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Abstract

Solving the mathematical models of the electrical activity in the heart is difficult mainly due

to the complexity of the models required to capture the electrochemical details of the organ. A

variety of mathematical models has been developed to describe the electrical activity of individual

heart cells. Cardiac cells respond to an electrical stimulus, causing ions to flow across the cell

membrane, changing the electrical potential difference between the interior and the exterior of the

cell. Cardiac cell models describe the potential difference across the cell membrane, and depending

on the complexity of the model, the ion concentrations and the movement of ions through the cell

membrane.

This thesis studies 37 cardiac cell models and compares the efficiency of the Forward Euler

and Rush–Larsen methods, as well as two generalized Rush–Larsen methods (of order one and

order two). The Backward Euler method is compared for six of the 37 models and type-insensitive

methods are compared for four of the 37 models. From the results, it is determined that the

Rush–Larsen method is the most efficient for moderately stiff models and that the generalized

Rush–Larsen methods perform well on the stiff models. The type-insensitive methods are more

efficient than the single methods for each of the four models considered.

The bidomain model combines a cardiac cell model with two partial differential equations that

model the propagation of the electrical activity throughout the entire heart. Simulations of the

bidomain model are computationally expensive, necessitating improvements to the numerical meth-

ods used to solve the model. In order to determine whether the cell model results can be applied

to the bidomain model, a one-dimensional simulation of the bidomain model is considered and

solved using the Chaste software package developed by the Computational Biology Group at Ox-

ford University Computing Laboratory, together with additions written for this thesis. The cellular

electrical activity within the bidomain model is modelled by eight of the 37 cell models previously

studied, chosen to represent a range of the available models. From these results, it is shown that

the cell model results are directly applicable to the one-dimensional bidomain problem. The first-

order generalized Rush–Larsen method drastically reduces computation time for the two stiffest

models, and the Rush–Larsen method performs optimally for the moderately stiff models. One of

the de facto standards, the Forward Euler method, is shown to perform poorly for seven of the

eight one-dimensional bidomain simulations.
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Chapter 1

Introduction

The heart is one of the most important organs in the human body. The pumping of blood

through the heart transports essential nutrients and chemicals throughout the body and removes

waste products from the cells. Heart disease affects these vital functions by damaging the heart

and is one of the leading causes of death in Canada, with 22% of deaths in 2007 attributed to heart

disease [9]. Due to the prevalence of heart disease, furthering our understanding of this essential

organ is necessary for improving the diagnosis of heart conditions. Because abnormalities in the

electrical activity in the heart are linked with heart disease, there is particular interest in expanding

the understanding of the electrical activity in the heart [61].

The effect of the electrical activity on the heart’s health makes its study a natural choice for

aiding in diagnosing heart conditions. However, due to the heart’s major role in maintaining life, it

is difficult to study a living heart. An increasingly practical approach is to develop mathematical

models that describe the electrical processes in the heart and to use computer simulations to

solve the models. The electrical activity of cardiac cells can be modelled by a system of ordinary

differential equations. The equations describe the evolution of the potential difference across the

cell membrane and depending on the complexity of the cell model, describe the evolution of the ion

concentrations within a cell and the flow of the ions through the cell membrane. The propagation

of the electrical activity in the heart can be modelled using the bidomain model [66]. The bidomain

model uses a system of partial differential equations coupled with a cardiac cell model to describe

the propagation of the electrical activity in the heart.

An interactive model of a patient’s heart can be used by a clinician as a guide during an

invasive procedure. For example, such a guide would be useful when a pacemaker is installed

because the simulation could give information as to the optimal location to install the device. Such

an interactive system would require real-time simulation [35]. However, the computational time

required to solve a realistic simulation prevents real-time simulation. At the time of writing, the

most efficient whole heart simulation remains approximately 240 times slower than real time even

using 16,384 computer cores [35]. To achieve real-time whole heart simulations, it is necessary to

further improve the numerical methods used to solve the model.

This thesis focuses on improving the numerical methods used to solve the cardiac cell mod-
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els, solved separately and within the bidomain model, in order to reduce the computational time

required for cardiac simulations. Cardiac cell simulations are solved within Matlab [32], a commer-

cially available problem-solving environment equipped with a high-level programming language.

Bidomain simulations are solved with the Cancer, Heart, and Soft Tissue Environment (Chaste)

[45], a C++ software package for large-scale heart simulation.

1.0.1 Structure of thesis

The remainder of this thesis is structured into four chapters. Chapter 2 provides background in-

formation on the physiology of the heart, an introduction to mathematical models of the electrical

activity of the heart, an introduction to the operator splitting method for solving differential equa-

tions, and an overview of some of the software packages available for cardiac simulation. Chapter

3 provides an overview of necessary terminology, introduces a new error norm, and describes the

numerical methods used to solve ordinary differential equations and partial differential equations.

It also describes numerical methods used by current software packages, including Chaste, to solve

cardiac cell models and the bidomain model and provides an overview of the contributions made

by this thesis to the Chaste software package. Chapter 4 demonstrates the effectiveness of the

newly introduced error norm, describes the simulations, and provides results. Chapter 5 describes

conclusions and future work. Appendix A provides additional cardiac cell model results.
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Chapter 2

Background

2.1 Physiology

2.1.1 Physiology of the heart

The heart is a muscular pump made up of four pumping chambers: the right and left atria, located

near the base of the heart, and the right and left ventricles, located near the apex of the heart.

The chambers are connected by atrioventricular valves that, when open, allow blood to move from

the atria to the ventricles. A fibrous skeleton separates the four pumping chambers and acts as an

electrical insulator, separating electrically active myocytes, or muscle cells, located throughout the

heart [26].

The pumping of the heart is activated by an electrical stimulus. A band of specialized my-

ocardial cells located near the base of the heart, called the sinoatrial (SA) node, spontaneously

depolarize, causing a wave of depolarization [26]. The wave of depolarization is propagated to

the atrial myocardium, causing the atria to contract, increasing the atrial pressure and the blood

flow from the atria to the ventricles. Following the atrial contraction, the pressure drops and the

atrioventricular valves are pulled upwards by the decreased pressure. The wave of depolarization is

propagated through the atrioventricular (AV) bundle from the atrial myocardium to the ventricles.

The propagation of the depolarization wave through the ventricles is synchronized by the Purk-

inje system, allowing the ventricles to contract in a coordinated manner. The contraction of the

ventricles increases the intraventricular pressure, forcing blood into the aorta and the pulmonary

arteries. Figure 2.1 is a simplified diagram that shows the four pumping chambers, the SA node

and the AV node, as well as the route of the electrical conduction through the heart.

2.1.2 Cardiac cells

The myocardium, composed of myocytes and connective tissue, makes up the majority of the heart’s

thickness [26]. There are several types of cardiac myocytes, including working myocytes in the atria

and ventricles, specialized for contraction, Purkinje fibers, specialized for rapid conduction, and

nodal cells in the SA and AV nodes, specialized for pacemaker activity and atrioventricular delay
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Figure 2.1: Simplified diagram of the heart and the pumping chambers, taken from Chapter
1 of [61]. The electrical activation begins in the sinoatrial node and propagates through the
atria, the atrioventricular node, and the ventricles.

[26]. Cardiac myocytes contain charged particles (ions) that cause a potential difference across

the cell membrane, called the transmembrane potential. The ions allow the cells to respond to an

electrical stimulus, changing their transmembrane potential [61]. Without an electrical stimulus, the

transmembrane potential of a cell remains at a resting potential. However, once the transmembrane

potential is raised above a threshold value (dependent on the type of cardiac cell), the conductive

properties of the cell change, allowing for ions to flow across the cell membrane. The potential

difference across the membrane changes rapidly with the flow of ions, causing a depolarization

of the membrane. Once the membrane is depolarized, the cell membrane gradually repolarizes,

returning the transmembrane potential to the initial resting potential value [61]. Because of gap

junctions, channels between cardiac myocytes that allow ions to move freely between adjacent

cells, it is possible for electrical impulses to be transmitted rapidly throughout the heart [26]. The

action potential of a cardiac cell is this process of depolarization followed by a repolarization stage

returning the transmembrane potential to the initial resting potential.

2.2 Models

2.2.1 The inverse problem in cardiology

The typical goal of a physician is to examine a patient and to accurately diagnose the cause of

the exhibited symptoms. In the case of cardiology, this generally translates into studying the

electrocardiogram (ECG), i.e., the graph of the electrical potential on the surface of the patient’s

body. Ideally, a cardiologist inputs the data from the ECG into a model that determines the cause

of the symptoms based on the input data. Finding the electrical activity in the heart by measuring
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the electrical potential on the surface of the body is the inverse problem in electrocardiology.

When numerically solving mathematical problems, it is assumed that the problem is well-posed.

A well-posed problem has the following properties [61]:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

When a problem fails to satisfy one of the above conditions, it is called an ill-posed problem.

Inverse problems are typically ill-posed, including the inverse problem in electrocardiology [61].

Fortunately, the forward problem in electrocardiology, namely simulating the electrical activity in

the heart, is well-posed [61]. Being able to solve the forward problem aids in finding solutions

to the inverse problem. Chapter 7 of [61] describes methods for solving the inverse problem using

solutions to the forward problem, including that of modelling myocardial infarctions (heart attacks)

using data from the ECG. This thesis focuses on numerically solving the forward problem.

2.2.2 Cell models

We begin by modelling the electrical activity of a single cardiac cell. A cardiac cell model consists of

ordinary differential equations (ODEs) that, at a minimum, describe the evolution of the electrical

potential difference across the cell membrane and typically also describe the movement of ions

across the cell membrane and the concentration of ions within the cell. One simple cell model, the

FitzHugh–Nagumo (FHN) cell model [17], consists of two ODEs that describe only the potential

difference across the cell membrane and a recovery variable. By modelling only two variables, the

solution to the FHN model does not accurately reflect the action potential of a heart cell; rather

it gives only a general idea of the action potential. Increasingly accurate physiologically based

cell models, such as the Luo–Rudy I cell model [30] or the model of Winslow et al. [69], are able

to capture greater detail, such as the calcium concentration and the flow of ions across the cell

membrane.

Luo Rudy I model

As an example of a cardiac cell model, consider the Luo–Rudy I (LR) cell model. The LR model

uses eight variables to model the action potential of a guinea pig ventricular cell. The variables

considered are the transmembrane potential Vm, the intracellular calcium concentration Cai, and

six non-dimensional gating variables, m, h, j, d, f , and X, that control the movement of ions across

5



the cell membrane. The ordinary differential equations are given by

dVm
dt

= − 1

C
(INa + Isi + IK + IK1 + IKp + Ib),

dCai
dt

= −10−4Isi + 0.07(10−4 − Cai),

dy

dt
=

(y∞ − y)

τ∞
,

where y is one of the gating variables m, h, j, d, f , or X, y∞ = y∞(Vm), and τ∞ = τ∞(Vm). The

currents INa, Isi, IK , IK1, IKp, and Ib are nonlinear functions of Vm, Cai, m, h, j, d, f , and X.

For complete details of the LR model, see [30].

2.2.3 Bidomain model

The bidomain model, first proposed by Tung in 1978 [66], is a continuum-based model used to

relate the electrochemical activity of individual heart cells with the electrical activity across the

entire heart. The bidomain model considers the heart to consist of two superimposed domains. The

first domain, the intracellular domain, consists of the components inside the cell membrane of the

heart cells. The second domain, the extracellular domain, consists of the components outside the

cell membrane of the heart cells. The bidomain model is coupled with a cell model describing the

reactions and flow of ions across the cell membrane of a heart cell. Because the bidomain model is

a continuum-based model, individual heart cells are not modelled, but instead cell models are used

to model averages of heart cells. Assuming that the heart is isolated from the surrounding tissue,

the bidomain model can be written as [61]

∂s

∂t
= f(s, Vm, t), (2.1a)

χCm
∂Vm
∂t

+ χIion(s, Vm, t) = ∇ · (MI∇Vm) +∇ · (MI∇uE) , (2.1b)

0 = ∇ · (MI∇Vm) +∇ · ((MI + ME)∇uE) , (2.1c)

with boundary conditions

n̂ · (MI∇Vm + MI∇uE) = 0,

n̂ · (ME∇uE) = 0,
(2.2)

where Vm is the transmembrane potential variable, uE is the extracellular potential variable, s is

a vector of state variables from the cell model, MI and ME are conductivity tensors that model

the dependency of the conductivity of the heart on the surrounding tissue, χ is the area of cell

membrane per unit volume, and Cm is the capacitance of the cell membrane per unit area. The

functions f and Iion are dependent on the particular cell model used. It is possible to simplify
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the bidomain model into the so-called monodomain model by assuming that anisotropy rates are

equal, i.e., MI = λME , where λ is a scalar. This simplifies the equations, making the model easier

to analyze and to solve numerically. However, the equal anisotropy rate assumption is not found

to hold from measurements of real intracellular and extracellular conductivities and important

electrophysiological phenomena are lost when this assumption is used [61].

2.3 Operator splitting

Operator splitting is a technique typically used for dividing a difficult set of differential equations

into two or more subproblems that are potentially easier to solve. Operator splitting has been used

for the simulation of air pollution [27], the electrical activity in the heart [63], and reaction-diffusion

equations [13]. Operator splitting divides a difficult problem into two (or more) subproblems that

are solved numerically over the same timestep. By splitting the problem, it is possible to use

methods that are optimized for the different components of the problem. It has been shown in

[53] that the highest order achievable for an operator splitting method with positive timesteps is of

order two. Operator splitting methods of third order and higher are possible, but negative timesteps

are required [71]. It is shown in [55] that for linear parabolic PDEs, negative timesteps are not

necessarily unstable for all splitting methods. In general, however, negative timesteps may lead to

instability for splitting methods [53]; therefore in this thesis we focus on first-order and second-order

operator splitting methods. A second-order operator splitting method was first described in [59].

2.3.1 Overview

Following [53], the technique of operator splitting can be described by considering an initial-value

problem (IVP) of the form given by

du

dt
= Au + Bu, 0 < t < T, (2.3a)

u(0) = u0, (2.3b)

where A and B are constant matrices that in general do not commute and arise from the spatial

discretization of a PDE. The exact solution to (2.3) is u(t) = e(A+B)tu0. We are interested in

approximating e(A+B)t using only products of eAt and eBt because eAt and eBt are more desirable

to treat. Two first-order operator splitting methods used to split M = A + B are given by

S(A,B) = e Ate Bt, (2.4)

S(A,B) = eBteAt. (2.5)

Two second-order operator splitting methods are given by

S(A,B) = eA
1
2 teBteA

1
2 t, (2.6)
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S(A,B) = eB
1
2 teAteB

1
2 t. (2.7)

The splittings of M described in (2.4)–(2.7) can be described in terms of the following algorithm,

where for definiteness we use (2.4) to solve (2.3) over one timestep ∆t:

1. For 0 ≤ t ≤ ∆t, solve:
dv

dt
= Av, v(0) = u0, (2.8)

to obtain v∆t = v(∆t).

2. For 0 ≤ t ≤ ∆t, solve:
dw

dt
= Bw, w(0) = v∆t, (2.9)

to obtain w∆t = w(∆t).

Then w∆t is a first-order approximation to the exact solution u to (2.3) at t = ∆t. The proof of

the consistency and order of this method is given in the following section.

2.3.2 Consistency and order

We show that the operator splitting method as described in (2.4) is both consistent and of first

order. The proofs for the other methods are similar.

The consistency and order of the operator splitting method can be shown using Taylor series

expansions. This is done following [61]. First, approximating the solution to (2.3) u at time ∆t as

a Taylor series, we obtain

u(∆t) = u0 + ∆t
du

dt

∣∣∣∣
t=0

+
(∆t)2

2

d2u

dt2

∣∣∣∣
t=0

+O
(
∆t3

)
.

Because A and B are independent of t, we compute d2u
dt2 as

d2u

dt2
=

d

dt
((A + B)u) = (A + B)

du

dt
. (2.10)

Substituting du/dt in (2.10),

d2u

dt2
= (A + B)(A + B)u,

= (A + B)2u,

= (A2 + AB + BA + B2)u.

Inserting this term into the Taylor series expansion gives

u(∆t) = u0 + ∆t(A + B)u0 +
(∆t)2

2
(A + B)2u0 +O(∆t3).

Expanding v(∆t) and w(∆t) from (2.8) and (2.9), respectively, gives

v(∆t) = u0 + ∆tAu0 +
(∆t)2

2
A2u0 +O(∆t3),

w(∆t) = v(∆t) + ∆tBv(∆t) +
(∆t)2

2
B2v(∆t) +O(∆t3).
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For w(∆t), we get

w(∆t) =

(
u0 + ∆tAu0 +

(∆t)2

2
A2u0 +O

(
(∆t)3

))
+ ∆tB

(
u0 + ∆tAu0 +

(∆t)2

2
A2u0 +O

(
(∆t)3

))
+

(∆t)2

2
B2

(
u0 + ∆tAu0 +

(∆t)2

2
A2u0 +O

(
(∆t)3

))
+O

(
(∆t)3

)
,

= u0 + ∆t(A + B)u0 +
(∆t)2

2

(
A2 + 2AB + B2

)
u0 +O

(
(∆t)3

)
.

The error at t = ∆t is the difference between w(∆t) and u(∆t). This is

w(∆t)− u(∆t)

=

(
u0 + ∆t(A + B)u0 +

(∆t)2

2

(
A2 + 2AB + B2

)
u0 +O((∆t)3)

)
−
(

u0 + ∆t(A + B)u0 +
(∆t)2

2
(A + B)2u0 +O((∆t)3)

)
,

=
(∆t)2

2
(AB−BA) u0 +O((∆t)3),

= O((∆t)2),

giving an error proportional to (∆t)2 after one step. The number of timesteps n is proportional to

(∆t)−1, making the error at the final time proportional to ∆t; hence we have a first-order method.

Note that if A and B commute, we have a second-order method.

2.3.3 Operator splitting for cardiac modelling

Operator splitting for cardiac modelling is used to simplify the numerical solution of the bidomain

model by splitting the system of ODEs, (2.1a), from the two PDEs, (2.1b) and (2.1c). In this way,

it is possible to use methods better suited for each respective component. Splitting the system of

ODEs from the PDEs can be achieved using any of the schemes (2.4)–(2.7). Assuming a timestep

of ∆t, initial conditions given by Vm(x, tn) = Vm,n, uE(x, tn) = uE,n, and s(x, tn) = sn, and by

applying the splitting algorithm (2.4), the splitting can be done by the following [61]

1. Solve the system of ODEs arising from the cell models for t ∈ [tn, tn + ∆t], and denote the

solutions Vm and s following this step by V 1
m,n+1 and s1

n+1:

∂s

∂t
= f(s, Vm, t),

∂Vm
∂t

= − 1

Cm
Iion(s, Vm, t).

2. Solve the PDEs, using V 1
m,n+1 and s1

n+1 as the initial condition, for t ∈ [tn, tn + ∆t], to obtain

the final solution Vm,n+1 and sn+1:

χCm
∂Vm
∂t

= ∇ · (MI∇Vm) +∇ · (MI∇uE) ,

0 = ∇ · (MI∇Vm) +∇ · ((MI + ME)∇uE) ,
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with boundary conditions

n̂ · (MI∇Vm + MI∇uE) = 0,

n̂ · (ME∇uE) = 0.

This scheme is known as the first-order Godunov splitting method [19]. Note that by using the

scheme (2.5), it is possible to reverse the order in which the systems are solved. We are also

interested in the second-order Strang splitting method [59]. By applying the splitting algorithm

(2.6), Strang splitting can be done by the following

1. Solve the system of ODEs arising from the cell models for t ∈
[
tn, tn + ∆t

2

]
, and denote the

solutions Vm and s following this step by V
1/2
m,n and s

1/2
n :

∂s

∂t
= f(s, Vm, t),

∂Vm
∂t

= − 1

Cm
Iion(s, Vm, t).

2. Solve the PDEs, using V
1/2
m,n and s

1/2
n as the initial condition, for t ∈ [tn, tn + ∆t], and denote

the solutions Vm and s following this step by V
1/2
m,n+1 and s

1/2
n+1:

χCm
∂Vm
∂t

= ∇ · (MI∇Vm) +∇ · (MI∇uE) ,

0 = ∇ · (MI∇Vm) +∇ · ((MI + ME)∇uE) ,

with boundary conditions

n̂ · (MI∇Vm + MI∇uE) = 0,

n̂ · (ME∇uE) = 0.

3. Solve the system of ODEs arising from the cell models, using V
1/2
m,n+1 and s

1/2
n+1 as the initial

condition, for t ∈
[
tn + ∆t

2 , tn+1

]
, to obtain the final solution Vm,n+1 and sn+1:

∂s

∂t
= f(s, Vm, t),

∂Vm
∂t

= − 1

Cm
Iion(s, Vm, t).

Again, it is possible to reverse the order in which the systems are solved by using the splitting

algorithm (2.7). In practice, Steps 1 and 3 are combined to reduce computational effort, leapfrogging

the solution of the system of ODEs and the PDEs until the final time is reached.

2.4 Software

There are several software packages available that solve the monodomain and bidomain mod-

els, including the Cardiac Arrhythmia Research Package (CARP) [67], the Montreal heart model
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(PROPAG) [46], Simula Research Laboratory’s Python Computing Components (PyCC) frame-

work [54], Continuity 6 [20], and the Cancer, Heart, and Soft Tissue Environment (Chaste) [45].

Software by Ying et al. solves the monodomain model [70].

We are using Chaste to solve instances of the bidomain problem. Chaste is a project developed

by a team mainly based in the Computational Biology Group at Oxford University Computing

Laboratory. The development strategy is to produce heart simulation software that is generic,

efficient, accurately tested and validated, and capable of massive simulations in parallel. Their

software is open-source C++, making it possible to modify and add methods.

The CellML project [24] is an online repository for storing and sharing validated mathematical

models, with emphasis on mathematical models of biological processes. CellML is a markup lan-

guage that is used to encode the necessary information for a particular mathematical model and a

wide variety of cardiac cell models are available from this repository. For more details about the

structure of CellML, its current applications, and its future development, see [29]. Chaste has an

addition called PyCML, written in Python, that automatically generates the C++ files necessary

for modelling a particular cell model in Chaste from the model information available from the

CellML repository. This automatic generation of C++ code prevents unnecessary human errors

and permits a large number of cardiac cell models to be easily used in Chaste.
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Chapter 3

Numerical Methods

Because we cannot expect to solve all instances of the bidomain model analytically, it is necessary

to consider numerical solutions to the bidomain model. Operator splitting can be applied to the

coupled system of ODEs and PDEs, reducing it to a system of nonlinear ODEs and a system of two

linear PDEs, as is described in detail in Chapter 3 of [61]. The method employed by the Chaste

software, discussed in Section 3.4.1, also splits the coupled system of ODEs and PDEs into a system

of nonlinear ODEs and a system of two linear PDEs. This chapter discusses general methods for

solving systems of ODEs and systems of PDEs, with emphasis on the methods used in this thesis

to solve the bidomain model. However, before discussing general numerical methods for PDEs and

ODEs, it is necessary to define the concepts used in this thesis. The general ODE system

dy

dt
= f(t,y(t)), t > 0, (3.1)

is considered throughout this chapter. To numerically solve an ODE system, either boundary

conditions or initial conditions are required. We are interested in the initial-value problem with an

initial condition at t = 0,

dy

dt
= f(t,y(t)), 0 < t < tf , y(0) = y0. (3.2)

3.1 Concepts and definitions

The information in this section has largely been summarized from [3], [61], and [52].

3.1.1 Existence and uniqueness

When solving an IVP, we require that a solution exist and be unique. From [3], we have

Theorem 1

Let D be an open connected set in R2, let f(t,y) be a continuous function of t and y for all (t,y)

in D, and let (t0,y0) be an interior point of D. Assume that f(t,y) satisfies a Lipschitz condition

‖f(t,y1)− f(t,y2)‖ ≤ K‖y1 − y2‖ ∀ (t,y1), (t,y2) ∈ D,
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for some K ≥ 0. Then there is a unique function y(t) defined on an interval [t0 − α, t0 + α] for

some α > 0, satisfying

dy

dt
= f(t,y(t)), t0 − α ≤ t ≤ t0 + α,

y(t0) = y0.

It is assumed throughout this thesis that f satisfies a Lipschitz condition in order to guarantee that

a solution exists and is unique for the IVP.

3.1.2 Local and global error

Two forms of error are typically considered for numerical methods solving IVPs: the local error

and the global error. Consider the IVP (3.2) with exact solution y(t). Suppose a solver takes n

steps from t = 0 to t = tn to compute an approximation at tn, yn ≈ y(tn), and one more step from

t = tn to t = tn+1 to compute an approximation at tn+1, yn+1 ≈ y(tn+1). Consider also the IVP

starting at tn,

du

dt
= f(t,u(t)), u(tn) = yn,

with exact solution u(t). The local error at tn+1 is given by

elocal = u(tn+1)− yn+1.

The global error at tn+1 is given by

eglobal = y(tn+1)− yn+1.

Typically, solvers directly control the local error by controlling the stepsize, but they only indirectly

control the global error through control of the local error.

3.1.3 Error norms

In order to compare the accuracy and efficiency of numerical methods for solving a particular IVP

over the interval t ∈ [t0, tf ], it is necessary to have a measure of the accuracy of the numerical

method. This can be done by computing an average of the error at N points in t ∈ [t0, tf ] and

comparing these average error values. However, in order to compute an average of the error, either

the exact solution must be known or a reference solution must be computed for all N points. A

reference solution is a solution to the IVP that is known to have converged to d digits of accuracy

at all N points, where d is sufficiently large and determined by comparing increasingly accurate

solutions and counting the number of matching digits for all N points. In practice, the magnitude of

d is limited by floating point precision and by the time required to compute the reference solution.
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We are interested in two error norms. The first norm is called the Mixed Root Mean Square

(MRMS) error and is defined by

eMRMS =

√√√√ 1

N

N∑
i=1

(
ŷi − yi
1 + |ŷi|

)2

, (3.3)

where yi is the numerical solution and ŷi is the reference solution at time ti. The second norm is

called the Relative Root Mean Square (RRMS) error and is defined by

eRRMS =

√√√√ 1

N

∑N
i=1(ŷi − yi)2∑N

i=1 ŷ
2
i

, (3.4)

where yi is the numerical solution and ŷi is the reference solution at time ti.

The RRMS error norm has previously been used to compare numerical solutions of the trans-

membrane potential variable from cardiac cell models, e.g., see [60]. The MRMS error norm is a

2-norm combination of a relative error with an absolute error and has not, to our knowledge, been

used previously in heart simulation. A comparison of the two norms for the McAllister et al. (1975)

cell model is done in Section 4.2.

3.1.4 Order of convergence

The order of convergence of a given numerical method determines the theoretical rate at which a

numerical solution tends towards the true solution as the stepsize approaches zero. This can be

described mathematically, following [3]. Consider the IVP

dy

dt
= f(t,y(t)), (3.5a)

y(tn) = yn, (3.5b)

where ∆tn = tn+1 − tn, and suppose y(t) is the exact solution to (3.5) and suppose y∆tn(t) is the

solution obtained by one step of some numerical method over the interval tn < t < tn+1. Suppose

we have, for some constant integer p ≥ 0,

‖y(t)− y∆tn(t)‖ ≤ c(∆tn)p+1, tn < t < tn+1, (3.6)

where c is some constant and p is the largest integer such that (3.6) holds. Then we say that the

numerical method used to obtain y∆tn(t) is convergent with order p.

3.1.5 Stability

When discussing the stability of IVPs, we must consider both the IVP and the numerical method

used to solve the IVP. An IVP is stable if small perturbations in the initial conditions cause small

perturbations in the solution. Following [52], suppose we have the IVP (3.2), assume y1(t) and
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y2(t) are solutions to (3.2), and f satisfies a Lipschitz condition with constant K. For t1 < t2, we

have

‖y2(t2)− y1(t2)‖ ≤ ‖y2(t1)− y1(t1)‖eK(t2−t1). (3.7)

Assuming K is of moderate size, we have that (3.2) is moderately stable. It is assumed throughout

this thesis that any IVPs discussed are moderately stable. We next consider the stability of the

numerical method used to solve the IVP. Consider the general ODE system (3.1). Following [52],

we can linearize (3.1) about a point (t∗,y∗) to obtain the linear, constant-coefficient equation

du

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(u− y∗), t > 0. (3.8)

Because we are interested in the stability of (3.1), i.e., how the solution differs when initial conditions

change, we must consider the difference between two solutions of (3.8). Let v also satisfy (3.1) to

yield after linearization

dv

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(v − y∗), t > 0. (3.9)

Subtracting equation (3.9) from equation (3.8) and letting w = u − v be the difference between

the solutions, we get, for t > 0,

du

dt
− dv

dt
=

[
f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(u− y∗)

]
−
[
f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(v − y∗)

]
,

du

dt
− dv

dt
=
∂f

∂y
(t∗,y∗)(u− v),

dw

dt
=
∂f

∂y
(t∗,y∗)(w).

Assuming ∂f
∂y (t∗,y∗) is diagonalizable, i.e., there exists a non-singular matrix T of eigenvectors such

that T−1 ∂f
∂y (t∗,y∗)T = Λ, where Λ is a diagonal matrix of eigenvalues, we write

dw

dt
= TΛT−1w, t > 0.

Letting w̃ = T−1w, we get
dw̃

dt
= Λw̃, t > 0. (3.10)

In equation (3.10), we have a fully decoupled system of equations, where each component equation

has the form
dw̃i
dt

= λiw̃i, t > 0.

This leads to the test equation [52], an equation used to test the stability of a numerical method.

The test equation is written as

dy

dt
= λy, t > 0, (3.11)

y(0) = 1. (3.12)
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We know that the exact solution to (3.11) is

y = eλt.

For Re(λ) < 0, the exact solution to the test equation satisfies

y(t)→ 0 as t→∞; (3.13)

hence we want a numerical solution applied to (3.11) to satisfy

y∆t(tn)→ 0 as tn →∞, (3.14)

for any stepsize ∆t. For a given numerical method, we are interested in the set of values λ∆t

that satisfy (3.14). This set of values located in the complex plane is called the region of absolute

stability of a numerical method. A method that has a region of absolute stability that contains

the entire left half of the complex plane is called an A-stable method [8]. Examples of the stability

regions of several numerical methods are presented later in the chapter.

3.1.6 Explicit and implicit methods

A numerical method used to solve IVPs is categorized as either explicit or implicit. A method for

which yn+1 is given directly from known quantities and previous values of yn is called an explicit

method. A method for which yn+1 is found by solving a system of (nonlinear) equations is called

an implicit method because yn+1 is defined implicitly. The classic Forward Euler method and the

Backward Euler method are explicit and implicit methods, respectively, described in Section 3.2.1.

Explicit methods are useful when stepsizes are not restricted by stability conditions because they

have a small computational cost per step compared with implicit methods. However, implicit meth-

ods typically have larger stability regions, making them useful for solving stiff problems. Stiffness

is described in Section 3.1.8.

3.1.7 Jacobian

Given a function F(x), with x = {x1, x2, . . . , xn}T and F = {F1, F2, . . . , Fn}T , the Jacobian matrix

of F(x) is defined by

JF(x) =



∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn
...

...
. . .

...

∂Fn
∂x1

∂Fn
∂x2

· · · ∂Fn
∂xn

 .

The Jacobian matrix of the right-hand side (RHS) of a system of ODEs can be used for analysis of

the system and is required when a system of ODEs is linearized. The eigenvalues of the Jacobian

matrix are also of interest because they can aid in determining the stiffness of a problem, discussed

in Section 3.1.8.
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3.1.8 Stiffness

Stiffness is a property of an IVP that manifests itself when the IVP is solved numerically. A main

feature of a stiff IVP is the restriction on stepsize due to stability and not on accuracy requirements.

A stiff IVP typically has an eigenvalue λ with a large negative real part occurring in the Jacobian

matrix that forces the timestep ∆t of a numerical method to be small so that |λ∆t| is within the

stability region of the numerical method. Implicit methods tend to be used to solve stiff IVPs due

to their large stability regions. A large stability region is more conducive to allowing the stepsize

to be chosen based on accuracy and not on stability.

3.2 Numerical solution of ODEs

3.2.1 The Forward and Backward Euler methods

The most intuitive method for solving IVPs is arguably the Forward Euler (FE) method. Given

the IVP (3.5), for tn < t < tn+1, where ∆t = tn+1 − tn, the FE method approximates (3.5) by

yn+1 = yn + ∆t f(tn,yn). (3.15)

The FE method (3.15) can be derived as in [61] by integrating (3.5a) from tn to tn+1 and using a

left end-point approximation for the integral on the RHS of the equation to obtain∫ tn+1

tn

dy

dt
dt =

∫ tn+1

tn

f(t,y(t)) dt,

y(tn+1)− y(tn) =

∫ tn+1

tn

f(t,y(t)) dt,

y(tn+1) ≈ y(tn) + ∆t f(tn,y(tn)).

The test equation (3.11) is used to determine the stability region of a numerical method. The

stability region of the FE method, from [52], is the set

S = {|1 + z| ≤ 1, Re(z) ≤ 0}.

The FE method is a first-order explicit method and is trivial to implement. However, the FE

method has limitations, particularly when problems are stiff.

Another method that is also first order and can be derived in a similar fashion is the Backward

Euler (BE) method, as is done in [61]. Given the IVP (3.5), for tn < t < tn+1, where ∆t = tn+1−tn,

the BE method approximates (3.5) by

yn+1 = yn + ∆t f(tn+1,yn+1). (3.16)
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Figure 3.1: Stability region for the FE method.

The BE method (3.16) can be derived by integrating (3.5a) and using a right end-point approxi-

mation to the integral on the RHS of the equation to obtain∫ tn+1

tn

dy

dt
dt =

∫ tn+1

tn

f(t,y(t)) dt,

y(tn+1)− y(tn) =

∫ tn+1

tn

f(t,y(t)) dt,

y(tn+1) ≈ y(tn) + ∆t f(tn+1,y(tn+1)).

The stability region of the BE method, from [52], is the set

S =

{∣∣∣∣ 1

1− z

∣∣∣∣ ≤ 1, Re(z) ≤ 0

}
.

The stability region of the BE method contains the entire left half of the complex plane and hence is

more stable than the FE method. However, because the BE method is implicit, it generally requires

that a system of nonlinear equations from equation (3.16) be solved each step, increasing the typical

computational time for a given timestep. Following [56] and assuming a constant stepsize, the

algorithm for the BE method is given below.

Backward Euler Algorithm

Input: The RHS of the ODE, f(t,y), the Jacobian Jf (t,y) of f(t,y), the initial time t0, the final

time tf , the initial condition y0, the timestep ∆t, and the error tolerance TOL

Output: An approximate solution y at the final time tf

t = t0;

y1 = y0;
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Calculate the total number of timesteps: nsteps = d tf−t0∆t e;

for n = 1 to nsteps do

Use the FE method to compute the initial iterate:

y
(0)
n+1 = yn + ∆t f(tn,yn);

Set ν = 1;

Set e = TOL + 1.0;

while e > TOL and ν < νmax do

Compute the Newton–Raphson update:

y
(ν)
n+1 = y

(ν−1)
n+1 − J−1(tn,y

(ν−1)
n+1 )f(tn,y

(ν−1)
n+1 );

Compute the error between iterates and save the maximum value to determine whether the

Newton–Raphson method has converged:

e = ‖y(ν)
n+1 − y

(ν−1)
n+1 ‖∞;

Update the number of iterations that has been completed:

ν = ν + 1;

end while

if ν = νmax then

The Newton–Raphson method failed to converge, exit with failure;

end if

Save the computed solution at time tn+1:

yn+1 = y
(ν)
n+1;

t = t+ ∆t;

end for

where dxe = min{m ∈ Z|m ≥ x}. In practice, ν = 20, TOL = 10−5, the solution yn+1 is saved at

each time tn+1, and Jf (t,y) is approximated using Matlab’s numjac function.

3.2.2 Runge–Kutta methods

The family of Runge–Kutta (RK) methods generalizes the Euler methods by using increasingly

accurate methods to approximate the integral on the RHS of (3.5). This is done by computing

intermediate values for f(t,y(t)) for tn ≤ t ≤ tn+1 and using a weighted sum of the intermediate

values to approximate y(tn+1). A general s-stage RK method computes s intermediate values, and

the RHS of (3.5a) is approximated by [61]∫ tn+1

tn

f(t,y(t)) dt ≈ ∆t

s∑
i=1

biKi,

where the intermediate stage values, Ki, are given by

Ki = f

tn + ci∆t,y(tn) + ∆t

s∑
j=1

aijKj

 , i = 1, 2, . . . , s.
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The values of ci, aij , and bi determine the method and its properties such as the order of accuracy.

An RK method can be represented by a Butcher tableau, a construct that lists the coefficients in an

efficient manner, such that it is possible to reconstruct the RK method. A general Butcher tableau

is given by

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

In matrix notation, the Butcher tableau is given by

c A

bT

As an example, consider Heun’s method, a second-order RK method with two stages and given by

K1 = f(tn,yn),

K2 = f(tn + ∆t,yn + ∆tK1),

yn+1 = yn +
∆t

2
(K1 + K2) .

(3.17)

It has the Butcher tableau given by

0

1 1

1
2

1
2

Heun’s method is an explicit method, which is determined by the fact that the values of the A

matrix in the Butcher tableau are zero on and above the diagonal.

3.2.3 The Rush–Larsen method

In 1978, Rush and Larsen [49] proposed a new method for numerically solving cardiac cell models

based upon the Hodgkin–Huxley (HH) model of a squid giant axon [22]. Cardiac cell models based

upon the HH model involve gating variables that determine the flow of ions through gating channels.

The nonlinear ODE for a typical gating variable y is of the form

dy

dt
=
y∞ − y
τy

, (3.18)

where

y∞ =
αy

αy + βy
and τy =

1

αy + βy
,
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and where αy = αy(Vm) and βy = βy(Vm). The Rush–Larsen (RL) method holds the transmem-

brane potential Vm constant for each timestep, allowing (3.18) to be treated as a linear ODE with

the exact solution

yn = y∞ + (yn−1 − y∞)e
−∆tn

τy .

All other variables of the cell model are solved with the FE method. The RL method is a first-order

method and typically more stable than the FE method for cardiac cell models. The increase in

stability over the FE method typically permits a larger stable stepsize for a stiff cardiac cell model.

3.2.4 Generalized Rush–Larsen methods

It is possible to extend the RL method, as was done in [60], by applying a local linearization to the

RHS of (3.5a) and solving the linearized equations.

GRL1

The RL method is extended into a generalized Rush–Larsen method of order one (GRL1). The

GRL1 method decouples and linearizes the ODE system consisting of m ODEs around the point

y = yn at time t = tn to obtain

dyi
dt

= fi(yn) +
∂

∂yi
fi(yn) (yi − yn,i) , yi(tn) = yn,i, (3.19)

for i = 1, 2, . . . ,m, where the subscript i denotes component i of a vector. The exact solution

of (3.19) is given by

yi(t) = yn,i +
a

b

(
eb(t−tn) − 1

)
, i = 1, 2, . . . ,m, (3.20)

where a = fi(yn) and b = ∂fi(yn)/∂yi. The numerical solution yn+1 at time t = tn+1 is obtained

by

yn+1,i = yn,i +
a

b

(
eb(∆tn) − 1

)
, i = 1, 2, . . . ,m.

In practice, if |∂fi(y)/∂yi| < δ, where δ = 10−8 for double-precision calculations, the limit as

∂fi(y)/∂yi → 0 is used instead of (3.20) to get

yi(t) = yn,i + a(t− tn), i = 1, 2, . . . ,m.

The numerical solution, which is also exact when ∂fi(y)/∂yi → 0, is then obtained by

yn+1,i = yn,i + a∆tn, i = 1, 2, . . . ,m.

GRL2

The generalized Rush–Larsen method of order two (GRL2) similarly decouples and linearizes the

ODE system consisting of m ODEs around the point y = yn at time t = tn to obtain (3.19) with
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exact solution (3.20). However, now the numerical solution yn+1 at time t = tn+1 is obtained in

two steps:

1. Estimate the solution at time tn+1/2 with

yn+1/2,i = yn,i +
a

b

(
eb(∆tn/2) − 1

)
, i = 1, 2, . . . ,m.

2. Let ȳn+1/2 = yn+1/2 but with component i replaced by yn,i. For each i, compute the

numerical solution at time tn+1 from

yn+1,i = yn,i +
ā

b̄

(
eb̄∆tn − 1

)
, i = 1, 2, . . . ,m,

where ā = fi(ȳn+1/2), b̄ = ∂fi(ȳn+1/2)/∂yi and we have used the fact that ȳn+1/2,i = yn,i.

In order to use the generalized RL (GRL) methods, the diagonal of the Jacobian matrix ∂f/∂y is

required. When an analytical Jacobian is not available, a special implementation for computing the

numerical Jacobian is done in practice because only the diagonal elements are required. This reduces

computational cost because unnecessary components of the Jacobian matrix are not computed. The

finite-difference approximation of ∂fi(y)/∂yi is obtained by

∂fi(y)/∂yi ≈
fi(y1, . . . , yi−1, yi + ∆, yi+1, . . . , ym)− fi(y)

∆
,

where ∆ = 10−8 for double-precision calculations. As was done for the GRL1 method, if |∂fi(y)/∂yi| <

δ in Step 1, the numerical solution after the first step is obtained by

yn+1/2,i = yn,i + a
∆tn

2
, i = 1, 2, . . . ,m.

If |∂fi(y)/∂yi| < δ in Step 2, the numerical solution is obtained by

yn+1,i = yn,i + ā∆tn, i = 1, 2, . . . ,m.

In theory, the original RL method and the GRL methods solve the gating equations (3.18)

with the same algorithm. In practice, however, extra preprocessing is required for the RL method

because the gating variables must be identified and treated separately from the remaining variables.

The main difference between the methods occurs when dealing with the non-gating variables, which

are also treated with an exponential formula based on local linearization in the GRL methods.

Order of convergence

The GRL1 method is now proven to be first order. First, consider the non-autonomous system of

m ODEs

dy

dt
= f(t,y). (3.21)
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Let Y(t) = (y(t), t)
T

and let Ȳ(t) = (Y1(t), · · · ,Ym(t))
T

. Writing Y(t) =
(
Ȳ(t),Ym+1(t)

)T
, we

can rewrite (3.21) as an autonomous system of m+ 1 ODEs,

dY(t)

dt
= F(Y(t)),

where F(Y(t)) =
(
f(Ym+1(t), Ȳ(t)), 1

)T
. Hence a given non-autonomous system of m ODEs can

be rewritten as an autonomous system of m + 1 ODEs. Now without loss of generality, we can

consider the autonomous IVP
dy

dt
= f(y), y(tn) = yn. (3.22)

The order of convergence is found by expanding the exact solution to (3.22) in a Taylor series and

comparing this expansion to a Taylor series expansion of the numerical solution obtained by the

GRL1 method. First, the Taylor series expansion for the solution to (3.22) is given by

yn+1 = yn + ∆t
dyn
dt

+O((∆t)2).

Using (3.22), we have

yn+1 = yn + ∆tf(yn) +O((∆t)2).

The Taylor series expansion for the solution to the ith component of (3.22) is given by

yn+1,i = yn,i + ∆tfi(yn) +O((∆t)2), i = 1, 2, . . . ,m.

Recall that the GRL1 method linearizes (3.22), obtaining for the ith component the equation

dỹi
dt

= fi(yn) + (ỹi − yn,i)
∂

∂yi
fi(yn), yi(tn) = yn,i, i = 1, 2, . . . ,m. (3.23)

The decoupled linear equations (3.23) are solved exactly to t = tn+1 for each i. The Taylor series

expansion for the ith component solution is given by

ỹn+1,i = yn,i + ∆t
dỹn,i
dt

+O((∆t)2).

Now, using (3.23), we write

ỹn+1,i = yn,i + ∆t

(
fi(yn) + (ỹn,i − yn,i)

∂

∂yi
fi(yn)

)
+O((∆t)2).

Using the initial condition, namely ỹn,i = yn,i, we write

ỹn+1,i = yn,i + ∆t

(
fi(yn) + (yn,i − yn,i)

∂

∂yi
fi(yn)

)
+O((∆t)2),

or

ỹn+1,i = yn,i + ∆tfi(yn) +O((∆t)2).

Now, subtracting the Taylor series expansions for ỹn+1,i and yn+1,i, we obtain

|ỹn+1,i − yn+1,i| =
(
yn,i + ∆tfi(yn) +O((∆t)2)

)
−
(
yn,i + ∆tfi(yn) +O((∆t)2)

)
,

= O((∆t)2),

for i = 1, 2, . . . ,m. Hence we have that the GRL1 method is first order, as required. The GRL2

method is verified to be second order in [2].
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3.2.5 Type-insensitive methods

In general, an IVP with an interval of integration from [t0, tf ] may be stiff for parts of the interval

and non-stiff in others [44]. This motivates the use of type-insensitive (TI) methods. A TI method

combines a stiff method with a non-stiff method. The stiff method is used for the stiff region(s) of

the time interval and the non-stiff method is used for the remainder of the time interval.

Typically type-insensitive solvers analyze the stiffness of a problem at each timestep, e.g., [44].

However, this approach adds to the computational expense of the integration, and the solver may

choose the wrong method, further compounding inefficiencies. Because of the periodicity of cardiac

simulation at the cellular level, we can pre-determine the regions of stiffness and non-stiffness for

each cardiac cell model considered and avoid analyzing the stiffness of the system at each timestep,

thus reducing the computational expense of TI methods.

The regions of stiffness and non-stiffness are determined by examining the eigenvalues of the

Jacobian matrix of the RHS of the ODE over the interval of interest. The interval of stiffness is taken

to be the interval with large negative real eigenvalues, and the non-stiff interval is the remainder

of the interval. By taking advantage of this partitioning of the time interval, it is possible for both

solvers to use stepsizes governed by accuracy considerations and not stability considerations on

their respective intervals, leading to reductions in the overall computational time required to solve

the ODE over the entire time interval.

3.3 Numerical solution of PDEs

In order to solve a PDE numerically, both time and space must be discretized. In order to discretize

spatially, two methods are commonly used: the Finite Difference Method (FDM) and the Finite

Element Method (FEM). Both methods approximate the solution on a set of discrete nodes in

a mesh. The complexity of the geometry of the domain determines the complexity of the mesh.

For a complex geometry, additional nodes may be required in order to approximate the domain

accurately. For the purposes of this section, it is assumed that the nodes in the mesh are uniformly

distributed, with equal spacing between each adjacent node. For a more detailed description of the

FDM or the FEM, see [7] or [61].

3.3.1 The Finite Difference Method

The FDM method approximates the partial derivatives in the PDE using finite difference approx-

imations. Consider as an example the initial-boundary-value problem (IBVP) consisting of the

one-dimensional heat equation with constant coefficient of diffusion D subject to Dirichlet bound-

24



ary conditions, given by 

∂u

∂t
= D

∂2u

∂x2
, a ≤ x ≤ b, 0 < t ≤ T,

u(a, t) = ua(t),

u(b, t) = ub(t),

u(x, 0) = f(x).

We divide the domain from a to b uniformly into M + 1 nodes, x0, x1, x2, . . . , xj , xj+1, . . . , xM , and

let ∆x = xj+1 − xj . We divide also the time interval from 0 to T uniformly into N + 1 nodes,

t0, t1, t2, . . . , ti, ti+1, . . . , tN , and let ∆t = ti+1 − ti. Let the solution at the node (ti, xj), u(ti, xj),

be denoted by ui,j . We can approximate du
dt for sufficiently small ∆t by

du

dt
= lim

∆t→0

∆u

∆t
≈ ∆u

∆t
. (3.24)

By using a Taylor series expansion, we can show that the approximation (3.24) has error term

O(∆t). Writing out the Taylor series expansion for u(t+ ∆t), we have

u(t+ ∆t) = u(t) + ∆t
du

dt
+

(∆t)2

2!

d2u

dt2
+

(∆t)3

3!

d3u

dt3
+ · · ·

Rearranging, we write

u(t+ ∆t)− u(t) = ∆t
du

dt
+

(∆t)2

2!

d2u

dt2
+

(∆t)3

3!

d3u

dt3
+ · · ·

u(t+ ∆t)− u(t)

∆t
=
du

dt
+

(∆t)

2!

d2u

dt2
+

(∆t)2

3!

d3u

dt3
+ · · ·

or dropping terms with power of ∆t greater than two, we have

du

dt
=
u(t+ ∆t)− u(t)

∆t
+O(∆t) =

∆u

∆t
+O(∆t).

Similarly, it is possible to approximate d2u
dx2 for small ∆x by

d2u

dx2
=
uj+1 − 2uj + uj−1

(∆x)2
+O((∆x)2).

Now, we can rewrite a discretized version of the original IBVP to obtain

ui+1,j − ui,j
∆t

= D
ui,j+1 − 2ui,j + ui,j−1

(∆x)2
, x ∈ (x0, x1, . . . , xM ), t ∈ (t0, t1, . . . , tN ),

ui,0 = ua(ti), i = 0, 1, 2, . . . , N,

ui,M = ub(ti), i = 0, 1, 2, . . . , N,

u0,j = f(xj), j = 0, 1, 2, . . . ,M.

This discretization leads to an update equation for each ui,j in the domain that is dependent on the

surrounding values of ui,j . Irregularly shaped domains, such as a heart, are difficult to discretize

and solve using the FDM. This has made the use of the FEM a popular choice among practitioners.
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3.3.2 The Finite Element Method

There are three main steps to follow to solve a PDE using the FEM. First, a weak form of the

equations is determined by introducing a function space in which we seek our solution. Second, a

discrete subspace of the function space is determined. Finally, the weak form of the PDE is solved

over the discrete subspace. Following Chapter 3 of [61], the FEM begins by using the weak form,

or the variational formulation, of the PDE to set up an integral form of the problem. A problem is

converted into its variational problem by introducing a function space V in which we are seeking

the solution to the PDE. The problem is multiplied by arbitrary functions, called test functions,

from the function space V , and the problem is integrated over its domain. Consider the following

boundary-value problem with domain Ω and boundary ∂Ω as an example, given by

−∇2u = f(x), x ∈ Ω, (3.25)

u = 0, x ∈ ∂Ω. (3.26)

Let ψ be an arbitrary test function in V . Multiply (3.25) by ψ and integrate to obtain

−
∫

Ω

∇2uψ dx =

∫
Ω

f(x)ψ dx. (3.27)

Now, we have a variational problem, where we need to find a u ∈ V that satisfies (3.27) for all

ψ ∈ V . Using Green’s lemma (see, e.g., Chapter 8 of [51]) for the LHS of (3.27), we have∫
Ω

∇u · ∇ψ dx−
∫
∂Ω

n̂ · ∇uψ dx =

∫
Ω

f(x)ψ dx, (3.28)

where n̂ is the outward unit normal vector. Because the function space V is arbitrary, we can

choose V such that all functions ψ ∈ V are zero on the boundary, reducing (3.28) to∫
Ω

∇u · ∇ψ dx =

∫
Ω

f(x)ψ dx, ∀ψ ∈ V. (3.29)

The next step is to discretize (3.29) so that it can be solved numerically. This is done by finding a

discrete subspace Vh ⊂ V . One approach is to partition the domain Ω into a set of polygonal sub-

domains and let Vh be defined by piecewise polynomial functions over the partitioned sub-domains.

In particular, triangles are typically used in 2D and tetrahedra are used in 3D. We define Ωh as a

polygonal approximation to Ω and Vh to be a space of piecewise polynomial functions defined over

Ωh. In particular, we choose piecewise linear functions and let M + 1 be the number of vertices in

Ωh, with coordinates xi, i = 0, 1, 2, . . . ,M . Then Ωh is the space spanned by basis functions φj ,

j = 0, 1, 2, . . . ,M , defined by

Φj(xi) =

1, if i = j,

0, otherwise.

Now, we can write (3.29) as a discrete problem∫
Ωh

∇uh · ∇ψh dx =

∫
Ωh

f(x)ψh dx, ∀ψh ∈ Vh. (3.30)
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We can write uh in terms of basis functions

uh =

M∑
j=0

ujφj ,

where the uj are scalars. Using this equation for uh in (3.30) and using the basis functions as test

functions, we have∫
Ωh

∇

 M∑
j=0

ujφj

 · ∇φi dx =

∫
Ωh

f(x)φi dx, i = 0, 1, 2, . . . ,M. (3.31)

Because differential operators are linear, we can rewrite (3.31), obtaining

M∑
j=0

uj

∫
Ωh

∇φj · ∇φi dx =

∫
Ωh

f(x)φi dx, i = 0, 1, 2, . . . ,M.

This approach leads to what is called a Galerkin method because the same basis functions are

used as test functions and as the basis with which to approximate the solution. Because the basis

functions are known, the integrals are computed, leaving a linear system to be solved for the discrete

solution values uj . In matrix form, the problem becomes

Au = f,

where

Aij =

∫
Ωh

∇φi · ∇φj dx,

fi =

∫
Ωh

fφi dx.

Then the piecewise linear function uh is the approximate solution to the solution of the continuous

problem (3.25).

3.3.3 The FEM for the bidomain model

By using either the semi-implicit method described in Section 3.4.1, ignoring the Iion term, or

operator splitting for the bidomain model, we are left with the following PDEs for domain Ω and

boundary ∂Ω,

χCm
∂Vm
∂t

= ∇ · (MI∇Vm) +∇ · (MI∇uE) , (3.32a)

0 = ∇ · (MI∇Vm) +∇ · ((MI + ME)∇uE) , (3.32b)

with boundary conditions

n̂ · (MI∇Vm + MI∇uE) = 0, (3.33a)

n̂ · (ME∇uE) = 0. (3.33b)
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The FEM is used to discretize (3.32). First, let V denote the function space where we are looking

for a solution. Next, we multiply (3.32) by a test function φ ∈ V and integrate to get∫
Ω

χCm
∂Vm
∂t

φ dx =

∫
Ω

∇ · (MI∇Vm)φ dx +

∫
Ω

∇ · (MI∇uE)φ dx,

0 =

∫
Ω

∇ · (MI∇Vm)φ dx +

∫
Ω

∇ · ((MI + ME)∇uE)φ dx.

Using Green’s lemma, we have

0 =
d

dt

∫
Ω

χCmVmφ dx +

∫
Ω

MI∇Vm · ∇φ dx−
∫
∂Ω

φ (MI∇Vm · n̂)ds

+

∫
Ω

MI∇uE · ∇φ dx−
∫
∂Ω

φ (MI∇uE · n̂)ds,

0 =

∫
Ω

MI∇Vm · ∇φ dx−
∫
∂Ω

φ (MI∇Vm · n̂)ds+∫
Ω

(MI + ME)∇uE · ∇φ dx−
∫
∂Ω

φ ((MI + ME)∇uE · n̂)ds.

Using the boundary conditions (3.33a) and (3.33b), we have

0 =
d

dt

∫
Ω

χCmVmφ dx +

∫
Ω

MI∇Vm · ∇φ dx +

∫
Ω

MI∇uE · ∇φ dx,

0 =

∫
Ω

MI∇Vm · ∇φ dx +

∫
Ω

(MI + ME)∇uE · ∇φ dx,

for all φ in V . Choosing basis functions ψj , j = 0, 1, 2, . . . ,M , for our domain Ω, we let Vm ≈∑M
j=0 vjψj and uE ≈

∑M
j=0 ujψj . Now, we get discretized equations for (3.32),

0 =χCm
d

dt

M∑
j=0

vj

∫
Ω

ψj ψi dx +

M∑
j=0

vj

∫
Ω

MI∇ψj · ∇ψi dx +

M∑
j=0

uj

∫
Ω

MI∇ψj · ∇ψi dx,

0 =

M∑
j=0

vj

∫
Ω

MI∇ψj · ∇ψi dx +

M∑
j=0

uj

∫
Ω

(MI + ME)∇ψj · ∇ψi dx,

for i = 0, 1, 2, . . . ,M . The derivatives in time remain to be discretized, but this can be done using

any numerical method for ODEs.

3.3.4 Error norms for PDEs

In order to compare the accuracy and efficiency of numerical methods for solving a system of PDEs

to a given error tolerance, it is necessary to have a measure of the accuracy of the numerical method

used. Assuming an IBVP is solved for t ∈ [t0, tf ] over a domain Ω, this can be done by computing

an average of the error at N + 1 temporal points in [t0, tf ] and for M + 1 spatial points in Ω. The

MRMS error is generalized from (3.3) by

eMRMS =

√√√√ 1

NM

N∑
i=0

M∑
j=0

(
ŷi,j − yi,j
1 + |ŷi,j |

)2

, (3.34)

where yi,j is the numerical solution and ŷi,j is the reference solution at time ti and spatial location

xj , i = 0, 1, 2, . . . , N , j = 0, 1, 2, . . . ,M .
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The RRMS error is generalized from (3.4) by

eRRMS =

√√√√ 1

NM

∑N
i=0

∑M
j=0(ŷi,j − yi,j)2∑N

i=0

∑M
j=0(ŷi,j)2

, (3.35)

where yi,j is the numerical solution and ŷi,j is the reference solution at time ti and spatial location

xj , i = 0, 1, 2, . . . , N , j = 0, 1, 2, . . . ,M .

3.4 Methods used in the software

Because we are interested in improving the efficiency of the numerical methods used to solve the

bidomain model, it is important to understand how the available software packages are currently

solving the bidomain model. We consider only CARP, PROPAG, Continuity 6, and Chaste be-

cause PyCC is no longer actively maintained and the software by Ying et al. [70] solves only

the monodomain model. CARP uses operator splitting to decouple the bidomain model into a

parabolic PDE, an elliptic PDE, and a system of nonlinear ODEs. For simple problems, all three

are solved with the first-order Forward Euler method. For problems that require a finer mesh, the

second-order Crank–Nicolson method is used to solve the parabolic PDE. PROPAG decouples the

bidomain model into a system of ODEs and two decoupled PDEs. The ODEs are solved first in

order to update the Iion term, required to solve for the transmembrane potential in an explicit

discretization of the first PDE. The extracellular potential is updated by solving a linear system

of equations resulting from the discretization of the second PDE [47]. Continuity 6 uses opera-

tor splitting, with the ODEs solved using RADAU5 [28]. Work was done in [28] to use Graphics

processing units (GPUs) within Continuity 6 to solve the system of ODEs using the Backward Eu-

ler method with a single iteration of the Newton–Raphson method to solve the nonlinear system,

greatly reducing run-time. Chaste uses a semi-implicit first-order method to solve the bidomain

model, described in Section 3.4.1. This reduces the problem to solving a linear system of equations

and a system of ODEs. By default, the Forward Euler method is used to solve the ODEs but it is

possible to use other methods including the Backward Euler method and Heun’s method.

3.4.1 Semi-implicit method for cardiac modelling

A semi-implicit time discretization method, as described in [43], is used in Chaste to solve the

bidomain model and represents an alternative to applying operator splitting to the full bidomain

model. By using a semi-implicit method, the stability restriction on stepsize is reduced and a

linear system of equations and a system of nonlinear ODEs are solved instead of a larger, nonlinear

system of equations, occurring from the discretization of the complete bidomain model. The PDEs

(2.1b) and (2.1c) can be discretized semi-implicitly as follows, using timestep ∆t, and the notation

Vm(x, n∆t) = Vm,n, uE(x, n∆t) = uE,n, and s(x, n∆t) = sn, to obtain
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χCm
Vm,n+1 − Vm,n

∆t
+ χIion(sn, Vm,n, t) = ∇ · (MI∇Vm,n+1) +∇ · (MI∇uE,n+1) ,

0 = ∇ · (MI∇Vm,n+1) +∇ · ((MI + ME)∇uE,n+1) .

In Chaste, the FEM is used for spatial discretization of the PDEs. Following the spatial discretiza-

tion described in Section 3.3.3, we are left with a linear system of the form Ax = b to solve at

each timestep. Assuming we have basis functions ψj for our domain Ω, the linear system is given by

 χCm
∆t M + AI AI

AI AI + AE

 Vm,n+1

uE,n+1

 =

 χCm
∆t MVm,n − 1

Cm
Iion(sn,Vm,n)

0

 , (3.36)

where M =
∫

Ω
ψj ψi dx, AI =

∫
Ω

MI∇ψj ·∇ψi dx, and AE =
∫

Ω
ME∇ψj ·∇ψi dx, for ψj , ψi ∈ Ω.

For tn < t < tn + ∆t, the steps to solve the bidomain model are given by

1. Using a numerical method for IVPs, solve the system of nonlinear ODEs at each node, given

by
ds

dt
= f(s, Vm, t),

where f is determined by the cell model.

2. Set up the RHS of the linear system (3.36).

3. Solve the linear system (3.36).

3.4.2 Contributions to Chaste

In order to run the experiments for this thesis, additions were made to Chaste. At the time of

writing, the latest release version is Chaste 3.0, available since January 2012. The following is a

list of additions and contributions made to Chaste. For each addition incorporated into Chaste,

the version number of the software is also mentioned.

1. The second-order Heun’s method (3.17) for solving ODEs has been added. It has been present

in Chaste since version 2.0, which was released in April 2010. When computing reference

solutions for most of the 1D bidomain simulations described in Section 4.4, this method was

used to solve the ODEs because it achieved sufficient convergence more quickly than the FE

method or the BE method in Chaste.

2. The ability to output solutions with any number of digits has been added. A refactored

version of this addition is present in Chaste 3.0. The contributed version was modified by
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the main Chaste developers to better fit with the software. Previously, the number of digits

output to the simulation solution file was limited to six or fewer digits. This addition was

done to facilitate the comparison of numerical solutions to determine the number of matching

digits between two numerical solutions.

3. The Rush–Larsen method for the Luo–Rudy model, described in Section 3.2.3, has been

added and enabled the Chaste developers to add the Rush–Larsen method to PyCML. With

this addition, Rush–Larsen type code can be automatically generated for all compatible cell

models available from CellML. This addition is present in Chaste 3.0.

4. The GRL1 and GRL2 methods, described in Section 3.2.4, have been added to PyCML. With

this addition, GRL1 and GRL2 code can be automatically generated for all compatible cell

models available from CellML. This addition is expected to be present in the next release of

Chaste (after July 2012).
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Chapter 4

Results

This chapter presents the cardiac cell models used in this study and explains why they are of

interest in Section 4.1. The RRMS and the MRMS error norms are compared for the model of

McAllister et al. (1975) in Section 4.2 and the reliability of the MRMS error norm is shown. The

results from the study of 37 cardiac cell models and the application of the results from the cell model

study to a one-dimensional bidomain problem are reported in Sections 4.3 and 4.4, respectively.

The cardiac cell study in this thesis extends the study reported in [56] and includes the corrected

results from [57]. The additions to the cardiac cell study from [56] include a comparison using the

MRMS error norm and the addition of the GRL1 method.

4.1 Cardiac cell models

4.1.1 Cardiac cell models used

Cardiac cell models have been developed for a range of mammals such as rats, mice, guinea pigs,

rabbits, dogs, and humans. Mammals other than humans are studied because their hearts have

similar properties and are easier to study. Models also exist for specific cardiac cell types such as

atrial, ventricular, Purkinje fibre, and sino-atrial cardiac cells. The combination of the quantity

of mammals studied and the number of heart cell types leads to a vast selection of available cell

models.

This thesis focuses on 37 cardiac cell models that are derived from the HH model of a squid

giant axon. The 37 cell models range from the smallest, the FHN model, with two variables, to the

largest, the model of Bondarenko et al. (2004), with 41 variables. The FHN model is a simplification

of the HH model and was rescaled and modified to have realistic values for the action potential,

following [61]. The models were chosen to represent a wide sampling of the cell models available, in

terms of species, cell type, and model detail. They were also selected based on their CellML rating.

Only models marked with a gold star on the CellML website that have been verified to match with

published results were considered, with the exception of the model of Puglisi–Bers (2001). For the

model of Puglisi–Bers (2001), other verified code was available from [56]. A complete list of the cell

models chosen, together with the number of variables for each model, a reference to the original
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paper, and a brief description of the model, are reported in Table 4.1. The models include the LR

model of a guinea pig ventricular cell, the Winslow et al. (1999) model of a canine ventricular cell,

and the Courtemanche et al. (1998) model of a human atrial cell.

Note that the model of Winslow et al. (1999) used is a reduced form of the original model,

with 31 variables, and is referred to by Winslow31 throughout the remainder of this thesis. The

intracellular sodium concentration and one of the calcium handing mechanisms from the original

model are set as constant [62]. Because the endocardial, epicardial, and M-cell variants of the

models of Sakmann et al. (2000), ten Tusscher et al. (2004), and ten Tusscher et al. (2006) were

available as separate CellML files from the CellML repository, all three of the variants are included

in this study.

For each model, an electrical stimulus is applied in order to initiate an action potential. The

maximum stepsize allowed for each model is restricted to the duration of time in which the stimulus

current was applied. Stepsizes that have reached this maximum stepsize are marked by a dagger.

Note also that stepsizes were adjusted to land exactly on the beginning and end points of the

application of the stimulus current and on the end point of the simulation. This was done to avoid

introducing errors caused by using a discontinuous function for the stimulus current.

4.1.2 Analysis of the eigenvalues of the cardiac cell models

Numerical eigenvalues for the Jacobian of the RHS of the system of ODEs for all 37 cell models

were computed at one ms time intervals in order to determine the stiffness of each cell model.

The numerical eigenvalues were computed using Matlab’s eig function to evaluate the Jacobian

at each interval. The Jacobian matrix was computed using Matlab’s numjac function and verified

using ADiMat, an automatic differentiation software package for Matlab [5]. Table 4.2 reports the

extreme values for the real and imaginary components of the eigenvalues over the time interval and

the percentage of simulation time when a complex eigenvalue pair was present. By considering the

maximum magnitude of the negative real eigenvalues from Table 4.2, the five stiffest cell models in

order of decreasing stiffness are identified as those of Pandit et al. (2003), Winslow31, Bondarenko

et al. (2004), Pandit et al. (2001), and Jafri et al. (1998).

By examining the eigenvalues of a cell model, it is possible to determine the regions of stiffness

that can be exploited by the TI methods. For example, consider the model of Pandit et al. (2001)

with 26 variables. Figure 4.1 shows the solution solved over 250 ms for the transmembrane potential

and Figure 4.2 shows the maximum and minimum real part of the eigenvalues over the interval of

integration. By examining Figure 4.2, the interval t ∈ [105 125] can be considered to be the stiff

region and the union of the intervals t ∈ [0 105], t ∈ [125 250] can be considered to be the non-stiff

region. The TI method uses the BE, RL, GRL1, or GRL2 method for the stiff region and the FE

method for the non-stiff region.
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Table 4.1: Summary of the 37 cardiac cell models used in this thesis. Three types of cardiac
cell variants (endocardial cell, epicardial cell, and M-cell) exist for each of the models marked
with an asterisk.

Model Reference Number of variables Description

Beeler–Reuter (1977) [4] 8 Mammalian ventricular model

Bondarenko et al. (2004) [6] 41 Mouse ventricular model

Courtemanche et al. (1998) [10] 21 Human atrial model

Demir et al. (1994) [12] 27 Rabbit sinoatrial node model

Demir et al. (1999) [11] 29 Rabbit sinoatrial node model

DiFrancesco–Noble (1985) [14] 16 Mammal Purkinje fibre model

Dokos et al. (1996) [15] 18 Rabbit sinoatrial node model

Faber–Rudy (2000) [16] 19 Guinea pig ventricular model

FitzHugh–Nagumo (1961) [17, 34] 2 Nerve membrane model

Fox et al. (2002) [18] 13 Canine ventricular model

Hilgemann–Noble (1987) [21] 15 Rabbit atrial model

Hund–Rudy (2004) [23] 29 Canine ventricular model

Jafri et al. (1998) [25] 31 Guinea pig ventricular model

Luo–Rudy (1991) [30] 8 Guinea pig ventricular model

Maleckar et al. (2008) [31] 30 Human atrial model

McAllister et al. (1975) [33] 10 Canine Purkinje fibre model

Noble (1962) [36] 4 Mammal Purkinje fibre model

Noble–Noble (1984) [37] 15 Rabbit sinoatrial node model

Noble et al. (1991) [38] 17 Guinea pig ventricular model

Noble et al. (1998) [39] 22 Guinea pig ventricular model

Nygren et al. (1998) [40] 29 Human atrial model

Pandit et al. (2001) [41] 26 Rat left-ventricular model

Pandit et al. (2003) [42] 26 Rat left-ventricular model

Puglisi–Bers (2001) [48] 17 Rabbit ventricular model

Sakmann et al. (2000)* [50] 21 Guinea pig ventricular model

Stewart et al. (2009) [58] 20 Human Purkinje fibre model

Ten Tusscher et al. (2004)* [64] 17 Human ventricular model

Ten Tusscher et al. (2006)* [65] 19 Human ventricular model

Wang–Sobie (2008) [68] 35 Neonatal mouse ventricular model

Winslow31 [69] 31 Canine ventricular model

Zhang et al. (2000) [72] 15 Rabbit sinoatrial node model
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Table 4.2: Extreme values of the eigenvalues for each cell model. The minimum real part
of the set of eigenvalues is denoted min(Re(λ)) and the maximum real part of the set of
eigenvalues is denoted max(Re(λ)). Similarly, the minimum and maximum imaginary parts
are denoted min(Im(λ)) and max(Im(λ)). The percentage of the solution interval in which
there is at least one pair of complex eigenvalues is also reported.

Model min(Re(λ)) max(Re(λ)) min(Im(λ)) max(Im(λ)) % Complex

Beeler–Reuter (1977) –8.20E+1 1.55E–2 –1.97E+0 1.97E+0 45

Bondarenko (2004) –8.49E+3 4.51E+0 –2.80E+0 2.80E+0 53

Courtemanche et al. (1998) –1.29E+2 1.87E–1 –4.50E+0 4.50E+0 82

Demir et al. (1994) –3.80E+1 4.79E–1 –7.95E–2 7.95E–2 74

Demir et al. (1999) –3.82E+1 4.81E–1 –7.95E–2 7.95E–2 72

DiFrancesco–Noble (1985) –2.63E+1 1.88E+0 –6.14E–1 6.14E–1 56

Dokos et al. (1996) –2.99E+1 5.06E–1 –1.19E–1 1.19E–1 97

Faber–Rudy (2000) –1.84E+2 1.37E–2 –5.61E–1 5.61E–1 58

FitzHugh–Nagumo (1961) –4.39E–1 1.78E–1 –4.59E–2 4.59E–2 28

Fox et al. (2002) –4.39E+2 4.44E–2 –4.19E–1 4.19E–1 65

Hilgemann–Noble (1987) –3.25E+1 1.58E–1 –2.25E–1 2.25E–1 25

Hund–Rudy (2004) –1.95E+2 9.22E–1 –3.74E+0 3.74E+0 62

Jafri et al. (1998) –4.42E+3 4.82E+0 –2.35E–1 2.35E–1 47

Luo–Rudy (1991) –1.51E+2 7.01E–2 –4.11E–2 4.11E–2 73

Maleckar et al. (2008) –4.16E+1 2.42E–1 –3.43E–1 3.43E–1 28

McAllister et al. (1975) –1.83E+2 1.49E+0 –3.02E+0 3.02E+0 68

Noble (1962) –9.80E+0 1.74E+0 –1.28E–1 1.28E–1 24

Noble–Noble (1984) –1.25E+1 4.77E–1 –1.03E–1 1.03E–1 92

Noble et al. (1991) –3.89E+1 4.35E+0 –1.72E–1 1.72E–1 20

Noble et al. (1998) –3.60E+1 5.71E+0 –2.35E–1 2.35E–1 47

Nygren et al. (1998) –4.03E+1 2.05E+0 –3.88E–1 3.88E–1 24

Pandit et al. (2001) –6.92E+3 4.30E+0 –1.43E+0 1.43E+0 12

Pandit et al. (2003) –7.54E+4 3.87E+0 –9.11E–1 9.11E–1 35

Puglisi–Bers (2001) –1.91E+2 2.22E+0 –1.07E–1 1.07E–1 41

Sakmann et al. (2000) – Endo –2.97E+1 7.21E–1 –7.48E–2 7.48E–2 84

Sakmann et al. (2000) – Epi –2.96E+1 6.98E–1 –7.47E–2 7.47E–2 75

Sakmann et al. (2000) – M-cell –2.98E+1 1.98E+0 –7.58E–2 7.58E–2 72

Stewart et al. (2009) –1.38E–1 3.34E–3 –1.57E–3 1.57E–3 92

Ten Tusscher et al. (2004) – Endo –1.17E+3 1.01E–1 –4.64E+0 4.64E+0 17

Ten Tusscher et al. (2004) – Epi –1.17E+3 9.74E–2 –4.70E+0 4.70E+0 18

Ten Tusscher et al. (2004) – M-cell –1.17E+3 9.75E–2 –4.70E+0 4.70E+0 21

Ten Tusscher et al. (2006) – Endo –1.26E+3 4.00E+0 –4.77E+0 –4.77E+0 50

Ten Tusscher et al. (2006) – Epi –9.44E+2 2.84E+0 –5.01E+0 5.01E+0 51

Ten Tusscher et al. (2006) – M-cell –9.81E+2 4.36E+0 –4.64E+0 4.64E+0 34

Wang–Sobie (2008) –1.23E+2 1.23E+0 –1.24E+0 1.24E+0 46

Winslow31 –1.84E+4 1.53E+0 –4.22E–1 4.22E–1 63

Zhang et al. (2000) –2.22E+1 1.29E–1 –1.00E–1 1.00E–1 89
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A similar analysis to determine the region of stiffness was also applied to the models of Bon-

darenko et al. (2004), Jafri et al. (1998), and Winslow31. Stiff and non-stiff intervals are listed for

these four models in Table 4.3.

Figure 4.1: Transmembrane potential for the model of Pandit et al. (2001).

Figure 4.2: Extreme real eigenvalue values for the model of Pandit et al. (2001).

4.2 Error norm comparison

The RRMS and MRMS error norms are compared at 5% and 1% error for the model of McAllister

et al. (1975), solved using the RL method. Figure 4.3 compares a reference solution correct to seven
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Table 4.3: Stiffness intervals for four models.

Model Stiff interval Non-stiff interval

Bondarenko et al. (2004) [20 30] [0 20]; [30 75]

Jafri et al. (1998) [0 50] [50 300]

Pandit et al. (2001) [105 125] [0 105]; [125 250]

Winslow31 [0 50] [50 300]

matching digits (see Section 4.3 for a description of the computation of the reference solutions) to

solutions computed to 5% and 1% RRMS error for the transmembrane potential. It can be seen that

at 5% RRMS error, the action potential is early by approximately 100 ms. The solution computed

to 1% RRMS error is fairly accurate compared to the reference solution. Figure 4.4 compares the

same reference solution to solutions computed to 5% and 1% MRMS error for the transmembrane

potential for the sub-interval 200–250 ms. It can be seen that at 1% MRMS error, the solution is

extremely accurate. At 5% MRMS error, the solution remains accurate but is eight times faster to

compute.

From examination of Figures 4.3 and 4.4, we postulate that for the purpose of clinical accuracy

requirements, the RRMS error norm at 5% is too relaxed and the MRMS error norm at 1% is

too strict. Similar results hold for the RRMS and MRMS error norms for the remaining 36 cell

models. Therefore, for the remainder of this chapter, only results for the MRMS error norm at 5%

are shown. The results for the RRMS error norm at 5% and 1% and the results for the MRMS

error norm at 1% can be found in Appendix A.
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Figure 4.3: RRMS error at 5% and 1% for the model of McAllister et al. (1975) solved
using the RL method.

Figure 4.4: MRMS error at 5% and 1% for the model of McAllister et al. (1975) solved
using the RL method for the interval [200 250].
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4.3 Cardiac cell model results

The FE, RL, GRL1, and GRL2 methods are compared for the 37 cell models described in Section

4.1, with results listed in Table 4.4. The shortest execution time has been highlighted in bold

text for each model. The BE method is compared to the FE, RL, GRL1, and GRL2 methods for

six models, those of Courtemanche et al. (1998), Faber–Rudy (2000), Noble (1962), Noble et al.

(1998), Pandit et al. (2003), and Winslow31, with results listed in Table 4.5. These models were

chosen to represent a range of stiffness, from the non-stiff model of Noble (1962), to the moderately

stiff model of Courtemanche et al. (1998), to the stiff model of Pandit et al. (2003), in order to

test the BE method on a range of models, from non-stiff to moderately stiff to stiff. In Table 4.6,

the most efficient method is given out of the FE, RL, GRL1 and GRL2 methods for the five stiffest

models at a 5% MRMS error tolerance.

The TI methods are tested on four of the stiffest models, those of Bondarenko et al. (2004),

Jafri et al. (1998), Pandit et al. (2001), and Winslow31, with results listed in Table 4.7. The

shortest execution time has been highlighted in bold text for each model. The TI methods are

tested on the stiffest models because such models are the most likely to show computation time

improvements through the use of TI methods. In Table 4.8, the optimal single method is compared

to the optimal TI method and the winning method is highlighted in bold text.

By comparing solutions computed with decreasing absolute and relative tolerances, down to

10−12, Matlab’s ode15s method was used to find reference solutions for all 37 cell models with

seven to ten matching digits at N = 100 equally spaced points in the interval of integration. The

error between the reference solution and the computed solution was computed at N = 100 equally

spaced points, using first- or second-order interpolation as necessary. Maximum constant stepsizes

were found for every method and model combination that gave RRMS and MRMS errors of 5%

and 1%. Timings reported are the minimum run time out of 100 runs for the maximum stepsize

that satisfied the error tolerance. Timings were computed in Matlab R2010a on an HP Z400 with

an Intel Xeon W3520 2.66 GHz quad-core processor with 16 GB of DDR3 RAM running 64-bit

Ubuntu 9.04. Hyperthreading and turbo-boost were enabled while the timings were computed.

From the results listed in Table 4.4, the FE method wins for seven models, the RL method

method wins for 25 models, the GRL1 method wins for two models, and the GRL2 method wins

for three models. From Table 4.5, the BE method is never the most efficient method to compute a

solution for the six cell models considered.

It is worth noting that the GRL methods are generally able to solve the stiff models in a shorter

time than the other methods considered. With the exception of the Winslow31 model, the GRL

methods consistently have the shortest execution time. The results for the five stiffest models are

summarized in Table 4.6.
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Table 4.4: Stepsize, in milliseconds, and execution time, in seconds, of the four numerical
methods using the largest stepsize that produced less than 5% MRMS error. The shortest
execution time has been highlighted in bold text for each model.

Model FE RL GRL1 GRL2

∆t Time ∆t Time ∆t Time ∆t Time

Beeler–Reuler (1977) 2.53E–2 4.31E–2 7.20E–1 1.40E–3 8.08E–1 3.85E–3 7.15E–1 8.33E–3

Bondarenko et al. (2004) 2.13E–4 2.63E+0 2.13E–4 2.28E+0 7.47E–3 8.41E–1 6.92E–3 1.80E+0

Courtemanche et al. (1998) 1.94E–2 2.35E–1 7.97E–2 5.60E–2 9.60E–2 3.01E–1 2.98E–1 1.75E–1

Demir et al. (1994) 5.95E–2 1.84E–2 5.32E–2 1.76E–2 1.18E–1 9.03E–2 5.41E–1 4.14E–2

Demir et al. (1999) 5.96E–2 1.95E–2 4.73E–2 2.75E–2 9.99E–2 1.26E–1 5.32E–1 5.00E–2

DiFrancesco–Noble (1985) 7.73E–2 9.77E–2 1.95E–1 3.40E–2 2.07E–1 3.22E–1 7.82E–1 1.78E–1

Dokos et al. (1996) 7.02E–2 3.28E–2 1.22E–1 1.64E–2 8.02E–2 2.78E–1 6.72E–1 7.69E–2

FitzHugh–Nagumo (1961) 2.72E–3 6.05E–2 NA NA 2.60E–3 1.35E–1 2.61E–3 2.29E–1

Faber–Rudy (2000) 1.12E–2 2.38E–1 2.01E–2 1.17E–1 4.06E–2 6.28E–1 2.04E–1 2.60E–1

Fox et al. (2002) 4.62E–3 3.52E–1 4.33E–2 3.31E–2 1.16E–1 8.77E–2 1.31E–1 1.61E–1

Hilgemann–Noble (1987) 6.25E–2 2.47E–2 8.06E–2 1.51E–2 1.52E–1 9.77E–2 6.24E–1 5.04E–2

Hund–Rudy (2004) 7.80E–3 3.61E–1 5.33E–3 4.85E–1 5.47E–3 4.88E+0 6.74E–2 7.96E–1

Jafri et al. (1998) 5.76E–4 4.20E+0 5.77E–4 3.59E+0 1.41E–3 1.71E+1 1.00E–2 4.84E+0

Luo–Rudy (1991) 1.35E–2 1.47E–1 1.23E–1 1.30E–2 3.15E–1 1.01E–2 5.95E–1 2.19E–2

Maleckar et al. (2008) 5.02E–2 9.25E–2 8.87E–2 4.60E–2 4.20E–1 1.29E–1 9.71E–1 1.14E–1

McAllister et al. (1975) 2.47E–2 9.18E–2 4.69E–1 4.41E–3 2.53E–1 2.38E–2 2.43E–1 9.36E–2

Noble (1962) 2.02E–1 4.25E–3 1.47E–1 3.69E–3 1.10E–1 1.77E–2 3.11E–1 1.17E–2

Noble–Noble (1984) 2.04E–1 6.77E–3 1.21E–1 9.57E–3 9.27E–2 1.21E–1 9.81E–1 2.41E–2

Noble et al. (1991) 5.15E–2 2.56E–2 1.53E–1 7.46E–3 1.04E–1 1.17E–1 3.93E–1 6.19E–2

Noble et al. (1998) 5.56E–2 6.22E–2 1.57E–1 1.96E–2 8.86E–2 3.47E–1 3.66E–1 1.74E–1

Nygren et al. (1998) 5.36E–2 1.10E–1 8.88E–2 5.88E–2 2.06E–1 2.77E–1 5.33E–1 2.28E–1

Pandit et al. (2001) 2.91E–4 5.90E+0 2.91E–4 5.13E+0 2.40E–2 6.02E–1 9.58E–2 3.01E–1

Pandit et al. (2003) 2.65E–5 6.34E+1 2.65E–5 5.68E+1 1.57E–2 9.67E–1 3.57E–2 8.21E–1

Puglisi–Bers (2001) 5.97E–3 1.94E+0 1.45E–2 7.81E–1 3.23E–2 1.04E+0 2.14E–1 3.32E–1

Sakmann et al. (2000) – Endo 6.90E–2 5.84E–2 4.99E–2 6.94E–2 4.16E–2 8.87E–1 1.75E–1 4.35E–1

Sakmann et al. (2000) – Epi 6.90E–2 5.82E–2 4.16E–2 8.32E–2 3.83E–2 9.67E–1 1.72E–1 4.45E–1

Sakmann et al. (2000) – M-cell 6.86E–2 5.92E–2 2.32E–1 1.51E–2 4.21E–1 8.80E–2 1.29E+0 5.97E–2

Stewart et al. (2009) 1.52E+1 5.27E–1 2.05E+2 3.48E–2 1.74E+2 3.78E–1 4.20E+2 3.09E–1

Ten Tusscher et al. (2004) –Endo 1.78E–3 2.14E+0 1.24E–1 2.65E–2 1.37E–1 2.18E–1 3.44E–1 1.71E–1

Ten Tusscher et al. (2006) –Endo 1.62E–3 1.55E+0 7.03E–2 3.10E–2 1.29E–1 1.67E–1 2.16E–1 1.97E–1

Ten Tusscher et al. (2004) –Epi 1.78E–3 2.12E+0 1.12E–1 2.97E–2 1.19E–1 2.51E–1 3.21E–1 1.83E–1

Ten Tusscher et al. (2006) –Epi 2.14E–3 1.20E+0 1.16E–1 1.90E–2 1.75E–1 1.23E–1 3.04E–1 1.41E–1

Ten Tusscher et al. (2004) –M-cell 1.76E–3 1.58E+0 1.21E–1 2.03E–2 1.02E–1 2.23E–1 5.29E–1 8.24E–2

Ten Tusscher et al. (2006) –M-cell 2.06E–3 1.22E+0 1.27E–1 1.72E–2 1.38E–1 1.54E–1 3.08E–1 1.38E–1

Wang–Sobie (2008) 1.66E–2 6.88E–2 5.27E–2 1.90E–2 9.36E–2 1.20E–1 4.13E–1 5.37E–2

Winslow31 1.07E–4 1.65E+1 1.07E–4 1.81E+1 9.38E–5 2.15E+2 7.15E–4 5.94E+1

Zhang et al. (2000) 9.97E–2 5.83E–2 4.57E–1 1.16E–2 3.04E–1 1.12E–1 1.41E+0 4.84E–2

Table 4.5: Stepsize, in milliseconds, and execution time, in seconds, of the Backward Euler
method using the largest stepsize that produced less than 5% MRMS error. Note that none
of the execution times have been highlighted in bold text because the BE method does not
have the shortest execution time for any model compared to the FE, RL, GRL1, and GRL2
methods.

Model BE

∆t Time

Courtemanche et al. (1998) 2.30E–1 4.59E+0

Faber–Rudy (2000) 3.55E–2 1.25E+1

Noble (1962) 2.07E–1 9.50E–1

Noble et al. (1998) 2.83E–1 2.92E+0

Pandit et al. (2003) 3.53E–2 9.97E+0

Winslow31 3.86E–3 1.02E+2
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Table 4.6: Most efficient method out of the FE, RL, GRL1 and GRL2 methods for the five
stiffest models at a 5% MRMS error tolerance.

Model Optimal Method

Bondarenko et al. (2004) GRL1

Jafri et al. (1998) RL

Pandit et al. (2001) GRL2

Pandit et al. (2003) GRL2

Winslow31 FE

Table 4.7: Stiffness intervals and execution time, in seconds, of type-insensitive methods
using the largest stepsize that produced less than 5% MRMS error. The shortest execution
time has been highlighted in bold text for each model.

Model Stiff Interval Non-stiff Interval RL-FE GRL1-FE GRL2-FE BE-FE

Time

Bondarenko et al. (2004) [20 30] [0 20]; [30 75] 7.51E–1 5.16E–1 6.70E–1 5.97E+0

Jafri et al. (1998) [0 50] [50 300] 1.07E+0 3.03E+0 1.11E+0 4.81E+0

Pandit et al. (2001) [105 125] [0 105]; [125 250] 9.26E+0 1.04E–1 1.01E–1 5.48E–1

Winslow31 [0 50] [50 300] 3.09E+0 3.85E+1 1.02E+1 1.93E+1

From the TI method results listed in Table 4.7, the RL-FE combination wins for two models,

the GRL1-FE combination wins for one model, and the GRL2-FE combination wins for one model.

Table 4.8 compares the TI methods to the most efficient single method and shows that for each

model considered, the TI method is more efficient than any single method considered. For the

Winslow31 model, the RL-FE combination is five times faster than the FE method, the next most

efficient method. For the model of Pandit et al. (2001), the GRL2-FE combination is three times

faster than the GRL2 method, the next most efficient method. It is worth noting that, with the

exception of the model of Winslow31, the most efficient TI method is the combination method

using the most efficient single method as the stiff solver, as is shown in Table 4.8.

The following observations can be made from the results. The FE method is only effective

for non-stiff models, and these are usually the least physically realistic. The BE method is not

effective for any of the six models considered. Because the BE method is tested for a range of

non-stiff to moderately stiff to stiff models, it is not likely to be effective for the remaining 31

models. The RL method is the method of choice for moderately stiff models. From the eigenvalue

analysis, the majority of the 37 cell models considered are non-stiff to moderately stiff, explaining

the effectiveness of the RL method. The GRL methods are effective for solving stiff models, with the

exception of the Winslow31 model. The GRL methods offer significant reductions in computation

time, particularly for the models of Pandit et al. (2001) and Pandit et al. (2003). The TI methods

41



Table 4.8: Most efficient method out of the FE, RL, GRL1, GRL2, and TI methods, using
the largest stepsize that produced less than 5% MRMS error. The optimal method has been
highlighted in bold text for each model.

Model Optimal Single Method Optimal TI method

Bondarenko et al. (2004) GRL1 GRL1-FE

Jafri et al. (1998) RL RL-FE

Pandit et al. (2001) GRL2 GRL2-FE

Winslow31 FE RL-FE

always outperform the single methods for the four stiff models considered. The additional effort

required to identify the regions of stiffness and non-stiffness may be worthwhile depending on the

application.

4.4 1D bidomain results

Also of interest is to establish whether the methods effective at solving the system of ODEs remain

effective when used to solve the system of ODEs within the bidomain model. The FE, RL, GRL1,

and GRL2 methods are compared for their ability to efficiently solve the system of ODEs within a

1D bidomain scenario for eight of the 37 cardiac cell models described in Section 4.1. The eight cell

models were chosen because they are compatible with the PyCML addition in Chaste and represent

a range of stiffness, from the non-stiff FHN model to the stiff Winslow31 model. The cell models,

together with their time interval of integration for the 1D simulation, are listed in Table 4.9. The

bidomain model was solved for a one cm spatial interval with the initial condition

Vm(t = 0,x) = Vm,0 + 100(1− sin(x)),

s(t = 0,x) = s0,

uE(t = 0,x) = 0,

where Vm,0 and s0 are the default resting state values for Vm and s, respectively, for the particular

cell model used. The parameter values used for the bidomain simulations are given in Table 4.10.

By comparing solutions computed by halving the timestep and doubling the number of mesh

points, reference solutions were computed for each 1D bidomain scenario with four or more matching

digits. Solutions were compared at 21 equally spaced points in the temporal interval and 101 equally

spaced points in the spatial interval, for a total of 2121 points. For all the bidomain simulations
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Table 4.9: Cell models used within the 1D bidomain problem, listed with their interval of
integration.

Model Time Interval (ms)

Courtemanche et al. (1998) [0 5]

FitzHugh–Nagumo (1961) [0 5]

Fox et al. (2002) [0 10]

Luo–Rudy (1991) [0 5]

Maleckar et al. (2008) [0 10]

Nygren et al. (1998) [0 9]

Pandit et al. (2003) [0 10]

Winslow31 [0 10]

Table 4.10: Parameter values used in Chaste to solve the 1D bidomain simulations.

Parameter Value

Cm 1 µF/cm
2

χ 1400 1/cm

MI 1.75 mS/cm

ME 7 mS/cm

described in this thesis, the linear system (3.36) described in Section 3.4.1 was solved using the

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [1]. By default in Chaste, the linear

system (3.36) is solved using a preconditioner together with an iterative solver. However, it was

found that the iterative solver could not achieve sufficient convergence for the purposes of computing

reference solutions.

Maximum constant stepsizes were found that gave MRMS errors of 5%. Because the timesteps

for each simulation were constant, they were required to land exactly on the end point of the

simulation time interval and on the points over the time interval that were used for computing

the error of the solution; consequently somewhat larger constant stepsizes that would meet the

5% MRMS error criterion are likely possible. Results are reported in Table 4.11 and the shortest

execution time has been highlighted in bold text for each model. Timings reported are the minimum

run time out of 100 runs for the maximum stepsize that satisfied the error tolerance. Timings were

computed in Chaste 2.2, built with the GNU compilers with optimized flags, on an HP Z400 with

an Intel Xeon W3520 2.66 GHz quad-core processor with 16 GB of DDR3 RAM running 64-bit

Ubuntu 9.04. Hyperthreading and turbo-boost were enabled while the timings were computed.
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Table 4.11: Timesteps, in milliseconds, and execution time, in seconds, for the FE, RL,
GRL1, and GRL2 methods used to solve the ODEs within a 1D bidomain simulation, using
the largest timestep that produced less than 5% MRMS error. Timesteps reported are for
the ODE and PDE timesteps. The shortest execution time has been highlighted in bold text
for each model.

Model FE RL GRL1 GRL2

∆x ∆t Time ∆t Time ∆t Time ∆t Time

Courtemanche et al. (1998) 1.00E–2 2.60E–3 1.07E+0 6.76E–3 4.68E–1 6.76E–3 7.69E–1 6.76E–3 1.34E+0

FitzHugh–Nagumo (1961) 1.00E–2 2.50E–1 4.53E–2 NA NA 2.50E–1 4.64E–2 2.50E–1 4.53E–2

Fox et al. (2002) 2.00E–2 1.10E–3 6.18E+0 3.18E–3 2.32E+0 3.18E–3 3.45E+0 3.18E–3 5.73E+0

Luo–Rudy (1991) 2.00E–2 1.52E–3 1.35E+0 3.57E–3 6.72E–1 3.57E–3 8.76E–1 3.57E–3 1.28E+0

Maleckar et al. (2008) 1.00E–2 1.25E–3 3.48E+0 4.55E–3 1.15E+0 4.55E–3 2.04E+0 4.67E–3 3.63E+0

Nygren et al. (1998) 1.00E–2 3.49E–4 1.35E+1 1.33E–3 3.89E+0 1.33E–3 7.99E+0 1.33E–3 1.58E+1

Pandit et al. (2003) 1.00E–2 2.59E–5 2.01E+2 2.59E–5 2.19E+2 2.27E–3 4.33E+0 2.30E–3 7.62E+0

Winslow31 3.00E–2 1.24E–4 9.86E+1 1.24E–4 1.06E+2 9.46E–4 2.63E+1 1.29E–3 3.58E+1

From Table 4.11, we have that for the FE, RL, GRL1, and GRL2 comparison for the eight

cell models within a 1D bidomain simulation, the FE method and the GRL2 method tie for one

model (the FHN model), the RL method wins for five models, and the GRL1 method wins for two

models. With the exception of the FHN model, the FE method and the GRL2 method are the most

inefficient methods for each model. For the moderately stiff models, the RL, GRL1, and GRL2

methods are able to use approximately the same stepsize. Because the RL method is the least

computationally expensive of these three methods per timestep, it is able to compute a solution

within the specified error tolerance in the least amount of time. The RL method is 1.3–2.1 times

faster than the GRL1 method, the next fastest method. The RL and GRL1 methods are 2–3.5 and

1.4–1.7 times faster than the FE method, respectively. For the two stiff models, that of Pandit et

al. (2003) and Winslow31, the GRL methods are able to take much larger timesteps without being

restricted by stability. The GRL1 method solves the model of Pandit et al. (2003) 46 and 50 times

faster than the FE method and the RL method, respectively, and solves Winslow31 3.7 and 4 times

faster than the FE method and the RL method, respectively.

Table 4.12 compares the cell model results to the 1D bidomain simulation results. The cell

models that were most efficiently solved by the RL and FE methods are also most efficiently solved

by the RL and FE methods within the 1D bidomain simulation. The most efficient methods for the

model of Luo–Rudy (1991) solved on its own and within the 1D bidomain simulation are the GRL1

method and the RL method, respectively. From Table 4.4, the cell model timings for the GRL1

and RL methods are within 30% of each other, so the change from the GRL1 method to the RL

method as the fastest method for the model of Luo–Rudy (1999) within a 1D bidomain simulation

is not completely surprising. The most significant difference is that the GRL1 method is the fastest

method for the two stiffest cell models within the 1D bidomain simulation, the model of Pandit

et al. (2003) and the Winslow31 model. However, this is not unexpected behaviour because the

GRL1 and GRL2 methods are able to take similar stepsizes within the 1D bidomain simulation for
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these models, and the GRL1 method is less computationally expensive per step.

Overall, we can conclude that the cell model results transfer well to the 1D bidomain simulation

results. The RL method is the most efficient method for the moderately stiff models, the FE method

is only efficient for the FHN model, and the GRL methods are the most efficient methods for the two

stiffest models. From the analysis of the eigenvalues of the Jacobian matrix computed for each of

the 37 cell models considered, it was found that the majority of the cell models range from non-stiff

to moderately stiff, with only five significantly stiff models. The pronounced number of moderately

stiff models explains why the RL method was the most successful method for the majority of the

cardiac cell models solved by a single method and within the one-dimensional bidomain simulations.

Table 4.12: Comparison of the most efficient methods for eight cell models solved indepen-
dently and within the 1D bidomain model simulation.

Model Fastest Method

Cell Model Only 1D Bidomain Simulation

Courtemanche et al. (1998) RL RL

FitzHugh–Nagumo (1961) FE FE, GRL2

Fox et al. (2002) RL RL

Luo–Rudy (1991) GRL1 RL

Maleckar et al. (2008) RL RL

Nygren et al. (1998) RL RL

Pandit et al. (2003) GRL2 GRL1

Winslow31 FE GRL1
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Chapter 5

Conclusions and Future Work

The heart performs one of the most important functions in the human body, namely that of

pumping blood to transport oxygen and to remove waste products from cells. Due to the heart’s

location and function, it is difficult to study without harming the patient. An alternative to studying

a living heart is to mathematically model its electrical and mechanical activity. The bidomain

model, coupled with a cardiac cell model that describes the electrical activity of a single heart

cell, describes the propagation of the electrical activity throughout a heart. Real-time simulation

has not been achieved to date because numerically solving the bidomain model is difficult and

computationally demanding. The goal of this thesis was to study methods used to solve the cardiac

cell models in order to reduce the computational time necessary to solve the bidomain model.

This thesis focused on the methods used to solve the system of ODEs from the cardiac cell

models. A new error norm, the MRMS error norm, was presented and shown to be more reliable

for determining error compared to the RRMS error norm. The eigenvalues of 37 cardiac cell models

were analyzed and a study of the FE, RL, GRL1, GRL2, BE, and type-insensitive methods used

to solve the 37 cardiac cell models was completed. The results from this study were applied to

a one-dimensional bidomain problem for eight cell models to determine to what degree the ODE

results apply to a bidomain simulation.

From the analysis of the eigenvalues of the 37 cell models considered, it was found that the

majority of the cell models are non-stiff to moderately stiff with only a few significantly stiff models.

At 5% MRMS error, the RL method was the most efficient for 25 of the 37 cell models and for

five of the eight cell models used within the 1D bidomain simulation. Based on the investigation

undertaken in this thesis, the RL method remains the optimal choice for moderately stiff cell models,

solved independently or solved within the bidomain model.

At 5% MRMS error, the GRL methods were efficient for the five stiffest cell models. The GRL

methods were able to take stepsizes determined by accuracy, not stability, for the models of Pandit

et al. (2001) and Pandit et al. (2003). The GRL2 method was 17 and 69 times faster than the RL

method for the models of Pandit et al. (2001) and Pandit et al. (2003), respectively. Within the

1D bidomain simulation, the GRL1 method was the most efficient for the two stiffest models, the

model of Pandit et al. (2003) and the Winslow31 model. The GRL1 method was 46 and four times
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faster than the RL method for the models of Pandit et al. (2003) and Winslow31, respectively.

From the results listed in Chapter 4, some general conclusions follow. First and foremost, from

Table 4.12 it can be seen that the results of the study of the ODEs from the cardiac cell models

can be applied to the one-dimensional bidomain problem. From Tables 4.4, 4.5, and 4.11, the

FE method is efficient only for the non-stiff ODE systems such as the FHN model and the BE

method is slower than the fastest of the FE, RL, GRL1, and GRL2 methods for each of the six

models considered, making the FE and BE methods the least effective methods for solving cardiac

cell models. From Table 4.7, type-insensitive methods are shown to be effective for solving stiff

problems. The TI methods are 1.6 to 5.3 times faster than single methods for the four models

considered.

From the results listed in Chapter 4, some general recommendations follow. It is recommended

that the RL method be used to solve the moderately stiff cell models and the GRL1 or GRL2

methods be used to solve the stiff cell models. Within a 1D bidomain simulation, it is recommended

that the GRL1 method be used because it is competitive with the RL method for the moderately stiff

models and it is more efficient for the stiff models. The Rush–Larsen method and the generalized

Rush–Larsen method of order one are able to reduce the computational time required to solve a

one-dimensional problem by 2–46 times compared to the de facto standard, the FE method.

This thesis concludes with two unanswered questions that could lead to possible future work:

1. In Section 4.1.2, the eigenvalues of the Jacobian matrix of the RHS of cardiac cell models

were approximated over time. By examining the magnitude of the negative real parts of

these eigenvalues, the stiffness of the cardiac cell models was determined and regions of

stiffness and non-stiffness were determined for the stiff models. Of the 37 models studied,

most were found to be moderately stiff, and five were found to be highly stiff. By examining

the eigenvectors associated with the real eigenvalues having large negative parts, it may be

possible to determine which variables in the cell models are causing the stiffness. If it is

possible to ascertain which of the variables in a stiff model are stiff, it would be interesting

to investigate whether the TI methods can be improved by applying the stiff solver to only

the stiff variables over the stiff interval of integration.

2. In Chapter 4, the FE, RL, GRL1, and GRL2 methods were used to solve the ODEs from

eight cardiac cell models within a 1D bidomain simulation, and timings were compared for

each method. From the results listed in Table 4.12 in Section 4.4, the ODE results were

found to be relevant to one-dimensional bidomain simulations. It would be interesting to

investigate whether the ODE results and the one-dimensional bidomain simulation results

are also relevant to two- and three-dimensional bidomain simulations in order to reduce the

computational time required to solve the simulations to a given accuracy.
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Appendix A

Additional ODE Results

Additional results were computed for the 37 cardiac cell models using the RRMS error norm at
5% and 1% and the MRMS error norm at 1%. However, because it was shown that the RRMS error
norm at 5% and the MRMS error norm at 1% are not good measures of the accuracy of a solution,
the results have been omitted from Chapter 4 and included here for completeness. The RRMS
error norm at 1% gives similar results to the MRMS error norm at 5%. In each table of results,
the shortest execution time has been highlighted in bold text for each model. Note that none of
the execution times have been highlighted in bold text for the BE method results because the BE
method does not have the shortest execution time for any model compared to the FE, RL, GRL1,
and GRL2 methods for the RRMS error norm at 5% and 1% RRMS or for the MRMS error norm
at 1%. Note that the maximum stepsize allowed for each model is restricted to the duration of time
in which the stimulus current was applied. Stepsizes that have reached this maximum stepsize are
marked by a dagger.
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Table A.1: Stepsize, in milliseconds, and execution time, in seconds, of the four numerical
methods using the largest stepsize that produced less than 5% RRMS error. The shortest
execution time has been highlighted in bold text for each model. Stepsizes that have reached
the maximum stepsize are marked by a dagger.

Model FE RL GRL1 GRL2

∆t Time ∆t Time ∆t Time ∆t Time

Beeler–Reuter (1977) 2.53E–2 4.39E–2 1.00E+0† 1.02E–3 1.00E+0† 3.10E–3 1.00E+0† 5.90E–3

Bondarenko et al. (2004) 2.13E–4 2.64E+0 2.13E–4 2.30E+0 7.48E–3 8.51E–1 2.85E–2 4.44E–1

Courtemanche et al. (1998) 1.94E–2 2.35E–1 2.00E+0† 2.25E–3 2.00E+0† 1.47E–2 2.00E+0† 2.64E–2

Demir et al. (1994) 5.95E–2 1.82E–2 1.53E–1 6.19E–3 2.99E+0 3.68E–3 7.30E+0 3.30E–3

Demir et al. (1999) 5.98E–2 1.93E–2 1.53E–1 8.69E–3 2.99E+0 4.29E–3 7.30E+0 3.79E–3

DiFrancesco–Noble (1985) 7.92E–2 9.57E–2 2.65E+1 3.33E–4 1.50E+3 1.54E–4 1.50E+3 1.92E–4

Dokos et al. (1996) 7.02E–2 3.33E–2 3.33E+0 6.80E–4 6.17E+0 3.75E–3 1.48E+1 3.74E–3

Faber–Rudy (2000) 1.12E–2 2.45E–1 5.00E–1† 4.79E–3 5.00E–1† 5.10E–2 5.00E–1† 1.09E–1

FitzHugh–Nagumo (1961) 5.00E–1† 3.73E–4 N/A N/A 5.00E–1† 8.53E–4 5.00E–1† 1.26E–3

Fox et al. (2002) 4.62E–3 3.53E–1 1.00E+0† 1.49E–3 1.00E+0† 9.99E–3 1.00E+0† 2.12E–2

Hilgemann–Noble (1987) 6.25E–2 2.49E–2 8.06E–2 1.51E–2 6.00E+0 2.68E–3 7.31E+0 4.49E–3

Hund–Rudy (2004) 1.11E–2 2.50E–1 1.90E–1 1.37E–2 2.53E–1 1.06E–1 3.89E–1 1.40E–1

Jafri et al. (1998) 5.76E–4 4.17E+0 5.33E–4 3.88E+0 3.21E–2 7.46E–1 1.03E–2 4.71E+0

Luo–Rudy (1991) 1.35E–2 1.50E–1 4.37E–1 4.13E–3 1.00E+0† 3.18E–3 1.00E+0† 1.36E–2

Maleckar et al. (2008) 5.02E–2 9.49E–2 8.87E–2 4.60E–2 5.04E+0 1.08E–2 6.00E+0† 1.85E–2

McAllister et al. (1975 ) 2.76E–2 8.33E–2 4.50E+0 5.23E–4 4.31E+1 2.20E–4 2.19E+1 1.16E–3

Noble (1962) 2.12E–1 3.93E–3 2.05E+0 3.23E–4 1.59E+0 1.53E–3 3.93E+0 1.01E–3

Noble–Noble (1984) 2.04E–1 6.66E–3 9.72E+0 2.02E–4 1.33E+1 9.82E–4 3.23E+1 8.96E–4

Noble et al. (1991) 5.15E–2 2.57E–2 1.53E–1 7.46E–3 1.77E+0 7.07E–3 1.84E+0 1.37E–2

Noble et al. (1998) 5.58E–2 6.03E–2 1.57E–1 1.97E–2 2.47E+0 1.27E–2 2.76E+0 2.32E–2

Nygren et al. (1998) 5.36E–2 1.11E–1 8.88E–2 5.87E–2 5.00E+0† 1.14E–2 5.00E+0† 2.45E–2

Pandit et al. (2001) 2.91E–4 5.90E+0 2.91E–4 5.13E+0 1.08E–1 1.34E–1 9.58E–2 3.02E–1

Pandit et al. (2003) 2.65E–5 6.34E+1 2.65E–5 5.68E+1 2.05E–1 7.56E–2 1.96E–1 1.49E–1

Puglisi–Bers (2001) 1.08E–1 1.00E+0 4.99E–1 2.23E–2 7.14E–1 4.61E–2 7.14E–1 9.86E–2

Sakmann et al. (2000) – Endo 6.90E–2 5.84E–2 2.36E–1 1.48E–2 3.00E+0† 1.25E–2 3.00E+0† 2.58E–2

Sakmann et al. (2000) – Epi 6.90E–2 5.89E–2 2.36E–1 1.48E–2 3.00E+0† 1.24E–2 3.00E+0† 2.58E–2

Sakmann et al. (2000) – M-cell 6.86E–2 5.87E–2 2.36E–1 1.48E–2 2.87E+0 1.31E–2 3.00E+0† 2.61E–2

Stewart et al. (2009) 1.54E+1 5.05E–1 1.18E+3 6.13E–3 1.58E+3 4.18E–2 1.49E+3 8.59E–2

Ten Tusscher et al. (2004) – Endo 1.78E–3 2.10E+0 1.00E+0† 3.40E–3 1.00E+0† 3.00E–2 1.00E+0† 5.81E–2

Ten Tusscher et al. (2004) – Epi 1.78E–3 2.14E+0 1.00E+0† 3.42E–3 1.00E+0† 2.98E–2 1.00E+0† 5.87E–2

Ten Tusscher et al. (2004) – M-cell 1.76E–3 1.58E+0 1.00E+0† 2.54E–3 1.00E+0† 2.26E–2 1.00E+0† 4.35E–2

Ten Tusscher et al. (2006) – Endo 1.62E–3 1.54E+0 9.45E–1 2.42E–3 1.00E+0† 2.13E–2 1.00E+0† 4.29E–2

Ten Tusscher et al. (2006) – Epi 2.14E–3 1.17E+0 1.00E+0† 2.31E–3 1.00E+0† 2.13E–2 1.00E+0† 4.38E–2

Ten Tusscher et al. (2006) – M-cell 2.06E–3 1.22E+0 1.00E+0† 2.25E–3 1.00E+0† 2.16E–2 1.00E+0† 4.20E–2

Wang–Sobie (2008) 1.66E–2 6.91E–2 5.27E–2 1.89E–2 4.46E–1 2.51E–2 6.14E–1 3.63E–2

Winslow31 1.07E–4 1.65E+1 1.07E–4 1.81E+1 9.93E–4 2.01E+1 5.27E–3 7.68E+0

Zhang et al. (2000) 9.97E–2 5.78E–2 3.77E+1 2.13E–4 1.00E+3 1.52E–4 1.00E+3 1.85E–4

Table A.2: Stepsize, in milliseconds, and execution time, in seconds, of the Backward Euler
method using the largest stepsize that produced less than 5% RRMS error.

Model BE
∆t Time

Courtemanche et al. (1998) 2.30E–1 4.58E+0
Faber–Rudy (2000) 2.91E–1 1.85E+0
Noble (1962) 5.75E–1 3.43E–1
Noble et al. (1998) 3.33E–1 2.53E+0
Pandit et al. (2003) 9.77E–2 4.16E+0
Winslow31 2.24E–2 2.88E+1

Table A.3: Stiffness intervals and execution time, in seconds, of type-insensitive methods
using the largest stepsize that produced less than 5% RRMS error. The shortest execution
time has been highlighted in bold text for each model.

Model Stiff Interval Non-stiff Interval RL-FE GRL1-FE GRL2-FE BE-FE
Time

Bondarenko et al. (2004) [20 30] [0 20]; [30 75] 7.10E–1 5.04E–1 6.86E–2 1.01E+0
Jafri et al. (1998) [0 50] [50 300] 1.06E+0 6.94E–1 1.04E+0 2.67E+0
Pandit et al. (2001) [105 125] [0 105]; [125 250] 9.16E+0 1.05E–1 9.94E–2 2.88E–1
Winslow31 [0 50] [50 300] 3.02E+0 3.60E+0 1.54E+0 4.38E+0
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Table A.4: Stepsize, in milliseconds, and execution time, in seconds, of the four numerical
methods using the largest stepsize that produced less than 1% RRMS error. The shortest
execution time has been highlighted in bold text for each model. Stepsizes that have reached
the maximum stepsize are marked by a dagger.

Model FE RL GRL1 GRL2

∆t Time ∆t Time ∆t Time ∆t Time

Beeler–Reuler (1977) 2.53E–2 4.34E–2 1.00E+0† 1.02E–3 1.00E+0† 3.08E–3 1.00E+0† 6.00E–3

Bondarenko et al. (2004) 2.13E–4 2.65E+0 2.13E–4 2.30E+0 7.48E–3 8.50E–1 2.85E–2 4.44E–1

Courtemanche et al. (1998) 1.94E–2 2.37E–1 5.91E–1 7.43E–3 2.00E+0† 1.49E–2 1.94E+0 2.67E–2

Demir et al. (1994) 5.95E–2 1.84E–2 1.53E–1 6.20E–3 7.00E–1 1.53E–2 1.99E+0 1.14E–2

Demir et al. (1999) 5.98E–2 1.95E–2 1.53E–1 8.55E–3 7.04E–1 1.77E–2 2.00E+0 1.35E–2

DiFrancesco–Noble (1985) 7.92E–2 9.64E–2 3.57E+0 1.95E–3 3.21E+0 2.10E–2 7.47E+0 1.89E–2

Dokos et al. (1996) 7.02E–2 3.28E–2 1.27E+0 1.65E–3 8.30E–1 2.69E–2 2.95E+0 1.79E–2

Faber–Rudy (2000) 1.12E–2 2.38E–1 5.00E–1† 4.77E–3 4.99E–1 5.20E–2 5.00E–1† 1.08E–1

FitzHugh–Nagumo (1961) 2.48E–1 7.33E–4 NA NA 2.50E–2 1.53E–2 2.45E–1 2.74E–3

Fox et al. (2002) 4.62E–3 3.56E–1 5.00E–1 2.92E–3 1.00E+0† 1.01E–2 1.00E+0† 2.11E–2

Hilgemann–Noble (1987) 6.25E–2 2.45E–2 8.06E–2 1.51E–2 2.24E+0 6.79E–3 6.77E+0 4.80E–3

Hund–Rudy (2004) 1.11E–2 2.51E–1 7.60E–2 3.43E–2 8.90E–2 3.03E–1 2.49E–1 2.15E–1

Jafri et al. (1998) 5.76E–4 4.15E+0 5.33E–4 3.88E+0 1.03E–2 2.31E+0 1.03E–2 4.75E+0

Luo–Rudy (1991) 1.35E–2 1.51E–1 3.07E–1 5.41E–3 1.00E+0† 3.19E–3 1.00E+0† 1.33E–2

Maleckar et al. (2008) 5.02E–2 9.33E–2 8.87E–2 4.61E–2 1.99E+0 2.79E–2 6.00E+0† 1.89E–2

McAllister et al. (1975) 2.48E–2 9.27E–2 1.30E+0 1.63E–3 1.96E+0 3.15E–3 9.29E–1 2.53E–2

Noble (1962) 2.04E–1 4.13E–3 3.09E–1 1.79E–3 2.48E–1 7.88E–3 6.09E–1 6.11E–3

Noble–Noble (1984) 2.04E–1 6.66E–3 2.01E+0 6.59E–4 1.41E+0 8.39E–3 5.11E+0 4.81E–3

Noble et al. (1991) 5.15E–2 2.60E–2 1.53E–1 7.45E–3 6.56E–1 1.91E–2 1.54E+0 1.61E–2

Noble et al. (1998) 5.58E–2 6.10E–2 1.57E–1 1.96E–2 4.72E–1 6.61E–2 1.38E+0 4.71E–2

Nygren et al. (1998) 5.36E–2 1.12E–1 8.88E–2 5.94E–2 5.97E–1 9.71E–2 1.60E+0 7.69E–2

Pandit et al. (2001) 2.91E–4 5.95E+0 2.91E–4 5.14E+0 1.08E–1 1.34E–1 9.58E–2 3.01E–1

Pandit et al. (2003) 2.65E–5 6.34E+1 2.65E–5 5.68E+1 2.05E–1 7.48E–2 1.96E–1 1.51E–1

Puglisi–Bers (2001) 1.08E–2 9.84E–1 2.02E–1 5.36E–2 6.14E–1 5.45E–2 6.24E–1 1.11E–1

Sakmann et al. (2000) – Endo 6.90E–2 5.80E–2 1.35E–1 2.57E–2 1.19E–1 3.09E–1 3.37E–1 2.25E–1

Sakmann et al. (2000) – Epi 6.90E–2 5.87E–2 1.50E–1 2.32E–2 1.56E–1 2.35E–1 4.28E–1 1.79E–1

Sakmann et al. (2000) – M-cell 6.86E–2 5.90E–2 2.36E–1 1.48E–2 1.55E+0 2.38E–2 2.80E+0 2.77E–2

Stewart et al. (2009) 1.54E+1 5.09E–1 2.38E+2 3.00E–2 2.09E+2 3.11E–1 5.40E+2 2.40E–1

Ten Tusscher et al. (2004) –Endo 1.78E–3 2.11E+0 4.56E–1 7.30E–3 1.00E+0† 3.01E–2 1.00E+0† 5.82E–2

Ten Tusscher et al. (2006) –Endo 1.62E–3 1.53E+0 2.58E–1 8.52E–3 8.86E–1 2.42E–2 5.56E–1 7.65E–2

Ten Tusscher et al. (2004) –Epi 1.78E–3 2.13E+0 4.55E–1 7.42E–3 1.00E+0† 3.03E–2 1.00E+0† 5.97E–2

Ten Tusscher et al. (2006) –Epi 2.14E–3 1.21E+0 3.03E–1 7.38E–3 1.00E+0† 2.14E–2 7.89E–1 5.34E–2

Ten Tusscher et al. (2004) –M-cell 1.76E–3 1.60E+0 4.68E–1 5.35E–3 8.39E–1 2.69E–2 1.00E+0† 4.47E–2

Ten Tusscher et al. (2006) –M-cell 2.06E–3 1.22E+0 2.73E–1 8.09E–3 5.21E–1 4.15E–2 6.10E–1 7.12E–2

Wang–Sobie (2008) 1.66E–2 7.00E–2 5.27E–2 1.89E–2 4.46E–1 2.54E–2 5.73E–1 3.89E–2

Winslow31 1.07E–4 1.65E+1 1.07E–4 1.81E+1 4.62E–4 4.35E+1 1.73E–3 2.43E+1

Zhang et al. (2000) 9.97E–2 5.85E–2 2.90E+0 1.91E–3 2.09E+0 1.74E–2 4.81E+0 1.47E–2

Table A.5: Stepsize, in milliseconds, and execution time, in seconds, of the Backward Euler
method using the largest stepsize that produced less than 1% RRMS error.

Model BE
∆t Time

Courtemanche et al. (1998) 2.30E–1 4.58E+0
Faber–Rudy (2000) 2.91E–1 1.85E+0
Noble (1962) 3.19E–1 6.14E–1
Noble et al. (1998) 3.33E–1 2.53E+0
Pandit et al. (2003) 9.77E–2 4.16E+0
Winslow31 1.76E–2 3.68E+1

Table A.6: Stiffness intervals and execution time, in seconds, of type-insensitive methods
using the largest stepsize that produced less than 1% RRMS error. The shortest execution
time has been highlighted in bold text for each model.

Model Stiff Interval Non-stiff Interval RL-FE GRL1-FE GRL2-FE BE-FE
Time

Bondarenko et al. (2004) [20 30] [0 20]; [30 75] 7.10E–1 5.08E–1 6.85E–2 1.01E+0
Jafri et al. (1998) [0 50] [50 300] 1.05E+0 7.54E–1 1.05E+0 2.67E+0
Pandit et al. (2001) [105 125] [0 105]; [125 250] 9.28E+0 1.04E–1 1.01E–1 2.88E–1
Winslow31 [0 50] [50 300] 3.10E+0 7.79E+0 1.65E+0 5.38E+0
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Table A.7: Stepsize, in milliseconds, and execution time, in seconds, of the four numerical
methods using the largest stepsize that produced less than 1% MRMS error. The shortest
execution time has been highlighted in bold text for each model.

Model FE RL GRL1 GRL2

∆t Time ∆t Time ∆t Time ∆t Time

Beeler–Reuler (1977) 2.53E–2 4.23E–2 6.81E–2 1.41E–2 1.36E–1 2.20E–2 5.10E–1 1.14E–2

Bondarenko et al. (2004) 2.13E–4 2.65E+0 2.13E–4 2.30E+0 2.53E–3 2.51E+0 1.34E–3 9.51E+0

Courtemanche et al. (1998) 1.94E–2 2.35E–1 1.77E–2 2.47E–1 2.01E–2 1.43E+0 1.61E–1 3.27E–1

Demir et al. (1994) 2.90E–2 3.75E–2 1.09E–2 8.51E–2 2.34E–2 4.53E–1 1.49E–1 1.50E–1

Demir et al. (1999) 2.48E–2 4.65E–2 9.73E–3 1.32E–1 1.99E–2 6.27E–1 1.50E–1 1.78E–1

DiFrancesco–Noble (1985) 7.65E–2 1.00E–1 4.38E–2 1.51E–1 4.63E–2 1.43E+0 2.78E–1 5.03E–1

Dokos et al. (1996) 6.91E–2 3.39E–2 2.66E–2 7.50E–2 1.71E–2 1.29E+0 2.88E–1 1.80E–1

FitzHugh–Nagumo (1961) 5.41E–4 3.18E–1 NA NA 5.18E–4 7.12E–1 5.20E–4 1.15E+0

Faber–Rudy (2000) 6.60E–3 4.13E–1 3.79E–3 6.27E–1 6.99E–3 3.69E+0 1.14E–1 4.74E–1

Fox et al. (2002) 4.62E–3 3.57E–1 9.08E–3 1.57E–1 2.22E–2 4.42E–1 2.20E–2 9.51E–1

Hilgemann–Noble (1987) 6.25E–2 2.49E–2 4.71E–2 2.59E–2 2.69E–2 5.49E–1 2.07E–1 1.52E–1

Hund–Rudy (2004) 1.58E–3 1.77E+0 1.06E–3 2.45E+00 1.09E–3 2.49E+1 2.94E–2 1.85E+0

Jafri et al. (1998) 5.27E–4 4.55E+0 5.27E–4 3.93E+0 3.75E–4 6.38E+1 1.57E–3 3.09E+1

Luo–Rudy (1991) 1.35E–2 1.48E–1 3.82E–2 4.31E–2 3.37E–2 9.45E–2 1.86E–1 7.00E–2

Maleckar et al. (2008) 5.01E–2 9.40E–2 8.87E–2 4.59E–2 9.02E–2 6.03E–1 2.30E–1 4.86E–1

McAllister et al. (1975) 1.10E–2 2.10E–1 5.62E–2 3.61E–2 4.27E–2 1.39E–1 6.13E–2 3.64E–1

Noble (1962) 7.64E–2 1.08E–2 2.25E–2 2.35E–2 1.62E–2 1.18E–1 9.61E–2 3.85E–2

Noble–Noble (1984) 5.48E–2 2.46E–2 2.43E–2 4.70E–2 1.84E–2 6.15E–1 4.01E–1 5.94E–2

Noble et al. (1991) 5.15E–2 2.57E–2 6.79E–2 1.67E–2 1.89E–2 6.54E–1 1.37E–1 1.78E–1

Noble et al. (1998) 5.56E–2 6.12E–2 7.83E–2 3.91E–2 1.75E–2 1.77E+0 1.30E–1 4.93E–1

Nygren et al. (1998) 5.32E–2 1.13E–1 5.83E–2 8.95E–2 4.09E–2 1.42E+0 1.49E–1 8.24E–1

Pandit et al. (2001) 2.91E–4 6.04E+0 2.91E–4 5.14E+0 2.61E–3 5.57E+0 1.10E–2 2.63E+0

Pandit et al. (2003) 2.65E–5 6.34E+1 2.65E–5 5.68E+1 1.41E–3 1.09E+1 3.09E–3 9.58E+0

Puglisi–Bers (2001) 3.68E–3 3.05E+0 2.84E–3 4.12E+0 6.30E–3 5.41E+0 2.14E–1 3.34E–1

Sakmann et al. (2000) – Endo 3.14E–2 1.29E–1 1.58E–2 2.18E–1 1.13E–2 3.24E+0 7.99E–2 9.58E–1

Sakmann et al. (2000) – Epi 2.66E–2 1.52E–1 1.16E–2 2.98E–1 1.00E–2 3.67E+0 7.44E–2 1.04E+0

Sakmann et al. (2000) – M-cell 6.86E–2 5.87E–2 9.21E–2 3.77E–2 8.50E–2 4.45E–1 3.31E–1 2.31E–1

Stewart et al. (2009) 1.46E+1 5.41E–1 4.66E+1 1.52E–1 3.67E+1 1.77E+0 1.28E+2 9.97E–1

Ten Tusscher et al. (2004) –Endo 1.78E–3 2.13E+0 2.89E–2 1.13E–1 2.87E–2 1.05E+0 1.63E–1 3.63E–1

Ten Tusscher et al. (2006) –Endo 1.62E–3 1.54E+0 1.69E–2 1.28E–1 3.20E–2 6.74E–1 8.87E–2 4.81E–1

Ten Tusscher et al. (2004) –Epi 1.78E–3 2.15E+0 2.76E–2 1.20E–1 2.58E–2 1.16E+0 1.64E–1 3.58E–1

Ten Tusscher et al. (2006) –Epi 2.14E–3 1.19E+0 3.22E–2 6.81E–2 3.83E–2 5.62E–1 1.63E–1 2.63E–1

Ten Tusscher et al. (2004) –M-cell 1.76E–3 1.59E+0 2.75E–2 8.87E–2 2.13E–2 1.04E+0 2.45E–1 1.79E–1

Ten Tusscher et al. (2006) –M-cell 2.06E–3 1.23E+0 3.03E–2 7.16E–2 2.29E–2 9.32E–1 1.41E–1 3.01E–1

Wang–Sobie (2008) 1.66E–2 6.91E–2 1.63E–2 6.05E–2 1.74E–2 6.48E–1 1.59E–1 1.40E–1

Winslow31 1.07E–4 1.65E+1 1.07E–4 1.81E+1 1.95E–5 1.06E+3 3.07E-4 1.39E+2

Zhang et al. (2000) 9.97E–2 5.86E–2 1.05E–1 5.01E–2 6.74E–2 4.98E–1 5.66E–1 1.21E–1

Table A.8: Stepsize, in milliseconds, and execution time, in seconds, of the Backward Euler
method using the largest stepsize that produced less than 1% MRMS error.

Model BE
∆t Time

Courtemanche et al. (1998) 3.19E–2 2.55E+1
Faber–Rudy (2000) 6.51E–3 9.41E+1
Noble (1962) 6.48E–2 2.35E+0
Noble et al. (1998) 8.20E–2 8.70E+0
Pandit et al. (2003) 1.24E–2 2.46E+1
Winslow31 7.32E–4 5.18E+2

Table A.9: Stiffness intervals and execution time, in seconds, of type-insensitive methods
using the largest stepsize that produced less than 1% MRMS error. The shortest execution
time has been highlighted in bold text for each model.

Model Stiff Interval Non-stiff Interval RL-FE GRL1-FE GRL2-FE BE-FE
Time

Bondarenko et al. (2004) [20 30] [0 20]; [30 75] 7.27E–1 7.26E–1 1.67E+0 9.12E+0
Jafri et al. (1998) [0 50] [50 300] 1.16E+0 1.25E+1 4.88E+0 2.26E+1
Pandit et al. (2001) [105 125] [0 105]; [125 250] 9.66E+0 1.21E–1 1.03E–1 3.46E+0
Winslow31 [0 50] [50 300] 3.11E+0 1.91E+2 2.95E+1 9.10E+1
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