
SYNTHESIS AND CHARACTERIZATION OF TANTALUM AND DIAMOND-LIKE 

CARBON THIN FILMS ON CoCrMo ALLOY SHEETS 

 

 

 

A Thesis Submitted to the College of 

Graduate and Postdoctoral Studies 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Mechanical Engineering 

University of Saskatchewan 

Saskatoon 

 

By 

 

SHEIDA SHIRI 

 

 

 

 

 

 Copyright Sheida Shiri, August, 2018. All rights reserved. 

 

 



 i  
 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by Professor Qiaoqin Yang and 

Professor Akindele Odeshi who supervised my thesis work or, in their absence, by the Head of the 

Department or the Dean of the College in which my thesis work was done. It is understood that 

any copying or publication or use of this thesis or parts thereof for financial gain shall not be 

allowed without my written permission. It is also understood that due recognition shall be given 

to me and to the University of Saskatchewan in any scholarly use which may be made of any 

material in my thesis. 

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in 

whole or part should be addressed to: 

 

Head of the Department of Mechanical Engineering 

University of Saskatchewan 

57 Campus Drive 

Saskatoon, Saskatchewan S7N 5A9 

Canada 

 

OR 

 

Dean 

College of Graduate and Postdoctoral Studies 

University of Saskatchewan 

116 Thorvaldson Building, 110 Science Place 

Saskatoon, Saskatchewan S7N 5C9 

Canada 

 



 ii  
 

ABSTRACT 

In the present research study, Tantalum (Ta) and Diamond-like Carbon (DLC) thin films were 

deposited on a biomedical Cobalt-Chromium-Molybdenum alloy (CoCrMo alloy) and investigated  

to  improve the surface functionality of this alloy as femoral heads for artificial hip joints.  

Ta thin films were deposited on the CoCrMo alloy sheets by magnetron sputtering and the effect 

of deposition parameters on the formation of different phases of Ta was studied using X-ray 

Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy 

(XPS), and X-ray Absorption Spectroscopy (XAS). By choosing appropriate processing 

conditions, adherent α- and β-Ta thin films were developed on the CoCrMo alloy sheets and their 

adhesion, mechanical, and surface properties were characterized using Rockwell C indentation, 

nanoindentation, optical profilometry, and a contact angle goniometer. The tribological and 

corrosion behavior of the Ta coated and uncoated CoCrMo alloy sheets were studied using a ball-

on-disk tribo tester and a potentiostat. The results demonstrate that adherent Ta thin films (α-Ta or 

β-Ta) can be applied to improve corrosion and wear behavior of the CoCrMo alloy, and possibly 

the performance of the alloy in orthopedic implant applications. Specifically, fcc Ta thin film 

formation, its structure and stability were investigated and its XRD pattern was obtained and 

reported for the first time.  

DLC thin films were deposited on the CoCrMo alloy sheets using Ta interlayers by ion beam 

deposition and characterized using Raman spectroscopy, XPS, and SEM. Severe delamination of 

DLC coatings was observed on the samples. The results show that the delamination is not just 

related to the energy level of ion bombardment, which induces intrinsic stress into the film during 

DLC deposition, but also related to the interfacial layer formation between Ta and DLC films. 

Furthermore, a simple nondestructive method was evaluated for DLC stress measurement. For this 

purpose, DLC thin films on Si wafers with different shapes and sizes were synthesized and the 

internal stress of the thin films were measured with the aid of Zygo optical profiler using the Stoney 

equation. The results show that this simple method is appropriate and reliable for DLC stress 

determination.  
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CHAPTER 1                                                                                                      

INTRODUCTION 

1.1 Research motivation 

Annually, millions of hip joint replacement surgeries are performed worldwide [1]. A hip 

prosthesis consists of four components that replicate the hip joint: an acetabular cup, a liner, a 

femoral head, and a stem. Typically, a femoral head is made of a CoCrMo alloy and a liner is made 

of an Ultrahigh Molecular Weight Polyethylene (UHMWPE) [2]. The femoral head articulates 

against the liner and these bearing surfaces suffer from friction, wear, and corrosion during the 

movement of the human body. The wear of the polymer liner and the corrosion of the CoCrMo 

alloy are the main failure mechanisms in artificial hip joints, which limit their durability and 

lifetime [2]. Therefore, it is necessary to improve the functionality of these bearing surfaces. A 

promising approach is to engineer the CoCrMo alloy with a biocompatible inert hard coating. The 

purpose of this research is to develop Ta and DLC thin films on the CoCrMo alloy sheets to 

improve its surface functionality for orthopedic implant applications. 

Recently, Ta has been attracting increasing attention for biomedical applications due to its good 

mechanical properties, good corrosion resistance, and high biocompatibility [2]. Ta thin films exist 

in different crystal structures with different properties, and the formation of the different phases is 

highly dependent on deposition parameters. In addition, information on some phases of Ta is very 

limited and their properties could not be measured yet. Controlling the synthesis of Ta thin films 

with desired structure would be an advantage. Moreover, achieving high quality Ta coatings with 

high adhesion on CoCrMo alloy would overcome one of the barriers of using Ta thin films for 

biomedical applications.  

DLC possess high hardness, low friction coefficient, high wear resistance, high corrosion 

resistance, and excellent biocompatibility, making it ideal for orthopedic implant applications [2].  
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However, DLC coatings usually have high level of internal stress because of high energy ion 

bombardment during the deposition process, which induces early coating delamination or 

spallation. Therefore, it is very important to measure and control the internal stress of DLC 

coatings. In addition, DLC coatings usually have weak adhesion to metallic substrates. Although 

various approaches have been explored to improve the adhesion of DLC coatings, very limited 

data has been reported in using biocompatible Ta thin films as an interlayer for enhancing adhesion 

of DLC coatings on the biomedical CoCrMo alloy. 

1.2 Research objectives 

The overall purpose of this PhD research project is to synthesize adherent Ta thin films with 

controlled crystal structures on CoCrMo alloy sheets for improved wear and corrosion resistance 

and to evaluate the feasibility of using Ta for enhancing adhesion of DLC thin films on the 

CoCrMo alloy sheets. The specific objectives of research are: 

 Synthesize  single phased α- and β-Ta thin films on CoCrMo alloy sheets with high adhesion 

for wear and corrosion protection; 

 Fabricate stable face-centered cubic (fcc) Ta thin films with high purity for structure and 

property evaluation; 

 Evaluate the feasibility of using Ta interlayers to enhance the adhesion of DLC thin films on 

CoCrMo alloy sheets; 

 Evaluate the appropriateness and reliability of using optical profiler for stress measurement of 

DLC. 

1.3 Research contributions 

 Highly adherent Ta coatings have been deposited on CoCrMo alloy sheets with improved wear 

and corrosion resistance.  

 Stable fcc Ta thin films with high purity have been obtained for the first time. 

1.4 Thesis organization 

This thesis consists of nine chapters. The thesis organization is listed as follows: 
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Chapter 1 provides a brief introduction of the research project including motivation, objectives, 

and thesis organization. 

Chapter 2 provides a comprehensive literature review on artificial hip joints, application of 

CoCrMo alloys in artificial hip joints, and improvement of the functionality of CoCrMo alloys in 

artificial hip joints using surface treatments such as coating. Afterwards, two main types of 

coatings, Ta and DLC, their properties, their deposition techniques, and their applications in 

orthopedic researches are reviewed. 

Chapter 3 introduces materials, equipment, and characterization techniques used in this research. 

Magnetron sputtering and ion beam systems used for Ta and DLC thin films deposition will be 

described in detail. In addition, characterization techniques applied in this research will be 

explained. 

Chapters 4, 5, and 6 focuses on Ta thin films. Chapter 4 presents the growth and characterization 

of Ta thin films on CoCrMo alloy sheets for orthopedic implant applications. In this study, the 

effect of deposition parameters on the formation of - and β-Ta thin films, and the development 

of adherent Ta thin films (- and β-Ta) on the CoCrMo alloy are explained. Chapter 5 reports the 

surface properties, tribological and corrosion behavior of the Ta coated CoCrMo alloy sheets. 

Chapter 6 gives the structure, formation mechanism, and stability of fcc Ta thin films. 

Chapter 7 and 8 focuses on DLC thin films. Chapter 7 describes the adhesion of DLC coatings on 

CoCrMo alloy sheets using Ta interlayer. Chapter 8 reports a simple non-destructive method for 

measurement of stress in DLC coatings using an optical profiler.  

Finally, conclusions and suggestions for future work are summarized in Chapter 9. 

 

 

 

 

 



 3  
 

CHAPTER 2                                                                                                           

LITERATURE REVIEW 

This chapter provides a comprehensive review of previous research findings on artificial hip joints, 

application of CoCrMo alloys in artificial hip joints, and improvement of the functionality of 

CoCrMo alloys in artificial hip joints using surface treatments such as coating. Afterwards, two 

main types of coatings, Ta and DLC, their properties, their deposition techniques, and their 

applications in orthopedic researches are reviewed.  

2.1 Overview of artificial hip joints 

Osteoarthritis is the most common disease that is associated with the erosion of joints cartilage. 

Osteoarthritis causes pain and disability, and its final remedy is joint replacement. The number of 

hip replacement surgeries is increasing exponentially. The latest information reported by Canadian 

Joint Replacement Registry Annual Report in 2014-2015 indicated an increase of 20.0% hip 

replacement surgeries in Canada over 5 years, while 8.5% of these replacement surgeries were 

revision surgeries [1].  

An artificial hip joint consists of four parts (Figure 2.1) [3]:  

 Acetabular cup or shell that is fixed to the hip socket;  

 Liner that fits between the acetabular cup and the femoral head; 

 Femoral head that articulates with the liner;  

 Stem that is inserted into the thigh bone.  

The bearings are the two parts of the artificial hip (liner and femoral head) that glide together 

throughout motion. Wear, friction, corrosion, and biocompatibility of the bearings are the main 

factors limiting the durability and lifetime of artificial hip joints [2]. Lack of durability of artificial 

hip joints has unacceptable effects such as pain and disability on patients, and finally results in the 

need for a revision surgery that is more complex compared to the primary surgery.  
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Revision surgery reduces the quality of patients’ life besides requiring longer recovery time and 

higher cost. Therefore, it is very important to extend the durability and lifetime of 

implants. Choosing the proper material combinations to improve the durability and lifetime of the 

bearing surfaces in artificial hip joints has remained a focus of research interests. 

 

Figure 2.1. Artificial hip joint components [3] 

2.1.1 Artificial hip joint materials  

All parts of the artificial hip joints can be engineered using different materials. The femoral head 

and liner, based on material combinations, can be Ceramic on Ceramic (CoC), Ceramic on 

Polyethylene (CoP), Ceramic on Metal (CoM), Metal on Metal (MoM), Metal on Ceramic (MoC), 

and Metal on Polyethylene (MoP) [4]. 

Most artificial hip joints comprise of a metallic femoral head that articulates against a polyethylene 

liner [2]. The metallic component is usually made from CoCrMo alloys, because of the excellent 

mechanical properties (strength and toughness), wear resistance, corrosion resistance, and 

biocompatibility of these alloys, whereas the polymer component is mainly made from UHMWPE 

[2]. CoCrMo alloys were introduced by Elwood Haynes in 1900, who reported that Mo element 

addition improved the mechanical properties of the alloys substantially [5]. CoCrMo alloy with 

the ASTM standard of F1537 is the one usually used to make orthopedic implants [5, 6]. Sir John 

Charnley introduced UHMWPE for orthopedic implants in 1960 [4, 7, 8]. 
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Despite the significant properties of these material combinations, human body system (patient’s 

level of activities, body weight, and quality and quantity of body fluid) decreases the functionality 

of these kinds of artificial hip joints. For example, the friction of these bearing surfaces in the body 

fluid increases the corrosion rate of the CoCrMo alloy, releases toxic Cobalt (Co) and Chromium 

(Cr) ions, which can cause some health issues. Moreover, the metal and polymer wear debris 

produced due to the sliding between the two bearing surfaces increases the friction and wear of the 

bearings, ultimately limiting the lifetime of the implants [2, 9]. 

2.1.2 Improving the functionality of the artificial hip joints using surface treatments 

Various surface treatments have been used to improve the durability and lifetime of bearing 

surfaces. Surface texturing has been introduced as an attractive approach for this purpose. This 

method is inspired by the microtexture existing on natural articular cartilages. Surface texturing 

can reduce the contact area between the two bearing surfaces. Moreover, this method can alter the 

interfacial flow and film thickness of lubricating fluids locally, change the bearing pressure 

distribution, serve as channels to supply lubricant to the surfaces, and thus affect the tribological 

behavior of the surfaces. An appropriate texture design could lower friction coefficient and wear 

between the bearing surfaces [4, 10, 11]. However, corrosion and biocompatibility issues of the 

bearing surfaces cannot be overcome by this method. 

Another promising approach is to engineer the bearing surfaces by depositing thin films with 

excellent biocompatibility and superior mechanical properties. Deposition of thin films on the 

implants would combine the properties of the bulk substrate materials with the excellent 

degradation resistance of the surface films. Thus the performance of the implants would be greatly 

improved. However, the major issue of the thin films is their weak adhesion to the substrates owing 

to the internal stresses induced into the thin films during deposition and the differences in physical 

properties between the thin film and the substrate, which limits their applications. Dipankar et al. 

[2] reviewed the advantages and disadvantages of four main types of thin films that have been 

mostly investigated for orthopedic applications. This review is summarized in Table 2.1.  
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2.2 Overview of metallic tantalum in biomedical applications 

Ta has been discovered by Anders Ekeberg in 1802 [12] and has drawn increasing attention in 

recent years for orthopedic implant applications due to its high hardness, low ion release rate, high 

corrosion resistance, low toxicity, high biocompatibility, and high wettability [2]. 

2.2.1 Ta phases 

Metallic Ta generally exists in body-centered cubic (bcc) crystal structure (α-Ta) over a wide range 

of pressure and temperature as an equilibrium phase. However, it can also exist in three other 

allotropic forms, tetragonal (β-Ta), face-centered cubic (fcc), and hexagonal close-packed (hcp) 

forms. -Ta is a metastable phase, which usually exists in Ta thin films mixed with α-Ta [13-15]. 

Table 2.2 shows the physical properties of bulk α-Ta, and sputtered α- and β-Ta [16-21]. α-Ta 

films exhibit good ductility and relatively low hardness (7-12 GPa), whereas β-Ta films are brittle 

and hard (Hardness = 12-20 GPa) [17, 22-26]. However, there is limited information about fcc Ta 

[27-32] and hcp Ta [32, 33], since fcc and hcp Ta have only been observed as fine grains dispersed 

in other Ta phases.  

Table 2.1. Advantages and disadvantages of thin film materials [2] 

Thin film Advantages Disadvantages 

Ta Low ion release  

High corrosion resistance  

Low toxicity  

High biocompatibility  

High wettability  

Hard to obtain desirable crystal structure 

on biomedical alloys with sufficient 

adhesion  

DLC Hard  

Low friction 

High wear resistance  

Corrosion resistance  

Chemical inertness  

Biocompatible  

Brittle 

High internal stress up to 10 GPa or 

more 

Graphite-like 

Carbon (GLC) 

Moderate hardness  

Wear resistance  

Lower friction than DLC  

High load-bearing capacity 

Low internal stress  

Hardness is lower than DLC  
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Titanium 

Nitride (TiN) 

Hard  

Wear resistance  

Corrosion resistance  

Enhance wear by abrasion of the 

opposing surface 

 

Table 2.2. Physical properties of Ta [16-20] 

 Bulk α-Ta Sputtered α-Ta Sputtered β-Ta 

Structure 

 

bcc-Im3m 

a=b=c=3.30 Å 

bcc-Im3m 

a=b=c=3.31-3.33 Å 

Tetragonal-p42/mnm 

a=b=5.31 Å  

c=10.19 Å 

Density (g/cm3):  

- Theoretical  

- Observed 

 

16.7 

16.6 

 

16.3-16.6 

15.6 

 

16.9 

15.9 

Resistivity (μΩ.cm) 13 24-50 180-220 

Thermal stability  Tmelting point at 2996 °C T β to α transformation at 750–775 °C 

 

2.2.2 Ta thin films and deposition techniques 

The high cost and the difficulty in making dense Ta implants limit its applications [34, 35]. 

Therefore, applying Ta thin films is considered a promising way to take the advantages of this 

valuable material. Various techniques have been used for the production of Ta thin films:  

 Electrochemical deposition from molten salts 

 Chemical Vapor Deposition (CVD) 

 Physical Vapor Deposition (PVD) 

Electrochemical deposition from molten salts is based on the reduction of metal ions from an 

electrolytic solution on the substrate at high temperature. High temperature working condition 

limits this method for deposition of Ta thin films on low temperature resistance alloys [36]. 

CVD technique is based on the chemical reactions of gaseous reactants on or near the heated 

substrate surface to assist the atomic deposition of solid films on the substrate. In this method, a 

set of chemical reactions has to be defined to the deposition of Ta thin films. Moreover, the 

structure of the films is highly dependent on the deposition parameters and the defined chemical 

reactions [37, 38].  
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In PVD technique the film materials are evaporated by different mechanisms under high vacuum, 

the vapor phase is transported to the substrate, depositing a thin film. Based on the production 

method of the vapor phase, PVD technique can been classified as vacuum evaporation and sputter 

deposition. In vacuum evaporation, film materials are heated to be vaporized under high vacuum 

and the vaporized atoms are transported through vacuum and deposited on the substrate. Very high 

heating temperature (above 3350 °C) is required for Ta to be vaporized, therefore, this technique 

is not applicable for Ta film formation. 

Ta thin film deposition in most of the previous research studies have been carried out using 

sputtering. In the sputtering methods, sputtering gas ions are accelerated toward the target (film 

material) using an electrical field, bombard the target with high energy, transfer their momentum 

to the target material, and finally cause the material to be sputtered. The sputtered materials are 

transported and deposited onto the substrate [39]. As sputtering does not require melting and 

evaporation of the target materials, most of the materials can be deposited by this technique 

regardless of their melting temperature. It is one of the most effective ways for deposition of high 

purity metal and alloy films [39].  

2.2.3 Parameters that affect Ta thin films formation in sputtering methods 

Ta thin films can be deposited using sputtering. The deposition parameters and the substrate 

material have considerable effects on the phase formation (α, β, or a mixture of α and β) of Ta 

films. Films containing a mixture of α- and β-Ta can be easily deposited, but it is hard to obtain 

single phased α- and -Ta thin films or to accurately control the crystal structure of Ta thin films 

in order to meet the demand of practical applications. A review of some main deposition 

parameters which affect the Ta phase formation are presented as follows: 

In some researches, the formation of β-Ta metastable phase was explained by the fact that atoms 

creating a lattice are not in the lowest energy positions [40, 41]. In other words, certain ion/atom 

bombardment energy is necessary for the formation of lattices in equilibrium positions. It indicates 

the important role of ion/atom bombardment energy in the formation of stable and metastable 

phases of Ta. Excessive ion/atom bombardment energy results in direct implantation of unstable 

lattice positions whereas insufficient ion/atom bombardment energy to overcome the barriers in 

the surface results in the arrangement of atoms not in their lowest energy positions. These 
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mechanisms define a “window of total ion/atom energy”, where excessive and insufficient energy 

result in the formation of β phase [40, 41]. The effect of substrate biasing on the Ta phase formation 

[14, 42-44] can be explained by this energy window. 

Read et al. [16] indicated that β-Ta forms in clean vacuum condition, whereas, α-Ta phase is 

stabilized by impurities like oxygen and nitrogen in the deposition chamber. The results presented 

by Nakamura et al. [45], Das [46], Gersteng [47], Krikorian [48], and Baker [49] agree well with 

those reported by Read et al. [16]. However, Westwood [50], Shwartz et al. [51], Axelrod et al. 

[52], Sosniak et al. [53], Feinstein et al. [54], Schauer et al. [55, 56] obtained opposite results. The 

mechanism of how impurities affect the formation of Ta phases is still under investigation. 

Deposition temperature is a key factor that determines the crystal structure of Ta films. Increasing 

the substrate temperature leads to increased mobility of atoms on the surface and these more 

mobile atoms have higher possibility to find lower energy positions to form equilibrium α-Ta phase 

[14, 26, 57-59]. 

α-Ta phase was also found to preferentially form on the substrates of similar crystal structure with 

comparable lattice parameters. In this case, the atoms need less energy to sit on their equilibrium 

positions [14, 25, 60-64]. Niobium (Nb) [14, 60-62], Aluminum (Al) [63], and Titanium (Ti) [25, 

64] are some substrate materials that promote α-Ta phase formation. 

2.2.4 Ta thin films on CoCrMo alloy substrates for artificial hip joint applications 

Deposition of Ta thin films on CoCrMo alloys would combine the high mechanical strength of the 

substrate alloy with the excellent biocompatibility of Ta film and thus improve their performance 

as biomedical implants [13, 33, 65-68]. In 2005, Spriano et al. [65] tried to modify the surface of 

the Co alloy sheets with Ta enriched layers to improve their biocompatibility and wear behavior. 

The modification was carried out in a solid salt mixture (NaCl 47 wt.%, K2TaF7 52 wt.%, and Ta 

1 wt.%) at temperatures ranging from 800 to 1000 °C for one to two hours with Argon (Ar) 

flowing. Ta enriched layers of 1-3 μm thickness consisting of CoTa3 and Co2Ta intermetallic 

compounds appeared on the surface of the Co alloy sheets. The modified alloy sheets showed 

improved wear performance, lower coefficient of friction, lower ion release rate, and higher 

wettability compared to the untreated alloy sheets. In 2012, Balagna et al. [33, 66] investigated the 
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deposition and wear behavior of a multilayered Ta structure on the CoCrMo alloy. The 

multilayered structure consisting of tantalum carbides (TaC and Ta2C) and metallic Ta (hcp 

structure) as a top layer of 1 μm thickness was deposited on the CoCrMo alloy by keeping the 

alloy samples in a solid salt mixture (K2TaF7 98 wt.%, and Ta wt.2%) at 950-1000 °C for 30-60 

mins with Ar flowing. The results showed that the surface modification significantly improved the 

wear behavior of the alloys. In 2013, Hallmann et al. [13] reported the deposition of α-Ta thin 

films, 20-600 nm thick, on the CoCrMo alloy and the TiAlNb alloy using magnetron sputtering. 

They investigated the effect of sputtering parameters and substrate materials on Ta phase 

formation. However, no information was provided regarding the adhesion and properties of the Ta 

thin films deposited on the alloys. Dorn et al. [68] in 2014 investigated the corrosion behavior of 

CoCr alloy modular necks coated by Ta film using a hip simulator in a calf serum environment. 

Although no information on the Ta film deposition and structure was provided, they confirmed the 

protective effect of Ta film and evaluated the associated risk of failure when used as implants.  

In summary, the controlled synthesis of Ta thin films on the CoCrMo alloy with desired crystal 

structure and high adhesion is very important for artificial hip joint applications. However, there 

is no systematic investigation in this regard so far. Therefore, part of the present thesis (Chapter 

4) focuses on controlled synthesis of adherent Ta thin films on the CoCrMo alloy with different 

crystal structures using a magnetron sputtering deposition technique. Furthermore, the tribological 

and corrosion behavior of the thin films is investigated for the purpose of evaluating their potential 

to meet the demand for orthopedic implant applications and presented in chapter 5. 

2.2.5 fcc Ta  

fcc Ta formation has been reported only in a few journal articles under special processing 

conditions as dispersed fine grains embedded in α- and/or β-Ta thin films [27-31], or in heavily 

deformed bulk samples of Ta [32]. Ta with fcc structure was first reported by Denbigh et al. in 

1966 [27]. They found epitaxial growth of fcc structure on MgO substrate in ultrathin (< 10 nm) 

Ta films deposited by electron beam evaporation below 400 °C, however, the film gradually 

changed to α-Ta when the film thickness increased from 10 nm to 25 nm, where only dispersed 

fcc fine grains existed, and fcc Ta grains disappeared when the thickness became greater than 25 

nm. One year later, Chopra et al. [28] reported the nucleation of fcc Ta in Ta films of 50 nm thick 
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deposited by sputtering at temperatures below 400 °C. They attributed the nucleation and 

stabilization of fcc Ta to the relatively higher kinetic energy and higher electrostatic charges in the 

sputtering technique compared to evaporation. In 1968, Marcus et al. [29] further reported that fcc 

Ta structure could only exist in very thin (10 nm or thinner) Ta films deposited using electron 

beam evaporation technique due to the large contribution of surface forces and the incorporation 

of surface impurities. A subsequent study by Schrey et al. in 1970 [30] confirmed fcc Ta formation 

in very thin films (with thickness less than 20 nm) using radio frequency sputtering at 325 °C. 

Recently, Janish et.al. [31] tried a different approach in investigating fcc Ta formation. They found 

nucleation of fcc Ta in amorphous Ta thin films of 20 nm thick when annealed at 450 °C. In all 

the aforementioned published research papers, only a small amount of very fine fcc grains was 

found in the Ta films. Furthermore, in all the reported cases, the fcc structure of Ta disappeared 

when the film thickness or substrate temperature increased beyond a value. In addition, dispersed 

nanosized fcc Ta grains were found in heavily deformed bulk bcc Ta samples [32]. Nevertheless, 

up till now, only a small amount of nanosized fcc Ta grains have been obtained and observed using 

Transmission Electron Microscopy (TEM), which were embedded in other phases of Ta (α-Ta, β-

Ta, or their mixture). Thus, the processing conditions and structural information on fcc Ta are very 

limited, and the properties of fcc Ta could not be measured. In the present thesis work, further 

attempt is made to synthesize stable fcc Ta thin films with high purity and to evaluate its structure 

and properties (Chapter 6). 

2.3 Overview of DLC in biomedical applications  

DLC thin films have high hardness, low friction coefficient, high wear resistance, and high 

biocompatibility, and thus attract considerable attention for many tribological applications, 

especially medical applications. DLC is one of the best candidates for improving the lifetime of 

human implants including artificial hip and knee joints. High quality DLC thin films have 

demonstrated great potential in reducing wear and friction coefficient of these implants [2, 69]. 

2.3.1 Structure and properties of DLC thin films 

DLC is a carbon-based amorphous material containing diamond (sp3) and graphitic (sp2) bonding. 

It has high sp3/sp2 ratio with diamond-like properties. DLC exists in two major categories: 

amorphous carbon (a-C) and hydrogenated amorphous carbon (a-C: H). Figure 2.2 shows the 



 12  
 

composition of different forms of amorphous carbon using a ternary phase diagram. The a-C is 

denoted as tetrahedral amorphous carbon (ta-C), when the percentage of sp3 bonding is high. The 

center of the diagram is occupied by a-C: H with relatively high sp2/sp3 ratio and high hydrogen 

content while more sp3 bonding with less hydrogen produces hydrogenated tetrahedral amorphous 

carbon (ta-C: H) [70]. Some of the properties of DLC compared to other carbon based materials 

are listed in Table 2.3. 

 

Figure 2.2. Ternary phase diagram of amorphous carbon [70] 

Table 2.3. Properties of the various forms of DLC compared to diamond, graphite, C60, and 

polyethylene [70] 

 sp3 (%) H (%) Density (gcm-3) Hardness (GPa) 

Diamond 100 0 3.515 100 

Graphite 0 0 2.267  

C60 0 0   

Glassy C 0 0 1.3-1.55 3 

Evaporated C 0 0 1.9 3 

Sputtered C 5 0 2.2  

ta-C 80-88 0 3.1 80 

a-C: H hard 40 30-40 1.6-2.2 10-20 

a-C: H soft 60 40-50 1.2-1.6 10 

ta-C:H 70 30 2.4 50 

Polyethylene 100 67 0.92 0.01 

 



 13  
 

2.3.2 DLC thin films deposition techniques 

DLC coatings can be produced by various PVD or CVD techniques from a variety of solid or 

gaseous carbon sources. The methods include ion beam, sputtering, cathodic arc, pulsed laser 

deposition, plasma enhanced chemical vapor deposition [70].  

Ion Beam Deposition (IBD) has been widely used for DLC film deposition. In this method, carbon 

ions or hydrocarbon ions created in an ion source are accelerated towards the substrate to form 

DLC films. DLC formation is highly dependent on the ion energy of the incident particles. In this 

method, ion energy and ion current density can be controlled independently to control the 

deposition, which is an advantage over other deposition methods. 

2.3.3 DLC thin films on CoCrMo alloys substrates in artificial hip joints applications 

The performance of DLC films on the Co alloy substrates has been studied and conflicting results 

were reported [71-76] between 2001 and 2010. The major challenge is the issue of weak adhesion 

of DLC films to the Co alloy substrates. 

In general, owing to the high level of internal stresses of DLC films due to the high energy ion 

bombardment during the deposition processes and the large differences in physical properties 

between DLC and the substrates, DLC adheres weakly to most of the metallic substrates. Muller 

et al. [77] and Fallub et al. [78] in the year 2011 specifically analyzed the interface of DLC films 

on a CoCrMo alloy and indicated that the interface is a main factor to control the adhesion. They 

found that a very thin layer consisting of a mixture of carbides from all the alloy’s metals formed 

at the interface and these interfacial carbides played an important role in the adhesion failure of 

DLC films on the CoCrMo alloy. Several approaches have been investigated to overcome these 

drawbacks and improve the adhesion of DLC films on CoCrMo alloys. These include designing a 

proper interlayer and changing the composition of the thin films by doping. In this regard, Falub 

et al. [78, 79] showed that the adhesion of DLC film on a CoCrMo alloy can be greatly improved 

by introducing a 90 nm thick Mo interlayer [78] or a Si-doped DLC interlayer [79]. Liu et al. [80, 

81] and Guo et al. [82] also demonstrated better performance of DLC coatings on CoCrMo alloys 

through the application of Ti and Cr interlayers, respectively. These interlayers improve the 

adhesion by enhancing the interfacial bonding between the substrates and the DLC. However, 
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Huart et al. [83, 84] showed the failure of a DLC coated CoCrMo alloy that contained a 120 nm 

thick Si interlayer. In this case, the coating delamination was attributed to in-vivo crevice corrosion 

of the interlayer. 

Recently, Ta has been introduced by Thorwarth et al. [85] as a promising candidate material for 

use as an interlayer to enhance DLC adhesion on CoCrMo alloys. Ta layer could also improve the 

performance of DLC due to its excellent corrosion and mechanical resistance, high 

biocompatibility, insolubility in body fluids, and good fatigue properties under long-lasting 

mechanical cyclic stresses. They reported that amorphous/α-Ta interlayers performed well with no 

evidence of corrosion or mechanical failure. However, very low contamination during the Ta 

interlayer deposition led to the formation of β-Ta, which caused coating failure. 

In one word, DLC is a very promising material for coating implants, but its weak adhesion to the 

implant materials limits the application. In this regard, part of the present thesis (Chapter 7) 

attempts to evaluate the feasibility of using biocompatible Ta interlayer for enhancing DLC coating 

adhesion on the CoCrMo alloy. Measuring of DLC coating’s internal stresses is an advantage to 

control the DLC deposition parameters and to deposit a high quality DLC coating. In this regard, 

Chapter 8 evaluates a simple non-destructive method as an appropriate and reliable method for 

DLC stress measurement. In these works, ion beam deposition technique is used to deposit the 

DLC films. 
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CHAPTER 3                                                                                                                 

MATERIALS AND EXPERIMENTAL METHODS 

In this research work, magnetron sputtering and ion beam systems were used for thin film 

deposition. The thermal stability of the thin films was investigated by treating the samples at 

different temperatures using a furnace. Surface morphological, chemical and structural, and 

properties characterization of the samples were studied by different techniques including SEM, 

optical profiler, contact angle goniometer, optical microscope, XRD, XPS, XAS, Raman 

spectroscopy, Rockwell C indentation testing, nano-indentation, tribological testing, and corrosion 

testing. This chapter provides detailed description of the materials, equipment, and 

characterization techniques used in this work. 

3.1 Materials 

CoCrMo alloy 

ASTM F1537 CoCrMo alloy prepared by M. Vincent & Associates Inc. was used as substrate. 

This ASTM F1537 CoCrMo alloy meets the requirements of standard as biomedical implants. 

Table 3.1 and 3.2 show the chemical composition and mechanical properties of the alloy, 

respectively.  

Silicon wafer 

(100) silicon wafer of 0.5 mm thick produced by University Wafer Inc. was also used as reference 

substrate.  

Tantalum  

Metallic Ta of 99.9% purity produced by Plasmionique Inc. was used as sputtering target. 
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Table 3.1. Chemical composition of the CoCrMo alloy 

Element wt% 

Cr 27.7 

Mo 5.48-5.51 

Si 0.61-0.74 

Mn 0.65 

Fe 0.18-0.19 

N 0.148-0.157 

C 0.055 

Ni 0.03 

W 0.02 

P 0.005 

S 0.0004-0.0005 

Co  balance 

  

Table 3.2. Mechanical properties of the CoCrMo alloy 

Rockwell Hardness  38-42 HRC 

Ultimate tensile strength  1339-1344 MPa 

 

Yield strength (0.2% offset) 927-931 MPa 

 

Elongation at fracture 37.2-40.2% 

Reduction in area  26.0-26.4% 

Phase transition temperature 1150 °C 

 

3.2 Thin film deposition 

3.2.1 Magnetron sputtering deposition  

Magnetron sputtering, the most common method for depositing uniform and adherent metal films, 

was used for Ta thin film deposition in this thesis work. The magnetron sputtering system used for 

the deposition is made by Plasmionique Inc. and it is located in the Department of Mechanical 

Engineering, University of Saskatchewan (Figure 3.1). The equipment is composed of a vacuum 

chamber, a pumping system, a power supply, and a computer control system. Inside the vacuum 

chamber, there are three magnetrons, a remote plasma source, and a substrate mounting. Each 

magnetron can be connected to a Direct Current (DC), a pulsed DC, or Radio Frequency (RF) 

power source. During the sputtering deposition process [86, 87]: 
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 The chamber was first evacuated to 1.33 x 10-4 Pa to minimize the partial pressures of all 

background gases and potential contaminants 

 Sputtering gas, Ar, was then introduced into the chamber  

 Plasma was generated by applying a high voltage between the cathode (located behind the 

target) and anode (connected to the chamber as electrical ground) 

 Positive sputter gas ions were accelerated towards the target, these collisions causing target 

materials to be ejected  

 Sputtered materials were transported to and deposited on the substrate to form thin films.   

In the magnetron sputtering system, a magnetic field is used to confine the electrons near the target 

and thus enhance ionization and plasma density, leading to a higher sputtering efficiency. This is 

one of the main advantages of magnetron sputtering over other sputtering methods. 

Ta thin film deposition in the magnetron sputtering system was performed at a pressure ranging 

from 0.80 Pa to 1.87 Pa by introducing Ar gas into the chamber with a flow rate of 35 sccm and 

using a Ta target of 99.9%. The distance between the target and the sample was 35 mm and the 

sample stage was made to rotate at a speed of 3 rpm. The mean voltage of the target ranged from 

100 V to 200 V. Substrate temperature ranged from room temperature to 600 °C and substrate bias 

voltage ranged from -115 V to 0 V. 

 

Figure 3.1. The magnetron sputtering system used in this work 
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3.2.2 Ion beam deposition 

Because of the capability to control the ion energy and the ion current density independently, the 

ion beam deposition method has been widely used to produce DLC films. The dual ion beam 

system made by 4Wave Inc., located in the Department of Mechanical Engineering, University of 

Saskatchewan, was used for DLC thin film deposition in this thesis work. The main components 

of the equipment include a vacuum chamber, a pumping system, a power supply, and a computer 

control system (Figure 3.2). Inside the vacuum chamber, there are two ion sources (ion source I 

for etching the substrate and direct ion beam deposition, and ion source II for sputtering), a target 

assembly with four targets, and a substrate holder. Figure 3.3 presents a schematic structure of the 

system. Following procedures were used to deposit DLC thin films: 

 The chamber was first pumped down to a high vacuum of 1.33 x 10-5 Pa 

 Precursor gases were then introduced into ion source I 

 The ions from the source directly bombarded the substrate surface to etch the substrate or to 

deposit DLC thin films depending on the gas composition and ion energy 

 Argon gas might be simultaneously introduced into ion source II to sputter a target to obtained 

doped DLC thin films. 

DLC thin film deposition was carried out using ion source I. The substrate holder was mounted 

inclined at 45° with respect to the ion source. Methane (CH4) and Ar mixture was used as precursor 

gases, the working pressure was 0.0933 Pa, and the ion energy for deposition ranged from 65 eV 

to 85 eV.  



 19  
 

 

Figure 3.2. The ion beam system used in this work 

 

Figure 3.3. Schematic structure of the ion beam system 

3.3 Heat treatment 

GSL-1500X furnace located in the Department of Mechanical Engineering, University of 

Saskatchewan (Figure 3.4), was used to heat the thin films in order to understand their thermal 
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stability. The furnace includes a high purity alumina tube and a SiC heating element. A gas or 

gases can be introduced into the tube to control the treatment environment. The furnace can reach 

a temperature up to 1500 °C [88]. In the present research, fcc thin film samples were annealed at 

temperatures ranging from 700 °C to 900 °C for one hour. The heating rate was 10 °C/min and the 

samples were cooled down to room temperature with the furnace after the treatment. 

 

Figure 3.4. The furnace used in this work 

3.4 Characterization techniques 

3.4.1 SEM 

SEM is non-destructive and easy to use technique for surface morphology observation with a high 

resolution. It can provide the topography of the surface with a wide range of magnifications from 

10 to 500,000 times. In this thesis work, Jeol JSM-6010LV SEM (Figure 3.5) located in the 

Department of Mechanical Engineering, University of Saskatchewan, and SU8010 SEM located 

in the Western College of Veterinary Medicine, University of Saskatchewan were used to observe 

the morphology of sample surface and to measure the thin film thickness using cross sectional 

images of the samples. The SEM uses an electron beam to create images of the samples under 

study. An electron gun (thermionic or field emission electron gun) produces high-energy electrons, 

which are focused and accelerated using magnetic and electrical fields to form a beam. When the 

beam strikes a sample, interactions occur and the emitted signals are detected by various detectors. 
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Figure 3.6a shows the main signals from a sample after illuminated with an electron beam. The 

signals use in a SEM include Backscattered Electrons (BSE) and Secondary Electrons (SE). BSE 

are produced when the incident electrons scatter backward from the sample, and SE are produced 

when the incident electrons loosen the electron bounds in the sample atoms, and sample electrons 

emerge from the surface as shown in Figure 3.6b and c. A SEM image is a distribution map of the 

signal intensities, which provides the details of the scanned area. BSE provides topological and 

compositional information of the sample, while SE provides morphological information of the 

sample.  

 

Figure 3.5. The SEM used in this work 
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Figure 3.6. (a) Signals of the electron beam interaction with a sample (b) BSE signals principle 

schematic (c) SE signals principle schematic 

3.4.2 Optical profiler 

Optical profiler is a simple and convenient technique to observe and measure the surface 

topographic properties of the samples. Zygo NewView 8000 optical profiler (Figure 3.7) located 

in the Department of Mechanical Engineering, University of Saskatchewan, was used to measure 

the surface roughness, the curvature radii, and the thin film thickness of the investigated samples. 

The profiler uses Coherence Scanning Interferometry (CSI) to provide graphic image and high 

resolution numerical analysis of surfaces in three dimensions. The profiler works based on the 

wave properties of light as schematically presented in Figure 3.8a. The light beam is split, half the 

beam is reflected from the sample surface, and the other half is reflected from a reference surface, 

which is perfectly flat. When the distance between the beam splitter and the reference is the same 
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as the distance between the beam splitter and the sample, the split light beams recombine with 

constructive and destructive interference depends on the sample surface height variances. For 

example, two beams in one phase create a recombined beam with double intensity (Figure 3.8b), 

and two beams out of phase create a zero recombined beam. This creates light and dark bands into 

a camera, known as interference fringes, where the constructive interference areas are lighter, and 

the destructive interference areas are darker. Each pixel on the camera produces a signal, 

comparing the signals, and with knowing the light wavelength, surface height variances can be 

calculated, and three dimensions map can be achieved (Figure 3.8c) [89].  

In the present thesis research, the profiler was used to measure the thickness of the thin films by 

measuring the height difference between the thin film and the uncoated substrate surface. In this 

case, part of the substrate was as covered with a tape during the thin film deposition. The profiler 

was also used to measure the surface roughness of the samples. Surface roughness describes the 

statistical distributions of surface height variations. Root mean square height (Rq) and arithmetical 

mean roughness (Ra) are two main parameters to present surface roughness. In this thesis work, 

Ra values were presented based on the topographical data of the samples surfaces on an area of 

335.48 μm x 335.48 μm. 

 

Figure 3.7. The optical profiler used in this work 
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Figure 3.8. (a) Profiler operation (b) recombined beam creation schematic (c) three dimensions 

map creation schematic [89] 

3.4.3 Contact angle goniometer 

Contact angle goniometer (PG-X pocket goniometer), shown in Figure 3.9, located in the College 

of Agriculture, University of Saskatchewan, was used to measure the contact angle of a droplet of 

a solution on the samples in order to understand their surface wettability . A pump delivers a 

droplet of a specified solution on the sample surface and the camera equipped in the tester captures 

the image. The droplet volume is adjustable, and the image can be taken at static mode or dynamic 

mode [90]. 
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Figure 3.9. Contact angle meter [90] 

3.4.4 Optical microscope 

OLYMPUS BX41M-LED optical microscope located in the Department of Mechanical 

Engineering, University of Saskatchewan, was used to observe wear of the UHMWPE balls after 

the tribology testing. Optical microscope creates a magnified image of the samples simply by using 

visible light and a set of lenses.  

3.4.5 XRD 

XRD is the most widely used non-destructive characterization technique to disclose the detailed 

information on materials’ crystallographic structure. Rigaku Geigerflex XRD instrument with 

Cobalt K-alpha radiation (Co-Kα) (Figure 3.10), located in the Department of Physics & 

Engineering Physics, University of Saskatchewan, and grazing XRD using Very Sensitive 

Elemental and Structural Probe Employing Radiation from a Synchrotron (VESPERS) beamline 

with 15 keV energy at Canadian Light Source (CLS), were used to study the crystallographic 

structure of the thin films. The main components of a typical XRD are X-ray source, goniometer 

(sample & detector stage), X-ray detector, and electronics for counting detector pulses. During 

XRD process, X-ray is generated in an X-ray tube by bombarding the target material (anode) with 

accelerated electrons. Different target materials like Co and Cu targets produce X-rays with 

different wavelengths. When X-rays strike the sample surface at varying incident θ angle, 

diffraction of the X-rays occurs as shown in Figure 3.11. Considering the X-rays scattered from 

atoms P and Q in planes A and B, constructive interference of diffracted waves 1' and 2' occurs if 

the path length difference between them is equal to nλ, according to the Bragg’s Law. Therefore:  
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Path length difference = 2dhklsinθ = nλ                                                                                      (3.1) 

Where θ = X-ray incident angle, n = order of diffraction (an integer), λ = X-ray wavelength, and 

dhkl = interplanar spacing of planes A and B.  

The diffracted X-rays are received by the detector at angle 2θ. The intensities of the diffracted X-

rays and the 2θ angles are recorded to create an XRD pattern. As such, the interplanar spacing can 

be calculated based on the X-ray wavelength and the diffraction angle. The interpretation of the 

XRD results involves comparing the measured interplanar spacing with standard reference 

patterns. Each crystal material has its own characteristic XRD pattern.  

The X-ray source used for the CLS XRD is synchrotron light radiation. In synchrotron, electrons 

are accelerated to very high speeds in circular paths using strong bending electromagnets. These 

confined electrons in the circular path can radiate electromagnetic waves with tuned wavelengths 

suited to study different types of materials. High energy X-rays can be generated in synchrotron. 

 

Figure 3.10. The XRD used in this work 
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Figure 3.11. A schematic diagram of Bragg’s Law [91] 

3.4.6 XPS 

XPS is a surface and chemical sensitive technique for chemical composition analysis. XPS (model: 

AIXS SUPRA) with Aluminum K-alpha (Al-Kα) radiation as the excitation source at SSSC, 

University of Saskatchewan, was used to investigate the chemical composition and chemical states 

of the thin films. X-ray interaction with the material can initiate electron transition in the material 

leading to ejection of photoelectrons. In XPS instrument, X-rays are generated by bombarding a 

metallic anode with high energy electrons, then X-rays strike the surface sample and eject electron 

from the shell of the sample with a measurable kinetic energy (Figure 3.12). The detector measures 

the ejected photoelectrons’ kinetic energy, and the binding energy can be calculated using 

Equation 3.2: 

EB = h - Ekin - work                                                                                                                                                                             (3.2) 

Where, EB is the binding energy, Ekin is the kinetic energy, work is the work function, and h is 

the incident energy of the X-ray photons. Each atom has a unique binding energy for each shell, 

therefore, the energy of ejected electrons is unique for each element. In other words, each element 

has a unique set of binding energies. The XPS counts the number of electrons ejected from the 

sample’s surface at a sequence of energies, and the spectra shows the plot of binding energy versus 

intensity. In this thesis work, the chemical states of the thin films and their depth profiling were 
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obtained using XPS combined by Ar ion sputtering. Each measurement consists of sequences of 

etching steps using Ar ions with 4 keV energy. 

 

Figure 3.12. Ejection of photoelectron in the XPS [91] 

3.4.7 XAS 

XAS end station of Hard X-ray MicroAnalysis (HXMA) beamline at CLS was used to investigate 

the chemistry (oxidation state) of the Ta thin films. The XAS measurement was configured to the 

grazing incidence setup and the data collection was in fluorescence mode. The XAS principle is 

based on the X-ray absorption coefficient measurement. When a monochromatic X-ray beam with 

I0 intensity, which is created in synchrotron radiation, strikes the sample, the transmitted X-ray 

intensity (I(x)) is reduced due to the X-ray absorption according to Equation 3.3: 

I(x) = I0e
-μx                                                                                                                                   (3.3) 

Where x is the sample thickness, and μ is the absorption coefficient. 

Each element has a unique binding energy, which is the energy that a core electron needs to absorb 

in order to escape from the nucleus, so, the absorption edge on XAS can show the element 

speciation of the samples. Generally, XAS shows the measurement of the absorption coefficient 

as a function of photon energy. 

Beside transmittance, X-ray beam interaction with material can cause emission of photoelectron, 

auger electron, and X-ray fluorescence (Figure 3.13). Based on these emissions, there are two other 

methods for the XAS measurement: Total Fluorescence Yield (TFY), which measures all the 
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fluorescence photons and gives an exact count of absorbed photons, and Total Electron Yield 

(TEY), where absorption can be measured using emitted photoelectrons and auger electrons.  

 

Figure 3.13. Schematic diagram of (a) emission of photoelectron, (b) emission of auger electron, 

and (c) X-ray fluorescence [91] 

3.4.8 Raman spectroscopy 

Raman spectroscopy is a powerful technique used for studying bonding structure of different forms 

of carbon. Renishaw model 2000 Raman spectrometer at SSSC, University of Saskatchewan, was 

used to obtain Raman spectra of the DLC thin films. The operating laser wavelength was 514 nm. 

Raman spectroscopy works based on inelastic scattering of monochromatic light. There are three 

basic components of the Raman spectrometer: a light source, an optical system (to collect the 

Raman scattered light), and a detector. The light strikes the sample surface, absorbs by sample’s 

molecules, and scattered with a different frequency. The shift in light frequency is called the 

Raman shift. Raman spectrum is presented a plot of scattered light’s intensity versus Raman shift. 

The interpretation of the plot involves comparing the obtained spectra with reference spectra. 

As shown in Figure 3.14 [70], Raman spectra of different forms of carbon are widely known. 

Diamond has a peak at around 1332 cm-1, single crystalline graphite has a peak at around 1580 

cm-1, and DLC has two broad peaks, D and G, at around 1350 cm-1 and 1580 cm-1, where the 

position and relative intensity of the D and G peaks give detailed information about the bonding 

of DLC films. 
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Figure 3.14. Comparison of typical Raman spectra of carbons [70] 

3.4.9 Rockwell C indentation testing 

Rockwell C indentation testing is a fast, easy, reliable, and low-cost qualitative technique for 

evaluation of coating adhesion. Instron Wolpert GmbH Rockwell C hardness tester (Figure 3.15), 

located in the Department of Mechanical Engineering, University of Saskatchewan, was used to 

evaluate the adhesion of the Ta thin films on the CoCrMo alloy. During the testing, the Rockwell 

C diamond indenter with a load of 1470 N was gradually pressed into the film to create an 

impression. Cracking and delamination of the coating occurred and extended at the area 

surrounding the indentation. The resistance to the propagation of the cracks was then investigated 

as an adhesion measurement. According to VDI 3198 guideline [92], a film with good adhesion 

should have less spallation and cracks around the indentation imprint comparing to the 

unacceptable failure images, as shown in Figure 3.16.  
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Figure 3.15. The Rockwell C hardness tester used in this work 

 

Figure 3.16. The principle of the VDI 3198 indentation test [92] 
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3.4.10 Nano-indentation 

Nano-indentation is the main technique used to determine the mechanical properties of thin films. 

Nano-indentation tester (Figure 3.17) manufactured by Center for Tribology (CETR) Inc., located 

in Department of Mechanical Engineering, University of Saskatchewan, was used to measure the 

hardness and Young’s modulus of the samples. A Berkovich indenter is pressed into the sample 

surface by increasing the load to a defined value, the indenter is left with the applied load for 

specific amount of time, then the load is gradually reduced to zero. During the testing, applied 

force and displacement are recorded and the Universal Material Tester (UMT) software analyzes 

the load-displacement curve to give hardness and Young’s modulus. To ensure reproducibility of 

the hardness data, testing was performed at 50 different locations (a matrix of 5 x 10 spots) at loads 

varying from 0.5 to 60 mN for each sample. The hardness and Young's modulus values were 

achieved from the average amount of those values in the depth of one tenth of the coatings 

thickness in accordance with ISO 14577-4 standard [93]. It should be noted that the nano-

indentation results can be affected by the roughness of the substrate’s surface. 

 

Figure 3.17. The nano-indentation tester used in this work 

3.4.11 Tribological testing 

In this thesis work, ball-on-disk tribo tester (Figure 3.18) built in a UMT manufactured by CETR 

Inc., located in the Department of Mechanical Engineering, University of Saskatchewan, was used 

to investigate the tribological behavior of the samples. This test method involves a ball-shaped 
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upper specimen that slides against a disk as a lower specimen, in a linear reciprocating motion 

under prescribed set of conditions of applied load, displacement, number of cycles, linear speed, 

and type of applied lubricant. In these experiments, UHMWPE balls with a diameter of 2 mm were 

sliding on Ta-coated disks and uncoated CoCrMo alloy disks in a phosphate-buffered saline (pbs) 

solution at room temperature, in accordance with ISO 14242-1 standard [94] specified for wear of 

hip joint prostheses. The load applied was 10 N and the displacement length was 2.5 mm. A linear 

speed of 5 mm/s was used and the movement was repeated for 10,000 cycles. The UMT software 

provides the actual applied load, friction force, and Coefficient of Friction (COF), which is the 

ratio of the frictional force to the loading force on the disk. The wear rate of the balls is measured 

using Equation 3.4: 

W =
𝑉

𝐹×𝐿
                                                                                                                                   (3.4) 

Where, V is ball volume loss, F is applied load, and L is displacement length. The ball volume loss 

needs to be measured after each test. The following equation is used to calculate the volume loss: 

V =
𝜋×(𝐷)4

64×(𝑅)
                                                                                                                                  (3.5) 

Where, D is wear scar diameter, and R is ball radius. The equations are in accordance with ASTM 

G99–17 [95]. 

 

Figure 3.18. (a) The UTM and (b) the ball-on-disk configuration used in this work 
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3.4.12 Corrosion testing 

Gamry instruments reference 600 potentiostat, located in the Department of Chemical 

Engineering, University of Saskatchewan, was used to evaluate the corrosion resistance of the 

samples. The electrochemical cell setup includes various electrodes, electrolyte, cabling, and a cell 

which is connected to the potentiostat, as shown in Figure 3.19. In the electrochemical cell, the 

specimen is used as the working electrode, a pure graphite rod as the counter electrode, and a 

saturated calomel electrode as the reference electrode. The potentiostat controls the voltage 

difference between the working and reference electrodes. The potentiostat implements this control 

by flowing current between the working and counter electrodes [96]. The samples with an area of 

1cm2 were exposed to pbs solution at room temperature in accordance with ASTM G61-86 [97]. 

The polarization potential was measured against the standard calomel reference electrode using a 

scanning rate of 0.5 mV/s. Potentiodynamic polarization curve was obtained and Tafel 

extrapolation technique was applied to find the corrosion current density. 

 

Figure 3.19. The electrochemical cell setup connected to the potentiostat used in this work 
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CHAPTER 4                                                                                                                   

GROWTH AND CHARACTERIZATION OF TANTALUM THIN FILMS ON CoCrMo 

ALLOY SHEETS FOR ORTHOPEDIC IMPLANT APPLICATIONS 

In this chapter, growth and characterization of Ta thin films on a CoCrMo alloy are investigated 

for improving the surface functionality of this alloy which has been widely used to make femoral 

heads in artificial hip joints. In this regard, the effect of deposition parameters on the formation of 

different phases of Ta, and the development of adherent Ta thin films on a CoCrMo alloy are 

explained. This chapter is published in “Thin Solid Films” as follows:  

“Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic 

implant applications, S. Shiri, C. Zhang, A. Odeshi, Q. Yang, Thin Solid Films 645 (2018) 405-

408”.  

My contributions to this paper are: review of the relevant literature, design and conduct the 

experiments, analysis of test results and preparing the manuscripts under the supervision of 

Professor Qiaoqin Yang and Professor Akindele Odeshi. The manuscript was reviewed and revised 

by my supervisors, Professor Qiaoqin Yang and Professor Akindele Odeshi, before submission to 

the journal for publication. The present manuscript is a modified version of the published paper. 

The copyright permission is obtained and provided in the Appendix section.  

Abstract 

In this study, Ta thin films deposited (by magnetron sputtering) on biomedical CoCrMo alloy 

substrates are studied using XRD, SEM, and Rockwell C indentation tests. The results show that 

single phase α-Ta thin films with low adhesion forms at substrate temperature of 400 °C or above, 

while thin films with a mixture of α-Ta and β-Ta and a low adhesion form at substrate temperature 

lower than 400 °C. By applying a negative substrate bias voltage from 78 V up to 90 V, single 

phase β-Ta thin films is obtained at room temperature. β-Ta thin films deposited at a negative bias 

of 78 V is of high adhesion. Further increasing the bias voltages to 115 V, single phase α-Ta forms 
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on the alloy, with poor adhesion. Based on the results, a multilayered Ta thin film, β-Ta/β-Ta+α-

Ta/α-Ta, with controlled structure is developed on CoCrMo alloy sheets with high adhesion, which 

is promising for biomedical applications. 

4.1 Introduction  

Ta has drawn increasing attention in recent years for orthopedic implant applications due to its 

high hardness and good biocompatibility [2]. However, the high cost and the difficulty in making 

dense Ta implants limit its applications [34, 35]. Deposition of Ta thin films on CoCrMo alloys 

would combine the high mechanical strength of the substrate alloy with the excellent 

biocompatibility of Ta film and thus the performance of the implants would be greatly improved 

[13, 33, 65-68]. Generally, Ta thin films exist in two crystalline structures; body-centered cubic 

structure (α-Ta) and tetragonal structure (β-Ta). α-Ta is ductile and tough whereas β-Ta is hard 

and brittle [17, 22-26]. 

The formation of α- and β-Ta thin films is strongly dependent on the film thickness, substrate 

material, and processing parameters. Researches have been done to understand the effect of 

processing parameters on the formation of different phases of Ta, however, the results obtained 

are controversial and the understanding is very limited [13, 14, 16, 19, 22, 23, 25-26, 40-64]. This 

is probably due to the combined effect of different parameters. Films containing a mixture of both 

Ta phases can be easily deposited using physical vapor deposition [13-15], but it is hard to obtain 

single phased α- or β-Ta thin films or to accurately control the crystal structure of Ta thin films to 

meet the demand of practical applications. Although α-Ta films with a thickness of between 20 

nm and 600 nm have been deposited on CoCrMo alloy (ASTM F1537) substrate using magnetron 

sputtering by Hallman et al. [13], the adhesion of Ta films on the CoCrMo alloy, and consequently 

their functionality have not been investigated yet. 

In this work, systematic investigation of the relationships between the processing parameters and 

the resulted film structures have been performed. Based on the results, controlled synthesis of Ta 

thin films on both CoCrMo alloy sheets and Si wafers with different crystal structures has been 

achieved. Furthermore, highly adherent α- and β-Ta thin films on CoCrMo alloy sheets to meet 

the demand for biomedical implant applications have been developed. 
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4.2 Experimental details 

Ta thin films were deposited on CoCrMo alloy (ASTM F1537) sheets and silicon wafers (as a 

reference) using a RF magnetron sputtering system made by Plasmionique Inc. CoCrMo alloy 

substrates, 25 mm in diameter and 3 mm in thickness, were ground and polished using Struers 

automatic polisher: first ground with 320 grit size silicon carbide paper, then polished with 

diamond paste of 9 μm and 3 μm sequentially, and finally polished with silica suspension of 0.04 

μm. After each step, samples were cleaned in distilled water. The polished samples were 

ultrasonically cleaned in ethanol for 15 min, and then cleaned in the deposition chamber by Ar 

sputtering at a substrate bias of 80 V for 5 min. Deposition was performed at a pressure of 1.33 Pa 

by introducing Ar gas into the chamber with a flow rate of 35 sccm and using a Ta target of 99.9% 

purity. The distance between the target and the sample was 35 mm and the sample stage was made 

to rotate at a speed of 3 rpm. Substrate temperature and substrate bias voltage were varied to 

deposit Ta thin films. The sputtering parameters for Ta thin film deposition are summarized in 

Table 4.1. The deposition time was also varied to control the film thickness. The deposition 

experiments were repeated for a chamber pressure of 0.80 Pa and 1.87 Pa, respectively. With the 

understanding of the deposition conditions for α-Ta and β-Ta phases, two-layered and multilayered 

gradient Ta films consisting of both α and β phases were prepared, including sample 1: β-Ta 

deposition for 2 h (condition e in Table 4.1) plus α-Ta deposition for 1 h (condition c in Table 4.1), 

sample 2: β-Ta deposition for 1 h (condition e in Table 4.1) plus α-Ta deposition for 1 h (condition 

c in Table 4.1), and sample 3: β-Ta deposition for 1 h (condition e Table 4.1), plus α-Ta+β-Ta 

deposition for 30 min (condition a in Table 4.1 with substrate temperature from room temperature 

to 400 °C) and α-Ta deposition for 1 h (condition c in Table 4.1).  

The crystallographic structures of the synthesized thin films were investigated using Rigaku XRD 

instrument with Cobalt K-alpha radiation, where the XRD tube was operated at 30 kV and 20 mA, 

and the data were collected in Bragg–Brentano geometry with theta/2theta motion. Mechanical 

properties of the Ta thin films on silicon wafers (hardness and Young's modulus) were measured 

using nano-indentation in accordance with ISO 14577-4 standard [93], where the testing was 

performed with a berkovich indenter on 50 different locations at loads varying from 0.5 to 60 mN 

for each sample. The hardness and Young's modulus reported were the average values of those 

with a penetration depth of less than one tenth of the coating thickness. The thin films thickness 
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was measured using Jeol JSM-6010LV SEM operated at 15 kV. Conventional Rockwell C 

hardness testing was performed using 1470 N load to evaluate the relative adhesion strength of the 

films. The imprint and its surrounding area after indentation were observed using SEM. 

Table 4.1. Sputtering parameters for Ta thin film deposition 

Condition Magnetron RF 

power (W)/ voltage (V) 

Temperature 

(°C) 

Substrate bias 

power (W)/ voltage (V) 

Pressure 

(Pa) 

(a) 150 W/ 200 V  Room  0 1.33 

(b) 150 W/ 200 V 200 0 1.33 

(c) 150 W/ 160 V 400 0 1.33 

(d) 150 W/ 160 V 600 0 1.33 

(e) 150 W/ 100 V Room  30W/ 78V 1.33 

(f) 150 W/ 105 V Room  50W/ 90V 1.33 

(g) 150 W/ 100 V Room 70W/ 115V 1.33 

 

4.3 Results and discussion  

4.3.1 Effect of deposition parameters on α- and β-Ta thin films formation 

Figure 4.1 presents the XRD patterns of Ta thin films on CoCrMo alloy and silicon substrates 

deposited at different substrate temperatures for 2 h (condition a-d in Table 4.1). The Ta thin films 

deposited on both substrates exhibit a mixture of α- and β-Ta phases at room temperature. With an 

increase in the deposition temperature of up to 400 °C, the proportion of β-Ta phase decreases and 

the β-Ta phase completely disappears at 400 °C. At deposition temperature of 400 °C or above, 

the Ta films are composed of a single α-Ta phase. Other researchers [14, 23, 98] reported that the 

β-Ta to α-Ta transformation temperature is above 750 °C. The results show that deposition 

temperature is a key factor determining the crystal structure of Ta films. High purity α-Ta thin 

films can be obtained at deposition temperature as low as 400 °C. This is probably due to the 

relative high energy of particles during sputtering deposition. It should also be noted that the Ta 

films deposited on silicon and CoCrMo alloy substrates under similar conditions have the same 
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crystal structure, indicating that substrate material has no effect on the formation of crystal 

structure of Ta films.  

Figure 4.2 reveals the effect of substrate bias voltage on the formation of crystal structure of Ta 

films on CoCrMo alloy and silicon wafer substrates (deposited at condition e-g in Table 4.1). 

Single β-Ta film was obtained by applying a substrate bias voltage from 78 V to 90 V at room 

temperature for 2 h; further increasing the bias voltages to 115 V, single phased α-Ta thin films 

were obtained. These results suggest that low energy ion bombardment induces the formation of 

metastable β-Ta phase whereas high energy ion bombardment induces the formation of α-Ta phase. 

Deposition experiments using condition a-g in Table 4.1 were repeated for deposition time up to 

4 h and the results are the same as obtained for 2 h. The thickness of the films, as measured using 

SEM, is approximately 0.8 μm for 2 h deposition and 1.5 μm for 4 h deposition. In addition, all 

the deposition experiments were repeated for deposition pressures of 0.80, 1.33, and 1.87 Pa, 

respectively, on both CoCrMo alloy and silicon substrates, and the results show that deposition 

pressure has no effect on the phase composition of Ta thin films. However, previous researchers 

[13, 19, 25, 41] reported on deposition of Ta thin films with a thickness less than 600 nm and 

studied the effect of process parameters on the formation of Ta phases. Their results showed that 

the processing pressure and substrate materials affected the phase composition of Ta thin films, 

which are contradictory to our present results. It should be noted that the thickness of the Ta thin 

films in present research is between 0.7 μm and 1.5 μm which is less than 600 nm in the cited 

literatures. 
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Figure 4.1. XRD patterns of Ta thin films deposited on (a) CoCrMo alloy and (b) silicon 

substrates at room temperature, T = 200 °C, T = 400 °C, and T = 600 °C 
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Figure 4.2. XRD patterns of Ta thin films deposited on (a) CoCrMo alloy and (b) silicon 

substrates at different substrate bias voltages: 0 V, 78 V, 90 V and 115 V 
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4.3.2 Development of adherent Ta thin film on CoCrMo alloy sheets 

The Ta films deposited on CoCrMo alloy substrate at room temperature, without bias, consisting 

of a mixture of α- and β-Ta phases, show sever delamination. In this case, the brittleness of β-Ta 

and its difference in hardness and Young's modulus with α-Ta phase are probably the main reasons 

causing the films delamination. The hardness and Young's modulus of the α-Ta and β-Ta thin films 

deposited in this research are listed in Table 4.2. It can be seen that the hardness and Young's 

modulus of the α-Ta thin films are much lower than those of β-Ta thin films. 

Table 4.2. Mechanical properties of α- and β-Ta thin films 

Ta crystalline phase Hardness ± S.D. (GPa) Young’s modulus ± S.D. (GPa) 

α-Ta 14.9 ± 0.4 211 ± 8  

β-Ta 18.7 ± 0.7 229 ± 14  

 

As presented in Section 4.3.1, single phase α-Ta thin films could be deposited on CoCrMo alloy 

substrate under two different conditions:  

- At deposition temperature of 400 °C or above (condition c in Table 4.1) 

- At bias voltage of 115 V or above (condition g in Table 4.1) 

The α-Ta film deposited at a bias voltage 115 V for 2 h showed sever delamination right after the 

deposition. In this case, the delamination is probably due to the high internal stress induced by 

high energy ion bombardment.  

Figure 4.3 shows the SEM images of the single phase α- and β-Ta thin films on the CoCrMo alloy 

sheets after indentation testing. The α-Ta film deposited at 400 °C for 2 h with a thickness of 

approximately 0.8 μm attached well to the substrate after deposition but delaminated after 

indentation testing, as shown in Figure 4.3a. In this case, high thermal stress was likely induced 

during the cooling down from the high deposition temperature due to the large thermal expansion 

coefficient difference between the α-Ta phase and the CoCrMo alloy substrate. This high stress is 

probably the main cause of the film delamination during indentation testing.  
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On the contrary, the single β phase Ta thin film similar thickness (approximately 0.8 μm) 

synthesized on the CoCrMo alloy at condition e in Table 4.1 with a low negative bias of 78 V for 

2 h, adhered well to the alloy substrate (Figure 4.3b) even after the indentation testing. 

 

Figure 4.3. SEM images of Ta thin films (a) α-Ta film, (b) β-Ta film 

In order to enhance α-Ta film adhesion and performance, thin films containing two-layers and 

multilayers were deposited on CoCrMo alloy sheets. Figure 4.4 illustrates the SEM images of the 

Ta thin films on CoCrMo alloy sheets with more than one layer after indentation testing. All the 

samples with more than one layer show better adhesion than single layered α-Ta film (Figure 4.3a), 

the two-layered film with 0.8 μm thick β-Ta layer (sample 1) shows better adhesion than the film 

with 0.5 μm thick β-Ta layer (sample 2), and the multilayered gradient film (sample 3) shows the 

best adhesion. There is no delamination observed within the indentation imprint or its surrounding 

area for the multilayered film, as shown in Figure 4.4c, indicating very good adhesion according 

to VDI 3198 standard [92]. 

Figure 4.5 shows the XRD pattern of the multilayered gradient Ta film (sample 3). The film 

consists of both β-Ta and α-Ta, indicating that the metastable β-Ta formed at low temperature did 

not transform to α-Ta at 400 °C. As reported previously, the β-Ta would not transform to α-Ta 

until it is exposed to a high temperature of 750 °C [14, 23, 98], it is reasonable that the deposition 

of the α-Ta top layer at 400 °C can keep the β-Ta phase in the sublayers remains stable. Based on 

the understanding of the effect of substrate bias voltage and temperature on the formation of α- 

and β-Ta phases in this study, we were able to control the crystal structure of Ta thin films. 

Consequently, we have successful developed adherent β-Ta and gradient Ta film with top layer of 
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α-Ta film on the CoCrMo alloy, which is very promising for biomedical or other protective 

applications.  

 

Figure 4.4. SEM images of Ta thin films (a) α-Ta film (0.5 μm thickness) deposited on β-Ta 

interlayer (0.8 μm thickness), (b) α-Ta film (0.5 μm thickness) deposited on β-Ta interlayer (0.5 

μm thickness), and (c) multilayered structure of Ta 
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Figure 4.5. XRD pattern of the multilayered gradient Ta film (sample 3) 

4.4 Conclusions  

RF magnetron sputtering was used to investigate the deposition of Ta thin films on CoCrMo alloy 

sheets. Substrate temperature and bias voltages have been determined to be the most important 

factors that influence the formation of α and β phases. When the deposition temperature is 400 °C 

or higher, single phase α-Ta films with poor adhesion forms, whereas a mixture of α- and β-Ta 

thin films with poor adhesion is obtained when the deposition temperature is lower than 400 °C. 

By applying a substrate bias voltage from 78 V up to 90 V, single phase β-Ta films can be obtained 

at room temperature. In this regard, the adhesion of the thin film decreases with increasing the bias 

voltage. Further increasing the bias voltage to 115 V, single α-Ta phase was deposited on the alloy 

with a very low adhesion. Consequently, controlled synthesis of Ta thin films has been achieved. 

Moreover, β-Ta and α-Ta thin films with a multi Ta interlayer have been developed on the CoCrMo 

alloy sheets with high adhesion, overcoming one of the main barrier of using Ta thin films for 

biomedical applications. 
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CHAPTER 5                                                                                                                  

TRIBOLOGICAL AND CORROSION BEHAVIOR OF TANTALUM COATED CoCrMo 

ALLOY SHEETS 

In order to improve the biocompatibility, corrosion, and tribological behavior of CoCrMo alloy 

for orthopedic implant applications, adherent α-Ta and β-Ta thin films were deposited on CoCrMo 

alloy sheets using magnetron sputtering as mentioned in chapter 4. In this chapter, the results of 

investigations on tribological and corrosion behavior of the coated and uncoated CoCrMo alloy 

sheets are discussed. This chapter has been submitted to “Thin Solid Films” and it is under review. 

My contributions to this paper are: review of the relevant literature, design and conduct the 

experiments, analysis of test results and preparing the manuscripts under the supervision of 

Professor Qiaoqin Yang and Professor Akindele Odeshi. The manuscript was reviewed and revised 

by my supervisors, Professor Qiaoqin Yang and Professor Akindele Odeshi, before submission to 

the journal for publication. 

Abstract 

In this study, adherent α-Ta and β-Ta thin films are deposited on CoCrMo alloy sheets using 

magnetron sputtering. The mechanical and surface properties of the Ta coatings are characterized 

using nano indentation testing, an optical profiler, and a contact angle goniometer. The tribological 

and corrosion behavior of the coated and uncoated CoCrMo alloy sheets are studied using a ball-

on-disk tribo tester, an optical microscope, potentiostat, XPS, and SEM. The tribological testing 

results show that the coefficient of friction between the - and -Ta coating and UHMWPE balls 

in phosphate-buffered saline solution is 0.08 ± 0.01 and 0.09 ± 0.01, respectively, and the ball wear 

rate is 3.00 ± 0.02 x 10-5 mm3N-1m-1 and 3.25 ± 0.01 x 10-5 mm3N-1m-1, respectively, which are 

lower than those (0.14 ± 0.01 and 8.14 ± 0.01 x 10-5 mm3N-1m-1) for uncoated CoCrMo alloy sheets 

sliding with UHMWPE balls. The corrosion current density of the - and -Ta coated CoCrMo 

alloy sheets in phosphate-buffered saline solution was determined to be 1.4 x 10-8 Acm-2 and 9.9
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x 10-8 Acm-2, respectively, which are significantly lower than that (1.0 x 10-5 Acm-2) for uncoated 

CoCrMo alloy sheet. This indicates a significant improvement on the corrosion resistance of the 

CoCrMo alloy as a result of coating with Ta thin films. These results suggest that applying Ta thin 

films on the CoCrMo alloy in both α- and β-Ta phases is desirable for orthopedic implant 

applications. 

5.1 Introduction 

One of the most widely used artificial hip joints comprises of a CoCrMo alloy femoral head 

articulating against an UHMWPE liner [2]. Despite the relative good durability of these 

combinations, human body system (patient’s level of activities, body weight, and quality and 

quantity of body fluid) decreases the functionality of this kind of artificial hip joints. For example, 

the friction of these bearing surfaces in the body fluid increases the corrosion rate of the CoCrMo 

alloys, releases toxic Co and Cr ions.  In addition, it produces metal and polymer wear debris which 

increases the friction and wear of the bearings, all limiting the lifetime of the implants [2, 9]. 

A promising approach to address the aforementioned challenges is to engineer the CoCrMo alloy 

surface with biocompatible and wear and corrosion resistant coatings. Deposition of a proper thin 

film on CoCrMo alloy would combine the good properties of the substrate materials with the 

excellent surface properties offered by the coating, and thus improve the performance of these 

bearing surfaces. Ta would be an appropriate candidate to coating CoCrMo alloy due to its 

excellent corrosion and mechanical resistivity, and high biocompatibility [13, 33, 65-68]. In this 

regard, Balagna et al. [33, 66, 67] deposited multilayered coating consisting of Ta carbides and 

metallic Ta as a top layer on a CoCrMo alloy by thermal treatment in molten salts and reported 

that the coating improved the wear resistant of the alloy. Moreover, Dorn et al. [68] investigated 

the corrosion behavior of CoCr alloy modular necks coated with Ta films in calf serum 

environment. They reported the protective effect of Ta film in mitigating the risk of corrosion and 

implant failure by using macrophotography alone to analyze the surface but provided no 

information on Ta film structure and deposition technique.  

Ta thin films usually exist in two crystalline structures; body-centered cubic structure (α-Ta) and 

tetragonal structure (β-Ta). Previous researches claimed that α-Ta is more ductile and tougher than 

β-Ta and more desirable for orthopedic implants, which are subjected to mechanical stress and 
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wear [13, 26]. However, obtaining adherent single phased α-Ta thin film on the CoCrMo alloy is 

difficult as mentioned in Chapter 4. Therefore, no research results have been reported on its 

potential for orthopedic implant applications. Although Hallmann et al. [13] reported the 

deposition of α-Ta thin films on a CoCrMo alloy using magnetron sputtering, no information on 

the adhesion and other properties of the Ta thin film was provided. We investigated the formation 

of α- and β-Ta thin films on CoCrMo alloy sheets in Chapter 4. The results showed that β-Ta thin 

film with good adhesion could be achieved on CoCrMo alloy sheets by biasing the substrate and 

α-Ta thin films with good adhesion could be achieved by applying a gradient Ta interlayer.   

In the present work, the tribological and corrosion behavior of CoCrMo alloy sheets coated with 

β-Ta and α-Ta thin films has been further investigated and the results are compared with the 

uncoated alloy sheets for the purpose of evaluating their potential to meet the demand for 

orthopedic implant applications. 

5.2 Experimental details 

Polished circular CoCrMo alloy (ASTM F1537) sheets with a thickness of 3 mm and a diameter 

of 25 mm were used as substrates and Ta thin film deposition was carried out using RF magnetron 

sputtering. Ta target with a purity of 99.9 % and a diameter of 51 mm was used for the Ta film 

deposition. Target and sample distance was 35 mm. After the alloy substrates were put into the 

substrate holder, the chamber was pumped to a pressure of 1.33 Pa. Ar gas with a purity of 99.99% 

was then introduced into the chamber with a flow rate of 35 sccm. The deposition pressure was 

kept at 1.33 Pa and RF power for sputtering was kept at 150 W. β-Ta thin film samples were 

deposited at room temperature by applying a negative bias of 78 V onto the substrate holder and 

α-Ta thin film samples were prepared through three steps: (1) a β-Ta layer of approximately 0.3 

μm by applying a negative bias of 78 V at room temperature; (2) a layer of approximately 0.3 μm 

with a mixture of β-Ta and α-Ta by increasing the substrate temperature from room temperature 

to 400 °C gradually without biasing; and (3) an α-Ta layer of 0.5 μm by keeping the substrate 

holder at 400 °C without biasing. The more detailed preparation procedure for the substrates and 

the Ta thin films is explained in Chapter 4.  Figure 5.1 shows the XRD patterns of β-Ta, α-Ta, and 

α-Ta thin films with a gradient Ta interlayer (β-Ta plus a mixture of β-Ta and α-Ta) on CoCrMo 

alloy sheets. The thickness of the β-Ta thin films is approximately 0.8 μm and the α-Ta thin films 



 49  
 

are composed of a gradient interlayer of approximately 0.6 μm and an α-Ta top layer of 

approximately 0.5 μm.  

Nanoindentation tester was used to measure the hardness and Young’s modulus of the samples, 

where the testing was performed with a berkovich indenter on 50 different locations at loads 

varying from 0.5 to 60 mN for each sample in accordance with ISO 14577-4 standard [93]. Zygo 

optical profiler was used to measure the surface roughness in terms of Ra arithmetical mean 

roughness. Contact angle goniometer (PG-X pocket goniometer) was used to characterize the 

surface wettability using pbs solution, a simulated body fluid.  

The tribological behavior of the Ta-coated and uncoated CoCrMo alloy sheets was investigated 

using a ball-on-disk tribo tester equipped in a UMT manufactured by CETR Inc., where UHMWPE 

ball was sliding on the Ta-coated and uncoated CoCrMo alloy sheets by applying a 10 N load with 

a 2.5 mm displacement length and a linear speed of 5 mm/s for 10,000 cycles in pbs solution at 

room temperature in accordance with ISO 14242-1 standard [94]. The COF was recorded during 

the sliding. After the testing, the wear of the balls was observed using OLYMPUS BX41M-LED 

optical microscope, and measured in accordance with ASTM G99–17 [95]. 

The potentiondynamic polarization curves of the Ta-coated and uncoated CoCrMo alloy sheets 

were obtained using Gamry instruments reference 600 potentiostat, where samples with an area of 

1 cm2 were exposed to pbs solution (Sigma P-38135, pH: 7.4) at room temperature in accordance 

with ASTM G61-86 [97]. The polarization potential was measured against the standard calomel 

reference electrode using a scanning rate of 0.5 mV/s. Tafel extrapolation technique was applied 

to find the corrosion current density, an important indicator of corrosion rate. Two samples of each 

coated and uncoated CoCrMo alloy sheets were tested to ensure reproducibility of the results. 

AIXS SUPRA XPS with aluminum K-alpha radiation as the excitation source was used to analyze 

the chemical composition and state of the thin film surfaces before and after corrosion to 

understand the corrosion mechanism. Depth profiling chemical state of Ta was done using XPS 

combined by Ar sputtering, with settings of 4 keV energy of Ar ions. The surface morphology of 

the samples before and after corrosion testing was observed using SU8010 SEM operated at 5 kV. 
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Figure 5.1. XRD patterns of (a) β-Ta, (b) α-Ta, and (c) α-Ta thin films with a gradient Ta 

interlayer on CoCrMo alloy sheets 
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5.3 Results and discussion 

5.3.1 Surface properties 

The hardness, Young’s modulus, roughness, and contact angle of the uncoated and α- and β-Ta 

coated CoCrMo alloy sheets are presented in Table 5.1. The hardness of α-Ta with body-centered 

cubic structure is lower than that of the β-Ta with tetragonal structure, but both the Ta coatings 

show much higher hardness than the substrate. 

Figure 5.2 shows optical profiler micrograph of the uncoated and α- and β-Ta coated CoCrMo 

alloy sheets. The roughness of the coated samples is lower than that of the uncoated samples, 

indicating that the deposition processing decreases the surface roughness. The deposition of β-Ta 

thin films was achieved by applying a negative bias and the deposition of α-Ta thin films was 

carried out at a relatively high substrate temperature (400 °C). Either biasing or deposition at high 

temperature increases the mobility and lateral diffusion of the Ta atoms and provides a uniform 

surface with lower roughness [99].  

The wettability of the α- and β-Ta coated samples is similar, both show significantly lower contact 

angle, and therefore higher wettability than the uncoated alloy samples (Figure 5.3). Low contact 

angle of Ta coatings indicates a high surface energy of the materials, which would lead to better 

cell attachment [34, 100, 101] for the development and maintenance of the functionality of tissues 

[102]. 

Table 5.1. Surface properties of uncoated and Ta-coated CoCrMo alloy samples 

 Hardness ± S.D. 

(GPa) 

Young's modulus 

± S.D. (GPa) 

Surface 

roughness (nm) 

Contact angle in 

pbs solution 

(degree) 

Untreated 

CoCrMo alloy 

5.6 ± 0.2 285 ± 20 22 ± 2 80 ± 1 

α-Ta coated 

CoCrMo alloy 

14.6 ± 0.9 235 ± 16 16 ± 2 64 ± 1 

β-Ta coated 

CoCrMo alloy 

17.1 ± 0.9 261 ± 27 16 ± 2 62 ± 1 
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Figure 5.2. Optical profiler micrograph of the (a) uncoated, (b) α-Ta coated, and (c) β-Ta coated 

CoCrMo alloy sheets 

 

Figure 5.3. Wettability of the (a) uncoated CoCrMo alloy, (b) α-Ta, and (c) β-Ta coated CoCrMo 

alloy sheets in pbs solution 
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5.3.2 Tribological behavior 

After the tribological testing, no wear was observed for the coated and uncoated CoCrMo alloy 

sheets, indicating high wear resistance of the samples against UHMWPE.  However, wear of the 

UHMWPE balls shows that the wear mechanism of these pairs is abrasive wear of the balls as 

shown in Figure 5.4. In this case, only the wear rate of UHMWPE balls and the COF are presented 

in Table 5.2. We can see that the COF and UHMWPE ball wear rate for the α-Ta coated samples 

are slightly lower than those for the β-Ta coated samples and both are lower than those for the 

uncoated CoCrMo alloy samples. As one of the major failure mechanism for Metal-on-Polymer 

artificial joints is the wear of UHMWPE, the fact that the Ta coating reduce the wear rate of 

UHMWPE is favorable for joint applications. This improved tribological performance of Ta coated 

samples is probably a result of the improved surface properties presented in Table 5.1. Firstly, the 

Ta coated CoCrMo alloy sheets show much higher wettability in pbs solution. This better 

wettability in α- and β-Ta coated CoCrMo alloy sheets increases the lubrication, decreases the 

COF, and subsequently reduces the wear rate of the UHMWPE balls. Secondly, Ta coating 

decreases the surface roughness of the CoCrMo alloy sheets. As lowering roughness usually 

decreases COF and the wear rate of the counterpart at the beginning of wear testing [103], the 

lower roughness of the coated CoCrMo alloy sheets might partially account for the lower COF and 

UHMWPE ball wear rate. The slight difference in COF and wear resistance between the α- and β-

Ta coated CoCrMo alloy sheets is probably due to the difference between their mechanical 

properties. As Table 5.1 shows, the hardness of the -Ta is lower than the -Ta, as a result, COF 

and UHMWPE wear rate of the -Ta is little bit lower than the -Ta. Similarly, Balagna et al. [33, 

66] have reported that hcp Ta coatings (with TaC/Ta2C interlayer) on a CoCrMo alloy improved 

the wear resistance of the alloy when sliding against alumina ball.  
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Figure 5.4. Wear of the UHMWPE balls for (a) uncoated CoCrMo alloy, (b) α-Ta, and (c) β-Ta 

coated CoCrMo alloy sheets after the tribology testing 

Table 5.2. Tribological properties of uncoated and Ta-coated CoCrMo alloy samples 

 COF ± S.D. UHMWPE ball wear rate ± S.D. (mm3N-1m-1) 

Untreated CoCrMo alloy 0.14 ± 0.01 

 

8.14 ± 0.01 x 10-5 

 

α-Ta coated CoCrMo alloy 0.08 ± 0.01 

 

3.00 ± 0.02 x 10-5 

 

β-Ta coated CoCrMo alloy 0.09 ± 0.01 3.25 ± 0.01 x 10-5 
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5.3.3 Corrosion behavior 

Figure 5.5 shows the potentiodynamic polarization curves of uncoated and α- and β-Ta coated 

CoCrMo alloy sheets during corrosion testing in a pbs solution. Applying Tafel extrapolation 

technique to the polarization curves, we can get the corrosion current density (icorr), an important 

indicator of corrosion rate. The icorr for α- and β-Ta coated CoCrMo alloy sheets is determined to 

be 1.4 x 10-8 Acm-2 and 9.9 x 10-8 Acm-2, respectively, which are significantly lower than that, 1.0 

x 10-5 Acm-2, for the uncoated CoCrMo alloy sheet. This indicates a significant improvement in 

corrosion resistance of the CoCrMo alloy as a result of applying Ta coatings. Comparing Ta 

coatings with different crystal structure, α-Ta thin films show a little bit higher corrosion 

resistance. Nevertheless, both the Ta coatings have demonstrated to be able to reduce the risk of 

CoCrMo implants’ failure due to corrosion. The adhesion, thickness and density of the coatings 

can be a factor to decrease the corrosion current density of the samples, however, the main factor 

would be related to the reactivity or stability of the oxide film on the surface which is investigated 

further here [104-108].  

A typical polarization curve can be divided to two parts: anodic polarization part, referring to the 

dissolution of the tested material, and cathodic polarization part, indicating hydrogen evolution. In 

the case of α- and β-Ta coated CoCrMo alloy sheets, the anodic polarization part is directed to a 

passivation region at 3.6 x 10-8 Acm-2 and 5.8 x 10-8 Acm-2 corrosion current density, respectively. 

This stable passivation region suggests the existence of a uniform Ta oxide film on the surface, 

which acts as a barrier to corrosion, and subsequently improves the corrosion resistance. 
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Figure 5.5. Potentiodynamic polarization curves of the uncoated CoCrMo alloy and the α- and β-

Ta coated CoCrMo alloy sheets in pbs solution 

Figure 5.6 shows Ta 4f fine XPS spectra of the α- and β-Ta surface before and after the corrosion 

testing. The spectra of the surface (without Ar etching) before corrosion testing show four peaks 

(two doublets). The two peaks at lower binding energies (approximately 22 eV and 24 eV) can be 

assigned to metallic Ta 4f7/2 and 4f5/2 and the two peaks at higher binding energies 

(approximately 26 eV and 28 eV) are corresponding to Ta 4f7/2 and 4f5/2 in Ta2O5 compound 

[104, 105, 107], indicating that part of the Ta thin film surface was oxidized to Ta2O5 when 

exposed to air. For the samples after the corrosion testing, the XPS measurements were done with 

sequences of etching steps (each step with Ar etching for 2 seconds). The spectra without Ar 

etching show no metallic Ta peaks for both the Ta thin films, indicating that the metallic Ta on the 

surface was oxidized to form Ta2O5 during the corrosion testing. After 2 seconds Ar ion etching, 

metallic Ta appears for β-Ta thin film whereas only oxidized peaks presence for α-Ta thin film. 

After 4 seconds etching, α-Ta thin film also shows metallic Ta peaks beside Ta2O5 peaks. With 

increasing the etching time to 12 seconds, α-Ta thin film still shows peaks of both Ta2O5 and 

metallic Ta, whereas oxidized peaks completely disappear for β-Ta thin film. Even after 20 
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seconds etching, Ta2O5 still exists in α-Ta thin film. Those XPS results confirm the formation of a 

Ta2O5 layer on the surfaces of both Ta thin films during corrosion testing and the Ta2O5 layer 

formed on the α-Ta thin film is thicker than the one on the β-Ta thin film. Therefore, with similar 

corrosion mechanism, it is reasonable that the corrosion resistance of the α-Ta thin film is a little 

higher than β-Ta. 

 

Figure 5.6. Ta 4f fine XPS spectra of the (a) α-Ta and (b) β-Ta coated CoCrMo alloy surfaces 

before and after the corrosion testing 
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The SEM surface morphologies of the α- and β-Ta coated CoCrMo alloy sheets before and after 

the corrosion testing are illustrated in Figure 5.7. Before the corrosion, the samples show relatively 

smooth surfaces with some scratches generated during the sample’s preparation, and also some 

porosities, but at high magnification, the surface shows a dense and continuous films with small 

grains. However, after the corrosion test no corrosion observes at the sample’s surfaces, and in 

most of the regions the coating is intact. Based on the observations, we can contribute the superior 

corrosion resistance of the Ta coatings to the high stability and passivity of the Ta oxide layer on 

the surface.  

In summary, both the α- and β-Ta coatings decrease the roughness and increase the hardness and 

wettability of CoCrMo alloys, and thus decrease the COF and wear rate of the counter balls when 

sliding against UHMWPE ball in pbs solution. In addition, the Ta coatings significantly increase 

the corrosion resistance of the CoCrMo alloy in pbs solution. With similar corrosion mechanism, 

the corrosion resistance of the α-Ta thin film is higher than β-Ta. These results suggest that 

development of adherent Ta coatings on the CoCrMo alloy are very promising for orthopedic 

implant applications. 
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Figure 5.7. SEM images of the (a) α-Ta and (b) β-Ta coated CoCrMo alloy surfaces before and 

after the corrosion testing 
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5.4 Conclusions 

Adherent -Ta and α-Ta thin films were developed on CoCrMo alloy sheets for tribological and 

corrosion investigation. Sliding testing with UHMWPE ball in pbs solution show that both the 

coatings decrease the COF and wear rate of the balls, which is probably due to the better wettability 

and lower roughness of the Ta thin films. The corrosion testing results show that both - and -Ta 

coatings can significantly improve the corrosion resistance of the CoCrMo alloy in pbs solution 

and the superior corrosion resistance of the coatings can be attributed to the formation of a uniform 

dense Ta2O5 film on the surface during the corrosion testing. In this regard, α-Ta shows even higher 

corrosion resistance due to the formation of a thicker Ta2O5 on the surface. Those results suggest 

that Ta thin films (-Ta or α-Ta) can be applied to improve corrosion and wear behavior of the 

CoCrMo alloy, and possibly the performance of the alloy in orthopedic implant applications. 
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CHAPTER 6                                                                                                                                 

fcc TANTALUM THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING 

Tantalum exists in body-centered cubic (α phase), tetragonal (β phase), and face-centered cubic 

(fcc) crystal structures. The β phase is a metastable structure formed in thin films and is often 

mixed with the α phase. The fcc phase has only previously been reported as dispersed fine grains 

embedded in α or β phase. The present chapter reports the structure, formation mechanism, and 

stability of fcc Ta thin films. This chapter has been submitted to “Surface and Coatings 

Technology” and it is under review. My contributions to this paper are: review of the relevant 

literature, design and conduct the experiments, analysis of the test results and preparing the 

manuscripts under the supervision of Professor Qiaoqin Yang and Professor Akindele Odeshi. The 

manuscript was reviewed and revised by my supervisors, Professor Qiaoqin Yang and Professor 

Akindele Odeshi, before submission to the journal for publication. 

Abstract 

In this study, Ta thin films are deposited on silicon substrates by magnetron sputtering. A mixture 

of α and β phases is observed in the films when the deposition temperature is lower than 400 °C. 

The β phase content decreases gradually with the increase in deposition temperature, and 

completely disappears at 400 °C. It is interesting that when the deposition temperature reaches 500 

°C, both α and β phases disappear, and Ta films appears as fcc structure. The structure and the 

stabilization of the fcc Ta thin films are further investigated using XRD, SEM, XPS, and XAS, 

and the results are presented in the present chapter. This new finding would open new research 

and application directions for Ta materials. 

6.1 Introduction  

Tantalum has been used in many areas including microelectronics, biomedical implants, and 

surgical instruments due to their excellent corrosion resistance, high ductility, desirable electrical 
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properties, and refractory nature [2, 18, 109]. Ta thin films generally exist in bcc crystal structure 

(α phase), although it can also exist in two other allotropic forms with tetragonal (β phase) and fcc 

crystal structures. Deposition techniques and deposition parameters, film thickness, and substrate 

material have influence on the formation of different Ta phases. Researchers have investigated the 

effect of processing parameters on the formation of α- and β-Ta phases [13, 14, 16, 19, 22, 23, 25, 

26, 40-64], however, the results are diverse due to the combined effect of different parameters. 

Only six journal articles have reported the formation of fcc Ta under special conditions [27-32]. 

The fcc Ta has been reported as dispersed fine grains embedded in α and/or  Ta thin films [27-

31], or in bulk samples of heavily deformed Ta [32]. 

Ta with fcc structure was firstly reported by Denbigh et al. in 1966 [27]. They found epitaxial 

growth of fcc structure in ultrathin (< 10 nm) Ta films deposited on MgO substrate by electron 

beam evaporation below 400 °C, which changed to dispersed fcc fine grains of Ta as the Ta film 

thickness increased to 25 nm and fcc Ta grains disappeared when the thickness became greater 

than 25 nm. One year later, Chopra et al. [28] reported the nucleation of fcc Ta in Ta films of 50 

nm deposited by sputtering at temperatures below 400 °C. They attributed the nucleation and 

stabilization of fcc Ta to the relatively higher kinetic energy and higher electrostatic charges in the 

sputtering technique compared to evaporation. In 1968, Marcus et al. [29] further reported that fcc 

Ta structure could only exist in very thin (10 nm or thinner) Ta films deposited using electron 

beam evaporation technique due to the large contribution of surface forces and the incorporation 

of surface impurities. Later, the study of Schrey et al. in 1970 [30] confirmed the fcc Ta formation 

in very thin films (within thickness less than 20 nm) deposited by radio frequency sputtering at 

325 °C, consistent with the previous reports. Recently, Janish et.al. [31] tried a different approach 

in investigating the fcc Ta formation. They showed nucleation of fcc Ta in amorphous structure of 

Ta thin films of 20 nm thickness when annealed at 450 °C. In all aforementioned published works, 

only a small amount of very fine fcc grains was found in the Ta films. Furthermore, in all the 

reported cases, the fcc structure of Ta disappeared when the film thickness or substrate temperature 

increased beyond a value. In addition, dispersed nanosized fcc Ta grains were found in heavily 

deformed bulk bcc Ta samples [32]. Nevertheless, up to now, only a small amount of nanosized 

fcc Ta grains have been obtained and observed using only TEM, which were embedded in other 

phases of Ta (α phase or β phase or their mixture). As such, the processing conditions and structural 
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information of fcc Ta are very limited, and the properties of fcc Ta could not be measured. Here 

we report on the synthesis of fcc Ta thin films of 2.0 μm thickness and their X-Ray diffraction 

data. 

6.2 Experimental details 

The Ta thin films were deposited on (100) silicon wafers, α-Ta coated silicon wafers, and Co alloy 

(ASTM F1537) sheets using a magnetron sputtering deposition system made by Plasmionique Inc. 

Mirror polished substrates were ultrasonically cleaned in ethanol for 15 min. Deposition was 

performed at a pressure of 1.33 Pa using ultra high pure Ar gas flowing at a rate of 35 sccm, and 

99.9% purity Ta target. The mean voltage of the target ranged from 175 V to 200 V. Different 

substrate temperatures (room temperature, 200, 400, 500, 600 °C) and different substrate bias 

voltages were applied to deposit Ta thin films.  

In order to understand the effect of impurities on the formation of Ta thin film structure, nitrogen 

(supplied by gas source), oxygen (supplied by gas source), and carbon (supplied by graphite target 

and methane (CH4) sources) were introduced into the deposition chamber during the Ta film 

deposition as shown in Table 6.1, while keeping other deposition parameters the same as 

aforementioned. The deposition time for all the experiments was 2 h. The thicknesses of the 

deposited films were measured using Jeol JSM-6010LV SEM. The crystallographic structure of 

the as-deposited thin films was investigated using Rigaku XRD instrument with Cobalt K-alpha 

radiation (Co-Kα), and grazing XRD using Synchrotron VESPERS beamline with 15 keV energy 

at the CLS. The chemical composition of the thin films was investigated using XPS (model: AIXS 

SUPRA) with Al Kα radiation as the excitation source at the SSSC. Each XPS measurement 

consists of sequences of etching steps, using Ar gun 4 keV for 120 s in each etching step. CasaXPS 

software was used to analyze the obtained XPS data. The chemistry (oxidation state) of Ta thin 

films was investigated using X-ray absorption near edge structure (XANES) data from the Ta L3 

edge, measured at XAS end station of HXMA beamline at the CLS. The XAS measurement for 

thin films was configured to the grazing incidence setup and the data collection was in fluorescence 

mode. Athena software was used to analyze the data. In order to understand the thermal stability 

of the fcc Ta thin films, the coated silicon samples were annealed at temperatures ranging from 

700 °C to 900 °C for one hour using a GSL-1500X furnace. The heating rate of the furnace was 
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10 °C/min and the cooling was done with the furnace until room temperature. The whole 

processing was performed with Argon gas flowing under a pressure of 0.08 MPa. 

Table 6.1. Deposition parameters for introducing nitrogen, carbon, and oxygen into the chamber 

Condition Gas flow rate Temperature 

1 N/ (N + Ar): 12-22% Room Temp 

  500-600 °C 

2 O/ (O + Ar): 12-22% Room Temp 

  500-600 °C 

3 CH4/ (CH4 + Ar): 12-22% Room Temp 

  500-600 °C 

4 Graphite target: 10/35 W/V Room Temp 

  500-600 °C 

5 Graphite target: 50/120 W/V Room Temp 

  500-600 °C 

6.3 Results and discussion 

Figure 6.1a and 6.1b show the XRD patterns of Ta thin films deposited on silicon substrate at 

different substrate temperatures using Co-Kα X-ray. The XRD patterns of the Ta thin films 

deposited with the presence of a piece of Kapton tape covering part of the substrate surface are 

shown in Figure 6.1a. When the deposition temperature is lower than 400 °C, the film consists of 

a mixture of α and β phases. With the increase of deposition temperature from room temperature 

to 400 °C, the proportion of β phase decreases, the β phase completely disappears at 400 °C, and 

the film is composed of single phased α-Ta. When the deposition temperature reaches 500 °C or 

600 °C, both α and β phases disappear and the Ta films are composed of a single fcc phase. Similar 

results are obtained for other substrates, such as α-Ta coated silicon wafers and Co alloy sheets. 

On the other hand, the XRD patterns of the Ta thin films deposited without Kapton tape, presented 

in Figure 6.1b, show similar results for deposition temperature up to 400 °C but no fcc phase 

formation at deposition temperature of 500 °C or 600 °C. Instead, the Ta films are composed of a 

single α-Ta phase at deposition temperatures of 400 °C and above. Again, these results are on the 



 66  
 

same for other substrates. The XRD results indicate that the presence of impurities in the high 

vacuum deposition chamber is important to the formation of the aforementioned fcc phase, since 

the growth of this phase depends on the presence of a piece of Kapton tape on the substrate surface. 

The tape, containing carbon, oxygen, nitrogen, hydrogen, and silicon, would be evaporated and 

decomposed during the Ta film deposition at 500 °C or 600 °C. 
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Figure 6.1. XRD patterns of Ta thin films deposited on silicon substrate (a) with the presence of 

kapton tape, and (b) without kapton tape 
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Figure 6.2 and Table 6.2 display the XRD diffraction pattern of fcc structure using 15 keV 

synchrotron X-ray and a list of crystallographic planes and interplanar spacing (d) values 

respectively. The high background at high d values in the XRD diffraction pattern is probably 

introduced by the fluorescent radiation from the Ta thin film. Based on these XRD data, the lattice 

parameter of the fcc phase has been determined to be 4.5065 Å using Nelson and Riley 

extrapolation function [110, 111], which is distinct but close to those of fcc TaC, TaO, and TaN, 

where a = 4.4547 Å for TaC, a = 4.4220 Å for TaO, and a = 4.3310 Å for TaN.  

Because the tape used to cover part of the substrate in the deposition experiments may induce 

carbon, oxygen, nitrogen, hydrogen, and silicon impurities into the thin films, further analyses 

including XPS and XANES were performed to clarify if there is a formation of TaC, TaO, and 

TaN phases in the fcc Ta films. 

 

Figure 6.2. XRD pattern and observed crystallographic planes (hkl) of fcc phase thin film on 

silicon substrate 
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Table 6.2. Crystallographic planes (hkl) and corresponding interplanar spacing (d) values of fcc 

phase thin film on silicon substrate 

No. (h k l) d (Å) 

1 (1 1 1) 2.53 

2 (2 0 0) 2.2 

3 (2 2 0) 1.59 

4 (3 1 1) 1.34 

5 (2 2 2) 1.29 

6 (4 0 0) 1.11 

7 (3 3 1) 1.02 

8 (4 2 0) 1 

9 (4 4 2) 0.92 

10 (5 1 1) 0.86 

11 (5 3 1) 0.76 

 

Figure 6.3 illustrates the XPS survey spectra of the fcc Ta thin film before and after Ar etching. 

The XPS spectrum of the film without in-situ Ar etching shows strong O 1s and C 1s peak and 

weak Ta peaks but no nitrogen and silicon peaks. As the film has been exposed to the atmosphere, 

it is reasonable that the film surface is contaminated and contains high amount of O and C. In 

contrast, one can see stark differences of the XPS spectrum of the film after 120 s etching, namely 

the Ta peaks are strong, O 1s peak is weak, and there is no trace of carbon impurity (or if there is 

any, it is below the detection limit of the XPS analysis). Continuing to increase the etching time 

step by step up to 1800 s to reach the silicon substrate, with 120 s Ar etching in each step, does not 

change the overall XPS spectrum, indicating that the chemical composition of the thin film is 

preserved as a function of thickness. By far, we can infer that there is no indication of TaC or TaN 

phases in the thin film. 
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Figure 6.3. XPS spectra of fcc Ta thin film in a wide range with different etching time 

In order to understand the bonding states of O and Ta in the films, fine XPS O 1s and Ta 4f peaks 

are further analyzed for Ta thin films with different crystal structures. Their O 1s spectra and Ta 

4f spectra before and after 120 s Ar etching are shown in Figure 6.4a and Figure 6.4b, respectively, 

where the α (bcc) Ta thin film was obtained at a substrate temperature of 400 °C, and β (tetragonal) 

Ta thin film was obtained by applying 78 V substrate bias voltage at room temperature as 

mentioned in Chapter 4. For all the three samples, the O 1s peaks are similar and the relative 

concentration of O 1s peaks decreases significantly after 120 s etching. However, O 1s peaks with 

very low intensities, exactly same as O 1s peaks intensity after 120 s etching, still exist even after 

surface etching up to 1800 s. As can be seen from Figure 6.4b, the Ta 4f peaks related to the Ta 

oxide compounds disappeared after 120 s etching, indicating that all the Ta films are metallic and 

free of any oxide compounds [112, 113].  Nevertheless, the binding energy of Ta 4f is different 

slightly in different crystal structures as shown in Figure 6.4b. 

Figure 6.5 shows the normalized XANES spectra at the Ta L3 edge of fcc, α (bcc), and β 

(tetragonal) Ta thin film samples. It can be seen from Figure 6.5b that the absorption edge of fcc 
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Ta thin film, with no chemical shift, is exactly the same as those of α and β Ta thin films. These 

results also clearly show that the fcc Ta film prepared in this research is a fcc metallic Ta rather 

than a mixture of fcc Ta and its compounds, since the absorption edge of Ta varies with respect to 

the chemical states [114]. 

 

 

Figure 6.4. (a) O1s (b) Ta 4f fine XPS spectra of tetragonal, bcc, and fcc Ta thin films 
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Figure 6.5. Normalized XANES spectra at the Ta L3 edge of tetragonal, bcc, and fcc Ta thin 

films (a) in a wide range (b) in a specific range 

Researchers have reported the existence of fine grains of fcc Ta in Ta thin films previously and 

indicate that the surface forces and epitaxial growth on the appropriate substrate in the early stage 

of film deposition are the main mechanisms for fcc Ta formation [27-31]. The fact that fcc Ta 

exists in the films of 2 μm thickness in this study indicates that the epitaxial growth, which happens 

in very thin films at the very early stage of thin film growth (< 50 nm thickness), could not be the 

main formation mechanism of fcc Ta. Furthermore, similar fcc Ta thin films (their XRD patterns 

are shown in Figure 6.6) were also formed on α-Ta coating and Co alloy sheets, demonstrating 

that the crystal structure of the substrates materials has no effect on the formation of fcc Ta. 

It is possible that the high kinetic energy of sputtered atoms may result in direct implantation of 

the Ta atoms into unstable lattice positions to strain the thin film on the substrate to facilitate the 

formation of fcc Ta, as surface forces have been proposed as a possible mechanism for formation 

of fcc Ta [28, 29]. Moreover, the present results show that the formation of fcc Ta is dependent on 

the impurities induced by a piece of tape on the sample’s surface and high deposition temperature. 

It is possible that the small impurity atoms from the evaporation of the tape stay at interstitial sites 

and induce fcc Ta nucleation and growth. In this regard, Marcus et al. [29] reported the necessity 

of at least one monolayer oxygen impurity on the substrate for the growth of fcc structure in 5 nm 

Ta thin film. To have a better understanding of the effect of impurities on the crystal structure of 
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Ta thin films, a low amount of nitrogen, carbon, and oxygen was intentionally introduced into the 

deposition chamber during the Ta film deposition. In these experiments, no fcc Ta could be 

obtained, similar to the case without the tape. Further researches are needed to be done in order to 

clarify the underlying formation mechanism of fcc Ta. 

Figure 6.7 shows the XRD patterns of the fcc Ta thin films deposited at 500 °C without and with 

an annealing at 700 °C and 750 °C. The patterns show that the fcc Ta keeps its structure up to 700 

°C and transforms to α-Ta phase with a bcc structure at 750 °C or above. It should be noted that 

the formation of fine grains of fcc Ta reported previously occurred at relatively low temperatures 

(room temperature up to 400 °C), moreover, with increasing the temperature this structure 

disappears [27-31]. However, it requires a deposition temperature of 500 °C or 600 °C with a tape 

to obtain fcc Ta films of 2 μm thickness in the present research study, and the fcc structure is stable 

up to 700 °C. Further research is being carried out to have a deeper understand of the formation 

mechanism of fcc Ta. Furthermore, because of the nanosize of the fcc Ta grains, the dispersed 

nature, and the tiny amount obtained from previously researches, it was impossible to get a reliable 

XRD pattern of fcc Ta and thus no papers have reported the XRD patterns of fcc Ta until now. 

The lattice parameter of fcc Ta was estimated by Denbigh et al. [27], Chopra et al. [28], Marcus 

et al. [29], Schrey et al. [30], Janish et al. [31] to be 4.42, 4.39, 4.42, 4.48, 4.30 Å, respectively, 

using electron diffraction in TEM, which are very close to those of TaC, TaO, and TaN and a little 

bit smaller than the value determined by XRD in the present research. The present manuscript is 

the first to report the synthesis of fcc Ta thin films with microscale thickness and to present the 

XRD data and the accurate lattice parameter for fcc Ta.  



 74  
 

 

Figure 6.6. XRD patterns of fcc Ta formation on (a) Ta (b) Co alloy 
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Figure 6.7. XRD patterns of fcc Ta samples annealed at different temperatures 

6.4 Conclusions 

fcc Ta thin films with a thickness of 2.0 ± 0.2 μm were successfully synthesized using magnetron 

sputtering at a substrate temperature of 500 °C and 600 °C for the first time. The results show that 

the formation of fcc Ta is dependent on thin film deposition parameters and impurity level. The 

XRD patterns of the mentioned phase is obtained and reported for the first time, and the lattice 

parameter is determined to be 4.5065 Å using XRD. The crystal structure of the substrate materials 

has no effect on the formation of fcc Ta and the fcc Ta keeps its crystal structure up to 700 °C but 

it transforms to α-Ta after annealing at 750 °C. 
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CHAPTER 7                                                                                                                   

INVESTIGATING THE ADHESION OF DLC COATINGS ON CoCrMo ALLOY 

SHEETS USING TANTALUM INTERLAYERS 

DLC coatings attract considerable attention for many tribological applications especially in 

medical implants and prosthesis. In view of the attractiveness of CoCrMo alloys for use in artificial 

hip joints, research has been carried out to prevent the release of Co into body fluids and to reduce 

the wear rate of polyethylene cup using DLC coatings. However, poor adhesion has remained a 

major challenge of DLC coatings on CoCrMo alloys. In this chapter, the results of investigation 

of Ta as an interlayer to enhance the adhesion of DLC coating on CoCrMo alloy are presented and 

discussed. This chapter is a transition chapter and will not be submitted as a journal paper. My 

contributions to this chapter are: review of the relevant literature, design and conduct the 

experiments, and analysis of the test results under the supervision of Professor Qiaoqin Yang and 

Professor Akindele Odeshi. 

Abstract 

In this study, we report on using Ta as an interlayer to enhance the adhesion of DLC coatings on 

CoCrMo alloy sheets. Ta and DLC coatings are deposited on CoCrMo alloy sheets using 

magnetron sputtering and ion beam deposition, respectively. Severe delamination of the DLC 

coatings is observed on the samples using iPhone 6s camera and SEM images. Raman 

spectroscopy and XPS are used to characterize the composition and bonding states of the coatings. 

The results show that the DLC coatings delamination is due to the interface layer formation with 

the Ta film on one side and the DLC film on the other side. This layer consists of a mixture of Ta 

carbides and metallic Ta, and shows weak mechanical bond with DLC film. 

7.1 Introduction 

DLC coatings have high hardness, low friction coefficient, high wear resistance, and excellent 

biocompatibility and thus attract considerable attention for medical applications in implants and 
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prostheses [2, 69]. Several research investigations have been carried out on the tribological 

behavior of DLC coated CoCr alloys. Conflicting results have been obtained. A major issue for 

these coatings is the weak adhesion of DLC to the substrate. Owing to the high level of internal 

stresses of DLC films and the large differences in physical properties between DLC coatings and 

substrates (e.g. thermal coefficient of expansion), DLC have a tendency to have weak adhesion to 

metallic substrates. Muller et al. [77] and Fallub et al. [78] investigated the interface between DLC 

films on a CoCrMo alloy and indicated that the interface is a main factor that controls adhesion. 

These authors reported that a very thin layer consists of a mixture of carbides from all the alloy’s 

metal components was formed in the interface. They mentioned that these interfacial carbides 

played an important role in promoting poor adhesion of the DLC films on the CoCrMo alloy. So 

far, several approaches have been investigated to overcome these drawbacks and improve the 

adhesion of DLC film on the substrate. These include designing a proper interlayer (a single or a 

graded layer), and doping and changing the composition of the thin films. Falub et al. [78, 79] 

reported that the adhesion of DLC film on CoCrMo alloy can be greatly improved by using Mo 

[78] or Si-doped DLC [79] interlayers. These interlayers affect adhesion by enhancing the 

interfacial bonding between the substrate and the DLC, while the chemical bonds at the interface 

are mostly Mo carbides for the Mo interlayer, and metal carbides and metal silicides for the Si-

doped DLC interlayer. However, they showed that the adhesion of DLC film on the CoCrMo alloy 

is impaired by Co interlayer because of the instability of Co carbides at the interface. Liu et al. 

[80, 81] and Guo et al. [82] reported that Ti and Cr interlayers have positive effects on the 

performance of DLC coated CoCrMo alloys. Huart et al. [83, 84] used Si interlayer to improve 

DLC adhesion, but showed the failure of the DLC coated CoCrMo alloy mainly caused by in vivo 

crevice corrosion of the interlayer. Recently, Ta has been introduced by Thorwarth et al. [85] as a 

promising candidate for use as an interlayer to enhance DLC adhesion on CoCrMo alloys and 

improve the performance of DLC, distinguished by its excellent corrosion and mechanical 

resistance, high biocompatibility, insolubility in body fluids, and good fatigue properties under 

long-lasting mechanical cyclic stresses. They showed that amorphous/α-Ta interlayers performed 

well with no corrosion or mechanical failure, but very low contamination during the Ta interlayer 

deposition led to the formation of β-Ta, which caused coating failure. In this study, α- and β-Ta 

phases are investigated as potential interlayers to enhance DLC adhesion on the CoCrMo alloy. 
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7.2 Experimental details 

CoCrMo alloy (ASTM F1537) sheets with a thickness of 3 mm and a diameter of 25 mm were 

ground, polished, and cleaned as explained in Section 4.2. The prepared sheets were used as 

substrates for Ta interlayer and DLC thin film deposition. Ta interlayer was deposited on the 

CoCrMo alloy sheets using RF Magnetron Sputtering. Ar gas was introduced into the chamber at 

a flow rate of 35 sccm. The deposition pressure was kept at 1.33 Pa while RF power for sputtering 

was kept at 150 W. β-Ta films were deposited at room temperature by applying a negative bias of 

78 V for 30 min onto the substrate holder. α-Ta thin film samples were prepared in three steps as 

follows: 

1. A β-Ta layer by applying a negative bias of 78 V at room temperature for 10 min 

2. A layer with a mixture of β-Ta and α-Ta by increasing the substrate temperature from 

room temperature to 400 °C gradually without biasing for 15 min 

3. An α-Ta layer by keeping the substrate holder at 400 °C without biasing for 15 min.  

A more detail discussion on the Ta thin films deposition is provided in Section 4.2. 

DLC films were deposited on the Ta-coated CoCrMo alloy samples using End Hall Ion (EHI) 

source in ion beam deposition system manufactured by 4Wave Inc. The substrate holder was 

mounted inclined at 45 with respect to the ion source. Prior to the deposition, the prepared samples 

were cleaned in the deposition chamber by introducing 12 sccm Ar gas into the ion source, and 

applying of 50 eV ion energy for 10 min. For DLC deposition, CH4 and Ar gases were introduced 

into the ion source, the working pressure was 0.0933 Pa, and the deposition time was 6 h. The 

details of the DLC deposition under the two different conditions are listed in Table 7.1. 

Table 7.1. Deposition conditions of DLC thin films on CoCrMo alloy sheets with Ta interlayers 

Condition  Ion energy (eV) CH4 flow rate (sccm) Ar flow rate (sccm) Temperature (°C) 

(a) 65-70 15 10 30 

(b) 80-85 12 6 30 
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The thickness of the thin films was measured using Zygo optical profiler. The surface morphology 

of the thin films was characterized using iPhone 6s camera, and Jeol JSM-6010LV SEM operated 

at 5 kV. The chemical bonding of the thin films was analyzed using Raman spectrometer 

(Reinshaw model 2000) equipped with 514 nm wavelength of Ar laser. Furthermore, the chemical 

composition of the samples was investigated using XPS (model: AIXS SUPRA) with Al Kα 

radiation as the excitation source at the SSSC. CasaXPS software was used to analyze the obtained 

XPS data. 

7.3 Results and discussion 

Figure 7.1 shows the images of the DLC thin films deposited on CoCrMo alloy sheets with α- and 

β-Ta interlayers using different ion energy ranging from 65-70 eV to 80-85 eV. The thickness of 

all the interlayers is about 200 nm. In the SEM images, the grey area corresponds to the exposed 

substrate/interlayers, and the black area corresponds to the remaining film that is adhered to the 

substrate/interlayers. In this study, the growth of continuous DLC films on the samples with a 

range of ion energy seems impractical. Having a good knowledge on the DLC coatings adhesion 

mechanism is an important factor for the success of such coatings. Therefore, further investigation 

is carried out to study the poor adhesion of DLC films on the samples. 

Figure 7.2 displays the Gaussian-fitted Raman spectra of the deposited DLC films in the non-

delaminated area, showing two broad peaks centered at around 1350 cm-1 (D band) and 1580 cm-

1 (G band), like a typical DLC [115]. The intensity ratio of D and G peaks (Id/Ig) is related to the 

deposition ion energy and decreases with the increase in ion energy as shown in Table 7.2. The 

Id/Ig value represents the sp3 carbon bond content in the films. The sp3 bond content of the DLC 

films increases with the decrease in Id/Ig value. Therefore, applying high ion energy during the 

deposition creates large amount of sp3 carbon bonds.  

 



 80  
 

 

Figure 7.1. Photograph and SEM images of DLC thin films deposited on CoCrMo alloy sheets 

with α-Ta interlayer at (a) 80-85 eV (b) 65-70 eV ion energy, and with β-Ta interlayer at (c) 80-

85 eV (d) 65-70 eV ion energy   
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Figure 7.2. Raman spectra of DLC thin films deposited on CoCrMo alloy sheets with α-Ta 

intelayer at (a) 80-85 eV (b) 65-70 eV ion energy, and with β-Ta interlayer at (c) 80-85 eV (d) 

65-70 eV ion energy 

Table 7.2. The intensity ratio of D and G peaks (Id/Ig) as a function of deposition ion energy 

Ion energy (eV) 80-85 65-70 

Id/Ig for CoCrMo alloy + α-Ta interlayer samples  1.07 1.28 

Id/Ig for CoCrMo alloy + β-Ta interlayer samples 1.04 1.22 
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It is observed in this study that applying high ion energy in DLC deposition process induces high 

intrinsic stress into the DLC film, which can lead to film delamination. However, applying lower 

ion energy (the lowest amount of ion energy that form DLC) shows the similar results, which is 

bad adhesion but less delamination. The results show that the delamination is not just related to 

the amount of ion bombardment energy which induced intrinsic stress into the film, but also related 

to the interfacial bonding between DLC, interlayers, and substrate. In this regard, XPS 

measurement was carried out on the samples’ surfaces in the DLC-coated and delaminated areas 

to determine which interface fails, substrate/interlayer or interlayer/DLC. Figure 7.3 provides the 

full XPS spectra of CoCrMo alloy/α-Ta/DLC (deposited at 80-85 eV ion energy) sample. Only Ta 

interlayer peaks and no substrate peaks are observed on the sample’s surfaces on both coated and 

delaminated area, which indicates that Ta interlayer exists on the sample and the failure occurred 

at the Ta interlayer/DLC interface. Ta is observed to exhibit very low intensity peaks while C 1s 

has very high intensity peak on the coated area compare to the delaminated area. All the samples 

show similar results.  
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Figure 7.3. XPS spectra of “CoCrMo alloy/α-Ta/DLC (deposited at 80-85 eV ion energy)” 

sample on the (a) DLC-coated and (b) delaminated area 

Further investigation was done on Ta 4f and C 1s XPS spectra of the samples, and the results 

presented in Figures 7.4 and 7.5, respectively. In total, six peaks are observed for Ta 4f XPS spectra 

(Figure 7.4): at approximately 22 eV and 24 eV binding energies assigned to metallic Ta, at 

approximately 23 eV and 25 eV binding energies assigned to TaC, and at approximately 26 eV 

and 28 eV binding energies assigned to Ta2O5 [112, 116-118]. The C 1s XPS spectra is also fitted 

by four peaks at approximately 283 eV, 284 eV, 285 eV, and 286 eV binding energies assigned to 

TaC, sp2, sp3, and adventitious carbon contamination on the samples [119] (Figure 7.5). This is an 

indication of the existence of TaC and Ta2O5 compounds, and metallic Ta on the samples’ surfaces. 

Ta2O5 is an inevitable compound that forms on the Ta metal surface when the sample is exposed 

to air, while TaC is suggested to have formed during the DLC deposition. The poor adhesion of 

the DLC films might be related to the existence of mixed Ta carbide and metallic Ta in the films. 

Ta is not a strong carbide former and cannot form an interface layer of carbide, so its mixture with 

metallic Ta may cause a weak mechanical bond between this interface layer and DLC. The only 

difference in XPS spectra of the samples at DLC-coated and delaminated area is in their peaks 

intensities. 
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Figure 7.4. Ta 4f XPS spectra of “CoCrMo alloy/α-Ta/DLC (deposited at 80-85 eV ion energy)” 

sample on the (a) DLC-coated and (b) delaminated area 
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Figure 7.5. C1s XPS spectra of “CoCrMo alloy/α-Ta/DLC (deposited at 80-85 eV ion energy)” 

sample on the (a) DLC-coated and (b) delaminated area 

7.4 Conclusions 

Two different types of Ta film, α-Ta and β-Ta, were used as an interlayer in order to improve the 

adhesion of DLC coatings on CoCrMo alloy sheets. Severe delamination of the DLC coatings was 

observed on all the samples. A thorough investigation is done to understand the delamination 
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mechanism. The results show that the delamination is not just related to the amount of ion 

bombardment energy inducing intrinsic stress into the film during DLC deposition, but related to 

the interfacial bonding between the DLC and the interlayers. An interface layer is formed at 

Ta/DLC interface during DLC deposition, this layer is composed of a mixture of Ta carbide and 

metallic Ta, resulting in weak mechanical bonding with the DLC films. 
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CHAPTER 8                                                                                                                        

EVALUATION OF STONEY EQUATION FOR DETERMINING THE INTERNAL 

STRESS OF DLC THIN FILMS USING AN OPTICAL PROFILER 

Excessive internal stresses in DLC films induced by the energetic ion bombardment during the 

deposition cause poor adhesion even delamination of the thin films from the substrate surfaces as 

mentioned in Chapter 7. As a result, determination of internal stresses in DLC films is essential 

for their applications. The present chapter presents a simple non-destructive method for 

measurement of stress in DLC coatings using an optical profiler. This chapter is published in 

“Surface & Coatings Technology” as follows:  

“Evaluation of Stoney equation for determining the internal stress of DLC thin films using an 

optical profiler, S. Shiri, P. Ashtijoo, A. Odeshi, Q. Yang, Surface & Coatings Technology 308 

(2016) 98–100”.  

My contributions to this paper are: review of the relevant literature, design and conduct the 

experiments, analysis of the test results and preparing the manuscripts under the supervision of 

Professor Qiaoqin Yang and Professor Akindele Odeshi. The manuscript was reviewed and revised 

by my supervisors, Professor Qiaoqin Yang and Professor Akindele Odeshi, before submission to 

the journal for publication. The present manuscript is a modified version of the published paper. 

The copyright permission is obtained and provided in the Appendix section.  

Abstract 

In this study, DLC thin films are prepared on thin silicon wafers with different shapes and sizes 

by end hall ion beam deposition. Optical profiler is used to measure the curvature of the samples 

before and after DLC deposition and then the Stoney equation is used to calculate the residual 

stress of DLC thin films in order to evaluate the feasibility of this method for measurement of DLC
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stress. For this purpose, the curvature radius in different directions of all the samples is measured 

before and after DLC deposition by the optical profiler. The calculated stress values using Stoney 

equation for all the samples are the same within reasonable errors. These results show that this 

simple method is appropriate and reliable for stress measurement of DLC films. 

8.1 Introduction  

DLC thin films have a wide range of applications because of their unique properties, such as 

extremely low friction coefficient, chemical and biological inertness, high hardness, and excellent 

biocompatibility [115]. One of the main problems limiting the applications of DLC is the high 

intrinsic stress which is induced by high energy ion bombardment during the deposition processes. 

High stress induces microcracks in the film and causes poor adhesion of the film to the substrate 

and thus results in premature failure. Therefore, measurement and control of the stress in DLC thin 

films has been getting increasing attention [115, 120]. Currently, beam deflection, based on the 

measurement of the radius of curvature of the samples before and after thin films deposition is the 

main technique for the stress measurement in DLC [121]. The most powerful technique, X-ray 

diffraction, which is based on the direct measurements of the changes of interplanar spacing in the 

film [121], cannot be used to measure the stress of DLC thin films because of the amorphous nature 

of the films. The common stress measurement method for diamond thin films, Raman 

spectroscopy, based on the peak shift, cannot be used to measure the stress of DLC either because 

of the broadening and overlapping of the Raman peaks. The only way to measure the stress of 

DLC is based on curvature measured before and after film deposition using Stoney equation 

(Equation 8.1)) [122, 123]: 

                                                 (8.1)   

 

Where Es is the Young's modulus, νs is the Poisson's ratio, hs is the thickness of the substrate, hf 

is the thickness of the thin film, and R0 and R are the curvature radii of the sample before and after 

deposition. 

The Stoney equation for stress calculation is based on the following assumptions [122]: 



 89  
 

 Thicknesses of the substrate and coating should be smaller than the lateral dimensions; 

 Deformations and rotations should be infinitesimal; 

 Thickness of the coating should be smaller than the thickness of the substrate; 

 Substrate and the coating should be homogenous, isotropic and linear elastic; 

 Radius of curvature should be equal in all directions (spherical deformation); 

 Stress and the radius of curvature should be constant on the whole surface of the substrate. 

However, some research works show that the shape and size of the substrate has influence on the 

deformation and curvature radii of the samples [124]. M. Ahmed et al. [124] showed that the 

deformation in all different substrate shapes is not spherical and Stoney equation cannot be applied 

to measure samples in many shapes. For most of the samples, spherical deformation is hard to be 

assumed, and deviation of curvature radii value in different directions causes measurement errors. 

Therefore, careful attention should be given to minimize the dispersion of the curvature radii [125-

129]. 

On the other hand, Schwarzer et al. [130] theoretically showed that in thin substrates, the nature 

of the deformation after coating doesn't depend on the substrate shape and size. The purpose of 

this study is to experimentally examine the effect of substrate shape and size on the measurement 

of stress in DLC thin films using optical profiler to measure the curvature radii and to evaluate the 

appropriateness and reliability of this method for stress measurement of DLC. 

8.2 Experimental details 

(100) Silicon wafers of 0.5 mm thick was cut into samples with seven different shapes and sizes: 

squares (1 cm × 1 cm and 1.5 cm × 1.5 cm), rectangles (1 cm × 1.5 cm, 1 cm × 2 cm, and 1 cm× 

2.5 cm), and circles (1 cm and 1.5 cm in diameter). The curvature radii of the samples were 

measured by an optical profiler made by Zygo before DLC deposition. The measurement was in 

two orthogonal directions along the x and y axes, and three measurements for each direction. The 

x and y directions are parallel to the sides of square and rectangular samples, in which the x 

direction is along with the longer side of rectangle and y direction is along with the shorter side of 

the rectangle. The average value for each direction was used for stress calculation. The radius 

measured along the x-and y-axis is noted Rx and Ry, respectively. 
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After the cutting, Si wafers were cleaned in an ultrasonic bath for 10 min, washed with ethanol 

solution, and dried before putting into the vacuum chamber for DLC film deposition. The DLC 

film deposition was carried out in a dual ion beam deposition system manufactured by 4Wave Inc.. 

DLC thin films were prepared using EHI beam deposition by introducing 8 sccm CH4 and 12 sccm 

Ar gases into the EHI source. The working pressure was 0.0933 Pa, the ion energy for deposition 

was about 70 eV, and the deposition time was 4 h. The DLC films were analyzed using Reinshaw 

Raman spectrometer equipped with 514 nm wavelength of Ar laser. The curvature radii of the 

samples in x and y axes were then measured after DLC deposition.  

The coating thickness was measured by using the same optical profiler. After all the measurements, 

the internal stress in different directions for all the samples was calculated using the Stoney 

equation (Eq. (8.1)). This experiment was repeated for two times. The average values and the 

standard deviation (SD) were presented. 

8.3 Results and discussion 

A typical Raman spectrum of the DLC film deposited on the Si wafers is shown in Figure 8.1. It 

shows the typical D and G peaks of DLC at around 1350 cm-1 and 1580 cm-1, respectively, 

confirming its DLC nature. The surface profile of the samples before DLC coating is different for 

different samples and has no consistent curvature. After the DLC coating, nearly all the samples 

show spherical convex deformation due to the compressive stress which is created during DLC 

deposition through high energetic ion bombardment (Figures 8.2, 8.3, and 8.4). The measured 

values (average and standard deviation) of curvature radii in two directions are listed in Table 8.1. 

The results show that the average curvature values in different directions for the same sample are 

the same after DLC deposition, indicating that the deformation caused by coating DLC are 

spherical and the initial curvature, shape and size of the substrate do not show influence on the 

deformation of samples after coating. The results are in contradict with the results report by Ahmed 

et al. [124] but verified Schwarzer's theoretical prediction [130]. 
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Figure 8.1. Raman spectra of DLC film deposited on the Si wafer 

 

Figure 8.2. Surface profile of the square shape samples (a) 1cm x 1cm square substrate before 

and (b) after coating, (c) 1.5cm x 1.5cm square substrate before and (d) after coating 
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Figure 8.3. Surface profile of the rectangular shape samples (a) 1cm x 1.5cm rectangular 

substrate before and (b) after coating, (c) 1cm x 2cm rectangular substrate before and (d) after 

coating, (e) 1cm x 2.5cm rectangular substrate before and (f) after coating 

 

Figure 8.4. Surface profile of the circle shape samples (a) 1cm diameter circle substrate before 

and (b) after coating, (c) 1.5cm diameter circle before and (d) after coating 
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Table 8.1. Mean value of curvature radii in X and Y directions of the different shape samples 

before and after DLC deposition 

Sample 

number 

Substrate shape R0X±SD (m) R0Y±SD (m) RX±SD 

(m) 

RY±SD 

(m) 

1 Small square (1cmx1cm) 46.1±0.3 45.4±0.3 16.3±0.3 16.2±0.3 

2 Large square (1.5cmx1.5cm) 45.0±0.3 26.9±0.3 16.0±0.3 12.9±0.3 

3 Small rectangular 

(1cmx1.5cm) 

27.3±0.3 38.3±0.3 12.9±0.3 15.1±0.3 

4 Medium rectangular 

(1cmx2cm) 

-75.1±0.3 -87.3±0.3 37.2±0.3 33.9±0.3 

5 Large rectangular 

(1cmx2.5cm) 

191.9±0.3 3791.1±0.2 21.8±0.3 25.2±0.3 

6 Small circle  

(1cm in diameter) 

-1365.0±0.3 1000.4±0.3 25.1±0.3 23.8±0.3 

7 Large circle  

(1.5cm in diameter) 

199.8±0.4 700.3±0.2 21.8±0.4 24.0±0.3 

 

Table 8.2 presents the internal stress values of the samples with different shapes and sizes 

calculated using the Stoney equation, where Es = 130 GPa, νs = 0.28, hs = 500 ± 5 μm, and hf=0.40 

± 0.05 μm (measured value) were used. All the coatings were deposited using similar conditions 

on the substrate material. It would be reasonable to expect uniform stress in the films for all the 

samples and all the directions. 

The calculated internal stress values along x and y axes for different samples are essentially the 

same with reasonable errors and follows in the stress range for DLC deposited under similar 

conditions. These results demonstrate that the deformation of samples after DLC deposition is 

spherical and this simple method used for DLC stress measurement is reliable and appropriate. 
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Table 8.2. Internal stress values of samples with different shapes and sizes 

Sample number σX ± SD (MPa) σY ± SD (MPa) 

1 766.63±0.02 757.54±0.03 

2 757.54±0.02 750.17±0.04 

3 750.17±0.04 758.91±0.03 

4 759.09±0.01 769.37±0.01 

5 756.90±0.01 747.39±0.01 

6 766.09±0.01 764.85±0.01 

7 760.86±0.01 756.79±0.01 

 

8.4 Conclusions 

DLC thin films on Si wafers with different shapes and sizes were synthesized by EHI beam 

deposition system and the internal stress of the thin films were measured by Zygo optical profiler 

using the Stoney equation. The measured stress values show that the stress is compressive and 

essentially the same with reasonable errors for all the samples and all the directions. The results 

have demonstrated that deformation of samples after DLC deposition is spherical and the simple 

non-destructive method (Optical profiler) is appropriate and reliable for DLC stress determination, 

opening a new way to characterize DLC stress simply, non-destructively, and reliably.
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CHAPTER 9                                                                                                                         

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

9.1 Conclusions  

In this PhD research work, Ta and DLC coatings were synthesized and characterized on CoCrMo 

alloy sheets to improve the surface functionality of this alloy which has been widely used in 

biomedical applications. The main findings from experimental investigations are highlighted as 

follows: 

 Ta thin films were deposited on CoCrMo alloy sheets by using RF magnetron sputtering 

deposition technique. Substrate temperature and bias voltages are determined the most 

important factors that influence the formation of α- and β-Ta thin films on the CoCrMo alloy 

sheets. When the deposition temperature is 400 °C or higher, single phase α-Ta thin film forms, 

whereas a mixture of α- and β-Ta thin film is obtained when the deposition temperature is 

lower than 400 °C. By applying a substrate bias voltage from 78 V up to 90 V, single phase β-

Ta film is obtained at room temperature. Increasing the bias voltage further to 115 V lead to 

formation of single α-Ta phase.   

 The Ta thin films deposited on the CoCrMo alloy sheets consisting of a mixture of α- and β-

Ta phases show severe delamination due to the brittleness of β-Ta and the mismatch between 

its hardness and Young’s modulus and those of α-Ta. Adherent single phase β-Ta thin film 

with a thickness of approximately 0.8 m was deposited on the CoCrMo alloy sheets at a low 

negative bias of 78 V. Adherent gradient Ta thin films, β-Ta/β-Ta+α-Ta/α-Ta, with a top layer 

of α-Ta film was also deposited on CoCrMo alloy sheets with a thickness of approximately 1.1 

m. 

 The tribological testing results indicate that the coefficients of friction between the - and -

Ta coated CoCrMo alloy sheets and UHMWPE balls in phosphate-buffered saline solution are 

0.08 ± 0.01 and 0.09 ± 0.01, respectively, and the ball wear rate is determined to be 3.00 ± 0.02 

x 10-5 mm3N-1m-1 and 3.25 ± 0.01 x 10-5 mm3N-1m-1, respectively, which are lower than those 
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(0.14 ± 0.01 and 8.14 ± 0.01 x 10-5 mm3N-1m-1) for uncoated CoCrMo alloy sheet sliding with 

UHMWPE balls. It is probably due to better wettability and lower roughness of the Ta thin 

films. 

 The corrosion testing results indicate that the corrosion current density of the - and -Ta 

coated CoCrMo alloy sheets in phosphate-buffered saline solution are 1.4 x 10-8 Acm-2 and 9.9 

x 10-8 Acm-2, respectively, which are significantly lower than that (1.0 x 10-5 Acm-2) for 

uncoated CoCrMo alloy sheet. The superior corrosion resistance of the coatings can be 

attributed to the formation of a uniform dense Ta2O5 film on the surface, which protected the 

substrate during the corrosion testing. The α-Ta film shows a higher corrosion resistance due 

to the formation of a thicker Ta2O5 on the surface. 

 fcc Ta thin films with a thickness of approximately 2.0 μm were successfully synthesized using 

magnetron sputtering at a substrate temperature of 500 °C and 600 °C for the first time. The 

formation of fcc Ta is dependent on thin film deposition parameters and impurity level. The 

XRD patterns of the mentioned phase is obtained and reported for the first time, and the lattice 

parameter is determined to be 4.5065 Å. The crystal structure of the substrate materials has no 

effect on the formation of fcc Ta, and the fcc Ta keeps its crystal structure up to 700 °C but it 

transforms to α-Ta after annealing at 750 °C. 

 DLC coatings were deposited on CoCrMo alloy sheets using ion beam deposition technique. 

Two different types of Ta film, α-Ta and β-Ta, were used as an interlayer in order to improve 

the adhesion of DLC coatings on the alloy. Severe delamination of the DLC coatings was 

observed on all the samples. The results show that the delamination is not just related to the 

amount of ion bombardment energy inducing intrinsic stress into the film during DLC 

deposition, but related to the interfacial bonding between DLC and interlayers. An interface 

layer is formed at Ta/DLC interface during DLC deposition, this layer is composed of a mixture 

of Ta carbide and metallic Ta, resulting in weak mechanical bond with DLC film. 

 A simple and reliable non-destructive method is introduced for determination of DLC coatings’ 

stress. DLC thin films on Si wafers with different shapes and sizes were synthesized by EHI 

beam deposition. The internal stress of the thin films were measured with the aid of Zygo 

optical profiler using the Stoney equation. The measured stress values show that the stress is 

compressive and essentially the same with reasonable errors for all the samples and all the 
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directions. The results have demonstrated that deformation of samples after DLC deposition is 

spherical and this simple method (Optical profiler) is appropriate and reliable for DLC stress 

determination, thereby opening a new way to characterize DLC coatings’ stress. 

9.2 Recommendations for future work 

Based on the present research, some recommendations for future work are listed below: 

 In this research work, Ta thin films were deposited on the CoCrMo alloy sheets. It is suggested 

to deposit Ta thin films on CoCrMo alloy femoral heads and to investigate their mechanical, 

tribological, and corrosive properties.  

 In this research work, Ta thin films were applied to improve corrosion and wear behavior of 

the CoCrMo alloy sheets for biomedical implant applications. The tribology testing was done 

using ball on disk tribometer, in PBS solution, under static load, and in low number of sliding 

cycles. It is suggested that investigation of the tribological behavior of the samples in a 

simulated body fluid of osteoarthritis patient, under a range of dynamic load, and in a larger 

number of sliding cycles be carried out. This suggestion is applicable to corrosion testing 

condition as well. 

 The processing conditions and structural information of fcc Ta are very limited, and the 

properties of fcc Ta could not be measured so far. In the present research work, the synthesis 

of fcc Ta thin films and their X-Ray diffraction data is reported for the first time. In this regard, 

it is very promising to investigate the mechanical and electrical properties of this new phase of 

Ta. This new finding would open new research and application directions for Ta materials. 

 Development of adherent DLC coatings on CoCrMo alloys is very promising for biomedical 

applications. The present research introduced Ta as an interlayer to improve the adhesion of 

DLC coatings on the CoCrMo alloy, which was not successful. More investigation is needed 

to improve the adhesion of DLC coatings on CoCrMo alloys by designing a proper interlayer 

or changing the composition of the DLC coatings by doping. 
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