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ABSTRACT 

The wheat stem sawfly (WSS) is a damaging insect pest of wheat in North America. 

Resistance to WSS has primarily been achieved by introgressing the stem-solidness QTL SSt1 into 

elite cultivars. This thesis comprehensively examined the expression of SSt1 from both the 

phenotypic and genetic perspective. The first study investigated the influence of four sowing 

densities on pith expression for two newly released solid-stemmed durum cultivars, CDC Fortitude 

and AAC Raymore. Both cultivars had strong pith expression (average stem-solidness > 3.9) 

across all environments and sowing densities, in contrast to the common wheat cultivar Lillian 

(average stem-solidness = 2.2). Increasing sowing density had a positive effect on grain yield in 

all cultivars, but was negatively associated with stem-solidness. These findings suggest that, unlike 

with Lillian, altering sowing density is not required to achieve effective sawfly resistance with 

CDC Fortitude and AAC Raymore. For the second study, we improved the resolution of the SSt1 

interval in durum and common wheat by localizing coincident QTL near the telomere of 3BL 

(LOD = 94 - 127, R2 = 78 - 92 %). The SSt1 interval spanned a 1.6 Mb interval on chromosome 

3B. Minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that synergistically 

enhanced the expression of SSt1 to increase stem-solidness. These results suggest breeding for 

improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci. 

Finally, we investigated gene expression and structural variation within the SSt1 interval. This 

showed that in addition to structural variation between genome assemblies, the SSt1 locus has also 

undergone a series of functional gene duplication/expansion events. One gene encoding a Dof 

transcription factor (TraesCS3B01G60880) was consistently up-regulated across solid-stemmed 

cultivars. Further investigation revealed that solid-stemmed cultivars carry multiple copies of 

TraesCS3B01G60880. Screening of a mutant population identified two mutant lines with a hollow-

stemmed phenotype that either have a deletion, or reduced expression of TraesCS3B01G60880. 

Taken together, this research provides new insights into the phenotypic and genetic expression of 

SSt1 in wheat, and will provide an important foundation for future experiments that will help 

breeders improve resistance to the WSS. 
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1. INTRODUCTION 

Disclosure: Excerpts from this chapter have been published in: 

Durum wheat: production, challenges and opportunities: J. M. Clarke, K. Nilsen, D. Kthiri, X. Lin 

and C. J. Pozniak, University of Saskatchewan, Canada; and K. Ammar, International Maize and 

Wheat Improvement Center (CIMMYT), Mexico 

 

The wheat stem sawfly (WSS), Cephus cinctus Norton, can be a serious insect pest of 

durum wheat (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) in 

North America. The WSS poses a major risk to wheat production in North America because much 

of its geographical range overlaps with the major wheat growing region which includes the 

southern parts of Alberta, Saskatchewan and Manitoba, Northern Montana, North Dakota and 

northern South Dakota (Beres et al., 2011b). In recent years, severe WSS damage has been reported 

in eastern Wyoming, Nebraska and Colorado (Bradshaw et al.; Spiegel, 2014). Although WSS was 

initially a pest of native grasses, cultivated wheat is now its preferred host (Wallace and McNeal, 

1966), which was brought on by the rapid expansion of the wheat acreage over the last century 

(Beres et al., 2011b).  

The name “sawfly” was given to C. cinctus because the adult female has a specialized 

“saw-like” ovipositor at the tip of its abdomen that it uses to cut into the host stem and deposit its 

eggs in the upper internodes of the wheat plant. Adult sawflies are short-lived insects that emerge 

from infested stubble from a previous year’s crop, and are the only stage of the life-cycle to live 

outside of the host (Wallace and McNeal, 1966). The WSS spends most of its life-cycle inside the 

stem of the wheat plant in larval form. Damage to vascular tissue of the developing wheat plant 

occurs as the larva move upwards and downwards feeding on the inner stem tissue which can result 

in a loss of yield between 2.8 – 17% (Holmes, 1977). As the host plant approaches maturity, larvae 

move towards the base of the plant and chew a notch around the inner perimeter of the stem, 

weakening it to such a point where the plant will easily lodge, especially when exposed to wind 

(Beres et al., 2011b). Often, the lodging caused by WSS is the most obvious sign of an infestation. 

When the plant has lodged, the larva fills the opening in the stub with excrement (frass), and 

encases itself in a cocoon in preparation for winter. The following spring, the larva undergoes 

pupation, and eventually develops into a mature adult (Holmes and Peterson, 1960). Adult sawflies 

emerge from infested stubble by chewing their way out of the stub, either through the frass plug, 
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or the side of the stub (Holmes and Peterson, 1960). Yield losses more than 30% have been 

attributed to WSS infestation, from a combination of losses attributed to larval feeding activity, 

and lodging at maturity (Ainslie, 1920). Plants with the highest yield potential are the most likely 

to lodge from WSS damage, as these plants have the heaviest spikes (Beres et al., 2007).  

Although no control strategy has been able to completely eradicate the WSS, the most 

effective way to minimize damage has been to grow solid-stemmed cultivars. The use of contact 

pesticides has been largely ineffective because larvae that feed within the wheat stem are shielded 

from chemical, and because the female WSS emerge over a 3-week period (Beres et al., 2012), 

rendering a single chemical application ineffective. Recently, the systemic insecticide Thimet 20-

G (Phorate: 0,0-diethyl S-[(ethylthio) methyl] phosphorodithioate) was registered for use against 

the WSS in Montana. Despite reports of its effectiveness in killing WSS larvae, Thimet is highly 

toxic to humans, mammals, aquatic life and birds, and is therefore an environmental and safety 

risk. Delaying seeding until after May 20th can substantially reduce damage, but is not a practical 

strategy for Canadian wheat production where growing seasons are short, and seeding windows 

are tight (Beres et al., 2007). Solid-stemmed cultivars develop pith in the culm lumen (Clarke et 

al., 2002). Pith provides resistance to the WSS by deterring stem cutting, mechanically crushing 

eggs, and impeding larval development and growth inside the stem (Hayat et al., 1995). As a result, 

growing solid-stemmed wheat cultivars is an effective, low cost, and environmentally friendly 

method of managing WSS. 

Stem-solidness is a trait that breeders can use to select for WSS resistance. To measure 

stem-solidness, plants are cut longitudinally from crown to spike and each internode is assigned a 

visual rating on a 1 to 5 scale (1 = hollow, 5 = solid) (Depauw and Read, 1982) (Appendix 1). The 

scores from each internode are averaged to obtain an overall stem-solidness rating for the plant. 

Wallace et al. (1973) suggest a minimum stem-solidness rating of 3.75 to achieve effective 

resistance to the WSS. Although phenotyping is straightforward, expression of stem-solidness 

involves complex interactions between genetic background and environment; and both should be 

considered in breeding.  

Genetic background can impact expression of stem-solidness. There are multiple sources 

of stem-solidness in wheat and it remains unclear whether the underlying genetics are similar 

between sources. In durum wheat, the most well-known source is the South African cultivar 

Golden Ball (Clark et al., 1922). A second source was identified in the German cultivar Biodur, 
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which may be different from Golden Ball based on haplotype differences around the stem-

solidness locus (K. Nilsen, unpublished data). The first three commercially registered solid-

stemmed durum cultivars in Western Canada were CDC Fortitude (Pozniak et al., 2015), AAC 

Raymore (Singh et al., 2014), and AAC Cabri (Singh et al., 2016) and all derive their stem-

solidness from the Biodur source. Under commercial sowing densities, all cultivars have 

comparable yield and protein content to the hollow-stemmed durum check Strongfield. In general, 

durum wheat has superior resistance to WSS than hexaploid wheat, and even hollow-stemmed 

durum wheat cultivars tend to be more resistant than hollow hexaploids (Eckroth and McNeal, 

1953). Durum wheat cultivars typically have greater straw strength, which resists lodging. Durum 

cultivars often have thicker outer stem walls, which could resist WSS cutting, and the reduced 

culm lumen diameter may impede larval movement (Putnam, 1942). Eggs and larvae inside the 

hollow-stemmed durum cultivars suffer from higher mortality rates compared to common wheat, 

which include some mechanical resistance, increased node thickness, nutrient deficiency or higher 

oviposition on the stem.  

In common wheat, the most commonly known source of stem-solidness is the Portuguese 

landrace S-615 (Beres et al., 2011b). The first commercially grown solid-stemmed cultivar in 

Canada was Rescue (Platt et al., 1948). A major problem with cultivars that are derived from S-

615, including Rescue, is that differences in environment can cause inconsistent pith expression 

and plants usually fail to meet the minimum threshold score to ensure effective WSS resistance 

under field conditions. The reason for the expression difference is primarily due to light intensity, 

and rainfall. Platt (1941) found that stem-solidness in the S-615 source was positively correlated 

with hours of sunshine in June, and negatively correlated with rainfall in May and June. He found 

that wider row spacing produced plants that were more solid-stemmed due to a reduction in canopy 

shading. Platt also observed that the durum source Golden Ball, which expresses a solid-stem 

across environments, was not affected by row spacing or light intensity. Because of the 

inconsistent pith expression in the S-615 source, attempts were made to transfer the solid-stem 

source of Golden Ball into common wheat through interspecific crosses, but failed to recover any 

true hexaploid progeny with solid stems (Platt and Larson, 1944). One possible explanation is that 

genes carried by the D genome of common wheat work to epistatically suppress the expression of 

stem-solidness (Yamashita, 1937). Despite this, Holmes and Peterson (1957) observed WSS 
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populations decline to near zero in fields sown entirely to Rescue over a five-year study, 

demonstrating the importance of the solid-stem trait in managing WSS.  

Even with the effectiveness of solid-stemmed common wheat cultivars, there has been a 

major reluctance on behalf of growers to adopt them, mainly because of a perceived yield drag 

associated with the solid-stem trait (McNeal et al., 1965; Weiss and Morrill, 1992). Other concerns 

regarding inferior agronomics and grain quality, including lower protein content, have also been 

noted. Contrasting studies have reported no significant association between stem-solidness and 

yield loss, although some did note grain protein content was negatively impacted in some genetic 

backgrounds (Hayat et al., 1995; McNeal and Berg, 1979). There is not sufficient evidence 

presented in the literature as to whether any potential yield penalty is due to the expression of pith 

itself, or a yield drag associated with the genetic background of S-615. In Western Canada, these 

issues were largely overcome through plant breeding efforts, which led to the development of the 

S-615 derived solid-stemmed common wheat cultivar Lillian in 2006 (DePauw et al., 2005). At 

the time of registration, Lillian had grain yield comparable to hollow-stemmed checks in the 

absence of WSS infestation, and was the first cultivar to carry the high protein gene GPC-B1 

(DePauw et al., 2005). Lillian was sown to 32% of the total Canada Western Red Spring (CWRS) 

acreage in 2010, and remained the 6th most widely grown CWRS cultivar in 2015 (Grains Canada, 

2017a).  

The solid-stem trait is predominantly controlled by a major locus on the long arm of 

chromosome 3B, which is now referred to as Qss.msub.3BL (Cook et al., 2004) in common wheat, 

and SSt1 (Houshmand et al., 2007) in durum wheat. It remains unclear whether both species share 

a common locus. McNeal (1961) examined progeny derived from a cross between Rescue and 

Golden Ball, but was unable to identify any line segregating for hollowness. This finding suggests 

the two sources either share a common locus, or have two different tightly linked loci conferring 

stem-solidness. Within each species, it is possible that additional sources also exist. For example, 

the durum cultivar Biodur appears to be different from Golden Ball based on haplotype patterns 

around the SSt1 locus (unpublished data); stem-solidness in the durum cultivar Golden Ball and 

Biodur follow a mono-factorial pattern, suggesting a single gene or two tightly linked loci (Clarke 

et al., 2002; Putnam, 1942). 

Altogether, control of WSS through stem-solidness is the most effective pest management 

strategy; however, our knowledge of how this trait is regulated is incomplete. The expression of 
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stem-solidness can be quite different between durum and common wheat, which can have a major 

impact on the level of WSS resistance obtained in the field. In durum wheat, the expression of 

stem-solidness is relatively stable across environments (Clarke et al., 2002), whereas expression 

in common wheat can show considerable variation, particularly in response to environmental 

conditions such as light intensity and moisture. At this point, it is not clear whether this difference 

in expression is related to different causal genetic factors on chromosome 3BL, or the interaction 

of other genes from elsewhere in the genome with the 3BL locus. Optimization of agronomic 

approaches may be required to maximize stem-solidness under field conditions, while also 

balancing agronomic performance. One strategy that has been investigated to improve the 

expression of stem-solidness in common wheat has been through manipulating light penetration 

through the canopy by reducing sowing densities. This approach has proven successful in some 

common wheat cultivars, but has yet to be investigated in durum wheat. Because altering sowing 

densities can come with penalties to yield, optimization is necessary in field experiments (Beres 

et al., 2012).  

A single major QTL that controls the development of pith in the culm lumen, designated 

SSt1, has been identified on chromosome 3BL in durum wheat, but it remains unclear whether this 

QTL is coincident with a second QTL (Qss.msub.3BL) conferring stem-solidness in common 

wheat (Cook et al., 2004; Houshmand et al., 2007). This thesis focuses on improving our 

understanding of solid-stem expression in durum and spring wheat. This has been made possible 

by the recent availability of: 1) high yielding solid-stemmed wheat cultivars for both common and 

durum wheat, 2) mapping populations segregating for stem-solidness for both durum and common 

wheat, and 3) whole genome reference sequences for common and durum wheat. The genome 

sequences provide the unprecedented opportunity to investigate the genetic basis for stem-

solidness and other important traits in wheat by presenting a tool for the rapid dissection of physical 

QTL intervals and their associated genes. 
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1.1. Questions addressed in this thesis  

• How is the expression of stem-solidness affected by altering sowing density, how does it 

differ between durum and common wheat, and at what sowing density is optimal 

agronomic performance achieved? 

• What are the physical intervals of the major stem-solidness locus on chromosome 3BL in 

durum and common wheat, and are they coincident? 

• What are the candidate genes that could be responsible for conferring stem-solidness and 

how are these genes interacting with the global transcriptome? 

• Does structural variation account for some of the discrepancies observed between genetic 

mapping data and physical position of marker sequences along reference sequences? 
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2. LITERATURE REVIEW 

Disclosure: Excerpts from this chapter have been published in: 

Durum wheat: production, challenges and opportunities: J. M. Clarke, K. Nilsen, D. Kthiri, X. Lin 

and C. J. Pozniak, University of Saskatchewan, Canada; and K. Ammar, International Maize and 

Wheat Improvement Center (CIMMYT), Mexico 

2.1. Wheat origin and taxonomy 

Wheat belongs to the genus Triticum within the family Poaceae and the tribe Triticeae. 

Cultivated wheat emerged approximately 10,000 years ago, as part of the Neolithic Revolution, 

when early human civilizations began to transition from nomadic hunter and gatherers to settled 

agriculturalists (Shewry, 2009). The expected geographical origin of wheat is thought to be in the 

fertile crescent somewhere near the South-East region of Turkey (Heun et al., 1997). Cultivated 

wheat was first domesticated by early farmers, probably through indirect selection, which resulted 

in a loss of shattering of the spike at maturity, and a change from glumes that were tightly attached 

to the seed (hulled) to free threshing forms (Shewry, 2009). The earliest cultivated wheats were 

Triticum monococcum (AA genome, 2n=2x=14) which was domesticated from natural populations 

of einkorn (Triticum boeoticum), and Triticum turgidum ssp. dicoccon (AABB genome) which 

was domesticated from wild populations of emmer (Triticum turgidum ssp. dicoccoides (AABB 

genome). Modern cultivated wheat is allopolyploid, containing genomes obtained through 

interspecific hybridization events with progenitor species. Modern durum wheat (Triticum 

turgidum ssp. durum, AABB genome, 2n=4x=24) arose from the hybridization of Triticum urartu 

(AA genome) and an Aegilops speltoides related species (S genome related to B genome) around 

500,000 years ago. Modern bread wheat (AABBDD genomes, 2n=6x=42) arose under cultivation 

within the last 10,000 years from the interspecific hybridization between cultivated emmer 

(Triticum turgidum) and Aegilops tauschi (DD genome). Because of the recent polyploidization of 

durum and common wheat, the genomes they contain share greater than 97% sequence identity, 

and each gene is usually present in 2, or 3 homoeologous copies (Uauy, 2017). 

2.1.1. Global wheat production and current challenges 

Wheat is the world’s most widely grown food crop providing an estimated 20% of the daily 

protein and food calories for the global population. Around 95% of the wheat produced globally 
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is hexaploid bread wheat, whereas the remaining 5% is tetraploid durum wheat used in the 

production of semolina and couscous. A small proportion of global wheat production also consists 

of ancient wheat species such as einkorn, emmer and spelt (Shewry, 2009). Wheat is grown on 

18% of the global agricultural land in production, anywhere between 45°S in Argentina, to 67°N 

in Norway Finland and Russia (Peng et al., 2011). Current land used for wheat production globally 

was 220.32 million hectares in 2017, estimated to produce 739.9 million metric tonnes, with an 

average yield in 3.34 tonnes per hectare (FAO, 2017). Improving agronomic and plant breeding 

practices is a worldwide priority to prevent a global food security crisis. The Food and Agriculture 

Organization (FAO) has projected that global food production will need to increase as much as 70 

% over current levels by 2050 to feed a projected global population of over 9.1 billion people. That 

means that the rate of yield increase in cereals will need to rise a staggering 38% over current 

levels (Tester and Langridge, 2010). The greatest chance to achieve these targets will be from 

advances made in the developing world (Ray et al., 2013).  

As the global population rises, we will see a corresponding decline of land in production 

per capita. To ensure global food security for future generations, wheat breeding targets will need 

to focus on: nitrogen use efficiency and resistance to abiotic stress including a major focus on 

salinity, drought and heat stress.  

Climate change is also expected to have a major impact on global agricultural production. 

In Canada and other high latitude countries, warming might benefit agriculture by extending the 

growing season allowing for increased productivity and diversity of crops that can be grown. The 

global increase of CO2 in the atmosphere is also expected to benefit C3 crops (Tester and 

Langridge, 2010). However, several negative consequences of global warming are expected, 

including a greater frequency of severe weather events, extended heatwaves and prolonged 

drought. The warming of the tropical Indian Ocean and the Pacific Ocean are likely to contribute 

to extensive drought in many countries, particularly in Eastern Africa (Funk and Brown, 2009). 

As agricultural production intensifies, there will need to be a focus on resistance to biotic stress, 

including: insect pests, such as the wheat stem sawfly and wheat midge; and fungal diseases, 

including the current threat imposed by the devastating stem-rust race Ug99 (Singh et al., 2011), 

stripe rust, and fusarium head blight.  
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2.1.2. Wheat production in Canada 

Historically, wheat has been Canada’s most important crop. However, in 2017, the number 

of canola hectares in production (9.23 Ha) exceeded wheat for the first time. The majority of wheat 

is produced in Saskatchewan, Manitoba and Alberta (McCallum and DePauw, 2008). In 2017, 

wheat was grown on 9.06 million hectares in Canada, expected to produce 27.1 million metric 

tonnes of grain (Statistics Canada, 2017). Spring-planted hexaploid common wheat (Triticum 

aestivum L.) accounts for approximately 70% of the harvested area, while 23% of the wheat that 

is grown in Canada is tetraploid durum wheat (Triticum turgidum L var durum) and the remaining 

6% was sown to hexaploid winter wheat. The average wheat yield in Canada is 3.29 tonnes per 

hectare. 

 In Western Canada, wheat cultivars are currently differentiated into 10 different market 

classes based on functional characteristics, and end use quality (Table 2.1). Commanding premium 

prices in the global market, the Canada Western Red Spring (CWRS) and Canada Western Amber 

Durum (CWAD) are the two most widely grown market classes. The Canada Northern Hard Red 

(CNHR) market class was recently added in response to concerns about low gluten strength in 

several cultivars, which led to 25 CWRS cultivars and four Canada Prairie Spring (CPS) being re-

classified as CNHR as of August 1, 2018 (Grains Canada, 2017b).  

 

Table 2.1. Western Canadian durum and common wheat market classes 

T. aestivum   

CNHR Canada Northern Hard Red 

CPSR Canada Prairie Spring Red 

CPSW Canada Prairie Spring White 

CWES Canada Western Extra Strong 

CWHWS Canada Western Hard White Spring 

CWRS Canada Western Red Spring 

CWRW Canada Western Red Winter 

CWSWS Canada Western Soft White Spring 

T. turgidum  

CWAD Canada Western Amber Durum 

 

2.1.3. Wheat genomic resources 

To meet the increasing demand for wheat, the integration of genomics and breeding will 

be required to overcome challenges such as climate change and other abiotic and biotic constraints 
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(Mayer et al., 2014). The development of wheat genomic resources has been slower than other 

cultivated crop species largely because its genome is the largest of the cultivated crop species (at 

17 Gb), and the highly repetitive (> 80%) nature of its genome (Mayer et al., 2014; Uauy, 2017). 

The wheat genome contains a high level of transposable elements relative to other crop species, 

which has hindered the accurate assembly and ordering of sequences (Mayer et al., 2014; Uauy, 

2017). In addition, wheat is an allopolyploid and contains two, or three, complete sets of highly 

related (> 97% sequence identify) genomes, in durum, and common wheat, respectively, with low 

coding sequence divergence between them. Because of the genetic bottleneck which occurred 

during the hybridization leading to the emergence of cultivated hexaploid wheat, the 

polymorphism on the D genome is markedly lower than on the A or B genomes (Brenchley et al., 

2012). Despite these challenges, the advances in wheat genomics have been rapid over the past 

several years, facilitated by improvements in wet chemistry, genotyping technologies, sequencing 

and sequence assembly and high-powered computing. 

2.1.3.1. High-throughput genotyping  

The development of high-throughput and high-density marker screening tools are essential 

for a wide variety of applications, including the construction of high quality linkage maps, 

characterizing genetic variation, performing diversity analysis, marker trait association studies and 

QTL experiments. Over the past decade, there has been a major shift towards the use of single 

nucleotide polymorphism (SNP) as molecular markers in plant and animal systems because SNPs 

have a high call frequency, low cost and error rate, and are amenable to high-throughput screening. 

One of the major breakthroughs in wheat genomics was the recent development of the wheat 

iSelect 9K SNP array (Cavanagh et al., 2013) and the now widely adopted wheat iSelect 90K SNP 

array (Wang et al., 2014). The wheat iSelect 90K SNP array was developed by aligning RNAseq 

reads from 19 accessions of bread wheat and 18 accessions of durum wheat to the Chinese Spring 

survey sequence. A total of 81,579 high quality functional SNPs were used for the assay, and were 

used to develop oligonucleotide probes. One of the issues with probe-based arrays in wheat is that 

cross-mapping can occur to homoeologous and paralogous loci. In fact, in-silico mapping of the 

90K probes suggested a total of 518,537 binding sites in the CS survey sequence.  

The iSelect assay works by hybridizing 50 base pair (50-mer) probes to custom Illumina 

Infinium BeadChips. Each probe is designed to hybridize to a locus one base before the target 
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SNP. An enzymatic single base pair extension of dual colored fluorescently labelled nucleotides 

specific to the two variants of the target SNP enables the detection of fluorescent signal on the 

iScan optical array scanner. 

Perhaps the greatest benefit of the 90K SNP array is that it provides wheat researchers with 

a globally standardized genotyping system. Comparison between studies is now possible whereas 

in the past has otherwise proven challenging due to research groups using different genotyping 

platforms or different markers. 

2.1.3.2. Consensus maps 

A common application of genotypic data is the construction of genetic maps using genetic 

linkage information from mapping populations, usually derived from a cross between two 

diverging parental lines (Jackson et al., 2005). Often these bi-parental mapping populations have 

varying levels of polymorphism ranging from 20 - 40%, thus may be limited in their usefulness 

outside of the context of the initial cross (Somers et al., 2004). Consensus maps overcome this 

limitation by ordering all markers from several different genetic maps to create a consensus order 

of markers and recombination distances. In addition, they provide a large number of markers that 

can aid genome-wide association studies, and they can identify structural rearrangements between 

populations (Maccaferri et al., 2015). The first consensus map available in wheat was constructed 

using 1,235 microsatellite loci mapped to four different populations of hexaploid wheat (Somers 

et al., 2004). This consensus map served as a tremendous resource for wheat researchers working 

on map-based gene cloning projects and other areas of genomics research for many years. 

Recently, with the advent of the iSelect 90K SNP array, high density SNP consensus maps have 

been constructed in both wheat species. In common wheat, 46,977 SNPs were mapped from eight 

different hexaploid mapping populations (Wang et al., 2014); whereas in durum wheat, 30,144 

markers (26,626 SNPS and 761 SSRs) were mapped using 13 different tetraploid mapping 

populations providing the first consensus map built exclusively for durum wheat (Maccaferri et 

al., 2015).  

2.1.3.3. Wheat reference sequences and annotations 

One of the major factors holding back advances in wheat genomics has been the lack of a high 

quality, complete and properly annotated reference sequence. Draft sequences for T. urartu and 

Ae. tauschii were recently completed (Jia et al., 2013), but were not of high quality and many genes 
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were unable to be assigned to chromosomes (Choulet et al., 2014). Early approaches to sequence 

the common wheat genome were centered around the landrace Chinese Spring. Advances in next 

generation (NGS) sequencing technology facilitated the first whole genome shotgun sequence 

assemblies, that were assembled into hundreds of thousands of short scaffolds (N50 < 10 kb) 

(Brenchley et al., 2012; Mayer et al., 2014). Mayer et al. (2014) used ditelosomic stocks of Chinese 

Spring to isolate each chromosome arm which were subsequently purified using flow-cytometric 

sorting, and sequenced using the Illumina NGS platform at very high depth (31 – 241x sequence 

coverage). These early resources were important for gene discovery and were used in the 

development of molecular markers; however, the assemblies were too fragmented to be useful in 

exploring the genes contained within QTL intervals highlighting the need for assembled full length 

pseudomolecules.  

An alternative sequencing strategy using the minimum tiling path (MTP) of overlapping 

bacterial artificial chromosome (BAC) long insert libraries led to the release of the first assembled 

774 Mb pseudomolecule for chromosome 3B (Choulet et al., 2014). Recently BAC sequence 

assemblies have been abandoned in favour of more efficient short read assembly algorithms such 

as the proprietary NRGene DeNovoMAGIC pipeline (http://www.nrgene.com) that has been 

successfully used to assemble more than 300 genomes thus far. The NRGene pipeline uses a 

combination of high coverage (200x) paired-end (PE), mate-pair reads, and most recently 

incorporates 10x sequence data to accurately assemble complex plant genomes (Yuan et al., 2017). 

This pipeline was successfully used to assemble the first genomes for wild emmer wheat (T. 

turgidum ssp. dicoccoides) cv. Zavitan (Avni et al., 2017), durum wheat cv. Svevo, and common 

wheat cv. Chinese Spring (Refseq v.1.0) (Curtis Pozniak, personal communication). Each 

assembly was released with accompanying high-confidence gene annotations, containing a 

predicted 65,012, 66,559 and 110,790 high confidence genes in Zavitan, Svevo, and Refseq v.1.0, 

respectively. The next step for wheat genomics is the pangenome, with projects such as the 10 

Wheat Genomes Project that aims to study the core and dispensable genome, and characterize 

large scale structural variation among globally diverse cultivars (Wheat Initiative, 2016). The 

growing number of genome sequences currently available paves the way for functional genomics 

and genome editing (Kassa et al., 2016). 

 

 

http://www.nrgene.com/
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2.2. The wheat stem sawfly 

The WSS belongs to the order Hymenoptera, suborder Symphyta, comprising one of the 

largest insect orders that also includes bees, wasps and ants. Almost all members of Symphyta feed 

on plants at the larval stage (Wallace and McNeal, 1966). The WSS is a member of the family 

Cephidae which is further divided into tribes, with the WSS being a member of the tribe Cephini. 

There are over 8000 species of sawfly (Taegar et al., 2010); those which are considered pests of 

grasses include Cephus pygmeus, C. tabidus, and C. cinctus. Of these, Cephus pygmeus and C. 

tabidus originated from Europe and Asia, and were introduced into North America accidentally 

(Wallace and McNeal, 1966), whereas C. cinctus is thought to be native to North America. This 

thought has been recently challenged; therefore, C. cinctus may instead be an introduced species 

from Europe and Asia (Ivie, 2001). 

Economic losses associated with the WSS in North America have the potential to reach an 

estimated US $350-400 million annually (Beres et al., 2011b; Beres et al., 2017). The WSS has 

been recognized as an insect pest of wheat in North America since the late 1800s, and the first 

appearance of the WSS in Western Canada occurred near Souris MB and Indian Head SK in 1905 

(Beres et al., 2011b). Early reports suggested the WSS exhibited a preference for native grasses, 

which served as a source of the pest in neighboring wheat crops (Holmes, 1979). In Western 

Canada, the WSS did not cause significant damage until 1922 when an estimated 5 million dollars 

(Holmes, 1979) of losses were incurred (Criddle, 1923). The spread of the WSS is thought to have 

followed the rapid expansion of wheat throughout the Northern Great plains and western prairie 

provinces during the early 1900s (Ainslie, 1920).  

2.2.1. Life cycle and biology of the WSS 

The WSS spends up to 10 months of the year in its larval form nested inside the host plant 

stem. Sex determination of the WSS follows a haplodiploid system where males are haploid (n = 

9) and develop from unfertilized eggs, whereas females are diploid (2n = 18) and develop from 

fertilized eggs. Adults are long and slender with two pairs of wings and have a body length of 0.6 

to 1.8 cm (Wallace and McNeal, 1966). Females are notably larger than the males (Ainslie, 1920). 

Males emerge earlier than females as part of a mechanism that ensures the earliest females to 

emerge can mate. Thus, the proportion of males becomes less as the season progresses and new 

females emerge (Holmes, 1979). Because of this, more female offspring hatch from fertilized eggs 
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deposited early in season when more males are present for mating, whereas more males emerge 

from unfertilized eggs deposited later in the season. Adult sawflies emerge in Western Canada 

anytime between June 10th - July 10th depending on temperature and live for approximately one 

week (Criddle, 1923). The adults are generally considered weak flyers; therefore, they tend to 

remain close to the site of emergence (Holmes, 1979). This factor contributes to the spatio-

temporal patterns of infestation that occur near the edges of adjacent fields following a previous 

infestation. Producers that grow wheat in fields neighbouring native grass species will often 

experience similar patterns of infestation.  

Mating occurs shortly after adult emergence, followed by oviposition within a few days 

thereafter. During the process of oviposition, the female WSS will land on the stem, walk up to 

the uppermost leaf, turn her head down and select a suitable site to deposit her eggs. The female 

WSS has a specialized saw-like ovipositor (hence “sawfly”) that it uses to cut into the wheat stem 

during oviposition, which creates an opening so small that it is near impossible to find the scar 

once the plant has healed (Ainslie, 1920). The female will search for a suitable host plant in which 

to lay eggs, usually beginning at the upper internode of the developing wheat plant (Beres et al., 

2011b). Females prefer succulent plants that are between the early boot and anthesis stage with a 

large enough stem diameter suitable for oviposition (Holmes and Peterson, 1960). A plant that has 

already produced a spike will never be selected for oviposition (Ainslie, 1920). As plant growth 

continues and the upper internodes begin to elongate, the WSS will lay eggs progressively higher 

on the plant (Holmes, 1979). 

Each female may carry up to 50 eggs that are white in color and between 1-1.25 mm in 

length (Ainslie, 1920). Eggs are deposited in the culm of hollow-stemmed cultivars, or a hollowed-

out portion in a solid-stemmed cultivar (Ainslie, 1920). Larvae will develop for six to seven days 

before breaking free of the egg sac to immediately begin feeding activity (Ainslie, 1920).  

The WSS larva stage spans 60 days and has five instars. The total length of the larval stage 

is dependent upon temperature, and the phenological stage at which the host plant was at when the 

egg was deposited (Ainslie, 1920). If multiple eggs are present inside the same stem, the first larva 

to hatch will cannibalize the other eggs, and will also destroy any other larvae present, including 

the larvae and eggs of species known to parasitize the WSS. Larvae produce amylase and cellulase 

to aid in digestion of plant material for its diet, which consists of stem parenchyma and vascular 

tissue. Feeding continues until plant maturity. Light penetration through the stem stimulates 
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downward larval movement when the plant is nearing maturity; experiments have shown that in 

the absence of light, larvae do not move lower in the stem (Holmes, 1979). Similarly, as moisture 

content in the stem decreases later in the season, larvae will move downward to avoid desiccation.  

The downward movement of WSS larvae is critical to the survival of the insect. Towards 

the end of the growing season, the larva will enter the area of the stem just below the ground and 

begin to cut a V shaped notch around the perimeter of the stem, a process which is called girdling. 

Eventually the stem is weakened to the point that it will cause the plant to lodge (Beres et al., 

2011b). Stem-girdling is critical for the life cycle of the WSS, as most larvae that are incapable of 

achieving stem girdling will die during summer months (Cárcamo et al., 2011). Once stems have 

lodged exposing an open stem above, the larvae will fill the opening with frass which creates an 

ideal overwintering chamber. Finally, larvae will spin a silken cocoon around their body in 

preparation for winter entering a phase of obligatory diapause. Larvae are incredibly resilient, 

being highly cold hardy with a super cooling point between -20 and -28°C (Holmes, 1979), which 

allows them to withstand severe cold temperatures typical of prairie winters.  

Larvae contained within exposed stubs can withstand periods of -20°C for at least 10 

consecutive days without negatively affecting mortality (Beres et al., 2011b). The following 

spring, pupation will begin only after temperatures have reached above 10°C for 90 days, and the 

total pupation process is completed within 21 days. After pupation, the newly formed adult WSS 

will begin to chew through the frass plug, the final step before emergence (Beres et al., 2011b). 

Emergence is facilitated when the plug has been exposed to moisture (Holmes, 1979). 

2.2.2. Geographical and host range of the WSS 

The WSS poses a major risk to wheat production because almost the entire geographical 

range of the WSS overlaps with the major wheat growing region in North America. This region 

includes the southern parts of Alberta, Saskatchewan and Manitoba, Northern Montana, North 

Dakota and northern South Dakota (Beres et al., 2011b). In recent years, the insect has been 

expanding in geographical range into Iowa and the Nebraska panhandle causing widespread 

damage in some regions (Bradshaw et al., 2014). 

The WSS can infest a wide range of hosts, although wheat is now considered its preferred 

host (Wallace and McNeal, 1966). Prior to the expansion of wheat production, the WSS was 

primarily a pest of native grasses in North America (Eckroth and McNeal, 1953), including certain 
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species of the genera Elymus, Agropyron, Hordeum, Bromus, Phleum, Deschapsia, 

Calamagrostis, and Festuca (Ainslie, 1920). The WSS will also infest many of the small grained 

cereals, including wheat, rye, spelt and barley. The spread of WSS was facilitated by the rapid 

expansion of the wheat acreage across the prairie provinces (Beres et al., 2011b). 

2.2.3. Injury to the plant caused by the WSS and the effect on yield 

The WSS causes extensive damage to the wheat plant because of larval feeding activity. 

Symptoms of sawfly infestation include stems that are cut and lodged on the ground, and shrivelled 

kernels with reduced weight and grade (Seamans, 1944). Female oviposition causes little to no 

measurable damage to the wheat plant; however, an entire wheat stem can be bored by a single 

larva in a period of only a few weeks as it winds upwards and downwards through the stem 

(Criddle, 1923). WSS larvae feed on parenchyma and vascular tissue which causes a reduction in 

the photosynthetic capacity of the infested wheat plant (Macedo et al., 2007). Experiments have 

shown a reduction in stomatal conductance, transpiration rates and CO2 levels in WSS infested 

wheat grown in a growth cabinet (Macedo et al., 2005). Severe damage to vascular tissue can 

disrupt the flow of water and nutrients to the developing spike (Wallace et al., 1973). Larval 

feeding activity causes a reduction of kernel weight and mass, which can range from 2.8 - 17 %, 

but can be even more severe when the crop is under nutrient or water stress (Holmes, 1977; Morrill 

et al., 1992b; Seamans, 1944). Towards the end of the growing season, larvae chew their way to 

the base of the plant where they girdle the stem in preparation for overwintering. The most obvious 

sign of WSS infestation is when girdled wheat plants fall to the ground. Without the use of 

specialized equipment, lodged plants are often missed at harvest, greatly increasing the total yield 

loss. Under moderate infestation, a conservative estimate of yield loss attributed to the WSS 

cutting is around 30%, although much higher losses have been reported (Ainslie, 1920).  

2.3. Controlling the WSS 

Several environmental factors have been suggested by Seamans (1945) to influence WSS 

survival, and could be considered when forecasting severity of infestations. Precipitation received 

in the fall can cause even maturation of host plants resulting in eggs being better dispersed as 

opposed to multiple eggs being laid in the same plant. This can result in wider levels of infestation. 

Conversely, wet and cool conditions during early spring can negatively impact larval pupation. 

Excessive moisture received during peak larval feeding activity causes plants to uptake water 
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which can result in drowning of the larva. Recently environmental factors have been incorporated 

into an Artificial Neural Network (ANN) model capable of predicting stem cutting, which allows 

producers to change their harvest management strategy to reduce losses (Beres et al., 2017). 

2.3.1. Parasitism of the WSS 

Natural parasites of the WSS can be important for naturally reducing populations. There 

are nine species of insects known to parasitize the WSS, of which only two, Bracon cephi (Gahan) 

and Bracon lissogaster (Musesebeck), are currently effective in reducing WSS populations in 

wheat (Runyon et al., 2012); both B. cephi and B. lissogaster are ectoparasitic wasps of the 

Hymenoptera. Of the two, B. cephi is considered the most economically important towards 

reducing WSS losses. Bracon cephi is a solitary insect whereas B. lissogaster can be solitary or 

communal (Nelson and Farstad, 2012). Both species produce two generations per year in native 

grasses versus the single generation per year in the WSS. Rates of parasitism by B. cephi in wheat 

is highly variable, with parasitized WSS larvae ranging between 7 – 88 %.  

The females of B. cephi and B. lissogaster can sense WSS larval movement inside the stem, 

periodically stopping to tap the stem with their antennae. Once located, the female will cut into the 

wheat stem and paralyze the WSS larva with her ovipositor by injecting it with toxins (Weaver et 

al., 2004). Next the female will deposit between one and four eggs, either on, or near, the paralyzed 

WSS larva. Paralyzed WSS larvae are more likely to be cannibalized by other WSS larvae present 

within the stem (Weaver et al., 2005). The oviposition of several eggs by female WSS within a 

single stem could be a mechanism to promote survival from parasitism (Weaver et al., 2005). After 

the parasitoid larva has hatched, it will feed on the WSS larva for six to eight days before spinning 

a cocoon close to the initial feeding site.  

In contrast to the WSS larvae which overwinter below ground, larvae of both parasitoid 

species overwinter in the upper half of the stem located above ground. As such, excessive tilling 

and stubble management can negatively impact the parasitoid survival through to the subsequent 

growing season, while at the same time does little to reduce WSS survival. Therefore, minimal till, 

or chemical fallow are preferred over intensive tilling (Runyon et al., 2002). At harvest, cutting 

height should be raised to preserve B. cephi populations, especially in WSS prone areas. Parasitoid 

larvae can survive in solid-stemmed wheats and can therefore be used as part of an integrated crop 

management strategy.  
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2.3.2. Chemical control 

Chemical control is generally not effective in managing WSS because much of the insect’s 

life cycle is spent as larvae protected within the stem. Control of adult WSS through contact 

insecticides has not proven effective because insects emerge over a period of several weeks making 

multiple pesticide applications necessary. Thus, the primary target for WSS control is the larval or 

prepupal form. As such, the chemicals used must be systemic in their mode of action (Wallace and 

McNeal, 1966). Two chemicals have been used with varying levels of success. The 

organophosphorus insecticide phorate has been used as a seed treatment (Wallace and McNeal, 

1966). Heptachlor and heptachlor epoxide are also used, although are not systemic in their mode 

of action but are up-taken into the plant in sufficient quantities to kill larvae (Holmes and Peterson, 

1963). Recently the systemic insecticide Thimet 20-G (Phorate: 0,0-diethyl S-[(ethylthio) methyl] 

phosphorodithioate) was registered for use against the WSS in Montana (MSU, 2015), although 

the chemical is considered highly toxic to humans, earthworms, aquatic organisms, and birds, and 

poses the risk of contaminating groundwater. 

2.3.3. Cultural control 

Several cultural control strategies to reduce WSS populations have been investigated with 

varying levels of success. The insect overwinters in wheat stubble, thus early researchers 

intuitively hypothesized that burning of stubble would be effective in reducing larval populations 

in infested fields. However, it was later discovered that the burning of stubble does little to 

negatively impact larvae in stubs (Ainslie, 1920) because the heat of the fire does not penetrate 

deep enough into the ground to reach the insect (Criddle, 1923). Moreover, the burning of stubble 

is not a recommended practice in modern agriculture because of soil erosion issues and the removal 

of organic matter. Furthermore, because parasitoids overwinter higher in the stub, burning is likely 

to have a more of a negative impact on parasitoids and is therefore not recommended.  

Tillage has sometimes proven effective in the control of WSS. The most effective tilling 

strategy is deep burial of infested residue at least 12 cm or more ideally with the stub landing face 

down into the soil (Wallace and McNeal, 1966). However, the WSS is a resilient insect and can 

chew its way though the soil to freedom if tilling depth is not achieved. In the cold winters 

experienced throughout Western Canada, larvae in stubs that are exposed above ground through 

fall tillage may not survive in years when snow cover is minimal (Holmes and Farstad, 1956). 
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Tilling or mowing of native grasses adjacent to wheat fields could harm natural parasitoids and is 

not advised.  

Crop rotation to non-hosts such as flax, canola, or mustard is an effective control strategy 

when sown after a heavy WSS infestation. In addition, sowing to hosts that reduce survivability of 

the larvae, like barley, can effectively reduce an infestation from severe to mild (Wallace and 

McNeal, 1966). Some hollow-stemmed cultivars of wheat, including many durum cultivars, appear 

to be less prone to WSS infestation than others, or otherwise negatively impact larval growth and 

development (Sherman et al., 2010). The hollow-stemmed cultivars McKenzie, AC Intrepid, 

Katepwa, and AC Avonlea were shown to have a negative effect on WSS fitness when compared 

to other hollow-stemmed lines (Carcamo et al., 2005). Similarly, Beres et al. (2013a) found that 

McKenzie, AC Navigator and AC Avonlea all experience significantly less cutting damage than 

other hollow-stemmed cultivars.  

Altering sowing density can influence susceptibility to the WSS. Increasing sowing density 

and decreasing row spacing can reduce stem cutting because this strategy reduces stem diameter, 

and the female WSS appears to preferentially select large diameter stems for oviposition (Luginbill 

and McNeal, 1959). On the other hand, decreasing sowing density may help maximize the 

expression of stem-solidness in some cultivars, thereby helping to improve resistance to the WSS. 

Agronomic experiments are essential to find the management practices that optimize WSS 

resistance and agronomics. For example, Beres et al. (2011a) found that the solid-stemmed cultivar 

Lillian showed optimized pith expression and grain yield at seeding rates between 250-350 seeds 

m-2, whereas increasing seeding rates of hollow-stemmed cultivars to 400-450 seeds m-2 could also 

decrease the amount of stem cutting in areas prone to damage from WSS (Beres et al., 2011a). 

Similar experiments have not been conducted in durum wheat. 

Because many of the early solid-stemmed cultivars had inferior agronomic performance 

when compared to hollow-stemmed controls, a strategy to use cultivar blends consisting of hollow 

and solid-stemmed cultivars has been investigated. However, these studies suggest that the strategy 

may only be effective under low to moderate infestation (Weiss et al., 1990). Beres et al. (2007) 

compared stem cutting in AC Eatonia (solid-stemmed) and AC Abbey (hollow-stemmed), to a 1:1 

(hollow:solid) cultivar blend, and found that solid-stemmed cultivars always incurred the least 

stem-cutting of the three treatments. 
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The use of trap crops has been investigated as a strategy to control the WSS. This control 

strategy is centered around the observation that sawfly infestation is heaviest near the edge of fields 

bordering previous sites of infestation (Weaver et al., 2004). This is primarily because sawfly are 

weak flyers and will prefer to oviposit on the nearest suitable host. This causes greater damage 

under strip-cropping systems, implemented in some regions to reduce wind erosion and preserve 

soil moisture, where alternating strips of crop and fallow are sown thereby increasing the ratio of 

edge to interior (Weaver et al., 2004). Adoption of agricultural practices like strip-cropping 

promoted WSS population growth. To take advantage of the edge effect associated with WSS 

oviposition, trap crops have been used to reduce WSS population size. This approach uses WSS 

susceptible cultivars and species around the field perimeters and along ditches where native grasses 

harbouring WSS larvae exist (Beres et al., 2011b). Non-wheat trap crops include rye grass (Lolium 

perenne L. Poaceae) and brome grass (Bromus inermis Leyss. Poaeceae). After early infestation, 

trap crops are removed by mowing, or tillage, well before maturity thereby destroying any larvae 

present. The cutting of native grasses in neighbouring sites is not recommended due to the negative 

impact on parasitoids of the WSS (Beres et al., 2011b).  

An alternative strategy to sowing susceptible cultivars along the field perimeters is to sow 

a resistant cultivar, such as a solid-stemmed durum or common wheat cultivar (Beres et al., 2009). 

The benefits of this strategy over conventional trap crops are numerous. In this system, the trap 

crop can be harvested, thus the pre-harvest removal of the trap crop is not required. Not only does 

this prevent issues associated with tillage, it also preserves natural parasitoid populations. 

However, use of the solid-stemmed cultivar AC Eatonia under heavy infestations was not effective 

in reducing WSS populations; this may have been attributed to environmental effects that can 

reduce stem-solidness in some cultivars (Beres et al., 2009).  

2.3.4. Expression of solid-stem in common wheat 

The expression of the solid-stem trait in hexaploid wheat is influenced by environment 

including the amount of light/rain received, photoperiod, plant density/spacing and temperature 

(McNeal et al., 1966; Platt, 1941; Weiss and Morrill, 1992). Light is clearly the most important 

environmental factor, as shading has been shown to completely inhibit the expression of pith in 

common wheat (Platt, 1941). In contrast, high intensity of sunlight results in maximal pith 

expression (Holmes, 1984; Roberts and Tyrrell, 1961). Solid-stem expression is also inversely 
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related to the amount of precipitation received and number days with measurable precipitation 

specifically between May 25-July 5 (Hayat et al., 1995).  

Nitrogen (N) and phosphorus fertilizer rates can increase expression of pith in hexaploid 

wheat, however excessive application may inhibit pith expression (Beres et al., 2012). 

Micronutrient blends do not appear to influence pith expression. Moderate N application rates (30 

to 60 kg N ha-1) coupled with moderate seeding rates (250-300 seeds m-2) of solid-stemmed 

cultivars may provide the best balance of pith expression and yield potential (Beres et al., 2012). 

2.3.5. Host resistance to WSS 

The solid-stem phenotype has been used as the primary means of minimizing damage 

caused by the WSS for almost a century. Beginning in the early 1930s, attempts to select for host 

resistance to the WSS were initiated (Beres et al., 2011b) after (Kemp, 1934) proposed that solid-

stemmed cultivars could negatively impact feeding of the stem mining WSS larvae. Under WSS 

pressure, solid-stemmed cultivars can incur up to 50% less damage (DePauw et al., 1994), and 

modern spring sown cultivars have superior yield and quality when compared to susceptible 

cultivars (Beres et al., 2007; Beres et al., 2009). Solid-stemmed cultivars are not immune to WSS 

damage, but should be considered the starting point for an integrated pest management approach 

(Beres et al., 2013a). Some of the early solid-stemmed lines were agronomically inferior to their 

hollow-stemmed counterparts, thus performing poorly in years when WSS pressure was low. 

Recent Western Canadian breeding efforts have led to the release of the solid-stemmed spring 

wheat line AC Lillian and CDC Landmark, both of which have comparable yield and quality 

characteristics to hollow cultivars irrespective of WSS pressure (DePauw et al., 2005). Similarly, 

three solid-stemmed durum lines CDC Fortitude (C. Pozniak), AAC Cabri, and AAC Raymore (D. 

Singh) were recently registered in Western Canada, all of which have strong performance relative 

to check cultivars. 

2.3.6. Development of the wheat stem 

To understand how wheat phenological development relates to WSS infestation, it is 

important to consider how stem elongation occurs. The wheat stem is composed of two structures, 

the node and internode, with the final number of each depending on several genetic and 

environmental factors (Holmes, 1979). In general, the terminal four to seven nodes will elongate 
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to form the shoot, whereas additional basal nodes remain hidden below the basal leaf sheath and 

do not extend (McMaster, 1997). In fall-planted winter wheat, stem elongation will only begin 

after the vernalization requirement has been met the following spring, whereas in spring-planted 

wheat there is no such vernalization requirement. The timing of stem elongation in winter wheat 

is influenced by genetic factors including the vernalization (VRN) genes on chromosome 5A, 5B 

and 5D (Chen et al., 2009), which could influence when the stem is exposed during peak sawfly 

flight. During stem elongation, the basal internode elongates first, and is followed subsequently by 

the node above it, as growth continues towards the uppermost internode (peduncle) which 

elongates last. During stem elongation, there is a period of concurrent elongation between two 

neighboring internodes.  

Internode growth originates from a meristematic tissue located at the base of each internode. 

The origin of pith in solid-stemmed cultivars has not been identified, although it likely originates 

from the same meristematic region that gives rise to internode growth. In some solid-stemmed 

wheats, there is a tendency for pith to collapse and leave pockets of air space, presumably because 

elongation of the stem wall occurs faster than the pith can expand to fill the space (Putnam 1941). 

Alternatively, pith parenchyma may cease growth and division early in stem-elongation, which 

might lead to minor tearing and small cavities within the culm. The higher incidence of pith 

breakdown in some plants that are heterozygous for SSt1 suggests that gene dosage might be 

involved. The speed at which stem elongation occurs varies between cultivars (Whitechurch et al., 

2007), thus could have a major influence on pith development. 

2.4. Stem-solidness in wheat 

2.4.1. Origin of solid-stemmed wheat 

There are at least four known sources of solid-stemmed wheat from which most modern 

lines are thought to have originated (Beres et al., 2013b). Depending on the source there can be 

significant differences in the level of pith expression (Beres et al., 2011b). The known sources 

include:  

1) S-615 (hexaploid landrace) 

2) Golden Ball (durum) 

3) Biodur (durum) 

4) Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C Wang (tall wheatgrass)  
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S-615 is a landrace that originated from New Zealand from which most solid-stemmed 

hexaploid cultivars released prior to 2010 were derived (Beres et al., 2011b). In North America, 

the first commercially available solid stem variety derived from S-615 was ‘Rescue’ and was 

released in 1948 (Platt et al., 1948) followed by the release of ‘Chinook’ in 1952 (Grant and 

McKenzie, 1964). The WSS resistance in Rescue was inadequate due to a considerable variation 

in pith expression, which could range from semi-solid to practically hollow (Platt et al., 1948). 

Recently it was discovered that S-615 is heterogeneous for SSt1 (Beres et al., 2013b). It is therefore 

possible that some of the variability in solid-stem expression derived from the S-615 source could 

be due to heterogeneity in some seed sources. 

The second source of stem-solidness is Golden Ball, which is a durum (Triticum turgidum 

L. var durum) cultivar with a solid stem, particularly in the top internode where most WSS eggs 

are oviposited (Platt, 1941). The genetic control of stem-solidness in Golden Ball was originally 

classified as being monogenic and partially dominant (Putnam, 1942). A single gene in Golden 

Ball was localized to chromosome 3B and it is likely the same gene carried by S-615 (Larson and 

Macdonald, 1963). This gene can be crossed into other durum lines to achieve effective levels of 

stem-solidness. The same does not hold true when crossing the gene from Golden Ball into 

hexaploid wheat, which almost always results in progeny with inferior levels of stem solidness. 

Platt and Larson (1944) were unable to recover hexaploid progeny with solid stems in interspecific 

crosses between RL1097/Golden Ball and Regent/Golden Ball. Larson and Macdonald (1963) 

made crosses between S-615/Golden Ball and Rescue/Golden Ball, but were unable to obtain any 

hexaploid progeny in later generations that were as solid as Golden Ball. They did, however, obtain 

progeny that were similar in solidness to S-615. It was concluded that D-genome suppression was 

likely responsible for the lack of solidness in the top internode in all hybrids (Larson and 

Macdonald, 1963). More recently, Clarke et al. (2005a) successfully developed two WSS resistant 

hexaploid wheat germplasm lines (G9608B1-L12J11BF02, G9608B1-L12J13AU01) by crossing 

Golden Ball with Aegilops taushii L. (2n = 2x = 14, DD) and selecting solid-stemmed progeny. 

Both lines show considerable improvement in pith expression comparable to Golden Ball, and are 

an improvement over solid-stemmed lines derived from the S-615 source. 

Biodur is a cultivar of German origin that has been used as the predominant source of stem 

solidness in Western Canadian durum wheat breeding programs. Currently registered CWAD 
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cultivars CDC Fortitude (Pozniak et al., 2015), AAC Raymore (Singh et al., 2014) and AAC Cabri 

(Singh et al., 2016). 

Finally, T. ponticum, is a wild relative of modern wheat. Attempts to transfer the resistance 

from T. ponticum into hexaploid wheat are often unsuccessful, yielding offspring that are less solid 

than S-615. Nevertheless, the hexaploid line ‘CAC’ and the Australian cultivar ‘Janz’ both derive 

their stem-solidness from T. ponticum and have a high level of resistance to stem-cutting (Beres et 

al., 2013b). 

2.4.2. Genetic control of stem-solidness  

Pioneering work by Yamashita (1937) led to the proposal of several genetic factors located 

on each of the genomes in wheat. In tetraploid wheat, he postulated that the A genome carries a 

gene conferring stem-hollowness and a gene conferring stem solidness. He also suggested multiple 

alleles of a gene conferring stem-solidness on the B genome, and identified a gene which was 

name OD on the D genome that epistatically inhibits the expression of stem-solidness genes located 

on the A and B genome. In an examination of monosomics of S-615, Larson and Macdonald (1959) 

found that genetic factors on several D genome chromosomes carry suppressors of stem-solidness, 

which supported the findings of Yamashita. 

Putnam (1942) was the first to suggest durum wheat carries a major dominant gene 

conferring stem-solidness on the B genome. Bozzini and Avanzi (1962) were able to induce the 

expression of stem-solidness in the normally hollow-stemmed durum wheat ‘Cappelli’ by X-ray 

irradiation, which they hypothesized was due to the disruption of a gene conferring stem-

hollowness, which again supports the observations of Yamashita (1937). 

Unlike in durum, the expression of the solid stem trait in hexaploid wheat is variable. 

Depending on the study, its genetic control has been described as being dominant, partially 

dominant, recessive or complex (Clarke et al., 2002). There is also a large effect of environment 

and genetic background on trait expression which suggests stem-solidness is quantitatively 

inherited in hexaploid wheat (Hayat et al., 1995). For example, when studying the crosses Red 

Bobs/C.T.715, and Redman/S-615, McKenzie (1965) found that four genes were responsible for 

controlling stem-solidness, including one major gene, and several minor genes with epistatic 

effects. Additional crosses made between hollow-stemmed cultivars Thatcher and Renown with 

S-615 and S-633 suggested up to three genes were involved in stem-solidness, but solidness was 
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only expressed when all three genes were in the homozygous recessive condition (McKenzie, 

1965; Platt et al., 1941).  

Larson and Macdonald (1966) studied whole chromosome substitution lines where 

individual chromosomes of the hollow hexaploid line Apex were substituted into the solid cultivar 

S-615. They found that both lines carry loci important for stem solidness and hollowness. 

Chromosomes 2A, 2D, 4A, 6A and 6D of Apex caused the stem to be hollower whereas 

chromosome 5D caused increased pith expression in the upper part of the lower internodes. The 

3B substitution line was hollower than S-615 at all internodes. Moreover, chromosome 3D of S-

615 was shown to have a smaller but positive effect on pith development. Gene dosage may also 

be important for solid stem expression because under ideal environmental conditions disomic S-

615 3B lines had more pith than monosomic 3B in Apex (Larson and Macdonald, 1966). 

It is now well established that much of the genetic variance conferring the solid-stem trait 

in most genetic backgrounds is controlled by a single gene (SSt1) on chromosome 3B in both wheat 

species. Both S-615 and Golden Ball carry the “resistant” marker allele for SSt1 on chromosome 

3BL (Beres et al. 2013b), suggesting that they may contain the same genetic factor(s) conferring 

pith expression. In common wheat, Cook et al. (2004) were first to use QTL mapping to identify 

the major locus Qss.msub.3BL linked to the SSR markers gwm247, gwm340 and Xgwm547. In 

durum wheat, a gene controlling stem-solidness was found to work in a dominant manner by 

examining the progeny of the crosses Trinakria/DT267, Hugenot G/DT369, Hugenot W/DT369 

8678-1048A/Hugenot G Kamilaroi/Hugenot G, and W9262-260DS/Kofa (Clarke et al., 2002). 

Genetic studies later localized this major gene in durum wheat to chromosome 3BL (SSt1) between 

the flanking SSR markers gwm114 and gwm247 (Figure 2.1A) (Houshmand et al., 2007). Recent 

unpublished work has identified several additional markers contained within the map interval 

(Figure 2.1). 
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Figure 2.1. Mapping the SSt1 locus (A) Original genetic map position of SSt1 (Houshmand et al. 

2007); (B) High density genetic map of SSt1. Markers in bold were developed from BAC 

sequences obtained from the current 3B physical map. Distance between markers is on left of 

genetics maps in cM. (unpublished data). 

 

In addition to the locus on 3BL, Lanning et al. (2006) used bulked segregant SSR analysis 

to map stem-solidness in a cross between solid line Choteau, and semi-solid line MTHW9904. 

This study identified a secondary locus on chromosome 3DL (Qss.msub-3DL) carried by Choteau 

linked to the SSR primer gwm645. It is currently unknown whether Qss.msub-3DL corresponds to 

the homoeologous region of Qss.msub-3BL 

Recent evidence suggests that multiple alleles could be present at the Qss.msub-3BL locus, 

that these alleles may influence whether the plant retains its stem-solidness at maturity, or 

undergoes pith breakdown leaving a hollow, or partially hollow stem. The first evidence for 

multiple alleles at Qss.msub-3BL was presented by Talbert et al. (2014) who found different 

banding patterns using the SSR marker gwm340 in the lines ‘Scholar’ and ‘Conan’. Both Scholar 

and Conan express similar levels of stem-solidness, however, the Conan allele conferred a higher 

level of resistance to stem cutting in field experiments. Varella et al. (2015) performed association 

mapping in a diverse panel of hexaploid lines and identified markers on chromosome 3B 

associated with early stem-solidness (BS00065603_51) and late stem-solidness (BS00074345_51). 
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Additional QTL conferring early stem-solidness were localized to 5D (BobWhite_c8092_726) and 

1B (RAC875_c8662_762). The temporal pattern of stem-solidness expression was investigated in 

more detail by (Varella et al., 2016) by examining the solid-stemmed cultivars ‘Conan’ and 

‘Choteau’. Choteau, which derives its stem solidness from S-615, had strong dense pith that was 

present throughout stem elongation to maturity, whereas Conan had high levels of pith early in 

stem elongation, but became less solid at maturity. The Conan allele appears to have a unique 

haplotype around SSt1 (Cook et al., 2017) differing from the S-615 source.  

Most recently, Oiestad et al. (2017) looked at gene expression in two NILs from the entire 

uppermost internode of plants grown in the field at Feekes stage 7 prior to the appearance of the 

flag leaf; this study identified 260 genes within the Qss.msub.3BL interval, and suggested a 

putative candidate gene encoding an O-methyltransferase (OMT) based on differential expression 

between contrasting phenotypes. 

2.4.3. Effect of solid-stem expression on yield 

There are conflicting reports in the literature that suggest a possible negative correlation 

between the expression of the solid-stem trait and yield in the absence of WSS infestation (Hayat 

et al., 1995; McNeal et al., 1965; Weiss and Morrill, 1992). As a result, there has been some 

reluctance on behalf of growers to grow solid-stemmed cultivars, particularly when the risk of 

WSS activity is low (Beres et al., 2013a). One possible reason for the contradictory findings may 

be attributed to differences between spring and winter wheat. The authors of a study using near-

isogenic lines (NILs) differing only by the presence or absence of the stem-solidness allele at 

Qss.msub.3BL concluded that a yield penalty was more related to genetic background, as opposed 

to negative pleotropic effects of Qss.msub.3BL on yield (Sherman et al., 2015). Therefore, 

selection for solid-stemmed cultivars with improved yield should be possible (Hayat et al., 1995). 

McNeal and Berg (1979) found that solid stemmed spring wheat cultivars yielded as much or better 

than hollow-stemmed cultivars. Ford et al. (1979) studied yield differences between hollow and 

solid-stemmed cultivars in 10 different crosses and observed no negative effect on yield associated 

with the solid stem trait. Moreover, solid-stemmed lines were more resistant to lodging compared 

to hollow-stemmed lines, preventing additional yield losses at harvest (Ford et al., 1979). The 

predominant source of the solid stem trait, S-615, is known to be agronomically inferior, and 

contributes few desirable traits outside of solid stem, which could explain some of the reported 
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negative correlations. Lebsock and Koch (1968) suggest the correlations between stem-solidness 

and yield are weak and can be overcome by parental selection and breeding.  

2.4.4. Effect of solid-stem on the developing WSS 

Pith acts as a physical barrier that restricts the movement of the WSS larva within the stem. 

Early investigation of WSS infestation using 18 solid-stemmed wheat lines showed larvae in solid-

stemmed cultivars almost never succeeded in boring through the first node (Kemp, 1934), and 

never were successful in boring through two nodes (Morrill et al., 1994). Morrill et al. (1994) 

found that solid-stemmed cultivars had 89% lower infestation levels compared to hollow-stemmed 

counterparts, which may be attributed to the rapid desiccation that occurs in the pith that 

contributes to early larval desiccation and mortality (Holmes and Peterson, 1961; Holmes and 

Peterson, 1962). Because WSS larvae must reach the base of the plant before girdling the stem, 

Kemp (1934) also noted that solid-stemmed wheat cultivars infested by WSS larvae seldom 

experienced cutting. In addition to providing resistance to stem cutting, solid-stemmed cultivars 

can also have a negative effect on the insect’s fitness and reproduction. Larvae that emerge from 

solid cultivars have significantly lower body weights (Beres et al. 2013b). Carcamo et al. (2005) 

found that solid stemmed cultivars AC Eatonia, AC Abbey, Lancer and Leader all had a negative 

impact on female WSS weight, size and fecundity. Thus, the reproductive potential of sawflies 

emerging from hollow stems is higher than those emerging from solid-stemmed cultivars 

attributable to increased insect biomass (Carcamo et al., 2005). Moreover, larvae emerging from 

some hollow cultivars carry significantly more eggs as adults than those emerging from solid 

cultivars. Solid-stemmed cultivars do not affect overwintering mortality (< 8 % of larvae die during 

winter) of C. cinctus (Cárcamo et al., 2011). It should be noted that stem-solidness may not be a 

perfect indicator of resistance to the WSS in both species of wheat, as differences in infestability, 

egg survival and larval survival exist among cultivars, and is influenced by environments (Roberts 

1954).  

2.5. The link between stem-solidness, drought resistance and remobilization of water soluble 

carbohydrates 

New evidence suggests that the solid-stem phenotype could be an important contributor to 

the remobilization of water soluble carbohydrates (WSCs) such as the fructans, glucose, fructose, 

and sucrose from the stem under certain types of post-anthesis stress. In wheat, WSCs can make 
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up to 45% of the stem dry weight (Housley, 2000). Saint Pierre et al. (2010) found that stem-

solidness was positively correlated with the WSC content in the upper internode, and that WSC 

content was positively correlated with grain yield under water limiting conditions. WSC content 

stored in the stem can be an important carbohydrate reserve that can be remobilized by the plant 

during grain filling under drought stress after anthesis, when photo assimilates are limiting 

(Ruuska et al., 2006; Sharbatkhari et al., 2016). Thus, the solid-stem trait may be of interest when 

breeding for resistance to drought, which is a major limiting factor for agriculture in many parts 

of the world (Saint Pierre et al., 2010). In addition, genotypes that accumulate greater amounts of 

stem WSCs have been linked to resistance to salinity by aiding in the osmotic adjustment (OA) 

and controlling the entrance of sodium into the root and uptake into the vacuoles to prevent damage 

to photosystems. Further research is required to better understand the complexities of carbon 

partitioning in modern solid-stemmed cultivars, but these findings suggest wheat breeders could 

target WSC content in new cultivars that are grown in regions under frequent drought stress. 
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3. SOWING DENSITY AND CULTIVAR EFFECTS ON PITH 

EXPRESSION IN SOLID-STEMMED DURUM AND COMMON WHEAT 

ABSTRACT 

The wheat stem sawfly (Cephus cinctus) is a destructive insect pest of spring, winter 

(Triticum aestivum L.) and durum wheat (Triticum turgidum L. var durum) throughout the 

Northern Great Plains of North America. Sawfly larvae hatch from eggs deposited inside the stem, 

and their subsequent feeding damages vascular tissue, reducing photosynthetic capacity and grain 

yields. Growing solid-stemmed wheat cultivars that develop pith in the culm lumen is the most 

effective method to minimize yield losses. Recent work has focused on optimizing sowing 

densities to achieve maximum levels of pith expression and grain yields in common wheat; 

however, little research has been conducted on durum wheat. We investigated the influence of four 

sowing densities (150, 250, 350, 450 seeds m-2) on pith expression in two newly released solid-

stemmed durum cultivars, CDC Fortitude and AAC Raymore, and compared them to the solid-

stemmed common wheat cultivar, Lillian. CDC Fortitude and AAC Raymore displayed 

consistently high levels of pith expression across environments and sowing densities, in contrast 

to Lillian, which produced only slightly more pith than the hollow-stemmed durum check cultivar, 

Strongfield. A yield drag often associated with high pith expression was not evident as CDC 

Fortitude and AAC Raymore produced grain yield similar to Strongfield. When averaged over 

cultivars, increasing sowing density had a positive effect on grain yield in all cultivars, but was 

negatively associated with stem solidness. Our findings suggest that, unlike with CWRS solid-

stemmed cultivars, altering sowing density is not required to achieve effective sawfly resistance 

with CDC Fortitude and AAC Raymore. 

 

Disclosure: 

This chapter has been published in Nilsen, K.T., J.M. Clarke, B.L. Beres, and C.J. Pozniak. 2016. 

Sowing Density and Cultivar Effects on Pith Expression in Solid-Stemmed Durum Wheat. 

Agronomy Journal 108:219-228.  
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3.1. INTRODUCTION 

The wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has been 

one of the most damaging insect pests of common (Triticum aestivum L.) and durum wheat 

(Triticum turgidum L. var durum) across the Northern Great Plains of North America for more 

than a century (Beres et al., 2011b). Severe yield losses occur when WSS larval feeding activity 

damages the inner stem tissue, which reduces flag leaf photosynthetic ability (Delaney et al., 

2010), and damages vascular bundles impairing the flow of water and nutrients to the developing 

grain (Morrill et al., 1992a). The greatest sawfly damage occurs in the southern parts of Alberta 

and Saskatchewan, southeastern Manitoba, and throughout Montana, North Dakota, South Dakota 

and western Minnesota (Beres et al., 2011b).  

The life cycle of the WSS has been reviewed in depth by Beres et al. (2011b). Briefly, the 

insect spends up to 10 months of the year in its larval stage nested inside the wheat stem. In early 

spring, larvae will undergo pupation to reach the adult stage. Peak sawfly emergence generally 

occurs from June 10th - July 10th in western Canada (Beres et al., 2011a). Adult sawflies live for 

approximately one week and usually mate shortly after emergence followed by oviposition within 

a few days. The female sawfly has a specialized saw-like ovipositor (hence “sawfly”) used to cut 

the wheat stem. During this process, the female will search for a suitable host plant in which to lay 

an egg, usually beginning at the upper internode of the developing wheat plant (Beres et al., 

2011b). Females prefer succulent plants that are at early boot to anthesis stage with a large enough 

stem diameter suitable for oviposition (Holmes and Peterson, 1960). Eggs hatch approximately 

one week after deposition, and larvae immediately begin feeding on the inner stem wall (Holmes, 

1954). As the growing season progresses, larvae tunnel down through the stem, damaging vascular 

tissue disrupting the flow of nutrients and water to the developing wheat kernels (Morill et al. 

1992). At the end of the growing season, larvae will chew a notch around the inner perimeter of 

the stem at the base of the plant causing it to lodge. (Holmes, 1977). Due to the reduction in grain 

mass coupled with the fact that lodged stems are often not picked up during harvest, yield losses 

attributed to the WSS can be as high as 30 percent (Beres et al., 2007). 

One strategy to prevent yield losses from the WSS is to grow solid-stemmed cultivars that 

develop pith within the culm lumen (Clarke et al., 2002). The development of pith increases egg 

mortality through mechanical crushing, and can act as a barrier impeding larval growth and 

development inside the stem (Holmes and Peterson, 1961; Holmes and Peterson, 1962). Solid 
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cultivars generally incur less damage from larval feeding, and have a lower proportion of stems 

cut at maturity (Sherman et al., 2015; Talbert et al., 2014). Surviving larvae collected from solid 

cultivars have lower body mass, size, and fecundity (Carcamo et al., 2005), although the presence 

of pith does not appear to significantly influence the overwintering mortality of the insect 

(Cárcamo et al., 2011). Solid-stemmed cultivars are not immune to sawfly damage, but should be 

considered the starting point for an integrated pest management approach (Beres et al., 2013a). 

There are currently no registered pesticides available to control WSS because the insect spends 

most of its life cycle inside the wheat stem shielded from insecticide contact (Wallace and McNeal, 

1966). Adult sawflies emerge from infested stubble over a period of several weeks, making them 

difficult to control with a single chemical application, and multiple applications may be too costly 

to justify (Knodel et al., 2009). In western Canada, peak sawfly emergence has been shown to 

coincide with growing degree days (between 578-595 GDD), which could be used to predict the 

optimum time for chemical application (Beres et al., 2011c). Delaying seeding to avoid peak 

sawfly emergence time can substantially reduce damage, but this is not a practical strategy 

considering the short growing season on the Canadian prairies (Beres et al., 2007). 

Attempts to select for host resistance to the wheat stem sawfly were initiated beginning in 

the early 1930s (Kemp, 1934). Most of the solid-stemmed common wheat cultivars are derived 

from the Triticum aestivum L. line S-615. The first S-615 derived cultivars were Rescue, Chinook 

and Cypress (Larson and Macdonald, 1966). Currently registered S-615 derived solid-stemmed 

Canada Western Red Spring (CWRS) cultivars include AC Eatonia (DePauw et al., 1994), AC 

Abbey (DePauw et al., 2000), and Lillian (DePauw et al., 2005). Pith expression in common wheat 

cultivars derived from S-615 can be quite variable and is heavily influenced by environmental 

factors. Sunlight intensity, the amount of precipitation, and days with measurable precipitation 

between the end of May to early July (Eckroth and McNeal, 1953; Holmes, 1984) all influence 

expression of pith under commercial sowing densities. Variable sowing densities have been 

investigated as one strategy to manipulate light penetration through the canopy to achieve 

maximum levels of pith expression. Because altering sowing densities can also influence other 

yield components, agronomic studies are essential to understand the best compromise for 

achieving maximum yield while maintaining adequate sawfly resistance. Similar studies have 

previously reported that pith expression in common wheat was inversely related to sowing density 

(Beres et al., 2011a; Beres et al., 2012), and was optimized at sowing densities of 250 to 350 seeds 
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m-2 (Beres et al., 2011a). In contrast, grain yield was positively related to sowing density, and was 

highest at sowing densities of 350 to 450 seeds m-2 (Beres et al., 2011a).  

The entire durum wheat growing region of North America falls within the geographical 

range of the WSS (Beres et al., 2011a), but to date no research has investigated the effect of sowing 

density on pith expression and components of grain yield in solid-stemmed durum wheat. Durum 

wheat displays superior sawfly tolerance over common wheat; and through greater straw strength, 

hollow-stemmed durum wheat cultivars are less prone to lodging than hollow common wheat once 

girdled and cut by larvae (Eckroth and McNeal, 1953). There are at least two main sources for 

stem solidness in durum wheat: 1) Golden Ball and 2) Biodur. Recently, two new Biodur-derived 

solid-stemmed durum cultivars were registered in western Canada, AAC Raymore (Singh et al., 

2014) and CDC Fortitude (Pozniak et al., 2015).  

Pith expression in common wheat is controlled by the major QTL Qss.msub-3BL, located 

on the long arm of chromosome 3B (Cook et al., 2004). Additional minor QTL have been localized 

to chromosomes 3D (Lanning et al., 2006) and 5D (Varella et al., 2015). Stem-solidness in durum 

wheat is controlled by a single dominant gene ‘SSt1’ on chromosome 3BL (Houshmand et al., 

2007) and its expression is relatively stable across environments (Clarke et al., 2002). Despite the 

proximity of SSt1 to Qss.msub-3BL, it remains unclear whether common wheat and durum wheat 

share the same gene for stem-solidness.  

The goal of this research was to investigate the effect of sowing density on pith expression 

and other agronomic traits in durum wheat in order to maintain the highest possible level of sawfly 

resistance without sacrificing grain yield potential. The research presented here tests the following 

hypotheses: i) pith expression in durum wheat will decrease with increased sowing density, 

whereas grain yield will increase, ii) pith expression in durum wheat will be more stable across 

environments than in common wheat, and iii) solid-stemmed durum cultivars CDC Fortitude and 

AAC Raymore will be similar in grain yield to hollow check Strongfield. 
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3.2. MATERIALS AND METHODS 

3.2.1. Experimental design 

Experimental field trials were established near Coalhurst (AB, Canada), Lethbridge (AB, 

Canada), and Saskatoon (SK, Canada) during the 2012 to 2014 growing seasons. The 2012 site 

near Saskatoon was located at the Goodale research farm. The 2013 field site at Goodale was lost 

due to early season flooding, therefore the location was moved to a field site near Kenaston (SK, 

Canada) in 2014. Cropping systems at all sites were conducted in a wheat-fallow scheme, except 

for the Kenaston site which was seeded into lentil stubble from the previous year. The experimental 

design for each location was a randomized complete block design with four replications, wherein 

treatments were arranged in a 4 x 5 factorial design testing the interaction between sowing density 

x cultivar. Five cultivars (CDC Fortitude, AAC Raymore, Strongfield, Golden Ball, Lillian) and 

four sowing densities (150, 250, 350 and 450 seeds m-2) were selected for this experiment. The 

cultivars were selected from the Canada Western Amber Durum (CWAD), and Canada Western 

Red Spring (CWRS) market classes, which included the hollow control Strongfield (Clarke et al., 

2005b), the solid-stemmed CWAD cultivars AAC Raymore (Singh et al., 2014) and CDC 

Fortitude (Pozniak et al., 2015), the solid-stemmed CWRS cultivar Lillian (DePauw et al., 2005) 

and the solid-stemmed durum landrace Golden Ball (Clark et al., 1922). Seeds were treated with 

fungicide (Dividend XL RTA, Syngenta Crop Protection Canada) prior to sowing.  

3.2.2. Experimental measurements 

Temperature and photoperiod were measured at each location using Hobo Pendent 

temperature and light loggers (Onset Computer Corporation; part no. UA-002-XX). Sensors were 

attached to fiberglass stakes positioned above the level of the canopy and placed in each replication 

between two plots at the approximate center of each range. Supplemental long-term average 

monthly temperature and precipitation data were collected from Environment Canada 

(http://climate.weather.gc.ca/) for each location. 

Plant density (plants m-2) was assessed in May - June, depending on location, by staking a 

1 m section of two randomly selected rows within each plot. Spike densities (spikes m-2) were 

assessed between the end of July and early August using the same approach. The number of spikes 

per plant was calculated by dividing the total number of plants m-2 by the number of spikes per m-

http://climate.weather.gc.ca/
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2. Plant heights (cm) were measured by taking an average of the whole plot after grain filling. 

Lodging ratings were recorded on a per plot basis prior to harvest using a 1 (no lodging) to 9 

(completely lodged) scale.  

Stem solidness ratings were recorded at physiological maturity by taking the average rating 

from the main stem of 10 to 25 plants selected randomly from each plot. Because the upper 

internodes of the plant were previously shown to be the most important for sawfly oviposition, 

stem internodes were labelled sequentially, beginning with internode 1 located closest to the spike 

of the plant, down to internode 5, located closest to the crown. Each stem was split longitudinally 

and each internode was assigned a rating according to the following scale; 1: Hollow stem - no 

pith development, 2: Minimal signs of pith development, may appear ‘cotton-like’, 3: Large 

hollow tunnel in the stem, or, a huge cavity at a particular point in the internode, 4: Size of cavity 

equivalent to a pencil lead, or, some cavitation has occurred at a particular point in the internode, 

5: Solid-stem filled entirely with pith (Beres et al., 2012; Depauw and Read, 1982; Pozniak et al., 

2015). Analysis of the stem solidness data was performed separately by internode, in addition to 

using a combined rating averaged across the entire stem.  

Plots were harvested at maturity using a small plot combine to measure grain yield from 

which sub-samples were collected to test for grain protein concentration (%), test weight (kg hL -

1) and seed mass (g 1000 -1). Grain protein was assessed using near infrared reflectance 

spectroscopy technology (Foss Decater GrainSpec, Foss Food Technology Inc.). 

3.2.3. Statistical analysis 

Data were analyzed using the MIXED procedure of SAS 9.3 (Littell et al., 2006). Sowing 

density, cultivar and the sowing density x cultivar interaction were considered as fixed effects and 

determined significant if p ≤ 0.05. Site-years and replications were considered as random effects. 

Final data analysis was performed as a combined analysis across eight testing environments to 

generate least square means (LS means) for all traits. Normality of model residuals was assessed 

using the UNIVARIATE procedure of SAS 9.3. All interactions with random factors were 

considered as random within the mixed model. In cases where significance was declared, further 

testing was performed using Fisher’s least significant difference (LSD0.05) test to characterize 

differences between treatment means using the PDMIX800 SAS macro (Saxton, 1998). 

Orthogonal contrasts were performed to test the relationship of sowing density with phenotypic 
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expression of each trait. LS means for each treatment combination combined across environments 

were used to create a Pearson correlation coefficient matrix using the CORR procedure of SAS.   
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3.3. RESULTS 

Monthly trends in temperature and light intensity were generally similar across testing 

environments, except for Lethbridge 2013 which received the highest light intensity, particularly 

during June and July (Table 3.1). Lower monthly average light intensities were recorded at 

Coalhurst (2014), and Lethbridge (2012 and 2014) compared to the other environments. There 

were, however, large variations in average weekly light intensity between environments, 

particularly between 5 and 10 weeks after planting (Figure 3.1). Growing season precipitation 

ranged from 191 to 359 mm (Table 3.1). 
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Figure 3.1. Average weekly light intensity (lm m−2 × 1000) recorded by Hobo sensors in field testing environments during 2012-

2014. Data are presented based on the number of weeks after planting. 
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Table 3.1. Description of testing environments, soil type, sowing and harvest dates, average monthly temperature (°C), light 

intensity (lm m-2 x1000) and precipitation. 

Location Coalhurst, AB, Canada Lethbridge, AB, Canada Saskatoon, 

SK, Canada 

Kenaston, 

SK, Canada 

Latitude and 

longitude 

49° 44’N, 112° 57’ W 49°69’N, 112°83’W 52° 02’ N, 

106° 34’ W 

51° 49' N, 

105° 52’ W 

Soil 

zone/series/texture 

Dark Brown, Chernozemic Clay Loam  Dark Brown, Chernozemic Silty Clay Loam Dark Brown, 

Chernozemic 

Loam 

Dark Brown, 

Chernozemic 

Clay Loam 

Crop year 2012 2013 2014 2012 2013 2014 2012 2014 

Sowing date 25-Apr 7-May 9-May 17-May 17-May 18-May 23-May 28-May 

Harvest date 9-Sep 27-Sep 19-Sep 28-Aug 30-Sep 24-Sep 14-Sep 14-Sep 

Mean temperature 

and light intensity 

(Lm m−2) × 1000 

°C Lux °C Lux °C Lux °C Lux °C Lux °C Lux °C Lux °C‡  Lux 

June 17.7 47885 18.2 52700 16.7 45698 17.4 48468 18.4 58851 16.7 46216 22.7† 63212 14.1 - 

July 23.5 54894 21.9 55541 23.6 51322 22.6 53125 21.8 66232 23.5 53714 23.5 52161 18.3 - 

August 21.2 43883 21.4 40912 20.6 37918 20.6 41629 21.3 47636 20.6 36315 20.5 40755 19.9 - 

Precipitation 

(mm). 1 May to 

15 Sept.  

202.3 270.6 251.7 191.2 283.6 204.3 359.3 277.6 

†Sensor began recording data June 28 

‡Sensor readings were not recorded, temperature data were taken from Environment Canada 
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Stem solidness varied among cultivars at each internode, and when averaged over all stem 

internodes (Table 3.2). Pith expression was greatest in the two commercially registered solid-

stemmed durum cultivars, CDC Fortitude and AAC Raymore, lowest in the hollow-stemmed 

cultivar Strongfield, and intermediate in Golden Ball and Lillian. All three solid-stemmed durum 

cultivars displayed the same pattern of pith expression across internodes, which tended to be 

greater in the upper internodes becoming progressively less in internodes closer to the crown 

(Table 3.2). In contrast, pith expression in Lillian and Strongfield was greater in lower internodes 

becoming less solid towards the spike. CDC Fortitude, AAC Raymore and Golden Ball showed 

similar variation in pith expression between testing environments.  

  



   

  

41 

 

Table 3.2. Stem solidness (1-hollow to 5-solid) by internode and in response to sowing density 

across field testing environments during 2012-2014. 

Factor Treatment Internode 

1 (Spike) 

Internode 

2 

Internode 

3 

Internode 

4 

Internode 

5 (Crown) 

Whole 

Stem 

Average 

Cultivar 
CDC 

Fortitude 
4.38 4.28 4.01 3.73 3.47 4.00 

  
AAC 

Raymore 
4.41 4.14 3.73 3.60 3.52 3.91 

  
Golden 

Ball 
4.05 3.91 3.69 3.54 3.42 3.73 

  Lillian 1.90 1.72 2.06 2.36 2.60 2.13 

  Strongfield 1.41 1.46 1.70 2.22 2.73 1.89 

  SED 0.081 0.071 0.072 0.072 0.097 0.063 

  Pr > F <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

  
LSD (0.05) 

† 
0.158 0.139 0.142 0.142 0.19 0.124 

Sowing 

density  
150  3.32 3.21 3.15 3.20 3.17 3.22 

 (seeds m-

2) 
250  3.23 3.12 3.08 3.09 3.17 3.15 

  350  3.23 3.10 3.03 3.07 3.14 3.13 

  450  3.14 2.97 2.88 3.00 3.11 3.03 

  SED 0.088 0.064 0.065 0.065 0.086 0.057 

  Pr > F 0.0998 0.0015 0.0002 0.0219 0.8964 0.0077 

  LSD (0.05) ns 0.125 0.127 0.128 ns 0.112 

Linear 

trend 

Linear 

equation 

(Y) 

ns 
-0.0008x + 

3.33 

-0.0009x + 

3.30 

-0.0006x + 

3.27 
ns 

-0.0006x 

+ 3.31 

  
Regression 

value (R2) 
ns 0.94 0.94 0.92 ns 0.96 

Contrasts Linear 0.0194 0.0001 <.0001 0.0032 0.4643 0.0008 

(Pr > F) Quadratic 0.9792 0.6738 0.3692 0.679 0.8423 0.8002 

  Cubic 0.3977 0.4097 0.5489 0.4471 0.8435 0.5139 

Cultivar × 

sowing 

density 

Pr > F 0.3087 0.2164 0.354 0.2125 0.0889 0.1931 

†SED: Standard error of the difference 

‡LSD: Fisher’s protected least significant difference 

The relationship between sowing density and pith expression was linear and negative for 

each internode, and combined across internodes except for internodes one and five where no 

significant association was detected (Table 3.2). Maximum average stem pith expression was 

achieved with sowing densities below 450 seeds m-2 (Figure 3.2a). Pith expression in internodes 2 

and 3 was most negatively affected by increased sowing density (Table 3.2).  
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Figure 3.2. Influence of sowing density on a) pith expression and, b) grain yield. Data were 

averaged across cultivars and testing environments 2012-2014. Means with the same letter 

grouping were not significantly different using Fishers LSD0.05. 

 

Cultivar and sowing density influenced grain yield but the interaction between cultivar and 

sowing density was not significant (Table 3.3). Grain yield of CDC Fortitude and AAC Raymore 

were not significantly different from Strongfield, and all three cultivars yielded significantly higher 

than Lillian or Golden Ball. Contrast analysis revealed that increasing sowing density had a 

positive effect on grain yield in all lines. Maximum levels of grain yield were observed at sowing 

densities above 150 seeds m-2 (Table 3.3, Figure 3.2b). 
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Table 3.3. Components of grain yield by cultivar and in response to sowing density across field testing environments during 

2012-2014. 

Factor Treatment Grain Yield 
Plant stand 

Density 

Spike 

Density 
Sed Mass Test Weight 

Grain 

Protein 

Spikes per 

Plant 

  Mg ha−1 plants m−2 heads m−2 g 1000−1 kg hL−1 %  

Cultivar CDC Fortitude 3.31 192 241 41.1 77.6 14.0 1.4 

 AAC Raymore 3.24 187 248 43.8 77.5 14.4 1.5 

 Golden Ball 2.59 181 219 46.3 77.3 13.3 1.4 

 Lillian 2.86 182 278 36.4 76.2 15.9 1.7 

 Strongfield 3.39 171 256 43.2 77.9 14.1 1.7 

 SED† 0.149 5.7 17.5 0.95 0.55 0.24 0.06 

 Pr > F <0.0001 0.0215 0.0339 <.0001 0.0388 <.0001 <.0001 

 LSD (0.05) ‡ 0.30 12 35 2.0 1.1 0.43 0.25 

Sowing 

density 
150 2.88 119 218 42.9 77.0 14.7 2.1 

(seeds m-2) 250 3.12 160 241 42.2 77.3 14.4 1.6 

 350 3.12 203 254 41.9 77.4 14.2 1.3 

 450 3.19 248 280 41.6 77.5 14.2 1.2 

 SED 0.081 16.2 12.1 0.37 0.13 0.09 0.07 

 Pr > F 0.0052 <.0001 0.0004 0.0193 0.0074 <.0001 <.0001 

 LSD (0.05) 0.17 33 25 0.8 0.3 0.16 0.30 

Linear trend 
Linear equation 

(Y) 

0.0009x + 

2.80 

0.4315x + 

53.28 

0.1996x + 

188.54 

-0.0039x + 

43.34 

0.0016x + 

76.84 

-0.0016x + 

14.843 

-0.0032x + 

2.49 

 
Regression (R2) 

value 
0.78 0.9997 0.99 0.94 0.94 0.91 0.90 

Contrasts Linear 0.0015 <.0001 <.0001 0.0029 0.001 <.0001 <.0001 

(Pr > F) Quadratic 0.166 0.8925 0.8243 0.4683 0.3516 0.04 0.032 

 Cubic 0.2258 0.996 0.5941 0.6398 0.9876 0.9367 0.758 

Cultivar × 

sowing 

density 

Pr > F 0.29 0.5474 0.5347 0.1031 0.8522 0.0697 0.1008 

†SED: Standard error of the difference 

‡LSD: Fisher’s protected least significant difference
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The main effects of cultivar and sowing density were significant for all components of 

grain yield (spike density, stand density, test weight, protein content, seed mass, spikes per plant), 

but the cultivar x sowing density interaction was not significant for any trait (Table 3.3). Spike 

density, test weight and protein concentrations of CDC Fortitude and AAC Raymore were not 

significantly different from Strongfield. There were significantly higher plant stand densities 

observed in CDC Fortitude, AAC Raymore, Golden Ball and Lillian than in Strongfield (Table 

3.3). Strongfield, AAC Raymore, and Lillian had the highest spike densities, greater than in CDC 

Fortitude or Golden Ball. Similarly, Strongfield, Lillian and AAC Raymore had a greater number 

of spikes per plant than CDC Fortitude or Golden Ball. Seed mass was greatest in Golden Ball, 

lowest in Lillian and intermediate in Strongfield, AAC Raymore and CDC Fortitude. Test weights 

were not significantly different between the four durum cultivars, all of which were significantly 

higher than in Lillian. Grain protein content was greatest in Lillian, lowest in Golden Ball and 

intermediate in CDC Fortitude, AAC Raymore and Strongfield (Table 3.3). 

Contrast analysis revealed significant linear relationships between sowing density and all 

components of grain yield. Quadratic relationships were also observed for grain protein 

concentration and spikes per plant (Table 3.3). Increasing sowing density had a positive effect on 

plant stand density, spike density and test weight, whereas the relationship was negative for seed 

mass, spikes per plant and protein concentration (Figure 3.3, a-f). Maximum test weights were 

observed at sowing densities above 150 seeds m-2. As expected, the responses among sowing 

density, plant stand density, and spike density displayed a pronounced linear relationship. 

Increasing sowing densities from 150 to 450 seeds m-2 resulted in over twice as many plants, and 

27% more spikes per square meter. Seed mass and protein concentration were inversely related to 

sowing density, and both were greatest at sowing densities of 150 seeds m-2 (Figure 3.3, d, f). 
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Figure 3.3. Influence of sowing density on components of grain yield: a) plant stand density, 

b) spike density, c) spikes per plant, d) seed mass, e) test weight, and f) protein content. Data were 

averaged across cultivars and testing environments 2012-2014. Means with the same letter 

groupings were not significantly different using Fishers LSD0.05. 



   

  

46 

 

Results from correlation analysis of stem solidness and agronomic traits are presented in 

Table 3.4. Average stem solidness was positively correlated with seed mass (r = 0.48), and 

negatively correlated with spike density (r = -0.51) and protein content (r = -0.51). There was no 

significant correlation between stem solidness and grain yield, plant density, test weight, plant 

height, lodging or spikes per plant. Grain yield was strongly negatively correlated with lodging (r 

= -0.74) and plant height (r = -0.83), and positively correlated with test weight (r = 0.60). Plant 

density was strongly negatively correlated with the number of spikes per plant (r = -0.88) and 

positively correlated with spike density (r = 0.71). Seed mass was negatively correlated with 

protein content (r = -0.85) and spike density (r = 0.64), but positively correlated with lodging (r = 

0.59) and test weight (r = 0.65). Test weight was negatively correlated with protein content (r = -

0.79). Spike density was negatively correlated with lodging (r = -0.58), whereas lodging was 

negatively correlated with protein content (r = -0.58).  

 



     

 

 

4
7 

Table 3.4. Pearson’s correlation coefficients testing the relationships between stem solidness, grain yield, and agronomic traits. 

All listed coefficients were significant at p < 0.05. 

 
Average 

Stem-

Solidness 

Spikes per 

Plant 

Protein 

Content 

Lodging Height Spike 

Density 

Test 

Weight 

Seed Mass Plant Stand 

Density 

Grain Yield ns† ns ns -0.74 -0.83 ns 0.60 ns ns 

Plant Stand 

Density 
ns -0.88 ns ns ns 0.71 ns ns 

 

Seed Mass 0.48 ns -0.85 0.59 ns -0.64 0.65    

Test Weight ns ns -0.79 ns ns ns     

Spike Density -0.51 ns ns -0.45 ns      

Plant Height ns ns ns 0.93       

Lodging ns ns -0.58        

Protein Content -0.51 0.44         

Spikes per Plant ns          

†ns: No significant correlation 
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3.4. DISCUSSION 

This study showed that sowing density and cultivar influenced stem solidness, yield and 

agronomic traits in durum and common wheat. Increasing sowing density negatively influenced 

pith expression and positively influenced grain yield in all cultivars. These results suggest sowing 

at densities of 350 seeds m-2 or less to maximize stem solidness. Female sawflies are known to 

preferentially select larger diameter stems for oviposition (Luginbill and McNeal, 1959). Because 

lower sowing densities are often associated with increased stem diameter, there may be an 

increased risk of stem cutting under extremely low sowing densities, which has been observed in 

some hollow-stemmed cultivars (Beres et al., 2011a). Therefore, sowing at densities closer to 350 

seeds m-2 is recommended. 

The solid-stemmed durum cultivars CDC Fortitude and AAC Raymore displayed superior 

stem solidness to Golden Ball and Lillian across all sowing densities. Both CDC Fortitude and 

AAC Raymore derive stem solidness from Biodur, which is a cultivar of German origin (Pozniak 

et al., 2015; Singh et al., 2014). A second source of stem solidness in durum wheat, Golden Ball, 

is also known to have pith expression superior to common wheat (McNeal, 1961). Golden Ball is 

of South African origin introduced to Canada but was later deregistered for its inferior pasta quality 

(Kemp, 1934; Knott, 1995). Although both sources were believed to carry the stem solidness gene 

SSt1 (Houshmand et al., 2007), recent molecular evidence suggests the Biodur source may be 

different from Golden Ball based on differences in haplotype around the SSt1 locus (Nilsen, 

unpublished data, 2015). Therefore, the improved stem-solidness of CDC Fortitude and AAC 

Raymore over Golden Ball might reflect genetic differences between sources, or could be a result 

of an accumulation of additional genetic factors conferring stem solidness throughout the breeding 

process.  

The three solid durum cultivars had more pith development in the internodes closest to the 

spike, and became less solid towards the crown of the plant, in contrast to Lillian which had greater 

pith density in the lower internodes and became less solid towards the spike. This finding agrees 

with previous research, which found durum wheat to be more solid in the upper internode than 

common wheat cultivars derived from S-615. This difference was attributed to one or more genes 

on the D-genome suppressing stem solidness in common wheat (Larson, 1959b; McNeal and 

Wallace, 1967). The top internodes of the plant are the preferred location for sawfly oviposition 
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(Holmes and Peterson, 1960), therefore increased pith in this area of the stem could play an 

important role in conferring an extra level of resistance against stem cutting or early stage larval 

feeding in durum wheat. The lower two internodes of the plant were previously shown to be the 

region where larvae feed and accumulate the bulk of their body mass prior to winter (Delaney et 

al., 2010); therefore, Lillian could have a reduced level of resistance to early larval feeding in the 

upper internodes, but increased resistance against later stage larval feeding. Interestingly, the 

hollow-stemmed check Strongfield expressed some pith at the periphery of the inner stem walls, 

and tended to have a thicker outer stem wall than Lillian. Eckroth and McNeal (1953) found that 

hollow-stemmed durum wheat was more resistant to WSS than hollow-stemmed common wheat, 

but the reason for this increased resistance was unknown. The pith development coupled with the 

increased stem wall diameter in Strongfield may help to provide some resistance to stem cutting 

and could potentially slow larval movement inside the stem.  

Grain yield was positively associated with increased sowing density in all cultivars, and 

stable yields were achieved at sowing densities above 150 seeds m-2. Increasing sowing density 

reduced tillering capacity in all lines as evidenced by a decrease in the number of spikes per plant. 

Interestingly, we did not see a corresponding increase in seed mass that was previously reported 

in common wheat (Beres et al., 2011a), which may have been due to a differential response 

between durum and common wheat. We did, however, find a positive relationship between sowing 

density and test weight. Taken together, these findings suggest that most of the yield advantage at 

higher densities must have come from a reduction in the number of tillers produced per plant 

coupled with an increase in the number of seeds produced per spike.  

Grain protein content was negatively associated with sowing density across all lines, which 

was previously reported in common wheat (Beres et al., 2011a). In the present study, Lillian had 

the highest grain protein content of all the lines tested. This finding was expected, because Lillian 

carries the high protein gene Gpc-B1 and was the first solid-stemmed Canadian cultivar with yield 

and protein concentration similar to hollow-stemmed cultivars (DePauw et al., 2007) 

CDC Fortitude and AAC Raymore yielded the same as the hollow-stemmed control 

Strongfield, which suggests that any yield penalty that may have been associated with the solid-

stem trait has been overcome through the breeding process. This was also reflected in the 

phenotypic correlation which revealed no significant relationship between stem solidness and 

yield. We did find negative correlations with protein content and spike density, and a positive 
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correlation with seed mass, although these findings were probably more related to the differences 

between spring and durum wheat (lower protein, larger seed mass and reduced tillering), rather 

than due to stem solidness directly. Historically, some producers of common wheat were reluctant 

to grow solid-stemmed cultivars because of a perception of a negative association between stem 

solidness and yield potential in the absence of sawfly infestation (Weiss and Morrill, 1992). One 

study found a negative correlation between stem solidness and yield in progeny derived from the 

cross Thatcher/Rescue (Rescue is a derivative of S-615) (McNeal et al., 1965). Conflicting studies 

have found no negative correlation (Cook et al., 2004; Hayat et al., 1995; Lanning et al., 2006; 

McNeal and Berg, 1979; Sherman et al., 2015). In the present study, we did not see a negative 

correlation between stem-solidness and grain yield, which agrees with similar research performed 

in common wheat. However, further investigation to confirm this finding in durum wheat using 

near isogenic lines (NILs) is required. Taken together, these results demonstrate that producers 

should not be hesitant to seed solid-stemmed durum wheat regardless of sawfly pressure. 

All lines showed variation in pith density across environments, however, pith expression 

in Lillian was more variable than the solid-stemmed durum cultivars tested. Wallace et al. (1973) 

suggest a minimum mean threshold stem solidness score of 3.75 to achieve effective resistance to 

the WSS. In this experiment, the solid-stemmed durum cultivars exceeded this level (average = 

3.86) and thus should all have strong resistance across environments. In contrast, Lillian had only 

intermediate pith expression (average = 2.17), and in some environments, was practically hollow-

stemmed. This finding was similar to results presented by Beres et al. (2011a), who suggest 

differences in response to environment or limited genetic potential as a possible cause of reduced 

stem solidness in Lillian. Inconsistent pith expression has been an issue in many of the registered 

CWRS cultivars that were derived from the S-615 source (Beres et al., 2013b). Previous research 

showed that with S-615 derived cultivars, low light intensity or shading for a period of seven days 

can negatively affect pith expression (Holmes, 1984). We performed further analysis to test for a 

correlation between average weekly light intensity between locations, and average stem solidness 

in Lillian (data not shown). Average light intensity (lux) received between 7 to 11 weeks (42 to 77 

days) after planting was strongly correlated with pith expression in Lillian (r = 0.93, p = 0.002), 

which corresponds roughly to the time between the start of stem elongation and the end of 

flowering. During these critical growth stages, we hypothesize that the formation of pith must be 

highly coordinated with internode elongation, which begins with the basal node, and progresses 



   

  

51 

 

sequentially from node to node towards the top of the plant. Low light intensity during this period 

of plant development may inhibit cell division or growth within the pith tissue of the inner stem. 

Throughout most of the growing season of 2012, the Saskatoon and Lethbridge sites experienced 

the lowest light intensity of all testing environments, and subsequent pith expression in Lillian was 

poor. The highest average light intensity across testing environments was recorded at Lethbridge 

2013, and corresponding pith expression in Lillian was the highest of any environment (average = 

2.8). Taken together, these results suggest light intensity could be a major contributing factor 

towards the variation of pith expression in Lillian.  
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3.5. CONCLUSIONS 

Modern durum cultivars CDC Fortitude and AAC Raymore, had stems that were 

significantly more solid than Golden Ball or the CWRS cultivar Lillian. When averaged over all 

cultivars, increasing sowing density tended to negatively influence pith expression. However, both 

new durum cultivars expressed superior stem solidness across all sowing density levels, above the 

recommended minimum threshold level to achieve effective sawfly resistance (Wallace et al., 

1973). There was no negative association between stem solidness and grain yield in CDC Fortitude 

and AAC Raymore, as both produced grain yield similar to Strongfield. Yield was positively 

influenced by increasing sowing density in all cultivars, and stable yields were achieved at sowing 

densities greater than 150 seeds m-2. These findings suggest that, unlike with CWRS solid-

stemmed cultivars, it does not appear necessary to lower sowing densities for CDC Fortitude and 

AAC Raymore, as the critical threshold for optimum pith expression was maintained at all sowing 

density levels (i.e. ≥ 3.75). Our results reinforce the important role that both solid-stemmed 

cultivars and proper agronomics can offer to a holistic IPM strategy for WSS management.  
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4. HIGH DENSITY MAPPING AND HAPLOTYPE ANALYSIS OF THE 

MAJOR STEM-SOLIDNESS LOCUS SSt1 IN DURUM AND COMMON 

WHEAT 

ABSTRACT 

Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat 

(Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem 

sawfly (WSS, Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long 

arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic 

interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum 

(Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL 

(LOD = 94 - 127, R2 = 78 - 92 %) were localized near the telomere of chromosome 3BL in both 

mapping populations, which we designate SSt1. We further examined the SSt1 interval by using 

available consensus maps for durum and common wheat and compared genetic to physical 

intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference 

sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW 

(positions 833.4 – 835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 

4A, and 5A (LOD = 3.0 – 6.1, R2 = 0.2 – 2.8 %) that were found to synergistically enhance 

expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat 

cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at 

minor loci within both wheat species. 

 

Disclosure: 

This chapter has been published in: Nilsen KT, N’Diaye A, MacLachlan PR, Clarke JM, Ruan Y, 

Cuthbert RD, et al. (2017) High density mapping and haplotype analysis of the major stem-

solidness locus SSt1 in durum and common wheat. PLoS ONE 12(4): e0175285. 

https://doi.org/10.1371/journal.pone.0175285 
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4.1. INTRODUCTION 

The WSS (Cephus cinctus Norton) is a destructive insect pest of durum (Triticum turgidum 

L var durum) and common wheat (Triticum aestivum L.) in the northern Great Plains of North 

America. In Canada, severe infestations of WSS have been reported in southern Alberta, 

Saskatchewan and eastern Manitoba since the early 1920s (Criddle, 1923). In the United States, 

areas most prone to sawfly damage include north and eastern Montana, North Dakota, northern 

South Dakota and western Minnesota (Beres et al., 2011b). Severe damage has recently been 

observed in areas of Colorado, Wyoming and Nebraska. 

The biology of the WSS has been extensively reviewed (Beres et al., 2011b; Wallace and 

McNeal, 1966). Briefly, WSS emerge from infested stubble of the previous cropping season, 

usually from around mid-June to mid-July. After mating, the female will select a suitable host 

plant to puncture using a specialized saw-like ovipositor to deposit an egg. Within five to seven 

days, the egg will hatch and the process of larval tunneling and feeding on plant tissue within the 

culm of the stem commences (Ainslie, 1920). Larval feeding damages vascular bundles and 

reduces photosynthetic ability (Macedo et al., 2007). Kernels harvested from infested plants have 

5 to 30% lower mass, and are often of reduced grade (Wallace and McNeal, 1966). As the wheat 

host ripens, larvae move towards the base of the plant where they will chew a notch to girdle the 

stem, fill that region with frass and encase themselves in a hibernaculum to prepare for 

overwintering. The stem then easily topples over from wind and lodged plants are often not picked 

up at harvest, causing additional yield losses (Beres et al., 2007). A range of agronomic factors 

have been explored to reduce yield losses by WSS, such as insecticides, tillage, varietal blends, 

and altered sowing densities (Beres et al., 2009; Beres et al., 2011a; Beres et al., 2011d; Knodel et 

al., 2009; Nilsen et al., 2016). An integrated pest management approach centered around growing 

resistant solid-stemmed cultivars with increased pith in the stem is an effective management 

approach for WSS. 

Growing solid-stemmed wheat cultivars that develop pith in the culm lumen has been the 

primary strategy to minimize yield losses (Beres et al., 2011b). Pith increases egg mortality 

through mechanical crushing (Holmes and Peterson, 1961), and acts as a physical barrier 

restricting larval movement inside the stem to within one or two internodes from the point of egg 

deposition (Holmes and Peterson, 1962). Consequently, WSS survivorship and yield losses are 

reduced in solid-stemmed cultivars (Carcamo et al., 2005). The expression of stem-solidness can 
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vary between and within common wheat and durum wheat. This may be explained by genetic 

differences between germplasm sources from which stem-solidness was derived, differences in 

ploidy between the two species, or other genetic factors.  

Research on solid-stemmed wheat has primarily focused on common wheat. Most common 

wheat cultivars in North America derive their stem-solidness from the Portuguese landrace S-615. 

The underlying genetics of stem-solidness in the S-615 source are complex, and may include the 

action of a major gene coupled with four or more additional recessive genes (Larson, 1959a). Many 

of the S-615 derived cultivars suffer from inconsistent pith expression, because of genetic 

suppression effects in some wheat backgrounds (Larson and Macdonald, 1959). In addition, 

environmental factors such as reduced light intensity during stem elongation, can negatively 

influence pith development (Holmes, 1984). Several genetic mapping studies have localized 

genetic factors contributing to pith development to at least seven chromosomes in common wheat. 

In S-615, genes influencing stem-solidness were localized to chromosomes 3B, 3D, 5A, 5B, and 

5D (Larson and Macdonald, 1959). The major QTL Qss.msub-3BL has been shown to explain at 

least 76% of the variation for stem-solidness in a winter wheat mapping population, and may 

contain multiple alleles conferring varying levels of stem solidness (Cook et al., 2004). A second 

minor QTL conferring stem-solidness, Qss.msub-3DL, was localized to chromosome 3DL in a 

mapping population derived from the semi-solid by solid cross MTHW9904/Choteau (Lanning et 

al., 2006). The strong expression of stem-solidness in Choteau over other cultivars is influenced 

by presence of both Qss.msub-3BL and Qss.msub-3DL. Finally, genome-wide association mapping 

identified novel minor QTL for stem-solidness on chromosomes 2A, 3A and 5B and 5D (Varella 

et al., 2015).  

Durum wheat has greater stem-solidness compared to many common wheat cultivars 

(Clarke et al., 2002). Currently, the solid-stemmed durum cultivars registered for use in western 

Canada, CDC Fortitude (Pozniak et al., 2015), AAC Raymore (Singh et al., 2014), AAC 

Stronghold (unpublished), and AAC Cabri (Singh et al., 2016) all derive their stem-solidness from 

the German cultivar Biodur. To date, the only mapping work in durum wheat identified a single 

locus, which was later renamed solid-stem locus 1 (SSt1) (Beres et al., 2013a), that was responsible 

for conferring stem-solidness in the doubled haploid (DH) population Kofa/W9262-260D3, and 

recombinant-inbred line (RIL) populations Golden Ball/DT379//STD65 and G9580B-FE1C/AC 

Navigator (Houshmand et al., 2007). The authors suggested that W9262-260D3 (Kyle*2/Biodur) 
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and Golden Ball carry the same single dominant gene for stem-solidness on chromosome 3B, 

although they did note differences in polymorphisms for certain markers flanking the locus 

(Houshmand et al., 2007).  

Identifying the genetic basis for stem-solidness will provide important insight to maximize 

phenotypic expression in cultivars grown in WSS prone areas. Although QTL conferring stem-

solidness have been identified for both common and durum wheat, it is unclear if the genetic basis 

is the same in both. In addition, many of the existing genetic maps have poor resolution and use 

different sets of markers, which make them difficult to compare. In this study, we overcame these 

challenges by using the wheat 90K array, a standardized genotyping platform with high marker 

density (Wang et al., 2014). This technology allowed us to map the stem-solidness QTL in high 

resolution for both common and durum wheat, as well as compare genetic maps between common 

and durum wheat. Furthermore, comparison of markers from the wheat 90K array to the high 

quality WEW reference sequence allowed us to construct and compare physical map intervals of 

QTL for both common and durum wheat. Together, our findings shed light on the genetic basis of 

stem-solidness for both common and durum wheat. Resources developed from this study are 

currently being used in the development of new wheat cultivars with improved resistance to WSS.  

4.2. MATERIALS AND METHODS 

4.2.1. Plant materials 

Two bi-parental DH mapping populations were used in this study, which consisted of either 

durum or common wheat. Both populations were developed at the Swift Current Research and 

Development Centre, Agriculture and Agri-Food Canada. The first consisted of 155 durum DH 

lines derived from the cross Kofa/W9262-260D3. Kofa is a hollow-stemmed cultivar from the 

United States, and W9262-260D3 is a solid-stemmed cultivar derived from the cross 

Kyle*2/Biodur (Houshmand et al., 2007). Biodur is a solid-stemmed cultivar of German origin 

that has been used as the predominant source of stem-solidness for modern Canadian solid-

stemmed durum cultivars (Pozniak et al., 2015). The second DH mapping population consisted of 

293 lines that were derived from the common wheat cross Lillian/Vesper. Lillian is a solid-

stemmed cultivar derived from S-615 and has been widely grown in Western Canada for its WSS 

resistance, high yield, and grain protein content (DePauw et al., 2005).  
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To validate the results from the bi-parental mapping of the SSt1 interval, two diversity 

panels were used for haplotype analysis that included either durum or common wheat. The durum 

set consisted of 103 cultivars, while the common wheat set contained 98 cultivars. The wheat 

cultivars in both diversity panels were primarily from North America, with some selections from 

around the world (Appendix 2 and 3). 

4.2.2. Field experiments 

All field plots were sown between May and mid-June with a target sowing density of 250 

seeds / m-2 with 23.5 cm row spacing. The Kofa/W9262-260D3 mapping population was planted 

in plots located near Swift Current (SK) in a randomized complete block design in 2000 and an 

alpha lattice in 2001 and 2002, with two replications in each year. The Lillian/Vesper mapping 

population was planted in 3 m single rows in un-replicated trials near Swift Current (SK) in 2014 

and 2015. In 2015, the Lillian/Vesper mapping population was planted as 1m single rows near 

Saskatoon (SK) in an alpha lattice design with three replications. In addition, the two diversity 

panels were grown in field nurseries near Saskatoon (SK) in an alpha lattice design in 2011 and 

2012, with two replications in each year. Permission to use field sites located at Saskatoon, and 

Swift Current, was provided by the University of Saskatchewan, and Agriculture and Agri-Food 

Canada, respectively. 

4.2.3. Phenotyping and statistical analysis of field experiments 

The main stem from five to fifteen plants per plot were rated for stem-solidness at maturity 

using the rating system (1-5) described previously (Depauw and Read, 1982). Each internode was 

assigned a stem-solidness rating and averaged to obtain an overall rating per plot. Statistical 

analysis for replicated field trials was performed using the MIXED procedure of SAS/STAT® v9.4. 

Site years, replications, and blocks were considered as random effects, whereas genotype (i.e. each 

line) was considered as a fixed effect. Interactions between genotype and all random effects were 

set as random in the statistical model. Multi-environment least-square means (LS means) for stem-

solidness were estimated for each DH line for subsequent use in QTL mapping. The same statistical 

models were used to generate LS means for each line in the diversity panels. Means separation 

was performed using Fisher’s Least Significant Difference (LSD) test with a significance value of 

p < 0.05, implemented through the PDMIX800 SAS macro (Saxton, 1998). 
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4.2.4. Molecular analysis 

Genomic DNA was extracted from fresh leaf tissue for each DH line and for the lines from 

the diversity panels using a modified CTAB approach (CIMMYT, 2005). DNA quality was 

examined on agarose gels and diluted to 50 ng/µL. All lines were genotyped using the wheat 90K 

array (Wang et al., 2014). The durum DH population was also genotyped using PCR based markers 

developed using primer3 software (Rozen and Skaletsky, 2000) to flank the SSt1 locus: EK_02-

292495 (F-CCACATCAAGGAAACTCAAACA, R-AGCTATAAGACGATGCAAGGCT) and EK_08-5169 (F-

AAGCATGGGATGAGAGGAGATA, R-GCCATAGAGAATGCTCCTGTTC) (K. Nilsen, Unpublished data).  

4.2.5. Linkage and QTL mapping 

Genotypic data from the wheat 90K array for each mapping population were filtered against 

markers showing significant segregation distortion (deviating from the expected 1:1 ratio for DH 

populations) using a chi-square (χ2) test. Markers missing 25% or more of the data were removed 

from the analysis. Draft maps were generated using the MSTMap software (Wu et al., 2008) with 

a p-value of 1E-10 and a maximum distance between markers of 15.0 cM for grouping SNPs into 

linkage groups. Maps were refined using the MapDisto v1.7.5 software (Lorieux, 2012) using a 

threshold LOD score of 3.0 and a cut off recombination value of 0.35. The best order of markers 

was estimated using both “AutoCheckInversions” and “AutoRipple” commands in MapDisto and 

distances between markers were calculated using the Kosambi function (Kosambi, 1943). Linkage 

groups (LGs) were scanned and corrected for double recombinants using MapDisto v1.7.5 

(Lorieux, 2012). Final LGs were assigned to a chromosome based on the existing high density 90K 

wheat consensus maps (Maccaferri et al., 2015; Wang et al., 2014). 

QTL analysis was performed using Windows QTL Cartographer software. Composite 

interval mapping (CIM) was implemented with a 1.0 cM walk speed. Cofactor selection was 

performed using forward and backward regression with a significance level of p = 0.1 with a 1 cM 

window size. QTL significance thresholds were determined by permutation tests (1000 

permutations) at a significance level of p = 0.05. QTL intervals for haplotype analysis were defined 

by the entire CIM interval above which the LOD score was greater than the calculated threshold 

value. 
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4.2.6. QTL interaction tests  

Two-way QTL interactions with SSt1 were modeled as fixed effects influencing stem-

solidness. The closest 90K probe to each QTL peak was used as a diagnostic marker testing for 

QTL interaction effects within each mapping population. Carriers were distinguished from non-

carriers and the stem-solidness LS means were calculated for each. Data were analyzed using the 

Mixed procedure of SAS v9.4. Means separation was performed using Fisher’s LSD test with a 

significance value of p < 0.05, implemented through the PDMIX800 SAS macro (Saxton, 1998).  

4.2.7. In-silico mapping of 90K probe sequences to the wild emmer wheat reference  

To determine the physical position of 90K probes along chromosome 3B, GMAP software 

(Wu and Watanabe, 2005) was used to align the 90K probe source sequences (Wang et al., 2014) 

to the complete WEW reference sequence (Avni et al., 2017). Filtering criteria was applied such 

that significant hits were required to obtain a minimum threshold sequence identity and coverage, 

of 95% and 90%, respectively. If probes mapped to multiple locations, only the highest scoring hit 

was retained. 

4.2.8. Map comparison and 3B haplotype analysis 

Probes from the 90k wheat array that mapped to the QTL intervals on chromosome 3B for 

the bi-parental DH populations of durum and common wheat were compared to their respective 

consensus maps (Maccaferri et al., 2015; Wang et al., 2014). The physical positions of the 90K 

probes within these intervals on WEW chromosome 3B were used to compare between genetic, 

and physical distance. Annotated genes falling within the physical intervals were extracted from 

the WEW gene annotation’s gene transfer format (GTF) file: 

TRIDC_WEWseq_PGSB_20160501_HighConf.gtf (Avni et al., 2017).  

Using the inferred QTL position on the consensus maps, we also aligned 90K genotypic 

data from the two diversity panels and identified haplotype groups containing historical 

recombination events within the SSt1 interval. Two-dimensional hierarchical cluster analysis was 

performed using dendextend package of R. v3.3.1. to simultaneously cluster groups of markers, 

and cultivars based on genotypic similarity. Data were visualized using the Heatmap function of 

the ComplexHeatmap package of R v3.2.1. 
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4.3. RESULTS 

4.3.1. Pith expression differences exist between durum and common wheat 

The pattern of phenotypic variation differed for stem-solidness between the two DH 

mapping populations. The distribution of the stem-solidness phenotype in the Kofa/W9262-260D3 

DH population was bimodal with scores ranging from one to five (p < 0.05), with two clear and 

distinct groups clustering near the extremes of the stem-solidness rating scale (Figure 4.1A). Some 

lines exhibited transgressive segregation for stem-solidness, either being hollower than Kofa 

(stem-solidness < 1.5), or more solid than W9262-260D3 (stem-solidness > 4.4). The pattern of 

segregation fit the expected 1:1 expected ratio (X2 = 0.007, p > 0.95) for a single major gene in the 

DH population, which allowed stem-solidness to be mapped qualitatively as a genetic marker. The 

pattern of stem-solidness variation in the Lillian/Vesper population ranged from scores of 1.1 to 

3.4 (p < 0.05). The distribution of stem-solidness followed an approximate bimodal distribution, 

but the difference between hollow and solid lines was less pronounced; therefore, discrete 

classification was not achievable (Figure 4.1B). The least solid lines were similar to the hollow 

parent Vesper (stem-solidness = 1.0), whereas the most solid lines exceeded stem-solidness in 

Lillian, although the difference was not statistically significant (stem-solidness > 2.8).  
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Figure 4.1. Frequency histograms displaying least-square means for stem-solidness. Scores 

are averaged across testing environments for DH lines in a) Kofa/W9262-260D3 (durum), and b) 

Lillian/Vesper (common wheat) mapping populations. 

 

Stem-solidness scores from the durum haplotype diversity panel ranged from nearly 

completely solid (stem-solidness = 4.7) to completely hollow (stem-solidness = 1.0). Among the 

cultivars scoring highest for stem-solidness were the Biodur derivatives: W9262-260D3, CDC 

Fortitude and AAC Raymore. A high level of stem-solidness was also expressed in Golden Ball, 

Lesina, Colloseo, Camacho and Fortore. A large proportion of cultivars scored towards the hollow 

side of the rating scale, which notably included Kofa, the hollow parent of the durum mapping 
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population. A small number of lines expressed intermediate levels of pith (stem-solidness = 2.5 - 

3.5).  

 

Stems collected from the common wheat haplotype panel ranged from nearly solid to 

hollow (stem-solidness = 1.0 - 4.3). The only fully solid-stemmed cultivar was Choteau (stem-

solidness = 4.3), whereas the remaining solid cultivars (Lillian, AC Eatonia, AC Abbey, Fortuna, 

Lancer) had intermediate pith expression (stem-solidness = 2.5 - 3.5). Several cultivars expressed 

small amounts of pith (stem-solidness = 1.5 - 2), which included McKenzie and Unity, and some 

members of the Canada Western Extra Strong market class such as Glenlea, CDN Bison and 

Burnside. Most cultivars in the panel were entirely hollow-stemmed (stem-solidness=1), which 

included Vesper, the hollow parent in the common wheat mapping population. 

4.3.2. Stem-solidness is predominantly controlled by the SSt1 in durum and common wheat 

The wheat 90K array was used to construct a linkage map containing a total of 4227 

markers in the Kofa/W9262-260D3 population, which spanned a total map distance of 2282 cM 

(Appendix 4A). Stem-solidness in the Kofa/W9262-260D3 population was scored qualitatively 

(hollow vs. solid) and mapped as a phenotypic marker to position 228.7 cM of chromosome 3B in 

the genetic map (Figure 4.2A). CIM localized significant QTL to chromosomes 3B (SSt1), 2A 

(Qss.usw-2A1, Qss.usw-2A2), and 4A (Qss.usw-4A) (Table 4.1). The majority of the phenotypic 

variation in this mapping population was explained by SSt1 (R2 = 92%, LOD = 127), which was 

localized near the telomere of chromosome 3BL (227.3-228.7 cM, peak = 228.7 cM) (Figure 

4.2A). The peak of the SSt1 QTL was at position 228.7 cM, which was the same position where 

SSt1 was mapped as a phenotypic marker through linkage mapping. The allele conferring stem-

solidness at SSt1 was contributed by the solid parent W9262-260D3. The closest markers to the 

peak of SSt1 were PCR-based markers EK_02-292495, EK_08-5169. The remaining QTL, 

Qss.usw-2A1, Qss.usw-2A2 and Qss.usw-4A, had minor effects with LOD scores ranging from 3.0 

- 5.1, and explained 0.2 – 0.3 % of the phenotypic variance. All three minor QTL had alleles for 

stem-solidness that were contributed by the hollow parent Kofa. Notably, two distinct QTL were 

detected on chromosome 2A separated by > 50 cM between the QTL peaks. 
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Figure 4.2. Genetic map interval of SSt1 of chromosome 3BL. a) Kofa/W9262-260D3 DH 

population genetic map, b) durum wheat consensus map, c) common wheat consensus map, d) 

Lillian/Vesper DH population. The position of each QTL is indicated by green shading for each 

mapping population, and estimated in the consensus map. The markers associated with each QTL 

peak are highlighted in green text. Common markers between consensus maps are highlighted in 

blue text. 
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Table 4.1. Summary of CIM results. QTL were localized in the Kofa/W9262-260D3 (durum) 

and Lillian/Vesper (common wheat) mapping populations. 

Population QTL name CHR Interval (cM) 

Peak 

position 

(cM) 

LOD R2 (%) 
Additive Effect 
1 

Kofa/W9262-

260D3 
Qss.usw.2A.1 2A 81.11– 87.1 83.5 3.0 0.2 0.1 (K) 

 Qss.usw.2A.2 2A 129.7 – 155.6 137.7 5.1 0.3 0.1 (K) 

 SSt1 3B 227.3 – 228.7 228.7 126.9 92.1 1.6 (W) 

 Qss.usw.4A 4A 112.2 – 137.1 125.5 3.0 0.2 0.1 (K) 

Lillian/Vesper Qss.usw.2D 2D 91.3-131.4 112.9 6.1 2.8 0.1 (L) 

 SSt1 3B 67.8-71.6 68.9 94.0 77.8 0.6 (L) 

 Qss.usw.5A 5A 88.5-100.3 92.3 3.9 1.3 0.1 (L) 

CHR, Chromosome 

LOD, Logarithm of Odds 
1Parent contributing positive allele, K = Kofa, W = W9262-260D3, L = Lillian, V = Vesper 

 

The Lillian/Vesper genetic map contained 7839 markers, which covered a total map 

distance of 3680 cM (Appendix 4B). Significant QTL were localized to chromosomes 3B (SSt1), 

2D (Qss.usw-2D), and 5A (Qss.usw-5A) (Table 4.1). The majority of the phenotypic variation was 

explained by SSt1 (LOD = 94.0, R2 = 77.8%), which spanned from map position 67.8-71.6 cM 

(Peak position = 68.9 cM) (Table 4.1, Figure 4.2D). The remaining QTL, although significant, had 

only minor effects (R2 = 1.3 – 2.8 %). The alleles conferring stem-solidness at all QTL in the 

Lillian/Vesper cross were contributed by the solid parent Lillian. 

4.3.3. Synergistic QTL interactions enhance the effect of SSt1 

The major locus SSt1 on chromosome 3B, has been previously shown to interact 

epistatically with other minor QTL to synergistically enhance expression of stem-solidness 

(Lanning et al., 2006). In the present study, transgressive segregation was observed for stem-

solidness in some cases, therefore the possibility of synergistic interaction between QTL was 

investigated in further detail. These results indicated that the two-way interactions between SSt1 

and all minor QTL were all strongly significant (p<0.01) in both mapping populations. In the 

Kofa/W9262-260D3 population, the combination of alleles conferring stem-solidness in two-way 

interactions (SSt1*Qss.usw-2A.1, SSt1*Qss.usw-2A.2, SSt1*Qss.usw-4A) conferred stem-

solidness that exceeded the score in W9262-260D3 (stem-solidness > 4.4; Table 4.2). However, in 

the absence of SSt1, DH lines carrying solidness alleles at each minor QTL did not express 

significantly more pith than non-carriers. The only exception was lines carrying Qss.usw-2A.1, 
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which had some minor pith development independent of SSt1 (stem-solidness = 1.4). In the 

Lillian/Vesper population, the presence of stem-solidness alleles at each minor QTL acted 

synergistically with SSt1 to significantly increase pith density compared to lines carrying only SSt1 

(p< 0.05) (Table 4.2). However, no two-way interaction between SSt1, and minor QTL, yielded 

stem-solidness that exceeded that of Lillian (stem-solidness = 2.8,). In the absence of SSt1, none 

of the minor QTL had a significant effect on pith development in the Lillian/Vesper population.  



   

  

66 

 

Table 4.2. Synergistic two-way interactions between SSt1 and minor QTL identified in the 

Kofa/W9262-260D3 (durum) and Lillian/Vesper (common wheat) mapping populations. 

Kofa/W9262-260D3 

SSt11 Qss.usw-2A1 Qss.usw-2A2 Qss.usw-4A Stem-solidness2 SE 

+ +   4.56a 0.04 

+ -   4.33b 0.04 

- +   1.41c 0.05 

- -   1.21d 0.04 

+  +  4.55a 0.04 

+  -  4.34b 0.04 

-  +  1.32c 0.05 

-  -  1.30c 0.04 

+   + 4.54a 0.04 

+   - 4.35b 0.04 

-   + 1.32c 0.04 

-   - 1.29c 0.04 

Lillian/Vesper     

SSt1 Qss.usw-2D Qss.usw-5A    

+ +   2.51a 0.04 

+ -   2.32b 0.04 

- +   1.34c 0.04 

- -   1.28c 0.04 

+  +  2.54a 0.04 

+  -  2.29b 0.04 

-  +  1.34c 0.04 

-  -  1.29c 0.04 

 
1‘+’ denotes the group carries the stem-solidness allele for the specified QTL, whereas ‘-’ denotes the group carries 

the stem-hollowness allele. Blank cells indicate the QTL was not considered for the comparison. 
2LS means for stem-solidness for each two-way allele combination (1-5 scale). Letter groupings in superscript 

statistical significance between LS means determined through Fishers LSD test at p< 0.05. 

 

4.3.4. Comparison of SSt1 using wheat consensus maps 

To facilitate the comparison between the SSt1 interval in the Kofa/W9262-260D3 and 

Lillian/Vesper mapping populations, the position of 90K probes within each QTL interval were 

compared to the published durum and common wheat consensus maps (Figure 4.2B, 4.2C). 

Markers mapping within the SSt1 interval in Kofa/W9262-260D3 spanned from positions 196.3 to 

205.5 cM on the durum consensus map (Figure 4.2B). The remaining 90K probes distal to position 

205.5 cM were not polymorphic between Kofa and W9262-260D3. The markers in the SSt1 

interval in Lillian/Vesper interval spanned 140.5 – 144.7 cM in the hexaploid consensus map 

(Figure 4.2C). Comparison of 90K probes common to the two consensus maps revealed that the 

two QTL span a similar genetic interval on chromosome 3B, and there were 22 common 90K 
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probes between the two consensus maps (Figure 4.2B and C). Overall, the co-localization of the 

markers for in the Kofa/W9262-260D3 linkage map agreed with their positions in the durum 

consensus map (Figure 4.2A and B). Similarly, the markers in the Lillian/Vesper linkage map 

agreed with the common wheat consensus map, although some minor differences in marker order 

were noted (Figure 4.2C and D).  

4.3.5. 90k probes from SSt1 are coincident in common and durum wheat 

The relationship between physical and genetic map positions was assessed by mapping 

90K probe sequences against the WEW chromosome 3B reference sequence. Probe sequences that 

did not meet the minimum sequence identity (>95%) and coverage requirements (> 90%) and were 

removed from the analysis. The physical location of markers closest to the peak of SSt1 in 

Kofa/W9262-260D3 spanned positions 823.0 – 835.1 megabase pairs (Mb) on WEW chromosome 

3B (Figure 4.3). The order of the probes on chromosome 3B was consistent with their position on 

the durum consensus map (Figure 4.3). The estimated position of the 3B QTL in the Lillian/Vesper 

population spanned positions 140.5 – 144.7 cM on the common wheat consensus map (Figure 

4.2C). The 90K probes within this interval on chromosome 3B in WEW ranged from positions 

830.6 – 841.0 Mb (Figure 4.4). Based on the 22 probes in SSt1 that were shared between the 

common and durum wheat consensus maps, spanning 140.5 - 144.7 cM in common wheat and 

204.5 - 209.1 cM in durum wheat, there is a region of overlap; this region corresponds to positions 

830.2 - 837.5 Mb in WEW chromosome 3B.  
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Figure 4.3. Haplotypes of 103 durum cultivars within the Kofa/W9262-260D3 SSt1 QTL 

interval. Stem-solidness LS means for each line are shown in the bar chart along the top X-axis. 

The matrix consists of 90K genotypic data where cells shaded in blue denote expression of the 

W9262-260D3 (solid-stem) allele, whereas cells shaded in red denote expression of the Kofa 

(hollow-stem) allele. The name and position of each 90K probe, the anchored physical position on 

WEW chromosome 3B, and the corresponding position on the common wheat consensus map are 

shown. Two dimensional (row and column) hierarchical cluster analysis was performed to group 

lines into haplotypes as indicated by the colorized dendrogram along the top X-axis, whereas 

markers were grouped along the Y-axis. 
*Lines showing identical haplotypes (n=45) were collapsed into a single haplotype (Appendix 2). 
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Figure 4.4. Haplotypes of 98 common cultivars within the Lillian/Vesper SSt1 QTL interval. 

Stem-solidness LS means for each line are shown in the bar chart along the top X-axis. The matrix 

consists of 90K genotypic data where cells shaded in blue denote expression of the Lillian (solid-

stem) allele, whereas cells shaded in red denote expression of the Vesper (hollow-stem) allele. The 

name and position of each 90K probe, the anchored physical position on WEW chromosome 3B, 

and the corresponding position on the common wheat consensus map are shown. Two dimensional 

(row and column) hierarchical cluster analysis was performed to group lines into groups as 

indicated by the colorized dendrogram along the top X-axis, whereas markers were grouped along 

the Y-axis. 
*Lines showing identical haplotypes (n=45) were collapsed into a single haplotype (Appendix 3). 
1 Winter wheat, stem-solidness was evaluated on plants grown in a growth chamber. 
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4.3.6. Diversity panels reveal multiple SSt1 haplotypes 

Further investigation of the SSt1 interval in the durum diversity panel identified six 

different haplotype groups within the Kofa/W9262-260D3 QTL interval (Figure 4.3). Most of the 

solid-stemmed Biodur derivatives, including the CDC Fortitude and AAC Raymore were part of 

a haplotype group that was identical to W9262-260D3. In addition, Camacho and 9661.AF1D also 

carried the haplotype identical to Biodur and the solid line Fortore was nearly identical to Biodur, 

except at the marker Kukri_c11944_2358 (Figure 4.3). The solid Italian cultivars Lesina and 

Colloseo had unique haplotypes, and carried the Kofa allele between WEW chromosome 3B 

positions 823.0 – 823.7 Mb, and the W9262-260D3 allele at all remaining loci within the QTL 

interval. The majority of lines in the panel showed an identical haplotype to Kofa and had hollow 

stems, except for the solid-stemmed lines Langdon-GB-3B and Golden Ball (Figure 4.3). The only 

marker to properly differentiate all solid from hollow lines in the panel (except for Golden Ball, 

and Langdon-GB-3B) was RAC875_c58399_104, which was located at WEW position 

chromosome 3B 833.4 Mb (consensus 205 cM). Not only was this marker the most distally located 

marker in the dataset, but it was also the most distal marker in the durum consensus map that was 

polymorphic between the parents of the durum mapping population Kofa and W9262.  

 

Within the common wheat QTL interval, a total of five different haplotype groups were 

identified through hierarchical cluster analysis (Figure 4.4). Most solid-stemmed derivatives of S-

615, which included AAC Bailey, Unity, Rescue, Fortuna, Choteau, Leader, Lancer, Mckenzie, 

and AC Abbey, were nearly identical in haplotype to Lillian and carried the allele for stem-

solidness between WEW 3B positions 830.0 – 841.1 Mb on chromosome 3B. A second haplotype 

was identified consisting of several members from the Canada Western Extra Strong (CWES) 

market class which carried the stem-solidness allele between 830.0 - 837.3 cM. This group also 

contained the hollow-stemmed lines Sumai 3, Peace, 5500HR, and Red Fife (Figure 4.4). The 

pattern of pith expression within this group was split between the CWES cultivars, which had low 

to intermediate pith development, and the other lines Sumai 3, Peace, 5500HR, and Red Fife which 

were entirely hollow-stemmed. Finally, there was a unique haplotype that consisted of the solid-

stemmed lines Mott and Janz. The majority of lines in the panel consisted of hollow-stemmed 

cultivars, which had shared identical haplotype to Vesper (Figure 4.4). 
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4.3.7. Candidate genes contributing to stem-solidness in SSt1 

Based on the peak of SSt1 in common wheat (832.2 - 835.1 Mb) and durum wheat (833.5-

833.6 Mb) (Table 4.1), and overlapping 90k probes and haplotypes for common and durum wheat 

(Figure 4.3 and 4.4), we could narrow the genetic interval for SSt1 to 833.4 – 835.0 Mb in WEW 

chromosome 3B. This interval contained 43 genes, based on the current version of the WEW 

annotation. Of these, 23 were classified as having unknown function (Table 4.3). Of the 20 

functionally annotated genes, notable candidates for the solid-stem phenotype include three 

ribosomal proteins (RPS17, RPS19 and RPS28), a Dof zinc finger transcription factor (Dof2), and 

a protein kinase superfamily protein (Table 4.3). 
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Table 4.3 High confidence annotated genes within the SSt1 interval in WEW chromosome 

3B. 
Gene ID Description Emmer Start Emmer End 

TRIDC3BG086390 AP-3 complex subunit beta-2 833,410,411 833,417,858 

TRIDC3BG086400 unknown function 833,418,228 833,419,311 

TRIDC3BG086410 unknown function 833,447,122 833,448,100 

TRIDC3BG086420 Dual-specificity RNA methyltransferase RlmN 833,471,636 833,473,995 

TRIDC3BG086430 Protein kinase superfamily protein 833,499,650 833,502,363 

TRIDC3BG086440 undescribed protein 833,500,052 833,501,188 

TRIDC3BG086450 undescribed protein 833,568,672 833,569,127 

TRIDC3BG086460 40S ribosomal protein S28 833,617,967 833,619,969 

TRIDC3BG086470 undescribed protein 833,695,443 833,696,292 

TRIDC3BG086480 unknown function 833,753,129 833,755,302 

TRIDC3BG086490 unknown function 833,960,480 833,981,832 

TRIDC3BG086500 undescribed protein 834,115,057 834,115,259 

TRIDC3BG086510 Protein of unknown function (DUF506) 834,115,507 834,117,890 

TRIDC3BG086520 undescribed protein 834,115,959 834,116,369 

TRIDC3BG086530 NAD(P)H-quinone oxidoreductase subunit 6, chloroplastic 834,154,291 834,154,828 

TRIDC3BG086540 undescribed protein 834,278,312 834,279,220 

TRIDC3BG086550 undescribed protein 834,278,400 834,278,856 

TRIDC3BG086560 Vacuolar protein sorting-associated protein 25 834,313,166 834,344,089 

TRIDC3BG086570 Disease resistance protein RPM1 834,329,315 834,331,881 

TRIDC3BG086580 12S seed storage globulin 2 834,354,104 834,355,541 

TRIDC3BG086590 Accelerated cell death 11 834,398,396 834,398,890 

TRIDC3BG086600 undescribed protein 834,399,338 834,400,223 

TRIDC3BG086610 12S seed storage globulin 1 834,443,909 834,445,752 

TRIDC3BG086620 undescribed protein 834,473,716 834,474,056 

TRIDC3BG086630 undescribed protein 834,501,444 834,501,784 

TRIDC3BG086640 undescribed protein 834,529,195 834,530,259 

TRIDC3BG086650 30S ribosomal protein S17 834,546,892 834,549,240 

TRIDC3BG086660 30S ribosomal protein S19 834,559,426 834,561,567 

TRIDC3BG086670 unknown function 834,649,174 834,650,437 

TRIDC3BG086680 Mitochondrial ATP synthase 6 kDa subunit 834,677,496 834,677,663 

TRIDC3BG086690 undescribed protein 834,687,517 834,688,148 

TRIDC3BG086700 undescribed protein 834,688,939 834,691,009 

TRIDC3BG086710 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 834,691,153 834,693,605 

TRIDC3BG086720 DOF zinc finger protein 2 834,983,287 834,984,049 

TRIDC3BG086730 undescribed protein 835,036,191 835,036,444 

TRIDC3BG086740 undescribed protein 835,037,520 835,037,765 

TRIDC3BG086750 undescribed protein 835,075,268 835,075,570 

TRIDC3BG086780 Transposon protein, putative, CACTA, En/Spm sub-class 835,127,161 835,133,343 

TRIDC3BG086800 Transposon protein, putative, CACTA, En/Spm sub-class 835,129,795 835,130,231 

TRIDC3BG086810 Ankyrin repeat family protein 835,176,160 835,177,639 

TRIDC3BG086820 undescribed protein 835,177,635 835,178,250 

TRIDC3BG086830 Cytochrome P450 superfamily protein 835,354,094 835,355,636 

TRIDC3BG086840 unknown function 835,360,730 835,361,289 
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4.4. DISCUSSION 

In this study, we localized coincident QTL conferring stem-solidness to chromosome 3BL 

in the durum population Kofa/W9262-260D3, and common wheat population Lillian/Vesper. The 

QTL interval on chromosome 3B in durum wheat was consistent with the previously reported 

location of SSt1 (Houshmand et al., 2007); similarly, the QTL interval in Lillian/Vesper was 

consistent with the previously reported location of Qss.msub-3BL (Cook et al., 2004). Earlier work 

identified two 90K probes (BS00065603 and BS00074345_51) in linkage disequilibrium (LD) with 

Qss.msub-3BL through association mapping (Varella et al., 2015). In the present study, both 

markers co-segregated with the peak of the Lillian/Vesper QTL (Figure 4.2D), indicating the 

Lillian/Vesper QTL is indeed coincident with Qss.msub-3BL. Comparison of the wheat consensus 

maps identified 22 common probes within the QTL intervals in durum and common wheat (Figure 

4.2B, C), with probe sequences that spanned a physical interval of 830.2-837.5 Mb. Based on the 

peaks of the QTL, overlapping marker, and haplotype evidence, we have further defined this 

interval to approximately 2 Mb (833.4 – 835.1 Mb). Since these QTL are coincident in their 

physical and genetic maps, we suggest that they correspond to the same region in both wheat 

species, which we henceforth designate SSt1. If common and durum wheat carry a common gene 

within SSt1 that confers stem-solidness on chromosome 3B, then it may be localized to this 

common physical interval between the two defined QTL.  

Within the common interval in WEW, there are 43 putative high confidence annotated 

genes, several of which could be involved in biological processes related to stem-solidness. These 

include three ribosomal proteins (RPs) (RPS17, RPS19, RPS28), a Dof2, and a protein kinase 

superfamily protein. Increased expression of RPs would be expected in actively dividing tissues 

including the pith of solid-stemmed cultivars. There are 70-80 different types of RPs and are 

required to be in stoichiometric balance to make up the ribosomal complex responsible for protein 

synthesis (Naora, 1999). Defects in part of the ribosomal protein complex can result in cell-cycle 

arrest via apoptosis in animal systems (Warner and McIntosh, 2009). Therefore, it could be 

possible that mutations affecting the function of a specific RP could cause the hollow-stemmed 

phenotype. On the other hand, Dof proteins are a family of transcription factors specific to plants 

responsible positive and negative regulation of gene expression implicated in a wide variety of 

functions, including cell cycle regulation (Skirycz et al., 2008), cell cycle progression/cell 

expansion (Xu et al., 2016), photosynthesis and light response, and plant growth and plant 
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development (Yanagisawa and Sheen, 1998). Likewise, protein kinases are involved in post 

translational modification of proteins and signal transduction, and similar to the Dof transcription 

factor could be involved in a wide array of processes (Stone and Walker, 1995). Work is currently 

underway to determine whether these, or other genes, are differentially expressed in the pith of 

developing plants and if they contain genetic variants between hollow and solid-stemmed parents 

that could explain the differential phenotypic response.  

In addition to SSt1, we also observed that synergistic two-way interactions between SSt1 

and other minor QTL on chromosomes conferred a greater level of stem-solidness than the 

presence of SSt1 alone. We identified minor QTL on chromosomes 2A, and 4A in our durum 

mapping population (Kofa/W9262-260D3), and 2D, and 5A in the common wheat population 

(Lillian/Vesper). Previous studies have also identified minor QTL conferring stem-solidness. For 

example, a secondary QTL was identified on chromosome 3DL that enhances pith expression 

when combined with SSt1 (Lanning et al., 2006). In the present study, the solid-stem alleles for 

the durum QTL on 2A and 4A were contributed by the hollow parent Kofa, which suggests that 

some hollow by solid parental combinations could be used to enhance expression of stem-solidness 

in durum wheat. This may not be of critical importance to durum wheat breeders because modern 

cultivars that carry SSt1 have strong pith expression that exceeds the minimum threshold stem-

solidness score of 3.75 proposed to achieve effective sawfly resistance (Wallace et al., 1973). In 

the present study, we observed that the additive effect of the SSt1 resistance allele in durum wheat 

conferred three times more units of stem-solidness than it did in common wheat. In contrast, 

variable pith expression has often been an issue for many common wheat cultivars (Platt, 1941). 

The variability in common wheat can be caused by environmental conditions, particularly low 

light intensity during stem elongation, which can negatively impact pith development (Holmes, 

1984). Some common wheat cultivars have been shown to express greater amounts of pith at early 

stages of development when WSS infestation typically occurs, followed by rapid pith retraction 

towards maturity (Varella et al., 2016). In some common wheat cultivars, the presence of SSt1 

alone may not be enough to ensure effective WSS resistance, therefore developing common wheat 

cultivars with improved WSS resistance remains a priority in breeding programs. We have shown 

here that some two-way combinations between SSt1 and minor QTL in the Lillian/Vesper 

population resulted in stem-solidness that exceeded the effects of SSt1 alone. These results indicate 

that future work should include attempts to pyramid SSt1 with one or more secondary genes with 
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complementary additive effects. Such favorable interactions likely have already been inadvertently 

implemented by breeding programs through the selection of elite cultivars with increased stem-

solidness.  

Several different haplotypes were found within the SSt1 interval in common and durum 

wheat. All known solid-stemmed cultivars in the durum haplotype panel, except for Golden Ball 

and Langdon-GB-3B, carried alleles for stem-solidness somewhere within the SSt1 interval in the 

Kofa/W9262-260D3 mapping population. The lack of similarity between Golden Ball and the 

other solid durum lines was unexpected, because the gene conferring stem-solidness in Golden 

Ball was mapped to a similar region of 3B in a previous study (Houshmand et al., 2007). The solid-

stemmed parent (W9262-260D3) of the durum mapping population derives its stem-solidness from 

the German cultivar Biodur, as do the four commercially registered Canadian durum cultivars 

CDC Fortitude (Pozniak et al., 2015), AAC Raymore (Singh et al., 2014), AAC Cabri (Singh et 

al., 2016), and AAC Stronghold (Unpublished data), and the majority of solid-stemmed Canadian 

durum breeding lines. Biodur (Valdur//Wascana/Durtal) may derive the solid allele from North 

African ancestors; the ancestry of Golden Ball is unknown, being a landrace introduced to North 

America from South Africa in the early 20th century. Therefore, these results could suggest that 

Golden Ball and Biodur represent different sources of stem-solidness on chromosome 3B. In the 

present study, a lack of polymorphic markers between Kofa and W9262-260D3 distal to the 

expected location of SSt1 hindered comparison between the two putative sources. Therefore, future 

investigation will be required to confirm whether the gene in Golden Ball is allelic to Biodur.  

Alternate haplotypes were also evident in the solid cultivars of Italian origin. Lesina 

(Capeiti/Creso//Trinakria/Valforte) and Colosseo (Creso/Mexa) expressed stem-solidness similar 

to Golden Ball, yet had different haplotypes than either the Biodur derivatives or Golden Ball. 

Fortore (Capeiti 8/Valforte) had a lower stem-solidness score than the Biodur derivatives, but 

similar haplotype, except at three loci. Conversely, Mongibello (Trinakria/Valforte) was very solid 

and had the Biodur haplotype, despite similar ancestry to the other solid Italian lines. Of the 

ancestral lines of these cultivars, we can only confirm stem-solidness in Trinakria (Clarke et al., 

2012), although one could speculate that Creso, a cross between a Capelli short straw mutant and 

a CIMMYT semi-dwarf line (Clarke et al., 2012) is also solid-stemmed. Together, evidence 

indicates that Italian cultivars have solid-stem phenotypes, though they do not fully fall within 

either the Golden Ball or Biodur haplotypes. 
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Several notable haplotypes were also identified in the common wheat haplotype panel. 

Many North American common wheat cultivars studied, including Lillian, Rescue, AC Eatonia, 

AC Abbey, Leader, Lancer, McKenzie and Unity, derive their stem-solidness from the Portuguese 

landrace S-615 (Beres et al., 2013a). In the present study, most of the S-615 derivatives carried an 

identical haplotype to Lillian throughout the QTL interval. However, a distinct haplotype was 

identified in the solid-stemmed cultivars Mott and Janz. Mott is a spring wheat cultivar developed 

at North Dakota State University, with stem-solidness that is partially derived from S-615 via the 

cultivars Ernest, Fortuna and Tioga. In contrast, Janz is a white spring wheat that derives its stem-

solidness from an alternative source, Agropyron elongatum (Beres et al., 2013b). Another 

interesting haplotype was identified in members of the Canada Western Extra Strong (CWES) 

market class (Glenlea, RL4452, Burnside, Glencross, CDN Bison, CDC Rama) which carry alleles 

for both solid and hollow stem within the QTL interval. Although this haplotype group consists of 

cultivars that were relatively hollow-stemmed, certain cultivars such as Glenlea, and CDC Rama 

did express some pith in the lower internodes, which could indicate they are carriers of SSt1 with 

phenotypic suppression of stem-solidness. Several genes inhibiting the expression of stem-

solidness have been identified in S-615 and its derivatives, including those carried by the D-

genome (Larson and Macdonald, 1962).  

4.5. CONCLUSIONS 

In conclusion, the major QTL on chromosome 3BL identified in this study is coincident 

with the previously reported map positions of Qss.msub-3BL and SSt1 (Houshmand et al., 2007). 

To elucidate the relationship between the genetic and physical maps of SSt1, we anchored 90K 

probes that mapped inside the QTL interval to the WEW reference sequence. Combined with 

haplotype analysis, the most probable location of SSt1 is estimated to be between positions 833.4 

- 835.1 Mb. The two sources of stem-solidness in durum wheat (Golden Ball and Biodur) are 

different in haplotype around SSt1 although QTL have been mapped to 3B in both sources 

(Houshmand et al., 2007). Golden Ball carries the hollow haplotype throughout the SSt1 interval, 

which will require further investigation to confirm whether it is allelic to SSt1. Common wheat 

cultivars that derived their stem-solidness from S-615 were similar in haplotype, though alternate 

haplotypes were identified. Despite sharing a common locus on chromosome 3B, phenotypic 

expression of stem-solidness differed between durum and common wheat. Minor QTL were shown 
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to synergistically enhance the expression of SSt1 in both mapping populations, which suggests 

breeding efforts can improve pith expression through strategic parental selection, which may be 

particularly useful in breeding common wheat. 
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5. GENE EXPRESSION PROFILING AND COMPARATIVE GENOMIC 

ANALYSIS OF STEM-SOLIDNESS LOCUS SSt1 IN DURUM AND 

COMMON WHEAT 

ABSTRACT  

Solid-stemmed wheat (Triticum spp.) cultivars are resistant to the wheat stem sawfly (WSS, 

Cephus cinctus). Previous mapping studies have identified the major stem-solidness locus SSt1 on 

chromosome 3BL, and recent work has narrowed the interval to a physical distance less than 2 Mb 

on chromosome 3BL based on tetraploid genome sequence of wild emmer wheat (WEW). Since 

that time, additional draft genome assemblies have become available for the first tetraploid durum 

cultivar Svevo, the hexaploid wheat landrace Chinese Spring (Refseq v.1.0), in addition to draft 

assemblies for the hexaploid cultivars CDC Stanley and CDC Landmark. In this study, we 

identified discrepancies in the physical position of 90K probes between these reference sequences 

suggesting that structural variation may exist between some wheat lines, thereby affecting how the 

SSt1 interval is defined, particularly in Refseq v.1.0. To correct this issue, we anchored all Refseq 

v.1.0 gene models to the Svevo reference sequence; the newly defined interval contained 32 

candidate genes. We observed that many of the genes within the SSt1 region have undergone a 

series of gene duplication events, and quantitative PCR confirmed that one gene that encodes for 

a DNA binding one finger (Dof) transcription factor, TraesCS3B01G608800, has copy number 

variation (CNV), with increased copies occurring in solid-stemmed cultivars. The number of gene 

copies correlate with increased gene expression determined by RNAseq. Furthermore, screening 

of an EMS mutant population derived from the solid-stemmed cultivar CDC Fortitude identified 

two mutant lines with a hollow-stemmed phenotype; the first mutant line appears to have a large 

deletion that includes TraesCS3B01G608800, and the second mutant shows significant lower 

expression of TraesCS3B01G608800 when compared to CDC Fortitude. Together, these results 

provide intriguing new insights into the causal genetic factors contributing to the stem-solidness 

phenotype and indicate that TraesCS3B01G608800 is a strong candidate for SSt1. 

Disclosure:  

This chapter is currently a manuscript in preparation: Gene expression profiling and comparative 

genomic analysis of the stem solidness locus SSt1 in durum and common wheat  

Nilsen, K.T., S. Walkowiak, K. Wiebe, A.T. Cory, A. N’Diaye, R.D. Cuthbert, P.R. 

MacLachlan, J.M. Clarke, A.G. Sharpe and C.J. Pozniak (2017). IN PREPARATION.  
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5.1. INTRODUCTION 

The wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), is a 

damaging pest of wheat (Triticum aestivum L., Triticum turgidum L. var durum) in North America 

(Beres et al., 2011b). Sawfly infestations occur throughout the southern parts of Alberta, 

Saskatchewan, Manitoba, Northern Montana, North Dakota and northern South Dakota (Beres et 

al., 2011b). This region includes almost the entire durum wheat growing region of North America.  

Over the last century, the most effective way to minimize damage caused by the WSS in 

affected regions has been to grow solid-stemmed wheat cultivars that develop pith within the culm 

lumen (Beres et al., 2013a). Solid stems provide resistance to the WSS by deterring stem cutting, 

mechanically crushing eggs, and impeding larval development and growth inside the stem (Hayat 

et al., 1995). Under infestation, spring wheat fields sown to solid-stemmed cultivar AC Eatonia 

yielded 16% more, and were a grade unit higher, than hollow-stemmed cultivar AC Barrie (Beres 

et al., 2009).  

The genetics conferring the stem-solidness trait have been well studied, but the underlying 

causal genes have not been identified. The trait is known to be partially controlled by a single 

locus, SSt1, located on chromosome 3B in both wheat species (Cook et al., 2004; Houshmand et 

al., 2007). The location of SSt1 spans from positions 833.5-835.5 Mb on chromosome 3B in the 

current WEW reference sequence (Nilsen et al., 2017).  

 The release of the Chinese Spring (common wheat) survey sequence was a major step 

forward for wheat genomics, which was subsequently followed by the full assembly of the first 

chromosome (3B) in wheat (Mayer et al., 201l; Choulet et al., 2014). Since that time, several 

additional reference sequences have become available, including the complete assembled sequence 

for all chromosomes for wild emmer wheat (WEW) (Avni et al., 2017), Chinese Spring (Refseq 

v.1.0), the first durum cultivar Svevo, and two draft assemblies of two Canadian common wheat 

cultivars CDC Stanley and CDC Landmark. At the time of writing, only the assemblies of WEW, 

Svevo and Refseq v.1.0 have been finalized, whereas work continues towards improving the draft 

assemblies of CDC Landmark and CDC Stanley.  

Identifying the genetic basis for stem-solidness is an important goal that will improve our 

understanding of the biological mechanism conferring stem-solidness. The goal of this research 

was to utilize these newly available genomic resources to better define the SSt1 interval, identify 

candidate genes for SSt1 by looking within the previously defined chromosome 3B interval (Nilsen 
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et al., 2017), and test for differential regulation of those genes between solid and hollow-stemmed 

durum and common wheat cultivars. In addition, we developed an ethyl-methane sulfonate (EMS) 

mutant population derived from the solid-stemmed durum cultivar CDC Fortitude as an attempt to 

disrupt expression of the SSt1. Global gene expression profiling was performed to identify possible 

downstream targets of SSt1. 
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5.2. MATERIALS AND METHODS 

5.2.1. Comparative genomic analysis 

The full genomic sequence for chromosome 3B was extracted from the following genomic 

assemblies: Svevo v1.0 (durum), Zavitan v2.0 (wild emmer wheat), Refseq v.1.0 (common wheat), 

CDC Stanley v0.4 (common wheat) and CDC Landmark v0.4. (common wheat). Each sequence 

was aligned to Svevo using the NUCmer tool from MUMmer v 3.0 software package, with a 

minimum alignment match length of 500 bp. Sequences were compared using MUMmerplot and 

plotted using gnuplot and circos software. GMAP software (Wu and Watanabe, 2005) was used to 

align the 90K probe source sequences (Wang et al., 2014) and GMAP was also used to align high 

confidence gene sequences from Refseq v.1.0 annotation, to each of the five assembled reference 

sequences. Filtering criteria were applied such that significant hits were required to obtain a 

minimum threshold sequence identity and coverage of 98%, and only the top scoring hit was 

selected. 90K probes mapping within the SSt1 region were sorted based on physical position in 

each assembly and visualized using MapChart software (Voorrips, 2002). Homoeologous genes 

from the Refseq v.1.0 annotation mapping to chromosomes 3A, 3B and 3D were visualized using 

Mapchart software (Voorrips, 2002). 

5.2.2. Generation of mutant population  

An EMS mutant population was created from the solid-stemmed durum cultivar CDC 

Fortitude (Pozniak et al., 2015) to disrupt the expression of SSt1. Approximately 1.5 kg of seed 

was soaked in tubs containing 0.5% (v/v) EMS solution for four hours under gentle agitation, 

followed by four hours of continuous rinsing with fresh tap water. Next, seeds were dried overnight 

and were subsequently sown as space-planted field plots near Saskatoon (SK) the following day. 

A single spike was harvested from each plant at maturity, and were planted in 2376 M2 head-rows 

the following field season. 10 M3 spikes were harvested from each row and saved for future use. 

Plants from each row were cut in cross section and rated for stem-solidness, and any rows 

segregating for hollowness were noted.  

5.2.3. Plant materials and growth conditions for RNA sequencing 

Plant materials selected for RNA sequencing included three common wheat cultivars, five 

durum cultivars, and two loss-of-function mutants derived from the solid parent CDC Fortitude 
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that express the hollow phenotype (Table 5.1). Three seeds from each cultivar were planted in 4L 

pots and grown in a growth cabinet under T5 fluorescent lighting. Growth conditions were set to 

temperature cycles of 22°C during the day and 16°C at night, with a 16-hour photoperiod. Each 

pot was considered a treatment and each treatment was grown in three replications for a total of 

30 treatments. The experiment was grown as a completely randomized design (CRD), and pots 

were randomly moved to a new position in the growth cabinet every seven days.  

 

Table 5.1. Description of plant materials used for RNAseq experiments. 

Name Stem Type Species Source of Solidness 

Vesper Hollow Wheat - 

Lillian Solid Wheat S-615 

McKenzie Semi-Solid Wheat S-615 

CDC Fortitude Solid Durum Biodur 

W9262 Solid Durum Biodur 

Kofa Hollow Durum - 

Langdon Hollow Durum - 

Langdon-GB-3B Solid Durum Golden Ball 

M2.1184 Hollow EMS Knockout Durum CDC Fortitude 

M2.2324 Hollow EMS Knockout Durum CDC Fortitude 

 

5.2.4. Tissue sampling for RNA extraction 

The main stems of three plants from each treatment were sampled at Zadoks stage 32, the 

point at which two nodes are present on the main stem (Appendix 3). Approximately 0.5 cm of the 

stem was sampled measuring from the bottom of the lowermost node towards the uppermost node 

on (Figure 5.1). Samples were immediately placed in 1.5 mL micro-centrifuge tubes, flash-frozen 

in liquid nitrogen and stored at -80°C prior to RNA extraction. Stem tissue was ground under liquid 

nitrogen with a sterilized mortar and pestle. Total RNA extraction was performed using the Qiagen 

RNeasy Plant Mini Kit (Qiagen) per the manufacturer’s supplied protocol. RNA integrity was 

evaluated using an Agilent Bioanalyser RNA 6000 nano chip, and RNA quantitation was 

performed using the Qubit Broad Range assay kit (Thermofisher).  

 



   

  

83 

 

 

Figure 5.1. Synchrotron radiation micro-computed tomography (SR-μCT) imaging from a selection 

of lines of the RNAseq panel. Two-dimensional transmission images were captured at the Biomedical 

Imaging-Therapy beamline at the Canadian Light Source Synchrotron (Saskatoon, SK, Canada). The 

region contained within the blue box shows the pith transition zone that was sampled for RNAseq.  

 

5.2.5. RNAseq library preparation and sequencing 

Individually barcoded cDNA libraries were prepared using the Truseq v2 unstranded kit 

(Illumina) per the manufacturer’s recommended protocol. Library integrity was checked on an 

Agilent Bioanalyser using the high sensitivity DNA analysis kit. Library quantitation was 

performed using the Qubit High Sensitivity assay kit. Individually barcoded libraries were diluted 

to 10 ng/µl, pooled into groups of six, and sequenced across five lanes on the Illumina HiSeq4000 

platform with 2 x 150 bp PE chemistry. 

5.2.6. RNAseq bioinformatics analysis pipeline 

An overview of the bioinformatics pipeline used in this analysis, and the scripts used to run 

the programs are presented in Appendix 5 and 6. Adaptor and quality trimming was performed 

using Trimmomatic version 0.27 (Bolger et al., 2014) with the parameters 

ILLUMINACLIP:TruSeq3-PE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 

MINLEN:75. Trimmed reads were checked for adaptor contamination and quality using FastQC 

and were aligned to the Refseq v.1.0 reference sequence using STAR version 2.5 (Dobin et al., 

2013) with default parameters, except the maximum mismatch rate (--outFilterMismatchNmax) 

was set to 6 (minimum 96% sequence identity) and the maximum intron length (--alignIntronMax) 

Kofa             Langdon      LDN-GB-3B     W9262           Vesper          Lillian        Mckenzie 
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was set to 10,000 bp. Binary Alignment Map (BAM) files containing aligned reads were inputted 

into StringTie (Pertea et al., 2016) to count reads mapping to genes in the Refseq v.1.0. A matrix 

of raw read counts was analyzed by DESeq2 (Love et al., 2014) for analysis of differential 

expression between hollow and solid lines. In total, 15 pairwise comparisons were made between 

the three hollow and five solid-stemmed lines (Table 5.1). Differential gene expression testing was 

also performed between CDC Fortitude and the two EMS mutant lines M2.1184 and M2.2324. 

Genes were considered differentially expressed if they had a log2 fold change > +2 or < -2, and 

adjusted p-value < 0.001.  

5.2.7. Gene ontology enrichment testing 

Gene ontology (GO) enrichment testing was performed to identify GO terms that were 

disproportionally represented in the differential gene expression dataset from the RNAseq. 

Separate GO analyses were performed for biological process (BP), molecular function (MF) and 

cellular component (CC). GO terms were extracted from the Refseq v.1.0 annotation and used to 

create a background set of genes against which to test for enrichment using the topGO package in 

R. Enrichment testing was performed using Fisher’s exact test with a significance level of p < 0.05. 

A summary of significant GO terms was explored using REVIGO software (Supek et al., 2011). 

5.2.8. Structural variation of SSt1 by Chromium 10x Genomics whole genome sequencing  

To examine structural variation around the SSt1 interval, whole genome sequencing was 

performed on Svevo, CDC Landmark, CDC Fortitude, and the EMS deletion line M2.1184 using 

the Chromium 10x Genomics platform. Nuclei were isolated from ≈30 seedlings from each line as 

per the procedures outlined in Zhang et al. (2012). High molecular-weight genomic DNA was 

extracted from nuclei using a modified CTAB extraction protocol (CIMMYT, 2005). Genomic 

DNA was quantified was by fluorometry using Qubit 2.0 Broad Range (Thermofisher) and size 

selection to remove fragments <40 kb using pulsed field electrophoresis on a Blue Pippin (Sage 

Science) according to the manufacturers specifications. Final DNA integrity and size were 

determined using a Tapestation 2200 (Agilent), and Qubit 2.0 Broad Range (Thermofisher), 

respectively. 

Library preparation was performed per the 10x Genome Library protocol (10x Genomics). 

Four uniquely barcoded libraries were prepared for each sample and multi-plexed on Illumina 
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HiSeqX and HiSeq 2500 platforms. De-multiplexing was performed using the specialized 10x 

Genomics Software Supernova, and fastq files were generated using LongRanger sofware. Reads 

from CDC Fortitude and M2.1184 were aligned to the Svevo reference sequence, whereas reads 

from CDC Landmark were aligned to the CDC Landmark v0.4 and CDC Stanley v0.4 reference 

sequences. All alignments were performed using LongRanger WGS. Structural variants were 

visualized using Loupe software. Confirmation of the deletion of TraesCS3B01G608800 and 

surrounding regions in M2.1184 were determined by PCR (Appendix 8).  

5.2.9. Exome capture and bulked segregant analysis 

DNA was extracted and pooled from 20 solid-stemmed lines and 20 hollow-stemmed lines 

from the Kofa /W9262-260D3 mapping population (Nilsen et al., 2017) to create SSt1+ and SSt1- 

samples for bulked segregant analysis (BSA). DNA was enriched for coding regions using the 

wheat exome capture array according to the procedures outlined in Jordan et al. (2015). High-

throughput sequencing was performed on the Illumina HiSeq2500 platform with 2 x 100 bp PE 

chemistry. Raw sequence reads were processed in Trimmomatic v0.32 and processed reads were 

aligned to the genome of Svevo using Novoalign v3.02.05. Duplicate read mappings and improper 

read pairs were removed using Picard-Tools. SNP variants were called using the SAMtools v1.2.1 

mpileup command. Filters were applied requiring each bulk to be homozygous, and carrying a 

different allele from the other, and the remaining SNPs were plotted as a frequency histogram with 

a bin size of 25 kb. 

5.2.10. Characterizing CNV around TraesCS3B01G60880 

The sequence for the candidate gene TraesCS3B01G608800 was extracted from each of 

the five assemblies and aligned using MUSCLE to identify possible sequence variation (Appendix 

7); the TraesCS3B01G608800 sequence was also run through FGENESH software to validate the 

open reading frame (ORF) predicted in the Refseq v1.0 annotation. The conserved domain was 

extracted from TraesCS3B01G608800 and used to identify additional members of the Dof gene 

family in the CS annotation using TBLASTX (Appendix 9). The sequences of all Dof genes were 

aligned using MUSCLE with default parameters, and was clustered into a phylogenetic tree using 

the neighbor joining clustering method of Simple Phylogeny software. 
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For CNV analysis of TraesCS3B01G608800, PCR was used to assay a polymorphic GAGA 

element upstream of the TSS for TraesCS3B01G608800 for members of the Kofa/W9262-260D3 

and Lillian/Vesper mapping populations (Nilsen et al., 2017), all lines in the RNAseq panel, and 

lines from hexaploid and tetraploid diversity panels (Appendix 8) (Nilsen et al., 2017). PCR 

fragments were then visualized on single strand conformation polymorphism (SSCP) gels. A 

quantitative PCR (qPCR) assay was also developed to test for CNV at TraesCS3B01G608800 

(Appendix 8). qPCR reactions were performed in 10µl reactions in a 384-well microtiter plate and 

quantification was performed using SYBR green fluorescence measured in a BioRAD CFX384 

cycler. The relative number of copies of TraesCS3B01G608800 was determined using the ∆∆CT 

method using TraesCS3B01G61220 as an endogenous control gene with a single copy. These 

results were validated using 10x Genomics sequencing data from CDC Landmark aligned to the 

Landmark assembly v0.4 using LongRanger WGS, followed by analysis of structural variation via 

Loupe software. A list of all primers used for both SSCP an qPCR is presented in Appendix 8. 
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5.3. RESULTS 

5.3.1. Comparative genomic analysis reveals structural variation around the SSt1 interval 

Based on the position of 90K probes previously identified as being associated with the peak 

of SSt1 in wild emmer wheat (833.5 - 835.5 Mb) (Nilsen et al., 2017), the corresponding SSt1 

interval in the other assemblies were: Svevo, 827.5 - 830 Mb; Refseq v.1.0 821.7 - 830 Mb; CDC 

Landmark 796.6 - 800 Mb; and CDC Stanley 804.5 - 806.5 Mb. Analysis of whole chromosome 

alignments using NUCmer revealed that the telomere of chromosome 3BL was associated with 

substantial structural/sequence variation (Figure 5.2 a-e) relative to other parts of the chromosome 

(Appendix 10). A region containing a peak of increased SNPs from the BSA was observed between 

Svevo position 827.5 – 828.5 Mb (Figure 5.2e), which was also a region of poor sequence 

similarity between Svevo and the other four assemblies. Despite these observations, there was 

strong collinearity between the order of genes around SSt1 in Svevo and the other assemblies 

(Appendices 11-14); the only exception was Refseq v.1.0, which showed extensive structural 

variation including sequence duplications, small translocations, and inversions around SSt1 

relative to the other assemblies. The combined effect of the sequence rearrangements had a major 

impact when using the Refseq v.1.0 assembly as a guide for the positional cloning of SSt1. For 

example, a portion of the genomic sequence in Refseq v.1.0 located between 828.1 - 830.6 Mb 

was inverted relative to Svevo and the other assemblies; therefore, the genes present within this 

region of Refseq v.1.0 co-localize with the peak of the SSt1 QTL in Svevo (Figure 5.3, Appendix 

12). Conversely, the sequence in Refseq v.1.0 between 822.6 - 824.4 Mb is localized distally in 

Svevo, outside of the QTL interval (Figure 5.3, Appendix 12). To investigate this in more detail, 

we examined the syntenic regions of chromosomes 3A, 3B, and 3D in the Refseq v1.0 assembly. 

These results supported our finding that chromosome 3B carries a large inversion relative to its A 

and D genome counterparts (Figure 5.4). 
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Figure 5.2. Structural variation exists in the SSt1 interval between genome assemblies. Dot 

plots representing NUCmer alignments of the last 20 Mb of chromosome 3BL between Svevo 

and a) Zavitan; b) Refseq v.1.0; c) CDC Stanley; d) CDC Landmark. Red lines indicate 

alignment in the correct orientation and blue lines indicate inversions. A region of poor 

alignment between Svevo and other genomes is indicated by a purple shaded box. e) Exome 

capture BSA SNP frequency distribution in the Kofa/W9262-260D3 bulks. 
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Figure 5.3. Comparative genomic analysis of the SSt1 region in 5 genomic assemblies. Links 

between genomes are based on syntenic blocks from alignments in NUCmer. All comparisons are 

performed using Svevo as a reference, with each comparison represented as a different colour; the 

rearrangement in Refseq v.1.0 is shown in blue lines. Positions are in Mb.
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Figure 5.4. Refseq v.1.0 genes in and around the SSt1 interval on chromosome 3B, and their corresponding homoeologous positions on 

chromosomes 3A and 3D. The green and red regions highlight major sequence rearrangements. Positions to the left of linkage maps are 

in Mb.
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Other small differences were noted between Svevo and the other assemblies, but these 

differences were minor in comparison to the differences to observed with Refseq v.1.0. These 

differences were predominantly scaffold orientation conflicts, characterized by a group of markers 

in the same location with inverse ordering. The CDC Landmark assembly showed high collinearity 

to Svevo but was shorter than that of the other assemblies, indicative of sequence which was not 

incorporated into the assembly. In addition, the genomic region in Landmark between 798.8 - 

799.0 Mb appeared to map to chromosome 2A in the other assemblies; this is likely a chimeric 

scaffold in the assembly or a miss-assembled scaffold. The comparison between Svevo and CDC 

Stanley indicate that the assemblies were highly co-linear, with a strong relationship in 90K 

markers and Refseq v.1.0 gene models.  

5.3.2. RNAseq analysis reveals differentially expressed genes within the SSt1 interval 

The number of differentially expressed genes (DEGs) across the whole genome for each 

hollow by solid comparison ranged from 78 to 7174 (Figure 5.5). The fewest number of DEGs (n 

= 78) was observed when comparing EMS knockout line M2.1184 to its parent CDC Fortitude, 

whereas the highest number of DEGs were observed in hexaploid comparison Vesper/Lillian 

(7174). 
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Figure 5.5. Number of differentially expressed genes between hollow vs. solid comparisons 

in the RNAseq panel.  

 

There were 32 high confidence genes from the Refseq v.1.0 gene models which anchored 

within the SSt1 region in Svevo (827.5 - 830 Mb), (Figure 5.6). This interval also contained the 

highest frequency of polymorphic SNPs between the SSt1+ and SSt1- bulks identified with exome 

capture and BSA (Fig. 5.2); several of these SNPs were localized inside genes within the SSt1 

interval (Fig. 5.6). Several genes within the SSt1 interval were functionally related and tandemly 

duplicated; including three ankyrin repeat-containing domain proteins (ANK), four 

metallothionein (MT), two RPS28, three Dof transcription factors, and five pectin acetylesterases 

(PAEs). At Svevo position 829.2 Mb, a gene encoding a putative Dof (TraesCS3B01G608800) 

was significantly upregulated (p < 0.001) in all solid-stemmed lines in the RNAseq panel except 

Mckenzie, and was the only one of the three Dof genes that was expressed across lines in the 

RNAseq panel. There were no reads that mapped to TraesCS3B01G608800 in M2.1184, and the 

expression of all genes between positions 828.6 and 829.2 were severely impaired in the mutant, 

indicating a possible deletion of this region (Figure 5.6). PCR fragments were not detected from 

the mutant M2.1184 both within TraesCS3B01G608800 and flanking regions (Figure 5.7C), 

suggesting that the entire gene is deleted. Other notable genes that were differentially expressed in 

some, but not all pairwise comparisons included a protein kinase (TraesCS3B01G600300), a dual-
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specificity RNA methyltransferase (TraesCS3B01G6002000), and the MYB transcription factor 

(TraesCS3B01G612200), which was localized just outside the SSt1 interval (830.6 Mb), but was 

consistently down-regulated in all solid-stemmed lines. 
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Figure 5.6. Gene expression comparison within the SSt1 interval in the Svevo reference. 

Refseq v1.0 genes were anchored and ordered based on the Svevo reference sequence. Physical 

positions are shown to the left of map in Mb. The deleted region in M2.1184 is highlighted in red 

shading along the physical map. Genes that contained polymorphic SNPs from exome BSA are 

highlighted in green font. Gene expression differences between hollow vs. solid stemmed 

comparisons are shown as a heatmap on the right. Positive fold changes shown in blue shading 

indicate greater expression in the solid line, whereas negative fold changes shown in red shading 

indicate greater expression in the hollow line. Expression values are expressed as log2 fold change. 

‘.’ indicates no expression was detected.
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Figure 5.7. Variation around the TraesCS3B01G60880 (Dof) gene. a) Polymorphic GAGA repeat in the promoter of Dof. b) SSCP 

gel image showing double banding in the AG repeat element in solid lines from Kofa/W9262-260D3 mapping population. c) Agarose 

gel image showing a deletion in mutant M2.1184 using as series of primers designed in and around the Dof gene.

G 

a) 
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5.3.3. Functional enrichment reveals that differentially expressed genes are involved in a 

variety of biological processes 

Significant GO terms showing functional enrichment based on DEGs between hollow vs 

solid comparisons were identified for BP (12), CC (5), and MF (18) (Appendix 15), several of 

which can be plausibly linked to the role of SSt1. These included the biological processes 

GO:0006950 (response to stress), GO:0042546 (cell wall biogenesis), and GO:0071554 (cell wall 

organization or biogenesis). Many of the functionally enriched genes from the Refseq v.1.0 

annotation that contained GO terms associated with cell wall modification were enzymes of the 

class xyloglucan endotransglucosylases/hydrolase (XTH), which are known regulator targets of 

Dof (Xu et al., 2016), while the remainder were galactoside 2-alpha-L-fucosyltransferases (FUT). 

The most enriched GO terms under Molecular Function was GO:008171 (O-methyltransferase 

activity), which included activity of genes encoding O-methyltransferase (OMT) and caffeoyl-

CoA O-methyltransferase (CCOMT). 

5.3.4. Comparative analysis reveals both sequence variation and CNV at 

TraesCS3B01G608800 

To investigate possible sequence variation around TraesCS3B01G608800, the gene 

sequence from Refseq v.1.0 was aligned to the draft sequences of CDC Landmark (SSt1+), and 

CDC Stanley, Zavitan, Refseq v.1.0, and Svevo (SSt1-) using GMAP, and the complete gene 

sequence including 1Kb upstream and downstream of the gene were aligned using Muscle (Edgar, 

2004). The TraesCS3B01G608800 transcript is 2068 bp long and includes one intron. The 

predicted open reading frame (ORF) is 1134 bp, which encodes for a putative protein with 378 

amino acids (Appendix 16). The analysis of sequence variation revealed that the transcript 

sequence of TraesCS3B01G608800 shared 100% sequence identity between CDC Landmark and 

CDC Stanley (Appendix 7). Investigation into sequence variation within the promoter of 

TraesCS3B01G608800 identified a polymorphic GAGA repeat 71 bp upstream of the 

transcriptional start site (TSS). Further investigation revealed the number of GA copies in each 

assembly was as follows: Refseq v1.0: 10; Zavitan: 11; CDC Landmark: 15; Svevo: 18; and CDC 

Stanley: 19 (Figure 5.7A).

Primers designed to flank the GAGA repeat upstream of TraesCS3B01G60880 were used 

to screen a larger panel of lines for association analysis. The resulting PCR product was visualized 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006950
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on SSCP gels, which unexpectedly identified additional fragments amplifying in solid-stemmed 

lines of the Kofa/W9262 and Lillian/Vesper mapping populations (Figure 5.7B). This led to the 

hypothesis of a sequence duplication in TraesCS3B01G60880 could be associated with stem-

solidness. Because the primer sequences map uniquely in the Landmark assembly, thus should not 

be amplifying any non-target fragments, the duplication must be collapsed. This polymorphic 

banding pattern was scored as a presence/absence polymorphism and was re-mapped in both 

mapping populations and found to co-segregate with the SSt1 (data not shown), confirming that 

the polymorphism we observed was indeed from the SSt1 region of 3BL.  

5.3.5. Validation of structural variation using 10x sequencing 

To investigate the possibility of a collapsed duplication in the Landmark assembly, we 

aligned the 10x sequence data for CDC Landmark, against the CDC Landmark and CDC Stanley 

reference sequences. Visualization of sequence read information identified a four-fold increase in 

read coverage in the region within the SSt1 interval that contained TraesCS3B01G60880 (Figure 

5.8A and B), consistent with a collapsed gene duplication. However, the size of the duplicated 

region differed between alignments to the two assemblies. When CDC Landmark reads were 

aligned to CDC Stanley, the duplicated region spanned 34.1 kb (Figure 5.8B), whereas when 

aligned to CDC Landmark it spanned just 4.3 kb (Figure 5.8A). The only gene contained within 

either duplicated interval was TraesCS3B01G60880. 

10x sequence data was also generated for Svevo, CDC Fortitude and M2.1184 and was 

aligned against the Svevo reference sequence. Visualization of the Svevo read data showed 

consistent read coverage around the region containing TraesCS3B01G60880, and a strong 

diagonal line with respect to molecule association did not show significant evidence of structural 

variation, which validates the Svevo assembly within the interval (Figure 5.9A). Visualization of 

the CDC Fortitude 10x data (Figure 5.9B) identified a peak in read coverage spanning 34.8 kb 

similar to the peak observed in CDC Landmark (34.1 kb). Similarly, this interval contained 

TraesCS3B01G60880 and surrounding region. Molecule associations spanning the region were 

consistent with a duplication in a tandem configuration. Within the same interval, a largescale 

deletion spanning 674 kb was detected in M2.1184 (Figure 5.9C). Molecule associations spanning 

this gap were also identified consistent with a deletion. Additional structural variations, including 
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an additional series of possible deletions, common to the CDC Fortitude genetic background, were 

noted upstream of the TraesCS3B01G60880 duplication interval. 
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Figure 5.8. Loupe visualization of CDC Landmark 10x reads aligned to a) CDC Landmark and b) CDC Stanley. Read coverage 

is plotted on the X and Y axes, whereas the diagonal red line represents 10x molecule association. Deviations from the main diagonal 

suggest putative structural variations. 
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Figure 5.9 Loupe visualization of 10x reads aligned to the Svevo reference from:  a) Svevo, b) CDC Fortitude and c) M2.1184. Read 

coverage is plotted on the X and Y axes, whereas the diagonal red line represents 10x molecule association. Deviations from the main diagonal 

suggest putative structural variations. 
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A qPCR assay was developed to interrogate copy number variation (CNV) of 

TraesCS3B01G60880 in an expanded set of lines, including all five lines for which reference 

assemblies were available (Landmark, Stanley, Svevo, Zavitan and Refseq v1.0, Figure 5.10A). In 

addition, all lines in the RNAseq panel were screened (Figure 5.10B), in addition to an extended 

set of tetraploid and hexaploid cultivars (Appendix 17 and 18). Of the five reference lines, CDC 

Landmark (SSt1+) had a three to four-fold greater number of copies than Stanley, Svevo, Zavitan, 

and Refseq v.1.0. In the RNAseq panel, Lillian had a similar number of copies as CDC Landmark 

that was about three to four times greater than in Vesper. The solid-stemmed durum’s W9262-

260D3, CDC Fortitude, and LDN-GB-3B had a similar number of copies of TraesCS3B01G60880 

that was three to four-fold times greater than the hollow cultivar Kofa. The mutant M2.2324 had 

a similar number of copies to its parent, CDC Fortitude, however a complete lack of amplification 

for TraesCS3B01G60880 was detected in M2.1184, providing additional evidence of a deletion in 

that line. The number of copies experimentally validated through qPCR were moderately 

correlated (r = 0.43) to the normalized reads count from DESeq2 analysis (Figure 5.10C). The 

number of copies of TraesCS3B01G60880 in the expanded set of cultivars had nearly a perfect 

association with known phenotypic expression of stem-solidness, although the threshold for 

determining the cut-off point differed between durum and common wheat (Figure 5.10D). The 

only obvious exceptions were Janz, a solid hexaploid which expresses a solid-stem derived from 

T. ponticum, but appears to carry only a single copy of TraesCS3B01G60880, and Durex, a hollow-

stemmed durum that expresses multiple copies of TraesCS3B01G60880. 
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Figure 5.10. Copy number analysis for the TraesCS3B01G60880 (Dof) gene. Copy number was determined by qPCR. a) Relative 

copy number of TraesCS3B01G60880 in each of the five genome assemblies, and b) Relative copy number of TraesCS3B01G60880 in 

lines from RNAseq panel. c) Correlation between relative copy number of TraesCS3B01G60880, and normalized read count from 

RNAseq. d) Distribution of CNV for TraesCS3B01G60880 in a diverse set of hexaploid and tetraploid lines. The color-coded dotted 

lines show the cut-off point differentiating hollow from solid cultivars based on phenotypic screening. The full data summary is shown 

in (Appendix 17 and 18).
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5.4. DISCUSSION 

Growing wheat cultivars that express the solid-stem phenotype is the most effective way 

to minimize damage caused by the WSS. Identifying the genetic factors responsible for conferring 

stem-solidness is important towards maximizing pith expression in wheat, especially for common 

wheat where pith expression can be below the threshold required to achieve effective resistance to 

WSS. The SSt1 locus on chromosome 3B contributes to most of the phenotypic variation in stem-

solidness in both wheat species. In this study, we report on several key findings that will help guide 

future research in breeding for resistance to the WSS. 

We identified major sequence variation around and within the SSt1 locus, including major 

rearrangements, CNV, regions of dissimilar sequence, and other small translocations or inversions. 

The rearrangements in Refseq v.1.0 make this reference sequence problematic to use for the 

positional cloning of SSt1. For example, previous association mapping work in common wheat 

had identified the peak of the QTL to be close to the marker BS00074345_51 (Varella et al., 2015); 

this marker is located at Refseq v.1.0 position 829.2 Mb, nearly 10 Mb distal from where the peak 

of the QTL was localized in durum wheat, near the marker EK02_292495 (Refseq v.1.0 position 

821.0 Mb) (Nilsen et al., 2017). This led us to initially question whether durum and common wheat 

carry two different genes at SSt1, until the release of the assembly for Svevo shed new light on the 

problem. The TraesCS3B01G60880 gene is localized close to BS00074345_51 in physical 

distance, but when we mapped our TraesCS3B01G60880 CNV as a molecular marker in the 

Lillian/Vesper and Kofa/W9262-260D3 mapping populations, it was found to co-segregate with 

EK02_292495. This finding was supported by the fact that when the Refseq v.1.0 gene models 

were anchored to Svevo, and positioned accordingly, both EK02-292495 and BS00074345_51 

mapped to a much smaller interval of 2.5 Mb interval (827.5 - 830.2 Mb) and co-segregated with 

the peak of the QTL in both species. The arrangement of EK02-292495 and BS00074345_51 was 

consistent across the other four assemblies, therefore the re-arrangement appears to be specific to 

Refseq v.1.0. Furthermore, comparison between the homoeologous gene order on 3A and 3D in 

Refseq v.1.0 also showed an inversion on 3BL around the same region. Taken together, these 

findings suggest that the gene order in Refseq v.1.0 does not reflect the true order of genes in the 

other assemblies, which is more accurately represented by the order in Svevo, and supported by 

the other assemblies and the wheat 90K consensus map. It remains unclear whether the 
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rearrangement in Refseq v.1.0 is the result of an error in the assembly of the pseudomolecule or a 

true structural variation.  

Many of the PCR based markers that were previously developed to saturate the SSt1 locus 

(data not shown) functioned only as dominant markers (presence absence of an amplified 

fragment), and the amplification pattern for these markers was opposite in common wheat versus 

durum wheat (i.e. solid durum’s and hollow hexaploids amplified a band, whereas, hollow durum’s 

and solid hexaploids did not). This led us to hypothesize that hollow durum’s and solid hexaploids 

carried a deletion of approximately 500 kb in length. However, in the present study, comparative 

genomic analysis revealed that this region does not carry a deletion, but rather is a region of 

dissimilar sequence between the assemblies. This same region was also associated with the peak 

of SNP frequency differentiating the exome bulks (SSt1+, SSt1-) and is likely in linkage 

disequilibrium with the causal gene(s) conferring stem-solidness, positioned just proximal to the 

peak of the SSt1 QTL in durum and common wheat. If common wheat and durum wheat do in fact 

share a common gene conferring stem-solidness, then it’s likely that a historical recombination 

event has occurred at some point in evolutionary history between this region of dissimilarity, and 

the causal gene. 

The SSt1 region has undergone a series of gene duplication events. Several clusters of 

between two and four genes were discovered within SSt1, consisting of genes encoding putative 

ANK, MT, RPS28, Dof and PAEs. These gene clusters occurred within tight physical intervals 

along the Svevo reference sequence which suggests they were tandemly duplicated. Results 

presented here suggest CDC Landmark carries multiple copies of one the Dof genes, 

TraesCS3B01G60880, that were collapsed into a single copy in the current CDC Landmark 

assembly. This was in addition to the two additional Dof genes that were resolved in the CDC 

Landmark assembly. Within the CDC Landmark assembly, TraesCS3B01G60880 was positioned 

near the edge of a scaffold break point, which suggests that this region is particularly difficult to 

assemble, possibly because of the sequence duplication.  

In the present study, we found the SSt1 interval in Svevo (827.5 - 830 Mb) contains 32 

annotated genes, of which only 10 were differentially regulated in at least one hollow vs. solid 

comparison. The QTL interval was independently verified using wheat exome capture coupled 

with bulked segregant analysis, which localized the highest frequency of polymorphic markers 

between SSt1+ and SSt1- bulks to the same location. Although exome capture may not be directly 
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suitable towards the identification of causal mutations because of large gaps in probe coverage, 

these results do show the approach was capable of saturating our target interval with additional 

markers that may be useful for marker-assisted selection or genetic mapping experiments. Based 

on the cumulative analysis of multiple differential expression analyses, the strongest candidate 

gene for SSt1 was TraesCS3B01G608800, which encodes a putative Dof transcription factor. Dof 

proteins are a family of transcription factors specific to plants that are responsible for the positive 

and negative regulation of genes implicated in a wide variety of functions, including cell cycle 

regulation (Skirycz et al., 2008), C4 carbohydrate metabolism via phosphoenolpyruvate 

carboxylase (PEPC) (Yanagisawa, 2000), plant growth and development, photosynthesis, light 

response (Yanagisawa and Sheen, 1998), and cell cycle progression/cell expansion (Xu et al., 

2016). Dof proteins regulate target genes by binding to the sequence AAAAG, which is 

ubiquitously found in the promoters of many plant genes (Yanagisawa and Izui, 1993), including 

in the promoter of TraesCS3B01G60880 itself, which could suggest TraesCS3B01G60880 is a 

self-regulating transcription factor. Although there was no evidence of sequence variation within 

the TraesCS3B01G60880 transcript that would impair gene function between hollow vs. solid-

stemmed cultivars, we discovered that the TraesCS3B01G60880 promoter carries a GAGA 

element within 100bp of the TSS that has between 10 and 21 AG repeats depending on the 

assembly. This ultimately led to the discovery that TraesCS3B01G60880 itself was duplicated and 

was not fully resolved in the assembly of Landmark. In other systems, GAGA binding proteins 

have been suggested to influence gene expression by binding to GAGA sites in the promoter 

(Sangwan and O'Brian, 2002).  

Supporting evidence for TraesCS3B01G60880 as a candidate gene for SSt1 was provided 

by our EMS knockout line M2.1184, which we believe carries a substantial deletion around the 

TraesCS3B01G60880 gene based on several lines of evidence. First, we observed a complete lack 

of PCR amplification using a variety of primers specifically designed around the 

TraesCS3B01G60880 gene. Second, we did not detect evidence that the gene was expressed in 

RNAseq experiments, or with qPCR analysis. And third, based on whole genome sequence data 

using the Chromium 10x sequencing platform, which showed a substantial reduction of read 

coverage within a region spanning 673 kb, with evidence of molecule associations that appear to 

span the putative deletion. Previous research has also found that large scale deletions between 150 

and 750 kb were generated using EMS as a chemical mutagen in wheat (Henry et al., 2014). The 
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genes immediately distal to TraesCS3B01G60880 also have severe impairment of their expression 

in M2.1184, including two RPS28 copies, a SANT-domain-containing protein, four copies of 

ANK, and four MT encoding proteins. A small number of reads were found to be mapping to these 

genes, possibly due to cross-mapping during the RNAseq assembly, which was also observed with 

10x dataset. Therefore, based on this analysis it is possible the deletion in M2.1184 could be as 

large as 673 kb spanning Svevo position 828.6 -829.2 Mb. In addition, a second mutant line, 

M2.2324, had reduced expression of TraesCS3B01G60880 in our RNAseq analyses, providing 

additional support for this gene as a candidate for SSt1. Given that TraesCS3B01G60880 was 

consistently upregulated in solid-stemmed cultivars, we consider it the strongest candidate gene 

for SSt1. However, the possibility that additional genes contained within the deletion in M2.1184 

MTs, RPS28, Sant Domain containing protein) are also involved cannot be ruled out presently. 

The remaining genes within the interval could be also be involved in conferring stem-

solidness. Plant metallothionein’s are a diverse family of protein primarily involved in heavy metal 

detoxification and reactive oxygen species (ROS) scavenging (Hassinen et al., 2011). Previous 

studies have shown RNAi knockdowns of the OsMT2b gene in rice resulted in increased epidermal 

cell death, whereas the epidermal cells of normal plants undergoing cell death were found to have 

downregulation of OsMT2b in the presence of H202 and ethylene (Steffens and Sauter, 2009). Pith 

autolysis is a normal process by which pith is broken down and cell wall components recycled, 

particularly during periods of stress such as low light intensity or drought stress (Huberman et al., 

1993). Therefore, it could be plausible that metallothioneins could be involved in the normal 

development of the hollow-stem. However, if this were true we would expect to have seen 

consistent down-regulation of the metallothionein genes, which was not observed through RNAseq 

analysis.  

Ribosomal protein genes were also observed in the SSt1 interval, and are required to be in 

stoichiometric balance to make up the ribosomal complex responsible for protein synthesis (Naora, 

1999). The coordination of RP production is even more important in polyploidy species where the 

presence of additional homoeologous gene copies are likely. In addition to their primary roles, 

several RPs have been implicated in extra-ribosomal functions. For example, inhibiting the 

expression of RPS3a can initiate apoptosis, whereas the gene is expressed at very high levels in 

some human tumor cells (Naora et al., 1998). RPS28 can also bind to the 3’ UTR of its own mRNA 

as a post-transcriptional regulation mechanism (Badis et al., 2004). In humans, L26 can bind to 
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the 5’ UTR of the tumor suppressor gene p53 thereby enhancing its translation (Takagi et al., 

2005). Stem-solidness likely arises from increased cell division, cell elongation or a combination 

of the two. Conversely, stem-hollowness, which is the predominant form in modern wheat 

cultivars, could be caused by a deficiency in the production of RPS28 leading to an initiation of 

cell cycle arrest or the induction of programmed cell death.  

Previous research suggested O-methyltransferase (OMT, TraesCS3B01G612000) as a 

possible candidate gene for SSt1 due to strong differential expression in hollow vs solid cultivars 

(Oiestad et al., 2017). Although this gene was not found within our defined QTL interval that is 

shared between durum and common wheat, it fell just outside (Svevo position 830.4 Mb) and was 

within the QTL interval of the Lillian/Vesper mapping population. The gene was strongly up-

regulated in hollow-stemmed cultivars (log2 fold change = 3-5), except in comparisons with the 

hollow-stemmed cultivar Langdon. However, OMT was not differentially expressed in 

comparisons with the EMS mutant M2.1184, which suggests that it is not a strong candidate, at 

least in the context of durum wheat. GO enrichment analysis did identify significant functional 

enrichment of O-methyltransferase across many hollow-solid comparisons. O-methyltransferase 

is thought to be involved in lignin biosynthesis. True pith cells are composed of undifferentiated, 

un-lignified parenchyma, whereas the cells surrounding vascular bundles consist mainly lignified 

sclerenchyma that provide mechanical support to the stem. (McNeal et al., 1965) found no 

significant difference in lignin content between the hollow-stemmed cultivar Thatcher and the 

solid-stemmed cultivar Rescue, which would suggest the lignified portion of the stem is the same 

in both lines. Therefore, one possible explanation is that the detection of differential expression of 

O-methyltransferase is more related to disproportionate sampling of cell types as opposed to a true 

differential expression response. In the present study, we attempted to avoid such bias by sampling 

the pith transition zone located above the node where both hollow and solid-stemmed cultivars 

have pith cells present, in contrast to Oiestad et al. (2017) who sampled the entire internode region 

for expression analysis. Despite having a more precise sampling method, we detected differential 

expression of OMT in some comparisons, which could warrant future investigation.  

5.5. CONCLUSIONS 

 Defining the SSt1 interval has been problematic because small discrepancies in gene order 

exist between assemblies, particularly in Refseq v.1.0, therefore caution must be taken when using 
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a reference guided approach towards positional cloning of genes, which highlights the need for a 

high-quality assembly of an SSt1 carrier. A region of dissimilar sequence between Svevo and the 

other assemblies corresponded to an increase in SNP frequency identified by exome capture and 

BSA; these SNPs will serve as an important source of markers for additional mapping experiments 

or marker-assisted selection in wheat. We corrected the order of Refseq v.1.0 genes within the 

SSt1 interval using the Svevo sequence, which contains 32 genes. Of these, a gene encoding a Dof 

transcription factor (TraesCS3B01G60880) was consistently differentially expressed across all 

hollow by solid comparisons. During attempts to characterize the promoter of the 

TraesCS3B01G60880 gene, we unexpectedly amplified multiple copies in solid-stemmed lines. 

We developed a qPCR assay that confirmed CNV in TraesCS3B01G60880, which was found to 

be associated with stem-solidness in a diverse set of hexaploid and tetraploid cultivars. A large 

EMS induced deletion was also identified in and EMS mutation line, M2.1184, which included 

the entire TraesCS3B01G60880 gene, providing further evidence towards its involvement in 

conferring stem-solidness.

  



  

  

109 

 

6. GENERAL DISCUSSION 

Wheat is currently the world’s most widely grown food crop, and accounts for 20% of the 

daily calories consumed by a current population estimated to be around 7.5 billion people. The 

United Nations projects the global population will reach 10 billion people by the year 2056, thus 

the corresponding demand for wheat is expected to increase significantly over the same period. 

Wheat production is currently limited by several biotic and abiotic stresses, which will need to be 

addressed to ensure global food security in the near future. The WSS is a damaging insect pest 

across the major wheat growing regions in North America. The most effective way to control the 

WSS is to deploy cultivars that express the solid-stem phenotype. The goal of this thesis was to 

comprehensively examine the expression of stem-solidness trait wheat. This research was 

facilitated by the major advances that have been made in wheat genomics over the past decade, 

including the development of new high throughput SNP genotyping platforms such as the wheat 

90K array and the first fully assembled reference sequences for durum and common wheat. 

6.1. Increased sowing density decreases pith expression in common and durum wheat 

Optimizing management practices that maximize agronomic performance can have a major 

impact on a producer’s bottom line, particularly regarding yield and grain quality. In regions that 

are prone to sawfly damage, maximizing the expression of stem-solidness could help protect 

against yield and quality losses from lodging and downgrading caused by the WSS. However, it 

can be difficult to predict when WSS infestation will occur. Thus, it is essential to find the right 

balance between management practices which optimize yield and stem-solidness, both in the 

absence or presence of WSS infestation. Previous research has shown that the expression of stem-

solidness in common wheat is influenced by environmental factors, the most important of which 

is light intensity/quality. The effect of light quality on the expression of stem-solidness in durum 

wheat had not been evaluated prior to this research, but was presumed to be less of a concern due 

to the strong pith expression across environments observed in most durum cultivars. It was 

hypothesized that under higher commercial sowing densities, a reduction in the amount of light 

penetrating through the canopy could negatively affect pith development in some solid-stemmed 

wheat cultivars. Thus, determining the optimum sowing density is important to ensure effective 

WSS resistance. Such interactions are likely cultivar specific, which highlights the need of 

continued agronomic research as new solid-stemmed cultivars are released. 
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In this study, we showed that the expression of stem-solidness in the durum cultivars 

Golden Ball, and the Biodur derivatives CDC Fortitude, and AAC Raymore, was not heavily 

affected by sowing density, as all three cultivars had stems that were nearly completely solid. This 

contrasted with the common wheat cultivar Lillian, which developed significantly less pith than 

the durum lines, and was well below the minimum threshold or 3.75 proposed by (Wallace et al., 

1973) required to achieve effective resistance to WSS. In this study, we were not able to observe 

significant WSS cutting, therefore additional research is necessary to ensure the resistance in these 

lines would be sufficient under infestation. We observed a negative correlation between sowing 

density and the expression of stem-solidness, and positive correlation with yield across cultivars 

in the study. Both CDC Fortitude and AAC Raymore were similar in grain yield to the check 

cultivar Strongfield. Although this does not necessarily mean there is not a yield penalty associated 

with stem-solidness per se, it does indicate that breeding efforts have been successful in 

overcoming any potential yield drag in durum wheat.  

6.2. SSt1 maps to a coincident locus on chromosome 3B in mapping populations 

Kofa/W9262-260D3 and Lillian/Vesper 

Advances in high-throughput genotyping platforms such as the iSelect 90K array allowed 

the dissection of the major stem-solidness QTL on chromosome 3BL at a higher resolution than 

was previously possible. Using this approach, two coincident QTL were identified on chromosome 

3BL near the previously reported location of Qss.msub-3BL (Cook et al., 2004) and SSt1 

(Houshmand et al., 2007). At the time when this experiment was conducted, the only available 

genome assembly was the sequence for the WEW accession Zavitan (Avni et al., 2017). Anchoring 

of 90K probes associated with the peak of SSt1 to the WEW reference sequence allowed for precise 

comparison between genetic and physical intervals for both mapping populations. Based on the 

overlapping portion of the QTL interval in Kofa/W9262-260D3 and the Lillian/Vesper mapping 

populations, the SSt1 interval spanned positions 833.4 – 835.1 Mb on WEW chromosome 3B. This 

finding was supported by haplotype evidence using common wheat and durum wheat diversity 

panels.  

In the present study, differences in haplotypes observed in some lines in the diversity 

panels, which supported the hypothesis that multiple sources of stem-solidness exist (Beres et al., 

2013a). Stem-solidness likely evolved in Europe, either prior to the global expansion of wheat 
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from the fertile crescent. Alternatively, stem-solidness may have evolved multiple times 

independently, either before or after expansion from the fertile crescent. The reason that stem-

solidness has persisted may be due to a selective advantage associated with having a solid stem, 

either as a mechanism of insect resistance, or for its role in stress response. In North America, C. 

cinctus is the only economically important pest of wheat, but does not currently exist in Europe. 

However, the closely related species C. pygmaeus does cause crop losses in Europe, and has similar 

life cycle and biology to C. cinctus. If infestations of C. pygmaeus occurred during the 

domestication of wheat, then it is likely that stem-solidness was inadvertently selected for by early 

hunter and gatherers, as hollow-stemmed counterparts would have been susceptible to lodging. 

In the present study, the two known sources of stem-solidness in durum wheat (Golden 

Ball and Biodur) had different haplotypes, despite QTL having previously been mapped to a 

similar region of chromosome 3BL (Houshmand et al., 2007). Golden Ball carried the hollowness 

allele throughout the entire interval, thus it is presently unclear whether the stem-solidness gene it 

carries is allelic to SSt1. In a previous study, Cook et al. (2017) found 26 different haplotypes 

within the SSt1 interval in durum and common wheat. In the present study, most common wheat 

lines derived from S-615 all carried a similar haplotype, with a few exceptions, such as Janz and 

Mott, both of which share a similar haplotype that is quite different from S-615. Janz derives its 

stem solidness from Thinopyrum ponticum (Beres et al., 2013b), whereas Mott is a derivative of 

S-615. At this point it remains unclear whether the different sources of stem-solidness carry 

different genes, or different alleles of the same gene. Research in common wheat suggests there 

could be multiple alleles at SSt1 based on observations in the winter wheat cultivar Conan (Talbert 

et al., 2014). Conan was derived from the cross: Westbred-Rambo/Westbred-906-R, where 

Westbred-906-R was derived from the cross Fortuna/Westbred-906-R//Golden-86. Fortuna is a 

derivative of S-615, thus Conan itself should be an S-615 derivative.  

Conan is unique because it exhibits temporal expression of stem-solidness, having a very 

solid-stem during early stem elongation, but becomes more hollow-stemmed towards maturity 

(Varella et al., 2016). The traditional approach to rate for stem-solidness in breeding programs has 

been to examine stems at maturity, which was also the rating approach used throughout this thesis. 

This could explain why several hollow-stemmed lines in the common wheat diversity panel carried 

haplotypes that would have suggested they are solid-stemmed. For example, the cultivar Mckenzie 

carries the S-615 haplotype, but has sometimes been described as a hollow-stemmed cultivar 
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(Beres et al., 2013a). At maturity, Mckenzie had a low level of stem-solidness (stem-solidness < 

2), yet was entirely solid-stemmed at the time of sampling for RNAseq during early stem-

elongation. Other similar examples include the CWES cultivars Glenlea and Burnside, which carry 

novel (possibly solid-stemmed) haplotypes within the SSt1 interval. Further research is required to 

characterize the extent of temporal pith expression in Canadian germplasm. 

6.3. Major structural variation exists around the SSt1 locus in some genomic assemblies 

Since the release of the WEW genome sequence (Avni et al., 2017), additional completed 

reference sequences have become available at a spectacular rate, even during the writing of this 

thesis. At the time or writing, there are complete assemblies now available for common wheat 

(Refseq v.1.0), and durum wheat (Svevo). While reference sequences can be important tools to 

define QTL intervals, they can also be challenging, particularly because small differences in gene 

order exist between assemblies. This is particularly true near the telomeres, as was the case for 

SSt1. Assembly of the wheat genome is hindered by the allopolyploid nature of its genome, and 

large amount of repetitive sequences. Therefore, it can often be difficult to determine whether 

structural variation between assemblies is real, or an artifact of the assembly process. Furthermore, 

the possibility that unique sequence variation or structure exists in solid-stemmed lines highlights 

the need for an assembled sequence of an SSt1 carrier. To address this concern, work is currently 

underway finalize the draft assembly of the SSt1 carrier CDC Landmark.  

6.4. The SSt1 interval contains several possible candidate genes 

  One of the major objectives of this thesis was to define the SSt1 interval and the genes 

contained within it. A high degree of collinearity between the genes and gene order was observed 

between the assemblies Zavitan, Svevo, CDC Stanley and CDC Landmark. However, this research 

identified largescale structural variation in Refseq v.1.0 relative to the other assemblies with major 

implications towards defining the SSt1 interval. Considering a large amount of the work in this 

thesis was done in durum wheat, the only available durum reference sequence, Svevo, was 

examined. The Refseq v.1.0 gene models were re-ordered by anchoring the transcript sequences 

to Svevo. Based on the Svevo order, there are 32 high confidence genes contained within the SSt1 

interval. Many of the genes within the interval are functionally duplicated, including clusters of 

genes encoding putative ANK, MT, Dof, RPS28 and PAE proteins.  



  

  

113 

 

Gene expression analysis through RNAseq identified many differentially expressed genes 

between hollow and solid cultivars, both genome-wide, and contained within the SSt1 interval. 

One gene, TraesCS3B01G60880, encoding a putative Dof transcription factor was differentially 

expressed across all hollow by solid comparisons. The ORF of TraesCS3B01G60880 did not show 

significant sequence variation to account for its differential expression, however, a polymorphic 

GAGA element was identified 71 BP upstream of its TSS, and a different number of GA repeats 

was found in each of the five genome assemblies. Primers were designed to flank this 

polymorphism, however the amplification of multiple PCR fragments in solid-stemmed cultivars 

suggested additional copies of the gene could be associated with stem-solidness. In the current 

version of the CDC Landmark assembly, there is only a single copy of TraesCS3B01G60880 and 

the gene is localized at the edge of a scaffold with a breakpoint immediately upstream of the 

GAGA element.  

Further investigation using 10x sequencing data showed that the entire 

TraesCS3B01G60880 gene and surrounding sequence was duplicated, spanning a physical 

distance of ~35 kb. No additional genes were present within the duplication. Because there is 

approximately four-fold greater 10x read coverage within the duplication, there are likely to be 

four copies of TraesCS3B01G60880 in a tandemly duplicated configuration. Similar number of 

copies are found in the other gene clusters within the SSt1 interval. Because the additional copies 

are not being resolved in the CDC Landmark assembly, it is reasonable to assume that they are 

either identical in their nucleotide sequence, or nearly so. This was supported by the fact that 

additional SNPs were not detected among stacked 10x reads (data not shown). The occurrence of 

a scaffold breakpoint in such proximity to the edge of the duplicated region would also suggest 

that the duplication is causing problems in the assembly process.  

To examine the frequency of CNV at TraesCS3B01G60880 a qPCR assay was developed 

and used to screen the common wheat and durum wheat diversity panels. These results showed a 

strong association between the number of copies of TraesCS3B01G60880 and stem-solidness, 

although a few exceptions were noted. Among these was the Australian cultivar Janz, which 

derives its stem solidness from Thinopyrum ponticum (Beres et al., 2013a). Janz only carried a 

single copy of TraesCS3B01G60880 yet expressed a solid-stem similar to S-615. These findings 

again highlight the need for further research to fully understand the different sources of stem-

solidness in wheat.  
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The identification of a large-scale EMS induced mutation within the SSt1 QTL interval in 

M2.1184 provided further evidence of the involvement of TraesCS3B01G60880 in conferring 

stem-solidness. The deletion spanned approximately 673 kb, which was estimated by examining 

the coverage of 10x sequencing reads and 10x molecule associations that spanned the gap. 

Previously research has also identified EMS deletions ranging in size up to 760 kb (Henry et al., 

2014). Thus, wheat appears to be quite tolerant of large deletions, likely due to the buffering effect 

caused by allopolyploidy. The deletion in M2.1184 also include seven other genes, including four 

MTs, two RPS28 and a SANT-domain-containing protein. Based on stable differential expression 

in most hollow vs solid comparisons, TraesCS3B01G60880 is the strongest candidate, however 

further experiments will be required to confirm it as the causal gene.  
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7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This research was conducted to investigate the expression of stem-solidness in durum and 

common wheat. Experiments were performed to evaluate the expression of stem-solidness 

primarily controlled by the SSt1 locus on chromosome 3BL at the field level under commercial 

sowing densities. To improve the resolution of the SSt1 interval on 3BL, QTL mapping was 

performed in two bi-parental mapping populations derived from the crosses Kofa/W9262-260D3 

(durum wheat), and Lillian/Vesper (common wheat), using high density mapping using the iSelect 

90K assay. Haplotype analysis was performed using markers associated with the peak of SSt1 in a 

diverse set of durum and common wheat lines. Given the availability of several new genome 

assemblies in wheat, the map position of the peak SSt1 markers were compared to their physical 

intervals on chromosome 3BL. The accompanying high confidence gene annotations allowed for 

whole transcriptome analysis of gene expression from the stem tissue sampled from several wheat 

cultivars from tissue sampled during the critical points of stem elongation when pith development 

occurs. The major conclusions from this thesis are as follows: 

• Stem-solidness increased as sowing densities decreased, however, the stems of CDC 

Fortitude and AAC Raymore were significantly more solid across all sowing densities than 

common wheat cultivar Lillian. 

• Lowering sowing densities may be beneficial to common wheat producers aiming to 

maximize resistance to the WSS, however, in durum wheat, WSS resistance is not likely to be 

affected. 

• Optimal yield was achieved in all lines at sowing densities greater than 150 seeds m-2. 

• These results highlight the importance that both solid-stemmed cultivars and proper 

agronomics can offer to a holistic IPM strategy for WSS management.  

• The position of the major QTL derived from S-615 in common wheat (Qss.msub-3BL) is 

coincident with the Biodur derived QTL in durum wheat (SSt1), and was designated throughout 

this thesis as SSt1. 

• Several novel haplotypes were identified in common wheat and durum wheat diversity 

panels, including in several of the alternate sources of stem-solidness which included Golden Ball, 

and Janz.  

• Over the course of this research, the expression of stem-solidness was almost always lower 

than the recommended threshold of 3.75 required to achieve effective resistance. 
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• Minor QTL were shown to synergistically enhance the expression of SSt1 in durum and 

common wheat mapping populations, which suggests strategic parental selection for crossing 

coupled with phenotypic selection should be an effective strategy to maximize the effect of minor 

alleles and increase stem-solidness in common wheat. 

• The physical interval of SSt1 spans a physical interval of 827.5 – 830 Mb, and contains 32 

high confidence genes based on the Svevo reference. 

• One gene encoding a Dof transcription factor (TraesCS3B01G60880) was consistently 

differentially expressed across all hollow by solid comparisons.  

• CNV in TraesCS3B01G60880 was associated with stem-solidness in a diverse set of 

hexaploid and tetraploid cultivars.  

• A large EMS induced deletion was identified in the mutant line M2.1184, which included 

the entire TraesCS3B01G60880 gene, providing further evidence towards its involvement in 

conferring stem-solidness.

7.1. Future Research Directions 

This research identified several genes contained within the SSt1 interval, of which the 

strongest candidate encodes a putative Dof transcription factor (TraesCS3B01G60880). Additional 

functional validation work will be required to rule out the possibility of other genes as candidates, 

and to confirm the loss of phenotypic expression of pith when TraesCS3B01G60880 is silenced. 

The best strategy moving forward will include: 1) knock-down the expression of candidate genes 

in SSt1 carriers using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9), 

or virus-induced gene silencing (VIGS) approaches and subsequent phenotypic evaluation; 2) 

complementation (add-back) of TraesCS3B01G60880, and other candidates in the mutant to 

restore the phenotype. Given that complementation can often result in multiple copies of the target 

gene being inserted into the host plant, it might be a particularly effective strategy given the CNV 

may be involved in conferring stem solidness. 3) Additional screening of EMS populations derived 

from solid-stemmed lines would also be an effective strategy to identify causal SNPs within the 

gene. 

In this study, we co-localized the SSt1 QTL to a common region on chromosome 3BL in 

durum and common wheat. Fine-mapping the locus in both species could further delineate the 

locus, point to a specific candidate gene, and rule out other gene candidates. Fine mapping work 
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is currently underway using an F2 mapping populations derived from the durum cross 

Kofa/W9262-260D3, and common wheat cross CDC Landmark/CDC Stanley. 

The EMS mutant line M2.1184 carries a large deletion within the SSt1 interval. Although 

there is a high likelihood that the deletion is responsible for the loss of phenotypic expression in 

this line, it could also be possible that the causal mutation is located elsewhere in the genome. To 

confirm the causal mutation does indeed derive from the deletion on 3BL, crosses were made 

between M2.1184 and the parent CDC Fortitude to generate an F2 fine-mapping population. This 

work is currently in progress.  

Several studies, and some anecdotal evidence, have suggested stem-solidness is associated 

with a yield penalty, but this has not been sufficiently examined using the proper genetic 

experiments. The argument could be made either way. The sequestration of carbon in the stem 

could be diverting carbon from the developing grain. On the other hand, the remobilization of 

WSCs, and/or water, could contribute to grain fill under periods of stress. It remains unclear if the 

yield drag observed in many cultivars is caused by linkage drag from the inferior genetic 

background from which stem-solidness was derived. Further research is needed using NILs 

(common genetic background) differing only for the presence or absence of SSt1. These 

experiments are needed in durum and common wheat (spring and winter) to determine if this 

phenomenon is specific to a certain species or growth habit.  

Further research is needed to better understand the relationship between different sources 

of stem-solidness. These include the two durum sources Biodur and Golden Ball, the common 

wheat lines S-615 and Conan, and the tall wheatgrass source Thinopyrum ponticum. Although the 

results presented throughout this thesis support the hypothesis that multiple sources of stem-

solidness exist, it remains unclear whether stem-solidness arose independently, or can be traced 

back to a common ancestor. There are expression differences between sources with the durum 

sources being the strongest and most stable. Furthermore, some lines may exhibit temporal 

expression differences between early stem elongation and maturity. A better understanding of the 

different sources of stem-solidness could allow breeders to develop new cultivars with improved 

stem-solidness and resistance to the WSS. 

The main goal of this thesis was to improve our understanding of solid-stem expression at 

the phenotypic and genotypic levels in durum and common wheat. The literature review should 

benefit researchers and breeders working on WSS resistance in wheat. One outcome of this 
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research was the identification of several markers from the 90K iSelect wheat array that could be 

suitable for marker-assisted selection in breeding programs. The haplotypes presented in Chapter 

4 will allow breeders to select markers that are most useful across diverse genetic backgrounds to 

implement in marker-assisted selection schemes. In Chapter 3, we showed the expression of pith 

in durum wheat is stable across multiple environments, therefore marker-assisted selection for SSt1 

alone should be an effective strategy in durum wheat. A major problem that has yet to be addressed 

is the instability in pith expression in common wheat, and levels of pith expression below the 

threshold to achieve effective WSS resistance. While marker-assisted selection for SSt1 should be 

generally effective for tracking in breeding programs, additional rounds of phenotypic selection 

for pith expression in multiple field nurseries is strongly encouraged. Selecting lines that produce 

the highest amounts of pith with greater stability across environments will help breeders exploit 

favourable genetic interactions between SSt1 and minor loci. Future research is still needed to 

confirm the causal gene conferring stem-solidness, which will lead to a better of understanding of 

the biological mechanism conferring stem-solidness. Rapid advances in the field of wheat 

genomics will undoubtedly aid research on WSS resistance in the coming years. 
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9. APPENDICES 

Appendix 1. Stem-solidness rating scale.  

 

Description of the method 

Stems are either split longitudinally, or in cross section at multiple locations within each 

internode. Ratings are individually assigned for each internode, beginning at the basal internode 

moving upwards until the penultimate internode. In some applications, it may be useful to compare 

stem-solidness from the top of the plant down. A rating may be assigned for the peduncle however 

the rating can sometimes be confounded by the small stem diameter. Analysis may be performed 

separately for each internode, or combined across all internodes by taking the average across all 

internodes. Generally, only the main stem is selected for rating, as tillers may not give a true 

indication of the solidness of the plant.  
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Appendix 2. Diversity panel haplotypes in the tetraploid wheat panel.  

Name Origin Haplotype Group 

Janz Canada 1 

Mott USA - ND 1 

AAC Bailey Canada 2 

AC Abbey Canada 2 

AC Eatonia Canada 2 

Choteau USA - Montana 2 

Fortuna US - ND 2 

G960801-L12J11BF02 Canada 2 

Lancer Canada 2 

Leader Canada 2 

Lillian Canada 2 

LJP1091P ? 2 

McKenzie Canada 2 

Rescue Canada 2 

S615 Portugal 2 

Unity Canada 2 

5702PR Canada 3 

5500HR Canada 4 

Burnside Canada 4 

CDN Bison Canada 4 

CDC Rama Canada 4 

Glencross Canada 4 

Glenlea Canada 4 

Peace Canada 4 

Red Fife Canada (source unknown) 4 

Sumai 3 China 4 

CDC Merlin Canada 5 

Chinese Spring China 5 

Selkirk Canada 5 

AC Reed Canada 6 

CDC Walrus Canada 6 

Frontana Brazil 6 

Glenn USA - ND 6 

Sadash Canada 6 

5601HR Canada 6 

5603HR Canada 6 

5700PR Canada 6 

AC Andrew Canada 6 

AC Cadillac Canada 6 

AC Crystal Canada 6 

AC Elsa Canada 6 
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AC Foremost Canada 6 

AC Karma Canada 6 

AC Taber Canada 6 

AC Vista Canada 6 

Alvena Canada 6 

CDC Teal Canada 6 

CDC Utmost Canada 6 

Cutler Canada 6 

GP069 ? 6 

Infinity Canada 6 

Minnedosa Canada 6 

NRG010 Canada 6 

Park Canada 6 

Prodigy Canada 6 

SY985 Canada 6 

Vesper Canada 7 

5600HR Canada 8 

5602HR Canada 8 

5604HR CL Canada 8 

5701PR Canada 8 

AC Barrie Canada 8 

AC Domain Canada 8 

AC Intrepid Canada 8 

AC Splendor Canada 8 

Alikat Canada 8 

Carberry Canada 8 

CDC Abound Canada 8 

CDC Alsask Canada 8 

CDC Bounty Canada 8 

CDC Go Canada 8 

CDC Imagine Canada 8 

CDC Kernen Canada 8 

CDC Osler Canada 8 

CDC Stanley Canada 8 

CDC Thrive Canada 8 

Goodeve VB Canada 8 

Harvest Canada 8 

Helios Canada 8 

Journey Canada 8 

Kane Canada 8 

Katepwa Canada 8 

Laser Canada 8 

Laura Canada 8 
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Lovitt Canada 8 

Muchmore Canada 8 

Neepawa Canada 8 

PT559 Canada 8 

RL4137 Canada 8 

Roblin Canada 8 

Snowbird Canada 8 

Snowstar Canada 8 

Somerset Canada 8 

Stanley Canada 8 

Stettler Canada 8 

Superb Canada 8 

Thatcher Canada 8 

Waskada Canada 8 
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Appendix 3. Diversity panel haplotypes in the common wheat panel. 

Name  Origin Haplotype Group 

9661-AF1D Canada 1 

AAC Cabri Canada 1 

AAC Raymore Canada 1 

Camacho Spain 1 

CDC Fortitude Canada 1 

DT726 Canada 1 

DT732 Canada 1 

DT751 Canada 1 

DT777 Canada 1 

DT795 Canada 1 

DT817 Canada 1 

DT824 Canada 1 

DT837 Canada 1 

DT838 Canada 1 

DT845 Canada 1 

Fortore Italy 1 

Mongibello Italy 1 

W9262-260D3 Canada 1 

920334 Australia 2 

940030 Australia 2 

940955 Australia 2 

950329 Australia 2 

950844 Australia 2 

Altar-Aos Spain 2 

Arcobelano Italy 2 

Bonarense Valv Argentina 2 

Buck Topacio Argentina 2 

CFR5001 New Zealand 2 

Ciccio Italy 2 

Duilio Italy 2 

Grazia Italy 2 

Iride Italy 2 

Simeto Italy 2 

Varano Italy 2 

Wollaroi Australia 2 

44616 Iran 3 

44721 Iran 3 

Gidara 17A Morocco 3 

Kronos USA 3 

Mexa Spain 3 

Nacori 97 CIMMYT 3 
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Westbred881 USA 3 

Bonarense Inta Argentina 4 

Borli Spain 4 

Buck Ambar Argentina 4 

Colosseo Italy 4 

Lesina Italy 4 

Tresor Italy 4 

940435 Australia 5 

Bonarense Quil Argentina 5 

Carioca France 5 

Gianna Italy 5 

Parsifal Italy 5 

Tamaroi Australia 5 

Vitron Italy 5 

D95580 USA 6 

9661-CA5E Canada 6 

AC Avonlea Canada 6 

AC Melita Canada 6 

AC Morse Canada 6 

AC Navigator Canada 6 

Agridur France 6 

Ariesol France 6 

Arrivato New Zealand 6 

Bronte Italy 6 

CDC Verona Canada 6 

Commander Canada 6 

D24-1773 Canada 6 

D-73-15 Iran 6 

D940027 USA 6 

D940098 USA 6 

D941038 USA 6 

Demetra Italy 6 

DHTON 1 Morocco 6 

DT513 Canada 6 

DT536 Canada 6 

DT691 Canada 6 

DT695 Canada 6 

DT696 Canada 6 

DT704 Canada 6 

DT705 Canada 6 

DT707 Canada 6 

DT709 Canada 6 

DT710 Canada 6 
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DT711 Canada 6 

Durabon Germany 6 

Durafit Germany 6 

Durex USA 6 

Golden Ball South Africa 6 

Green27 CIMMYT 6 

Green34 CIMMYT 6 

K-39099 Russia 6 

Kofa USA 6 

Kyle Canada 6 

Langdon USA 6 

Langdon GBL-3B USA 6 

Marjak Morocco 6 

Ocotillo USA 6 

Plaza USA 6 

RABD 93.40 France 6 

Strongfield Canada 6 

Svevo Italy 6 

Tetradur France 6 
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 Appendix 4. High density genetic linkage maps: (A) Kofa/W9262-260D3. (B) Lillian/Vesper 

populations. 

 

https://ndownloader.figshare.com/articles/4866245/versions/1    

  

https://ndownloader.figshare.com/articles/4866245/versions/1
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Appendix 5. Overview of the RNAseq pipeline used. 
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Appendix 6. Scripts used to run RNAseq pipeline. 
#Written by Kirby Nilsen © 2017 
 
#!/bin/bash 
 
##Step 1, run STAR 
#Usage 
#runstar.sh 'genome.fasta' 
 
GENOME=$1 
 
 
SAMPLE=$(ls *_forward_paired.fq.gz | sed 's/_forward_paired.fq.gz//g') 
 
for ITEM in $SAMPLE 
do 
/storage/users/kirby/source/STAR/bin/Linux_x86_64/STAR --readFilesIn 
$ITEM"_forward_paired.fq.gz" $ITEM"_reverse_paired.fq.gz" --runThreadN 8 --
genomeDir /isilon/groups/wheat/star-index/$GENOME".dir" --readFilesCommand zcat --
outReadsUnmapped Fastx --outSAMstrandField intronMotif -runThreadN 8 --
alignIntronMax 10000 --outFilterMismatchNmax 3 --outFilterMatchNminOverLread 0.9 --
outSAMtype BAM SortedByCoordinate --outFileNamePrefix $ITEM 
 
Done 
 
################################################################################# 
 
#!/bin/bash 
 
##Step 2, Count transcript abundance 
#note prepde.py is required (Pertea et al., 2016) 
# Usage 
 
runstringtie.sh ‘annotation.gtf’ 
ANNOTATION=$1 
 
SAMPLES=$(ls *.bam) 
for ITEM in $SAMPLES; do 
    /storage/users/kirby/source/stringtie-1.3.0/stringtie -e -B -p 32 -G 
$ANNOTATION -o ./ballgown/$ITEM.dir/$ITEM.gtf $ITEM; 
done 
 
python /storage/users/kirby/scripts/prepDE.py 
 
################################################################################# 
 
#!/bin/bash 
 
## Step 3. Run differential expression analysis with DESeq2 
#note Needs samples.described.txt experimental design file 'CONDITIONA SAMPLE' 
#requires the per script run_DE_analysis.pl  
#https://github.com/trinityrnaseq/trinityrnaseq/blob/master/Analysis/DifferentialEx
pression/run_DE_analysis.pl  
 
# Usage runDE.sh 
 
sed 's|,|\t|g' gene_count_matrix.csv > gene_count_matrix.txt 
sed 's|,|\t|g' transcript_count_matrix.csv > transcript_count_matrix.txt 
 
/storage/users/kirby/source/trinityrnaseq-
2.1.0/Analysis/DifferentialExpression/run_DE_analysis.pl --matrix 
gene_count_matrix.txt --method DESeq2 --samples_file samples.described.txt 
 
/storage/users/kirby/source/trinityrnaseq-
2.1.0/Analysis/DifferentialExpression/run_DE_analysis.pl --matrix 
transcript_count_matrix.txt --method DESeq2 --samples_file samples.described.txt 
  
################################################################################# 
#!/bin/bash 
## Step 4 run GO enrichment analysis 
 
### BY Kirby 2017.2.10 
### Description: Script to filter DESeq2 *results output and run through GO 
enrichment VIA topGO 
### Usage: Run from working directory containing DEseq2 output files 

https://github.com/trinityrnaseq/trinityrnaseq/blob/master/Analysis/DifferentialExpression/run_DE_analysis.pl
https://github.com/trinityrnaseq/trinityrnaseq/blob/master/Analysis/DifferentialExpression/run_DE_analysis.pl
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### Requires Gene Universe File "gene-universe.txt": Matrix of GO terms extracted 
from interproscan database 
 
 
 
### Prepare Input Files 
 
### Enter GO Gene Universe 
UNIVERSE=$1 
 
SAMPLE=$(ls *results) 
for SAMPLE in $SAMPLE 
do 
awk -F '\t' '{if ($5 >=2 || $5 <= -2) print $1, "1"; else print $1, "0"}f' $SAMPLE 
> $SAMPLE.DEGenes.txt 
grep -w 1 $SAMPLE.DEGenes.txt | wc -l >> significant-gene-count.txt 
 
done 
 
 
###Run TOPGO 
SAMPLE=$(ls *DEGenes.txt) 
for SAMPLE in $SAMPLE 
do 
 
echo "#!/usr/bin/env Rscript 
 
library(topGO) 
 
setwd(\".\") 
#LOAD MAPPINGS FROM CUSTOM ANNOTATION 
 
geneID2GO <- readMappings(\"$UNIVERSE\") 
 
#CREATE VECTOR 
d <- read.table(\"$SAMPLE\") ##2 column file c2=significance (1 means significant), 
c1= gene name 
 
e<- factor(d[[2]]) # reads in column1 as a factor 
f<- factor(d[[1]]) # reads in column2 as a factor 
 
names(e) <- f      #adds gene names to significant 
 
GOdataBP <- new(\"topGOdata\", ontology = \"BP\", allGenes = e ,annot = 
annFUN.gene2GO, gene2GO = geneID2GO) 
GOdataBP 
 
GOdataCC <- new(\"topGOdata\", ontology = \"CC\", allGenes = e ,annot = 
annFUN.gene2GO, gene2GO = geneID2GO) 
GOdataCC 
 
GOdataMF <- new(\"topGOdata\", ontology = \"MF\", allGenes = e ,annot = 
annFUN.gene2GO, gene2GO = geneID2GO) 
GOdataMF 
###########PERform enrichment tests 3 ways 
resultFisherBP <- runTest(GOdataBP, algorithm = \"classic\", statistic = 
\"fisher\") 
resultFisherMF <- runTest(GOdataMF, algorithm = \"classic\", statistic = 
\"fisher\") 
resultFisherCC <- runTest(GOdataCC, algorithm = \"classic\", statistic = 
\"fisher\") 
 
 
#########just Fischers Exact test 
allResBP <- GenTable(GOdataBP, classicFisher = resultFisherBP, topNodes = 100) 
allResMF <- GenTable(GOdataMF, classicFisher = resultFisherMF, topNodes = 100) 
allResCC <- GenTable(GOdataCC, classicFisher = resultFisherCC, topNodes = 100) 
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Appendix 7. Multiple sequence alignment of TraesCS3B01G60880 and surrounding 

sequence in five genomic assemblies. Sequences were aligned using MUSCLE.  

 

Landmark        AGCAAGCTAGCTAATCAGTACGACATTAATTAATTATTGCAACTGTAGCTAGCAACACTG 

Stanley         AGCAAGCTAGCTAATCAGTACGACATTAATTAATTATTGCAACTGTAGCTAGCAACACTG 

Svevo           AGCAAGCTAGCTAATCAGTACGACATTAATTAATTATTGCAACTGTAGCTAGCAACACTG 

CS              AGCAAGCTAGCTAATCAGTACGACATTAATTAATTATTGCAACTGTAGCTAGCAACACTG 

Zavitan         AGAAAGCTAGCTAATCGGTACTACATTAATTAATTATTGCAACTGTAGCTAGCAACACTG 

                ** ************* **** ************************************** 

 

Landmark        CATGCATCAGCAAGGTAGCATGGGTAGCCGTCTCAGCCCCATCAGCACTCACCATGGAAA 

Stanley         CATGCATCAGCAAGGTAGCATGGGTAGCCGTCTCAGCCCCATCAGCACTCACCATGGAAA 

Svevo           CATGCATCAGCAAGGTAGCATGGGTAGCCGTCTCAGCCCCATCAGCACTCACCATGGAAA 

CS              CATGCATCAGCAAGGTAGCATGGGT---------AGCCCCATCAGCACTCACCATGGAAA 

Zavitan         CATGCATCAGCAAGGTAGCATGGGTAGCCGTCTCAGCCCCATCAGCACTCACCATGGAAA 

                *************************         ************************** 

 

Landmark        AAGCAAAAGTGTGTAAATAAAGGAAAACAACAACAAGATGATGTCCTCTCCCTCCTCCAA 

Stanley         AAGCAAAAGTGTGTAAATAAAGGAAAACAACAACAAGATGATGTCCTCTCCCTCCTCCAA 

Svevo           AAGCAAAAGTGTGTAAATAAAGGAAAACAACAACAAGATGATGTCCTCTCCCTCCTCCAA 

CS              AAGCAAAAGTGTGTAAATAAAGGAAAACAACAACAAGATGATGTCCTCTCCCTCCTCCAA 

Zavitan         AAGCAAAAGTGTGTAAATAAAGGAAAACAACAACAAGATGATGTCCTCTCCCTCCTCCAA 

                ************************************************************ 

 

Landmark        ATCGCCACAAGCT--------AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGCCTTCTCTC 

Stanley         ATCGCCACAAGCTAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGCCTTCTCTC 

Svevo           ATCGCCACAAGCT--AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGCCTTCTCTC 

CS              ATCGCCACAAGCT------------------AGAGAGAGAGAGAGAGAGAGCCTTCTCTC 

Zavitan         ATCGCCACAAGCT--------------AGAGAGAGAGAGAGAGAGAGAGGCCCTTCTCTC 

                *************                  ******************  ********* 

 

Landmark        TCATCTCTTGGTTGTGCTGCTACCTGGCGCTCTCTCCTTTTTCTCTCTCCTCTTGGGTAG 

Stanley         TCATCTCTTGGTTGTGCTGCTACCTGGCGCTCTCTCCTTTTTCTCTCTCCTCTTGGGTAG 

Svevo           TCATCTCTTGGTTGTGCTGCTACCTGGCGCTCTCTCCTTTTTCTCTCTCCTCTTGGGTAG 

CS              TCATCTCTTGGTTGTGCTGCTACCTGGCGCTCTCTCCTTTTTCTCTCTCCTCTTGGGTAG 

Zavitan         TCATCTCTTGGTTGTGCTGCTACCTGGCGCTCTCTCCTTTTTCTCTCTCCTCTTGGGTAG 

                ************************************************************ 

 

Landmark        CTCTCGCTCCCTCTCAAAGCAGTCAAGAGCTAGACCCTCCTGTCTCCTCTAGCTTCCATT 

Stanley         CTCTCGCTCCCTCTCAAAGCAGTCAAGAGCTAGACCCTCCTGTCTCCTCTAGCTTCCATT 

Svevo           CTCTCGCTCCCTCTCAAAGCAGTCAAGAGCTAGACCCTCCTGTCTCCTCTAGCTTCCATT 

CS              CTCTCGCTCCCTCTCAAAGCAGTCAAGAGCTAGACCCTCCTGTCTCCTCTAGCTTCCATT 

Zavitan         CTCTCGCTCCCTCTCAAAGCAGTCAAGAGCTAGACCCTCCTGTCTCCTCTAGCTTCCATT 

                ************************************************************ 

 

Landmark        CCATTCCTTTCCTTGGTACTAGTACTCTGATTCCCTTTGATTT-CCCCAGCTGCCGCAGC 

Stanley         CCATTCCTTTCCTTGGTACTAGTACTCTGATTCCCTTTGATTT-CCCCAGCTGCCGCAGC 

Svevo           CCATTCCTTTCCTTGGTACTAGTACTCTGATTCCCTTTGATTT-CCCCAGCTGCCGCAGC 

CS              CCATTCCTTTCCTTGGTACTAGTACTCTGATTCCCTTTGATTT-CCCCAGCTGCCGCAGC 

Zavitan         CCATTCCTTTCCTTGGTACTAGTACTCTGATTCCCTTTGATTTCCCCCAGCTGCCGCAGC 

                ******************************************* **************** 

 

Landmark        TGCCAAGTCTCTTCCTCCCACTATCTCTTCTCTCCAACCTCCAGCCCTGCCAGCCGCCCA 

Stanley         TGCCAAGTCTCTTCCTCCCACTATCTCTTCTCTCCAACCTCCAGCCCTGCCAGCCGCCCA 

Svevo           TGCCAAGTCTCTTCCTCCCACTATCTCTTCTCTCCAACCTCCAGCCCTGCCAGCCGCCCA 

CS              TGCCAAGTCTCTTCCCCCCACTATCTCTTCTCTCCAACCTCCAGCCCAGCCAGCCGCCCA 

Zavitan         TGCCAAGTCTCTTCCCCCCACTATCTCTTCTCTCCAACCTCCAGCCCAGCCAGCCGCCCA 

                *************** ******************************* ************ 

 

Landmark        AACACCTCTCTCCTCTCCCAACAACTCTCTCTGGAAGTCTAGATCGCCGGCCATGATCTT 

Stanley         AACACCTCTCTCCTCTCCCAACAACTCTCTCTGGAAGTCTAGATCGCCGGCCATGATCTT 

Svevo           AACACCTCTCTCCTCTCCCAACAACTCTCTCTGGAAGTCTAGATCGCCGGCCATGATCTT 

CS              AACACCTCTCTCCTCTCCCAACAACTCTCTCTGGAAGTCTAGATCGCCGGCCATGATCTT 
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Zavitan         AACACCTCTCTCCTCTCCCAACAACTCTCTCTGGAAGTCTAGATCGCCGGCCATGATCTT 

                ************************************************************ 

 

Landmark        CCCTCCTGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAGCTTCAGGT 

Stanley         CCCTCCTGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAGCTTCAGGT 

Svevo           CCCTCCTGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAGCTTCAGGT 

CS              CCCTCCCGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAGCTTCAGGT 

Zavitan         CCCTCCTGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAGCTTCAGGT 

                ****** ***************************************************** 

 

Landmark        ATGCATCCTTGCGGTCAATTAATTCTTCTCGCAAGATTTTGTTCACGCAAGAAAA--AGA 

Stanley         ATGCATCCTTGCGGTCAATTAATTCTTCTCGCAAGATTTTGTTCACGCAAGAAAAAGAGA 

Svevo           ATGCATCCTTGCGGTCAATTAATTCTTCTCGCAAGATTTTGTTCACGCAAGAAAAAGAGA 

CS              ATGCATCCTTGCGGTCAATTAATTCTTCTCTCAAGATTTTGTTCACGCAAGAAAA----- 

Zavitan         ATGCATCCTTGCGGTCAATTAATTCTTCTCGCAAGATTTTGTTCACGCAAGAAAA----A 

                ****************************** ************************      

 

Landmark        GAGAGAGAGAGAGAGAGAATATGTTCTAGCTAAGCTAGGGTTTGCTGATGGCAGATATAC 

Stanley         GAGAGAGAGAGAGAGAGAATATGTTCTAGCTAAGCTAGGGTTTGCTGATGGCAGATATAC 

Svevo           GAGAGAGAGAGAGAGAGAATATGTTCTAGCTAAGCTAGGGTTTGCTGATGGCAGATATAC 

CS              ---AGAGAGAGAGAGAGAATATGTTCTAGCTAAGCTAGGGTTTGCTGATGGCAGATATAC 

Zavitan         AAGAGAGAGAGAGAGAGAATATGTTCTAGCTAAGCTAGGGTTTGCTGATGGCAGATATAC 

                   ********************************************************* 

 

Landmark        ATCCTCTGCTGATTGCTGCACTATGTATCTTGGAATATACTCCATATACACATCTTGGCT 

Stanley         ATCCTCTGCTGATTGCTGCACTATGTATCTTGGAATATACTCCATATACACATCTTGGCT 

Svevo           ATCCTCTGCTGATTGCTGCACTATGTATCTTGGAATATACTCCATATACACATCTTGGCT 

CS              ATCCTCTGCTGATTGCTGCACTATGTATCTTGGAATATACTCAATATACACATCTTGGCT 

Zavitan         ATCCTCTGCTGATTGCTGCACTATGTATCTTGGAATATACTCCATATACACATCTTGGCT 

                ****************************************** ***************** 

 

Landmark        GACGCTTAATTCCTGACCACTTAATTTGCAGCTGCAGCAAATCGGCAGTAACACTCATAT 

Stanley         GACGCTTAATTCCTGACCACTTAATTTGCAGCTGCAGCAAATCGGCAGTAACACTCATAT 

Svevo           GACGCTTAATTCCTGACCACTTAATTTGCAGCTGCAGCAAATCGGCAGTAACACTCATAT 

CS              GACGCTTAATTCCTGACCACTTAATTTGCAGCTGCAGCAAATCGGCAGCAACAGTCATAT 

Zavitan         GACGCTTAATTCCTGACCACTTAATTTGCAGCTGCAGCAAATCGGCACCAACAGTCATAT 

                ***********************************************  **** ****** 

 

Landmark        CACTACTACTCCTTCACCTGCTGGCCATGGTCCTGGAGACGGAGGAGGCGGAAACAACAA 

Stanley         CACTACTACTCCTTCACCTGCTGGCCATGGTCCTGGAGACGGAGGAGGCGGAAACAACAA 

Svevo           CACTACTACTCCTTCACCTGCTGGCCATGGTCCTGGAGACGGAGGAGGCGGAAACAACAA 

CS              CACTACTACTCCTTCGCCTGCTGGCCATGGTCCTGGAGACGGAGGAGGCGGAAACAACAA 

Zavitan         CACTACTACTCCTTCGCCTGCTGGCCATGGTCCTGGAGACGGAGGAGGCGGAAACAACAA 

                *************** ******************************************** 

 

Landmark        CAATCATGGTCAGCAGGAAGGATTAATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGA 

Stanley         CAATCATGGTCAGCAGGAAGGATTAATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGA 

Svevo           CAATCATGGTCAGCAGGAAGGATTAATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGA 

CS              CAATCATGGTCAGCAGGAAGGATTAATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGA 

Zavitan         TAATCATGGTCAGCAGGAAGGATTAATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGA 

                 *********************************************************** 

 

Landmark        TGGTGGTGGCGGCGGCGGTGGGGATGGTGACAGCGCCAGCGGCGGGAACAACAAGCCGAT 

Stanley         TGGTGGTGGCGGCGGCGGTGGGGATGGTGACAGCGCCAGCGGCGGGAACAACAAGCCGAT 

Svevo           TGGTGGTGGCGGCGGCGGTGGGGATGGTGACAGCGCCAGCGGCGGGAACAACAAGCCGAT 

CS              TGGTGGCGGCGGCGGCGGTGGGGATGGTGACAGCGCTGGCGGCGGGAACAACAAGCCGAT 

Zavitan         TGGTGGCGGCGGCGGCGGTGGGGATGGTGACAGCGCCGGCGGCGGGAACAACAAGCCGAT 

                ****** *****************************  ********************** 

 

Landmark        GTCGATGTCGGAGCGGGCGCGGCTGGCGCGGGTGCCACAGCCGGAGCCGGGGCTCAACTG 

Stanley         GTCGATGTCGGAGCGGGCGCGGCTGGCGCGGGTGCCACAGCCGGAGCCGGGGCTCAACTG 

Svevo           GTCGATGTCGGAGCGGGCGCGGCTGGCGCGGGTGCCACAGCCGGAGCCGGGGCTCAACTG 

CS              GTCGATGTCGGAGCGAGCGCGGCTGGCTCGGGTGCCGCAGCCGGAGCCGGGGCTCAACTG 

Zavitan         GTCGATGTCGGAGCGGGCGCGGCTGGCTCGGGTGCCGCAGCCAGAGCCGGGGCTCAACTG 

                *************** *********** ******** ***** ***************** 
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Landmark        CCCGCGCTGCGATTCCACCAACACCAAGTTCTGCTACTTCAACAACTACTCCCTCACCCA 

Stanley         CCCGCGCTGCGATTCCACCAACACCAAGTTCTGCTACTTCAACAACTACTCCCTCACCCA 

Svevo           CCCGCGCTGCGATTCCACCAACACCAAGTTCTGCTACTTCAACAACTACTCCCTCACCCA 

CS              CCCGCGCTGCGACTCCACCAACACCAAGTTCTGCTACTTCAACAACTACTCCCTCACCCA 

Zavitan         CCCGCGCTGCGACTCCACCAACACCAAGTTCTGCTACTTCAACAATTACTCCCTCACCCA 

                ************ ******************************** ************** 

 

Landmark        GCCCCGCCACTTCTGCCGGGCCTGCCGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAA 

Stanley         GCCCCGCCACTTCTGCCGGGCCTGCCGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAA 

Svevo           GCCCCGCCACTTCTGCCGGGCCTGCCGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAA 

CS              GCCCCGCCACTTCTGCCGGGCCTGCCGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAA 

Zavitan         GCCCCGCCACTTCTGCCGCGCCTGCCGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAA 

                ****************** ***************************************** 

 

Landmark        CGTCCCCGTCGGCGGAGGGTACCGTCGCCACGCCAAGCGCAGCACCAAGCCCAAGGCCGG 

Stanley         CGTCCCCGTCGGCGGAGGGTACCGTCGCCACGCCAAGCGCAGCACCAAGCCCAAGGCCGG 

Svevo           CGTCCCCGTCGGCGGAGGGTACCGTCGCCACGCCAAGCGCAGCACCAAGCCCAAGGCCGG 

CS              CGTCCCCGTCGGCGGCGGGTACCGTCGCCACGCCAAGCGCAGCACCAAGCCCAAGGCCGG 

Zavitan         CGTCCCCGTCGGCGGCGGGTACCGTCGCCACGCCAAGCGCAGCGCCAAGCCCAAGGCCGG 

                *************** *************************** **************** 

 

Landmark        GTCGGCTGGATCCGGAACTGCCGCGGCAGGGACGTCGTCTGCGACGTCGACGACGCCCAG 

Stanley         GTCGGCTGGATCCGGAACTGCCGCGGCAGGGACGTCGTCTGCGACGTCGACGACGCCCAG 

Svevo           GTCGGCTGGATCCGGAACTGCCGCGGCAGGGACGTCGTCTGCGACGTCGACGACGCCCAG 

CS              GTCGGCTGGATCCGGAACCGCCGCGGCAGGGACATCGTCTGCGACGTCGACGACGCCCAG 

Zavitan         GTCGGCTGGATCCGGAACCGCCGCGGCAGGGACGTCTTCTGCGACGTCGACTACGCCCAG 

                ****************** ************** ** ************** ******** 

 

Landmark        CACCACTGCTTGCACCACCGGCACAGCTGCCACTGCGCCGCCCGCTCTGCAGTACTCCAT 

Stanley         CACCACTGCTTGCACCACCGGCACAGCTGCCACTGCGCCGCCCGCTCTGCAGTACTCCAT 

Svevo           CACCACTGCTTGCACCACCGGCACAGCTGCCACTGCGCCGCCCGCTCTGCAGTACTCCAT 

CS              CACCACTGCTTGCACCACCGGCA---CTGCCACTGCGCCGCCTGCTCTGCAGTACTCCAT 

Zavitan         CACCACTGCTTGCACCACCGGCA---CTGCCACTGCGCCGCCCGCTCTGCAGTACTCCAT 

                ***********************   **************** ***************** 

 

Landmark        GTTCGGCAGCGCGCCGCCGCACAGCAGCCGGTTCGCCGATAGCTTCGACCCCGCGAGCCT 

Stanley         GTTCGGCAGCGCGCCGCCGCACAGCAGCCGGTTCGCCGATAGCTTCGACCCCGCGAGCCT 

Svevo           GTTCGGCAGCGCGCCGCCGCACAGCAGCCGGTTCGCCGATAGCTTCGACCCCGCGAGCCT 

CS              GTTCGGCAGCGCGCCGCCGCACGGCAGCCGGTTCGCCGATAGCTTCGACCCGGCGAGCCT 

Zavitan         GTTCGGCAGCGCGCCGCCGCACGGCAGCCGGTTCGCCGATAGCTTCGACCCCGCGAGCCT 

                ********************** **************************** ******** 

 

Landmark        CGGCCTCAGCTTCCCCGCCAGGCTGCTCTTCCCCGACAATGGCGCCTACGCTGCCGACGG 

Stanley         CGGCCTCAGCTTCCCCGCCAGGCTGCTCTTCCCCGACAATGGCGCCTACGCTGCCGACGG 

Svevo           CGGCCTCAGCTTCCCCGCCAGGCTGCTCTTCCCCGACAATGGCGCCTACGCTGCCGACGG 

CS              CGGCCTCAGCTTCCCCGCCAGGCTGCTCTTCCCCGACAATGGCGCCTATGCGGCCGACGG 

Zavitan         CGGCCTCAGCTTCCCCGCCAGGCTGCTCTTCCCCGACAATGGCGCCTACGCTGCCGACGG 

                ************************************************ ** ******** 

 

Landmark        TGGCGCGCAGCAGCACCACCACCACCAGGGGAACGGGAACGGCATGGAGCAGTGGGCGGC 

Stanley         TGGCGCGCAGCAGCACCACCACCACCAGGGGAACGGGAACGGCATGGAGCAGTGGGCGGC 

Svevo           TGGCGCGCAGCAGCACCACCACCACCAGGGGAACGGGAACGGCATGGAGCAGTGGGCGGC 

CS              TGGCGCGCAGCAGCACCACCACCACCAGGGGAACGGGAACGGCATGGAGCAGTGGGCGGC 

Zavitan         TGGCGCGCAGCAGCACCACCACCACCAGGGGAGCGGGAACGGCATGGAGCAGTGGGCGGC 

                ******************************** *************************** 

 

Landmark        TGCGCACATGCAGAGCTTCCCGTTCCTGCACGCCATGGACCACCAGATGTCCGGGAATCC 

Stanley         TGCGCACATGCAGAGCTTCCCGTTCCTGCACGCCATGGACCACCAGATGTCCGGGAATCC 

Svevo           TGCGCACATGCAGAGCTTCCCGTTCCTGCACGCCATGGACCACCAGATGTCCGGGAATCC 

CS              TGCGCACATGCAGAGCTTCCCGTTCCTGCACGCCATGGACCACCAGATGTCCGGGAATCC 

Zavitan         TGCGCACATGCAGAGCTTCCCGTTCGTGCACGCCATGGACCACCAGATGTCCGGGAATCC 

                ************************* ********************************** 

 

Landmark        TCAATCAGCTTCGGCAATGCCAACCACAATGGCGGCGATGCAGGGCATGTTCCACCTCGG 
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Stanley         TCAATCAGCTTCGGCAATGCCAACCACAATGGCGGCGATGCAGGGCATGTTCCACCTCGG 

Svevo           TCAATCAGCTTCGGCAATGCCAACCACAATGGCGGCGATGCAGGGCATGTTCCACCTCGG 

CS              TCAATCAGCTTCGGCAATGCCAACCACAATGGCGGCGATGCAGGGCATGTTCCACCTAGG 

Zavitan         TCAATCAGCTTCGGCAATGCCCACCACAATGGCGGCGATGCAGGGCATGTTCCACCTAGG 

                ********************* *********************************** ** 

 

Landmark        GCTACAGAGCGGCGGCGGCGGCGGTAATGGCGACGATGGGGGAAACCACCAGTTCCACCA 

Stanley         GCTACAGAGCGGCGGCGGCGGCGGTAATGGCGACGATGGGGGAAACCACCAGTTCCACCA 

Svevo           GCTACAGAGCGGCGGCGGCGGCGGTAATGGCGACGATGGGGGAAACCACCAGTTCCACCA 

CS              GCTACAGAGCGGCGGCGGCGGCGGTAATGGCGACGATGGGGGAAACCACCAGTTCCACCA 

Zavitan         GCTACAGAGCGGCGGCGGCGGCGGCAATGGCGACGATGGGGGAAACCACCAGTTCCACCA 

                ************************ *********************************** 

 

Landmark        CCAGCCGGCCAAGAGGGACTAC---AACCAGCAGCAGCAGCAGGATTACCCAAGCAGCAG 

Stanley         CCAGCCGGCCAAGAGGGACTAC---AACCAGCAGCAGCAGCAGGATTACCCAAGCAGCAG 

Svevo           CCAGCCGGCCAAGAGGGACTAC---AACCAGCAGCAGCAGCAGGATTACCCAAGCAGCAG 

CS              CCAGCCGGCCAAGAGGGACTAC---AACCAGCAGCAGCAGCAGGATTACCCAAGCAGCAG 

Zavitan         CCAGCCGGCCAAGAGGGACTACCAGCAGCAGCAGCAGCAGCAGGATTACCCAAGCAACAG 

                **********************    * **************************** *** 

 

Landmark        GGGCATGTACGGGGACGTGGTCAATGGCAATGGCGGCGGCTTCAATTTCTATTCCAGCAC 

Stanley         GGGCATGTACGGGGACGTGGTCAATGGCAATGGCGGCGGCTTCAATTTCTATTCCAGCAC 

Svevo           GGGCATGTACGGGGACGTGGTCAATGGCAATGGCGGCGGCTTCAATTTCTATTCCAGCAC 

CS              GGGCATGTACGGGGACGTGGTCAATGGCAATGGCGGCGGCTTCAATTTCTATTCCAGCAC 

Zavitan         GGGCATGTACGGGGACGTGGTCAATGGCAATGGCGGCGGCTTCAATTTCTATTCCAGCAC 

                ************************************************************ 

 

Landmark        TAGCAATGCAGCTGGTAATTAGCTAGCTAGATCTAGCTAGCTTTGTTCTTGCAAACCTAG 

Stanley         TAGCAATGCAGCTGGTAATTAGCTAGCTAGATCTAGCTAGCTTTGTTCTTGCAAACCTAG 

Svevo           TAGCAATGCAGCTGGTAATTAGCTAGCTAGATCTAGCTAGCTTTGTTCTTGCAAACCTAG 

CS              TAGCAATGCAGCTGGTAATTAGCTAGCTAGATCTAGCTAGCTTTGTTCTTGCAAACCTAG 

Zavitan         TAGCAATGCAGCTGGTAATTAGCTAGCTAGATCTAGCTAGCTTTGTTCTTGCAAACCTAG 

                ************************************************************ 
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Appendix 8. CNV qPCR primer-sets. 

 

SW_MYB_F1: CTCAACGAACGACAACGAT7 

SW_MYB_F2: AGATCACCAGCTGCTCTACACCT 

 

SW_MYB_R1:  ATGCGTAGGAGTCCATGAG    

SW_MYB_R2:  GGCACTATCATAGACGGCG   

 

SW_dof_F1: GTTCCTGCACGCCATGGAC 

SW_dof_F2: GATGTCCGGGAATCCTCAAT 

 

SW_dof_R1:  TCCCCCATCGTCGCCATTA   

SW_dof_R2:  TAGTCCCTCTTGGCCGGCT     

 

SW_AAOx_F: CACAGCAGGATTTAAGCTCTGG  

SW_AAOx_R:GGGATGGACTAATTTCACAGGC  

  

SW_Aox_F: GACTTGTCATGGTAGATGCCTG 

SW_Aox_R: CAGGACGAGCATAACCATTCTC 

 

SW_hnRQ_F: TCACCTTCGCCAAGCTCAGAACTA  

SW_hnRQ_R: AGTTGAACTTGCCCGAAACATGCC 
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Appendix 9. DOF gene family phylogeny in the Refseq v.1.0 annotation. Gene expression 

(log2Fold change) is shown as a heatmap for hollow vs solid pairwise comparisons. 

Highlighted in yellow are TraesCS3B01G60880 and its corresponding A and D genome 

homoeologues. 
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TraesCS2B01G118000 Dof zinc finger chr2B_part1 81,760,214     -1 -1 -0 -0 -0 -0 -0 -0 -0 1 0 1 1 1
TraesCS2D01G100300 Dof zinc finger chr2D_part1 52,231,566     NA NA NA NA NA NA NA NA NA 1 NA NA NA 1
TraesCS2A01G100800 Dof zinc finger chr2A_part1 53,786,920     -1 -1 -0 -1 -1 -0 -1 -1 -0 1 0 0 1 1
TraesCS3A01G180600 Dof zinc finger chr3A_part1 208,246,096  -0 -1 -0 -0 -1 -0 -0 -1 -0 0 0 1 1 1
TraesCS3B01G210300 Dof zinc finger chr3B_part1 246,160,462  -1 -1 -0 -1 -1 -0 -1 -1 -1 0 -0 -0 0 1
TraesCS3D01G185500 2 Dof zinc finger chr3D_part1 170,680,882  NA NA NA NA NA NA NA NA NA -0 NA NA NA 1
TraesCS3D01G193100 Dof zinc finger chr3D_part1 183,738,347  NA NA NA NA NA NA NA NA NA 0 NA NA NA 2
TraesCS3A01G189600 Dof zinc finger chr3A_part1 234,210,473  0 -0 0 0 -0 -0 1 1 1 1 0 0 0 1
TraesCS4B01G286400 Dof zinc finger chr4B_part2 119,070,489  -0 -0 -0 -0 -1 -0 -1 -1 -1 1 -0 0 0 1
TraesCS4D01G285100 Dof zinc finger chr4D_part2 4,887,460        NA NA NA NA NA NA NA NA NA 0 NA NA NA 1
TraesCS4A01G017700 Dof zinc finger chr4A_part1 11,716,514     -0 -0 -0 -1 -0 -0 -1 -1 -1 1 -0 -0 -0 1
TraesCS1D01G336600 Dof zinc finger chr1D_part1 426,652,011  NA NA NA NA NA NA NA NA NA 1 NA NA NA -1
TraesCS1B01G347400 Dof zinc finger chr1B_part2 137,801,302  0 -0 -0 -0 -0 -0 1 1 1 1 -0 0 -0 -1
TraesCS1A01G334100 Dof zinc finger chr1A_part2 50,434,718     0 -0 -0 0 -0 -0 1 0 0 1 -0 1 0 -1
TraesCS3D01G295100 Dof zinc finger chr3D_part1 406,772,257  NA NA NA NA NA NA NA NA NA 0 NA NA NA 1
TraesCS3B01G329700 Dof zinc finger chr3B_part2 84,511,118     -0 -0 -1 0 -0 -1 -0 -1 -1 -1 -0 0 -0 1
TraesCS3A01G306800 Dof zinc finger chr3A_part2 90,865,360     0 -0 -0 -0 -1 -0 -0 -1 -0 -1 -0 0 0 -0
TraesCS3D01G108600 Dof zinc finger chr3D_part1 61,702,971     NA NA NA NA NA NA NA NA NA -1 NA NA NA -1
TraesCS3A01G106500 Dof zinc finger chr3A_part1 70,730,050     NA NA NA NA NA NA -1 -1 -1 NA NA NA NA NA
TraesCS3B01G125100 Dof zinc finger chr3B_part1 99,170,804     0 -0 -0 1 -0 0 -1 -3 -2 0 -0 1 -0 -1
TraesCS6A01G274000 Dof zinc finger chr6A_part2 47,641,877     0 -0 -0 0 0 0 1 1 1 3 0 1 0 -0
TraesCS6B01G301500 Dof zinc finger chr6B_part2 87,649,486     -0 -0 -0 0 -0 0 1 0 1 2 0 1 1 -1
TraesCS6D01G254200 Dof zinc finger chr6D_part1 358,325,432  NA NA NA NA NA NA NA NA NA 2 NA NA NA -1
TraesCS2B01G420400 Dof zinc finger chr2B_part2 149,543,475  0 -0 -1 0 -0 -0 -0 -0 -1 -0 0 1 -0 -0
TraesCS2A01G402200 Dof zinc finger chr2A_part2 193,863,696  -0 -0 -0 0 -0 -0 1 0 0 0 0 0 -0 -0
TraesCS2D01G399500 Dof zinc finger chr2D_part2 50,468,893     NA NA NA NA NA NA NA NA NA 0 NA NA NA -0
TraesCS6B01G270100 Dof zinc finger chr6B_part2 34,146,339     -0 -0 -1 0 -0 -0 -0 -0 -0 1 0 0 0 0
TraesCS6A01G255500 Dof zinc finger chr6A_part2 21,133,748     -0 -0 -0 0 -0 -0 0 -0 -0 1 -0 0 0 -0
TraesCS6D01G236700 Dof zinc finger chr6D_part1 334,226,703  NA NA NA NA NA NA NA NA NA 1 NA NA NA 0
TraesCS5B01G154100 Dof zinc finger chr5B_part1 283,623,197  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS5D01G161000 Dof zinc finger chr5D_part1 251,063,289  NA NA NA NA NA NA NA NA NA -1 NA NA NA -0
TraesCS5A01G155900 Dof zinc finger chr5A_part1 334,262,614  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS4B01G081500 Dof zinc finger chr4B_part1 79,737,184     -0 -0 -0 1 1 1 -1 -1 -1 -2 -0 -0 -0 0
TraesCS4D01G080100 Dof zinc finger chr4D_part1 54,126,883     NA NA NA NA NA NA NA NA NA -1 NA NA NA -0
TraesCS4A01G234000 Dof zinc finger chr4A_part2 90,272,850     0 0 0 1 1 0 -1 -1 -0 -4 -0 -0 -0 0
TraesCS3D01G370100 Dof zinc finger chr3D_part2 6,941,072        NA NA NA NA NA NA NA NA NA -0 NA NA NA 0
TraesCS3A01G377000 Dof zinc finger chr3A_part2 171,911,483  -0 0 0 -1 -1 -1 -1 -0 -0 -0 0 0 0 -0
TraesCS3B01G409600 Dof zinc finger chr3B_part2 197,846,969  0 -0 -0 0 -0 -0 0 -1 -1 1 -0 0 -0 -0
TraesCS1A01G275000 Dof zinc finger chr1A_part1 469,309,705  0 0 -0 -1 -1 -1 -1 -1 -1 -0 -0 0 -0 -0
TraesCS1B01G284300 Dof zinc finger chr1B_part2 55,137,489     0 -0 -0 -1 -2 -1 -1 -2 -2 -0 -0 0 -0 -1
TraesCS1D01G274700 Dof zinc finger chr1D_part1 370,341,838  NA NA NA NA NA NA NA NA NA -1 NA NA NA -1
TraesCS1A01G171300 Dof zinc finger chr1A_part1 306,149,768  1 0 0 0 -0 -0 0 -0 -0 -0 -0 0 -0 1
TraesCS1B01G185900 Dof zinc finger chr1B_part1 332,795,666  0 1 0 -0 0 -0 -1 -0 -1 0 0 -0 -0 0
TraesCS5B01G249800 Dof zinc finger chr5B_part1 432,323,296  -0 -0 0 -0 -1 0 -1 -2 -1 -0 -1 -0 0 0
TraesCS5A01G251800 Dof zinc finger chr5A_part2 14,355,185     0 -0 0 -0 -0 0 -1 -1 -1 -0 -0 0 0 -1
TraesCS5D01G259700 Dof zinc finger chr5D_part1 365,992,363  NA NA NA NA NA NA NA NA NA -0 NA NA NA 0
TraesCS3D01G271300 Dof zinc finger chr3D_part1 376,169,683  NA NA NA NA NA NA NA NA NA -2 NA NA NA 0
TraesCS3A01G271700 Dof zinc finger chr3A_part2 46,874,005     0 0 0 -0 -0 0 -1 -1 -1 -1 0 0 0 -0
TraesCS3B01G305400 Dof zinc finger chr3B_part2 42,444,630     -0 -1 -0 -0 -1 -0 -0 -1 -0 -1 -0 0 0 -0
TraesCS2A01G225900 Dof zinc finger chr2A_part1 232,369,939  -0 -0 -0 -0 -0 -0 0 0 0 -0 0 0 0 -0
TraesCS2B01G249200 Dof zinc finger chr2B_part1 257,523,313  -0 -0 -0 -0 -1 -1 0 0 0 0 0 0 0 0
TraesCS2D01G231600 Dof zinc finger chr2D_part1 203,451,257  NA NA NA NA NA NA NA NA NA 0 NA NA NA -0
TraesCS5D01G093800 2 Dof zinc finger chr5D_part1 103,175,243  NA NA NA NA NA NA NA NA NA 1 NA NA NA 1
TraesCS5B01G087600 3 Dof zinc finger chr5B_part1 112,194,001  0 -0 -0 0 -0 -0 1 0 0 0 0 1 0 1
TraesCS5A01G078100 Dof zinc finger chr5A_part1 95,868,642     0 -0 -0 1 1 0 1 1 1 1 0 1 0 2
TraesCS5A01G479400 Dof zinc finger chr5A_part2 199,416,408  0 -0 -0 0 -0 -0 1 1 0 2 0 1 0 1
TraesCS5D01G493000 Dof zinc finger chr5D_part2 74,056,256     NA NA NA NA NA NA NA NA NA 1 NA NA NA 1
TraesCS5B01G492600 Dof zinc finger chr5B_part2 209,215,990  0 0 -1 0 0 -0 1 1 0 1 0 1 -0 1
TraesCS4B01G206800 Dof zinc finger chr4B_part1 440,046,072  -0 -1 -1 -0 -1 -1 -0 -1 -1 1 -1 -0 -1 1
TraesCS4D01G207600 Dof zinc finger chr4D_part1 356,561,885  NA NA NA NA NA NA NA NA NA 1 NA NA NA 1
TraesCS4A01G097800 Dof zinc finger chr4A_part1 108,871,563  -0 -1 -0 -1 -2 -1 -0 -1 -1 -1 -0 1 0 0
TraesCS1A01G035200 Dof zinc finger chr1A_part1 18,460,897     0 -0 -0 0 -0 -0 1 1 1 1 0 0 0 1
TraesCS1B01G045000 3 Dof zinc finger chr1B_part1 24,932,221     0 0 -0 0 -0 -0 1 1 1 1 0 1 0 1
TraesCS1D01G036700 2 Dof zinc finger chr1D_part1 17,168,243     NA NA NA NA NA NA NA NA NA 1 NA NA NA 1
TraesCS3A01G539000 Dof zinc finger chr3A_part2 296,194,012  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS3B01G608800 Dof zinc finger chr3B_part2 379,955,640  5 7 6 1 2 2 2 2 2 2 2 1 2 0
TraesCS3D01G537400 Dof zinc finger chr3D_part2 134,308,176  NA NA NA NA NA NA NA NA NA 2 NA NA NA 1
TraesCS3A01G532000 Dof zinc finger chr3A_part2 290,775,085  -0 -0 -0 0 0 0 1 1 1 1 0 0 0 1
TraesCS3B01G609000 Dof zinc finger chr3B_part2 380,136,952  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS3B01G609100 Dof zinc finger chr3B_part2 380,175,946  NA NA NA NA NA NA NA NA NA -1 NA NA NA -0
TraesCS3A01G532100 Dof zinc finger chr3A_part2 290,975,554  0 0 0 0 0 0 -2 -3 -2 1 0 0 0 0
TraesCS3A01G532200 Dof zinc finger chr3A_part2 291,088,757  0 0 0 -0 -0 -0 -1 -2 -1 0 -0 0 0 -0
TraesCS3B01G608900 Dof zinc finger chr3B_part2 380,097,760  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS3D01G537500 Dof zinc finger chr3D_part2 134,391,978  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS3A01G403500 Dof zinc finger chr3A_part2 194,591,284  NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TraesCS5B01G406500 Dof zinc finger chr5B_part2 131,400,639  -0 -1 -0 0 0 0 -1 -2 -1 -2 -1 -1 -0 0
TraesCS5A01G401800 Dof zinc finger chr5A_part2 141,540,236  0 0 -0 0 0 -0 -1 -2 -2 -5 -0 -1 -1 0
TraesCS5D01G412000 Dof zinc finger chr5D_part2 23,481,066     NA NA NA NA NA NA NA NA NA -2 NA NA NA 1
TraesCS6D01G268400 Dof zinc finger chr6D_part1 378,378,715  NA NA NA NA NA NA NA NA NA -1 NA NA NA -0
TraesCS6A01G287700 Dof zinc finger chr6A_part2 67,914,126     -0 -1 -0 0 -0 0 -1 -1 -1 -1 -0 0 0 0
TraesCS6B01G317100 Dof zinc finger chr6B_part2 112,915,679  -0 -1 -0 0 -0 0 -1 -1 -1 -1 -0 0 0 -0
TraesCS7A01G213400 Dof zinc finger chr7A_part1 177,136,007  0 0 1 -0 -1 -0 -2 -2 -2 -2 -1 -0 -0 0
TraesCS7D01G215300 Dof zinc finger chr7D_part1 174,992,500  NA NA NA NA NA NA NA NA NA -2 NA NA NA -0
TraesCS7B01G120600 Dof zinc finger chr7B_part1 140,652,691  0 -1 -0 -0 -2 -1 -2 -4 -3 -4 -1 0 -1 -0
TraesCS2A01G079200 Dof zinc finger chr2A_part1 35,975,919     0 -0 0 0 -1 0 -0 -2 -0 -1 -0 0 0 0
TraesCS2B01G094000 Dof zinc finger chr2B_part1 54,440,144     -0 -1 -1 -0 -1 -1 -1 -2 -2 1 -0 -0 -0 0
TraesCS2D01G076600 Dof zinc finger chr2D_part1 32,763,076     NA NA NA NA NA NA NA NA NA 0 NA NA NA 1
TraesCS2A01G591100 Dof zinc finger chr2A_part2 316,499,945  -0 -1 -1 0 -0 -0 0 -0 -0 -0 0 0 0 1
TraesCS2D01G563000 Dof-like zinc finger chr2D_part2 172,264,812  NA NA NA NA NA NA NA NA NA -0 NA NA NA 0
TraesCS2A01G591200 Dof zinc finger chr2A_part2 316,538,566  -0 -0 -0 -0 0 -0 -0 -0 -0 1 1 1 1 1
TraesCS2A01G591000 Dof-like zinc finger chr2A_part2 316,451,090  -0 -0 -0 -1 -1 -1 -0 -0 -0 1 0 0 0 2
TraesCS2B01G592600 Dof zinc finger chr2B_part2 324,302,081  -1 -0 0 -1 -1 0 -2 -1 -0 -0 -0 -1 1 0
TraesCS2B01G592700 Dof-like zinc finger chr2B_part2 324,329,847  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -0
TraesCS2D01G563100 Dof zinc finger chr2D_part2 172,338,836  NA NA NA NA NA NA NA NA NA 0 NA NA NA 0
TraesCS2B01G592800 Dof zinc finger chr2B_part2 324,399,264  -0 -0 -0 -0 -0 -0 -1 -1 -1 -0 0 -0 -0 0
TraesCS2A01G590700 Dof-like zinc finger chr2A_part2 316,383,874  -0 -1 -0 -0 -1 -0 -1 -2 -1 1 -0 -0 -0 1
TraesCS2B01G592900 Dof zinc finger chr2B_part2 324,439,318  -0 -1 -0 -1 -1 -0 -2 -2 -1 -2 -0 -1 0 0
TraesCS2D01G563400 Dof zinc finger chr2D_part2 172,441,226  NA NA NA NA NA NA NA NA NA -1 NA NA NA 0
TraesCS2D01G563200 Dof-like zinc finger chr2D_part2 172,357,701  NA NA NA NA NA NA NA NA NA 0 NA NA NA -1
TraesCS2A01G590800 Dof zinc finger chr2A_part2 316,412,671  -1 -0 -1 -1 0 -0 -2 -1 -2 0 0 -0 -0 0
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Appendix 10. MUMMER alignments of chromosome 3B of Svevo vs: a) Zavitan, b) CDC Landmark, c) CDC Stanley, d) Refseq v.1.0. Red 

dots represent an alignment that matches in the same direction, whereas blue lines denote an alignment that matches in the opposite direction 

between the two assemblies. Svevo is plotted along the X-axis in each image 
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Appendix 11. Comparative genomic analysis of 90K probes source sequences and Refseq v1.0 gene models between Svevo and Zavitan 

assemblies 
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Appendix 12. Comparative genomic analysis of 90K probes source sequences and Refseq v1.0 gene models between Svevo and Refseq v.1.0 

assemblies 
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836.3

Tdurum_contig64395_276 TraesCS3B01G602700 TraesCS3D01G542300 Tdurum_contig64395_414
Tdurum_contig51605_137 Tdurum_contig51605_194 Tdurum_contig51605_542 Tdurum_contig51605_857
Tdurum_contig51605_1130

836.4

TraesCS3B01G602600836.5

Svevo

EK08-5169 EK02-292495821.0
CAP8_c58_192 TraesCS3B01G600400 tplb0048c20_2437 BS00080821_51
BS00009671_51 CAP8_s9818_178

821.1

TraesCS3B01G600500 TraesCS3B01G600600821.2
TraesCS3B01G600700821.3
TraesCS3B01G600800821.6
TraesCS3B01G600900 GENE-1464_73821.7
TraesCS3B01G601000 Excalibur_rep_c73952_373 TraesCS3B01G601100 TraesCS3B01G601200
RAC875_c32300_709

821.8

TraesCS3B01G601300 TraesCS3B01G601400821.9
TraesCS3B01G601500 BobWhite_rep_c51145_126 BobWhite_rep_c51145_126 TraesCS3B01G601600822.0
TraesCS3B01G601700 BobWhite_rep_c58425_117 TraesCS3B01G601800 CAP7_c4384_141
TraesCS3B01G601900 TraesCS3B01G602000 TraesCS3B01G602100

822.1

BS00091257_51 TraesCS3B01G602200 Kukri_rep_c70441_132 Excalibur_c13284_1617
wsnp_Ku_c5359_9530161 TraesCS3B01G602300

822.2

TraesCS3B01G602400 TraesCS3B01G602500822.5
TA004050-0253 BS00109691_51822.6
TraesCS3B01G602600 TraesCS3B01G602700 Tdurum_contig51605_1130 Tdurum_contig51605_857
Tdurum_contig51605_542 Tdurum_contig51605_194 Tdurum_contig51605_137 Tdurum_contig64395_414
Tdurum_contig64395_276

822.7

TraesCS3B01G602800 TraesCS3B01G602900 TraesCS3B01G603000 TraesCS3B01G603100
BS00087694_51 Tdurum_contig11114_335 TraesCS3B01G603200

822.8

TraesCS3B01G603300 TraesCS3B01G603400 RAC875_c12185_825 RAC875_c12185_1202
Kukri_c12013_90 TraesCS3B01G603500 Tdurum_contig31375_374

822.9

TraesCS3B01G603600 Kukri_c40275_229 Tdurum_contig59566_4435 wsnp_JD_c18509_16968425
Tdurum_contig59566_3355 Tdurum_contig59566_2309 Kukri_c55981_194 Tdurum_contig59566_1534
TraesCS3B01G603700 Tdurum_contig59566_830 TraesCS3B01G603800 TraesCS3B01G603900
TraesCS3B01G604000 TA003963-0953

823.0

TraesCS3B01G604100 TraesCS3B01G604200823.1
TraesCS3B01G604300 TraesCS3B01G604400823.2
TraesCS3B01G604500 TraesCS3B01G604600 TraesCS3B01G604700823.3
TraesCS3B01G604800 Ra_c2553_1880 TraesCS3B01G604900 Ex_c303_3825823.4
TraesCS3B01G605000 TraesCS3B01G605100 RFL_Contig2432_2400 Kukri_c1458_646
Kukri_c1458_885 Kukri_c1458_1705 TraesCS3B01G605200

823.6

TraesCS3B01G605300 BS00074625_51 BS00071182_51 BS00071183_51823.8
TraesCS3B01G605400823.9
TraesCS3B01G605500 TraesCS3B01G605600824.0
TraesCS3B01G605700 TA004050-0253824.3
TraesCS3B01G605800 TraesCS3B01G605900824.4
TraesCS3B01G606000 TraesCS3B01G606100825.3
TraesCS3B01G606200 TraesCS3B01G606300 TraesCS3B01G606400825.5
TraesCS3B01G606500 TraesCS3B01G606600825.6
TraesCS3B01G606700825.7
TraesCS3B01G606800 TraesCS3B01G606900 RAC875_c27152_476825.8
TraesCS3B01G607000 TraesCS3B01G607100825.9
TraesCS3B01G607200 Kukri_c2164_1527 Kukri_c2164_1856 TraesCS3B01G607300
TraesCS3B01G607400

826.0

TraesCS3B01G607500 Excalibur_rep_c116587_84 Kukri_c32139_2473 wsnp_Ex_c12963_20529964
Kukri_c32139_1124 wsnp_Ex_c12963_20529801 Kukri_rep_c71747_150 IAAV1595
TraesCS3B01G607600 RAC875_c4841_753 Excalibur_c6906_2385 Tdurum_contig42131_1565
Tdurum_contig42131_1300 Excalibur_c8991_467 Excalibur_c57495_522 Kukri_c11814_425
Excalibur_c8991_1143 TraesCS3B01G607700

826.1

GWM247826.2
TraesCS3B01G607800 TraesCS3B01G607900826.3
TraesCS3B01G608000826.4
TraesCS3B01G608100826.5
TraesCS3B01G608200826.6
TraesCS3B01G608300 TraesCS3B01G608400 TraesCS3B01G608500 Tdurum_contig81387_59826.7
TraesCS3B01G608600826.9
Excalibur_c3782_701827.1
BobWhite_s64174_241 BobWhite_s64174_145 BobWhite_s64174_119827.4
TraesCS3B01G608700827.5
Excalibur_c3782_701827.6
TraesCS3B01G608800828.1
TraesCS3B01G608900 TraesCS3B01G609000 TraesCS3B01G609100828.3
TraesCS3B01G609200 TraesCS3B01G609300 TraesCS3B01G609400 RAC875_c48860_106828.4
TraesCS3B01G609500828.5
TraesCS3B01G609600 RAC875_c48860_106 TraesCS3B01G609700 TraesCS3B01G609800
TraesCS3B01G609900 Kukri_c18398_571 TraesCS3B01G610000

828.8

TraesCS3B01G610100 TraesCS3B01G610200828.9
TraesCS3B01G610300 TraesCS3B01G610400 Excalibur_c92563_456 Tdurum_contig75945_107
TraesCS3B01G610500 TraesCS3B01G610600

829.0

TraesCS3B01G610700 TraesCS3B01G610800 TraesCS3B01G610900 TraesCS3B01G611000
Kukri_c44781_236 Kukri_c44781_108 Kukri_c44781_78 Kukri_c18973_157

829.1

BS00073411_51 TraesCS3B01G611100 BS00071106_51 BS00074345_51
BS00071108_51 BS00024762_51 TraesCS3B01G611200 TraesCS3B01G611300
TraesCS3B01G611400

829.2

TraesCS3B01G611500 TraesCS3B01G611600 BobWhite_c8852_62 TraesCS3B01G611700
Excalibur_c15243_255 Kukri_c17198_207 BobWhite_c39663_475 TraesCS3B01G611800
TA005728-0374 TraesCS3B01G611900

829.3

BS00036547_51 TraesCS3B01G612000 RFL_Contig3495_840829.4
TraesCS3B01G612100 Kukri_c48601_98 TraesCS3B01G612200 Tdurum_contig82789_178829.5
TraesCS3B01G612300829.7
TraesCS3B01G612400829.8
TraesCS3B01G612500829.9
TraesCS3B01G612600 TraesCS3B01G612700830.1
TraesCS3B01G612800830.3
TraesCS3B01G612900830.6
BobWhite_s64174_119 BobWhite_s64174_145 BobWhite_s64174_241830.8
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Appendix 13. Comparative genomic analysis of 90K probes source sequences and Refseq v1.0 gene models between Svevo and CDC 

Landmark assemblies. 

 

EK08-5169 EK08-5169827.5
TraesCS3B01G600300 TraesCS3B01G600200 TA004381-1229 TA004381-1229
TA004381-1229

827.6

TA004381-1229 TA004381-1229827.7
Excalibur_c3821_1355827.8
TraesCS3B01G599700 TraesCS3B01G599600 TraesCS3B01G599800 TraesCS3B01G600100
Kukri_rep_c106027_464 Kukri_c11944_2358 Excalibur_c3821_1355 RAC875_c58399_104
RAC875_c33083_451 RAC875_c37741_218 Kukri_c11944_376 Kukri_rep_c106875_207
RAC875_c28582_204 TraesCS3B01G599500 TraesCS3B01G599400 TraesCS3B01G599300

827.9

TraesCS3B01G598600828.0
TraesCS3B01G600900 TraesCS3D01G536200 GENE-1464_73828.5
TraesCS3A01G530800 TraesCS3A01G531300 TraesCS3B01G601100 BobWhite_c38595_61828.6
RAC875_c32300_709 BobWhite_rep_c51145_126 TraesCS3B01G601600 TraesCS3B01G601700
BobWhite_rep_c58425_117 TraesCS3A01G531400 TraesCS3B01G601800 TraesCS3D01G536300
TraesCS3D01G536600 TraesCS3D01G536700 CAP7_c4384_141 TraesCS3B01G601900
TraesCS3B01G602000 TraesCS3D01G536900

828.7

TraesCS3B01G602100 BS00091257_51 TraesCS3B01G602200 Kukri_rep_c70441_132
Excalibur_c13284_1617 wsnp_Ku_c5359_9530161

828.8

TraesCS3B01G608800 TraesCS3D01G537400829.2
TraesCS3B01G608900829.3
TraesCS3B01G609100829.4
TraesCS3B01G609200 TraesCS3B01G609600 TraesCS3B01G609300 TraesCS3B01G609700
TraesCS3B01G609400 RAC875_c48860_106

829.5

TraesCS3B01G609500829.6
RAC875_c48860_106 TraesCS3B01G609800 TraesCS3A01G532300 TraesCS3B01G609900829.8
Kukri_c18398_571 TraesCS3B01G610000829.9
TraesCS3B01G610100 TraesCS3B01G610200 TraesCS3D01G538600 TraesCS3B01G610300
TraesCS3D01G538700 TraesCS3B01G610400 Excalibur_c92563_456 Tdurum_contig75945_107
TraesCS3B01G610500

830.0

TraesCS3B01G610600 TraesCS3D01G539100 Kukri_c14213_671 TraesCS3B01G610700
TraesCS3D01G539200

830.1

TraesCS3B01G610800 TraesCS3B01G610900 BS00073411_51 TraesCS3B01G611100830.2
BS00071106_51 BS00074345_51 BS00071108_51 TraesCS3B01G611200
TraesCS3B01G611300 TraesCS3B01G611400 TraesCS3B01G611500 TraesCS3B01G611600
BobWhite_c8852_62 TraesCS3B01G611700 TraesCS3D01G540000 Excalibur_c15243_255
Kukri_c17198_207 BobWhite_c39663_475 TA005728-0374 TraesCS3B01G611800
TraesCS3D01G540100

830.3

TraesCS3B01G611900 BS00036547_51 TraesCS3B01G612000 RFL_Contig3495_840830.4
TraesCS3B01G612100 Kukri_c48601_98 TraesCS3B01G612200 Tdurum_contig82789_178830.6
TraesCS3B01G612300830.8
TraesCS3B01G606000831.0
TraesCS3B01G606100 TraesCS3B01G606200 TraesCS3B01G606300 TraesCS3B01G606400
TraesCS3B01G606500

831.2

TraesCS3B01G606600831.3
TraesCS3B01G606700 TraesCS3B01G606800831.4
TraesCS3B01G606900 RAC875_c27152_476 TraesCS3B01G607000 TraesCS3D01G545800831.5
TraesCS3B01G607100 TraesCS3B01G607200 Kukri_c2164_1527 Kukri_c2164_1856831.6
TraesCS3B01G607400 TraesCS3D01G541900831.7
TraesCS3B01G612700 TraesCS3B01G612800831.9
TraesCS3B01G612600832.2
TraesCS3B01G612500832.3
TraesCS3B01G607500 TraesCS3D01G541800 Excalibur_rep_c116587_84 Kukri_c32139_2473
wsnp_Ex_c12963_20529964 Kukri_c32139_1124 wsnp_Ex_c12963_20529801 Kukri_rep_c71747_150
IAAV1595 RAC875_c4841_753 Excalibur_c6906_2385 Tdurum_contig42131_1565
Tdurum_contig42131_1300 Excalibur_c8991_467 Excalibur_c57495_522 Kukri_c11814_425
Excalibur_c8991_1143 TraesCS3B01G607700

832.4

GWM247 TraesCS3B01G607800 TraesCS3D01G541400832.5
TraesCS3B01G607900 TraesCS3D01G541300 TraesCS3B01G608000832.6
TraesCS3B01G608100 TraesCS3B01G608300832.8
TraesCS3B01G608500 TraesCS3D01G540900 Tdurum_contig81387_59832.9
TraesCS3B01G608600 TraesCS3D01G540700833.1
Excalibur_c3782_701833.2
BobWhite_s64174_241 BobWhite_s64174_119833.6
TraesCS3B01G612900833.7
BobWhite_s64174_119 BobWhite_s64174_241833.9
Excalibur_c3782_701834.2
TraesCS3B01G608700834.3
TraesCS3B01G605900 TraesCS3B01G605800834.8
TA004050-0253834.9
TraesCS3B01G605600 TraesCS3B01G605500835.1
TraesCS3B01G605400835.2
Excalibur_c45181_215835.3
BS00071183_51 BS00071182_51 BS00074625_51 TraesCS2D01G081700
TraesCS3B01G605300

835.4

TraesCS3B01G605200 TraesCS3B01G605100835.5
Kukri_c1458_1705 Kukri_c1458_885 Kukri_c1458_646 RFL_Contig2432_2400
TraesCS3B01G605000 TraesCS3D01G544300

835.6

TraesCS3B01G604900 Ex_c303_3825 TraesCS3B01G604800 Ra_c2553_1880835.7
TraesCS3B01G604600 TraesCS3B01G604500835.8
TraesCS3B01G604400 TraesCS3B01G604300835.9
TraesCS3B01G604200 TraesCS3B01G604100836.0
TA003963-0953 TraesCS3B01G604000 TraesCS3B01G603900 TraesCS3B01G603800
TraesCS3D01G543900

836.1

Tdurum_contig59566_830 TraesCS3B01G603700 TraesCS3B01G603600 Tdurum_contig59566_1534
Kukri_c55981_194 Tdurum_contig59566_2309 Tdurum_contig59566_3355 wsnp_JD_c18509_16968425
Tdurum_contig59566_4435 Kukri_c40275_229 Tdurum_contig31375_374 TraesCS3B01G603500
TraesCS3B01G603400 Kukri_c12013_90 RAC875_c12185_1202 RAC875_c12185_825
TraesCS3B01G603300

836.2

TraesCS3B01G603200 TraesCS3D01G543200 Tdurum_contig11114_335 TraesCS3B01G603100
TraesCS3D01G543100 BS00087694_51 TraesCS3B01G603000 TraesCS3B01G602900
TraesCS3B01G602800

836.3

Tdurum_contig64395_276 TraesCS3B01G602700 TraesCS3D01G542300 Tdurum_contig64395_414
Tdurum_contig51605_137 Tdurum_contig51605_194 Tdurum_contig51605_542 Tdurum_contig51605_857
Tdurum_contig51605_1130

836.4

TraesCS3B01G602600836.5

Svevo

BS00079029_51795.8

TraesCS3B01G596000 TA004381-1229796.4
TraesCS3B01G600300 EK08-5169796.5
EK02-292495 BobWhite_rep_c65170_152 CAP8_c58_192 CAP8_s9818_178796.6

TraesCS3B01G600900 GENE-1464_73797.0
TraesCS3B01G608800797.1

TraesCS3B01G609200 RAC875_c48860_106797.4
TraesCS3B01G609500797.6
TraesCS3B01G612200 Tdurum_contig82789_178 Kukri_c48601_98797.8
TraesCS3B01G612000 BS00036547_51798.0
TraesCS3B01G611800 TA005728-0374 TraesCS3B01G611700 BobWhite_c39663_475
Kukri_c17198_207 Excalibur_c15243_255 TraesCS3B01G611600

798.1

TraesCS3B01G611400 BS00071108_51 BS00074345_51 BS00071106_51
BS00073411_51

798.2

TraesCS3B01G610800798.3
Kukri_c14213_671 TraesCS3B01G610600 TraesCS3B01G610400 TraesCS3B01G610500
Tdurum_contig75945_107 Excalibur_c92563_456

798.4

Kukri_c18398_571 TraesCS3B01G609800 RAC875_c48860_106798.6
TraesCS2A01G510700 TraesCS2A01G510800798.8
TraesCS2A01G510900 TraesCS2A01G511000 TraesCS2D01G512400 TraesCS2A01G511200
TraesCS2D01G512600

798.9

TraesCS2A01G511300 TraesCS2A01G511400 Excalibur_c33683_104799.0
Tdurum_contig67254_504 tplb0024e19_1029799.1
Excalibur_c58828_180799.2
BS00010818_51799.5
TraesCS3B01G608500 TraesCS3B01G608200799.8
GWM247800.0
Excalibur_c8991_1143 Kukri_c11814_425 Excalibur_c57495_522 Excalibur_c8991_467
Tdurum_contig42131_1300 Tdurum_contig42131_1565 Excalibur_c6906_2385 RAC875_c4841_753
TraesCS3B01G607500 Kukri_rep_c71747_150 wsnp_Ex_c12963_20529801 wsnp_Ex_c12963_20529964
Kukri_c32139_1124 Kukri_c32139_2473 Excalibur_rep_c116587_84

800.2

Kukri_c2164_1856 Kukri_c2164_1527800.3
RAC875_c27152_476800.4
TraesCS3B01G606500800.7
TraesCS3B01G606100 TraesCS3B01G606200800.8
TraesCS3B01G606300 TraesCS3B01G605500 TraesCS3B01G605600801.1

TA004050-0253801.4

BS00071183_51 BS00071182_51 BS00074625_51 CAP8_rep_c7869_126802.1
Kukri_c1458_1705 Kukri_c1458_885 Kukri_c1458_646 TraesCS3D01G544700
TraesCS3B01G605100 RFL_Contig2432_2400

802.3

TraesCS3B01G604900 Ex_c303_3825 TraesCS3B01G604800 Ra_c2553_1880802.5
TraesCS3B01G604100 TraesCS3B01G604000 TA003963-0953802.8
TraesCS3B01G603800 TraesCS3B01G603700 TraesCS3B01G603600 Tdurum_contig59566_830
Tdurum_contig59566_1534 Kukri_c55981_194 Tdurum_contig59566_2309 Tdurum_contig59566_3355
wsnp_JD_c18509_16968425 Tdurum_contig59566_4435 Kukri_c40275_229 TraesCS3B01G603500
Tdurum_contig31375_374

802.9

TraesCS3B01G603400 Kukri_c12013_90 RAC875_c12185_1202 RAC875_c12185_825
TraesCS3D01G543300 TraesCS3B01G603300

803.0

TraesCS3B01G602700 Tdurum_contig64395_276 Tdurum_contig64395_414 Tdurum_contig51605_137
Tdurum_contig51605_194 Tdurum_contig51605_542 Tdurum_contig51605_857 Tdurum_contig51605_1130

803.2

CDC_Landmark
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Appendix 14. Comparative genomic analysis of 90K probes source sequences and Refseq v1.0 gene models between Svevo and CDC 

Stanley assemblies 

 

EK08-5169 EK08-5169827.5
TraesCS3B01G600300 TraesCS3B01G600200 TA004381-1229 TA004381-1229
TA004381-1229

827.6

TA004381-1229 TA004381-1229827.7
Excalibur_c3821_1355827.8
TraesCS3B01G599700 TraesCS3B01G599600 TraesCS3B01G599800 TraesCS3B01G600100
Kukri_rep_c106027_464 Kukri_c11944_2358 Excalibur_c3821_1355 RAC875_c58399_104
RAC875_c33083_451 RAC875_c37741_218 Kukri_c11944_376 Kukri_rep_c106875_207
RAC875_c28582_204 TraesCS3B01G599500 TraesCS3B01G599400 TraesCS3B01G599300

827.9

TraesCS3B01G598600828.0
TraesCS3B01G600900 TraesCS3D01G536200 GENE-1464_73828.5
TraesCS3A01G530800 TraesCS3A01G531300 TraesCS3B01G601100 BobWhite_c38595_61828.6
RAC875_c32300_709 BobWhite_rep_c51145_126 TraesCS3B01G601600 TraesCS3B01G601700
BobWhite_rep_c58425_117 TraesCS3A01G531400 TraesCS3B01G601800 TraesCS3D01G536300
TraesCS3D01G536600 TraesCS3D01G536700 CAP7_c4384_141 TraesCS3B01G601900
TraesCS3B01G602000 TraesCS3D01G536900

828.7

TraesCS3B01G602100 BS00091257_51 TraesCS3B01G602200 Kukri_rep_c70441_132
Excalibur_c13284_1617 wsnp_Ku_c5359_9530161

828.8

TraesCS3B01G608800 TraesCS3D01G537400829.2
TraesCS3B01G608900829.3
TraesCS3B01G609100829.4
TraesCS3B01G609200 TraesCS3B01G609600 TraesCS3B01G609300 TraesCS3B01G609700
TraesCS3B01G609400 RAC875_c48860_106

829.5

TraesCS3B01G609500829.6
RAC875_c48860_106 TraesCS3B01G609800 TraesCS3A01G532300 TraesCS3B01G609900829.8
Kukri_c18398_571 TraesCS3B01G610000829.9
TraesCS3B01G610100 TraesCS3B01G610200 TraesCS3D01G538600 TraesCS3B01G610300
TraesCS3D01G538700 TraesCS3B01G610400 Excalibur_c92563_456 Tdurum_contig75945_107
TraesCS3B01G610500

830.0

TraesCS3B01G610600 TraesCS3D01G539100 Kukri_c14213_671 TraesCS3B01G610700
TraesCS3D01G539200

830.1

TraesCS3B01G610800 TraesCS3B01G610900 BS00073411_51 TraesCS3B01G611100830.2
BS00071106_51 BS00074345_51 BS00071108_51 TraesCS3B01G611200
TraesCS3B01G611300 TraesCS3B01G611400 TraesCS3B01G611500 TraesCS3B01G611600
BobWhite_c8852_62 TraesCS3B01G611700 TraesCS3D01G540000 Excalibur_c15243_255
Kukri_c17198_207 BobWhite_c39663_475 TA005728-0374 TraesCS3B01G611800
TraesCS3D01G540100

830.3

TraesCS3B01G611900 BS00036547_51 TraesCS3B01G612000 RFL_Contig3495_840830.4
TraesCS3B01G612100 Kukri_c48601_98 TraesCS3B01G612200 Tdurum_contig82789_178830.6
TraesCS3B01G612300830.8
TraesCS3B01G606000831.0
TraesCS3B01G606100 TraesCS3B01G606200 TraesCS3B01G606300 TraesCS3B01G606400
TraesCS3B01G606500

831.2

TraesCS3B01G606600831.3
TraesCS3B01G606700 TraesCS3B01G606800831.4
TraesCS3B01G606900 RAC875_c27152_476 TraesCS3B01G607000 TraesCS3D01G545800831.5
TraesCS3B01G607100 TraesCS3B01G607200 Kukri_c2164_1527 Kukri_c2164_1856831.6
TraesCS3B01G607400 TraesCS3D01G541900831.7
TraesCS3B01G612700 TraesCS3B01G612800831.9
TraesCS3B01G612600832.2
TraesCS3B01G612500832.3
TraesCS3B01G607500 TraesCS3D01G541800 Excalibur_rep_c116587_84 Kukri_c32139_2473
wsnp_Ex_c12963_20529964 Kukri_c32139_1124 wsnp_Ex_c12963_20529801 Kukri_rep_c71747_150
IAAV1595 RAC875_c4841_753 Excalibur_c6906_2385 Tdurum_contig42131_1565
Tdurum_contig42131_1300 Excalibur_c8991_467 Excalibur_c57495_522 Kukri_c11814_425
Excalibur_c8991_1143 TraesCS3B01G607700

832.4

GWM247 TraesCS3B01G607800 TraesCS3D01G541400832.5
TraesCS3B01G607900 TraesCS3D01G541300 TraesCS3B01G608000832.6
TraesCS3B01G608100 TraesCS3B01G608300832.8
TraesCS3B01G608500 TraesCS3D01G540900 Tdurum_contig81387_59832.9
TraesCS3B01G608600 TraesCS3D01G540700833.1
Excalibur_c3782_701833.2
BobWhite_s64174_241 BobWhite_s64174_119833.6
TraesCS3B01G612900833.7
BobWhite_s64174_119 BobWhite_s64174_241833.9
Excalibur_c3782_701834.2
TraesCS3B01G608700834.3
TraesCS3B01G605900 TraesCS3B01G605800834.8
TA004050-0253834.9
TraesCS3B01G605600 TraesCS3B01G605500835.1
TraesCS3B01G605400835.2
Excalibur_c45181_215835.3
BS00071183_51 BS00071182_51 BS00074625_51 TraesCS2D01G081700
TraesCS3B01G605300

835.4

TraesCS3B01G605200 TraesCS3B01G605100835.5
Kukri_c1458_1705 Kukri_c1458_885 Kukri_c1458_646 RFL_Contig2432_2400
TraesCS3B01G605000 TraesCS3D01G544300

835.6

TraesCS3B01G604900 Ex_c303_3825 TraesCS3B01G604800 Ra_c2553_1880835.7
TraesCS3B01G604600 TraesCS3B01G604500835.8
TraesCS3B01G604400 TraesCS3B01G604300835.9
TraesCS3B01G604200 TraesCS3B01G604100836.0
TA003963-0953 TraesCS3B01G604000 TraesCS3B01G603900 TraesCS3B01G603800
TraesCS3D01G543900

836.1

Tdurum_contig59566_830 TraesCS3B01G603700 TraesCS3B01G603600 Tdurum_contig59566_1534
Kukri_c55981_194 Tdurum_contig59566_2309 Tdurum_contig59566_3355 wsnp_JD_c18509_16968425
Tdurum_contig59566_4435 Kukri_c40275_229 Tdurum_contig31375_374 TraesCS3B01G603500
TraesCS3B01G603400 Kukri_c12013_90 RAC875_c12185_1202 RAC875_c12185_825
TraesCS3B01G603300

836.2

TraesCS3B01G603200 TraesCS3D01G543200 Tdurum_contig11114_335 TraesCS3B01G603100
TraesCS3D01G543100 BS00087694_51 TraesCS3B01G603000 TraesCS3B01G602900
TraesCS3B01G602800

836.3

Tdurum_contig64395_276 TraesCS3B01G602700 TraesCS3D01G542300 Tdurum_contig64395_414
Tdurum_contig51605_137 Tdurum_contig51605_194 Tdurum_contig51605_542 Tdurum_contig51605_857
Tdurum_contig51605_1130

836.4

TraesCS3B01G602600836.5

Svevo

RAC875_c6837_468 Kukri_c60447_423 BS00065680_51803.8
TraesCS3B01G598600 TraesCS3B01G598800803.9
TraesCS3B01G598700804.0
Kukri_rep_c83522_342 TraesCS3B01G598900 Kukri_rep_c83522_342 Kukri_c77282_63
Kukri_rep_c114164_106 Kukri_c49220_167 Kukri_rep_c83522_342 Kukri_rep_c83522_342

804.1

TraesCS3B01G599000 TraesCS3B01G599200 TraesCS3B01G599300804.2
TraesCS3B01G599400 TraesCS3B01G599500804.3
TraesCS3B01G599600 Kukri_c11944_376 Kukri_c11944_436 TraesCS3B01G599800
TraesCS3B01G600100 RAC875_c33083_451 Excalibur_c3821_1355 Kukri_c11944_2358
TraesCS3B01G600200 TA004381-1229 TraesCS3B01G600300

804.4

EK08-5169 EK02-292495804.5
Kukri_c16496_1583 Jagger_c3858_183 Kukri_c28012_807 BS00010933_51804.6
TraesCS3B01G608800804.7
TraesCS3B01G602300 TraesCS3B01G602200 wsnp_Ku_c5359_9530161 Excalibur_c13284_1617
Kukri_rep_c70441_132 BS00091257_51

805.0

TraesCS3B01G602100 TraesCS3B01G602000 TraesCS3B01G601900 CAP7_c4384_141
TraesCS3B01G601800 BobWhite_rep_c58425_117 TraesCS3B01G601600 TraesCS3B01G601700

805.1

TraesCS3B01G601300 TraesCS3B01G601500805.2
TraesCS3B01G267000 TraesCS3B01G601200 RAC875_c32300_709 BobWhite_c38595_61
TraesCS3B01G601100 Excalibur_rep_c73952_373

805.3

TraesCS3B01G601000805.4
TraesCS3B01G608900805.5
TraesCS3B01G609000 TraesCS3B01G609100805.6
TraesCS3B01G609200 TraesCS3B01G609800 TraesCS3B01G609600 TraesCS3B01G609300
TraesCS3B01G609700 TraesCS3B01G609400 RAC875_c48860_106

805.7

TraesCS3B01G609500805.9
RAC875_c48860_106 TraesCS3B01G609900 Kukri_c18398_571 TraesCS3B01G610000806.1
TraesCS3B01G610100806.2
TraesCS3B01G610200 TraesCS3B01G610300 TraesCS3B01G610400 Excalibur_c92563_456
Tdurum_contig75945_107 TraesCS3B01G610500 TraesCS3B01G610600 Kukri_c14213_671
TraesCS3B01G610700

806.3

TraesCS3B01G610800 TraesCS3B01G610900806.4
BS00073411_51 TraesCS3B01G611100 BS00071106_51 BS00074345_51
BS00071108_51 TraesCS3B01G611200 TraesCS3B01G611300 TraesCS3B01G611400

806.5

TraesCS3B01G611500 TraesCS3B01G611600 TraesCS3B01G611700 Excalibur_c15243_255
Kukri_c17198_207 BobWhite_c39663_475 TA005728-0374 TraesCS3B01G611800

806.6

TraesCS3B01G611900 BS00036547_51 TraesCS3B01G612000806.7
TraesCS3B01G612100806.8
Kukri_c48601_98 TraesCS3B01G612200 Tdurum_contig82789_178806.9
TraesCS3B01G606000 TraesCS3B01G605600 TraesCS3B01G606200 TraesCS3B01G606100807.1
TraesCS3B01G606300 TraesCS3B01G541700 TraesCS3B01G606400807.3
TraesCS3B01G606500 TraesCS3B01G606600807.4
TraesCS3B01G606700807.5
TraesCS3B01G606800807.6
TraesCS3B01G606900 RAC875_c27152_476 TraesCS3B01G607000 TraesCS3B01G607100807.7
TraesCS3B01G607200 Kukri_c2164_1527 Kukri_c2164_1856 TraesCS3B01G607300
TraesCS3B01G607400

807.8

Excalibur_rep_c116587_84 TraesCS3B01G607500 Kukri_c32139_2473 wsnp_Ex_c12963_20529964
Kukri_c32139_1124 wsnp_Ex_c12963_20529801 Kukri_rep_c71747_150 TraesCS3B01G607600
RAC875_c4841_753 Excalibur_c6906_2385 Tdurum_contig42131_1565 Tdurum_contig42131_1300
Excalibur_c8991_467 Excalibur_c57495_522 Kukri_c11814_425 Excalibur_c8991_1143

807.9

GWM247808.0
TraesCS3B01G607800 TraesCS3B01G608000808.1
TraesCS3B01G608100808.2
TraesCS3B01G608200 TraesCS3B01G608300 TraesCS3B01G608400 TraesCS3B01G608500808.3
TraesCS3B01G605400808.5
BS00071183_51 BS00071182_51 BS00074625_51 TraesCS3B01G605300
CAP8_rep_c7869_126

808.6

TraesCS3B01G605200 TraesCS3B01G605100 Kukri_c1458_1705 Kukri_c1458_885
Kukri_c1458_646 RFL_Contig2432_2400

808.8

TraesCS3B01G605900 TraesCS3B01G605800809.3
TraesCS3B01G604900 Ex_c303_3825 TraesCS3B01G604800 Ra_c2553_1880809.4
TraesCS3B01G604700809.5
TraesCS3B01G604600 TraesCS3B01G604500809.6
TraesCS3B01G604200 TraesCS3B01G604100809.7
TA003963-0953 TraesCS3B01G604000 TraesCS3B01G603800 Tdurum_contig59566_830
TraesCS3B01G603700 Tdurum_contig59566_1534 TraesCS3B01G603600 Kukri_c55981_194
Tdurum_contig59566_2309 Tdurum_contig59566_3355 wsnp_JD_c18509_16968425 Tdurum_contig59566_4435
Kukri_c40275_229

809.8

Tdurum_contig31375_374 TraesCS3B01G603500 TraesCS3B01G603400 RAC875_c12185_1202
RAC875_c12185_825 TraesCS3B01G603300

809.9

TraesCS3B01G603200 TraesCS3B01G602800810.0
Tdurum_contig64395_276 TraesCS3B01G602700 Tdurum_contig64395_414 Tdurum_contig51605_137
Tdurum_contig51605_194 Tdurum_contig51605_542 Tdurum_contig51605_857 Tdurum_contig51605_1130
TraesCS3B01G602600

810.1

CDC_Stanley
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Appendix 15. Functionally enriched GO terms associated with DEGs occurring in >75% 

of hollow solid comparisons. Select terms with a potential role in stem-solidness are in red 

text. 

Biological Process  

GO:0006950 response to stress 

GO:0009056 catabolic process 

GO:0071554 cell wall organization or biogenesis 

GO:0019748 secondary metabolic process 

GO:0042546 cell wall biogenesis 

GO:0006468 protein phosphorylation 

GO:0009698 phenylpropanoid metabolic process 

GO:1902221 erythrose 4-phosphate/phosphoenolpyruvate family amino acid metabolic process 

GO:1901361 organic cyclic compound catabolic process 

GO:0006558 L-phenylalanine metabolic process 

GO:0006979 response to oxidative stress 

GO:0009072 aromatic amino acid family metabolic process 

  

Cellular Component  

GO:0005576 extracellular region 

GO:0030312 external encapsulating structure 

GO:0048046 apoplast 

GO:0071944 cell periphery 

GO:0005618 cell wall 

Molecular Function  

GO:0008171 O-methyltransferase activity 

GO:0009055 electron carrier activity 

GO:0020037 heme binding 

GO:0016679 oxidoreductase activity, acting on diphenols and related substances as donors 

GO:0016491 oxidoreductase activity 

GO:0097367 carbohydrate derivative binding 

GO:0043531 ADP binding 

GO:0046906 tetrapyrrole binding 

GO:0036094 small molecule binding 

GO:1901265 nucleoside phosphate binding 

GO:0043168 anion binding 

GO:0043167 ion binding 

GO:0016682 

oxidoreductase activity, acting on diphenols and related substances as donors, 

oxygen as acceptor 

GO:0016746 transferase activity, transferring acyl groups 

GO:1901363 heterocyclic compound binding 

GO:0097159 organic cyclic compound binding 

GO:0016705 

oxidoreductase activity, acting on paired donors, with incorporation or reduction 

of molecular oxygen 

GO:0032559 adenyl ribonucleotide binding 

 

 

 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006950
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009056
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0071554
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019748
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0042546
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006468
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009698
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1902221
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901361
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006558
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006979
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009072
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005576
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030312
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048046
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0071944
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005618
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008171
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009055
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0020037
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016679
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016491
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0097367
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043531
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0046906
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0036094
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901265
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043168
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043167
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016682
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016746
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901363
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0097159
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016705
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032559
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Appendix 16.  Summary of TraesCS3B01G60880 gene prediction using FGENESH.  

 

FGENESH 2.6 Prediction of potential genes in Triticum genomic DNA 

Length of sequence: 1356 

Number of predicted genes 1: in +chain 1, in -chain 0. 

Number of predicted exons 2: in +chain 2, in -chain 0. 

Positions of predicted genes and exons: Variant   1 from   1, 

Score:290.976587 

   G Str   Feature   Start        End    Score           ORF           Len 

 

   1 +    1 CDSf         4 -        69   12.83         4 -        69     66 

   1 +    2 CDSl       281 -      1348  295.25       281 -      1348   1068 

 

Predicted protein(s): 

>FGENESH:[mRNA]   1   2 exon (s)      4  -   1348  1134 bp, chain + 

ATGATCTTCCCTCCTGCCTTCCTCGACTCATCAAGCTGCTGGAACACCAACCACAACCAG 

CTTCAGCTGCAGCAAATCGGCAGTAACACTCATATCACTACTACTCCTTCACCTGCTGGC 

CATGGTCCTGGAGACGGAGGAGGCGGAAACAACAACAATCATGGTCAGCAGGAAGGATTA 

ATGGCCACGGCCGGGGCGGGAGGAGGTGGTGGTGATGGTGGTGGCGGCGGCGGTGGGGAT 

GGTGACAGCGCCAGCGGCGGGAACAACAAGCCGATGTCGATGTCGGAGCGGGCGCGGCTG 

GCGCGGGTGCCACAGCCGGAGCCGGGGCTCAACTGCCCGCGCTGCGATTCCACCAACACC 

AAGTTCTGCTACTTCAACAACTACTCCCTCACCCAGCCCCGCCACTTCTGCCGGGCCTGC 

CGCCGCTACTGGACCCGCGGCGGCGCGCTCCGCAACGTCCCCGTCGGCGGAGGGTACCGT 

CGCCACGCCAAGCGCAGCACCAAGCCCAAGGCCGGGTCGGCTGGATCCGGAACTGCCGCG 

GCAGGGACGTCGTCTGCGACGTCGACGACGCCCAGCACCACTGCTTGCACCACCGGCACA 

GCTGCCACTGCGCCGCCCGCTCTGCAGTACTCCATGTTCGGCAGCGCGCCGCCGCACAGC 

AGCCGGTTCGCCGATAGCTTCGACCCCGCGAGCCTCGGCCTCAGCTTCCCCGCCAGGCTG 

CTCTTCCCCGACAATGGCGCCTACGCTGCCGACGGTGGCGCGCAGCAGCACCACCACCAC 

CAGGGGAACGGGAACGGCATGGAGCAGTGGGCGGCTGCGCACATGCAGAGCTTCCCGTTC 

CTGCACGCCATGGACCACCAGATGTCCGGGAATCCTCAATCAGCTTCGGCAATGCCAACC 

ACAATGGCGGCGATGCAGGGCATGTTCCACCTCGGGCTACAGAGCGGCGGCGGCGGCGGT 

AATGGCGACGATGGGGGAAACCACCAGTTCCACCACCAGCCGGCCAAGAGGGACTACAAC 

CAGCAGCAGCAGCAGGATTACCCAAGCAGCAGGGGCATGTACGGGGACGTGGTCAATGGC 

AATGGCGGCGGCTTCAATTTCTATTCCAGCACTAGCAATGCAGCTGGTAATTAG 

>FGENESH:   1   2 exon (s)      4  -   1348   377 aa, chain + 

MIFPPAFLDSSSCWNTNHNQLQLQQIGSNTHITTTPSPAGHGPGDGGGGNNNNHGQQEGL 

MATAGAGGGGGDGGGGGGGDGDSASGGNNKPMSMSERARLARVPQPEPGLNCPRCDSTNT 

KFCYFNNYSLTQPRHFCRACRRYWTRGGALRNVPVGGGYRRHAKRSTKPKAGSAGSGTAA 

AGTSSATSTTPSTTACTTGTAATAPPALQYSMFGSAPPHSSRFADSFDPASLGLSFPARL 

LFPDNGAYAADGGAQQHHHHQGNGNGMEQWAAAHMQSFPFLHAMDHQMSGNPQSASAMPT 

TMAAMQGMFHLGLQSGGGGGNGDDGGNHQFHHQPAKRDYNQQQQQDYPSSRGMYGDVVNG 

NGGGFNFYSSTSNAAGN



 

 

 

1
5
4

 

Appendix 17. TraesCS3B01G60880 SSR/CNV markers screened on the common wheat diversity panel. Stem-solidness ratings (average 

from whole stem rated at maturity) for each line grown in replicated field trials (Nilsen et al., 2017) are presented in column 2. 

    TraesCS3B01G608800    DOF-3B-SSR-907MF-1310R - Band Sizes 

Sample Solidness Copy Number SEM 395 407 409 411 415 417 419 421 

Choteau 4.3 9.9 0.5       409.6        417.7      421.7  

Fortuna 3 10.4 0.2      409.6      417.6     421.8  

Lancer 3 10.3 0.4      409.5      417.6     421.7  

AAC Bailey 2.5 9.6 0.9      409.6      417.6     421.8  

AC Eatonia 2.5 8.5 0.5      409.5      417.6     421.7  

Frontana 2.5 2.3 0.3         415.8    417.8   
G9608B1-

L12J11BF02 2.5 6.0 0.2          

Janz 2.5 1.4 0.1   395.6       415.6     

Leader 2.5 3.7 0.2         417.5    

Lillian 2.5 10.1 0.7      409.5      417.5     421.7  

LJP1091P 2.5 7.7 0.4   395.6    407.5       417.6     421.7  

Mott 2.5 10.3 1.1   395.7     409.6      417.7     421.7  

Rescue 2.5 6.2 0.1      409.7      417.7     421.8  

S-615 2.5 10.8 0.3      409.5      417.6     421.7  

AC Abbey 1.9 6.4 0.4      409.5      417.7     421.7  

CDC Landmark 1.9 7.7 0.4      409.4      417.5     421.5  

Glencross 1.8 5.9 0.4          419.6    421.7  

McKenzie 1.8 8.9 0.4          

CDC Rama 1.7 3.5 0.2          419.7    421.7  

Unity 1.7 11.1 0.7      409.5      417.6     421.8  

Glenlea 1.5 3.8 0.2          419.6    421.7  

CDC Teal 1.3 2.7 0.1         417.6    

AC Crystal 1.2 2.9 0.2           421.7  

AC Vista 1.2 3.1 0.2           421.7  

Alvena 1.2 4.4 0.2           421.8  

Burnside 1.2 6.0 0.2          419.6    421.7  
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AC Andrew 1.1 2.4 0.1        415.6    417.7    

AC Splendor 1.1 3.3 0.1         417.7    

AC Taber 1.1 2.6 0.1           421.7  

CDC Bison 1.1 5.1 0.2          419.5    421.6  

CDC Stanley 1.1 1.8 0.1          

CDC Walrus 1.1 2.4 0.0        415.5    417.6    

Kane 1.1 4.6 0.2         417.7    

Katepwa 1.1 2.8 0.1         417.7    

Laser 1.1 4.1 0.1         417.6    419.7   

5500HR 1 2.8 0.1          419.7   

5600HR 1 3.0 0.4         417.6    

5601HR 1 3.0 0.1         417.7    

5602HR 1 3.7 0.1        415.5    417.6    419.7   

5603HR 1 3.4 0.2        415.6     419.6   

5700PR 1 2.4 0.2           421.7  

5701PR 1 2.7 0.1         417.7    

5702PR 1 2.1 0.2        415.6     

AC Barrie 1 2.9 0.1          

AC Cadillac 1 3.5 0.3          

AC Domain 1 3.1 0.2         417.7    

AC Elsa 1 3.0 0.2           421.7  

AC Foremost 1 2.5 0.1           421.7  

AC Intrepid 1 3.2 0.2          

AC Karma 1 2.5 0.2           421.7  

Alikat 1 2.2 0.2         417.7    

Carberry 1 3.2 0.1         417.6    

CDC Abound 1 3.9 0.3         417.8    

CDC Alsask 1 2.8 0.2         417.7    

CDC Bounty 1 3.0 0.2         417.7    

CDC Go 1 3.1 0.1         417.6    

CDC Imagine 1 4.1 0.5          
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CDC Kernen 1 2.1 0.2         417.8    

CDC Merlin 1 2.8 0.1         417.5    

CDC Osler 1 3.0 0.2         417.7    

CDC Thrive 1 2.5 0.1         417.8    

CDC Utmost 1 2.0 0.3         417.6    419.7   

Chinese Spring 1 1.4 0.0          

Cutler 1 4.1 0.3           421.7  

Glenn 1 4.0 0.4        415.6    417.6    

Goodeve VB 1 4.2 0.2         417.6    

GP069 1 2.7 0.1           421.6  

Harvest 1 4.6 1.0          

Helios 1 4.8 0.3         417.7    

Infinity 1 3.8 0.2        415.7    417.7    

Journey 1 3.0 0.1         417.7    

Laura 1 3.2 0.2         417.6    

Lovitt 1 3.2 0.1         417.7    

Minnedosa 1 3.4 0.3           421.8  

Muchmore 1 3.8 0.3         417.7    

Neepawa 1 4.2 0.3         417.6    

Park 1 2.4 0.2          419.7   

Peace 1 4.6 0.6          419.6   

Prodigy 1 4.1 0.3          

PT559 1 2.7 0.1         417.8    

Red Fife 1 2.6 0.1        415.6     

RL4137 1 0.8 0.1         417.6    

Roblin 1 3.1 0.1         417.7    

Sadash 1 3.2 0.1        415.6    417.6    

Selkirk 1 3.6 0.3          419.7   

Snowbird 1 2.4 0.2         417.6    

Snowstar 1 3.7 0.2         417.6    

Somerset 1 4.5 0.3         417.5    
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Stanley 1 3.6 0.3         417.7    

Stettler 1 3.7 0.2         417.8    

Sumai 3 1 3.2 0.1        415.6     419.6   

Superb 1 3.1 0.1         417.7    

SY985 1 2.9 0.2           421.7  

Vesper 1 2.9 0.2         417.6    419.7   

Waskada 1 3.3 0.3             417.7      
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Appendix 18. TraesCS3B01G60880 SSR/CNV markers screened on the durum wheat diversity panel. Stem-solidness ratings (average from 

whole stem rated at maturity) for each line grown in replicated field trials (Nilsen et al., 2017) are presented in column 2. 

    TraesCS3B01G608800    DOF-3B-SSR-907MF-1310R - Band Sizes 

Sample Solidness Copy Number SEM 415 417 419 421 424 

Green27 . 1.1 0.5 415.7     
DT838 5 2.9 0.7 415.7   421.7  
DT726 5 4.2 0.2 415.5   421.6  
DT732 5 3.9 0.2 415.5   421.7  
DT795 5 4 0.2 415.6   421.7  
DT751 5 2.3 0.1 415.5   421.7  
DT777 5 3.8 0.2  417.7  421.7  
DT817 5 3.4 0.1 415.6   421.7  
AAC Raymore 5 4.4 0.3 415.6   421.7  
DT824 5 4.3 0.2 415.7   421.8  
DT837 5 3.8 0.1 415.6   421.7  
DT840 5 4.4 0.2 415.5   421.7  
DT845 5 3.4 0.1 415.5   421.6  
CDC Fortitude 5 3 0.6 415.6   421.6  
9661-AF1D 4.7 4.6 0.3 415.7   421.7  
Camacho 4.7 2.1 0.1   419.7 421.8  
Lesina 4.6 4.8 0.1  417.7  421.8  
Mongibello 4.1 3.1 0.1  417.6  421.8  
Colosseo 4.1 2.3 0.2     423.6 

Fortore 3.6 2.6 0.1 397.4     
Ciccio 2.7 1.1 0.0  417.6    
Mexa 2.6 1.2 0.2 415.8     
Nedda 2.4 . .      
940955 2.4 2.5 0.1   419.8   
Gianna 2.4 0.8 0.0 415.7     
Parsifal 2.4 0.6 1.3 415.7     
Wollaroi 2.2 3.9 0.0   419.7   
RABD 93.40 2.1 1.1 0.1 415.6     
Vitron 2.1 0.8 0.1      
D-73-15 2.1 0.8 0.0 415.7     
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Gidara 17a 2 1 0.0 415.7     
D940098 2 0.6 0.1 415.6     
Buck Ambar 2 1.1 0.1  417.7    
940030 1.9 1.9 0.1   419.7   
Bonaerance Inta Cumenay 1.9 1.5 0.1  417.7    
Kronos 1.9 1.1 0.0 415.7     
Demetra 1.9 1.1 0.1 415.7     
Svevo 1.9 0.8 0.1 415.5     
44616 1.9 0.7 0.1  417.7    
920334 1.8 1.9 0.1   419.8   
Varano 1.8 1.4 0.0      
Buck Topacio 1.8 1 0.1  417.7    
44721 1.7 0.8 0.1 415.6     
Langdon 1.7 0.8 0.0 415.6     
Durafit 1.7 1.1 0.1 415.6     
Arcobelano 1.7 1.6 0.0  417.8    
Grazia 1.7 1.2 0.1 415.7     
CRDW17 1.7 1.4 0.1      
Commander 1.7 0.8 0.1 415.6     
950844 1.7 3.5 0.1   419.6   
Ocotillo 1.7 1.1 0.0 415.7     
Arrivato 1.7 0.9 0.1 415.8     
950329 1.7 2.7 0.0   419.8   
Marjak 1.7 1.1 0.0 415.5     
Altar-Aos 1.7 1.5 0.1  417.1    
Duilio 1.7 1.2 0.0  417.7    
AC Pathfinder 1.7 1 0.1      
Bonaerance Valverde 1.7 1.2 0.1  417.7    
Tamaroi 1.7 0.8 0.1 415.7     
Bonaerance Quilaco 1.7 1.3 0.1 415.8     
Carioca 1.7 1.1 0.1 415.7     
Bronte 1.6 0.8 0.0 415.6     
Durex 1.6 3.1 0.1    421.8  
Borli 1.6 0.9 0.1  417.8    
CFR5001 1.6 0.6 0.0  417.8    
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Green 34 1.6 0.9 0.0 415.7     
Ariesol 1.6 0.6 0.1 415.7     
D940027 1.6 0.7 0.1      
940435 1.6 0.9 0.2 415.8     
Agridur 1.5 0.9 0.0 415.6     
DHTON 1 1.5 0.8 0.1 415.7     
DT705 1.5 0.7 0.1 415.7     
Simeto 1.5 0.7 0.1  417.7    
Iride 1.5 1 0.0  417.7    
Gallareta 1.5 1.3 0.0      
Kofa 1.5 1.4 0.1 415.6     
DT695 1.4 1.2 0.0 415.8     
DT536 1.4 1.2 0.0 415.7     
Strongfield 1.4 0.9 0.1 415.7     
DT711 1.4 1 0.0 415.6     
DT710 1.4 1.2 0.0 415.6     
Tresor 1.4 1.1 0.0      
DT707 1.4 0.9 0.0 415.7     
DT704 1.4 1.1 0.1 415.7     
AC Avonlea 1.4 1.3 0.1 415.7     
Nacori 97 1.4 1.2 0.1 415.6     
AC Morse 1.4 0.9 0.1 415.6     
Kyle 1.4 1.1 0.1 415.7     
DT540 1.4 0.8 0.1 415.7     
DT709 1.4 0.7 0.0 415.7     
Westbred881 1.3 0.8 0.1 415.6     
9661-CA5E 1.3 1.1 0.1 415.6     
AC Navigator 1.3 1 0.0 415.8     
Durabon 1.3 0.8 0.2 415.7     
DT691 1.3 1.2 0.1 415.7     
Plaza 1.3 0.4 0.1 415.7     
AC Napoleon 1.3 1.1 0.1      
Tetradur 1.3 1.2 0.1 415.7     
D95580 1.3 0.6 0.0 415.6     
D24-1773 1.2 0.8 0.0 415.8     
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AC Melita 1.2 1.1 0.0 415.7     
D941038 1.2 0.4 0.1 415.7     
DT696 1.2 1.1 0.1 415.7     
DT513 1.2 0.8 0.1 415.5     
K-39099 1.1 0.8 0.0 415.7     

 

 


