
A Study On Machine Learning

Algorithms For Fall Detection And

Movement Classification

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Amitoz Singh Ralhan

c©Amitoz Singh Ralhan, December 2009. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5A9

i



Abstract

Fall among the elderly is an important health issue. Fall detection and movement

tracking techniques are therefore instrumental in dealing with this issue. This thesis

responds to the challenge of classifying different movement types as a part of a system

designed to fulfill the need for a wearable device to collect data for fall and near-fall

analysis.

Four different fall activities (forward, backward, left and right), three normal

activities (standing, walking and lying down) and near-fall situations are identified

and detected. Different machine learning algorithms are compared and the best

one is used for the real time classification. The comparison is made using Waikato

Environment for Knowledge Analysis or in short WEKA. The system also has the

ability to adapt to different gaits of different people. A feature selection algorithm

is also introduced to reduce the number of features required for the classification

problem.
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Chapter 1

Introduction

This chapter introduces the problem of fall detection. The concept of a fall is

discussed along with a description of the issues related to fall detection. As this

work involves the use of machine learning techniques for the detection of fall and

movement classification, this chapter also introduces the field of machine learning. A

section on supervised learning, explains the concept in detail, as this is the sub branch

of machine learning that is used for this research. Finally, a discussion on feature

selection is included, which gives an overview of the process and its importance for

the current work.

1.1 Fall Detection

Fall amongst the elderly is a major health concern. Falls account for approximately

half of all injury-related admissions in hospitals in the over 65 age group [1, 2]. Falls

are responsible not only for causing disabling fractures and other physical injuries,

but also for causing psychological trauma which can reduce the independence and

confidence among the elderly [3]. Detection of fall is a peculiar problem as it is ill

defined in definition. Although the concept of a fall is ingrained in the common sense

but it is difficult to define it precisely and thus hard to identify a means of detection.

One of the definitions can be a change from upright/sitting position to reclining or

completely lengthened position in an uncontrolled manner and in a very small length

of time.

Complex internal neural and muscular models control the body’s postural stabil-

ity [4]. Older adults who have experienced fall or near falls frequently are typically
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assessed through documentation methods where questionnaires are used to deter-

mine the exact nature of fall and the circumstances under which the falls occurred

[5]. These documentation methods have advantages and disadvantages in terms of

accuracy, costs and time commitments. The extent and accuracy of recall of the fall

activity is always a matter of concern in these methods. The circumstances that led

to the fall and the near fall situations are particularly harder to recognize as the

older people are often themselves oblivious as to what caused the fall. Therefore,

robust and reliable methods for detecting and analyzing the falls is required. It is

important to have historical movement data from the patients in order to correctly

identify the causes and find patterns or scenarios that lead to a fall. This situation

has prompted a great deal of research in fall detection and movement classification.

In Chapter 2 different techniques that have been used for fall detection are discussed.

1.2 Machine Learning

Machine learning is the domain of science that explores the ability of machines of

understanding data. It involves developing algorithms that would enable computers

to learn complex patterns and make intelligent decisions based on that. Learning

itself covers a broad range of processes and is thus hard to define. As regards to

machines, it can be said that the machine learns whenever it changes its structure,

program or data in such manner that its future performance improves [6]. Machine

learning can broadly be categorized into two fields, Unsupervised Learning and Su-

pervised Learning. In the prior, machine tries to identify groups of similar data from

a larger dataset. In other words, it tries to form clusters of data based on some cri-

teria such as cost functions. The machine has no prior knowledge of classes the data

belongs to, it only tries to identify natural clusters or groups of data. Supervised

learning on the other hand learns from the test set which contains classified data

and predicts the classes of unseen data. The present work is concerned with the

supervised learning. The test data classified into different movement types is input

to the machine and from this labeled data it will learn the pattern and accordingly
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predict the movement types upon receiving new unseen data. Supervised learning is

explained briefly in the next section.

1.2.1 Supervised Learning

Supervised learning is a technique for deducing a function from training data. The

training data consists of vectors of input data and desired outputs. After seeing

this data, the machine is expected to find patterns in the data and relate it to the

corresponding outputs. This means generalizing the present data to unseen situations

in a reasonable way. Not all machine learning algorithms perform the same way for

any given situation and training data. Therefore, one of the first decisions to be made

is the choice of machine learning algorithm. This generally involves a comparison

of performance of different algorithms on a given data set. Then based on results

such as accuracy of classification, time taken to build the model, complexity of the

algorithm etc. the most suitable algorithm depending on the requirements can be

selected.

One of the most important thing in supervised learning is the quality of the

training data. If the machine is expected to perform well for unseen situations, then

the training data must be exhaustive and accurate enough to enable the machine to

build an appropriate model. If the training data does not include the entire gamut of

real world situations, then the resulting model after supervised learning is prone to

over-fitting, i.e it is not generalized enough and thus performs very good on the seen

data, but poorly on the unseen one. In Chapter 3, the collection of training data

for the purpose of this thesis is illustrated. It would be evident how the method of

collecting the data ensured a good training data that would generate a generalized

model once used by a machine learning algorithm. Another criteria is the number

and quality of features selected for the classification. Features can be described as

entities descriptive of an object. The number of features should be large enough

to accurately describe the object and small enough not to encumber the learning

process with too much redundant data. The next section discusses this issue.
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1.2.2 Feature Selection

Usually, a data set can have hundreds and thousands of features. This huge dimen-

sionality causes a lot of problems in the process of machine learning. This situation

is often referred to as ”Curse of Dimensionality” [7]. Feature selection, variable se-

lection or attribute selection is the technique of selecting a subset of relevant features

that would result in robust models. In theory, more features should result in a better

distinguishing capability by the classifier, however, it is not the case, as redundant

features not only slow down the process, but also result in over-fitting [8]. Over-

fitting is the situation where the classifier is able to recognize the situations similar

to the training data set with accuracy, but performs poorly for general situations. In

other words, feature selection is the technique to remove the irrelevant and redun-

dant data in order to improve the process of machine learning. Selecting a subset of

relevant features improves the performance in the following ways [9]:

• Alleviating the Curse of Dimensionality

• Generalizing the model

• Reducing the data required for classification, which is very useful for real time

applications

• Faster and cost effective predictors

As will be seen in the later chapters, the feature selection process results in lesser

number of features used for movement classification. In real time application of the

device, this is important as, more number of features result in slow operation of

the device. Lesser features mean that device can work faster and more number of

samples can be obtained for each movement type.

1.3 Problems Addressed

Though there is a lot of research going on which deals with the detection of falls in

the elderly, and there are many commercial fall detection products available, there
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is still a need for more accurate belt worn device.

This thesis primarily addresses two problems. The first is to select the most

relevant features needed to do efficient classification. Second is to accurately classify

different types of body movements and detect falls and near falls

For the accurate classification, the most appropriate classifier is selected, ap-

propriateness being the accuracy of classification and the speed of model building.

Since the device is expected to adapt to the gait and posture of different people, the

classifier has to be easily updateable. Still, the most important factor governing the

choice of the classifier is the accuracy.

Since the classification has to be done in real time, the number of feature used

for classification needs to be kept to a minimum. Too many features will result in

slower operation and thus lesser number of data samples classified. The most efficient

feature selection algorithm solves this problem by selecting only the most relevant

features needed for classification.

1.4 Outline of Thesis

The rest of the thesis is structured as follows. Chapter 2 discusses the related research

in the areas of both fall detection and feature selection. Chapter 3 explains the

methodology, experimental setup and all the algorithms. Chapter 4 enumerates the

results and includes discussions. It is followed by a conclusion and future work.
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Chapter 2

Related Work

Detection of fall is an area in which a lot of research is going on. This section

describes some of the earlier efforts in the detection of the fall and also the present

research going on in this field. Since, a new feature selection algorithm called Op-

timum Feature Selection is introduced in this thesis, this section also describes the

research work in the field of feature selection.

2.1 Fall Detection

Since fall in the elderly is a major health concern, the situation has prompted a great

deal of research in fall detection and movement classification. To detect the falls,

several different approaches have been used. Sixsmith [10] used an array of infrared

detectors for fall monitoring. Other methods such as using video cameras, door

alerts, pressure mats etc. have been in place for some time now and are discussed

by Miskelly [1]. Noury [11] used infrared position sensors and magnetic switches to

monitor the activity. Use of accelerometers and gyroscopes has gained widespread

popularity in detecting ambulatory motion and Machine learning algorithms are the

most intuitive way of detecting and classifying different types of falls [12, 13, 14].

One of the earliest works involving use of accelerometers for fall detection is by Lord

and Colvin [15] in 1991 and then by William [16] which was a belt worn device and

detected the shock of impacting the ground and determined if the patient is lying

down by using a mercury tilt switch. In [17], a sensor attached to the armpit detects

the change in velocity and when this velocity exceeds a threshold, the sequence

from upright position to lying posture and the absence of movement after the fall is
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tracked. If after the velocity has increased beyond the threshold, the patient is lying

on the ground without any movement, then a fall is said to have occured. Most of

these devices have the primary objective of distinguishing normal movement from

a fall event and often suffer from a high rate of false alarms, which is one of the

reasons for keeping these devices from gaining more use in daily life [13]. In [18],

the data from the waist mount accelerometer is passed through a Gaussian filter to

remove noise and then a 3D body motion model is used to map the data to motion

types. Hwang [19] used a combination of tilt meters, gyroscopes and accelerometers

to detect the falls.

There is still a need for more accurate fall and near-fall detection in the medical

community. In this work, machine learning techniques are employed, so that not

only the falls can be detected, but they can be further classified into subcategories

depending on the direction of falls. The normal movements are also further classified

into subcategories. The availability of information about different movement types,

the direction of fall and pre-fall position helps in pre-fall and post-fall analysis.

Accurate classification of the normal movement coupled with the direction of fall,

gives the complete sequence of events that led to the fall.

2.2 Feature Selection

Feature selection has been an active and fruitful field of research and development

for decades in statistical pattern recognition, machine learning, data mining and

statistics. A few such research works were discussed in [8]. When there are hun-

dreds and thousands of features present, not all of them add to the information of

the target. Both theoretical analysis and empirical evidence show that along with

irrelevant features, redundant features also affect the speed and accuracy of learning

algorithms and thus should be eliminated as well [20]. Feature selection algorithms

can be broadly classified into two types. The wrapper model uses the predictive

accuracy of a predetermined learning algorithm to determine the goodness of the se-

lected subsets. These methods are computationally expensive for data with a large
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number of features [21]. The filter model separates feature selection from classifier

learning and selects feature subsets that are independent of any learning algorithm.

These methods use general statistical measurements such as distance measures, in-

formation gain, correlation coefficients, consistency etc. to determine the feature

subset.

The Optimum Feature Selection algorithm introduced in this work falls in the

filter model. It ranks the features based on distance measurements and then removes

redundant features using correlation coefficients. The performance of the algorithm is

tested with Naive Bayesian Classifier. Naive Bayesian Classifier is extremely sensitive

to the type of features used. If the features are highly correlated, they can get high

weightage and reduce the accuracy of classification [22]. Many different approaches

have been explored to improve the performance of the Naive Bayesian Classifier.

The four main approaches are feature selection, structure extension, local learning

and data expansion [23].

Most of the algorithms discussed in [8] try to find a feature set which results

in an increase in the accuracy of classification. The result is a relaxed approach to

the rejection of irrelevant or redundant features. The Optimum Feature Selection

algorithm avoids this restraint and uses a more aggressive approach towards rejecting

features, which in some cases might result in a slight fall in classification accuracies.
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Chapter 3

Methodology

The entire problem of movement classification can be broken down into the fol-

lowing sequential steps.

• Collection of data accurately to generate a proper training file, which is an

accurate representation of all kinds of movements.

• Selection of an appropriate classification algorithm which is able to distinguish

different types of movements accurately.

• Feature selection process to explore the possibility of reducing the number of

features required for the classification process.

• Generating the final model using the selected features and the classification

algorithm.

• Implementing the model into the real time application, with the capability to

update the model so as to be adaptable for different users.

In this chapter, the process and methodology of each of these steps will be dis-

cussed in detail. The chapter discusses the data collection methods, the algorithms

to be compared, the feature selection algorithm used and finally a discussion on the

real time implementation. Chapter 4 again lists results for each of these steps and

the decisions reached based on the results.
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3.1 Data Collection

The device used for data collection in the Falls And Near Falls Assessment Research

and Evaluation (FANFARE) project is a Jennic board of JN5139 series and is shown

in Figure 3.1.

Figure 3.1: Fall Detection Device.

The belt worn device shown in right half of the figure is the end device that

communicates with the coordinator which is on the left half of the figure. The

coordinator is connected to the computer via cable. The device consists of a high

precision three axis accelerometer sensor ST LIS3LV02DQ. It has a range of ±6g or

±2g, which is user selectable and an operating voltage of 2.16V - 3.6V. The gyroscope

used is InvenSense IDG-300. This dual-axis gyro is a MEMS device operating at a

single supply voltage of 3.0-3.5V. The sensor provides analog outputs of X and Y rates

with a full scale of±500 ◦/sec. The data consists of 3582 data items distributed in 597

rows and 6 columns. The data was collected for 7 types of movements. Out of the 7, 3

are normal movements - Walking, Standing and Lying down. The rest are four types

of fall activities - Forward, Backward, Left and Right. The next section describes the

manner in which the data was collected for each of these movements. All the data
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was collected by wearing the belt worn device at the chest level. Figure 3.2 shows the

interaction between the end device and the coordinator and also the classification

steps.

The training data is collected by imitating the normal movements and fall activ-

ities a number of times until we obtain sufficient number of samples for the reliable

machine learning process. The output of training data collection is a number of

samples having a feature set corresponding to the axis of accelerometer and gyro-

scope. Depending on the type and number of sensors used, the number of features

can range anywhere between 5 to 15. This training data set is labeled for different

movement types and then is subjected to a feature selection process, which reduces

the feature set to lesser number of features based on the relevance and information

content of each feature. This final reduced feature set is then used to generate the

classification model. A classification model is a set of parameters which is the output

of a machine learning algorithm. These parameters can then be used to classify new

unseen data. In probabilistic methods for example, the parameters can be mean

and standard deviation. From these parameters, the likelihood of a movement type

can be calculated for every new unseen sample of data. Quality of the training data

determines the accuracy of the classification model. Once the classification model

is generated, it is input into the end device. Now, the device can determine the

movements of the subject wearing the device. Every new sample of data is classified

as one of the movement types based on the parameters of the classification model.

To make the device adaptable to individual posture and gait, the data collected from

sensors is fed back to the classification model and used to update the features. In

this manner, the device adapts to a particular user over a period of time. In the

inevitable cases of false alarms, the classification should be rectified and then fed

back to the classification model, ensuring that the parameters are updated correctly.

All the classification results are wirelessly transmitted to the coordinator, which is

connected to a computer displaying the movements in real time. In case the result

of the classification, is a Fall, then an alarm is raised.
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Figure 3.2: Block Diagram of Experimental Device
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3.1.1 Movement Types

This section describes the manner in which data is collected for different movement

types. The movements are imitated to be as close as possible to the normal routine

movements. Here are all the movement types and the methodology of collecting data

for each one of them.

Lying Down

To collect data for the Lying Down position, the subject is lying down flat on the

back. Small controlled movements like slowly turning to left or right side or turning

over completely and lying down flat on stomach are also included in this movement

class. While shifting positions, no sudden movement is made and the transition in

smooth.

Standing

For this movement type, the subject is standing upright at a fixed position. Slow

controlled movements like leaning forward, backward, left or right is also considered

standing stance. Minor shifting of feet to change the direction, the subject is facing

is also included in the standing position.

Walking

Walking involves normal paced walking or even taking few steps from the standing

position. The data collection process takes into consideration any direction changes

or even walking backwards. Slight leaning in all the four directions is also allowed

while walking, just as in standing position.

Fall Forward/Backward/Left/Right

Falling in either direction involves sudden changes in the acceleration values. For fall

forward, the subsection goes from standing position to a lying down position while

going in a forward direction in an uncontrolled manner in a fraction of second.
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Near Fall

Near fall can be described as a state in which the subject is in a precarious posi-

tion and is on the verge of falling. Every fall is preceded by a near fall situation.

So, the samples just before the actual fall, are classified as near fall situations. In

these experiments, the near fall situation is not further classified as left/right or for-

ward/backward. Too much leaning in any direction results in the near fall situation.

Figure 3.3 shows a snapshot of the collected data. The first column is the time

stamp, followed by acceleration values in X,Y and Z axis respectively. The last two

columns are the Gyroscope values for the X and Y axis respectively. The device

is aligned in a way that the Y axis accelerometer is directed upwards from ground,

Z axis accelerometer is directed outwards from chest and X axis accelerometer is

directed from right to left.

Figure 3.3: Sample data file collected from accelerometer and gyroscope

While experimenting, all the falls started from an upright position and ended in
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an almost lying position on a couch at a height of about 1 feet from the ground.

In the repeated experiments, the time taken for the subject to go from an upright

position to a lying down position on the couch is calculated to be about 1/5th to

1/7th of a second. So for each fall activity, there are around 5-6 samples of data

rows available considering the sampling rate of 40 samples/sec at which the device

operates. The procedure was repeated over and over again around 18-20 times for

each type of fall activity. Collecting data for falling backward, left or right involved

the same procedure as for forward fall, in respective directions.

3.2 Algorithm Comparison

As discussed earlier in Section 1.2 machine learning involves providing a training

file to the learning algorithm in which the data is correctly classified. The machine

then learns the patterns involved in the data and can automatically classify future

situations.

More accurate classification techniques will ensure lesser number of false alarms

(normal movements detected as falls) and fewer undetected falls. Therefore, selection

of a suitable classification algorithm is the first and the most important step to solv-

ing any classification problem. Since all classification algorithms behave differently

towards different type of data, depending upon the number of attributes and the

nature of outliers among other factors, a comparison of different algorithms applied

to a particular data set is useful in selecting the best algorithm for the task [24].

This section introduces five different classification algorithms applied to accelerom-

eter and gyroscope data collected from the fall detection device. A brief description

of each of the algorithm is provided and their respective characteristics discussed.

In Chapter 4, we look at the results of the comparison of these algorithms which

will lead us to the final choice of our algorithm. The comparison is made using

Waikato Environment for Knowledge Analysis or in short WEKA [25]. WEKA is an

open source software consisting of a number of machine learning algorithms. A brief

introduction of this software is given later in this section.
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3.2.1 Algorithms to be compared

In this section, five different machine learning algorithms are presented. All these

algorithms differ greatly in the approach they use for learning and are popular algo-

rithms for supervised learning. These are the two reasons for the selection of these

algorithms for comparison.

Naive Bayesian Classifier

Naive Bayesian Classifier is a simple probabilistic classifier. It assumes that every

feature related to a class is independent of each other [26]. So, the probability of

occurrence of a class C, provided the features F1 through FN is

P (C|F1, F2...F j) = P (C)
N∏

j=1

P (Fj|C). (3.1)

The classifier learns the conditional probability of each attribute from the training

data. Classification is done by calculating the probability of C given the values of

features F1 through FN and then predicting the class with the highest probability

value. Though the independence assumption is far reaching and often inaccurate in

real world data, this method performs surprisingly well for most of the classification

problems [27].

Radial Basis Function (RBF)

A radial basis function network is an artificial neural network which uses radial basis

functions as activation functions [28]. RBF networks typically have three layers. An

input layer, a hidden layer with non linear RBF function and a linear output layer.

The output ϕ of the network for an input x is given by

ϕ(x) =
N∑

i=1

aiρ(‖ x− ci ‖), (3.2)

where ci is the center for neuron i and ai is the corresponding weight. A successful

implementation of these networks requires appropriate values of the center and the

weights [26].
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Support Vector Machine

Support Vector Machines are a class of linear classifiers that simultaneously minimize

the empirical classification error and maximize the geometric margin. The process

involves creating a hyperplane in a n-dimensional space, that would separate two

data sets with the highest margin [29]. Reaching such a hyperplane is essentially a

solution of the following optimization problem.

minimize
1

2
‖ W ‖2 subject to Ci(W.xi − b) ≥ 1, (3.3)

where 1 < i < n and W is the vector normal to hyperplane. b is the offset for vector

W.

C4.5

C4.5 is a type of decision tree that uses Shannon’s entropy as a criterion for selecting

the most discriminatory feature.

Entropy(S) =
c∑

i=1

−pi log2(pi). (3.4)

The entire data set is split using any one of the features and the resultant information

gain is measured. The process is repeated for every feature and the one with the

highest information gain is selected for splitting the data [26]. This becomes the first

decision node of the tree and the process is repeated for every node until the final

node or the leaves are reached.

Ripple Down Rule Learner

Ripple Down Rule Learner is a type of machine learning algorithm that comes under

the general class of rule learners. Like all rule learners, it induces a set of rules from

the data. It generates the default rule first and then the exceptions for the default

rule with the least (weighted) error rate. The process is repeated until the final leaf

is reached which has only one default class and no exceptions [26].
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3.2.2 WEKA

WEKA (Waikato Environment for Knowledge Analysis) [25] is a java based data

mining software developed at the University of Waikato, New Zealand and is available

as a free software under GNU public license. It supports different data mining tasks

such as data preprocessing, clustering, classification and regression. It is frequently

used by researchers because of its ease of use and open source environment [30, 24].

Graphical User Interfaces contained in the software make it easy to use and better

to visualize the data. The data is processed as an arff file. The tool is capable of

reading data from a number of file formats like a csv file or a SQL database and

convert the data internally to arff format [31]. Figure 3.4 shows a snapshot of the

WEKA GUI. Data file corresponding to the movement data collected is shown open

in the figure. The data file only contains three features which are the acceleration

values in the three axis. The bar plot is a visual representation of the number of

classes and the number of samples in each class. In the figure, 8 classes can be seen.

Different classification, clustering and feature selection algorithms can be selected

from the tool bar at the top.

Cross Validation

Cross validation is a technique for assessing how the results of a statistical analysis

will generalize to an independent data set. In any application, where the final goal is

the prediction of classes, the cross validation estimates how accurately the predictive

model will behave in practice. The results from cross validation not only predict the

performance of the classifier in practice, but also aid in the selection of the classifier

or model [20].

There are different types of cross validations, but the one used most often is the

K fold cross validation. In this technique, the data is divided into K subsets. Out

of the K subsets, K − 1 subsets are used to train the data and the 1 set used to

validate the model. This process is repeated K times, using each subset exactly once

for validation. The most commonly used values for K are 10 and 5. In the present
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Figure 3.4: WEKA

experiments, both 10 and 5 fold cross validation are used. The data sets used to

assess the performance of the feature selection algorithm have been validated using

5 fold cross validation, as some of these data sets are very large in size, and 10 fold

cross validation takes a lot of memory and time.

3.3 Feature Selection

This section describes the Optimum Feature Selection algorithm. Feature selection,

as introduced in Chapter 1, is an important prior step to any classification problem

which reduces the dimensionality and thus the amount of data required for training.

In the fall/near fall and movement classification, the end device transmits data to

the coordinator wirelessly. Too many features would consume a lot of bandwidth.
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Each node sends 5 columns of data (more if heart rate is included), and in case more

than one node is used, then there is a lot of data to deal with and transmit. Once

the training data is ready, it can be used with a feature selection algorithm to filter

out the most valuable features which would not make any considerable difference to

the accuracy or in many cases can even increase the accuracy.

As discussed in Section 2.2 there are many feature selection algorithms varying

in complexity and approach. The algorithm presented here has a very aggressive

approach towards reducing the number of features which reduces the number of

features required to a great extent. The resultant features result in the same classi-

fication accuracy or higher. Even if in some cases the accuracy drops a little, it is

acceptable, as the main aim is to reduce the size of data as much as possible. For

this research, as described later in Section 3.5 and seen in Section 4.4 slight change

in instance classification accuracies does not effect the performance of the device,

as each movement type has at least 4 corresponding instances and thus is detected

without fail.

3.3.1 Description

The algorithm is based on the concept of class discrimination ability of features. This

means how well a feature can distinguish between different classes [7]. The features

can be ranked using some distance measure and an optimum number of features

selected from the feature set (these features would be able to distinguish between

the classes the best and thus better classify the data). However, this does not mean

that the features cannot be reduced further. There can still be features in the set

that are redundant and not adding any more information to the decision making. In

the next step these features can be removed. Next section describes the algorithm

in detail.
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3.3.2 Algorithm

This section discusses the Optimum Feature Selection algorithm in detail. The nom-

inal values of the data sets were replaced by numbers. In the first step, the entire

data set is normalized to confine the values in the range 0 to 1. This is important

as the ranking step involves Euclidean distances and standard deviations and for it

to be consistent, all the data values should lie in the same range. The rank of a

particular feature is calculated using the following equation

Rank =
sum of distances between means of each class

sum of standard deviation within each class
(3.5)

This approach is the Fisher distance ranking method [7]. For a particular feature

if the distance between the means values for different classes is large and the devia-

tions within the same class are low, then that feature can better distinguish between

the classes. The higher the value of Rank, the better discrimination ability of the

feature, or more valuable the feature is. The major steps of the algorithm are listed

below

1. Normalize the data sets.

2. Rank the Features and select top features based on parameter θ.

3. Identify and separate features with correlation coefficient more than γ.

4. Off the separated feature keep the feature with maximum correlation with the

target and remove remaining.

5. Use the final feature set for classification.

6. Compare the accuracies of the original and the reduced data set.

Once the features have been ranked, the remaining steps of the algorithm are

governed by two parameters θ and γ. The prior decides what fraction of the ranked

features will be selected and the latter is the threshold of correlation coefficient

between any two features, beyond which the two features can be considered to possess

redundant information.
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The top 1
θ

features are used to form the reduced feature set. In case there are

missing values in the dataset, they are not used in any of the calculations and are ig-

nored. Then the correlation matrix of the reduced data set is analysed. The features

with correlation coefficient greater than γ are separated. Out of these features, only

the feature having maximum correlation with the target in the original unreduced

data set is kept, the rest are discarded. If the number of features in a dataset is N ,

then the following relation is used for the parameters θ and γ.

For N < 15 (θ, γ) = (2, 0.7)

15 ≤ N < 30 (θ, γ) = (3, 0.6)

N > 30 (θ, γ) = (7, 0.7)

These relations were deduced after testing different combinations of θ and γ for

the first 9 datasets. From these initial results, the optimum relation between the

number of features and the parameters θ and γ were found to be the one mentioned

in the equation above (optimality being similar or better accuracy with maximum

reduction in the number of features). The relation was used for the rest of the

datasets and as we will see in Section 4.3, it holds good for all the datasets. This

leaves us with the final feature set. Finally, Naive Bayesian Classifier is used to

classify this reduced data set and accuracies compared.

3.3.3 Algorithms compared

The above mentioned Feature selection algorithm performance is compared with two

other feature selection algorithms. The results of this comparison are discussed in

Section 4.3.1. This section gives a brief description of the two.

CfsSubset Evaluation

Evaluates the worth of a subset of attributes by considering the individual predictive

ability of each feature along with the degree of redundancy between them.
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Subsets of features that are highly correlated with the class while having low

intercorrelation are preferred [32].

Consistency Subset Evaluation

Evaluates the worth of a subset of attributes by the level of consistency in the class

values when the training instances are projected onto the subset of attributes.

Consistency of any subset can never be lower than that of the full set of attributes,

hence the usual practice is to use this subset evaluator in conjunction with a Random

or Exhaustive search which looks for the smallest subset with consistency equal to

that of the full set of attributes [33].

3.4 Near-Fall Assessment

Near-fall is a special case in the classification problem as it is even more ambiguously

defined than the other fall scenarios. Near-fall can intuitively be defined as a situation

in which the subject is at risk of falling down. This precarious situation is itself a

subjective issue and can vary for different people. For the present experiments, near-

fall situation is defined as an extremely inclined position in any direction or a huge

deviation from the normal sway.

Detection of near-fall is important for giving warning to the patients, intimating

them of their precarious situation so that they may hold on to something and avoid

any potential falls. In Section 4.2 the results for near-fall classification are listed.

These results are obtained data from a single node. Section 4.5 lists the same results

for data obtained using two nodes.

3.5 Real Time Classification

Once the final feature set and the classification algorithm are identified, the model

can be implemented into the device. Following are the steps involved and the capa-

bilities required of the real time implementation.

23



• Upload the model parameters into the device. (Depending upon the type of

algorithm selected, it could be tree structure, probability distributions, surface

boundaries etc.)

• Classify each incoming sample of data into one of the movement types based

on the classification model.

• Send the classification result wirelessly to the co-ordinator.

• Update the model with newly classified data. This is to achieve adaptability.

• In case of a misclassification, update the model with the corrected data class.

Chapter 4 addresses the model chosen and Section 4.4 discusses the model, the

updation process and the results.

3.6 Fall assessment using two nodes

The motivation behind using multiple nodes is the greater accuracy achieved in

classifying different movements and also more number of movement types that can

be detected. As can be seen in Section 4.5, the use of two nodes enables us to

classify an additional movement type i.e. Sitting, which was not possible using only

one node. Also, there is better distinction between standing and walking. This

section discusses the experimentation involving two nodes. In the tests so far, only

one belt worn device, worn at chest height was used for the data collection. This

new experiment involves data collection from two nodes worn on different parts of

the body. Here is the detail of the setup and the data collection process.

• The second device consists of three axis accelerometer and single axis gyro-

scope.

• The first device is still worn around chest and the second device on the thigh

just above the knee.

• Both devices are on the left side of the body.
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• The methodology for data collection is the same as used with the single node

setup.

• An additional movement type can be classified by using the two nodes. This

is the Sitting position.

• The data for the Sitting position is collected by making the subject sit on a

chair and allowing slight shifting of feet and sway of upper body to account for

normal sitting positions like upright, leaned back or leaned over.

• The resultant data file has 9 features and 9 classes as shown in Figure 3.5.

Section 4.5 lists the results of the classification using the data from two nodes.

It also shows the results of the feature selection algorithm on this data and the

corresponding changes in accuracy and number of features.
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Figure 3.5: Data From Two Nodes
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Chapter 4

Results

4.1 Performance comparison of different classifiers

The data collected from the fall detection device as explained in Section 3.1 is labeled

for all the different movement types and then used as training data for the five

different machine learning algorithms explained in Section 3.2.1.

To measure the accuracy of the machine learning algorithms namely Naive Bayesian

Classifier, Radial Basis Function Network, Support Vector Machine, C4.5 and Rip-

ple Down Rule Learner, same method is applied to all the five algorithms, i.e. the

entire data set is used to train each algorithm and subsequently 10 fold cross vali-

dation method is used to test the generated classification model. In WEKA, every

row of data is considered as an instance and the features in the data are known as

attributes. Results of the simulation show different parameters such as correctly and

incorrectly classified instances, mean absolute and root mean squared error, confu-

sion matrix etc. Table 4.1 shows the classification accuracies of different machine

learning algorithms on the test data that contains 7 classes and 597 instances. It

also shows the number of correctly and incorrectly classified instances.

As is evident from the Table 4.1 Naive Bayesian Classifier gives the highest accu-

racy at 97.32%, and takes the least time for model building. Support Vector Machine

performs poorly in accuracy and particularly in the time taken to build the model.

C4.5 tree is a close competitor both in terms of accuracy and speed. Table 4.2 lists

different error measures for each of the classifiers. Again, it can be seen that, Naive

Bayesian Classifier has the least values for all the error measures. With a root mean

square error value of 0.07, Naive Bayesian Classifier performs many times better than
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others, especially support vector machines which shows a root mean square error of

0.30. Other error measures mentioned in the table also point to the same conclusion

that Naive Bayesian Classifier outperforms all other algorithms compared.

Table 4.1: Comparison of each algorithm

Algorithm Correctly Classi-
fied Instances %
(value)

Incorrectly Clas-
sified Instances
% (value)

Time Taken
1%(seconds)

Naive Bayesian

Classifier

97.32 (581) 2.68 (16) 0.01

Support Vector

Machine

92.29 (551) 7.70 (46) 14.16

Radial Basis Func-

tion

95.81 (572) 4.19 (25) 8.01

C4.5 94.64 (565) 5.36 (32) .04

Ripple Down Rule

Learner

92.78 (554) 7.20 (43) 0.16

The Naive Bayesian Classifier outperforms all other classifiers. These results

concluded that Naive Bayesian Classifier should be the choice for classifier. All

the further experiments used Naive Bayesian Classifier and the feature selection

algorithm’s performance also tested on Naive Bayesian Classifier performance on the

feature subsets.

1using Intel Core2 Duo 1.67Ghz processor and 2GB RAM
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Table 4.2: Classification errors for each algorithm

Algorithm Mean Abso-
lute Error

Root Mean
Squared Er-
ror

Relative
Absolute
Error %

Root
Relative
Squared
Error %

Naive

Bayesian

Classifier

0.01 0.07 4.53 21.47

Support Vec-

tor Machine

0.20 0.30 83.96 86.77

Radial Basis

Function

0.01 0.11 4.99 30.28

C4.5 0.02 0.12 7.52 34.04

Ripple Down

Rule Learner

0.02 0.14 8.40 40.99

Table 4.3 shows the confusion matrix for the classification results obtained from

Naive Bayesian Classifier. Confusion matrix is a visualization tool typically used in

supervised learning, which makes it easy to analyze the classification results. Each

column of the matrix represents the instances in a predicted class, while each row

represents the instances in an actual class. From the table it can be seen that the

first row has 86 instances, which is the actual number of instances corresponding to

class A : Forward Fall. However first column has 87 instances, suggesting that 1

instance from some other class has been misclassified as Class A.

From the table it can be seen that all the instances belonging to Forward

Fall,Backward Fall Lying and Standing have been correctly classified. There

is misclassification in other movement types, with Left Fall having 8 instances

misclassified, 2 of which as Right Fall and 6 as Walking.
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Table 4.3: Confusion matrix for Naive Bayesian Classifier

A B C D E F G

86 0 0 0 0 0 0 A:Forward Fall

0 82 0 0 0 0 0 B:Lying

0 0 90 0 0 0 0 C:Standing

1 2 0 82 0 0 2 D:Right Fall

0 0 0 0 77 0 3 E:Walking

0 0 0 0 0 87 0 F:Backward Fall

0 0 0 2 6 0 77 G:Left Fall

4.2 Near Fall Analysis

The previous section showed that the Naive Bayesian Classifier is most suitable for

the movement classification. In this section, the classifier is used to classify new

data which also includes the NearFall situation. Now the total number of classes in

the dataset is 8 and the number of instances are 670. The classification accuracy is

99.40%, with 4 samples belonging to Near Fall class getting misclassified. Table 4.4

shows the confusion matrix for the classification result. As can be seen, there are

only 4 misclassified instances. One Forward Fall is misclassified as Near Fall.

There are two instances of false alarm and one instance of undetected fall.
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Table 4.4: Confusion matrix for Naive Bayesian Classifier (including near fall)

A B C D E F G H

85 0 0 0 0 0 0 1 A:Forward Fall

0 82 0 0 0 0 0 0 B:Lying

0 0 90 0 0 0 0 0 C:Standing

0 0 0 87 0 0 0 0 D:Right Fall

0 0 0 0 80 0 0 0 E:Walking

0 0 0 0 0 87 0 0 F:Backward Fall

0 0 0 0 0 0 85 0 G:Left Fall

1 0 0 1 0 0 1 70 H:Near Fall

4.3 Optimum Feature Selection

Optimum Feature Selection algorithm is used in this fall detection and movement

classification problem to reduce the number of features required for correctly clas-

sifying the different movements. This algorithm is generalized in nature and can

be used as a feature selection algorithm for different data sets. A feature selection

algorithm must be able to perform well on different kinds of data sets. To prove

that this algorithm can perform well for a wide range of data sets, the UCI data sets

discussed in the next section are used for testing its performance. The UCI data sets

are invariably used in the machine learning community to compare the performance

of different algorithms.

4.3.1 UCI Datasets

To evaluate the performance of the Optimum Feature Selection Algorithm, 18 differ-

ent datasets from the UCI (University of California, Irvine) repository [34] are used

as shown in Table 4.5.
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Table 4.5: Description of UCI data sets

Dataset Number of
Features

Number of
Classes

Number of In-
stances

Breast Cancer 9 2 286

German Credit 21 2 1000

KrVsKp 36 2 3196

Mushroom 22 2 8124

Vote 17 2 435

Diabetes 9 2 768

Lung Cancer 57 3 32

Car 7 4 1728

Hepatitis 20 2 155

Ionosphere 35 2 351

Liver Disorder 7 2 345

Sick 30 2 3772

Vehicle 17 4 846

Tic-Tac-Toe 10 2 958

Spambase 58 2 4601

Sonar 61 2 208

Page Blocks 11 5 5473

Iris 5 3 150
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The datasets used are from many different fields and contain a range of number

of features, classes and instances. Such a selection was made to better analyze the

effectiveness of the algorithm in selecting relevant features. The number of attributes

in the datasets range from below 10 to above 50. Data set Iris has the least number

of features at 2 and Sonar has the most number of features at 61. The number of

instances is mostly of the order of few hundreds, but there data are sets with as

few instances as 32 and as many as 8124. Also, they come from different fields like

medicine, finance etc. The experimental results show that the algorithm works well

on all of these datasets and is thus fairly generalized.

This is the outline of the experimental setup.

• Naive Bayesian Classifier algorithm is run on each of the datasets using 5 fold

cross validation in WEKA.

• Optimum Feature Selection algorithm is run for each of the datasets in MAT-

LAB and the final feature set extracted.

• Naive Bayesian Classifier is run again in WEKA for each of the datasets using

the features selected by the Optimum Feature Selection algorithm.

• Accuracies compared.

The results clearly show that the algorithm effectively selects the minimum num-

ber of features while maintaining or increasing the classification accuracy by the

Naive Bayesian Classifier. Table 4.6 compares the classification accuracies of Naive

Bayesian Classifier on the original dataset and on the reduced data set obtained

from the Optimum Feature Selection algorithm. Out of 18 datasets 11 datsets saw

an increase in accuracy while 2 datasets saw no change in accuracy. 5 sets had a

drop in accuracy, but as Table 4.7 shows, even in these cases the reduction in num-

ber of features used is significant. The average increase in the accuracies is 0.7%.

At 5.5173%, the dataset V ote shows the maximum increase in accuracy, while at

-4.86%, the dataset Car shows the maximum drop. Since, the aim of the Optimum

33



Feature Selection algorithm is to achieve maximum reduction in the number of fea-

tures, keeping the accuracies similar or better, the change in accuracies is not huge

for any data set, but, the reduction in number of features is significant.

From Table 4.7 we can see that the algorithm has been able to reduce the number

of features to a great extent. In the dataset Sonar only 1 out of 61 features was used

and the resultant accuracy was also 2.17% higher, as can be seen from Table 4.6.

On an average there is a reduction of 84.50% in the number of features used. Out

of the total 18 data sets, 17 have shown a decrease of more than half of the original

number of features. This means that the test data required to build the model can

be significantly reduced. This suggests that using only 15.5% of the features in the

original dataset, similar classification accuracies have been achieved.

The data sets that saw a decrease in the classification accuracy after applying Op-

timum Feature Selection are German Credit (-1.2%), Mushroom (-2.1%), Diabetes

(-1.17%), Car (-4.86%) and Tic−Tac−Toe (-1.45%) as can be seen in Table 4.6. The

percent reduction in the number of features for each of these data sets are 80.95%,

81.82%, 55.56%, 57.14% and 50% respectively. This suggests that though there is a

slight decrease in the classification accuracy, the reduction in number of features is

considerable.
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Table 4.6: Accuracy comparison between Naive Bayesian Classifier alone and
Naive Bayesian Classifier with Optimum Feature Selection algorithm

Dataset NBC(%) NBC with
OFS(%)

NBC with OFS
vs NBC alone
(%)

Breast Cancer 72.72 74.12 +1.40

German Credit 75.4 74.2 -1.20

KrVsKp 87.89 89.90 +2.00

Mushroom 95.69 93.57 -2.12

Vote 90.11 95.63 +5.52

Diabetes 76.43 75.26 -1.17

Lung Cancer 78.12 81.25 +3.13

Car 85.12 85.12 -4.86

Hepatitis 82.58 82.58 0

Ionosphere 82.62 82.90 +0.28

Liver Disorder 55.36 55.50 0.14

Sick 92.60 95.42 +2.82

Vehicle 44.90 45.50 +0.60

Tic-Tac-Toe 68.26 69.72 -1.45

Spambase 79.61 84.00 +4.39

Sonar 66.83 69.00 +2.17

Page Blocks 91.37 92.14 +0.77

Iris 96.00 96.00 0

Average 79.06 79.76 +0.7
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Table 4.7: Comparison of number of features selected by Optimum Feature
Selection algorithm and the number of features in original data set

Dataset Original num-
ber of Features

Number of Se-
lected features
by OFS

Reduction(%)

Breast Cancer 9 5 44.44

German Credit 21 4 80.95

KrVsKp 36 5 86.11

Mushroom 22 4 81.82

Vote 17 1 94.12

Diabetes 9 4 55.56

Lung Cancer 57 3 94.74

Car 7 3 57.14

Hepatitis 20 6 70

Ionosphere 35 4 88.57

Liver Disorder 7 3 57.14

Sick 30 3 90

Vehicle 17 2 88.23

Tic-Tac-Toe 10 5 50

Spambase 58 8 86.21

Sonar 61 1 98.36

Page Blocks 11 4 63.64

Iris 5 2 60

Average 24 3.72 84.5
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Feature selection comparison

This section compares the performance of the Optimum Feature Selection algorithm

with two other feature selection algorithms explained in Section 3.3.3 on the 18 UCI

datasets. The next two sections compare the results for single and double node data

respectively.

Table 4.8 shows the performance of cfs subset evaluation algorithm on the ac-

curacy of classification for all the 18 UCI datasets. As can be seen from the table,

the average increase in classification accuracy is 1.79%. The maximum increase is

seen for the data set Ionosphere at 8.83%. The greatest decrease for the accuracy

is for data set Car at -15.12%. Out of the 18 data sets, 3 showed a fall in accuracy

while 1 showed no change at all. The remaining 14 data sets showed some level of

improvement in accuracy.

Table 4.9 shows the reduction in number of features by this algorithm. The

average reduction in the number of features is 70.83%. The maximum reduction is

shown for the data set Lung Cancer at 85.96%. The least reduction is achieved for

the data set V ehicle at 35.3%
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Table 4.8: Accuracy comparison between Naive Bayesian Classifier alone and
Naive Bayesian Classifier with Cfs Subset Eval algorithm

Dataset NBC(%) NBC with Cfs
Subset Eval(%)

NBC vs NBC
with Cfs Sub-
set Eval (%)

Breast Cancer 72.72 74.12 +1.40

German Credit 75.4 74.5 -0.9

KrVsKp 87.89 92.20 +4.30

Mushroom 95.69 98 +2.31

Vote 90.12 96 +5.88

Diabetes 77.43 77.08 +0.65

Lung Cancer 78.12 84.37 +6.25

Car 85.12 70 -15.12

Hepatitis 82.58 88.38 +5.80

Ionosphere 82.62 91.45 +8.83

Liver Disorder 55.36 55.65 +0.29

Sick 92.60 96.42 +3.82

Vehicle 44.9 46.81 +1.91

Tic-Tac-Toe 69.72 72.55 +2.83

Spambase 79.61 79.07 -0.54

Sonar 66.83 68.27 +1.44

Page Blocks 91.37 94.5 +3.12

Iris 96.00 96.00 0

Average 79.05 80.85 +1.80
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Table 4.9: Comparison of number of features selected by Cfs Subset Eval and
the number of features in original data set

Dataset Original num-
ber of Features

Number of se-
lected features
by Cfs Subset
Eval

Reduction(%)

Breast Cancer 9 5 44.44

German Credit 21 3 85.71

KrVsKp 36 7 80.55

Mushroom 22 4 81.82

Vote 17 5 70.58

Diabetes 9 4 55.55

Lung Cancer 57 8 85.96

Car 7 1 85.71

Hepatitis 20 10 50

Ionosphere 35 14 60

Liver Disorder 7 1 85.71

Sick 30 6 80

Vehicle 17 11 35.3

Tic-Tac-Toe 10 5 50

Spambase 58 15 74.14

Sonar 61 19 68.85

Page Blocks 11 6 45.45

Iris 5 2 60

Average 24 7 70.83
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Table 4.10 shows the performance of consistency subset evaluation algorithm on

the accuracy of classification for all the 18 UCI datasets. The average increase in

classification accuracy for all the data sets is 2.15%. The maximum increase in

accuracy is seen for the data set Lung Cancer at 9.02%. The greatest decrease in

accuracy is for data set Sonar at -0.96%. In total, 5 data sets show no change in

accuracy, 2 show a fall in accuracy and the remaining 11 data sets had some level of

increase in classification accuracy.

Table 4.11 shows the reduction in number of features by this algorithm. The

average reduction in the number of features is 63.42%. The maximum reduction

in feature number is achieved for the data set Lung Cancer at 92.98%. For this

particular data set, the algorithm accomplished a great decrease in the number of

features and also a considerable increase in the classification accuracy. In 3 data sets

namely Diabetes, Car and vehicle, this algorithm could not achieve any reduction

in the number of features.
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Table 4.10: Accuracy comparison between Naive Bayesian Classifier alone
and Naive Bayesian Classifier with Consistency Subset Eval algorithm

Dataset NBC(%) NBC with
Consistency
Subset Eval(%)

NBC with
Consistency
subset Eval vs
only NBC (%)

Breast Cancer 72.73 75.16 +2.43

German Credit 75.4 75.2 -0.2

KrVsKp 87.89 94.33 +6.44

Mushroom 95.69 98.52 +2.83

Vote 90.11 91.03 +0.92

Diabetes 77.43 76.43 0

Lung Cancer 78.12 87.15 +9.03

Car 85.12 85.12 0

Hepatitis 82.58 84.51 +1.93

Ionosphere 82.62 84.62 +2.00

Liver Disorder 55.36 55.65 +0.29

Sick 92.60 94.70 +2.1

Vehicle 44.9 44.9 0

Tic-Tac-Toe 69.72 72.33 +2.61

Spambase 79.61 86.96 +7.35

Sonar 66.83 65.86 -0.97

Page Blocks 91.37 91.37 0

Iris 96 96 0

Average 79.06 81.21 +2.15
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Table 4.11: Comparison of number of features selected by Consistency Subset
Eval and the number of features in original data set

Dataset Original num-
ber of Features

Number of se-
lected features
by Consistency
Subset Eval

Reduction(%)

Breast Cancer 9 2 77.77

German Credit 21 7 66.67

KrVsKp 36 6 83.33

Mushroom 22 5 77.27

Vote 17 10 41.18

Diabetes 9 9 0

Lung Cancer 57 4 92.98

Car 7 7 0

Hepatitis 20 12 40

Ionosphere 35 7 80

Liver Disorder 7 1 85.71

Sick 30 12 60

Vehicle 17 17 0

Tic-Tac-Toe 10 8 20

Spambase 58 25 56.89

Sonar 61 14 77.05

Page Blocks 11 10 9.09

Iris 5 2 60

Average 24 8.78 63.42

42



As is evident from the results listed in these tables, the cfs subset evaluation algo-

rithm and the consistency subset evaluation algorithms perform good in increasing

the accuracy of the classification, but poorly on the number of features reduced. A

comparison of accuracy performance is depicted in Figure 4.1. Optimum Feature

Selection algorithm increases the average accuracy of the 18 data sets by 0.5%, while

the Cfs Subset Eval and Consistency Subset Eval algorithms increased the average

accuracy by 1.79% and 2.15%.

Figure 4.1: Accuracy Comparison of Feature Selection Algorithms

As is evident from Tables 4.6 and 4.7 and depicted in Figure 4.2 the Optimum

Feature Selection algorithm performed really good on the number of features reduced.

On an average 84.49% features were reduced while maintaining an average increase

of 0.5% accuracy. The other two algorithms reduced the features by 70.83% and

63.42%.
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Figure 4.2: Comparison of % Reduction in Features

4.3.2 Single Node Fall Detection

This section investigates the performance of the Optimum Feature Selection algo-

rithm on the classification accuracy for the data collected from single fall detection

node. Also, the performance of the other two algorithms is discussed.

The data from the single node consists of 5 features. These are

• Acceleration X axis

• Acceleration Y axis

• Acceleration Z axis

• Gyroscope X axis

• Gyroscope Y axis

The classification results using these 5 features were discussed in Section 4.2.

Following are the features selected by the Optimum Feature Selection algorithm.

• Acceleration X axis
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• Acceleration Y axis

• Acceleration Z axis

Table 4.12: Confusion matrix using features selected by Optimum Feature
Selection algorithm

A B C D E F G H

85 0 0 0 0 0 0 1 A:Forward Fall

0 82 0 0 0 0 0 0 B:Lying

0 0 90 0 0 0 0 0 C:Standing

0 0 0 87 0 0 0 0 D:Right Fall

0 0 0 0 80 0 0 0 E:Walking

0 0 0 0 0 87 0 0 F:Backward Fall

0 0 0 0 0 0 84 1 G:Left Fall

1 0 0 5 0 0 0 67 H:Near Fall

Table 4.13: Performance comparison of feature selection algorithms on data
from single node

NBC with OFS NBC with Cfs Sub-

set Eval

NBC with Consis-

tency Subset Eval

Features used 3 5 4

Accuracy (%) 98.80 99.40 99.40

Using only these three features, the accuracy of classification is 98.80%, which is

0.60% lower than the accuracy achieved using all five features. Table 4.12 shows the

confusion matrix for the results.
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As can be seen from the confusion matrix, the increase in misclassification is

only due to 3 additional features belonging to near fall being classified as some fall

activity. Table 4.13 compares the performance of the three algorithms.

As is evident from the discussions in this section, both Cfs Subset Evaluation and

Consistency Subset Evaluation algorithms are able to maintain the accuracy, but

could not reduce the number of features considerably. Optimum Feature Selection

algorithm on the other hand reduces the number of features considerably.

4.4 Real Time Classification

Section 3.5 discussed the methodology and steps involved to achieve real time classi-

fication. Based on the classifier selected and the chosen features, the final real time

implementation is listed below.

• The selected classifier is the Naive Bayesian Classifier, so the parameters of the

model are the means and standard deviations of each feature within each class

and the prior probabilities of each class.

• For each incoming sample of data, the posterior probability of each class is

calculated, assuming a Gaussian distribution and using the equation

P =
1√

2πσ2
exp−(x− µ)2

2σ2
(4.1)

• This probability is calculated for each feature within each class and all are mul-

tiplied together and with the prior probability to give the posterior probability

of any given class.

• The class with the maximum posterior probability is assigned to the sample

and sent wirelessly to the coordinator.

• Every sample of data, after classification is used to update the model of the

respective class by updating the means and deviations of each feature.
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Following are the results of the real time implementation.

• Every fall event is detected correctly.

• 3-4 samples of data for each fall activity.

• Leaning in any direction is detected as a near fall situation.

• Fluctuation between standing and walking positions.

4.5 Double Node Analysis

Section 3.6 described the two nodes and data collection process. Using two nodes, the

movements can be divided into 9 different classes. This section lists the classification

results for the data collected for two nodes. The results of the feature selection

process and the consequent change in accuracies is also discussed.

The data consists of 458 instances and 9 features, divided into 9 different classes.

Table 4.14 shows the confusion matrix for the classification results.

Table 4.14: Confusion matrix for Naive Bayesian Classifier (Double Node)

A B C D E F G H I

23 0 0 0 0 0 0 0 0 A:Forward Fall

0 51 0 0 0 0 0 0 0 B:Lying

0 0 101 0 0 0 0 0 0 C:Standing

0 0 0 22 0 0 0 0 0 D:Right Fall

0 0 0 0 100 0 0 0 0 E:Walking

0 0 0 0 0 23 0 0 0 F:Backward Fall

0 0 0 0 0 0 20 0 0 G:Left Fall

0 0 0 0 0 0 0 17 0 H:Near Fall

0 0 0 1 0 0 0 0 100 I:Sitting
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The accuracy of classification is 99.78%, with 1 sample of sitting position mis-

classified as right fall. This can be the result of an outlier in the samples of the

sitting position. Selection of the most relevant features from this set of 9 features is

done using the feature selection algorithm. Table 4.15 shows the comparison of the

performance of three different classification algorithms.

Table 4.15: Performance comparison of feature selection algorithms on data
from double node

NBC with OFS NBC with Cfs Sub-

set Eval

NBC with Consis-

tency Subset Eval

Features used 5 3 9

Accuracy (%) 97.82 95.41 99.78

The Optimum Feature Selection selected the following 5 features

• Acceleration X axis (Chest device)

• Acceleration Y axis (Chest device)

• Acceleration Z axis (Chest device)

• Acceleration Y axis (Thigh device)

• Acceleration Z axis (Thigh device)

From Table 4.15, the accuracy of classification using the reduced feature set is

97.82%. The Cfs Subset Eval algorithm reduced the features from 9 to 3, but with

a considerable drop in accuracy. Consistency Subset Eval algorithm is not able to

reduce the number of features at all and thus the accuracy values remains the same.

Table 4.16 shows the confusion matrix for the result.

As seen in Table 4.16, the bulk of the resulting misclassification is between the

walking and the standing positions. There are still no undetected falls. Since, accu-
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Table 4.16: Confusion matrix for Naive Bayes Classifier on reduced feature
set (Optimum Feature Selection)

A B C D E F G H I

23 0 0 0 0 0 0 0 0 A:Forward Fall

0 51 0 0 0 0 0 0 0 B:Lying

0 0 100 0 0 0 0 1 0 C:Standing

0 0 0 22 0 0 0 0 0 D:Right Fall

0 0 6 0 92 0 0 2 0 E:Walking

0 0 0 0 0 22 1 0 0 F:Backward Fall

0 0 0 0 0 0 20 0 0 G:Left Fall

0 0 0 0 0 0 0 17 0 H:Near Fall

0 0 0 1 0 0 0 0 100 I:Sitting

rate distinction between standing and walking is not a priority issue, the reduction

in feature set from 9 features to 5 features is a big advantage.

The Cfs subset evaluation algortihm reduced the number of features from 9 to 3.

However, this is achieved at the cost of reduction in accuracy to 95.41%. Table 4.17

shows the confusion matrix for these results.

As is evident from the confusion matrix for reduced feature subset by Cfs sub-

set evaluation algorithm, the misclassification rate is high. There are in total 21

misclassified samples, of which 9 are undetected fall samples. Though, the num-

ber of features selected is less than the ones selected by Optimum Feature Selection

algorithm, but misclassification rate is too high to be accepted.
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Table 4.17: Confusion matrix for Naive Bayesian Classifier on reduced feature
set (Cfs Subset Eval)

A B C D E F G H I

23 0 0 0 0 0 0 0 0 A:Forward Fall

0 50 0 0 0 0 1 0 0 B:Lying

0 0 100 0 1 0 0 0 0 C:Standing

1 3 0 14 0 0 4 0 0 D:Right Fall

0 0 0 0 98 0 1 1 0 E:Walking

0 0 0 0 0 21 1 1 0 F:Backward Fall

0 0 0 1 4 0 14 1 0 G:Left Fall

0 0 0 0 0 0 0 17 0 H:Near Fall

0 0 0 0 0 0 1 0 100 I:Sitting
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Chapter 5

Conclusion and Future Work

The introduced device prototype developed by the FANFARE team can detect

and classify different types of falls and different types of normal movements. Near-

fall situations are also identified correctly and an early warning capability can be

integrated to the device.

Naive Bayesian Classifier, which is a well established and popular algorithm for

many machine learning problems is used for the fall analysis and proved to be effi-

cient in classifying different movement types accurately and detect fall and near-fall

situations. Using this classifier for the real time movement classification has resulted

in a machine learning model which is easy to update, as it involves the recalculation

of means and deviations and is computationally fast.

There is a fluctuation in classification between walking and standing, which in-

tuitively speaking, can be rectified using more number of nodes. The adaptability

of the device ensures that the model keeps adapting to an individual’s peculiar gait,

posture and lifestyle. The default model caters to the general conception of normal

movements and falls. The model can be fine tuned by changing the prior probabili-

ties of each class. Even after this tuning, the device can continuously keep improving

the classification process by updating the model continuously. The event of a false

alarm poses a problem as now, the user must tell the device that it is a normal move-

ment and then the corresponding data should not update the means and deviations

of the fall class. The algorithms to update the model are in place, however, the

hardware capability to track and send the correct data for update, in the event of a

misclassification is not yet in place.

The Optimum Feature Selection algorithm complements the Naive Bayesian Clas-
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sifier by selecting only the most relevant features necessary for accurate classification

of movement. There is a need to use this algorithm as the existing popular feature

selection algorithms are unable to reduce the number of features considerably. This

algorithm is shown to perform well not only for the movement classification problem,

but also for other types of data sets. The test with other UCI data sets showed that

the algorithm is fairly generalized and can achieve significant reduction in the num-

ber of features while keeping the classification accuracies at acceptable levels. The

comparison with other feature selection algorithms both for movement classification

data and UCI datasets, highlighted the difference between them. Where the other

algorithms try to improve the accuracy, while having a relaxed approach to reducing

number of features, the Optimum Feature Selection algorithm is suited for higher

reduction in the number of features, while maintaining acceptable levels of accuracy.

With the addition of more number of nodes, more movement types can be ac-

curately classified. Optimum Feature Selection algorithm can be used to select only

the most relevant features from many features obtained from multiple nodes. As

discussed earlier, in the event of a misclassification, the device should be capable of

tracking the data and sending the corrected version for updating the model. This

will ensure a more flexible, adaptable and robust classification model.
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Appendix A

Classification Code

Here is the MATLAB code for the real time classification process. It is given in
two sections. The first one generates the model, and the other classifies a sample of
data.

A.1 Classifier Model

function [M,SD,Prior,S] = NBclassify(data)

Function to build the Naive Bayesian Classifier model
M: Mean
SD:Standard Deviation
Prior:Prior probabilities
S: Data separated according to each class

separates all the classes
S=seperating(data);Function to separate data M={}; SD={};
Prior=[];

calculation of means and standard deviations for every feature in every class.
rows=length(data(:,1)); for i=1:length(S)
Mi=mean(S1,i);
SDi=std(S1,i);
end

calculation of prior probabilities of each class. for
i=1:length(S)
Prior(i)= length(S1,i(:,1))/rows;
end

A.2 Classification

function [class,L,prob,test] = realtime(M,SD,Prior,x)
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this function returns the class of the unknown data x, based on the means(M), Devi-
ations(SD) and Prior probabilities calculated from the test data
class=[]; prob=[]; test=[];

assigning class to new data x, each row at a time.
for
r=1:length(x(:,1))
L=[];

calculation of posterior probability of each class and storing the value in vector L
for j=1:length(Prior)
p=1;

calculation of conditional probability for each feature and multiplying all of them
(independence assumption of Naive Bayesian Classifier)
for i=1:length(M1,1(1,:))-1
p= normpdf(x(r,i),M1,j(i),SD1,j(i));
end
L=[L,p];
end

assigning the class which has maximum posterior probability

[maximum;n]= max(L);

class=[class,n];
end
class
1 : forward fall
2: lying
3: standing
4: right fall
5: Walking
6: Backward fall
7: left fall
8: Near fall
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