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ABSTRACT 

 

Environmental concerns have led to a rapid increase in renewable energy development and 

production as the global demand for electricity continues to increase. The intermittent and 

uncertain nature of electricity generation from renewable sources, such as wind and solar, 

however, create significant challenges in maintaining power system reliability at reasonable costs. 

Energy storage and smart-grid technologies are perceived to provide potential solutions to these 

challenges in modern power systems of different sizes. This work investigates the opportunity to 

incorporate energy storage in microgrids with renewable energy production, as well as applying 

smart microgrid management techniques to reduce the lifetime costs while maintaining an 

acceptable level of reliability. 

A microgrid consisting of a 5 home community with generation supplied by two propane 

generators to meet the “N-1” reliability criterion is used as the base case scenario. Actual load data 

of typical homes is obtained from the industry partner. An equivalent loss of load expectation 

criterion is used to benchmark the acceptable reliability level. A model is developed to calculate 

the lifetime operational cost of the base case scenario which is used to assess the benefit of the 

addition of renewable energy sources, energy storage, and smart microgrid management 

techniques. 

A MATLAB program is developed to assess the 20 year operational costs of various 

combinations of renewable energy sources and battery energy storage, which will be considered 

the lifetime of the system.  The combination of generation and storage which yields the lowest 

lifetime operational cost is defined as the optimized microgrid, and is used as a basis to determine 
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if additional savings are realized by the implementation of a microgrid operated by a Smart 

Microgrid Management System (SMMS). 

The conceptual layout of the proposed SMMS is presented along with identified methods of 

utilizing in-home thermal storage.  The SMMS mechanism is discussed along with proposed 

functionality, potential methods of employment, and associated development and implementation 

costs.  The microgrid operated by the SMMS is assessed, and its lifetime operational cost is 

presented and contrasted against the base case microgrid and the optimized microgrid. 

A power system reliability evaluation of the proposed microgrids are conducted using a 

probabilistic method to ensure that reliability is not sacrificed by the implementation of a cost-

minimized microgrid.  A sequential Monte Carlo simulation model is developed to assess the 

power system reliability of the various microgrid configuration cases.  The functionality of this 

model is verified using an existing reliability assessment program. 

The results from the presented studies show that the implementation of renewable energy 

sources, energy storage, and smart microgrid management techniques are an effective way of 

reducing the operational cost of a remote microgrid while increasing its power system reliability. 
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1. INTRODUCTION 

 

1.1.   Introduction to Microgrids 

 

A microgrid is a set of electrical power generation sources that are networked together to meet 

the energy needs of a localized community, but may also maintain a single connection point to a 

larger electrical grid [1].  Microgrids are typically large institutions such as prisons, hospitals, 

universities, etc., but they can also be small communities, or even single residence dwellings [2]. 

Microgrids characteristically have a high level of reliability when connected to a macrogrid 

and contribute to a greater reliability of the macrogrid as a whole [3].  A microgrid requires some 

level of power management when operating independently to ensure that its power supply can 

meet all of the internal load demands, or at least some critically identified loads. The management 

of energy generation and consumption by applying automation driven by relevant data acquired 

and processed using monitoring systems is often referred to as a “smart grid” application. 

Microgrids are becoming increasingly popular as a form of distributed power generation 

typically employing renewable energy [4].  This is largely due to the improving economic viability 

of renewable energy sources [5], the interest in improved sustainability, and the desire to increase 

distributed generation to reduce loading on over-capacity distribution lines [6]. 

The focus of this study is to evaluate the potential benefit of system intelligence applied to a 

microgrid.  In addition, this dissertation provides some direction on the potential market for 

microgrids and associated smart power management systems. 
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1.2.   Microgrids with Renewable Energy 

 

Microgrids present unique niche opportunities to incorporate renewable energy.  Often, the 

peak load of a microgrid is quite limited depending on the size of the system.  When considering 

a small peak load (such as below 100 kW), the economics present are rather different than that of 

a large utility grid.  On a large-scale such as a large utility grid, it is difficult for renewable energy 

with incentives to be cost-competitive with natural gas and coal generation stations, especially 

once reliability, lifetime, and capacity factor are considered.  For instance, according to the United 

States Energy Information Agency the levelized capital cost of a conventional combined cycle 

natural gas generation system in the United States is $15.8 / MWh and its lifetime levelized cost 

is $67.10 / MWh [7].  In comparison, the levelized capital cost of terrestrial wind generation is 

$70.30 / MWh, and its lifetime levelized cost is $86.60 / MWh.  The initial investment for natural 

gas generation is only 22.5% of the investment compared to wind generation, and its lifetime cost 

is 77.5% of the cost of wind generation.  In addition, natural gas-fired generation is dispatchable 

and has an 87% capacity factor compared to a 34% capacity factor typical of wind turbines.  In 

support of this, Aboriginal Affairs and Northern Development Canada indicate that the levelized 

cost of wind generation is 29% greater than conventional combined cycle natural gas generation 

[8].  

In contrast to large-scale utility grids, the economics for renewable energy integration can be 

quite different when considered for small-scale microgrids.  Often, the reasons for developing a 

microgrid are financially motivated, whether it be to offset fossil fuel consumption that must be 

delivered to remote locations by ice road or airplane, or to reduce reliance upon a utility-power 

grid with prohibitively high electricity rates. [9] 
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A study performed by Rehman and Al-Hadhrami [10]  found that microgrids consisting only 

of diesel generators were cost-competitive when fuel prices were below $0.60 / L, however, 

renewables such as solar became more economical when fuel prices exceeded $0.80 / L.  Solar 

penetration, or the ratio of installed solar generation capacity to the total installed generation power 

capacity of the system, as high as 21% was found to be economically beneficial in the study.  

Although higher degrees of penetration were tested, a growing amount of unutilized energy 

rendered the system uneconomical.   

A renewable energy planning study conducted by Hafez and Bhattacharya [11] indicated that 

the net present cost of a diesel-renewable mixed microgrid was lower than alternative options 

including a fully renewable-based microgrid, and a stand-alone diesel-based microgrid. As such, 

there exists a diesel-renewable balance for a small microgrid where the lifetime cost of the system 

is lower than alternative options including a fully renewable microgrid, and a stand-alone diesel-

based microgrid. 

A paper written by Weis and Ilinca [12] considered the potential for wind energy incorporated 

in to Canadian remote communities along with energy storage.  They found that depending on the 

cost of fuel, energy storage, and wind generators, a viable business case can be developed when 

annual wind speeds are in excess of 6.0 m/s for wind generators only, and wind generators with 

energy storage become viable as annual wind speeds approach 7.0 m/s as long as the cost of energy 

storage systems is less than $1,000 / kW.  In the case of wind energy storage systems, the wind 

turbine array could be sized to produce an additional 50% of energy to the microgrid. 

A paper written by Billinton and Karki [13] explored the reliability detriments of meeting 

additional system load by installing renewable generation rather than traditional diesel units in an 

off-grid application.  It was determined that the most cost-effective method of expanding a 
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microgrid’s generation portfolio was by adding wind-diesel systems as needed, provided the unit 

and installation cost of the wind turbine was approximately $1,950 / kW, and the cost of 

photovoltaics (PV) was $11,000 / kW.  The wind generators were used to minimize diesel 

consumption, while the diesel generators provided the specified level of reliability to the 

microgrid.  It is important to note that as of 2012, the average turnkey cost of grid-connected solar 

ranged from $2.80 / W to $5.00 / W, while the average turnkey cost of off-grid system is $8.10 / 

W [14].  

A study developed by Alawi and Islam [15] discussed using demand-side management (DSM) 

techniques to modify the energy consumption of consumers in order to smooth daily load peaks 

and valleys.  The study generated load profiles from first principles using diversified demand data.  

The resultant calculations determined that by using DSM techniques, the generation components 

for a small off-grid community could be reduced by up to 20%, and the addition of photovoltaic 

generation could be used to optimize the size of a diesel generator reducing the cost of the entire 

test system.  The community in this study consisted of six homes in the Middle East region, similar 

to what is being considered in this study. 

Hu, Karki, and Billinton [16] studied the effect of adding energy storage to a grid characterized 

by the Roy Billinton Test System (RBTS) [17].  A sequential Monte Carlo Simulation (MCS) was 

used to conduct a reliability evaluation of generating systems including wind and energy storage.  

Energy storage was used in three possible operating scenarios: 

1. Stored energy was dispatched only when the summation of available wind power and 

conventional power did not meet the system load. 

2. Energy storage was used only to supplement wind power when it was less than a certain 

percentage of the system load. 
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3. Energy storage was used to supplement wind power to meet a certain percentage of the 

system load as well as to supplement conventional power if the system load is not met, 

thereby supporting conventional generating units to avoid load curtailment while meeting 

the stability criterion. 

The authors found that Scenario 1 maintained the highest degree of reliability, and was capable 

of reducing the loss of load expectation (LOLE) from 0.75 hours / year to 0.55 hours / year.  The 

other two scenarios were used to store wind energy and avoid curtailment as well as improve 

reliability.  An optimal operating strategy for energy storage has been investigated in this work 

with an objective of minimizing lifetime system cost at an acceptable reliability level.  

Eriksen, et al [18] have shown that many European countries have achieved high levels of 

renewable penetration, most notably Denmark.  At lower levels of penetration, wind power can be 

treated as negative load and does not cause significant grid instability, however, at high levels of 

wind power penetration difficulties arise since wind turbine generators cannot be reliably 

scheduled in contrast to traditional generation facilities.  Wind forecasting is required to aid in the 

prediction of wind turbine generation adequacy at higher levels of penetration where aggregate 

capacity is projected between 1 – 48 hours into the future, and aids in scheduling long-term 

balancing power reserves. 

Black and Strbac [19] studied the value of storage pertaining to a 26 GW generation from 

various sources characteristic of the system in Great Britain and found that using energy storage 

to provide standing reserve allowed decreased wind energy curtailment and reduced the required 

energy generation by conventional plants, thus reducing fuel costs. 

Research performed by Keane et al [20] applied DSM techniques and found them to be 

valuable in assessing reserve on a utility grid.  Customer demand-response methods consisted of 
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altered demand profile, load shifting demand, and curtailment.  The peak demand was reduced by 

5.5% - 6.5% during the summer and winter, and the overall reduction in energy was 4% per year.  

These methods have been studied and appropriate DSM techniques are employed in this study. 

In a study that considered energy management systems in microgrid operations, Su and Wang 

[21] discusses how microgrids have shifted from prototype demonstration projects to full-scale 

commercial deployment to address reliability challenges associated with aging infrastructure and 

increased loads.  Distributed energy storage was discussed as a method to make microgrids more 

cost-effective by absorbing excess energy, or supplying energy during peak loads or when the load 

exceeds the available generation capacity.  Demand-side management of controllable loads based 

on real-time set points was also considered to increase the efficiency of the microgrid network. 

An article published by Burr [22] shows that microgrids have become an economically viable 

option compared to being connected to the utility.  Some microgrids, such as present at the United 

States Food and Drug Administration are seeing payback periods on the order of 10 years at normal 

operation.  This payback is hastened when grids are susceptible to frequent power outages or 

during natural disasters such as Hurricane Sandy in 2012.  

A paper written by Huang, Lu, and Zhang [23] considered crucial aspects that would dictate 

the success and acceptance of microgrids.  Features such as intelligence that allows microsource 

generators to be added in a “plug and play” manner, and a master controller which regulates 

multiple slave controllers to alleviate congestion and simplify operation.  The latter characteristic 

was further developed and employed in the algorithm proposed in this project. 

Kyriakarakos et al [24] discussed using controller agents to monitor and operate loads 

according an intelligent DSM system program, and found that this was a beneficial method of 
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performing DSM within a microgrid.  The author had proposed four agents that would control the 

power line to each of the following categories of load: 

- Lighting 

- Refrigeration (fridge and freezer) 

- Various consumptions (appliances, electronics devices, etc) 

- Space heating / cooling 

Kriett and Salani [25] proposed a grid-connected microgrid complete with combined heat and 

power generation, as well as solar thermal and photovoltaic generation, thermal and electrical 

energy storage, thermal dumps, and residential electrical loads, some of which were controlled by 

the microgrid control system.  By utilizing the developed optimal control system, the authors were 

able to reduce annual operating costs by between 3.1% and 6.2% compared to the original annual 

operating costs of a well-equipped residential microgrid.  Characteristics of the efficient control 

system included optimal storage control and optimal demand side management. 

A hot water heater study conducted by Paull, Li, and Chang [26] used a multi-object DSM 

program to remotely control domestic hot water heaters.  The purpose of the study was to increase 

power system efficiency and reliability.  The authors found that controlling the hot water heaters 

in an aggregate manner adversely affected users, thus, individual control of water heaters was 

recommended.  The resultant program had negligible effects on users, while providing peak 

shaving, frequency regulation, synchronous reserve, and other benefits. 

A paper written by Lasseter [27] discussed the use of microsource controllers capable of 

responding to setpoints within milliseconds.  The microsource controller uses local information 

regarding electrical requirements, energy costs, DSM requests, and special grid needs to control 

the source directly, alleviating the need for source-to-source communication.  Moreover, this opens 
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the gateway to plug-and-play operation causing multiple sources to be added to a microgrid 

without the need to alter the controller, or update existing microsource software. 

Energy storage as it pertains to plug-in hybrid electric vehicles (PHEVs) is also being 

considered as a method for increasing the penetration of renewable technologies on to electrical 

grids.  A paper published by Hakimi and Moghaddas-Tafreshi [28] compared two scenarios of 

using PHEVs on a microgrid with renewable energy.  The first scenario consisted of using the 

PHEVs in a “plug-and-forget” manner where no active charging management was used.  The 

system’s load factor for the first scenario was 0.58 and renewable energy was used to deliver 

approximately 56% of the required load energy.  In the second scenario, an algorithm was used to 

manage the charge / discharge characteristics of PHEVs to increase renewable energy penetration 

and smooth out daily load curve variations.  The second scenario yielded a load factor of only 0.49 

and renewable energy was used to deliver almost 67% of the required energy of the load.  Thus, 

by applying an algorithm, increased renewable penetration was achieved, while reducing the load 

factor. 

 

1.3.   Microgrid Reliability 

 

A move towards distributed generation has taken place to meet concentrated load requirements 

and to allow energy to be generated at the site in which it is consumed [29], however, limitations 

exist for the addition of distributed generation.  Firstly, the presence of generation on distribution 

lines leads to changes in local fault-current characteristics and may require a redesign of the local 

fault protection system.  Secondly, distribution systems are most often radial networks, unlike the 

mesh networks created by transmission systems, and little redundancy exists which impedes 



9 

 

reliability [30].    Thirdly, distribution lines tend to have high resistance which increases issues 

with voltage drop and line losses [31].  Lastly, a general lack of communication and Supervisory 

Control and Data Acquisition (SCADA) systems limit the amount of feedback and thus the ability 

to control the grid becomes difficult [32]. 

Microgrids are contrasted from distributed generation in that they can be regarded as both 

scheduled load from the perspective of the utility, and flexible power sources from the perspective 

of consumers [33].  In addition, flexible microgrids have the ability to operate in user-defined 

modes such as constant power or load, arbitrage, emergency backup, or islanding operation.  Use 

of a microgrid controller is necessary for the functioning of a flexible microgrid, however, for 

further effectiveness load controllers are introduced to aid in altering loads through shedding, 

deferral, or derating [34].   

Grid-connected microgrids have been shown to increase the reliability of electrical systems, 

both at the macrogrid level, and within the microgrid [35].  This is intuitive, as the microgrid is 

able to shed load and operate autonomously when required by the macrogrid to benefit its 

reliability.  Likewise, if the macrogrid experiences a forced outage, the microgrid is able to be 

isolated and operate autonomously until the macrogrid regains operations.  It appears that 

microgrids will also be required to play a key role in sustaining macrogrid reliability as demand 

for load continues to grow.  Despite the ever-increasing efficiency of appliances and consumer 

products, electrical consumption per capita continues to rise [36].  At the current rate of growth, it 

appears unlikely that macrogrids will be capable of expanding at the required rate to ensure a high 

degree of grid reliability.  Microgrids currently in operation such as that of The Perfect Power 

microgrid at the Illinois Institute of Technology (IIT) have been shown to reduce outages, 

minimize electrical disturbances, reduce greenhouse gas emissions, defer substation upgrades, and 
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reduce the campus’ peak demand [37].  For instance, for the test system studied by Lo Prete, Chiara 

et al [38] the loss of load expectation (LOLE) [39] of a grid without microgrids present was 

calculated to be 7.70 hours / decade.  With the addition of microgrids to the system, the LOLE 

decreased to 5.53 hours / decade. 

 

1.4.   Problem Definition 

 

Microgrid technology has become more prevalent in the past decade with large microgrids 

being developed for the purposes of military [40], education [41], and public institutions such as 

prisons [42].  Microgrids are also being developed to reduce the system cost of energy as it pertains 

to energy pricing as well as other costing associated with demand rate billing and loss of revenue 

during power outages. 

Many isolated, off-grid communities in Canada are dependent solely on fossil fuel generation 

[43].  In fact, only 14% of the listed off-grid communities in Canada have a renewable generation 

component included in their generation portfolio.  There are many environmental, social, and 

economic concerns related to the use of fossil fuel generation, especially as it pertains to use in 

isolated communities. 

Environmental concerns exist regarding the use of fossil fuel generation including the possible 

risk of spills during transport by airplane, truck, or barge, GHG emissions caused by transportation 

methods, and possible contamination of soil due to storage fuel tank leaks. 

Social concerns include generator noise, local emissions from the generator which could 

contribute to health concerns, and reliance on a single fuel in a remote community could lead to 

risk if the fuel source is not available for a period of time, or if stored improperly. 
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The final concern is regarding financial viability.  Fuel costs are not only subject to market 

price fluctuations, but to additional costs related to transportation, storage, and security which must 

be taken into account when assessing the cost of generation.  Thompson and Duggirala [44] state 

that the delivered cost of fuel to remote communities can be three times more expensive than fuel 

prices elsewhere in Canada.   

Key criteria for the success of microgrid implementation include correctly sizing storage and 

generation elements, and developing cost-effective diversified means of generating electricity to 

ensure an acceptable level of reliability.   

In 2011, Raum Energy approached the Saskatchewan Research Council (SRC) with a novel 

idea of incorporating an energy storage device into their renewable energy generation systems.  

Raum Energy was a manufacturer and distributor of small, residential wind turbines (< 3.5 kW), 

and also distributed photovoltaic panels.  Initially, the intention was to market an integrated 

renewable energy generator and storage system to jurisdictions with time of day pricing to take 

advantage of arbitrage and reduce the payback period associated with the implementation of 

renewable energy installations.  Upon further investigation, opportunities related to microgrid 

development in isolated communities were identified by both Raum Energy and SRC as they 

would be potential early adopters of microgrid technology. 

Besides determining the sizing characteristics for generation and storage, another key 

component of microgrid design was identified by the project partners: what effect would a smart 

microgrid management algorithm have on the financial viability of a microgrid?  DSM techniques 

are widely accepted as cost-effective methods of reducing energy consumption and costs by both 

customers and suppliers.  SRC identified DSM and the potential for utilizing pre-existing energy 
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storage as possible methods for reducing the generation and storage requirements for a microgrid, 

thereby reducing microgrid costs. 

 

1.5.   Research Objective 

 

 With the problem definition in mind, the specific objectives of this research project, as defined 

by our industry partners Raum Energy and SRC, are as follows: 

- Determine the load characterization for a small community consisting of 5 homes 

- Specify an optimized base case microgrid consisting of energy storage, generation, and 

loads 

- Develop a conceptual design for a smart microgrid management system which monitors 

and governs the characteristics of energy storage devices, generation systems, and loads 

within the microgrid. 

- Develop an algorithm to model the functionality of the optimized microgrid both with and 

without the smart microgrid controller to determine if financial benefits exist 

In addition to these research objectives, it is beneficial to ascertain the reliability of the 

developed microgrid model to ensure a high degree of resilience was maintained, especially since 

the proposed microgrid is isolated from a macrogrid.  As such, the reliability of the microgrid is 

analyzed using loss of load expectation (LOLE) reliability indices [45] and verified using the Small 

Isolated Power System Reliability (SIPSREL) program [46]. 
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1.6.   Thesis Outline 

 

This research work has been divided into six chapters.  Chapter 1 introduces the concept of 

microgrids, and discusses previous research efforts pertaining to the integration of renewables, and 

the effect on system reliability.  Based on this understanding, the problem definition of the industry 

partners is presented, and objectives are defined to address the industry need.  These objectives are 

the research objectives of this thesis. 

The residential load characteristics of the proposed system are presented in Chapter 2, along 

with details associated with the potential generation sources being considered for this study. 

Chapter 3 presents a base case microgrid which operates with no alternative energy generation 

or energy storage devices.  This system is used to compare and contrast the financial benefits that 

the subsequent models provide.  An optimized base case is then developed that employs the use of 

energy storage, and renewable generation sources, but does not include the employment of an 

intelligent algorithm.  This system employs the use of a developed MATLAB model [47] to 

optimize the base case’s amount of storage and generation.  Optimization criteria consists of the 

lowest operational plus capital cost calculated for each combination of energy storage and 

generation mix over the specified project lifetime. 

Chapter 4 proposes methods of DSM embodied through curtailment as well as load-shifting.  

An algorithm is developed in MATLAB to incorporate DSM techniques to further reduce the 

capital and operational costs associated with supplying energy to the community.  A conceptual 

design for the load management system is presented that would enable the operation of advanced 

DSM techniques for the community, and cost estimates are discussed.  Results are discussed, and 
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the lifetime operational costs of the resulting ideal microgrid combination are compared with the 

previously developed microgrid costs. 

In Chapter 5, a Sequential Monte Carlo Simulation model is developed to assess the subsequent 

reliability of the developed systems.  Generation tables for the proposed system are developed as 

input for an existing reliability program which also assesses reliability.  The results of this program 

are compared against the results from the Sequential Monte Carlo Simulation model. 

Chapter 6 summarizes the work completed in this research project and the results, and 

concludes the thesis. 
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2. MICROGRID CHARACTERISTICS FOR OPTIMIZATION MODEL DEVELOPMENT 

 

2.1.   Introduction 

 

The microgrid analyzed in this project consists of five homes with an integrated combination 

of electric energy from wind turbine generation, photovoltaic generation, propane generation, and 

battery energy storage.  The load characterization of the five-home system and each of the potential 

electrical generation and storage components are discussed in the following sections. 

 

2.2.   Load Characterization 

 

Real-time residential load profiles obtained from Check-It Solutions [48] are used in this study 

to obtain realistic load characteristics for typical residential customers.  Check-It Solutions is a 

company founded in Regina, Canada that has developed an affordable, flexible, and customizable 

method of measuring energy consumption in residential homes.  Access to real-time and historical 

electrical consumption was provided to facilitate the integration of these load profiles into the 

algorithms that are developed.  The individual load profiles are presented in Appendix A. 

The data acquisition system installed by Check-It Solutions [48] provided historical energy 

consumption in hourly increments of energy (kWh) consumed.  A few of the residences did not 

have a complete year of data available for analysis.  For these residences, data is extrapolated using 

previously recorded data that was representative of the missing data.  A program is written to 

divide this hourly data evenly into 15 minute increments to mirror the time increment that is used 

in the analysis of the power generation from the renewable sources and the energy storage facility 

in the system. 
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The overall purpose of obtaining several time-varying load profiles for a diverse group of 

residences is to analyze how the cumulative time-of-day power demand for the system varies with 

the addition of multiple residences.  A simple stepped load profile estimated for a single home and 

multiplied to form a ‘group’ of homes is not representative of the varying time-of-day demands of 

multiple unique homes. For example, Figure 2.1 indicates the load profile for one of the residences.  

Over the course of the year its peak load is approximately 7 kW.  If this individual load profile 

were simply scaled, the peak load could be as high as 35 kW, whereas the cumulative peak load 

for all five homes is only 25 kW as shown in Figure 2.2, a reduction in potential peak load by 

approximately 30%.  This indicates that there is an efficiency gained in combining multiple 

residences with unique load profiles.  This is consistent with diversified load analysis in electrical 

utilities and is well-understood. 

 

Figure 2.1: Single Residence Annual Load Profile with One Hour Resolution 
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Figure 2.2: Cumulative Annual Load Profile with One Hour Resolution 

 

 Although the individual energy consumption of the five monitored homes varies substantially, 

the average annual energy consumption of the proposed five-home system is 13,807 kWh per 

home.  In comparison, an energy-efficient home located in Saskatchewan has been monitored and 

found to consume an average of 14,000 kWh per year.  This home uses electricity as its sole energy 

source, and has its own well water supply, and waste management system.  It is therefore assumed 

that the acquired load profiles from Check-It Solutions are indicative of a similarly-designed home 

with similar characteristics.  Table 2.1 shows the individual energy consumption of each of the 

five monitored homes.  A generic descriptor is used to maintain the confidentiality of the residents. 
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Table 2.1: System Annual Energy Consumption 

Descriptor 2011-12 Annual Energy Usage (kWh) 

1. Academy 13,384 

2. Chatwin 21,454 

3. Garnet 5,767 

4. Gregory 15,526 

5. Struthers 12,902 

Mean 13,807 

 

 

 Figure 2.3 indicates the load duration curve for the cumulative microgrid. 

 

Figure 2.3: Cumulative Load Duration Curve 
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2.3.  Generation and Storage Characteristics 

 

 The following portion of the chapter discusses the various electrical generation and electrical 

storage components that are considered for the development of the base case and optimized base 

case systems, as well as the optimized microgrid with a smart microgrid management system. 

 

2.3.1. Solar Photovoltaic Generation 

 

 The inclusion of photovoltaic generation in the generation combination for the microgrid 

systems is part of the analysis of this project.  Photovoltaic panels have decreased in price by 

approximately 70% in the past ten years due to in an increase in manufacturing efficiencies, 

consumer demand, and increased collector electrical conversion efficiency.  As such, many small-

scale renewable energy installations include photovoltaic arrays. 

 A quotation for the supply and installation of a 10.42 kW array was received from a local 

consultant that specializes in the distribution and installation of solar panels, as well as the design 

and fabrication of single axis solar trackers.  The total cost of the system is $42,450.  This includes 

equipment, electrical, installation, and foundation work.  This is an installed cost of $4,170/kW, 

and an equivalent energy cost of $0.16/kWh over the lifetime of the panels.  The solar panels carry 

a 25 year warranty.  An example of a similar photovoltaic system is shown in Figure 2.4. 
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Figure 2.4: 8.19 kW Solar Array [49] 

 

 The local consultant also provided an annual energy profile for the electrical production of an 

8.19 kW array.  The total annual production of the array is 10,690 kWh, and the capacity factor is 

14.9%.  The annual energy production of the array was recorded using a Bluetooth data logger at 

ten minute increments.  A computer program is written to aggregate this energy production over a 

30 minute period, and then divide the production evenly between two 15 minute periods to mirror 

the time step that is used to analyze the other forms of generation. 
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2.3.2. Wind Energy Generation 

 

 Wind turbine generation has become an increasingly common option for rural residents to 

generate their own power over the past 15 years, and is also included in the analysis.  Figure 2.5 

shows a 3.5 kW wind turbine manufactured by Raum Energy. 

 

 

Figure 2.5: Raum 3.5 kW Wind Turbine [50] 

 

 Although an annual generation profile for the 3.5 kW wind turbine is not available, the 

Saskatchewan Research Council has done extensive monitoring of wind resources at numerous 

sites across Saskatchewan.  A full year of wind speed data collected on a per-minute basis was 

available from an installed site near Dalmeny, SK. This site is close to the site from where the 
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solar data was collected.  The one minute wind data is sampled every 15 minutes so as to mirror 

the time increment that is used in the analysis by the other forms of generation and storage in the 

system. The wind power curve for the 3.5 kW wind turbine generator is presented in Figure 2.6. 

 

 

Figure 2.6: Power Curve for Raum 3.5 kW Wind Turbine Generator 

 

 The mean annual wind speed measured at the Dalmeny site in 2010 was 4.01 m/s and is 

comparable to the previous five year average of 4.36 m/s [51] as measured at the Saskatoon Airport 

approximately 20 km from Dalmeny.  Using this data, the annual electrical generation for a Raum 

3.5 kW wind turbine is calculated to be 3,030 kWh, and the capacity factor is 9.9%. 

 The cost of the 3.5 kW Raum turbine is calculated using a quotation received for the purchase 
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an equivalent cost of $6,280/kW and is used in estimating the lifetime cost of the microgrid 

systems.  The turbine carries a five year limited warranty, and an estimated 20 year lifetime.  The 

equivalent energy cost based on this lifetime is calculated to be $0.36/kWh. 

 Note that the pricing in this study is indicative of small-scale wind turbines (with a capacity 

below 100 kW) and considers the wind profile characteristic of central Saskatchewan.  As the scale 

increases and locations with strong wind regimes are selected, costs can be further reduced.   

 

2.3.3. Fossil Fuel Generation 

 

 Fossil fuel generation is commonly used to provide energy to the microgrid when it is 

disconnected from the utility grid, or the residential load exceeds the system’s ability to provide 

renewable energy. 

 There are several different types of generators that operate using natural gas, propane, or diesel 

fuel.  Propane is a common fuel used for heating in rural areas where natural gas may be too 

expensive to install.  As of 2015, the cost of liquid propane was approximately $0.72 / L delivered 

to site in rural Saskatchewan.  

 For this project, a generator similar to a Generac generator was used for delivering power to 

the microgrid system.  Generac offers residential, commercial, and industrial generators which 

range in size from 6 kW to 300 kW, and operate on natural gas, propane or diesel.  An image of a 

typical Generac generator is shown in Figure 2.7. 
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Figure 2.7:  Generac Propane Generator [52] 

 

 A quotation is supplied by a local company for the procurement and installation of a 17 kW 

generator with the capacity to use either natural gas or liquid propane as its fuel source.  The total 

cost of the quotation is $8,946.15 which is equivalent to approximately $520/kW. 

 The liquid propane consumption of this generator is 9.73 L / hour under full load [53], and 

6.10 L / hour at 50% load.    At the rated generation, the fuel consumption is 0.57 L/kWh, or the 

energy cost is $0.41/kWh assuming the cost of liquid propane is $0.72/L.  In comparison, the fuel 

consumption at 50% load is 0.72 L/kWh, and the energy cost is $0.52/kWh, which is an increase 

of 26%. 

 The integration of energy storage presents the opportunity to implement large amounts of 

renewable power sources and store excessive energy that can be used during times of low 

renewable power production.  If the levelized cost of energy produced by renewable generation is 

sufficiently low to legitimize the integration of an energy storage system, the integration of larger 

amounts of renewable generation could reduce the lifetime operational cost of the resulting system. 
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There are many different battery chemistries that are readily accessible for mass energy storage.  

The most predominant of these batteries has been the lead acid battery.  It is robust, inexpensive, 

and well-proven, however, its limited lifetime is a deterrent to its use in this project as the battery 

may be required to cycle up to two to three times per day.  In light of these requirements, the next 

most well-proven battery chemistry is the lithium-ion battery. 

 Lithium-ion batteries have recently decreased in price while their characteristics have 

improved.  Companies are now publishing that their batteries are capable of enduring > 8,000 

cycles at 80% depth of discharge [54], and they can be continually cycled up to a 90% depth-of-

discharge.  Also integral to the lithium-ion battery system, a programmable logic controller 

monitors the state of charge, state of health, rate of charge and discharge, internal temperature, and 

individual cell energy balance of the batteries to optimize their performance.  Lithium-ion batteries 

are easily scalable to achieve high power and energy ratings.  Most large-scale systems are based 

on the scaling of individual cells much like the cell shown in Figure 2.8. 

 Prices for lithium-ion batteries vary greatly and depend on the application, size, and 

requirement for power electronics such as inverters.  Costing information gathered for this project 

shows cost variations ranging from $420/kWh to $2,000/kWh.  An article stated that lithium ion 

batteries are generally found to be between $500 and $1,000/kWh, and are forecasted to decrease 

50% - 75% over the next five to ten years [56]. 

 For the purposes of this project, it is assumed that a lithium-ion battery complete with PLC-

based inverter costs $750/kWh.  The battery also has the ability to achieve 90% depth-of-

discharge, and a round trip efficiency of 90%. 
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Figure 2.8:  Saft Medium Power Lithium-ion Cell [55] 

 

2.4.  Summary 

 

 Section 2 characterizes the load that is used in the microgrid analysis as a small, 5-home 

microgrid with a peak load of 25 kW and an average energy consumption of 13,807 kWh per 

home, or a total consumption of 69,035 kWh per annum.  The power generation sources that are 

considered for the microgrid system are photovoltaics, wind turbines, and propane generators.  

Costing for each of these options is presented.  The energy storage component of the microgrid 

consists of lithium-ion batteries and the battery characteristics including SOC operating levels, 

lifetime, and cost is also presented.  
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3. BASE CASE AND OPTIMIZED BASE CASE MICROGRIDS 

 

3.1.  Introduction 

 

 This chapter assesses the operational cost of the base case microgrid as well as the optimized 

base case microgrid.  The base case microgrid consists of the loads as characterized in Chapter 2, 

with energy generation provided by propane generation only.  This establishes the standard cost 

of operating a microgrid system with no load control or curtailment, and no renewable generation 

sources or energy storage. 

 After the cost and characteristics of the base case microgrid are determined, the microgrid is 

optimized by integrating renewable energy generation, and energy storage.  A MATLAB model is 

developed to determine the ideal combination of renewable energies and energy storage.  The 

resultant ideal combination is based on the proposed system with the lowest operational cost.  This 

optimized base case is contrasted with the proposed microgrid operated by the smart microgrid 

management system and is presented in the next chapter. 

 

3.2.  Base Case Microgrid 

 

 The base case system consists of two 25 kW propane generators installed to serve the 5-home 

community load.  The generation system meets the “N-1” reliability requirement, which means the 

peak system load is still met with the outage of a generator unit.   Although fuel prices for remote 

communities can be three times the typical costs, it is assumed that delivery of propane to a remote 

community (such as within Saskatchewan) is $0.72 / L, as previously stated. 
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 A MATLAB program is developed to determine the fuel consumption of the propane 

generation as a function of the power requirement of the 5-home community. The evaluation is 

done using a sequential simulation in 15-minute time increments. The total fuel consumption of 

the base case system over a 20 year period is calculated to be 771,551 L considering a total annual 

energy requirement of 69,035 kWh at varying system loads up to 25 kW. The model utilizes the 

fuel consumption information for the propane generator according to its fuel efficiency, and 

linearly extrapolates the fuel consumption at loads occurring between given data points.   The total 

capital and operation cost over the 20 year period is $581,517. 

 

3.3.  Operation Methodology for Optimized Base Case 

 

 Studies show that renewable generation is capable of producing electricity at a cost less than 

conventional generators on a microgrid scale [57].   Depending on the cost of energy storage, there 

is opportunity to size the renewable energy capacity such that excess energy generated at the site 

can be stored via energy storage technologies, thereby further decreasing the fuel consumed by the 

fossil fuel generators. 

 Renewable energy generation and energy storage are integrated into the base case system, and 

the optimal mix of the different generation sources are determined in order to obtain the optimized 

base case. The optimized microgrid consists of an optimal combination of PV and wind turbine 

generation, as well as battery energy storage.  The microgrid retains the standard generation 

scheme of two 25 kW propane generators each capable of handling the annual peak load of the 

community. 
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 The methodology of the optimization model is as follows. During periods when renewable 

power is available, it will serve the load.  If the renewable generation is not sufficient to meet the 

microgrid load, battery energy is dispatched as needed down to 10% state-of-charge (SOC).  If the 

available renewable generation is greater than the microgrid load, the battery is charged up to 

100% SOC.  Lastly, if the renewable generation and the available battery capacity is not sufficient 

to meet the microgrid load, the propane generator ramps up accordingly to meet the generation 

requirement.  The round trip efficiency of the battery is considered to be 90%. 

 The determination of an optimized base case is financially driven and considers the capital 

cost of the equipment and the continuing fuel cost for a 20-year period.  Maintenance costs are not 

included in this analysis, with the assumption that the maintenance costs are relatively equal and 

do not significantly alter the comparison between the different options. 

 An algorithm is developed to analyze numerous combinations of battery energy storage, wind 

turbine power, and PV generation capacities.  Specifically, the algorithm varies combinations of 

wind turbine and PV generation by 5 kW increments from 0 kW to 200 kW, and of battery energy 

capacity between 0 kWh and 200 kWh in 5 kWh increments.  A total of 64,000 combinations are 

modelled with the defined annual load profiles.  With each combination, a 20-year lifetime cost is 

calculated based on the specified renewable generation size, battery energy storage, and generator 

fuel consumption. 

 Figure 3.1 describes the conceptual layout of the optimized base case microgrid. 
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Figure 3.1: Conceptual Optimized Base Case Microgrid Layout 

 

 It should be noted that a transfer switch is present in Figure 3.1 as a potential connection to a 

macrogrid.  Although this is a common feature in microgrids, the analysis for the optimized base 

case and the ideal microgrid with a SMMS as described in the next chapter does not consider that 

a macrogrid connection is available.  For the purposes of this research, the microgrid community 

is considered to be isolated without a connection to a macrogrid. 

 Figure 3.2 indicates the proposed control system schematic for the optimized base case 

microgrid. 
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Figure 3.2: Optimized Base Case Control Method Diagram 

 

 The optimized base case microgrid contains some flexibility in the way that loads and 

generation interact when battery energy storage is contained in the system.  At any given time, the 

summation of the load and generation must be equal to avoid power quality issues and service 

interruption.  The battery can supply energy in times of excess load, and absorb energy in times of 

excess generation, but only for a limited time.  Once the battery is unable to meet the system’s 

request to balance the load and generation, the propane generator is started or shut down as 

required for the balance. If the total generation capacity including the battery storage fails to meet 

the system load, the load is curtailed. This results in a loss of load event. 

 

3.4.  Optimized Base Case 

 

 It is determined early in the analysis that there was little benefit in the addition of wind turbine 

generation.  With the cost of small wind power generation being $6,280/kW, there was not enough 

financial advantage to including it in the renewable generation portfolio compared to the 

photovoltaic generation which was priced at $4,170/kW.  It was anticipated that the photovoltaics’ 

generation being limited to daylight hours may be a detriment to the system at some point, whereas 
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the ability to produce renewable energy at night with wind turbine generation may be a benefit to 

the wind generation system.  However, the fuel costs associated with night-time generation are 

low enough to negate the limited benefit of wind turbine generation.  Wind generation is still 

assessed in various degrees of penetration in the microgrid for each analysis, however, in each 

scenario it is always more financially viable to exclude it from the generation portfolio.  

Furthermore, remote communities in Canada are predominantly located in the north, and a 

combination of cold temperatures and wind-driven snow and ice are often detrimental to the 

operation of mechanical systems such as wind turbines, especially small-scale wind turbines which 

may have not yet reached maturity in Canada. 

 It is important to note that this analysis of wind turbine generation is not indicative of the 

larger wind industry.  Large wind turbines (> 200 kW) are largely well-proven, reliable, and cost-

effective.  Only recently have small wind turbines (< 50 kW) experienced a resurgence in 

Saskatchewan, and the limited economies of scale and experience have not been sufficient to make 

them a cost-effective method of generation in this analysis. 

 Depending on the generation and storage combination, the propane generator must operate for 

a specific amount of time to ensure the load is met.  The fuel cost associated with its operation is 

one of the major components of lifetime cost to the microgrid. Table 3.1 displays a portion of the 

calculated microgrid lifetime costs associated with varying amounts of battery energy storage, 

photovoltaic generation, and associated propane generation costs.  All costs are based on the 

previously mentioned costing information. 
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Table 3.1: Lifetime Costs for Microgrid Combinations 

Photovoltaic Generation Capacity Rating (kW) 

 0 5 10 15 20 25 30 35 40 

Energy 

Storage 

Capacity 

(kWh) 

0 $581,517 $546,662 $520,106 $509,734 $510,358 $517,201 $527,690 $540,537 $554,963 

10 $589,000 $554,115 $522,421 $505,379 $502,672 $507,696 $516,921 $529,177 $543,315 

20 $596,484 $561,615 $528,531 $505,310 $497,474 $499,409 $507,206 $518,301 $531,568 

30 $603,945 $569,115 $535,956 $508,463 $494,652 $493,032 $498,575 $508,421 $520,971 

40 $611,427 $576,615 $543,456 $513,757 $494,351 $488,685 $491,525 $499,635 $510,961 

50 $618,902 $584,115 $550,956 $520,299 $496,716 $485,691 $485,784 $491,834 $501,912 

60 $626,377 $591,615 $558,456 $527,685 $500,890 $484,794 $481,498 $485,488 $493,667 

70 $633,852 $599,115 $565,956 $535,185 $506,521 $486,410 $478,648 $480,446 $487,194 

80 $641,327 $606,615 $573,456 $542,685 $513,000 $489,842 $477,545 $477,024 $482,275 

90 $648,808 $614,115 $580,956 $550,185 $520,125 $495,093 $479,086 $475,366 $479,314 

100 $656,271 $621,615 $588,456 $557,685 $527,511 $501,349 $482,772 $475,872 $478,429 

 

 

 It can be seen that the optimal lifetime cost of the system occurs when the microgrid system 

consists of 35 kW of photovoltaic generation and 90 kWh of battery energy storage.  For greater 

amounts of photovoltaic generation there are diminishing returns as the increase in solar 

production cannot be adequately contained for sufficient periods of time in the battery energy 

storage system.  Likewise, if the size of the battery storage system is increased, the added storage 

is not be utilized often enough to justify the additional expenditure.   

 It should be noted that when the microgrid has 0 kWh of storage, and 0 kW of photovoltaic 

generation, the lifetime cost is $581,517 and represents the base case microgrid operating solely 

on propane generators.  This lifetime cost is 22% greater than the optimized case with energy 
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storage and a PV array.  Thus, there is a clear financial benefit for the addition of renewables and 

storage for a remote community that is dependent on fossil fuel generation. 

 This optimized combination of generation and storage (35 kW of photovoltaic generation and 

90 kWh of battery energy storage) is now considered as the optimized base case to determine the 

degree of benefit in adding a smart microgrid management system to the microgrid. 

 

3.5.  Summary  

 

 The capital and operational cost of meeting the community’s load solely with propane 

generators is calculated to be $581,517.  The costs and characteristics of various generation sources 

and energy storage that are considered in determining the ideal microgrid base case is discussed, 

and an ideal combination of generation sources and storage is presented.  This combination is 

considered the optimized base case system going forward and is compared to the microgrid 

managed by a Smart Microgrid Management System.  The resulting optimized base case consists 

of a 35 kW photovoltaic array with 90 kWh of storage and two 25 kW propane generators.  The 

lifetime cost of the optimized base case is 18% less than the lifetime cost of the microgrid when 

operating only using propane generators. 

 

 

  



35 

 

4. SMART MICROGRID MANAGEMENT SYSTEM DEVELOPMENT 

 

4.1.  Introduction 

 

 The chief objective of this research project is to develop a conceptual Smart Microgrid 

Management System (SMMS) that is able to monitor aspects of generation and load within a 

microgrid and reduce its lifetime cost while maintaining an acceptable level of reliability.  Based 

on the feedback received from the monitoring system, the SMMS makes decisions to curtail, 

charge, or discharge available resources with the overall goal of reducing the cost of the microgrid 

with various portfolios of generation and storage. 

 This section outlines the development of the SMMS.  The methodology of the SMMS is 

presented in Section 4.2.  Opportunities for in-home thermal energy storage are identified and 

characterized in Section 4.3.  An algorithm is developed based on decision-making criteria, and is 

outlined in Section 4.4.  Section 4.5 outlines a conceptual design for the implementation of the 

developed SMMS and estimated production costs.  Aspects that are pivotal to the effectiveness of 

the control system are ease of implementation, reproducibility, and cost-effectiveness.  

Combinations of wind and solar generation, and battery and thermal energy storage are modelled 

to determine the most effective combination of generation and storage that reduces the cost of the 

microgrid managed by the SMMS over a 20 year lifetime.  Results for the modelled combinations 

are presented in Section 4.6.  Section 4.7 compares the benefits of the microgrid operated by the 

SMMS versus a microgrid only utilizing battery energy storage, and Section 4.7 summarizes the 

findings of this chapter. 
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4.2.  Methodology 

 

  

 A smart control system is a closed-loop algorithm that operates autonomously to achieve a 

specified outcome, as indicated below in Figure 4.1.  For the purpose of this project, a smart control 

system is employed to manage the generation components of a microgrid system.  It is also used 

to manage arbitrage, load shedding, and load deferral.  The intent is to create a viable business 

case for the inclusion of a smart microgrid management system for a microgrid 

. 

 

Figure 4.1: Typical Closed-Loop System [58] 

 

 Additional control is added to the SMMS to automate disconnection of unnecessary electrical 

loads in the homes.  These loads could include curtailable loads from televisions, microwaves, 

electric stoves, washing and drying machines, and lighting.  In the electrical code, all the 

aforementioned appliances except lighting and televisions must have dedicated circuits, thus using 

a smart control system to manage these systems would not be complicated, expensive, or have 

detrimental effects on other components which could share the same circuit breaker.  As well, the 

implementation of smart circuit breakers in a home to control loads would be a simple and cost-

effective retrofit to apply.  For this study, load curtailment is limited to exterior lighting loads 

http://upload.wikimedia.org/wikipedia/commons/2/24/Feedback_loop_with_descriptions.svg
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which are characteristic of the home being modeled and could be controlled during times when 

their use is not beneficial.  Phantom loads are not considered in this model. 

 The developed SMMS utilizes feedback from in-home residential loads to determine the 

available amount of storage, and capacity for load shedding and load deferral that is used to transfer 

energy consumption from times when energy prices are high (such as when the propane generator 

is running) to time when renewables are able to operate the load.  

 It was initially presumed that the success of the intelligent algorithm would be limited to 

isolated microgrids dependent on propane or diesel generation, however, it was soon determined 

that there could be potential for the successful implementation of an SMMS in any market with a 

price differential for electricity.  Although this price differential tends to be greater in isolated 

microgrids where solar energy production costs are much less expensive than diesel or propane 

energy production costs, the SMMS could be implemented for grid-connected homes with an 

electrical pricing differential between on-peak and off-peak times.  If the benefits of the SMMS 

are sufficient to legitimize its incorporation into a home with a time-of-day electricity pricing 

market, the potential market would be quite large. 

 Figure 4.2 depicts the proposed conceptual layout for the SMMS and the associated control 

method diagram.  In this case, both generation and load are connected to a generation / load 

interconnection bus which is the point of common coupling.  There is also a load controller which 

monitors in-home loads and interacts with the interconnection bus to control electrical generation 

and storage devices based on desired operating conditions. 

 The conceptual layout of the SMMS is essentially the same as the optimized base case 

microgrid, but has the added components of the load controller and its associated bidirectional 

communication lines which enable smart controls and feedback loops. 
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Figure 4.2: Smart Microgrid Management System Conceptual Layout 

 

 Figure 4.3 indicates the operating method of the SMMS along with operating priorities.  The 

operating procedure of the microgrid is polled by the SMMS, which analyzes the components of 

the proposed case, and then determines if there is opportunity for decreasing energy consumption 

if the proposed case yields a high electricity price.  If the SMMS determines that the microgrid is 

operating at a high electricity rate, the SMMS’ first priority is to alter the load to lower the required 

electrical consumption.  Load alteration is achieved via both load curtailment of curtailable loads, 

as well as load shifting.  Load shifting methods are explained later in this chapter.  If the cost of 

operating the microgrid is still considered high, the second priority of the SMMS is to dispatch 

electrical energy storage from the battery.  If the resultant combination is still not capable of 
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meeting the firm community load, the SMMS signals the generator to come online and support the 

system.  In the event that the generator is not operating at full capacity, excess capacity is used to 

recharge both electrical and thermal energy storage devices. 

 

 

Figure 4.3: Smart Microgrid Management System Control Method Diagram 

 

 The reasoning and description of this layout is expounded fully in the following section which 

discusses the implementation method and associated costs with the development of the SMMS. 

 

4.3.  Additional Storage Specifications and Load Shedding 

 

 It is recognized that besides battery energy storage, additional opportunities exist within 

residential homes to provide other forms of energy storage and load shedding that can be used by 

the SMMS to execute DSM techniques to defer part of the microgrid’s load for a given time when 

it proves to be more financially beneficial. 
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 Curtailable Load Shedding (CLS) is simply the curtailment of specific loads. Within the scope 

of this project, it is not the intention to curtail important loads that would inconvenience the 

residents of the community, thus, only exterior lighting will be considered for CLS control.  CLS 

of the exterior lighting will only occur during times when exterior lighting is not likely utilized, 

such as between the hours of 12:00 AM and 6:00 AM daily.  Exterior lighting loads indicative of 

the model home consists of three 60 watt soffit lights, and one 175 watt mercury vapor yard light. 

 Another opportunity to further increase the financial viability and flexibility of the microgrid 

using the SMMS is identified through the ability to manage in-home thermal storage.  Every 

residence contains components which have thermal mass which can be used for thermal storage.  

These storage components include domestic hot water heaters, freezers, refrigerators, and even the 

home’s air, walls, and floor.  For the purpose of this project, the thermal storage mediums of an 

electric domestic hot water heater and a geothermal mass tank are considered – both indicative of 

the home after which the system is being modelled. 

 A 50 US gallon, two-element electric hot water heater has a rating of 4.5 kW and is indicative 

of a typical residential electric hot water heater.  The temperature of a hot water heater is crucial 

to safety, and must be regulated between specific temperatures so as to decrease the probability of 

contracting legionella pneumophilia pneumonia (also known as Legionnaires Disease) which can 

be caused by domestic hot water temperatures below 49°C, as well as to reduce the risk of tap 

water scalds which can be caused by temperatures above 60°C [59].  Thus, the allowable 

temperature variation in the hot water heater is between these two limits.  The available energy 

storage in the hot water tank is calculated as shown in Equation (4.1). 
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∆𝑄 =
𝑚𝑐𝑝∆𝑇

3,600
                  (4.1) 

where, 

∆𝑄 = change in energy (kWh) 

𝑚 = mass of water (189.27 kg) 

𝑐𝑝 = specific heat of water (4.18 J/g°K) 

∆𝑇 = temperature differential (11°C) 

 

 The resultant energy storage available for smart control in the intelligent system is 2.42 kWh 

per home, or a total of 12.1 kWh for the five-home system.  The associated duty cycle of the hot 

water heater is approximately 12.5%, based on measurements taken from the model home’s energy 

monitoring system.  This duty cycle agrees with other reference material indicating the average 

duty cycle of electric hot water heaters [60].  With a 12.5% duty cycle, and a power rating of 4.5 

kW per home, this means that at any given time, the average power available both for hot water 

heater charging and discharging in the five-home network is given by Equation (4.2). 

 

𝑃𝑎𝑣𝑔 𝐻𝑊𝐻 = (𝑃𝑚𝑎𝑥)(𝐷)(𝑥) =  2.8125 𝑘𝑊                  (4.2) 

 

where, 

Pavg HWH = average power available for DSM in the smart microgrid 

𝑃𝑚𝑎𝑥 = maximum power draw of a single electric hot water heater 

𝐷 = duty cycle 

𝑥 = number of homes 
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 Thus, an average of 2.81 kW is available within the microgrid for charging and discharging 

which raises and lower the temperature of the hot water respectively.  The model uses this average 

hot water heater power to charge and discharge the domestic hot water energy storage system 

within the microgrid.  To simplify the methodology, this domestic hot water energy storage system 

is modeled as a battery energy storage system with a total energy storage capacity of 12.1 kWh. 

 If the proposed ideal microgrid system were to be implemented in the field, this method of 

tracking the current energy of the hot water heater would be replaced by a feedback system which 

would send information regarding the current temperature and power consumption for the entire 

hot water heater array to the SMMS via a residential controller and internet connection. 

 The ground source heat pump (GSHP) heating system characteristic of the group of homes 

being analyzed is a 3-ton in-floor heat pump with a rating of 4.5 kW.  It delivers heat to a 50% 

ethylene glycol – water mixture which is stored in a 50 US gallon insulated mass tank.  This system 

is controlled by an integrated aquastat which monitors the temperature of the mass tank, and signals 

the in-floor heat pump to deliver more energy when needed.  The available temperature differential 

allowed in the mass tank is 10°C.  It is understood that when the temperature of the mass tank is 

decreased, in-floor loop pumps must be run longer to deliver the same amount of heat to the loop, 

however, when the mass tank temperature is higher than normal, these pumps will run at a reduced 

time.  Thus, it is assumed that the net energy consumption due to varying the temperature set point 

is neutral as long as the model continues to cycle the system. 

 The available energy storage in each mass tank is calculated using Equation (4.1) where, 
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∆𝑄 = allowable variation in energy storage (kWh) 

𝑚 = mass of 50% ethylene glycol - water mixture (205.93 kg) 

𝑐𝑝 = specific heat of 50% glycol-water mixture (3.41 J/g°K) 

∆𝑇 = temperature differential (10°C) 

 

 The resulting available energy for storage is 1.95 kWh/home.  It is also calculated, based on 

measured energy consumption in the model home, that the duty cycle of the heat pump system is 

8.9%.  This equates to a cumulative energy differential of 9.75 kWh for a five-home network.  This 

means that the average power available for geothermal mass tank load shedding in a five home 

system is given by Equation (4.3). 

 

𝑃𝑎𝑣𝑔 𝐺𝑆𝐻𝑃 = (𝑃𝑚𝑎𝑥)(𝐷)(𝑥)             (4.3) 

 

where, 

Pavg GSHP = average power available for DSM from the ground source heat pump 

𝑃𝑚𝑎𝑥 = maximum power draw of a single ground source heat pump (4.5 kW) 

𝐷 = ground source heat pump duty cycle (8.9%) 

𝑥 = number of homes (5) 

 

 Thus, the average GSHP power available for deferral for the 5-home microgrid is 2.0 kW 

based on the equation above.  Much like the case for the electric hot water heaters, this GSHP 

array is modelled as a 2.0 kW battery with a total energy storage capacity of 9.75 kWh. 
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 Other potential methods of utilizing thermal energy storage that are not explored in this project 

include the use of freezers, air conditioners, ambient air heating and cooling, and purposefully 

installed thermal energy storage such as bricks, concrete, or water tanks.  Figure 4.4 shows the 

components of residential homes that are considered for this project, as well as some of the 

additional potential components that could be used for further thermal storage. 

 

 

Figure 4.4: Components Available for Smart Management 
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4.4.  Algorithm Development 

 

 The SMMS operates in a closed-loop feedback system that monitors the instantaneous power 

generation of its renewable components, the real-time load consumption of the homes in the 

system, the available thermal mass and ability to defer and shed load, and the state of charge of 

the lithium-ion battery bank. 

 The decision-making flow chart is shown in Figure 4.5, an explained below. 

 

Figure 4.5: Smart Control Algorithm Flow Chart 
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 The first function of the smart microgrid management system is to determine the current 

generation capabilities and characteristics of the available renewable generation, battery storage, 

and propane generation sources.  This information is contrasted with the current call for load from 

the homes in the network, and determines the potential net balance of the system. 

 The second function of the algorithm is to determine the time of day.  The time of day dictates 

which loads can be turned off.  Time-of-day verification would also be required if a similar system 

were implemented for a grid connected microgrid which has time-of-day electricity pricing which 

will be discussed later.   

 The next decision step in the algorithm pertains to shedding available curtailable loads within 

the microgrid.  Regardless of the pricing structure, loads which can be curtailed are the most viable 

methods of reducing energy consumption and its associated cost.  Although the model can be 

altered, it is assumed that external lighting such as yard lights are curtailed between the times of 

12:00 AM and 6:00 AM.   

 The cost of electrical generation is defined in the ‘Determine Pricing Structure’ step.  This 

could be simply determining the current time-of-day electricity price in a grid-connected electricity 

market, or in the case of this project, this entails analyzing renewable and non-renewable 

generation constituents with a weighting or priority as to which methods produce electricity at 

discounted rates.  For grid-connected time-of-day electricity markets, there are firm time limits to 

distinguish on-peak, mid-peak, and off-peak pricing schemes.  The SMMS would use the site-

specific pricing scheme to control loads and storage with the overall goal of reducing the cost of 

operation in these markets.  It is important to note that all microgrids, irrelevant of whether or not 

they are connected to a macrogrid, are subject to tiered electricity pricing.  For instance, if multiple 

generation technologies exist, they will each have different costs of electricity generation, and the 
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SMMS can determine how to operate the microgrid most efficiently.  As well, even if a microgrid 

is operating only with a single fossil fuel generator, depending on the loading of the generator, 

electricity will be produced at varying rates due to the generator’s efficiency at different loads. 

 The output of the ‘Determine Pricing Structure’ step provides the ‘Generation / Load 

Management’ step with information regarding whether energy costs are high (such as when the 

generator is supplying energy) thereby implementing energy conservation and/or energy deferral, 

or whether energy costs are low and available energy storage devices can be charged. 

 The ‘Generation / Load Management’ task assesses the feedback received from thermal 

management storage devices in the form of current temperature, energy consumption, and 

availability and determines the system’s capability to store or defer energy.  For the purposes of 

this project, this entails monitoring the domestic hot water heater and the geothermal mass tank to 

determine if there is any latitude in raising or lowering temperatures that can create financial 

benefit for the system.  A subsequent decision is made according to received feedback from the 

pricing structure and available energy storage as to whether the system should pursue load deferral 

or charge thermal loads.  Based on the decision from the ‘Generation / Load Management’ process, 

the thermal energy storage systems are instructed to either increase their temperature to absorb 

energy and recharge during times of discounted electricity, or are turned off to conserve energy 

until they reach a lower limit or electricity prices decrease again.  The rate at which they are 

expected to charge or defer energy is dictated by the duty cycle and power rating of the technology 

as described in Section 4.3. 

 Depending on the system’s capability to absorb energy imbalances through curtailable load 

shedding, or thermal charging and deferral, the battery charges or discharges accordingly to meet 

the system’s remaining requirements within the battery’s specified limits.   
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 Lastly, if a negative energy balance remains after curtailment, energy deferral, and battery 

discharge measures are implemented, the remaining energy requirement is supplied by the propane 

generators.  Note that in the case of a grid-connected microgrid, the macrogrid would supply the 

remaining energy assuming that the electricity price is lower than that of the propane generation 

within the microgrid.  

The program performs this decision loop in 15 minute increments for the duration of the 

specified 20 year period.  All equipment characteristics such as charge / discharge limits, and round 

trip efficiencies are integrated into the algorithm and are subject to the properties set out in this 

thesis. 

 

4.5.  Conceptual Design of Remote Monitoring and Control 

 

 In order to accurately gauge the potential for implementation of the proposed SMMS, a review 

of possible methods of implementation and associated costs is performed. 

 A concept for the system to manage a microgrid, both on the generation side as well as the 

load side, is presented in the following section.  Key highlights include: 

• System integrates with existing technologies to avoid development overlap 

• Scalable design allows for the monitoring and control of variable amounts of residential 

loads 

• Intelligent algorithm is located at central server, and allows for the use of research tools 

such as MATLAB 

• Central server is capable of controlling a large number of subsystems with negligible 

cost increments 
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• Remote access to system settings simplifies installation, diagnostics, and testing as well 

as allows for preferential remote management and manual override 

 Figure 4.6 shows the conceptual layout of the remote monitoring and control system that is 

required to facilitate the proposed SMMS.  Main components of the design include the generation 

site with associated interfaces, a server site which facilitates the algorithm and relevant lookup 

tables that govern site characteristics, and a residence with feedback sensors and controllable loads.  

Each of these components are interconnected to a local network or the internet to allow for a 

flexible, plug-and-play SMMS. 

 

 

Figure 4.6: Microgrid Control System 
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 The Generation Site includes all electrical generation and storage devices.  It is assumed that 

all devices are designed to connect to a common electrical point, and the original equipment 

manufacturer (OEM) controller can be interfaced to a system controller such as a programmable 

logic controller (PLC) which is labeled as the Generation Controller.   

 The Generation Controller provides an interface between the physical devices (Wind Turbine 

Controller, Photovoltaic Controller, etc.) and the SMMS.  Physical connections to the generation 

controllers vary by manufacturer and can range from analog and digital inputs and outputs, to 

standard protocol bus communications such as MODBUS and DeviceNet.  Connection to the 

SMMS is via a persistent internet connection.  The Generation Controller is programmed to 

constantly read and hold information from the generation interfaces, and to supply this data to the 

SMMS upon request.  The Generation Controller is also programmed to set outputs in response to 

commands from the SMMS (e.g. disconnect grid, set battery controller to charge, turn on ancillary 

generation, etc).  The Generation Controller requires hardware and programming specific to the 

installation, depending on the generation devices that are installed.  In the case of a grid-connected 

microgrid, the generation controller would not be required, rather, the pricing structure of the 

electricity utility would be preprogrammed into the SMMS. 

 A developer provided the following cost estimates for the development and continuing costs 

for the Generation Controller:  

 Development: $15,000 

 Ongoing Equipment and Assembly (per unit): $1,000 

 

 The Residence portion of the conceptual design could be comprised of one or several 

residences.  The residence embodies the point of electrical load.  The key components are a Load 
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Controller, feedback systems, and loads.  Loads may provide control system feedback to the Load 

Controller in the form of current system temperature, power consumption, or other pertinent 

system characteristics.   

 A controllable circuit breaker, such as the one shown in Figure 4.7, could also be employed 

to aid in the shedding and deferral of loads.  A controllable panel circuit breaker is very similar to 

a standard electrical circuit breaker in a distribution panel, with the exception that the breakers are 

designed to be controlled by some central controller.  The breakers may also provide feedback 

information such as current draw, and can be used to determine the duty cycle of connected 

components.  There are many Controllable Breaker Panels available on the market with prices 

ranging from $400 and up.  This method could be used to turn devices on and off, but may not be 

necessary depending upon the method of control.  As an alternative, relays operated by the Load 

Controller could curtail certain loads and provide feedback to the SMMS.  In the case of electric 

hot water heaters and ground source heat pump mass tanks, the existing thermostats could be 

intercepted by the Load Controller, and provide the tank sensor with an altered reading to achieve 

additional heating, or energy deferral, however, there may be liability issues associated with this 

method of operation. 

 

Figure 4.7:  Solenoid-Operated, Remote-Controlled Eaton Circuit Breaker [61] 
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 The Load Controller is a PLC or microcontroller-based device with connections to the 

controllable breaker panel and/or curtailment relays, feedback signals from various loads, and the 

internet (through the home owner’s internet service provider).  The primary purpose of the Load 

Controller is to provide an interface between the controllable breaker panel or individual load 

components and the SMMS.  The Load Controller also provides physical connections for the 

feedback from various loads, as necessary.  The Load Controller is primarily a hardware interface 

that allows control to be handled by the SMMS, requiring little or no programming that is particular 

to a site.  Settings at installation would mostly consist of identifying loads with dedicated feedback 

inputs.  This information is labeled and saved in the SMMS, not in the Load Controller.  This 

flexibility allows for the distribution and implementation of the controller to be more efficient and 

cost effective.  The following costs were supplied by a local developer and encompass the 

preliminary development and design of the Load Controller, and the subsequent charge on a per 

unit basis for the parts and assembly of the Load Controller: 

 Development: $15,000 

 Ongoing Equipment and Assembly (per unit): $500 

 

 The Server Site is the location of the software that houses the microgrid data and executes the 

SMMS.  The SMMS as it pertains to the server site would consist of a set of software services, 

applications and a database.  Specifically, the SMMS could run on a Windows server computer, 

the software could be written in a standard language such as .Net, and the database could reside 

on a relational database server such as Microsoft SQL Server. 
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 The overall function of the Server Site is to remotely manage a microgrid (or several 

microgrids) with an intelligent algorithm.  It does this by keeping a current state (feedback) of the 

physical microgrid in a database using synchronizing processes for both Generation and Load 

Controllers.  The SMMS uses the microgrid feedback database to generate new output settings, 

which are then fed back to the Generation Controller and Load Controller via the synchronizing 

processes.  

 A conceptual diagram identifying the key processes and data structures of the Server Site is 

shown in Figure 4.8 below. 

 

Figure 4.8: Server Site Conceptual Diagram 
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 The Smart Management System is the main process that acquires status data from the 

Generation Status Table, the Load Status Table, and the Algorithm Parameter Table and sets 

outputs to determine load deferral, shedding, and charging opportunities.  The SMMS will also 

update the Generation Controller Synchronization Process to determine how generation 

components are managed.  The SMMS could be written in a number of languages, including 

MATLAB, as long as it is capable of database access. 

 Generation Controller Synchronization is the process that keeps the Generation Status Table 

data current with the signals received from the on-site Generation Controller.  It is also responsible 

for polling the output portions of the Generation Status Table and sending the appropriate signals 

to the on-site Generation Controller to manage the generation characteristics of battery storage 

and/or ancillary generation. 

 The Load Controller Synchronization process operates in the same fashion as the Generation 

Controller Synchronization process.  Its purpose is to keep the Load Status Table updated with 

feedback from the in-house loads for use by the SMMS, as well as polling the Load Status Table 

to determine functional changes in load strategy that the smart microgrid management system 

implements. 

 Table Management is the process that allows a user to manage the data that is in the database.  

This is necessary for installation, maintenance, troubleshooting, or even a manual override. The 

Table Management process could range in complexity from a database management tool to a web 

interface that allows remote set up and testing (such as in the case of setting up a new Load 

Controller, one could enter information into the database via a browser or mobile application, and 

could test functionality of the load feedback and load control systems). 
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 Each external generating or storage device would be stored in the Generation Status Table, 

and it would include all parameters such as power consumption and production, operational time, 

capacity, enabled state, etc.  There are also entries in this table reserved for the control of each 

generation component. 

 The Load Status Table stores all the parameters associated with the necessary feedback 

systems and control outputs for each load system that will be on the control network.  In addition, 

the table also contains information such as owner identification number, manual override, current 

status, etc. 

 Parameters for use by the algorithm are stored in the Algorithm Parameter Table and would 

include the custom generation and load makeup of each microgrid system as well as set points and 

limits that would be used to control the individual components.  Algorithm Parameter Table values 

could be changed in real-time to reflect operational priority and the possible addition of loads in 

the microgrid. 

 The following costs were supplied by a local developer and are indicative of costs associated 

with the development and implementation of the server site, and ongoing operational costs related 

to online subscription and storage services: 

 Development: $35,000 

 Operational Costs: $50/month 

 Equipment Capital: $0 
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4.6.  Results 

 

 The SMMS MATLAB algorithm analyzes 64,000 combinations of generation and storage 

options ranging from 0 to 200 kW of each of wind turbine generation and PV generation in 5 kW 

increments, and 0 to 200 kWh of energy storage in 5 kWh increments.  The algorithm also 

incorporates the proposed methods of curtailable load shedding and load deferral according to the 

limits that have been established in Section 4.3. 

 Costs are calculated based on the required capital of the modelled generation and storage 

portfolio as well as ongoing fuel costs associated with the propane generators.  Once again, 

maintenance and replacement of the propane generators is not considered in the 20-year lifetime 

costs because this does not represent additional cost compared to the base case microgrid solely 

reliant on propane generators.  The costs of maintenance and replacement are evident in both cases, 

and do not have to be considered when drawing financial comparisons.  Note that the base case 

microgrid requires the propane generators to operate continuously and at a lower loading compared 

to the optimized base case or the ideal microgrid operated by the SMMS, and are likely 

characterized by additional maintenance costs and shorter lifetime that is not been captured in this 

analysis. 

 Table 4.1 indicates the calculated 20-year lifetime costs of capital and operation of a microgrid 

operated by a SMMS which includes control of residential loads, thermal energy storage, and the 

associated costs to the consumers of the implementation of the SMMS as described in Section 4.5.  

The costs of the SMMS are included in the 20-year lifetime calculation considering a 5-home 

community with curtailable lighting and remote load control of both the electric hot water heater 

and the ground source heat pump mass tank. 
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Table 4.1:  Lifetime Costs of Various Combinations of Microgrids 

Solar Generation (kW) 

  0 5 10 15 20 25 30 35 

Battery 

Energy 

Storage 

(kWh) 

0 $549,394 $514,334 $477,043 $447,930 $434,740 $434,443 $440,713 $451,494 

10 $556,871 $521,834 $484,537 $452,130 $433,462 $429,759 $433,830 $443,115 

20 $564,348 $529,334 $492,037 $457,911 $434,359 $425,934 $427,369 $434,913 

30 $571,829 $536,834 $499,537 $464,813 $437,389 $423,914 $422,654 $427,998 

40 $579,302 $544,334 $507,037 $472,274 $442,520 $424,241 $419,616 $423,004 

50 $586,775 $551,834 $514,537 $479,774 $448,739 $427,274 $418,566 $420,087 

60 $594,249 $559,334 $522,037 $487,274 $455,685 $432,223 $419,915 $419,317 

70 $601,725 $566,834 $529,537 $494,774 $462,785 $438,447 $423,684 $420,369 

80 $609,202 $574,334 $537,037 $502,274 $469,978 $445,156 $428,966 $423,286 

90 $616,687 $581,834 $544,537 $509,774 $477,274 $452,116 $434,986 $427,886 

100 $624,147 $589,334 $552,037 $517,274 $484,601 $459,126 $441,548 $433,582 

110 $631,628 $596,834 $559,537 $524,774 $491,968 $466,160 $448,295 $440,042 

120 $639,108 $604,334 $567,037 $532,274 $499,409 $473,284 $455,232 $446,746 

130 $646,578 $611,834 $574,537 $539,774 $506,871 $480,468 $462,242 $453,548 

140 $654,048 $619,334 $582,037 $547,274 $514,371 $487,623 $469,357 $460,438 

150 $661,529 $626,834 $589,537 $554,774 $521,871 $494,810 $476,506 $467,448 

 

 Table 4.1, above, is reproduced as a 3-dimensional surface plot in Figure 4.9 below to visually 

indicate the reduction in cost associated with added photovoltaics and energy storage, and the 

inflection point that occurs when the ideal combination is achieved at a combination of 50 kWh of 

electrical energy storage and 30 kW of photovoltaic generation. 
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Figure 4.9: 3-D Plot of the Lifetime Costs of Various Microgrid Combinations 

 

 The total cost of the ideal microgrid operated by the SMMS utilizing in-home thermal energy 

storage and load curtailment reduces the 20-year lifetime operational and capital cost of the system 

from $475,366 with a combination of 35 kW of PV generation and 90 kWh of battery energy 

storage to only $418,566 with a combination of 30 kW of PV generation and only 50 kWh of 

battery energy storage.  By utilizing in-home thermal storage, the amount of required electrical 

energy storage decreases, which is intuitive.  As well, the required photovoltaic generation 

decreases as less generation is needed to operate the microgrid due to load curtailment and the 

ability to shift loads. 
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4.7.  Comparison of Battery Storage Versus the Smart Microgrid Management System 

 

 It should be noted that the value of battery energy storage systems may be equal or greater 

than the value of the SMMS with integrated energy storage.  Both systems have initial costs 

associated with them, but provide continuing economic benefit given an electricity price 

differential.  This section outlines the comparison of these two options to determine if there is 

adequate additional benefits offered by the SMMS to legitimize its additional cost. 

 

 The assessment of these two options used the following assumptions: 

 Battery energy storage costs = $750/kWh, 

 Smart Load-Management System installation and equipment costs = $500/home, 

 The off-peak price is used as a fixed base set at $0.08/kWh, and the energy price differential 

is determined using a variable on-peak electricity price, 

 Both systems contain equal storage capacity and operated in a grid-connected home. 

 Analysis of the two options reveals that due to the assumed 90% round trip efficiency of the 

battery energy storage system, the cost differential between high peak and low peak electricity 

pricing must be greater than 10% for the battery to generate positive revenues.  This is contrasted 

against the same system managed by the SMMS which proves to be financially beneficial even in 

markets without time-of-day electricity pricing if there are loads that can be shed such as exterior 

lighting or phantom loads. 

 As well, the system managed by the SMMS proves to be more cost-effective with a faster 

payback time in each of the analyzed options as summarized below in Table 4.2. 
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Table 4.2: Payback Period Associated with Various Energy Price Differentials 

  Payback (Years) 

Electricity Price 

Differential ($) 
Battery 

Smart Microgrid 

Management System 

0.00 Infinite 7.1 

0.01 2054.8 5.2 

0.03 108.1 3.3 

0.06 44.7 2.2 

0.09 28.1 1.6 

0.12 20.5 1.3 

0.15 16.2 1.1 

 

 

 Figure 4.10, below, offers a visual representation of the findings.  In each of the cases, the 

system being managed by the SMMS offers a payback in less than 10 years, even in markets with 

no electricity price differential. 

 

 

Figure 4.10: Logarithmic Payback Period Comparison 
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4.8.  Summary 

 

 The operational methodology for the algorithm is presented.  The algorithm operates as a 

closed-loop feedback system, and the algorithm has the ability to both curtail and defer loads to 

the financial benefit of the system. 

 A proposed conceptual layout for the SMMS is presented complete with a generation / load 

interconnection bus to connect the various sources of generation and electrical storage to the load.  

A load controller is co-located with the interconnection bus, and communicates between the in-

home loads and the server-based controller application to dictate the operation of the generation 

and energy storage sources.  The priorities of the controller are defined in the SMMS Control 

Method Diagram. 

 Existing in-home thermal storage and load shedding opportunities are explained and defined.  

The SMMS utilizes a total of 295 watts of curtailable lighting between the hours of 12:00 AM and 

6:00 AM.  In addition, thermal storage in the form of domestic hot water heaters and ground source 

heat pump mass tanks exists in the conceptual homes that enables a total of 2.81 kW / 12.1 kWh, 

and 2.0 kW / 9.75 kWh respectively.  The temperature differential for each of the thermal storage 

devices is dependent upon safe operating temperatures.  

 The algorithm flow chart is presented, and consists of a series of decision-making processes 

that depend on real-time feedback from the loads, thermal storage, electrical storage, and electrical 

generation systems.  The overall purpose of the system is to reduce the operational cost of the 

microgrid. 
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 A conceptual design for the remote monitoring and control that is necessary for the actual 

implementation of the system is presented along with proposed functionality, technical highlights, 

and estimated costs. 

 The SMMS algorithm is run in the MATLAB environment and analyzes several combinations 

of electrical generation and electrical storage.  The most cost-effective combination of electrical 

generation and storage occurs with 50 kWh of electrical energy storage, and 30 kW of photovoltaic 

generation.  This represents a reduction in electrical energy storage of approximately 45% versus 

the ideal microgrid combination when not employing in-home thermal storage or curtailment.  As 

well, there is a 15% reduction in the required amount of photovoltaic generation.  The overall 

lifetime cost of the 5-home microgrid is reduced to $418,566.  This represents a reduction of 28% 

($162,951) compared to the base microgrid without renewable generation or energy storage, and 

a 12% reduction ($65,800) compared to the ideal microgrid with renewable generation and 

electrical energy storage. 

 The developed algorithm is capable of being integrated into both isolated microgrids and grid-

connected microgrids.  It is also possible to consider a residential urban home as a form of 

microgrid.  Although this does not fit into the classical definition of a microgrid because the 

residence is unable to operate independently of the grid, using control methods for residential loads 

creates the opportunity for homes to autonomously and intelligently vary their loads to the benefit 

of the system.  This is more commonly considered smart load management.  The developed 

algorithm could also be used for load management within this system.   

 A comparison is made between a system managed by the SMMS, and the equivalent system 

utilizing only battery energy storage to take advantage of arbitrage to determine if the additional 

cost of integrating the SMMS can be offset by its additional benefits.  In each case, even when 
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there was no differential in electricity pricing, the system managed by the SMMS has a payback 

period of less than 10 years, whereas the battery energy storage system does not have a payback 

period of less than 10 years, even when the price differential is as high as $0.15 / kWh. 

 In the development of the algorithm, it is seen that there are limitations to using thermal energy 

storage to act as an energy buffer in the home.  There is never actually a decrease in energy 

consumption when using thermal storage, but rather only a deferral of energy.  The total energy 

use of the home remains constant, and the financial benefit is solely based on the available pricing 

differential in the cost of energy.   

 In the case where loads, such as lighting, are shed during times deemed unnecessary, there is 

potential for financial benefit regardless of the energy pricing differential.  Further methods of 

employing the SMMS can include communication with the owner, and further smart management 

of loads that are unnecessary at times, such as disconnecting appliances with phantom loads.  
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5. POWER SYSTEM RELIABILITY CONSIDERATIONS 

 

5.1.  Introduction 

 

 The studies carried out in the previous sections consider different combinations and capacities 

of power generation sources and energy storage facilities to meet the demand of the isolated 

microgrid. The level of reliability achieved with the different combinations can significantly vary, 

and a high level of reliability is usually associated with a relatively high system investment cost. 

Although the chief focus of this research project is to develop an SMMS that will reduce the cost 

of installing and operating a microgrid, it is important to determine the optimal system combination 

that provides a reasonable and acceptable level of system reliability. In the planning of small 

isolated power systems, deterministic reliability methods are generally applied that determine the 

capacity reserve margins that are required above the peak load of the system. These methods, 

however, do not recognize random system behavior, and therefore, are not suitable to microgrids 

that are supplied by intermittent generation from wind turbines and photovoltaics. Probabilistic 

methods that can model stochastic system behavior are more suitable for such systems. This 

section presents the development of a probabilistic model to assess the reliability of the different 

system scenarios discussed earlier, i.e. the base case system (generators only), the optimized base 

case system (generators and renewable energy, however energy storage has been removed), and 

the ideal microgrid (DSM, generators, renewable energy, and energy storage).  The developed 

model is verified against an existing reliability program to ensure accuracy.  
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5.2.  Methodology 

 

 Isolated communities are dependent upon fossil fuel generation to provide for their energy 

needs.  Although fossil fuel generators are common and proven, communities require redundant 

systems to maintain reliability.  It is the focus of this research project to develop an SMMS that 

manages DSM, energy storage, and renewable generation with the objective of maintaining the 

reliability of the isolated community at significantly reduced cost of operating the microgrid.   

 There are two predominant methods of assessing system reliability: analytical and simulation.  

To assess the reliability of the proposed systems, a simulation of the system is performed using 

Monte Carlo methods [62].  Monte Carlo methods simulate the actual process and functional 

operation of a system using random numbers. 

 The load and generation data employed to develop the most cost-effective combination of 

renewable generation, energy storage, load management, and conventional generation is analyzed 

from a reliability perspective to ensure an acceptable degree of reliability is achieved.  A Sequential 

Monte Carlo Simulation (SMCS) is designed to estimate the reliability of the proposed system. 

 In order to verify the operation of the SMCS simulation model, the ideal microgrid base case 

without storage, demand side management, or PV generation is modeled in the program, and its 

reliability results is compared to the Small Isolated Power System Reliability [63] (SIPSREL) 

program, a program developed by the University of Saskatchewan to determine the loss of load 

expectation (LOLE) of power systems. SIPSREL was not designed to determine the reliability of 

a system with both battery and thermal energy storage, so it could not be used to assess the 

reliability of the optimized microgrid employing an SMMS. 
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The reliability parameters, mean time to failure (MTTF), and mean time to repair (MTTR) are 

specified based on operator information for the PV array, the propane generating unit, as well as 

the lithium-ion battery bank.  Table 5.1 summarizes the MTTF and MTTR indices that are used 

for the reliability calculation. These parameters are used as inputs to the SMCS program developed 

in this project. 

Table 5.1: Parameters for the Microgrid Technologies 

Technology 

Rated Capacity MTTF 

(hours) 

MTTR 

(hours) 

Equivalent 

Availability (%) 

Photovoltaic 30 kW 119,902 36 99.97% 

Lithium Ion Energy Storage 25 kW / 50 kWh 2,400 6 99.75% 

Propane Generator 25 kW 3,504 876 80.00% 

 

 Note that both the photovoltaic array and lithium-ion energy storage system largely consist of 

modular parts that can be easily replaced by non-trained persons.  These components therefore 

have a relatively high reparability resulting in reduced downtime. The modular design also allows 

the systems to continue operating at derated states if part of the system fails.  Although propane 

generators located close to service technicians have a relatively low MTTR, the data stated in Table 

5.1 is indicative of an isolated community which would require a technician to travel to site with 

parts to repair the generator. 

 Each iteration of the SMCS model simulates five years of load and generation profiles, and 

uses MTTF and MTTR indices to determine generation ‘up’ and ‘down’ states throughout the 

simulation using Equations (5.1) and (5.2). 
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𝑡𝑢𝑝 = −𝑀𝑇𝑇𝐹 ln(𝑅𝑎𝑛𝑑)      (5.1) 

 

𝑡𝑑𝑜𝑤𝑛 = −𝑀𝑇𝑇𝑅 ln(𝑅𝑎𝑛𝑑)      (5.2) 

 

Where, 

tup = Generator ‘up’ time or normal operating time 

tdown = Generator ‘down’  time 

MTTF = Mean time to failure 

MTTR = Mean time to repair 

Rand = Randomly generated number between 0 and 1 

 

 Convergence criteria is defined to determine an appropriate stop time for the SMCS 

simulation.  Each simulated iteration produces a unique loss of load expectation (LOLE).  The 

deviation of the running average of the LOLE for the current iteration must be within a certain 

range of the running average for the previous iteration to establish convergence.  The convergence 

criteria for this model is defined as a deviation not greater than 0.1% of the average LOLE for 50 

consecutive iterations.  

 

5.3. Results 

 

 To verify the SMCS model, the base case system consisting of two propane generators is 

modelled using the SMCS model and the SIPSREL program.  Figure 5.1 indicates the convergence 

of the LOLE index as a function of iterations performed for the developed SMCS model.  The 
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LOLE of the microgrid with two propane generators satisfying the “N-1” criterion meets the 

convergence criteria within 1358 iterations, and the LOLE of the system is found to be 348.04 

hours / year.  This model consists of two 25 kW propane generators and the load is comprised of 

the 5-home community with a peak demand of 25 kW and an annual energy consumption of 69,033 

kWh.  This value of LOLE is considered to be an acceptable reliability criterion as it corresponds 

to the conventionally accepted deterministic “N-1” criterion. In comparison, the SIPSREL 

program yields an LOLE of 351.32 hours / year for the same system.  This is a difference of only 

-0.93%, which verifies the accuracy of the developed SMCS model when propane generators were 

the only source of generation. 

 

 

Figure 5.1:  Average LOLE for the Base Case Microgrid with Two Propane Generators 
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 To further verify the operation of the SMCS model, the solar generation profile is incorporated 

into the system, and its results are compared to the SIPSREL program.  Before the power system 

can be analyzed in SIPSREL, PV generation data was reduced to a generation table to allow for 

input in to SIPSREL.  To retain the seasonal and diurnal characteristics of the PV profile and its 

correlation to the load profile, PV generation data is separated into the following four categories: 

- Winter Day 

- Winter Night 

- Summer Day 

- Summer Night 

 

 Each day-time period consists of the time from 8:00 am to 8:00 pm, and the corresponding 

night-time period is from 8:00 pm to 8:00 am. 

 Sturges’ Rule [64] is implemented to determine the least number of class intervals required to 

reduce the amount of load and generation data to be used in SIPSREL.  Sturges’ Rule is given in 

Equation (5.3). 

 

𝑁𝑜𝐶𝑙 = 1 + 3.3 𝑙𝑜𝑔10 (N)      (5.3) 

 

where, 

NoCl = Number of classes 

N = Number of data points considered, equal to 8735 in the winter and 8783 in the summer 
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 Based on Sturges’ Rule, the required number of class intervals to represent the PV generation 

profile are indicated in Table 5.2 for each time period. 

 

Table 5.2: Number of Classes Required by Sturges’ Rule 

Period Months 

Annual Data 

Points Required Classes 

Winter Day October - March 8735 14.01 

Winter Night October - March 8735 14.01 

Summer Day April - September 8783 14.01 

Summer Night April - September 8783 14.01 

 

 

 Although Sturges’ Rule indicated that each profile period can be reduced to 15 classes, the 

night-time PV generation data consists mostly of ‘0’ kW of generation.  Hence, only five classes 

are used to represent night time PV generation. The class size for each class interval is evenly 

distributed over the generation range of the PV array. 

 Tables 5.3 through 5.6 indicate the PV generation table and associated class intervals for each 

of the periods. 
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Table 5.3:  PV Generation Table for the Winter Day-Time Period 

Solar kW Probability 

0.0000 0.4304 

1.1075 0.0900 

3.3224 0.0950 

5.5373 0.0563 

7.7522 0.0391 

9.9671 0.0350 

12.1820 0.0307 

14.3970 0.0279 

16.6119 0.0302 

18.8268 0.0327 

21.0417 0.0272 

23.2566 0.0284 

25.4715 0.0250 

27.6864 0.0286 

29.9014 0.0192 

32.1163 0.0041 

 

 

 

Table 5.4:  PV Generation Table for the Winter Night-Time Period 

Solar Generation (kW) Probability 

0.0000 0.9982 

0.0657 0.0002 

0.1970 0.0002 

0.3284 0.0009 

0.4597 0.0005 
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Table 5.5:  PV Generation Table for the Summer Day-Time Period 

Solar kW Probability 

0.0000 0.4304 

1.1075 0.0900 

3.3224 0.0950 

5.5373 0.0563 

7.7522 0.0391 

9.9671 0.0350 

12.1820 0.0307 

14.3970 0.0279 

16.6119 0.0302 

18.8268 0.0327 

21.0417 0.0272 

23.2566 0.0284 

25.4715 0.0250 

27.6864 0.0286 

29.9014 0.0192 

32.1163 0.0041 

 

 

 

Table 5.6:  PV Generation Table for the Summer Night-Time Period 

Solar Generation (kW) Probability 

0.0000 0.8921 

0.8499 0.0505 

2.5497 0.0351 

4.2496 0.0168 

5.9494 0.0043 

7.6492 0.0007 

9.3490 0.0005 

 

 Note that in the Winter Night and the Summer Night periods, the peak PV generation observed 

over the entire period is only 0.53 kW, and 10.20 kW respectively. 

 Figure 5.2 indicates that convergence criteria is met within 1,358 iterations using the SMCS 

model for the optimized microgrid consisting of generators and a photovoltaic array, and the 
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associated LOLE of the system is 249.83 hours / year.  This model consists of two redundant 25 

kW propane generators, and one 35 kW solar array.  The load is comprised of the 5-home 

community with a peak demand of 25 kW and an annual energy consumption of 69,033 kWh.  The 

same system is modelled using SIPSREL and the resultant reliability is 267.74 hours / year, a 

difference of only -6.69%.  Although this difference is higher than the generator-only model 

comparison, this is still within acceptable error considering the variability of introducing the solar 

model into the SIPSREL program and the pre-processing that is required to reduce the photovoltaic 

generation to a 4-part generation table.  Thus, the accuracy of the SMC model is once again 

verified. 

 

 

 

Figure 5.2:  Average LOLE for Microgrid Consisting of Generators and PV 
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 Table 5.7 summarizes the comparison between the results of the SIPSREL program and 

SMCS model that was developed for this research project. 

 

Table 5.7:  SIPSREL vs SMCS LOLE Comparison 

 LOLE (hours/year)  

 SIPSREL SMCS Difference 

Generators Only 351.32 348.04 -0.93% 

Generators and Solar 267.74 249.83 -6.69% 

 

 For both cases where the SMCS model is compared to the SIPSREL program, the calculated 

LOLE is within acceptable error, and verifies the accuracy of the SMCS model.   With the 

functionality of the SMCS model verified, the reliability of the ideal microgrid complete with 

demand side management techniques and energy storage devices can be assessed, since the 

SIPSREL program was unable to assess the reliability of the system when energy storage 

techniques are being implemented. 

 As previously indicated, the MTTF and MTTR for the battery energy storage system is 

estimated to be 2,400 hours and 6 hours respectively based on operator information.  Although the 

actual MTTR for the battery as a whole would be greater than 6 hours, battery systems have a 

modular design which allows for battery strings to be automatically disconnected and isolated 

which enables the battery to continue operating at a slightly derated state. The operator is then able 

to change the module at a later time.  Since the derated state resident time is significantly less than 

the up time, it has negligible impact on the results and is therefore ignored. Unskilled labour can 

be used to place the system in a derated state in order to continue operation of the energy storage 

system, thus increasing its overall ‘up time’. 
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 The ideal microgrid’s load, generation, and electrical and thermal storage profiles are used in 

the SMCS model to determine the system reliability of the ideal microgrid being managed by the 

SMMS.  The system consists of two redundant 25 kW propane generators, one 30 kW solar array, 

one 25 kW / 50 kWh battery, and in-home thermal storage equivalent to a total of 4.81 kW / 21.85 

kWh.  Convergence occurs within 1,378 iterations, and yields an LOLE if 171.39 hours / year, as 

indicated in Figure 5.3.  This value is lower than the LOLE of 248 hours / year. This indicates that 

the microgrid managed by SMMS can carry a system load higher than the existing load and still 

meet the acceptable reliability.  

 

 

Figure 5.3:  Average LOLE for Optimized Microgrid with an SMMS 
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5.4.  Summary 

 

 The accuracy of the computer program developed based on the SMCS model is verified 

against the existing SIPSREL program for calculating LOLE.  The calculated LOLE of the base 

case microgrid consisting only of generators is 348.04 hours / year. When a 35 kW photovoltaic 

array is added to the base case system, the LOLE of the system is reduced to 249.83 hours / year, 

which is 28.2% less than the base case.  This is a result of the photovoltaic array being able to 

support the microgrid community at times when the generators is not functional.  Once 25 kW / 

50 kWh of battery energy storage, 30 kW of photovoltaics, 4.81 kW / 21.85 kWh of in-home 

thermal storage, and 0.355 kW of CLS are utilized via the SMMS, the LOLE is further reduced to 

171.39 hours / year, which is 50.8% less than the base case, and 31.4% less than the optimized 

grid with photovoltaics. This is as expected, and is the result of using a combination of curtailable 

load shedding and stored energy during times when the generation components are not online in 

order to maintain microgrid functionality. By utilizing a combination of existing thermal storage 

located in the homes and load curtailment, the electrical energy storage system has an extended 

ability to support loads in the event of an outage.  Table 5.8 summarizes the calculated LOLE 

values for each microgrid analyzed, and although the LOLE values are significantly higher than 

typical values in large power systems, the improvement in reliability of isolated systems should be 

justified by the additional associated costs to lower the LOLE values. 
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Table 5.8: Summary of LOLE Results 

Configuration LOLE (hours / year) 
Difference from Base 

Case (%) 

Generators Only (Base Case), Meeting 

the “N-1” Criterion 
348.04 0 

Generators and PV 249.83 -28.2% 

Generators, PV, Energy Storage, and 

Curtailment 
171.39 -50.8% 
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6. SUMMARY AND CONCLUSIONS 

 

  The objectives of this study, as defined by the industry partner and stated in Chapter 1, are to 

determine the load characterization of a 5-home microgrid and specify an optimized base case 

microgrid consisting of energy storage, generation, and loads.  Once the optimized base case is 

established, a conceptual design for a smart microgrid management system (SMMS) is developed, 

along with an operational methodology for curtailing and deferring in-home loads for the financial 

benefit of the system.  An algorithm is then developed to model the operation of the SMMS to 

verify and substantiate the economic benefit of employing such a system.  Lastly, the reliability of 

the microgrid operated by the SMMS is compared to the optimized base case microgrid as well as 

the microgrid when operated solely by propane generators to indicate the improvement in system 

reliability.  These objectives are achieved in this study.  

 A 5-home community is characterized by real-time data gathered from homes within 

Saskatchewan.  The diversified peak load of the cumulative community is 25 kW, and the average 

electrical consumption of the community is 13,807 kWh / home.  The total energy consumption of 

the 5-home microgrid is 69,035 kWh / year.  Although details are not made available regarding 

the individual homes due to privacy concerns, the average energy consumption of the homes in 

the microgrid closely match a residence located near Saskatoon which operates solely on electricity 

and has its own water supply, septic system, and ground source heat pump.  This home is used as 

the basis for the development of the model and for defining the load characteristics of the homes 

in the microgrid. 

 In the case where the microgrid operates solely on propane generators, the cost of providing 

energy for the community over a 20-year period equates to $581,517, or approximately $29,000 / 
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year.  This represents an annual cost of $5,815 to provide electricity to each home, and an energy 

cost of $0.42 / kWh.  An algorithm is then developed to model the operation of the same microgrid 

with various amounts of energy storage, and renewable energy generation to define a combination 

of generation and storage that minimizes the lifetime operational cost of the microgrid.  The 

resulting optimized base case microgrid consists of the addition of a 35 kW photovoltaic array, 

and 90 kWh of lithium-ion battery energy storage.  The lifetime operational cost of the optimized 

base case microgrid is $475,366, which equates to $0.34 / kWh or 18% less than the cost of 

operating solely on diesel generators. 

 In Chapter 4, the methodology for the operation of the proposed algorithm is presented.  The 

SMMS operates as a closed-loop feedback system, and curtails and defers curtailable loads as 

required to reduce the operational cost of the microgrid.  A conceptual layout is presented and 

consists of a generation / load interconnection bus that could be managed by a load controller to 

charge or discharge storage devices, or manage the operation of the generation sources. 

 The opportunity to integrate in-home thermal storage into the SMMS is also considered and 

the characteristics of the thermal storage devices are defined.  Although many opportunities exist 

for controlling thermal energy storage in an average home, the most immediate opportunities 

which impacted residents the least are storing and depleting energy in the residents’ domestic hot 

water tanks and ground source heat pump mass tanks. 

 The algorithm’s flow chart is presented which indicates the SMMS’ decision-making process 

based on real-time feedback from the microgrid system.  As well, a conceptual design for the 

remote monitoring, control, and computing is shown along with proposed functionality and 

estimated costs. 
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 A MATLAB program is developed that models the functionality of the SMMS algorithm.  

The algorithm analyzes various combinations of energy storage and generation sources to 

determine the most economically beneficial microgrid combination.  The algorithm indicates that 

the most financially viable microgrid combination consists of a 30 kW photovoltaic array, and 25 

kW / 50 kWh of lithium-ion battery storage.  This represents a reduction in electrical energy 

storage of 45% and a reduction in renewable generation of 15% compared to the optimized base 

case microgrid combination presented earlier.  The lifetime cost to operate the microgrid using the 

SMMS is $418,566 which represents a reduction of 12% compared to the optimized microgrid.  

The levelized cost of energy for the system managed by the SMMS is $0.30 / kWh.  This proves 

that the additional 4.81 kW / 21.85 kWh of thermal storage and 0.355 kW of curtailable load 

shedding utilized by the SMMS improves the performance of the microgrid and reduces the cost 

of the system. 

Another method of employing the SMMS can be to automate parts of the home that can help 

reduce the total required energy.  This could include automating window shades and shutters, and 

running fans that bring cooler night air into the house during the summer to reduce daytime cooling 

loads.  The SMMS could also allow instant messages to be sent to the home owner regarding 

methods that could be used to reduce home energy consumption based on feedback from the 

in-home systems, as well as generation components. 

 To ensure that the further reduction in operating cost offered by the SMMS is not offset by a 

reduction in power system reliability, a Sequential Monte Carlo Simulation (SMCS) is designed 

to analyze microgrid reliability.  To ensure accuracy, the SMCS model is verified against the Small 

Isolated Power System Reliability (SIPSREL) program, developed by the University of 

Saskatchewan.  Although SIPSREL can accurately determine the reliability of the base microgrid 
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operating on propane generation and the optimized microgrid which employed renewable energy, 

it cannot analyze microgrids with an energy storage component.  Thus, the SMCS model is 

depended upon to provide the power system reliability assessment for the system managed by the 

SMMS, but it is first verified against SIPSREL using the base case microgrid and the optimized 

base case microgrid.  In both cases, the SMCS model agrees with the SIPSREL model within 

reason and verifies the operation of the SMCS model. 

 The SMCS model determines that the Loss of Load Expectation (LOLE) for the base case 

microgrid operating with two 25 kW redundant generators is 348.04 hours / year.  The addition of 

a 35 kW photovoltaic array reduces the LOLE of the optimized base case microgrid to 249.83 

hours / year.  Lastly, utilizing 25 kW / 50 kWh of lithium-ion energy storage, 30 kW of 

photovoltaics, 4.81 kW / 21.85 kWh of in-home thermal storage and 0.355 kW of CLS, the LOLE 

of the microgrid managed by the SMMS is decreased to 171.39 hours / year, a reduction in LOLE 

of 31.4% and 50.8% compared to the optimized base case microgrid with photovoltaics and the 

base microgrid with only propane generation, respectively. 

 As power consumption continues to grow, and more communities and businesses require 

reliable power, the need for microgrids and distributed generation will continue to rise as the 

communities which do not currently have a connection to the utility grid are generally far-removed 

from utility grid boundaries.  As well, the reduction in the cost of renewable generation and battery 

energy storage make enticing value propositions for the implementation of microgrids when 

compared to the cost of long transmission lines feeding remote communities which may have low 

reliability. 

 Recent initiatives around the world are focusing on a move to renewable energy in an effort 

to curb global climate change which is attributed to, in part, conventional fossil fuel generation 
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sources.  However, a move towards renewables does come at the cost of potential intermittency.  

This intermittency can be resolved by various solutions, including robust interconnection to 

neighboring utilities, fast-ramping generation sources, and energy storage.  As prices for energy 

storage continue to fall, the inclusion of batteries in microgrids becomes increasingly financially 

viable, which further increases the viability of developing microgrids. 

 The microgrid system developed in this study yields a highly efficient method of generation, 

and has also increased the power system reliability of the proposed community.    

 The industry partner, the Saskatchewan Research Council, has considered the results of the 

study and has used some of the findings to develop a novel hybrid system to install at remote 

communities which can reduce diesel fuel consumption by up to 86%.  The hybrid pilot project 

was installed at a remote mine remediation site in Northern Saskatchewan in the summer of 2015.   
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APPENDIX - ANNUAL RESIDENTIAL LOAD PROFILES 

The following figures display the annual time of day load profiles for the 5 residences analyzed 

in this study. 

 

 

Figure A.1:  Academy Residence Annual Load Profile 
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Figure A.2:  Chatwin Residence Annual Load Profile 

 

Figure A.3:  Garnet Residence Annual Load Profile 
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Figure A.4:  Gregory Residence Annual Load Profile 

 

 

Figure A.5:  Struthers Residence Annual Load Profile 
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