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ABSTRACT 

The objectives of this study were to investigate the effects of autoclave heating on the 

rumen protein degradation characteristics of flaxseed (Linum usitatissimum, cv. Vimy), 

and to compare them to differences in diffuse reflectance infrared Fourier transform 

(DRIFT) and Synchrotron based Fourier transform infrared microspectroscopy (S-FTIR) 

measurements of the protein α-helix to β-sheet ratios. Hierarchical cluster analysis (CLA) 

and principal components analysis (PCA) were also conducted to identify differences in 

the DRIFT spectra. Flaxseed samples were kept raw for control or autoclaved in batches 

at 120°C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. The rumen 

degradation kinetics of protein were measured along with the protein sub-fractions of the 

Cornell net carbohydrate and protein system (CNCPS), and chemical composition. 

Intestinal digestibility was determined using the three-step procedure outlined by 

Calsamiglia and Stern (1995). Protein supply to the small intestine was determined using 

the NRC (2001) and DVE/OEB models. The results showed that heating increased dry 

matter (DM) and ether extract (EE) content, while reducing neutral detergent fibre (NDF) 

and acid detergent fibre (ADF), with little numerical difference between the three 

treatments. Soluble crude protein (SCP) also decreased upon autoclaving with 

concomitant increases in non-protein nitrogen (NPN), neutral detergent insoluble 

nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN). The CNCPS protein sub-

fractions with the greatest changes were the buffer-soluble true protein fraction (PB1) and 

the fraction representing buffer-insoluble true protein which is not bound to NDF (PB2) 

showing dramatic increases, indicating a decrease in the overall protein degradability. In 

situ experiments showed a reduction in effective degradable dry matter (EDDM) as well 
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as a reduction in effective degradable crude protein (EDCP) without significant 

differences between the treatments. Intestinal digestibility of protein as estimated by the 

three-step procedure showed no changes upon autoclaving. Modeling results, with 

flaxseed as the only feed source, for absorbable ruminally-undegraded feed protein in the 

intestines using both the NRC (2001) and DVE/OEB systems showed increases as a 

consequence of the autoclave treatments but again there were no differences between the 

treatments. The degraded protein balance results showed for both the NRC (2001) and 

DVE/OEB models that both were decreased upon autoclave treatment. However, the 

values for the NRC (2001) model suggested a potential nitrogen (N) deficiency and, 

therefore potentially impaired microbial crude protein (MCP) production, whereas the 

values for the DVE/OEB system showed potential N excess and, therefore, possible loss 

from the rumen. DRIFT analysis of protein secondary structure ratios showed a decrease 

in the α-helix to β-sheet ratio for the whole seed, whereas results from S-FTIR spot data 

for cotyledon tissue showed autoclaving had the opposite effect on the ratio. CLA and 

PCA were successfully used to make distinctions between the different treatment spectra 

and showed enhanced sensitivity upon selection of a smaller spectral window to include 

only the amide I and II portion of the IR spectrum. The results failed to demonstrate any 

differences between the autoclave treatments used in this study, and showed that 

autoclaving generally decreased effectively ruminal degradability of flaxseed protein. 

The results further indicated that autoclaving had a significant enough effect on the 

flaxseed to permit identification of the altered α-helix to β-sheet ratio with the mid-IR 

spectrum, as well as differentiation between the treatments using PCA and CLA. PCA 
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and CLA results suggest that mid-IR spectral methods are more sensitive than traditional 

methods when used to identify differences between the heat treatments.  
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1. INTRODUCTION 

1.1 Flaxseed 

Historical records show the cultivation and use of flax as early as 3000 B.C. Throughout 

history, the health benefits of flaxseed have been extolled by the likes of Hippocrates and 

Charlemagne. Since the cultivation of this crop began, other uses for the plant have 

emerged and include clothing (linen), flooring (linoleum), and the many industrial uses 

for its oil (paint, varnish, rust inhibitor). More recently, the value of flaxseed has again 

been recognized in terms of promoting good health due to the high omega-3 fatty acid 

content of its oil (Flax Council of Canada, 2007a).  

Canada is the world‟s largest producer and exporter of flaxseed (Flax Council of Canada, 

2007b). Within Canada, Alberta, Saskatchewan and Manitoba, are the major producers, 

with Saskatchewan being the largest producer by far (Flax Council of Canada, 2007c). In 

terms of composition, flaxseed oil is sensitive to climate. The cooler climate that 

Canadian flaxseed is grown in, for example, results in increased oil content with α-

linolenic acid (ALA) making up about 9% more of the oil when compared to flaxseed 

grown further south in the United States (Bhatty 1995).  

A typical North American‟s diet lacks polyunsaturated fatty acids. This situation could be 

improved through dietary inclusion of flaxseed (Kris-Etherton et al. 2000). The benefits 

are derived primarily from the oil it contains, specifically the content of ALA which is a 

precursor to bioactive compounds in the human body and in livestock animals. The 

physiological systems that ALA plays some role in are varied and include the immune 
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system, central nervous system, visual development and the cardiovascular system (Kelly 

et al. 1991; Delion et al. 1994; Neuringer and Connor, 1986; Allman et al. 1995).  

The potential benefits of using flaxseed as a feed necessitate a greater understanding of 

flaxseed in terms of nutrition in ruminants. Flaxseed on average contains 26% protein on 

a moisture-free basis, whereas solvent-extracted flaxseed meal consists of 44% CP on a 

moisture-free basis (Bhatty 1995). The protein content of flaxseed is sensitive to growing 

location and soil conditions and shows a negative correlation with oil content. 

Furthermore, as protein content increases so too does the protein solubility, which 

suggests a change in protein quality (Oomah et al. 1995). Most flaxseed breeding 

programs at this point are concerned with oil content and quality rather than protein. 

More work is needed to define flaxseed protein with respect to nutrition. 

The real potential for the feed industry is the production of healthier animals that would 

be a source of healthier products for human consumption. The challenge is to define the 

nutritional qualities of flaxseed as a feed source for dairy and cattle production and to 

develop and promote improved human and livestock health through traditional 

production systems. As consumption increases, more meal and by-products should 

become available, providing industry with a readily available protein source for 

ruminants. Studies, however, typically have focused on flaxseed oil and its ALA content. 

Canada, the world‟s largest producer of flaxseed, stands to benefit from the development 

of flax as a more common feed ingredient and to take advantage of the opportunities that 

will arise from the quality of the flaxseed it produces. 
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1.2 Why Synchrotron based FTIR? 

Structural considerations are important when evaluating digestibility in the rumen (Jung 

and Allen, 1995; Akin 1988). There are multiple levels of structure involved in 

understanding how digestibility may be influenced by treatments such as heating. The 

first is the physical structure of a feed, which depends on which part of the plant is being 

fed. The physical structure could be seeds, as in the case for feeding grains, or it could be 

leaves and stems, in the case of feeding hay. In either case, there are physical barriers, 

inherent to the feed, which prevent the digestion process from proceeding and include 

features like the seed coat which must be overcome for the grain to be digested. 

Rumination is an example of an adaptation where additional chewing assists in breaking 

down the feed. Processing of the feed may alter these structures as well (Yang et al. 

2000). A second level of structure that influences degradability pertains to inter-nutrient 

interactions or biological component matrices. It entails the associations between starch, 

protein, fibre, lignin, fat and other components of the feed. These interactions are 

essential for the plant to survive and consist of oil bodies and starch granules which are 

closely associated with storage proteins. The interactions between two or possibly more 

nutrients may act as a barrier to digestion. In the case of starch granules, the interaction of 

protein with starch affects the rate at which starch may be degraded by rumen 

microorganisms (McAllister et al. 1993). Lignin associated with fibrous components may 

also prevent the rumen microbes from fully degrading the fibrous component of feed 

(Chesson 1988). Another level of structure is that of the nutrients themselves, in other 

words, the macromolecular arrangement of the nutrients. In a starch molecule, for 

example, this would be affected by the number of branches and the length of those 
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branches. Each branch point, for example, consists of an α-1,6-linkage between glucose 

moieties and requires enzymes other than α-amylase, such as pullulanase or iso-amylase, 

for hydrolysis (Kotarsky et al. 1991), thus providing some other barrier to digestion. In a 

protein molecule, the amino acid sequence affects the secondary structure of the protein, 

unlike for starch where all the subunits are glucose and bonds between subunits 

determine the structure of the starch molecule. Protein secondary structure will influence 

the location of peptide bonds as a result of protein folding, and some bonds would be 

tucked away in the interior of a protein. This presents the digestive enzymes with another 

obstacle to breaking protein down into absorbable peptides and amino acids. Finally, not 

all peptide bonds are broken by the same protease; the consequence of this is that protein 

primary structure determines which enzymes are required for complete breakdown of a 

protein. 

Given this relationship of structure to digestion and digestibility, a new method shows 

promise as a means of feed evaluation. Synchrotron based Fourier transform infrared (S-

FTIR) microspectroscopy is capable of generating molecular and structural information 

on the constituents of a feed at the sub-cellular level, while maintaining the physical 

orientation of the information (Wetzel et al. 1998; Budevska 2002). S-FTIR is sensitive to 

all of the previously mentioned levels of structure, the difficulty lies in interpretation of 

the data. Consequently, S-FTIR has been used to distinguish between varieties of barley 

(Valier vs. Harrington) known to have different degradation characteristics and different 

digestibilities (Yu et al. 2004a, 2004b). S-FTIR can also be used to detect more specific 

feed structural characteristics such as protein secondary structure, which is altered as a 

result of heat treatment (Yu et al. 2005). The method is further validated for use in the 
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feed industry by the ability it lends the investigator to focus on specific plant structures or 

cells within a sample of interest (Wetzel et al. 1998), thus maintaining a physical context 

for data interpretation. The challenge is to link the structural and molecular characteristics 

of feed samples to the degradability of nutrients in order to further supplement existing 

models with information that would make them better predictors of degradability. 

1.3 Objectives of literature review 

The purpose of the literature review which follows is to establish some of the pertinent 

background information on the potential of flaxseed as a feed ingredient and protein 

source in ruminant diets. It covers the effects of heat processing feeds and how 

improvements in digestibility, with respect to production, can be achieved with heating. It 

also highlights the basics of Synchrotron based and thermal IR sourced Fourier transform 

infrared (FTIR) spectroscopy for feed evaluation by highlighting the kinds of information 

each gathers and how the information can be pertinent to the feed industry and potentially 

improve current models used in feed evaluation. 
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2. REVIEW OF LITERATURE 

2.1 Dietary inclusion of flaxseed in animal rations 

2.1.1 Oilseeds in ruminant rations 

Oilseeds and oilseed meals are commonly included in ruminant rations (Stake et al. 1973; 

Ward et al. 2002). Oilseed meals are striped of most of their fat content and are a good 

source of protein and fibre while whole oilseeds are typically a good source of energy as 

well as unsaturated fats. Recent interest in providing ruminants with a greater supply of 

dietary unsaturated fatty acids comes in part from a human health standpoint. There is an 

effort to ameliorate the fat profile of milk and meat, by decreasing the ratio of saturated 

fatty acids to unsaturated fatty acids, to foster better cardiovascular health. This is based 

on the fact that some of the unsaturated fats, as a consequence of ending up in the 

bloodstream after feeding, are deposited in fat deposits and milk of an animal. 

Unsaturated fats will eventually become saturated if in the rumen long enough through a 

process called biohydrogenation. Unfortunately, not all of the unsaturated fat will be 

absorbed as such, extensive biohydrogenation occurs in the reducing environment found 

in the rumen which partially negates the effort of trying to get unsaturated fats into the 

diet to begin with. When fed whole, the oil from an oilseed is expected to be protected 

against biohydrogenation, due to its physical structure, but results are contradictory 

(Keele et al. 1989; Scollan et al. 2001a, 2001b).  

There are some considerations for dietary fat in ruminants, in particular the effects it has 

on the protozoa and bacteria in the rumen. One such effect is the suppression of protozoal 

activity, which decreases the number of protozoa in the rumen (Czerkawski et al. 1975). 
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Protozoal suppression can lead to an improvement in bacterial protein synthesis (BPS) 

because there are fewer protozoa engaged in breaking down the bacteria or other dietary 

constituents supporting a futile nitrogen (N) cycle of nutrient breakdown and resynthesis 

(Jouany 1996). Fats and oils also have effects on the bacteria in the rumen, which results 

in impairment of organic matter (OM) digestion, energy digestion, and bacterial protein 

synthesis (BPS), and is dependent on the concentration of fats present (Ikwuegbu and 

Sutton 1982). The interactions between fats and oils on the major rumen inhabitants and 

interactions among the inhabitants themselves make the effects of fat/oil dietary inclusion 

diverse and not always predictable. The reduction in protozoal activity, for example, 

would increase the efficiency of BPS yet at the same time the fats are believed to inhibit 

BPS in bacteria. The inhibition of BPS is due to the toxicity that the free fatty acids, 

released when triglycerides are degraded, exhibit towards some bacterial species within 

the rumen. The result is a shift in the bacterial population in the rumen (Broudiscou et al. 

1988). Depending on the extent of either of these occurrences, different results would be 

expected. These changes to rumen function restrict the use of fats and oils as energy 

supplements in ruminant rations despite some of the benefits they might provide.  

2.1.2 Flaxseed shape and morphology 

Commercial flaxseed varieties,shown in figure 2.1, are varied in size and colour. On 

average they are 5mm long, 2.5 mm wide and 1.5 mm thick (Peterson 1958). Figure 2.2 

shows a micrograph cross section of flaxseed. The seed cross section, taken from the 

center of the seed, shows the epiderm, known as mucilage, seed coat, and a thin layer of 

endosperm surrounding two cotyledons. The endosperm and the cotyledons have 

different protein solubilities (Painter and Nesbitt 1969) and oil compositions (Dorrell  
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Figure 2.1. Enlarged view of both yellow and brown flaxseed varieties.  

(Credit: iStockphoto/Tim Pohl) 
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Figure 2.2. Cross section of a flaxseed. 
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1970). Not visible in Figure 2.2 is any discrete aleurone tissue. In the case of flaxseed, 

there are aleurone cells distributed throughout the endosperm and cotyledons. The shape 

of the aleurone grains within the aleurone cells differs between endosperm and cotyledon 

(Winton and Winton 1932). Oil is distributed throughout the endosperm and cotyledons. 

The oil is contained within the cells as microscopic droplets (Peterson 1958). 

2.1.3 Flaxseed oil and protein characteristics 

Canadian flaxseed contains, on average, 41% oil and 26% protein. Cultivar and growing 

conditions, however, play a significant role in the composition of flaxseed. Oil is a major 

component of flaxseed and it consists of several fatty acids, including palmitic acid (16:0) 

(5%), stearic acid (18:0) (3%), oleic acid (18:1n-9) (17%), linoleic acid (18:2n-6) (15%) 

and ALA (18:3n-3) (59%) (Bhatty 1995). ALA exhibits sensitivity to temperature post 

flowering, whereby the ALA content is favored by cooler post flowering temperatures at 

the expense of oleic acid content. It is of interest to note that the concentration of 

individual fatty acids in flaxseed oil is highly variable between seeds when environmental 

factors are equal (Bhatty 1995). 

Flaxseed averages 26% protein on a moisture-free basis, while flaxseed meal consists of 

44% CP on a moisture-free basis (Bhatty 1995). Similar to other oilseeds, the major 

storage proteins of flaxseed are albumins and globulins, which are classified based on 

their solubility in aqueous solvents. Globulins are the major storage protein and comprise 

roughly 58-66% of the total protein in flaxseed. Albumin is a much smaller protein in 

size and comprises around 20% of the protein content of flaxseed (Oomah and 

Kenaschuck, 1995). The secondary structure profile of the globulin storage protein 
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consists of 3% α-helix, 17% β-sheet, and 80% aperiodic (Madhasudhan and Singh, 

1985a). The protein secondary structure profile of albumin is very different from that of 

globulin, and is comprised of 26% α-helix, 32% β-sheet, and 42% is aperiodic 

(Madhasudhan and Singh, 1985b). Considering the secondary structure profiles of the 

two major protein types, it is evident that that the predominant secondary structure, other 

than aperiodic, in flaxseed protein is the β-sheet. Oleosins are another important protein 

group found in flaxseed. Oleosins can make up 2-8% of total protein in oilseeds. The 

major function of oleosins is oil storage (Huang 1992). A large part of the function of 

these oil storage proteins is enabled by an elongated, anti-parallel β-sheet containing 

many hydrophobic residues. β-sheets make up about 30% of this protein in peanuts 

(Huang 1992). Oleosins are required for the formation of the oil bodies and, therefore, the 

storage of oil. These proteins, as a result of their amphipathic nature, are responsible for 

the oil/protein matrix of flaxseed which plays a role in protein and fat digestibility 

(Huang 1992).  

2.1.4 Benefits of flaxseed feeding 

Flaxseed shows promise as a feed ingredient for several reasons. One is the potential for 

improvements in herd health when flaxseed is added as a supplement to the diet. These 

improvements include a reduction in pregnancy loses as well as an increased conception 

rate that occurs when cows are supplemented with flaxseed (Ambrose et al. 2006). Other 

examples of improvement when supplementing cattle finishing diets, for example, are 

increases in performance and efficiency, as well as an increased marbling in meat 

(Maddock et al. 2006). These are possibilities that could both lead to increased 

profitability for the producer. However, there is still much work to be done with respect 
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to the effects of processing and how the other ingredients in the ration may interact with 

the flaxseed. 

2.1.5 Dietary flaxseed and its effects 

The fatty acids found in the diet are generally different than those absorbed by the small 

intestine. This is a result of the extensive biohydrogenation that occurs in the rumen and, 

generally speaking, the fatty acids on their way out of the rumen will be more saturated 

than those from the diet. The process of biohydrogenation can be avoided to some extent, 

however, by various chemical treatments, such as with formaldehyde or by heating or 

even by feeding whole oilseeds (Kennelly 1995). The ability to incorporate some flax-

based fatty acids into milk and meat creates another opportunity for producers to create a 

value-added product with benefits to the consumer‟s health. In human nutrition, it is 

widely believed that modern western diets are deficient in n-3 fatty acids and too rich in 

n-6 fatty acids, and also contain much greater amounts of saturated fats than historic 

diets. The ratio of n-6 to n-3 fatty acids in the modern diet is typically around 20-30:1, 

whereas it is estimated that the ratio on which man lived throughout history is much 

lower, around 1-2:1 (Simopoulos 1999). There are various reasons for the shift in this 

ratio, but the consequences are clear with respect to human health, increased mortality 

from cardiovascular disease (Simopoulos 1999). The increased mortality is a result of the 

physiological effects that the n-6 and n-3 fatty acids produce. These physiological effects 

appear antagonistic to one another as a diet rich in n-6 fatty acids and low in n-3 fatty 

acids skews the physiological state to one that favors clotting, vasospasm and 

vasoconstriction, whereas the n-3 fatty acids are shown to have hypolipidemic, 

antithrombotic and anti-inflammatory effects (Simopoulos 1999). The ALA content of 
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flaxseed makes it an excellent source of n-3 fatty acids for the purpose of using dietary 

fats to modify milk and meat fat profiles. Scollan et al. (2001a) demonstrated that by 

feeding whole bruised flaxseed, they were able to modestly improve the n-6:n-3 ratio in 

both meat and adipose lipid profiles, while maintaining total muscle fatty acid content. 

Petit (2002) also demonstrated a similar shift in this ratio for milk fat from cows fed 

whole flaxseed. The implications for flaxseed as a feed ingredient are evident as it can 

rectify, to some extent, the fatty acid profile of the consumer‟s diet towards what the 

historical values would be. Combining this with growing consumer knowledge of 

functional foods and their ties to human health, flaxseed dietary supplementation should 

only increase in popularity as time passes.  

2.2 Heat processing feeds 

2.2.1 Means and purpose of heating feeds 

Heat processing feeds is done in an effort to manipulate the digestive behaviour of the 

macronutrients contained within the feed. For protein, in terms of ruminant nutrition, the 

objective of heat treating a feed is to increase the amount of dietary protein that is passed 

out of the rumen,  (bypass crude protein; BCP) without negatively affecting the 

digestibility of the protein in terms of the whole gastrointestinal tract (Yu et al. 2002). 

There are many ways to apply heat to a feed, but in general they are distinguishable by 

traits including the presence of moisture, as in autoclaving but not in toasting. They are 

also distinguishable in that some impart physical changes to the feed, such as extrusion or 

steam flaking. Changes in the rate and extent of rumen degradation depend on multiple 

factors, including the type of treatment used, the severity of the treatment in terms of time 
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and temperature, and the pH of the feed during heating. These changes are further 

complicated by the type of diet and the relative proportions of its constituents (Yu et al. 

2002). There are several reactions that take place in a feed when heat is applied due to the 

diverse nature of the organic molecules that make up plant material comprising feeds. 

These reactions are chemical in nature and bonds are broken or formed whether they are, 

for example, covalent molecular bonds or non-covalent hydrogen bonds. 

2.2.2 Heating and protein 

As described by Yu et al. (2002), the primary means of altering the protein degradation 

characteristics upon heating is through denaturation. Denaturation of protein can occur at 

every level of protein structure. Quaternary structure is affected as heating breaks the 

non-covalent intermolecular bonds that hold the protein subunits together. Tertiary 

structure is affected because heating causes intramolecular non-covalent bonds and 

disulfide bonds to break, causing the protein to unfold. Secondary structure is affected by 

heat in a manner similar to tertiary structure. However, the non-covalent bonds involved 

are hydrogen bonds necessary to stabilize the α-helical and β-sheet conformations. 

Finally, primary structure may be altered by the breaking of the covalent bonds that hold 

the polypeptide chain together. The extent to which these changes occur is dependent on 

the severity of the heating conditions during treatment, not solely temperature but also 

moisture and pH. Typically, once the primary structure begins to be affected, the process 

is more appropriately termed protein degradation.  
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2.2.3 Heating and the Maillard reaction 

One major chemical reaction that takes place when feedstuffs are treated with heat is the 

Maillard reaction. The Maillard reaction is responsible for a diverse range of chemical 

products that can influence the nutritional value of a food or feed (Martins et al. 2001). 

Among the most important processes of non-enzymatic Maillard reactions relates to the 

reaction of amino acids, peptides and proteins with reducing sugars and vitamin C 

(Arnoldie 2001). The Maillard reaction is dependent on the presence of reducing sugars 

such as glucose and fructose, both monosaccharides, but the reaction may also proceed in 

the presence of disaccharides such as lactose. Sugars that are not reducing, like sucrose, 

bound glycoproteins, and glycolipids, require hydrolysis before they can take part in 

product formation (Arnoldie 2001). The Maillard reaction is complex in nature and the 

reaction pathways that lead to end products are numerous. The non-enzymatic browning 

involves a condensation reaction between primary amines and reducing sugars in the 

presence of water. The main reactive amines found in proteins are the epsilon amino 

groups of lysine. Another, reactive amine, is the α-amino group at the N‟ terminus of the 

polypeptide chain (Martins et al. 2001). The condensation product of the initial reaction is 

an N-substituted glycosylamine, which undergoes rearrangement to form an Amadori 

rearrangement product whose subsequent degradation is pH dependant (Martins et al 

2001). The end products that are formed from the Maillard reaction are not considered 

digestible and it is widely held that the products are detrimental to the nutritional value of 

the protein, despite the fact that some intermediates are fully available in laboratory rats 

(Yu et al. 2002).  
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2.3 Assessing dietary protein 

In ruminant nutrition, it is sometimes beneficial to increase the amount of dietary protein 

that bypasses the rumen. Thermal processing provides the means to shift the site of 

protein digestion to favor the small intestine, which permits the ruminant to absorb an 

amino acid profile that more closely resembles that of the diet. The protein remains 

available for absorption in the small intestine because it must pass through the abomasum 

which has a much lower pH than the rumen and contains different proteolytic enzymes. 

In addition to this, the small intestine also has its own complement of proteolytic 

enzymes. The result of the shift in the site of protein digestion can be of benefit to the 

animals under certain production and dietary conditions (Yu et al. 2002). At present, 

several means are used to evaluate how heat treatment will affect the degradation 

behaviour of protein. 

2.3.1 Bypass crude protein 

The major benefit to thermal processing feeds is an increase in the availability of protein 

to the small intestine. One measure of an increase in nutrient availability is the ruminally 

undegraded protein (RUP) or BCP which represents that fraction of the crude protein in a 

feed which will not be fermented in the rumen. BCP is based on the first order kinetics 

model outlined by Orskov and McDonald (1979), where R(t) = U + D Exp 
-Kd(t-T0)

 and is 

calculated as %BCP = U + D * Kp / (K p+ Kd) and BCP (%CP) = 1.11 * CP * %BCP 

using the assumption that the passage rate (Kp) is 6%/h (Yu et al. 2000). Several papers 

report that for different feeds, thermal processing increases BCP (Yu et al. 2000; 

Broderick and Craig 1980; Stern et al. 1985). It should be noted that in increasing the 
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amount of bypass crude protein, a corresponding drop in microbial crude protein 

production would be expected and the amount of absorbable BCP must increase enough 

to offset this difference (Yu et al. 2002). When feeds are heated to excess, increases in 

BCP are the result of increases in indigestible intake protein (IIP) and are related to 

increases in acid detergent insoluble fibre nitrogen (ADIN) content. This protein is not 

available to the animal and, consequently, has been demonstrated to result in poorer 

performance in dairy calves (Reddy and Morill, 1993). 

2.3.2 Metabolizable protein 

Another assessment of changes in protein availability is metabolizable protein (MP). 

From the NRC (2001) model, MP is true protein that is digested post-ruminally with the 

resulting amino acids absorbed by the small intestine and is comprised of digestible RUP 

(ARUP), digestible ruminally synthesized microbial CP (AMCP), and digestible 

endogenous CP (AECP) and is defined by the equation MP=ARUP+AMCP+AECP (Yu 

2005). As shown in the equation, if thermal processing were to decrease AMCP by a 

greater amount than ARUP is increased, a decrease in the total MP would be expected. 

Despite this concern, several experiments have demonstrated that MP will increase as the 

degree of processing increases in various feedstuffs (Yu 2005a; 2005b). When feedstuffs 

are heated to excess, the consequences for MP are obvious as the ARUP fraction and 

AMCP fractions will decrease because less RUP would be digestible, and as a 

consequence, there would be less MCP produced in the rumen.  
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2.3.3 The DVE/OEB system 

A more recent model, known as the DVE/OEB system, has been developed to evaluate 

dietary protein based on the strengths of previous protein evaluation models while 

incorporating additional elements, including the role of energy balance in protein supply. 

The DVE/OEB system consists of two main parts. Each feed has a DVE value 

representing the protein that is absorbable in the small intestine. DVE is calculated as the 

sum of absorbable bypass crude protein (ABCP) and absorbable microbial crude protein 

(AMP), less a correction for endogenous protein losses (ENDP). The second part of the 

system is the OEB feed value which illustrates the balance between the potential 

microbial protein synthesis from ruminally degradable intake protein (N_MP) and the 

potential microbial protein synthesis from anaerobic fermentation (E_MP). When OEB is 

positive, there is a potential for N loss from the rumen due to a lack of energy available to 

rumen microbes, whereas if the OEB value is negative, there is a lack of N available in 

the rumen and microbial production may be restricted (Tamminga et al. 1994; Yu et al. 

2002). The DVE/OEB system provides a measure of the protein value of feeds, including 

the microbial protein provided by the individual feed (Tamminga et al. 1994) The reader 

is directed to Tamminga et al. (1994) for a detailed explanation of the DVE/OEB system. 

The values for a feedstuff using the DVE/OEB system are going to change as a 

consequence of thermal processing. Looking at the formulas for both DVE and OEB, 

ABCP and BCP are present, these values are changed upon thermal processing. The 

question then becomes, what is the overall effect of thermal processing on the DVE/OEB 

value of a feed? Yu et al. (2002) reviewed the effects of thermal processing on the 

DVE/OEB system for several different feedstuffs. Generally speaking, the DVE value 
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increases with increases in temperature as well as with increasing cooking time. While 

endogenous protein losses are relatively constant upon heating, AMP shows a slight 

decrease with a larger concomitant increase in ABCP, the net result being an increase in 

the DVE value for that feedstuff. The OEB value, on the other hand, generally decreases 

as temperature and cooking time are increased. BCP is again responsible for the majority 

of the change in the OEB value because as BCP increases, the value for N_MP decreases. 

E_MP on the other hand decreases with temperature and time, due to the reduction of 

FOM, again due to changes in BCP, and therefore contributes less and less to the 

lowering of the OEB value. 

2.3.4 The Cornell Net Carbohydrate and Protein System 

Using the Cornell net carbohydrate and protein system (CNCPS) provides us with yet 

another means of evaluating ruminant dietary protein and the effects that thermal 

processing will have on it. The CNCPS uses in vitro data to characterize protein. Sniffen 

et al. (1992) describes in detail the classification scheme that follows. In the CNCPS, 

dietary protein is divided into three categories or sub-fractions, each as a percentage of 

CP. Fraction PA represents non-protein nitrogen (NPN) and consists of ammonia, 

peptides and amino acids. Fraction PC represents protein unavailable to the animal and is 

determined by the amount of protein insoluble in acid detergent. Fraction PC consists of 

protein associated with lignin, tannins, and the protein tied up in Maillard products. 

Fraction PB represents true protein and is further subdivided into sub fractions to permit 

the estimation of ruminal degradation rates. Fraction PB1 is made up of buffer soluble CP 

which is rapidly degraded in the rumen. Fraction PB2 represents that protein which is 

insoluble in buffer but is not bound to NDF. Fraction PB2 undergoes some degree of  
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Figure 2.3. Schematic representation of protein sub-fractions in CNCPS system. 
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ruminal fermentation while the remainder, depending on the rates of degradation and 

passage, escapes to the small intestine. The final fraction, PB3, represents that protein 

associated with cell walls and is insoluble in neutral detergent, yet soluble in acid 

detergent solution. Due to the association with the cell wall, fraction PB3 ends up being 

slowly degraded in the rumen and as such, much of it escapes ruminal degradation.  

The effects of thermal processing on the protein sub-fractions are typified by shifts in the 

fractions, where the rapidly degradable fractions are decreased while the more slowly 

degradable fractions increase. This would be expected if more protein bypassing the 

rumen was anticipated. In a study conducted by Yu (2005c) which compared raw and 

roasted flaxseed, this is exactly what was observed, fractions PA and PB1 decreased in 

proportion while fractions PB2, PB3 and PC increased in proportion. In a study by 

Shannak et al. (2000) using soybeans, dry heating induced a similar decrease in protein 

fractions PA and PB1, while showing an increase in the PB2 and PB3 fractions and no 

change in the PC fraction. In contrast, in the same study using moist heating, the PA 

protein fraction increased while the PB1 decreased markedly. PB2 and PB3 meanwhile 

increased and PC showed a slight decline. It should be concluded from this that although 

a general shift of fractions to the more slowly degradable ones upon heating can be 

expected, the changes in the fraction profile depend on the feedstuff under investigation 

as well as the method of applying heat. If excessive heating were to be applied and 

caused protein damage, major changes in the PC fraction would be expected. The PC 

fraction represents ADIN, and is considered a marker for heat damage and the Maillard 

reaction (Van Soest and Mason, 1991). 
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2.4 Synchrotron-based Fourier transform infrared microspectroscopy as a novel 

tool of feed evaluation  

2.4.1 Infrared spectroscopy 

Infrared spectroscopy measures the frequencies of IR light absorbed by a sample. It is 

through this absorption of energy that the constituent molecules in a sample of interest 

are identified. The commonly used device to make such measurements is a FTIR 

spectrometer. The FTIR spectrometer uses an interferometer which splits the incoming 

light into two, with one path remaining a constant distance and the other path bouncing 

off a moving mirror. As a result, the light travels a varying distance before it is finally 

recombined, run through the sample and then onto the detector (Wade 2003). The light 

recombines to form an interferogram containing all IR wavelengths simultaneously 

(Wade 2003). Initially, the interferogram is said to be in the time domain with the signal 

corresponding to the energy seen by the detector as the mirrors move. Fourier transform, 

a computer algorithm, is then applied to show the strength of absorption as a function of 

frequency. In other words, it is expressed in the frequency domain (Wade 2003). 

Infrared or vibrational spectroscopy allows an investigator to identify which molecular 

bonds are present in a sample. It does so through the IR induced excitation of the bonds at 

wavelengths of IR light characteristic of the bond of interest. The IR frequency required 

to cause excitation of a molecular bond is dependent on the masses of the atoms involved 

in the bond and the strength of that bond or, more accurately, the stronger the bond and 

the lighter the atoms involved, the greater the energy required to induce bond excitation 

(Moore and Dalrymple, 1976). To illustrate consider the following. Triple bonds will 
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vibrate at a higher frequency than double bonds, and double bonds at a higher frequency 

than single bonds (Wade 2003). The two types of vibrations/excitations of importance in 

identifying organic compounds are stretching and bending, and since bending motions are 

easier to induce than stretching motions, they absorb light of lower frequencies or energy 

(Moore and Dalrymple, 1976). In addition, the bond may be stabilized or destabilized 

somewhat by interactions with the environment. This is demonstrated by watching the 

shift of the carbonyl band in polar and non-polar solvents. When surrounded by a polar 

environment, the hydrogen bonding that takes place serves to stabilize the bond, thus 

requiring IR light at a higher frequency (more energetic) to induce vibration. Other 

interactions include electrostatic and dispersion interactions, which may also influence 

vibration (Novikov et al. 1998). Not all molecules are able to be excited by IR light of 

any frequency. IR active bonds have a dipole moment, meaning they have some degree of 

charge separation between the atoms that make up the bond. This distribution of charge in 

the molecule is required to interact with the electric field of the IR electromagnetic 

radiation (Wade 2003). When the electric field is in the same direction as the dipole 

moment, the bond is compressed. When the electric field is changed to the opposite 

direction, the bond is stretched. When this stretching and compressing occurs at a 

frequency that matches the natural vibration state of a molecular bond, energy may be 

absorbed (Wade 2003). The sensitivity of IR spectroscopy to the small interactions 

involving the bond of interest makes it a measurement not only of that bond, but its 

interactions with the surrounding environment.
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2.4.2 Development of synchrotron-based Fourier transform infrared 

microspectroscopy (S-FTIR) 

Fourier Transform Infrared (FTIR) microspectroscopy is the result of the combination of 

microscopy with infrared (IR) spectroscopy, and enables researchers to do comparisons 

between the histological structures in a tissue sample and the corresponding spectroscopic 

chemical information (Wetzel and LeVine, 2001). These comparisons can be conducted 

because the microscope permits us to focus the incidental light in the experiment onto 

small enough regions of a sample and to isolate the histological structures in the sample. 

Initially, FTIR microspectroscopy was conducted on a bench top apparatus using a 

thermal (globar) device to generate IR light, which would then be directed through a 

microscope, then through the sample and finally onto the detector. This thermal source of 

IR light had limitations in its application, mainly due to its low brightness and the 

diffraction effects that occur when the aperture is reduced to sizes that correspond with 

the wavelength of the incoming light. The diffraction of the IR light further reduces the 

amount of light that can reach the detector, and consequently reduces the signal to noise 

ratio (S:N), in addition to scattering the light beyond the area defined by the masks 

(Wetzel and LeVine, 2001). This, of course, would limit the spatial resolution of the 

experiment as well as increase the time required to collect data. Eventual improvements 

in instrumentation, both IR optically efficient microscopes and spectrometers, would 

eventually make the light source the limiting factor in these experiments (Wetzel and 

Levine, 2001). 

Eventually, a superior light source, the synchrotron, was applied to IR 

microspectroscopic experiments that would drastically improve both their spectral and 
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spatial resolution. This new technique is called synchrotron-based FTIR (S-FTIR). The 

reasons for improved spectral and spatial resolution are the intensity of the light, which is 

100-1000 fold greater, the lack of noise found in thermal sources, which makes it more 

stable, and it is relatively non-divergent, which allows it to be highly focused with less 

energy lost (Wetzel and LeVine, 2001). The first two characteristics are related to 

increasing the S:N which generates better spectra with fewer scans. The third 

characteristic is related to spatial resolution (Wetzel and LeVine, 2001). The consequence 

of this was the ability to generate maps of the structural-chemical makeup of tissues in 

situ with each pixel representing an area that was smaller than the cells that comprised the 

tissue (6 µm X 6 µm) and revealed the chemical heterogeneity of the samples at those 

dimensions (Wetzel et al. 1998). 

2.4.3 Important IR bands in feed research 

Many different molecular bonds make up the biological components of a feed. Some 

bonds, in this context, are considered characteristic of specific biological components. 

The peptide bond is characteristic of protein and depicted in Figure 2.4. It is considered to 

be a very stable, rigid and planar bond. In the IR spectrum, two bands arise from the 

peptide bond in protein. These are the amide I and amide II bands. The amide I band 

arises from C=O stretching vibrations (80%) in addition to some contribution from C-N 

vibrations, with its peak in the region of ca. 1650 cm
-1

 in the IR spectrum (Jackson and 

Mantsch, 1995; 2000; Miller 2002; Marinkovic et al. 2002; Marinkovic and Chance, 

2005; Yu 2004). The amide II band peak is found around 1550 cm
-1 

and arises from N-H 

bending vibrations (60%) as well as C–N stretching vibrations (40%) (Jackson and 

Mantsch, 1995; 2000; Yu 2004; Marinkovic and Chance, 2005). To look at changes or  
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Figure 2.4. Representation of the peptide bond (circled) between two amino acids. R 

represents one of the amino acid side chains. 
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differences in protein structure due to processing of a feed sample, these bands would be 

expected to serve as an appropriate probe indicating changes to molecular structure. The 

amide II band, however, is considered less useful in evaluating protein secondary 

structure due to the complex vibrations involving many functional groups that comprise it 

(Haris and Chapman, 1992, Jackson and Mantsch, 1995; 2000, Marinkovic and Chance, 

2005). 

Lipids, as both free fatty acids and triglycerides (Figure 2.6), are also composed of 

characteristic functional groups (C=O ester, CH2, CH3) which lead to bands in the IR 

spectrum that are characteristic of lipids. The C=O ester band is found near 1738 cm
-

1
,while the two other functional groups generate peaks near 1470 cm

-1
 (CH bending), 

2961 cm
-1

 (CH3 asymmetric stretching), 2925 cm
-1

 (CH2 asymmetric stretching), ca. 2871  

cm
-1

 (CH3 symmetric stretching), and ca. 2853 cm
-1

 (CH2 symmetric stretching) (Wetzel 

and LeVine 1999; Miller 2002; Jackson and Mantsch 2002; Yu 2004). To investigate 

changes in lipid structure or composition these bands could serve as appropriate probes in 

a manner similar to how the amide I band would be used for protein. Figure 2.6, 

illustrates one difference in lipid structure with implications for its spectra. 

Carbohydrates (CHO) are composed of a variety of bonds between carbon (C), hydrogen 

(H) and oxygen (O). The resulting IR absorption bands are quite complex making their 

interpretation complex as well. CHO generates strong bands in the ca. 1550-800 cm
-1

 

spectral region, in particular around 1185-800 cm
-1

 (Wetzel et al. 1998; Yu 2004). There 

are some bands (ca. 1420 cm
-1

, 1370 cm
-1

, 1335 cm
-1

), however, that can be used to 

indicate the presence of structural (cellulose) CHO in a sample (Wetzel et al. 1998). The 

band near 1420 cm
-1 

has been more specifically associated with β-glucan (Wetzel et al.  
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Figure 2.5. Major bonds responsible (circled) for the amide I band (top) and amide II 

band (bottom) in the mid-IR spectrum. 
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Figure 2.6. Molecular differences in lipid structures. (bottom) Free fatty acids depicted 

with the 3 C glycerol. (top) Triglyceride from the same fatty acids. Fatty acids chains also 

vary themselves in composition in terms of chain length, saturation, and double bond 

locations. (Voet and Voet, 1995a) 
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1998). Other bands considered to be indicative of different CHOs include ca. 1025 cm
-1 

(non-structural CHO starch), ca. 1510 cm
-1 

(aromatic lignin), ca. 1246 cm
-1 

(cellulosic 

compounds), ca. 1100 cm
-1 

(cellulose) (Wetzel et al. 1998;  Yu 2004). Figure 2.7 

illustrates how the different bonds lead to a polymer of the same subunits with a very 

different structure. 

2.4.4 Assessing feeds with IR spectroscopy 

It has been suggested that the protein matrix that surrounds each starch granule is 

important with respect to how quickly the starch in various cereal grains will degrade 

(McAllister et al. 1993). In a study conducted by Yu et al. (2004a), two different barley 

varieties were selected based on similarities in traditional chemical values (starch, CP, 

etc.), but also on differences in their digestion characteristics. Harrington, a quickly and 

extensively degraded malting barley, and Valier, a slowly and limited degrading feed 

type barley, were selected to probe whether differences in the starch-protein matrix were 

responsible for their differences in digestive behaviour. The starch-protein matrix was 

assessed by the starch to protein band intensity ratio between the two varieties. The study 

showed that the starch to protein band intensity ratio was the same for both Harrington 

and Valier. Harrington, however, showed a greater range in that ratio, and it was 

concluded that this was a result of greater heterogeneity of the starch-protein matrix in 

the endosperm. It was concluded that the association of starch with protein, as defined by 

the band intensity ratios, was not the sole cause of differences in degradation behaviour. 

It would appear. however, that heterogeneity of the starch-protein matrix itself may have  
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Figure 2.7. Difference in the molecular structure of common bonds found in starch (α-1-4 

linkage) (Top) and those found in cellulose (β-1-4 linkage) (Bottom). The different bonds 

have effects on the polymer structure. (Voet and Voet, 1995b) 
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some potential as an assessment of sub-cellular structure as it influences degradation 

behaviour.  

S-FTIR can be used to characterize solely the protein in the endosperm of a feed by 

focusing specifically on those bands that result from the peptide bonds of protein. These 

are known as the amide I and amide II bands, as previously mentioned. Prior to the Yu et 

al. (2004a) study, it had been shown that the amide I to amide II ratio decreased in 

scrapie-infected tissue (Miller and Dumas, 2006; Wang et al. 2005). Scrapie is known to 

result in secondary structure changes in prion proteins from α-helices to β-sheets. 

Therefore, a difference in this ratio is indicative of some difference in protein structure. It 

is possible that protein structure plays a role in degradability, so this ratio may permit the 

evaluation of protein structure in a manner which could be linked to degradability. Yu et 

al. (2004a) results showed in fact, that there was a difference in both band intensities 

between two varieties of barley (Harrington and Valier) with different rumen degradation 

rates. The ratio was slightly smaller for Harrington, and it was concluded that there was 

some structural difference between the two varieties that led to the results. There is little 

published data, however, on the relationship between these values and nutrition. 

Because the amide I and amide II bands are predominantly from protein, they exhibit 

shifts in their location in the spectrum depending on the secondary structure in which the 

peptide bonds are located. The frequency shift permits them to be used to determine the 

ratios of secondary structure that make up the protein in a feed (Wetzel et al. 2003). The 

amino acids in a protein are found in α-helix, β-sheet conformations, but also in β-turn 

and random coil conformations. The former conformations are periodic while the latter 

are aperiodic. Each of these secondary structures provides a different environment for the 
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amide I bonds, resulting in shifts in the location of the peak for the amide I band in the 

spectrum (Marinkovic et al. 2002; Marinkovic and Chance, 2006). This means that the 

bands are actually made up of multiple elements blurred together, where the contribution 

of each is concentration dependant and requires mathematical treatment to isolate the 

contribution of each element (Marinkovic and Chance, 2006; Marinkovic et al. 2002). To 

separate the individual peaks, the spectrum first undergoes Fourier self-deconvolution 

(FSD). Then, to quantify the area of each of the peaks in the FSD spectrum, multi-peak 

fitting software is used, thus providing us with relative values for the amount of each 

secondary structure (Yu 2006b). 

It is important to note that concentration values for protein secondary structures, obtained 

from mid-IR spectroscopic data, are only relative and not exact determinations (Yu 

2006a). Important factors in IR spectroscopy are responsible for this fact, and include 

different molar absorptivities, the number of component bands, component band shapes 

and noise (Yu 2006a). In addition to this, researchers do similar analyses but select 

different-sized spectral regions, different baselines and different mathematical 

manipulations of the spectra (Yu 2006a). The relative values that are derived are still 

useful, however, for comparing treatments, but there are several considerations one needs 

to be aware of regarding these determinations.  

Due to the actual physical differences in these secondary structures, there may be some 

difference in rumen degradability of the protein in a feed. Examining the protein 

secondary structures of feather, a poorly degraded protein source, showed a much lower 

α-helix to β-sheet ratio than that found in more easily degraded protein sources (Yu et al. 

2004b). Subsequently, the study between the two barley varieties showed no difference in 
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the α-helix:β-sheet ratio. There were differences when the α-helix and β-sheet were 

compared to other elements of secondary structure, leading to the conclusion that there 

were, in fact, detectable structural differences between the two cultivars (Yu et al. 2008). 

In a separate study, Yu et al. (2005) used two types of flaxseed (golden and brown), both 

raw and roasted, to determine if cooking would change the α-helix:β-sheet ratio. The 

results showed that roasting did reduce the α-helix:β-sheet ratio of the golden flaxseed, 

but not the brown flaxseed, indicating that different feeds will exhibit different 

sensitivities to changes in protein secondary structure upon heating. It was further shown 

(Yu et al. 2005) that the changes in protein secondary structure were accompanied by 

changes in protein degradability in flaxseed. The picture that remains is that protein 

secondary structure differences are indicative of differences or changes in protein 

degradability, but caution should be used when comparing different feeds as they may 

respond differently to treatment.  

2.4.5 Multivariate statistical methods for spectral comparison 

The previously mentioned measurements focus on direct measurements of specific 

characteristics of the IR spectrum of a feed that are compared using univariate methods of 

analysis. Multivariate analysis permits the researcher to use all or large portions of the 

spectral data at once to do comparisons, regardless of what the bands in the spectra 

specifically represent (Yu 2006b). Multivariate methods used in spectroscopic research 

include principal component analysis (PCA) and hierarchical cluster analysis (CLA). The 

purpose of these procedures is to group the spectra according to their similarity to one 

another, but they use different methods to do comparisons.  
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CLA calculates a distance matrix which contains information about the similarity of the 

spectra. Then it groups the most similar spectra based on the distance matrix to create a 

cluster which is followed by the recalculating the distances of the remaining spectra to 

the new cluster (Yu 2006b). CLA, when used in feed research, is able to distinguish 

between different varieties of the same feedstuffs in addition to different treatments of the 

same variety (Yu 2005d).  

PCA, meanwhile, constitutes a statistical data reduction method that transforms the 

original variables in the data set into a new and uncorrelated set of values called principal 

components that still account for the original variance in the data (Yu 2005d). Each 

spectrum is assigned a score (eigenvector) defining its relationship to each principal 

component. The eigenvector is then used to create 2-D or 3-D scatter plots, on which 

proximity of spectra to one another indicates similarity between the spectra. For a more 

detailed explanation of PCA, the reader is directed to Dunteman (1989). As with CLA, 

PCA has also been shown to be able to distinguish between different varieties of the same 

feedstuffs in addition to different treatments of the same variety (Yu 2005d). While PCA 

and CLA used in this manner do not provide structural information per se, they imply 

molecular differences or similarities in the mid-IR spectroscopy data that is used. 

2.4.6 The need for S-FTIR use in feed research 

S-FTIR ultimately provides us with information relevant to the nutritional characteristics 

of a particular feed because these characteristics are influenced not only by total 

composition of a feed, but also by morphological characteristics and biological 

component matrices (Yu 2006b). The information about the latter two is typically lost 
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during most chemical analyses and this loss of information, or the inability to account for 

it, is believed to be accountable for the failure of models such as the NRC 2001 model to 

fully predict nutritive or energy values for a given feed (Yu et al. 2004a). In addition, S-

FTIR is a rapid and non-destructive technique so the sample remains intact and unaltered 

by the experimental process, allowing further assaying of the sample if desired. The 

problems for the investigator that remain are connecting the elements of structure that are 

revealed by S-FTIR (or changes to those elements) to their influence on digestive 

behaviour and determining if the sample, from a sub-cellular area, is representative of the 

feed as a whole. Another concern is that the sample preparation process, prior to 

spectroscopic analysis, will itself affect the spectrum from a given sample so caution 

must be exercised to ensure the samples are treated identically. 
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3. OVERVIEW OF RESEARCH TRIALS 

The two studies that follow are complementary; both provide specific information about 

the protein chemistry of a feed. There exist many established methods and models that 

use specific chemical analyses to create a picture of how an ingested feed will interact 

with the animal. Mid-IR spectroscopic methods, capable of providing an alternate kind of 

chemical information with links to many levels of physical structure and chemistry, are 

well established. Physical structure, from histology down to the macromolecular level, 

plays a large role in how the digestive system will be able to interact with a feed. How the 

digestive system interacts with feed as it passes through is critical to a feed‟s nutritional 

quality as a result. Spectroscopic chemical information provides a measure of all the 

molecular bonds in a sample, including interactions of those bonds with their immediate 

environment. The ability to link both types of chemical information to one another could 

prove to be invaluable to the accuracy of the feed models, but may also allow us to 

develop a more rapid method of evaluating a feed accurately. Including both types of 

information into current models can only serve to improve the models as well as our 

understanding of the digestive process and influencing factors. This is the goal of the 

companion studies that follow. 

The first study, which used established models based on in vitro and in situ chemical and 

nutritional analyses, was to demonstrate differences in protein degradability, degraded 

protein balance, RUP and CNCPS protein sub-fractions that result in flaxseed as a 

consequence of thermal treatment by autoclaving without physical disruption. Using this 

method of heating, chemical and structural changes that occurred over time were 

evaluated. In this study, chemical changes were evaluated based on existing models and 
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were then used subsequently for comparison to mid-IR spectroscopic data from the 

second study. These traditional methods of evaluating feed cannot account for certain 

structural elements that may be involved in nutrient degradability and have been 

consequently demonstrated to lack the ability to predict with great precision differences 

in degradability and energy between similar yet known to be different feeds, such as 

malting vs. feed type barleys (Yu et al. 2008). The inability to take these elements or 

structures and factor them into current models is a result of the common methods used to 

characterize a feed. These often include harsh acid and detergent treatments, solubilizing, 

derivitization and grinding. These treatments ultimately are not sensitive to all the 

information required to adequately describe a feed so that reliable predictions can be 

made about its nutritive value (Yu 2004). 

The S-FTIR study was an attempt to bridge the structural information gap that exists in 

current models. The infrared analysis of flaxseed from study 1 sought to determine how 

sensitive S-FTIR was to thermally induced changes in flaxseed and whether those 

changes, when quantified, could be used as measures of protein degradation behaviour. S-

FTIR can be used to ascertain different levels of structure in a feed that may be of use in 

improving current models. As S-FTIR allows the investigator to non-destructively probe 

sub-cellular regions of a sample, it can be used to describe a feed chemically at that level, 

which reveals things such as heterogeneity and micro-localization of nutrients of a 

particular feed component, whether it is protein or starch (Wetzel et al. 1998). S-FTIR 

also provides information about the structure of the nutrients themselves, since 

differences in biological polymer conformations are readily identifiable from the spectra, 

as shown through protein secondary structure analysis (Yu 2006b, Bonwell et al. 2008). 



39 

 

Both these levels of feed structure are considered to play some role in protein 

degradability (McAllister et al. 1993, Yu et al. 2005).  

The hypothesis behind these studies is that chemical and structural changes which are 

induced thermally are demonstrable by mid-IR spectroscopy. These changes can be 

correlated to differences in degradability as shown by established chemically-based 

methods. If a correlation can be established, then protein degradability may have specific 

signatures in the mid-IR spectrum which could be used to improve current models of 

estimating nutrient degradability or provide some alternate measure of degradability.
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4. IN VITRO/IN SITU NUTRITIONAL CHARACTERIZATION AND 

PREDICTED NUTRIENT SUPPLY OF FLAXSEED PROTEIN AS MODIFIED 

BY AUTOCLAVING 

4.1 Introduction 

Recently, flaxseed has garnered interest as a functional food source in human nutrition. 

This is due, in large part, to the high content of ALA in flaxseed, but it is also a good 

source of high quality protein and lignan, all of which may benefit the health of the 

consumer (Oomah 2001). Flaxseed is also generating interest as a functional feed source 

for ruminant production systems. The varied interest in flaxseed is due to the same 

components, however, the benefits are multifaceted. Firstly, ruminants fed flaxseed show 

improvements in reproductive health indicators. Petit and Twagiramungu (2006) found a 

decrease in embryo mortality, and consequently improved the establishment of pregnancy 

when feeding flaxseed compared to Megalac and extruded soybeans. Ambrose et al. 

(2006) found a similar decrease in pregnancy losses when feeding flaxseed compared to 

sunflower seed. Secondly, the fatty acid profile of both milk and meat products changes 

upon feeding flaxseed, as demonstrated by Petit (2002) and Scollan et al. (2001a). The 

changes in fatty acid composition are typified by a shift in the n-6:n-3 ratio which, in the 

first case, is a benefit to the producer, whereas in the second case the benefit is mainly to 

the consumer of ruminant milk and meat products. Depending on how the producer can 

market his milk or meat, it may create a niche market for a value-added product with the 

potential for increased returns.  
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Often, in highly productive animals there is an improvement in productivity when a 

greater amount of the dietary amino acids can reach the small intestine for absorption. 

This is commonly achieved for oilseeds and oilseed meals by heating (McKinnon et al. 

1995; Mustafa et al. 2003a; 2003b). The effects that thermal processing will have on 

degradability depend on the method used to apply heat, the presence of moisture, 

temperature and time. Petit et al. (2002) demonstrated that a moist heating environment 

was more efficient than dry heat at increasing RUP at 100°C but at 120°C there was 

much less difference in ruminally undegraded protein (RUP) between the heating 

methods. This indicates the complexity of the effects heating has on a feed. The overall 

seed structure was not changed during heating yet somehow the presence of moisture is a 

critical factor at certain temperatures, perhaps acting as a catalyst for the reactions that 

cause changes in protein degradability. When extrusion is used as a method of heat 

application, the consequences to RUP can be the opposite. Mustafa et al. (2003a) 

demonstrated this while extruding at a temperature of 155°C and with a 43 sec residence 

time. The conclusion from this study was that the conditions of extrusion used were 

ineffective at increasing the post ruminal supply of dietary amino acids and that the 

abrogation of the oil/protein matrix could explain this result. To date, little information is 

available about flaxseed and few studies examine how variations in the same heating 

process would influence protein chemistry and degradability. 

Given the potential value of adding flaxseed to the ruminant diet, this study sought to add 

to the body of information on flaxseed as a feed ingredient. At present, few studies cover 

the protein chemistry and degradability changes that occur to flaxseed upon heating. The 

hypothesis is that flaxseed exposed to autoclave heat treatment will experience changes to 
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its nutritional profile. The goal of this study is to describe the effects of autoclaving 

whole flaxseed in terms of protein degradability, CNCPS protein sub-fractions, in vitro 

intestinal digestibility and RUP. Secondly, the objective was to provide a basis for 

evaluating FTIR spectroscopic data in a companion study as a means of studying protein 

structure and degradability in feeds.  

4.2 Materials and Methods 

4.2.1 Flaxseed heating and processing  

Flaxseed (Linum usitatissimum L. cv. Vimy) grown at Moose Jaw, Saskatchewan during 

the 2005 growing year was provided by Shamrock Seeds Ltd. Saskatoon, Saskatchewan. 

Three-kilogram samples of flaxseed were heated by autoclave (Amsco Eagle SG-3031, 

STERIS Corporation, Mentor, Ohio, USA) at 120C in gravity mode for 20, 40 or 60 

min. Treatments were then repeated on a separate set of 3-kg samples providing two sets 

of treatments, A and B. Control treatments were unheated. Samples were subsequently 

cooled to room temperature and then placed in the refrigerator prior to grinding. The 

samples were ground using a Retsch SM 2000 (Retsch Inc., Newtown, PA, USA) grinder 

fitted with a 2-mm screen. Samples were fed slowly into the grinder to prevent adhering 

during the grinding process and to ensure the flaxseed was cracked open and not 

“extruded” through the screen.  

4.2.2 Animals and diets 

Two non-lactating Holstein dairy cows fitted with flexible rumen cannula (10 cm internal 

diameter, Bar Diamond Inc., Parma, ID, USA) were used to determine the in situ 
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degradation kinetics and effective degradability of flaxseed. The cows were housed in an 

experimental station (Stone Barn) at the University of Saskatchewan during the period of 

study. Pens were approximately 6 by 9 metres. The cows were individually fed a totally 

mixed ration (15 kg/day as fed) containing 60% barley silage (35% DM), 26% dairy 

concentrate, 10% alfalfa hay and 4% alfalfa dehydrate according to non-lactating dairy 

cow requirements (NRC 2001). Concentrate consisted of barley, wheat, oats, molasses 

and dairy supplement pellets which were comprised of soybean meal, canola meal, wheat, 

dried distillers grains, corn gluten meal, molasses, barley, cobalt iodized salt, canola oil, 

sodium bicarbonate, Dynamate [22% Sulfur, 18% potassium, 11% magnesium 

(International Minerals and Chemical Corp., Mundelein, ILL, USA)] and a mineral 

vitamin mix (formulated to provide 45 mg manganese, 63 mg zinc, 17 mg copper, 0.5 mg 

selenium, 11,000 I.U. vitamin A, 1800 I.U. vitamin D3 and 30 I.U. vitamin E per kg of 

dairy concentrate). The mix also contributes 0.14% magnesium, 0.48% calcium, 0.26% 

phosphorus, 0.23% sodium and 0.38% chloride to the total dairy concentrate (Prepared by 

Federated Cooperatives Ltd., Saskatoon, SK, CAN). The cows were fed half of the ration 

twice daily at 0800h and 1600h. Water was available ad libitum. The animals in this 

experiment were cared for according to the guidelines of the Canadian Council on 

Animal Care (1993). 

4.2.3 Rumen incubation 

Rumen degradation kinetics and effective degradability were determined using the in situ 

method. Seven-gram samples were placed into numbered bags measuring 10 cm x 20 cm 

made of Nitex 03-41/31 monofilament polyamide open mesh fabric (Screentec Corp., 

Mississauga, ON, CAN) with a pore size of 41 µm. The seams of the bags were sewn 
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shut and sealed with glue to prevent samples from escaping during incubation. The 

sample bags were placed in a polyester mesh bag (45 cm x 45 cm with a 90 cm length of 

rope to anchor it to the cannula) weighed down with a plastic bottle (250 mL) filled with 

gravel to keep the samples in the liquid strata of the rumen. Bags were added according to 

the „gradual addition/all out‟ schedule and were incubated for 72, 48, 24, 12, 8, 4, 2 or 0 

h. The number of bags incubated from each sample was increased based on incubation 

time to ensure an adequate amount of residue would remain for analysis. Estimates for 

the amount of sample required for incubation were obtained using data from Mustafa et 

al. (2003a). All treatments for every incubation period were incubated in duplicate (2 

runs) in two non-lactating dairy cows. All bags were randomly assigned to each of the 

two cows at the time of incubation. A maximum of 35 bags were incubating in the rumen 

at any one time. After incubation bags were rinsed with cold water then washed in groups 

of ten with 2 litres of water 5 times so the water from the last rinse cycle would run clear. 

Washed bags were then dried at 55C in a forced air oven for 48 h. After drying the bags 

were stored in plastic bags in a refrigerator. 

4.2.4 Chemical analysis 

Dried samples were pooled and ground through a 1 mm screen using a Retsch ZM 100 

(Retsch Inc., Newtown, PA, USA). Samples were then analyzed for dry matter (AOAC 

method 930.15), ash (AOAC method 942.05), ether extract (AOAC method 920.39), 

crude protein (AOAC method 984.13) (2400 kjeltech analyzer unit, Foss Tecator, 

Edenprairie, MN, USA), ADIN (Licitra et al 1995), NDIN (Licitra et al 1995), NPN (Roe 

et al. 1990) and starch (AOAC method 996.11, using Megazyme Total Starch assay). 

ADF, NDF and ADL were analyzed by the Ankom filter bag method (ANKOM A200 
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Filter Bag technique, Ankom Technology, Fairport, NY, USA) with a modified fat 

extraction procedure. The procedure was modified to include an initial 2 h ether 

extraction along with the standard Ankom acetone fat extraction protocol, to prevent the 

high fat content of the flaxseed samples from giving erroneously high values for the fibre 

measurements.  

4.2.5 Fractionation of protein fractions according to the Cornell Net Carbohydrate 

and Protein system 

The CP fractions were partitioned according to the Cornell Net Carbohydrate and protein 

system (CNCPS) (Sniffen et al. 1992). There are five CP fractions as determined by the 

CNCPS (PA, PB1, PB2, PB3, PC) and they are calculated as follows: 

PA (%CP) = NPN (%SCP) * 0.01 * SCP (%CP) 

PB1 (%CP) = SCP (%CP) – PA (%CP) 

PB2 (%CP) = 100 – PA (%CP) – PB1 (%CP) – PB3 (%CP) – PC (%CP) 

PB3 (%CP) = NDIP (%CP) – ADIP (%CP) 

PC (%CP) = ADIP (%CP) 

Where, NPN (%SCP) is non protein nitrogen as a percentage of soluble crude protein; 

SCP (%CP) is soluble crude protein as a percentage of crude protein; NDIP (%CP) is 

neutral detergent insoluble protein as a percentage of crude protein; and ADIP (%CP) is 

acid detergent insoluble protein as a percentage of crude protein. 
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4.2.6 Rumen degradation characteristics 

Rumen degradation kinetics of the raw and autoclaved flaxseed were determined for DM 

and CP. Degradation kinetics were determined using a first order rumen degradation 

equation modified to include lag time outlined by Orskov and McDonald (1979) as 

shown below. 

Y = S + D (1 – Exp
-Kd(t – T0)

) 

Where: Y represents the amount of sample that has disappeared at time t; D represents the 

potentially degradable fraction (%); S represents the soluble fraction (%) of the residue;  

Kd represents the degradation rate (%/h.); and T0 represents the lag time (h) for the 

sample to begin degrading. The model was fitted to the data using PROC NLIN of SAS 

9.1(SAS Institute Inc., Cary, NC, USA). via the Gauss-Newton method which is an 

iterative non-linear regression protocol. 

The effectively degraded (ED) and bypass (B) fractions for DM and CP were also 

considered and calculated according to formulas below as outlined in NRC (2001).  

ED = S + D (Kd / Kd + Kp) 

B = U + D (Kp / Kd + Kp)  

Where, Kp represents the rate of passage and is assumed to be 6%/h. 
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4.2.7 Metabolizable protein prediction with the NRC (2001) model 

Metabolizable protein (MP) refers to true protein that is digested postruminally. 

According to NRC (2001), it is composed of three sources of protein, more specifically 

the absorbable fractions of the three protein sources. MP was calculated as follows: 

MP (g/kg DM) = AMCP (g/kg DM) + ARUP (g/kg DM) + AECP (g/kg DM) 

Where, AMCP refers to absorbable microbial crude protein; ARUP refers to absorbable 

ruminally undegraded feed protein in the intestines; and AECP refers to the absorbable 

endogenous crude protein. 

Calculation of the absorbable fractions requires the consideration of each protein source 

and its respective degradability. With AMCP, for example, MCP is considered only 80% 

true protein with the remainder being nucleic acids. The true protein fraction of MCP is 

considered to be 80% digestible. As a result, AMCP was calculated as follows: 

AMCP (g/kg DM) = MCP (g/kg DM) * 0.8 * 0.8 

The yield of MCP is assumed to be 130 g MCP/kg TDN (discounted). The requirement 

for MCP yield is RDP. Specifically, RDP must be greater than 1.18 * MCP yield. Under 

these conditions, MCP is calculated as: 

MCP (g/kg DM) = 0.130 * TDN (g/kg DM) (discounted) 

When RDP is less than 1.18 * MCP (TDN predicted yield), MCP is calculated as follows: 

MCP (g/kg DM) = 0.85 * RDP (g/kg DM) 
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The digestibility of RUP (dRUP) in this study was determined specifically for each 

flaxseed treatment using the three-step in vitro procedure as described by Calsamiglia and 

Stern (1995). 

Therefore, ARUP is calculated as: 

ARUP (g/kg DM) = RUP (g/kg DM) * dRUP 

ECP contributions of a feed were estimated according to NRC (2001) as follows: 

ECP (g/kg DM) = 1.9 * DM * 6.25 

The ECP fraction is considered to be only 50% true protein and as MCP is considered to 

be 80% digestible, AECP was calculated as: 

AECP (g/kg DM) = ECP (g/kg DM) * 0.5 * 0.8 

The degraded protein balance (DPB), outlined by Yu et al. (2003), illustrates the 

difference between the RDP of a feed and the RDP required for MCP synthesis. The 

(DPB) was calculated as: 

DPB (g/kg DM)  = RDP (g/kg DM) – 1.18 * MCP (g/kg DM) 

4.2.8 Modeling nutrient supply with the truly digested protein (DVE)/ degraded 

protein balance (OEB) system 

The DVE/OEB system is outlined by Tamminga et al. (1994). It constitutes a two part 

system where each feed has a DVE and an OEB value. The DVE value is comprised of 

digestible feed protein, microbial protein and an endogenous protein loss correction. The 

OEB value, or degraded protein balance, reflects the difference between potential 
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microbial protein synthesis based on degraded feed protein and the potential microbial 

protein synthesis based on the energy available for microbial fermentation in the rumen. 

DVE was calculated as: 

DVE (g/kg DM) = AMCP (g/kg DM)  + ARUP (g/kg DM) – ENDP (g/kg DM) 

Where, AMCP is the absorbable fraction of microbial crude protein; ARUP is the 

absorbable fraction of ruminally undegraded feed protein; and ENDP is a correction 

factor for endogenous protein lost during the digestion process. Due to differences in the 

DVE/OEB system and NRC (2001), these values, while representing similar protein 

fractions, are calculated differently. 

MCP production in the DVE/OEB system is based on fermentable organic matter (FOM), 

calculated as: 

FOM (g/kg DM) = DOM (g/kg DM) – EE (g/kg DM) – RUP (g/kg DM) – RUst (g/kg 

DM) – (0.50) * FP (g/kg DM) 

Where, DOM represented the organic matter that had disappeared after 72 h of rumen 

incubation; EE represented the ether extract; RUP represented ruminally undegraded feed 

protein; RUst represented ruminally undegraded starch; and FP represented the 

fermentation products of ensiled feeds. 

AMCP then was calculated as follows: 

AMCP (g/kg DM) = FOM (g/kg DM) * 0.150 * 0.75 * 0.85 
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Where, FOM in the DVE model is assumed to produce 150 g MCP/kg FOM, of which 

75% is considered to be true protein that has an assumed digestibility of 85%.  

ARUP in the DVE system was calculated as: 

ARUP (g/kg DM) = CP (g/kg DM)  * (1.11 * RUP (%CP) / 100) * (dRUP% / 100) 

ENDP is a correction factor for the N that is lost as a consequence of the various 

digestive processes and is linked to undigested DM (UDM). ENDP also includes a 

correction factor due to losses of metabolic protein and the efficiency of resynthesis. 

ENDP is calculated as: 

ENDP (g/kg DM) = 0.075 * UDM (g/kg DM) 

UDM is composed of indigestible organic matter and indigestible inorganic matter and is 

calculated on a g/kg basis, hence: 

UDM (g/kg DM) = 1000 – DOM (g/kg DM) – VRAS (g/kg DM) 

Where, VRAS is digestible inorganic matter 

The degradable protein balance or OEB value of a feed is the difference between the 

potential MCP synthesis based on RDP (MCPRDP) and the potential MCP synthesis based 

on energy extracted from anaerobic fermentation (MCPFOM). Therefore, 

OEB (g/kg DM) = MCPRDP (g/kg DM) - MCPFOM (g/kg DM) 

Where, MCPRDP is calculated as:  

MCPRDP (g/kg DM) = CP (g/kg DM) × [1 – (1.11 × RUP( %CP)/100)] 
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And MCPFOM is calculated as: 

MCPFOM (g/kg DM) = FOM (g/kg DM) * 0.15 

4.2.9 Determination of intestinal protein digestion 

In vitro estimates of intestinal digestibility were determined according to the protocol for 

ruminants outlined in Calsamiglia and Stern (1995). The incubation schedule did not 

include a 16 h incubation period, so the residues used for analysis were incubated for 12 h 

and not 16h as called for.  

4.2.10 Statistical analysis 

Statistical analyses were performed using the MIXED procedure of SAS (version 9.1) 

(SAS Institute Inc., Cary, NC, USA) using a completely randomized experimental design 

(CRD) with the following model  

Y = µ + T + 𝓮 

Where, µ is the mean for the variable of interest; R is the block effect using the run as a 

block; T is the treatment effect; and 𝓮 is the random error of observation. Means were 

separated using the LSD method with significance declared at P < 0.05. 

4.3 Results and Discussion 

DM and EE increased (P < 0.05) from 90.7 to 92.8 (%DM) and 42.1 to 44.5 (%DM), 

respectively, upon autoclave heating, whereas ash and OM remained unchanged Table 

4.1. Results for ash content were similar to those published by Gonthier et al. (2004). 

There was no significant difference (P < 0.05) between the autoclave treatments for either  
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Table 4.1 Chemical composition of the raw (control) compared to the autoclave treated 

Vimy flaxseed.  

   Autoclave Treatment (120°C)  

Component Control 20 min 40 min 60 min SEM 

Dry Matter (%) 90.7
b
 92.5

a
 92.8

a
 92.8

a
 0.07 

Ether Extract (%DM) 42.1
b
 44.1

a
 44.5

a
 44.2

a
 0.34 

Ash (%DM) 3.5 3.6 3.6 3.5 0.01 

Organic Matter (%DM) 96.5 96.4 96.5 96.5 0.01 

Crude Protein (%DM) 23.9 23.7 23.8 23.8 0.13 

Soluble Crude Protein 

(%DM) 
12.4

a
 8.5

b
 5.4

c
 4.5

c
 0.32 

Non-Protein Nitrogen 

(%DM) 
1.4

b
 1.3

b
 1.5

b
 2.0

a
 0.10 

Neutral Detergent Insoluble 

Protein (%DM) 
3.8

b
 4.1

b
 4.4

b
 5.7

a
 0.13 

Acid Detergent Insoluble 

Protein (%DM) 
0.5

c
 0.6

bc
 0.7

ab
 0.8

a
 0.04 

a, b, c,
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method 

SEM = Standard error of mean 



53 

 

DM or EE. Values for EE of the raw Vimy flaxseed samples were very similar to those 

reported by Oomah and Kenaschuck (1995). The slight increase in the EE fraction is 

interesting to note and has been observed in ground sunflower seeds treated similarly by 

Mustafa et al. (2003b), and also in roasted whole soybean and cottonseed by Mohamed et 

al. (1988). This would appear to be an artefact as somehow heating increases the amount 

of fat that is soluble in ether. This effect is used advantageously in the oil extraction 

industry, and it is held that the heating results in the rupture of the oil cells and permits 

the coalescing of larger droplets of oil (Booth 2004). Under autoclave or roasting 

conditions, with no physical disruption directly from heating, there is a reaction taking 

place which is affecting the physical properties of the components making up the oil 

bodies which results in the change in solubility. The disruption of oil bodies through the 

heating process is likely to occur in one of two ways: a) through a physical change such 

as denaturation which would remove the effect of steric hindrance exposing the inside of 

the oil bodies to one another allowing them to coalesce; or b) through changes to the 

charged surfaces of the protein responsible for the structure of the oil protein matrix 

(Huang 1992). 

The total carbohydrate content of the raw and the treated flaxseed showed a decrease (P < 

0.05) upon autoclaving from 30.4 to 28.1 (%DM) (Table 4.2). This difference arises from 

the calculation of total CHO by subtracting ash (%DM), EE (%DM) and CP (%DM) from 

100. Due to the change in the EE fraction, less CHO was calculated for the autoclave 

treatments by this method. NDF and ADF decreased (P < 0.05) from 17.2 to 13.9 (%DM) 

and 10.2 to 7.7 (%DM), respectively, although there was no significant difference (P < 

0.05) between the autoclave treatments. These results for ADF and NDF paralleled a  
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Table 4.2 Carbohydrate profiles of the raw (control) compared to the autoclave treated 

Vimy flaxseed. 

 Autoclave Treatment (120°C)  

Component (%DM) Control 20 min 40 min 60 min SEM 

Carbohydrate
1 

30.4
a
 28.7

b
 28.1

b
 28.5

b
 0.35 

Neutral Detergent Fibre 17.2
a
 14.0

b
 13.9

b
 14.5

b
 0.31 

Acid Detergent Fibre 10.2
a
 7.7

b
 7.8

b
 7.9

b
 0.31 

Acid Detergent Lignin 2.2
b
 2.4

ab
 2.7

ab
 2.8

a
 0.14 

Starch 0.3 0.3 0.3 0.3 0.23 

Non-Structural Carbohydrate
2
 17.0 18.8 18.6 19.7 0.69 

Hemi-cellulose
3
 7.1

a
 6.3

b
 6.1

b
 6.6

ab
 0.14 

Cellulose
4
 7.9

a
 5.3

b
 5.2

b
 5.0

c
 0.22 

a, b, c,
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method 

SEM = Standard error of mean 

1
Carbohydrate = 100 – EE –CP – Ash  

2
Non-Structural Carbohydrate = 100 – (NDF – NDIP) – EE – CP - Ash 

3
Hemi-cellulose = NDF - ADF 

4
Cellulose = ADF – ADL 
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study by Mustafa et al. (2003b) where both NDF and ADF decreased initially upon 

autoclave heating, but with longer heating times the decrease became less prominent. The 

results from this study show a similar inflection in NDF and ADF values with increasing 

heating time; however, the values were not significantly different from one another. The 

NDF and ADF values from this study were similar to those reported for raw flaxseed by 

Gonthier et al. (2004). ADL showed a small increase (P < 0.05), from 2.2 to 2.8 (%DM), 

with autoclaving. However, the only treatment significantly different from the raw 

samples was the 1-h autoclave treatment. Starch composition of the flaxseed samples was 

negligible in all cases. No significant differences were detected for non-structural 

carbohydrates, although there was a numerical increase in the values. This value is 

determined by the difference method and also contains the artefact associated with the EE 

value. This would skew the results downward about 2% on a DM basis for the treatments 

compared to the raw samples. Hemicellulose decreased (P<0.05) from 7.1 to 6.1 (%DM) 

upon autoclaving, although no differences were detectable between the autoclave 

treatments. Cellulose also showed a decrease (P < 0.05) upon autoclaving, decreasing 

from 7.9 to 5.0 (%DM), with the 1-h autoclave treatment being statistically different (P < 

0.05) from the other treatments. Nevertheless, it was numerically similar to the shorter 

treatment times.  

No significant changes were observed in the CP measurements upon autoclaving (Table 

4.1). CP values were in accordance with those reported in Gonthier et al. (2004). SCP 

showed a marked decrease (P < 0.05) upon autoclaving, but the change appeared to 

plateau for the two longer treatments which were not significantly different from one 

another. The decrease in SCP was mirrored by the results for micronized flaxseed 
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reported by Gonthier et al. (2004), as well as for autoclaved sunflower in Mustafa et al. 

(2003b). It is of interest to note that upon extrusion, the amount of SCP in flaxseed 

increased (Gonthier et al. 2004, Mustafa et al. 2003a), which is the opposite of the 

observed effect of autoclaving. The difference is likely caused by the physical aspect of 

extrusion which would lend itself to abrogating the oil/protein matrix more readily, thus 

possibly leading to an increase in both EE and SCP. The oil/protein matrix is physically 

different than a starch/protein matrix, as part of the oil/protein matrix is most likely in a 

liquid form, which may also account for the differences observed when extruding 

oilseeds vs. cereals. NPN did not show any significant increase with the exception of the 

third treatment where NPN increased (P < 0.05) from 1.4 to 2.0 (%DM). These results 

differ from those of Mustafa et al. (2003b), where for autoclaved sunflower seed they 

reported a decrease in NPN as treatment time increased, yet upon extrusion NPN in 

flaxseed has been shown to increase (Mustafa et al. 2003a). NDIP showed a similar 

pattern to NPN, in that only the 1-h treatment was significantly different (P < 0.05) from 

the raw samples and it increased (P < 0.05) from 3.8 to 5.7 (%DM). This is also in 

accordance with NDIP results for micronized flaxseed reported in Gonthier et al. (2004), 

as well as with results for autoclaved sunflower seed in Mustafa et al. (2003b). ADIP 

results showed a small incremental increase between each treatment, increasing from 0.5 

(%DM) for raw flaxseed to 0.8 (%DM) for the flaxseed from the 1-h treatment. From 

these results for the N fractions of flaxseed, it is clear that autoclaving as a form of heat 

treatment is somehow different from extrusion, likely due to the physical changes that 

extrusion imparts to the feed sample. 
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Results for the CNCPS CP sub-fractions are presented in Table 4.3. Fraction PA, 

representing NPN, was significantly higher only for the 1-h autoclave treatment. Fraction 

PB1 was the only fraction to decrease (P < 0.05) in concentration with autoclave 

treatment, with each treatment showing a significant difference from the next and when 

compared to the raw samples, treatments dramatically reduced PB1 from 45.9 (% CP) to 

10.5 (%CP). PB1 degrades in the rumen so it would follow that the autoclave treatments 

would decrease the overall degradation rate of protein in the rumen given that changes in 

PA were not large enough to offset the changes in degradability caused by the decrease in 

PB1. Results for the PB1 fraction changes are similar to those reported for autoclaved 

sunflower seed (Mustafa et al. 2003b). The PB2 fraction was increased (P < 0.05) by 

autoclave treatment, reaching a plateau of 73 (%CP) for the 1-h treatment from a basis of 

43 (%CP) for the raw flaxseed. The increase observed in this fraction upon autoclaving 

would account for the majority of the loss in the PB1 fraction, hence it would be expected 

that the overall degradation rate would decrease upon autoclaving as a result of the shift 

from the rapidly ruminally degraded PB1 fraction to the slowly ruminally degraded PB2 

fraction. The PB3 fraction was shown to increase after autoclave heating, but only the 

flaxseed exposed to the 1-h treatment was demonstrably different (P < 0.05). The 

increase in the PB3 fraction from 3.3 for raw flaxseed to 4.9 (%CP) for the 1-h treatment, 

although statistically significant, is not likely to a major factor in the reduction of ruminal 

degradability that was be observed upon autoclaving, as this is a relatively small shift. 

This is despite the fact that it is more slowly degraded in the rumen than fraction PB2. 

Fraction PC is not considered degradable in the rumen and shows a gradual progression 

upwards with increasing autoclave treatment time, increasing from 1.9 (%CP) for the raw  
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Table 4.3 CNCPS protein sub-fraction profile of the raw (control) compared to the 

autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

Sub-Fraction Control 20 min 40 min 60 min SEM 

Crude Protein (%DM) 23.9 23.7 23.8 23.8 0.13 

PA (%CP) 6.0
b
 5.3

b
 6.4

b
 8.5

a
 0.41 

PB1 (%CP) 45.9
a
 30.7

b
 16.5

c
 10.5

d
 0.99 

PB2 (%CP) 43.0
c
 58.3

b
 71.0

a
 73.3

a
 1.09 

PB3 (%CP) 3.3
b
 3.5

b
 3.7

b
 4.9

a
 0.15 

PC (%CP) 1.9
c
 2.2

bc
 2.5

ab
 2.8

a
 0.11 

True Protein (%CP)
1
 92.2

a
 92.6

a
 91.1

a
 88.7

b
 0.46 

PB1 (%TP) 49.8
a
 33.2

b
 18.1

c
 11.8

d
 1.21 

PB2 (%TP) 46.6
d
 63.0

c
 77.9

b
 82.6

a
 1.10 

PB3 (%TP) 3.6
b
 3.8

b
 4.0

b
 5.6

a
 0.16 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05) Means separated using the LSD method  

SEM = Standard error of mean 

(PA = non protein nitrogen, PB1 = soluble true protein fraction, PB2 = insoluble true 

protein not bound to fibre, PB3 = insoluble true protein bound to fibre, PC = unavailable 

protein) 

1
True Protein (%CP) = PB1 (%CP) + PB2 (%CP) + PB3 (%CP) 
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to 2.8 (%CP) for the 1-h autoclave treatment. The protein in this fraction would be bound 

to other feed constituents such as lignin and tannins, and as such it would not be available 

to the animal (Sniffen et al. 1992). The miniscule shift observed in this fraction suggests 

that the autoclave treatments used in this experiment would not be detrimental to the 

protein quality of flaxseed in terms of its use as a feed ingredient. 

As shown in Table 4.4, autoclave heating had no significant effect on the DM 

degradation rate of flaxseed, nor did it have any effect on the DM lag time as determined 

in this study. The soluble fraction of DM demonstrated some interesting results, with the 

20-min autoclave treatment causing a significant reduction (P < 0.05) in the solubility of 

DM, whereas the 1-h autoclave treatment caused a numerical increase in the soluble 

fraction of DM. Mustafa et al. (2003b) also demonstrated a decrease in DM degradation 

upon autoclaving sunflower seed. However, despite the temperatures being similar, the 

longest treatment in that study was only 30 min, which may not have been long enough to 

demonstrate the pattern seen in the present study. The decrease in soluble DM was also 

accompanied by a decrease in soluble CP, which would be responsible for a portion of 

the change in soluble DM. In a separate study by Mustafa et al. (2003a) using extruded 

flaxseed, an increase in soluble DM was reported when compared to a raw sample. This 

increase was also accompanied by an increase in soluble CP. This study showed a similar 

pattern for soluble CP and DM, suggesting that the majority of the change in the S 

fraction of DM between the treatments is largely the result of changes to the S fraction of 

CP. The undegradable fraction of DM increased (P < 0.05) upon autoclaving from 12.7 

(%DM) to 20.6 (%DM), but there were no significant differences between the treatments. 

The potentially degradable fraction of DM decreased (P < 0.05) from 64.5 (%DM) to  
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Table 4.4 In situ degradation parameters of dry matter for the raw (control) compared to 

the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

 Control 20 min 40 min 60 min SEM 

Kd (%/h) 6.8 7.5 7.8 6.0 0.98 

T0 (h) 0.5 0.5 0.0 0.0 0.25 

S (%DM) 22.8
ab

 15.2
c
 18.6

bc
 25.6

a
 2.66 

U (%DM) 12.7
b
 19.1

a
 20.6

a
 19.0

a
 0.90 

D (%DM) 64.5
a
 65.8

a
 60.9

ab
 55.4

b
 2.12 

EDDM (%DM) 57.1
a
 51.4

b
 52.7

b
 53.2

b
 0.73 

BDM (%DM) 42.9
b
 48.6

a
 47.3

a
 46.8

a
 0.73 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method  

SEM = Standard error of mean  

(Kd = degradation rate, T0 =  lag time, S = soluble fraction, U = undegradable fraction, D 

= degradable fraction, EDDM = effective degradability of dry matter, BDM = bypass dry 

matter) 
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55.4 (%DM). The only treatment to be significantly different from the raw sample was 

the 1-h treatment. These results are in contrast to those reported by Mustafa et al. (2003b) 

for autoclaved sunflower seed. The effectively degradable DM also decreased upon 

autoclave treatment, however, there were no differences between the treatments. Once 

again, this trend was mirrored in the Mustafa et al. (2003b) study which showed a 

decrease in the effectively degradable DM of sunflower seed. The opposite effect was 

observed for flaxseed extrusion in the Mustafa et al. (2003a) study.  

The degradation rate of CP upon autoclaving flaxseed decreased (P < 0.05) from 7.2 %/h 

to 5.5 %/h as shown in Table 4.5. The only treatment significantly different from the raw 

samples in this respect was the 1-h treatment. Decreases in CP degradation rates have 

also been reported for extruded flaxseed (155°C with a 43 sec retention time) (Mustafa et 

al. 2003a), autoclaved sunflower seed (127°C, 117 kPa, for 10, 20 and 30 min) (Mustafa 

et al. 2003b) and roasted sunflower seed (250°C for 60 sec) (Sarrazin et al. 2003), so in 

this respect the Kd of CP from full fat oilseeds appears to respond consistently to heating 

despite the method of heating used. No differences were observed for the lag time of CP 

in the present study. The soluble fraction of CP showed an interesting response where the 

shortest treatment exhibited the largest decrease, from 24.3 to 12.6 (%CP) and the longer 

the autoclave treatment, the less it decreased the soluble fraction. Considering other full-

fat oilseeds, upon extrusion flaxseed showed an increase in the soluble fraction of CP 

(Mustafa et al. 2003a), but a decrease was observed for roasted and autoclaved sunflower 

seed (Mustafa et al. 2003b, Sarrazin et al. 2003). Here, physical changes imparted to the 

oilseed as a result of processing may be responsible for the difference in response. The 

undegradable CP fraction in this study increased (P < 0.05) with increasing treatment  
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Table 4.5 In situ degradation parameters of crude protein for the raw (control) compared 

to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

 Control 20 min 40 min 60 min SEM 

Kd (%/h) 7.2
a
 6.1

ab
 6.1

ab
 5.5

b
 0.48 

T0 (h) 0.9 0.6 0.0 0.7 0.37 

S (%CP) 24.3
a
 12.6

c
 14.2

bc
 18.4

b
 1.72 

U (%CP) 6.5
c
 13.3

b
 17.0

a
 16.6

a
 1.07 

D (%/h) 69.2
ab

 74.2
a
 68.8

ab
 64.5

b
 2.10 

EDCP (%CP) 62.0
a
 49.7

b
 48.9

b
 49.2

b
 1.09 

BCP (%CP) 38.0
b
 50.3

a
 51.1

a
 50.8

a
 1.09 

EDCP (%DM) 14.4
a
 11.6

b
 11.4

b
 11.4

b
 0.27 

BCP (%DM) 8.8
b
 11.8

a
 11.9

a
 11.8

a
 0.25 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method  

SEM = Standard error of mean 

(Kd = degradation rate, T0 =  lag time, S = soluble fraction, U = undegradable fraction, D 

= degradable fraction, EDCP = effective degradability of crude protein, BCP = bypass 

crude protein) 
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time. With the raw flaxseed having an undegradable CP fraction consisting of 6.5 (%CP), 

the first 20-min treatment doubled this fraction to 13.3 (%CP) and the 40-min treatment 

almost tripled this fraction to a value of 17.0 (%CP) where it appeared to reach a plateau. 

The potentially degradable fraction showed an interesting response where the 20-min 

autoclave treatment increases it (P < 0.05) from 69.2 (%CP) to 74.2 (%CP), and the 40-

min and 1-h treatments did not significantly change the potentially degradable CP 

fraction. However, it should be noted that the raw samples were not significantly different 

from the treatments and only 20-min and 1-h treatments were significantly different from 

one another. Presumably there is a point where no change in the degradable fraction as 

determined by this study would be observed under these conditions. Finally, the effective 

degradability of CP decreased (P < 0.05) from 62.0 (%CP) to approximately 49.2 (%CP), 

with none of the treatments found to be significantly different from one another. The 

same response to effective degradability of CP was found for roasted full-fat sunflower 

seed (Sarrazin et al. 2003) and autoclaved sunflower seed (Mustafa et al. 2003b), while 

once again extruded flaxseed exhibited the opposite response (Mustafa et al. 2003a).  

Results from the three-step in vitro estimation of intestinal digestibility are presented in 

Table 4.6. No difference (P < 0.05) was detected between the raw and the autoclave 

treatments. It is possible that the temperature or the duration of the treatments was not 

sufficient to damage the flaxseed protein sufficiently for there to be any detectable 

differences via this method. In the study outlining the protocol (Calsamiglia and Stern, 

1995), soybean meal was used and a decrease in digestibility was only observed after 

heating for 2.5 h at a temperature of 165°C. This is clearly a much more extreme heat 

treatment than the one used in the present study. What these results suggest is that the  
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Table 4.6 Comparison of intestinal protein digestibility results for the raw (control) 

compared to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

 Control 20 min 40 min 60 min SEM 

Intestinal protein digestibility 

(% CP in ruminally incubated 

residues) 

61.7 58.6 58.4 60.3 1.94 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method  

SEM = Standard error of mean 
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digestibility of autoclaved flaxseed protein is not adversely affected when heated within 

the scope of the treatments used in this trial. However, the digestibility results for 

flaxseed were much lower, 60% vs. 95%, than those previously published for soybean 

meal (Calsamiglia and Stern, 1995). As such, it should be possible to increase RUP 

without any accompanying decrease in digestibility in the small intestine.  

The results for predicting protein supply to the small intestine are presented in Table 4.7. 

MCP results showed no difference between the autoclave treatments, where MCP 

decreased (P < 0.05) from 12.38 (% DM) for the raw flaxseed to 9.58 (% DM) for the 1-h 

treatment. The change in MCP observed is attributable to the decrease in RDP observed 

upon autoclaving. Results are in accordance with those reported by Yu et al. (2004c) for 

roasted white lupine. ECP results showed small changes (P < 0.05) between the 

treatments and the raw samples. The changes observed were simply a consequence of 

changes in the DM% that occurred in flaxseed samples upon autoclaving, increasing from 

1.08 (% DM) to 1.10 (% DM). This is because the NRC model estimates ECP from DM 

content. An increase in DM% upon heating is routinely observed when heating feeds by 

various means (Chang et al. 1987, Yu et al. 2000) so this is not very surprising. RUP 

increased (P < 0.05) from 9.36 (% DM) for raw flaxseed to 12.54 (% DM) for the 1-h 

autoclave treatment with no statistically discernable difference observed between the 

treatments. When the values for MCP and RUP are taken into account, they offset one 

another, leaving the value for flaxseed MP unaffected by autoclave treatment in this 

study. The degraded protein balance (DPB) estimate for all flaxseed samples was 

negative, which suggests a potential shortage of N in the rumen in terms of the available 

energy provided by the flaxseed. There was no significant difference in DPB for any of  
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Table 4.7. Results from the NRC (2001) Nutrient Requirements for Dairy Cattle model 

predicting protein supply to the small intestine for raw (control) compared to autoclave 

treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

(% DM) Control 20 min 40 min 60 min SEM 

Microbial CP 12.38
a
 9.79

b
 9.59

b
 9.58

b
 0.200 

Absorbable Microbial CP 7.93
a
 6.27

b
 6.14

b
 6.13

b
 0.128 

Endogenous CP 1.077
c
 1.099

b
 1.102

a
 1.102

a
 0.0005 

Absorbable Endogenous CP 0.430
c
 0.440

b
 0.441

a
 0.441

a
 0.0002 

Ruminally undegraded CP 9.36
b
 12.14

a
 12.50

a
 12.54

a
 0.194 

Absorbable Ruminally 

undegraded CP 
5.77

b
 7.13

a
 7.31

a
 7.56

a
 0.268 

Metabolizable CP 14.12 13.83 13.89 14.14 0.202 

1
Degraded Protein Balance  -3.99

a
 -7.54

b
 -7.83

b
 -7.80

b
 0.241 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method  

SEM = Standard error of mean 

1
Degraded protein balance for NRC-2001 calculated according to Yu et al. 2003. 
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the autoclave treatments. However, the DPB shifted (P < 0.05) from -3.99 (% DM) for 

raw flaxseed to -7.83 (% DM). A portion of the difference between the raw and the 

autoclaved flaxseed sample DPBs arises from RDP and how TDN is calculated according 

to the NRC (2001) formula, as well as from the fact that the EE fraction of the flaxseed 

samples increased (P < 0.05) upon autoclave treatment. 

The results from modeling nutrient supply to the small intestine using the DVE/OEB 

model are presented in Table 4.8. The DVE/OEB system takes into consideration some 

factors not considered by the NRC (2001) model, which generate some slightly different 

values for roughly the same feed parameters. FOM results showed decreases (P < 0.05) 

for the autoclaved treatments. FOM consists of digestible organic matter corrected for the 

fat contained in the feed, which is not considered degradable in the rumen, as well as 

RUP, so in light of the EE fraction and RUP fraction increasing upon autoclaving, these 

results are to be expected. FOM has been shown to decrease for several different 

feedstuffs upon heating (Yu et al. 2002). In the DVE/OEB system, changes in FOM are 

responsible for the calculated changes in MCP and AMCP. Endogenous CP was reduced 

(P < 0.05) for flaxseed upon autoclaving from 1.70 (% DM) to 1.47 (% DM). Ruminally 

undegraded feed protein, as in the NRC (2001) model, showed a significant increase (P < 

0.05) upon autoclaving from 10.39 (% DM) to 13.92 (% DM), with no significant 

differences between the autoclave treatments. Absorbable protein in the intestine, DVE 

under the DVE/OEB model, was increased (P < 0.05) upon autoclaving flaxseed. In this 

case, the relative increase of RUP was greater than the decreases observed for AMCP, 

AECP and ARUP, so the results from the treatments was for RUP to increase (P < 0.05) 

from 6.96 (% DM) for raw flaxseed to 8.97 (% DM) for the flaxseed exposed to the  
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Table 4.8. Results from the DVE/OEB system predicting protein supply to the small 

intestine for the raw (control) compared to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120°C)  

(% DM) Control 20 min 40 min 60 min SEM 

Fermentable Organic Matter 23.61
a
 19.83

c
 19.67

c
 21.40

b
 0.337 

Microbial CP 3.54
a
 2.97

c
 2.95

c
 3.21

b
 0.051 

Absorbable Microbial CP 2.26
a
 1.90

c
 1.88

c
 2.05

b
 0.032 

Endogenous CP losses 1.70
a
 1.62

b
 1.57

c
 1.47

d
 0.0002 

Ruminally undegraded CP 10.39
b
 13.47

a
 13.87

a
 13.92

a 
0.215 

Absorbable Ruminally 

Undegraded CP 
6.40

b
 7.91

a
 8.11

a
 8.39

a
 0.297 

Absorbable Protein (DVE) 6.96
c
 8.19

b
 8.42

ab
 8.97

a
 0.288 

Degraded Protein Balance 

(OEB) 
10.00

a
 7.21

b
 6.96

b
 6.68

b
 0.216 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method.  SEM = Standard error of mean 
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autoclave treatment for 1 h. The OEB values for all treatments and the raw flaxseed were 

determined to be positive without any significant differences between the treatments. The 

OEB value was decreased by autoclave treatment, suggesting that the potential loss of N 

from the rumen was mitigated when the flaxseed was autoclaved. However, according to 

the model there would still be significant potential N losses from the rumen due to a lack 

of available energy for BPS (Tamminga et al. 1994). Conversely, there would be 

excessive amounts of nitrogen in the rumen relative to the energy available for the 

bacteria to convert it into protein and some of that nitrogen could be lost to the animal.  

In comparing some of the key values of the NRC (2001) model to the DVE/OEB model, 

there are some notable differences. The most striking is the difference in the DPB values 

provided by each model. In the case of the NRC (2001) model, DPB values are all 

negative. This signifies that a potential N deficiency exists in the rumen and that MCP 

production in the rumen would be impaired as a consequence. In the DVE/OEB system, a 

positive balance was observed, suggesting excess N in the rumen and therefore potential 

N loss. Also of interest is the degree to which these values differ where the NRC (2001) 

model and the DVE/OEB system are reasonably close in magnitude but have opposite 

signs. This difference arises primarily from the fact that the NRC (2001) based method 

used in the present study was based on a TDN approach to calculate MCP, which 

considers the EE fraction in its calculation, whereas the FOM approach in the DVE/OEB 

system eliminates the EE fraction in the feed from the calculation as it is not considered 

ruminally degradable. The TDN results are affected further by the EE fraction, because in 

the conversion of digestible fatty acids to TDN, the digestible fatty acid value is 

multiplied by 2.5. Because flaxseed contained roughly 42% EE on a DM basis for raw 
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flaxseed and 44% EE on a DM basis for the autoclaved treatments, this would have 

serious implications for the model when assessing MCP based on the TDN method. 

Because of the differences in MCP estimation, the differences in the results that were 

observed are logical, because the NRC (2001) TDN based method considers that there is 

much more energy in the equation. It would follow then that more N would be required in 

the rumen for MCP production to be in balance. In this instance, it appears as though the 

DVE/OEB system provides us with a more reliable estimate of how much metabolizable 

protein is available from high fat feeds.  

In this study, the TDN based MCP results may not be accurate. This is due in large part to 

variation in the efficiency of MCP synthesis. The variation must be accounted for to 

provide sufficient accuracy when using indicators of fermentable energy such as, TDN 

(NRC 2001). In the case of flaxseed, differences in MCP efficiencies would be expected 

due to the elevated oil content. Modeling a total mixed ration with flaxseed would 

provide a better indication of its consequences on the diet, but would not permit the direct 

comparison of the two models used in the present study. The effects on MCP efficiency 

are not as significant in the DVE/OEB system because only those feed elements that are 

fermented in the rumen are part of FOM (Tamminga et al. 1994), but in this case no 

accounting of the effects the fat would have on MCP production is done.  

4.4 Conclusions 

Autoclave treatments used in the present study were effective at manipulating the nutrient 

composition of flaxseed. Autoclaving induced changes in flaxseed that in most respects 

matched those of roasting or micronization, as opposed to extrusion which appeared in 
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many instances to cause effects opposite to those achieved by other heat treatments. It is 

possible that this discrepancy is the result of the actual physical aspects of extrusion-

based heat treatments. Generally speaking, nutrient degradability was decreased upon 

autoclave treatment, and the site of nutrient digestion for DM and CP was shifted to the 

small intestine. The autoclave treatments employed in this study were not totally 

distinguishable in terms of many of the feed parameters measured, and it is likely that 

much more extreme treatments in terms of temperature and time would be required for 

this not to be the case. From the three-step in vitro intestinal protein digestibility results, 

it can be further concluded that the shifts in digestion location are not accompanied by a 

concomitant decrease in protein degradability, which would make the autoclave 

treatments used in this study acceptable for this specific purpose although not necessarily 

optimal. 

From the protein supply modeling results, it is clear that caution must be used while 

employing these models the evaluation of oilseeds. In this study, modeling was done with 

a single feed, flaxseed, so using a total ratio might provide different results. Oilseeds are 

not meant to constitute large portions of the ruminant diet and these models were 

developed with other feedstuffs comprising the majority of the diet. The comparison 

between the NRC (2001)-derived DPB and the DVE/OEB system illustrates this fact 

quite noticeably. The difference is striking when compared to the differences in the 

results from the models found for other feeds, the disparity between the two models is 

logical when their formulae are taken into account with feed composition. 

The results obtained that pertain to protein degradability suggest that sufficient chemical 

and structural changes were induced in flaxseed protein upon autoclaving to alter its 
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chemical properties. These results permit probing the flaxseed with DRIFT and S-FTIR 

techniques to reveal inherent structural changes in the molecular spectra that are 

associated with the autoclaving process and its effects on the process of digestion. 
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5. DETECTING MOLECULAR CHANGES IN FLAXSEED PROTEIN 

SECONDARY STRUCTURE USING DRIFT AND S-FTIR SPECTROSCOPIC 

TECHNIQUES 

5.1 Introduction 

Current methods of feed evaluation, particularly for protein quality, are typically slow 

and cumbersome processes that require the destruction of a sample for any given 

measurement. The information gleaned from such procedures is also not completely in 

context, as some pertinent information is lost by the process of taking the measurements. 

Part of the reason for this is that these standard methods destroy any spatial information 

as well as the distribution of those elements of interest (Budevska 2002). These elements 

may be linked to degradability and digestibility in animals. 

Although not novel, vibrational spectroscopy or mid-infrared spectroscopy has the 

capacity to overcome some of the issues with modern feed characterization methods. The 

results from mid-IR spectroscopy are complex in nature. The information contained 

within each spectrum is related not only to the chemical bonds in each sample but 

interrelationships between these chemical bonds (Novikov et al. 1998). So, rather than 

look at the components of interest separate from one another, it is possible to look at 

everything in context. When a synchrotron is used as the source of IR light, it is known as 

synchrotron based Fourier transform infrared microspectroscopy (S-FTIR). This coupling 

permits an even greater amount of information to be gathered from a sample of interest at 

both the cellular and molecular levels. The qualities of synchrotron light, including 

brightness and source size, permit IR spectroscopic measurements to be made on a sub-
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cellular scale, thus allowing us to link relative quantities, interrelationships and 

localization of compounds of interest all in a single experiment (Wetzel and Levine, 

2001). This mid-IR technique permits a greater understanding of feed structures at the 

sub-cellular level (Yu 2004), and with further development will allow a more complete 

characterization of those feed traits related to quality. 

One feature of protein that can be quantified with mid-IR methods is its secondary 

structure, which may have some links to protein digestibility (Yu et al. 2004a). This is 

because digestion is a complex process where any kind of steric issues at the molecular 

level, such as those presented by the different secondary structures, will ultimately affect 

the access enzymes will have to the feed constituents. Heating has also been 

demonstrated to alter the relative amounts of each secondary structure, thus having 

possible connections to alterations in degradability (Yu 2005c).  

The objective of this study was to use both diffuse reflectance infrared Fourier transform 

spectroscopy (DRIFT) and S-FTIR as a means of detecting heat induced changes to feed 

and feed proteins. Using multivariate molecular spectral analysis techniques, as well as 

measuring α-helix to β-sheet sheet ratios, should allow us to identify molecular 

differences between different autoclaved flaxseed treatments. The goal was to attempt to 

understand and identify spectroscopic signatures that are associated with differences in 

ruminal degradability. The hypothesis of this study was that autoclaving would induce 

changes in flaxseed mid-IR spectra that can be characterized with DRIFT and S-FTIR. 
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5.2 Materials and Methods 

5.2.1 Flaxseed heating and processing  

Flaxseed (Linum usitatissimum L. cv. Vimy) grown at Moose Jaw, Saskatchewan during 

the 2005 growing year was provided by Shamrock Seeds Ltd. Saskatoon, Saskatchewan. 

Three-kilogram samples of flaxseed were heated by autoclave (Amsco Eagle SG-3031, 

STERIS Corporation, Mentor, Ohio USA) at 120C in gravity mode for 20, 40 or 60 min. 

Treatments were then repeated on a separate set of 3-kg samples providing two sets of 

treatments, A and B. Control treatments were unheated. Samples were subsequently 

cooled to room temperature and then placed in the refrigerator prior to grinding.  

5.2.2 Diffuse Reflectance Fourier Transformed Infrared Spectroscopy (DRIFT) 

Sub-samples of the cooled flaxseed batches were ground with a coffee grinder (Braun 

KSM 2, Proctor and Gamble Inc., Toronto, ON, CAN), chilled again and re-ground. 

Grinding was done for 3 min each time. The cooling was done so as to prevent the 

samples from forming dough and from getting too warm, thus creating artifacts in the 

spectra. The coffee grinder was selected to minimize the effects of grinding on the 

flaxseed spectra, ensuring the physical cracking and breaking of the sample yet 

maintaining as much of the smaller plant seed structures as possible. Samples of the 

ground flaxseed were then mixed with KBr in a ratio of 4 parts flaxseed to 1 part KBr in a 

2 mL centrifuge tube and mixed by vortex for several min. Raw flaxseed was used for 

control samples. DRIFT was performed using a Bio-Rad FTS-40 with a ceramic IR 

source and MCT detector (Bio-Rad laboratories, Hercules, CA, USA). Data was collected 

using Win-IR software. Spectra were generated from the mid-IR (4000-800 cm
-1

) portion 
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of the electromagnetic spectrum with 256 co-added scans and a spectral resolution of 4 

cm
-1

. Spectral analysis was done with OMNIC 6.0 (Thermo Nicolet, Madison, WI, USA). 

Eight spectra were collected per treatment. 

5.2.3 S-FTIR window preparation 

Randomly selected whole flaxseeds from treatment samples were sectioned to a thickness 

of 6 µm using a microtome (Microm 330 (Microm Laborgerate GmbH, Sandhausen, 

GER) at the Western College of Veterinary Medicine, University of Saskatchewan, 

Saskatoon, SK, Canada. The detailed preparation procedure was reported in Walker 

(2007). Sample sections were subsequently transferred to Barium Fluoride (BaF2) discs 

(Spectral Systems, Hopewell Junction, NY, USA; part number 915-3015). Each BaF2 

disc had three separate sections from three separate flaxseeds placed on it. Fourteen seeds 

per treatment were analyzed. At least ten spectra from randomly selected spots within the 

cotyledons of each seed were generated. More spectra were gathered when a collected 

spectrum was considered to be excessively noisy for analysis. 

5.2.4 S-FTIR microspectroscopy 

S-FTIR microspectroscopy was performed on beam line U2B at the National Synchrotron 

Light Source located at the Brookhaven National Laboratory (NSLS, BNL, Department 

of Energy, Upton, NY, USA). Collimated light from the synchrotron was directed to an 

FTIR spectrometer (Nicolet Magna 860, Madison, WI, USA) with a KBr beam splitter 

and a nitrogen cooled mercury cadmium telluride (MCT-A) detector through a port on the 

spectrometer. The spectrometer was interfaced with a Nic PLAN IR microscope (Nicolet 

Instruments, Madison, WI, USA) using a single image plane mask set to give an aperture 
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of 10 µm x 10 µm. Spectra were generated in transmission mode with the mid-IR (4000-

800 cm
-1

) region of the electromagnetic spectrum by 128 co-added scans with a spectral 

resolution of 4 cm
-1

. Spectral analysis was done with OMNIC 6.0 (Thermo-Nicolet, 

Madison, WI, USA) software. Spectra were generated from randomly selected regions 

within the cotyledons of the flaxseed sections.  

5.2.5 Alpha-helix to beta-sheet ratio measurement 

Protein secondary structures were estimated using the amide I band located in the region 

of ca. 1700 cm
-1

 – 1610 cm
-1

 with its peak at ca. 1650 cm
-1

. Two different methods were 

used to estimate protein secondary structure concentrations for DRIFT spectra. In the first 

method, the spectra were first converted by Fourier self-deconvolution with OMNIC 6.0 

to identify the component peaks and their frequencies which comprise the amide I band 

in the spectra. The areas of the component bands representing the amount of α-helix and 

β-sheet in the FSD spectra were then calculated using Origin 7 (Origin Lab Corporation, 

Northampton, MA, USA) with both the Gaussian and Lorentzian multi component peak 

modeling methods. The area under the peak at ca. 1658 cm
-1

 was taken to represent the 

molecular bonds generating the amide I band in the α-helical conformation. The area 

under the peak at ca. 1630 cm
-1

 was taken to represent molecular bonds generating the 

amide I band in the β-sheet conformation. The second method was used for both DRIFT 

and S-FTIR spectra and involved using the FSD spectra generated with OMNIC 6.0 to 

identify the region of the absorption spectra representing the respective secondary 

structures. OMNIC 6.0 was then used to calculate the areas in the absorption spectra 

representing the α-helices and β-sheets. 
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5.2.6 Multivariate analysis of protein spectra 

CLA and PCA multivariate statistical methods were used to compare the DRIFT spectra 

of the different treatments to the control samples to determine if there were some 

underlying structural differences in the spectral information that would permit the 

identification of spectra belonging to different treatment groups. First, the absorbance 

spectra were baseline corrected using the automatic baseline correction function of 

OMNIC 6.0. The spectra were then analyzed together using Statistica 6.0 software 

(Statsoft, Tulsa, OK, USA). For CLA and PCA, the spectral regions of 2000 cm
-1

 - 800 

cm
-1

, containing most of the mid-IR spectrum, and 1715 - 1485 cm
-1

, containing the 

amide I and II regions, were used. CLA results were presented as dendograms, while 

PCA results were plotted based on the two highest factor scores and plotted as a function 

of those scores. In each comparison, the eigenvector for factor 1 was plotted against that 

for factor 2 which accounted for over 99% of the variability in the data.  

5.2.7 Statistical analysis 

Statistical analyses of protein secondary structure ratios were performed using the 

MIXED procedure of SAS (version 9.1) (SAS Institute Inc., Cary, NC, USA). DRIFT 

spectra were analyzed in a completely randomized design  using the model Y = mean + 

treatment + error. S-FTIR spectra were analyzed in a nested experimental design with the 

model Y = mean + treatment + seed (nested within treatment) + error. Significance was 

taken as P < 0.05. 
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5.3 Results and Discussion 

Results from protein secondary structure analysis based on the DRIFT spectra are 

presented in Table 5.1. It is important to note that these ratios are based on relative 

amounts of the secondary structures present. Using an α-helix to β-sheet ratio to assess 

changes to protein structure involves many considerations. From IR spectroscopy it is not 

possible to obtain exact values for each secondary structure, but if all sample spectra are 

treated in the same manner, it is possible to compare the results from one spectrum to 

another (Yu 2006a). In addition to this, because of different methodologies used between 

researchers, results from a given feed can vary one study to another unless the samples 

are prepared identically. This arises from the sensitivity of mid-IR spectroscopy. 

Selecting different regions of the spectrum and different sizes for those regions around 

the amide I and II bands, along with different baselines, are all factors that would 

influence the resulting α-helix to β-sheet ratio (Yu 2006a). There exist technical issues 

that affect protein secondary structure analysis as well. The amide I band carbonyl group 

has different sensitivities to absorption depending on secondary structure, the number of 

bands it contains varies and is usually not known for certain, and, finally, the bands can 

be varied in shape (Yu 2006a). Even for relative determinations of the α-helix to β-sheet 

ratio one must be aware of these facts. Despite these issues, the α-helix to β-sheet ratio 

can be a useful way of exploring differences in protein structure that exist between two 

samples. 

What is clear from Table 5.1 is that all three different ratio measurements show that the 

ratio of α-helix to β-sheet in flaxseed decreases significantly upon heating. This change is 

in accordance with results of Yu et al. (2005) using golden flaxseed with roasting as the  
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Table 5.1. α-helix to β-sheet ratios from DRIFT spectra of the autoclaved whole ground 

Vimy flaxseed. 

 Autoclave Treatment (120°C) SEM 

 Control 20 min 40 min 60 min  

Area under peak 

Method 
2.18

a
 1.60

b
 1.27

c
 1.37

c
 0.011 

Multi-comp. peak 

Modeling (Gauss) 
2.08

a
 1.06

b
 0.99

b
 1.23

b
 0.072 

Multi-comp. peak 

Modeling (Lorentz) 
2.27

a
 1.07

b
 1.10

b
 1.72

ab
 0.071 

a, b, c, d
  Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method 

SEM = Standard error of mean 
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heating method. Of the three methods used to estimate the relative α-helix to β-sheet 

ratio, only the area under peak method was able to discern any difference between the 

treatments. Also of interest were the results from the Lorentzian peak fitting method 

which showed a numerical increase for the 1-h treatment compared to the 20-min and 40-

min treatments. These changes in protein secondary structure ratios are likely due to more 

α-helix structure being denatured or destroyed during the autoclaving process than β-

sheet. The Lorentzian data, however, complicates the interpretation and could arise from 

a plateau in α-helix degradation. The secondary structure analysis also disagrees with 

results published by Madhusudhan and Singh (1985a, 1985b) who reported that the major 

proteins of flaxseed, albumin and globulin, consist predominantly of β-sheet secondary 

structures as determined by the circular dichroism technique using purified protein 

samples. It is possible, however, that the remaining 14% of protein in flaxseed has 

extremely high concentrations of α-helix relative to other secondary structures. It should 

also be noted that there is some degree of variability in terms of oil and protein content 

within a variety. Growing conditions are known to affect oil and protein content as well. 

A reduction in the amount of storage protein present in flaxseed would mean that they 

would contribute less to the overall protein secondary structure profile. The differences 

between result from this study and other reported values could be explained by the 

relative concentrations of different proteins. 

In Table 5.2, the results of the same analysis are shown for S-FTIR data. The α-helix to 

β-sheet ratio increased upon heating for 40-min and 1-h in contrast to the DRIFT results. 

The control sample and the 20-min autoclave treatment were not significantly different 

from one another as was the case for the 40-min and 1-h treatment samples. One 
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Table 5.2 α-helix to β-sheet ratio as determined using the area under peak method and S-

FTIR data collected from flaxseed cotyledon regions. 

 Autoclave Treatment (120°C) SEM 

 Control 20 min 40 min 60 min  

Area under peak 

Method 
0.86b 0.88b 1.03a 1.03a 0.033 

a, b, c, d
 Means with the same superscripts in the same row are not significantly different (P 

< 0.05). Means separated using the LSD method  

SEM = Standard error of mean 
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possibility for the difference in the effect autoclaving has on the α-helix to β-sheet ratio 

between the two mid-IR spectroscopic methods is that DRIFT spectra were from whole 

flaxseeds. Whole flaxseeds include the seed coat, pericarp, aleurone cells, cotyledons and 

endosperm. The aleurone cells are rich in protein and their composition may be different 

from that of the cotyledons. The S-FTIR spectra on the other hand were generated solely 

from the cotyledons of the flaxseed. Furthermore, it is possible that the individual regions 

may have different sensitivities to heating, which may cause different changes to 

secondary structure ratios in different flaxseed tissues. The different regions of the plant 

would have varying complements of proteins with potentially different responses to 

heating Further study is required to understand the effect of heating on different tissues 

within flaxseed and, determining which secondary structure is more resistant to 

denaturation from heat as well as to degradation- in the rumen. 

Figure 5.1 shows the results of cluster analysis for the ca. 2000-800 cm
-1

 spectral region 

based on DRIFT spectra. Other than a single spectrum from the 20-min autoclaved 

treatment, the raw flaxseed spectra are grouped separately. The remaining clusters all 

contain combinations of spectra from the other treatments. This implies that DRIFT 

spectroscopy combined with cluster analysis can distinguish an autoclaved flaxseed 

sample from a raw sample and the benefit of cluster analysis itself is that no other prior 

knowledge of the sample other than a mid-IR spectrum is required to make such a 

distinction. The cluster analysis comparisons between treatments show similar results to 

those displayed in Figure 5.1. Figure 5.2 (top) shows a comparison between the control 

spectra and the 20-min treatment spectra. Here a single spectrum from the 20-min 

treatment is clustered among the control samples. In Figure 5.2 (bottom), the 40-min  
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 Figure 5.1. CLA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the 

raw and the autoclaved flaxseed samples (0 = control/raw, 1 = autoclaved @ 120°C for 

20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [CLA 

= Hierarchical cluster analysis, DRIFT = Diffuse Reflectance Infrared Fourier 

Transform] 
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Figure 5.2. CLA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments.(top) 0 vs. 

1, (bottom) 0 vs. 2. (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [CLA = Hierarchical cluster 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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treatment spectra and the control spectra are all found within distinct clusters, although 

the dendogram shows that some of the 40-min treatment spectra are more closely related 

to the control spectra. Figure 5.3 (top) shows a very clear separation between the control 

spectra and the 1-h treatment spectra, with all spectra falling within their respective 

clusters. Figure 5.3 (bottom) shows a distinct cluster for the 40-min treatment spectra; 

however, not all the spectra from the 40-min treatment were similar enough to be 

assigned to this group. The remaining CLA comparisons (Figure 5.4) failed to 

demonstrate any distinct groupings between the treatments. 

Figure 5.5 shows the results of the PCA conducted using DRIFT spectra. The results 

show a similar grouping of the raw flaxseed spectra with a single spectrum from the 20-

min autoclave treatment. The agreement of both PCA and CLA suggests that there is 

some similar structure in the data, in this case the baseline corrected spectra, which 

distinguishes almost completely the raw sample spectra from the spectra of autoclaved 

samples. The plot was derived from values for the first two principal components 

generated by the analysis which explain 95.88% and 3.42% of the variability in the 

spectra. Factor 1 in this case can almost discriminate entirely between the raw and treated 

flaxseed samples and represents the vast majority of the variability present. As in the case 

for cluster analysis, Yu et al. (2007) showed that PCA could also distinguish between 

plant structures, meaning that with little modification of the spectra it is possible to 

identify which part of a plant a spectrum represents, and also whether or not it has been 

treated.  

Figure 5.6 (top) shows the results from PCA between the control and the 20-min 

treatment spectra. Similar to the CLA results, Figure 5.6 (top) shows that a single  
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Figure 5.3. CLA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments.(top) 0 vs. 

3, (bottom) 1 vs. 2. (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [CLA = Hierarchical cluster 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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Figure 5.4. CLA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments.(top) 1 vs. 

3, (bottom) 2 vs. 3. (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [CLA = Hierarchical cluster 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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 Figure 5.5. PCA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved Vimy flaxseed samples (0 = control/raw, 1 = autoclaved @ 120°C for 

20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [PCA 

= Principal components  analysis, DRIFT = Diffuse Reflectance Infrared Fourier 

Transform] 
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Figure 5.6. PCA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments. .(top) 0 vs. 

1, (bottom) 0 vs. 2 (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [PCA = Principal components 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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spectrum from the first treatment is indistinguishable from the control samples. In Figures 

5.6 (bottom) and 5.7 (top), the control spectra are separated from treatment spectra, 

although the treatment spectra are spread out. This shows distinction from the CLA 

results for the 40-min treatment spectra where there was still some linkage to the control 

samples. The remaining spectral comparisons (Figure 5.7 (bottom), Figure 5.8) by PCA 

were not able to show any clear grouping of the treatment spectra on the factor plane. 

CLA and PCA were subsequently conducted on a more defined region of the spectrum, in 

this case the spectrum from ca. 1715-1485 cm-1 which covered both the prominent amide 

I and II bands. Figure 5.9 shows the CLA results from this region of the spectrum for all 

treatment spectra. It shows a similar cluster pattern to that in Figure 5.1, with the 

exception that within it exists a distinct cluster for the 40-min treatment spectra although 

not all of the 40-min treatment spectra are contained within it. It also shows that the 

control samples are found in their own group with a single spectrum from treatment 1. 

Figure 5.10 (bottom) shows CLA results for the comparison of the 40-min treatment to 

the control spectra. This analysis shows an improvement in the clustering ability when 

the spectral window was narrowed, in this case both the control spectra and the 40-min 

treatment spectra are found in their own unique clusters as opposed to when a much 

larger portion of the spectrum was used. This indicates that the protein structures of the 

raw flaxseed and those from the 40-min treatment were different. This is similar to the 

results between raw flaxseed and that from the 1-h treatment. This improvement in 

clustering is also seen in Figure 5.12 (bottom), where clusters exist for the 40-min and 1-h 

treatments, although there still remains some mixing of the spectra in the remaining 

clusters. The PCA analysis shows similar improvements upon selecting a smaller spectral  

b) 

d) c) 
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Figure 5.7. PCA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments. .(top) 0 vs. 

3, (bottom) 1 vs. 2 (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [PCA = Principal components 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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Figure 5.8. PCA analysis of DRIFT based spectra (2000-800 cm
-1

) obtained from the raw 

and the autoclaved flaxseed samples. Comparisons of the separate treatments. .(top) 1 vs. 

3, (bottom) 2 vs. 3 (0 = control/raw, 1 = autoclaved @ 120°C for 20 min, 2 = autoclaved 

@ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 min) [PCA = Principal components 

analysis, DRIFT = Diffuse Reflectance Infrared Fourier Transform] 
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 Figure 5.9. CLA analysis of DRIFT based spectra of the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples (0 = control/raw, 

1 = autoclaved @ 120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved 

@ 120°C for 60 min) [CLA = Hierarchical cluster analysis, DRIFT = Diffuse Reflectance 

Infrared Fourier Transform] 
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Figure 5.10. CLA analysis of DRIFT based spectra of the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments.(top) 0 vs. 1, (bottom) 0 vs. 2 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [CLA = Hierarchical cluster analysis, DRIFT = Diffuse Reflectance Infrared Fourier 

Transform].  
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Figure 5.11. CLA analysis of DRIFT based spectra of the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments.(top) 0 vs. 3, (bottom) 1 vs. 2 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [CLA = Hierarchical cluster analysis, DRIFT = Diffuse Reflectance Infrared Fourier 

Transform].  
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Figure 5.12. CLA analysis of DRIFT based spectra of the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments.(top) 1 vs. 3, (bottom) 2 vs. 3 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [CLA = Hierarchical cluster analysis, DRIFT = Diffuse Reflectance Infrared Fourier 

Transform].  



98 

 

window. In Figure 5.13, where all spectra are included in a PCA, there is no longer a 

spectrum from the 20-min treatment group present amongst the control sample spectra. 

Upon further examination of the comparisons between the treatments, shown in figure 

5.14 (top), (bottom) and Figure 5.15, it is apparent that autoclaved treatments are 

completely separated from the raw spectra. The separation indicated that treatment 

spectra differ from the raw spectra and suggested that there was a molecular structure 

change in the protein based on the amide I and amide II regions. 

Although more research is required to establish how protein secondary structures can be 

used to forecast the degradability of a feed, changes to these structures are the result of 

autoclave treatment and cooking in general (Arnoldie 2001), which will influence 

degradability. It may be that data on the two primary secondary structures need to be 

supplemented with information about other secondary structures such as random coils to 

use this measure more accurately in predicting degradability. It is also evident that there 

needs to be a standardized and well controlled procedure for sample preparation as 

demonstrated by the difference in the relative ratios of α-helices to β-sheets as measured 

by multiple techniques using both DRIFT and S-FTIR.  

It could be erroneous to rely solely on protein secondary structure ratios to predict 

digestibility. It has been shown that feathers are poorly degradable protein sources and 

are rich in β-sheets (Yu et al. 2004b). This, however, should not preclude feeds that are 

low in α-helices and high in β-sheets from being rapidly degraded in the rumen. The β-

keratins that make up the feather have other molecular properties rendering them 

insoluble and poorly degradable, such as a high concentration of disulfide bonds. These  
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Figure 5.13. PCA analysis of DRIFT based spectra for the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples (0 = control/raw, 

1 = autoclaved @ 120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved 

@ 120°C for 60 min) [PCA = Principal components  analysis, DRIFT = Diffuse 

Reflectance Infrared Fourier Transform] 
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Figure 5.14. PCA analysis of DRIFT based spectra for the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments. (top) 0 vs. 1, (bottom) 0 vs. 2 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [PCA = Principal components analysis, DRIFT = Diffuse Reflectance Infrared 

Fourier Transform]. 



101 

 

Projection of the cases on the factor-plane (  1 x   2)

Cases with sum of cosine square >=  0.00

 Active

0

0

0
0

0

0 0
0

3

3

3

3

33

3

3

-25 -20 -15 -10 -5 0 5 10 15 20 25

Factor 1: 99.64%

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

F
a
c
to

r 
2
: 

  
.1

7
%

0

0

0
0

0

0 0
0

3

3

3

3

33

3

3

Projection of the cases on the factor-plane (  1 x   2)

Cases with sum of cosine square >=  0.00

 Active

1 1 1

1

1

1

11

22
2

2

2

2

2

2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Factor 1: 99.26%

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

F
a
c
to

r 
2
: 

  
.5

5
%

1 1 1

1

1

1

11

22
2

2

2

2

2

2

 

Figure 5.15. PCA analysis of DRIFT based spectra for the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments.(top) 0 vs. 3, (bottom) 1 vs. 2 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [PCA = Principal components analysis, DRIFT = Diffuse Reflectance Infrared 

Fourier Transform]. 
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Figure 5.16. PCA analysis of DRIFT based spectra for the amide I and II region (1715-

1485 cm
-1

) obtained from the raw and the autoclaved flaxseed samples. Comparisons of 

the separate treatments.(top) 1 vs. 3, (bottom) 2 vs. 3 (0 = control/raw, 1 = autoclaved @ 

120°C for 20 min, 2 = autoclaved @ 120°C for 40 min, 3 = autoclaved @ 120°C for 60 

min) [PCA = Principal components analysis, DRIFT = Diffuse Reflectance Infrared 

Fourier Transform]. 
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other features may have serious implications for degradability. Hair is made up of α-

keratin which is high in α-helices and cysteine bonds. Hair, like feathers, has been shown 

to be poorly degraded as well (Thomas and Beeson, 1977). The degradability of keratin 

can be improved with NaOH treatment through the hydrolysis of cysteine (Stoves 1942), 

but these bonds are involved in tertiary and quaternary structure of keratin which are 

responsible for its lack of solubility. Further investigation into the digestibility and 

molecular chemistry of these two poorly degraded proteins may provide some insight into 

how secondary structure influences degradability. 

Comparisons of protein secondary structure ratios for other feed sources may only be 

applicable when dealing with a single variety within the same genus and species. Protein 

content could differ within the same variety as well. It has been documented that growing 

conditions and topography have the capacity to alter the protein content of plants 

(Kravchenko and Bullock, 2002). Changes to protein quality will be reflected by different 

amounts of the various storage proteins specific to each plant (Paek et al. 1997), which 

means that the initial α-helix to β-sheet ratio could be altered by these conditions and 

after processing may show shifts in secondary structures as a result. 

The results from the multivariate statistical methods used in this study show that by 

focusing on specific regions of the spectrum, the ability to separate spectra based on 

treatment conditions can be enhanced. This is likely a result of eliminating some 

extraneous data that does not contribute to differentiating between the treatments or, in 

the case of autoclaving, data for peaks that are minimally influenced by the treatment. In 

IR, spectra a large region, found between ca. 2500-2000 cm
-1

, is usually devoid of any 

peaks of interest, so removing data contained in regions such as these from the analysis is 
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justifiable. Selecting windows or regions of the spectra will also allow us to determine 

which regions, representing certain molecules, are more or less affected by a given 

treatment.  

Very little modification of the spectra and thus very little time is required for multivariate 

analysis. The implications of this are that with a pool of spectra, adding an unknown 

spectrum of interest to the cluster analysis procedure would discover if the sample has 

been autoclaved or not, provided all other things remain equal, sample preparation for 

example. With the 20 min difference in treatment times, the ability to make some 

distinctions between the treatments is indicative of the potential of this methodology. 

These results are further validated by those reported by Yu et al. (2007) where using S-

FTIR spectra, and also without prior modifications of the spectra, cluster analysis was 

able to distinguish between those spectra from various wheat structures such as the 

endosperm and the aleurone layer. 

5.4 Conclusions 

The results from secondary structure analysis are not clear cut and more investigation is 

required to establish why the results from DRIFT and S-FTIR differed. DRIFT and S-

FTIR, however, can be used to assess changes to protein structure as a consequence of 

heating. The multivariate statistical methods employed in this experiment show that, in 

terms of classification, they can provide an idea of degradability through association to 

the treatment conditions. Linking these results to degradability itself, rather than to 

treatment conditions, might prove to be a more effective way of using these statistical 

tools for this sort comparison. This would require identifying the variables in the analysis 
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(individual spectra) based on their degradability as opposed to time of treatment. Similar 

FTIR methodologies have been used to identify bacteria in the past, classifying different 

strains of the same genus (Maquelin et al 2002), so there is untapped potential for FTIR, 

whether DRIFT or S-FTIR based spectroscopies are employed in the feed industry. 
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6. GENERAL DISCUSSION, CONCLUSIONS AND FUTURE RESEARCH 

The present study illustrates the sensitivity of mid-IR spectroscopic techniques in 

detecting subtle changes in the chemistry of a feed. It has also demonstrated the ability to 

identify more subtle aspects of feed chemistry, such as molecular conformation. Changes 

to feed chemistry without a link to structure are easily identified through common assays. 

The conformation or shape of a particular molecule, however, cannot be assessed by 

these common methodologies. The ability to consider these two data types at one time is 

the advantage of IR spectroscopy. The major drawback of mid-IR spectroscopy in 

complex samples such as feeds is the resulting complexity of the spectra. 

In the search for spectral features that are indicative or even predictive of changes to 

protein degradability a multi-step approach was taken. First, the same flaxseed samples 

were put through the same treatment for different periods of time to mitigate effects on 

the spectra from the seed variety. This restricted differences in the spectra and 

degradation characteristics to being a result of the time of the treatment. To deal with the 

variation that exists between individual flaxseeds, a nested experimental design was used 

for S-FTIR results. Simply evaluating differences in spectra, however, may not provide a 

full indication of differences in digestibility or degradability. Second, well established 

methods of evaluating feed protein degradation characteristics were used to ensure that 

degradation characteristics were changed and to what extent the change occurred. Third, 

different techniques of mid-IR spectroscopy, DRIFT and S-FTIR spot sampling in this 

case, were applied to the sample. With these spectra, several methods were applied to 

investigate for changes that could be associated with degradability. In this case protein 
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was the focus. One approach was to determine the relative content of protein secondary 

structures. The second approach was to apply CLA and PCA to the spectra, where 

initially a large region of the spectrum was used then a much smaller region was selected, 

covering the major bonds associated with the peptide bond of protein, the amide I and II 

bonds. 

Confirmation that degradability had indeed been altered by the applied autoclave 

treatments was demonstrated by several methods. In situ data showed that the rate and 

extent of protein disappearance was reduced by the treatments. Fractioning protein 

according to the CNCPS also showed an increase in the more slowly degradable PB2 

fraction at the expense of the more rapidly degraded PB1 fraction. Looking at the 

individual nitrogen fractions decreases in the SCP are offset by increases in NDIN and 

ADIN, offers even more insight into the changes in observed in degradability. From this 

part of the study, it has been shown that the chemistry of the flaxseed protein had been 

altered. This is explained by the physical or chemical properties of the protein that the 

CNCPS takes advantage of for the purposes of fractionation, such as solubility. 

Interestingly, each of these fractions is assigned a specific degradation rate in the rumen. 

These types of changes in protein upon heating are common. An issue that arises from the 

data in the present study is the inability of these methods to distinguish one treatment 

from another, except in the case of the PB1 and PB2 values. 

With the changes in degradation characteristics established, an attempt was made to 

identify changes to the spectra as a result of the sample treatment, which may be linked to 

degradability. Measuring relative amounts of α-helices and β-sheets is a means of 

assessing the change in the physical shape of a protein‟s inherent structure. Through the 
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process of denaturing, changes to the secondary structures are expected to some extent. 

The more denatured protein becomes, the greater the secondary structures should be 

affected. It‟s not unreasonable to expect that one secondary structure would be more 

susceptible to denaturation than the other, but which one is more susceptible to 

denaturation would be dependent on several factors specific to the particular protein or 

mix of proteins in question. The secondary structure ratio analysis was not always able to 

distinguish between raw and treated sample spectra. The DRIFT and S-FTIR results were 

not in agreement. The difference may be the result of different feed structures measured 

in each analysis. In the case of S-FTIR, only cotyledon measurements were taken, 

whereas DRIFT analyses were based on whole ground seed. This means the DRIFT 

spectroscopy results were based on a different complement of proteins than those of S-

FTIR so this shouldn‟t be completely unexpected. It does, however, make it difficult to 

decide which results are more pertinent to degradability, if at all. Linking changes in 

secondary structure to shifts in CNCPS and other protein fractions as well as degradation 

characteristics may not be feasible. Changes in the various protein fractions are the result 

of protein binding to other feed constituents upon applying heat. In contrast, changes in 

secondary structure are likely the result of hydrogen bonds being broken. Both events 

occur concomitantly upon heating and are not necessarily dependant on one another. A 

potentially better target to link the changes in the protein fractions to IR spectroscopic 

data would be the bonds proteins form with fibre as a feed is heated. Focusing on the 

Maillard reaction with IR spectroscopy is another potential target that might be more 

revealing of protein changes linked to digestion. It is possible that there are too many 

protein specific factors for secondary structure analysis to be effective at predicting 
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degradability under varying conditions other than just time. It should be noted, however, 

that the degradation rate was not different for any of the treatments, which is reflected in 

the results from the multiple component peak modeling secondary structure analysis. 

Multivariate methods permit the investigator to ignore many of the specifics when it 

comes to IR spectra. They allow us to identify associations or relationships among 

complex data sets without prior knowledge of the data in question. Generally speaking, 

the multivariate results used in this study showed most clearly the differences between 

raw and cooked flaxseed samples, with the 1-h treatment being the most readily identified 

as different from the control treatment. What was demonstrated in this study is that 

focusing the area probed by these methods, enhances their performance with respect to 

identification of treatment conditions. The analyses showed modest improvements in 

isolating different treatments based on just selecting the region of the IR spectrum where 

protein-specific bonds vibrate. This is due to the removal of data that is not associated 

with protein. The larger regions of the mid-IR spectrum used for multivariate analyses 

can include the bonds that are broken and formed during heating, but which are not 

considered in secondary structure analysis. The spectral data about these bonds would 

affect the results of multivariate analyses. There is a lot of potential in this kind of 

analysis for identifying those spectral windows that are indicative of degradability. 

Narrowing the spectral windows further can permit the identification of the IR 

wavelengths associated with degradability. Once known, these smaller windows could 

allow backtracking to the bonds behind observed changes. 

The multivariate results from mid-IR spectroscopy appear to reflect some of the results 

from the companion study, in particular the results from the amide I and II regions. 
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Consider the SCP and CNCPS PB2 results compared with the cluster analysis results 

from the amide I and II spectral region. The 40-min and 1-h treatment spectra are 

clustered entirely on their own when compared to the control spectra. The SCP and 

CNCPS PB2 results for these treatments were not significantly different. The 20-min 

treatment has its own cluster, with the exception of one spectrum mixed among the 

control sample spectra. The SCP and CNCPS PB2 results show this treatment to be 

significantly different from all the other treatments. When all spectra are analyzed 

simultaneously, however, the relationship appears to fall apart as the only group of 

spectra that is almost entirely grouped on its own is the control group. The remaining 

spectra are in mixed clusters. It is evident that more research will be required to use 

multivariate spectral analysis for predicting protein degradability reliably. 

There exists great untapped potential for mid-IR spectroscopy in the feed industry. It is 

clear from the spectral analyses conducted in this study that much work needs to be done 

to identify those features and regions of the spectrum that are most closely associated 

with changes in protein degradability. Using treatment in lieu of measured degradability 

as a basis for CLA and PCA obscures the fact that these were grouped accordingly, even 

using large regions of the spectra. Where PCA and CLA really shine was in their ability 

to show differences between the treatments in many of the comparisons, suggesting 

greater sensitivity to chemical methods.  

The basic purpose for this study was to establish the manner in which mid-IR 

spectroscopic data can be used to predict how a feed and its components will be digested. 

The overall goal is to develop a means of rapid and accurate feed evaluation which could 



111 

 

not only save money but a lot of time. To achieve this, there are a few ways the problem 

could be approached with the spectroscopic data on hand. These include: 

1. Using mathematical means such as the second derivative function to enhance 

differences between the spectra prior to PCA and CLA. This might enhance the 

ability of these multivariate methods to distinguish between the treatments by 

enhancing the variability between spectra. 

2. Decreasing the size of that portion of the spectrum used for PCA and CLA. Using 

smaller-sized regions permits one to focus on the effects on a single bond and 

evaluating which bonds are better for differentiating between the treatments. 

3. Including more than just the two amide I peaks representing α-helices and β-

sheets in the spectroscopic analysis of protein. These major secondary structures 

are degraded somewhat upon heating and can result in other protein structures that 

were left out in the present study. The changes to these other peaks may be more 

sensitive to degradability. These other peaks might also represent the binding of 

protein to other cellular constituents. 

4. Using Fourier self deconvolution or second derivative function on amide II bands, 

as well as analyzing areas under those peaks. There may be component bands 

there that more aptly reflect changes to protein. It should also be noted that 

despite the potential complexity of this band, it contains the peptide bond, unlike 

amide I which represents the carbonyl group in a peptide molecule.  

5. Applying discriminant analysis to spectral data may provide some insight into 

those spectral features which are responsible for observed degradation 
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characteristics. This could allow identification of specific changes in the spectra 

that are associated with changes to degradability as opposed to treatment. 

6. Creating a database with the existing data to apply towards future work. Using 

existing spectra for comparison and identification of degradation behaviour, PCA 

and CLA can provide one means for grouping spectra of unknown degradability 

to those with known degradability. This could be taken further to include more 

complex methods such as artificial neural network analysis for spectral 

identification once a sufficiently large database is created. 

7. Evaluate the sensitivity each tissue may have as a response to heating. The 

endosperm, for example, may be comprised of different proteins which may 

respond differently than those found in the cotyledon of the seed. This may 

provide us with more insight as to why different results were observed in the α-

helix to β-sheet ratios for the different spectroscopic methods. 

8. A more extreme heat treatment that causes protein damage and accompanying 

changes to intestinal digestibility as well as spectral changes. This would provide 

spectra that actually contain elements from damaged protein with effects on in 

vitro intestinal digestibility and would permit the investigation of damaged 

proteins compared to those that are not damaged. 
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8. APPENDIX 

8.1 Additional data from in vitro in situ nutritional characterization study 

Appendix Table 8.1. CNCPS Carbohydrate Fractions of the raw (control) compared to 

the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120ºC)  

Fraction Control 20 min 40 min 60 min SEM 

CHO %DM 30.4
a
 28.7

b
 28.1

b
 28.5

b
 0.35 

NSC %CHO 56.0
b
 65.5

a
 66.1

a
 69.1

a
 1.60 

CA %CHO 55.0
b
 64.4

a
 65.2

a
 68.0

a
 1.56 

CB1 %CHO 1.0 1.1 0.9 1.1 0.1 

CB2 %CHO 26.4
a
 14.7

b
 11.3

c
 6.9

d
 0.68 

CC %CHO 17.6
b
 19.8

ab
 22.6

ab
 24.0

a
 1.40 

a, b, c, d
 Means with same superscripts in the same row are not significantly different (P < 

0.05) Means separated using the LSD method  

SEM = Standard error of mean 
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Appendix Table 8.2. NRC 2001 Truly Digestible Fractions of the raw (control) 

compared to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120ºC)  

Component Control 20 min 40 min 60 min SEM 

tdNFC 16.9 18.4 18.2 19.3 0.68 

tdCPc 23.7 23.4 23.5 23.5 0.13 

tdFA 41.1
b
 43.1

a
 43.5

a
 43.2

a
 0.34 

tdNDF 5.8
a
 3.5

b
 3.0

c
 2.4

d
 0.12 

a, b, c, d
 Means with same superscripts in the same row are not significantly different (P < 

0.05) Means separated using the LSD method. (SEM = Standard error of mean, NFC = 

non fermentable CHO, CPc = crude protein , FA = fatty acids, NDF = neutral detergent 

fibre)
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Appendix Table 8.3. Total Digestible Nutrients, Digestible, Net and Metabolizable 

Energy Estimates From NRC Dairy 2001 of the raw (control) compared to the autoclave 

treated Vimy flaxseed. 

 Autoclave Treatment (120ºC)  

Estimates Control 20 min 40 min 60 min SEM 

TDN1x 131.7
b
 135.3

a
 135.7

a
 136.4

a
 0.19 

DE1x 5.8
b
 6.0

a
 6.0

a
 6.0

a
 0.01 

DE3x 5.4
b
 5.5

a
 5.5

a
 5.5

a
 0.01 

ME3x 5.2
b
 5.3

a
 5.3

a
 5.3

a
 0.01 

NE3x 3.7
b
 3.8

a
 3.8

a
 3.8

a
 0.01 

DE4x 5.1
b
 5.3

a
 5.3

a
 5.3

a
 0.01 

ME4x 4.9
b
 5.0

a
 5.1

a
 5.1

a
 0.01 

NE4x 3.5
b
 3.6

a
 3.7

a
 3.7

a
 0.01 

a, b, c, d
 Means with same superscripts in the same row are not significantly different (P < 

0.05) Means separated using the LSD method  

(SEM = Standard error of mean, TDN = Total digestible nutrients, DE = Digestible 

energy, ME = Metabolizable energy, NE= Net energy)
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Appendix Table 8.4. In Situ Degradation Parameters of Neutral Detergent Fibre of the 

raw (control) compared to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120ºC)  

 Control 20 min 40 min 60 min SEM 

Kd (%/h) 5.8
a
 3.8

b
 4.3

b
 5.2

ab
 0.46 

T0 (h) 0.7
ab

 0.2
b
 0.5

ab
 1.5

a
 0.54 

S (%NDF) 5.3 0 0 0 2.32 

U (%NDF) 27.8
b
 28.8

b
 35.9

a
 36.6

a
 1.50 

D (%NDF) 66.9 71.2 64.1 63.4 2.98 

EDNDF (%NDF) 37.8
a
 27.6

b
 26.5

b
 28.7

b
 1.62 

BNDF (%NDF) 62.2
b
 72.4

a
 73.6

a
 71.3

a
 1.62 

EDNDF (%DM) 6.5
a
 3.9

b
 3.7

b
 4.2

b
 0.24 

BNDF (%DM) 10.7 10.2 10.2 10.3 0.35 

a, b, c, d
 Means with same superscripts in the same row are not significantly different (P < 

0.05) Means separated using the LSD method  

(SEM = Standard error of mean,  Kd = degradation rate, T0 = lag time, S = soluble 

fraction, U = undegradable fraction, D = degradable fraction, EDNDF = effective 

degradability of neutral detergent fibre, BNDF = bypass neutral detergent fibre) 
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Appendix Table 8.5. In Situ Degradation Parameters of Ether Extract of the raw 

(control) compared to the autoclave treated Vimy flaxseed. 

 Autoclave Treatment (120ºC)  

 Control 20 min 40 min 60 min SEM 

Kd (%/h) 19.2 14.9 21.4 23.6 6.53 

T0 (h) 1.2
ab

 1.6
a
 0.4

b
 0.4

b
 0.49 

S (%EE) 23.8
ab

 17.8
b
 21.9

ab
 28.3

a
 3.03 

U (%EE) 8.7
b
 10.5

b
 12.6

a
 12.5

a
 1.34 

D (%EE) 67.4
ab

 71.7
a
 65.5

ab
 59.2

b
 3.22 

EDEE (%EE) 74.5
a
 68.7

b
 72.0

a
 72.9

a
 2.19 

BEE(%EE) 25.5
b
 31.3

a
 28.0

b
 27.1

b
 2.19 

EDEE (%DM) 31.4
ab

 30.3
b
 32.1

a
 32.3

a
 0.96 

BEE (%DM) 10.7
c
 13.8

a
 12.5

ab
 12.0

bc
 0.96 

a, b, c, d
 Means with same superscripts in the same row are not significantly different (P < 

0.05) Means separated using the LSD method  

(SEM = Standard error of mean,  Kd = degradation rate, T0 =  lag time, S = soluble 

fraction, U = undegradable fraction, D = degradable fraction, EDEE = effective 

degradability of ether extract, BEE= bypass ether extract) 

 


