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Abstract

Positron emission tomography (PET)-Computed tomography (CT) plays an important role in

cancer management. As a multi-modal imaging technique it provides both functional and anatom-

ical information of tumor spread. Such information improves cancer treatment in many ways. One

important usage of PET-CT in cancer treatment is to facilitate radiotherapy planning, for the infor-

mation it provides helps radiation oncologists to better target the tumor region. However, currently

most tumor delineations in radiotherapy planning are performed by manual segmentation, which

consumes a lot of time and work. Most computer-aided algorithms need a knowledgeable user to

locate roughly the tumor area as a starting point. This is because, in PET-CT imaging, some tissues

like heart and kidney may also exhibit a high level of activity similar to that of a tumor region. In

order to address this issue, a novel co-segmentation method is proposed in this work to enhance

the accuracy of tumor segmentation using PET-CT, and a localization algorithm is developed to

differentiate and segment tumor regions from normal regions. On a combined dataset containing

29 patients with lung tumor, the combined method shows good segmentation results as well as

good tumor recognition rate.
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1. Introduction

Nowadays, cancer has become one of the major threats to human health. As of 2014, cancer

is responsible for around 30% of all deaths, and there are 11 million cases emerging every year

worldwide [2]. Radiation therapy, one of the dominant form of therapies, plays an important role

in countering cancer [3]. Radiation is effective in terms of killing abnormal cells. However, it can

also kill normal cells and damage adjacent body tissues in the process. In order to help clinicians

to better define tumor in radiation therapy process, a multi-modal imaging technique known as

Positron Emission Tomography-Computed Tomography (PET-CT) has been introduced [4].

As a structural imaging technique, Computed Tomography (CT) is widely used in clinical prac-

tice. It helps clinicians to better examine structural abnormalities caused by disease. However, in

cases where recognition of abnormal cellular activity is more significant than structural abnormali-

ties, structural imaging becomes less effective [4]. The need to characterize functional information

has led to the development of imaging techniques such as Positron Emission Tomography (PET),

which provides molecular biological information of many diseases. Although PET has good sensi-

tivity in terms of radiotracer uptake, and by specific design such uptake can reflect the biochemical

activity of tumors, structural imaging is still needed to differentiate tumor regions from normal

physiological high uptake regions such as brain, liver, heart, kidneys. etc [4].

With the help of PET-CT, clinicians can localize and contour tumor regions for radiation ther-

apy. However, most tumor segmentation is still done manually on a slice by slice basis requiring

well-trained expertise; and many computer-aid algorithms also need human interaction [4]. In this

work, a two-stage algorithm is proposed to localize and segment lung tumor, freeing clinicians

from tedious slice by slice manual segmentation process.

In this chapter, a brief introduction to PET-CT imaging and segmentation is given. Due to the
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dominating role of PET imaging in PET-CT, the introduction will be focused on PET imaging.

Then the challenges in PET-CT imaging segmentation are addressed and analyzed. Given these

analyses, a brief overview of our proposed method is provided, and the contents of subsequent

chapters are described.

Background on PET-CT imaging and Segmentation

PET imaging plays an important role in cancer treatment. By revealing chemical activity of

specially designed radiotracers, PET imaging is capable of detecting a wide range of disease ac-

tivity in human body, including tumor activity. It has been widely applied to cancer clinics as a

tool for tumor detection and diagnosis. However, PET imaging has low spatial resolution in its

nature, making it very difficult for precise localization of tumor. Precise localization is important

for radiation therapy, a mainstream tumor treatment method, for treatment efficiency and avoiding

side-effect. Therefore, in early clinical application, PET was often combined with CT, an imaging

modality with limited functional information but higher anatomic spatial resolution. Shortly after,

specially designed scanner combining PET and CT was developed, and PET-CT has become a

mainstream imaging modality ever since [3]. However, many challenges remain to be solved in

precise tumor segmentation and localization using PET-CT imaging.

In this section, the underlying mechanisms of PET imaging are introduced at first as the back-

ground of this work. After that, challenges in segmentation using PET or PET-CT to be addressed

by this work are described.

Radiotracers

PET imaging is designed to reveal the bio-distribution of different types of positron emitted

radio-pharmaceutical compound with a biologically active ligand. Such compounds are also called

radiotracers. Radiotracers must be injected into a subject’s body for imaging. As PET scanners

use positron emitting radioisotopes, the radiation activity of those radiotracers can be picked up

through imaging in vivo [5, 6]. Among the radiotracers that have been developed, the most com-

monly used is 18FDG [7], which consists of 18F combined with deoxyglucose. Metabolically

active tumors often utilize higher than normal glucose or FDG levels, so revealing the distribution
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of 18FDG reveals tumor distribution as well. Although other radiotracers have been developed as

well, 18FDG remains the most commonly used [8].

Quantitative evaluation of radiotracer uptake in PET

A qualitative assessment of the PET image done by experts is often sufficent for tumor assess-

ment and detection. However, accurate tumor diagnosis and assessment require quantitative evalu-

ation of the PET scanner records, since such records vary with time and dose of radiotracer [9,10].

Popular semi-quantitative and quantitative methods are standard uptake value (SUV), tumor-to-

background ratio (TBR), nonlinear regression techniques, total lesion evaluation (TLE), and the

Patlak-derived methods [11]. Among them, SUV is the most popular technique, for it relates to

physiological activity of cellular metabolism [6, 9].

SUV represents the tissue concentration of the radiotracer at a given time divided by a few

normalization factors. These factors include injected dose, patient size in terms of weight, and a

decay factor related to the radiotracer. It is defined as:

SUV =
Cimg(t)
ID/BW

, (1.1)

where Cimg(t) stands for total radiotracer concentration in time t, ID represents injected dose (Bq)

and BW is body weight (in g or kg). SUV is used in localization for normalization purposes. For

details of the available different quantitative evaluation methods, the reader can refer to the review

work [12].

Challenges in segmentation of PET images

Segmentation of tumor with PET can be subdivided into two parts: initial tumor recognition

and its sequential delineation [13].

Recognition determines the tumor location from other similar regions in the image. Tradi-

tionally, experienced clinicians identify the high uptake regions in PET images from other normal

tissues with high uptake. In many modern algorithms, a rough area of tumor region defined by

clinicians is still needed. Subsequently, delineation focuses on drawing a spatial extent of tumor
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in the area defined by recognition, in order to achieve a precise separation between tumor and

background areas [14].

Several difficulties can be encountered throughout the segmentation process. In recognition,

whether a high-uptake area represents a tumor or normal tissue is also determined by a clinician’s

subjective judgment, i.e., a decision that is dependent on both tumor appearance and clinician

experience.

On the other hand, in delineation, several factors affect segmentation. First, PET images typ-

ically suffer from low resolution and high smoothing factor. What is more, PET image may be

further filtered in order to address factors like motion artifacts. Second, tumors have large varia-

tions in their shape and texture, and this makes generalizing PET segmentation rules more difficult.

Last, the noise in PET is high because the nature of PET itself. As indicated by work [15], noise is

considered as the most significant factor affecting segmentation performance.

Given the challenges above, several algorithms have emerged to help clinicians in the process.

A literature review details them in the following chapter.

Research Overview

Problem Overview

Using PET/CT, localizing tumor and drawing its boundary becomes more effective. In this

process, over-segmenting puts normal tissues within tumor region, leading radiation to damage

those tissues, and further hardening side effects. On the other hand, under-segmenting results in

missing abnormal cells, and affects treatment efficiency. Therefore, accurate tumor contour and

localization is vitally important [4].

For now, the standard process of tumor segmentation still involves heavy manual work of ex-

perienced experts on a slice by slice basis. Even with existing computer-aid algorithms, such a

process still takes a lot of time and effort. On the other hand, reports also indicate disadvantages

of manual segmentation. It is pointed out that there are large inter and intra variations among man-

ual segmentations made by different clinicians. Naturally, many computer algorithms have been
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developed to improve the efficiency of the segmentation process. However, most of them need a

pre-defined tumor area in order to work correctly, since those methods rely solely on information

extracted from PET intensity information, and therefore wouldn’t be able to tell the differences be-

tween tumor region and other normal high uptake regions. Another disadvantage of many methods

relying solely on PET intensity is that they are not able to use the high spatial resolution of CT to

help define the tumor boundary [4].

Given the above considerations, an algorithm is developed in this work to address the issue of

tumor localization while enhancing tumor contouring. A brief summary of the method is provided

in the section below, and the reader can refer to chapter 3 and chapter 4 for further details.

Method Overview

Basically the algorithm in this work contains two stages. The first stage is segmentation or

delineation, meaning that in this stage, the algorithm will segment all the regions with a high

uptake value, no matter if it is a tumor region or a normal region. In this stage, an algorithm based

on graph-cuts is used, but the cost function of graph-cuts is defined in a way so that the boundary

information from CT is contained along with intensity and boundary information from PET into

the cost function, resulting in a more detailed tumor boundary consistent with CT boundary.

After the segmentation stage, a machine learning based localization stage, i.e., tumor recogni-

tion, is employed on both PET and CT data, differentiating tumor regions from normal regions.

The features used in this stage include first-order features (such as mean and median), second-order

features (such as variance) and higher-order features (such as neighborhood gray-tone-difference

matrix (NGTDM) features). For evaluation, the dataset is partitioned based on leave-one-out tech-

nique, and subjected to three different classifiers for result evaluation.

In terms of results, the segmentation stage gives a Dice index close to 92%, and all tumor

regions are successfully separated from non-tumor regions in localization stage, more details can

be found in chapter 3 and chapter 4.
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Thesis Organization

The remainder of the thesis is organized as follows: chapter 2 provides a literature review,

chapter 3 and chapter 4 are manuscript-based chapters covering the details of the methodology in

two stages. Lastly, chapter 5 serves as a conclusion.
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2. Literature Survey

In chapter 1 we subdivided segmentation into two parts: tumor recognition and tumor delin-

eation. In manual segmentation tumor recognition process typically precedes delineation. How-

ever, using an automatic system, which first segments high uptake regions and then recognizes

tumor location, saves computational time and resource overall. Accordingly, the proposed algo-

rithms put delineation stage before localization stage. In the following sections, previous works

related to these two stages will be reviewed.

Delineation Methods

In terms of delineation process, the goal is to divide the image into two regions of interest

(ROIs): foreground and background. Foreground contains high uptake regions, including tumors,

while background contains tissues with low uptake. In delineation process, algorithms can be

roughly classified into four categories: manual segmentation, thresholding methods, stochastic

and learning-based methods and region based methods.

Manual Segmentation

Before going to various segmentation methods, it is necessary to know what is the standard way

of evaluating and comparing the accuracy of these methods. In order to do such evaluation, the

true boundary of the tumor must be achieved. When using a phantom, such boundary can always

be found [16]. However, human cases are much more complex than typical phantoms, making

evaluation results on phantom less convincing. Unfortunately in clinical cases, such true boundary

cannot be established if there are no histopathologic samples. A common way in such evaluation

is to use manually segmented results and compare them with results given by algorithm [17].
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Ground Truth Construction and Segmentation Evaluation

It is not uncommon to see variations between segmentations provided by different clinicians.

Therefore, in order for results evaluation it is important to compare the result from algorithm with

as many manual segmentations as possible. However, as such comparisons increase the computa-

tional complexity, it is common to combine all the manual segmentations into one single ground

truth by weighting each segmentation using statistical methods. One method called Simultaneous

Truth and Performance Level Estimation (STAPLE) has been used for such combination. It incor-

porates a prior spatial distribution model and adjusts weighting by using a performance estimation

level [18].

After ground truth is established, the algorithm result is compared to the ground truth in terms

of similarity and difference. Naturally better results are closer to the ground truth. Many metrics

are utilized for such comparisons. Most of them falls into three categories: Volumetric Difference

Quantification, Shape based Similarity Index and Regression Based Statistical Methods.

Volumetric Difference Quantification

The core idea of volumetric difference quantification is computing the absolute total volume

difference percentage between two segmentations. It is commonly used as it is both simple and

intuitive. However, using this kind of metric alone may not give enough information in terms of

similarity. For example, a segmentation method may produce same volume as the one of ground

truth, while producing unsatisfactory results such as having some amount of volume into non-

object area. Several metrics are derived from the concept of confusion matrix, which is commonly

used in machine learning area for error evaluation. The Dice similarity coefficient (DSC) is one

of the most widely used metrics among this kind [19, 20]. By measuring spatial overlap between

segmented area and ground truth in percentage, a higher DSC value represents better segmentation

performance. Given X as our method result and Y as ground truth, the Dice index can be computed

using the following equation:

dI(X ,Y ) =
2|X ∩Y |
|X |+ |Y |

, (2.1)
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with |.| defined as the area of the graph. A higher DSC represents more similarity, and thus better

result.

Shape based Similarity Index

For segmentation evaluation based on shape similarity, the idea is to quantify the shape dis-

similarity based on boundary-based measures [21, 22]. Geometric metrics measure how far two

boundaries are from each other. Among them, the Hausdorff distance (HD) is most commonly

used [23]. Given x as voxel in the image X and y as voxel in the image Y, the Hausdorff distance

is defined as:

dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y)}. (2.2)

A lower HD represents smaller boundary difference distance, thus better result.

In conclusion, a good segmentation should have a high DSC (high overlap) and a low HD (low

boundary distance). These two metrics are commonly used together in research for a thorough

evaluation.

Regression Based Statistical Methods

In clinical literatures, using regression based indices such as Spearman and/or Pearson corre-

lation coefficients and simple mean volume difference or relative volume ratio for segmentation

evaluation is more common than DSC and HD based evaluation [24, 25]. However, the disadvan-

tage of using regression based indices is that comparing statistics on the absolute volume difference

does not provide complete information on segmentation accuracy. Therefore, even though regres-

sion based indices are more popular in clinical medical imaging literatures, in this work we use the

DSC and HD pair for segmentation evaluation.

Problem with Manual segmentation

As previously mentioned, manually drawing the boundary for a tumor is perhaps the easiest

and most direct way of obtaining region of interests (ROIs), and is commonly used for ground
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truth establishment. However, there have been ongoing debates around manual segmentation due

to its disadvantages: It is time consuming, labor intensive, and operator-dependent [4]. What is

more, a recent study shows high intra- and inter-operator variability of segmentation results, After

investigating cases involving 18 physicians from 4 different departments, researchers found that

the volume overlap of 70% was found only in 21.8% of radiation oncologists and 30.4% of haema-

tologic oncologists. Such high intra-observer variability may come from small size tumors (that is,

smaller than 4cm3) [26]. More studies on various cases show intra and inter variations could be as

high as 78% [27–31]. However, even with those problems manual segmentation remains the only

choice under many circumstances.

Thresholding Methods

Thresholding technique is very popular in image segmentation area. The main idea is to convert

a gray-level image into a bi-level image by defining all the voxels higher than a threshold value

into one class and the rest into other class [32].

Among all the computer-aid segmentation methods, thresholding methods are the first ones

being developed. This method is suitable for PET segmentation, as PET images have low reso-

lution with high contrast, and tumors usually have much higher intensities than their surrounding

areas. However, some uncertainty arise when using these methods. Because of the difficulties we

mentioned in the last chapter, that PET image has large variability in terms of pathologies, low

resolution, high noise from imaging nature and from imaging precess, there are no general rules in

selecting an optimal threshold level (especially in automatic cases). As a result, the thresholding

methods are still under development towards optimal thresholding selection. Thresholding based

methods are commonly seen in clinical usage for they are easy to implement. The state-of-art

thresholding methods can be classified into the following groups: Fixed Thresholding, Adaptive

Thresholding, and Iterative Thresholding Methods.

Fixed thresholding

As the name implies, fixed thresholding sets all voxels with intensities above a fixed value

to foreground and everything else into background. The thresholding level can be set by a clini-
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cian, derived from a given phantom, or learned from a training set of similar cases. The resulting

boundary may contain certain amount of uncertainty because of the noise of PET imaging.

In many studies, a value of 2.5 SUV is set as a threshold. However, this value is quite arbi-

trary and does not allow one to achieve superior performance in most cases. In order to incor-

porate variance between patients, in other cases, using a specific percentage of SUVmax (which

is the local maximum value of SUV) is preferred. Depending on various factors such as scan-

ner type, image properties and noise, the percentage may vary significantly. Regardless of these

factors, in many studies a number between 40-60% SUVmax is often preferred. In other works,

this percentage can vary from 15% to 78% [33–35]. Beside the uncertainty of boundary, fixed

thresholding methods tend to give overestimated boundaries, especially for small tumors. Because

of that, adaptive thresholding has been developed. The following table 2.1 shows a collection

of these fixed thresholding methods and their accuracies, where BGD (background intensity) =

70%SUVmax +mean background intensity, BGDα = BGD+α ∗ (SUVmax−BGD). Note that for

all the tables in this chapter, for the cases where multiple results occur under the Evaluation Per-

formance column, these results correspond to the respective methods described in the Method

column.

Table 2.1: Fixed thresholding methods and their reported accuracies

Reference Method Sample descripition Evaluation Performance

[36] 42% SUVmax Static phantom, 3 spheres
Mean volume deviation (%):

8.4%

[37] 34% SUVmax
Moving phantom, 3 spheres

3 motions

Difference from ideal ranged

from 3 to 94 cm3 for motion

volumes of 1.2 to 243 cm3

[38] 34% SUVmax

Moving lollipop phantom, 1

sphere, 3 longitudinal

movements

Volume deviation from

ground truth (%): 1.4 ± 8.1%

[39] 50% SUVmax
Intact squamous cell

carcinoma, 40 patients

Volume deviation from CT

(%): 54.5%
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[40] 50% SUVmax NSCLC, 101 Patients
Volume deviation from CT

(%): 27 ± 3%

[41]
42%, 24%,

15% SUVmax
NSCLC, 20 Patien

Determined threshold values

such that the volumes were

exactly the ground truth

[42]
40% SUVmax,

2.5 SUV
NSCLC, 19 Patients

Median volume deviation

from CT (%): −140%, −20%

[33]

Manual, 40%

SUVmax, 50%

SUVmax, ,

SBR SUVmax

Oral cavity, oropharynx,

hypopharynx, larynx, 78

cases

Mean overlap fraction (CT):

0.61, 0.55, 0.39, 0.43

[35]

Manual, 2.5

SUV, 40%

SUVmax, ,

SBR SUVmax

NSCLC, 25 cases

Mean GTV (cm3): 157.7,

164.6, 53.6, 94.7 Mean

Radius (cm): 3.03, 3.05,

2.18, 2.52

[43]
43% SUVmax,

2.5 SUV

Rectal and anal Cancer, 18

patients

55.4 ± 18.3, 36.7 ± 38.4

Volume difference compared

to manual delineation

[44]

SUVmax,

BGD,

Iterative

Theshold

Nonspherical simulated

tumors inserted into real

patient PET scans, 41 cases

Mean error volume (%):

−50% ± 10%, −40% ± 40%,

4% ± 10%, 24% ± 20%

[45] SBR SUVmax NSCLC, 23 Tumors

Compared to

Histopathology: Sensitivity:

66.7% and Specificity:

95.0% Compared to Manual

Segmentation: Sensitivity:

55.6% Specificity: 88.3%
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[29]

42%,

50%,SUVmax,

FCM

Sphere phantoms with

diameters 13 - 37 (mm), 6

Spheres from 4 scanners

Classification error (%): 42.6

± 51.6, 20.3 ± 18.5, 27.8 ±

25.6

[34]

Manual, SBR

SUVmax, 40%

SUVmax, 50%

SUVmax, 2.5

SUV

High-grade gliomas, 18

patients

Mean Overlap Fraction

(PET): 0.61, 0.62, 0.57, 0.67,

0.67 Mean Overlap Fraction

(MRI): 0.45, 0.44, 0.54,

0.36, 0.14

[46]

Manual,

BGD40%, BGD20%,

2.5 SUV, 40%

SUVmax

Esophageal Carcinoma, 96

cases

Mean length of tumors (cm):

6.30 ± 2.69, 5.55 ± 2.48,

6.80 ± 2.92, 6.65 ± 2.66,

4.88 ± 1.99, 5.90 ± 2.38

[47]

Gradient

Based, 40%

SUVmax

Stage I-II NSCLC, 10

patients
DSC: 66%, 65%

Adaptive thresholding

As already mentioned, the arbitrary value in fixed thresholding varies from case to case and

therefore such thresholding comes from either the interpreting clinician, derived from a given

phantom, or learned from a training set of similar cases. Adaptive thresholding techniques arise

where thresholds are adapted based on various parameters: image quality metrics such as source-

to-background ratio (SBR or S/B) and full width half maximum (FWHM), motion artifacts mea-

sured using oscillating spheres instead of static sphere.

However, these parameters come from a thorough prior examination, and depend on various

factors including the specific scanner, the image reconstruction method, and even the patient’s size.

It means that the segmentation results are not reproducible on similar cases with different scanners,

patients or reconstruction algorithms [48]. Also, since introducing adaptive parameters introduce

the construction and calibration of analytic expressions, uncertainties are also introduced in finding
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optimal thresholding level, making this kind of methods unacceptable for clinical applications [49].

Some typical methods and results of the adaptive thresholding literature are listed below. One

can note that the analysis parameters get more and more complex in recent studies. Volume differ-

ence here refers to relative volume difference between ground truth and algorithm reults.

Table 2.2: Adaptive thresholding methods and their accuracies

Reference Method (T is the threshold value) Parameter

Evaluation

Performance

(Volume

Difference )

[36] T = Ae−CVml

Parameters A,C are

coefficients

computed for each

SBR. First work to

use the SBR to

estimate the

thresholding level.

8.4%, NA

[50] T = 0.307SUVmean +0.588

Iteratively selected

the mean target

SUV

21%, 67%

[35] T = 0.15SUVmean +BGD

SUVmeanis

approximated in

advance

NA, 60.1%
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[41] T = 59.1−18.5log(SUVmean)

Fitted a

logarithmic

regression curve to

threshold values in

PET that resulted

in the same volume

from CT

NA

[51]
T =

SBR∗ (SUVmax−BGD)+BGD

Considered

influence of

difference between

target and

background

intensities

47.3%, NA

[52]
T = 0.078V +0.617SBR+

0.316SUVmean

Initialization for an

iterative

thresholding

method, V stands

for volume of

object

10%, 16.6%

[53]
T (%) = 90.787e−0.0025V

T (%) = 0.00154V +28.77

These two

functions

corresponds to area

above and under

448mm2cases

4.7%, 7.5%
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[54] T (%) =
a∗SUV70%+b∗SUVbackground

SUVmax

For diameter ¿ 30

mm,

a = 0.5,b = 0.5,

for diameter ≤ 30

mm,

a = 0.67,b = 0.6

4.7%, 7.5%

[55]

T = 309.2−171.9∗ (1− 1
SBR)−

9.643∗D, T = 151.1−101.8∗

(1− 1
SBR)−0.976∗D

D stands for

diameter of object,

two functions for

cases with D under

and above 10mm,

considered scan

duration and initial

injected activity in

model.

NA

[56] T = 5+ e3.568+0.197/V−0.1069∗logV

An iterative

technique based on

Monte Carlo

simulation studies

5.1%, 11.1%

[57]

lnT (%) = 0.0634x1/3 +

0.1202y1/3 +0.7327lnz+

0.0597x1/3 lnz−0.1221y1/3 lnz−

0.0248(xy)1/3−0.9504

T is normalized to

background. x is

Volume in cm3, y

is the motion in

mm, z is the SBR,

considered how

motion in moving

lung tumors affects

the thresholding

NA
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Iterative thresholding method (ITM)

One problem for adaptive methods is that such methods typically require precise prior analytic

assessment extracted from a phantom or CT [4]. However, the iterative thresholding method pro-

posed by Jentzen does not need such complex and precise knowledge [52]. The core idea behind

these methods is to determine the optimal threshold for the specific image. Before applying the

method, the calibrated threshold-volume curve at varying S/B ratio is acquired by measuring phan-

tom under different conditions. Then the image S/B ratio is estimated, the corresponding curve is

then used for iterative coverage: first a fixed threshold T1 is selected, then the volume of object is

then estimated in image. Using this volume, the curve gives another threshold T2. If T1and T2 are

close to each other, the algorithm stops. Otherwise it continues such process.

Using iterative thresholding methods, one only needs to measure the S/B-threshold-volume

curve and S/B ratio of the image, instead of all the complex parameters in adaptive thresholding

methods. However, the S/B curve still heavily depends on the spatial resolution of the imaging

device and reconstruction method used. Moreover, the way of applying one S/B curve indicates

the assumption that the imaged activity distribution is homogeneous: asymmetric activity leads

to underestimated volume. Another assumption is the spherical tumor shape, which may lead to

uncertain results if the shape of tumor is irregular.

Stochastic and learning-based methods

Using pattern recognition, machine learning and stochastic technique in the segmentation prob-

lem leads to another kind of segmentation methods. Stochastic and learning-based methods empha-

size on using the differences between uptake regions and surrounding tissues, therefore employing

more information than thresholding methods into segmentation.

Mixture models

Using Gaussian Mixture Models (GMM), it is assumed that any distribution of intensities

within a PET image can be roughly modeled by a summation of Gaussian densities. The goal

of segmentation then becomes trying to identify and separate these densities. The problem can
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thus be solved by the Expectation Maximization (EM) algorithm. Hatt et al. [58] and [59] em-

ploy this kind of analysis, describing a GMM based algorithm in [59]. The authors consider three

classes: the background, the tumor and the uncertain regions. It needs a user-defined ROI for ini-

tialization, and the underlying GMM is analyzed. The performance details of this kind of methods

can be found in the table 2.3 below.

Fuzzy locally adaptive Bayesian (FLAB) method

The work [58] also provides another way of using GMM known as fuzzy locally adaptive

Bayesian (FLAB) segmentation. In this method, there are two classes as “background” and “fore-

ground”, and a finite level of “fuzzy levels” in between. The fuzzy level means a voxel in this level

has a mixture existence of two classes, and its final class depends on the portion of this mixture.

As in the previous methods, a pre-defined ROI is needed for method initialization. FLAB method

has been shown to be quite robust and reproducible. However, it needs a significant number of

background voxels for accurate modeling. Also the model is limited to two classes.

Recently an improved version of FLAB has been developed. It allows up to three classes with

fuzzy statuses, and has higher accuracy and robustness. Its performance has been demonstrated in

several papers [29, 60].

Clustering/Classification of PET image intensities

Classifier-based methods seek to find a set of features derived from images, and use them to

partition images into classes. Classifier based methods are known as supervised methods, for the

set of feature comes from images with known labels, i.e., these images are training data. Due to

limited computational capability, the most common feature is the image intensity itself. As long

as the feature set remains sufficient to distinguish background from foreground, the method can

continue its work on new data. The disadvantage of supervised methods is that very little spatial

information is used, and manual labeling for training data is also time consuming.

Clustering methods do not use training data. Therefore they are called unsupervised methods.

Because of that, no time consuming manual labeling is needed in this kind of method. These

methods emphasize more on spatial information. However, the nature of unsupervised process
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makes them very sensitive to noise and outliers in the image.

Examples of supervised and unsupervised methods include k-nearest neighbor ( k-NN) [61–

63], support vector machine (SVM) [64,65], Fuzzy C-Means (FCM) [66], artificial neural network

(ANN) [61], and more recently Affinity Propagation (AP) [67] and spectral clustering [68]. Using

classifiers or clustering technique, voxels with similar features (intensity value, spatial location)

are gathered into same group, and label them with background, foreground or more classes. They

are especially helpful when non-convex boundaries [67] appear in the problem, which is a com-

mon circumstance in many cases. Therefore, many algorithms have been developed using this

technique.

Among these methods, spectral clustering method shows good performance in cases containing

inhomogeneous activities in the presence of a heterogeneous background in [68]. However, the

similarity choice in this method is intensity value, which may not be optimal. In another popular

clustering method known as FCM [66], a voxel is given a mixture of two classes. The algorithm

assigns possibilities that this voxel belongs to each classes. and the final decision is made based

on these possibilities.

The problem with many methods belong to this category is that they still need ROI definition,

and it is often hard for them to deal with multi-focal uptake patterns. A recent study seeks to

address this issue by using a novel affinity estimation function with AP platform. It then uses these

functions to draw several thresholds to divide an image into different regions. Table 2.3 lists some

common stochastic and learning-based methods for PET segmentation.

Table 2.3: Clustering and classifier methods and their accuracies

Reference Method Parameter
Evaluation Performance

(Volume Difference)

[69]
k-Means, MRF,

Multiscale MRF
4 Lesions

Relative Volume Difference:

9.09%, 6.97%, 5.09%
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[62] k-NN

Monte Carlo

simulation using

Zubal whole-body

phantom as prior

DSC: 0.8-0.85

[70]
k-Means, MRF,

Multiscale MRF
6 Phantom spheres

Relative Volume Difference:

42.86%, 32.59%, 15.36%

[63]
k-NN, SUV 2.5, 50%

SUVmax, SBR

10 Head and neck

cancer patients

Sensitivity-Specificity:

0.90-0.90, 0.95-0.93,

0.84-0.48, 0.98-0.68,

0.96-0.96

[58]
FLAB, FHMC, FCM,

42% SUVmax

10 Spherical

Phantoms

Classification errors (%):

25.2, 31.2, 51.6, 55.8

[66] FCM

Simulated lesions

from the NCAT

Phantom 21

NSCLC and 7

LSCC patients

Classification Error (%): 0.9

± 14.4

[61]
k-NN, ANN, Adaptive

Thresholding
6 Phantom spheres Error Rate: 6.83, 0.28, 7.61

[71]

Standard GMM,

SVFMM, CASVFMM,

ICM, MEANF,

Dirichlet Gaussian

mixture model

PET Image of dog

lung and spherical

phantoms

Misclassification ratio(%):

32.15, 12.43, 11.85, 3.52,

1.19, 0.67

[68]
Spectral Clustering,

Adaptive Thresholding

30 Simulated

lesions
DSC: 95%, 92%
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Geometry Methods: Region and Boundary based methods

Another group of researchers seek to incorporate even more spatial information from PET/CT

image into segmentation process. This idea forms the origin of region based methods and boundary

based methods. Region based methods emphasize the homogeneity of the image, while boundary

based methods focus on identifying and locating boundaries in the image.

Region based Methods

Besides using pixel or voxel intensities of the image, region based methods focus much more

on homogeneity of the intensities on the image. Mainstream region based methods can be divided

into two groups: region growing methods and graph based methods.

Region Growing Methods

As we mentioned previously, in thresholding and classifier methods, spatial information is

barely used while intensity value is the only feature used for segmentation. In clustering meth-

ods, spatial information is used but making the methods sensitive to noise and outliers. Region

growing seeks to use the spatial information along with intensity value in a way different than

clustering methods. A user-defined seed is placed on the ROI to initiate the algorithm. Based on

mean and standard deviation, the connected voxels (also known as neighbor voxels) of the seed

is either selected as foreground (with seed) or background. Then a homogeneity metric is used

to examine if the new voxels are statistically close enough to be included with seed region. As

the seed region grows larger, new neighbor voxels are selected and examined in the same way,

until all the voxels in the ROI are examined. Upon development, region growing has been used

on various occasions. One assumption for this method is that the segmented target has constant

or slowly varying intensity values therefore homogeneity metrics work better. If this assumption

is satisfied, region growing gives superior outcome with small variance when compared to fixed

thresholding methods such as SUV2.5 and SUV43% [43]. Also the results from region growth are

highly reproducible. Same as other region based method, region growth has high false positive

rates, that means it cannot differentiate normal high uptake region with tumor region especially

when they are close. While this problem remains a challenge, region growth also has several dis-
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advantages. It does not work well on heterogeneous structures. Initial seeds and parameter settings

have significant impact on the outcome, and the algorithm will fail if the parameters are not prop-

erly set. Sometimes leakage occurs in the image. These difficulties are either addressed by adding

another refined active contour based method after region growing is performed [72], or integrating

a threshold method with region growing after background voxels are removed. Such process may

introduce some non-target structure into segmentation, as [73] suggests. Recently a method called

condensed connected region growing (CCRG) has been developed. Using a novel metric including

information for mean and standard deviation of selected region, it only requires ROI selection, and

gives good results when compared to thresholding based methods [43].

Graph-based methods

By using background and foreground seeds specified by the user, or automatically selected

by an algorithm based on intensity values, graph-based methods can use more information for

recognition than other segmentation methods. These seeds are capable of combining global infor-

mation with local pairwise voxel similarities. Two types of graph-based methods are often used:

graph-cuts and random walk

Graph-cuts

By creating cost functions related to voxel intensity and neighbor similarities, graph-cuts model

the segmentation problem into a cost minimization problem [74]. By constructing a graph with

each node representing a voxel in the image and the connection capacity between nodes repre-

senting strength of pairwise pixel similarities, the cost minimization problem can be solved by

maximum flow algorithm. It has been shown to achieve optimal segmentation with local pairwise

pixel similarities. However the outcome also largely depends on seed placement. Recently a new

set of segmentation appears in [75], using graph-cuts to incorporate information from PET and CT

to achieve better performance, which is the basis for the delineation method in this work.

Random walk

Random walk (RW) is another region based method used in segmentation. It is robust against

noise and weak boundaries. When compared with two threshold based segmentation methods (de-
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scribed previously in this review), FLAB and FCM, RW outperforms them [74]. Its disadvantage

is that it may not be able to handle multi-focal tumor uptakes and human involvement may still be

necessary under certain cases [23].

Boundary-based methods

Different from using homogeneity of the image, boundary based methods focuses on analysis

of the boundaries of objects in PET images. Two kinds of methods are used mainly: Gradient

Based methods and Level Set/Active Contours methods.

Gradient-based methods

Gradient is a suitable tool to determine how and where the image intensity changes. Since

the image intensity usually changes significantly at boundaries, gradient is a good tool for de-

tecting them. In PET image case, because of its low resolution and high noise, boundaries are

smoothed and contain significant noise. So simply applying gradient may result in less optimal

results. Despite that, some works seek to compensate for these factors. In [76] an edge preserving

filter is applied before gradient analysis. Watershed transform is also used for segmentation [76],

and shows superior performance when compared with threshold based techniques [47]. Another

method, named GRADIENT, requires a user defined initial starting point and an user defined el-

lipse which is then used for the initial bounding region for gradient detection [16] and was validated

in several studies demonstrating higher performance than manual and constant threshold methods

in a phantom study. The problem for this kind of method is the pre- and post- processing may

cause over-segmented regions, and further fuse those regions together. Besides, noise remains to

be a problem.

Active Contours and Level Set (LS)

Another more advanced boundary based method is based on active contours. The core idea of

this kind of method is deforming and moving edges (contours). The deformation of the contour

is handled by what is termed as the energy function. The energy function consists of two set

of terms: internal and external energies. The internal energy guarantees the smoothness of the

contour, whereas the external term forces the contour to move to the desired features (gradient,
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texture, edge information, etc.) of the image. Classical active contour methods rely on the gradient

information and their performance is highly dependent on the location of the initial contour, i.e.,

the initial contour must be as close to the object of interest as possible so that the external energy

is strong enough to move contour towards the target object boundaries. Moreover, the classical

model cannot handle the topological changes of the curve. Geometric active contours capable of

handling these curves were later introduced by [77]. Their model utilizes the gradient information

to define an edge; whereas the energy functional minimization procedure is carried out using the

level set formulation. As its PET applications, [78] applied the classic active contour model to

liver PET images. The active contour method is first proposed to deform an initial contour around

the object, moving towards the desired object’s edges. In this approach, the authors estimated the

external energy by solving a Poisson partial differential equation (PDE) and the algorithm was

initialized by Canny edge detection.

First proposed in [79], the Level Set (LS) method traces different phase interfaces of fluid

flows over time and intensity, therefore provides an active contours model. The method employs

the intensity gradient information using evolving level sets given by iteratively solving the Euler-

Lagrange partial differential equation (2.3):

∂

∂ t
ϕ =V (k)|Oϕ |, (2.3)

where ϕ stands for an function that monitors the change of level set such as distance function, V

stands for the velocity function that controls the expansion or shrinkage of level set. The method

has been further used in many applications, and is used for PET imaging segmentation and regis-

tration problem in [80, 81]. In imaging application, the velocity function is a function of curvature

and inversely proportional to intensity gradient. Specifically, in [82] a multi-phase level set method

is developed to utilize both spatial and temporal information in dynamic PET data. The method

weighs data between frames to counter the changes in tracer distribution over time and noise level.

When compared to k-means algorithm, the LS method shows higher accuracy. Another method

using LS to refine the result from a region growing method in [72] outperforms iterative threshold

methods on phantom and real images. The LS method also shows high reproducibility in these

cases. The method only suffers from computational complexity from certain function choices and
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initial condition set up.

Joint Segmentation Methods

As previously mentioned, combining PET and CT can potentially give advantages of both

modalities: high spatial resolution as well as functional information. There are more and more

studies considering this idea lately. These methods are known as co-segmentation methods. As

a matter of fact, there are multiple benefits of co-segmentation. To start, co-segmentation meth-

ods tend to be more robust than single modality methods because of unified information. Also by

combing two modalities, they provide more spatial and temporal information options for segmen-

tation process. Last but not least, the uncertainty for the segmentation result is less [4]. In order

to incorporate CT information into PET segmentation, researchers attempt to mimic human visual

recognition of images, by taking features such as corners, texture, edges, and lines available in the

images.

Mainstream methods that employ CT information into PET recognition can be classified into

four classes:

Firstly, in work [83], the proposed method combines the result from PET and CT segmentation

into one final result using a multi-value LS method.

Secondly, in works [84, 85], textural features from CT are used to delineate cancer tissue from

normal in a PET defined interested region. These efforts are questionable, for there is no standard

for combining feature sets from different imaging modalities. Also the algorithms give sub-optimal

solutions in certain cases, and it takes relatively longer to process.

Thirdly, an semi-automated co-segmentation method is proposed in [21], where high uptake

region is given by PET and boundaries are refined by CT. The method is based on random walk and

has been applied to PET, PET/CT, PET/MRI(Magnetic resonance imaging) and MRI/PET/CT to

examine the performance. The co-segmentation method achieves 91.44 ± 1.71% DSC on PET/CT

using data from patients, and outperforms the state-of- the-art co-segmentation method in [86].

However it should be pointed out that user-defined regions of interest are still needed in order for

the method to perform.
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Reference Method
Database

Description
Evaluation Performance

[83]
active contours on on
CT, MRI, PET, and

PET/MRI/CT

static phantom, 3
spheres

DSC 0.74± 0.046, 0.89±
0.018, 0.85± 0.053, 0.90±

0.017

[84]
textural features

classification
head and neck

cancer, 18 patients
NA

[43]
confidence connected

region growing method
Rectal and anal

Cancer, 18 patients
absolute percentage mean
difference 9.0% ± 70.%

[86]
graph-cuts for PET and
sub-graphed graph cuts

for PET/CT

hand-and-neck
cancer, 16 patients

DSC 0.78±0.045 (PET)
0.86±0.051 (PET/CT)

[74] random walk
static phantom, 4

cases

92.7±2.99%, 96.7±3.18%,
88.9±2.62%, and

83.6±2.68%

[23]
automatic seed planting

random walk on
PET/CT

lung cancer, 75
cases

DSC 0.91, HD 4.5mm

Table 2.4: Region and boundary based methods and their accuracies

A fourth co-segmentation method is proposed in [86]. It uses the idea of graph cuts where a

Markov random field (MRF) algorithm is defined on a graph. The method uses two sub-graphs

for the segmentation of PET and CT images respectively and defines an error term to incorporate

the information from both modalities. In a later study [75], the results from both modalities are

combined into the same result, by adding a third sub-graph as result outcome. The shortcoming of

the method is it requires user interaction in order to perform well, and it has not been tested with

small tumors. It also suffers from its assumption of one-to-one correspondence between PET and

CT delineations. Apart from that, this kind method shows potential to fully incorporate information

from both modalities under same structure, and achieves globally optimized result.

Results Table

Some typical results from the co-segmentation methods and region based methods are summa-

rized in Table 2.4.
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Conclusion for Tumor Delineation Methods

Given the reviews above, the choice for delineation method in this work is a variation of graph-

cuts methods, for it shows good results when compared to state-of-art thresholding methods and

learning methods. Also it facilitates the incorporation of CT information into the PET segmenta-

tion process. In terms of disadvantages, a conventional graph-cut approach may be susceptible to

performance variations, since it depends on human interaction for completeness. In this thesis, the

proposed framework addresses this potential pitfall by further implementing a tumor recognition

process after delineation, as explored in the next section.

Tumor Recognition Methods

In the above literature review for delineation, almost all of the methods require a pre-defined

ROI for initialization. If the ROI is not available or incorrectly defined, the delineation methods

may actually recognize some normal tissues—most notably kidney, heart and brain—as tumors,

since these tissues tend to exhibit high uptake. In the recognition process of this work, we seek

to partition genuine tumors from normal tissues with high uptake region. There is a rich clinical

literature on automated detection of tumor (also known as tumor auto diagnosis methods). How-

ever, most of the existing works use CT for recognition, while very few works perform this process

on PET/CT. In this section, the literature of tumor automated detection is reviewed. Also, many

works focus on differentiating benign nodules from malignant ones. By contrast, in this work, we

focus on differentiating tumors from normal tissues.

CT image based Recognition: Learning based on Shape and Appearance

For CT image based recognition methods, many are based on the concept of tumor growth

rate: comparing CT images with segmented tumor region from the same patient but at different

times to see if segmented area changes over time, and accordingly judge if such a change comes

from malignant, benign or normal tissues. These methods rely on morphologic features for shape

recognition. Several works reveal the relation between shape features of segmented region and their

underlying pathology. In [87], a total number of 193 pulmonary nodules on HRCT are manually

examined and subjectively rated in several types, including round, lobulated, densely spiculated,
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ragged, and halo. It is discovered that certain shapes have a high possibility of being malignancy:

lobulated (82%), spiculated (97%), ragged (93%), and halo (100%). On the other hand, around

66% of round nodules proved to be benign.

As this approach demands a large amount of manual work, researchers have employed pattern

recognition to automate the process. Prior works [88, 89] extracted features such as surface cur-

vature and degree of surrounding radiating patterns from benign and malignant nodules, resulting

in a good separation between classes. In the work [90], the method is further developed into an

automated system. The system employs features such as CT image intensity and curvature shape

index extracted from joint histograms. The system was tested on a database with 248 objects,

and shows reasonable result. The authors of [91] analyze lung nodule using fractal features in a

database containing 117 objects with various conditions. A shortcoming for these methods is that

the authors did not directly assess the accuracy of their method in diagnosis prediction. However

these works indicates the relationship between nodule shape and nodule’s potential pathology.

These works implement a classical pattern recognition structure, and are evaluated using ROC

curves. Table 2.5 shows a list of these methods.

Table 2.5: Shape based methods

Reference
Method

Aiming
Method Database Performance

[92]

To

discriminate

between B

(benign) and

M (malignant)

nodules using

neural

networks

(NNs)

Statistical-

multiple-object

detection and

location system

(S-MODALS) NNs

technique

developed for

automatic target

recognition (ATR)

CT images of 28

pulmonary

nodules, 14 B and

14 M, each having

a diameter less

than 3 cm were

selected

Correctly identify

all but three B

nodules, but did

not misclassify any

M nodule
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[93]

To classify

nodules into

benign or

malignant

LDA with stepwise

feature selection

based on nodule’s

shape, size,

attenuation,

distribution of

attenuation, and

texture

HRCT scans of 17

M and 14 B

nodules

Correct

classification rate

of 90.3%

[94]

To

discriminate

between B

and M

nodules

LDA with stepwise

feature selection

based on nodule’s

features (density

and curvatures)

and surrounding

structure features

CT images of 248

pulmonary nodules

including 179 M

and 69 B nodules

Nodule’s features

(Az = 0.88) were

more effective than

the surrounding

structure features (

Az = 0.69) in

classification.

Combing both

features achieves

Az = 0.94

[95]

To classify

nodules into

benign or

malignant

ANN with 16

subjective features

determined by

radiologists and 7

clinical data

155 HRCT scans

of 99 M and 56 B

nodules

Az = 0.951in a

leave-one-out test

[96]

To quantify

lung nodules

in thoracic CT

A NNs based on

geometrical

features, intensity,

and texture features

CT images of 48

cases of lung

nodules (24 B, 24

M)

Az = 0.89
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[97]

To classify

nodules into

benign or

malignant

LDA withWilks’

lambda stepwise

feature selection

Thick-slice (10

mm) screening

LDCT scans of 76

M and 413 B

nodules

Az = 0.849 in a

leave-one-out test

[98]

To classify

nodules into

benign or

malignant

Two NNs: one

trained with 8

subjective features

recorded by

radiologist rating

and the other with

12 matched

computerized

objective features

56 radiographs of

34 M and 22 B

nodules

Az = 0.854using

subjective features

and Az = 0.761

using objective

features. The

reported

radiologist

accuracy was

Az = 0.752

[99]

To classify the

shape of

pulmonary

nodules using

computer

analysis of

HRCT

LDA with 2

features

(circularity and

second moment)

HRCT images

from 102 patients

with 102 nodules

classified as round

or oval, lobulated,

polygonal,

tentacular,

speculated, ragged,

and irregular

For 95 of 102

cases, the shape

classification by

the two

radiologists was

the same. For the

seven mismatched

cases, pulmonary

nodules with

circularity ≤0.75

and second

moment ≤0.18

were very likely to

reveal lung cancer
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[100]

To classify

nodules into

benign or

malignant

Logistic regression

or QDA with

stepwise feature

selection from 31

features

Thin-slice (≤3mm)

CE-CT scans of 19

M and 16 B

nodules

Az = 0.69 and 0.92

with logistic

regression and

QDA, respectively,

in a leave-one-out

test

[101]

To classify

nodules into

benign or

malignant

LDA using 3

features: shape

index, curvedness

values, and

attenuation

Thin-slice (2 mm)

CE-CT scans of 35

M and 27 B

nodules

Az = 0.91 and 1.0

with non-CE CT

and CE-CT,

respectively, in a

leave-one-out test

[102]

To classify

nodules into

benign or

malignant

Multiple MTANNs

using pixel values

in a 9 × 9

subregion

Thick-slice (10

mm) screening

LDCT scans of 76

M and 413 B

nodules

Az = 0.88 in a

leave-one-out test

[103]

To classify

nodules into

benign or

malignant

LDA based on

nodule’s circularity

and second

moment features

HRCT (0.5–1mm

slice) scans of 52

M and 55 B

nodules

Sensitivity of

76.9% and a

specificity of 80%

[104]

To classify

nodules into

benign or

malignant

LDA or SVM with

stepwise feature

selection

CT scans of 124 M

and 132 B nodules

in 152 patients

Az = 0.857 in a

leave-one-out test

[105]

To classify

nodules into

benign or

malignant

ANN ensemble

CT scans (slice

thickness of 2.5 or

5 mm) of 19 M and

13 B nodules

Az = 0.915 in a

leave-one-out test
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[106]

To classify

nodules into

benign or

malignant

GA-based feature

selection and a

random subspace

method

Thick-slice (5 mm)

CT scans of 62 M

and 63 B nodules

Az = 0.889 in a

leave-one-out test

[107]

To classify

nodules into

benign or

malignant

Analysis of the

spatial distribution

of the nodule

Hounsfield values

CT scans (2mm

slice) of 51 M and

58 B nodules

Sensitivity of

92.3% and a

specificity of

96.6%

[108]

To classify

nodules into

benign or

malignant

Analysis of the

SHs needed to

delineate the lung

nodule

CT scans (2mm

slice) of 153 Mand

174 B nodules

Az = 0.9782

PET/CT

Compared to many CT based recognition methods, few works focus on combining PET with

CT to achieve higher performance. PET reinforces the recognition process, for it reveals functional

information of the region despite its low spatial resolution nature. In works [10, 109–117], PET

characteristic is used to detect malignant solitary pulmonary nodules (SPNs) which are single,

spherical, well-circumscribed, radiographic opacity that measure ≤ 3cm in diameter. The studies

shows a sensitivity of 88–96% and a specificity of 70–90%.

In order to further evaluate detection performance on PET/CT, the work [118] uses an ANN

approach to classify benign and malignant pulmonary nodules on PET/CT. Results indicate 0.95

accuracy. The work [119] compared the diagnosis accuracy among CT, side-by-side PET/CT and

software-fused PET/CT. The results indicate software-fused PET/CT gives highest performance

when it comes to lung cancer cases. The work [114, 115, 120] indicate similar results on various

cases. The table 2.6 gives a summary of these methods.

Recently, more complicated methods are employed on this matter using more sophisticated

features. In [63] and [121], high order features, such as neighbourhood grey-tone difference matrix
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Reference Method Database
Evaluation Performance
(Sensitivity-Specificity)

[109]
Shape analysis on CT

and PET intensity
30 95%-80%

[110]
Shape analysis on CT

and PET intensity
61 93%-88%

[10]
Shape analysis on CT

and PET intensity
89 92%-90%

[111]
Shape analysis on CT

and PET intensity
71 95%-82%

[112]
Shape analysis on CT

and PET intensity
36 93%-77%

[113]
Shape analysis on CT

and PET intensity
28 94%-89%

[114]
Shape analysis on CT

and PET intensity
42 96%-82%

[115]
Shape analysis on CT

and PET intensity
119 96%-88%

[118]
ANN approach for PET

and CT features
92 95%-95%

[122]
Shape analysis on CT

and PET intensity
53 94%-75%

[121]
14 PET features and 15
CT features based on

NGTDM
20 NA

[63]
DT based KNN method
based on PET and CT

features
20 70%,-100%

Table 2.6: PET/CT methods

(NGTDM), are used for recognition of tumors on PET/CT images. The NGTDM feature shows

superior performance in terms of separation, and is worth further investigation.

Conclusion for Tumor Recognition Methods

Mainstream computer aided recognition methods are machine learning methods, differentiated

by the features and classifier used. However, few works among them are applied on PET/CT

simultaneously, and the features selected in these works are not guaranteed for best performance.

Also most works emphasize on differentiating benign nodules from malignant nodules while, in

our work, we aim to differentiate tumor nodules from normal tissues. Also, in order to examine
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them in depth, 3 classifiers and 60 features are used in the recognition process in this work for a

through examination.
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3. A 3D Semi-Automated Co-Segmentation Method for
Improved Tumor Target Delineation in 3D PET-CT
Imaging

As mentioned previously, this chapter is organized and presented as a manuscript. It is thus

essentially self-contained, and has a modicum of overlap with the literature survey in chapter 2. In

this chapter, the proposed tumor delineation method is described. The method utilizes a graph-cuts

technique based on Markov Random Field theory to combine the information from PET and CT

together to achieve high performance. In order for this method to function properly, a user must

first draw a rough area, i.e., a region of interest (ROI) around the tumor, and the method is then

performed in that area. The ROI selection procedure is later automated by the localization method

described in Chapter 4.

Abstract

As a multi-modal imaging technique, positron emission tomography (PET)-computed tomog-

raphy (CT) can provide not only functional but also anatomical tumor information. Therefore,

given this important information, radiotherapy planning is becoming increasingly reliant on PET-

CT. In this work, a novel co-segmentation method is proposed to enhance the accuracy of tu-

mor segmentation using PET-CT, to further improve the performance of radiation treatment. The

method seeks to use features from both imaging modalities, by modeling the segmentation problem

into minimization of a Markov random field model. Based on graph-cut theory, the problem can

then be solved via a maximum flow algorithm approach. The proposed method is evaluated using

both a phantom with a high-radiation area, and patient data with lung cancers. Both qualitative

and quantitative results show significant improvement when compared to existing segmentation
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methods.

Introduction

Cancer has been a well-known threat to human life since its discovery. According to a recent

World Health Organization report [2], approximately 13.1 million new cancer cases occurred in

2014, causing 8.2 million deaths worldwide. Among treatment solutions against cancer, radiation

therapy remains a significant tool. It involves the use of ionizing radiation in an attempt to either

cure or improve the symptoms of cancer, and is used in about half of all cancer cases [3]. To en-

hance the segmentation of tumor targets in radiation therapy, multi-modal imaging modalities, such

as positron emission tomography (PET)-computed tomography (CT), are used. The PET modal-

ity can provide functional tumor information by showing the biochemical uptake of a metabolic

radiotracer, while its disadvantage of low spatial resolution is enhanced by CT.

While PET-CT is becoming increasingly popular, tumor delineation is largely still performed

manually by oncologists on a slice-by-slice basis. Such a manual procedure is time consuming,

labor intensive, and operator-dependent [4]. Many segmentation algorithms have been developed

to address this issue. Reference [4] provides a comprehensive review of these algorithms. However,

since many existing algorithms work solely on one modality (i.e., either PET or CT), they are

unable to combine advantages of both modalities. Accordingly, a novel semi-automated method

for tumor delineation is proposed in this work, exploiting information from both PET and CT. It is

based on the graph-cut method, reformulating the segmentation process as an energy minimization

problem. The energy encodes both the boundary and region costs, as defined by the information

from PET and CT. The minimization problem can then be solved by the classical graph-cut method.

Compared to related works in the literature, the novelty of this paper is in the construction of the

energy function. While adhering to a standard graph structure, the energy function we propose

is suitable for incorporating the region and boundary information from both PET and CT. For the

purpose of exposition, the proposed method will be evaluated on lung cancer cases — as lung

cancer has high incidence, and the highest death rate among all cancer cases [2].

The remainder of the paper is organized as follows. In section 3.3, we briefly survey popular

approaches for the tumor segmentation problem. We describe the dataset used for this work in
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section 3.4, and our proposed refinement of the classical graph-cut method for PET-CT in section

3.5. Then, we present our proposed tumor delineation framework in section 3.6, with performance

evaluation in section 3.7. Conclusion and future work are discussed in section 3.8.

Background and Related Works

Overview of Tumor Segmentation in PET-CT Imaging

From a medical imaging perspective, the segmentation procedure can be divided into two con-

stituent parts: recognition and delineation [13]. In the recognition procedure, the location of

the object is determined; and in the delineation procedure, the spatial boundary of the object is

drawn [14]. Specifically for the PET-CT context, in the recognition procedure, the high uptake

regions in the PET image are located. These regions correspond to either the tumor regions, or

other regions with high metabolism, and are considered as ROIs (Regions of Interest). In the de-

lineation procedure, the aim is to find a precise separation boundary between high uptake regions

and regions with non-significant uptakes or belonging to the background [13]. Compared to recog-

nition, delineation is relatively challenging for the following two main reasons [4, 123]: (1) large

variability of pathologies in terms of shape, texture, and location, which is primarily caused by the

differences of organ morphology and texture from person to person [4]; and (2) image noise, which

comes from the image scanner (hardware perspective) and the way the images are reconstructed

(software perspective). The noise in PET is considered as one of the most significant factors for

not having a reproducible standard uptake value (SUV) measurement, which is defined by the ra-

tio of the radioactivity concentration of image and the whole body concentration of injected radio

dose. [15, 123].

Motivated by the increasing usage of PET-CT in clinical applications, there have been many

attempts to improve PET image segmentation methods in order to overcome the above difficulties.

These improvements may provide more accurate and robust performance under a PET-CT multi-

modal image frame [4].

In the delineation process, high uptake regions are precisely separated from the background

and regions with non-significant uptakes. If the background and non-significant uptake regions
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are considered as one class, the separation process is said to be a two-class segmentation problem.

Otherwise, the problem turns into a multi-class segmentation problem. Since the high update

regions are the actual objects of interest, regardless of how other regions are treated, without loss

of generality, a two-class approach is often pursued for notational convenience. Specifically, target

delineation in PET-CT images involves dividing the image into two classes: tumor region and non-

tumor region. From an image processing perspective, such a division is tantamount to labeling

each pixel (2D case) or voxel (3D and 4D cases) in the image with 1 (being tumor) or 0 (being

non-tumor). Some works [4] suggests multiple region segmentation, therefore

In recent years, using both PET and CT images for accurate target delineation has attracted

considerable attention. Various methods and algorithms have been applied and developed to ad-

dress this issue theoretically or practically. These methods may be classified into four general

categories, as described in the sequel.

Manual Segmentation Methods

For obtaining ROIs in clinical applications, the manual approach involves an experienced

physician drawing a boundary that separates the tumor and non-tumor regions by hand. Manual

segmentation is also the most common method for obtaining the surrogate truth.

However, there are several inherent drawbacks making the manual approach not ideal for clin-

ical applications. The most significant disadvantage is that the method is highly subjective, and

therefore is typically not reproducible. For a particular image, even the same physician may pro-

duce segmentation results with minor difference at different points in time. Therefore, the intra-

and inter-operator agreement rates are some metrics used to assess the reliability of the obtained

surrogate truths, and the level of difficulty of the segmentation problem [27,28,124–126]. Another

problem for manual segmentation is that it is time consuming and labor intensive, which in turn

may cause the delineation to be less precise, because of the concentration the physician must exert

during the segmentation procedure. In a recent study involving 18 physicians from 4 different de-

partments [127], the agreement, in segmentation volume overlap of 70%, was found only in 21.8%

of radiation oncologists and 30.4% of hematologic oncologists. From these studies, there seems

to be no consensus on the variability of manual segmentation, or on the required experience level
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of the experts conducting the manual delineation. However, manual segmentation is nevertheless

most widely used and recognized by physicians, therefore manual segmentation is still considered

as golden standard to determine the quality of segmentation result given by other segmentation

methods.

Threshold Methods

Among the non-manual segmentation methods, thresholding is perhaps the most simple and

popular one. By labeling all the voxels that are greater than a certain threshold value to be the fore-

ground and others as the background, this technique effectively converts a gray-level image into a

binary image [32]. The rationale of using it in PET-CT is straightforward: the ROIs in PET images

usually have far higher uptake values than the normal areas. The PET intensity histogram usu-

ally provides enough information for separating the ROIs from other areas. However, no general

agreement is reached among various works for the threshold settings due a wide range of reasons,

including large variability of pathologies, image nosies and the blurred target boundaries [4]. What

is worse, the low spatial resolution of the PET image often limits the thresholding method from

giving accurate results. The state-of-art thresholding methods usually fall into one of the following

categories: fixed thresholding, such as [33–35]; adaptive thresholding, such as [49]; and iterative

thresholding as presented in [53].

Stochastic and Learning-Based Methods

In general, stochastic and learning methods seek to exploit the differences between uptake re-

gions and surrounding tissues in a statistical manner. Among this category, mixture-model methods

assume the PET image can be viewed as a summation of Gaussian densities, and attempt to sep-

arate these densities using an optimization algorithm such as the Expectation Maximization (EM)

algorithm [59]. Locally adaptive Bayesian methods such as [58, 60] use the mixture model in an-

other way, by building a fuzzy boundary and adapting it with a Bayesian approach. Many classical

clustering methods, such as k-nearest neighbor (K-NN) [61], fuzzy C-Means [66], artificial neu-

ral network [61], support vector machine [64] and Affinity Propagation [67], have been applied

to PET-CT segmentation by viewing the foreground and background as two different classes. As
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a high-light method under this catergories, Affinity propagation methods proposed by [67] gives

good result on multi-focal and small tumor cases, while other methods generally show good per-

formance for the delineation of focal uptake, but their performances are more limited with diffused

and multi-focal cases, as shown in work [4].

Region-Based Methods

Last but not least, region-based methods emphasize the use of the information from local inten-

sity distribution (homogeneity or the boundary information), while still utilizing the global inten-

sity distribution (the region information). Recently, region-based methods such as region growing,

random walk, and graph-cuts have gained significant attention. The graph-cut method generated

by Boykov and his colleagues was originally proposed for general imaging processing [128], and

is later applied to the PET-CT scenario [75]. Since our proposed method falls into this category,

we will explore it further in the next section.

Graph-Based Segmentation Methods

Region-based methods are typically referred to as graph-based methods, because they often

utilize graphs for incorporating homogeneity information. By using foreground and background

seeds specified by a user, graph-based approaches locate objects in the image by solving an op-

timization problem, generated by implementing local pairwise voxel similarities (homogeneity)

with global information. Among the graph approaches, two methods are most often used for PET

segmentation: Random Walk and Graph-Cuts.

Random Walk

Although originally designed for computer vision, the random walk has been applied to image

segmentation in many cases. The advantage of Random Walk related approaches is that they are

robust against noise and weak boundaries, making them potentially suitable for PET-CT segmenta-

tion because of the low resolution and high noise characteristic of PET [31, 74]. However, the use

of random walk is limited, since the method are not able to deal with multi-focal uptake regions

properly.
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Graph-Cuts

In general, graph-cuts have been widely used for image segmentation. The main idea is to

formulate the segmentation problem into a discrete energy minimization problem. Image features

are incorporated by designing proper cost functions for the so-called energy terms. Different seg-

mentations will lead to different cost values based on the defined cost function. Therefore, the

segmentation problem can be solved by minimizing the cost. In order to solve the minimization

problem, a graph is constructed based on the image, where nodes in the graph represent the voxels

in the image, and the connections between the nodes represent the degrees of similarity between

the nodes. Two special nodes, the source node and the sink node, are added in order to utilize the

region information. The constructed graph can be used to solve the energy minimization problem

defined to deliver optimal segmentation. By using local pairwise pixel (or voxel) similarities, the

graph-cut approach has shown immense promise in optimally segmenting images [4].

Graph-cut segmentation methods are differentiated by their cost function definitions, and the

corresponding ways of solving the minimization problem. For example, the work by Felzenswalb

and colleagues [129] used pairwise region comparison for image segmentation, based on a mini-

mum spanning tree (MST) algorithm. Grady et al. [130] showed how to extend the shortest-path

method for 3-D surface segmentation. Xu et al. [131] proposed an approach using shortest-path

algorithm for multiple surfaces segmentation in 3-D.

Inspiration for Our Proposed Method

Taking a similar approach to [75], our work utilizes a graph-cut method. The basic idea is

to reformulate the segmentation problem as an energy minimization problem. The rationale for

selecting this approach is that it facilitates incorporating the boundary and region information from

both PET and CT into one graph-cut framework, and the corresponding maximum flow algorithm

is a mature algorithm that guarantees attaining a global optimal of the minimization. Our approach

is largely inspired by [75]. Both works use the graph-cut model, and design the cost function from

the boundary and region information from PET and CT. However, there are several drawbacks of

Song’s work. First, in their work, it is claimed that the tumor volume in PET may not be identical

to CT, and therefore two potentially different segmentation results are produced. However, this
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PET(18F−FDG) CT
Frame Length Width/length depth pixel size slice depth Width/length depth pixel size slice depth

7 mins 192pixels 83slices 1.8229mm by 1.8229mm 3.27mm 512pixels 135slices 0.6836mm by 0.6836mm 2.50mm

Table 3.1: Phantom Descrption

point has been criticized by several works [4,21], since the PET and CT are aligned and registered

in Song’s method. More importantly, regardless of the method applied, physicians ultimately still

need one segmentation result for the upcoming application such as radiation therapy. Also Song’s

method uses a dual-graph for implementing graph-cuts. As a result, the computational cost for the

method is rather significant, and even higher if expanded to the 3D version.

Given the above drawbacks, one novelty of our work is that we use a single graph model, com-

bining both PET and CT information into one graph, instead of two graphs as in Song’s work, thus

avoiding the unnecessary penalty term for the label difference between PET and CT. This reduces

the computational cost, in turn making a 3D graph-cut approach more accessible. Secondly, unlike

traditional graph-cuts we do not use initial seeds for the foreground in the tumor selection. And

perhaps the most notable difference between our approach and Song’s work is that they take the

region cost from CT into consideration while we do not. As will be seen in section 3.7, experimen-

tal results show that even under the circumstances where the involvement from CT into PET in the

regional cost is 10%, the results are worse in adverage.

Dataset Description

Both phantom and patient data are used for evaluation of our proposed method. In this section,

the details of the dataset utilized are provided.

Phantom Description

We first validated our method on a specifically designed phantom. The structure of the phantom

object and the specifications of the PET-CT image are shown in figure 3.1 and table 3.1.

Here, there are 6 small balls in the phantom, the diameters of which are 4mm, 6mm, 8mm,

10mm, 12mm, 14mm. The phantom helps to evaluate the method performance on the relatively
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Figure 3.1: Phantom

small-sized simulated tumors.

The main body of the phantom is filled with radiation, and the balls are filled with normal

water. The ground truth is established using the phantom measurements.

Patient Data Description

A selection of 29 sets of patient data was extracted from The Cancer Genome Atlas-Lung

Squamous Cell Carcinoma (TCGA-LUSC) data collection on The Cancer Imaging Archive (TCIA)

website. Although the original datasets contain more patients, only 29 of them have PET-CT

images that were taken simultaneously. The patients suffered from lung cancer, and the tumor

sizes vary from 8mm to 33mm.

The ground truth is drawn on a slice-by-slice basis for each patient, and the 3D results are

divided into slices for comparison. The patient IDs as well as some details are listed in table 3.2.

For more complete details on the dataset, the interested reader can refer to the TCIA website [1].
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Proposed Graph-Cut Method

The main differences between various graph-based segmentation methods are found in the cost

function definition, and in the approach of consequently solving the minimization problem. For

instance, consider the graph-cut method: it models the cost function as a combination of “self cost”

and “neighbor cost”.

To demonstrate the graph-cut model, suppose that we have a 3D PET-CT image pair (I, I′),

with I representing the CT image and I′ representing the PET image. Let us further assume that the

images are perfectly aligned. Thus, for each voxel u∈ I, we have a corresponding voxel u′ ∈ I′. Let

lu represent the binary labels assigned to each voxel, since we consider the segmentation problem

as a two-class problem. Specifically, lu = 0 means that the voxel u belongs to the background (i.e,

non-tumor in our case), while lu = 1 indicates that the voxel u is put into the foreground (i.e., tumor

tissue). Furthermore, tu represents the image intensity value at the voxel u in the corresponding

image.

With the above notations, the self-cost term Es(lu) is constructed as follows. For each voxel

u ∈ I or I′, the self cost function is defined as

Es(lu) =

Csource(tu), if lu = 1

Csink(tu), if lu = 0
. (3.1)

Where Csource and Csink are self-cost functions. There definition can be determined by user and

decides performance of graph-cuts algorithm. Also, for a neighbor voxel pair (u,v), the neighbor

cost function En(lu, lv) is defined as

En(lu, lv) =

Cnodes(tu, tv), if lu 6= lv

0, otherwise
. (3.2)

We further define a neighbor set N in the image pair (I, I′), where N = {(u,v)|u and v are neigbors}.

Then, the main idea of graph-cuts can be formed as finding a labeling set Lm among all the possibe

sets L = {lu}, that the set Lm minimizes the sum of self and neighbor costs on all the voxels in the
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image pair (I, I′):

Lm = argmin
L

(
∑

lu∈L
Es(lu)+ ∑

(lu,lv)∈L,(u,v)∈N
En(lu, lv)

)
. (3.3)

Traditionally, the cost functions Csource and Csink are defined based on the intensity value of PET

or CT. Some works use the cost terms of the PET image alone to decide the segmentation [74].

Others combine the cost terms later to decide the optimal solution [75].

In our work, we seek to encapsulate the information from PET and CT together into the self

cost term and neighbor cost term by redefining the cost function Csource, Csink and Cnodes based on

both PET and CT information. To this end, we first describe the graph model of the graph cuts.

Graph Construction

In graph cuts, the function (3.3) is solved by a maximum flow algorithm after modeling the

function into the graph form. The model is shown here in figure 3.2. As shown in the figure,

S is the source of flow and the sink T is the end of flow, each voxel in the image is modeled

as a voxel node, with tube connecting them to the source, sink and themselves. Self costs (i.e.,

the Csource and the Csink values) are represented by the tube capacity from the source to the voxel

node (the corresponding value given by Csource, and the orange lines in the 2nd subfigure), and

from the voxel node to the sink (the corresponding value given by Csink, the blue lines in the 2nd

subfigure). And neighbor cost (i.e., the corresponding given by Cnodes, the black lines) is modeled

as the tube capacity between the nodes themselves. By doing this, equation (3.3) can be effectively

solved by solving the corresponding maximum flow problem (that is, using which set of tubes

gives maximum flow capacity from source to sink) under this graph [128]. The solution ultimately

gives the segmentation result (The selected tubes are selected costs), as described in further detail

in [128].

Naturally, we have lu = lu′ if u and u′ are corresponding voxels in PET and CT, so we only

need to segment one image for an image pair. Therefore, each node of the graph used in this work

represents a voxel pair. This model is much like the one used when performing graph-cuts using
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Figure 3.2: Graph-cuts modal process
This graph shows the modal process of graph-cuts. The nodes are constructed based on image
pixels/voxels, two nodes source and sink are added. The single direction links/tubes are then added
between pixel/voxel nodes and source/sink nodes, the link/tube capacity is decided by source self
cost function Csource (orange lines) and sink self cost function Csink (blue lines). These link/tubes
are single directed, only from source node to pixel/voxel nodes (orange) and from pixel/voxel
nodes to sink node (blue)
Also double direction links/tubes are added between neighbor pixel/voxel nodes (black lines). The
capacity of these links/tubes are decided by neighbor cost function Cnodes. Then maximum flow
algorithm is performed and the link/tubes that actually has flow in them will decide the node
segmentation.
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a single modality, and the difference is the choice of cost functions. Here we choose to define

self cost functions from PET and neighbor cost functions from PET and CT, as it gives better

performance than other combination

The most important factor for good performance in this method is the appropriate selection of

the cost functions. Under this model, there are certain rules for the cost functions definition to

ensure the success of the segmentation. Self cost represents the intensity similarity between the

voxel and region (foreground or background), can be computed using intensity of the voxel itself

(two self costs are given to one voxel, one relates to foreground and one relates to background). For

instance of a voxel with higher intensity, the foreground self cost is low and background self cost is

high, making algorithm tend to label voxel as foreground, since selecting it into background result

in higher cost in energy minimization function 3.3. On the other hand, neighbor cost represents

that pixels with same region tend to be close to each other, and only occurs when the neighbor

pixels belong to different regions.

Energy function

The major differences between our proposed method and existing ones are in the energy func-

tion selections. Traditionally seeds are placed for the foreground and background in order for

the graph-cuts to work robustly. In this context, the seeds refer to certain voxels that can invari-

ably only be segmented into foreground or background, in all segmentation solutions. Unlike the

traditional graph-cut approach, we employ a relatively simple method to place seeds. In our ap-

proach, we do not place any seed for the foreground, i.e., for the tumor. Instead, we place seeds

for the background, by roughly marking the known high uptake value regions without tumor. Such

regions, for example the heart and and urinary bladder, are given the cost Csource = ∞ and Csink = 0.

Subsequently, we combine both CT and PET information into the cost function. Further details

are described in the sequel.

Self cost

The self cost in this case still comes from the PET image itself (and is the flow capacity from

the node to the source node and to the sink node).
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We use PET and CT images, and after normalizing them, we get the image pair In, I′n. Then, for

each node corresponding to the voxel pair (u,u′), the self cost term for our approach is defined as:

Csource(tu) =



|tu− τsource|,

if u is not marked as a background seed, ,

and if tu < τsource,

0, if tu > τsource

∞, otherwise

(3.4)

Csink(tu) =



|tu− τsink|,

if u is not marked as a background seed,

and if tu > τsink,

0, otherwise

Here Csource is the flow capacity from the node to the source, and Csink is the flow capacity from the

node to the sink. tu is the normalized PET image value on the voxel u (i.e., the radiation intensity

on the voxel). τsource and τsink are given parameters defined by users.

Neighbor cost

We use a parametrized neighbor cost in our method. The neighbor cost in our method is:

Cnodes(u,v) =



[
1+λ1(Guv +λ2

tu + tv
2

Gu′v′)

]−α

,

if u and v are neighbor pixels

0, otherwise

Here, Guv and Gu′v′ are the gradient values of normalized PET and CT between the voxel pairs

(u,v) and (u′,v′) correspondingly. α is a given parameter defined by user. The main idea is to only

include the gradient information from PET and the gradient information from CT for high uptake

value regions in PET.
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Figure 3.3: High-Level Block Diagram of the Proposed Segmentation Framework

Proposed Tumor Delineation System Framework

Figure 3.3 shows a block diagram of the proposed framework involving four stages: prepro-

cessing, parameter setting for the graph-cuts, practice (performing 3D graph-cuts) and evaluation.

Preprocessing

As mentioned in the previous section, one assumption of the proposed method is that the PET

image and CT image are aligned. This assumption is ensured by the preprocessing stage, where

the CT image is aligned with the PET image. The stage is also called registration, resulting in an

aligned image pair.

For the registration phase, we have the following options to consider: rigid transformation,

meaning the image is only allowed to rotate and translate; similarity, meaning the image is allowed

to rotate, scale and translate; affine transformation, meaning the image is allowed to rotate, scale,

translate and cut; b-spline transformation, meaning all the features from affine transformation plus

a certain amount of non-linear transformation defined by b-spline function.

It is obvious that b-spline transformation is the transformation with most freedom; however,

the results from phantom indicates this transformation tends to lead to overfitting of the image, and

in turn further poor segmentation. Accordingly, the affine transformation is implemented instead

in this step. The registration is performed using the elastix toolbox [132].
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Parameter Setting

In this section we decide the value of τsource, τsink, λ1 , λ2 and α . In order to determine τsource

and τsink , an Otsu’s thresholding algorithm is first applied to PET volume, then τsource is set to be
7τ

4 , and τsink is set to be τ

4 , while τ being the threshold value decided by the thresholding algorithm.

In this application we set the λ1 to be 10 and λ2 to be 10, αis set to be 1.5.

Practice Stage

A 3D graph-cuts algorithm is performed based on maximum flow algorithm as we discussed

in the graph-cuts section. The neighbor set is defined as the 8 neighbor set, the most common

configuration in 3D image processing scenario. The algorithm is performed on Matlab 2014.

Evaluation Stage

Here we evaluate the performance of the method, more details will be shown in the following

section.

Experimental Results

This section describes how the experiments are set up and how the results are evaluated. For

evaluation, the method is performed on both phantom and patient data with established ground

truth. The results from the proposed method and other comparison methods are then further eval-

uated using Dice index and Hausdorff distance, two of the most widely used evaluation metrics in

medical imaging.

Experimental Setup

Ground truth establishment

The true boundary of the object of interest should be identified in order to evaluate an image

segmentation algorithm, such process is often referred to as ground truth establishment.

For the phantom case, ground truth establishment is an easy task. An advantage for using
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phantom image is that the exact dimensions of the phantom can be measured before and after

imaging procedure, so that in most cases one know exactly what a perfect segmentation result

should be. When it comes to patient data, it is often hard or impossible to acquire ground truth eve

with histopathologic samples. Therefore, in many cases surrogate truths (or reference standards)

are used for measuring the quality of a segmentation algorithm. Even the same physician shows

variability in segmentation results when segmenting the same image many times over. Nevertheless

this is the best option we have for now, representing the closest starting point upon which we can

compare our result. After all, most of today’s radiation therapy treatment plans are made according

to the physicians’ segmentation.

Evaluation Matrix

With the ground truth established, the comparison of how close the segmentation result is to

the ground truth can be made. There are two major classes for such a comparison: one is similarity

indices, which show how similar the ground truth and the result are, e.g., the Dice index; the other

is error indices, which show the maximum offset of the result from the ground truth, e.g., the

Hausdorff distance.

As mentioned, Dice index is one of the most widely used similarity indices. Given X as our

method result and Y as ground truth, the Dice index can be computed using the following equation:

dI(X ,Y ) =
2|X ∩Y |
|X |+ |Y |

, (3.5)

with |.| defined as the area of the graph.

As can be seen in the definition, Dice index represents the overlay area of the ground-truth

and the result over the total area. As a similarity index, it reflects the overall performance of the

segmentation accuracy.

Another evaluation metrics used in this paper is Hausdorff distance, one of the most popular

error indices. Given x as voxel in the image X and y as voxel in the image Y, the Hausdorff distance

is defined as:

51



dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y)}, (3.6)

with d(., .) defined as the distance (usually Euclidean distance)

The Hausdorff distance, by definition, is the largest offset from the result to the ground truth.

It represents the detailed accuracy of the result. In this work, the Hausdroff distance is shown

using the real distance instead of pixel distance. That is, after calculating the Hausdroff distance

by definition, we multiply the result by the voxel size.

By using Dice index and Hausdorff distance together, both overall and detailed performances

of the method can be evaluated. This explains why one can see this combination often used in the

existing literature as the evaluation metric. In general, better result gives higher Dice index and

lower Hausdorff distance.

Comparing Methods

As mentioned, we perform our proposed method on both the phantom data and the patient data,

then evaluate the performance using the established ground truth. With the evaluation complete

we run several classical and state-of-art methods and evaluate their performance.

Before we come to the results, here is a list of comparison methods and their description.

• Thresholding methods (T1,T2) As described above the thresholding method is the most pop-

ular method and thus included in our comparison. The classic methods used in this paper

come from the work [25] (marked as T1) and the work [48] (marked as T2).

• Machine Learning methods (AP) we use a novel machine learning method based on Affinity

Propagation principle, that is the method from the work [67], marked as AP.

• Graph-cuts based Approaches (GA, CO, PM) The graph-cut approach is the basis of our

method. As such, it is vital for our method to be compared with other similar approaches

based on the same principle. The approaches chosen for comparison are: the basic graph-cut

method that performs graph cuts on PET only, based on the work [128], marked as GA; a
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recent co-segmentation method based on the graph-cut principle [75], marked as CO; and

our proposed method (PM).

Results and Discussions

We run our methods and the comparison methods using Matlab 2014b on a PC in our lab. The

configuration of the PC is Intel Core i7-4790 CPU @ 3.60 GHz with 16GB RAM, also with a

NVIDIA Quadro K2000 for GPU computing.

The Overall Performance

First, in Table 3.3, a summary of the overall performance results can be found. Since we only

have one phantom, no variation value can be shown on phantom results.

From the table we can see that our method attains the best performance over all the methods

used, with a Dice index close to 0.93 and HD lower than 3mm. Considering the voxel size of

PET-CT image, 2.5mm HD means an error with less than a voxel deviation in PET image. The co-

segmentation method achieves second best performance, makes sense because of the similairity

of method ideas. Compared to CO method, the proposed method has higher variation of HD at

patient dataset. but it does not matter that much since proposed method has much lower average

HD value. However it may implies that proposed method has a little less robust than CO method.

In order to illustrate how the method works, we provide an image of the PM result on the

phantom in Figure 3.4. We can see from this image that the result created by PM is very accurate.

The boundary between the radiation and the normal tissue is very well separated. Here the high

radiation dose in injected into the liquid that surrounds the spheres, while pure water is in spheres

themselves. The PM method successfully find the right boundary of the high radiation dose area

and water in spheres with plastic shell of spheres, despite the fact that plastic shell has higher CT

read, while high dose area and water has similar CT read.

In order to give an impression of the overall performance of the methods in real life application,

the result images of one slice from all the approaches are shown in Fig. 3.5.

From the image we can see that our method gives clear separation while keeping the tumor
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Figure 3.4: Resulting Image of the Proposed Method on the Phantom

(a) Ground Truth (b) Proposed Method (PM) (c) Threshold Method (T1)

(d) Threshold Method (T2) (e) Graph-Cuts PET (GA) (f) Affinity Propagation(AP) (g) Co-Segmentation (CO)

Figure 3.5: Result on the Patient data.
On the top left we present our original slice, with CT represented by the black-and-white image

and PET represented by red region. The green line in the original data represents the ground truth.
The blue line on other images are the boundaries given by the methods, and the green regions are

the ground truth
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(a) original image (b) PT-CT information
level λ2 = 0.1

(c) PT-CT information
level λ2 = 10

(d) PT-CT information
level λ2 = 100

Figure 3.6: Phantom Description

details. The results from two thresholding methods and AP method suffer greatly from low resolu-

tion of PET, therefore give relatively low separation details. Also in the first thresholding method

the in-relative aspen area is wrongly segmented. Graph related methods give higher details be-

cause of the CT involvement, because of a pre-performed implementing value on PET image, GA

method achieves smoother boundary regardless of performing only on PET. CO method gives con-

servative result compared to PM method, which explains its better robust and lower HD variation.

When comparing PM method to GA and CO, we can see that different level of CT information in-

volvement leads to over-segmentation and under-segmentation. Part of this effect is demonstrated

below.

The level of CT information

From above we find different level of CT involvement can lead to over or under segmentation.

While the results are good, we should carefully control the level of CT information involvement

since the over-involvement. For this section, we seek to analyze this effect under our proposed

method framework. From figure 3.6. we can see how the level of involvement impact the result.

The ratio indicates the value of the parameter λ2 in the equation neighbor cost function.

Firstly, when compared results from first figure which has very little CT involvement, to the last

figure which has highest level of CT involvement, we can see more CT information gives richer

boundary detail. However, highest level of CT involvement put too much weight on CT boundary

in algorithm, resulting a boundary closer to a boundary of overall tissue than a boundary of tumor
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tissue, since in many cases tumor tissues have similar CT reading to its surrounding tissues, too

high CT involvement level in this case will surely lead to an over-segmentation result.

Given above, we can conclude that over-committing such an involvement can lead the segmen-

tation boundary close to the tissue boundary in CT and thus results in over-segmentation, while

under-commitment will lead to a result that is closer to thresholding, thus losing the details of the

tumor. Therefore selecting the appropriate level of CT involvement is important in this work. In

this paper we use decide the involvement level using experiment approach. A more automated

approach for this decision could be a work for future.

The involvement of CT Region Cost

In the last section CT involvement impact is shown for neighbor cost. In our framework there

is no CT involvement for self cost functions, this is also one of the differences between our work

and the work [75], which is the CO method. Given the above analysis, it would be interesting to

see how CT involvement affect segmentation if put in self cost function. Since self cost represents

region similarity, it is also noted as region cost in this paper. Table 3.4 shows the results of our

method if CT Region Cost is included.

In this table One can conclude that involvement of CT information in Regional Cost, no matter

how small it is, will lower the method performance. It is decided by tumor segmentation nature

since tumor has PET reading and may has similar CT reading to its surrounding tissues. Since

self cost represents the reading similarity between pixel/voxel and the region it belong to, put CT

information in self cost may result in mis segmentation since tumor may has similar CT reading to

its surrounding tissues. As a result, it is not wise to use CT Regional Cost in our method.

Conclusion and Future Work

Among the potential ways to further improve our proposed method in the future, two specific

directions that we believe to be the most promising are described below. One direction is to de-

velop a pre-training approach to decide the parameters of the cost function, therefore changing the

method into an adaptive approach. For another direction, note that we currently rely on human to

differentiate the tumor region from the other high uptake regions such as kidneys using seed place-
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ments. If the seeds are too close to the tumor region, the method becomes potentially inaccurate.

Accordingly, we plan to develop a localization approach that will automatically divide the tumor

from other high uptake regions. This will remove the requirement for marking the background in

the graph-cut approach, therefore delivering a fully automated and hopefully more robust method.
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Patient ID Tumor description note
2609

Lung Squamous Cell Carcinoma

mixed regions
2695 tumor region only
2696 mixed regions
2711 mixed regions
2719 tumor region only
2721 tumor region only
2722 mixed regions
2723 mixed regions
2724 mixed regions
4079 mixed regions
4080 tumor region only
5236 mixed regions
5239 tumor region only
5240 mixed regions
6867 mixed regions
7340 tumor region only
8064 tumor region only
A5IX mixed regions
5045

Lung Adenocarcinoma

mixed regions
5066 tumor region only
5072 mixed regions
5941 tumor region only
6591 mixed regions
6594 tumor region only
6595 mixed regions with 3 non-tumor regions
Z050 mixed regions
Z053 tumor region only
Z060 2 correct tumor regions
Z062 mixed regions

Table 3.2: Patient data details, consisting of a selection of 29 patients (with simultaneous PET-CT
images) from the TCGA-LUSC data collection [1], the image voxel sizes are 4.6875 by 4.6875 by
3.2701 (mm) for PET, and 0.9765 by 0.9765 by 3.2701 (mm) for CT
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Table 3.3: Result Evaluation

Methods Phantom Patient
DSC HD DSC HD

T1 0.96 13.6720 0.7660 ± 0.0841 44.2301 ± 28.1491
T2 0.92 12.3048 0.8121 ± 0.1261 7.1835 ± 3.3331
AP 0.97 7.5196 0.8385 ± 0.0870 6.2840 ± 1.0519
GA 0.95 8.2032 0.8623 ± 0.0780 5.1273 ± 1.1993
CO 0.99 5.4688 0.8760 ± 0.0534 4.2830 ± 0.6182
PM 0.99 4.1016 0.9238 ± 0.0347 2.5154 ± 0.9249

Table 3.4: CT Region Result Evaluation

Ratio of CT Region involvement (CT:PET) Phantom Patient
DSC HD DSC HD

none 0.99 4.1016 0.9398 ± 0.0247 2.5154 ± 0.9249
1:100 0.96 6.1524 0.9126 ± 0.0447 2.9185 ± 1.2279
1:10 0.90 7.1778 0.9015 ± 0.0678 3.1154 ± 2.0360
1:1 0.90 9.2286 0.8579 ± 0.0716 3.5126 ± 2.5260

10:1 0.40 31.7874 0.3816 ± 0.1247 20.6420 ± 20.8574
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4. A Lung Tumor Localization Framework Based On
Image Feature Analysis From PET-CT Chest Imaging

This chapter is also organized and presented as a manuscript, which can be considered as a

follow-up work of the previous chapter. Specifically, a tumor localization method is proposed.

This method seeks to eliminate the necessity of a user-defined Region of Interest. It proceeds as

follows: first, the algorithm in chapter 3 is performed without a pre-defined Region of Interest;

then, the method in this chapter is applied to locate the tumors, while ruling out normal regions

with high uptakes.

Abstract

Positron emission tomography-computed tomography (PET-CT) has become increasingly pop-

ular in clinical applications as a tool for tumor diagnosis and delineation for radiation therapy.

Many computer-aiding algorithms are developed for the tumor delineation task. However, it is of-

ten hard for algorithms to differentiate tumor regions from normal regions with high uptake value.

In order to address this issue, in this paper a tumor detection and localization method is proposed.

After the segmentation is done, the pattern recognition approach is performed on the segmented

tumor regions as well as the segmented non-tumor regions. The method extracts 60 features from

PET and CT image, and the sequential forward feature selection is performed using the resulting

accuracy from three different classifiers. The method shows good performance by achieving 100%

accuracy on all the classifiers.
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Introduction

Lung cancer remains to be one of most lethal diseases in modern society. In 2014, the disease

causes 14.6% of all the human deaths [2] worldwide. Currently, early diagnosis plays a critical role

for cancer treatment. Positron emission tomography-computed tomography (PET-CT) is an impor-

tant tool for cancer diagnosis and assessment of treatment, thus becoming more and more popular.

By showing the uptake of specially designed radiation marker (most commonly 18F−FDG), PET-

CT is capable of detecting tumors at an early stage. On the other hand, radiation therapy remains

a main method of cancer treatment. As accurate tumor delineation plays an important role in radi-

ation therapy, the role of PET-CT to limit potential radiation damage to normal tissues around the

tumor region is growing [3, 133].

In our previous work, a delineation method was proposed for tumor delineation for radial ther-

apy planing based upon PET-CT imaging using the graph-cuts method [134]. The method com-

bines regional information from both PET and CT and achieves good performance in terms of

delineation accuracy. However, the problem of this method as well as many other computer-aided

tumor segmentation methods is that it is often hard for many algorithms to differentiate tumor re-

gion from other high uptake regions such as heart and liver [84, 121]. As a result, all these regions

are marked as region of interests (ROIs) in the method’s output. In order to address this issue,

foreground and background seeds are placed by user in advance to mark the tumor regions as well

as non-tumor regions for the algorithm, and a good performance can thus be guaranteed [121].

However, placing seeds means that manual input is still needed in the tumor delineation pro-

cess. Meanwhile, since the algorithm outcome varies with the seed placement, the methods are not

robust if the seed are mistakenly placed [29]. Hoping to address this issue, a more automated tumor

detection and localization method is proposed in this paper. In order to simplify the problem, we

limit the question scope to the lung cancer localization in the chest PET-CT modality, The method

is shown to be able to recognize the tumor region from non-tumor high uptake regions such as

heart and liver.

There are quite a few studies [63, 84, 121, 135–137] that have researched PET-CT features

for tumor recognition and localization. In the work [84], the high-order features based on the
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neighborhood gray-tone-difference matrix (NGTDM) are used to recognize head and neck tumors

and achieves good result using decision tree (DT)-based KNN classifier. In the work [121], a

single feature named NGTDM contrast is used for the lung tumor recognition and achieves good

classification rate. In this work, we take more features and more classifiers into consideration for

the lung cancer, and see if higher classification accuracy can be achieved.

This proposed method follows the classic procedure of pattern recognition, selecting the fea-

tures from the first, second, and higher order features extracted from both PET and CT, and uses

different clustering methods to do classification to see how the features fit with those classifiers.

The method is evaluated based on the two datasets from the TCIA database [138]. Due to the

relatively small number of this dataset the leave-one-out strategy is used. The method achieves

100 % accuracy on all the classifiers used, with different combination of features. The results are

shown and discussed in detail.

The rest of the paper is organized in the following sections: In section 4.3 the information of

the dataset and the preprocessing of the data is shown. Then in section 4.4 the method is proposed

and discussed in detail. Results are shown in section 4.5, and discussed further along with some

issues in the method in section 4.6. Finally the paper is concluded at section 4.7 and feature work

is discussed.

Image and Problem Description

Basic Information of the Database

The dataset used in this work is downloaded from the TCIA website, a public database. Two

datasets are selected: The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) and The

Cancer Genome Atlas Lung Squamous Cell Carcinoma (TCGA-LUSC) [1]. There are data of 72

studies from 36 patients in the TCGA-LUSC dataset, and data of 147 studies from 64 patients in

the TCGA-LUAD dataset. However, only 18 patients from TCGA-LUSC and 11 patients from

TCGA-LUAD had simultaneous PET and CT, these were selected to build the dataset used in this

paper. After manual review of the segmentation result, 28 tumor regions and 19 non-tumor regions

are extracted from these data. We will talk about segmentation method in detail in the section 4.4.
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A list of the data and their details are listed in the table 4.2. The size of the transaxial PET image

is 128×128 with the size of transaxial CT image being 512×512.

Preprocessing of the Database

Two major preprocessing processes are performed before the method:

1. To simplify the problem we specify the problem to be localizing lung tumor in the chest

PET-CT image. As some of the database consists of whole-body PET-CT, this is limited to

the one PET-CT of the chest.

2. Prior to analysis, the PET image is registered and rescaled to the same size of CT image

using the elastix toolbox [132], that is, we consider the PET image has the same spatial

resolution and size with CT image in the following part of paper if not specifically defined.

Problem Description

As mentioned above, segmentation methods tend to segment non-tumor region with high up-

take value as output. For example, the method introduced in [134], if no seeds are placed for

background, the segmentation output for chest PET-CT image in certain cases will look like the

blue regions in Fig. 4.1.

The blue region in the figure is the output of segmentation result. We can clear see that part of

liver, stomach and part of spine are segmented as tumor region.

Method Description

As mentioned in the previous section, the goal of this work is to differentiate the tumor re-

gion from other normal high uptake regions located in the chest or around lung area in a tumor

delineation method. These healthy regions include the heart and the liver.

Despite the fact that these healthy regions have different pathology features, the problem is still

modeled as a classification problem with two classes: tumor region and non tumor region for the

sake of simple implementation.
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Figure 4.1: Mis-segmentation
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Figure 4.2 shows the block diagram for the method. The dataset is divided into the training

set and the testing set. For the training set, the processing goes as the left process: The images

are segmented using the segmentation method, and all the features are extracted from the training

set. Feature selection is performed to select the features that have most discriminant performance,

and classifier is trained based on the result. For the testing set, the images are segmented using

the same approach, and only the features that are selected in the feature selection are extracted, the

trained classifier then uses the features to decide which class the testing objects fall into, and the

results are given. In a supervised learning problem, we can perform an evaluation approach based

the result and the ground truth classes that have already been established.

Image Acquisition and Normalization 

Regions of Interest Segmentation

Feature Extraction

Feature Selection

Classifiers, two classes

experiment outline

Image Acquisition and Normalization 

Regions of Interest Segmentation

Feature Extraction

Classifiers, two classes

Results

application outline

Figure 4.2: method outline

We will talk about these processes in detail in the rest of this section.
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Segmentation Method Overview

In our previous work, a segmentation method was proposed based on the graph-cuts method

[134, 139]. The method is utilizing the information extracted from both the PET and CT images.

In short, the method seeks to solve the tumor delineation problem by modeling it as an energy

minimization problem. Suppose we have a PET-CT image pair (I, I′), u is a voxel of the image

I, N is the neighbor voxel sets of I, and the tumor delineation means to assign a label lu to the

voxel u, with lu = 1 means the voxel is a part of tumor (foreground), and lu = 0 means the voxel

belongs to non-tumor (background) region. The method seeks to find the delineation label map

Lm = {lu|u ∈ I} by solving

Lm = argmin
L

Σu∈IEs(lu)+Σ(u,v)∈NEn(lu, lv), (4.1)

where in this equation Es(lu) is the self cost defined as

Es(lu) =

Csource(tu), if lu = 1

Csink(tu), if lu = 0
(4.2)

and the neighbor cost En(lu, lv) is defined as

En(lu, lv) =

Cnodes(tu, tv), if lu 6= lv

0, otherwise
(4.3)

In this definition it can be shown that the equation 4.1 can be solved using a maximum flow

algorithm by modeling each voxel in the image as the flow node, adding a source and sink nodes,

modeling the self cost function Csource and Csink as the flow capacity of the tunnel connecting the

source and sink nodes to the corresponding voxel node, and modeling the neighbor cost Cnodes as

the flow capacity of the tunnel connecting the voxel nodes.

Under this basic model of graph-cuts, our method then further encodes the information from

both PET and CT images into the graph-cuts model by defining the self and neighbor cost functions
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as:

Csource(tu) =

|tu− tsource|, if u not background seeded

0, otherwise
(4.4)

Csink(u) =

|tu− tsink|, if u not background seeded

∞, otherwise
(4.5)

Cnodes(u,v) =


1

1+λ1(Guv+λ2
tu+tv

2 G′uv)
,

if u and v are neighbor pixels

0, otherwise

(4.6)

here u and v are the nodes and Guv and G′uv are the gradient value of normalized PET and CT

between the nodes u and v correspondingly. tu is the normalized PET image value on that node

(i.e, the radiation intensity on the pixel). tsource and tsink is a user-specified value.

For further details reader can read the paper [134].

The segmentation approach works well with seeds [29], however the goal in this paper is to

find a way to automatically decide which part of segmentation outcome is tumor and which part is

not, so after manually reviewing the segmentation outcome with no seeds placed, 28 tumor regions

and 19 non-tumor regions are extracted using the segmentation method as labeled in the table 4.2.

The number of non-tumor regions is decided by the segmentation method, on some patient the

method works perfectly and gives only tumor regions, on some patient the method gives multiple

non-tumor regions. On average in half cases only the tumor is segmented.

Feature Extraction

One drawback of many existing tumor delineation algorithms, including our graph-cuts based

co-segmentation algorithm, is the fact that in some cases these algorithms are not able to differ-
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entiate the tumor regions from other normal regions with high uptake value, therefore mistakenly

label them as tumor regions in the output [121]. In order to address these issues, user interaction

is introduced in many algorithms. In these algorithms, background seeds are placed in and around

normal high uptake areas to prevent the algorithm from labeling these areas as tumor regions. In

some applications, foreground seeds are placed in tumor region, leading the algorithm to correctly

segment the tumor region, therefore increasing the robustness of the algorithm [29]. The use of

user placed interactive seeds have proven to be effective, but makes the algorithm less automatic.

If the computer can be trained to differentiate the tumor region from non-tumor region, it would

further save the physician’s effort.

In application, human experts differentiate tumor from normal high uptake regions by its tex-

tures, location and shape. Theoretically, tumor grows very different from the normal tissues and

therefore has very different biological features. It is therefore reasonable to assume that the tumors

may show different textures and patterns in PET and CT image from normal regions [84]. Given

this assumption, tumor regions may able to be distinguished from other normal regions using a

pattern recognition approach based on image texture features. Besides texture features, other fea-

tures that shows good performance to distinguish tumor and non-tumor regions on similar works

are also included.

A total of 60 features are extracted from PET and CT images, with 30 features extracted from

each modality. The features can be classified into 3 groups listed as follows:

1. First-Order Feature

The first-order features reflect the characters of density distribution of the given area. They

are the simplest and most classic features used in image processing. The first-order features

used in this work are mean, median, standard deviation, kurtosis and skewness.

2. Second-Order Features

Second-order features reflect the characteristics of the second-order joint conditional density

distribution of two voxels with the parameter of distance and direction angel. Originally

proposed by Haralick, these features are calculated using spatial gray-level dependence ma-

trices (SGLDM) and are used in many image processing applications [84, 140]. In these
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applications various features based on SGLDM are used, and we include 22 of them in this

work. They are: autocorrelation, contrast, correlation (2), cluster prominence, cluster shade,

dissimilarity, energy (angular second moment), entropy, homogeneity, maximum probabil-

ity(2), sum of squares: variance, sum average, sum variance, sum entropy, difference vari-

ance, difference entropy, inforamtion measure of correlation(2), inverse difference homo,

inverse difference normalized, inverse difference moment normalized. For details of these

features, readers can refer to the papers [141–143].

In all cases, SGLDM are calculated using a 7 by 7 2D window in each trans-axial slice, and

at angles of 0, 45, 90, 135. The mean of the SGLDM matrices are used later to calculate the

features.

3. High-Order Features

The second-order features are suggested to reflect the texture features of the image in many

applications. However, in PET-CT image specifically, texture features from another source

have proven to be more effective in some work [63, 84, 121]. These include features calcu-

lated using the neighborhood gray-tone-difference matrix (NGTDM) proposed in Amadasm

and King’s work [144]. The features are more effective, perhaps due to they are claimed

to correlate more with human impressions. The NGTDM are calculated using a 7 by 7 by

3 neighborhood, since the thickness of a CT slice is about twice than the spatial resolution

of a trans-axial CT image. The features used in this works are the coarseness, contrast and

busyness.

Th NGTDM is defined as:

S(i) =

∑ |i− Āu|, for u ∈ Ni if Ni 6=∅

0, if Ni =∅
(4.7)

where Ni corresponds to the set of all voxels with the gray tone i in the specified region of

interests (ROI) R. Āu is the average gray-tone of the neighbor area of a voxel u in the set Ni:

Āu =
1

w−1 ∑
v∈Mu

I(v), (4.8)
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where I(v) is the gray tone of voxel v in the neighbor set Mu of u, and w is the number of

total voxels in the set Mu. Note that Mu is defined as the intersection set of the neighbor set

and the ROI R in the boundary area, so the this number is 146 in the center area of R in our

work for the 7 by 7 by 3 neighbor set, and a bit smaller at the boundary area.

It is also worth noting that the gray levels of PET and CT image are linearly scaled to roughly

256 gray levels prior to the NGTDM calculation. Details of this will be discussed in detail

in the section 4.6.

We select three high-order features calculated based on the NGTDM defined above, they are

coarseness, contrast and busyness.

Coarseness is defined as:

Coarseness = [ε +
GR

∑
i=0

S(i)/n]−1, (4.9)

where ε is a small number, GR is the highest gray tone level presented in the ROI R, n is

the number of voxels in R. Coarseness represents to the density of edge elements, the finer

texture gives higher value of coarseness.

Contrast is defined as:

Contrast =[
1

Ng(Ng−1)

GR

∑
i=0

GR

∑
i=0

PiPj(i− j)2]

× [
GR

∑
i=0

S(i)/n], (4.10)

where Ng is the number of gray levels with at least one voxels in R, Pi = Ni/n is the proba-

bility distribution of the gray level i. Contrast relates to the dynamic range of gray levels in

the area. Abnormal tissues may have higher contrast than normal ones on PET.

Busyness is defined as
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Busyness =
GR

∑
i=0

PiS(i)
GR

∑
i=0

GR

∑
i=0
|iPi− jPj|,

Pi 6= 0,Pj 6= 0. (4.11)

Busyness reflects the spatial frequency of the gray level, abnormal tissues are assumed to

have more rapid change than normal tissue, therefore are assumed to have higher busyness.

In order to better process features in the upcoming feature selection process, we perform zero mean

normalization for all the features, i.e,

new feature =
feature− feature mean

feature standard deviation
(4.12)

Classifiers

Even for the same set of features, using different classifier may result in different outcome. A

classifier that fits the data leads to better performance of the classification. In order to evaluate

the features used in this work in multiple aspects, three classifiers are applied and evaluated in

this work. They are Quadratic Discriminant Analysis, Support Vector Machine, and K-Nearest

Neighbors (K = 5).

The classifier:

1. Quadratic Discriminant Analysis (QDA):

Quadratic Discriminant Analysis (QDA) assumes that the data of different classes has differ-

ent Gaussian distributions with different means and different covariances. It then employs

the likelihood ratio to determine a best separation surface between the classes. Assume that

we have a set of features {x} and known class corresponding labels y with two classes. The

QDA method assumes the conditional probability density functions of classes p(x|y = 0)

and p(x|y = 1) are both normally distributed with the means and covariances (µ̄0,Σ0) and

(µ̄1,Σ1), where the means and covariances are determined by the training data. The method
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then employs the Bayes optimal solution to predict the classes based on the log likelihood

ratio. i.e, for a preset threshold T the observation x has a prediction label y = 1 if

(x̄− µ̄0
T )Σ−0 1(x̄− µ̄0)+ ln |Σ0|−

(x̄− µ̄1
T )Σ−1 1(x̄− µ̄1)− ln |Σ1|< T,

The resulting separation surface is a quadratic. Quadratic Discriminant Analysis is widely

used in pattern recognition. It is effective in most cases; However it is affected if there are

outliers in the dataset.

2. Support Vector Machine (SVM):

Support Vector Machine is widely used in pattern recognition problems. Generally speaking,

the method seeks to find the Maximum-margin separation surface between the classes. The

linear SVM models the maximum-margin separation as finding the separation hyperplane

wx−b = 0, so that

(w,b) = min ||w||,subject to

yi(wxi−b)≥ 1 for all i

where (xi,yi) marks the ith element in the training data, with xi is the feature vector, and yi is

the class label that is neither 1 or -1. The dual form of this equation is shown to be a function

of support vectors, the subset of the training data that lie on the margin.

Because of the hyperplane correlates only to the support vectors, SVM is robust against

outliers, giving it advantage against QDA.

3. K-Nearest Neighbors (KNN):

The K-Nearest Neighbors (KNN) method is a non-parametric method. The method deter-

mine the label of the object based on the most common among its k nearest neighbors. If k
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= 1, the method simply labels the object to the same label of the nearest data in the training

set. Nearest means the minimum distance defined by the distance metrics, most commonly

Euclidean distance.

The KNN classifier is easy to implement and takes very little resource to train. But it is not

robust against outliner in some cases and gives poor performance when the feature number

is high.

Feature Selection

In feature selection, we seek to select features that are most correlated to the classes. Features

with most discriminatory power are selected and the redundant features are removed. The reason

for feature selection is to save future computational resources by using the least number of features.

The robustness of certain classifiers can also be improved when the feature number is less. Many

feature selection algorithms are proposed [145]. However, some methods, like the genetic algo-

rithm approach, assume the features have Gaussian distributions of data within the classes. Using

these methods can have pitfalls with small dataset size [146]. Since the data size is relatively small

in our work (17+11 cases), we decides to use the sequential forward selection combined with three

classifiers. Since sequential forward selection is a sub-optimal selection algorithm, it is normal

to see performance up and down during the selection process. For each classifier we perform the

training and testing processing using leave-one-out technique, and select the features combination

with highest accuracy. The accuracy is defined as the ratio between the data of correct classification

and all the training data, i.e:

Accuracy =
Correct Classifications

ALL Classifications

=
True positive+True negative

True positive+True negative+False postive+False Negative
(4.13)

Needless to say, Accuracy = 1 means the sensitivity and specificity of the classification system

both equal to one. After the features are selected, results are evaluated using the evaluation metrics

described below.
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Evaluation Metrics

Evaluation metrics measures the performance of the system. Five metrics are used in this work.

They are accuracy, the false acceptance rate (FAR) and false rejection rate (FRR), the receiver

operating characteristic (ROC) curve, the score histogram and the feature scatter plots.

Accuracy

Accuracy is already defined in equation 4.13. Strange as it may appear, using the same metrics

for feature selection and evaluation is not uncommon [132]. The accuracy in this work is calculated

using different classifiers, and can be seen as a trade-off between FAR and FRR, as will be shown

in the following part.

FAR and FRR

Before talking about FAR and FRR, it is best to introduce the concept of false acceptance and

false rejection. False acceptance refers to the cases that a object is accepted by recognition system

when it should not be. False rejection on the other hand, refers to the cases that a object is rejected

when it should be accepted.

With the definitions established, the FAR is then defined as:

FAR =
total number of false acceptances

total number of acceptances
, (4.14)

while the FRR is defined as:

FRR =
total number of false rejections

total number of rejections
. (4.15)

In a recognition system, different recognition strategies lead to different FAR and FRR pairs,

while classifiers seek for a balance between FAR and FRR using their unique techniques, it is often

beneficial to plot all the pairs into one graph, which is the ROC curve.
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ROC Curve

By definition, ROC curve is a plot of FAR versus FRR. It gives more detailed evaluation of

system in terms of robust and reliability, and allows better examination of system. It is very

complicated to draw ROC curve for all possible feature combinations, so in this work we only

draw ROC curve for the top single feature and for the best feature combinations selected by the

three classifiers.

Score Histogram

The score histogram is made by plotting the frequency of scores calculated from a predefined

score function for non-matches and matches over the match ranges. It shows the distributions of

classes under a certain type of classifier strategy. In this work we will show the score histogram

for the top single feature as well as the best feature combinations selected by classifiers. The

score function in the later case is defined as the distance between the object’s features and the

thresholding hyperplane defined by classifiers.

Feature scatter plots

Feature scatter plot is much like score histogram, but unlike calculating score using predefined

functions, it simply plot the feature values of objects. The dimension of the plot depends on the

number of features. Same as histogram it shows the general distribution of objects on selected

feature sets. However it is more direct. In this work we only shows the plot for best feature

combination with least feature numbers.

Results

In this section we will show the results from the feature selection, and evaluate them using the

metrics mentioned above.

A total number of 60 features are extracted from the segmentation result. We perform a sequen-

tial forward selection based on the accuracy given by the classifiers. Since we use the classification

accuracy as the evaluation metrics for the feature selection, the feature selection result of one clas-
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sifier includes the method performance on the classifier. Because of that, in this section we show

the result of feature selection of each classifier and draw conclusion of the method performance

based on that.

As mentioned in the data description section, 28 tumor regions and 19 non-tumor regions are

extracted by the segmentation method from 28 patient cases. By using leave-one-out technique, it

means a training set with 46× 47 = 2162 samples and a testing set with 47 samples. The results

are as follows:

Direct impact

For first impression, Here is the algorithm performance for the previous mis-segmented case

(same case at another coronal slice), the delineation method finds regions at sub-figure a, they are

part of liver, stomach, spine and tumor. After the localization method, tumor region is recognized

and the normal tissues from liver, stomach and spine is ruled out.

Feature Selection Results Using Classifiers

Results Based on QDA Classifier

The figure 4.4 shows the classification accuracy of QDA classifier using the sequential forward

selection approach under leave-one-out technique.
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(a) Before

(b) After

Figure 4.3: Algorithm Performance First Impact
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Figure 4.4: the classification accuracy of QDA classifier

In Fig. 4.4, we can see that the classifier achieve 100% accuracy (meaning that the algorithm

perfectly separate tumor from non-tumor) at feature number = 7, corresponding to a feature set of

PET NGTDM busyness, CT median, PET NGTDM contrast, PET mean, PET standard deviation,

PET SGLDM entropy and PET SGLDM autocorrelation.

Results Based on SVM Classifier

The figure 4.5 shows the classification accuracy of SVM classifier using the sequential forward

selection approach under leave-one-out technique.
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Figure 4.5: the classification accuracy of SVM classifier

In Fig. 4.5, we can see that the classifier achieve 100% accuracy at feature number = 3, corre-

sponding to a feature set of PET NGTDM busyness, CT median and CT standard deviation. Note

that SVM shows significant improvement from QDA, probably because the dynamic range of the

features is still relatively large after normalization.

Results Based on KNN Classifier

The figure 4.6 shows the classification accuracy of KNN classifier using the sequential forward

selection approach under leave-one-out technique.
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Figure 4.6: the classification accuracy of KNN classifier

In Fig. 4.6, we can see that the classifier achieve 100% accuracy at feature number = 2, corre-

sponding to a feature set of PET NGTDM busyness and CT median. Note the performance goes

unstable as the feature number increases.

Singe Feature Analysis

Although the classifiers gives the optimal feature sets leading to better results, using a single

feature leads to a faster system and can be a potential way of fast application in the future. So it is

beneficial for future assessment.

The table below lists the top features selected by classifiers. All three classifiers gives same top

features. They are listed below with their accuracy numbers:

From the table only one feature gives an accuracy over 0.9, meaning less than 4 mismatch
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Table 4.1: top features with 0.8 accuracy or higher and their accuracy

Feature name Accuracy
PET NGTDM busyness 0.9362
PET NGTDM contrast 0.8511

CT SGLDM variance Sum 0.8298
PET NGTDM coarseness 0.8085
PET standard derivation 0.8085

CT median 0.8085

cases. In order to further analyze the system performance on signal feature, we employs the ROC

curve as well as score histogram on the PET busyness.

The ROC curve and score histogram is as follows:

We can see from the figures that, although only using one feature, there is till good segmenta-

tion between tumor regions and non tumor regions on PET busyness.

Multiple Features Analysis

The results of the classifiers suggest different feature combinations. Since KNN classifier is

known to be not robust as more features are included and the number of optimal features set given

by LDA is a bit large, we use the results from SVM for analysis.

Below is the ROC curve 4.9 for optimal sets of SVM, those are PET NGTDM busyness, CT

median and CT standard deviation, and score histogram 4.10 based on score function of SVM. And

since it is more convinent to show 2 dimension scatter plot, the feature scatter plot in figure 4.11

only shows PET NGTDM busyness and CT median the discrimination to demonstrate performance

of the combination.

From Fig. 4.11 it is clear that using the feature combination, the dataset is already a separable

dataset. Such result suggests that it is realistic to separate tumor region from non-tumor region at

least in the case of chest PET-CT image in the lung tumor cases.
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Figure 4.7: ROC curve for PET busyness, it is calculated that the area under curve (AUC) is
-0.49812
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Figure 4.11: the feature scatter plot using features PET NGTDM busyness and CT median, the
blue dot represents the non-tumor regions and the red stars represents the tumor regions

Discussion

In this section we generalize the results as well as address some problems occurs when perform-

ing the result from the following prospectives: dataset, feature extraction and feature selection.

Dataset Issues

We start the discussion with the size of the data set. In this work we evaluate our work based on

28 tumor regions and 19 non-tumor regions extracted from 28 patients that has both PET and CT

record from two public datasets TCGA-LUSC and TCGA-LUAD from TCIA website. Regardless

of the clinical perspective, This is indeed a small size for a dataset from pattern recognition point

of view, so instead of classically dividing the dataset into the training set and the testing set, we

use leave-one-out technique. Also it is worth noting that both datasets are lung cancer, so the
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conclusions in this work may not apply to tumors belongs to other region.

Feature Extraction Issues

Another issue we would like to address is the issue of NGTDM scaling. Originally NGTDM

is performed on the gray image with 256 density level, From the NGTDM’s definition we know

that the value of NGTDM features highly depends on the number of gray levels of the image. In

our case, the dynamic range of PET image is around 1e5 (Bq/ml, in original PET image) or around

30 (in standard uptake value PET image), the dynamic range of CT image is around 2000 (HU, in

original CT image). In this work, the PET and CT image are roughly scaled into the same dynamic

range of the gray image by using a constant scaler (100 for original PET image and 10 for original

CT image) instead of restrictively scale the image to 256 gray level based on their local maximum

and minimum. For a constant value may better preserve the similarity of features of data from the

same classes.

Feature Selection and Classifier Issues

The first thing should be mentioned is, although up to 23 second-order features are extracted in

this work, they are hardly selected by any classifiers in early order. Most likely this suggests that

the second-order features show less discrimination performance than the first-order and high-order

ones. However, it must be pointed out that this absent may also be a result from the sequential for-

ward selection, since we put the first and high-order features in the front of our selection sequence.

Secondly, from the results, it is clear that QDA is not as suitable to the features as the other

two classifiers. However, it is hard to determine the better one between SVM and KNN. Surely

KNN achieves 100% accuracy with only 2 features, which is less than the SVM’s 3, and will surly

save computational resources in application phase, speed up the processing time for the system.

However, less feature number often means less stableness when the two-classes system expand into

multi-classes system in the future, and that may become a problem when we expand this method

into the other type of tumor or expand the PET-CT image type from chest PET-CT to whole-

body PET-CT. On the other hand, choosing SVM will not increase the system cost dramatically,

and the SVM is known to be stable against outliers in training phase regardless of the feature
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number [145]. Also as a plus, SVM is known to give highest inter-class discriminant distance, so

SVM is preferred. However, KNN may still be used under the need real-time determination.

Lastly, readers may already notice the bouncing performance of accuracy for the classifiers at

the figure 4.4, figure 4.5 and figure 4.6. In theory such bouncing should not occur if we perform

an exhaustive search. But since we perform the sequential forward selection, it is normal to have

these bouncing performance [146]. In the future we hope to refine this performance by using more

sophisticated feature selection technique and metrics.

Feature Analysis

From the result, we learn that the system already achieves 0.93 accuracy using single feature,

and would further achieves 100% accuracy when combined with other features. Depending on

the classifier used, the system achieves such accuracy at 2, 3 or 7 features and will maintain such

performance. The analysis from classifier aspect is already covered in last subsection. From

feature’s perspective, there are still a few interesting fact.

Firstly, from ROC curve perspective, the figure 4.7 shows good trade-off between FAR and

FRR, and also indicates a closer distribution between two classes, as can be seen from score his-

togram and scatter plot. On the other hand, 100% accuracy means both FAR and FRR can achieve

0 at the same time, so it is not surprising to see an ROC curve in figure 4.9.

Secondly, From the kind of feature itself, busyness weights much more than other features,

which may indicates that tumor tissues have more complicated and busy texture character than

normal tissues, one can see that PET mean or median is not among the most relevant features.

It is decided by the structure of this work. We apply a segmentation method and select tumor

and non-tumor regions within the high responding regions. Since segmentation mainly relies on

PET intensity to identify tumor, it leads to high PET intensity (and therefore, close PET mean and

PET median) in both tumor and non tumor regions. Therefore it is not strange that features that

characterize to PET intensity does not give good separation.

Thirdly, the score histogram and scatter plot shows if the classes are separated on the given

feature or features and how well such separation can be. We can see that although accuracy of
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segmentation is high in this work, the scores of both classes have large variations, and the gap

between them is narrow. It implies the variety nature of tissues involved in this work. However,

despite the overlapping trend on the margin of classes, the main part of classes remains quite

significant from each other.

Future Work and Conclusion

For the future, we hope to expand the method from localizing lung tumor in chest PET-CT

image to localizing lung tumor in whole body image, and further to localizing any type of tumor

in whole body image. This is the blueprint for this work and needs time and effort in order to get it

done. For now, the method itself can be refined. For instance, the sequential forward selection can

be replaced by more sophisticated technique, and the selection metrics can be further improved as

well. Instead of using just accuracy, we can add more metrics to decide the feature to pick when

they gives the same accuracy. For instance, such metrics can be the maximum margin value when

using the SVM classifier.

In conclusion, in this work, a tumor localization framework is proposed based on a former

developed tumor delineation system. The proposed framework is further evaluated. From them

one can conclude that the lung tumor can be differentiate from other non tumor regions in the

chest area by using the features such as PET NGTDM busyness and CT median with appropriate

classifiers such as SVM, KNN and QDA. Some issues of dataset, feature extraction and feature

selection are then addressed and discussed.
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Patient ID Tumor description PET voxel size (mm) CT voxel size (mm) note
2695 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
2696 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
2711 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
2721 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
2722 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
2723 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
2724 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
4079 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
4080 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
5236 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
5239 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
5240 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
6867 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
7340 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
8064 Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
A5IX Lung Squamous Cell Carcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
5045 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
5066 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
5072 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
5941 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
6591 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
6594 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
6595 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions with 3 non-tumor regions
Z050 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions
Z053 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 tumor region only
Z060 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 2 correct tumor regions
Z062 Lung Adenocarcinoma 4.6875 by 4.6875 by 3.2701 0.9765 by .09765 by 3.2701 mixed regions

Table 4.2: Patients data details

90



5. Conclusion

Contributions

In this thesis, the problem of avoiding pre and post manual work in tumor segmentation using

PET-CT image is examined. Specifically, the focus is on how to automatically differentiate high

uptake regions due to a tumor from other non-tumor high uptake regions like kidney, liver and

heart [40, 43].

To this end, this thesis focuses on building an fully automated segmentation method, by adding

a tumor recognition procedure after a co-segmentation procedure. In the co-segmentation proce-

dure, by incorporating CT boundary information into PET segmentation using a graph-cuts based

method, the segmentation result is more accurate when compared with result based on PET solely.

In the recognition procedure, features are extracted from the segmented regions resulting from the

previous procedure with no user defined ROI. Three classifiers are used for feature set selection

and evaluation.

With respect to the obtained results, when the methods are tested on non-small cell lung cancer

database, 100% accuracy is reported for recognition procedure with different classifiers and feature

combinations. Therefore the combined segmentation result is the same as that reported in chapter

3, that is, the segmentation evaluation result with pre-defined ROI: roughly 92% DSC and 2.5mm

HD are obtained.

In particular, the main findings of this work are:

• In chapter 3, CT boundary information is used under a classical graph-cuts structure, with

a novel neighbor cost function. Compared to other similar works, it simplifies the graph,
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therefore requiring less computational time and resources. Specifically, when compared to

thresholding methods, state-of-art learning method (AP), and other co-segmentation meth-

ods, the proposed method shows better performance in terms of DSC and HD.

• In chapter 4, a tumor detection method is proposed using a pattern recognition framework.

First order, second order, and higher order features are examined under three classifiers. The

result shows that, when using features from NGTDM, a properly designed feature set with

very few features can clearly separate between normal tissues and tumor nodes.

Future Work

The proposed framework can be extended from the following perspectives.

• Examined on other databases: the present work is only examined on two combined non-small

cell lung cancer databases. However, because of tumor metastasis, even when restricted to

chest images of lung tumor diagnosis, it is highly possible that different types of tumor can

occur (although there won’t be too many cases). Therefore, it is beneficial to further examine

the capability of this method with multiple types of tumor.

• Examined for Benign and Malignant lung nodules: as a tumor metastasizes, very few benign

nodules appear in the datasets we select. However this may be possible in other occasions.

Recognition methods for this separation have been developed based on PET-CT feature sub-

jective score as reviewed in literature review, and the idea of automatic feature extraction on

this issue seems quite promising. For this endeavor, a decision tree approach could be used

as a replacement for classifiers.

• Merge Localization and Segmentation Procedure: theortically, segmentation and localization

can both be viewed as classifying objects into different classes. In our case, the class is

identical: tumor and non tumor . Therefore, if in segmentation process a voxel can be

directly recognized as tumor region instead of just high uptake region, the procedure can be

greatly reduced.
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Appendix

A 3D Semi-Automated Co-Segmentation Method for Improved Tumor Delin-
eation in 3D PET/CT Imaging

A conference version of chapter 3 has been published at IEMCON 2015, and is provided in

this appendix for reference. Major differences between this paper and chapter 3 include: The

conference paper is based on a dataset of 5 patients, while in chapter 3 the dataset is expanded into

almost 30 patients. Also there are improvements on the cost function used in chapter 3, compared

to the cost function originally proposed in the conference publication.
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the energy definition. While the general structure of graph cuts
is maintained, the definition we use is capable of forming the 
region and boundary information from both PET and CT. For 
simplification of the performance evaluation, the method will 
be evaluated on lung cancer, one of the commonest   cancers. 

The paper is organized as follows. In section II, we briefly 
survey approaches for tumor segmentation, followed by our 
proposed refinement of the classic graph cuts method for 
PET/CT in section III. Then, we present our proposed tumor 
delineation framework in section IV, with performance evalu-
ation in section V. Conclusion and future work are discussed 
in section VI. 

Abstract—The planning of radiotherapy is increasingly based 
on multi-modal imaging techniques such as positron emission 
tomography (PET)-computed tomography (CT), since PET/CT 
provides not only anatomical but also functional assessment of the 
tumor. In this work, we propose a novel co-segmentation method, 
utilizing both the PET and CT images, to localize the tumor. The 
method constructs the segmentation  problem  as  minimization 
of a Markov random field model, which encapsulates features 
from both imaging modalities. The minimization problem can 
then be solved by the maximum flow algorithm, based on graph 
cuts theory. The proposed tumor delineation algorithm was 
validated in both a phantom, with a high-radiation area, and in 
patient data. The obtained results show significant improvement 
compared to existing segmentation methods, with respect to 
various qualitative and quantitative  metrics. 

Index Terms—Context information, global optimization, graph 
cuts, image segmentation, tumor delineation, positron emission 
tomography-computed tomography (PET/CT) 

II.  BACKGROUND AND RELATED WORKS 

A.  Overview of Tumor Segmentation in PET/CT  Imaging 

From an image processing perspective, image segmentation 
can be subdivided into two related parts: object recognition and 
delineation [2]. Generally speaking, recognition is the process 
of determining the location of the object, while delineation 
is the process of finding the spatial boundary of the object in 
the image [3]. In a PET/CT image specifically, the recognition 
process typically means finding the high uptake regions in the 
PET image. These regions are considered as ROIs (Regions 
of Interest). This process is relatively easy to do by hand or 
software. When it comes back to delineation part, our goal is 
to achieve precise separation of high uptake regions from the 
background and non-significant uptake [2]. If the background 
and non-significant uptake regions are considered as one 
region, the task can be viewed as a two-region segmentation 
problem. If the background and non-significant regions are 
considered as different regions, the segmentation problem 
turns into a multi-region problem. For simplification, In this 
paper we consider the segmentation as a two-region problem, 
and we will come back to this in the future. Specifically, target 
delineation in PET/CT images involves dividing the image 
into two parts: tumor region and non-tumor region. From an 
image processing point of view, such a division is tantamount 
to labeling each pixel on the image with 1 (being tumor) or 0 
(being non-tumor). 

The delineation process is relatively tricky as there are 
various factors that increase the difficulty of this process, 
including: low image resolution, due to the way the image

I.  INTRODUCTION 

Although positron emission tomography-computed tomog-
raphy (PET/CT) has become increasingly popular in clinical 
oncology, tumor delineation is still manually performed on a 
slice-by-slice basis with little support from automated segmen-
tation tools. The challenge with manual segmentation is that 
it is operator-dependent, time consuming and labor intensive 
[1]. The fact that manual segmentation is still widely used is 
not because of a lack of segmentation algorithms, but rather 
the functional is not appropriate. Many algorithms have been 
developed to address this issue, e.g., reference [1] provides 
a good review of these algorithms. However, the problem is 
that many existing algorithms work based on single modality 
(i.e., either PET or CT). As a result, these algorithms do not 
take advantage of both imaging modalities. In this work, we 
propose a novel semi-automated method for tumor delineation 
based on information derived from both PET and CT. The 
method is based on the graph cuts method. The idea is to 
model the information from both PET and CT into the segmen-
tation process, and reformulate the segmentation process as an 
energy minimization problem. The energy encapsulates both 
boundary and region cost, defined by the information from 
PET and CT. The minimization problem can be solved by the 
classic graph cuts method. The main novelty in this paper is

This work was supported in part by funding from NSERC and the Royal 
University Hospital Foundation. 
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is  produced  and  filtered;  motion  artifacts  during  image ac-
quisition [1], [4]; and individual factors related to the large 
variability of pathologies in terms of shape, texture, location, 
and differences in organ morphology and texture between 
individuals [1]; image noise, which comes from the image 
scanner and the way the images are reconstructed. The noise 
in PET is considered as the most significant factor for not 
having a reproducible SUV measurement [4],  [5]. 

Even with all these difficulties mentioned above, because of 
increasing PET/CT usage in clinical applications, there have 
been considerable improvements in PET image segmentation 
methods, making these methods more accurate and robust 
under PET/CT multi-modal image frame. For example, stan-
dard uptake values are introduced in PET imaging for better 
thresholding [6]; Statistical and machine learning tools are 
introduced to take further advantage from the differences be-
tween uptake regions and their surrounding tissues [1]. These 
methods generally achieve around a 90 % Dice index similarity 
compared to established ground truth on patient data [1], [7]. 
In this paper we seek to achieve even higher segmentation 
accuracy by implementing the spatial information of CT into 
the PET/CT segmentation problem, and graph cuts, a graph 
based segmentation method, allows a relative easy way for 
implementation. 

B.  Graph-based Segmentation 
Region based methods are typically referred to as graph-

based methods, because they often utilize graph based theory 
for implementing information from homogeneity. By using 
foreground and background seeds specified by user, graph-
based approaches locate objects in the image by solving an 
optimization problem generated by implementing local pair-
wise pixel similarities (homogeneity) with global information. 
Among the graph approaches, two methods are often used for 
PET segmentation: Random Walk and Graph   cuts. 

Although originally designed for computer vision, the ran-
dom walk has been applied to image segmentation in many 
cases. The advantage  of  Random  Walk  related  approaches 
is that they are robust against noise and weak boundaries, 
making them suitable for PET/CT  segmentation  with  the 
low resolution and high noise characteristic of PET [8], [9]. 
However, the use of random walk is limited, since the method 
may not be able to deal with multi-focal uptake regions 
properly. 

Alternatively, taking a similar approach to Song et al.’s 
work [10], our work utilizes a graph cuts method. The basic 
idea is to reformulate the segmentation problem as an energy 
minimization problem. Similar to Song, our work uses a graph 
cuts model and constructs the cost function from the boundary 
and region information from PET and CT. Unlike Song, we use 
a single graph model to combine both PET and CT information 
under one graph instead of two sub-graphs. This simplifies the 
algorithm, reduces its computational cost and gives only one 
segmentation output instead of two as Song’s work. Secondly, 
we do not use foreground seeds to mark the tumor and only use 
background seeds, this reduce the level the human interaction.

Thirdly, after experiment we decide to remove the region cost
from CT from the algorithm, because the involvement of this 
cost gives worse results, as shown in the results   section. 

III.  PROPOSED GRAPH CUTS METHOD 

Graph-based segmentation methods are differentiated by 
their ways of defining cost functions and the ways of solving 
the minimization problem. As the basis of our method, the 
graph cuts method models the cost function as a combination 
of “self cost” and “neighbor  cost”. 

Consider that we have a 3D PET/CT image pair (I, II ), 
where I represents the CT image and II represents the 
PET 
image. We  assume the images are perfectly aligned, thus   for
each voxel u ∈ I we have a  corresponding voxel ∈ IIu
Let lu represent the binary labels  assigned  to  each  voxel, 
and as we consider the segmentation problem as a two-region 
segmentation, lu = 0 suggests the voxel u is segmented into 
the background (i.e, non-tumor in our case), while lu = 1 
denotes the voxel u is put into the foreground (i,e,  tumor 
tissue in our  case).  tu  represents  the  image  intensity  value 
at the voxel u. 

With the notations above we can further define the self cost 
term Es(lu). For each voxel u ∈ I or   II the self cost term 
is defined as 

(
Csource(tu), if lu = 1

Es(lu) =
(t ), if l  = 0Csink   u u 

We  can also define neighbor cost term in graph cuts. For 
a neighbor voxel pair (u, v), the neighbor cost En(lu, lv ) is 
defined as 

( 
C

(t , t ), if l  = lI vnodes    u   v u
En(lu, lv ) =

Cnodes(tu, tv ), if lu  I= lv

We further define a neighbor set N in the image pair (I, II 
), 
where N = {(u, v)|u and v is neighbor}. Then the main  idea
of graph cuts can be formed as finding a labeling set Lm  =
{lu} that minimizes the sum of self and neighbor costs on all 
the voxels in the image pair (I, II ): 

Lm = arg min Σu∈IEs(lu) + Σ(u,v)∈N En(lu, lv ); (1)L

Traditionally  the  cost functions and areCsource Csink
defined based on the intensity value of PET or CT. Some works
use the cost terms of PET alone to decide the segmentation 
[9]. Others combine the cost terms from PET and CT together 
to decide the optimal solution  [10]. 

In our work, we seek to encapsulate the information from 
PET and CT together into the self cost term and neighbor 
cost term by redefining the cost function Csource, Csink  and
Cnodes based on both PET and CT information. To  this   end,
we first describe the graph model of the graph  cuts.
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A.  Graph Construction 
In graph cuts, the function (1) is solved by maximum flow 

algorithm after modeling the function into the graph form. The 
model is shown here in figure 1. As shown in the figure, S is 
the source of flow and sink is the end of flow, each voxel in 
the image is modeled as a voxel node, with tube connecting 
them to the source , sink and themselves. self cost (i.e, the

�
|tu −  ��

Csink(tu) = if u is not marked as background   seeds
�� ∞, otherwise 

for a single node representing the pixel on image. Here Csource
is the flow capability from the node to the source, and Csink is 
the flow capability from the node to the sink. u represents the 
node and tu is the normalized PET image value on that node 
(i.e, the radiation intensity on the pixel). tsource and tsink is 
pre-set based on a per-segmentation method or by the user. 

2) Neighbor cost: We use a parametrized neighbor cost in 
our method. The neighbor cost in our method   is: 

Csource and the Csink) are represented by the tube capacity
from the source to the pixel node (the Csource, and the   orange
lines in the 2nd subfigure) and from the voxel node to the sink 
(the Csink, the blue lines in the 2nd subfigure). And neighbor 
cost (i.e the Cnodes when the nodes have different label, the 
black lines) is modeled as the tube capacity between the nodes 
themselves. By doing this, equation 1 can be effectively solved 
by solving maximum flow problem under this graph [11], and 
ultimately gives the segmentation result, as described in further 
detail in [11]. 

� 1 ��   ,t +t1 +λ (G + λ u    v G  )� 1 uv 2 uv2Cnodes(u, v)= if u and v are neighbor  pixels���� 0, otherwise s s s

Here,  u  and  v  are  the  nodes and and are theGuv Guv
gradient value of normalized PET and CT between the  nodes
u and v correspondingly. The main idea is to only include the 
gradient information from PET and the gradient information 
from CT at high uptake value  region. t t t

nodes nodes with links optimized selection and 
segmentation result IV.  PROPOSED TUMOR DELINEATION  SYSTEM 

FRAMEWORK 

Figure 2 shows a block diagram of the proposed framework, 
with five stages involved: preprocessing stage, parameter set-
ting stage for the graph cuts, and the practice stage (performing 
3D graph cuts) and  evaluation. 

Fig. 1.   Graph cuts 

B. Energy function 
The major differences between our proposed method and 

existing ones are in the energy function selection. Traditionally 
seeds are placed for the foreground and background in order 
for the graph cuts to work robustly. The seeds here refer to 
certain voxels, which can only be segmented into foreground 
or background in all segmentation solutions. Unlike traditional 
graph cuts we use a relatively simple way to place seeds. In 
our approach we do not place any seed for foreground, i.e. 
the tumor. Instead we just place seeds for the background by 
roughly marking the known high uptake value regions without
tumor. Such regions, for example as heart and urinary bladder, are given the cost Csource  = 0 and Csink      = ∞. 

Then we combine both CT and PET information into the 
cost function. The details are listed   below. 

1) Self cost: The self cost in this case still comes from the 
PET image itself (and is the flow capability from the node to 
the source node and to the sink   node). 

We use PET and CT image, and after normalizing them,  we

A. Preprocessing
In a preprocessing stage what we want to do is to align or 

register the CT image with the PET   image. 
For the registration we have the following options: rigid 

transformation, meaning the image is only allowed to rotate 
and translate; similarity, meaning the image is allowed to 
rotate, scale and translate; and affine transformation, meaning 
the image is allowed to rotate, scale, translate and cut. The b-
spline transformation is the most complex one, giving the 
images the most freedom to align  to each other. However, 
this transformation performs  poorly  with  the  phantom  and 
is thus not considered further. The affine transformation is 
implemented instead in this step using elastix toolbox   [12]. 

B.  Parameter Setting

In  this  section  we  decide  the  value of tsource, tsink, λ1get the image pair In, II , and then we define the self cost n and λ2. We run an iterative thresholding method for these two 
values. If t is the iterative thresholding result, we set tsource

our approach as: 
3t t to be  2 , and the tsink  to be 2 � 

�� |tu −  

t |
In application such as lung cancer, we find the value of

if u is not marked as background  seedsCsource(tu) = tsource around  0.4 and tsink around  0.1.  In  this application�� 0, otherwise we set the λ1  to be 10 and λ2  to be   10. 
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Fig. 2. Proposed Segmentation Method Blocks

C. Practice Stage 
We perform a 3D graph cuts algorithm based on maximum 

flow algorithm as we discussed in the graph cuts section. We 
set the neighbor set as the 8 neighbor set, the most common 
configuration in 3D image processing  scenario. 

D. Evaluation Stage 
Here we evaluate the performance of the method, we will 

show more details in the following  section. 

V.   EXPERIMENTAL RESULTS 

In this section, we describe how the experiments are set up 
and how the results are evaluated. The method is performed 
on both phantom data and patient data, and the ground truth 
is established for both cases. With this ground truth, the result 
from the proposed method is evaluated using Dice index and 
Hausdorff distance, two of the most widely used evaluation 
metrics in medical imaging. Then the performance will be 
discussed, with comparisons to several classical and state of 
the art methods. 

A.  Experimental Setup 

2)  Evaluation Matrix: With  the  ground  truth established,
the comparison of how close the segmentation result is to  the
ground truth can be made. There are two major classes for
such a comparison: one is similarity indices, which show how

similar the ground truth and the result are, e.g., the Dice index;
the other is error indices, which show the maximum offset of
the result from the ground truth, e.g., the Hausdorff distance.
Dice index is one of the most widely used similarity indices

[12]. Given X as our method result and Y as ground truth,  the
Dice index can be computed using the following   equation: 

2|X ∩ Y 
| 

|X| +|Y

dI (X, Y ) = , (2)

with |.| defined as the area of the graph. 
As can be seen in the definition, Dice index represents    the

overlay area of the ground-truth and the result over the total 
area. As a similarity index, it reflects the overall performance 
of the segmentation accuracy. 

Another evaluation metric used in this paper is the Haus-
dorff distance, one of the most popular error indices. Given x 
as voxel in the image X and y as voxel in the image Y, the 
Hausdorff distance is defined  as: 

1)  Ground  truth  establishment: In  order  to  evaluate an
image segmentation algorithm, the true boundary of the object
of interest should be identified, the process is often referred    
to as ground truth  establishment. 

For the phantom image case this is an easy task, for we 
know the exact dimensions of the object in the image and 
thus we know exactly what the segmentation result should 
be. This is perhaps the most important reason of using an 
phantom image to evaluate the method performance in many 
works, because when it comes to the real patient image, there 
is no ground truth available unless there are histopathologic 
samples. In many cases, surrogate truths (or reference stan-
dards) are used for measuring the quality of a segmentation 
algorithm. One may argue that even the same physician can 
hardly be expected to give the same segmentation result for 
segmenting the same image many times over. Nevertheless this 
is the best option we have for now, representing the closest 
starting point upon which we can compare our result. After 
all, most of today’s radiation therapy treatment plans are made 
according to the manual segmentation by  physicians. 

dH (X, Y ) = max{ sup inf d(x, y), sup inf  d(x, y)}, (3)
x∈X y∈Y 

with d(., .) defined as the distance (usually Euclidean distance)
The Hausdorff distance, by definition, is the largest offset 

from the result to the ground truth. It represents the detailed 
accuracy of the result. In this work, the Hausdroff distance is 
shown using the real distance instead of pixel distance. That 
is, after calculating the Hausdroff distance by definition, we 
multiply the result by the voxel  size. 

By using Dice index and Hausdorff distance together, both 
overall and detailed performances of the method can be 
evaluated. This explains why one can see this combination 
often used in the existing literature as the evaluation   metric. 

3) Phantom Description: We test our method on a specifi-
cally designed phantom. The structure of the phantom and the 
details of the PET/CT image are shown in figure   3. 

Here, there are 6 small balls in the phantom, the diameters 
of which are 4mm, 6mm, 8mm, 10mm, 12mm, 14mm. The
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•  Graph cuts based Approaches (GA, CO, PM) The   graph
cuts approach is the basis of our method. As such, it is 
vital for our method to be compared with other similar 
approaches based on the same principle. The approaches 
chosen for comparison are: the basic graph cuts method 
that performs graph cuts on PET only, based on the work 
[11], marked as GA; a recent co-segmentation method 
based on the graph cuts principle [10], marked as CO; 
and our proposed method  (PM). 

B. Results and Discussions 
We ran our methods and the comparison methods using a 

Matlab 2014b on a PC in our lab. The configuration of the 
PC is Intel Core i7-4790 CPU @ 3.60 GHz with 16GB RAM, 
also with a NVIDIA Quadro K2000 for GPU   computing. 

1) The Overall Performance: First, in Table I, a summary 
of the overall performance results can be found. It should 
be noted that the method of [10] gives two segmentation 
outcomes, one for PET and one for CT, without delivering a 
final outcome which is actually needed for clinical application. 
Accordingly, this approach is not implemented for the phantom 
in this paper. For comparison, the results from the paper [1] 
are listed directly in the  table. 

Fig. 3.   Phantom Description 

phantom  helps  to  evaluate  the  method performance
relatively small size of tumor  construction. 

on the

The  main  body  of  phantom  is  filled  with  radiations and
the balls are filled with normal water. The ground truth is 
established using the phantom measurements. It should be 
noted this is controversial to the normal phantom image. By 
using this image, We hope to evaluate the method’s capability 
of differentiating small structures and gaps near the tumor 
region. 

4) Patient Data Description: 5 sets of patient data are 
obtained from The Cancer Genome Atlas-Lung Squamous 
Cell Carcinoma (TCGA-LUSC) data collection on The Cancer 
Imaging Archive (TCIA) website [13], [14]. The patients 
suffered from lung cancer, and the size of tumors varies from 
8mm to 23mm. 

Due to limited source, the ground truth is only drawn on 
2 slices for each patient. Therefore even though our method 
is applied on the entire 3D patient data, only 2 slices with 
the established ground truth is used for each patient for 
comparison. 

5) Comparing Methods: As mentioned, we perform our 
proposed method on both the phantom data and the patient 
data, then evaluate the performance using the established 
ground truth. With the evaluation complete we run several 
classical and state-of-art methods and evaluate their perfor-
mance. 

Before we come to the results, here is a list of the compar-
ison methods and their  description. 

•  Thresholding methods (T1,T2) As described above the 
thresholding method is the most popular method  and 
thus included in our comparison. The classic methods 
used in this paper come from the work [6] (marked as 
T1) and  the  work  [15]  (marked  as  T2).  Also  we  use 
a novel adaptive thresholding method based on Affinity 
Propagation principle, that is the method from the work 
[7], marked as  AP. 

TABLE I 
RESULT EVALUATION 

  

Also note that for the patient results we ran our approach on
a 3D frame but only use 2 slices for the evaluation since we 
only have 2D ground truth. We only have one set of phantom 
so the result on phantom do not come with    variation. 

From the table we can see that our method attains the best 
performance over all the methods used, with a Dice index 
close to 0.94 and HD lower than   3mm. 

In order to illustrate how the method works, we provide 
an image of the PM result on the phantom in Figure 4. We 
can see from this image that the result created by PM is very 
accurate. The boundary between the radiation and the normal 
tissue is well  separated. 

In order to give an impression of the overall performance 
of the methods in real life application, the resultant images of 
one slice from all the approaches are shown in Figure 5. Note 
that we did not reproduce the CO method so there are only 
five images. 

From the image we can see that our method gives clear 
separation while keeping tumor detail. The other results either 
suffer from inaccurate detail due to the low resolution of PET, 
or give an over/under segmented result. This conclusion can 
also be drawn from the table. We  can clearly see that the    CT

Methods Phantom Patient
 DSC HD DSC HD

T1 0.96 13.6720 0.7515 ± 0.0739 34.1617 ± 38.0619
T2 0.92 12.3048 0.8090 ± 0.1190 6.7854 ± 3.2686
AP 0.97 7.5196 0.8541 ± 0.0523 5.2988 ± 1.3489
GA 0.95 8.2032 0.8695 ± 0.0455 4.8610 ± 1.1993
CO – – 0.8934 ± 0.0195 5.600 ± 0.600
PM 0.99 4.1016 0.9398 ± 0.0247 2.5154 ± 0.9249
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(a)  ground truth (b) PM (c) T1 

(d) T2 (e) GA (f) AP 

Fig. 5.   Result on the Patient data, on the top left we present our original slice, with CT represented by the black-and-white image and PET represented by 
red region. The green line in the original data represents the ground truth. The blue line on other images are the boundaries given by the methods, and the 
green regions are the ground  truth 

It is clear from these figures that higher level of CT infor-
mation gives better boundary accuracy, but over-committing 
such an involvement can lead the segmentation boundary 
close to the tissue boundary in CT and thus results in over-
segmentation as indicated in the ratio 1 to 100. Under-
commitment will lead to a result that is closer to thresholding, 
thus losing the details of the tumor. Therefore selecting a good 
level of CT involvement is important in this work. In this paper 
we use a pre-training approach to address this issue and set the 
ratio to be 1 to 10. In the future, a more automated approach 
will be explored. 

3) The involvement of CT Region Cost: As mentioned 
previously, the difference between our work and the work [10] 
is that we exclude the CT Region Cost (Self Cost) in our frame. 
Table  II shows the results of our method if CT Region Cost 
is included. 

One can clearly see the impact of CT Regional Cost. Even 
a slight level of involvement will cause a lower performance. 
Accordingly, we do not use CT Regional Cost in our  method.

Fig. 4.   Resulting Image of the Proposed Method on the  Phantom

information gives our method the advantage of more   precise
detail. 

2) The level of CT information: While  the  results  are 
good, we should carefully control the level of CT information 
involvement since over-involvement of CT will result in poor 
segmentation. We can see this  effect  from  Figure  6.  Here 
we present the impact of the level of involvement on  the 
result. The ratio indicates the value of the parameter λ2  in 
the equation neighbor cost  function. 

VI.  CONCLUSION AND FUTURE WORK 

There are several potential ways to further improve our 
proposed method, Two specific directions that we believe to 
be most promising are described. One is to develop a per-
training approach to decide the parameters in the cost function, 
therefore changing the method into an adaptive approach.  For
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(a)  original image (b)  PT-CT  information  level  10  to  1, (c)  PT-CT  information  level  1  to  10, (d) PT-CT information level 1 to  100,
λ2 = 0.1 λ2  = 10

 
Fig. 6.   Effect of CT  Information

λ2  = 100 

TABLE II
CT REGION RESULT  EVALUATION

another direction, note that we currently rely on manual   seed
planting to differentiate the tumor region from the other high 
uptake regions such as kidneys. If the seeds are too close to 
the tumor region, the method becomes potentially inaccurate. 
Accordingly, we plan to develop a localization approach that 
will automatically divide the tumor from other high uptake 
regions. This will remove the requirement for marking the 
background in the graph cuts approach, therefore delivering a 
fully automated and hopefully more robust  method. 
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