

response variable by the rate of change of the independent variables. Due to its

flexibility and continuous properties, the natural cubic spline can be a good choice.

While the function f(t) usually satisfies some conditions of differentiability, f(t) can-

not be any continuous function. For example, there are some drawbacks when fitting

a polynomial function. Green and Silverman [17] listed two major drawbacks:

1. Some observed data can exert influential effects on the remote part of the poly-

nomial in an unexpected way.

2. Adjusting the degree of polynomial in order to fit the data can only be controlled

in discrete steps but not continuously.

In short, polynomial regression can be useful in many situations. However, the
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choice of terms is not always obvious, and small effects can be greatly magnified or

lost completely by the wrong choice.

3.4.4 Smoothing splines

In contrast to natural cubic spline regression, smoothing splines arises from the

roughness penalty approach. For n pairs (xi, yi), a smoothing spline balances the

trade-off between the fit and degree of smoothness of the function for the penalized

residual sum of squares

SS(γ) =
n∑

i=1

wi[yi − f(xi)]
2 + γ

∫ b

a
(f ′′(x))2dx (3.49)

where γ is the smoothing parameter. That is, we fit a curve f(t) to the data subject

to the constraint above.

The first term is the usual weighted sum of squares of errors. As alluded to

previously, the second term is the roughness penalty. If f(t) is globally linear, then it

contributes nothing after twice differentiation to the roughness penalty term, so the

roughness penalty approach is an extension of the least square estimation method

used in the linear regression. The addition of the roughness penalty guards against

any rapid change of the fitted curve. The smoothing parameter γ is the lever that

balances between fitness and smoothness. The larger the smoothing parameter, the

more weight on the smoothness. If γ = 0, then f(t) simply interpolates the data with

completely flexible slope that may produce extreme roughness. At the other extreme,

if γ →∞, then f(t) should be chosen so that f
′′
(t) = 0 everywhere, which is simply
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a least square linear regression line.

Choosing smoothing parameter by cross validation

In R (a statistical computing package) [29], we can specify smoothing parameter

γ or equivalently the degrees of freedom by setting df in function smooth.spline

or sreg. Alternatively, we can employ cross validation (CV) to choose γ. Cross

validation applies a leave-one-out approach. Omitting the ith observation at xi, we

find the resulting curve ŷ−i. Then the cross validation is

CV (γ) =
n∑

i=1

wi[yi − ŷ−i(γ, xi)]
2. (3.50)

The key idea is we choose the smoothing parameter that can best predict the data.

The best γ helps us minimize the mean square error. By default, R uses generalized

cross validation (GCV) which is a modified version of CV (see [17] for a substantial

discussion on the difference between the two criteria).

3.4.5 Relationship between spline models

The major difference between spline regression (e.g., implemented by ns in R)

and smoothing spline lies at the eigenvalues of the hat matrix. The hat matrix is

analogous to the one in the usual linear model. As in the linear model (Equation

3.5), the fitted value given by the regressors can be expressed by [14]

ŷ = Xb
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= X(X′X)−1X′y

= Hy (3.51)

where H = X(X ′X)−1X ′ is called the hat matrix. The hat matrix projects y into

the subspace spanned by the columns of the model matrix X. For regression spline,

all eigenvalues are 0 and 1. It is a projection. In contrast, smoothing spline has a

projection part as well as a shrinking part, which makes its eigenvalues vary between

0 and 1. Discussions on hat matrix for splines can be found in books by Eubank [11],

Green and Silverman [17], and Hastie and Tibshirani [19]. A comparison of results

between different spline models is presented in Chapter 5.

47



Chapter 4

GOODNESS-OF-FIT TESTS OF THE ARRIVAL

PROCESS

In the statistical context of hypothesis testing, we usually employ the so-called

goodness-of-fit tests to assess how well the data follows the proposed distribution. In

this chapter, we recapitulate some goodness-of-fit methods related to the exponential

distribution when applied to the nonhomogeneous Poisson process and a statistical

testing scheme for independence. We focus on the empirical distribution function

(EDF) based tests. The null hypothesis H0 is proposed for a particular distribution,

and then the test statistics are computed from the available data to measure the

discrepancy of its EDF from the theoretical cumulative distribution function CDF of

the proposed model. Results by graphical methods as a visual aid to the numerical

tests are also provided.

4.1 Testing the Exponential Distribution

To test if the unknown population comes from some exponential distribution, we

make the decision by employing a test of significance. The null hypothesis is that the

distribution of our sample data, say Yi, is exponential. Let F denote the underlying

distribution of the sample data. Then, we test the null hypothesis over the alternative

H0 : F ∈ {F0 : F0(x) = 1− exp−λx; λ > 0}



Ha : Otherwise

where F0 in this case is the CDF that belongs to a family of one-parameter exponential

distributions.

In this section, we consider various methods of goodness-of-fit when applied to

exponential interarrival times, such as Chi-squared, EDF based Kolmogorov-Smirnov

(K-S) and Anderson-Darling (A-D) tests. We do not thoroughly explore our data set

by the Chi-squared test. One of the Chi-square’s difficulties is matching the EDF:

To calculate the Chi-square distributed test statistic, we need to bin the data into

arbitrary subintervals. However, the length of bin is usually hard to set. Nonetheless,

the algorithm for the Chi-squared test is written in MATLAB (See Appendix E for

the implementation).

4.1.1 Anderson-Darling test

To test whether the sample data are exponentially distributed with mean λ, we

use the (A-D) test, which checks if a given sample is drawn from a population with

a specified distribution [1, 2]. While K-S test is commonly used, A-D test is more

appropriate in testing the exponential distribution since A-D does not require the

knowledge of the true population parameters, but uses those estimated from the data

[1, 2]. A-D takes the advantage of the specified distribution as shown in Equation 4.1.

A-D also picks up the difference at the tails better than K-S since A-D assigns more

weight to larger values [9]. Another drawback of K-S is that it would not compute

the correct test statistics if there are any ties. We only need to implement A-D as
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0.900 0.950 0.975 0.990

Test statistics 1.070 1.326 1.587 1.943

Table 4.1 A-D critical values

K-S is an existing function of Splus and MATLAB. Results tested by K-S are still

presented for comparison purposes.

Let Y(1), Y(2),..., Y(n) be the sample values sorted in ascending order. F0 denotes

the CDF of the exponential random variables where λ̂ = 1/Ȳ , Ȳ =
∑N

i=1 Yi/N and N

is the sample size. The test statistic A2 is defined by

A2 = −N −
N∑

i=1

2i− 1

N
{ln[F (Yi)] + ln[1− F (YN+1−i)]} . (4.1)

As A-D test uses the estimated mean, A2 has to be multiplied by a constant

correction factor [24], so the corrected statistic is

A2
∗ = A2(1 + 0.6/N). (4.2)

Table 4.1 from Kelton and Law [22] provides a set of critical values for the adjusted

A-D test statistic. For convenience in coding, we only implemented the test for the

5% significance level. That is, the null hypothesis that the sample is drawn from an

exponential distribution is rejected if A2
∗ ≥ 1.326.
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4.1.2 Quantile-quantile plots

A useful graphical method, quantile-quantile (Q-Q) plot can help us carefully

examine the decision when the numerical test shows a rejection of the null hypothesis.

The Q-Q plot is the plot of the sample quantiles Y(i) as in Section 4.1.1 against

theoretical quantiles of the specified distribution. Loosely speaking, if we see these

points lie at a fairly straight line on the Q-Q plot, then we can conclude a good fit of

the sample data to the hypothesized exponential distribution. In addition to the Q-Q

plot, there is another plot, the percentage-percentage (P-P) plot, which is the plot of

the CDF of one distribution against another. However, Wilk and Gnanadesikan had

pointed out some limitations about P-P plot [9], and we do not use this plot in our

analysis.

4.1.3 Transformed test statistic Rij

Brown et al.[5] suggested that if the intensity rate function λ(t) varies smoothly,

then one could regard this rate as a piecewise constant step function over a number

of short intervals. Therefore, we test the piecewise constant arrivals by hypothesizing

H0 : λ(t) is constant within a short length of time.

Ha : Otherwise.

To test this hypothesis, we use the transformed test statistic Rij proposed by

Brown et al.[5]. We choose I blocks of equal time-length L. These I blocks can
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be the same time on various days or successive blocks on a given day. Let Tij be

the jth ordered arrival time in an ascending order in the ith block, i = 1, ..., I and

j = 1, ..., J(i) where J(i) is the total number of arrivals in the ith block. Let Ti0 = 0

and

Rij = [J(i) + 1− j]

[
− ln

(
L− Tij

L− Tij−1

)]
. (4.3)

If the null hypothesis that we have a constant arrival rate within time interval of

length L is correct, then we should have independent standard exponential variables

Rij. In testing this standard exponential distribution, we use both K-S and A-D tests.

In addition, we show the corresponding Q-Q plots. The results are summarised in

Section 4.2.

We perform our tests by varying L, progressively. We start testing the time

intervals summarised by 1 minute, because in 1 minute the arrival rate of the dial-up

users is very likely to be constant. Multiple 1-minute intervals for the same time are

used. If we have a good fit, of course statistically, then we continue testing for the

length of 1, 5 and 10 minutes until any lack of fit appears. We chose these intervals

based on the test results shown in Section 4.2.1. One might question whether or not

the length depends on the intensity of traffic. Nevertheless, our algorithm can be

easily adapted to any length of time (i.e., as accurate as in seconds) as written in

script MyTestData in Appendix B.
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4.2 Results and Discussions

We first test the null hypothesis that the interarrival time conforms to an inde-

pendent exponential distribution. Then, we test if the transformed test statistics

Rij are independent standard exponential random variables. To test each of these

hypotheses, we execute our plan of testing at two levels based on the time varying

properties that we have explored in Chapter 2.

Level I: we show the results tested on the aggregate data of year 2000.

Level II: we test the three typical months from the three academic terms in 2000,

namely, March, July and November.

We also present the results based on the intensity of traffic as in Figure 3.1 and 3.2

in Chapter 2. In particular, we take two data sets, 1-hour from 1:00am and 4:00pm,

respectively to represent our low and high traffic, respectively. Thus, we can easily

extend this plan of testing to any other years.

4.2.1 Testing exponential interarrival times

Distribution of the aggregated year 2000 data

Figures 4.1, 4.2, 4.3 and 4.4 each show the density of interarrival times, for either

1 minute or 10 minutes from the target time. We stop our test at 10 minutes where

a sign of lack of fit shows (e.g., See Table 4.2 for a summary of K-S and A-D tests).

These figures are based on the aggregated 2000 data. It is difficult to interpret if any

of these figures looks like the exponential distribution.

Figures 4.1 and 4.2 are the densities for low traffic (i.e., 1:00) whereas Figure 4.3
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Figure 4.1 Density for Low Traffic, 1
minute
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Figure 4.2 Density for Low Traffic, 10
minutes

and 4.4 show the densities for high traffic (i.e., 4:00). One interesting finding is the

exponential-like figure seems to be related to the sample size, regardless of traffic

intensity. The larger the sample size, the more exponential the density plot looks

like.
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Figure 4.3 Density for High Traffic, 1
minute
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Figure 4.4 Density for High Traffic, 10
minutes

Test summary, low traffic: As proposed by Floyd and Paxson [13], by replacing

the unknown population mean by the sample mean we apply the A-D and K-S tests.

If the interarrival times are exponentially distributed with the same mean, we should

see that the A-D and K-S tests accept the null hypothesis. Table 4.2 summarises the

A-D and K-S test results for low traffic. K-S accepts H0 but the K-S test statistic may

not be accurate as there are always ties in all our tests for any large samples (i.e.,

for N > 30). Neither 1-minute nor 10-minute interval accepts the null hypothesis

by A-D.

Q-Q plots, low traffic: The Q-Q plots confirm the rejection of the exponential

distribution as either the very large and very small quantiles shows significant devia-

tions from the straight line in Figures 4.5 and 4.6. Note that 95% confidence intervals

using bootstrapping (see Fox [14] for details) marked by dotted lines in the Q-Q plots
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1 min 10 min

N 133 2046

K-S (p-value) 0.1222 0.4211

A-D Reject H0 Reject H0

Table 4.2 Aggregate Low Traffic

are provided too.
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Figure 4.5 Q-Q Plot for Low Traffic, 1
Minute
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Figure 4.6 Q-Q Plot for Low Traffic, 10
Minutes

Test summary, high traffic: When we look at the A-D and K-S test results

tabulated in Table 4.3, we find none of these sample conforms to the exponential

distribution. We report the p-value with 2 significant digits only. When the p-value

is too small, less than 10−3, we denote this value by ‘0 ∗ ∗∗’.
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1 min 10 min

N 413 6390

K-S (p-value) 0.0050 0***

A-D Reject H0 Reject H0

Table 4.3 Aggregate High Traffic

Q-Q plots, high traffic: The Q-Q plots reject the null hypothesis. A great number

of points are off the lines shown in Figures 4.7 and 4.8. However, the deviations are

very difficult to quantify.
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Figure 4.7 Q-Q Plot for High Traffic, 1
Minute
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Figure 4.8 Q-Q Plot for High Traffic, 10
Minutes

57



Distribution of selected months

Due to strong seasonality and monthly pattern, it makes good sense that the tests

at Level I (based on the aggregated data) reject the exponential distribution for all

intervals of time. To accommodate the monthly arrival pattern, at Level II we choose

March, July and November to represent three academic terms (i.e., fall, winter and

spring & summer). We repeat the similar procedures as at Level I by distinguishing

traffic intensity.

EDF against CDF, low traffic: The heuristic histograms, like Figures 4.1, 4.2, 4.3

and 4.4 were ambiguous in helping us decide the fit. We use a more helpful graphical

method in this section instead, the EDF against CDF. Figures 4.9 and 4.10 each show

a comparison of the EDF of the sample to the CDF of the generated exponential

distribution. The mean of the sample as 1/λ is used to generate the exponential

distribution. In order to achieve a smooth CDF curve, we generate a great number of

exponentially distributed random variables, at least 100 points within each intervals.

From this point on, the light smooth curve appearred in EDF vs CDF figures is CDF

while EDF is depicted by dark steps. Since data are too few for low traffic to smooth

an EDF curve, we can hardly tell if EDF matches CDF shown in Figure 4.9.
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Figure 4.9 EDF vs CDF for Low Traffic, 1 Minute by Month
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Figure 4.10 EDF vs CDF for Low Traffic, 10 Minutes by Month
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1 min 10 min

N 9 244

K-S (p-value) 0.76 0.70

A-D Accept H0 Reject H0

Table 4.4 Low Traffic, March 2000

1 min 10 min

N 4 85

K-S (p-value) 0.92 0.78

A-D Accept H0 Accept H0

Table 4.5 Low Traffic, July 2000

1 min 10 min

N 11 174

K-S (p-value) 0.94 0.63

A-D Accept H0 Reject H0

Table 4.6 Low Traffic, November 2000

Test summary, low traffic: Note that the sample sizes are small for all 1-minute

intervals (see Tables 4.4, 4.5 and 4.6). That A-D accepts H0 for all 1-minute intervals

is probably because there are not enough data, suggesting that the power of the test

is too small.

Q-Q plot, low traffic: For the same reason of small samples, for 1-minute intervals

we cannot conclude a match/mismatch with the exponential distribution. For 10-

minute intervals, in Figure 4.12 each plot shows quite a few points off the straight

lines.
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Figure 4.11 Q-Q plot for Low Traffic, 1 Minute by Month
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Figure 4.12 Q-Q plot for Low Traffic, 10 Minutes by Month
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EDF vs CDF, high traffic: In Figures 4.13 and 4.14, from the top to the bottom,

each plot represents March, July and November, respectively. For 1-minute intervals,

samples are small, which makes the comparison hard. In contrast, for 10 minutes,

Figure 4.14 shows that EDF matches CDF in each plot.
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Figure 4.13 EDF vs CDF for High Traffic, 1 Minute by Month
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Figure 4.14 EDF vs CDF for High Traffic, 10 Minute by Month
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Test summary, high traffic: A-D rejects the null hypothesis for all intervals. K-

S accepts it for all intervals too except for 10-minute interval, March 2000 shown in

Table 4.7.

1 min 10 min

N 74 921

K-S (p-value) 0.33 0**

A-D Reject H0 Reject H0

Table 4.7 High Traffic, March 2000

1 min 10 min

N 8 322

K-S (p-value) 0.62 0.69

A-D Reject H0 Reject H0

Table 4.8 High Traffic, July 2000:

1 min 10 min

N 48 561

K-S (p-value) 0.20 0.74

A-D Reject H0 Reject H0

Table 4.9 High Traffic, November 2000
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Q-Q plot, high traffic: For 1 minute, it is still hard to make a conclusion due to

limited number of points. For 10 minutes, we see points at the tails are more likely

fall off the straight lines than those at the heads shown in Figure 4.16.
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Figure 4.15 Q-Q plot for High Traffic, 1 Minute by Month
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Figure 4.16 Q-Q plot for High Traffic, 10 Minute by Month
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According to the results of interarrival time tests, we should not ignore the seasonal

and monthly effects. Even though a much larger data sample could be achieved,

these effects are reinforced when we aggregate data. Regardless of traffic intensity,

it suggests that we should not choose any interval either exceeding 10 minutes or as

small as 1 minute. In the first case, the null hypothesis is rejected. In the second

case, the sample are too small. 5 minutes seems a good choice in between.
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4.2.2 Testing exponential Rij

We test independent standard exponential distribution of Rij in order to validate

the nonhomogeneous Poisson model. We apply a similar plan of testing as previously.

That is, we test 1-, 5- and 10-minute intervals, respectively. As discussed in Section

4.1.3, once we calculated transformed Rij from the data, Rij is independent of time of

day, day of month or month of year, but is a standard exponential random variable.

Thus, we test the null hypothesis by aggregating Rij (which is similar to the first step

in testing the interarrival times).

EDF vs CDF: When the sample size is not large enough, we can see the steps of

EDF as EDF is a step function. In Figures 4.17 and 4.18, EDF coincides CDF for

both types of traffic.
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Figure 4.17 EDF vs CDF for Rij , Low Traffic
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Figure 4.18 EDF vs CDF for Rij , High Traffic
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1 min 5 min 10 min

N 407 1221 2407

Mean 1.098 0.89 0.97

SD 0.95 0.85 0.96

CV 0.87 0.95 0.99

K-S (p-value) 0.12 0.50 0.95

A-D Accept H0 Accept H0 Accept H0

Table 4.10 Test Summary for Rij , Aggregate Low Traffic

Test summary for Rij: If Rijs are standard exponentially distributed random

variables, the mean and standard deviation (SD) are both equal to 1, meaning the

coefficient of variation (CV) defined by the ratio of the SD over the mean is equal to

1, too. Both Tables 4.10 and 4.11 show that means and SDs are all close to 1. CVs

are around 1 except 0.87 at 1 minute for low traffic, which is off by 13%.

Results tested by K-S and A-D are fairly consistent with each other for all intervals

except for the 5-minute intervals for the high traffic. The disagreement between the

two tests is shown in Table 4.11. Based on the results by K-S and A-D, we use

intervals of 5 minutes to model the intensity rate.
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1 min 5 min 10 min

N 711 3470 6753

Mean 0.94 0.97 0.96

SD 0.93 0.98 0.99

CV 1.00 1.02 1.03

K-S (p-value) 0.11 0.0013 0***

A-D Accept H0 Accept H0 Reject H0

Table 4.11 Test Summary for Rij , Aggregate High Traffic

Q-Q plots: In Figure 4.20, some of the points fall off the 95% confidence interval.

Q-Q plots confirm our decision that within 5-minute intervals the arrival rate is

constant.
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Figure 4.19 Q-Q Plot for Rij , Low Traffic
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Figure 4.20 Q-Q Plot for Rij , High Traffic
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4.2.3 Independence of Rij

Since many of our estimation or testing procedures such as MLE and Chi-squared

tests rely on independence, we test whether the sample data are independent within

each time interval, as well as between the first lag of the 1-minute or 5-minute inter-

vals. Note that we choose this length of interval based on the test result in Section

4.2. In addition, since the previous tests show that statistics Rijs are exponentially

distributed for 5-minute interval, we then proceed to test the independence of Rijs.

Testing autocorrelation (ACF) by t test

To test this hypothesis, we test if the autocorrelation at lag 1 is significantly

different from zero. We partition Rijs into two subsets denoted by {Xi} and {Yi}.

Namely, {Xi} is the sample of N Rijs discounting the last element by the order of their

occurrences, whereas {Yi} discounts the first element. Thus, the sample correlation

is,

r̂xy =

∑N−1
i=1 (Xi − X̄)(Yi − Ȳ )

(N − 1)σ̂xσ̂y

, (4.4)

where X̄, Ȳ , σ̂x and σ̂y are the sample means and sample standard deviations for the

subsets. Then the corresponding t-statistic is

t =
r̂xy

√
(N − 1)− 2

√
1− r̂2

xy

, (4.5)

with the degrees of freedom ν = N − 3 if these two subsets are normally distrib-

uted. However, the normality requirement is not stringent as the test statistic can
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1 min 5 min 10 min

r̂xy 0.071 -0.0064 -0.0028

t-value 1.429 -0.225 -0.139

p-value 0.15 0.82 0.89

Table 4.12 Independence Test Summary for Rij , Aggregate Low Traffic

1 min 5 min 10 min

r̂xy -0.075 -0.012 -0.010

t-value -2.007 -0.716 -0.827

p-value 0.045 0.47 0.41

Table 4.13 Independence Test Summary for Rij , Aggregate High Traffic

approximate t distribution [26]. We present the test results in Tables 4.12 and 4.13.

Except for 1-minute high traffic, all p-values are greater than 0.05. Since the p-

value is 0.045 for 1-minute high traffic which is very close to 0.05, there is no strong

evidence to reject the independence hypothesis at that level as the first plot in Figure

4.22 does not show any pattern. In addition to the quantitative test, we can examine

if there is any pattern or relation between {Xi} and {Yi} for i = 1, . . . , N−1. Figures

4.21 and 4.22 are scatter plots for paired {Xi, Yi} and due to the large number of pairs,

all the figures are plotted on a log scale in order to disperse the data. These figures

help us make the conclusion that all Rijs are independent for the tested times.
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Figure 4.21 Scatter Plots for lnRij (lag 1), Low Traffic
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Figure 4.22 Scatter Plots for lnRij (lag 1), Low Traffic
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Low traffic 1 min 5 min 10 min

p-value 0.15 0.82 0.89

High traffic 1 min 5 min 10 min

p-value 0.05 0.47 0.41

Table 4.14 Ljung-Box Test Summary for Rij

Ljung-Box test

Alternatively, we can test the null hypothesis that the arrivals are independent

in a given time series using the Box-Pierce or Ljung-Box tests [25]. The advantage

of this test lies in its robustness, without the assumption of the normality of the

arrivals distribution. Nevertheless, the normality can be achieved by either a large

sample through the central limit theorem or a large sample mean through the normal

approximation to the exponential distribution [3].

Results in Table 4.14 agree with results by t-test. The ACD plots do not exceed

0.2 at all lags, which indicate large degree of independence amongst Rij.

In summary, we would like to use the data summarised by every 5 minutes. Also,

transformed Rij shows the standard exponential distribution hypothesis is accepted

even for 10-minute interval. It seems that Rijs are better at accommodating season-

ality and monthly factor than directly using interarrival time when testing the null

hypothesis.
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Figure 4.23 ACF Plots for Rij , Low Traffic
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Figure 4.24 ACF Plots for Rij , High Traffic
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Chapter 5

MODELLING THE INTENSITY RATE

FUNCTION

Earlier test results based on the interarrival times in Section 4.2 suggest that

the homogeneous Poisson process is not appropriate for arrivals, especially when the

tested interval exceeds 10 minutes. Then, our null hypothesis becomes that the ar-

rivals follow a nonhomogeneous Poisson process. We have accepted the null hypothesis

of standard independently exponentially distributed Rij for 5-minute interval. That

is to say, our arrivals process can be modelled by a nonhomogeneous Poisson with a

piecewise constant (moderately changed time-varying) arrival rate. The next ques-

tion is whether we can model this rate. If the form of model is nice, say it is a linear

function, then the future call demand can be predicted by using the intercept and

slope estimated by the data set.

5.1 Testing Linear Intensity Rate

Given the null hypothesis that the arrivals conform to a nonhomogeneous Poisson

process at the levels of 1 minute and 5 minute, we choose to apply the linear rate

model λ(t) = a + bt to the data summarised by 5 minutes. We start testing the fit of

a linear rate model by sampling 1 hour arrival from different times of a day. We still

separate the types of traffic as we would like our plans of test to be consistent.



Estimate of Coefficient Standard Error t value p-value

Intercept 7.1 1.3 5.28 0***

Slope 0.044 0.039 1.13 0.28

R-square Adjusted R-square F statistic p-value

0.11 0.025 1.285 0.28

Table 5.1 Test Summary for Linear Rate by OLS, Low Traffic

5.1.1 Results by OLS, IWLS and MLE

Low traffic

Since the traffic around 1:00 is too low, we pick some time instead of midnight in

order to visualize the fit result. We choose interval from 10:00 to 11:00, Wednesday,

March 8, 2000 to present low traffic, averaging 8.6 arrivals per hour. We present

a summary of test results by type of estimators along with graphs of fitted line as

follows,

OLS: The dependent variable y represents the number of calls regressed by indepen-

dent variable x, time intervals. In Table 5.1, the intercept valued at 7.1 is significant

(indicated by zero p-value) whereas the slope valued at 0.044 is insignificant. We

could say the rate of increase is constant. However, the summary also shows a very

low R2 (0.1139) which tells us how much the variation of the independent variable

(number of calls) can be explained by the linear model. We even have a much lower

adjusted R2 which takes into account the degrees of freedom.
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Estimate of Coefficient Standard Error t value p-value

Intercept 6.99 1.3 5.48 0***

Slope 0.048 0.03 8 1.24 0.24

R-square Adjusted R-square F statistic p-value

0.13 0.046 1.536 0.24

Table 5.2 Test Summary for Linear Rate by IWLS, Low Traffic

IWLS: The test takes 5 iterations to converge with a preset tolerance level at 10−6.

We have a significant 6.99 intercept but an insignificant 0.048 slope. The result by

IWLS is similar to OLS in comparing Table 5.2 to Table 5.1. We also have very low

R2 and adjusted R2.

MLE: Using MLE, we have a 6.99 intercept and a 0.048 slope by following discussion

in Section 3.3.1, Chapter 4. The results of IWLS and MLE coincide. Figure 5.1

superimposes fitted lines by these procedures. As proved by Massey et al. [27], these

three estimation procedures do not differ much if the number of arrivals in the first

and the last intervals are not zero. ML estimators also coincide with the solution of

IWLS.

High traffic

We choose the interval from 16:00 to 17:00, averaging 17.2 calls per 5-minute

interval which double the low traffic. The tests in a sense repeat what we have seen
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Figure 5.1 Comparison of OLS, IWLS and MLE for Linear Rate, Low Traffic

for low traffic. Similarly, we put OLS, IWLS and MLE together in the analysis.

OLS: In Table 5.3 shows a similar result as in the low traffic case with a significant

intercept and insignificant slope. The R-squares are still low in this case.

IWLS: IWLS takes 3 iterations to converge. It also presents similar results as OLS.

MLE: MLE produces a 17 intercept and a 0.0015 slope. IWLS and MLE have

identical intercepts and slopes. Fitted lines in Figure 5.2 confirms this identical

observation.
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Estimate of Coefficient Standard Error t value p-value

Intercept 17 2.6 6.48 0***

Slope 0.0014 0.074 0.019 0.99

R-square Adjusted R-square F statistic p-value

0 -0.10 0 0.96

Table 5.3 Test Summary for Linear Rate by OLS, High Traffic

Estimate of Coefficient Standard Error t value p-value

Intercept 17 2.6 6.48 0***

Slope 0.0015 0.074 0.020 0.98

R-square Adjusted R-square F statistic p-value

0 -0.10 0 0.98

Table 5.4 Test Summary for Linear Rate by IWLS, High Traffic
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Figure 5.2 Comparison of OLS, IWLS and MLE for Linear Rate, High Traffic

5.1.2 LRT for the linear rate

For low traffic a 0.77 p-value with the degrees of freedom 10 accepts the null

hypothesis that the linear rate fits the data. For high traffic, the Chi-squared test

statistic has p-value 0.22 with the same degrees of freedom also accept the linear rate.

Recall in Section 3.3.1, Chapter 3, the asymptotic LRT usually works fine for small

samples too, although our sample may be too small with only 12 data points.

In summary, a large proportion of variation cannot be explained by the model,

regardless of estimator used. The low R squares also indicate that the linear intensity

model may not be a good fit to the data. The results suggest we should look at the

sinusoidal rate as a alternative.
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Estimate of Coefficient Standard Error t value p-value

Intercept 8.4 0.59 14.25 0

sin(cx) -1.3 0.84 -1.59 0.15

cos(cx) -1.4 0.84 -1.734 0.12

R-square Adjusted R-square F statistic p-value

0.38 0.24 2.773 0.12

Table 5.5 Test Summary for Sinusoidal Rate by OLS, Low Traffic

5.2 Testing the Sinusoidal Rate

We apply the sinusoidal model with the same estimation procedures and LRT

method as in the linear case. As a comparison to the linear rate, we also use 10:00

to 11:00 and 16:00 to 17:00 to represent low and high traffic.

Similar to the linear rate model, we restrict our attention to 1 hour. If we assume

there is only one cycle, then recall the model is

λ(t) = a + b1 sin(ct) + b2 cos(ct) for c = 2π/60.

5.2.1 Results by OLS, IWLS and MLE

Low traffic

OLS: The intercept 8.4167 has little difference from the one in the linear model.

Neither of the slopes for sin(cx) and cos(cx) is significant. While we see large im-

provements in both of R2 and adjusted R2, they are lower than 0.40, meaning at least

60% variation cannot be explained by the sinusoidal model.
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Estimate of Coefficient Standard Error t value p-value

Intercept 8.4 0.59 14.25 0

sin(cx) -1.3 0.84 -1.59 0.15

cos(cx) -1.4 0.84 -1.734 0.12

R-square Adjusted R-square F statistic p-value

0.38 0.24 2.773 0.12

Table 5.6 Test Summary for Sinusoidal Rate by IWLS, Low Traffic

IWLS: The IWLS converges immediately at 10−6 level of tolerance. As noted earlier

in the previous section about the linear rate model, the result is identical to OLS,

which is shown in Figure 5.3.

MLE: The results of IWLS and MLE are almost the same. By MLE, the estimates

are 8.4, -1.4 and -1.3. Figure 5.3 superimposes fitted lines by these procedures. As

shown in the linear rate case, the three estimation procedures do not different much,

and moreover, ML estimators coincide with the solution of IWLS.

High traffic

We still choose interval from 16:00 to 17:00 for high traffic. In a similar fashion,

we combine OLS, IWLS and MLE together.

OLS: In contrast to low traffic, the R squares are much reduced. It suggests that it

is not appropriate to use the same period parameter c as in low traffic. Fixing c does
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Figure 5.3 Comparison of OLS, IWLS and MLE for Sinusoidal Rate, Low Traffic

Estimate of Coefficient Standard Error t value p-value

Intercept 17 1.2 13.44 0

sin(cx) 0.23 1.8 0.13 0.90

cos(cx) -2.24 1.8 -1.28 0.23

R-square Adjusted R-square F statistic p-value

0.16 -0.033 0.826 0.47

Table 5.7 Test Summary for Sinusoidal Rate by OLS, High Traffic
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Estimate of Coefficient Standard Error t value p-value

Intercept 17 1.3 13.05 0

sin(cx) 0.42 1.8 0.13 0.82

cos(cx) -2.17 1.8 -1.21 0.26

R-square Adjusted R-square F statistic p-value

0.14 -0.047 0.753 0.50

Table 5.8 Test Summary for Sinusoidal Rate by IWLS, High Traffic

not make sense as the arrival pattern of high traffic is different from the low traffic.

IWLS: It only takes 1 iteration to converge. The estimates are close to those pro-

duced by OLS. The same model for high traffic also shows lower R squares compared

to low traffic.

MLE: MLE produces an intercept valued at 17 and slopes at 0.43 and -2.19. We

once again see MLE is closer to IWLS than OLS as we have discussed before. In

addition, we superimpose lines estimated by these three procedures in Figure 5.4.

5.2.2 LRT for the sinusoidal rate

For low traffic with a p-value 0.90 and the degrees of freedom 10, we accept the

null hypothesis that the sinusoidal rate fits the data. However, for high traffic, we

reject the sinusoidal rate with a zero p-value. Rejection at the high traffic level results

from difficulty in setting the period parameter. This difficulty leads to limited use of
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Figure 5.4 Comparison of OLS, IWLS and MLE for Sinusoidal Rate, High Traffic

sinusoidal rate.

5.3 Testing Spline models

5.3.1 Results by spline regression

We apply spline based models to low and high traffic data, again. Since spline

regression is still a linear model, we can compare its R squares with those of the linear

and sinusoidal rate models. Table 5.9 summarises the test results for low and high

traffic.

For both low and high traffic, we use the degrees of freedom 7 and have much larger

R squares than the previous models. The more knots used, the larger unadjusted R

square can be obtained. We can specify the number of knots by way of setting

the degrees of freedom. However, if one tries to merely obtain a large R square by

interpolating data at each knot, this would result in an R square value close to 1.
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Low traffic R-square Adjusted R-square F statistic p-value

0.67 0.40 2.448 0.15

High traffic R-square Adjusted R-square F statistic p-value

0.71 0.19 1.375 0.40

Table 5.9 Test Summary by Spline Regression

But, we would lose the smoothness. In general, the difficulty in choosing the number

and location of the knots is a drawback of spline smoothing. Note that Figures 5.5,

5.6, 5.7 are the linear interpolation of the fitted data.

5.3.2 Results by smoothing spline

We use R function sreg to implement the natural cubic smoothing spline with

roughness penalty approach. Since smoothing spline is not merely regression, we have

no more R squares for comparison with other models. Nevertheless, Figures 5.7 and

5.8 provide us with a good visual demonstration of fitted curves. The smoothing

parameters γ for low and high traffic are 10 and 0.52 chosen by GCV, respectively.

With such small γ, Figure 5.8 actually interpolates data.
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Figure 5.5 Spline Regression, Low Traffic

5.4 Model Selection

In spite of different eigenvalues of the hat matrix as discussed in Section 3.4.5,

spline regression and smoothing spline make no difference in practice. Spline regres-

sion provide more control if one wants the fitted curve smoother in some locations

and rougher in others. However, spline regression gives coarser control of the amount

of smoothing to apply. We choose smoothing spline to compare with the parametric

models.

As an overview, we superimpose lines fitted by linear, sinusoidal rate, and smooth-

ing spline in Figures 5.9 and 5.10 for low and high traffic, respectively (Legend ss is

a shorthand for smoothing spline). We plot fitted curves estimated by OLS for para-
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Figure 5.6 Spline Regression, High Traffic

metric models since OLS, IWLS and ML do not differ much as concluded previously.

In both figures, splines allow more control of smoothness than parametric linear and

sinusoidal rate models. Linear rate model, at one extreme, is globally smooth. It fails

to capture the humps and valleys of the figures. Smoothing spline for high traffic,

at another extreme, interpolates data and we lose the smoothness. We can specify a

larger smoothing parameter to avoid interpolating too much, but the difficulty is in

the choice of the degree of smoothness. A guideline provided by Hastie and Tibshirani

[19] on choosing the degrees of freedom for spline regression should also shed light on

this issue.
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Figure 5.7 Smoothing Spline, Low Traffic
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Figure 5.8 Smoothing Spline, High Traffic

100



10 20 30 40 50

4
6

8
10

12

Minute

N
um

be
r 

of
 C

al
ls

linear
sinusoidal
ss

Figure 5.9 Fitted Lines, Low Traffic
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Figure 5.10 Fitted Lines, High Traffic
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Chapter 6

CONCLUSION AND FUTURE RESEARCH

Despite the recent technological development of call centres and their successor

contact centres, little advance has been made on the problem of staffing call centre

agents. Even with increasingly sophisticated workforce management tools, a signifi-

cant gap remains between the goal of effective staffing and the present difficulty to

predict stochastic demand of inbound calls. To tackle this difficulty, we have investi-

gated a time varying arrival process of modem pool users at the University. We have

also estimated the intensity rate using linear, sinusoidal models and splines.

6.1 Summary of Findings

The major findings of the study are:

• We have tested the homogeneous Poisson process hypothesis by testing if the

interarrival times were exponentially distributed. We have tested interarrival

times for each of 1- and 10-minute intervals in Section 4.2.1, Chapter 4. We

also distinguished traffic types by intensity when we performed the tests. In

most respects, the quantitative goodness-of-fit A-D and K-S tests have shown

lack of fit to the exponential distribution, especially for the intervals exceeding

(and including) 10 minutes, which suggested no sign of a homogeneous Poisson

process. Graphical methods such as histograms, EDF and CDF comparison,

and Q-Q plots as visual aids have also been employed to demonstrate the lack



of fit.

• We then proceeded to examine the nonhomogeneous Poisson process hypothe-

sis using the transformed statistic Rij proposed by Brown et al. [5]. Using Rij

helps remove the time varying property if the arrival rate varies slowly. Results

tested by A-D and K-S for 1- and 5-minute have shown a match of Rij with a

standard exponential distribution. In addition, we have confirmed the indepen-

dence hypothesis between the Rijs by t tests and Ljung-Box tests on the ACFs

of the Rijs.

• In estimating intensity rate, parameters such as intercept and slope have been

estimated by OLS, IWLS and ML procedures for parametric linear and si-

nusoidal rate models. Generally, IWLS and ML coincide. In evaluating the

likelihood of the linear and the sinusoidal models, LRT have performed well.

In the sinusoidal model, LRT for high traffic suggested difficulty in setting a

period parameter. As an alternative, spline-based models offered more control

of smoothing than the linear and sinusoidal models. A comparison of all models

has strengthened this conclusion.

6.2 Limitations and Future Research Directions

• When we tried to decide what the best choice of interval is (i.e., to choose

amongst 1, 5 and 10 minutes) in Section 4.2.2, Chapter 4, we chose 5 minutes

because for low traffic, the standard exponentially distributed Rijs hypothesis
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was accepted, but for high traffic, the hypothesis was rejected with a K-S p-

value 0.0013 (shown in Table 4.11). In this case, the rejection may not be

caused by the long interval (5 as opposed to 1 minute) but by the possibility

that the power of test was so large due to the large sample size that even a

slightest deviation from the null hypothesis would lead to the rejection. Thus,

we decomposed the 5-minute interval into five 1-minute intervals and calculated

new Rijs based on the decomposed intervals. We could compare the new test

results to those based on the 5 minute. In this way, the two had the same

sample size (i.e., 3470), which helped remove the possibility that a large sample

led to the rejection.

However, when we computed the test statistic, we found that there were a large

number of zero Rijs, and these zeros raised difficulty for the numerical tests to

compute the differences between EDF and CDF correctly. The differences were

plotted in Figure 6.1. These zeros had the largest (about 0.05) and the smallest

deviations (0), which caused K-S the difficulty.

While we could not compare the numerical test results between the 5-minute

interval and the decomposed intervals, the Q-Q plots could shed some light on

which fitted the standard exponential distribution better. By comparing Figure

6.2 to Figure 6.3, we concluded that the decomposed Q-Q plot had a better fit.
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Figure 6.1 Deviations between EDF and CDF
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Figure 6.2 Q-Q Plot for 5 minute
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Figure 6.3 Q-Q Plot for Decomposed 5 1-minute

• The study does not review all the modelling methods that are available. For

example, it is popular to use time series to analyse arrivals in the literature

[15]. We only touched the surface of it as we employed ACF analysis for testing

independence. Also, we feel splines are more flexible in modelling time varying

arrivals with respect to call centres. Several books [11, 17, 19] have advocated

a Bayesian approach to looking at spline models. Specifically, as in Hastie and

Tibshirani [19], one can place a prior on f(t) as in,

y = f(t) + ε . (6.1)

When combined with a Gaussian model for the data, the conditional expectation

of f or the posterior mean of f , can be shown to be a fitted smoothing spline

with an appropriate smoothing parameter γ. This approach is an interesting

direction for us to pursue if the intensity itself can be modelled by a Poisson

mixture process as pointed out by Jongbloed and Koole [21].
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• One last direction to pursue is to combine arrival with service time. Feldman et

al. [12] have developed a simulation-based iterative staffing algorithm for which

they assumed an Mt/G/st + G model. (i.e., the model has a nonhomogeneous

Poisson arrival process with a time-dependent arrival rate, generally distributed

service times, a time-dependent number of servers and a non-exponential time-

to-abandon distribution.) As our end goal is to provide input for staffing servers,

the unified approach can achieve time-stable performance when we face general

time varying arrivals.
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Appendix A

Shell Scripts for Data Cleaning

A.1 Introduction

We list here the sedscrpting environment shell script files used for data clean-

ing. We format new data files after we clean the raw data set. By clean, we mean

the data structure of the new data is consistent to the raw data set and is ready to

feed in for most programming packages such as Splus and MATLAB. To this end, we

remove the embedded HTML tags; we map the daily record in a separate file as the

raw data set; 24/7 time continuous data is separated by the date the call is initialized

as opposed to the call ended; we replace the information under the correct heading.

A.2 List of Script Files

sedscript Contains the HTML marks serving as a feed for MyCleaner to remove

the HTML environment.

MyCleaner Read in the raw data records such as username and session start time

and replace this kind of information under the correct heading into new data

file.

MyBatchS Sort the data record and group them by the date the call is initialized.

Apply this script after using MyCleaner.

chex Apply this command to all the scripts with their names starting with ’My’ to

make all the scripts executable, including those scripts in Appendix B.



sedscript

/Content-type:/ d

/HTML/ d

/HEAD/ d

/TITLE/ d

/BODY/ d

/PRE/ d

/USER/ d

/^$/ d

/!root/ d

MyCleaner

year=$1

### need an argument such as 2000

###input:sedscript;*.html for a year

###and the first day’s html of the next year

###output: such as 2000Formated,2000Sorted,2000_01_01*s, 2000_01_01*

cat *.html >Merge$year #include the first day’s html file of the

next year

sed -f sedscript Merge$year > Filtered$year #delete !root

rm Merge$year

awk ’$6==yr {printf "%6s %3s %3s %-2s %8s %4s %-4s %-16s %6s %2s

%2s %-11s \n", $1, $2, $3, $4, $5, $6, $7, $8, $9, $11, $13,

$9*3600+$11*60+$13}’ yr=$year Filtered$year > Formated1$year

rm Filtered$year

#Calculate the service time awk -F: ’{print $1, $2, $3}’

Formated1$year |awk ’{print $5*3600+$6*60+$7}’ > Formated2$year

paste Formated1$year Formated2$year >Formated$year

rm Formated1$year

rm Formated2$year

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10
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then

grep "Jan $count " Formated$year > $year"_01_0"$count

sort +4 $year"_01_0"$count >$year"_01_0"$count"s"

else

grep "Jan $count " Formated$year > $year"_01_"$count

sort +4 $year"_01_"$count >$year"_01_"$count"s"

fi

count=‘expr $count - 1‘

done

count=29 # # of days in Feb while test $count -gt 0 do

echo $count

if test $count -lt 10

then

grep "Feb $count " Formated$year > $year"_02_0"$count

sort +4 $year"_02_0"$count >$year"_02_0"$count"s"

else

grep "Feb $count " Formated$year > $year"_02_"$count

sort +4 $year"_02_"$count >$year"_02_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Mar $count " Formated$year > $year"_03_0"$count

sort +4 $year"_03_0"$count >$year"_03_0"$count"s"

else

grep "Mar $count " Formated$year > $year"_03_"$count

sort +4 $year"_03_"$count >$year"_03_"$count"s"

fi

count=‘expr $count - 1‘

done
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count=30

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Apr $count " Formated$year > $year"_04_0"$count

sort +4 $year"_04_0"$count >$year"_04_0"$count"s"

else

grep "Apr $count " Formated$year > $year"_04_"$count

sort +4 $year"_04_"$count >$year"_04_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "May $count " Formated$year > $year"_05_0"$count

sort +4 $year"_05_0"$count >$year"_05_0"$count"s"

else

grep "May $count " Formated$year > $year"_05_"$count

sort +4 $year"_05_"$count >$year"_05_"$count"s"

fi

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

if test $count -lt 10
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then

grep "Jun $count " Formated$year > $year"_06_0"$count

sort +4 $year"_06_0"$count >$year"_06_0"$count"s"

else

grep "Jun $count " Formated$year > $year"_06_"$count

sort +4 $year"_06_"$count >$year"_06_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Jul $count " Formated$year > $year"_07_0"$count

sort +4 $year"_07_0"$count >$year"_07_0"$count"s"

else

grep "Jul $count " Formated$year > $year"_07_"$count

sort +4 $year"_07_"$count >$year"_07_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Aug $count " Formated$year > $year"_08_0"$count

sort +4 $year"_08_0"$count >$year"_08_0"$count"s"

else

grep "Aug $count " Formated$year > $year"_08_"$count

sort +4 $year"_08_"$count >$year"_08_"$count"s"
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fi

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Sep $count " Formated$year > $year"_09_0"$count

sort +4 $year"_09_0"$count >$year"_09_0"$count"s"

else

grep "Sep $count " Formated$year > $year"_09_"$count

sort +4 $year"_09_"$count >$year"_09_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Oct $count " Formated$year > $year"_10_0"$count

sort +4 $year"_10_0"$count >$year"_10_0"$count"s"

else

grep "Oct $count " Formated$year > $year"_10_"$count

sort +4 $year"_10_"$count >$year"_10_"$count"s"

fi

count=‘expr $count - 1‘

done

count=30
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while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Nov $count " Formated$year > $year"_11_0"$count

sort +4 $year"_11_0"$count >$year"_11_0"$count"s"

else

grep "Nov $count " Formated$year > $year"_11_"$count

sort +4 $year"_11_"$count >$year"_11_"$count"s"

fi

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

if test $count -lt 10

then

grep "Dec $count " Formated$year > $year"_12_0"$count

sort +4 $year"_12_0"$count >$year"_12_0"$count"s"

else

grep "Dec $count " Formated$year > $year"_12_"$count

sort +4 $year"_12_"$count >$year"_12_"$count"s"

fi

count=‘expr $count - 1‘

done

mv Formated$year $year"Formated"

cat $year*s >$year"Sorted"

#Add week to filename

grep "Dec $count " Formated$year |awk ’{a=$2}END {print a$year}’

# no non-s files :

grep "Dec $count " Formated$year |sort +4 >$year"_12_0"$count"s"
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MyBatchS

year=2000

#cat $year* >Merge$year

#sed -f sedscript Merge$year>Filtered$year

#rm Merge$year

#awk ’{printf "%6s %3s %3s %-2s %8s %4s %-4s %-16s %6s %2s %2s \n",

$1, $2, $3, $4, $5, $6, $7, $8, $9, $11, $13}’ Filtered$year >

Formated$year

#rm Filtered$year

count=31

while test $count -gt 0

do

echo $count

grep "Jan $count " Formated$year > $year"_1_"$count

count=‘expr $count - 1‘

done

count=29

while test $count -gt 0

do

echo $count

grep "Feb $count " Formated$year > $year"_2_"$count

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

grep "Mar $count " Formated$year > $year"_3_"$count

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

grep "Apr $count " Formated$year > $year"_4_"$count

count=‘expr $count - 1‘

done
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count=31

while test $count -gt 0

do

echo $count

grep "May $count " Formated$year > $year"_5_"$count

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

grep "Jun $count " Formated$year > $year"_6_"$count

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

grep "Jul $count " Formated$year > $year"_7_"$count

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

grep "Aug $count " Formated$year > $year"_8_"$count

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

grep "Sep $count " Formated$year > $year"_9_"$count

count=‘expr $count - 1‘

done

count=31

116



while test $count -gt 0

do

echo $count

grep "Oct $count " Formated$year > $year"_10_"$count

count=‘expr $count - 1‘

done

count=30

while test $count -gt 0

do

echo $count

grep "Nov $count " Formated$year > $year"_11_"$count

count=‘expr $count - 1‘

done

count=31

while test $count -gt 0

do

echo $count

grep "Dec $count " Formated$year > $year"_12_"$count

count=‘expr $count - 1‘

done

chex

#!/bin/sh

#make a file executable

chmod u+x $1

echo $1 is now exectuable;

ls -l $1
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Appendix B

Shell Scripts for Preliminary Data Analysis

B.1 Introduction

We list seven shell script files used for preliminary data analysis. We name this

part as preliminary because it does not involve any statistical analysis. These scripts

serve for three purpose: first, to help us customize counting the number of calls

requested summarised by various criteria such as year, month, week, hour, half hour,

quarter hour and even down to a second (as shown in Figure 2.4 in Chapter 2);

second, to compute interarrival time and service time, and produce test statistic Rij

in Chapter 4.

B.2 List of Script Files

MyMonthDay Compute total daily calls throughout the specified month.

MyWeekDay Compute total daily calls throughout each of the four weeks for the

specified month.

MyDayHour Compute total hourly calls throughout the specified day.

MyDayHalf Compute total half-hour calls throughout the specified day.

MyDayQuarter Compute total quarter-hour calls throughout the specified day.

MyPaste Paste the data of each file as a column of the aggregate summary. The

summary is of matrix form and ready to feed in MATLAB for further analysis.



MyCount Produce the customized counts summarised by various time intervals, for

example, 300 seconds (i.e., 5 minutes). We separate each daily counts into a

column and save these columns into one monthly count file.

MyTestData Compute interarrival time and service time .

MyRTest produce test statistic Rij based on discussion in Section 4.1.3, Chap-

tertestNHPP.

MyMonthDay

year=$1

#python ,bash

#awk ’$4 == "2000_11_1" ,$4 =="2000_11_12"’ NOofDayhelp

#### Create YearDay2000,YearMonth2000,MonthDay* MonthDayPasted2000

###from 2000_*s

#### Include argument such as 2000

wc -l *s > YearDay$year

month=1 while test $month -lt 13 do

echo $month

if test $month -lt 10

then

grep "$year"_0"$month" YearDay$year

|awk ’{n += $1} END{print n}’ >>YearMonth$year

grep "$year"_0"$month" YearDay$year

|awk ’{print $1}’ >MonthDay$year"_0"$month

else

grep "$year"_"$month" YearDay$year

|awk ’{n += $1} END{print n}’ >>YearMonth$year

grep "$year"_"$month" YearDay$year

|awk ’{print $1}’ >MonthDay$year"_"$month

fi
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month=‘expr $month + 1‘

done

paste MonthDay* > MonthDayPasted$year

MyWeekDay

year=$1

####input: 2000Sorted

####output: WkDay2000

sed ’/Jan 1 / d’ $year"Sorted" |sed ’/Jan 2 / d’ >WeekSorted$year

#sed ’/Jan 2 / ’ WeekSorted$year >WeekSorted$year

fgrep Mon WeekSorted$year > TWeMon2000

fgrep Tue WeekSorted$year > TWeTue2000

fgrep Wed WeekSorted$year > TWeWed2000

fgrep Thu WeekSorted$year > TWeThu2000

fgrep Fri WeekSorted$year > TWeFri2000

fgrep Sat WeekSorted$year > TWeSat2000

fgrep Sun WeekSorted$year > TWeSun2000

awk ’{print $3,$4}’ TWeMon2000 | uniq -c

|awk ’{printf "%3s %2s %6s\n", $2,$3,$1}’> TWe1Mon2000

awk ’{print $3,$4}’ TWeTue2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe2Tue2000

awk ’{print $3,$4}’ TWeWed2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe3Wed2000

awk ’{print $3,$4}’ TWeThu2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe4Thu2000

awk ’{print $3,$4}’ TWeFri2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe5Fri2000

awk ’{print $3,$4}’ TWeSat2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe6Sat2000

awk ’{print $3,$4}’ TWeSun2000 | uniq -c

|awk ’{printf "%6s\n",$1}’> TWe7Sun2000

paste TWe[1-7]* > WeekDay$year

rm TW*
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MyDayHour

day=$1

#### must add one argument-datefile

####output:DayHour$day

rm DayHour$day

hour=0

while test $hour -lt 24

do

echo $hour

if test $hour -lt 10

then

grep " 0$hour"":" $day |awk ’BEGIN { n=0 }{ n++ } END{print n}’

>> DayHour$day

else

grep " $hour"":" $day |awk ’BEGIN { n=0 }{ n++ } END{print n}’

>> DayHour$day

fi

hour=‘expr $hour + 1‘

done

more DayHour$day

MyDayHalf

####must: add one argument -datefile ####output: DayHalfHour$day

rm Temp rm DayHalfHour* num=0 day=$1 hour=0 while test $hour -lt

24 do

echo $hour

if test $hour -lt 10

then

min=0

while test $min -lt 60

do

if test $min -lt 10

then

grep " 0$hour"":0$min"":" $day |wc -l >>Temp

else

grep " 0$hour"":$min"":" $day |wc -l >>Temp
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if test $min -eq 29

then

awk ’{n+=$1} END{print n}’ Temp >>DayHalfHour$day

rm Temp

fi

if test $min -eq 59

then

awk ’{n+=$1} END{print n}’ Temp >>DayHalfHour$day

rm Temp

fi

fi

min=‘expr $min + 1‘

done

else

min=0

while test $min -lt 60

do

if test $min -lt 10

then

grep " $hour"":0$min"":" $day |wc -l >>Temp

else

grep " $hour"":$min"":" $day |wc -l >>Temp

if test $min -eq 29

then

awk ’{n+=$1} END{print n}’ Temp >>DayHalfHour$day

rm Temp

fi

if test $min -eq 59

then

awk ’{n+=$1} END{print n}’ Temp >>DayHalfHour$day

rm Temp

fi

fi

min=‘expr $min + 1‘

done

fi

hour=‘expr $hour + 1‘

done
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MyDayQuarter

rm Temp

####must: add one argument -datefile

####output:DayQuHour$day

#rm DayHalfHour*

num=0

day=$1

hour=0

while test $hour -lt 24

do

echo $hour

if test $hour -lt 10

then

min=0

while test $min -lt 60

do

if test $min -lt 10

then

grep " 0$hour"":0$min"":" $day |wc -l >>Temp

else

grep " 0$hour"":$min"":" $day |wc -l >>Temp

if test $min -eq 14

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

if test $min -eq 29

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

if test $min -eq 44

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi
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if test $min -eq 59

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

fi

min=‘expr $min + 1‘

done

else

min=0

while test $min -lt 60

do

if test $min -lt 10

then

grep " $hour"":0$min"":" $day |wc -l >>Temp

else

grep " $hour"":$min"":" $day |wc -l >>Temp

if test $min -eq 14

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

if test $min -eq 29

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

if test $min -eq 44

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp

fi

if test $min -eq 59

then

awk ’{n+=$1} END{print n}’ Temp >>DayQuHour$day

rm Temp
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fi

fi

min=‘expr $min + 1‘

done

fi

hour=‘expr $hour + 1‘

done

MyPaste

yr=$1

Month=$2

if test $Month -lt 10

then

paste "DayQuHour"$yr"_0"$Month"_0"[1-9]"s" >paste09

paste "DayQuHour"$yr"_0"$Month"_1"[0-9]"s" >paste19

paste "DayQuHour"$yr"_0"$Month"_2"[0-9]"s" >paste29

paste "DayQuHour"$yr"_0"$Month"_"3*"s" >paste30

paste paste09 paste19 paste29 paste30 >DayQuHour$yr"_0"$Month

else

paste "DayQuHour"$yr"_"$Month"_0"[1-9]"s" >paste09

paste "DayQuHour"$yr"_"$Month"_1"[0-9]"s" >paste19

paste "DayQuHour"$yr"_"$Month"_2"[0-9]"s" >paste29

paste "DayQuHour"$yr"_"$Month"_"3*"s" >paste30

paste paste09 paste19 paste29 paste30 >DayQuHour$yr"_"$Month

fi

rm paste*

MyCount

yr=$1

TimeLen=$2 # in terms of seconds

##input: *s files

##output:$yrcount_$2

rm count$yr"_"*$TimeLen
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Mon=1

while test $Mon -lt 13

do

if test $Mon -lt 10

then

day=1

while test $day -lt 32

do

echo $day

if test $day -lt 10

then

#sed /root/d $yr"_0"$Mon"_0"$day"s" > $yr"_0"$Mon"_0"$day"sn"

leftSec=0

rightSec=‘expr $TimeLen - 1‘

while test $rightSec -lt 86400

do

awk ’$13-lf>=0 && $13-rf<=0 ’

lf=$leftSec rf=$rightSec $yr"_0"$Mon"_0"$day"s"

|awk ’BEGIN { n=0 }{ n++ } END{print n}’ >> Ctemp0$day

leftSec=‘expr $leftSec + $TimeLen‘

rightSec=‘expr $rightSec + $TimeLen‘

done

else

#sed /root/d $yr"_0"$Mon"_"$day"s" > $yr"_0"$Mon"_"$day"sn"

leftSec=0

rightSec=‘expr $TimeLen - 1‘

while test $rightSec -lt 86400

do

awk ’$13-lf>=0 && $13-rf<=0 ’

lf=$leftSec rf=$rightSec $yr"_0"$Mon"_"$day"s"

|awk ’BEGIN { n=0 }{ n++ } END{print n}’ >> Ctemp$day

leftSec=‘expr $leftSec + $TimeLen‘

rightSec=‘expr $rightSec + $TimeLen‘

done

fi

day=‘expr $day + 1‘

done

paste "Ctemp0"[1-9] >paste09

paste "Ctemp1"[0-9] >paste19

paste "Ctemp2"[0-9] >paste29

paste Ctemp3* >paste30
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paste paste09 paste19 paste29 paste30 >count$yr"_0"$Mon"_"$TimeLen

rm Ctemp*

rm paste*

else

day=1

while test $day -lt 32

do

echo $day

if test $day -lt 10

then

#sed /root/d $yr"_"$Mon"_0"$day"s" > $yr"_"$Mon"_0"$day"sn"

leftSec=0

rightSec=‘expr $TimeLen - 1‘

while test $rightSec -lt 86400

do

awk ’$13-lf>=0 && $13-rf<=0 ’

lf=$leftSec rf=$rightSec $yr"_"$Mon"_0"$day"s"

|awk ’BEGIN { n=0 }{ n++ } END{print n}’ >> Ctemp0$day

leftSec=‘expr $leftSec + $TimeLen‘

rightSec=‘expr $rightSec + $TimeLen‘

done

else

leftSec=0

rightSec=‘expr $TimeLen - 1‘

while test $rightSec -lt 86400

do

awk ’$13-lf>=0 && $13-rf<=0 ’

lf=$leftSec rf=$rightSec $yr"_"$Mon"_"$day"s"

|awk ’BEGIN { n=0 }{ n++ } END{print n}’ >> Ctemp$day

leftSec=‘expr $leftSec + $TimeLen‘

rightSec=‘expr $rightSec + $TimeLen‘

done

fi

day=‘expr $day + 1‘

done

paste "Ctemp0"[1-9] >paste09

paste "Ctemp1"[0-9] >paste19

paste "Ctemp2"[0-9] >paste29

paste Ctemp3* >paste30

paste paste09 paste19 paste29 paste30 >count$yr"_"$Mon"_"$TimeLen

rm Ctemp*

rm paste*
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fi

Mon=‘expr $Mon + 1‘

echo $Mon

done

MyTestData

yr=$1

Mon=$2

FromHour=$3

FromMin=$4

EndHour=$5

EndMin=$6

##input: *s files

##output: *R, *InterArr, *Service

##Note: Before running,Delete relevant *R, *InterArr, *Service files

leftSec=‘expr $FromHour \* 3600 + $FromMin \* 60‘

rightSec=‘expr $EndHour \* 3600 + $EndMin \* 60 + 59‘

Len=‘expr $rightSec - $leftSec‘

Len=‘expr $Len + 1‘

echo $leftSec

echo $rightSec

echo $Len

day=1 while test $day -lt 32

do

if test $Mon -lt 10

then

if test $day -lt 10

then

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf, $13, $12}’

lf=$leftSec rf=$rightSec $yr"_0"$Mon"_0"$day"s" >Tep

awk ’{print $3}’ Tep >>

$yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"Service"

awk ’{if (NR == 1){prev=$2} else

{tem=$2-prev;print tem; prev=$2;}}’ Tep >>

$yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"InterArr"
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awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1 } else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>$yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"R"

#$yr_0$Mon"_0"$day"s_"$FromHour"_"$FromMin"_"$EndMin

else

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf, $13, $12}’

lf=$leftSec rf=$rightSec $yr"_0"$Mon"_"$day"s" >Tep

awk ’{print $3}’ Tep >>

$yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"Service"

awk ’{if (NR == 1){prev=$2} else

{tem=$2-prev;print tem; prev=$2;}}’

Tep >> $yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"InterArr"

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>$yr"_0"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"R"

#$yr_0$Mon"_"$day"s_"$FromHour"_"$FromMin"_"$EndMin

fi

else

if test $day -lt 10

then

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf, $13, $12}’

lf=$leftSec rf=$rightSec $yr"_"$Mon"_0"$day"s" >Tep

awk ’{print $3}’ Tep >>

$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"Service"

awk ’{if (NR == 1){prev=$2} else

{tem=$2-prev;print tem; prev=$2;}}’ Tep >>

$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"InterArr"

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else
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{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"R"

#$yr_$Mon"_0"$day"s_"$FromHour"_"$FromMin"_"$EndMin

else

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf, $13, $12}’

lf=$leftSec rf=$rightSec $yr"_"$Mon"_"$day"s" >Tep

awk ’{print $3}’ Tep >>

$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"Service"

awk ’{if (NR == 1){prev=$2} else

{tem=$2-prev;print tem; prev=$2;}}’ Tep >>

$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"InterArr"

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>$yr"_"$Mon"_"$FromHour"_"$FromMin"_"$EndHour"_"$EndMin"R"

#$yr_$Mon"_"$day"s_"$FromHour"_"$FromMin"_"$EndMin

fi

fi

day=‘expr $day + 1‘

done

rm Tep

rm Temp

MyRTest

Mon=$1

Hour=$2

FromMin=$3

EndMin=$4

leftSec=‘expr $Hour \* 3600 + $FromMin \* 60‘

rightSec=‘expr $Hour \* 3600 + $EndMin \* 60 + 59‘

Len=‘expr $rightSec - $leftSec‘

Len=‘expr $Len + 1‘

echo $leftSec
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echo $rightSec

echo $Len

day=1 while test $day -lt 32 do

if test $Mon -lt 10

then

if test $day -lt 10

then

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf}’

lf=$leftSec rf=$rightSec 2000_0$Mon"_0"$day"s" >Tep

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1 } else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>2000_0$Mon"_"$Hour"_"$FromMin"_"$EndMin

#2000_0$Mon"_0"$day"s_"$Hour"_"$FromMin"_"$EndMin

else

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf}’

lf=$leftSec rf=$rightSec 2000_0$Mon"_"$day"s" >Tep

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>2000_0$Mon"_"$Hour"_"$FromMin"_"$EndMin

#2000_0$Mon"_"$day"s_"$Hour"_"$FromMin"_"$EndMin

fi

else

if test $day -lt 10

then

awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf}’

lf=$leftSec rf=$rightSec 2000_$Mon"_0"$day"s" >Tep

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>2000_$Mon"_"$Hour"_"$FromMin"_"$EndMin

#2000_$Mon"_0"$day"s_"$Hour"_"$FromMin"_"$EndMin

else
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awk ’$13-lf>=0 && $13-rf<=0 {print $13 - lf}’

lf=$leftSec rf=$rightSec 2000_$Mon"_"$day"s" >Tep

awk ’BEGIN { n=0 }{ n++ } END{printf "%s \n",n}’ Tep > Temp

awk ’BEGIN { n=0 }{ n++;printf "%s \n",$1}’ Tep >>Temp

awk ’BEGIN {j=1;prev=0}{if (NR == 1){ n=$1} else

{tem=log(L-prev)-log(L-$1);print tem*(n+1-j); prev=$1;j++;}}’

L=$Len Temp >>2000_$Mon"_"$Hour"_"$FromMin"_"$EndMin

#2000_$Mon"_"$day"s_"$Hour"_"$FromMin"_"$EndMin

fi

fi

day=‘expr $day + 1‘

done

132



Appendix C

AD: An R function for A-D Exponential Test

C.1 Description

The A-D test for assessing the goodness-of-fit of the sample to the exponential

distribution is written in R [29] as AD. Once it is called, the method shall return

the message depending upon the given sample data accept or reject the exponential

distribution with preset 5% level of significance. This level of significance can be

easily customized if needs to.

Code for AD

#Implement A-D test for exponential distribution

AD=function(x){

y1=sort(x)

y2=sort(x,decreasing=T)

rate=1/mean(x)

N=length(x)

i=1:N

A_square=-N-sum((2*i-1)/N*(log(pexp(y1, rate))+log(1-pexp(y2,rate))))

A_square_star=A_square*(1+0.6/N)

if (A_square_star<=1.341)

print("A-D test passes, at the 5% level of significance")

else print("A-D test fails, at the 5% level of significance")

}



Appendix D

expTest: An R Function for Goodness-of-fit Tests

of Exponential Distribution

D.1 Description

expTest provides a set of tools to evaluate the goodness-of-fit to the exponential

distribution is written with methods implemented in R libraries such as truehist

from library MASS and qq.plot from library cat.

D.2 List of Methods

truehist Plot the density of the data.

ks.test Perform the K-S test for the exponential distribution.

AD Call the implemented A-D test in Appendix C.

qq.plot Compare the sample to the exponential distribution using Q-Q plot.

Code for expTest

expTest=function(feed){

library(MASS)

library(car)

#library car needs to be installed

data=feed

N=length(data)

###Density plot

truehist(data,nbins=2*sqrt(length(data)),xlab="Second", ylab="Density")

browser()

### See alternative MATLAB function ’mypdfcdf.m’

###for comparing EDF to exponential CDF



###EDF vs exponential CDF

x=seq(0,max(data),length=100*max(data))

#use 60*100=6000 points to smooth the CDF curve

Pr= pexp(x, 1/mean(x))

data.frame(x = x, Pr = Pr)

plot(c(-0.2, x), c(0, Pr), type = "s", xlab = "Second", ylab = "P",

#main = "Cumulative distribution function",

las = 1)

#-0.2 is a safe start to draw the zero probability.

#It can be any arbitrary negative value

#browser()

data.ecdf <- ecdf(data)

#summary(data.ecdf)

plot(data.ecdf, verticals= TRUE, do.p = FALSE)

#browser()

###K-S test

p_value=ks.test(data,"pexp",1/mean(data))$p.value

###A-D test at the 5% level of significance

source("AD")

AD(data)

###Q-Q plot

qq.plot(data,distribution=’exp’,rate=1/mean(data),#envelope=FALSE,

main = "Exponential Q-Q Plot", col=’blue’,

ylab = "Sample Quantiles",

xlab = "Exponential Quantiles")

list(KS.p.value=p_value, sample.size=N )

#CV=sd(data)/mean(data)

}#end

135



Appendix E

mypdfcdf: An MATLAB Function for

Goodness-of-fit Tests of Exponential Distribution

E.1 Description

As alternative to expTest in R, we have also written a MATLAB based test

of goodness-of-fit, mypdfcdf to a class of distributions: normal, exponential and

lognormal.

Code for mypdfcdf

function mypdfcdf(x,dist)

%dist==0 exponential

%dist==1 lognormal

%dist==2 normal

%Task 1: Compare the data pdf with the dist pdf

%Task 2: Compare the data cdf with the dist cdf

x=sort(x);

n=length(x);

ave=mean(x)

stdv=std(x)

[f,xf,u] = ksdensity(x);

plot(xf,f)

hold on

title(’Density estimate ’)

if dist == 0

y=exppdf(x,ave);

plot(x,y,’k’)

elseif dist == 1

if min(x)>0

xx=log(x);%for lognormal

else

s=’Note,x should be greater than 0’

%return

xx=x(x>0);



xx=log(xx);

end

lave=mean(xx);

lstdv=std(xx);

y=lognpdf(x,lave,lstdv);

plot(x,y,’k’)

else

y=normpdf(x,ave,stdv);

plot(x,y,’k’)

end

%[N,X]=hist(x,100);

%w=(x(length(x))-x(1))/100

%N=N/length(x);

%N=N/w;

%plot(X,N,’g’)

figure

hist(x,100)

title(’Histgraph’)

figure

[f,xf] = ecdf(x);

stairs(xf,f,’g’)

title(’cdf graph’)

hold on

%cdfplot(x)

if dist == 0

y=expcdf(x,ave);

plot(x,y,’k’)

elseif dist == 1

y=logncdf(x,lave,lstdv);

plot(x,y,’k’)

else

y=normcdf(x,ave,stdv);

plot(x,y,’k’)

end
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Appendix F

LIN.RATE: An R Function for Linear Rate

Estimation and LRT

F.1 Description

Estimation algorithm based on linear intensity rate and LRT are implemented in

R. The R function returns a set of estimates and the result of the asymptotic LRT.

F.2 List of Outputs

summary OLS Summary of linear regression using OLS.

a Intercept of the regression line (OLS).

b Slope of the regression line (OLS).

summary IWLS Summary of linear regression using IWLS.

a IWLS Intercept of the regression line (IWLS).

b IWLS Slope of the regression line (IWLS).

Iteration IWL Number of iterations for the WLS to converge.

a ML Intercept estimated by MLE

b ML Slope estimated by MLE

LRT Message LRT test result



Code for LIN.RATE

LIN.RATE=function(){

rm(list = ls())

### read data

####WILD CARD FOR A BATCH OF FILES#####

prefix="http://math.usask.ca/~sol573/UconnectData/count"

year=2000

m=readline("Enter the month, e.g. 3: ")

if (as.numeric(m)>12|as.numeric(m)<1)

stop ("month has to be from 1 to 12")

if (as.numeric(m)<10) month=paste(0,m,sep="") else month=m

i=readline("Enter the interval in which arrival is summarised

(all possible values are ’60’, ’120’,’300’,’600’): ")

interval=as.numeric(i)

if (interval==60|interval==120|interval==300|interval==600)

interval=interval else

stop ("All possible values are ’60’, ’120’,’300’,’600’")

#weekday=date

date=5 #Wednesdays

hour=10

address=paste(paste(prefix,year,sep=""),month,interval,sep="_")

TS=read.table(address)

tol=1.e-6 #global tolerance

#5% as p value cutoff

########## OLS ###########

###Regression with single realization

T=60 #mins

N=T/(interval/T)

x=1:N

start=hour*(3600/interval)+1

end=start+(N-1)

wd=TS[start:end,c(date)]

x=(x-1/2)*T/N#the rescaling has no statistical difference

y=wd

z=lm(y~x)
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summary(z)

plot(x,y)

abline(z)

###attributes(z)

alpha=coef(z)[1]

beta=coef(z)[2]

a=N/T*alpha

b=N/T*beta

########## IWLS ###########

a_IWLS=a

b_IWLS=b

counter=0

repeat

{

counter=counter+1

oldA=a_IWLS

oldB=b_IWLS

lamda=(a_IWLS+b_IWLS*x)*T/N

w=N/lamda/sum(1/lamda)

z_IWLS=lm(y~x,weights=w)

alpha=coef(z_IWLS)[1]

beta=coef(z_IWLS)[2]

a_IWLS=N/T*alpha

b_IWLS=N/T*beta

#tolorence=1.e-6

if( abs(oldA-a_IWLS)/abs(oldA)<tol

|abs(oldB-b_IWLS)/abs(oldB)<tol) break

}

summary(z_IWLS)

plot(x,y)

abline(z_IWLS)

counter

#Up to the 6th decimal (i.e. tolerance) usually after 6 iterations

########## ML ###########

S=sum(wd)

f <- function(a_ML) sum(wd/(a_ML*T/2+x*(S/T-a_ML)))-2

#as a=S/T is always a root, we use the tolerance 1.e-10

lEnd=f(0)

rEnd=f(S/T*(1-tol))
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if (rEnd*lEnd<0)

{

sol=uniroot(f, c(0,S/T*(1-tol)))

a_ML=sol$root

b_ML=2*(S-a_ML*T)/T^2

} else

########## Likelihood Ratio Test ###########

lin_rate=T/N*(a_ML+b_ML*x)

chi_square=-2*(-sum(lin_rate)+

sum(wd*log(lin_rate))+sum(wd)-sum(wd*log(wd)))

p_value=1-pchisq(chi_square,df=N-2)

if (p_value>=0.05) msg="LRT passes" else {msg="LRT fails"}

###Regression with 4 (MULTIPLE) realizations

wds=TS[start:end,c(date,date+7,date+7+7,date+7+7+7)]

wds=c(wds[,c(1)],wds[,c(2)],wds[,c(3)],wds[,c(4)])

x=1:N

x=c(rep(x,4)) #4 weekdays or x=c(rep(1:12,4))

x=(x-1/2)*T/N

y=wds

z=lm(y~x)

summary(z)

#plot(x,y)

abline(z)

#print(c("a_ML is",a_ML))

#cat("a_ML is",a_ML,"\n")

list(summary_OLS=summary(z),a=a,b=b,summary_IWLS=summary(z_IWLS),

a_IWLS=a_IWLS,b_IWLS=b_IWLS,Iteration_IWLS=counter,

a_ML=a_ML,b_ML=b_ML, LRT_Message=msg)

}
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Appendix G

mysin: An MATLAB Function for Solving MLE

for Sinusoidal Rate

G.1 Description

mysin solves Equations 3.36 in Chapter 3 for ML estimates. We choose to feed

the estimates produced by OLS as initial value.

G.2 Numerical Algorithm Review for fsolve

According to the optimazation toolbox user’s guide for MATLAB [4], by default

fsolve uses the medium-scale algorithm and the trust-region dogleg method which is

a variant of the Fortran Powell dogleg method discussed in [30].

Code for expTest

function F = mysin(V)

%Initial value by a scaled root if use OLS estimators such that,

%V=coefficients(z_IWLS)*N/T

c=2*pi/60; %same as in OLS and IWLS

x=[ 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5];

y=[ 7 8 4 9 7 9 11 13 9 8 6 10];

T=60;%set 1 hour

N=length(x);

F(1)=sum(y./(V(1)+V(2)*sin(c*x)+V(3)*cos(c*x)))-T;

F(2)=sum(y.*sin(c*x)./(V(1)+V(2)*sin(c*x)+V(3)*cos(c*x)))-

T/N*sum(sin(c*x));

F(3)=sum(y.*cos(c*x)./(V(1)+V(2)*sin(c*x)+V(3)*cos(c*x)))-

T/N*sum(cos(c*x));



Appendix H

SIN.RATE: An R Function for Sinusoidal Rate

Estimation and LRT

H.1 Description

Estimation algorithm based on sinusoidal rate and LRT are implemented in R.

SIN.RATE returns OLS, IWLS and ML estimates and superimposes fitted lines

based on these estimates. In addition, it also performs the asymptotic LRT.

H.2 List of Outputs

summary OLS Summary of regression using OLS.

a OLS Intercept of the regression line (OLS).

b1 OLS, b2 OLS Slopes of the regression line (OLS).

summary IWLS Summary of regression using IWLS.

a IWLS Intercept of the regression line (IWLS).

b1 IWLS, b2 IWLS Slope of the regression line (IWLS).

Iteration IWLS Number of iterations for the IWLS to converge.

a ML Intercept estimated by MLE

b1 ML, b2 ML Slope estimated by MLE

LRT Message LRT test result



Code for SIN.RATE

SIN.RATE=function(){

rm(list = ls())

### read data

TS=read.table("count2000_03_300")

interval=300

date=8

time=16

tol=1.e-6 #global tolerance

#5% as p value cutoff

########## OLS ###########

###Regression with single realization

duration=1

T=60*duration #mins

c=2*pi/60

#assuming hourly pattern, cycle=31.5 mins. i.e., if c=1, 1*2pi*5min=31.5

N=60*T/interval

#N=T/(interval/T)

x=1:N

start=time*(3600/interval)+1

end=start+(N-1)

wd=TS[start:end,c(date)]

x=(x-1/2)*T/N

y=wd

z=lm(y~sin(c*x)+cos(c*x))

summary(z)

plot(x,y, xlab="Minute", ylab="Number of Calls",

main="Selected Hour" )

#abline(z)

###attributes(z)

alpha=coef(z)[1]

beta1=coef(z)[2]

beta2=coef(z)[3]

alpha_OLS=alpha

beta1_OLS=beta1

beta2_OLS=beta2
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points(x,alpha+beta1*sin(c*x)+beta2*cos(c*x),

type="l",col=’dark blue’,cex=0.5, pch=25)

a=N/T*alpha

b1=N/T*beta1

b2=N/T*beta2

########## IWLS ###########

a_IWLS=a

b1_IWLS=b1

b2_IWLS=b2

counter=0

repeat

{

counter=counter+1

oldA=a_IWLS

oldB1=b1_IWLS

oldB2=b2_IWLS

lamda=(a_IWLS+b1_IWLS*sin(c*x)+b2_IWLS*cos(c*x))*T/N

w=N/lamda/sum(1/lamda)

z_IWLS=lm(y~sin(c*x)+cos(c*x),weights=w)

alpha=coef(z_IWLS)[1]

beta1=coef(z_IWLS)[2]

beta2=coef(z_IWLS)[3]

a_IWLS=N/T*alpha

b1_IWLS=N/T*beta1

b2_IWLS=N/T*beta2

#tolorence=1.e-6

if( abs(oldA-a_IWLS)/abs(oldA)<tol

|abs(oldB1-b1_IWLS)/abs(oldB1)<tol|

abs(oldB2-b2_IWLS)/abs(oldB2)<tol) break

}

summary(z_IWLS)

alpha_IWLS=coef(z_IWLS)[1]

beta1_IWLS=coef(z_IWLS)[2]

beta2_IWLS=coef(z_IWLS)[3]

plot(x,y, xlab="Minute", ylab="Number of Calls",

main="Selected Hour" )

points(x,alpha_IWLS+beta1_IWLS*sin(c*x)+beta2_IWLS*cos(c*x),

type="l",col=’dark blue’,cex=0.5, pch=25)
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counter

#Up to the 6th decimal (i.e. tolerance) usually after 6 iterations

########## ML ###########

#to be solved using fsolve in MATLAB

#Use estimates by OLS as initial values

a_OLS=N/T*alpha_OLS

b1_OLS=N/T*beta1_OLS

b2_OLS=N/T*beta2_OLS

##Once we have the estimate by MATLAB,

alpha_ML=T/N*a_ML

beta1_ML=T/N*b1_ML

beta2_ML=T/N*b2_ML

plot(x,y,xlab="Minute", ylab="Number of Calls",

main="Sinusoidal Rate")

lines(x,alpha_OLS+beta1_OLS*sin(c*x)+beta2_OLS*cos(c*x),

lty=1,lwd=2, col="red")

lines(x,alpha_IWLS+beta1_IWLS*sin(c*x)+beta2_IWLS*cos(c*x),

lty=2, lwd=4,col="blue")

lines(x, alpha_ML+beta1_ML*sin(c*x)+beta2_ML*cos(c*x),

lty=3,lwd=3,col="black")

legend(locator(1), lty=c(1,2,3),lwd=3, col=c("red","blue","black"),

legend=c(’OLS’, ’IWLS’,’ML’))

########## Likelihood Ratio Test ###########

sin_rate=T/N*(a_ML+b1_ML*sin(c*x)+b2_ML*cos(c*x))

chi_square=-2*(-sum(sin_rate)+

sum(wd*log(sin_rate))+sum(wd)-sum(wd*log(wd)))

p_value=1-pchisq(chi_square,df=N-2)

if (p_value>=0.05) msg="LRT passes" else {msg="LRT fails"}

###Regression with 4 (MULTIPLE) realizations

wds=TS[start:end,c(date,date+7,date+7+7,date+7+7+7)]

wds=c(wds[,c(1)],wds[,c(2)],wds[,c(3)],wds[,c(4)])

x=1:N

x=c(rep(x,4)) #4 weekdays or x=c(rep(1:12,4))

x=(x-1/2)*T/N
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y=wds

z=lm(y~x)

summary(z)

#plot(x,y)

abline(z)

list(summary_OLS=summary(z),a_OLS=a_OLS,b1_OLS=b1_OLS,b2_OLS=b2_OLS,

summary_IWLS=summary(z_IWLS), a_IWLS=a_IWLS,b1_IWLS=b1_IWLS,

b2_IWLS=b2_IWLS,Iteration_IWLS=counter,

a_ML=a_ML,b1_ML=b1_ML,b2_ML=b2_ML, LRT_Message=msg)

}
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Appendix I

SPLINE.FIT: An R Function for Spline Regression

and Smoothing Spline

I.1 Description

This function fits the data using spline regression and smoothing spline. Summary

information can be provided by calling summary and plot. Fitted lines by spline

as well as parametric models are superimposed for model comparison.

Code for SIN.RATE

SPLINE.FIT=function(){

rm(list = ls())

library(splines)

library(fields)

### read data

TS=read.table("count2000_03_300")

interval=300

date=8

time=16

tol=1.e-6 #global tolerance

#5% as p value cutoff

########## OLS ###########

###Linear rate model

duration=1

T=60*duration #mins

c=2*pi/60

#assuming hourly pattern, cycle=31.5 mins. i.e., if c=1, 1*2pi*5min=31.5

N=60*T/interval

#N=T/(interval/T)

x=1:N

start=time*(3600/interval)+1

end=start+(N-1)

wd=TS[start:end,c(date)]

x=(x-1/2)*T/N



y=wd

z=lm(y~x)

summary(z)

plot(x,y,xlab="Minute", ylab="Number of Calls",

main="Linear Regression by OLS"

)

abline(z, lwd=2, col="red")

###attributes(z)

alpha=coef(z)[1]

beta=coef(z)[2]

a=N/T*alpha

b=N/T*beta

###This is sinusoidal.

duration=1

T=60*duration #mins

c=2*pi/60

#assuming hourly pattern, cycle=31.5 mins. i.e., if c=1, 1*2pi*5min=31.5

N=60*T/interval

#N=T/(interval/T)

x=1:N

start=time*(3600/interval)+1

end=start+(N-1)

wd=TS[start:end,c(date)]

x=(x-1/2)*T/N

y=wd

z_sin=lm(y~sin(c*x)+cos(c*x))

summary(z_sin)

plot(x,y, xlab="Minute", ylab="Number of Calls",

main="Selected Hour" )

alpha=coef(z_sin)[1]

beta1=coef(z_sin)[2]

beta2=coef(z_sin)[3]

points(x,alpha+beta1*sin(c*x)+beta2*cos(c*x),

type="l",col=’dark blue’,cex=0.5, pch=25)

a=N/T*alpha

b1=N/T*beta1

b2=N/T*beta2
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####regression spline####

mod.ns=lm(y~ns(x,df=7))

lines(x,predict(mod.ns))

fit.ns=predict(mod.ns, data.frame(x=minute), interval="confidence",se.fit=T)

plot(x,y,ylab="Number of Calls",xlab="Minute",

main="Spline Regreesion with 95% CI")

fit.mod.ns=predict(mod.ns, data.frame(x=x),

interval="confidence",se.fit=T)

#Draw piecewise linear fits of the valued modelled by

#regression spline at the knots

lines(x, fit.mod.ns$fit[,"fit"])

lines(x,fit.mod.ns$fit[,"lwr"],lty=2)

lines(x,fit.mod.ns$fit[,"upr"],lty=2)

minute=seq(min(x),max(x),len=200)#use 200 points to predict/fit

#i.e.,spline fit at 200 equally spaced points

lines(minute,fit.ns$fit[,"fit"])

lines(minute,fit.ns$fit[,"lwr"],lty=2)

lines(minute,fit.ns$fit[,"upr"],lty=2)

####sreg####

fit<- sreg(x,y)

summary( fit)

plot(fit) # diagnostic plots of fit

predict( fit) # fit$fitted.values, predicted values at data points

#fit.sreg=predict(fit,data.frame(x=minute))

# finding approximate standard errors at observations

SE<- fit$shat.GCV*sqrt(fit$diagA)

# 95% CI

Zvalue<- qnorm(.0975)

upper<- fit$fitted.values + Zvalue* SE

lower<- fit$fitted.values - Zvalue* SE

plot(x,y,ylab="Number of Calls",xlab="Minute",

main="Smoothing Spline with 95% CI")

lines( fit$predicted, lwd=2)

matlines( fit$x,

cbind( lower, upper), type="l", col=c( 2,2), lty=2)
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##superimpose fits by models

plot(x,y,ylab="Number of Calls",xlab="Minute")

abline(z,col=’red’,lty=1)

lines(x,alpha+beta1*sin(c*x)+beta2*cos(c*x),

type="l",col=’blue’,lty=6)

#lines(minute,predict(mod.ns, data.frame(x=minute)),col=’black’,lty=3)

#lines(x,predict(mod.ns),col=’black’,lty=3)

lines(fit$predicted,col=’green’,lty=4)

legend(locator(1), lty=c(1,6,4),lwd=3, col=c("red","blue","green"),

legend=c(’linear’, ’sinusoidal’,’ss’))

}
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