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ABSTRACT 

 

A gel is a cross-linked polymer network that spans an entire liquid medium; its 

properties depend strongly on the interaction of the polymer and the liquid medium.  There are 

various ways to induce gelation in different systems such as altering temperature or pH.  In this 

study, phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) 

winter rye (Secale cereale L. cv Musketeer) leaf tissue were subjected to freeze-thaw treatment.  

Gelation was induced in the NA and CA extracts after repeated freeze-thaw treatments, 

accompanied by a change in sample rheological properties. Further experimentation revealed 

that gel formation only occurred at high pH (pH 12.0) and that a minimum of 3 to 4 freeze-thaw 

cycles were required. The viscosity of the protein gel increased 5.7- to 9.5-fold in the NA and 

CA extracts respectively upon freeze-thaw.  Experiments optimizing the extraction conditions 

and protein concentration were also performed.  The gel was stable and only a specific 

combination of chaotropic agent, anionic surfactant and reducing agent such as urea, sodium 

docecyl sulfate (SDS) and β-mercaptoethanol (β-ME) with heating could disrupt the gel 

network.  The gel was composed of several proteins in the extracts as determined by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  Based on SDS-PAGE 

analysis, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) was identified as the 

major protein component in the gel.  Various experiments were performed to assess the role of 

Rubisco in gel formation; however, the results were inconclusive.  It is suggested that these 

extracts may contain antifreeze proteins (AFPs) that have been demonstrated to form amyloid 

gels upon freeze-thaw.  Further studies examining the composition and mechanism of gel 

formation may result in a future role for this material in the food industry. 
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1.0 INTRODUCTION 

 

 Cold-tolerant herbaceous plants, such as winter cereals, can grow at low temperatures 

and survive freezing events as a result of a process referred to as cold acclimation (Xin and 

Browse, 2000; Thomashow, 2001; Sung et al., 2003).   Cold acclimation is complex and 

involves numerous physiological and biochemical changes that result in improved freezing 

tolerance.  The survival of frozen plant tissues depends on preventing damage caused by the 

growth of intracellular ice crystals.  Winter rye (Secale cereale L.) is an over wintering annual 

plant that can survive temperatures below -30°C.  This is due, in part, to ice formation only in 

the intercellular spaces which is mediated by endogenously produced AFPs (Pearce, 1988; 

Griffith and McIntyre, 1993; Brush, et al., 1994).  Six AFPs have been found in the apoplast of 

winter rye leaves which function by inhibiting ice growth and recrystallization and are thought 

to be involved in maintaining the rheologic properties of the cellular matrix (Griffith et al., 

1992; Griffith et al., 1997; Yu and Griffith, 1999).   

 While extracting protein from cold acclimated winter rye for 2-D electrophoresis, 

researchers in the laboratory of Dr. Barbara Moffatt at the University of Waterloo made an 

interesting observation. After several freeze-thaw cycles, the protein extracts became more 

viscous and the formation of a gel was observed (Barbara Moffatt, personal communication). 

Interestingly, researchers examining winter flounder type I AFP also observed a translucent gel 

which formed upon freezing and thawing that was found to be amyloidotic in nature (Graether 

et al., 2003; Graether and Sykes, 2009). 

The food industry is continually searching for new food components to improve texture 

and in this aspect, food gels, especially those from natural (plant) sources, play an essential role 

(Roberfroid, 1999; Renard et al., 2006).  In addition, the quality of frozen foods decreases over 

time due to water sublimation and ice crystallization.  Over wintering plants grow in similar 

sub-zero conditions as the storage of frozen food, by synthesizing compounds that limit the 

movement of water and growth of ice crystals. 

 By successfully identifying and characterizing the compounds responsible for gel 

formation in plant protein extracts, it may be possible to use this knowledge to improve the 

quality of frozen food products or use these materials as a thickener and gelling agent. 
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2.0 LITERATURE REVIEW 
2.1 Gels 

 

What is a gel?  This is a question to which there is often no precise answer.  This was 

noted by Dorothy Jordan-Lloyd decades ago (Lloyd, 1926), who stated “the colloidal condition, 

the gel, is one which is easier to recognize than to define, and even recognition is confused by 

the fact that the limits between gel and sol, on the one hand, and gel and what may be termed 

curd, on the other, are not precise, but consist of a gradual change”.  Almost sixty years ago, 

Bungenberg de Jong (1949) defined a gel as “a colloidal system of solid character, in which the 

colloidal particles somehow constitute a coherent structure, the latter being interpenetrated by 

liquid system”.  Whereas Tanaka (1987) defined a gel as “a cross-linked polymer network 

swollen in a liquid medium; its properties depend strongly on the interaction of the polymer and 

the liquid medium”.   

Currently, many different types of gels are being examined by a wide range of scientists 

from many disciplines.  However, there is still a lack of consensus to reach a consistent 

definition of what constitutes a gel (Almdal et al., 1993).  

 

2.1.1 Types of Gels 

 

Flory (1974) originally proposed a classification of gels in terms of the structural 

elements of the continuous gel network (Flory, 1974; reviewed by Horne, 1999).  He proposed 

the following four classes indicated in Table 2.1.   
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Table 2.1  Classification of gels as proposed by Flory (1974).  

Class Definition Description Example 
I Well-ordered 

lamellar structures 
 Soap gels 

Inorganic gels from 
clay or minerals   
 

II Covalent polymeric 
networks; completely 
disordered 

A continuity of structure is 
provided by a ramified three-
dimensional network comprising 
structural units covalently linked 
to each other 

Polyacrylamide gels 
Vulcanized rubbers 

III Polymer networks 
formed through 
physical aggregation; 
predominantly 
disordered, but with 
regions of local order 

Polymer networks are formed 
when primary molecules, usually 
of a linear structure but finite 
size, come together to form 
junction zones at particular 
points along the protein chain   

Gelatin gels  
 

IV Particulate, 
disordered structures   

Particulate gels are clusters of 
aggregated particles which 
network to form continuous 
structures extending throughout 
an enclosing volume 

Acidified milk gels 
      

 

More recently, Burchard and Ross-Murphy (1990) reclassified gel networks into three 

main classes, which are covalently cross-linked materials, entanglement networks and physical 

gels (reviewed below).  Despite the confusion and inconsistency in gel definition, in more 

modern terminology, a gel has been described as a viscoelastic solid, which depending on 

circumstances, it can flow like a viscous liquid and in others behave like an elastic solid (Horne, 

1999).   

 

2.1.1.1 Covalently Cross-Linked Materials   

 

Covalent polymeric gels are associated with supermolecules, generally formed by 

covalently cross-linking simpler linear polymers.  Their mechanical properties reflect this 

network structure (Ross-Murphy, 1995).  The structure of a polymer gel consists of an 

“infinite” network of chains, from a macroscopic viewpoint.  A container of gel consists of a 

macromolecule so large and branched that it actually fills the container.  If one of the segments 

of a linear polymer in solution can cross-link with other segments on other chains a gel should 
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eventually be formed.  After each intermolecular cross-linking, the average molecular weight 

(Mw) increases as the number of cross-linking sites has been increased.  Over a period of time, 

as more and more cross-linking reactions occurs, the Mw increases even faster until it ultimately 

becomes “infinite” (Ross-Murphy, 1995).  At this point, the largest individual molecule 

completely spans the entire volume in which it sits.  This is known as the “gel point”.   Since 

Mw has become infinite, the longest relaxation time, which depends on Mw is also infinite. Thus, 

the gelled sample no longer flows like a polymer solution but instead has the properties of an 

equilibrium solid.    

 

2.1.1.2 Entanglement Networks   

 

Entanglement networks are formed by the simple topological interaction of polymer 

chains rather than by covalent cross-linking (Kavanagh and Ross-Murphy, 1998).  

Entanglement networks occur in the molten state or in solution when the product of 

concentration and relative molecular weight becomes greater than some critical entanglement 

molecular weight.  Entanglement networks behave as pseudogels at frequencies higher (time 

scale shorter) than the lifetime of the topological entanglements.  The rheological 

discrimination between entanglement networks and cross-linked gels can be made by the 

technique of dynamic mechanical analysis.  Using small deformation, an oscillatory strain of 

frequency is applied to the material and shear storage modulus and shear loss modulus are 

measured.  For the entanglement network, at very low frequencies, in the ‘terminal zone’ they 

flow as high viscosity liquids. However, the cross-linked gels response differently depends on 

the product concentration and relative molecular weight for the system before cross-linking was 

above or below the critical entanglement molecular weight.  A further discrimination is that 

when excess solvent is added, the entanglement network system will dissolve to form a more 

dilute polymer solution whereas the covalently cross-linked gels will swell but not dissolve.  

 

2.1.1.3 Physical Gels   

 

Physical gels are polymer gels formed through physical aggregation or non-covalent 

cross-links (Burchard and Ross-Murphy, 1990).  The presence of non-covalent cross-links 
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complicates any physical description of the network properties significantly, because unlike 

chemical bonds, their number and position will fluctuate with time and temperature (Clark and 

Ross-Murphy, 1987; Kavanagh and Ross-Murphy, 1998).  The nature of the physical network 

is not known unambiguously.  This is due to that disparate forces are often involved such as, 

Coulombic, dipole-dipole, van der Waals, charge transfer, hydrophobic and hydrogen bonding 

interactions as examples.  In biopolymer gels non-covalent physical cross-links are formed by 

one or more of the disparate forces mentioned above, together with more specific and complex 

mechanisms involving junction zones of known, ordered secondary structure, for example, 

multiple helices or ion mediated “egg box” structures.  Normally, there is a specific and often 

intricate, hierarchy of arrangements.  

 

2.1.1.4 Hydrogels 

 

 Hydrogels are another classification of gels, which consist of three-dimensional, 

hydrophilic, polymeric networks capable of imbibing large amounts of water or biological 

fluids (Peppas et al., 2000).  Hydrogels were first introduced in the 1960’s as novel materials 

having potential for a variety of biomedical applications, such as in soft contact lenses, drug 

delivery and tissue engineering (Wichterle and Lim, 1960; Hoffman, 2002).  Since the 

introduction of hydrogels, they have gained popularity in a broad range of pharmaceutical and 

biomedical applications.   

 

2.1.2 Factors Inducing Gelation 

 

 Gelation may be defined as that process (or series of process) which leads to the 

formation of a gel (Tan et al., 2009).  At the point in which the molecules in a solution react 

(cross-linking) to form larger molecules and eventually span the whole container in which it sits, 

is termed as the “gel point”.  In principle, any process which involves the cross-linking of 

chains can eventually lead to branching and finally gelation, provided that intermolecular bonds 

are favoured over intramolecular bonds.  However, this depends on certain factors, such as 

sample concentration (Kavanagh and Ross-Murphy, 1998).  



 

 - 6 - 

One of the most important functional properties of proteins is gelation (Avanza et al., 

2005).  There are different ways to induce gelation in different systems.  These include altering 

temperatures and pHs, adding cross-linkers, changing ionic strength, protein types and 

concentrations (Mulvihill and Kinsella, 1987).  The most important factors in gelation are 

probably the protein concentration, heating temperature and pH.  If either the temperature, 

protein concentration or pH are not favorable, gelation will not occur (Dunkerley and Hayes, 

1980; Ross-Murphy, 1991; Sánchez and Burgos, 1996).  Once temperature and protein 

concentration have surpassed their critical values, gel strength increases and gelation time 

decreases with increasing temperature and concentration (Dunkerley and Hayes, 1980; Ross-

Murphy, 1991).  For example, acidification and lowering temperature will induce gelation in 

milk (Raouche et al., 2007).  Caseins micelles are very stable under native milk conditions and 

are in equilibrium with soluble micelles and dissolved salts in the serum.  However, changing 

pH and temperature induces aggregation or disintegration of casein micelles due to the 

solubilization of micellar calcium phosphate and β-casein release.  The gelation of fish muscle 

protein is useful in food industry for making surimi, the main ingredient of artificial crab sticks. 

This involves thermally denaturing the protein and allowing the denatured protein to aggregate 

through the formation of a three dimensional structure (Stone and Stanley, 1992).   

 Gelation capacity and gel properties are directly related to their rheological properties 

(Avanza et al., 2005).   Protein gels are composed of a protein matrix within which the aqueous 

phase is occluded (Avanza et al., 2005).  The microstructure of the gel matrix determines the 

rheological properties, such as viscoelasticity and texture.  Depending on the microstructure, 

the gels with a fine-stranded matrix, are harder and are able to retain more water than those 

with more open matrices, particulate gels for example (Foegeding et al., 1995).  The presence 

of covalent and non-covalent bonds within the gel matrix affects the nature of the gel 

differently in terms of gel structure and viscoelasticity.   

 

2.2 Rheology 

 

 The term rheology is derived from the Greek words rheo, “to flow,” and logos, 

“science.”  Rheology is therefore the study of the deformation and flow of materials under the 

influence of an applied stress.  This definition was adopted when the American Society of 
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Rheology was founded in 1929 (Metzner, 1985; Barnes et al., 1989; Amiji, 2003).  Rheology is 

composed of three variables and their interaction with each other: applied force or shear stress; 

measured response or strain; and the time during which these events take place (Ross-Murphy, 

1995).   

Rheology can be applied to solid, liquid, and gaseous states of matter (Amiji, 2003).  

From a rheologic perspective, solids are classified as being completely resistant to deformation, 

liquids as being less resistant, and gases as being completely nonresistant.  Rheology is used to 

describe the consistency of different products, normally by the two components viscosity and 

elasticity.  Viscosity is defined as a measure of resistance to flow or thickness, and elasticity 

refers to the ability of a material to return to its original state once stress under which it deforms 

is removed.  The higher the magnitude of viscosity is, the more resistant the material will be to 

flow.  The friction of a fluid becomes evident when a layer of fluid is made to move in relation 

to another layer.  The greater the friction the greater the amount of force required to cause this 

movement, which is called shear.  Shearing occurs whenever the fluid is physically moved or 

distributed, as in pouring, spreading, or mixing and therefore, more force is required to move a 

more viscous than a less viscous material.   

Isaac Newton proposed a model for the viscosity of a fluid in 1687 (Newton, 1687; 

Figure 2.1).  Newton’s model considered that two planes of fluid of equal area (A) are 

separated by a distance (dx) and are moving in the same direction at different velocities, V1 and 

V2 (Figure 2.1).  Newton assumed that the force required to maintain this difference in speed 

was proportional to the difference in speed through the liquid, or the velocity gradient.  Newton 

concluded that where ‘h’ is a constant for a given material and is called its velocity.  The 

velocity gradient dv/dx is the measure of a material experiences a change in speed at which the 

intermediate layers move with respect to each other (Figure 2.1).  This described the shearing 

the liquid experiences, termed shear rate (sec-1).  The force per unit area required to produce the 

shearing action are termed shear stress (dynes/cm2).  The viscosity can be defined as the shear 

stress divided by the shear rate.  A material required a shear stress of one dyne per square 

centimeter to produce a shear rate of one reciprocal second has a viscosity of one poise or 100 

centipoise (cP), poise is the basic unit of viscosity in the Absolute Metric system (Fox et. al., 

2009).  For example, the viscosity of water at 20°C is 1 cP.  Newton assumed that all fluids at a 

given temperature have a viscosity that is independent of the shear rate and time during which 
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the fluid is subjected to shear.  In other words, twice the shear rate applied will move the fluid 

twice as fast.  This type of flow behavior Newton described is called Newtonian fluids.  Water 

and thin motor oil are the typical examples of Newtonian fluids.   

 

 
 

Figure 2.1  Model for the viscosity of a fluid. Proposed by Newton (1687).  A, surface area; 

V1, velocity 1; V2, velocity 2; F, force; dv, difference in velocity; dx, difference in distance 

between two parallel planes.  

 

However, many of the fluids do not fall into the category of a Newtonian fluid, therefore, 

those who do not satisfy Newton’s criterion are known as non-Newtonian fluids. Non-

Newtonian fluids exhibit a more complicated relationship between shear stress and velocity 

gradient.  The viscosity of non-Newtonian fluids depends on the shear rate and/or the length of 

time which the material is subjected to stress.  The shear stress of non-Newtonian fluids is not 

directly proportional to deformation rate (Fox et. al., 2009).  There are several types of non-
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Newtonian fluids.  They are classified according to the basis of the way in which their viscosity 

changes and are indicated in Table 2.2.  

 

Table 2.2  Types of non-Newtonian fluids.  

Type Description Example 
Pseudoplastic 
(shear-thinning) 

Viscosity decreases as the shear 
rate increases 
Most non-Newtonian fluids fall into 
this category 

Polymer solutions 
Paint 
Shampoo 

Dilatant 
(shear-thickening) 

Viscosity increases as the shear rate 
decreases 

A mixture of corn starch 
and water (mixed in correct 
proportions) 

Bingham plastic The transition from high viscosity 
(semisolid) to low viscosity takes 
place only after a shear stress 
exceeding a certain minimum value 
(yield value) 

Ketchup   

 

 

The viscosity of some non-Newtonian fluids is time-dependent (memory materials) 

(Fox et. al., 2009).  These fluids are referred to as rheopectic or thixotropic.  The viscosity of 

rheopectic fluids increases over time with constant shear rate, for example, whipped cream, 

whereas the viscosity of thixotropic fluids decreases over time with constant shear rate, for 

example, honey.   

The viscosity of a fluid can be measured by a viscometer.  There are various laboratory 

viscometers available commercially such as a U-tube viscometer, a falling sphere viscometer, a 

falling piston viscometer, a vibrational viscometer and a rotational viscometer.  A rotational 

viscometer was used in this study.  A rotational viscometer measures the torque required to turn 

an object in a fluid and the torque is a function of the viscosity of the fluid.  The torque is 

measured by rotating a disk (fixture) in a fluid at a known speed.  There are different fixtures 

available in a rotational viscometer, such as parallel plate fixture and cone/plate fixture (Figure 

2.2).  



 

 - 10 - 

 
 
Figure 2.2  Plate fixtures used with rotational viscometers.  (a) Parallel plate fixture. (b) 
Cone/plate fixture.  Adapted from Krieger and Woods (1966). 

 

A parallel plate fixture was used in this study.  The advantages to the use of a parallel 

plate fixture include greater convenience in construction and alignment, and the ability to 

change the shear rate range by simply varying the gap width (Krieger and Woods, 1966).  

Parallel plane instruments are preferable to cone/plate fixture viscometers for the study of 

coarse mixtures and of suspensions which tend to destabilize when sheared in narrow gaps.  

They are also advantageous for measurements at high shear rates, because of superior heat 

transfer and lesser tendencies toward centrifugation and secondary flows.      

 

2.3 Application of Gels 

2.3.1 Biomedical Industry 

 

 In biomedical applications, in situ photopolymerization of hydrogels has been used for 

over a decade.  Briefly, polyethylene glycol is used as a central block, which is flanked with 

oligo (α-hydroxy acids) and acrylate groups, coupled to the terminal hydroxyl groups (Sawhney 

et al., 1993). The acrylate end-groups of polyethylene glycol show rapid polymerization upon 

irradiation with visible light in the presence of a suitable photoinitiator to yield a hydrogel 

structure.  The incorporation of the oligo (α-hydroxy acids) ensures the degradability of the 

matrices under physiological conditions.  It has been shown that a continuous release of bovine 

serum albumin (BSA) from the matrices for up to 2 months was achieved, making this system 

potentially suitable for protein delivery applications.  These in situ polymerized gels have been 
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shown to be effective in the prevention of scar adhesion formation after pelvic surgery in 

animal models (Sawhney et al., 1994).  In addition, hydrogels have been shown to prevent 

thrombosis and reduced long-term intimal thickening when applied as a mechanical barrier on 

severely injured arteries (Hill-West et al., 1994).  Hydrogels such as polyethylene glycol- and 

polyvinyl alcohol-based polymers have the potential to serve as a replacement for damaged 

cartilage while new cartilage forms (Anseth et al., 2002).  Polymerizable hydrogels have a wide 

range of potential applications in tissue engineering (Nguyen and West, 2002). 

 

2.3.2 Food Industry 

 

In the food industry, gelation is regarded as one of the most important functional 

properties of polysaccharides and proteins.  Functional properties of food proteins, such as 

solubility, surface activity, conformational stability, gel forming ability and emulsifying and 

foaming properties are affected by their interaction with polysaccharides (Makri et al., 2006).  

In many food products, gelation of biopolymers is critical to the formation of desired texture 

that is preferable by consumers (Makri et al., 2006).  The texture depends on the mechanical 

properties, which in turn depends mainly on the structure of the gel network.   

The gelling ability of fish muscle myofibrillar protein is utilized extensively in food, as 

the final texture conferred by gelled protein is a favoured sensory property (Rodger and 

Wilding, 1990).  The gelling properties of fish myofibrillar protein led to the development of 

surimi, a modified fish muscle mince which is used for the production of a group of fish analog 

foods such as crabsticks and fish sausage (Lee, 1984).  Sausages are an example of food 

product made from gelation of a mixture of poultry muscle tissue, solubilized proteins, fat, salt, 

and water (Foedgeding, 1988).  During the manufacturing processes of sausages, heating the 

comminuted meat causes structural changes in the muscle proteins which favor intermolecular 

protein interactions. Protein aggregation progresses to gelation under favorable conditions.  

Recent studies showed that the addition of the cross-linking agent transglutaminase enhances 

the texture and gel strength of meat and meat proteins by forming a bond between glutamine 

and lysine, which improves the rigidity and gel elasticity of meat products (Ahhmed et al., 

2009).  Yogurt gel is a fermented milk product. The formation of the texture of yogurt is 

achieved through gel formation in milk as a result of fermentation.  Yogurt is prepared by 
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fermenting milk with bacterial cultures such as a mixture of Streptococcus subsp. thermophilus 

and Lactobacillus delbrueckii subsp. bulgaricus (Lee and Lucey, 2010).  There are two major 

types of yogurts which are the set and stirred type.  Set yogurt (which includes fruit-on-the 

bottom) is formed in retail pots as lactic acid bacteria ferment lactose into lactic acid giving a 

continuous gel structure in the container.  Whereas stirred yogurt, the acid gel formed during 

incubation in large fermentation tanks is disrupted by agitation, and the agitated product is 

usually filtered through a screen which gives the product a smooth and viscous texture.  The 

lack of visual whey separation and perceived viscosity, are important properties for the quality 

and overall sensory acceptance of yogurts.    

There is an increasing interest in the production of healthier foods with low fat content 

or with low levels of additives.  However the additives in new functional foods, low-fat 

products or vegetarian foods do not always meet customers’ satisfaction (Welman and Maddox, 

2003; Piermaria et al., 2008).  As a result, the food industry is always searching for new 

compounds to improve texture and mouthfeel of food, especially those with a health-promoting 

capacity (Roberfroid, 1999).  

Functional properties of food proteins, such as those from legumes and soybean, play an 

important role in food products (Chau and Cheung, 1998; Makri et al., 2006; Zhu et al., 2008).  

Legumes are of high nutritional value, contain a high amount of protein, have low lipid levels 

and are cholesterol free.  Legumes have an important property for food texture improvement as 

they form gels with good water-holding capacity upon heating.  In addition, legume protein can 

act as an emulsifier and stabilizer in the formulation of food emulsions and foams.  Soybean 

protein is well known for its functional and nutritional properties (Singh et al., 2008).  Gelation 

of soybean protein is another important functional property and results in the incorporation of 

soybean protein in many food products.   

Polysaccharides of microbial origin have been developed as food additives including 

xanthan gum from Xanthomonas campestris and gellan gum from Pseudomonas elodea which 

are used as gelling and emulsifying agents (Piermaria et al., 2008).  Xanthan gum is a 

heteropolysaccharide with a primary structure consisting of repeated pentasaccharide units 

formed by two glucose units, two mannose units, and one glucuronic acid unit (García-Ochoa et 

al., 2000).  Xanthan and gellan gums have been approved by the United States Food and Drug 

Administration (FDA) for food use (García-Ochoa et al., 2000; Bajaj et al., 2007).  Xanthan 
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gum has been widely used in the food industry for a number of important reasons, including 

emulsion stabilization, temperature stability, compatibility with food ingredients and gelling 

agents (García-Ochoa et al., 2000).  Main food industry applications of xanthan gum include 

salad dressings (emulsion stabilizer; dispersant), syrups (thickener), dairy products (stabilizer; 

viscosity control of mix) and frozen foods (improves freeze-thaw stability).  Gellan gum is a 

heteropolysaccharide composed of a tetracyclic repeating unit of one rhamnose, one glucuronic 

acid, and two glucose units substituted with an acyl group as O-glycosidically-linked esters 

(Bajaj et al., 2007).  Gellan gum is widely utilized in foods which require a highly gelled 

structure, and may also be suitable for uses in improving the mouth-feel of a food.  Main 

applications of gellan gum in the food industry, include jams (thickener), dessert gels (gelling 

agent), and dairy products (bulking agent).  

 

2.3.3 Biological Systems 

  

Floyd and Ohlrogge (1970) observed that a naturally present mucilaginous gel formed 

on the surface of the nodal roots of corn.  This mucilaginous gel was investigated and was 

found to be a mixture of uronic acids and polysaccharides.  Recent studies have shown that 

mucilage gel can occur in high concentrations in different plant organs, but their physiological 

function in most cases is unclear (Clifford et al., 2002).  Mucilage found in rhizomes, roots, and 

seed endosperm may act as energy reserves.  Foliar mucilage does not serve as storage 

carbohydrates and are usually assumed to be secondary metabolites.  However, there are 

research groups that have suggested they may play a role in freeze and drought tolerance.  The 

Aloe vera leaf also contains a mucilage gel which naturally occurs from the parenchyma cells of 

the plant (Eshun and He, 2004).  

Plants that are freezing tolerant, such as winter rye (Secale cereale L.), can survive 

temperatures below -30°C by undergoing a process known as cold acclimation (Griffith and 

McIntyre, 1993)  This involves growth and development at low, non-freezing temperature and 

results in numerous biochemical and molecular changes allowing the plant to acquire freezing 

tolerance.  It has been shown that cold acclimated winter rye contains endogeneously produced 

AFPs which are involved in maintaining the rheologic properties of the cellular matrix during 

freezing (Griffith et al., 1992). AFPs modify the normal growth pattern of ice crystals and 
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depress the freezing temperature of water non-colligatively by binding to the prism faces of ice, 

slowing growth and recrystallization (Griffith et al., 2005). 

Type I AFP is found in fish (winter flounder) living in subzero seawater, and protects 

the organism from macromolecular ice growth by adsorption inhibition (Fletcher et al., 2001). 

Interestingly, while examining this AFP mechanism, Graether et al. (2003) found that the 

winter flounder AFP in solution formed a translucent gel upon freezing and thawing.  Further, 

they proceeded to demonstrate that type I AFP was converted into amyloid fibrils upon freezing 

and thawing, conditions appropriate to its physiological function (Graether et al., 2003; 

Graether and Sykes, 2009).  In addition, the authors speculate that this AFP could be used in 

applications such as cryopreservation, cryosurgery and as a food additive (Graether et al., 2003).  

Therefore, AFPs, at least in fish, appear to be natural protective amyloids (Iconomidou and 

Hamodrakas, 2008) and it is interesting to speculate if a similar phenomenon is occurring in 

winter rye. 

 

2.4 Relevant Protein Analysis Methods 

 

 Substantial improvements in protein separation and identification techniques and the 

expansion of genomic knowledge have led to an increase in the application of proteomic 

methods to unravel biological questions.   Although many biochemical and biophysical 

techniques exist, those particularly relevant to this study include protein extraction, SDS-PAGE 

and Raman spectroscopy.  These are described in detail in the sections following. 

 

2.4.1 Protein Extraction 

 

For all proteomic analyses, sample quality is a critical factor, and so the protein 

extraction procedure is of prime importance.  The ideal extraction method should reproducibly 

capture the most comprehensive repertoire of proteins possible, at the same time, minimizing 

degradation and contamination by non-proteinaceous compounds.  Due to the diverse 

biochemical properties of cellular proteins, including their charge, size, hydrophobicity, 

susceptibility to proteolysis, ligand interactions and subcellular localization, no single protein 

extraction protocol can capture the full proteome (Isaacson et al., 2006).  Different protein 
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extraction protocols yield a subset of proteins, but each type of extract generated will include a 

subset of proteins that is not present in the other (Saravanan and Rose, 2004; Isaacson et al., 

2006). Comprehensive, uncontaminated and representative protein populations are known to be 

difficult to extract from plants. This is because plant cells produce a broad spectrum of 

secondary metabolites that contaminate protein extracts and severely interfere with downstream 

analysis (Rose et al., 2004; Saravanan and Rose, 2004). 

The trichloroacetic acid (TCA)-acetone protein extraction protocol is based on 

precipitating proteins from homogenized leaf tissues or cells with TCA and acetone (Dameval 

et al., 1986).  Most proteomic studies of entire plant tissues use this simple method of TCA-

acetone protein extraction to precipitate the proteins followed by resolubilization in a buffer 

containing chaotropes and detergents (Satoni et al., 1994). Although the TCA-acetone 

extraction protocol has been found to be useful in young plants, it was found not to be 

necessarily the best method for more complex plant tissues that contain a high level of  

interfering compounds such as polyphenols and polysaccharides (Wang et al., 2003; Saravanan 

and Rose, 2004; Zhou et al., 2006).      

 The phenol protein extraction protocol is based on the solubilization of proteins in 

phenol, followed by their precipitation with ammonium acetate in methanol.  This protein 

extraction method was developed and perfected in the 1980’s and 1990’s (Schuster and Davies, 

1983; Hurkman and Tanaka, 1986; Meyer et al., 1988; Usuda et al., 1995; Isaacson et al., 2006).  

This extraction method is effective with recalcitrant and resistant tissues such as banana, 

avocado, orange peel, olive leaves and wood, that contain high levels of interfering compounds 

such as polysaccharides and polyphenols (Mijnsbrugge et al., 2000; Wang et al., 2003; 

Saravanan and Rose, 2004).  The phenol extraction method is more laborious and time 

consuming than the TCA-acetone extraction method but it has the advantages of generating a 

substantially higher purity and greater protein yield (Saravanan and Rose, 2004).  The ability to 

generate a higher purity protein sample is due to the fact that water-soluble contaminants are 

partitioned into a discrete aqueous phase or are centrifuged into an insoluble pellet, well apart 

from the protein-enriched phenolic layer.  
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2.4.2 SDS-PAGE 

 

The most popular technique for protein separation is currently gel electrophoresis, 

although alternative gel-free techniques which are based on fractionation by liquid 

chromatography are becoming increasingly popular (Wu et al., 2006). Polyacrylamide gel 

electrophoresis in SDS (SDS-PAGE) was described for the first time in 1949 (Hoch, 1949; 

Bodzon-Kulakowska et al., 2007).  The SDS-PAGE is a useful and reliable method for 

molecular weight analysis of proteins; it is a powerful tool that can be used for protein 

identification or as an assay for protein purity (Shapiro et al., 1967; Weber and Osborn, 1969; 

Bodzon-Kulakowska et al., 2007).  

Briefly, the extracted protein sample is mixed with a sample buffer which usually 

contains Tris, glycerol, β-ME, SDS and a tracking dye (bromophenol blue; Laemmli, 1970).  

The protein mixture is heated with buffer for 2-5 minutes before loading into the 

polyacrylamide gel.  The Tris acts as a buffer for the protein mixture while the glycerol helps to 

weigh down the sample into the wells while loading. β-ME is a reducing agent which reduces 

the intra- and inter-molecular disulfide bonds of the proteins.  SDS is an anionic detergent that 

dissociates and denatures protein secondary and non-disulfide tertiary structures into individual 

polypeptides.  The heating process denatures the protein and SDS binds around the polypeptide 

backbone to induce “reconstructive denaturation”, where proteins adopt a conformational 

mixture of α-helix and random coil (Maizel, 1966; Laemmli, 1970; Rath et al., 2009).  In 

general, SDS is thought to bind with the polypeptides in a constant weight ratio of 1.4 g/g of 

polypeptides, which results in a net negative charge on each protein in proportion to its mass 

(Reynolds and Tanford, 1970).  This treatment causes the polypeptides to become rod-like and 

possess the same net negative charge per unit length, thus the proteins will separate based on 

mass and not by charge during electrophoresis.   A tracking dye is used to monitor the progress 

of protein migration, as it runs ahead of most sample proteins. 

After the protein mixture is loaded into the wells of the polyacrylamide gel, an electric 

field is applied across the gel, causing the negatively charged proteins to migrate across the gel 

towards the anode.  The migration speed of proteins depend on their size, smaller proteins will 

fit through the pores in the gel, while larger proteins will move slower as they encounter more 

resistance, and thereby a longer retention time in the gel.  Thus, smaller proteins will travel 
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farther down the gel, whereas larger proteins will travel slower and remain closer to the origins.  

By varying the amount of acrylamide in the gel, generally in the range of 5 to 20% (w/v), will 

result in a different resolving power depending on the molecular weight of protein samples.  

Lower percentage acrylamide gels are generally used for proteins which have higher molecular 

weights, whereas higher percentage gels are good for resolving low molecular weight proteins. 

 The gel is usually stained with Coomassie brilliant blue so that the proteins can be 

visualized as distinctive bands, which have been separated according to their molecular weight. 

Coomassie brilliant blue was originally introduced to visualize protein bands in 1963 and is still 

the most widely used SDS-PAGE protein staining technique (Westermeier, 2006; Wang et al., 

2007).  Coomassie brilliant blue gained its popularity due to its reproducibility, lower 

background, reasonable sensitivity and excellent compatibility with mass spectrometry 

(Candiano et al., 2004).   

 

2.4.3 Raman Spectroscopy 

 

 Raman spectroscopy is a technique used to study the vibrational and rotational 

transitions in a system (Raman and Krishnan, 1928; reviewed by Ferraro et al., 2003).  In 

principle, when a molecule is irradiated with light of a specific frequency (vo), most of the 

photons are scattered from the molecule without a change in frequency (v′ = v o) or photon 

energy (Egawa and Yeh, 2005).  This is called elastic or Rayleigh scattering (Figure 2.4a).  A 

small fraction of the photons (approximately 1 in 107 photons) are scattered inelastically by 

losing or gaining a quantum of vibrational energy (v′ = v o ± vi), termed Stokes and anti-Stokes 

Raman scattering, respectively (Figure 2.3a).  The Raman shift, (vi), reflects the energy of an 

internal vibrational mode of the molecule.  The scattering effect typically occurs in 10-14 

seconds or less.  In the spectrum of the scattered light, the frequencies of the Stokes and anti-

Stokes are equally displaced with respect to the frequency of the incident light.  The intensities 

of the Stokes lines are typically much stronger than the anti-Stokes lines because the anti-

Stokes scattering originates from molecules in excited vibrational states (for example, v = 1 in 

Figure 2.3b) and depending on the Boltzmann distribution, the populations of the vibrational 

excited states are typically very small at room temperature.  A change in the molecular 

polarizability or amount of deformation of the electron cloud with respect to the vibrational 
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coordinate is required for a molecule to exhibit a Raman effect.  The amount of the 

polarizability change will determine the Raman scattering intensity.  The pattern of shifted 

frequencies is determined by the rotational and vibrational states of the sample.    

 

                      

 
 
Figure 2.3  Raman scattering (a) and vibrational states (b) of molecules.  Adapted from 
Egawa and Yeh (2005).  (a) Red arrow, Stokes scattering; Green arrow, Rayleigh scattering; 
Pink arrow, anti-Stokes scattering. Rayleigh scattering has no Raman effect, the incident and 
emitted photons have the same energy. (b) In Stokes scattering, the atom or molecule absorbs 
energy, the emitted photon has less energy. In anti-Stokes scattering, the atom or molecule 
losses energy, the emitted photon has more energy.    
 

Typical Raman spectroscopy uses a monochromatic source from a laser which is passed 

through a series of filters before it is focused on a sample cell, normally a cylindrical cuvette or 

Nuclear magnetic resonance (NMR) tube (Figure 2.4).  The scattered light is typically at right 

angles to the excitation source and focused by an achromatic camera lens into the entrance slit 

of a polychromator.  The incident laser light (the Rayleigh light) is filtered out through a notch 

filter placed between the camera lens and the polychromator.  The dispersed light is collected 

by a liquid nitrogen cooled charge-coupled device attached to the exit port of the polychromator 

and analyzed by a computer (Figure 2.4).  In a typical Raman spectrum, the intensity of 

scattered light is plotted as a function of ∆ cm -1 (Raman shift), the relative energy of the 

scattered photon with respect to the incident photon.      
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Figure 2.4  Schematic illustration of a typical Raman instrument.  Adapted from Egawa 
and Yeh (2005). 
 
 
  Raman spectroscopy is capable of providing secondary structural information on 

proteins such as bond strength, angle and geometry of the molecule of interest similar to 

infrared absorption spectroscopy (Egawa and Yeh, 2005).  However, there are several 

advantages of using Raman spectroscopy when compared to infrared spectroscopy including a 

smaller sample size, quantity of data obtained with a single recording and less interference from 

biological samples in aqueous solution (Ferraro et al., 2003).  The function, kinetics, and 

structure of proteins can be elucidated by Raman spectroscopy (Callender et al., 1998; Zhao 

and Spiro, 1998).  Analyzing protein amide band profiles provides information on the 

secondary structure of a protein and the feasibility of the method is not hindered either by size 

of the supramolecular assembly or by light-scattering artifacts that can severely restrict the use 

of other spectroscopic probes (Sane et al., 1999).  Raman spectroscopy also has several 

important advantages in characterizing the vibrational spectra and secondary structural 
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tendencies of natively unfolded proteins (Maiti et al., 2004). The Raman spectra can be 

obtained in dilute aqueous solutions, thereby avoiding the tendency towards aggregation of 

these proteins at higher concentrations.  Thus, Raman spectroscopy is a structure-rich probe that 

can be used to examine a sample in various states: aqueous solutions, insoluble aggregates, 

fibrils and crystals (Sane et al., 1999; Dong et al., 2003; Carey and Dong, 2004; Maiti et al., 

2004).  The development of Fourier-transform Raman spectroscopy has been a significant 

advance in solving the fluorescence problem, due to phenolic compounds in plant substance 

(Meng et al., 2003).  Raman spectroscopy is more commonly used to determine the secondary 

structure or conformational change of homogenous protein samples.  Meng et al. (2003) used 

Raman spectroscopy to study the conformation of red bean globulin protein in various buffers 

and on heat treatment, they suggested that extreme pH caused a changed in the protein 

conformation from an ordered structure to a random coil conformation.  The mechanism for 

heme protein CO activation has also been investigated by Raman spectroscopy (Vogel et al., 

1999). The interaction of proteins with their substrates results in a shift in Raman band and/or 

change in the band intensity.  Torreggianni and Fini (1998) investigated the conformational 

change and interaction between the binding of avidin with biotin derivatives.  The study 

showed the importance of the side chains of biotin molecule in its interaction with avidin.   

 

2.5 Thesis Objectives 

 

 In this thesis, I will examine protein extracts from non-acclimated and cold acclimated 

winter rye (Secale cereale L. cv Musketeer) to test the hypothesis that gel formation occurs 

preferentially in cold acclimated tissues and affects changes in sample rheological properties. 

This will be accomplished by characterizing the conditions required for gel formation as well as 

an analysis of the gelling and non-gelling components of the extracts to determine their 

biochemical and rheological properties. In this study, freezing and thawing are external stresses 

applied to the protein extracts in order to induce a change in sample rheology. It is hoped that 

this information will provide an important first step into the elucidation of protein gelation in 

winter rye and advance commercial applications of the resulting gel.  
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3.0 MATERIALS AND METHODS 

3.1 Chemicals and Solutions 

 

 Distilled water was used for preparation of all buffers and solutions.  Chemicals were 

obtained from suppliers as indicated in the text and were of the highest grade.  Where 

commercially available kits were utilized, the suppliers are also indicated in the text. 

 

3.2 Plant Materials and Growth Conditions 

 

Winter rye (Secale cereale L. cv Musketeer) was germinated from seed (7-10 seeds/ pot) 

in four inch plastic pots containing coarse vermiculite in controlled environment growth 

chambers (Conviron E15; Controlled Environments Ltd., Winnipeg, MB, Canada).  Non-

acclimated plants (NA) were grown under 250 µmol photons m-2 s-1 photosynthetically active 

radiation (PAR), using fluorescent tubes (Cool White, 160 W, F72T12/CW/VHO, Sylvania), 

with a 16 h day length and day/night temperatures of 20/20°C for 21 days.  The photosynthetic 

photon flux density was measured at pot height with a Li-Cor (Lincoln, NE, USA) 

Quantum/Radiometer/Photometer (model LI-189) equipped with a model LI-190SA quantum 

sensor (Li-Cor).  For cold acclimated material (CA), plants grown under non-acclimating 

conditions for 7 days were shifted to a controlled environment chamber (Conviron E8) set for 

5/4°C (day/night) temperatures with all other conditions constant for an additional 49 days.  

Plants were watered with a nutrient solution or water as required (Somerville and Ogren, 1982). 

All healthy leaves were harvested for analysis. 

 

3.3 Protein Extraction and Quantitation 

3.3.1 TCA-Acetone Extraction Protocol 

 

 Total leaf protein was extracted from NA and CA tissue as described by Isaacson et al. 

(2006).  Leaf tissue (1 g) was frozen with liquid nitrogen and ground into a fine powder with a 

pre-chilled mortar and pestle. Five mL of ice cold TCA extraction buffer (10% [v/v] TCA in 

acetone, 2% [v/v] β-ME added immediately before use) was added and the mixture 

homogenized for 2 min.  The slurry was transferred to a 15 mL plastic tube and stored at -20°C 
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overnight to allow protein precipitation.  The mixture was centrifuged at 5,000 x g for 30 min at 

4°C and the supernatant removed.  The protein pellet was washed with 4 volumes (10 mL) of 

ice-cold acetone followed by centrifugation at 5,000 x g for 10 min at 4°C. This was repeated 

two more times and the resultant protein pellet was gently air dried in a fume hood at room 

temperature (22°C) for 30 min.  The pellet was stored at -80°C for future analysis. 

 

3.3.2 Phenol Extraction Protocol 

 

 Total leaf protein was extracted from NA and CA tissue using a modified protocol of 

Hurkman and Tanaka (1986).  Leaf tissue (1 g) was frozen with liquid nitrogen and ground into 

a fine powder with a pre-chilled mortar and pestle using 2.5 mL of ice cold tissue extraction 

buffer (0.1 M Tris [pH 8.8], 10 mM EDTA, 0.9 M sucrose, 0.4% [v/v] β-ME added 

immediately before use) for 2 min.  The homogenate was transferred to a 50 mL plastic tube 

and mixed in a 1:1 ratio (2.5 mL) of phenol saturated with Tris-EDTA, pH 8.0 (Omni Pur®, 

catalog no. 6710, Gibbstown, NJ, USA).  The mixture was agitated for 30 min at 4°C followed 

by centrifugation at 6000 x g for 15 min.  One mL of the phenol phase (top phase) was removed 

and placed in a new 15 mL plastic tube.  This solution was mixed with 5 volumes of ice-cold 

0.1 M ammonium acetate in methanol and incubated overnight at -20°C to allow for protein 

precipitation.  The precipitate was collected by centrifuging at 6000 x g for 15 min at 4°C.  Two 

volumes (based on the volume [2 mL] of the last collected phenolic phase) of ice-cold 0.1 M 

ammonium acetate in methanol were added to wash the pellet and remove phenol, lipids and 

pigments.  The sample was centrifuged at 6000 x g for 10 min in ice-cold 80% (v/v) acetone to 

remove ammonium acetate and achieve faster, more effective drying.  The protein pellet was 

gently air dried in a fume hood at room temperature (22°C) for 30 min and stored at -80°C for 

future analysis.  

 

3.3.3 Modified Phenol Extraction Protocol 

 

 In order to optimize protein extraction, the phenol extraction method described above in 

section 3.3.2 was modified as discussed by Isaacson et al. (2006).  Leaf tissue was ground using 

a ratio of 5 mL of extraction buffer per 1 g of leaf tissue and the amount of the phenolic phase 
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removed for precipitation was increased to 2 mL.  All other steps were as described in section 

3.3.2.   

 

3.3.4 Protein Quantitation 

 

 Protein concentrations were determined using either the Bradford assay (Bradford, 1976; 

Bio-Rad Laboratories, Hercules, CA, USA) or the Pierce® BCA protein assay (Smith et al., 

1985) (Thermo Scientific, Rockford, IL, USA) following the manufacturer’s instructions with 

BSA as the standard.  Absorbance measurements were read using a SmartSpec Plus 

spectrophotometer (Bio-Rad, Mississauga, ON, Canada). 

 

3.4. Induction of Gel Formation 

3.4.1 Freeze-Thaw Cycles 

 

 Protein pellets from NA and CA winter rye were suspended in 400 to 800 µL of an 

appropriate buffer (depending on experiment) by sonication (VirSonic 600 Ultrasonic Cell 

Disrupter, VirTis Company, Gardiner, NY, USA) using a microtip probe for two times at 10 s 

each (intensity 0.5) and once or twice for 10 s (intensity 1.0) until the protein pellet was fully 

suspended in the buffer.  Gel formation was induced by subjecting the protein extracts to 

multiple freeze-thaw cycles in a freezer (Revco Technologies, model ULT2586, Asheville, NC, 

USA) at -80°C.  Freezing occurred for a minimum of 3 h or usually overnight followed by 

thawing on the bench at room temperature (22°C).  The freeze-thaw cycles were repeated 6 to 9 

times until protein precipitation or gel formation was visible. 

  

3.4.2 Effect of pH on Gel Formation 

 

 To determine the effect of pH on gel formation, the NA and CA winter rye protein 

pellets were suspended in 800 µL of 50 mM Tris (pH 2.0, 3.0, 7.0, 10.0 or 12.0) or 50 mM 

borate buffer (pH 12.0) followed by multiple freeze-thaw cycles as described in section 3.4.1. 

The freeze-thaw cycles were repeated 6 times to assess the gel formation of the sample.  The 

experiment on effect of pH on gel formation was repeated 4 times.  
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3.4.3 Effect of Protein Concentration on Gel Formation 

 

 To determine the effect of protein concentration on gel formation, the NA and CA 

winter rye protein pellets were suspended in 50 mM borate buffer (pH 12.0) as described in 

section 3.4.1. The protein concentration was determined by the BCA protein assay (section 

3.3.4).  A series of samples with different protein concentrations (2.0 to 13.0 mg/mL) were 

prepared and subjected to 6 freeze-thaw cycles as described in section 3.4.1 to assess the gel 

formation of the sample.  The experiment on effect of protein concentration on gel formation 

was repeated 4 times.  

 

3.5 Viscosity Measurements 

 

 To determine viscosity, the NA and CA winter rye protein pellets were suspended in 50 

mM borate buffer (pH 12.0) to a concentration of 6 mg/mL and subjected to freeze-thaw cycles 

to induce gel formation as described in section 3.4.1.  In total, 4 freeze-thaw cycles were 

performed until gel formation was visible.  The viscosity of the entire sample (gelling and non-

gelling components) after each freeze-thaw cycle was determined with Digital Viscometer 

(model: DV-1+; Brookfield, Middleboro, MA, USA) using a parallel plate fixture.  The sample 

(600 µL) was loaded into the sample holder using a syringe and viscosity was measured at 25°C 

with a shear rate (rotational speed) of 3 or 6 rpm.  The sample holder was washed with acetone 

between sample analyses.  The instrument was calibrated with a mineral oil viscosity standard 

(95.5 cP at 25°C; Brookfield, Middleboro, MA, USA).  When the sample reading had stabilized 

the data was collected manually. 

 

3.6 SDS-PAGE Analysis of Gelling and Non-Gelling Components 

3.6.1 Separation of Gelling and Non-Gelling Components  

 

The NA and CA winter rye protein pellets were suspended in 50 mM borate buffer (pH 

12.0) and subjected to 6 freeze-thaw cycles as described in section 3.4.1. Following gel 

induction, the gelling and non-gelling components of the extract were mechanically separated 

by passing of the sample mixture through a 250 µm thread diameter nylon mesh.  The gel was 
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washed a minimum of two times with 50 mM borate buffer (pH 12.0) before storage at -80oC. 

The non-gelling component was also stored at -80°C prior to subsequent SDS-PAGE analysis 

(see section 3.6.3).   

 

3.6.2 Solubilization of Gel 

 

 The solubility of the gelling component from NA and CA protein pellets was assessed 

in the presence of a variety of reducing agents and detergents, this included anionic (SDS) and 

nonionic surfactants (Triton X-100), a chaotropic agent (urea), SDS-PAGE loading buffer 

(Laemmli, 1970), reducing agent (β-ME), and base (0.1-1 M NaOH).  These agents were 

examined with and without heat incubation for periods up to 6 min at 95°C in a waterbath.   

 

3.6.3 SDS-PAGE Analysis 

 

 Following solubilization, samples were combined with 2X sample buffer (62.5 mM 

Tris-HCl [pH 6.8], 2% (w/v) SDS, 10% (v/v) glycerol, 5% (v/v) β-ME, 0.001% (v/v) 

bromophenol blue) (Laemmli, 1970).  Protein separation was resolved by SDS-PAGE using a 

4% (w/v) stacking gel and a 12% (w/v) separating gel for approximately 70 min at 30 mW 

using a Mini-protean II (Bio-rad) vertical electrophoresis system in a running buffer consisting 

of 25 mM Tris, 192 mM glycine and 0.05% (w/v) SDS (Laemmli, 1970).  Samples were loaded 

on either an equal volume or equal protein basis and boiled in a waterbath at 100°C for 3 min 

prior to loading.  Pre-stained molecular mass standards (PageRuler® Prestained Protein Ladder; 

Fermentas, Burlington, ON, CA) were utilized to monitor migration and assess molecular mass.  

Once separation was completed, gels were stained with 0.1% (w/v) Coomassie brilliant blue R-

250 (Sigma, St. Louis, MO, USA) in 50% (v/v) methanol and 7% (v/v) glacial acetic acid for a 

minimum of 1.5 h followed by overnight destaining in a solution containing 20% (v/v) 

methanol and 7% (v/v) glacial acetic acid.    
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3.7 Role of Rubisco in Gel Formation 

3.7.1 Removal of Rubisco  

 

 Protein extracts devoid of Rubisco were obtained as described by Holler et al. (2007) 

using polyethyleneimine (PEI) precipitation.  Leaf protein was extracted from NA and CA 

tissue using an extraction buffer (50 mM sodium phosphate [pH 7], 0.1% [v/v] β-ME and 1 mM 

EDTA) at a ratio of 5 mL extraction buffer to 1 g of leaf tissue. The sample was homogenized 

in the extraction buffer with a cold mortar and pestle for approximately 2 min until it was free 

of large particulates.  Immediately after homogenization, 2% (w/v) pre-hydrated insoluble 

polyvinylpolypyrrolidone (PVPP) was added to the sample.  The extract was then vortexed 

vigorously for 15 s and allowed to set at room temperature for 15 min.  The mixture was 

centrifuged at 17,000 x g for 20 min at 4°C and the supernatant (containing total leaf protein) 

was collected and filtered through a 0.22 µm syringe filter (Millipore, Billerica, MA, USA).  

PEI precipitation was used to remove Rubisco from the protein extract (Holler et al., 

2007).  A 25% (v/v) PEI stock solution in distilled water was prepared.  PEI was added to the 

leaf extracts to final concentrations of 0.5%, 1% and 2% (v/v) and the samples were vortexed 

vigorously and allowed to set at 4°C for 30 min. Following centrifugation at 8,000 x g for 5 min, 

the supernatant was collected for SDS-PAGE analysis as describe in section 3.6.3.  The sample, 

with Rubisco successfully removed and confirmed by SDS-PAGE was subjected to 6 freeze-

thaw cycles to assess its gel forming ability.  The experiment was repeated adjusting the pH of 

the final extract to pH 12.0 using NaOH. 

 

3.7.2 Rubisco Partial Purification 

 

 Rubisco was partially purified according to Kwanyuen et al. (2002).  Leaves from NA 

winter rye were homogenized in a blender with ice-cold 2% (v/v) sodium meta-bisulfite 

solution at a tissue to buffer ratio of 1:10.  The homogenate was filtered through cheesecloth 

and a crude leaf extract was collected.  The pH of the crude leaf extract was adjusted to pH 5.6 

with 1 M NaOH.  The crude leaf extract was centrifuged at 30,000 x g for 30 min and the 

supernatant was collected, followed by 48 h incubation at 4°C.  The solution was then 
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centrifuged at 3,000 x g for 10 min and the pellet (partially purified Rubisco) and supernatant 

were collected for SDS-PAGE analysis as described in section 3.6.3. 

 The partially purified Rubisco pellet, confirmed by SDS-PAGE, was suspended in 50 

mM borate buffer (pH 12.0) or 50 mM Tris buffer (pH 8.0) at a concentration of either 5 or 10 

mg/mL and subjected to 6 freeze-thaw cycles to determine its ability to form a gel.  To ensure 

that sodium meta-bisulfite was removed, samples as described above were desalted against their 

respective buffers overnight using a Slide-A-Lyzer dialysis cassette (3.5 kD molecular-weight 

cutoff; Thermo Scientific, Rockford, IL, USA) according to manufacturer’s instructions.   

These samples were also subjected to 6 freeze-thaw cycles to determine their ability to form a 

gel. 

 

3.7.3 Catalytic Effect of Rubisco with BSA 

 

The gel forming ability of commercially available BSA Fraction V (EMD Chemicals, 

Gibbstown, NJ, USA) was assessed using samples (2 to 20 mg/mL) prepared in 50 mM borate 

buffer (pH 12.0).  The BSA samples were subjected to freeze-thaw cycles as described in 

section 3.4.1 up to 6 times to assess the gel formation of the samples.   

 To determine if Rubisco could initiate catalytic effects on gel formation, different 

concentrations (5, 8 and 15 mg/mL) of BSA were mixed with 8 mg/mL of purified Rubisco 

from NA tissue (obtained as described in section 3.7.2) and subjected to 6 freeze-thaw cycles.  

The catalytic effect was assessed by the ability of the mixture to form a gel.  

 

3.8 Spectroscopic Analysis 

3.8.1 Absorbance Measurements 

 

 Absorbance measurements were performed in an Applied Photosystems PiStar-180 

circular dichroism (CD) spectrometer using 1 cm path length cuvettes.  NA and CA protein 

samples without freeze-thaw treatment and NA and CA protein samples with 2 freeze-thaw 

cycles treatment were measured in 50 mM borate buffer (pH 12.0).  Absorbance measurements 

were taken from the far UV region (180-260 nm) at 1 nm steps, and a scan rate of 20 nm/min. 
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The entrance and exit slits were set at 2 nm.  The background baseline used was an empty 

chamber. 

 

3.8.2 Raman Spectroscopy 

 

 Raman measurements were performed using a Renishaw inVia ® Raman microscope 

(Gloucestershire, UK) which consisted of a semiconductor diode near-infrared laser that 

operates at 785 nm.  Raman spectra were collected on the gel extracts (obtained as described in 

section 3.6.1) and protein extracts without freeze-thaw treatment obtained from NA and CA 

samples.  The samples were placed on an Au-plated Si wafer.  For these measurements a 20 or 

50X long working distance objective was used.  Raman measurements were taken from the spot 

that generates a clear spectrum.  Raman measurements (entire range of 0 to 3400 cm-1) were 

taken with a 10 s integration time and 4 to 6 accumulations for each measurement.     

 Two grams of commercially available BSA Fraction V (EMD Chemicals Inc., 

Gibbstown, NJ, USA) was used as a protein source and subjected to the modified phenol 

extraction protocol as described in section 3.3.3.  The BSA pellet obtained from the treatment 

was labeled as “tBSA”; this was used as a control to determine the potential effects that the 

phenol extraction may have had on the Raman spectra.  Raman measurements of the tBSA 

pellet and commercially available BSA were obtained with a 50X long working distance 

objective.  The samples were placed on an Au-plated Si wafer.  Raman measurements were 

taken from the spot that generates a clear spectrum.  The extended Raman measurements (entire 

range of 0 to 3400 cm-1) were taken with a 10 s integration time and 4 to 5 accumulations for 

each measurement.  Raman measurements were also collected for 50 mM borate buffer (pH 

12.0) to assess background. 
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4.0 RESULTS 

4.1 Conditions for Gel Formation 

 

Protein was extracted from leaf material of NA and CA winter rye using three different 

protein extraction methods.  The ability of the extracted protein to form a gel in response to 

repeated freeze-thaw cycles was used as an indicator of the protocol which would be used for 

all further experiments (Figure 4.1). Gel formation from each extraction method was assessed 

in 50 mM Tris adjusted to various pH values.  The effects of various freezing durations ranging 

from 3 h to 4 days at -80°C were also assessed.  The number of freeze-thaw cycles was also 

varied from 6 to 9 in total.  No gel formation was observed when protein was extracted using 

either the TCA-acetone (Isaacson et al., 2006) or phenol extraction protocols (Hurkman and 

Tanaka 1986) (Table 4.1).  In both cases, protein precipitation was observed after thawing, 

indicating that the protein was not in solution.  These results were consistent irrespective of pH 

(Table 4.1), freezing temperature, freezing duration or number of freeze-thaw cycles employed. 

When a modified phenol extraction protocol was utilized (Isaacson et al., 2006), similar 

results were obtained for extracts at adjusted pH values of 2.0, 3.0, 7.0 and 10.0 (Table 4.1).  In 

contrast, extracts adjusted to pH 12.0 demonstrated gel formations between three and four 

freeze-thaw cycles (Table 4.1).  Generally, a greater amount of gel was observed in the CA 

samples, although this was not always the case.  However, the protein concentrations were not 

standardized in these experiments when comparing NA and CA samples.  This experiment was 

repeated using a borate buffer which possesses a greater buffering capacity at pH 12.0 than Tris 

and identical results were obtained (Table 4.1).  Based on these results the modified phenol 

protein extraction protocol and the use of borate buffer (pH 12.0) for gel formation was utilized 

for all further experiments unless otherwise indicated.  
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Figure 4.1  Gel formation in NA (a) and CA (b) protein extracts.  Extracts were prepared 
from leaf tissue of winter rye and suspended in borate buffer (pH 12.0). 
 

The physical appearance of the gel was white or yellowish in color and it was opaque 

(Figure 4.1).  It was soft in texture like gelatin, but more elastic, and not as brittle.  There was 

no clear distinction in physical appearance between the gels formed from NA or CA protein 

extracts (Figure 4.1).  After the protein extracts were subjected to freeze-thaw cycles in pH 12.0 

borate, the protein extract formed into gelling and non-gelling components.  However, only a 

portion of the extract formed a gel not the entire extract.  The protein gel had a lower density 

separating itself from the non-gelling component of the extract (Figure 4.1). 
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Table 4.1  Summary of protein extraction protocols and subsequent gel formation. NA, 
non-acclimated; CA, cold acclimated; nd, not detected; +, qualitative assessment of gel 
formation.  + + + denotes a gel with a volume of 1/3 of the protein extract; + + + + denotes a 
gel with a volume of 1/2 of the protein extract.  This experiment was repeated 12 times.  
 
 

Extraction protocol Buffer pH Gel formation 
NA CA 

TCA/acetone Tris 2.0 nd nd 
7.0 nd nd 

12.0 nd nd 
Phenol Tris 2.0 nd nd 

3.0 nd nd 
7.0 nd nd 

10.0 nd nd 
12.0 nd nd 

Modified phenol Tris 2.0 nd nd 
3.0 nd nd 
7.0 nd nd 

10.0 nd nd 
12.0 + + + + + + + 

Modified phenol Borate 12.0 + + + + + + + 
 

Although the gel was obtained from both NA and CA extracts by using modified phenol 

extraction and borate buffer (pH 12.0), there were still extracts incapable of forming a gel under 

these conditions.  These extracts occurred more often in NA than in CA samples.  Based on 

visual observation, the protein extracts were generally more transparent which could mean they 

contained a lower protein concentration.  This effect was examined by assessing gel formation 

in extracts from NA and CA winter rye which were adjusted to various protein concentrations.  

Gel formation was observed in extracts from both NA and CA winter rye at all concentrations 

examined, however gel formation increased with increasing protein concentration up to 13.0 

mg/mL (Table 4.2).  These results suggested that the gel formation was directly correlated with 

protein concentration.   
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Table 4.2  Effect of protein concentration on gel formation.  NA, non-acclimated; CA, cold 
acclimated; +, quantitative assessment of gel formation. + denotes a gel with a volume of 1/5 of 
the protein extract; + + denotes a gel with a volume of 1/4 of the protein extract; + + + denotes 
a gel with a volume of 1/3 of the protein extract; + + + + denotes a gel with a volume of 1/2 of 
the protein extract.  This experiment was repeated 4 times.  
 
 

Sample Protein concentration (mg/mL) Gel formation 

NA 

2.0 + 
4.0 + + 
8.0 + + + 

10.0 + + + 

CA 

2.0 + 
4.0 + + 
6.0 + + 

13.0 + + + 
 

These experiments demonstrate that specific conditions were required for gel formation.  

Specifically, the protein extraction method, protein concentration, and the pH of the suspension 

buffer were crucial factors.  While freezing temperature and freezing duration appear to have no 

effect, a minimum of 3 freeze-thaw cycles are required for gel formation.  In addition, the gel 

can be obtained from both NA and CA extracts.  

 

4.2 Viscosity Measurements 

 

 Both NA and CA protein extracts were subjected to a total of 4 freeze-thaw cycles and 

their viscosity determined after each cycle (Table 4.3).  The viscosity was measured at 2 

different shear rates and the viscosities were taken manually when the value had stabilized.  Gel 

formation occurred in the third freeze-thaw cycle with the viscosity increasing approximately 

1.6- and 2.8-fold in NA and CA samples respectively, in comparison to values obtained after 

the first freeze-thaw cycle (Table 4.3).  There was a dramatic increase in viscosity of NA and 

CA samples in the fourth freeze-thaw cycle in which the viscosities increased 3.5- and 3.4-fold 

respectively, in comparison to values obtained after the third freeze-thaw cycle. 

 From Table 4.3, there were no significant changes in viscosities with respect to a change 

in shear rate applied to the samples; this suggested that the samples could be a Newtonian fluid.  

However, during the measurement of viscosity, the samples exhibited properties of a 
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thixotropic liquid, as the sample fluids displayed a decrease in viscosities over time at a 

constant shear rate (Fox et. al., 2009).  The final stabilized viscosities are presented in Table 4.3.  

The decrease in viscosity over time could be resulting from the shearing and disruption of the 

gel network in the sample. 

 

Table 4.3  Viscosity changes as a function of freeze-thaw cycles.  Values reflect means ± 
standard deviation of 2-4 independent experiments. NA, non-acclimated; CA, cold acclimated; 
nd, not determined.  * This experiment was only performed once as a shear rate of 3 rpm is not 
optimal for viscosity measurements using this viscometer. 
 
Shear rate (rpm) Freeze-thaw cycles Viscosity (cP) 

  NA CA 
6 1 10.10 ± 1.48 8.73 ± 0.98 
 2 13.55 ± 6.21 10.13 ± 1.94 
 3 16.10 ± 5.61 24.53 ± 4.52 
 4 57.10 ± 33.83 82.85 ± 19.30 
    

3* 1 10.8 15.1 
 2 16.9 18.9 
 3 12.2 68.2 
 4 nd nd 

 

4.3 SDS-PAGE Analysis of Gelling and Non-Gelling Components 

 

In order to examine the protein composition of the samples through SDS-PAGE, 

adequate solubilization of the gelling and non-gelling fractions in Laemmli sample buffer 

(Laemmli, 1970) was required prior to protein separation.  However, the gel exhibited heat 

stability and was insoluble over a range of conditions including chaotropic agent (urea), 

surfactants (Triton-X and SDS), reducing agent (β-ME), base (NaOH) and Laemmli sample 

buffer (Laemmli, 1970; Table 4.4). 
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Table 4.4  Summary of solubilization treatments prior to SDS-PAGE.  Heat incubation at 
95oC was performed for up to 6 minutes. “” denotes complete solubilization; “” denotes 
incomplete solubilization.  
 

Treatment Solubilization of gel 
 Without heating Heating 

Distilled water   
0.1% Triton-X   
Up to 8 M urea   
Up to 10% β-ME   
Up to 4% SDS   
3 M urea + 1% β-ME   
3 M urea + 4% SDS   
2X Laemmli sample buffer   
6 M urea + 0.0125% SDS + 0.5% β-ME   
3 M urea + 2% SDS + 5% β-ME   
4 M urea + 4% SDS + 1% β-ME   
0.1 M NaOH   
1 M NaOH   
 
 

 In all the chemical treatments applied to the gel, with or without heating, only the base 

(0.1 M and 1 M NaOH) and a combination of chaotropic agent, anionic surfactant and reducing 

agent (urea, SDS and β-ME) with heating for a minimum of 2 min could achieve complete 

solubilization for downstream SDS-PAGE analysis (Table 4.4).  In contrast, the non-gelling 

component was readily soluble in Laemmli sample buffer (Laemmli, 1970) 

 

 To determine which of the solubilization methods were feasible for downstream 

analysis, gel samples solubilized by 0.1 M NaOH with heating and the combination of 4 M urea, 

4% SDS and 1% β-ME with heating were chosen for SDS-PAGE analysis (Figures. 4.2 and 

4.3).  These two treatments were chosen to perform the SDS analysis because they were the 

least harsh of those which achieved complete solubilization.   
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Figure 4.2  SDS-PAGE showing solubilization of gelling components with 0.1 M NaOH.  
Lanes 1 and 2 represent gelling and non-gelling components from NA tissue, respectively.  
Lanes 3 and 4 represent gelling and non-gelling components from CA tissue, respectively.  
Seven μg of protein was loaded into each lane and were resolved in a 12% polyacrylamide gel 
stained with Coomassie blue. A MW standard (protein ladder) was also run in a separate lane.  
Gelling components were solubilized in 0.1 M NaOH with heating.  LS, large subunit of 
Rubisco; SS, small subunit of Rubisco.  
 

 From the SDS-PAGE analysis, the protein gel was completely degraded by the 0.1 M 

NaOH solubilization treatment (Figure 4.2).  This occurred in gel obtained from NA or CA 

protein.  The non-gelling component solubilized well in sample buffer and was readily 

separated with good protein resolution by SDS-PAGE (Figure 4.2).  Thus, the NaOH was not a 

suitable treatment to solubilize the gel for downstream analysis.   
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Figure 4.3  SDS-PAGE showing solubilization of gelling components with 4 M urea, 4% 
SDS, and 1% β-ME.  Lanes 1 and 4 represent total protein extracts from NA and CA tissues.  
Lanes 2 and 5 represent gelling components from NA and CA extracts respectively.  Lanes 3 
and 6 represent non-gelling components from NA and CA extracts respectively.  Samples were 
loaded on an equal volume basis and were resolved in a 12% polyacrylamide gel stained with 
Coomassie blue.  Gelling components were solubilized in 4 M urea, 4% SDS and 1% β-ME 
with heating for 2 min.  LS, large subunit of Rubisco; SS, small subunit of Rubisco. 
 

 The feasibility of using urea, SDS and β-ME as solubilization agents for the gel was 

also determined by SDS-PAGE (Figure 4.3; Table 4.4).  In contrast to the NaOH solubilization 

treatment, this combination of chaotropic agent, anionic surfactant and reducing agent was able 

to solubilize the gelling component and allowed for excellent protein separation and resolution 

(Figure 4.3; lanes 2 and 5). The non-gelling component solubilized well in sample buffer 

(Figure 4.3; lanes 3 and 6), as did the total protein extract (Figure 4.3; lanes 1 and 4). The 

protein profile for the total protein extract, gelling and non-gelling components appeared to be 

similar (Figure 4.3), suggesting that the gel formed was likely due to interactions of multiple 

proteins in the total leaf protein extract under specific conditions.  In addition, the protein 

composition appeared to be the same from both NA and CA samples (Figure 4.3) which 

supports the theory that gel formation was not the result of induced or degraded proteins as a 

result of cold acclimation. 
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4.4 Role of Rubisco in Gel Formation 

 

 Rubisco catalyzes the first step of carbon fixation and is the most abundant protein in 

leaf tissues.  Not surprisingly, Rubisco was also shown to be a major protein present in our 

SDS-PAGE analyses, as indicated by the presence of the small and large subunits (Figures 4.2 

and 4.3).  Due to the preponderance of this protein, attention was focused towards determining 

the role of Rubisco, if any, in gel formation from leaf protein extracts of NA and CA winter rye. 

 

4.4.1 Removal of Rubisco 

 

 In order to access the role of Rubisco in gel formation an attempt was made to remove 

Rubisco from the total protein extracts using PEI precipitation. This PEI precipitation protocol 

was attempted on protein pellets (obtained as described in section 3.3.3) from NA winter rye 

and proved to be unsuccessful. Further attempts utilized the leaf protein extraction protocol of 

Holler et al. (2007) described in section 3.7.1. 

 As shown in Figure 4.4, PEI precipitation was unsuccessful in selectively removing 

Rubisco from the phenol extracted protein samples. After addition of PEI, almost all proteins 

were precipitated (Figure 4.4). This may due to non-specific precipitation or the surface 

structure of the sample proteins was modified by the phenol extraction method causing a 

reduced solubility. 
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Figure 4.4  SDS-PAGE showing Rubisco removal from phenol extracted proteins.  Phenol 
extracted protein samples were precipitated with PEI.  Lanes 1-4 represent protein samples with 
0, 0.5, 1.0 and 2.0% (v/v) PEI concentrations respectively.  Samples were loaded on an equal 
volume basis and were resolved in a 12% polyacrylamide gel stained with Coomassie blue.  LS, 
large subunit of Rubisco; SS, small subunit of Rubisco.  The PEI precipitation in phenol 
extracted protein samples was unspecific, almost all proteins were precipitated from the 
samples.   
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In order to complete these experiments the extraction protocol of Holler et al. (2007) 

was employed, realizing that this may have an effect on subsequent gel formation. 

SDS-PAGE analysis revealed that Rubisco was successfully removed from the protein 

extracts using PEI precipitation with as low as 0.5% (v/v) PEI (Figure 4.5).  However, higher 

concentrations of PEI (2% [(v/v]) were not as successful (Figure 4.5). 

 

 

 

 
 

Figure 4.5  SDS-PAGE showing Rubisco removal from proteins extracted with sodium 
phosphate.  Protein samples were extracted according to Holler et al. (2007) and precipitated 
with PEI.  Lanes 1-4 are protein samples with 0, 0.5, 1.0 and 2.0% (v/v) PEI concentrations 
respectively.  Samples were loaded on an equal volume basis and were resolved in a 12% 
polyacrylamide gel stained with Coomassie blue.  LS, large subunit of Rubisco; SS, small 
subunit of Rubisco.  The removal of Rubisco was successful as the PEI precipitation was 
specific, only Rubisco was precipitated from the samples.    
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This procedure was utilized for NA and CA tissue and the subsequent protein extracts, 

devoid of Rubisco, were assessed for their ability to form a gel upon 6 freeze-thaw cycles.  Gel 

formation was not observed in extracts from either NA or CA tissue in extraction buffer at pH 

7.0.  The experiment was repeated using extraction buffer at pH 12.0 and identical results were 

obtained.  However, protein precipitation was observed in the pH 12.0 extract (Figure 4.6). 

 

 

 
 

Figure 4.6  Precipitate formation in protein extracts devoid of Rubisco. Extracts are from 
NA tissue suspended in extraction buffer adjusted to pH 12.0 (left) or pH 7.0 (right).  
Precipitate is observed in the pH 12.0 sample.   
                          

4.4.2 Partial Purification of Rubisco 

 

 To determine whether Rubisco itself can form a gel in response to freeze-thaw cycles, a 

Rubisco isolation and purification from NA leaf tissues was performed.  These experiments 

used the protein extraction protocol of Kwanyuen et al., 2002 which we adopted, once again 

realizing this may have an effect on subsequent gel formation.  SDS-PAGE analysis revealed 

that Rubisco was successfully partially purified (Figure 4.7).  In this protocol, Rubisco is 

crystallized out of soluble protein solution during a 48 h incubation at 4°C in an acidic 

extraction buffer (pH 5.6).  The Rubisco crystals are collected by centrifugation and suspended 

Precipitate 
 (pH 12.0) 
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in an appropriate buffer.  Figure 4.7 (lane 2) demonstrates almost complete removal of the large 

and small subunits of Rubisco from the soluble fraction (lane 3) and a significant enrichment in 

the collected product (lane 4) as a result of the crystallization process. 

                    

 

 

        

 
 

 

Figure 4.7  SDS-PAGE demonstrating partial purification of Rubisco. Lane 1, crude leaf 
extract; lane 2, soluble proteins (including Rubisco); lane 3, soluble proteins (after 
crystallization); lane 4, Rubisco (crystallized). Rubisco was loaded on an equal volume basis 
and were resolved in a 12% polyacrylamide gel stained with Coomassie blue.  LS, large subunit 
of Rubisco; SS, small subunit of Rubisco.  In lane 4, the Rubisco was partially purified as 
determined by the SDS-PAGE, both large and small subunit of Rubisco were greatly enhanced 
in the sample.   
 

 The partially purified Rubisco extracts from NA tissue were assessed for their ability to 

form a gel upon freeze-thaw cycles.  Crystallized Rubisco (5 and 10 mg/mL) was suspended in 

Tris buffer (pH 8.0) or borate buffer (pH 12.0) and subjected to 6 freeze-thaw cycles. Prior to 

freeze-thaw cycles, dialysis was performed on the enriched Rubisco samples to remove salts 

from the process of protein purification.  Samples were also subjected to freeze-thaw cycles 
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without dialysis.  This was to assess whether the salts present from the crystallization steps had 

an effect on protein gelling.  Unfortunately, no protein gel was observed from dialyzed or non-

dialyzed samples in either buffer.  This experiment was performed at partially purified Rubisco 

concentrations of 5 and 10 mg/mL which still did not result in the formation of a gel.  

                        

4.4.3 Catalytic Effect of Rubisco 

 

To determine if Rubisco was acting as a catalyst for gel formation, the partially purified 

samples were added to BSA, a commercially available protein.  Prior to this experiment, BSA 

was assessed for its gel forming ability.  BSA was suspended in 50 mM borate buffer (pH 12.0) 

at protein concentrations from 2 to 20 mg/mL and subjected to 6 freeze-thaw cycles.  No gel 

formation was observed in any of the samples.  Thus, BSA itself was incapable of gel formation 

in response to freeze-thaw under these experimental conditions. 

 To determine the possible catalytic role of Rubisco in gel formation, partially purified 

Rubisco (with or without dialysis) at a standardized concentration (8 mg/mL) in borate buffer 

(pH 12.0) was mixed with commercially available BSA at 5, 8 or15 mg/mL.  The mixtures 

were subjected to a minimum of 6 freeze-thaw cycles.  No gel formation was observed under 

these experimental conditions.  These results indicated that Rubisco did not possess the ability 

to catalyze gel formation when examined with BSA. 

 

4.5 Absorbance Measurements and Raman Spectroscopy 

 

 Initially, experiments were attempted using CD spectroscopy, however, these proved 

unsuccessful.  According to the absorbance measurements prior to CD spectroscopy, the 

samples were found to be highly absorbing (absorbance > 1.5) in the UV region (180-260 nm), 

thus CD measurement was not feasible.  Raman spectroscopy was then utilized which yielded 

improved results shown in Figures 4.8 – 4.14. 
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Figure 4.8  Raman spectrum of 50 mM borate buffer (pH 12.0).  The intensity (Counts) is 
arbitrary.  Major peaks at 1080 cm-1 and 1300 cm-1 were observed. 
 

Raman spectra were collected for the borate buffer utilized in this study from 0 to 3400 

cm-1 and very little background signal was observed (Figure 4.8).  A sharp peak was observed at 

around 1080 cm-1, and a wider peak was observed at 1300 cm-1.  A sharp peak was observed at 

about 100 cm-1, this was due to the lattice vibration of crystallized borate buffer.  This peak at 

about 100 cm-1 was observed in all the samples (Figures 4.8 – 4.14).  
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Figure 4.9.  Raman spectra of BSA and tBSA.  BSA is a commercially available purified 
sample; tBSA is commercially available BSA that has been subjected to the phenol extraction 
protocol.  The intensity (Counts) is arbitrary.  Major differences between spectra were observed 
at 530, 620, 820, 1005 and 1600 cm-1. 
  

Raman spectra were also obtained for commercially available BSA and BSA which had 

been subjected to the phenol extraction protocol (tBSA; Figure 4.9).  By comparing the protein 

fingerprint region (500 – 2000 cm-1) between the two BSA samples, sharper peaks were 

observed at around 530 (disulfide bond), 620 (Phe), 820, 1005 (Phe) and 1600 (Amide I) cm-1 

in the phenol extracted BSA sample (Table 4.5).    

The phenol extracted BSA sample showed that Raman spectroscopy analysis was 

acceptable and no sample preparation was required as it did not result in spectroscopic 

interferences in the range studied. 
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Figure 4.10  Raman spectra of protein extracts from NA and CA tissues.  Samples have not 
been subjected to freeze-thaw treatment. The intensity (Counts) is arbitrary.  Major differences 
between spectra were observed at 450, 930, 1005, 1180, 1200, 1500 and 1600 cm-1. 
  
 

Raman spectra of protein extracts without freeze-thaw treatment from both NA and CA 

tissues were compared (Figure 4.10).  Generally both NA and CA extracts have similar Raman 

profiles; however the CA extract has additional peaks at around 450, 930 (stretching C-C α-

helix), 1180, 1200 (Phe) and 1500 cm-1 (Table 4.5).  These additional peaks may be due to the 

presence of cold acclimated induced protein expression which resulted in differences in the 

sample’s structural conformation.  However, the NA extract has sharper peaks at around 1005 

cm-1 (Phe) and 1600 cm-1 (Amide I region) (Table 4.5).  
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Figure 4.11  Raman spectra of gelling components from NA and CA protein extracts.  The 
intensity (Counts) is arbitrary.  Unexpected higher baseline fluorescence was observed from the 
gelling components.  Major differences between spectra were observed at 230 and 1580 cm-1. 
 
 

The Raman spectra of the gel from both NA and CA tissues were obtained (Figure 4.11).  

The CA gel has a minor peak at 230 cm-1 and a sharper peak at around 1580 cm-1 (Trp; Table 

4.5) compared to NA gel.  Besides that, both NA and CA gels showed almost identical Raman 

profile in the protein fingerprint region (500 – 2000 cm-1).  This demonstrates that the two 

samples have similar chemical bonding and conformation and suggests that the gel formed by 

the NA and CA samples occurs through similar protein-protein interactions. 
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Figure 4.12  Raman spectra of non-gelling components from NA and CA protein extracts.  
The intensity (Counts) is arbitrary.  Major differences between spectra were observed at 450, 
1280, 1550 and 1580 cm-1. 
 
 

 Comparison of Raman spectra of the non-gelling components of NA and CA protein 

extracts (Figure 4.12), revealed that there was an additional minor peak at around 450 cm-1, a 

sharper peak at 1280 cm-1 (Amide III region) and peaks at around 1550 (Trp) and 1580 cm-1 

(Trp) (Table 4.5) in the NA non-gelling protein extract.  The NA non-gelling sample has 

different secondary structure conformation in the Amide I region showed by the increase in 

intensity and broader peaks at around 1600 cm-1 (Table 4.5).   
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Figure 4.13  Raman spectra of protein extract, non-gelling component and gelling 
component from NA tissue.  The protein extract has not been subjected to freeze-thaw 
treatment.  The intensity (Counts) is arbitrary.  Major differences between spectra were 
observed at 760, 1005, 1280, 1350, 1600 and 2930 cm-1. 
  
 

Figure 4.13 shows the offset Raman spectra of the protein extract (without freeze-thaw 

treatment), non-gelling component and gelling component from NA tissue.  The protein extract 

and gelling component demonstrated similar Raman profile, however, the gelling component 

showed an increase in intensity at around 760, 1005 and 1350 cm-1 which represents Trp and 

Phe (Table 4.5).  The gelling component also showed an increase in intensity in the C-H 

stretching region (2930 cm-1; Table 4.5).  The non-gelling component showed a change in the 

secondary structure conformation in the Amide I (1600 cm-1) and Amide III (1280 cm-1) region 

(Table 4.5).  
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Figure 4.14  Raman spectra of protein extract, non-gelling component and gelling 
component from CA tissue.  The protein extract has not been subjected to freeze-thaw 
treatment.  The intensity (Counts) is arbitrary.  Major differences between spectra were 
observed at 760, 1005, 1280, 1350, 1600 and 2930 cm-1. 
  
 

From Figure 4.14, the Raman profile of the gel and protein extract showed high 

similarity, it again showed increased in intensity at around 760, 1005 and 1350 cm-1 which 

represents Trp and Phe (Table 4.5).  The intensity in the C-H stretching region at 2930 cm-1 

(Table 4.5) was increased in the gel sample.  Whereas the non-gelling component showed a 

change in the secondary structure conformation near the Amide I (1600 cm-1) and Amide III 

(1280 cm-1) (Table 4.5) region.  

Despite the fact SDS-PAGE showed similar protein compositions in protein extract, 

non-gelling component and gel (Figure 4.3), Raman spectroscopy revealed that there were 

differences in the secondary structure conformation between the protein extract, non-gelling 

component and gel.  These conformational differences were similar between NA and CA 

samples.  This suggests that the gels from NA and CA tissues have very similar protein 

conformation and formed through similar protein-protein interactions.  
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Table 4.5  Summary of Raman band assignment.  
 

Raman Band (cm-1)1,2 Assignment Major Raman Bands 

Observed (cm-1) 

1203(w), 1032 (w), 1004(s), 

624(w) 

Phe 1005, 620 

1623(w), 1582, 1555(s), 1436(s), 

1016(s), 882(w), 762 (s) 

Trp 1580, 1550, 1350, 760 

540 – 510 Disulfide (S-S) bond 530 

2982 (s), 2942, 2880  Aliphatic C-H stretching 

region 

2930 

936 Stretching C-C α-helix  930 

1645 – 1600 Amide I (α-helix) 1600 

1300 – 1260 Amide III (α-helix) 1280 

 
1  Li-Chan et al., 1996. 
2  Ferraro et al., 2003. 
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5.0 DISCUSSION 

5.1. Conditions for Gel Formation 

 

Protein gelation occurs under conditions that allow ordered interchain, intermolecular or 

interparticle interactions.  A classic two-step mechanism of gelation was proposed by Ferry 

(1948) which involves an initiation step of unfolding or dissociation of the protein molecules 

and an aggregation step involving network association resulting in gel formation under 

appropriate conditions.  In this research, the thawing process during the freeze-thaw cycles 

initiates the unfolding or denaturation of the protein molecules and the freezing process results 

in network aggregation of the dissociated protein molecules.  Gelation only took place in pH 

12.0 buffer, regardless of plant tissue (NA or CA) samples.  Sánchez and Burgos (1996) have 

studied the effect of pH and protein concentration on thermal gelation of trypsin hydrolysates of 

sunflower proteins.  The authors found that the sunflower protein gelation is only possible in 

the pH range of 7 – 11. The gel reaches its maximum gel strength at pH 8 and gel formed at pH 

7 or above pH 9 are very weak.  They also found that gelation time increases with pH and 

decreases with increase protein concentration.  In addition, Knipe and Frye (1990) showed that 

the protein gel properties of bovine plasma gel were strongly affected by pH.  These previous 

studies have shown that gelation was highly pH dependent (Knipe and Frye, 1990; Sánchez and 

Burgos 1996).  Our results are consistent with the previous study performed by Sánchez and 

Burgos (1996) which gelation from plant proteins was occurred at basic pHs.  Thus, it is 

possible that protein gelation is limited in a range of pH; due to the fact that pH can alter the 

charge distribution on amino acid side chains and affect interchain attractive and repulsive 

forces.  The gel formation observed at pH 12.0 suggests that very high pH was required to 

increase protein-protein interactions by increasing attractive forces between protein molecules.   

Both TCA-acetone and phenol extraction methods employed in this study are popular 

protein extraction method for proteomic analysis (Saravanan and Rose, 2004; Carpentier et al., 

2005).  However, protein gelation only occurred in the protein samples generated by the 

modified phenol extraction (Table 4.1).  It has been documented that both of the extraction 

methods yield a substantial subset of proteins with relatively low amounts of contaminating 

compounds, but each extract type will only include a subset of proteins that is not present in the 

other (Saravanan and Rose, 2004).  This suggests that a different subset of proteins were 
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extracted using the modified phenol extraction method and that this particular subset of proteins 

associated to form the gel prior to freeze-thaw cycles in pH 12.0 borate buffer.  

Ferry (1948) proposed that when the aggregation rate between protein molecules is slow, 

the resulting gel will form a finer network of protein chains, will be less opaque, and will 

exhibit less syneresis than one with a faster aggregation rate.  On the other hand, a coarser 

protein network will form an opaque gel with large interstices capable of holding solvent which 

is easily expressed from the matrix.  Recently, Lakemond et al. (2003) illustrated similar 

findings that in fine stranded networks the proteins are attached to each other like a string of 

beads.  This type of gel is usually transparent, indicating that the protein aggregates within the 

gel are smaller than about 50 nm.  Coarse networks are usually non-transparent and are thought 

to be formed by random aggregation of proteins into clusters, which aggregate to form thick 

strands.  The protein aggregation in this study was facilitated by freezing the extract at -80°C 

which would greatly increase the rate of protein aggregation.  This may explain the turbidity of 

the gel formed from the freeze-thaw cycles (Figure 4.1) as the protein molecules have formed a 

coarse gel network due to the higher rate of aggregation induced by the extreme low 

temperature.  

 Protein concentration is one of the most important factors in protein gelation.  Protein 

concentration will influence the gelation time and the rheological behavior of gels (Oakenfull, 

1984; Ross-Murphy, 1991).  Ross-Murphy (1991) showed that gelation will occur only if the 

protein concentration of a sample is above its critical value.  The data in this thesis also shows 

that the gelation process in our samples is highly dependent on sample concentrations as the 

amount of gel formed was dependent on the protein concentration (Table 4.2).  The absence of 

gelation in some of the samples may be due to the lower protein concentration in these samples.  

 

5.2. Gel Properties and Composition 

 

    Viscosity is an important property that is useful in many applications of Food Science, 

such as the design of food process and processing equipment, quality evaluation and control of 

food products, and understanding the structure of food materials (Barbosa-Cánovas et al., 1996; 

Krokida et al., 2001). After the protein samples were subjected to freeze-thaw cycles, their 

viscosities were determined and it was shown that when the protein gel had started forming, 
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after the third freeze-thaw cycle, the viscosity increased in both NA and CA samples (Table 

4.3).  Upon gel formation after the fourth freeze-thaw cycle, the viscosities of NA and CA 

samples were greatly increased once again (Table 4.3).  This shows that upon gelation that the 

viscosity of the sample increased, and that gelation had a positive correlation with sample 

viscosity.  Viscosity is a measure of resistance to flow or internal friction of a fluid.  The 

observed increase in viscosity upon gelation was due to the presence of the gel in the sample 

causing the additional resistance to flow.  Although there were no significant changes in 

viscosities with respect to a change in shear rate applied to the samples (Table 4.3), sample 

viscosities decreased over time during these experiments.  The decrease in viscosity over time 

could have resulted from the disruption of the gel into smaller fragments, thus reducing the 

internal friction of the sample.     

 To achieve adequate solubility of the gel for downstream electrophoresis analysis, 

several chemical treatments were performed on the gel (Table 4.4) which included base (NaOH) 

or a combination of chaotropic agent, anionic surfactant and reducing agent, with or without 

heating in a waterbath.  Once the gel was formed after the freeze-thaw cycles, the gelation 

process was found to be thermally irreversible.  The gel was able to maintain its structural 

stability regardless of storage under freezing temperature or heating the gel in buffer (borate, 

pH 12.0), water or select chemicals.  Adequate solubility of the gel was only be obtained from 

solubilizing the gel in NaOH or a solution containing urea, SDS and β-ME with heating (Table 

4.4).  However, solubilizing the gel in NaOH was not feasible for protein analysis by SDS-

PAGE as strong base denatured the proteins, obviating their resolution (Figure 4.2).  The 

addition of base increased protein solubility through hydrolysis; the solubility increased as the 

denaturation proceeds, as indicated by a decrease in size of the protein molecule (Wu and Yen, 

1924).   

Chaotropes can exert profound effects on all interactions by altering solvent parameters 

(dielectric constant, hydrogen bond formation, polarizability) and all resulting interaction 

energies will change (Rabilloud, 1996).  Urea is a chaotrope, which is less efficient in breaking 

hydrophobic interactions, but more efficient in breaking intra- and/or intermolecular hydrogen 

bonding of proteins, so as to improve protein solubilization (Herskovits et al., 1970).  However, 

denaturation by urea induces the exposure of the proteins’ hydrophobic residues to the solvent 

(Rabilloud, 1996), which increases the potential for hydrophobic interactions.  SDS is an 
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anionic detergent which can disrupt protein secondary structure and non-disulfide-linked 

tertiary structure by interfering with non-covalent interactions, especially hydrophobic 

interactions.  β-ME is a reducing agent, used to disrupt the disulfide interactions between 

protein molecules.  By breaking disulfide interactions, both tertiary and quaternary structure of 

proteins can be disassociated.  In terms of gel formation, disulfide bonds usually play an 

important role in increasing gel matrix hardness whereas hydrogen and hydrophobic 

interactions are responsible for keeping the network structure intact (Zheng et al., 1993; Puppo 

and Añón, 1998).  The gel produced in this study could only be solubilized in a solution 

containing all three: urea, SDS and β-ME, but not individual denaturant with heating.  This 

shows that heating unfolds the proteins in the gel network, facilitating the binding of urea, SDS 

and β-ME to the proteins to speed up the disruption of the gel’s structure.  The use of all three 

denaturants in solubilizing the gel suggests that the gel network is mediated through disulfide 

interactions and non-covalent interactions especially hydrogen bonding and hydrophobic 

interactions.  Solubilization of the gel in a solution with a combination of 4 M urea, 4% SDS 

and 1% β-ME was accomplished as the protein components of the solubilized gel were resolved 

by SDS-PAGE (Figure 4.3).  However, difficulty was encountered in protein quantitation for 

samples solubilized in this chemical cocktail.  The high concentration of urea, SDS and β-ME 

contained in the solution were incompatible with most of the commercially available protein 

assays.  Thus, the protein extracts were not resolved by SDS-PAGE on an equal concentration 

basis.  By comparing the total protein extract, gelling component and non-gelling component 

from both NA and CA plant materials; there was no observable difference in protein 

composition (Figure 4.3).  It can be concluded that the gel was formed from the proteins present 

in the winter rye leaf tissue extracts through multiple protein-protein interactions. 

The absorbance measurements required prior to CD revealed that the protein samples 

were highly absorbing (absorbance > 1.5), making it difficult to determine any conformation 

changes in the gel.  As indicated by Matsuura and Manning (1994), there are certain restrictions 

in using CD for sample analysis. The authors showed that CD spectroscopy requires clear 

samples and this limits its application to dilute protein solutions or transparent gels.  In addition, 

the interference due to absorbance by various salts and buffers in the far-UV region also limits 

the use of CD spectroscopy for analyzing the effects of chaotropic salts and protein perturbants 

on protein conformation (Stanley and Yada, 1992; Ma et al., 2000).  CD was shown to be 
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incompatible with the samples in this study due to these limitations.  Thus, in order to 

investigate possible protein conformational changes in gelation by freeze-thaw treatment a 

more direct technique, Raman spectroscopy was utilized.    

In general, α-helix exhibits lower amide I and higher amide III frequencies than β-sheet 

and random coil (Ferraro et al., 2003).  Amide III is more structure-sensitive than amide I.  

Amide I and Amide III regions at different Raman band could represent either an α-helix, β-

sheet or random coil.  To determine whether sample preparation was required for the phenol 

extracted gel samples and to understand the effect of phenol extraction on structural changes in 

protein samples with Raman spectroscopy was carried out on commercially available BSA and 

phenol extraction treated BSA (tBSA).  As shown in Figure 4.9, Raman spectra of BSA and 

phenol extraction treated BSA were obtained with acceptable background noises.  This showed 

that phenol extracted samples can be analyzed by Raman spectroscopy and no sample 

preparation was required prior to Raman spectroscopy.  By comparing Raman spectra between 

BSA and tBSA, it revealed that the phenol extraction had altered the chemical bonding and 

conformation of the tBSA sample as sharper peaks were observed at around 530, 620, 820, 

1005 and 1600 cm-1.  The changes in intensity and sharpness of these peaks suggest 

conformation changes in the aromatic residues (Trp and Phe), disulfide bonding and Amide I 

(α-helix) (Table 4.5).  This may be one of the reasons the protein gel was only able to form in 

the phenol extracted protein samples, as the phenol extraction had altered the chemical bonding 

of the protein to a conformation that allowed gelling to occur.   

As shown in Figure 4.10, both NA and CA extracts without freeze-thaw treatment have 

similar Raman profiles. However, the NA extract showed sharper peak at 1005 (Phe) and 1600 

cm-1 (Amide I), whereas, the CA extract has additional peaks at around 450, 930 (stretching C-

C α-helix), 1180, 1200 (Phe) and 1500 cm-1 (Table 4.5).  These additional peaks in the CA 

extract may be due to the presence of cold acclimated induced protein expression such as AFPs 

which resulted in differences in the sample’s structural conformation.   

The Raman spectra of NA and CA gel (Figure 4.11) showed near identical Raman peaks 

and intensity, suggesting very similar secondary structural conformations were observed 

between the samples.  As shown in Figures 4.13 and 4.14, the NA and CA gel samples have a 

higher intensity in the C-H stretching band (2930 cm-1) than the non-gelling component and 

protein extract.  Larsson and Rand (1973) showed that intensity of the 2930 cm-1 band 
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increased with increasing polarity of the environment around hydrocarbon chains.  Recent 

studies suggested that the increase in intensity of the C-H stretching band of vibration was an 

indication of protein denaturation and increasing exposure of aliphatic side chains to the 

aqueous environment (Li-Chan, 1996; Ma et al., 2000).  The increasing exposure of aliphatic 

amino acid residues could suggest the involvement of hydrophobic interaction in stabilizing the 

gel network.     

SDS-PAGE (Figure 4.3) showed that similar protein compositions were present in 

protein extract, non-gelling component and gelling component.  Although there were similar 

protein compositions in the different components of the sample, Raman spectroscopy revealed 

that there were differences in the secondary structure conformation between the protein extract 

without freeze-thaw, non-gelling component and gelling component (Figures 4.13 and 4.14).  

However, the Raman spectra of the same components between NA and CA samples showed 

similar structural conformation.  These results could suggest that the similar structural 

conformation of gels from NA and CA samples were stabilized through similar protein-protein 

interactions.  It is also possible that the changes observed in the spectra are a result of the 

formation of covalent bonds.  In conclusion, these results showed that freeze-thaw treatment 

had altered the secondary structure conformation of the proteins and chemical bonding leading 

to the formation of a gel network.   

 

5.3. A Role for Rubisco 

 

Rubisco is the most abundant protein in leaf tissues and has been estimated it can 

comprise up to 50% of the total protein in the plant leaf (Mummenhoff and Hurka, 1986; 

Andersson and Backlund, 2008).  Photosynthetic CO2 reduction, involving the combination of 

CO2 with ribulose-1,5-bisphosphate to form two molecules of 3-phosphoglycerate is catalyzed 

by Rubisco.  The Rubisco holoenzyme complex has a molecular weight close to 550 kDa and is 

composed of eight identical catalytic large subunits (50 – 55 kDa) and eight identical small 

subunits (12 – 18 kDa) (Andersson and Backlund, 2008).  Plant Rubisco is composed of large 

(L) and small (S) subunits in a haxadecameric structure (L8S8). The isoelectric point of native 

Rubisco is close to 6 as determined by electrofocusing while the isoelectric points of the 
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subunits determined after dissociation by urea are 7.5 and 6.6 – 6.9 for the small and large 

subunits respectively (Libouga et al., 1996).  

 Rubisco was shown to be the major protein present in the gel as indicated by the 

presence of the small and large subunits (Figure 4.3). To confirm whether Rubisco plays a key 

role in freeze-thaw cycle induced gel formation, experiment were conducted to remove Rubisco 

from the total winter rye leaf extract by PEI precipitation (Holler et al., 2007).  The successful 

removal of Rubisco from total leaf protein extracts was confirmed by SDS-PAGE (Figure 4.5).  

The protein extracts devoid of Rubisco were not able to form a gel after freeze-thaw treatment.  

In addition, the protein samples suspended in pH 12.0 borate buffer precipitated out of solution 

during the freeze-thaw treatment, whereas samples in pH 7.0 Tris buffer remained soluble 

(Figure 4.6).  The precipitation of protein in pH 12.0 borate buffer may have been due to the 

increase of both electrostatic and hydrophobic interactions between protein molecules.  It is 

well known that pH will affect the surface charge of proteins and cause protein denaturation or 

unfolding which leads to increased electrostatic and hydrophobic interactions between protein 

molecules, resulting in increased protein-protein interactions and the formation of a precipitate 

(Rabilloud, 1996; Kristinsson and Hultin, 2003).  These experiments suggest that Rubisco plays 

an important role in the gel formation. 

To determine if Rubisco itself can form a gel, it was partially purified from winter rye 

leaf tissues and used in subsequent experiments.  Dialysis was performed on the purified 

Rubisco sample prior to freeze-thaw treatment to remove the salts used in the purification 

process.  Both dialyzed and non-dialyzed Rubisco samples were prepared in pH 7.0 (near 

physiological pH) and pH 12.0 buffer.  After the Rubisco samples were subjected to freeze-

thaw cycles, no gel formation was observed.  The absence of gel formation in the purified 

Rubisco samples may be due to lack of hydrogen bonding and hydrophobic interactions 

between Rubisco subunits and other proteins in the original protein extract which were required 

to produce a gel network structure (Puppo and Añón, 1998).     

 While Rubisco itself was not able to form a gel by the freeze-thaw treatment it is 

possible that it may have a catalytic effect on gel formation.  The aggregation of β-lactalbumin 

is dependent upon the presence of BSA and/or β-lactoglobulin (Calvo et al., 1993).  Therefore, 

BSA was used to investigate the possible catalytic effect of Rubisco on gel formation.  The 

gelation ability of BSA was first assessed and it was not able to form a gel upon freeze-thaw, 
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regardless of protein concentration.  Different concentrations of BSA were mixed with both 

dialyzed (desalted) and non-dialyzed purified Rubisco and assessed for gel formation.  

Regardless of the different Rubisco to BSA protein ratios, no gel formation was observed after 

freeze-thaw treatment, thus indicating Rubisco may not be acting as a catalyst in gel formation. 

These Rubisco experiments must be interpreted with caution.  While care was taken to 

maintain similar buffer conditions when performing the freeze-thaw treatments to induce 

gelation, conditions were not identical.  In order to successfully perform these experiments, 

different protein extraction protocols needed to be utilized.  In light of the fact that it has 

already been demonstrated that extraction protocol is an important parameter in gel formation, 

this could have negatively affected the ability of the extract to form a gel. 

 

5.4. Antifreeze Proteins and Amyloid Formation 

 

 The plant material used in this study was winter rye (Secale cereal L.), a freezing 

tolerant, over wintering annual plant that can survive temperatures below -30°C. This is 

accomplished, in part, by allowing ice formation only in the intercellular spaces (apoplast) 

which has been shown to be the result of ice nucleating proteins (Pearce 1988; Griffith and 

McIntyre, 1993; Brush, et al., 1994).  However, the survival of plant tissue also depends on 

preventing damage caused by the growth of intracellular ice crystals.  Cold acclimated winter 

rye contains endogenously produced AFPs which are involved in maintaining the rheologic 

properties of the cellular matrix (Griffith et al., 1992).  These AFPs are immunologically 

related to pathogenesis proteins, some of which also contain antifreeze activity.  AFPs function 

by depressing the freezing temperature of water noncolligatively, binding to prism faces of ice 

and modifying the normal growth pattern of the ice crystals. AFPs will form oligomeric 

complexes which are thought to inhibit ice growth and recrystallization more effectively than 

the individual polypeptides (Yu and Griffith, 1999).  Six AFPs have been identified in 

apoplastic extracts from cold acclimated winter rye leaves, ranging from 16-35 kDa (Grififth et 

al., 1997). The accumulation of AFPs in winter rye are can be induced at warm temperatures by 

other factors such as drought or treatment with pathogenic fungi, salicylic acid, or abscisic acid 

(Yu and Grififth, 2001; Stressmann et al., 2004).   
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A type I AFP is found at high concentrations in the circulatory system and skin of fish 

(winter flounder) living in subzero seawater, and protects the organism from macromolecular 

ice growth by adsorption inhibition (Fletcher et al., 2001).  While studying AFP mechanism and 

structure, it was found that high concentrations of winter flounder type I AFP in solution 

formed a translucent gel upon repetitive freeze and thaw cycles (Graether et al., 2001).  Gel 

formation of a protein at or above the critical concentration of polymerization (Harper and 

Lansbury, 1997) may indicate the formation of amyloid fibrils.  It was further demonstrated that 

freezing and thawing caused the AFP to be converted from a soluble, single α-helical protein 

into amyloid fibrils in the form of an amyloidotic gel (Graether et al., 2003). 

 

5.5. Conclusions and Future Studies 

 

Protein-polysaccharide interactions play a significant role in the structure of many 

processed foods.  A gel is a cross-linked polymer network that spans the entire liquid medium; 

its properties depend strongly on the interaction of the polymer and the liquid medium.  

Gelation is one of the most important functional properties of polysaccharides and food proteins 

in food products.  In many food products, gelation of these biopolymers is critical to the 

formation of desired texture that is preferable by consumers.  

Protein extracts from winter rye leaf tissues have demonstrated the ability to form gels.  

This novel proteinaceous extract possesses a gelling ability upon freeze-thaw cycles and may 

have a potential commercial use in the food industry as a thickener and gelling agent in food 

products.       

Most studies on winter rye have focused on the freezing tolerance of the plant and few 

have examined rheological properties of cellular extracts in response to freezing.  Based on 

previous studies, it is possible that the protein extracts utilized in this study are enriched with 

AFPs that are forming, or contributing to, amyloid fibril formation.  Examination of the current 

gel by electron microscopy, fluorescence staining with the amyloid-specific dye Thioflavin T, 

and/or solid-state 13C-NMR spectroscopy would verify this suggestion. This could also be 

confirmed by examining apoplastic extracts containing AFPs and assessing their gel forming 

abilities. The quality of frozen foods decreases over time due to water sublimation and ice 

crystallization. If gelation in these plant extracts is indeed due to AFPs, it may be possible to 
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use this knowledge to improve the quality of frozen food products subjected to dehydrating 

conditions. 
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	Figure 4.1  Gel formation in NA (a) and CA (b) protein extracts.  Extracts were prepared from leaf tissue of winter rye and suspended in borate buffer (pH 12.0).
	The physical appearance of the gel was white or yellowish in color and it was opaque (Figure 4.1).  It was soft in texture like gelatin, but more elastic, and not as brittle.  There was no clear distinction in physical appearance between the gels form...
	Figure 4.6  Precipitate formation in protein extracts devoid of Rubisco. Extracts are from NA tissue suspended in extraction buffer adjusted to pH 12.0 (left) or pH 7.0 (right).  Precipitate is observed in the pH 12.0 sample.

