
Imprecise Prior for Imprecise Inference on

Poisson Sampling Model

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Collaborative Graduate Program of Biostatistics

University of Saskatchewan

Saskatoon

By

Chel Hee Lee

©Chel Hee Lee, May 2014. All rights reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226133206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Graduate Chair, Collaborative Biostatistics Program

School of Public Health

University of Saskatchewan

107 Wiggins Road

Saskatoon, Saskatchewan

S7N 5E5 Canada

i



Abstract

Prevalence is a valuable epidemiological measure about the burden of disease in a com-

munity for planning health services; however, true prevalence is typically underestimated

and there exists no reliable method of confirming the estimate of this prevalence in question.

This thesis studies imprecise priors for the development of a statistical reasoning framework

regarding this epidemiological decision making problem. The concept of imprecise probabili-

ties introduced by Walley (1991) is adopted for the construction of this inferential framework

in order to model prior ignorance and quantify the degree of imprecision associated with

the inferential process. The study is restricted to the standard and zero-truncated Poisson

sampling models that give an exponential family with a canonical log-link function because

of the mechanism involved with the estimation of population size. A three-parameter expo-

nential family of posteriors which includes the normal and log-gamma as limiting cases is

introduced by applying normal priors on the canonical parameter of the Poisson sampling

models. The canonical parameters simplify dealing with families of priors as Bayesian up-

dating corresponds to a translation of the family in the canonical hyperparameter space.

The canonical link function creates a linear relationship between regression coefficients of ex-

planatory variables and the canonical parameters of the sampling distribution. Thus, normal

priors on the regression coefficients induce normal priors on the canonical parameters lead-

ing to a higher-dimensional exponential family of posteriors whose limiting cases are again

normal or log-gamma. All of these implementations are synthesized to build the ipeglim

package (Lee and Bickis, 2013) that provides a convenient method for characterizing impre-

cise probabilities and visualizing their translation, soft-linearity, and focusing behaviours. A

characterization strategy for imprecise priors is introduced for instances when there exists

a state of complete ignorance. The learning process of an individual intentional unit, the

agreement process between several intentional units, and situations concerning prior-data

conflict are graphically illustrated. Finally, the methodology is applied for re-analyzing the

data collected from the epidemiological disease surveillance of three specific cases – Cholera

epidemic (Dahiya and Gross, 1973), Down’s syndrome (Zelterman, 1988), and the female

users of methamphetamine and heroin (Böhning and van der Heijden, 2009).
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Chapter 1

Introduction

1.1 Motivation

Epidemiology is the study about factors that influence the distribution of disease (Gordis,

2009). The term disease here is intended for health-related events of study interest. According

to Porta (2008), epidemiology involves the what, when, where, and who of disease in terms

of time, space, and personal characteristics. The why and how of that disease can be also

described by comparing groups with different risk factors. Hence, epidemiological research

ultimately assists public health officials when drafting policies or implementing programs to

manage health problems requiring prevention or intervention in a distinct population.

This epidemiological observation is generally made by two important measures of preva-

lence and incidence. Herein, the prevalence is a measure of the number of total cases of a

diseases in a population whereas the incidence is the number of new cases occurring in a

population over a specific time interval. These counting measures are derived from the data

compiled from surveillance systems. Thacker (2010) noted that they are an ongoing system-

atic process of collecting, monitoring, analyzing, interpreting, and disseminating information

about a disease for the purposes establishing prevention, allocation of resources, and evalua-

tion of policy issues. Various health-related surveillance systems in Canada can be found at

the Public Health Agency of Canada website (http://www.phac-aspc.gc.ca/).

Health related surveillance systems are differentiated into chronic and infectious disease

surveillance. Regarding infectious disease, signs and symptoms typically appear over a short

period of time in patients exposed to an identifiable agent of an infectious disease; in this

instance the purpose of surveillance is the immediate containment of that agent. Concerning

chronic disease, the disease first presents as an acute illness with recognizable signs and
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symptoms that persist longer than six months with periods of remission and exacerbation

but no definitive cure. The causality of its onset or the interaction between risk factors are

not well known; thus, the purpose of chronic disease surveillance is to establish programs of

intervention to reduce the frequency of disease or to facilitate the identification of risk factors

that can then be modified (Health Canada, 2003).

Regarding the provision of health care for individuals with chronic disease, Brasset-

Latulippe et al. (2011) address the problems of high prevalence and high economic burdens

as follows:

It is estimated that nearly 16 million Canadians, almost every other one of us, is
living with a chronic condition. There are approximately nine million Canadians
living with at least one of seven “high-impact, high-prevalence” chronic illnesses.
As the population ages so does the increase in prevalence with a majority of
Canadian seniors over the age of 65 reporting at least one chronic illness. Chronic
illnesses have become a serious economic burden, with total direct medical costs
and indirect productivity losses surpassing $93 billion a year. The importance of
addressing these costs cannot be overstated. Even more staggering is the number
of lives claimed by chronic illness – nearly three quarters of all deaths in Canada
arise from only four types of chronic disease. Our international ranking when it
comes to addressing chronic care delivery in primary care is no better–Canada
ranked last out of seven countries.

1.2 Does The Count Include All Cases?

There are five major data sources that facilitate chronic disease surveillance: administra-

tive health databases, registries, surveys, vital statistics, and census. Health Canada (2003)

provided information detailing available data, purpose, advantages and disadvantages, con-

sideration, and existing initiatives regarding each data source (pp. 10–12), and discussed a

number of methodological issues for improving the current process. One of the issues ad-

dressed is the quality of data which may result in changes to the epidemiological picture as

prevalence and incidence are based on this data.

Significant efforts have been made by the Canadian Institution of Health Information

(CIHI) in promoting data quality assurance. In the Data Quality Framework (CIHI, 2009),

more than 61 definitions describing data quality can be found. Although the CIHI primarily

maintains administrative health databases provided by hospitals, medical expert groups,
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governments, and regional and national health care organizations, these definitions can be

applied to other data sources as well. Bray and Parkin (2009) also provide a good background

reference for evaluating data quality in cancer registries. Among various definitions of data

quality, our interest centres on the question of “Does the count include all cases that are

intended to be collected?” since the systems are prone to be incomplete (i.e, the number of

cases ascertained in the system is smaller than the actual number of cases occurring in the

population) in practice. Here are examples showing that databases can be incomplete:

• For registries, the Canadian Cancer Society Steering Committee (2011) recognized that

information reported on the death certificate was not available for registry purposes in

Newfoundland and Labrador when producing mortality statistics using the Canadian

Cancer Registry (p. 111). In practice, primary or secondary causes of death written

on the death certificate may not correspond exactly to a particular cancer causing the

individual’s death. The Canadian Cancer Society Steering Committee (2011) also noted

that most provincial and territorial cancer registries do not collect data for skin cancers

other than melanoma since a hospitalization for treatment is not required (p. 112).

Another example found by the Canadian Cancer Society Steering Committee (2011)

is that while the mortality of colorectal cancer has dropped by approximately 10%

subsequent to the change of case definition in 2003 while only a small variation was

observed in other cancers.

• For administrative health databases, the Canadian Institute for Health Information

(2007) noted in their report a relationship between mental health and homelessness:

Hospital staff may not always be aware or informed of a patient’s current
housing status, particularly for subsequent visits, this information may not
be up to date and thus may reflect an incomplete count. Information reflects
only those homeless individuals presenting for medical attention at partici-
pating hospitals. In addition, since there is no comparable count of the total
population in Canada, rates cannot be calculated and compared with the
total population (p. 20).

• For surveys, the Public Health Agency of Canada (2010b) expressed concern about

the fact that “many Canadians at high risk of osteoporosis are not being screened

for osteoporosis using a bone density test” regarding the use of the 2009 Canadian
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Community Health Survey for the study of osteoporosis. Another concern addressed

by the Public Health Agency of Canada (2010a) is that

Results based on blood pressure measurements from the Canadian Heart
Health Surveys in 1986-1992 showed that 42% of the study participants were
unaware of their hypertension (47% of men and 35% of women). Likely as
the result of intensive efforts to improve the detection and management of
hypertension, this has changed. In the 2006 Ontario Survey on the Prevalence
and Control of Hypertension a much lower proportion of individuals with
hypertension (13.7%) were unaware of their condition. Similarly, national
estimates from Cycle 1 of the Canadian Health Measures Survey conducted
between 2007 and 2009 indicated that 17% of Canadians with hypertension
were unaware (p. 5).

In addition to the examples listed above, “poorly defined criteria for diagnosis, missed

diagnosis, poorly designed surveillance systems, lack of health-seeking behaviour by those

with the diseases and/or risk factor” are all contributing factors resulting in an incomplete

data collecting system (Nanan and White, 1997, p. 144). Consequently, the discrepancy that

exists between the true number of cases in a population and the ascertained number of cases

in a system may be large; thus, Nanan and White (1997) noted “the number of ascertained

cases may greatly be underestimated even though some diseases and their risk factors may

have a high prevalence in a population” (p. 144).

Estimates of prevalence or incidence derived from incomplete systems may mislead the

true epidemiological structure of a population and ultimately fail when identifying a sub-

population most at risk. Recognition of this issue leads us to seek a measure of completeness.

The rationale for completeness starts with assuming that the size N of a target population

consists of the size n of an observed population and the size n0 of an unobserved population.

It is also assumed that some identification processes are designed with the expectation that

all cases occurring in a population are ascertained cases without any misses. If it is possible

to estimate n0, the completeness measure about the system is defined as a ratio of the size

n of the ascertained population to the estimated size N̂ of the population. The measured

completeness ultimately implies a degree of how useful the system is when producing epi-

demiological measures from data compiled from the system (Nanan and White, 1997). In

this sense, the problem of estimating the number n0 of missed cases is identical to the prob-

lem of estimating the size N of a target population since N is the sum of the number n0
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of missed cases and the number n of ascertained cases. An analogous discussion about the

measurement of completeness can be found in the studies of Parkin and Bray (2009) and Iron

and Manuel (2007, p. 3).

1.3 Capture-Recapture Method

The World Health Organization and UNADIS (2010) provide a practical guideline for

epidemiologists conducting studies estimating the size of the HIV population most at risk.

Section 3.2 in this guideline describes a number of methods that can be used. The principle

of population size estimation, advantages and disadvantages of each method, and working

examples are given in general terms. Another good reference is found in the technical briefing

written by Walford et al. (2011) for an overview of various methods of producing an estimate

of the chronic disease population in Europe. The reader will notice that the capture-recapture

(CR) method is covered in both reports.

Extensive literature on the CR method can be found in medicine, epidemiology, and public

health for monitoring health-related events: birth defects (Wang et al., 2006), drug misuse

(Hay et al., 2009), tuberculosis (Van Hest et al., 2007), multiple sclerosis (Cristiano et al.,

2009), cancers (Peragallo et al., 2011), varicella (Goldman, 2003), Down’s syndrome (Savva

and Morris, 2009), alcohol related problems (Ponzio et al., 2010), various chronic diseases

(Zhao et al., 2008), such as hypertension, diabetes, renal disease, ischemic heart disease, etc.

The first application of the CR method is presented in the study by Petersen (1895)

dealing with the problem of estimating the size N of the fish population in the pond. The

study is conducted as follows: a sample of n1 fish is taken from the pond; then, the fish are

marked and released into the pond. Another sample of n2 fish is taken from the same pond

after allowing adequate time for the marked and unmarked fish to be well mixed. The counts

of n11 fish captured twice, n10 fish captured only in the first sample, n01 fish captured only

in the second sample are available now. The count of n00 fish not captured in either sample

is estimated by n10 × n01/n11 under four simplifying assumptions: homogeneous population,

independent samples, correct matching between samples, and a closed population. Another

example is given by Feller (1968, pp. 44–47).
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The same analogy can be applied to a human population. Consider a situation where

two databases for physician claims and hospital discharges are given. Assume also that

a hypothetical population consists of N subjects with a certain disease. The presence or

absence of a patient in each database is denoted by 1 and 0, respectively. Patients can be

cross-classified in a 2 × 2 contingency table. The counts of each response profile (01), (10),

(11) are made as illustrated in the example of the fish population. Denotation of those counts

by n01, n10 and n11, and the size of all ascertained cases by n = n10 +n01 +n11. Computation

of the estimate N̂ of a total population size is then straightforward and can be determined

by summing all counts n01, n10, and n11, including the estimated size n̂00 of patients who are

not ascertained in either database. Subsequently, the degree of completeness is evaluated by

n/N̂ × 100 in percentage.

One concern regarding the use of the CR method using two data sources is the violation

of the independence assumption. In most situations regardless of disease types, patients in

hospital databases are also shown in a claim database since they are likely to use medi-

cal services at clinics rather than hospitals when their signs and symptoms are not severe.

Brenner (1996) shows that N̂ is under- or over-estimated, respectively, if two data sources

are negatively or positively dependent. No statistical tools are available at this time to test

the assumption of independence. For example, a chi-square test for independence requires

information of n00. Chao et al. (2001) noted that the independence assumption is the main

weakness of the CR method when using two data sources (p. 3129).

The log-linear model proposed by Fienberg (1972) is a useful statistical modelling ap-

proach to account for dependence between more than two data sources using the interaction

term. Concise mathematical details can be found in Section 6 of Bishop et al. (2007). Another

excellent guide for the use of this model in CR studies is provided by Hook and Regal (1995).

IWGDMF (1995b) describes the usefulness of a log-linear model as follows: 1. the extension

to more than two data sources is straightforward; 2. the study can be easily conducted using

standard statistical software (the demo program can be found in demo/loglinear.R in the

ipeglim package accompanying this thesis); 3. various structural features can be examined

under a unified framework. However, the log-linear model with a full interaction term be-
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tween data sources cannot be studied because the over-specification of the model causes the

degree of freedom to be zero (Bishop et al., 2007, p. 238).

Another concern with the CR studies using log-linear models is the assumption of a

homogeneous population which means that each subject in the population has an equal

probability of being captured in a data source. Papoz et al. (1996) noted that a violation

of this assumption has occurred when a capture probability is influenced by covariates such

as age, sex, and severity of disease (p. 475). This violated assumption leads the estimated

population size to be negatively biased (Plante et al., 1998). In fact, the consequence resulting

from heterogeneity is similar to the effect that occurs when the assumption of independence

is violated. Many authors noted, from observed data, that it is not possible to identify which

violated assumption causes a negative bias on the population size estimate (Chao et al., 2001;

Hook and Regal, 1995; IWGDMF, 1995a).

Concerning the presence of heterogeneity, Hook and Regal (1993) suggested to stratify

a population based on covariate information and then estimate a population size in each

stratum. The total population size is then estimated by pooling all these estimates. This

strategy may help to reduce the effect of heterogeneity if covariate information is associated

with capture probabilities. However, it does not account for the effect of unobserved hetero-

geneity which means an unexplained variation by covariate information due to a limitation of

our ability to measure some influential factors. Development for modelling of a heterogeneous

population occurs in two directions for observed and unobserved heterogeneity.

For observed heterogeneity (i.e., when covariate information is available), Alho (1990)

built a logistic regression framework by relating an individual’s capture probability to contin-

uous covariate information. The population size is then estimated with a Horvitz-Thompson’s

estimator. Alho et al. (1993) applied this model to the United State census. For unobserved

heterogeneity (i.e., when covariate information is not available), a mixture or latent class

model has been considered as an alternative to a regression model. The fundamental idea

supporting the latent class model is that a heterogeneous population is divided into a number

of homogeneous sub-populations where each one has a class membership of unknown crite-

ria. According to the simulation studies in Dorazio and Royle (2003), the population size

is sensitive to the presumed structure of the mixture model. They demonstrated that the
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estimated population size fitted by the latent-class model was more biased than that fitted

by the beta-binomial model or logistic-normal mixture model.

A further development of latent class modelling that allows for both observed and un-

observed heterogeneity is made by Thandrayen and Wang (2010). They studied a binomial

latent class model and applied it to the data studied in Bruno et al. (1994) for the prevalence

of diabetes. The idea supporting their model is to utilize a latent categorical variable for

class membership, and in each latent class, a multinomial logit model proposed by Zwane

and van der Heijden (2005) is employed to relate an individual’s capture probability to the

covariate information. This work thus allows for a conditional dependence between data

sources based on the work of Zwane and van der Heijden (2005).

1.4 Zero-Truncation in Statistical Modelling

The zero-truncated Poisson (ZTP) model has been also used for the study of size estima-

tion in a human population. The ZTP model is generally used to describe count outcome in

instances where a zero-valued count cannot occur. A typical example is the length of hospital

stay since a minimal stay for hospitalization is one day. Winkelmann (2008) noted that a

zero-valued count implies the individual in question is healthy in relation to the health care

modelling system (p. 173). Since these people are not recorded in the system, the analyst

observes only a part of all possible ranges of count data from their frequency distribution.

The problem then becomes to infer a probability of a zero-valued count corresponding to the

size of a hidden population.

Note that in general a truncation of data is classified as left- and right-truncation. Zero-

truncated data is a special case of left-truncated data occurring at the zero value. Note

also that zero-truncated data is not censored data since the number exceeding the censoring

point is known whereas the number exceeding the truncation point is not known. Princi-

ples, estimation methods, and applications about various kinds of truncated and censored

distributions are provided in the book by Cohen (1991).

The ZTP model uses a frequency distribution of count data which can be compiled from

a single database if the same individual appears multiple times in the same database. This
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count data is also regarded as the CR data (Böhning et al., 2005, p. 2) since the count

information includes the nature of a repeated capture-recapture process that ascertains a

case multiple times. It is also possible to produce such count data from multiple data sources

by counting how occurrences of a case are present over multiple data sources (Hook and Regal,

1995, p. 260). For this reason, Vergne et al. (2012) referred to this ZTP model as a unilist

CR method (i.e., single databases used) and the models listed in the previous section 1.3 as

multilist CR methods (p. 128).

According to Böhning et al. (2005), the first epidemiological application using the zero-

truncated count data appears in the study by McKendrick (1925). Dr. McKendrick was

interested in the size of households with active but undetected cholera cases during his service

in India. Dahiya and Gross (1973) examined this cholera epidemic data and reported the

maximum likelihood estimate of the total population size.

Rider (1953) also presents an interesting approach for estimating the frequency of a zero

count. He used frequencies of two different counts for estimating the mean parameter of

the ZTP model and compared his results with the maximum likelihood estimate. Later,

Zelterman (1988) adopted the approach presented in the study by Rider (1953) for proposing

his local estimator that uses the frequencies of only the first and second counts for the problem

of population size estimation. This local estimator is referred to as the Zelterman’s estimator

in the study by Böhning (2008).

Vergne et al. (2012) noted two main assumptions of the ZTP model in his study as follows:

1. a homogeneity assumption – all subjects with a certain condition have an equal probability

of being ascertained by some identification process, and 2. an independence assumption – each

case ascertainment is independent of its previous case ascertainment at the individual level

(p. 3). Consequently, the estimated population size is biased if either one of the assumptions

is violated. A further development path of this ZTP model is similar to the development

history of the multilist CR methods.

Studies can be conducted in numerous ways once heterogeneity is introduced into a ho-

mogenous population. In a mixture approach, Zelterman (1988) modelled Poisson data as

an average over a gamma or a log-normal distribution. According to Böhning (2008), Zelter-

man’s estimator is robust concerning the occurrence of contamination in the Poisson model
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and is also less dependent on the Poisson assumption (p. 413). Continued efforts to deal with

unobserved heterogeneity in a population are made using the binomial and Poisson mixture

models as shown in the study by Böhning et al. (2005). Using a regression approach, van der

Heijden et al. (2003) related the mean parameter of the ZTP model to the linear predictor of

covariates with a log-link function in the generalized linear model setup. He also derived the

point and interval estimators for population size based on the use of the Horvitz-Thompson’s

estimator. Since the ZTP regression model accounts for only observed heterogeneity, Cruyff

and van der Heijden (2008) became concerned with the problem of the remaining unobserved

heterogeneity in a population and extended the work of van der Heijden et al. (2003) by

incorporating a dispersion parameter. Hence, the zero-truncated negative binomial model

deals with both observed and unobserved heterogeneity.

1.5 Recognition of Ignorance and Uncertainty

The capture-recapture (CR) method provides an inexpensive and fast way for projecting

the burden of a disease in the community. The primary purpose supporting the use of the

CR method is the introduction of a modelling process of a structural zero term (Bishop et al.,

2007, p. 177), which corresponds to incomplete data. Once a probability of this zero term is

estimated, the completeness of a surveillance system is also available.

However, it is questionable whether the population size estimated by the CR method

measures what it is supposed to measure in the general context. Papoz et al. (1996) noted

that there is no way to ensure that the estimate is valid since no information is available

concerning these missing cases (p. 477). So should we conclude that the CR method should

not be used for further studies? Many authors, including Papoz et al. (1996), have concluded

that in the absence of a direct population survey or a complete census we have only the CR

method by which to estimate this population size. This is illustrated using the example of an

outbreak of the hepatitis A virus (HAV) studied by Chao et al. (2001) which demonstrates

that the true size of underreported cases is very closely estimated when using the CR method

(p. 3124). Van Hest et al. (2008) also found more plausible estimates using truncated models

by re-examining the log-linear estimates in the previous 19 studies.
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The author of this thesis believes it sounds more feasible for the question to be revised

as “How can we justify the use of the research result as a credible estimate in practice when

the unknown quantity of interest cannot be revealed or validated?”. More generally, “How

do we undertake a reasoning process about unknown quantities of interest when information

is insufficient or absent when making a decision?”.

This revision originates from questioning the interpretation of a probability that supports

the CR models for inferring the unknown quantity of interest. Herein, the CR models are lim-

ited to only the models noted in Sections 1.3 and 1.4. Following the definition of probability

in Hogg et al. (2013), the standard interpretation of a probability is based on the assumption

that an event of interest is observed from an infinite sequence of a well-designed experiments

(p. 15). Thus if we are able to observe enough repetitions of a case-ascertainment process

for the same person using the same identification method when all else remains unchanged,

the probability of a future case ascertainment would be close enough to its actual relative

frequency. The interpretation of the underlying probability model does not sound appro-

priate given the data under examination (Gill, 2008, p. 6). Consider a confidence interval

which is reported with the estimate, more generally, a statistic of interest. The problem of

interpretation arises again in the same manner since a (1 − α)% confidence interval with a

confidence level α implies that a certain percentage 1 − α of intervals will capture the true

value of the unknown parameter assumed to be fixed over many ascertainment processes

utilizing an unchanged population.

The attribute of data used for the interpretation of a probability model is also arguable

(Gill, 2008, p. 26) since what we are dealing with here is not an outcome produced from

an experiment but conceptualized information acquired from a human. Consider a situation

where you are seeing a physician in your neighbourhood walk-in clinic since you are sick. Your

clinical signs and symptoms will vary depending on the progress of the disease causing your

sickness. If it is the initial complaint about your sickness, you may not be able to determine

for yourself what disease(s) you may have. The physician uses his or her skills to make a

diagnosis about your clinical state for treatment based on your clinical features together with

other relevant information. The physician may experience difficulty arriving at a diagnosis of

your condition since evidence needed for decision making is not always sufficient in a clinical
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setting (Guyatt et al., 2008, pp. 12–13) for various reasons. For example, 1. you may have

forgotten to report your unobserved signs and symptoms at the clinic, 2. your clinical features

may not be clearly apparent without extensive tests, or 3. your current clinical condition may

conflict with the previous clinical observation noted in the medical chart, etc. Hence, a precise

diagnosis cannot be stated with certainty so that the diagnostic is generally classified into the

one of followings“definite”,“probable”,“possible”,“other disease”, or“insufficient information”

(Ball et al., 2002, p. 821). Consequently, in the early stages of your disease development, it

may be possible that you are in fact receiving inappropriate treatments from your physician.

This clinical practice shows that information acquired from a human is a simplified notion of

the clinical state inferred from given evidence. Such a cognitive activity for prediction cannot

be found using the outcomes produced from an experiment which are also clearly distinct

from one and another in a physical manner (Gill, 2008, p. 26).

The epistemic probability which models a degree of personal belief (Walley, 1991, p. 14)

meets our concerns with the interpretation of an unknown quantity of interest. The fun-

damental idea supporting this probability model is that You are the intentional unit who

assigns some measure that describes how uncertain your belief is about the unknown quan-

tity of interest. It is presumed that your uncertainty originates from a lack of knowledge;

and, this knowledge is the source of the information which is producing your belief. If you

know a lot, you may have a strong statement about the uncertain quantity at some point.

If you know little, you make a vague probabilistic statement. Personal experience, expert

opinions, literature reviews, and something useful for reducing uncertainty on the inference

are the sources of information. Before observing the data, your belief is elicited in the form

of a probability measure called a prior distribution (also simply called a prior). The Bayes’

rule is applied to update the prior by taking the data to produce a probability measure called

a posterior. This epistemic probability model thus has an evidential interpretation based on

the given data. The Bayesian inference paradigm is built on this subjective perspective of a

probability model. The formal mathematical description of Bayesian inference is described

in Chapter 2. A good reference on the Bayesian theory is the book by Bernardo and Smith

(2000). Another book by Gelman et al. (2004) includes various examples of Bayesian data

analysis as well.
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One may claim that this Bayesian inference lacks objectivity that research should fulfill

since probabilities for personal belief are arbitrarily assigned by your own assessment. How-

ever, it must be noted that any inferential paradigm has subjective components in modelling

uncertainty (Gill, 2008, p. 27). A statistical model is generally understood as an approxima-

tion to some truth (Christensen et al., 2011, p. 1). A mathematical language is used as the

tool to describe the body of systematic components in this approximation. The results from

the model can thus be reproducible under similar circumstances to those in which the study

is initially carried out. However, this truth may not be the truth since the description utilizes

only the things that can be observed or manipulated. Since researchers as well have their

own approaches for the problem, a model has its own assumptions, model specifications, and

model selection criteria (Gill, 2008, p. 27) to aid in choosing the most reasonable model to

be believed. Hence, the estimate produced from various models are varied despite the use of

the same data and the same problem identification.

A general subjectivity involved with the epistemic probability model is defended in the

perspective of the modelling process in the previous paragraph; however, the major criticism

of Bayesian inference concerns the selection of the most appropriate prior distribution over

arbitrary choices (Roberts, 2007, Chapter 3). A number of objective rules are proposed by

several authors in order to reduce subjectivity regarding this matter (Berger, 2006). These

rules are largely classified into either informative or noninformative priors. Details about

these priors are noted in Chapter 2.

However, the question of “how do we precisely characterize our uncertainty in the form

of a single probability measure?” is not answered. Walley (1991) referred to this question

as “the Bayesian dogma of precision” (p. 3). Herein, the term precision is used for a single

point representation in mathematics. A sensitivity analysis can be considered in this case

(Roberts, 2007, p. 141). That is, a standard Bayesian inference is applied to each pair of

a class of priors and a class of likelihoods, then the robustness of the posterior summary

is considered. If a large change of the model assumptions produces a small change on the

posterior summary, the data used in the inference is considered to be sufficiently influential.

At this time we return to our research interest again, and assume the perspective of health

care professionals who are faced with the problem of making a decision about a population
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size for an intervention program. We limit ourselves to only the statistical inference here since

the utility assessment required for Bayesian decision theory is difficult and “consequence of

choosing a particular conclusion may be wholly indeterminate” at the time when a conclusion

is determined (Walley, 1991, p. 21). A broad range of expectations about this size is possible

based on a researcher’s experience, resources, knowledge of the community, timing, values,

etc. It is provident to have a model that produces a range with a lower bound that is larger

than the size of ascertained cases since a reasonably excessive allocation of health resources

for disease prevention is more prudent than a short fall.

The Bayesian sensitivity analysis appears to be an appropriate potential approach to this

problem since the interval measure that contains all plausible point estimates is a math-

ematical language that describes the range of the researcher’s expectations. However, the

interpretation of the interval measures produced as a result of arbitrary changes on the model

assumptions is not clear and it seems that there exits no formal strategy regarding how to

make these changes on the model assumptions.

The imprecise probability theory introduced by Walley (1991) gives insights on how to

approach our concerns while making a useful interpretation of the model used in sensitivity

analysis. The fundamental premise forming the foundation to his theory is to admit to proba-

bility theory the concept of ignorance arising from a lack of information. Based on his theory,

a sensitivity analysis is carried out by replacing a precise probability measure characterized

in the standard Bayesian inference with a set of probability measures. This set is referred

to as an imprecise prior and is not assumed to have a true probability measure in this set

of probabilities which is a distinguishable viewpoint of Bayesian sensitivity analysis (Walley,

1991, p. 254). The inferred posterior interval with given data also has an interval form and

is referred to as an imprecise posterior. Since the imprecise prior describes our uncertainty

due to the lack of information or disagreement between individuals, the imprecision in the

posterior describes our indeterminate preference that cannot support an action. The differ-

ence between the lower and upper bounds of the imprecise posterior ultimately implies the

amount of uncertainty attributed to prior ignorance.

There are two books of interest regarding the general theory of imprecise probabilities;

one by Walley (1991) and the other by Weichselberger (2001). Since the book of Weichsel-
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berger (2001) is written in German, only the book by Walley (1991) is referenced for this

thesis work. The probability model referred to as the imprecise Dirichlet-Multinomial model

(Walley, 1996; Bernard, 2005) is frequently used to illustrate the elementary principles of

an imprecise inferential framework. However, the mathematical foundation of this theory is

still under development and only a few applications have ever been shown in use by other

disciplines. Based on our literature search no applications of this imprecise probability with

a zero-truncated Poisson sampling model are found in epidemiology and public health. This

phenomenon may be attributed to the computational burden on the estimation because of

a generalization process of a precise probability measure in the standard Bayesian inference

and the corresponding problem of optimization when searching for the minimum and maxi-

mum of an imprecise posterior summary, or may be due to unfamiliarity with the concept of

imprecise probabilities.

1.6 Thesis Organization

The aim of this thesis work is to build a computationally efficient inferential framework

based on the idea of imprecise probabilities for estimating the parameters of a given sampling

model. Principal features of the developed inferential framework will be identified. The R (R

Development Core Team, 2011) package is also provided for potential users of this developed

inferential framework. The remainder of this thesis is organized as follows:

In Chapter 2, the essential statistical ingredients necessary for building the proposed

inferential framework are briefly reviewed. The principles of Bayesian inference, generalized

linear model, exponential family representation, and numerical techniques are covered;

In Chapter 3, a methodology referred to as a canonically parametrized imprecise infer-

ential framework is introduced. A family of log-gamma distributions is utilized to illustrate

six primary features of this proposed inferential framework for the problem of estimating

the parameters of both standard Poisson and zero-truncated Poisson sampling models. The

key functions provided in the ipeglim package (Lee and Bickis, 2013) are briefly introduced,

and the computational difficulties encountered with the implementation of this proposed

inferential framework are discussed.
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In Chapter 4, the central part of the proposed inferential framework referred to as the B-

formulation (Lee and Bickis, 2012) is introduced; followed by a new probability distribution

resulting from this B-formulation is discussed for further extension of the proposed inferential

framework to the case when 1. a family of normal prior distributions is assigned on a standard

Poisson likelihood, 2. either families of log-gamma and normal prior distributions are assigned

on a zero-truncated Poisson likelihood, and 3. a family of normal prior distributions is assigned

on regression coefficients in the setup of a generalized linear model. The primary features

shown in the previous chapter are examined again in order to determine that validity is

maintained.

In Chapter 5, simulation studies are carried out under various conditions in response to

concerns involving the practical use of the proposed inferential framework. For example, the

effects of sampling model misspecification, overdispersion of count data, and the absence of

explanatory variables on the estimate produced from the proposed inferential framework are

investigated. A further investigation regarding the change of parameter estimates is made

against a given correlation structure at both levels of prior variance-covariance matrix and

data matrix.

In Chapter 6, the proposed methodology is applied to four real data sets collected from

a human population. The case studies of a cholera epidemic (Dahiya and Gross, 1973),

Down’s syndrome (Zelterman, 1988), and Methamphetamine and Heroin users (Böhning and

van der Heijden, 2009) are reanalyzed, and an interpretation of the estimate produced from

the proposed methodology is discussed.

Finally, the conclusions and proposals for future work are presented in Chapter 7.
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Chapter 2

Essential Statistical Ingredients

The purpose of this chapter is to provide a general overview of the essential statistical in-

gredients compromising the inferential framework that will be introduced in the next chapter.

This chapter is outlined as follows: Section 2.1 gives an introduction to the basic mathemat-

ical formulation of the Bayesian inference; Section 2.2 provides brief details regarding the

exponential representation of a family of distributions. The three key components of a gener-

alized linear models are also noted pertaining to this exponential representation; Section 2.3

presents five numerical techniques for the purpose of approximating an integral and finding

the optimum that maximizes or minimizes a given function; finally, Section 2.4 describes a

zero-truncated Poisson regression model introduced by van der Heijden et al. (2003) in the

context of population size estimation.

2.1 Bayesian Inference

A statistical inference is a reasoning process that facilitates the drawing of a conclusion

from data (Walley, 1991, p. 21). This process is generally described by a model in mathemat-

ical language and a number of assumptions are imposed on this description. Since the model

is a simplified reflection of what should be described by using only what can be observed

and manipulated, the uncertainty that is associated with this simplifying process needs to be

reduced by gathering more information when the inference is carried out.

According to Migon and Gamerman (1999, p. 2), there are two main schools of thoughts

involving statistical inference called the frequentist paradigm and the Bayesian paradigm

(p. 3). One important distinction between the two schools of thought is that, under the fre-

quentist inferential paradigm, the data are random and model parameters are fixed, whereas
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when using the Bayesian paradigm, the data are fixed and model parameters are random.

Regarding the interpretation of probabilities supporting the two schools of thought, Wal-

ley (1991, p. 14) provided a clear explanation such that “a physical property that does not

depend on an observer” is a statement of aleatory probability that models the randomness

of an event (i.e., the frequentist inferential paradigm) and “the degree of belief of a specific

observer” is a statement of epistemic probability that models a degree of that person’s belief

(i.e. the Bayesian inferential paradigm).

The mathematical framework of Bayesian inference is described as follows. Consider first

the data y = (y1, y2, . . . , yn)T which are the realizations of independently and identically

distributed random variables Y1, Y2, . . . , Yn with a probability distribution f(y|θ), having

parameters θ = (θ1, θ2, . . . , θp)
T . This probability distribution f(y|θ) is referred to as the

sampling model of data y, and the parameter space Θ is defined by the set of all possible

values of θ. A probability distribution of θ needs to be specified since the model parameter θ is

viewed as a random variable for representing the degree of a person’s belief. This probability

distribution is referred to as a prior distribution π(θ) and is characterized by the parameters

ξ = (ξ1, ξ2, . . . , ξk)
T , so-called hyperparameters. Note that the hyperparameter space Ξ is

defined as the set of all possible values of ξ.

The degree of a person’s belief represented by a prior density or mass function π(θ) is

updated by Bayes’ theorem, and this updated degree of his or her belief is referred to as

a posterior distribution p(θ|y) which is given by

p(θ|y) =
L (θ|y)π(θ)∫

Θ
L (θ|y)π(θ)dθ

=
p(θ,y)

m(y)
, (2.1)

where L (θ|y) =
∏n

i=1 f(yi|θ) is the likelihood that takes the effect of data y, p(θ,y) =

L (θ|y)π(θ) is a joint distribution that describes a relationship between a model parameter

θ and the data y, and m(y) =
∫

Θ
L (θ|y)π(θ)dθ is the marginal distribution of y. This

marginal distribution of y promises that (2.1) is a proper probability distribution.

The posterior distribution p(θ|y) is generally summarized by its first two moments; how-

ever, the primary summary used in this thesis is the expected value of some function of θ,
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for example h(θ). By definition, the expected value of h(θ) is then:

E(h(θ)|y) =

∫
Θ
h(θ)L (θ|y)π(θ)dθ∫
Θ

L (θ|y)π(θ)dθ
. (2.2)

As shown in the above two equations (2.1) and (2.2), a successful Bayesian inference de-

pends on the ability to accurately evaluate the ratio of two integrals (Bernardo and Smith,

2000, p. 340). This evaluation may be challenging when a closed form expression of nor-

malizing constant for (2.1) is not found from some known standard distributions. For the

quantification of this integration in this thesis work, three numerical approximation methods

are utilized. Details of these approximation methods are described later in Section 2.3.

To complete the Bayesian inference, a prior distribution π(θ) for a model parameter θ

needs to be elicited in the form of a probability measure before data y is examined. Since

this elicitation varies from person to person, various rules regarding a choice of a reasonable

prior for inference have been proposed. Sections 3.3 and 3.5 in a book by Roberts (2007) are

credible sources for these rules. Selected priors from his book are briefly summarized here in

two general classes:

1. Noninformative priors – priors in this class have minimal information to explain un-

known model parameters θ; thus, only data affect posteriors. A typical example is an

unbounded uniform distribution. This prior is also referred to as the Laplace prior since

all probabilities are equally assigned. Note that a probability over unbounded space

induces an improper prior distribution which means that the integral of the presumed

prior is infinite. Because the inference fails when such improper prior distributions are

used, some bounds are imposed on the space or avoided in practice. When this uniform

prior is considered inappropriate to use, an alternative choice is Jeffrey’s prior which is

proportional to the square root of the negative expected value of the second derivative

of the likelihood L (θ|y) (i.e., the square root of Fisher’s information). Although Jef-

frey’s prior is widely accepted in univariate cases, when used in multivariate cases, the

results were disappointing. In circumstances where Jeffrey’s prior does not work well,

one may consider the use of a reference prior which is defined as a function that max-

imizes some measure of divergence between the prior and the posterior distributions.
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Consequently, the effect of the data is maximized on the posterior distribution. The

Kullback-Liebler divergence is a commonly used measure for this prior.

2. Informative priors – priors in this class glean specific information from evidence that

exists about unknown parameters and utilizes that information as a part of the priors.

Examples of such existing evidence would be previously published papers, personal ex-

periences, or the opinions of experts. Because the information delivered to the posterior

is ultimately taken into consideration by data, information contained in the posterior

is considered more evidential than information derived from the prior. A commonly

used informative prior is the conjugate prior which means that the prior and posterior

distributions belong to the same family of distributions. This conjugate prior is char-

acterized by a mathematical convenience that offers easy computation of a posterior

distribution. Such conjugate prior with a large scale parameter is sometimes referred

to as a vague (or flat) prior.

In the above note, prior distributions are grouped into two classes of priors – noninfor-

mative and informative priors; however, the author of this thesis questions whether or not a

truly noninformative prior exists as discussed in a paper written by Irony and Singpurwalla

(1997).

2.2 Generalized Linear Model and Exponential Family

The generalized linear model (GLM) was proposed by Nelder and Wedderburn (1972);

McCullagh and Nelder (1989) and Dobson (2001) are comprehensive references for GLM.

The central idea behind the GLM is to relate a response variable yi to a set of explanatory

variables xi = (1, xi1, xi2, . . . , xip)
T . The subscript i is used for the i-th individual of n

independently sampled subjects; thus, the response variable y is a vector of independent

observations (y1, y2, . . . , yn) and xi is a vector of p explanatory variables corresponding to

the i-th row of the design matrix X. To complete the model, the following three components

should be defined:
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1. a random component – this component specifies the conditional distribution f(y) of a

response variable y given the values of the explanatory variables xi which need to be

a member of an exponential family of distributions. According to Casella and Berger

(2001, Section 3.4), an exponential family is a set of probability distributions whose

probability density function f(y|φ) can be written as

f(y|φ) = s(y)t(φ) exp{
k∑
i=1

ai(y)bi(φ)}, (2.3)

where s(y) and ai(y) are real-valued functions of y that do not depend on φ, and t(φ)

and bi(φ) are real-valued functions of φ that do not depend on y, and s(y) and t(φ) are

greater than or equal to zero for all y and φ. When k = 1, f(y|φ) is a one-parameter

exponential family of distributions. Note that if either a(y) = y or b(φ) = φ, then

f(y|φ) is in the canonical form in terms of y or φ, respectively. In the case of a Poisson

distribution with mean µ, a(y) = y, b(φ) = log µ, s(y) = 1/y!, and t(φ) = e−µ. If the

canonical parameter θ = log µ, the expectation and variance of a(y) can be found by

taking the first and second derivatives of the log-normalizer − log t∗(θ) such that

E[ai(Y )] = − ∂

∂θi
log t∗(θ), and V [ai(Y )] = − ∂2

∂2θi
log t∗(θ). (2.4)

2. a systematic component – this component specifies a linear predictor function η =

(η1, η2, . . . , ηn)T of explanatory variables xi such that

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, (2.5)

where β = (β0, β1, . . . , βp) is a vector of the regression coefficients.

3. the link function – this function describes how the mean response E(Yi) = µi in the

random component is related to the linear predictor η in the systematic component:

g(µi) = ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, (2.6)
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where g(·) is a smooth and invertible link function. In the case of a Poisson sampling

model, the choice of canonical link as log(µ) ensures that the assumption of a positive

Poisson mean µ is met.

2.3 Numerical Techniques

Integration is a key consideration in Bayesian computation for inference. Two sampling-

based approaches, called the Metropolis-Hastings and importance sampling, and one analytic

approach, called the Laplace approximation, are presented here. This thesis work also con-

siders the problem of optimization which means to identify a parameter that maximizes

or minimizes a given function. A particular family of optimization problems called linear

programming is described at the end of this section.

2.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is one of the most widely used Markov Chain

Monte Carlo methods. The initial concept was presented in Metropolis et al. (1953) and

extended later by Hastings (1970). The rudimentary idea supporting this algorithm is to

construct a Markov chain whose stationary distribution is the desired posterior distribution

of θ. The distribution of the simulated chain approximates the stationary distribution after

sufficiently many iterations. A Markov chain means a sequence of dependent random variables

{θ1, θ2, . . . , θt} such that the current state of θt conditional on the previous state of θt−1 is

independent to all previous states of θ. When performing the actual implementation, this

chain starts with an initial value of θ(0) and a single transition from θt−1 to θt is made as

follows:

• A candidate θ∗ is drawn from some proposal density q(θ∗|θ) given the current state θ

of the chain (in theory, the proposal distribution can be chosen arbitrarily; however,

performance depends on the choice of this proposal distribution);

• Compute the ratio

α(θ, θ∗) ≡ min

{
p(θ∗|y)q(θ|θ∗)
p(θ|y)q(θ∗|θ)

, 1

}
, (2.7)
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• Accept θ∗ as the current state of the Markov chain with a probability α; otherwise,

θt = θt−1.

This update is repeated for m times until the Markov chain appears to stabilize at a dis-

tribution (i.e., stationary), and is continued n more times. The first m elements of the full

sequence of length m + n is referred to as the burn-in period. After discarding the burn-

in period, the sequence of {θm+1, θm+2, . . . , θm+n} is sufficient to approximate the posterior

expectation E(h(θ)|y) in (2.2) such that

E(h(θ)|y) ≈ 1

n

m+n∑
t=m+1

h(θt). (2.8)

The main advantage of the MH algorithm is that the normalizing factor (i.e., the marginal

distribution of y) is not necessarily evaluated for computing the posterior summary of inter-

est. However, the rate of convergence of a Markov chain to a stationary distribution depends

on the choice of proposal distribution; thus, it could take a long time for an arbitrary pro-

posal distribution. Introductory details about the Metropolis-Hastings algorithm and its

implementation can be found in Chib and Greenberg (1995).

2.3.2 Importance Sampling

Importance sampling is a useful sampling-based numerical method for approximating an

integral in (2.2) when direct sampling is difficult from the posterior distribution p(θ|y) in

(2.1). For purposes of notational convenience, herein, p(θ|y) is denoted simply by p(θ). The

central idea behind the importance sampling comes from an alternative representation of

(2.2) as shown below:

E[h(θ)] =

∫
h(θ)p(θ)dθ =

∫
h(θ)

p(θ)

g(θ)
g(θ)dθ =

∫
h(θ)w(θ)g(θ)dθ, (2.9)

where g(θ) is the proposal density function whose support is identical to the support of p(θ),

and w(θ) is a weight function. That is, the implication of (2.9) is that (2.2) can be rewritten

as the expectation of h(θ) with respect to g(θ) from which it is easy to draw samples.
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Once an importance sample of size n is simulated from g(θ), then the estimate at the

posterior expectation is assessed by

E[h(θ)] =

∑n
i=1 h(θi)w(θi)∑n

i=1w(θi)
. (2.10)

One may experience a numeric overflow error which means that the computed value is

greater than the maximum allowed by the architecture of the system. To avoid this issue,

the posterior expectation E[h(θ)] in (2.10) is revised as below:

E[h(θ)] =

∑n
i=1 h(θi) exp(logw(θi)−M)∑n

i=1 exp(logw(θi)−M)
, (2.11)

where M = arg max
θ

log(w(θi)) = arg max
θ

[log p(θi) − log g(θi)]. Another concern on the im-

plementation of importance sampling is that the quality of the importance estimate depends

on the choice of a suitable sampling density of g(θ). A discussion and an exercise on the

choice of g(θ) are noted in Section 3.3.3 in the book by Robert and Casella (2009).

2.3.3 Laplace Approximation

The Laplace method is a well-known analytic approach for evaluating an integral, and

the approximation of the posterior expectation in (2.2) can be viewed as its application in

Bayesian inference. Details of this approximation are well described in the study by Tierney

and Kadane (1986). The fundamental technique required in order to use this approximation

method is to rewrite an integral I into a special form
∫
κ(θ) exp[−ng(θ)]dθ which can be

approximated by the first order Taylor approximation at the maximum likelihood estimate θ̂

such that

I = κ(θ̂) exp[−ng(θ̂)]

√
2π

n|g′′(θ̂)|
, (2.12)

where κ(θ) and g(θ) are three times differentiable smooth functions.

The posterior expectation of h(θ) in (2.2) can be approximated by setting −ng1(θ) =

log h(θ) + log L (θ) + log π(θ) for the numerator and −ng0(θ) = log L (θ) + log π(θ) for the

denominator. However, it is necessary that h(θ) be positive. The resulting approximation
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for E[h(θ|y)] is:

Ê[h(θ|y)] =

(
|Σ1|
|Σ0|

)1/2

exp
[
ng1(θ̂1)− ng0(θ̂0)

]
, (2.13)

where θ̂1 and θ̂0 are the maximum likelihood estimates of −ng1(θ) and −ng0(θ), respectively,

and Σ1 and Σ0 are minus the inverse Hessian of −ng1(θ) and −ng0(θ) at θ̂1 and θ̂0.

2.3.4 Linear programming

Linear programming is concerned with the problem of optimization subject to constraints.

The objective function l(·) that needs to be minimized (or maximized) must be linear, and

constraints also need to be expressed as linear equations or inequalities. Thus, the minimiza-

tion problem in linear programming is formalized as follows:

min
x

l(x) = a1x1 + · · ·+ akxk

subject to the constraints

a11x1 + · · ·+ a1kxk ≥ b1

a21x1 + · · ·+ a2kxk ≥ b2

· · ·

am1x1 + · · ·+ amkxk ≥ bm

and x1 ≥ 0, . . . , xk ≥ 0. Of primary importance is to test a number of extreme points of

a convex polyhedron to see whether or not they are optimal. The polyhedron represents a

solution set of a finite number of linear inequalities, and serves as a feasible region for l(x).

More than one linear programming function is available in R (R Development Core Team,

2011). The constrOptim() function in the stats package (R Development Core Team, 2011)

is designed for the purpose of examining constrained optimization problems. The general-

purpose optim() function in the stats package provides for a box-constrained optimization.

Braun and Murdoch (2008) also noted that“the lp() function in the lpSolve package (Berke-

laar and others, 2013) may be the most stable version currently available” (p. 145). In fact,

this linear programming problem can be viewed as a special case of a nonlinear constrained

optimization problem. Such problems are known to be very challenging to solve.
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2.4 Zero-Truncated Poisson Model

Suppose Y is a standard Poisson random variable with mean µ > 0 whose a probability

mass function is given by

f(y|µ) =
1

y!
e−µµy (2.14)

for y = 0, 1, 2, . . .. This Poisson random variable Y has the expectation E(Y ) = µ and a

variance V (Y ) = µ. The probability mass function of a zero-truncated Poisson is obtained

as shown in (2.15) by eliminating the possibility of a zero value f(0) = e−µ from the sample

space of the standard Poisson distribution in (2.14) and renormalizing the remaining densities

of Y by their sum:

f(y|y > 0, µ) =
e−µµy

y!(1− e−µ)
, (2.15)

for y = 1, 2, . . . (Cameron and Trivedi, 1998, p. X). The mean E(Y |Y > 0) and variance

V (Y |Y > 0) of the zero-truncated Poisson model are:

E(Y |Y > 0) =
µ

1− e−µ
, and V (Y |Y > 0) =

µ(1− e−µ − µe−µ)

(1− e−µ)2
. (2.16)

The derivation of the first three central moments using the moment generating function

are noted in Appendix B.1. As shown in (2.16), E(Y |Y > 0) is always larger than E(Y )

and V (Y |Y > 0) is under-dispersed (i.e., the variance is less than the mean) because of

0 < 1− e−µ < 1.

It is a straightforward extension of the zero-truncated Poisson model in (2.15) to a regres-

sion model that accounts for the effect of the explanatory variables. Following the framework

described in Section 2.2, a different mean parameter µi of the zero-truncated Poisson for i-th

individual is linked to a linear predictor of p+1 explanatory variable xi = (1, xi1, xi2, . . . , xip)
T

using the log link function:

E(yi|xi) = µi = exp(xTi β), (2.17)

where β = (β0, β1, . . . , βp)
T is a vector of unknown regression parameters. The log link

function ensures that µi is strictly positive for a proper distribution. The parameter β can

be estimated by maximizing the log of a zero-truncated Poisson likelihood using Newton’s
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method. The required score vector and Hessian matrix for this estimation procedure are

noted in Appendix A.3 and also can be found in Gurmu (1991).

Once the regression parameters β are estimated by the maximum likelihood method,

the Horvitz-Thompson estimator derived by van der Heijden et al. (2003) is applied to the

problem of estimating the unknown size N of a target population:

N̂ =
n∑
i=1

1

1− e−µ̂i
, (2.18)

where µ̂i = exp(xTi β̂) is the mean parameter of a zero-truncated Poisson model that ulti-

mately produces the probability of being ascertained by the identification mechanism for the

i-th individual in that population (Böhning and van der Heijden, 2009; Cruyff and van der

Heijden, 2008). The confidence interval of the estimated population size is derived based on

the asymptotic normal distribution.

According to the simulation study performed by van der Heijden et al. (2003, Section 3), a

comprehensive coverage level is shown in either small populations or small capture probabil-

ities. However, their simulation study is based on a homogeneous population using a model

having only an intercept. The statistical properties of this estimator has not been explored

regarding bias, precision, or asymptotic distribution of the estimated population size. Due to

the presence of an unobserved heterogeneity encountered when applying the zero-truncated

Poisson regression model to the application of estimating the size of the illegal immigrant

population in The Netherlands, this issue of underestimation must be addressed. Note that

the Lagrange multiplier test proposed by Gurmu (1991) is used for testing the presence of

the unobserved heterogeneity.
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Chapter 3

Modelling Complete Prior Ignorance

In this chapter the author provides details of a methodology characterized by a canonically

parametrized imprecise inferential framework that has been developed for the quantification

of epistemic ignorance on the estimation of a sampling model parameter. The name ‘Imprecise

inferential framework’ arose from both the imprecise probabilities theory presented by Walley

(1991), and because the canonical parameter of a sampling model plays a central role in this

inferential process.

The methodology presented here is not a newly introduced inferential framework. As

noted in Section 1.5, the imprecise inferential framework referred to as the imprecise Beta-

Binomial model has been studied by Walley (1991), Coolen (1994) and Walley et al. (1996),

and its generalized version called the imprecise Multinomial-Dirichlet model has been also

studied by Walley (1996) and Bernard (2005). The PhD thesis work by Quaeghebeur (2009) is

also a comprehensive reference that demonstrates a generalization of the imprecise inferential

framework to an exponential family of sampling distributions. In particular, a one-parameter

exponential family of sampling distributions is well studied in Benavoli and Zaffalon (2012).

For the sake of convenience, the inferential framework presented in their studies is referred to

as the conventional approach to an imprecise inference and the one presented here is simply

referred to as our approach or the proposed methodology in the remainder of this thesis.

A number of distinctions are made in this proposed methodology as compared to the

conventional approach of imprecise inference. These distinctions can be elucidated from the

detailed description of the proposed methodology provided in Section 3.1. However, this

description is limited to Poisson sampling models because of the research interest presented

in Chapter 1. These details also serve as a blueprint of the R (R Development Core Team,

2011) ipeglim package (Lee and Bickis, 2013) that is a collection of functions developed by
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the author for producing all numeric and graphic summaries contained this thesis. A brief

introduction to the key functions in this package are provided in Section 3.2, and a complete

description is available in the documentation of the package which is available from the R-

forge. Note also that this thesis written by the Sweave system (Leisch, 2002) that allows to

embed R codes within LATEX documents. For easy exposition of the proposed methodology,

a number of examples are provided in the last Section 3.3 of this chapter. The examples

illustrate six major features of the canonically parametrized imprecise inferential framework.

3.1 Canonically Parametrized Imprecise Inferential Frame-

work for Poisson Data

Suppose that the past and future observations y are independently and identically dis-

tributed realizations drawn from a standard (untruncated) Poisson sampling model f(y) =

e−µµy/y! with a mean parameter µ. Assume that you are a person who is interested in esti-

mating this Poisson mean parameter µ but you have not seen this data yet. (The italic font

is used for emphasizing an intentional unit for this inference.)

3.1.1 Exponential Family Representation of Sampling model

The first task for the proposed methodology is to represent a specified sampling model

in the form of a natural exponential family of distributions. Since the standard Poisson

distribution is an instance of a one-parameter exponential family, the sampling model f(y)

is written as follows:

f(y|θ) = h(y) exp{yθ −A(θ)}, (3.1)

where θ = log(µ) is the canonical parameter of the Poisson mean parameter µ which is

canonically parametrized by a log-link function, h(y) = 1/y! is a base counting measure of

y, and A(θ) = eθ is a log-normalizer that integrates the unnormalized densities of (3.1) over

the sample space y ∈ Y to 1 such that:

A(θ) = log
∑

h(y) exp{yθ}. (3.2)
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The set Θ = {θ|−∞ < θ <∞} is the canonical parameter space of θ, and the corresponding

mean parameter space of µ is M={µ|0 < µ < ∞}. Once a sample of size n is observed, the

corresponding Poisson likelihood L (θ|y) of (3.1) has the form:

L (θ|y) ∝ exp{nȳθ − nA(θ)}, (3.3)

where ȳ = 1
n

∑n
i=1 yi is a sample mean of y = {y1, y2, . . . , yn}.

3.1.2 Conjugate Formulation of Prior Measure

The second task of the proposed methodology is to formulate a conjugate prior measure

π(θ) to the Poisson likelihood L (θ|y) as shown below

π(θ|ξ) ∝ exp {ξ1θ − ξ0A(θ)} (3.4)

where ξ = (ξ1, ξ0)T is a vector of hyperparameters. If a normalizing constant that makes a

prior measure π(θ|ξ) in (3.4) integrate to one can be found, (3.4) is then a prior probability

measure π(θ) on the canonical parameter space Θ. This log-normalizing constant is given by

B(ξ) = log

∫
exp{ξ1θ − ξ0A(θ)}dθ. (3.5)

The set Ξ = {ξ|B(ξ) < ∞} is thus defined as the canonical hyperparameter space (simply,

called hyperparameter space) of the prior probability measure π(θ|ξ).

This conjugate formulation of a prior measure π(θ) also provides a mathematical conve-

nience for the formulation of a posterior distribution p(θ|y) once a sample of size n is available

as shown below:

p(θ|y) ∝ exp {ξ′1θ − ξ′0A(θ)} , (3.6)

where

ξ′1 = ξ1 + nȳ, and ξ′0 = ξ0 + n. (3.7)
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That is, a posterior distribution p(θ|y) is closed under the sampling distribution f(y|θ).

If the kernel of this posterior distribution p(θ|y) in (3.6) has a known parametric form in

some standard probability distributions, a simplified form of posterior summaries of interest

are easily found. A legitimate numerical approximation of the quantities of interest is also

expected when such a simplified form is available since the effect of cumulative rounding

errors in computation requiring a long sequence of processing to reach the estimate would be

eliminated.

Before moving forward to the next task of this proposed methodology, the role of the

hyperparameter space Ξ needs clarification in order to expedite comprehension of subsequent

tasks for the reader since the hyperparameter space Ξ serves as the actual space on which the

modelling procedure for prior ignorance is carried out in this proposed methodology. Details

of this modelling procedure are noted in section 3.1.3; however, the resultant advantage

of working with this hyperparameter space Ξ over the mean parameter space M is briefly

discussed in the next paragraph.

Consider the case where the actual prior ignorance is modelled for imprecise inference.

Prior ignorance has been modelled by specifying a convex region on the mean parameter space

M in literature on the conventional imprecise inferential approach (Quaeghebeur, 2009; Be-

navoli and Zaffalon, 2012). For the case of a standard Poisson sampling model, the dimension-

ality of the mean parameter space M is a line segment. You may have no conceptualization

that can delineate some constraint on this line segment other than specifying the upper and

lower bounds. However, you have more than one choice to give such constraints when working

with a two-dimensional hyperparameter space. For instance, a triangle, square, pentagon, or

other types of polygons can be formulated. This flexibility of prior ignorance modelling is

illustrated throughout the example in Section 3.3.1 .

3.1.3 Characterization Strategy for Prior Ignorance

The third task of the proposed methodology is the characterization of your prior igno-

rance. The term characterization is intended for implying your modelling strategy of how to

represent your prior ignorance in the form of a mathematical language on the hyperparame-

ter space. One may view this characterization task as a prior elicitation process in standard
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Bayesian analysis. As briefly noted in the previous section 3.1.2, this mathematical repre-

sentation of your prior ignorance is typically described in the form of a closed and bounded

convex region when the hyperparameter space has two dimensions. The number of hyper-

parameters ξ associated with a prior probability measure π(θ|ξ) is not limited to only two.

Three parameter and multi-parameter exponential families of distributions are dealt with in

Chapter 4; thus, in this subsection the third task of this proposed methodology is described

by assuming that the hyperparameter space Ξ is in p dimensions.

The suggested characterization strategy is to set a convex hull characterized by the ex-

treme points which are found from the solutions of a finite system of k linear inequalities

gi(ξ) of hyperparameters ξ such that

g1(ξ) = a11ξ1 + · · ·+ a1pξp ≥ c1

g2(ξ) = a21ξ1 + · · ·+ a2pξp ≥ c2

gk(ξ) = ak1ξ1 + · · ·+ akpξp ≥ ck,

where ξ is a p-dimensional vector of hyperparameters (ξ1, ξ2, . . . , ξp)
T , aij (i = 1, . . . , k and

j = 1, . . . , p) is the coefficient of j-th hyperparameter ξj in the i-th constraint gi(ξ) in the

left hand side of the inequalities, and ci is the constant of i-th given on the right hand

side of the inequalities. For instance, a convex polytope can be characterized as a region

R describing your prior ignorance on the hyperparameter space Ξ of ξ1 and ξ0 each of

which represents a total sum of the count and a number of samples prior to seeing the data.

Similarly, a convex polyhedren can be characterized in a three-dimensional hyperparameter

space Ξ. The number of constraints is arbitrarily determined by your known information.

This characterization strategy is illustrated together with an example showing the flexibility

of prior ignorance modelling in section 3.3.1

Since every single point in the characterized convex hull on the p-dimensional hyperpa-

rameter space Ξ maps to a single prior distribution π(θ|ξ) with a one-to-one relationship,

a set of points encompassed by line segments connecting the extreme points of a convex

hull implies a class of prior distributions that describes your prior ignorance. The term of

imprecise is used from this point forward to imply a set of distributions; thus, this class of
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prior probability distributions will be referred to as an imprecise prior and its correspond-

ing convex hull on the hyperparameter space is denoted by C0. In the same manner, a set

of posterior probability distributions which is updated from an imprecise prior by applying

Bayes’ theorem after observing new samples will be referred as to an imprecise posterior and

its corresponding convex hull on the hyperparameter space is denoted by Cn.

From the equations in (3.7) one may notice that the update of an imprecise prior to an

imprecise posterior can be geometrically described by the translation of a convex hull C0 since

all points (ξ1, ξ0) in the region (i.e., the convex hull C in a two dimensional hyperparameter

space) moves to the points (ξ′1, ξ
′
0) by nȳ and n along with ξ1 and ξ0 simultaneously as new

data y is gathered. This translation of a convex hull C0 is illustrated using the examples in

Subsection 3.3.2.

3.1.4 Imprecise Posterior Optimization

The fourth task in the proposed methodology is to quantify the amount of epistemic

ignorance lying on the estimation of a sampling model parameter. Walley (1991) referred this

quantity as the degree of imprecision and defined this as the difference between two extreme

posterior expectations over all possible posterior expectations each of which is evaluated at

every single posterior distribution belonging to an imprecise posterior. When two extreme

posterior expectations agree (i.e., the difference of two extreme posterior expectations is zero),

the parameter of the sampling model is estimated precisely. Since the canonical parameter

θ is the quantity of interest to be estimated in the proposed methodology, the degree of

imprecision ∆n(θ|y) is defined as

∆n(θ|y) = En(θ|y)− En(θ|y), (3.8)

where En(θ|y) is the minimum posterior expectation, En(θ|y) is the maximum posterior

expectation, and n is the sample size which is used for updating an imprecise prior. The

problem is then to search for the extreme posterior distribution that minimizes or maximizes

En(θ|y) over all posterior distributions belonging to an imprecise posterior.
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In fact, the second and third tasks in the proposed methodology are the preparatory work

for this optimization problem. The second task builds a geometric space of hyperparameters

in which each single point maps to a single prior distribution with a one-to-one relationship.

The third task characterizes a convex polytope on the hyperparameter space over which the

extrema of the posterior expectation are to be found. The problem can thus be restated

as a typical constrained optimization problem of searching for an optimal solution of hyper-

parameters ξ = (ξ1, ξ2, . . . , ξp)
T that minimizes or maximizes a given posterior expectation

E(θ|y) subject to a set of linear inequality constraints on the hyperparameter space Ξ. If the

posterior expectation E(θ|y) is a linear function of hyperparameters ξ, then this optimiza-

tion becomes simpler since the maximum or minimum posterior expectation occurs at one

of the extreme points of the convex polytope (Feiring, 1986, p. 30). This imprecise posterior

optimization is illustrated using the examples in Subsection 3.3.5.

3.2 R Package Development

The proposed methodology has been theoretically developed with the hope of being com-

putationally efficient for an imprecise inference. Arriving at an imprecise estimate for a

quantity of interest is a complicated procedure due to the complex modelling procedure as-

sociated with the aspect of the procedure involving the characterization of a prior ignorance

and a long sequence of computations associated with the imprecise posterior optimization

procedure. It is important to simplify these two steps in order to explore the major features

of the proposed methodology and the behaviours of imprecise estimates.

To resolve these practical concerns when using the proposed methodology, the author of

this thesis initiated a project for developing the R package entitled ipeglim (Lee and Bickis,

2013). This project is hosted at https://r-forge.r-project.org/projects/ipeglim/.

The key implementations used to produce the numerical results and graphical portrayals

presented in this thesis work are explained in this section.

The following eight components are essential to carrying out the proposed canonically

parametrized imprecise inferential framework:

1. Defining a sampling model;
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2. Defining a family of prior distributions;

3. Solving a set of given linear inequalities;

4. Searching for extreme points of a characterized convex hull;

5. Applying Bayes’ theorem at every extreme point;

6. Evaluating a quantity of posterior expectation at every extreme point;

7. Identifying extreme posterior expectations;

8. Summarizing the resulting imprecise estimate numerically and graphically.

The R ipeglim package provides six primary functions to perform the tasks listed in the

above: model(), iprior(), update(), summary(), plot(), and pbox(). From this point

forward, all R functions used in the reminder of this thesis work are indicated by teletype

font and the parentheses which are used immediately following the function name.

A help page is provided for every function implemented in the ipeglim package. Items

documented in the help page are the basic description, usage, a list of all available arguments,

details, returning values, references, etc. To see the details of major functions described in this

section, please type help(name) or simply ?name in the R console. Since the ipeglim package

is frequently updated as program improvements are made (i.e. more efficient algorithm

becomes available, software user convenience is improved, etc.), the details described in the

help page may differ slightly from the description provided in this section. Hence, only details

necessary for this thesis work are noted.

3.2.1 model()

The function model() defines a sampling model f(y) for input data y, and returns the

class object imprecise with a list of response vector, data matrix, statistics produced by the

maximum likelihood method, and other information needed for advancing results utilizing

the proposed canonically parametrized imprecise inferential framework.

Note that the term class describes a template that produces an object in the context of

object-oriented programming. Roughly speaking, this template contains two pieces of infor-

mation: 1. the value that an object initially has, and 2. the methods which are a predefined

implementation of how a function call should be evaluated with that object. Two types
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of internal systems called S3 (S version 3) and S4 are offered in R. S4 is a class centered

formal (or new) system like Java or C++ while S3 is a function centered informal (or old)

system which is less compliant when defining class and methods as compared to S4. For

a object-oriented programming style, R also supports a generic function mechanism which

means a function whose predefined implementation (i.e., method) depends on the type (i.e.,

class) of the first argument supplied. This process is also called method dispatch. Hence,

the class imprecise created by calling the function model() facilitates this method dispatch

for selecting an appropriate function that performs computations needed to move forward

the subsequent steps in the imprecise inferential process. For defining the class imprecise

and the methods associated with this class, the S3 system was utilized in the development of

ipeglim package in consideration of a quick change of implementation reflecting the diver-

sity of a methodological development and the efficient adoption of better implementations or

techniques intended to extend the utility of the package.

Syntax

model(formula, data, dist="poisson", ztrunc=FALSE, verbose=TRUE)

The formula parameter is assigned a symbolic description of a linear predictor in the

context of a generalized linear model for model specification. The basic usage of formula

follows the R convention. For example, formula=y~x1+x3 implies the specification of a re-

gression model that has a single response variable y and two explanatory variables x1 and x3.

By default, an intercept term is included. One exception concerning the use of the formula

parameter in model() is the specification of a model such as formula=y~0 which means the

specified model does not involve any explanatory variables.

The second parameter data is the name of the environment where the variables used in the

parameter formula are located. If the names of variables are not found in the data, variables

for model specification are taken from the environment where the model() is called. The

parameter data receives a user’s data in the form of vector or data.frame (i.e., a matrix

form of data entries for statistical analysis in R).
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The third parameter dist specifies a family of sampling models which belong to an

exponential family of distributions. The option dist="poisson" is used for this thesis work.

The other values (i.e., binom, exp, geo, nbinom, multinom) of this option are not available

but are defined for the purpose of future development.

The fourth parameters ztrunc is an option to change a type of a sampling model in

the same family. That is, ztrunc=TRUE implies the use of zero-truncated Poisson sampling

model and ztrunc=FALSE implies the use of a standard Poisson sampling model (without

zero-truncation).

3.2.2 iprior()

The generic function iprior() defines an imprecise prior by obtaining information con-

cerning constraints which are required in order to characterize a convex hull on the hyper-

parameter space, and returns the class object imprecise with a list of information about

Cartesian coordinates for every extreme point with its identification number and the object

produced from the use of model().

Syntax

iprior(obj, eqns=list(lhs, rhs), circle=list(x,y,z,r,len))

The argument obj passes the object of class imprecise produced from model() for dis-

patching the method iprior. The methods defined in the function iprior() behave differ-

ently depending on contemporaneous expression of another/other argument(s). If not found,

the default method is to use information passed by the one of following arguments:

• eqns=list(lhs, rhs) obtains a set of linear inequality constraints which are to be

defined in the form of lhs %*% xi >= rhs as shown in (3.8), where xi is a vector of

hyperparameters. The first element lhs of the argument eqns is a matrix containing

the coefficients of hyperparameters xi in the constraints. Each row of the matrix

corresponds to a single constraint. The second element rhs of the argument eqns

is a vector containing the constant given on the right-hand side of the constraints.

For instances where the dimensionality of a hyperparameter space is greater than or
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equal to three, the searching algorithm for extreme points depends on the function

convxhulln() in the geometry package (Barber et al., 2013). If this requirement is

not met, a naive searching algorithm implemented by the author is employed. There is

no restriction governing the maximum number of constraints.

• circle=list(x,y,z,r,len) determines a set of points that lie at a given radius r from

the center (x,y) when a hyperparameter space is defined in a two dimensional plane.

A circular object (i.e., sphere) in a three dimensional hyperparameter space can be

generated with a given radius r from the center defined by (x,y,z). This argument

circle is used for instances where the number of extreme points is infinite; thus, the last

element len in this argument determines the number of points needed to characterize

a circular object in a two- or three-dimensional hyperparameter space. By default,

x=y=z=r=1 and len=15. The author of this thesis work determined by exhaustive

experimentation that a default number of 15 extreme points is required to approximate

a visual representation of a circular object in either two or three dimensions.

The usage of these options with the function iprior() is illustrated in section 3.3.1.

Two additional arguments x and mat are defined in the function iprior(). The argument

x is intended to derive a vector of hyperparameters for specifying a single precise prior

distribution. The argument mat is intended to have a direct input matrix of extreme points

(without a searching process) to create a convex hull. An intense examination of these two

arguments x and mat is currently being performed by the author for extending the current

package.

3.2.3 update()

The function update() applies Bayes’ rule to every single prior distribution belonging to

an imprecise prior with a given data set, and returns the object of class imprecise with a list

of the resultant imprecise posterior expectations and the object produced from the previous

use of iprior().
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Syntax

update(obj, ..., [B,] [apriori=c("lgamma", "normal"),]

[method=c("LA", "MH", "IS", "AQ"),] [control=list(),] [proposal=list()])

The argument obj secures the object of class imprecise produced from the previous use of

the function iprior(). This obj is ultimately passed to the function cpef() if the symbolic

expression in the argument formula does not involve explanatory variables (for the sake of

convenience, such models are referred to as non-regression models). If not, the obj is passed

to the function cpef2reg() for regression models. This determination is internally assessed

by retrieving information of the data matrix X which means a data frame that consists of an

intercept and a set of explanatory variables. Note that when the function model() is used,

the input data passed by the argument data is decomposed to a response variable y and a

data matrix X by matching the variable names specified in the argument formula to the list

of names in the argument data.

The second argument ... (three dots) in the function update() passes the following

arguments needed to call the functions cpef() and cpef2ref():

• The argument apriori specifies the name of a family of prior distributions. For this

thesis work, two options of "lgamma" and "normal" are offered for non-regression mod-

els. "lgamma" and "normal" represent families of log-gamma and normal prior dis-

tributions, respectively. However, the current implementation supports only option

"normal" for a p-dimensional multivariate normal distribution for regression models.

• The argument method specifies the name of the numerical methods required for the

approximation of a quantity of a posterior expectation with a given family of prior

distributions and input data. The Metropolis-Hastings algorithm ("MH"), the Impor-

tance sampler ("IS"), and the Laplace approximation ("LA") are offered. The adaptive

quadrature ("AQ") is also supported for non-regression models. A brief discussion about

the author’s experience regarding the use of different numerical methods for this thesis

work is given in Section 4.2.
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• The argument control=list() is the set of variables that permits the user to change

the default values that are supplied to each of the numerical methods. For example,

when using the Metropolis-Hastings algorithm, the user needs to determine the length

of Markov chain and burn-in period, as well as the proposal distribution (the current

implementation uses a normal distribution with a mean 0 and a standard deviation

that is estimated from input data by default). Instructions detailing how to change the

default values on those specifications using the argument control=list() are noted in

Section 4.2. It is necessary to use the argument proposal=list() in order to change

the specification of a proposal distribution. These two arguments control=list() and

proposal=list() are also used for the numerical method "IS" (Importance sampling)

in the same way.

• The argument B acquires a p-by-p square matrix that represents the specification of

a prior variance-covariance matrix for regression models. If not found, B defaults to

the p-dimensional identity matrix. The value of p is determined by the number of

explanatory variables including an intercept term as specified in the argument formula

when the function model() is used.

3.2.4 summary() and plot()

The generic functions summary() and plot() produce numerical and graphical summaries

of a resultant imprecise posterior from various model fittings performed with the canonical

parametrized imprecise inferential framework.

Syntax

summary(obj, HT.est=FALSE, ...)

plot(obj, rm.M0=FALSE, xi, ...)

pbox(obj, pretty=TRUE, ... [, control=list(beta, xtms)])

The argument obj in the functions summary(), plot(), and pbox() is used to acquire

the object of class imprecise produced from the previous use of the function update().
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The function summary() returns a list of the objects containing all of the information

specified during the processing of the proposed methodology for controlling the imprecise

inference, the imprecise posterior expectation (complete with the identification numbers of

the extreme points), the maximum and minimum imprecise posterior expectations (complete

with the identification numbers of the extreme points), and the degree of imprecision, and so

on. If the argument ztrunc is set by TRUE when the function model() is used, the optional

argument HT.est=TRUE computes the Horvitz-Thompson estimator for the population size

estimation problem.

The function plot() produces various graphical figures depending on the number of

hyperparameters used, the type of constraints characterized, and the stage of the imprecise

inferential framework. Once the object of class imprecise is produced using iprior(), the

resultant convex hull characterized by the set of given linear inequality constraints is plotted.

The reader can examine various shapes of this convex hull from Figures 3.2 and C.1. When

the object of class imprecise is produced from the use of update(), the surface plot of an

imprecise posterior expectation over a two-dimensional hyperparameter space is produced for

non-regression models. Please see Figure C.2. For regression models, the function plot()

produces a scatter plot illustrating the change of imprecise probabilities before and after

observing data as shown in Figure 4.14. The probability box shown in Figure 3.9 is offered

by the function pbox(). Trellis graphics produced using the function plot() are dependent

upon the specific lattice package (Sarkar, 2008) utilized.

3.3 Example with Log-Gamma Imprecise Prior

Examples are provided in this section to illustrate the main features of the proposed

methodology. For this illustration, a family of log-gamma prior distributions is considered

for the problem of estimating the canonical parameter of a standard Poisson sampling model.

The choice of this family of prior distributions is motivated by the fact that a family of gamma

distributions is conjugate to a Poisson likelihood in a standard Bayesian analysis with respect

to the mean parameter.
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Figure 3.1: Probability densities of a gamma distribution and a log-gamma distri-
bution with the selected values of a shape parameter α = 0.2, 0.5, 1, 2, 5 at a given
rate parameter β = 1 on the top left and right, respectively. Probability densities of
a gamma distribution and a log-gamma distribution with the selected values of a rate
parameter shape parameter β = (0.2, 0.5, 1, 2, 5) at a given shape parameter α = 1 on
the bottom left and right, respectively.
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First consider a case where a standard Poisson mean parameter µ is distributed as a

gamma distribution with a shape parameter α and a rate parameter β in order to observe

the behaviour of a log-gamma distribution. The canonical parameter θ = log(µ) is then a

log-gamma distribution of which a probability density function is given by

π(θ|α, β) =
βα

Γ(α)
eαθ−βe

θ

, (3.9)

where −∞ < θ < ∞, α > 0 and β > 0 are the shape and rate parameters, respectively.

The derivation of this log-gamma probability density function of canonical parameter θ from

a gamma distribution of mean parameter µ, the moment generating function of (3.9), and

the expectation of a canonical parameter θ with respect to π(θ|α, β) in (3.9) are noted in

Appendix A.1. In this parametrization, the shape α and rate β parameters are the canonical

parameters of a log-gamma distribution in (3.9).

The difference between probability densities of log-gamma and gamma distributions are

compared in Figure 3.1. Two plots on the top in these figures are produced by varying the

values of the shape parameter α in the range of {0.2, 0.5, 1, 2, 5} at the fixed value of the rate

parameter β = 1. Two plots on the bottom are produced by varying the values of the rate

parameter β in the range of {0.2, 0.5, 1, 2, 5} at the fixed value of the shape parameter α = 1.

Note that the rate parameter β plays a role as a location parameter log β for a family of log-

gamma distributions as illustrated on the plot in the bottom left in Figure 3.1. The function

dlgamma() in the ipeglim package is used to compute probability densities of a log-gamma

distribution with given values of the shape parameter α and the rate parameter β.

3.3.1 Flexible Prior Ignorance Modelling

The example presented in this subsection illustrates the flexible characterization of a

convex hull on the hyperparameter space Ξ when an imprecise prior is elicited using the

proposed methodology. Also presented is a demonstration of the usage of function iprior()

for this characterization. Please note that from this point forward, a convex hull C0 is simply

denoted by a region R0 since the dimensionality of the hyperparameter space considered in

this family of prior distributions is two.
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Consider the following four linear inequality constraints:

β ≤ −1

2
α + 5, β ≤ 1

2
α, α ≥ 2.5, β ≥ 0.5, (3.10)

where α and β are the shape and rate hyperparameters of a family of log-gamma prior distri-

butions. From this system in (3.10) six points of intersection can be easily found manually but

only four intersection points (9.0, 0.50), (2.5, 0.50), (2.5, 1.25), (5.0, 2.50) are required for the

characterization of the region R0. The plot on the top left panel in Figure 3.2 illustrates this

characterization. In this figure, the polytope coloured blue depicts the region R0 describing

an imprecise prior that will be ultimately used for a further imprecise inference process. The

extreme points located at the vertices of the polygons and identified by the numbers x1, x2,

x3, x4 that are assigned to each of these extreme points in a clockwise direction are shaded in

red. These identification numbers are used for tracking each member of the imprecise prior

in subsequent inferential steps.

However, it is impractical to search for these extreme points manually from a given sys-

tem when the number of constraints is large. Consider two additional linear inequalities

constraints α ≤ 6 and α− 4β ≥ 2 on the system given in (3.10). A total of 13 solutions can

be found easily from the system of six equalities, but each solution needs to be examined

to determine whether or not all inequalities are satisfied for identifying the extreme points.

This searching task is conveniently accomplished using the function iprior() provided in

the ipeglim package. In order to use this function, the system in (3.10) needs to be written

in the following matrix form first.

−1 −2

1 −2

1 0

0 1

−1 0

−1 4



α
β

 ≥



−10

0

2.5

0.5

−6

−2


. (3.11)
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Figure 3.2: Different shapes of the region R0 characterized by linear inequality con-
straints: 1) using four constraints (on the top left): R0 = {(α, β)|β ≤ −1

2
α + 5, β ≤

1
2
α, α ≥ 2.5, β ≥ 0.5}; 2) using six constraints (on the top right): R0 = {(α, β)|β ≤
−1

2
α + 5, β ≤ 1

2
α, α ≥ 2.5, β ≥ 0.5, α ≤ 6, α − 4β ≥ 2}; 3) using box-type constraints

(on the bottom left): R0 = {(α, β)| − 1 ≤ α ≤ 1,−1 ≤ β ≤ 1}; 4) using an infinite
number of constraints (on the bottom right): R0 = {(α, β)|(α− 0)2 + (β − 0)2 ≤ 12}.

●●

●

●

0 2 4 6 8 10

0
1

2
3

4

Number of Constraints = 4

α

β

●●

●

●

x1x2

x3

x4

●

●●

●

●

●

0 2 4 6 8 10

0
1

2
3

4

Number of Constraints = 6

α

β

●

●●

●

●

●

x1

x2x3

x4

x5

x6

●●

● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Minimal Number of Constraints

α

β

●●

● ●

x1x2

x3 x4

●

●

●

● ●

●

●

●

●

●

●●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Infinite Number of Constraints

α

β ●

●

●

● ●

●

●

●

●

●

●●

●

●

x1

x2

x3
x4 x5

x6

x7

x8

x9

x10
x11x12

x13

x14

45



The matrix on the left hand side and the vector in the right hand side in (3.11) are then used

as the input required for the function iprior() as shown below:

> lc1 <- list(
+ lhs=rbind(c(-1,-2), c(1,-2), c(1,0), c(0,1), c(-1,0), c(-1,4)),
+ rhs=c(-10,0,2.5, 0.5, -6, -2)
+ )
> xtms1 <- iprior(eqns=lc1)
> xtms1

V1 V2
x1 6.0 1.00
x2 4.0 0.50
x3 2.5 0.50
x4 2.5 1.25
x5 5.0 2.50
x6 6.0 2.00

The region R0 shown on the top right panel in Figure 3.2 is characterized by this generic

x-y coordinate information of extreme points that is held in the object xtms1. For visualizing

this characterization, the function plot() is used in the following way:

> plot(xtms1, xlim=c(0,10), ylim=c(0,5),
+ xlab=expression(alpha), ylab=expression(beta))

Two extreme cases of the regionR0 (i.e. a convex hull in a two-dimensional hyperparame-

ter space) are also presented on the bottom in Figure 3.2 based on the number of constraints.

The region R0 shown on the bottom left panel is a convex hull characterized by a minimal

number of constraints such that {(α, β)|−1 ≤ α ≤ 1,−1 ≤ β ≤ 1}, and the region R0 shown

on the bottom right panel is one characterized by an infinite number of constraints such that

{(α, β)|α2 + β2 ≤ 12, (α0, β0) = (0, 0)}.

3.3.2 Translation Behaviour of Imprecise Prior

The example presented in this subsection illustrates a translation behaviour of an impre-

cise prior in the proposed methodology. As noted previously in Section 3.1.2, this behaviour

is derived from the formulation of conjugate prior measure. An appealing feature of this be-

haviour is that an information updating process (or learning process) can be visually demon-

strated. Also presented is a characterization strategy that is suggested when the intentional

unit is under a state of complete ignorance (Benavoli and Zaffalon, 2012, p. 1974).
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In order to illustrate this translation behaviour, consider the past and future observations

taken from a standard Poisson distribution with a mean of µ = 1 which corresponds to the

canonical parameter θ = 0. The random seed 16979238 is used to simulate these Poisson ran-

dom variates. Assume that you are the person who is interested in estimating the canonical

parameter θ of this Poisson sampling model f(y|θ) using the proposed methodology. Assume

also that you do not have any information regarding the algorithm nor the random seed for

this random number generation. Hence, it is considered that no information is available to

you at this moment (i.e., before seeing data) regarding the canonical parameter θ to be esti-

mated. Under this circumstance your belief regarding the canonical parameter θ may vary

from negative infinity and positive infinity because −∞ < E(θ) <∞. This state is referred

to as a state of complete-ignorance in Benavoli and Zaffalon (2012, p. 1974).

In the proposed methodology, the unit square (i.e., R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤ 1})

is suggested for use when eliciting an imprecise prior. The rationale for characterizing this

regionR0 is that all possible prior expectations E(θ) of the canonical parameter θ are covered

by this unit square. Further discussion regarding this characterization strategy is provided in

Subsection 3.3.3. The plot on the top left panel in Figure 3.3 supports this rationale. In that

figure, the characterized region R0 is coloured blue and a level set of a prior expectations

E(θ) = ψ(α) − log(β), where ψ(·) is a digamma function, which is referenced with dashed

curves for selected values ranging from -3 to 3 by 0.5. The derivation of this prior expectation

E(θ) is noted in Appendix A.1. Observe that the prior expectation E(θ) appears to be linear

in Figure 3.3, but it is in fact slightly curved near the point of origin (0, 0).

Now suppose that you observe a sample y1 = 1. Your imprecise prior represented by

the region R0 moves by 1 along α-axis and also moves by 1 along β-axis as shown on the

top right panel in the Figure 3.3. Because a family of log-gamma priors is closed under

the sampling model, after observing n i.i.d. samples, the posterior expectation E(θ|y) =

ψ(α+ nȳ)− log(β + n) has a form identical to the prior expectation E(θ). The derivation of

this posterior expectation En(θ|y) is also noted in Appendix A.1. It is evident from this figure

that the range of prior expectations E(θ) which are covered by the region R1 representing

the imprecise posterior expectation E(θ|y) after observing the sample y1 becomes narrower
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Figure 3.3: Translation behaviour of the natural imprecise log-gamma prior (i.e.,
R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤ 1} coloured blue) as a sample is newly observed in
a sequence y1 = 1, y2 = 1, y3 = 1, y4 = 0, y5 = 0, y6 = 2, y7 = 1, y8 = 0, and y9 = 2
which are taken from the standard Poisson sampling model with µ = 1. The dashed
curves are the level set of a prior expectation E(θ) = ψ(α) − log(β), where ψ(·) is a
digamma function, for selected values ranged from -3 to 3 by 0.5.
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Figure 3.4: The changes of the maximum imprecise posterior expectation En(θ|y)
(dashed line) and the minimum imprecise posterior expectation En(θ|y) (solid line)
over the sample size n are shown in the left panel when the imprecise log-gamma prior
(i.e., R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤ 1}) is used. 200 samples are sequentially taken
from the standard Poisson sampling model with a mean of µ = 1. The change of its
corresponding degree of imprecision ∆n(θ|y) is shown in the right panel.
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than the range of prior expectations E(θ) initially covered by R0 since the space between

the levels increases as either of the hyperparameter of α or β is increasing.

The plot on the bottom left panel in Figure 3.3 shows the movement ofRn individually by

sequentially taking a sample of y2 = 1, y3 = 1, y4 = 0, and y5 = 0. The identical movements

for the region of R2 and R3 are observed; however, the regions R4 and R5 move up by

one at a time along β-axis but do not have any movement along α-axis. Since zero values

with observations y4 and y5 do not contribute to the update of information on the α-axis,

the regions R4 and R5 do not approach the true value of E(θ) = 0. In the same manner,

movement on the regionsR6 (y6 = 2),R7 (y7 = 1),R8 (y8 = 0), andR9 (y9 = 2) are shown in

the plot on the bottom right in Figure 3.3. Numerical summaries of the maximum imprecise

posterior expectation En(θ|y), the minimum imprecise posterior expectation En(θ|y), and

the degree of imprecision ∆n(θ|y) are listed in Table 3.1.
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Table 3.1: The maximum imprecise posterior expectation En(θ|y), the minimum
imprecise posterior expectation En(θ|y), and the degree of imprecision ∆n(θ|y) as an
observation yi is newly taken (y1 = 1, y2 = 1, y3 = 1, y4 = 0, y5 = 0, y6 = 2, y7 = 1,
y8 = 0, y9 = 2) when the natural imprecise log-gamma prior is specified.

y1 y2 y3 y4 y5 y6 y7 y8 y9

En(θ|y) −1.270 −0.676 −0.464 −0.687 −0.869 −0.440 −0.373 −0.491 −0.287
En(θ|y) 0.423 0.230 0.158 −0.130 −0.353 −0.086 −0.073 −0.207 −0.057
∆n(θ|y) 1.693 0.905 0.621 0.556 0.516 0.354 0.300 0.284 0.230

It is observed that the maximum and minimum imprecise posterior expectations En(θ|y)

and En(θ|y) in Table 3.1 correspond to the quantities evaluated at the points on the top

left corner and bottom right corner of the region Rn, respectively, in Figure 3.3. It is also

confirmed that the degree of imprecision ∆n(θ|y) decreases when a new sample yi is observed.

Although the range of the imprecise posterior expectation does not capture the true value of

θ = 0 with a sample of size 9, both the minimum imprecise posterior expectation En(θ|y)

and the maximum imprecise posterior expectation En(θ|y) are approaching 0. Hence, it is

anticipated by the asymptotic properties of Bayes estimator (Roberts, 2007, p. 48) that the

two extreme imprecise posterior expectations En(θ|y) and En(θ|y) will meet in the vicinity

of the canonical parameter value θ = 0 when a sample of sufficiently large size n can be

observed. Figure 3.4 clearly demonstrates this expectation over 200 Poisson random samples.

The solid and dashed lines imply the maximum imprecise posterior expectation En(θ|y) and

the minimum imprecise posterior expectation En(θ|y), respectively.

3.3.3 Less subjective characterization strategy for imprecise prior

In the previous subsection 3.3.2 the unit square R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤

1} is characterized in order to describe your imprecise prior under your state of complete

ignorance. However, the unit squareR0 is not the only one approach that can be used to elicit

an imprecise prior. One could characterize a triangle by formulating five linear inequality

constraints of {(α, β)|0 < α ≤ 1, 0 < β ≤ 1, α + β ≤ 1}) since this newly characterized

triangle also covers all possible prior expectations (i.e, −∞ < E(θ) < ∞)) as justified for

the case of characterizing the unit square. Another formulation would be the first section of
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Figure 3.5: Improper priors on the characterization of the natural imprecise log-
gamma prior (i.e., corresponds to R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤ 1} ) are shown in
the left panel. A positive uniform prior is marked by a red coloured circle and Jeffrey’s
prior is marked by a blue coloured triangle. A shift of the natural imprecise log-gamma
prior (i.e., R0 = {(α, β)|3 ≤ α ≤ 4, 0 ≤ β ≤ 1}) is shown on the right panel.
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a unit circle such that R0 = {(α, β)|α2 + β2 ≤ 1, α ≥ 0, β ≥ 0}. This type of an imprecise

prior that covers all possible prior expectations for E(θ) will be referred to as a natural

imprecise prior from this point forward in this proposed methodology since it seems to be

a natural and intuitive approach representing an imprecise prior before seeing data. This

characterization strategy also permits you to maintain your objectivity in your study as you

await what the data will reveal; however, you must continue to formulate constraints keeping

all of your prior expectations for E(θ) in your own approach and to determine how large

your characterization will be. Hence, this characterization strategy for the case of complete

ignorance should be viewed as a less subjective approach that represents an imprecise prior

but not a fully objective approach.

Before moving to the next example the author draws the reader’s attention to an inter-

esting feature of the suggested characterization strategy for describing a natural imprecise

prior. Consider a situation in the standard Bayesian analysis where the prior information is
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insufficient for the estimation of a standard Poisson mean parameter µ. A positive uniform

prior π(µ) = 1 and Jeffrey’s prior π(µ) = µ−0.5 (Gill, 2008, p. 150) are commonly used as

a kind of convention since a posterior expectation can be evaluated despite the knowledge

that these two priors are known to be improper. (The derivation of Jeffrey’s prior is noted

in the Appendix A.1.) Note that a positive uniform prior distribution is a limiting case of

a gamma distribution with shape parameter α = 1 and rate parameter β = 0. Jeffrey’s

prior is also a special case of gamma distribution with a shape parameter α = 0.5 and a

rate parameter β = 0. Each of these two priors is represented by a single point lying on the

bottom boundary (i.e., β = 0) of the unit square as shown on the left panel in Figure 3.5. A

positive uniform prior is marked by a red coloured circle and Jeffrey’s prior is marked by a

blue coloured triangle.

Notice that any points lying on either the α- or β- axis ultimately represent improper

priors. One may express concern with the failure that results when attempting to evaluate

an imprecise posterior expectation using the proposed methodology; however, the geometric

representation of the imprecise posterior expectation in Figure 3.5 ensures the existence of the

imprecise posterior expectation since the unit square representing the natural imprecise prior

translates to another place on the hyperparameter space Ξ once at least a single sample with

a non-zero value is observed. Hence, the unit square R0 = {(α, β)|0 < α ≤ 1, 0 < β ≤ 1}

suggested in the previous subsection 3.3.2 can be extended to the region R0 = {(α, β)|0 ≤

α ≤ 1, 0 ≤ β ≤ 1} for eliciting the natural imprecise prior by allowing a class of improper

prior distributions.

3.3.4 Agreement Between Two Intentional Units

The underlying assumption of the three examples that have been illustrated in the previ-

ous three subsections is that you are the single intentional unit for inference in your study.

In other words, the conclusions presented by the author in the previous examples may not be

the same as those that the reader concluded since the reader may have a different character-

ization strategy for eliciting an imprecise prior for various reasons. The example presented

in this section is a discussion regarding conclusions that can be drawn from two intentional

units having different characterization strategies for the same observations.
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Table 3.2: The maximum posterior expectation En(θ|y), the minimum posterior ex-
pectation En(θ|y), and the degree of imprecision ∆n(θ|y) as a sample yi is newly ob-
served in a sequence (y1 = 1, y2 = 1, y3 = 1, y4 = 0, y5 = 0, y6 = 2, y7 = 1, y8 = 0,
y9 = 2) for the second intentional unit him ; the imprecise log-gamma prior is specified
by characterizing the region R0 = {(α, β)|3 ≤ α ≤ 4, 0 ≤ β ≤ 1}.

y1 y2 y3 y4 y5 y6 y7 y8 y9

En(θ|y) 0.563 0.408 0.320 0.097 −0.086 0.070 0.061 −0.057 0.049
En(θ|y) 1.506 1.013 0.774 0.486 0.263 0.349 0.306 0.172 0.245
∆n(θ|y) 0.943 0.605 0.454 0.390 0.349 0.279 0.245 0.229 0.196

To lead this discussion, assume that the first and second intentional units are called by you

and him, respectively. The italic font aids the reader in identifying these intentional units.

The samples used in the previous section 3.3.3 are re-used in this subsection. Assume also

that you continuously use the natural imprecise prior for this inference (i.e.,R0 = {(α, β)|0 ≤

α ≤ 1, 0 ≤ β ≤ 1}). Now consider a situation where he has some information that already

guides him to strongly believe that the canonical parameter θ is greater than a value of zero.

In your case, you are still assumed to be under a state of a complete-ignorance. He thus

may not use the natural imprecise prior as you do since he is able to characterize some other

region such thatR0 = {(α, β)|3 ≤ α ≤ 4, 0 ≤ β ≤ 1} which supports his current belief before

observing samples.
After he observes samples from the first y1 to the last y9 one by one in a sequence, his

imprecise posterior is summarized by the maximum imprecise posterior expectation En(θ|y),

the minimum imprecise posterior expectation En(θ|y), and the degree of imprecision ∆n(θ|y)

as shown in Table 3.2. Comparing his imprecise posterior summaries to your imprecise

posterior summaries in Table 3.1 in terms of the size n of a sample observed, your degree of

imprecision ∆n(θ|y) evaluated with the natural imprecise prior is larger than those evaluated

with his imprecise prior. This fact represents that his imprecise prior is more informative

than your natural imprecise prior in some way for only him.

This fact can be more clearly illustrated by visualizing your and his imprecise priors on

the hyperparameter space as shown on the right panel in Figure 3.5. On may notice that

the region R0 representing his imprecise prior shows a shift of the region R0 representing
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Figure 3.6: Two different scenarios of a learning process between two intentional units
having different imprecise log-gamma priors on the same observation of a sample of size
n. Two curves coloured black on the both left and right panels imply the imprecise
posterior expectation of the first intentional unit you having the natural imprecise
prior (i.e., R0 = {(α, β)|0 ≤ α ≤ 1, 0 ≤ β ≤ 1}). Two curves coloured dark blue in
the left panel imply the imprecise posterior expectation of the second intentional unit
him having the imprecise prior (i.e., R0 = {(α, β)|3 ≤ α ≤ 4, 0 ≤ β ≤ 1}). Two
curves coloured dark read in the right panel imply the imprecise posterior expectation
of someone else having the imprecise prior (i.e., R0 = {(α, β)|0 ≤ α ≤ 1, 5 ≤ β ≤
6}). Within the same coloured curves, the solid curve implies the maximum imprecise
posterior expectation En(θ|y) and the dashed curve implies the minimum posterior
expectation En(θ|y).
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your natural imprecise prior by three units in the right direction on α-axis. From that

figure, it is also shown that all subsequent regions Rn representing his imprecise posterior

are moved from the regionsRn representing your imprecise posteriors by the same amount of

units in the same direction on the same axis. The unit squares coloured blue represent your

imprecise probabilities and the transparent unit squares represent his imprecise probabilities.

This translation behaviour on the hyperparameter space exemplifies the benefit derived from

the conjugate prior measure formulation in the proposed methodology.

Since this imprecise inference is independently performed by each intentional unit, now

suppose that you and he communicate to share the conclusions that you draw and that he
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draws. Both you and he would be embarrassed since your imprecise posterior summaries

are not identical to his imprecise posterior summaries despite of the use of identical data as

shown in the Tables 3.1 and 3.2. The plot on the left panel in Figure 3.6 shows this difference

more clearly. To produce this plot, it is assumed that both intentional units you and him

continue to carry out imprecise inferences until 200 sequential samples are observed. The

two curves coloured black imply that the imprecise posterior summaries produced from your

natural imprecise prior, and the other two curves coloured dark blue imply the imprecise

posterior summaries produced from his imprecise prior. Within the same coloured curves,

the solid curve implies the maximum imprecise posterior expectation En(θ|y) and the dashed

line implies the minimum imprecise posterior expectation En(θ|y). This set of two curves

consisting of En(θ|y) and En(θ|y) is referred to as an imprecise learning curve for a single

intentional unit from this point on. The horizontal line at θ = 0 is the reference line implying

the true value used for simulating the data. As shown in this plot, your imprecise learning

curve is much different from his imprecise learning curve at the initial learning period (i.e.,

the period of observing the first few samples). It is also shown that, within each intentional

unit, a conflict between prior belief and data (Walley, 1991, p. 222) lasts for a certain period

(say, n = 150) of the learning process.

The plot on the right panel in Figure 3.6 is produced by assuming that the characterized

region R0 = {(α, β)|0 ≤ α ≤ 1, 5 ≤ β ≤ 6} describes the imprecise prior of some other

individual who believes that the canonical parameter θ is less than a zero value. In this

case, the two curves coloured dark red imply the learning curve of the other individual. It is

shown that similar patterns are identified between the two intentional units and within each

intentional unit; observation of this can be found in the left panel on the plot.

The two plots in Figure 3.6 show that the pattern of your learning curve eventually

resembles the pattern of his learning curve (in the left panel) or the pattern of someone else’s

learning curve (in the right panel) since all three intentional units are observing the same

data. In other words, a conflict initially observed between learning processes is gradually

diminished following a long sequence of observational activities using the same data. Note

that a certain gap exists between the two extreme posterior expectations En(θ|y) and En(θ|y)

in each learning curve despite a sufficiently long learning period.
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3.3.5 Soft (Weaker) Linear Updating Behaviour of Imprecise Pos-

terior Expectation

The examples presented in this subsection illustrate a soft linear updating behaviour of

an imprecise posterior expectation using the proposed methodology. Based on the study of

Diaconis and Ylvisaker (1979), a linearity of posterior expectations of the mean parameter

µ of a Poisson sampling model f(y|µ) exists. Johnson (1967), an earlier study of Diaconis

and Ylvisaker (1979), also supports this statement. However, this does not hold true in the

proposed methodology.

To examine this fact, consider first a natural imprecise prior which is represented by the

region R0 = {(α, β)|0 ≤ α ≤ 10, 0 ≤ β ≤ 10} on the hyperparameter space Ξ in a family of

log-gamma prior distributions. Assume that a sample of size n is drawn from the standard

Poisson sampling model with a mean of µ = 2. Different sample sizes of n being 1, 2, 5, and

10 are considered. The random seed 18372342 is utilized for simulating these four different

sizes of Poisson random variates. The proposed methodology is applied to each sample with a

predefined natural imprecise prior. For the resulting imprecise posterior with a sample of size

n, a surface plot of the imprecise posterior expectation is produced using the function plot()

provided in the ipeglim package in order to investigate whether or not that an imprecise

posterior expectation is linearly updated. Figure 3.7 shows four different surface plots of

posterior expectation E(θ|y) each of which is generated from the given imprecise prior R0

with different sizes n of a sample.

It is observed from the surface plots that all posterior expectations with different sizes

of a sample do not lie on the linear plane. Although the surface plot labelled n = 10 on

the bottom right panel in the Figure 3.7 looks linear, it is not in fact linear since the space

between the contour levels on the bottom of that surface plot is not fully parallel. However,

this graphically represented diagnostic informs us as to how the surface of an imprecise

posterior expectation becomes flattened. Careful attention must be exercised when using the

proposed methodology when searching for the upper imprecise posterior expectation En(θ|y)

and the lower imprecise posterior expectation En(θ|y).
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Figure 3.7: The surface plots of an imprecise posterior expectation over different
sample sizes n = 1, 2, 5, and 10 when the natural imprecise log-gamma prior (i.e.,
corresponding to the region R0 = {(α, β)|0 ≤ α ≤ 10, 0 ≤ β ≤ 10}) is specified.
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Following are the steps describing a further numerical investigation that is planned at this

time with regard to this non-linear optimization problem of an imprecise posterior expecta-

tion:

1. Find a global optimum ξ̂ of hyperparameters ξ using the iterative Newton’s method;

2. Evaluate the quantity of a posterior expectation En(θ|y) at the global optimum ξ̂ found;

3. Repeat step (2) for all extreme points of the predefined region R0;

4. Examine if the maximum or minimum of a posterior expectation En(θ|y) occurs at one
of the extreme points.

Since the objective function to be optimized here is En(θ|y) = ψ(α+nȳ)−log(β+n), where

ψ(·) is a digamma function, the score function needed for the iterative Newton’s method is

given by:

∇Eπ(ξ) = (ψ′(α + y),−(β + 1)−1)T (3.12)

where ψ′(α) is a trigamma function. The Hessian matrix H is found as detailed below:

H(ξ) =

ψ′′(α + y) 0

0 (1 + β)−2

 , (3.13)

where ψ′′(·) is a polygamm function of order 2 (or, tetragamma function) and its quantity

can be obtained using R function psigamma(x, deriv = 2). The optimal solution for the

objective function can be searched iteratively using the score function in (3.12) and the

Hessian matrix in (3.13) as written below:

ξ̂(t) ≈ ξ̂(t−1) −∇Eπ(ξ̂)H−1(ξ̂). (3.14)

The actual computation of this non-linear optimization problem is done by the R function

constrOptim() instead of using a direct implementation of the iterative Newton’s method

described in above since the function constrOptim() uses an adaptive barrier algorithm

which stems from Newton’s method (Lange, 1999, p. 185–187). The maximization of a given

objective function can be carried out by setting the negative value of the option fnscale

when the function constrOptim() is used.
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Table 3.3: Comparison of optimal solutions of hyperparameters (α, β) for the im-
precise posterior expectation En(θ|y) with sample sizes n = 1, 2, 5, and 10. Op-
timal solutions are found by using the R built-in function constrOptim() and us-
ing the linear programming (LP) technique adopted in the proposed methodology,
respectively. The imprecise log-gamma prior is given by characterizing the region
R0 = {(α, β)|0 ≤ α ≤ 10, 0 ≤ β ≤ 10}.

Hyperparameters

α̂ β̂ En(θ|y)

n = 1
constrOptim (min) 0.000 10.000 −1.975
LP Approach 0.000 10.000 −1.975
constrOptim (max) 10.000 0.000 2.443
LP Approach 10.000 0.000 2.443

n = 2
constrOptim (min) 1.000 8.000 −1.274
LP Approach 1.000 8.000 −1.274
constrOptim (max) 5.000 1.000 1.180
LP Approach 5.000 1.000 1.180

n = 5
constrOptim (min) 2.000 4.000 −0.353
LP Approach 2.000 4.000 −0.353
constrOptim (max) 8.000 2.000 1.153
LP Approach 8.000 2.000 1.153

n = 10
constrOptim (min) 0.170 6.294 −1.460
LP Approach 0.170 6.294 −1.460
constrOptim (max) 6.294 0.170 1.897
LP Approach 6.294 0.170 1.897

Table 3.3 shows the estimated optimal hyperparameters α̂ and β̂ and the estimated

posterior expectation at the estimated optimum of the hyperparameters. It is confirmed

that the linear programming technique in the proposed methodology found the exact and

identical optimum of hyperparameters as compared to those found when using the function

constrOptim() for both the minimum and maximum posterior expectations over all different

sample sizes of n. Hence, the author of this thesis is confident about employing the linear

programming technique to search for the maximum and minimum posterior expectation in

this proposed methodology for imprecise inference in favour of considering the Karush-Kuhn-
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Figure 3.8: Extreme points of the region R0 = {(α, β)|β ≥ −α + 3, β ≤ −α + 7, β ≥
α − 3, β ≤ α + 1, β ≤ 3, β ≥ 1} characterized on the hyperparameter space Ξ in a
family of log-gamma prior distributions.
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Turcker (KKT, also known as the Kuhn-Tucker) conditions that uses the Lagrange multipliers

method. These numerical results as presented in Table 3.3 are supported by graphical di-

agnostics using the surface plot of an imprecise posterior expectation. (Please see also the

surface plots of an imprecise posterior expectation over four differently characterized regions

at the fixed size n = 1 of a sample in Appendix C.2).

3.3.6 Focusing Behaviour of Imprecise Posterior

The minimum and maximum posterior expectations are the primary imprecise posterior

numerical summaries in this imprecise inference. In the proposed methodology, these two

numerical summaries have been used for illustrating the geometric translation behaviour of an

imprecise prior in Subsection 3.3.2, the agreement between more than one intentional unit in

Subsection 3.3.4, and the soft linear updating behaviour of an imprecise posterior expectation

in the previous Subsection 3.3.5. However, it may be difficult for a novice to realize the

benefits of applying the imprecise inference to a problem of estimating the parameter of a
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sampling model due to an unfamiliarity with the notion of imprecision (Walley, 1991, p. 210).

The focusing behaviour of an imprecise posterior presented in this subsection may be one

approach that can be used to provide an intuitive approach to the notion of imprecision.

To present this focusing behaviour, a probability box (or, simply p-box) presented in

Ferson et al. (2007) is used. The principle of the p-box is that all possible cumulative

distributions are enclosed by the upper (left) and the lower (right) bounds on the probabilities.

The enclosing probabilities are in fact matched to the distributions producing the minimum

imprecise posterior expectation En(θ|y) and the maximum imprecise posterior expectation

En(θ|y). Since these extreme posterior expectations have occurred at one of the extreme

points in the proposed methodology, the p-box can be efficiently constructed using the optimal

solutions of hyperparameters. The analytical proof of this suggestion is related to Troffaes

and Destercke (2011) and is left for further research.

Consider the region R0 characterized by six linear inequality constraints of {(α, β)|β ≥

−α + 3, β ≤ −α + 7, β ≥ α − 3, β ≤ α + 1, β ≤ 3, β ≥ 1} on the hyperparameter space in

a family of log-gamma prior distributions. The characterized region R0 is shown in Figure

3.8. The extreme points are coloured red, and an identification number is assigned to each

of these extreme points. A sample of size n is drawn from the standard Poisson sampling

model with a mean of µ = 2. Four different sizes of n which are 10, 20, 50, and 100

are selected. The function pbox() provided in the ipeglim package generates a sampling

distribution of the canonical parameter θ at each of the extreme points of the characterized

region R0 by using the Metropolis-Hastings algorithm with a given sample of size n. The

empirical cumulative probabilities computed from the generated sampling distribution are

plotted against the ordered samples of the canonical parameter θ as shown in Figure 3.9.
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Figure 3.9: Focusing behaviour of an imprecise posterior with different sample sizes
n = 10, 20, 50, and 100; Samples are taken from the standard Poisson sampling model
with a mean of µ = 2; The imprecise log-gamma prior illustrated in Figure 3.8 is used.
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It is confirmed that the posterior distributions with the identification numbers x4 and x1

lie at the most left and right sides, respectively, and all posterior distributions generated at

the extreme points are enclosed by these two posterior distributions for all cases of the four

different samples. Note also that the probability band enclosed but not overlapping each

other by these two posterior distributions of x4 and x1 is becoming focused on the true value

of the canonical parameter θ = log(2) which was used for simulating the samples as the size n

of a sample increases. In fact, the author of this thesis tested repeatedly to determine whether

or not any member of the resulting imprecise posteriors are enclosed by these two posterior

distributions at different sizes of a sample using at least 100 hyperparameters inside or lying

on the boundaries of the characterized region R0. These test results are not presented here
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Table 3.4: The posterior expectation En(θ|y) estimated at the every extreme point
x1, x2, x3, x4, x5, and x6 of the region R0 = {(α, β)|β ≥ −α + 3, β ≤ −α + 7, β ≥
α − 3, β ≤ α + 1, β ≤ 3, β ≥ 1} which was used for constructing the probability boxes
in Figure 3.9 for sample sizes n = 10, 20, 50, and 100.

n = 10 n = 20 n = 50 n = 100

x1 0.792 0.748 0.745 0.651
x2 0.629 0.658 0.707 0.630
x3 0.381 0.523 0.651 0.600
x4 0.341 0.491 0.633 0.591
x5 0.505 0.581 0.671 0.612
x6 0.711 0.704 0.725 0.641
∆n(θ|y) 0.451 0.257 0.111 0.059
Area of Band 0.450 0.256 0.110 0.059

since the use of posterior distributions generated at the extreme points is sufficient to present

this focusing behaviour of an imprecise posterior as shown in the Figure 3.9 .

To ensure that the degree of imprecision ∆n(θ|y) induced from this probability box is

equal to the one found by a difference between two extreme posterior expectations, the area

enclosed by two posterior distributions with x4 and x1 is evaluated. This quantity is reported

in the last row on Table 3.4 for each of four different samples, and the posterior expectations

E(θ|y) estimated at every extreme point are also listed. The difference noted between the

degree of imprecision ∆n(θ|y) computed by using the maximum and minimum expectations

versus the area of the probability band, compared in Table 3.4,is apparent at third decimal

place and is due to the fact that the probability band is constructed using the Metropolis-

Hastings algorithm. The exact quantity of this imprecision ∆n(θ|y) will be found in future

research.
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Chapter 4

B-Formulation

A family of log-gamma prior distributions used in the previous Chapter 3 is a conjugate

prior probability measure for a canonically parametrized standard Poisson likelihood. The

question to be examined is how to lead an imprecise inferential framework when a family of

prior distributions is no longer conjugate for a given sampling model. The purpose of this

chapter is to introduce a formulation strategy, the author has named the B-formulation ,

for structuring a conjugate prior probability measure for such a case. The principle of the

B-formulation is to construct a new family of probability distributions that accounts for both

prior and posterior distributions using a higher-dimensional exponential family representation

(Lee and Bickis, 2012).

At this time, the author of this thesis takes this opportunity to provide a background

regarding the origin of the name B-formulation. The author has been privileged to have

Professor Mik, elis Bickis supervising this thesis work. It was from a discussion with him that

the idea of this B-formulation arose in July, 2012, and its results ultimately culminate in the

outline of this thesis work. The author thus refers this canonically parametrized conjugate

prior measure formulation to as B-formulation for Professor Mik, elis Bickis in appreciation of

his statistical insight.

The B-formulation is discussed in the following sections for three different cases. In Sec-

tion 4.1, a family of normal prior distributions is examined for the instance of lacking a

conjugate prior measure due to the use of other families of prior distributions for a canon-

ically parametrized standard Poisson likelihood. The three primary behaviours of the pro-

posed methodology are re-examined to ensure that B-formulation produces the anticipated

results which in this instance is the construction of a conjugate prior probability measure. In

keeping with the research interest as presented in Chapter 1, the B-formulation presented in
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Section 4.1 is applied to the problem of inferring the canonical parameter of a zero-truncated

Poisson sampling model when either a family of log-gamma or normal prior distributions is

considered for an imprecise inference in Section 4.2. A comparative investigation into im-

precise estimates of the canonical parameter of standard Poisson and zero-truncated Poisson

sampling models is made. An examination of the B-formulation in fact aids in determining

whether or not the proposed methodology can be extended to further regression analysis in

the context of a generalized linear model. In the last section 4.3 of this chapter, the proposed

methodology is applied to the problem of estimating the regression parameters for both the

standard and the zero-truncated Poisson regression models.

4.1 B-Formulation: Three-Parameter Exponential Fam-

ily Representation

A family of log-normal distributions is often considered to be a mixing distribution for

explaining over-dispersed count data (Winkelmann, 2008). The underlying probability theory

of this mixture modelling is not the same as the probability theory supporting the Bayesian

paradigm; however, both mixture modelling and the Bayesian paradigm share the same

mathematical framework for marginalizing the model parameter. Note that a normalizing

constant of the mixed Poisson-log-normal distribution is not known (Weems and Smith, 2004,

p. 192).

Suppose that the mean parameter µ of a standard Poisson sampling model f(y|µ) is

log-normally distributed with a mean of ν ∈ (−∞,∞) and a variance of τ 2 > 0. The

canonical parameter θ = log(µ) then has a normal distribution for which the probability

density function is given by

π(θ|ν, τ 2) =
1√

2πτ 2
exp

(
− 1

2τ 2
(θ − ν)2

)
. (4.1)

Since the underlying assumption of the proposed methodology is that an imprecise prior

and an imprecise posterior are conjugate, the functional form of a family of normal prior

distributions π(θ) in (4.1) needs to be compared with a family of posterior distributions
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p(θ|y) after observing n i.i.d. Possion samples such that

p(θ|y) ∝ exp(nȳθ − neθ) exp

(
− 1

2τ 2
θ2 +

ν

τ 2
θ − ν2

2τ 2

)
(4.2)

∝ exp

(
− 1

2τ 2
θ2 + (

ν

τ 2
+ nȳ)θ − neθ

)
, (4.3)

where ȳ = 1
n

∑n
i yi. Since the functional form of the unnormalized posterior distribution

p(θ|y) in (4.3) is not identical to the one in (4.1), it becomes apparent that theses two

families of distributions are not conjugate.

However, the unnormalized posterior distribution p(θ|y) in (4.3) provides another per-

spective for the formulation of a conjugate relationship between two families of distributions

by viewing it as the representation of an exponential family of distributions that involves three

random quantities of θ2, θ, and eθ each of which is a function of the canonical parameter θ

such that

p(θ|y) = exp(−ξ2θ
2 + ξ1θ − ξ0e

θ −A(ξ2, ξ1, ξ0)) (4.4)

where A(ξ2, ξ1, ξ0) is the log-normalizer given by

A(ξ2, ξ1, ξ0) = log

∫ ∞
−∞

exp(−ξ2θ
2 + ξ1θ − ξ0e

θ)dθ < 0, (4.5)

and ξ2, ξ1, and ξ0 are the hyperparameters defined as

ξ2 =
1

2τ 2
, ξ1 =

ν

τ 2
+ nȳ, ξ0 = n. (4.6)

The hyperparameter space Ξ of this newly defined distribution in (4.4) is found by

Ξ = {(ξ2, ξ1, ξ0)|ξ2 > 0, −∞ < ξ1 <∞, ξ0 ≥ 0}. (4.7)

Note that if the parameter ξ0 associated with eθ is set by 0 (i.e., no observations), then

(4.4) corresponds to a family of normal prior distributions π(θ) in (4.1) since the term eθ

contributed by the standard Poisson samples y are eliminated. Similarly, if the parameter

ξ2 associated with θ2 is set by 0, then (4.4) corresponds to a family of log-gamma prior
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Figure 4.1: The level surfaces of a prior expectation E(θ) of a newly defined prob-
ability distribution in (4.4) referenced at the values of {−3,−2,−1, 0, 1, 2, 3} starting
from the left to the right using different colours on the hyperparameter space Ξ =
{(ξ2, ξ1, ξ0)|ξ2 > 0,−∞ < ξ1 <∞, ξ0 ≥ 0}.
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distributions in (3.9). This newly defined family of distributions in (4.4) ultimately includes

both families of log-gamma and normal prior distributions.

This canonical parametrization-based conjugate prior measure formulation presented above

needs to be examined prior to use with the proposed methodology. If the newly defined fam-

ily of distributions in (4.4) accounts for a conjugate relationship between two families of

prior and posterior distributions for a Poisson likelihood, the three major behaviours of the

proposed methodology would be reproduced as shown in Subsections 3.3.2, 3.3.5, and 3.3.6.

In order to examine the translation behaviour of an imprecise prior, a posterior expec-

tation E(θ|y) needs to be computed numerically by evaluating the ratio of two integrals:

E(θ|y) =

∫∞
−∞ θ exp(−ξ2θ

2 + ξ1θ − ξ0e
θ)dθ∫∞

−∞ exp(−ξ2θ2 + ξ1θ − ξ0eθ)dθ
, (4.8)

and all possible prior expectations of E(θ) have to be evaluated over the entire hyperparam-

eter space Ξ since the state of complete-ignorance is most accurately portrayed by a convex

hull C that geometrically captures the prior expectation E(θ) as well as possible.
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Figure 4.1 illustrates the range of this prior expectations of E(θ). The level surfaces are

referenced at the values of the prior expectations of E(θ) from -3 to 3 by 1 beginning from

the left to the right using different colours for visual clarity. Each level surface appears as

an almost linear surface over the three-dimensional hyperparameter space Ξ. Note that each

surface curves slightly near the point of origin (0, 0, 0). (Each level surface in this figure

appears to be a linear plane due to the matters of scale related to presenting this set on

a wide range of the hyperparameter space.) From this figure it is observed that the space

between level surfaces becomes wider as the value of the hyperparameter ξ0 increases. Since

the hyperparameter ξ0 in (4.6) implies the size n of a sample observed, a natural imprecise

prior is defined by characterizing some region on the plane of two hyperparameters ξ2 and ξ1

which is the hyperparameter space Ξ sliced at the zero value of the hyperparameter ξ0. One

potential approach to characterize this region is to utilize four linear inequality constraints

such that R0 = {(ξ2, ξ1)|0.5 ≤ ξ2 ≤ 1,−1 ≤ ξ1 ≤ 1}. Using this analogy, the translation

behaviour of an imprecise prior can be investigated as a new sample is observed.

For illustrating this translation behaviour, three samples y1 = y2 = y3 = 1 are taken from

the standard Poisson sampling model with a mean of µ = 1 (the random seed 16979238 is

used). Assume that you are the intentional unit who is leading the imprecise inference for

estimating the canonical parameter θ of this standard Poisson sampling model from which

samples are drawn. The natural imprecise prior is used as given above, and presented in the

plot on the top left in Figure 4.2. The almost straight lines on the hyperparameter space

represented by ξ1 and ξ2 are the reference lines of the prior expectation E(θ) of which values

range from -1 to 1 by 0.2. The plots in Figure 4.2 are labelled as n = 1 (i.e., the first sample

y1 = 1 is observed), n = 2 (the second sample y = 2), and n = 3 (the third sample y3 = 1).

Since the hyperparameter ξ2 = 1/τ 2 is a constant, the region R0 moves only to the right

along the ξ1-axis by the quantity of each sample y1 = 1, y2 = 1, and y3 = 1. Concurrently,

the reference curves of the prior expectation E(θ) are extended outward so that the range of

the prior expectation E(θ) covered by the natural imprecise prior narrows. This movement

of the natural imprecise prior illustrates that the amount of uncertainty due to your prior

ignorance is being reduced by learning from data.
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Figure 4.2: Translation behaviour of the imprecise normal prior (i.e., corresponding
to the region R0 = {(ξ2, ξ1)|0.5 ≤ ξ2 ≤ 1,−1 ≤ ξ1 ≤ 1}) on the plane of ξ1 and ξ2

which is the hyperparameter space Ξ sliced at ξ0 = 0, 1, 2, and 3.
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For an examination of the soft linear updating behaviour of an imprecise posterior expec-

tation, a sample of size 10 is newly drawn from the standard Poisson sampling model with a

mean of µ = 2 (y = {2, 1, 2, 0, 1, 3, 2, 1, 3, 1}). The random seed 16979238 is utilized for these

Poisson random variates, and the identical natural imprecise prior is employed. The surface

plot for the imprecise posterior expectation is produced over the region R0 by assuming that

you observe the first n samples sequentially. These plots in Figure 4.3 are labelled n = 1 (i.e.,

after observing the first sample y1 = 2), n = 2 (i.e., the first two samples), n = 5 (i.e., the

first five samples), and n = 10 (all samples). The contour plot on the bottom of each surface
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plot is used as a graphical diagnostic tool to examine the linearity of the imprecise posterior

expectation. For example, the imprecise posterior expectation is linearly updated over the

region R0 in the two-dimensional hyperparameter space if the contour lines are parallel and

equally spaced.

Figure 4.3: Soft-linearity behaviour of a posterior expectation En(θ|y) for the case
when an imprecise normal prior is used. The surface plots of an imprecise posterior
expectation with different sample sizes ξ0 = 1, 2, 5, and 10 over the imprecise normal
prior (i.e., corresponding to the region R0 = {(ξ2, ξ1)|0.5 ≤ ξ2 ≤ 1,−1 ≤ ξ1 ≤ 1}).
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The imprecise posterior expectations in the plots labelled n = 1 and n = 2 are not linear

while those in the plots labelled with n = 5 and n = 10 seem to be nearly linear. Conse-

quently, it is then anticipated that the linear programming technique employed in the pro-

posed methodology can efficiently search for the optimal solution of hyperparameters ξ2 and

ξ1 that either maximizes or minimizes the posterior expectation of En(θ|y) over the imprecise

posterior. The two dashed horizontal squares in the surface plot are the reference boxes that

show the extreme posterior expectations over the region R0 in the two-dimensional hyperpa-

rameter space of ξ2 and ξ1. The maximum and the minimum are found at (ξ1, ξ2) = (1.0, 0.1)

and (ξ1, ξ2) = (−1.0, 0.1), respectively, for all different sample sizes from the surface plots.

These optimal hyperparameters are also ascertained by examining whether or not the so-

lutions found by the linear programming technique coincide with those searched by the R

function constrOptim() (as studied in Subsection 3.3.5). This numerical comparison is pre-

sented in Table 4.1. The degree of imprecision ∆n(θ|y) is graphically represented by the gap

between the two dashed squares on the vertical axis of the surface plot, and the corresponding

numerical quantities are also reported in Table 4.1. A decrease on the degree of imprecision

∆n(θ|y) is observed as the size n of a sample increases.

Table 4.1: Comparison of optimal solutions of hyperparameters (ξ1, ξ2) for the im-
precise posterior expectation En(θ|y) with different sample sizes ξ0 = 1, 2, 5, and 10.
Optimal solutions are found by using the R built-in function constrOptim() and us-
ing the linear programming (LP) approach adopted in the proposed methodology,
respectively. The imprecise normal prior is described by characterizing the region
R0 = {(ξ2, ξ1)|0.1 ≤ ξ2 ≤ 1,−1 ≤ ξ1 ≤ 1}.

Optimum

ξ̂1 ξ̂2 En(θ|y)

ξ0 = 1
constrOptim (min) −1 0.1 −0.342
LP Approach −1 0.1 −0.343
constrOptim (max) 1 0.1 0.873
LP Approach 1 0.1 0.868
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Table 4.1: (continued)

Optimum

ξ̂1 ξ̂2 En(θ|y)

ξ0 = 2
constrOptim (min) −1 0.1 −0.204
LP Approach −1 0.1 −0.212
constrOptim (max) 1 0.1 0.543
LP Approach 1 0.1 0.540

ξ0 = 5
constrOptim (min) −1 0.1 −0.092
LP Approach −1 0.1 −0.095
constrOptim (max) 1 0.1 0.259
LP Approach 1 0.1 0.258

ξ0 = 10
constrOptim (min) −1 1.0 0.330
LP Approach −1 1.0 0.330
constrOptim (max) 1 0.1 0.496
LP Approach 1 0.1 0.495

To examine the focusing behaviour of an imprecise posterior, a sample of size 20 is taken

from the standard Poisson sampling model with a mean of µ = 2 (The random seed 18372342

is used for this generation). The imprecise inference is carried out sequentially with the first 3,

5, 10, and 20 samples using the proposed methodology. A probability box is constructed using

the imprecise posterior resulting from each imprecise inferential process, and labelled n = 3,

n = 5, n = 10, and n = 20 as shown in Figure 4.4. The labels x1, x2, x3, and x4 associated the

imprecise posterior are the identification numbers of extreme points characterizing the region

R on the hyperparameter space of ξ1 and ξ2. Note that the probability band enclosed by the

two posterior distributions labelled x1 (corresponds to the maximum posterior expectation)

and x3 (corresponds to the minimum posterior expectation) are becoming focused upon the

vertical line which lies at θ = log(2) as a result of observing a greater number of samples.

log(2) is the value which was used for simulating the Poisson random variates in the log scale

of the canonical parameter θ.
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Figure 4.4: Probability boxes of an imprecise normal prior after observing a sample
of size n = 3, 5, 10, and 20 which are simulated from the standard Poisson sampling
model with a mean of µ = 2 (i.e., corresponds to the canonical parameter θ = log 2).
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Notes in Numerical Computation

From the examination of the three primary behaviours in the proposed methodology,

the B-formulation is a useful formulation strategy when a prior distribution is no longer

conjugate for the canonically parametrized Poisson likelihood. However, one of the goals in

this thesis work is seeking to provide a reliable and efficient numerical method for the proposed

methodology. It is prudent at this time to discuss a computational difficulty associated with

B-formulation due to the fact the integrals needed for computing the quantity of a posterior

expectation in (4.8) cannot be analytically evaluated.
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To ensure the correctness of a numerically evaluated quantity, the quantities produced

from two (or three) numerical methods are compared to three decimal places. The most

commonly used numerical methods used throughout the examples in this section are the

Metropolis-Hastings algorithm (Hastings, 1970) and the Laplace approximation (Tierney and

Kadane, 1986). Importance sampling or the adaptive quadrature method is selectively used

when a discrepancy occurs between the results obtained when using the Metropolis-Hastings

and the Laplace approximation. Table 4.2 exemplifies this numerical comparison.

The results in this table are taken from the example that was used to illustrate the focus-

ing behaviour of an imprecise posterior. The quantities of the posterior expectation evaluated

at each of the extreme points x1, x2, x3, and x4 are summarized using numerical methods

over different sample sizes. The missing values in this table imply a failure of evaluation be-

cause of the non-finite value returned from the function integrate(). The computing time

(in seconds, s) needed for evaluating a single posterior expectation (i.e., at a single extreme

point) is reported as well in the last column of this table, and the function proc.time() is

used for measuring the single-thread run-time processed in R. Note that the author’s com-

puting environment is Ubuntu Linux 13.10 (64 bits) on the Intel quadcore i5-3230M CPU

(2.60 GHz) with 7.5 GB RAM.

Table 4.2: Comparison of the quantities of the posterior expectation En(θ|y) evaluated
by the three different numerical methods (the adaptive quadrature, the Metropolis-
Hastings algorithm, and the Laplace approximation) at each extreme point x1, x2, x3
and x4 of the region R0 = {(ξ2, ξ1)|0.5 ≤ ξ2 ≤ 1,−1 ≤ ξ1 ≤ 1} that describes the
imprecise normal prior. A sample of size n = 3, 5, 10, and 20 which are drawn from the
standard Poisson sampling model with a mean of µ = 1 is used for this quantification,
and the degree of imprecision ∆n(θ|y) is computed. The computation time (in seconds,
s) elapsed for evaluating the posterior expectation En(θ|y) over all extreme points is
listed in the last column.

x1 x2 x3 x4 ∆n(θ|y) Time (s)

ξ0 = 3
Adaptive Quadrature 0.007
Laplace Approximation 0.677 0.349 0.267 0.530 0.411 0.010
Metropolis-Hastings 0.697 0.350 0.239 0.537 0.458 0.420
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Table 4.2: (continued)

x1 x2 x3 x4 ∆n(θ|y) Time (s)

ξ0 = 5
Adaptive Quadrature 0.003
Laplace Approximation 0.768 0.585 0.490 0.657 0.278 0.004
Metropolis-Hastings 0.757 0.588 0.494 0.659 0.264 0.426

ξ0 = 10
Adaptive Quadrature 0.636 0.531 0.479 0.579 0.157 0.002
Laplace Approximation 0.636 0.531 0.479 0.579 0.157 0.004
Metropolis-Hastings 0.645 0.522 0.479 0.554 0.166 0.436

ξ0 = 20
Adaptive Quadrature 0.664 0.613 0.582 0.632 0.082 0.003
Laplace Approximation 0.664 0.613 0.582 0.632 0.082 0.005
Metropolis-Hastings 0.673 0.611 0.587 0.630 0.086 0.421

Regarding the use of the Metropolis-Hastings algorithm, the kernel exp(−ξ2θ
2+ξ1θ−ξ0e

θ)

of a newly defined family of distributions in (4.4) is used as an objective function from which

samples are needed to be drawn. The normal distribution with a mean of µ and a variance

of σ2 is employed for a proposal distribution, and the mean µ and variance σ2 defaults to

the sample mean ȳ and sample variance s2 = 1
n−1

∑n
i=1(yi− ȳ)2. When a single sample (i.e.,

n = 1) is given, the variance σ2 defaults to 1. The length of the Markov chain and the burn-in

period are set to 2000 (or 10000) and 500 by default, respectively. Winkelmann (2008) noted

these values are commonly used in practice (p. 244). Experience with this algorithm reveals

that a Markov chain of 10, 000 is preferred; however, it is also found that a length 2, 000

is sufficient for use in most of the illustrations. Thus for reasons of economy, 2, 000 is the

default for the ipeglim package. These default values can be changed by the control option

when the function update() is used. The following command illustrates how to change the

default values of the lengths of Markov chain and the burn-in period

> update(obj=cmfit, method="MH", apriori="lgamma",
+ control=list(len.chain=1e4, len.burnin=1e3))

and changes the default values of mean µ and standard deviation s of a proposal distribution
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> update(obj=cmfit, method="MH", apriori="lgamma",
+ proposal=list(mean=mean(y), sd=sd(y)))

Regarding the use of the Laplace approximation, the equation (4.8) is used as an ob-

jective function for direct evaluation. The score function and the Hessian matrix needed

for implementing this Laplace approximation are noted in Appendix A.3. Note that the

condition required for the standard Laplace approximation is that the objective function to

be estimated should be positive as noted in Section 2.3.3; however, the working objective

function in this proposed methodology does not meet this requirement since the canonical

parameter θ ranges from minus infinity to infinity. According to the study done by Tierney

et al. (1989), one resolution when working with a non-positive objective function is to add a

large constant, and then subtract that constant after completion of the estimation (p. 713).

However, no additional information has been found regarding determining the exact size of

that constant. Through repeated test results, the constants exp(1e1) and exp(2e1) provide

reliable estimates. As illustrated in the case of the Metropolis-Hastings algorithm, these de-

fault values can be changed by the option control when the function update() is used as

below:

> update(obj=cmfit, method="LA", apriori="lgamma",
+ control=list(const=2e1))

During the testing of the ipeglim package, the following observations were made regard-

ing the use of the different numerical methods. First, the Metropolis-Hastings algorithm is

considerably slower than the Laplace approximation method to reach an estimate. Second,

both the Metropolis-Hastings algorithm and the Laplace approximation are generally suc-

cessful in achieving estimates despite the small sample size (roughly less than 10); however,

the adaptive quadrature method fails when examining cases characterized by a comparatively

small sample size. Finally, estimates produced using an importance sampling method are not

stable at two or three decimal places when compared to the estimates produced using other

numerical methods. Because of these unstable numerical results, the importance sampling

procedure is not fully automated in the ipeglim package and is currently under examination.

It may be due to the use of a normal distribution with a sample mean and a sample variance
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as a proposal sampling density function; thus, further efforts are needed to employ other

families of proposal distributions.

4.2 Zero-Truncated Poisson Sampling Model

The previous section presented a conjugate relationship between two families of prior and

posterior distributions that is built by the newly introduced formulation strategy called the

B-formulation for the instance where a family of normal distributions is considered as a prior

probability measure for a standard Poisson likelihood which is canonically parametrized.

Another instance of lacking a typical conjugate prior probability measure can be found when

a standard Poisson sampling model is truncated at zero. The question then is as whether or

not the B-formulation can be applied to build a conjugate relationship for this case as shown

in the previous section.

Suppose that a standard Poisson sampling model f(y|µ) = e−µµy/y! having the mean

parameter µ is given. For performing the proposed imprecise inferential framework, the

given sampling model f(y|µ) needs to be canonically parametrized and examined first to

determine if it is a member of an exponential family. Since a probability of zero count is

f(0|µ) = e−µ, a probability density function of a zero-truncated Poisson sampling model

f(y|y > 0, θ) can be written as

f(y|y > 0, θ) =
1

y!
exp(yθ − eθ − log(1− e− exp(θ))), (4.9)

which continues to belong to an one-parameter exponential family of distributions having the

same canonical parameter θ = log(µ) as a standard Poisson sampling model f(y|µ). Note

that the log-normalizing constant for the zero-truncated Poisson sampling model f(y|y > 0)

in (4.9) is eθ + log(1− e− exp(θ)).

Consider now a situation where n i.i.d. samples drawn from the zero-truncated Poisson

sampling model f(y|y > 0) is observed. Assume that a family of log-gamma prior distribu-

tions given in (3.9) is considered to address the problem of estimating the canonical parameter

θ of this sampling model f(y|y > 0). For the convenience of readers, note that the kernel of
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a log-gamma distribution in (3.9) is exp(αθ − βeθ) and α and β are the hyperparameters.

The kernel of the resultant family of posterior distributions p(θ|y) is then given by

p(θ|y) ∝ exp
{

(nȳ + α)θ − (β + n)eθ − n log(1− e− exp(θ))
}
, (4.10)

which differs from the one of a family of log-gamma prior distributions in (3.9). However, it is

noticed that (4.10) is a family of distributions that has been derived by the B-formulation as

shown in (4.4). That is, the unnormalized posterior distribution in (4.10) can be represented

by a three-parameter exponential family of distributions such that

p(θ|y) ∝ exp
{
ξ2θ − ξ1e

θ − ξ0 log(1− e− exp(θ))
}
, (4.11)

where ξ2, ξ1, and ξ0 are hyperparameters given by

ξ2 = nȳ + α, ξ1 = β + n, ξ0 = n. (4.12)

Note that, if there is no observation (i.e., n = 0), then the kernel of the distribution defined

in (4.11) becomes a family of log-gamma distributions.

The exact same analogy is applied to the case where a family of normal distributions

is considered as a prior probability measure for the zero-truncated Poisson sampling model

f(y|y > 0). Since the framework for deriving the kernel of a posterior distribution using the

given functional form of a normal prior distribution with a zero-truncated Poisson sampling

model f(y|y > 0) is identical to the framework described in the previous section 4.1 when

using a standard Poisson sampling model f(y) is used, only the key result is noted here.

Following the B-formulation , the kernel of a canonically parametrized posterior distribution

p(θ|y) is found as

p(θ|y) ∝ exp
{
−ξ2θ

2 + ξ1θ − ξ0

[
eθ + log(1− e− exp(θ))

]}
, (4.13)

78



where ξ2, ξ1, and ξ0 are the hyperparameters given by

ξ2 =
1

2τ 2
, ξ1 =

(
nȳ +

ν

τ 2

)
, ξ0 = n, (4.14)

which are identical to those in (4.6). The difference between the kernel in (4.4) and the kernel

in (4.13) is the presence of a renormalizing constant log(1− e− exp(θ)) which is contributed by

the truncation of a standard Poisson sampling model f(y) at zero. It is so concluded that the

B-formulation is a generalized approach for formulating a conjugate prior measure for both

the standard Poisson f(y) and the zero-truncated Poisson f(y|y > 0) sampling models when

either a family of log-gamma or normal prior distributions is considered for an imprecise

inference using the proposed methodology.

The ipeglim package provides a convenient approach for inferring the canonical parameter

of either a standard Poisson or a zero-truncated Poisson sampling model with a given family

of either log-gamma or normal prior distributions. The R code template is provided here for

the reader. Please be aware that the option ztrunc in the function model() must be set to

TRUE when a zero-truncated Poisson samples is used.

> library(ipeglim)
> lc0 <- list(lhs = rbind(diag(2), -diag(2)), rhs = c(0,
+ 0, -4, -4))
> y <- "put data in the form of a 'vector'"
> m2fit <- model(formula = y ~ 0, ztrunc = TRUE, dist = "poisson")
> cmfit <- iprior(obj = m2fit, eqns = lc0)
> plot(cmfit)
> op <- update(obj = cmfit, method = "LA", apriori = "lgamma")
> sop <- summary(op)
> plot(sop)
> pbox(sop, pretty = TRUE)

Note that the R built-in function ppois(), which computes a standard Poisson cumulative

function, is used on the computation of a renormalizing constant log(1 − e− exp(θ)), in the

ipeglim package, in order to reduce the computational problems associated with the rounding

error and the numerical overflow. For example, the direct computation of log(1 − e− exp(θ))

gives 0, 0, -4.10782519111309e-15, -36.7368005696771, -36.7368005696771, and -Inf when

θ = 4.5, 4, 3.5,−36,−36.5,−37, and −38 are evaluated while the use of ppois() returns -

8.0548340897409e-40, -1.94233760495641e-24, -4.15089692010905e-15, -36, -36.5, -37, and -38
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which are the anticipated results. Hence, it is hypothesized that the estimate of a posterior

expectation produced using the ipeglim package would be more accurate and produce less

numerical failure when compared to an estimate produced using direct computation.

From this point on three primary behaviours of the proposed methodology are re-examined

using zero-truncated Poisson samples. Please observe that the numeric and graphic sum-

maries of the resultant imprecise estimate are reported briefly since a detailed description

demonstrating how to lead an imprecise inference and construct three primary behaviours of

the proposed methodology are provided multiple times.

Suppose that 48 samples are taken from a standard Poisson sampling model f(y|µ) with

a mean of µ = 1. Then, the zero-truncated Poisson samples are obtained by removing

the value zero from the generated samples. The corresponding mean parameter µT of a

zero-truncated Poisson sampling is then E(Y |Y > 0) = µT = µ/(1 − e−µ) =1.582 and the

canonical parameter θT = log(µT ) for µT has the value of 0.4587. (The probability mass

function, the moment generating function, and the first three moments of a zero-truncated

Poisson distribution f(y|y > 0) are noted in Appendix B.1.) For inferring the canonical

parameter θ, natural imprecise prior is defined by characterizing the region R0 = {(α, β)|0 ≤

α ≤ 4, 0 ≤ β ≤ 4}. The only task that remains is a numerical computation to search for the

extremes of a resulting imprecise posterior using the ipeglim package.

The translation behaviour of your natural imprecise prior is geometrically represented

for both cases of where standard Poisson samples and zero-truncated Poisson samples are

used for imprecise inference as shown on the left and right panels, respectively, in Figure

4.5. The level set of a prior expectation E(θ) is presented beginning from -3 to 3 by 0.5

using dashed curves in each plot. However, for the use of zero-truncated Poisson samples, the

curve labelled with the zero value corresponding to the canonical parameter θ of the standard

Poisson mean parameter µ is replaced by one with the value 0.4587 that corresponds to the

canonical parameter θT of the zero-truncated Poisson mean parameter µT=1.582. It shows

that your natural imprecise prior moves consistently with the reference line (i.e., E(θ) = 0 for

the use of standard Poisson samples and E(θT ) =0.459 for the use of zero-truncated Poisson

samples).
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Figure 4.5: Translation behaviour of the natural imprecise log-gamma prior (i.e., cor-
responding to the region R0 = {(α, β)|0 ≤ α ≤ 4, 0 ≤ β ≤ 4}) for cases of when using
a standard Poisson and a zero-truncated Poisson samples are used for the imprecise
inference. Samples are simulated from the standard Poisson sampling model with a
mean of µ = 1, and zero values are removed for zero-truncated samples. The level set
of a prior expectation E(θ) is referenced beginning from -3 to 3 by 0.5 using dashed
curves. For the use of zero-truncated Poisson samples (in the right panel), the curve
labelled with a zero value corresponding to the canonical parameter θ of the standard
Poisson mean parameter µ is replaced by one with the value 0.4587 that corresponds to
the canonical parameter θT of the zero-truncated Poisson mean parameter µT=1.582.
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The focusing behaviour of an imprecise posterior is presented by two probability boxes

listed on the left and right panels in Figure 4.6. The labels n = 20 and n = 40 on each prob-

ability box imply that 20 and 40 zero-truncated samples are used for inferring the canonical

parameter θ of a standard Poisson sampling model f(y). It shows that the probability band

enclosed by two posterior distributions labelled x1 and x3 is becoming focused upon the

dashed reference line located at θ = 0. To clarify the parameter to be estimated in this im-

precise inference, note that the zero-truncated Poisson sampling model f(y|y > 0) is a scaled

standard Poisson sampling model f(y) as shown in (4.9). Hence, although zero-truncated

Poisson random variates are used, the canonical parameter θ of a standard Poisson sampling

model f(y) is estimated.
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Figure 4.6: Focusing behaviour of an imprecise posterior for the case when the natural
imprecise log-gamma prior (i.e., corresponding to the region R0 = {(α, β)|0 ≤ α ≤
4, 0 ≤ β ≤ 4}) is used with zero-truncated samples for imprecise inference. Probability
boxes of the imprecise posterior are constructed using two different samples of size
n = 20 and n = 40 as shown in the left and right panels, respectively. Samples are taken
from the standard Poisson sampling model with a mean of µ = 1 (i.e., θ = log 1 = 0).
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The results in Table 4.3 support that the enclosing posterior distributions labelled x1 and

x3 of each probability band have the maximum imprecise posterior expectation En(θ|y) and

the minimum imprecise posterior expectation En(θ|y), respectively. The results also convey

the coincidence of the imprecise estimate produced using different numerical methods over

different sample sizes. The missing values shown in Table 4.3 imply a failure of estimation

when using the numerical method of adaptive quadrature.

Table 4.3: Comparison of the quantities of the posterior expectation En(θ|y) evaluated
by the different numerical methods (the Metropolis-Hastings algorithm, the Laplace
approximation, and the adaptive quadrature) at each extreme point x1, x2, x3 and
x4 of the region R0 = {(α, β)|0 ≤ α ≤ 4, 0 ≤ β ≤ 4} that describes the imprecise
log-gamma prior. Samples are taken from the standard Poisson sampling model with a
mean of µ = 1 and the zero values removed. The first n samples are used in a sequence
for this quantification (n = 4, 20, and 40). Missing values imply a failure of numerical
quantification.

x1 x2 x3 x4

n = 4
Laplace Approximation 0.716 −0.398 −1.364 −0.137
Metropolis-Hastings 0.717 −0.399 −1.347 −0.129
Adaptive Quadrature −0.139
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Table 4.3: (continued)

x1 x2 x3 x4

n = 20
Laplace Approximation 0.055 −0.288 −0.569 −0.210
Metropolis-Hastings 0.052 −0.297 −0.574 −0.210
Adaptive Quadrature 0.055 −0.289 −0.570 −0.210

n = 40
Laplace Approximation −0.007 −0.159 −0.293 −0.137
Metropolis-Hastings −0.009 −0.160 −0.291 −0.136
Adaptive Quadrature −0.008 −0.159 −0.293 −0.137

Table 4.4 also shows the decrease in the degree of imprecision ∆n(θ|y) as the size n of a

sample increases.

Table 4.4: The maximum imprecise posterior expectation En(θ|y), the minimum
imprecise posterior expectation En(θ|y), and the degree of imprecision ∆n(θ|y) as a
zero-truncated Poisson sample is taken sequentially. The natural imprecise log-gamma
prior (i.e., corresponds to the region R0 = {(α, β)|0 ≤ α ≤ 4, 0 ≤ β ≤ 4}) is used and
the samples are taken from the standard Poisson sampling model with a mean of 1 (i.e.,
θ = log 1 = 0). The summary is reported at the sample sizes n = 4, 12, 20, 28, 36, and 40.

n = 4 n = 12 n = 20 n = 28 n = 36 n = 40

En(θ|y) −1.364 −0.652 −0.569 −0.705 −0.326 −0.293
En(θ|y) 0.716 0.258 0.055 −0.173 0.018 −0.007
∆n(θ|y) 2.080 0.910 0.624 0.532 0.344 0.285

It is intriguing to consider how the imprecise estimate is affected by zero-truncation in a

standard Poisson sampling model. To examine this question the following study was designed.

1. Draw a sample of size 15 from a standard Poisson sampling model with a mean of µ;

2. Choose the first n samples from the drawn sample;

3. Apply the proposed methodology to the chosen sample;

4. Remove the zero values from the chosen sample;

5. Apply again the proposed methodology to the zero-truncated sample;

6. Repeat the steps (2)–(5) for n = 5, 10, and 15;
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7. Repeat the steps (1)–(6) for µ = 0.5, 1, and 2;

The surface plot of the imprecise posterior expectations are listed by the size n of a sample

and whether or not zero values are truncated from the chosen sample over different mean

parameters throughout Figures 4.7, 4.8, 4.9 when a family of log-gamma prior distributions

is used. The identical graphical summary is provided for Figures 4.10, 4.11, 4.12 when a

family of normal prior distributions is used.

Three general patterns become apparent from each of the six figures regardless which fam-

ily of distributions is employed in the imprecise inference. First, the acute angle of the surface

of the posterior expectation associated with the zero-truncated Poisson sampling model is

greater than the one associated with a standard Poisson sampling model over all different

sample sizes. Hence, the degree of imprecision ∆n(θ|y) associated with the zero-truncated

Poisson sampling model is larger when compared to the one associated with standard Pois-

son sampling model. Secondly, the degree of imprecision ∆n(θ|y) for both the standard and

zero-truncated Poisson sampling models decreases as the size of a sample increases. Lastly,

the surface of the posterior expectation becomes linear even though the size n of a sample is

small when the Poisson mean parameter is large.
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Figure 4.7: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise log-gamma prior (i.e., corresponding to the region R0 = {(α, β)|0 ≤ α ≤
4, 0 ≤ β ≤ 4}). Samples are generated from the standard Poisson sampling model with
a mean of 0.5 (i.e., θ = log 0.5 = -0.693), and different samples sizes n = 5, 10, and 15
are selected.
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Figure 4.8: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise log-gamma prior (i.e., corresponding to the region R0 = {(α, β)|0 ≤ α ≤
4, 0 ≤ β ≤ 4}). Samples are generated from the standard Poisson sampling model with
a mean of 1 (i.e., θ = log 1.0 = 0), and different samples sizes n = 5, 10, and 15 are
selected.
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Figure 4.9: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise log-gamma prior (i.e., corresponding to the region R0 = {(α, β)|0 ≤ α ≤
4, 0 ≤ β ≤ 4}). Samples are generated from the standard Poisson sampling model with
a mean of 2 (i.e., θ = log 2.0 = 0.693), and different samples sizes n = 5, 10, and 15 are
selected.
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Figure 4.10: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise normal prior (i.e., corresponding to the region R0 = {(ξ2, ξ1)| − 1 ≤ ξ2 ≤
1, 0.15 ≤ ξ1 ≤ 1}). Samples are generated from the standard Poisson sampling model
with a mean of 0.5 (i.e., θ = log 0.5 = -0.693), and different samples sizes n = 5, 10,
and 15 are selected.
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Figure 4.11: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise normal prior (i.e., corresponding to the region R0 = {(ξ2, ξ1)| − 1 ≤ ξ2 ≤
1, 0.15 ≤ ξ1 ≤ 1}). Samples are generated from the standard Poisson sampling model
with a mean of 1 (i.e., θ = log 1.0 = 0), and different samples sizes n = 5, 10, and 15
are selected.
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Figure 4.12: Comparison of the imprecise posterior expectation for cases of where
standard Poisson and zero-truncated Poisson samples are used on the given natural
imprecise normal prior (i.e., corresponding to the region R0 = {(ξ2, ξ1)| − 1 ≤ ξ2 ≤
1, 0.15 ≤ ξ1 ≤ 1}). Samples are generated from the standard Poisson sampling model
with a mean of 2 (i.e., θ = log 2.0 = 0.693), and different samples sizes n = 5, 10, and
15 are selected.
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4.3 Regression Model

Regression analysis has been widely used to describe the relationship between a response

variable and one or more explanatory variables since the generalized linear model (GLM) was

introduced by Nelder and Wedderburn (1972). In this section, the proposed imprecise inferen-

tial framework is examined under the GLM setup to ensure that the B-formulation functions

appropriately for inferring regression parameters.

Suppose that the mean parameter µi of a standard Poisson sampling model is linked to

the linear predictor x′iβ by the log-link function as below:

θi = log(µi) = xiβ = β0 + β1xi1 + · · ·+ βpxip (4.15)

where θi is the canonical parameter of µ, xi = (1, x1i, x2i, . . . , xip)
T is a vector of (p + 1) ex-

planatory variables including the intercept term 1 of i-th individual, and β = (β0, β1, . . . , βp)
T

is a vector of (p + 1) regression parameters associated with xi. The subscript i is the index

for the i-th individual of n independently sampled subjects; thus, the response variable y is a

vector of independent observations (y1, y2, . . . , yn). The Poisson log-likelihood log L (β|y,X)

is then given by

log L (β|y,X) ∝
n∑
i=1

yiθi − eθi =
n∑
i=1

[yix
′
iβ − exp(x′iβ)] . (4.16)

Consider now a family of p+ 1 dimensional multivariate normal prior distributions π(β)

with a mean of b0 and a variance-covariance matrix B0 given by

π(β) = exp

(
−1

2
tr(B−1

0 ββT ) + (B−1
0 b0)Tβ −A(b0, B0)

)
, (4.17)

where A(b0, B0) = 1
2
bT0B

−1
0 b0 is the log-normalizer, and B−1

0 is a prior precision matrix. In

the form of canonical parameters Λ = B−1
0 and η = B−1

0 b0,

π(β) = exp

(
−1

2
tr(ΛββT ) + ηTβ −A(η,Λ)

)
, (4.18)

91



where A(η,Λ) = 1
2
ηTΛη is the log-normalizer. That is, a family of normal prior distributions

on the regression parameters MVN(b0, B0) induces a family of normal prior distributions

MVN(η = B−1
0 b0,Λ = B−1

0 ) having canonical parameters η and Λ. The number of canonical

parameters associated with this prior probability measure in (4.18) is p+ 1 + p(p+ 1)/2. A

family of posterior distributions induced from (4.18) is then

p(β|y,X) ∝ exp

(
−1

2
tr(B−1

0 ββT ) + (B−1
0 b0)Tβ +

n∑
i=1

[yix
′
iβ − exp(x′iβ)]

)
. (4.19)

which is a multiparameter exponential family of distributions. Since it appears that a closed

form expression for a normalizing constant of (4.19) does not exist, a posterior expectation

E(β|y,X) needs to be computed numerically.

The exact same analogy is applied for inferring the parameters of a zero-truncated Poisson

regression model. The difference between the two Poisson regression models is the presence

of a renormalizing constant log(1 − e− exp(θ)) in a Poisson likelihood in (4.16). Hence, the

unnormalizing posterior distribution p(β|y) in (4.19) can be rewritten in a more general

form such that

p(β|y,X) = exp

(
−1

2
(β − b0)TB−1

0 (β − b0) + log L (β)

)
, (4.20)

where log L (β) =
∑n

i=1 [yix
′
iβ − exp(x′iβ)] for the standard Poisson regression model and

log L (β) =
∑n

i=1

[
yix
′
iβ − exp(x′iβ)− log(1− eexp(x′

iβ))
]

for the zero-truncated Poisson re-

gression model. This general form of a posterior distribution p(β|y,X) in (4.20) is adopted

with the implementation of an estimation algorithm in the ipeglim package.

In order to understand the behaviour of the imprecise estimate of regression parameters,

a heterogeneous population of size n is considered. The explanatory variable xi ∼ NID(0, 1)

is used to generate observations under the model given by

log(µi) = β0 + β1xi (4.21)

where β = (β0, β1)T = (−0.5, 1.0)T , xi = (1, xi)
T , and i = 1, 2, . . . , n. Count data for a

response variable yi is generated from the standard Poisson sampling model with a mean
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of µi (for this study, the random seed 18372342 is utilized). Zero-truncated count data are

obtained by removing the zero values from the generated samples.

The parameters of the prior variance-covariance matrix B0 are structured as below:

V (β) = B0 =

σπ1 0

0 σπ2

 1 ρπ

ρπ 1

σπ1 0

0 σπ2

 (4.22)

where σπ1 and σπ2 are the standard deviations of the regression parameters β0 and β1, re-

spectively, and ρπ is a correlation coefficient between the regression parameters β0 and

β1. It is assumed that σπ1 = σπ2 = σπ. The change of the imprecise estimate of re-

gression parameters is investigated in this given structure by changing the values of three

components: 1. variances σ2
π = {0.01, 0.05, 0.1} (degree of uncertainty concerning the lo-

cation of the regression parameters); 2. correlation coefficient ρπ = {0.0, 0.4, 0.8} (how

these parameters are associated); and, 3. sample size n = {20, 50, 100} (how influential is

a given data to this inference). The imprecise normal prior is represented by character-

izing the region R0 = {(b0, b1)|(b0 − 0)2 + (b1 − 0)2 ≤ 1} on the hyperparameter space

Ξ = {(b0, b1)| − ∞ < b0, b1 < ∞}. Thirty extreme points are employed for characterizing

this oval object. Certain select cases are graphically reported here to illustrate the general

pattern of the imprecise estimate of the regression parameters β0 and β1.

The simultaneous change of imprecise posterior expectations E(β0|y) and E(β1|y) for

regression parameter β0 and β1 are visualized in Figure 4.13, 4.14, and 4.15 in terms of the

sample size n, correlation coefficient ρπ, and variance σ2
π. The function plot() in the ipeglim

package is used for producing all plots in these figures. Two oval objects are shown in each

plot. The circle coloured blue implies the characterized region R0 representing the imprecise

prior expectation. The other oval object coloured yellow represents the imprecise posterior

expectation.

Before creating this oval object, the author tested that all points enclosed by the circle

coloured blue translate into other points that form a convex polygon. Connecting the extreme

points of that convex polygon ultimately produces this oval object. This fact is annotated

in the plot such that the extreme point identification number on the boundary of the circle

coloured blue translates to the red points which lie on the boundary of the oval object. Since
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Figure 4.13: Translation and focusing behaviours of the imprecise estimate for the
regression coefficients of β0 and β1 in the standard Poisson and zero-truncated Poisson
regression models by changing the sample size n = 20, 50, and 100 with the fixed
correlation coefficient ρ = 0 and standard deviation σ2 = 0.01. The circle coloured
blue (i.e., R0 = {(b0, b1)|b2

0 + b2
1 ≤ 1}) is the imprecise normal prior for β0 and β1.

The ellipsoid coloured yellow is the imprecise posterior expectation for β0 and β1. The
star symbol is the maximum likelihood estimates for β0 and β1. The two solid black
lines implies the imprecise posterior predicted response using the first row of the data
matrix.
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Figure 4.14: Translation and focusing behaviours of the imprecise estimate for the
regression coefficients of β0 and β1 in the standard Poisson and zero-truncated Poisson
regression models by changing the correlation coefficient ρ = 0.0, 0.4, and 0.8 at the
fixed sample size n = 50 and standard deviation σ2 = 0.01. The circle coloured blue
(i.e., R0 = {(b0, b1)|b2

0 + b2
1 ≤ 1}) is the imprecise normal prior for β0 and β1. The

ellipsoid coloured yellow is the imprecise posterior expectation for β0 and β1. The star
symbol is the maximum likelihood estimates for β0 and β1. The two solid black lines
implies the imprecise posterior predicted response using the first row of the data matrix.
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Figure 4.15: Translation and focusing behaviours of the imprecise estimate for the
regression coefficients of β0 and β1 in the standard Poisson and zero-truncated Poisson
regression models by changing the value of variance σ2 = 0.01, 0.05, and 0.1 at the
fixed sample size n = 50 and correlation coefficient ρ = 0. The circle coloured blue (i.e.,
R0 = {(b0, b1)|b2

0 + b2
1 ≤ 1}) is the imprecise normal prior for β0 and β1. The ellipsoid

coloured yellow is the imprecise posterior expectation for β0 and β1. The star symbol
is the maximum likelihood estimates for β0 and β1. The two solid black lines implies
the imprecise posterior predicted response using the first row of the data matrix.
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it is certain that all points are enclosed by the circle coloured blue are translated to all points

enclosed by the oval object coloured yellow, the function plot() in the ipeglim package

by default prints only the extreme points on the boundary of this oval object as presented

here. The function set.grid() can be used to validate that the internal points in the circle

coloured blue translate to the points in the oval object coloured yellow. Thus, the comparison

of two oval objects in the plot aids in the comprehension of the translation behaviour of the

imprecise prior after observing samples under controlled conditions. The two black solid lines

tangential to the oval object are the points that identify which of the extreme points produce

either the maximum or the minimum of the posterior predicted response at a given value of

x1. In this simulation study, the value of the explanatory variable x from the first observation

is used for x1.

Other annotated symbols in the plot are provided here. The central point at which two

dashed black lines intersect is the true regression parameter value of (β0, β1). The two vertical

dashed lines represent the extreme posterior expectations of the regression parameter β0, and

the two horizontal dashed lines represent the minimum and maximum posterior expectations

of the regression parameter β1. The black star shaped symbol portrays the estimate obtained

using the maximum likelihood method.

The plots are organized as below in each figure. On the left side, the plots produced from

the imprecise fit of the standard Poisson regression model to the untruncated count data are

listed. On the right side, the reader can find the plots produced from the imprecise fit of the

zero-truncated Poisson regression model to the zero-truncated count data.

To elaborate, the plots in Figure 4.13 are produced by changing the sample size n = 20, 50

and 100 under the conditions of a correlation coefficient ρ = 0 and a variance σ2 = 0.01. It

is observed that both degrees of imprecision for the regression parameter β0 and β1 decrease

as the size n of a sample increases. The plots in Figure 4.14 are produced by changing the

correlation coefficient ρ = 0, 0.4, and 0.8 under the condition that the sample size n = 50

and the variance σ2 = 0.01. Both imprecise estimates of the regression parameters β0 and β1

become increasingly extended as the correlation coefficient ρ increases. The plots in Figure

4.15 are produced by changing the variance σ2 = 0.01, 0.05, and 0.1 under the condition that

the sample size n = 50 and the correlation coefficient ρ = 0. Both imprecise estimates of the
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regression parameters β0 and β1 decrease as the values of the variances decrease. Based on

an observation using three figures, we conclude that the focusing behaviour can be explained

by the translation behaviour in the proposed methodology that demonstrates that the oval

object becomes increasingly focused on a central point as the quantity of known data increases

(i.e., the case of a large sample size, small variance, and independent structure).

Two assumptions underlie the case study presented above. The first assumption is that

the true parameter values of the regression parameters (β0, β1) are captured by an imprecise

prior. The second one is that you are the only intentional unit who is involved in this

inference. These two assumptions are too idealistic since in practice, every intentional unit

has different experiences and expertise.

Consider now the situation where there are four different intentional units and each of

these units has their own imprecise prior that does not capture the true parameter val-

ues of the regression parameters. For this illustration, the true parameter values of the

regression parameters (β0, β1) are assumed to be (0.5, 1.0). Observations are generated

using the mechanism described in the above case study. Four samples are then selected

from the observation; 10, 30, 50, and 100. Four different imprecise priors are charac-

terized as follows: R01 = {(b0, b1)|(b0 + 3)2 + (b1 + 3)2 ≤ 1} in the first quadrant on

the hyperparameter space Ξ, R02 = {(b0, b1)|(b0 − 3)2 + (b1 − 3)2 ≤ 1} in the second

quadrant, R03 = {(b0, b1)|(b0 − 3)2 + (b1 − 3)2 ≤ 1} in the third quadrant, and R04 =

{(b0, b1)|(b0 + 3)2 + (b1 − 3)2 ≤ 1} in the fourth quadrant. In Figure 4.16 the imprecise prior

expectation regarding the regression parameters (β0, β1) are represented by blue circles and

yellow circles represent the imprecise posterior expectations of (β0, β1) as described in the

above case study.

A noteworthy feature of Figure 4.16 depicts how all of the different intentional units arrive

at the central point, which constitutes the unknown truth, by exposure to the same data.

Despite different learning speeds (i.e., how quickly his or her imprecise prior reaches the

central point), all of the imprecise posterior expectations approach the point of convergence.

It is expected by the asymptotic properties of Bayes estimator (Roberts, 2007, p. 48) that all

of the imprecise posterior expectations will meet at that central point if there is a sufficiency

of data and that the same data are observed.
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Figure 4.16: The agreement process of four intentional units having different imprecise
normal priors for the regression coefficients of β0 and β1 in the zero-truncated Poisson
regression models on the same observation. Four imprecise normal priors for β0 and
β1 are: 1) R01 = {(b0, b1)|(b0 + 3)2 + (b1 + 3)2 ≤ 1} in the first quadrant, 2) R02 =
{(b0, b1)|(b0− 3)2 + (b1− 3)2 ≤ 1} in the second quadrant, 3) R03 = {(b0, b1)|(b0− 3)2 +
(b1− 3)2 ≤ 1} in the third quadrant, and 4) R04 = {(b0, b1)|(b0 + 3)2 + (b1− 3)2 ≤ 1} in
the fourth quadrant. Four different zero-truncated Poisson sample sizes n = 10, 30, 50,
and 100 are selected from the observation. The circle coloured blue is the imprecise
normal prior for β0 and β1. The ellipsoid coloured yellow is the imprecise posterior
expectation for β0 and β1. The star symbol is the maximum likelihood estimates for β0

and β1.
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However, it is also noted that two imprecise priors lying on the second and third quadrants

are characterized by a slower approach to the central point and that their degrees of impreci-

sion are not effectively decreasing. The reason for this fact is that the observed samples were

originally generated with the true parameters of the regression coefficients (0.5, 1.0). Hence,

this fact needs to be interpreted such that two intentional units who assigned their imprecise

prior on the second and third quadrants have a conflicting belief against the observation.

This fact also supports the foundation of the proposed methodology such that an imprecise

posterior expectation is a weighted mean of prior knowledge and observation. Therefore, this

example demonstrates that the proposed methodology is a useful tool with which to explain

prior-data conflict, the individual learning processes, and the agreement process between sev-

eral intentional units. It is important to consider, however, that the methodology is highly

dependent on the size of the observation.

The proposed methodology has been concerned with working on a two-dimensional hy-

perparameter space since most investigations involve two families of log-gamma and nor-

mal prior distributions. However, the number of hyperparameters is not limited to only

two when using the proposed methodology in a regression analysis since the dimension-

ality of the hyperparameter space depends on the number of explanatory variables. The

B-formulation theoretically ensures that the two families of prior and posterior distributions

shown as (4.19) are conjugate, analogous to (4.6); however, the dimensionality of the hy-

perparameter space makes the proposed methodology impractical since the process required

for performing the proposed methodology is computationally very expensive without dealing

with the two problems of accurately evaluating the quantity of a normalizing constant and

searching for the extreme points of a convex hull.

Before ending this chapter, the model having two explanatory variables is explained. For

this example, the linear predictor in (4.21) is changed as below by incorporating an additional

explanatory variable x2:

log(µi) = β0 + β1x1i + β2x2i, (4.23)

where

E(xi) =

x1 = 2

x2 = 1

 , V (xi) =

1 0

0 1

 (4.24)
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Figure 4.17: A graphical representation of the imprecise normal prior (i.e., C =
{(b0, b1, b2)|b2

0 + b2
1 + b2

2 ≤ 1}) that will be used for estimating the regression parameters
β0, β1, and β2 in the standard Poisson and zero-truncated Poisson regression models.

−1.0
−0.5

0.0
0.5

−0.5
0.0

0.5

−0.5

0.0

0.5

b0
b1

b2

and

E(β) =


β0 = 0

β1 = 0

β2 = 0

 , V (β) =


0.01 0 0

0 0.01 0

0 0 0.01

 (4.25)

For the specification of this variance-covariance matrix B0, the identity matrix I is recom-

mended in order to express a vague state of prior ignorance. The same suggestion can be

found in Winkelmann (2008, p. 243).

The true parameter values of (β0, β1, β2) are assumed to be (0.5, 0.5,−0.5), and the im-

precise prior is characterized by specifying the convex hull C0 = {(b0, b1, b2)|b2
0 + b2

1 + b3
2 ≤ 1}.

Figure 4.17 shows this convex hull (i.e., sphere) for representing an imprecise prior in a

three-dimensional hyperparameter space Ξ. The imprecise posterior is produced with the

option method="MH" (i.e, the Meteropolis-Hastings algorithm) when the function update()

was used. The imprecise posterior expectation is graphically summarized in Figure 4.18. The

scatter plot of the imprecise posterior expectation shows the ellipsoid on the top of that figure
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and the scatterplot matrix shows the projection of this ellipsoid on each of three dimensions

β0, β1, and β2. The probability box of the imprecise posterior is shown in Figure 4.19. To

generate these figures the functions plot() and pbox() in the ipeglim package are used.

Figure 4.18: The imprecise posterior expectation of the regression parameters β0, β1,
β2 after observing 100 standard Poisson (on the left panel) and zero-truncated Poisson
(on the right panel) samples, respectively, using the imprecise normal prior show in
Figure 4.17.
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Figure 4.19: Probability boxes of the imprecise posterior for the regression parameters
β0, β1, and β2 after observing 100 standard (on the left panel) and zero-truncated
Poisson (on the right panel) samples, respectively, using the imprecise normal prior
show in Figure 4.17.
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Chapter 5

Simulation Study

The proposed methodology demonstrated using several examples of a family of log-gamma

prior distributions, and extended by the B-formulation to cases where 1. a family of normal

prior distributions is assigned on a standard Poisson likelihood, 2. either families of log-

gamma and normal prior distributions are assigned on a zero-truncated Poisson likelihood,

and 3. a family of normal prior distributions is assigned on regression coefficients in the setup

of a generalized linear model. Three primary behaviours of the proposed methodology are

also clearly illustrated. Briefly, as a new sample is observed, 1. the convex hull representing

an imprecise prior moves on the hyperparameter space (i.e., translation behaviour); 2. an

imprecise posterior is stochastically ordered and squeezed by the upper and lower posterior

distributions (i.e., focusing behaviour); and 3. the surface of an imprecise posterior expecta-

tion becomes flat (i.e., soft-linearity behaviour).

These behaviours may be blurred if a distribution of frequencies of the observed count

is not a Poisson distribution which is the primary assumption of the proposed methodology.

A typical instance of this blurring is a case when over-dispersion is present. The absence of

explanatory variables that are influential to the Poisson mean parameter would be another

instance in a regression analysis. One may question the effect of a correlation between two or

more explanatory variables on the estimation of Poisson mean parameter. All these instances

are attributed to the concerns regarding the use of the proposed methodology in practice.

Hence, the aim of this chapter is to investigate the effect of such factors on the imprecise

estimate of the parameter of interest through simulation studies under various conditions.

Note that, for this investigation, an imprecise inference is made on the estimation of the

parameter of a zero-truncated Poisson sampling rather than the parameter of a standard

sampling model as it is an appropriate fit with the author’s research interest.
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5.1 Sampling model misspecification

A potential error that could be made when using the proposed methodology on count data

would be a misspecification of a sampling model. For example, a standard Poisson sampling

model is mistakenly chosen for describing zero-truncated count data, and vice versa. The

focus in this section is the consequence that arises from this sampling model misspecification.

The simulation study is designed as follows.

1. A sample of size N is taken from a standard Poisson sampling model with mean µ and

zero values are removed from that sample. The size of the zero-truncated sample is

denoted by n hereafter;

2. The imprecise log-gamma prior is described by characterizing the regionR0 = {(α, β)|0 ≤

α ≤ 2, 0 ≤ β ≤ 2} on the hyperparameters space Ξ of α and β;

3. An imprecise inference is carried out with the proposed methodology by assuming

that the underlying sampling mechanism of this simulated zero-truncated sample is a

standard Poisson sampling model (i.e., misspecified sampling model);

4. The above procedure in the step (3) is carried out again by assuming that the underlying

sampling mechanism of the simulated zero-truncated sample is a zero-truncated Poisson

sampling model (i.e., correctly specified sampling model). With this correct sampling

model specification, the size N which is the sample size before truncating the zero

values is estimated. From this point forward, this size N is understood as a population

of size N in the context of the population size estimation problem;

5. The above four steps (1)–(4) are repeated 1,000 times for each pair of sample sizes N =

{100, 300, 500} and Poisson mean parameters µ = {0.5, 0.75, 1, 1.25, 1.5}, i.e., corre-

sponding to the canonical parameters θ̃ = log(µ) = {−0.693,−0.288, 0.000, 0.223, 0.405};

Note that the symbol θ̃ is used for distinguishing the meta-parameter that controls the

simulation condition from the canonical parameter θ to be inferred.
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The size n of the zero-truncated sample, the minimum imprecise posterior expectation

En(θ|y), the maximum imprecise posterior expectation En(θ|y), the degree of imprecision

∆n(θ|y), the minimum population size estimate Nn, and the maximum population size esti-

mate Nn are kept in every single performance of the imprecise inference. The results from

one thousand repetitions, the mean size n̄ of the zero-truncated sample, the mean maximum

imprecise posterior expectation En(θ|y), the mean minimum imprecise posterior expectation

E
n
(θ|y), the mean degree of imprecision ∆n(θ|y), the mean minimum population size esti-

mate N
n
, and the mean maximum population size estimate Nn are evaluated on each pair of

two meta-parameters θ̃ and N in this simulation. Four patterns are found from the results

in Table 5.1.

1. The rate of the mean zero-truncation (i.e., 1− n̄/N) decreases as the meta-parameter

θ̃ increases;

2. All imprecise estimates (i.e., En(θ|y), E
n
(θ|y), ∆n(θ|y)) produced from the misspecified

sampling model (i.e., the use of a standard Poisson sampling model) are greater than

the meta-parameter θ̃, which is considered as the true value of the canonical parameter

θ in this simulation, over all different values of meta-parameter N . For the correctly

specified sampling model (i.e., the use of a zero-truncated Poisson sampling model), the

value of meta-parameter θ̃ is captured within the range of the mean maximum imprecise

posterior expectation En(θ|y) and the mean minimum imprecise posterior expectation

E
n
(θ|y) over all different values of the meta-parameter N ;

3. The mean degree of imprecision ∆n(θ|y) decreases as the mean zero-truncated sample

size n̄ (or, the meta-parameter θ̃) increases regardless whether or not a sampling model

is correctly specified.

4. The interval between the mean minimum population size estimate N
n

and the mean

maximum population size estimate Nn captures the value of the meta-parameter θ̃ over

all different values of the meta-parameter N ; however, it is shown that the length of

this interval becomes wider as the meta-parameter θ̃ decreases.
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Table 5.1: The mean maximum imprecise posterior expectation En(θ|y), the mean minimum imprecise posterior
expectation En(θ|y), and the mean degree of imprecision ∆n(θ|y) over the different values of the meta-parameter

θ̃ = {0.693,−0.288, 0, 0.233, 0.405}, i.e., the mean parameter µ = {0.50, 0.75, 1.00, 1.25, 1.50}, with different sample sizes
N = {100, 300, 500} when a standard Poisson sampling model is specified for describing zero-truncated count data (i.e.,
sampling model misspecification). The zero-truncated Poisson sampling model is also used for describing zero-truncated

count data (i.e., correct sampling model specification). n̄ is the mean size of zero-truncated samples; N
n

and Nn are the
mean minimum population size estimate and the mean maximum population size estimate, respectively.

N Model Misspecification Correct Model Spec. Estimated Pop. Size

θ̃ En(θ|y) E
n
(θ|y) ∆n(θ|y) En(θ|y) E

n
(θ|y) ∆n(θ|y) n̄ N

n
Nn

100
−0.693 0.139 0.322 0.184 −1.177 −0.518 0.660 39.782 91.650 163.960
−0.288 0.278 0.409 0.131 −0.492 −0.189 0.303 52.653 94.777 117.214

0.000 0.402 0.506 0.104 −0.125 0.073 0.198 63.079 96.439 108.577
0.223 0.508 0.597 0.089 0.122 0.271 0.149 71.140 97.875 105.728
0.405 0.613 0.692 0.078 0.330 0.449 0.119 77.876 98.796 104.115

300
−0.693 0.206 0.266 0.061 −0.818 −0.636 0.182 118.216 290.824 335.724
−0.288 0.329 0.372 0.043 −0.347 −0.251 0.096 158.207 294.108 313.941

0.000 0.439 0.474 0.034 −0.042 0.022 0.064 190.138 297.793 309.209
0.223 0.544 0.573 0.029 0.191 0.240 0.049 213.669 297.483 304.879
0.405 0.642 0.668 0.026 0.378 0.417 0.039 233.084 298.867 304.027

500
−0.693 0.219 0.255 0.036 −0.768 −0.661 0.107 197.093 491.429 534.231
−0.288 0.337 0.363 0.026 −0.325 −0.268 0.057 264.403 496.058 515.573

0.000 0.449 0.470 0.021 −0.020 0.018 0.038 315.813 495.037 506.184
0.223 0.550 0.568 0.018 0.204 0.233 0.029 356.468 497.769 505.083
0.405 0.649 0.665 0.016 0.391 0.414 0.023 388.481 498.512 503.589
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Figure 5.1: Probability densities P (y|µ) of a standard Poisson distribution (coloured
black) with a mean parameter of µ = {0.50, 0.75, 1.00, 1.25, 1.25, 2.00, 3.00} for count
data y and probabilities densities of a zero-truncated Poisson distribution (coloured
blue) with the same mean parameter µ.
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From this simulation study, an overestimation of the imprecise inferential framework is

expected when a standard Poisson sampling model is used for describing zero-truncated count

data. Note that the result that is produced when an imprecise normal prior is utilized on

the inference is not reported here since the patterns presented are similar. This consequence

resulting from a sampling model misspecification is in fact attributed to the difference between

the two probability densities of a standard Poisson and a zero-truncated Poisson distributions.

The plots in Figure 5.1 are generated at some selected values of a standard Poisson mean

parameter µ of 0.5, 0.75, 1, 1.25, 1.5., 2, 3 for presenting this difference. The bars coloured

black and blue are the densities of the standard Poisson and the zero-truncated Poisson
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densities, respectively. From the plots in this figure, it is apparent that the shapes of the two

Poisson probability densities are becoming less distinct from each other as the Poisson mean

parameter value µ is becoming larger; hence, it is anticipated that no discernible difference

can be identified using either of the two Poisson distributions when the mean parameter is

large enough, for example a value greater than 3.

5.2 Over-dispersed count data

Overdispersion is a commonly discussed condition which means that the variability in the

data is greater than the variability expected from a given sampling model. The question is

what result will be shown on the imprecise estimate of the sampling model parameter when

overdispersion is present. One may consider that this study is similar to the study in the

previous section (i.e., sampling model misspecification). However, the zero-truncated count

data in the previous section belongs to a family of Poisson sampling models whereas the count

data being dealt with in this section does not belong to a family of Poisson sampling models.

A negative binomial distribution is often considered for cases of over-dispersed count data.

In the context of mixture modelling, it is viewed as a mixed Poisson distribution of which

the Poisson mean parameter is distributed as a gamma distribution with a shape parameter

α and a scale parameter β. An alternative parametrization can arise by setting the Poisson

mean µ = αβ and the dispersion parameter α−1 (i.e., a reciprocal of the shape parameter α of

a gamma distribution). Note that a geometric distribution is a special case of this negative

binomial distribution with the shape parameter α = 1. This parametrization is useful to

investigate the effect of overdispersion on the imprecise estimate of a model parameter using

the fact that the negative binomial distribution converges to a Poisson distribution with a

mean of µ as the shape parameter α goes to ∞ (or the dispersion parameter α−1 goes to 0).

The simulation is designed as follows:

1. A sample of size N = 300 is taken from a standard negative binomial sampling model

with the Poisson mean parameter µ and the shape parameter α, then the zero values

are removed from that sample. The size of this zero-truncated sample is denoted by n

from this point on;
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2. The imprecise log-gamma prior is described by characterizing the regionR0 = {(α, β)|0 ≤

α ≤ 5, 0 ≤ β ≤ 5} on the hyperparameter space of α and β;

3. An imprecise inference is carried out with the proposed methodology using the imprecise

log-gamma prior defined in the step (2);

4. Using the identical sample, an imprecise inference is carried out again with the imprecise

normal prior described by the region R0 = {(ξ2, ξ1)|0 ≤ ξ2 ≤ 2,−2 ≤ ξ1 ≤ 2} on the

hyperparameter space of ξ2 and ξ1;

5. The above steps (1)-(4) are repeated 1,000 times for each pair of different Poisson

mean parameter values µ = {0.5, 0.75, 1.00, 1.25, 1.50}, which correspond to the canon-

ical meta-parameters θ̃ = log(µ) = {−0.693,−0.288, 0.000, 0.223, 0.405}, and to the

different shape parameter values α = {1, 2, 5, 10, 200}.
Note that the shape parameter value α = 200 is chosen for the reference distribution

(i.e., Poisson distribution). The choice of this value is based on the fact that two probability

densities of a negative binomial and a Poisson distribution are sufficiently similar but not

identical to two decimal places. Hence, the sample simulated from a negative binomial

distribution with shape parameter α = 200 and Poisson mean parameter µ is considered to

be a sample simulated from a standard Poisson distribution with the same mean parameter

µ in this simulation study. As noted earlier section 5.1, the mean size n̄ of a zero-truncated

sample, the mean maximum imprecise posterior expectation En(θ|y), the mean minimum

imprecise posterior expectation E
n
(θ|y), the mean degree of imprecision ∆n(θ|y), the mean

minimum population size estimate N
n
, and the mean maximum population size estimate Nn

are computed using 1,000 repetitions. The results are summarized in Table 5.2 when using

the imprecise log-gamma prior and Table 5.3 when using the imprecise normal prior.

Four interesting patterns are found from the results in the tables.

1. The rate of zero-truncation (i.e., 1 − n̄/N) increases as the meta-parameter shape α

decreases (i.e., as data becomes increasingly over-dispersed);

2. The mean imprecise interval between the mean maximum imprecise posterior expecta-

tion (En(θ|y) and the mean minimum imprecise posterior expectation E
n
(θ|y)) cap-

tures the true value of the meta-parameter θ̃ when the meta-parameter shape α = 200
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Table 5.2: Mean maximum imprecise posterior expectation En(θ|y), the mean
minimum imprecise posterior expectation En(θ|y), and the mean degree of impre-

cision ∆n(θ|y) over the meta-parameter θ̃ = {−0.693,−0.288, 0.000, 0.233, 0.405},
i.e., µ = {0.50, 0.75, 1.00, 1.25, 1.50}, with the different shape parameter values α =
{1, 2, 5, 10, 200} for inferring the canonical parameter θ of a zero-truncated Poisson sam-
pling model with the imprecise log-gamma prior (R0 = {(α, β)|0 ≤ α ≤ 5, 0 ≤ β ≤ 5}).
n̄ is the mean size of zero-truncated samples. N

n
and Nn are the mean minimum pop-

ulation size estimate and the mean maximum population size estimate, respectively.

θ̃ Imprecise Estimate Estimated Pop. Size

α n̄ En(θ|y) E
n
(θ|y) ∆n(θ|y) N

n
Nn

−0.693
1 100.222 −0.337 0.008 0.345 158.969 198.707
2 108.024 −0.583 −0.203 0.381 195.199 256.286
5 113.628 −0.786 −0.368 0.418 229.342 315.509

10 115.798 −0.876 −0.439 0.437 245.874 346.390
200 118.155 −0.968 −0.510 0.458 264.274 382.074

−0.288
1 128.571 0.101 0.306 0.205 173.753 193.087
2 141.309 −0.107 0.109 0.215 211.155 239.649
5 150.703 −0.281 −0.053 0.229 247.086 286.218

10 154.596 −0.352 −0.118 0.234 263.722 308.062
200 157.895 −0.425 −0.184 0.242 280.803 331.206

0.000
1 149.639 0.381 0.529 0.148 183.703 195.331
2 166.952 0.197 0.347 0.150 221.116 237.870
5 179.701 0.037 0.192 0.156 256.497 279.223

10 184.330 −0.017 0.140 0.157 270.297 295.402
200 189.711 −0.087 0.074 0.161 288.490 317.079

0.223
1 167.300 0.588 0.705 0.117 193.135 200.834
2 186.399 0.411 0.529 0.117 228.647 239.844
5 201.722 0.268 0.387 0.119 262.227 277.171

10 208.201 0.216 0.335 0.120 276.916 293.443
200 214.322 0.156 0.277 0.121 293.079 311.661

0.405
1 179.678 0.747 0.846 0.099 199.310 204.783
2 201.946 0.585 0.682 0.097 234.679 242.570
5 218.845 0.456 0.553 0.098 265.804 276.173

10 226.168 0.406 0.503 0.098 279.961 291.459
200 232.820 0.356 0.454 0.098 293.926 306.638
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Table 5.3: Mean maximum imprecise posterior expectation En(θ|y), the mean
minimum imprecise posterior expectation En(θ|y), and the mean degree of impre-

cision ∆n(θ|y) over the meta-parameter θ̃ = {−0.693,−0.288, 0.000, 0.233, 0.405},
i.e., µ = {0.50, 0.75, 1.00, 1.25, 1.50}, with the different shape parameter values α =
{1, 2, 5, 10, 200} for inferring the canonical parameter θ of a zero-truncated Poisson
sampling model the imprecise normal prior (R0 = {(ξ2, ξ1)|0 ≤ ξ2 ≤ 2,−2 ≤ ξ1 ≤ 2}).
n̄ is the mean size of zero-truncated samples. N

n
and Nn are the mean minimum pop-

ulation size estimate and the mean maximum population size estimate, respectively.

θ̃ Imprecise Estimate Estimated Pop. Size

α n̄ En(θ|y) E
n
(θ|y) ∆n(θ|y) N

n
Nn

−0.693
1 100.222 −0.199 −0.112 0.086 170.794 180.884
2 108.024 −0.433 −0.312 0.121 209.737 229.024
5 113.628 −0.622 −0.466 0.156 245.563 277.003

10 115.798 −0.705 −0.531 0.174 262.551 301.329
200 118.155 −0.790 −0.596 0.194 281.154 329.000

−0.288
1 128.571 0.180 0.223 0.043 180.983 185.061
2 141.309 −0.021 0.026 0.046 221.224 227.403
5 150.703 −0.190 −0.133 0.057 259.504 269.447

10 154.596 −0.260 −0.196 0.064 277.039 289.144
200 157.895 −0.330 −0.259 0.071 294.993 309.795

0.000
1 149.639 0.433 0.466 0.033 188.302 190.899
2 166.952 0.253 0.285 0.032 227.608 231.220
5 179.701 0.097 0.130 0.032 265.088 269.819

10 184.330 0.045 0.078 0.033 279.683 284.894
200 189.711 −0.023 0.011 0.034 298.918 305.021

0.223
1 167.300 0.628 0.654 0.026 196.279 198.022
2 186.399 0.453 0.479 0.026 233.147 235.660
5 201.722 0.311 0.337 0.026 268.136 271.418

10 208.201 0.260 0.286 0.026 283.413 287.003
200 214.322 0.201 0.227 0.026 300.328 304.296

0.405
1 179.678 0.781 0.803 0.022 201.592 202.820
2 201.946 0.618 0.640 0.022 237.930 239.717
5 218.845 0.490 0.512 0.022 270.025 272.363

10 226.168 0.440 0.462 0.022 284.613 287.201
200 232.820 0.391 0.413 0.022 299.045 301.897
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(i.e., Poisson samples), but misses that true value of the meta-parameter θ̃ for other

values of meta-parameter shape α (i.e., overdispersion is present on Poisson samples).

3. Both the mean maximum imprecise posterior expectation En(θ|y) and the mean min-

imum imprecise posterior expectation E
n
(θ|y) are increasing as the meta-parameter

shape α is decreasing (i.e., data are increasingly over-dispersed).

4. The mean degree of imprecision ∆n(θ|y) decreases as the meta-parameter shape α

decreases when the meta-parameter θ is less than or equal to zero (i.e., µ ≤ 1). However,

the magnitude of this decrement on the mean degree of imprecision ∆n(θ|y) decreases

as the meta-parameter θ̃ is greater than zero (i.e., µ > 1). This feature is more clearly

shown when using an imprecise normal prior compared to when using an imprecise

log-gamma prior. More interestingly, the mean degree of imprecision ∆n(θ|y) does

not change even though the change of the meta-parameter shape α increases when the

meta-parameter θ̃ is greater than or equal to zero.

5. The length of the interval between the mean minimum population size estimate N
n

and

the mean maximum population size estimate Nn becomes wider as the meta-parameter

θ̃ decreases, and this length becomes narrower as the meta-parameter α decreases at

the given level of the meta-parameter θ̃.

5.3 Structured Prior Variance-Covariance Matrix

When the proposed methodology is applied to the problem of inferring regression param-

eters in the context of a generalized linear model, a p + 1 dimensional multivariate normal

distribution MVN(b0, B0) with mean vector b0 and variance-covariance matrix B0 is assumed

to be a prior distribution π(β) for regression coefficients β = (β0, β1, . . . , βp)
T . In the current

implementation of the proposed methodology, the identity matrix Ip+1 (i.e., regression pa-

rameters β are independent structures) defaults to the prior variance-covariance matrix B0.

However, it is not necessarily limited to this independence structure since one may have

a strong inclination to impose his or her own structure on this prior variance-covariance

matrix B0.
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In the following two subsections, two simulation studies are designed as follows for inves-

tigating the change of the imprecise estimate of the regression parameters β. Depending on

the number of explanatory variables in the model, the studies are differentiated such that

a single explanatory variable x1 is involved with the model for the first study and two ex-

planatory variables x1 and x2 are involved with the model for the second study. Because of

the presence of an intercept term in the model, a prior distribution π(β) for regression coef-

ficients is assumed to be 2- and 3-dimensional multivariate normal distribution for the first

and second studies, respectively. The first order auto-correlation structure is then imposed

on the prior variance-covariance matrix B0, and the value of a correlation coefficient ρπ is

controlled.

5.3.1 A single explanatory variable

Suppose that a linear predictor is defined as below:

log µi = β0 + β1x1i (5.1)

where µi is the Poisson mean parameter for i-th individual and x1i is a realization of i-th

individual generated from a normal distribution with a mean of µX and a standard deviation

of σX . The prior variance-covariance matrix B0 for regression parameters β = (β0, β1)T is

structured in the following way:

B0 = Vπ(β) = DΛπD
T =

σπ1 0

0 σπ2

 1 ρπ

ρπ 1

σπ0 0

0 σπ1

 , (5.2)

where σπ1 and σπ2 are the standard deviations of β0 and β1, respectively, D is the diagonal

matrix the elements of which are σπ1 and σπ2 , and ρπ is a correlation coefficient between the

regression parameters β0 and β1. The simulation is carried out as follows:

1. A sample of size N = 300 is taken from a normal distribution with a mean of µX and

a standard deviation of σX ;

114



2. The Poisson mean parameter µi for i-th individual is evaluated from the presumed linear

predictor in (5.1) with predetermined values of the regression coefficients β0 = −0.5

and β1 = 1.0 for i = 1, 2, . . . , N ;

3. Individual level count data of the response variable yi is simulated from a Poisson

distribution with the mean value µi;

4. Both a response variable yi and an explanatory variable xi are removed if the simulated

count of a response variable yi has a zero value. The number of observations remaining

in the sample after this zero-truncation is denoted by n;

5. The imprecise normal prior for regression parameters β is described by characterizing

the region R0 = {(b0, b1)| − 1.5 ≤ b0 ≤ 0.5, 0 ≤ b1 ≤ 2} on the hyperparameter space

of b0 and b1;

6. The proposed methodology is carried out for inferring regression parameters β using

the zero-truncated sample of size n;

7. The above steps (1)–(6) are repeated 100 times to each pair of mean µX = {−1, 0, 1} and

standard deviation σX = {0.5, 1.0, 2.0} over different values of a correlation coefficient

ρπ = {0.0, 0.4, 0.8}.

Note that the standard deviations σπ1 and σπ2 associated with the prior variance-covariance

matrix B0 are assumed to be both 0.1. The values of mean µX and standard deviation σX

are determined by the first two moments of a symmetric two-point design using Fisher’s

information matrix which measures the amount of information that the simulated samples

for the explanatory variable x1 carry about the regression parameter β. The symmetric two-

point design is performed as follows. η1 and η2 are considered as samples of the explanatory

variable x1. With the given two samples of η1 and η2, the minimum and maximum of the

determinant of the Fisher’s information is found. The derivation of this Fisher’s information

matrix and the optimal sampling design with two samples are noted in Appendix A.2. The

minimum value of the determinant of Fisher’s information matrix is found when η1 = η2 (i.e.,

there is no information about the regression parameters β is delivered when the values of

two samples η1 and η2 are identical.) and the maximum value is not found since the upper
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bound of this determinant does not exist. Hence, the different values are arbitrarily but

symmetrically chosen such that (η1, η2) = (−1.0, 1.0). Since the first two moments of these

two samples are a mean of µX = (η1 +η2)/2 = 0 and a variance of sigmaX = (η1−η2)/2 = 1,

samples for the explanatory variable x1 are simulated from a normal distribution with a mean

of 0 and a standard deviation of 1.
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Table 5.4: Mean maximum imprecise posterior expectation En(βi|y), the mean minimum imprecise posterior expectation
En(βi|y), and the mean degree of imprecision ∆n(βi|y) of the zero-truncated Poisson regression parameter βi, where
i = 0 and 1, over the different values of a correlation coefficient ρπ = {0.0, 0.4, 0.8} associated with the prior variance-
covariance matrix B0 and different values of the standard deviation σX = {0.5, 1.0, 2.0} of the explanatory variable x1. The
predetermined regression coefficients are (β0, β1) = (−0.5, 1.0). The imprecise normal prior is defined by characterizing the

region R0 = {(b0, b1)| − 1.0 ≤ b0 ≤ 0.0, 0.5 ≤ b1 ≤ 1.5}. n̄ is the mean size of zero-truncated samples. N
n

and Nn are the
mean minimum population size estimate and the mean maximum population size estimate, respectively.

N = 300 β0 = −0.5 β1 = 1.0 Estimated Pop. Size

ρπ σX µX E(β0|y) E(β0|y) ∆(β0|y) E(β1|y) E(β1|y) ∆(β1|y) n̄ N
n

Nn

0.0 0.5 −1 −0.902 −0.151 0.751 0.526 1.464 0.939 140.33 236.918 429.636
0 −0.902 −0.151 0.751 0.525 1.470 0.944 140.44 236.239 424.186
1 −0.901 −0.151 0.750 0.531 1.476 0.945 140.62 237.093 428.770

1.0 −1 −0.954 −0.103 0.850 0.730 1.275 0.545 145.92 226.569 451.128
0 −0.939 −0.093 0.846 0.733 1.267 0.534 146.26 226.331 448.740
1 −0.942 −0.097 0.846 0.731 1.267 0.536 146.07 226.235 448.648

2.0 −1 −0.759 −0.260 0.499 0.940 1.061 0.121 150.14 256.659 373.256
0 −0.772 −0.269 0.502 0.943 1.065 0.122 151.22 256.897 376.000
1 −0.765 −0.257 0.508 0.940 1.066 0.125 150.21 256.153 390.433

0.4 0.5 −1 −0.909 −0.130 0.779 0.486 1.513 1.027 141.55 235.861 436.771
0 −0.909 −0.127 0.782 0.486 1.510 1.024 139.85 232.594 432.390
1 −0.920 −0.135 0.785 0.486 1.505 1.019 141.39 236.485 443.800
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Table 5.4: (continued)

N = 300 β0 = −0.5 β1 = 1.0 Estimated Pop. Size

ρπ σX µX E(β0|y) E(β0|y) ∆(β0|y) E(β1|y) E(β1|y) ∆(β1|y) n̄ N
n

Nn

1.0 −1 −1.020 −0.041 0.980 0.690 1.304 0.614 147.20 220.927 488.945
0 −1.009 −0.033 0.976 0.688 1.305 0.617 147.54 220.739 486.458
1 −1.014 −0.035 0.979 0.687 1.296 0.609 145.76 218.747 489.499

2.0 −1 −0.861 −0.154 0.707 0.914 1.084 0.171 150.67 238.801 409.584
0 −0.890 −0.151 0.739 0.910 1.095 0.184 150.42 234.531 407.090
1 −0.861 −0.175 0.686 0.921 1.082 0.161 150.71 236.216 388.820

0.8 0.5 −1 −0.937 −0.114 0.823 0.426 1.536 1.110 139.37 229.830 437.299
0 −0.930 −0.113 0.817 0.429 1.544 1.115 140.33 232.171 447.378
1 −0.928 −0.106 0.822 0.436 1.546 1.111 140.12 230.101 439.527

1.0 −1 −1.093 0.047 1.140 0.637 1.341 0.704 145.74 209.188 531.424
0 −1.096 0.043 1.139 0.628 1.338 0.710 146.36 210.687 542.956
1 −1.087 0.054 1.141 0.647 1.347 0.700 145.57 207.303 519.785

2.0 −1 −1.088 0.038 1.125 0.869 1.134 0.264 150.76 214.110 522.689
0 −1.095 0.046 1.141 0.864 1.139 0.275 151.51 214.267 516.106
1 −1.087 0.041 1.129 0.868 1.135 0.267 150.34 213.487 499.560
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The mean size n̄ of the zero-truncated sample, the mean maximum imprecise posterior

expectation En(βi|y), the mean minimum posterior expectation E
n
(βi|y), the mean degree

of imprecision ∆n(βi|y), for i = 0 and 1, the mean maximum population size estimate Nn,

and the mean minimum population size estimate N
n

are computed from the results of 100

repetitions. The results are summarized in Table 5.4.

1. The mean imprecise interval estimate (E
n
(βi|y), En(βi|y)) of regression parameters βi,

for i = 0 and 1, is insensitive to the change of the meta-parameter µX when the other

meta-parameters σX and ρπ are controlled;

2. The mean degree of imprecision ∆n(β0|y) for the regression parameter β0 is larger at the

meta-parameter σX = 1 than when compared to the one at the meta-parameter ρπ = 0

(i.e., independent structure) and ρπ = 0.4 (i.e., mild correlation), but this differentiation

almost disappears at the meta-parameter ρπ = 0.8 (i.e., strong correlation);

3. The mean degree of imprecision ∆n(β1|y) for the regression parameter β1 decreases as

the value of the meta-parameter σX increases at a given value of the meta-parameter

ρπ. In addition, the mean degree of imprecision ∆n(β1|y) seems to be inflated over the

values of the meta-parameter ρπ at a given value of the meta-parameter σX .

4. The interval between the mean minimum population size estimate N
n

and the mean

maximum population size estimate Nn captures the value of the meta-parameter N

over all different values of the meta-parameters ρX , σX , and µX ; however, the mean

maximum population size estimate Nn increases and the mean minimum population

size estimate N
n

decreases as the meta-parameter ρπ increases when the other meta-

parameters σX and µX are controlled. In addition, this interval has the widest length at

the meta-parameter σX = 1 when the other meta-parameters πX and µX are controlled.

It is also shown that the deviance of the mean minimum population size estimate

N
n

from the meta-parameter N is shorter than the deviance of the mean maximum

population size estimate Nn from the meta-parameter N for all conditions of meta-

parameters ρπ, σX , and µX .
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5.3.2 Two explanatory variables

Consider now the linear predictor defined as follow:

log µi = β0 + β1x1i + β2x2i, (5.3)

where x1 and x2 are explanatory variables, and i = 1, 2, . . . , N . In this simulation study,

the regression coefficients β is assumed to be (β0, β1, β2)T = (0.5,−0.5, 0.5)T . The imprecise

prior for the regression parameters β is described by characterizing the convex hull C0 =

{(b0, b1, b2)| − 0.5 ≤ b0 ≤ 1.5,−1.5 ≤ b1 ≤ 0.5,−0.5 ≤ b2 ≤ 1.5} on the three-dimensional

hyperparameter space (b0, b1, b2). The prior variance-covariance matrix B0 is structured as

below:

B0 = V (β) = DΛπD
T =


σπ1 0 0

0 σπ2 0

0 0 σπ3




1 ρπ ρ2
π

ρπ 1 ρπ

ρ2
π ρπ 1



σπ1 0 0

0 σπ2 0

0 0 σπ3

 , (5.4)

where σπ0 , σπ1 , and σπ2 are the standard deviation of the regression parameters β0, β1, and β2,

respectively, and D is the diagonal matrix the elements of which are σπ0 , σπ1 , and σπ2 . The

values of a correlation coefficient ρπ are varied in the range of {0, 0.2, 0.4, 0.6, 0.8}. Random

variates for two explanatory variables x1 and x2 are simulated from each of a combinatorial

pair of σX1 = {0.5, 1.0, 2.0} and σX2 = {0.5, 1.0, 2.0} at the centre µX = (0, 0). Note that no

correlation ρX between two explanatory variables x1 and x2 is assumed in this study; however,

this assumption is released and the effect of a correlation ρX between the explanatory variables

are separately investigated later in section 5.4. Based on this design scheme, N = 300 Poisson

samples are simulated at each repetition and the identical simulation process described in

the above subsection 5.3.1 is carried out. The mean size n̄ of a zero-truncated sample,

the mean maximum imprecise posterior expectation En(βi|y), the mean minimum posterior

expectation E
n
(βi|y), the mean degree of imprecision ∆n(βi|y), for i = 0, 1 and 2, the mean

maximum population size estimate Nn, and the mean minimum population size estimate N
n

are computed from the results of 100 repetitions.
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The results are tabulated in Table 5.5, and the following patterns are found:

1. The mean degree of imprecision ∆n(β1|y) for the regression parameter β1 decreases as

either the meta-parameter σX1 or σX2 increases at the meta-parameter ρπ = 0 (i.e., inde-

pendent correlation between regression parameters) while this mean degree of impreci-

sion ∆n(β1|y) increases as the meta-parameter ρπ increases when the other conditions

of the meta-parameters σX1 and σX2 are controlled. Analogous patterns are also found

for the case of the regression parameter β2.

2. The mean degree of imprecision ∆n(β0|y) for the regression parameter β0 does not

have a notable increment or decrement on the change of either the meta-parameter

σX1 or σX2 at the meta-parameter ρπ = 0; however, the mean degree of imprecision

∆n(β0|y) increases as either meta-parameter σX1 or σX2 increases at the given value of

the meta-parameter ρπ = 0.4 or ρπ = 0.8. In addition, the mean degree of imprecision

∆n(β0|y) increases as the meta-parameter ρπ increases when other conditions of the

meta-parameters σX1 and σX2 are controlled.

3. The interval between the mean minimum population size estimate N
n

and the mean

maximum population size estimate Nn captures the value of meta-parameter N over

all different conditions of meta-parameters ρπ, σX1 , and σX2 . This phenomenon is due to

the fact that the mean maximum population size estimate Nn increases as the meta-

parameter ρπ increases while the mean minimum population size estimate N
n

does not

have a notable change over the change of the meta-parameters ρπ. This observation also

accounts for the fact that the deviance of the mean minimum population size estimate

N
n

from the meta-parameter N is shorter than the deviance of the mean maximum

population size estimate Nn from the meta-parameter N for all conditions of meta-

parameters ρπ, σX , and µX . That is, this skewness (to the right) is becoming overt as

the meta-parameter ρπ increases.
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Table 5.5: The mean maximum imprecise posterior expectation En(βi|y), the mean minimum imprecise posterior expec-
tation En(βi|y), and the mean degree of imprecision ∆n(βi|y) for the regression parameter βi, where i = 0, 1, and 2, over
different values of a correlation coefficient ρπ = {0.0, 0.4, 0.8} associated with the prior variance-covariance matrix B0 and
different values of standard deviation σX1 = σX2 = {0.5, 1.0, 2.0} of the explanatory variables x1 and x2. The predetermined
values of the regression parameters are (β0, β1, β2) = (0.5,−0.5, 0.5). The imprecise prior is defined by characterizing the

convex hull C0 = {(b0, b1, b2)|0.0 ≤ b0 ≤ 1.0,−1.0 ≤ b1 ≤ 0.0, 0.0 ≤ b2 ≤ 1.0}. Note that En(βi|y), En(βi|y), ∆n(βi|y)

are simply denoted by E(βi), E(βi), ∆(βi) for better presentation of results in the table. n̄ is the mean size of the zero-

truncated samples. N
n

and Nn are the mean minimum population size estimate and the mean maximum population size
estimate, respectively.

(σX1 , σ
X
2 ) β0 = 0.5 β1 = −0.5 β2 = 0.5 Estimated Pop. Size

E(β0) E(β0) ∆(β0) E(β1) E(β1) ∆(β1) E(β2) E(β2) ∆(β2) n̄ N
n

Nn

ρπ = 0.0
(0.5,0.5) 0.269 0.679 0.410 −0.825 −0.194 0.631 0.189 0.821 0.632 238.35 277.179 347.838
(1.0,0.5) 0.243 0.702 0.459 −0.669 −0.347 0.322 0.229 0.814 0.585 233.19 271.862 355.216
(2.0,0.5) 0.271 0.698 0.427 −0.567 −0.436 0.131 0.289 0.727 0.438 221.58 271.618 352.131

ρπ = 0.0
(0.5,1.0) 0.248 0.705 0.456 −0.802 −0.218 0.584 0.343 0.669 0.326 233.86 272.432 355.387
(1.0,1.0) 0.224 0.709 0.486 −0.653 −0.360 0.293 0.367 0.655 0.288 229.67 269.752 361.876
(2.0,1.0) 0.271 0.689 0.419 −0.557 −0.446 0.111 0.407 0.597 0.190 219.53 272.363 350.974

ρπ = 0.0
(0.5,2.0) 0.278 0.696 0.418 −0.725 −0.291 0.434 0.440 0.567 0.127 221.19 271.016 347.773
(1.0,2.0) 0.277 0.692 0.415 −0.597 −0.412 0.185 0.448 0.557 0.109 219.07 271.825 349.380
(2.0,2.0) 0.317 0.666 0.349 −0.540 −0.462 0.078 0.466 0.537 0.072 211.93 273.350 335.988

ρπ = 0.4
(0.5,0.5) 0.261 0.673 0.412 −0.895 −0.072 0.823 0.140 0.870 0.731 238.51 277.799 351.606
(1.0,0.5) 0.246 0.684 0.437 −0.654 −0.353 0.301 0.135 0.874 0.738 234.09 274.449 359.149
(2.0,0.5) 0.277 0.682 0.405 −0.559 −0.449 0.110 0.199 0.797 0.598 221.50 274.306 348.610
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Table 5.5: (continued)

(σX1 , σ
X
2 ) β0 = 0.5 β1 = −0.5 β2 = 0.5 Estimated Pop. Size

E(β0) E(β0) ∆(β0) E(β1) E(β1) ∆(β1) E(β2) E(β2) ∆(β2) n̄ N
n

Nn

ρπ = 0.4
(0.5,1.0) 0.228 0.712 0.483 −0.906 −0.034 0.873 0.321 0.690 0.369 234.93 272.364 364.657
(1.0,1.0) 0.227 0.719 0.492 −0.667 −0.352 0.315 0.337 0.673 0.336 229.89 268.326 364.817
(2.0,1.0) 0.268 0.686 0.418 −0.554 −0.453 0.101 0.384 0.614 0.230 219.37 273.263 350.475

ρπ = 0.4
(0.5,2.0) 0.244 0.693 0.449 −0.836 −0.138 0.698 0.432 0.580 0.148 222.36 272.847 359.620
(1.0,2.0) 0.257 0.695 0.438 −0.622 −0.397 0.224 0.435 0.572 0.136 219.29 270.389 352.970
(2.0,2.0) 0.298 0.678 0.380 −0.531 −0.467 0.064 0.459 0.545 0.087 212.72 274.638 340.345

ρπ = 0.8
(0.5,0.5) 0.204 0.709 0.505 −1.182 0.181 1.364 −0.016 0.993 1.009 238.47 274.797 368.026
(1.0,0.5) 0.174 0.760 0.585 −0.733 −0.204 0.530 −0.059 1.038 1.097 233.86 271.594 378.830
(2.0,0.5) 0.028 0.873 0.845 −0.595 −0.426 0.170 −0.095 1.033 1.128 221.12 256.579 403.050

ρπ = 0.8
(0.5,1.0) 0.096 0.799 0.703 −1.251 0.260 1.511 0.230 0.783 0.553 234.29 263.186 409.652
(1.0,1.0) 0.091 0.801 0.710 −0.805 −0.090 0.715 0.213 0.756 0.543 230.12 258.563 419.960
(2.0,1.0) 0.038 0.868 0.830 −0.584 −0.421 0.164 0.270 0.723 0.453 219.62 257.037 404.447

ρπ = 0.8
(0.5,2.0) 0.081 0.838 0.757 −1.173 0.185 1.359 0.383 0.630 0.247 221.18 257.117 412.595
(1.0,2.0) 0.060 0.852 0.792 −0.760 −0.181 0.580 0.388 0.624 0.236 218.86 255.979 406.287
(2.0,2.0) 0.047 0.860 0.813 −0.564 −0.439 0.125 0.421 0.592 0.171 212.28 255.099 411.136
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5.4 Correlated explanatory variables

The effect of the correlation ρX between two explanatory variables x1 and x2 on the

imprecise estimate of the regression parameters β is considered under identical conditions as

those controlled in the previous study (i.e., the effect of a correlation ρπ associated with the

prior variance-covariance matrix B0 in the previous section 5.3).

For this study, the variance-covariance matrix of two explanatory variables x1 and x2 is

structured as below:

V (x) = DΛXD
T =

σX1 0

0 σX2

 1 ρX

ρX 1

σX1 0

0 σX2

 , (5.5)

where σX1 and σX2 are the standard deviations of the explanatory variables x1 and x2, respec-

tively, D is the diagonal matrix elements of which are σX1 and σX2 , and ρX is the correlation

coefficient of x1 and x2. The R function rmvnorm() in the mvtnorm package (Genz and Bretz,

2009) is used for generating correlated random variates of two explanatory variables x1 and

x2 for the given structure of a variance-covariance matrix in (5.5). When the proposed

methodology is carried out for an imprecise inference, the default prior distribution π(β)

for the regression parameters β is specified (i.e., a three-dimensional multivariate normal

distribution with a mean of 0 and a variance-covariance matrix I3).

The mean size n̄ of a zero-truncated sample, the mean maximum imprecise posterior

expectation En(βi|y), the mean minimum posterior expectation E
n
(βi|y), the mean degree

of imprecision ∆n(βi|y), for i = 0, 1 and 2, the mean maximum population size estimate Nn,

and the mean minimum population size estimate N
n

are computed using 100 repetitions.

The results are tabulated in Table 5.6.

1. The mean degree of imprecision ∆n(β1|y) for the regression parameter β1 decreases as

either the meta-parameter σX1 or σX2 increases at a given value of the meta-parameter

ρX while this mean degree of imprecision ∆n(β1|y) increases as the meta-parameter ρX

increases when the other conditions of meta-parameters σX1 and σX2 are controlled. The

analogous patterns are also found for the case of the regression parameter β2.

124



2. The mean degree of imprecision ∆n(β0|y) for the regression parameter β0 increases as

either the meta-parameter σX1 or σX2 increases at the meta-parameter ρX while this

mean degree of imprecision ∆n(β0|y) decreases as the meta-parameter ρX increases

when the other conditions of the meta-parameters σX1 and σX2 are controlled.

3. The interval between the mean minimum population size estimate N
n

and the mean

maximum population size estimate Nn captures the value of the meta-parameter N over

all different conditions of the meta-parameters ρX , σX1 , and σX2 . The notable change

is not shown in the mean minimum population size estimate N
n
, whereas the mean

maximum population size estimate Nn increases as the meta-parameter ρX increases

when the other meta-parameters σX1 and σX2 are controlled.
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Table 5.6: The mean maximum imprecise posterior expectation En(βi|y), the mean minimum imprecise posterior ex-
pectation En(βi|y), and the mean degree of imprecision ∆n(βi|y) for the regression parameter βi, where i = 0, 1, and 2,
over different values of a correlation coefficient ρX = {0.0, 0.4, 0.8} between two explanatory variables x1 and x2 under
the controlled conditions of the standard deviations σX1 = σX2 = {0.5, 1.0, 2.0} of two explanatory variables x1 and x2.
The predetermined values of the regression parameters are (β0, β1, β2) = (0.5,−0.5, 0.5). The imprecise prior is defined by

characterizing the convex hull C0 = {(b0, b1, b2)|0.0 ≤ b0 ≤ 1.0,−1.0 ≤ b1 ≤ 0.0, 0.0 ≤ b2 ≤ 1.0}. Note that En(βi|y),

En(βi|y), ∆n(βi|y) are simply denoted by E(βi), E(βi), ∆(βi) for better presentation of results in the table. n̄ is the mean

size of the zero-truncated samples. N
n

and Nn are the mean minimum population size estimate and the mean maximum
population size estimate, respectively.

(ρX , σ
X
1 ) β0 = 0.5 β1 = −0.5 β2 = 0.5 Estimated Pop. Size

E(β0) E(β0) ∆(β0) E(β1) E(β1) ∆(β1) E(β2) E(β2) ∆(β2) n̄ N
n

Nn

σX2 = 0.5
(0.0,0.5) 0.267 0.678 0.410 −0.827 −0.192 0.635 0.191 0.821 0.630 238.39 277.297 348.013
(0.4,0.5) 0.282 0.652 0.371 −0.878 −0.147 0.731 0.152 0.883 0.730 240.18 281.692 343.446
(0.8,0.5) 0.323 0.628 0.304 −0.955 −0.060 0.895 0.067 0.962 0.895 240.77 284.918 329.102

σX2 = 0.5
(0.0,1.0) 0.234 0.695 0.461 −0.676 −0.345 0.332 0.223 0.808 0.585 234.23 273.588 359.690
(0.4,1.0) 0.257 0.684 0.427 −0.710 −0.300 0.410 0.168 0.853 0.685 237.22 277.121 354.649
(0.8,1.0) 0.286 0.651 0.365 −0.818 −0.220 0.599 0.027 0.968 0.941 239.44 281.991 342.341

σX2 = 0.5
(0.0,2.0) 0.272 0.685 0.413 −0.566 −0.443 0.123 0.293 0.721 0.428 221.88 274.865 352.734
(0.4,2.0) 0.276 0.700 0.424 −0.587 −0.415 0.172 0.244 0.775 0.531 224.39 272.618 350.919
(0.8,2.0) 0.286 0.688 0.402 −0.642 −0.362 0.281 0.108 0.917 0.809 227.36 273.709 345.245

σX2 = 1.0
(0.0,0.5) 0.238 0.698 0.460 −0.815 −0.227 0.587 0.349 0.676 0.327 234.29 273.728 360.097
(0.4,0.5) 0.258 0.685 0.427 −0.852 −0.157 0.695 0.292 0.708 0.415 236.12 275.412 351.092
(0.8,0.5) 0.297 0.658 0.361 −0.979 −0.036 0.943 0.209 0.804 0.595 238.22 279.762 338.143
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Table 5.6: (continued)

(ρX , σ
X
1 ) β0 = 0.5 β1 = −0.5 β2 = 0.5 Estimated Pop. Size

E(β0) E(β0) ∆(β0) E(β1) E(β1) ∆(β1) E(β2) E(β2) ∆(β2) n̄ N
n

Nn

σX2 = 1.0
(0.0,1.0) 0.241 0.720 0.478 −0.647 −0.358 0.290 0.363 0.649 0.286 231.26 271.090 360.678
(0.4,1.0) 0.233 0.706 0.473 −0.701 −0.314 0.387 0.313 0.706 0.394 233.75 271.418 357.439
(0.8,1.0) 0.261 0.661 0.400 −0.843 −0.179 0.663 0.186 0.852 0.666 238.36 278.839 347.092

σX2 = 1.0
(0.0,2.0) 0.279 0.700 0.421 −0.557 −0.444 0.112 0.407 0.602 0.194 219.96 271.706 349.983
(0.4,2.0) 0.251 0.707 0.456 −0.589 −0.417 0.172 0.366 0.645 0.279 224.11 270.387 357.291
(0.8,2.0) 0.253 0.693 0.441 −0.673 −0.343 0.330 0.230 0.780 0.550 231.95 275.043 356.986

σX2 = 2
(0.0,0.5) 0.270 0.692 0.422 −0.730 −0.296 0.434 0.437 0.564 0.127 220.84 271.390 349.660
(0.4,0.5) 0.264 0.686 0.422 −0.775 −0.247 0.529 0.420 0.589 0.169 224.57 273.914 352.312
(0.8,0.5) 0.273 0.682 0.408 −0.918 −0.101 0.818 0.363 0.647 0.284 226.59 273.688 347.521

σX2 = 2
(0.0,1.0) 0.273 0.687 0.414 −0.606 −0.418 0.188 0.446 0.555 0.109 219.62 271.931 347.368
(0.4,1.0) 0.254 0.705 0.451 −0.648 −0.373 0.275 0.420 0.585 0.166 224.29 271.443 356.970
(0.8,1.0) 0.243 0.690 0.447 −0.791 −0.229 0.563 0.338 0.677 0.339 231.10 273.607 357.230

σX2 = 2
(0.0,2.0) 0.312 0.668 0.356 −0.541 −0.466 0.075 0.463 0.538 0.075 212.76 276.472 343.414
(0.4,2.0) 0.282 0.703 0.421 −0.563 −0.438 0.125 0.437 0.562 0.126 219.54 270.131 347.541
(0.8,2.0) 0.233 0.715 0.482 −0.675 −0.345 0.330 0.346 0.676 0.330 232.55 270.957 361.115
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Two Binary Explanatory Variables

In the above simulation study the scale of two explanatory variables is limited to a con-

tinuous measurement although various types of scale are available for explanatory variables.

One of the commonly used scales is a dichotomous outcome that has only two categories

such as dead or alive. One additional simulation study is proposed at this time regarding the

effect of correlation for the case where two explanatory variables x1 and x2 has both binary

measurement scales under the identical conditions as those controlled for the previous study

when two explanatory variables are both assumed to be continuous.

For this simulation study, the R function rmvbin() in the bindata package (Leisch et al.,

2012) is used for generating correlated binary random variates. The marginal probability p1

for the first binary explanatory variable x1 is assumed to have the values of {0.3, 0.5, 0.7},

and the marginal probability p2 for the second binary explanatory variable x2 is fixed at 0.5.

The values of the correlation coefficient ρX are varied in the range of {0.0, 0.25, 0.5}. The

results are enumerated in Table 5.6.

1. The mean degree of imprecision ∆n(β1|y) for the regression parameter β1 increases as

the meta-parameter ρX increases at the given value of the meta-parameter p1; however,

this mean degree of imprecision ∆n(β1|y) increases as the meta-parameter p1 increases

when the meta-parameter ρX is controlled. An analogous pattern is also found for the

case of the regression parameter β2.

2. The mean degree of imprecision ∆n(β0|y) for the regression parameter β0 decreases as

the meta-parameter ρX at the given value of the meta-parameter p1; however, this mean

degree of imprecision ∆n(β0|y) increases as the meta-parameter p1 increases when the

meta-parameter ρX is controlled.

3. No notable change is shown in the mean minimum population size estimate N
n
; how-

ever, the mean maximum population size estimateNn increases as the meta-parameter ρX

increases when the meta-parameter p1 is controlled.
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Table 5.7: The mean maximum imprecise posterior expectation En(βi|y), the mean minimum imprecise posterior ex-
pectation En(βi|y), and the mean degree of imprecision ∆n(βi|y) for the regression parameter βi, where i = 0, 1, and
2, over different values of a correlation coefficient ρX = {0.0, 0.25, 0.50} between the two binary explanatory variables
x1 and x2 under the controlled conditions of p1 = {0.3, 0.5, 0.7} and p2 = 0.5. The predetermined values of the re-
gression parameters are (β0, β1, β2) = (0.5,−0.5, 0.5). The imprecise prior is defined by characterizing the convex hull

C0 = {(b0, b1, b2)|0.0 ≤ b0 ≤ 1.0,−1.0 ≤ b1 ≤ 0.0, 0.0 ≤ b2 ≤ 1.0}. Note that En(βi|y), En(βi|y), ∆n(βi|y) are simply

denoted by E(βi), E(βi), ∆(βi) for better presentation of results in the table. n̄ is the mean size of the zero-truncated

samples. N
n

and Nn are the mean minimum population size estimate and the mean maximum population size estimate,
respectively.

p1 β0 = 0.5 β1 = −0.5 β2 = 0.5 Estimated Pop. Size

ρX E(β0) E(β0) ∆(β0) E(β1) E(β1) ∆(β1) E(β2) E(β2) ∆(β2) n̄ N
n

Nn

0.3
0.00 0.142 0.793 0.651 −0.880 −0.133 0.747 0.158 0.880 0.722 247.98 283.051 343.087
0.25 0.163 0.783 0.620 −0.881 −0.123 0.758 0.131 0.885 0.754 248.23 284.295 335.430
0.50 0.174 0.766 0.592 −0.889 −0.103 0.786 0.108 0.906 0.798 249.82 287.148 329.916

0.5
0.00 0.098 0.835 0.738 −0.854 −0.135 0.719 0.132 0.905 0.773 238.32 278.982 349.350
0.25 0.115 0.812 0.696 −0.876 −0.114 0.762 0.106 0.919 0.813 239.23 281.677 344.240
0.50 0.132 0.798 0.665 −0.903 −0.071 0.832 0.067 0.942 0.875 239.62 283.288 335.831

0.7
0.00 0.046 0.891 0.845 −0.866 −0.092 0.775 0.099 0.931 0.832 229.63 277.287 354.584
0.25 0.065 0.869 0.805 −0.909 −0.055 0.854 0.073 0.953 0.880 230.75 279.748 350.355
0.50 0.075 0.846 0.770 −0.973 −0.001 0.972 0.034 0.993 0.960 231.88 282.196 344.095
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5.5 Absence of explanatory variable

One strong assumption in a regression analysis is that all explanatory variables defined

in the linear predictor are influential to a response variable; however, it is unlikely to have

all such explanatory variables in practice. The question is then what impact is shown on the

imprecise estimate when the intentional unit is not aware that some influential explanatory

variables needed for a study are absent.

To investigate this question, the simulation design that was used for investigating the

effect of a correlation ρX between two explanatory variables x1 and x2 on the imprecise

estimate of regression parameters is slightly modified as follows. The linear predictor log µi =

β0 +β1x1i+β2x2i, where (β0, β1, β2)T = (0.5,−0.5, 0.5), is used for simulating Poisson random

variates as the true sampling mechanism; however, the model to be fitted to the data is defined

as log µi = β0 + β1x1i has a only single explanatory variable x1. Since there are only two

regression parameters β0 and β1 in the model, the imprecise prior for the regression parameter

β = (β0, β1)T is represented by characterizing the regionR0 = {(b0, b1)|0 ≤ b0 ≤ 1,−1 ≤ b1 ≤

0} on the hyperparameter space of b0 and b1. A correlation coefficient ρπ associated with the

prior variance-covariance matrix B0 in (5.2) and a correlation ρX between two explanatory

variables x1 and x2 in (5.5) are continuously employed. This simulation is carried out with

different sample size n which is varied in the range of {100, 300, 500}. The mean size n̄ of the

zero-truncated sample, the mean maximum imprecise posterior expectation En(βi|y), the

mean minimum posterior expectation E
n
(βi|y), the mean degree of imprecision ∆n(βi|y),

for i = 0 and 1, the mean maximum population size estimate Nn, and the mean minimum

population size estimate N
n

are computed using 100 repetitions. The results are summarized

in Table 5.8.

1. Both the mean maximum imprecise posterior expectation En(β0|y) and the minimum

imprecise posterior expectation E
n
(β0|y) for the regression parameter β0 decrease as

the meta-parameter ρX increases; however, the mean maximum imprecise posterior

expectation En(β1|y) and the minimum imprecise posterior expectation E
n
(β1|y) for

the regression parameter β1 increases as the meta-parameter ρX increases;
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2. The mean degree of imprecision ∆n(βi|y) has a smaller value when the meta-parameter

ρπ = 0.4 (i.e., mild correlation) compared to when the meta-parameter ρπ = 0.0 (i.e.,

independence) or ρπ = 0.8 (i.e., strong correlation);

3. The interval between the mean maximum imprecise posterior expectation En(βi|y) and

the mean minimum imprecise posterior expectation E
n
(βi|y) is likely to capture the

regression parameters β = (β0 = 0.5, β1 = −0.5)T when the meta-parameter N = 100

or ρπ = 0.8.

4. The interval between the mean minimum population size estimate N
n

and the mean

maximum population size estimate Nn does not capture the given value of the meta-

parameter N when the meta-parameters σX = 0.0 (or 0.4) and N = 500 for all con-

ditions of the meta-parameter ρπ. For all conditions of the meta-parameter N , the

mean minimum and maximum population size estimates N
n

and Nn increase as the

meta-parameter σX increases. However, the mean maximum population size estimate

Nn decreases as the meta-parameter ρπ increases when the meta-parameter N = 100

when the other meta-parameter σX is controlled.

131



Table 5.8: The mean maximum imprecise posterior expectation En(βi|y), the mean minimum imprecise posterior ex-
pectation En(βi|y), and the mean degree of imprecision ∆n(βi|y) for the regression parameter βi, where i = 0, 1, over
different values of a correlation coefficient ρπ = {0.0, 0.4, 0.8} associated with the prior variance-covariance matrix B0 and
different values of standard deviations σX1 = σX2 = σX = {0.0, 0.4, 0.8} of two explanatory variables x1 and x2 on different
sample sizes N = {100, 300, 500}. The linear predictor log(µi) = β0 + β1x1 + β2x2 is used for generating Poisson random
variates. The predetermined values of the regression parameters are (β0, β1, β2) = (0.5,−0.5, 0.5). The linear predictor
log(µi) = β0 + β1x1 is used for inferring the regression parameters using the proposed methodology. The imprecise prior
is defined by characterizing the region R0 = {(b0, b1)|0.0 ≤ b0 ≤ 1.0,−1.0 ≤ b1 ≤ 0.0}. n̄ is the mean size of the zero-

truncated samples. N
n

and Nn are the mean minimum population size estimate and the mean maximum population size
estimate, respectively.

β0 = 0.5 β1 = −0.5 Estimated Pop. Size

N σX ρπ E(β0|y) E(β0|y) ∆(β0|y) E(β1|y) E(β1|y) ∆(β1|y) n̄ N
n

Nn

100 0.0 0.0 0.264 0.903 0.639 −0.809 −0.261 0.548 76.91 84.681 119.815
0.4 0.308 0.856 0.548 −0.748 −0.265 0.483 76.55 85.287 114.527
0.8 0.175 0.977 0.802 −0.703 −0.129 0.573 76.00 85.158 111.727

0.4 0.0 0.231 0.848 0.617 −0.696 −0.137 0.559 78.44 87.212 123.405
0.4 0.296 0.824 0.527 −0.643 −0.130 0.513 78.29 87.770 116.332
0.8 0.209 0.990 0.780 −0.616 0.010 0.625 78.35 87.680 112.667

0.8 0.0 0.174 0.769 0.595 −0.598 −0.043 0.555 79.63 90.319 127.942
0.4 0.250 0.788 0.539 −0.556 0.001 0.557 79.11 89.692 118.040
0.8 0.191 0.966 0.775 −0.593 0.088 0.681 79.97 90.206 115.911

300 0.0 0.0 0.476 0.825 0.349 −0.643 −0.358 0.285 229.56 259.266 307.154
0.4 0.523 0.792 0.269 −0.597 −0.372 0.226 229.78 262.162 298.169
0.8 0.382 0.884 0.501 −0.571 −0.277 0.294 230.61 263.721 302.177
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Table 5.8: (continued)

β0 = 0.5 β1 = −0.5 Estimated Pop. Size

N σX ρπ E(β0|y) E(β0|y) ∆(β0|y) E(β1|y) E(β1|y) ∆(β1|y) n̄ N
n

Nn

0.4 0.0 0.456 0.774 0.318 −0.485 −0.201 0.284 234.86 266.734 310.606
0.4 0.510 0.760 0.250 −0.450 −0.219 0.231 235.22 268.933 301.569
0.8 0.385 0.892 0.508 −0.467 −0.072 0.394 233.44 264.977 303.703

0.8 0.0 0.391 0.685 0.294 −0.346 −0.069 0.277 240.31 279.232 321.512
0.4 0.409 0.696 0.286 −0.321 −0.046 0.275 239.44 279.703 311.923
0.8 0.330 0.865 0.535 −0.403 0.077 0.481 240.47 274.155 322.047

500 0.0 0.0 0.557 0.792 0.235 −0.586 −0.396 0.190 384.12 438.946 489.386
0.4 0.600 0.776 0.176 −0.549 −0.402 0.147 383.24 440.485 477.341
0.8 0.482 0.839 0.357 −0.545 −0.361 0.183 384.41 443.331 485.892

0.4 0.0 0.543 0.754 0.211 −0.413 −0.226 0.187 390.78 446.670 490.670
0.4 0.581 0.742 0.162 −0.381 −0.235 0.145 389.94 448.054 479.772
0.8 0.479 0.847 0.368 −0.420 −0.133 0.287 390.38 444.679 488.080

0.8 0.0 0.452 0.645 0.193 −0.258 −0.071 0.186 399.58 470.131 512.849
0.4 0.467 0.664 0.197 −0.248 −0.059 0.189 400.70 472.532 505.157
0.8 0.388 0.801 0.413 −0.344 0.035 0.380 398.96 458.613 518.879
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Chapter 6

Case Studies

This chapter presents an application of the proposed methodology. As noted in Section

1.3, the affected population size estimation is a significant decision making problem in epi-

demiology since the reasonable estimate of prevalence is not only used for addressing the

burden of a disease in a community but also essential when constructing a fiscal funding

plan. The difficulty associated with this research is that there exists no reliable method of

confirming the true size of the population in question. Development of the proposed method-

ology is motivated by this epidemiological decision making problem, and intended to address

circumstances when the intentional unit who is concerned with how to lead his or her inferen-

tial problem is under the uncertainty due to the lack of information or disagreement between

individuals.

The proposed methodology leads an inferential process to an unknown truth using the

modelled intentional unit’s prior ignorance for purposes of decision making in a particular

situation for a given problem as illustrated using the examples in the preceding chapters.

However, the illustrated inferential process may not function as expected with real data since

the examination has been done with simulated data. More than one problem associated with

the proposed methodology may be identified in practice.

Four real data sets are collected from an epidemiological literature search in a disease

surveillance – Cholera epidemic (Dahiya and Gross, 1973), Down’s syndrome (Zelterman,

1988), and the female users of methamphetamine and the female users of heroin (Böhning

and van der Heijden, 2009). These data are re-analyzed using the proposed methodology.
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6.1 Cholera Epidemic in India

This example is taken from Table 1 in the study of Dahiya and Gross (1973). This data is

described as follows. An outbreak of cholera occurred in a village in India comprised of 223

households. Cholera is an infectious disease that is caused by a specific agent. It is assumed

that the causative agent for developing cholera resided in the water supply servicing that vil-

lage and also assumed that anyone who used drinking water supplied from the contaminated

well was affected. If a household has at least one diagnosed case, then all members of the

household are considered to be affected, whereas households with no diagnosed cases might

still be affected. According to Böhning et al. (2005), these data were originally collected by

McKendrick (1925) and presented to the Edinburgh Mathematical Society.

The data are shown in Table 6.1. y is the number of cholera cases in a household and ny

is the number of households with y cases of cholera. A total of 55 households in that village

had at least one case of cholera. The question of interest is now to estimate the number n0

of households that were infected but had undetected cases of cholera.

Table 6.1: Distribution of cholera cases by household in a village in India (McKendrick,
1925)

y 1 2 3 4 Total

ny 32 16 6 1 55

Dahiya and Gross (1973) studied this data using a conditional maximum likelihood esti-

mation of the zero-truncated Poisson model, and concluded that the number n0 of households

with active but undetected cases of cholera totals 34 out of 168 households with a 95% con-

fidence interval of (11, 57). Hence, the estimated size N of the population affected by the

cholera epidemic in the village is 89 with a 95% confidence interval of (66, 112). This ex-

ample has also been examined by Blumenthal et al. (1978), Scollnik (1997), and Böhning

et al. (2005). Blumenthal et al. (1978) followed the study of Dahiya and Gross (1973) and

showed that the unconditional maximum likelihood estimate of n0 is 32 (i.e., the estimated
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population size is 87). Scollnik (1997) reanalyzed this data from the Bayesian perspective.

He demonstrated that the number n0 of households is 34.795 (i.e., N̂ ≈ 89), 31.367 (N̂ ≈ 86),

35.880 (N̂ ≈ 90), and 32.014 (N̂ ≈ 87). Each of his estimates is produced using a differ-

ent specification of the prior distributions. More details about prior specifications and the

resulting posterior summaries of his data analysis can be found in Tables II, III, IV, and V

in his study. McKendrick (1925) also determined the number n0 of these households using a

binomial expansion of the Poisson model. His estimate of N is 93 (p. 101). It is an interesting

fact that the estimated population size N̂ varies over different studies despite the use of the

identical cholera outbreak data.

From this point forward the author of this thesis is regarded as the intentional unit who

carries out the proposed imprecise inferential framework to reach the estimate. The family of

log-gamma prior distributions in (3.9) is chosen for the zero-truncated Poisson sampling model

for reasons of mathematical convenience. The author’s state of complete-ignorance regarding

the parameter of this sampling model needs to be represented by an imprecise prior. The

region R0 = {(α, β)|0 ≤ α ≤ 5, 0 ≤ β ≤ 5} is characterized on the hyperparameter space

Ξ to express the author’s natural imprecise prior as shown in the plot on the top left panel

in Figure 6.1. x1, x2, x3, and x4 on that plot are the identification numbers of the extreme

points of the characterized region R0. One may question how the author arrived at these

characterization rules since the shape and size can be arbitrarily chosen. The primary reason

for this characterization is that all possible prior expectations are captured in this region R0

before seeing the data. Please see Figure 3.4 presented in Chapter 3.

Although various polygons can be characterized in this hyperparameter space Ξ, the

square is a shape that can be conveniently formed by four linear inequality constraints which

requires only two upper and lower bounds of each dimension α and β on the hyperparameter

space Ξ. This square also has a minimal number of constraints required to form the shape

of a polygon rather than the number of constraints required for any other shape. A triangle

shape may be considered since only one additional constraint is needed from the set of

constraints used to form the shape of a square; however, the author does not have sufficient

justification to rationalize how to assign a constraint that describes a relationship between two

hyperparameters α and β. The rectangular shape is also a candidate for this characterization
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since the number of constraints needed for forming a rectangle are identical to those needed

for the square. The question is then a determination of the length of each hyperparameter α

and β. Again, the author does not have a sufficient region to determine these lengths so that

both lengths are set as equal. It remains now to determine the quantification of the length

since the length of the characterized square is five times greater than the one of a unit square.

The choice of length is in fact arbitrary; however, the author has chosen a length sufficiently

large to be feasible for the study.
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Figure 6.1: Imprecise prior, probability box of imprecise posterior, imprecise fitted
counts, distribution of imprecise estimate of N in cholera epidemic data (McKendrick,
1925) analysis.
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Since the natural imprecise prior is determined for this data analysis, all remaining tasks

required to perform an imprecise inference are done by the ipeglim package (Lee and Bickis,

2013). The author now observes the data and executes the R functions (Please see the R code

template provided in Section 4.2). Numerical summaries of the resulting imprecise posterior
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are reported in Table 6.2. The first four rows represent the imprecise estimate of the canon-

ical parameter θ = log(µ) where µ is the mean parameter of the standard Poisson sampling

model which are listed in the next four rows.

Table 6.2: Imprecise posterior summary statistics at the extreme points of x1, x2, x3,
and x4 of the posterior hyperparameter set for the Cholera epidemics in India

Quantile
Est. 0% 25% 50% 75% 100%

E(θ|y)
x1 0.084 −0.425 −0.022 0.070 0.200 0.477
x2 −0.055 −0.702 −0.147 −0.047 0.059 0.461
x3 −0.183 −0.715 −0.284 −0.185 −0.066 0.386
x4 −0.031 −0.494 −0.135 −0.029 0.078 0.392

exp(θ̂)
x1 1.088 0.654 0.978 1.072 1.221 1.612
x2 0.947 0.496 0.863 0.954 1.061 1.585
x3 0.833 0.489 0.753 0.831 0.936 1.472
x4 0.969 0.610 0.874 0.971 1.081 1.480

N̂
x1 83.580 68.714 78.010 83.627 88.130 114.618
x2 90.743 69.180 84.110 89.461 95.143 140.704
x3 98.311 71.383 90.492 97.469 103.955 142.181
x4 89.318 71.205 83.223 88.519 94.404 120.377

The last four rows represent the estimate of population size N . Based on the results in

Table 6.2, the author concludes that the expected number of households with undetected

cases of cholera ranges from 83.58 to 98.311. Interestingly, this range includes all estimates

presented in the studies of McKendrick (1925), Dahiya and Gross (1973), Blumenthal et al.

(1978), and Scollnik (1997). The author interprets this range as an indeterminate number of

households due to the author’s prior ignorance regarding the cholera epidemic in the village

in India.

The plot on the top right panel in Figure 6.1 shows the probability box of the canonical

parameter θ. Based on this probability box, the maximum and minimum posterior expec-

tation E(θ|y) are produced from the posterior probability distributions labelled x1 and x3,

respectively. The area enclosed by two cumulative posterior probability functions F (θ|y) of
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the canonical parameter θ is the degree of imprecision ∆n(θ|y) =0.267. The plot on the bot-

tom left panel shows how imprecisely the presumed zero-truncated Poisson sampling model

is fitted to the cholera epidemic data. The plot on the bottom right panel shows how im-

precisely the estimated population size N̂ is distributed. The histogram coloured light blue

and light red are the distributions of the estimated population size N̂ generated at the ex-

treme points labelled x1 and x3, respectively. The area coloured light purple is the overlap

of two histograms. The two plots on the bottom of Figure 6.1 demonstrate the fact that al-

though the presumed sampling model seems to be well fitted (by different intentional units)

a discrepancy on the distribution of the prevalence estimation regarding the cholera epidemic

remains.

However, it must be noted that the results presented in this section are based on the

author’s natural imprecise prior which is vaguely characterized. One may have more or less

information than what the author has. If he or she has more information, his or her imprecise

prior would be less vague by characterizing a smaller region R0 on the hyperparameter space

Ξ. In contrast, if he or she has less information, a larger region R0 would be characterized

so that his or her imprecise estimate would be wider than the one the author has reported

here.

6.2 Down’s Syndrome Data

In this section the proposed methodology is applied to the Down’s syndrome data for

performing an imprecise inference. Fienberg (1972), Hook and Regal (1982), and Zelterman

(1988) have examined this data set. Based on the data description noted in the study by

Fienberg (1972), the results of a survey on Down’s syndrome births in Massachusetts during

the period from January 1, 1955 to December 31, 1959, who were alive on December 31,

1966 are examined. Diagnostics of “specific”, “relatively common”, “congenital anomaly” are

considered as a positive case of Down’s syndrome. Five data sources of obstetric records,

miscellaneous hospital records, Massachusetts Department of Health records, Massachusetts

Department of Mental Health records and school records are used to generate this data set

(p. 600). Positive cases are cross-classified in a five-way contingency table in terms of the
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data sources. This contingency table can be found on page 601 in the study by Fienberg

(1972).

Fienberg (1972) viewed this Down’s syndrome data as multilist capture-recapture exper-

iment data since a single missing cell in the cross-classified contingency table in terms of

the presence or absence of a disease condition corresponds to the number of individuals who

are not ascertained on any of the five sets of data sources. After examining various fits of

log-linear models, Fienberg (1972) concluded that the total number of children with Down’s

syndrome during the period from 1955 to 1959 is 635 with a 95% confidence interval of

(598, 670) (p. 601). Regarding this estimate, Zelterman (1988) reasoned that the log-linear

model missed the feature of children who are not shown in all data sources is similar to the

children who are listed in one or two data sources (p. 234). He reorganized the Down’s syn-

drome data structured in the contingency table into a distribution of frequencies by counting

the number fy of children listed on only y data sources as shown in Table 6.3.

Table 6.3: The number fy of children with Down’s syndrome listed on only y data
sources (Zelterman, 1988).

y 1 2 3 4 5 Total

fy 248 188 81 18 2 537

Zelterman (1988) reported two population size estimates. The maximum likelihood

method is applied under a zero-truncated Poisson sampling model to estimate the popu-

lation size. The reported number of children with Down’s syndrome is 746 with a 95%

confidence interval of (714, 780). The second estimate reported in his study is obtained from

the local estimator developed in his study. In a later study of Böhning (2008), this esti-

mator is referred to as the Zelterman’s estimator. The estimated number of children is 688

with a 95% confidence interval of (632, 755). It is noticed that the first estimate has a 95%

confidence interval which is narrower than the interval found by Fienberg (1972), and these
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two intervals do not overlap each other. He also noted that his local estimate has a 95%

confidence interval which partially overlaps on the interval found by Fienberg (1972).

Now consider the proposed methodology for inferring the parameter of a zero-truncated

Poisson sampling model that describes the Down’s syndrome data in Table 6.3. A family of

log-gamma prior distributions is employed again for the same reason noted in the previous

section 6.1. On the determination of an imprecise prior the author attempts to use infor-

mation on the prevalence of Down’s syndrome in newborns noted in the fact sheet provided

by the National Association for Down Syndrome (2013) and the annual birth statistics in

Massachusetts from 1980 to 1998 in Table 1 on page 14 in the report provided by the Divi-

sion of Research and Epidemiology, Bureau of Health Information, Statistics, Research, and

Evaluation, Massachusetts Department of Public Health (2012). From the fact sheet, it is

noticed that a positive case of Down’s syndrome is identified in approximately one in every

800 births. When considering an average annual total of births in the state of Massachusetts

is approximately 80,000, the number of newborns with Down’s syndrome in Massachusetts

is approximately 100.

Note that the author speculates that many environmental factors, cultural considerations,

and technologies regarding Down’s syndrome have changed since the time when the original

survey was carried out; however, it is believed that the rough estimates derived from this data

is informative in some way notwithstanding that the data may not be reliable. The author

multiplies this value by 4 to set the upper bound of the hyperparameter α for characterizing

an imprecise prior. The value of the multiplier could be larger than 4 since it is not known

how many patients with Down’s syndrome are in the population. However, since the survey

was conducted over a period of four years, it is reasonable to expect that there were at

least 400 patients with Down’s syndrome in the state of Massachusetts before seeing the

data. Hence, the author’s imprecise prior is represented by characterizing the region R0 =

{(α, β)|0 ≤ α ≤ 400, 0 ≤ β ≤ 1} on the hyperparameter space Ξ.

The numeric and graphic summaries of the imprecise posterior are presented in Table 6.4

and Figure 6.2, respectively, in the same manner as the results derived from the case of the

Cholera epidemic data analysis in the previous section 6.1. Based on the author’s imprecise

prior, it is concluded that the number of children with Down’s syndrome in the state of
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Figure 6.2: Imprecise prior, probability box of imprecise posterior, imprecise fitted
counts, imprecise estimate of N from the Down’s Syndrome Data (Zelterman, 1988).
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Table 6.4: Imprecise posterior summary statistics at the extreme points of x1, x2, x3,
and x4 of the posterior hyperparameter set for the Down’s Syndrome Data (Zelterman,
1988)

Quantile
Est. 0% 25% 50% 75% 100%

E(θ|y)
x1 0.810 0.735 0.798 0.810 0.826 0.915
x2 0.242 0.107 0.210 0.242 0.274 0.388
x3 0.253 0.108 0.217 0.259 0.282 0.371
x4 0.805 0.718 0.781 0.804 0.831 0.888

exp(θ̂)
x1 2.248 2.086 2.220 2.248 2.284 2.497
x2 1.274 1.113 1.233 1.274 1.315 1.473
x3 1.288 1.114 1.243 1.296 1.326 1.450
x4 2.237 2.050 2.183 2.234 2.296 2.429

N̂
x1 600.522 585.170 597.923 600.384 602.405 613.147
x2 746.049 696.621 734.093 745.637 757.787 799.834
x3 742.123 701.628 731.116 739.223 754.847 799.439
x4 601.340 588.888 597.078 601.425 605.207 616.312

Massachusetts during the period of the survey ranges from 600.522 to 746.049. The lower

bound of this range approximates the lower bound of the 95% confidence interval found by

Fienberg (1972) and the upper bound resembles the point estimate obtained by the maximum

likelihood method. This range also overlaps most of the 95% confidence interval found by

Zelterman’s local estimator.

6.3 Heroin and Methamphetamine Users in Bangkok

The data regarding female heroin and methamphetamine users studied in Böhning and

van der Heijden (2009) is re-analyzed in this section. In their study this data is presented in

two tables (pp. 603–604). Each table shows the distribution of contact counts to the treatment

institution by age. This illegal drug users data was originally part of a larger database
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collected by the Office of the Narcotics Control Board, Ministry of the Prime Minister in

Bangkok during the period from October 1 to December 31 in 2001. Details about data

sources, reporting mechanisms and the regulation of the admission to a drug dependence

treatment program, and the identification of heroin and methamphetamine drug users can

be found in Section 2 (Böhning et al., 2004, p. 1076–1077). Since data is presented in the

form of a distribution of frequencies, the author recreated the individual level data from the

table. This data can be loaded in R for analysis by typing the following commands:

> library(ipeglim)
> data(heroin)
> data(methamphetamine)

Böhning and van der Heijden (2009) estimated the size of female heroin and metham-

phetamine populations using Zelterman’s estimator by incorporating it with and without the

explanatory variable age. When this age variable is not incorporated, the estimated female

methamphetamine user population is N̂ = 3714 with a 95% confidence interval of (1417, 6011)

and the estimated female heroin user population is N̂ = 504 with a 95% confidence interval of

(389, 628). When this age variable is incorporated, the estimated female methamphetamine

user population is N̂ = 3772 with a 95% confidence interval of (1376, 6169) and the female

heroin user population is N̂ = 505 with a 95% confidence interval of (379, 630). When

comparing the results produced using a regression model to those produced from using a

non-regression model (i.e., no incorporation with the age variable), it is noticed that the age

variable influences the estimation of the illegal drug user population size.

The author conducted a zero-truncated Poisson regression model as presented by van der

Heijden et al. (2003) prior to carrying out an imprecise inference with the proposed method-

ology since Böhning and van der Heijden (2009) reported only the results produced by Zelter-

man’s estimator. Note also that Böhning and van der Heijden (2009) compared the estimates

of the regression parameters for the full model produced using Zelterman’s regression model to

those produced using the zero-truncated Poisson regression model for the data when van der

Heijden et al. (2003) was studied for estimating the number of illegal immigrants in The

Netherlands. Please see this numerical comparison in Table 6 on page 606 in Böhning and

van der Heijden (2009). The individual level raw data of the van der Heijden et al. (2003)
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study is available at http://stat.uibk.ac.at/SMIJ/. To ensure that the zero-truncated

Poisson regression model is correctly implemented, the author reproduced all of the study

results of van der Heijden et al. (2003) using the ipeglim package. Please see Appendix C.1

for these reproduced results. The following R codes are used for re-analyzing the heroin and

methamphetamine data. The results are then summarized in Table 6.5.

> rm(list=ls())
> library(ipeglim)
> data(heroin)
> sfith0 <- summary(ztpreg(visits ~ 1, data=heroin, dist="poisson",
+ ztrunc=TRUE), HT.est=TRUE)
> sfith1 <- summary(ztpreg(visits ~ age, data=heroin, dist="poisson",
+ ztrunc=TRUE), HT.est=TRUE)
> data(methamphetamine)
> sfitm0 <- summary(ztpreg(visits ~ 1, data=methamphetamine,
+ dist="poisson", ztrunc=TRUE), HT.est=TRUE)
> sfitm1 <- summary(ztpreg(visits ~ age, data=methamphetamine,
+ dist="poisson", ztrunc=TRUE), HT.est=TRUE)

Table 6.5: The maximum likelihood estimates of the model parameters and Horvitz-
Thompson’s estimates of the heroin and methamphetamine population sizes (with their
95% confidence interval) using the zero-truncated Poisson regression model studied by
van der Heijden et al. (2003); METH (Methamphetamine).

Zero-Truncated Poisson Horvitz-Thompson

Est. S.E. Z-score Pr(> |z|) N̂ Lower Upper

Heroin
(Intercept) 0.655 0.050 13.188 0.000 313.770 296.258 331.282

METH.
(Intercept) −2.107 0.240 −8.772 0.000 2392.643 1300.464 3484.821

Heroin
(Intercept) 1.036 0.194 5.341 0.000 315.456 297.222 333.689
age −0.013 0.007 −1.996 0.046

METH.
(Intercept) −3.688 0.919 −4.013 0.000 2751.446 1245.889 4257.002
age 0.070 0.037 1.892 0.059

The proposed inferential framework is preformed under the setup of a zero-truncated

Poisson regression model using the age variable. Since the proposed methodology has been
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illustrated numerous times for cases of non-regression models in the previous Sections 6.1

and 6.2, only the regression model is studied in this section. The imprecise prior for regres-

sion parameters of the intercept of the slope in a simple regression model is represented by

characterizing R = {(b0, b1)| − 1 ≤ b0 ≤ 1,−1 ≤ b1 ≤ 1} on a two-dimensional hyperpa-

rameter space Ξ = {(b0, b1)| − ∞ < b0 < ∞,−∞ < b1 < ∞}. The identity matrix is used

for the prior variance-covariance matrix of the regression parameters; however, the variances

are controlled by varying the values 0.01, 0.1, and 5. Graphical summaries of the imprecise

estimates of the regression parameter β0 and β1 are presented in Figure 6.3 for the female

heroin user population and Figure 6.4 for the female methamphetamine user, respectively.

The author draws the reader’s attention to an interesting fact that the maximum likeli-

hood estimates obtained using the zero-truncated Poisson regression model are substantially

lower than the Zelterman’s estimate regardless whether or not the age variable is incorpo-

rated as shown in Table 6.5. This phenomenon is also shown on Table 6 in the study by

Böhning and van der Heijden (2009). Another fact determined using the proposed method-

ology is that the imprecise estimate moves toward the maximum likelihood estimates of the

zero-truncated Poisson regression model when a variance of larger value is given to the iden-

tity matrix as illustrated in Figures 6.3 and 6.4. This graphical feature provides an insight

for interpreting the imprecise posterior of the proposed methodology. For the population of

female heroin users (i.e., Figure 6.3), the graphic feature prompts the intentional unit (i.e.,

the author of this thesis) to have greater assurance that the two distributions of the popula-

tion size estimate (two histograms coloured light blue and red on the right panel) are more

directly related to each other if more data is available to the intentional unit. This feature

may be useful to describe someone’s action such that “My guess was pretty close since the

outcome has occurred within the range that I expected before seeing the data!” since the

imprecise estimate is located within the characterized imprecise prior. On the other hand,

for the methamphetamine user population (i.e., Figure 6.4), the imprecise posterior does not

escape the imprecise prior but is also not completely enclosed by the imprecise prior with

some remaining amount of imprecision. This appearance of an imprecise estimate may also

explain the situation such that “It does not seem to be right since some outcome has occurred
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Figure 6.3: The imprecise estimate for the female heroin user population in
Bangkok (Böhning and van der Heijden, 2009) produced from the characterization
R = {(b0, b1)| − 1 ≤ b0 ≤ 1,−1 ≤ b1 ≤ 1}.
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Figure 6.4: The imprecise estimate for the female methamphetamine user population
in Bangkok (Böhning and van der Heijden, 2009) produced from the characterization
R = {(b0, b1)| − 1 ≤ b0 ≤ 1,−1 ≤ b1 ≤ 1}.
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that is outside of the range that I expected prior to seeing the data”. As expected from this

phenomenon, the two histograms are located far away from each other as shown in the plot

on the top right in that figure. Hence, the author could not conclude the methamphetamine

user population size and is seeking additional information at this time.
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Chapter 7

Conclusion and Further Studies

This thesis is concerned with the problem of epidemiological decision making of estimating

the size of a target population. It is a fact that true prevalence is typically underestimated

and there exists no reliable method of confirming this estimate of prevalence. The primary

objective of this thesis work is to develop a statistical reasoning framework that enables the

modelling of prior ignorance and the quantification of the degree of epistemic imprecision

associated with the inferential process by adopting the concept of imprecise probabilities

introduced by Walley (1991).

For this methodological development, this thesis starts with providing a procedural de-

scription of the proposed methodology called the canonically parametrized imprecise infer-

ential framework. Firstly, a sampling model is canonically parametrized in the form of an

exponential family of distributions. Secondly, a conjugate prior measure of the canonical

parameter is formulated. Thirdly, a set of linear inequality constraints is utilized for charac-

terizing the convex hull that represents an imprecise prior on the hyperparameter space of the

canonical parameter. Lastly, the degree of an epistemic imprecision is evaluated throughout

the imprecise posterior optimization process.

All these components are synthesized to build the ipeglim package (Lee and Bickis, 2013)

that is a collection of functions developed by the author for producing all numeric and graphic

summaries contained in this thesis since arriving at an imprecise estimate for a quantity of

interest is a complicated procedure associated with the characterization of a prior ignorance

and a long sequence of computations associated with the process of optimizing the imprecise

posterior. A brief description to the key functions in this package is summarized in Table 7.1

(a complete description is available in the documentation of the ipeglim package).
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Table 7.1: Key functions in the ipeglim package and their description. A complete list
of functions is available at the project site http://ipeglim.r-forge.r-project.org

Functions Description

model() Specifying a sampling model
iprior() Modelling prior ignorance

Defining a family of prior distributions
Solving a set of given linear inequality constraints
Searching for extreme points of a characterized convex hull

update() Applying Bayes’ theorem at every extreme point
Evaluating a quantity of posterior expectation at every extreme point

summary() Identifying extreme posterior expectations
plot() Summarizing the resulting imprecise estimates graphically
pbox() Producing the probability box

By using a family of log-gamma prior distributions, three major behaviours of the pro-

posed inferential framework are found as a new sample is observed:

1. the translation behaviour of an imprecise prior – the convex hull representing an im-
precise prior moves on the hyperparameter space,

2. a soft linear updating behaviour of an imprecise posterior expectation – the surface of
an imprecise posterior expectation becomes flat, and

3. the focusing behaviour of an imprecise posterior – an imprecise posterior is stochasti-
cally ordered and squeezed by the upper and lower posterior distributions.

The imprecise learning curve generated from the proposed inferential framework was useful

to graphically illustrate that a conflict between prior belief and data lasts for a certain period

of the initial learning period (i.e., the period of observing the first few samples); however, a

certain gap remains between the two extreme posterior expectations in this learning curve

despite a sufficiently long learning period. This imprecise learning curve effectively started a

discussion regarding conclusions that can be drawn from two or more intentional units having

different characterization strategies for the same observations. That is, the agreement process

between different individuals was illustrated by describing that a conflict initially observed

between learning processes diminishes gradually following a long sequence of observational

activities on the same data.
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The central part of the proposed inferential framework referred to as theB-formulation(Lee

and Bickis, 2012) introduced in Chapter 4 was integral for extending the proposed inferential

framework to a case when

1. a family of normal prior distributions is considered for the instance of lacking a conju-
gate prior measure due to the use of other families of prior distributions for a standard
Poisson likelihood,

2. either families of log-gamma and normal prior distributions are considered on a zero-
truncated Poisson likelihood, and

3. a family of multivariate normal prior distributions is considered on the regression coef-
ficients of both the standard and the zero-truncated Poisson regression models.

Simulation studies carried out under various conditions in response to concerns involving

the practical use of the proposed inferential framework showed the following: when a standard

Poisson sampling model is used for describing zero-truncated count data, an overestimation

of the imprecise inferential framework is expected; as data are increasingly over-dispersed,

both the extremes of the imprecise estimate are increasing; lastly, the imprecise estimates of

regression parameters become increasingly extended as the size of a sample decreases, the

correlation coefficient of a prior variance-covariance matrix increases, and the values of the

variances decrease.

Throughout the case studies using four real data sets collected from an epidemiological

literature in a disease surveillance, the proposed inferential framework gives insights on how

to interpret the imprecise estimate. Since the imprecise prior describes our uncertainty due

to the lack of information, the imprecise posterior describes our indeterminate preference

that cannot support an action. The graphic features produced using the ipeglim package

also supports someone’s action in saying either “My guess was close since the outcome has

occurred within the range that I expected before seeing the data”when the imprecise estimate

is located within the imprecise prior or “It does not seem that the right outcome has occurred

since it is outside of the range that I expected prior to seeing the data” when the imprecise

posterior does not escape the imprecise prior but is also not completely enclosed by the

imprecise prior. It was also found that the imprecise estimate moves toward the maximum

likelihood estimates of regression coefficients when a variance of larger value is given to the

identity matrix.
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During the development of this proposed methodology a number of questions have arisen

that require further research and investigation. These questions addressed are classified

into three categories: 1. computational development – “How can be the current ipeglim

package be extended?” and “How can be the required computation be accelerated?”; 2. model

extensions – “Is this proposed methodology limited to only a Poisson sampling model?” and

“Can this proposed methodology be extended to multivariate Poisson sampling model?”; and

3. alternative approaches – “Are there other approaches that can be used to estimate the size

of a population with a certain condition?”. The aim of this last chapter in this thesis is to

present these questions and discuss potential approaches for subsequent studies.

Computational Development

The computational efficiency of the proposed methodology is attributed to the adoption

of a linear programming technique that searches for the extreme posterior expectations from

a set of given linear inequality constraints. However, a considerable amount of computation

time is still required for the evaluation process of quantifying a normalizing constant that

induces a probability measure. When zero-truncation in a sampling model is considered, this

evaluation process becomes more difficult as discussed in Section 4.2. Another concern with

this evaluation process is the dimensionality of the hyperparameter space which is dependent

on the number of explanatory variables in the model. Although the Metropolis-Hastings

algorithm is a useful numerical method as noted in Section 4.1, a sufficiently long length

of Markov chain may be required in order to reach a stable quantity of interest. Indeed,

this dimensionality is not only associated with the evaluation of the normalizing constant

but is also associated with the number of extreme points to be searched which are directly

proportional to the computing time required by the proposed imprecise inferential framework.

To illustrate, please consider the application briefly mentioned in Section 6.3 regarding the

illegal immigrants in The Netherlands (van der Heijden et al., 2003). The imprecise estimate

of the regression parameters for various models are summarized in Tables C.1, C.2, C.3, and

C.4 in Appendix C.1. For the models with nine and eight binary explanatory variables in

Tables C.3 and C.4, respectively, a total of 4548 seconds (≈ 75 minutes) and 2482 seconds
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(≈ 41 minutes) were needed. The equipment used for measuring this computing time is noted

on page 74. The number of extreme points associated with these models are 512 (= 29)

and 256 (= 28), respectively, and the number of observation in that data is 1, 880. This

computation time is measured when the Metropolis-Hasting algorithm is used for numerical

approximation. Although the numerical results are successfully obtained, the computational

expense is considered costly.

One possibility to consider for the reduction of the current computing time is to write C

modules for the evaluation process of a normalizing constant and interface them with R in

order to replace the current implementation in the ipeglim package.

Further Model Extensions

The B-formulation is the primary contributing factor that allows the proposed methodol-

ogy to be extended since a family of distributions newly defined by this formulation accounts

for a conjugate relationship between the imprecise prior and posterior. Only Poisson sam-

pling models are the focus in this study; however, the principle of the B-formulation is to use

the natural conjugate exponential family representation of a given functional form. There-

fore, the proposed methodology is expected to be applied to other sampling models which

are members of an exponential family of distributions. Furthermore, rigorous proofs of both

focusing behaviour and soft-linearity behaviour should be explored.

A binomial sampling model would be the optimal candidate with which to examine a

one-parameter exponential family of distribution as well as a special case of a multinomial

sampling distribution. It is also known that a family of beta distributions is conjugate

to this sampling distribution (for the multinomial sampling model, a family of Dirichlet

distributions is conjugate). Although the imprecise Beta-Binomial model is well studied by

Coolen (1994) and Walley (1996), it has not been examined using the proposed methodology.

Zero-truncation in a binomial sampling model is also of interest for further study along with

the study of a binomial sampling model since a zero-truncated binomial sampling model

is a member of an exponential family of distributions. However, the author anticipates

encountering the same computational issue as studied in the case of the Poisson sampling
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models because there exists no closed form expression of the posterior expectation that results

from the renormalizing constant of a zero-truncated binomial sampling model.

Another candidate would be a bivariate Poisson sampling model. According to Lindsey

(1996), this bivariate Poisson model is a special case of a generalized exponential family of

distributions (p. 38). The book written by Kocherlakota and Kocherlakota in 1992 is a good

reference for studying the properties of this model. The hypothesized advantage to studying

this bivariate Poisson sampling model would be the study of the correlation between two

Poisson variables which are not considered in the current thesis work. Indeed, the author of

this thesis had implemented the Metropolis-within-Gibbs sampling algorithm to estimate the

regression parameters of a zero-truncated bivariate Poisson regression model using a trivariate

reduction technique (Kocherlakota and Kocherlakota, 1992) in the Bayesian paradigm. The

rationale supporting the choice of the Metropolis-within-Gibbs sampling algorithm is the

complexity of functional form in the posterior expectation. It seems that a significant amount

of computation time is an inevitable consequence when using this sampling algorithm since

the computing time spent finding the posterior expectation at a single extreme point is

was approximately twenty-five minutes which renders this study impractical without access

to better equipment. The author is keenly interested in exploring the possibility of other

numerical algorithms that may reduce this substantial amount of processing time for the

computation of this zero-truncated bivariate Poisson regression model.

Alternative Approaches

The Horvitz-Thompson estimator is utilized in this thesis work for the problem of pop-

ulation size estimation following the study of van der Heijden et al. (2003). The rationale

behind using this estimator is as follows: 1. the size N of a population is assumed to be

consistent with the size n of observed and the size n0 of unobserved sub-populations; 2. a

probability p0 of being in an unobserved sub-population estimated by a zero-truncated Pois-

son sampling model; 3. a probability 1− p0 of being in an observed sub-population (i.e., an

inclusion probability) is induced utilizing the Horvitz-Thompson estimator.
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However, the studies of Scollnik (1997) and Puza et al. (2008) estimated the size of a

target population from the Bayesian perspective instead of using the Horvitz-Thompson’s

estimator as it is more reasonable to set the quantity of interest as a random variable. The

author is highly interested in following their approach for this population size estimation

problem. In order to incorporate the proposed imprecise inferential framework with their

approach, two different families of prior distributions are required to be assigned on the

binomial sampling for the identification mechanism and the zero-truncated Poisson sampling

model for the distribution of observed frequencies. The author is considering a future study

that will apply the B-formulation to the combined hyperparameter space of two different

families of prior distributions.
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Appendix A

Derivations

A.1 Log-Gamma Distribution

Probability Density Function: By transforming a random variable θ = log(µ),

π(θ|α, β) = πµ(eθ)

∣∣∣∣ ∂∂θeθ
∣∣∣∣ =

βα

Γ(α)
(eθ)α−1e−β(eθ)eθ

=
βα

Γ(α)
eαθ−βe

θ ≡ Log-Gamma(α, β),

where−∞ < θ <∞, α > 0 and β > 0. The function dlgamma(x,shape,rate,scale=1/rate)

in the ipeglim package computes the probability density of a log-gamma distribution with
shape=a and rate=b.

Moment Generating Function (m.g.f.):

Mθ(t) = E(etθ) =

∫ ∞
−∞

etθ
βα

Γ(α)
eαθ−βe

θ

dθ

=
βα

Γ(α)

∫ ∞
−∞

e(α+t)θ−βeθdθ

=
βα

Γ(α)
· Γ(α + t)

βα+t

=
Γ(α + t)

Γ(α)
β−t,

Expectation Value of θ: By taking the first derivative of the m.g.f. Mθ(t) at t = 0,

∂

∂t
Mθ(0) =

1

Γ(α)

{(
∂

∂t
Γ(α + t)

)
β−t + Γ(α + t)

(
∂

∂t
e−t log(β)

)}∣∣∣∣
t=0

=
1

Γ(α)

{
Γ′(α + t)β−t + e−t log(β) log(β)(−1)

}∣∣∣∣
t=0

=
Γ(α + t)

Γ(α)
β−t {ψ(α + t)− log(β)}

∣∣∣∣
t=0

= ψ(α)− log(β),

where ψ(α) is a digamma function which is defined as

ψ(α) =
∂

∂α
log Γ(α) =

Γ′(α)

Γ(α)
.
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Posterior Expectation E(θ|y): Consider y = {y1, y2, . . . , yn} samples which are identi-
cally and independently drawn from a Poisson sampling model f(y|µ) = 1/y!e−µµy. When
a family of log-gamma prior distributions π(θ) with a shape parameter α and a rate β is
assumed on the natural parameter θ = log(µ), the resultant family of posterior distributions
is then

p(θ|y) ∝ e(nȳθ−eθ)e(αθ−βeθ) = e(α+nȳ)θ−(β+1)eθ ,

which is a family of a log-gamma distributions with a shape parameter α′ = α + nȳ and a
rate β′ = β + n, where ȳ = 1

n

∑n
i=1 yi. Hence, a family of log-gamma posterior expectations

is Eπ(θ|y) = ψ(α + nȳ)− log(β + n).

A.2 Standard Poisson Regression Model

The Poisson log-likelihood is given by

log L (β) =
n∑
i=1

[
yix
′
iβ − ex

′
iβ − log Γ(yi + 1)

]
(A.1)

The score function of the Poisson log-likelihood is obtained by taking the first derivative
in terms of β

d

dβ
log L (β) =

n∑
i=1

[
yi − ex

′
iβ
]

xi (A.2)

The Hessian matrix of regression parameters β is

d2

dβdβ′
log L (β) =

n∑
i=1

−
(
ex

′
iβ
)

xix
′
i (A.3)

Fisher’s information matrix is an expectation of the negative Hessian matrix over the
sampling distribution

d2

dxidx′i

[
d2

dβdβ′
log L (β)

] ∣∣∣
β=β0

=
d2

dxidx′i

[
n∑
i=1

(
ex

′
iβ0

)
xix

′
i

]
(A.4)

Consider the simple linear regression log(µi) = b0 + b1xi. Assume that x1 and x2 are the
realizations of xi; then, x1 = (1, x1)T and x2 = (1, x2)T . The above Fisher’s Information
matrix can be explicitly written as:

d2

dxidx′i

[
eb0+b1x1

[
1 x1

x1 x2
1

]
+ eb0+b1x2

[
1 x2

x2 x2
2

]]
(A.5)
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The optima of x1 and x2 can be found by minimizing the determinant of (A.5):

D(x) = e(x′
1+x′

2)b(x1 − x2)2

The minimum value of determinant is found when x1 = x2.

A.3 Zero-Truncated Poisson Log-Likelihood

The log-likelihood of a zero-truncated Poisson regression model is given by

log L (β) =
n∑
i=1

[
yix
′
iβ − ex

′
iβ − log Γ(yi + 1)− log(1− e− exp(x′

iβ))
]

(A.6)

The score function of the Poisson log-likelihood is obtained by taking the first derivative
in terms of β

∂

∂β
L (β) =

n∑
i=1

[
yixi − exp(x′iβ)xi −

e− exp(x′
iβ) exp(x′iβ)xi

1− e− exp(x′
iβ)

]
(A.7)

=
n∑
i=1

[
yi − µi −

e− exp(x′
iβ) exp(x′iβ)

1− e− exp(x′
iβ)

· /e
− exp(x′

iβ)

/e− exp(x′
iβ)

]
xi (A.8)

=
n∑
i=1

[
yi − µi −

ex
′
iβ

eexp(x′
iβ) − 1

]
xi (A.9)

The Hessian matrix of regression parameters β is

∂2

∂β∂β′
log L (β) =

d

dβ′

n∑
i=1

[
yi − ex

′
iβ − ex

′
iβ

eexp(x′
iβ) − 1

]
xi (A.10)

=
n∑
i=1

[
−ex′

iβx′i −
ex

′
iβx′i(e

exp(x′
iβ) − 1)− ex′

iβeexp(x′
iβ)ex

′
iβx′i

(eexp(x′
iβ) − 1)2

]
xi(A.11)

=
n∑
i=1

[
−ex′

iβ − ex
′
iβ(eexp(x′

iβ) − 1)− ex′
iβeexp(x′

iβ)ex
′
iβ

(eexp(x′
iβ) − 1)2

]
xix

′
i (A.12)

=
n∑
i=1

[
−µi −

µie
µi − µi − µ2

i e
µi

(eµi − 1)2

]
xix

′
i (A.13)

= −
n∑
i=1

µi

[
1− µie

µi − eµi + 1

(eµi − 1)2

]
xix

′
i (A.14)
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A.4 Prior Measure Formulation by Diaconis and Ylvisaker

(1979)

The Poisson sampling model discussed in this thesis is an instance of a one-parameter
natural exponential family model in the form of

f(y|θ) = h(y) exp{yθ −A(θ)}, θ ∈ Θ. (A.15)

where h(y) is a base measure, θ is a natural parameter, Θ is a natural parameter space, A(·)
is a log-normalizer. Prior distributions πn0,m0(θ) conjugate to f(y|θ) are defined by

πn0,m0(θ) = k(n0,m0) exp{n0m0θ − n0A(θ)} (A.16)

where n0 and m0 are the hyperparameters that represent a prior strength and a prior ex-
pectation, respectively. The normalizing constant k(n0,m0) is defined in terms of θ on Θ in
order to make a probability distribution such that

k(n0, µ0)−1 =

∫
exp{n0m0θ − n0A(θ)}dθ (A.17)

When n i.i.d. samples are taken from f(y|θ), the likelihood of θ is given by

L(θ|y) =
n∏
i=1

f(yi|θ) =
1∏n

i=1 yi!
exp{θnȳ − nA(θ)} (A.18)

The posterior of θ is found as

p(θ|y) = k(n1,m1) exp{(n0m0 + nȳ)θ − (n0 + n)A(θ)} (A.19)

= k(n1,m1) exp{n1m1θ − n1A(θ)} (A.20)

where

n1 = n0 + n, m1 =
n0m0 + nȳ

n1

. (A.21)

and

k(n1,m1) =

∫
exp{n1m1θ − n1A(θ)} dθ. (A.22)
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Appendix B

Functions and Distributions

B.1 Moments of Zero-Truncated Poisson

Probability mass function (pmf), moment generating function (mgf), and the first three
moments of the zero-truncated Poisson (ZTP) for mean, variance, and skewness are listed.
The same representations of pmf, mgf, and the first three moments are also obtained using
the form of expoential family of distributions.

PMF The pmf fT (y) of ZTP is obtained by conditioning an (untruncated) standard Poisson
f(y) on y > 0 as below:

fT (y|y > 0) =
f(y, y > 0)

f(y > 0)
=

f(y)

f(y > 0)
=

[
1

1− f(0)

] [
e−µµy

Γ(y + 1)

]
=

1

1− e−µ
f(y), (B.1)

which is a scaled pmf of f(y), where y = 1, 2, . . ..

MGF The mgf MT (t) of fT (y) is obtained by the use of ex =
∑∞

y=0 y
n/n!.

MT (t) = E(ety) =
∞∑
y=1

ety
e−µµy

y!(1− e−µ)
=

e−µ

1− e−µ
∞∑
y=1

(etµ)y

y!
(B.2)

=
e−µ

1− e−µ
[ee

tµ − 1] =
1

1− e−µ
(e(et−1)µ − 1) (B.3)

= [M(t)− 1]/(1− f(0)), (B.4)

where M(t) = eµ(et−1) is the mgf of f(y) and f(0) = e−µ.

First Moment for Mean The first central moment E(Y ) of fT (y) is obtained using
M ′

T (t) = M ′(t)/(1− e−µ), where M ′(t) = M(t)etµ,

E(Y ) = M ′
T (t)|t=0 = µ/(1− e−µ), (B.5)

which is the maximum likelihood estimate µ̂ of fT (µ).

Second Moment for Variance The second moment E(Y 2) is obtained for V (Y ) =
E(Y 2)− [E(Y )]2 using M ′′

T (t) = M ′′(t)/(1− e−µ), where M ′′(t) = M(t)e2tµ2 +M ′(t):

E(Y 2) = M ′′
T (t)|t=0 = µ(µ+ 1)/(1− e−µ) = (µ+ 1)E(Y ) (B.6)
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Thus,

V (Y ) = (µ+ 1)E(Y )− [E(Y )]2 = (µ+ 1− E(Y ))E(Y ) (B.7)

= µ(1− e−µ − µe−µ)/(1− e−µ)2 (B.8)

Third Moment for Skewness The third moment E(Y 3) is obtained for skewness γ1,
which is defined as a ratio of the third central moment E([Y − E(Y )]3) to a quantity of
[V (Y )]3/2, using M ′′′

T (t) = M ′′′(t)/(1− e−µ), where M ′′′(t) = M(t)e2t(etµ+ 2)µ2 +M ′′(t).

E(Y 3) = M ′′′
T (t)|t=0 = (µ2 + 3µ+ 1)µ/(1− e−µ) = (µ2 + 3µ+ 1)E(Y ). (B.9)

Thus,

γ1 =
E([Y − E(Y )]3)

V (Y )3/2

=
E(Y 3)− 3E(Y 2)E(Y ) + 3E(Y )[E(Y )]2 − [E(Y )]3

V (Y )3/2

=
(µ2 + 3µ+ 1)E(Y )− 3(µ+ 1)[E(Y )]2 + 2[E(Y )]3

[V (Y )]3/2

B.2 Moments of Zero-Truncated Negative Binomial

PMF The pmf of ZTNB is obtained by conditioning an (untruncated) standard negative
binomial distribution f(y) on y > 0. Since f(y = 0|r, p) = pr,

fT (y) =
1

1− pr

(
y + r − 1

r − 1

)
pr(1− p)y (B.10)

where y = 1, 2, . . ., r is a shape parameter (in the mixture of Gamma-Poisson model) and
and a Poisson mean parameter µ = rp/(1 − p). With our parametrization, p = r/(r + µ),
and f(y) goes to the Poisson, as r →∞.

MGF The mgf is obtained using (1− p)−r =
∑∞

x=0

(
y+r−1
r−1

)
px as below:

MT (t) = E(ety) =
∞∑
y=1

ety
1

(1− pr)

(
y + r − 1

r − 1

)
pr(1− p)y (B.11)

=
pr

(1− pr)
[(1− etq)−r − 1] (B.12)

= k[M(t)− pr], (B.13)

172



where k = 1/(1 − pr), q = 1 − p, and M(t) = pr/(1 − etq)r. The first three moments are
listed for computing the mean, variance, and skewness.

M ′
T (t) = kprqret(1− qet)−r−1 (B.14)

M ′′
T (t) = M ′

T (t)− kprq2(−r − 1)r(1− qet)−r−2e2t (B.15)

M ′′′
T (t) = kprq3(−r − 2)(−r − 1)r(1− qet)−r−3e3t − 3M ′′(t) + 2M ′(t) (B.16)

(B.17)

First Moment for Mean

ET (Y ) = kqr/p = kr(µ/r) = kµ (B.18)

Second Moment for Variance

E(Y 2) = kr

(
µ

r
+
µ

r

2

(r + 1)

)
(B.19)

Third Moment for Skewness

E(Y 3) = kr

[
µ

r

3

(r + 1)(r + 2) + 3
µ

r

2

(r + 1) +
µ

r

]
(B.20)
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Appendix C

Illustration of using IPEGLIM

C.1 Illegal Immigrants in Netherlands

> library(ipeglim)
> rm(list=ls())
> data(IINEE)
> iinee <- IINEE
> head(iinee)

capture gender age nation1 nation2 nation3 nation4 nation5 reason
1 1 1 1 0 1 0 0 0 0
2 1 1 1 0 1 0 0 0 0
3 1 1 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 1 0
5 1 1 1 0 0 0 0 1 0
6 2 1 1 0 1 0 0 0 0

> ## table 2 (p.309)
> iinee$nation0 <- with(iinee, ifelse(
+ nation1==0 & nation2==0 & nation3==0 & nation4==0 & nation5==0,
+ 1, 0))
> tb <- with(iinee, list(
+ xtabs(~age+capture),
+ xtabs(~gender+capture),
+ xtabs(~nation1+capture)[1,],
+ xtabs(~nation2+capture)[1,],
+ xtabs(~nation3+capture)[1,],
+ xtabs(~nation4+capture)[1,],
+ xtabs(~nation5+capture)[1,],
+ xtabs(~nation0+capture)[2,],
+ xtabs(~reason+capture)
+ ))
> tb2 <- as.table(do.call(rbind, tb))
> colnames(tb2) <- paste("f", 1:6, sep="")
> rownames(tb2) <- c(">40 years", "<40 years", "Female", "Male",
+ "Turkey", "North Africa", "Rest of Africa", "Surinam", "Asia",
+ "America, America", "Being illegal", "Other reason")
> tb2

f1 f2 f3 f4 f5 f6
>40 years 105 6 0 0 0 0
<40 years 1540 177 37 13 1 1
Female 366 24 6 1 1 0
Male 1279 159 31 12 0 1
Turkey 1555 180 37 13 1 1
North Africa 807 37 9 4 0 0
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Rest of Africa 1416 172 34 13 1 1
Surinam 1582 182 37 13 1 1
Asia 1373 174 36 11 1 1
America, America 153 13 5 2 0 0
Being illegal 1421 154 32 12 1 1
Other reason 224 29 5 1 0 0

> ## table 4. (p.318)
> fit <- ztpreg(formula=capture ~ gender + age + nation1 + nation2
+ + nation3 + nation4 + nation5 + reason,
+ data=iinee, dist="poisson", ztrunc=TRUE)
> tb4 <- summary(fit, HT.est=TRUE, LM.test=TRUE)
> tb4

The model is successfully converged
Optimization method BFGS is used
Number of iterations in optimization is 45

Coefficients for zero-truncated Poisson model with log link

Estimate SE z-score Pr(>|z|)
(Intercept) -2.317185 0.449371 -5.1565 2.516e-07 ***
gender 0.397373 0.163047 2.4372 0.0148029 *
age 0.974439 0.408204 2.3871 0.0169801 *
nation1 -1.674381 0.602882 -2.7773 0.0054814 **
nation2 0.190023 0.194003 0.9795 0.3273385
nation3 -0.911244 0.300968 -3.0277 0.0024641 **
nation4 -2.337257 1.013891 -2.3052 0.0211534 *
nation5 -1.092308 0.301634 -3.6213 0.0002931 ***
reason 0.010969 0.161527 0.0679 0.9458606
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -848.4481 on 9
AIC = 1714.896

Horvitz-Thompson Estimator for N
N = 12692.28 (se = 2811.218 )
95 % CI of N = [ 7182.395 , 18202.17 ]

Lagrange multiplier Test for over-dispersion
Chi-square test-statistic = 54.98507 with df=1
Pr(chi2 >= 0.05)= 3.841459

> ## table 5. (p.319)
> fit0 <- summary(ztpreg(formula=capture ~ 1,
+ data=iinee, dist="poisson", ztrunc=TRUE), HT.est=TRUE, LM.test=TRUE)
> fit1 <- summary(ztpreg(formula=capture ~ gender,
+ data=iinee, dist="poisson", ztrunc=TRUE), HT.est=TRUE, LM.test=TRUE)
> fit2 <- summary(ztpreg(formula=capture ~ gender + age,
+ data=iinee, dist="poisson", ztrunc=TRUE), HT.est=TRUE, LM.test=TRUE)
> fit3 <- summary(ztpreg(formula=capture ~ gender + age + nation1
+ + nation2 + nation3 + nation4 + nation5,
+ data=iinee, dist="poisson", ztrunc=TRUE), HT.est=TRUE, LM.test=TRUE)
> fit4 <- summary(ztpreg(formula=capture ~ gender + age + nation1
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+ + nation2 + nation3 + nation4 + nation5 + reason,
+ data=iinee, dist="poisson", ztrunc=TRUE), HT.est=TRUE, LM.test=TRUE)
> fit <- list(fit0, fit1, fit2, fit3, fit4)
> aic <- do.call(c, lapply(fit, with, aic))
> k <- do.call(c, lapply(fit, with, df)) # aic = 2*k - 2llk
> G2 <- c(NA, -(diff(aic)-2*diff(k)))
> df <- c(NA, diff(k))
> pstar <- pchisq(q=G2, df=df, lower.tail=FALSE)
> chi2 <- do.call(c, lapply(fit, with, LM.chisq))
> Nhat <- do.call(c, lapply(fit, with, N))
> cil <- do.call(c, lapply(fit, with, cil))
> ciu <- do.call(c, lapply(fit, with, ciu))
> tb5 <- cbind(aic, G2, df, pstar, chi2, Nhat, cil, ciu)
> colnames(tb5) <- c("AIC", "G2", "df", "P*", "chi2", "N", "CIL", "CIU")
> rownames(tb5) <- c("Null", "G", "G+A", "G+A+N", "G+A+N+R")
> round(tb5,3)

AIC G2 df P* chi2 N CIL CIU
Null 1805.904 NA NA NA 105.996 7079.926 6363.067 7796.785
G 1798.278 9.626 1 0.002 99.666 7319.302 6503.997 8134.606
G+A 1789.043 11.235 1 0.001 93.661 7807.097 6636.797 8977.397
G+A+N 1712.901 86.142 5 0.000 54.959 12687.935 7190.614 18185.256
G+A+N+R 1714.896 0.005 1 0.946 54.985 12692.281 7182.395 18202.168

> # table 6. (p.319)
> mu <- fit3$mu
> freq <- table(iinee$capture)
> k <- as.numeric(names(freq))
> expected <- numeric(length(k))
> for(i in k) expected[i] <- sum(dztpois(i, lambda=mu))
> obs <- c(0, freq)
> est <- c(fit3$N-sum(expected), expected)
> res <- c(NA, (freq-expected)/sqrt(expected))
> tb6 <- cbind(obs, est, res)
> colnames(tb6) <- c("Observed", "Estimated", "Residuals")
> rownames(tb6) <- seq(0,6,1)
> tb6

Observed Estimated Residuals
0 0 1.080794e+04 NA
1 1645 1.612589e+03 0.8071111
2 183 2.337196e+02 -3.3176320
3 37 3.013454e+01 1.2506548
4 13 3.242503e+00 5.4187391
5 1 2.908711e-01 1.3148460
6 1 2.214732e-02 6.5707180

> # table 7. (p.320)
> m3 <- ztpreg(formula=capture ~ gender + age + nation1 + nation2
+ + nation3 + nation4 + nation5,
+ data=iinee, dist="poisson", ztrunc=TRUE)
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> X <- model.matrix(obj=capture ~ gender + age + nation1 + nation2
+ + nation3 + nation4 + nation5, data=iinee)
> m3$X <- X[which(iinee$gender==1),]
> sub3.11 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$gender==0),]
> sub3.10 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$age==1),]
> sub3.21 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$age==0),]
> sub3.20 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$nation1==1),]
> sub3.31 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$nation2==1),]
> sub3.41 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$nation3==1),]
> sub3.51 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$nation4==1),]
> sub3.61 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> m3$X <- X[which(iinee$nation5==1),]
> sub3.71 <- summary(m3, HT.est=TRUE, LM.test=FALSE)
> sub <- list(sub3.11, sub3.10, sub3.21, sub3.20, sub3.31, sub3.41,
+ sub3.51, sub3.61, sub3.71)
> n <- do.call(rbind, lapply(sub, with, n))
> N <- do.call(rbind, lapply(sub, with, N))
> cil <- do.call(rbind, lapply(sub, with, cil))
> ciu <- do.call(rbind, lapply(sub, with, ciu))
> tb7 <- cbind(n, N, cil, ciu, n/N)
> colnames(tb7) <- c("Observed", "Expected", "cil", "ciu", "Rate")
> rownames(tb7) <- c("Male", "Female", "Age<40", "Age>40", "Turkey",
+ "N.Africa", "R.Africa", "Surinam", "Asia")
> tb7

Observed Expected cil ciu Rate
Male 1482 8877.859 5330.01035 12425.707 0.16693214
Female 398 3810.076 1550.97527 6069.177 0.10445986
Age<40 1769 10505.584 6556.30563 14454.862 0.16838664
Age>40 111 2182.351 -34.99246 4399.694 0.05086258
Turkey 93 1740.370 -236.54401 3717.284 0.05343691
N.Africa 1023 3055.122 2660.75633 3449.488 0.33484750
R.Africa 243 2057.790 1091.28679 3024.293 0.11808786
Surinam 64 2383.743 -2273.45454 7040.940 0.02684853
Asia 284 2742.533 1458.41691 4026.648 0.10355392

>
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Table C.1: Imprecise estimate of the zero-truncated Poisson regression model
capture~ gender in illegal immigrants in The Netherlands.

Posterior Quantiles
Estimate 0% 25% 50% 75% 100%

En(β0|y)
min - x3 −1.486 −1.709 −1.531 −1.490 −1.437 −1.313
max - x1 −0.241 −0.399 −0.276 −0.237 −0.209 −0.086

En(β1|y)
min - x1 −0.890 −0.399 −0.276 −0.237 −0.209 −0.086
max - x3 0.545 −1.709 −1.531 −1.490 −1.437 −1.313

N̂
min - x4 5046.233 4670.886 4919.754 5041.629 5164.267 5520.951
max - x2 7529.342 6491.433 7292.727 7501.711 7709.158 8686.917

Table C.2: Imprecise estimate of the zero-truncated Poisson regression model
capture~ gender+age in illegal immigrants in The Netherlands.

Posterior Quantiles
Estimate 0% 25% 50% 75% 100%

En(β0|y)
min - x4 −1.692 −1.918 −1.743 −1.692 −1.634 −1.491
max - x5 0.429 0.249 0.375 0.430 0.472 0.632

En(β1|y)
min - x6 −0.897 −0.443 −0.253 −0.205 −0.156 0.005
max - x3 0.768 −1.342 −1.179 −1.128 −1.063 −0.938

En(β2|y)
min - x7 −1.263 −0.193 −0.057 −0.006 0.056 0.240
max - x2 0.711 −1.576 −1.382 −1.318 −1.253 −1.121

N̂
min - x8 5135.563 4735.787 4989.529 5121.298 5254.853 5661.656
max - x1 8148.298 7147.954 7872.585 8154.362 8407.660 9225.808
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Table C.3: Imprecise estimate of the zero-truncated Poisson regression model capture

~ gender+age+nationality in illegal immigrants in The Netherlands.

Posterior Quantiles
Estimate 0% 25% 50% 75% 100%

En(β0|y)
min - x1 −2.172 −2.232 −2.232 −2.201 −2.131 −1.895
max - x129 0.784 0.546 0.777 0.831 0.842 0.842

En(β1|y)
min - x205 −1.095 −0.602 −0.517 −0.474 −0.447 −0.265
max - x48 0.939 −1.088 −0.970 −0.970 −0.953 −0.869

En(β2|y)
min - x187 −1.537 −0.325 −0.171 −0.171 −0.171 −0.080
max - x81 0.942 −1.341 −1.107 −1.093 −0.946 −0.946

En(β3|y)
min - x137 −1.234 −0.536 −0.218 −0.218 −0.178 −0.157
max - x104 1.086 −1.295 −1.138 −1.131 −1.131 −0.875

En(β4|y)
min - x139 −0.842 −0.298 −0.298 −0.298 −0.298 0.037
max - x104 1.388 −1.295 −1.138 −1.131 −1.131 −0.875

En(β5|y)
min - x238 −1.278 −0.228 −0.126 −0.126 −0.126 0.028
max - x104 0.870 −1.295 −1.138 −1.131 −1.131 −0.875

En(β6|y)
min - x246 −1.264 −0.434 −0.337 −0.337 −0.217 −0.217
max - x68 1.088 −1.206 −1.061 −1.061 −1.061 −0.930

En(β7|y)
min - x256 −1.387 −0.152 0.007 0.041 0.155 0.235
max - x104 0.871 −1.295 −1.138 −1.131 −1.131 −0.875

N̂
min - x210 5154.804 4921.349 4921.349 4921.349 5538.104 5538.104
max - x76 15182.243 12635.749 15077.927 15077.927 15077.927 19138.944
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Table C.4: Imprecise estimate of the zero-truncated Poisson regression model capture

~ gender+age+nationality+reason in illegal immigrants in The Netherlands.

Posterior Quantiles
Estimate 0% 25% 50% 75% 100%

En(β0|y)
min - x209 −2.093 −2.438 −2.170 −2.085 −2.085 −1.751
max - x130 0.789 0.639 0.750 0.779 0.822 0.916

En(β1|y)
min - x154 −1.131 −0.662 −0.491 −0.384 −0.356 −0.206
max - x261 1.066 −0.984 −0.984 −0.984 −0.908 −0.908

En(β2|y)
min - x56 −1.522 −0.431 −0.263 −0.263 −0.263 −0.220
max - x356 1.074 −1.081 −1.081 −1.078 −0.970 −0.940

En(β3|y)
min - x136 −1.272 0.649 0.649 0.649 0.649 0.845
max - x240 1.038 −1.109 −1.093 −1.093 −1.073 −0.963

En(β4|y)
min - x506 −0.978 −0.437 −0.218 0.004 0.021 0.021
max - x240 1.438 −1.109 −1.093 −1.093 −1.073 −0.963

En(β5|y)
min - x506 −1.324 −0.437 −0.218 0.004 0.021 0.021
max - x227 0.946 −1.891 −1.847 −1.831 −1.795 −1.793

En(β6|y)
min - x144 −1.318 0.274 0.588 0.588 0.588 0.609
max - x309 1.042 −1.028 −1.028 −1.028 −1.016 −0.988

En(β7|y)
min - x502 −1.377 −0.332 −0.332 −0.332 −0.330 −0.175
max - x407 0.897 −1.158 −1.132 −1.109 −0.932 −0.869

En(β8|y)
min - x431 −1.065 −1.502 −1.394 −1.394 −1.394 −1.236
max - x317 0.829 −0.603 −0.603 −0.517 −0.497 −0.464

N̂
min - x22 4981.663 4778.723 4778.723 5012.304 5136.512 5293.380
max - x397 16032.996 14560.128 16048.193 16048.193 16364.474 16364.474
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C.2 Various Shapes of Imprecise Probabilities

Figure C.1: Four regions R01, R02, R03, R04 differently characterized for examining
the linearity of an imprecise posterior expectation of the natural parameter of a standard
Poisson sampling model.
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Figure C.2: The surface plot of an imprecise posterior expectation with differently
characterized regions R01 = {(α, β)|0 ≤ α ≤ 10, 0 ≤ β ≤ 10}, R02 = {(α, β)|1 ≤ α ≤
8, 1 ≤ β ≤ 8, β ≥ α − 4}, R03 = {(α, β)|β ≥ −α + 3, β ≤ −α + 7, β ≥ α − 3, β ≤
α + 1, β ≤ 3, β ≥ 1}, R04 = {(α, β)|(α− 5)2 + (β − 5)2 ≤ 52}.
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