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Abstract 
 
This paper addresses the potential of a color infrared aerial photograph to provide spatially 
distributed information for site specific management.  In this process digitized color infrared 
aerial photographs were used to extract vegetation index information. In addition, important crop 
and soil information were also collected using a grid sampling technique. Crop and soil 
information contributing most to explain variability were determined and used in further 
analysis.  Grain yield data obtained using combine sampling were noted along with the 
coordinate information of the sample points. Locational information were collected using GPS.  
Kriged surface were generated using soil and crop point sample information. Point information 
were extracted from each kriged surface using centroid of uniformly spaced grid (15 m cell).  
Fuzzy k-means with extragrades algorithms were used to delineate potential within-field 
management units based on soil and crop information and vegetation index separately. Then 
“goodness” of potential management zones generated using within zone variability of grain 
yield. Ideal number of zones were determined using the decrease in total within-zone variance. 
Finally, management zones determined using crop and soil information and vegetation index 
information were compared for similarity. The methodology is fast, can be easily automated in 
commercially available GIS software and has considerable advantages when comparing to other 
methods for delineating within-field management zones. 
 
Introduction 
 
Site-Specific agricultural management involve collection and control of  agronomic information 
to supply actual needs to parts of fields rather than average needs to whole fields. Early attempts 
in variable rate application of crop inputs were based on grower intuition, soil survey maps, soil 
test data from sparsely spaced grid samples, and direct observation of soil conditions while 
traversing variable fields were of limited success. Continued research has revealed the 
importance of considering additional site characteristics that exert a major influence on crop 
yield. The additional information needed for better management can come from extensive soil 
sampling using a dense grid sampling procedure which  are costly and time consuming. 
Determination of sub-field areas is difficult due to the complex combination of potential yield-
limiting factors. Additionally, improperly defining management zones may be no better than 
uniform management of the field. 
 
Large-scale aerial photographs can assist in field-scale soil mapping (Harrision et al. 1987; 
Lillesand and Kiefer 1994).  Although past use of aerial photographs in crop and soil studies 
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usually involved manual interpretation, computer digitization and spatial registration now allow 
statistical approaches that can quantify the variability captured with photographs (Lillesand and 
Kiefer 1994). Yield patterns can be differentiated using aerial photograph of bare and cropped 
surfaces (Long et al. 1989).  Photographs taken at physiological maturity of the crop canopy 
within uniformly managed fields were useful in pattern differentiation in the crop canopy (Long 
et al. 1989; Milfred and Kiefer 1976; Lillesand and Kiefer 1994).  Photographs of a developing 
crop can be used to discern management effects, but soil landscape effects on the crop are best 
discerned at maturity. Historical aerial photographs, if available can yield useful information 
regarding past practices and cultural operations and past soil and yield information can help in 
identifying stability of spatial pattern temporally.  
 
Crop and soil mapping using aerial photographs is possible based on two facts of aerial 
photography.  First, growing vegetation absorbs red light (0.6 to 0.7 micron wave lengths) and 
reflects near infrared light (0.7- to 1.3 micron wave lengths).  Color-Infrared Photographs Color 
films, either standard or infrared, have three layers (emulsions)  which, when processed, produce 
yellow, magenta, and cyan dyes respectively. For standard color  film, each layer is sensitive to a 
finite part of the visible spectrum (red, green, and blue)  such that the composite image looks 
much like the colors our eyes would perceive. For color-infrared  film, the emulsions are made 
sensitive to different bands of the spectrum. In this  film the top layer is sensitive to near-infrared 
light, enabling the film to image this type of  light as red in the resulting 
pictures. Similarly, red will show as green; green as blue; and blue as  black. Because infrared 
film does not produce an image that appears natural, it is often called  "false-color"film. 
    
Plant stress and maturation are accompanied by greater reflectance of red light and more 
absorption of infrared light.  A loss of growth and vigor in the crop can be detected by increased 
red reflectance and lowered infrared reflectance. Monitoring drought stress by satellite imagery 
has been based on this principle (Lillesand and Kiefer 1994).  Similarly, differential crop 
maturation within fields might also be captured by properly timed color-infrared photographs. 
 
Agricultural remote sensing involving crops and soils is extremely complex because of the 
dynamic nature and inherent complexity of biological materials and soils, yet remote sensing 
technology offers numerous advantages over traditional methods of extracting soils and crops 
related information by the virtue of it’s cost effectiveness and easy and timely data collection and 
analysis over a large area. 
 
Because of the continuous nature of soils data, classification systems that allow any one 
observation to belong to exactly one class are often inappropriate. Fuzzy or continuos 
classification procedures were developed to use in situations where class boundaries are not, nor 
can they be, sharply defined.  In contrast to crisp classification, continuous classification 
procedures allow individuals to have partial class membership (i.e. an individual can belong to 
more than once class) (Burrough et al., 1992). Continuous classification has been widely used for 
soil classification and delineation of management units (McBratney and deGruijter, 1992; Odeh 
et al., 1992; Boydell and McBratney 1999; Lark 1998). 
 
For site-specific management, careful consideration of the likely management operation or agri-
chemical input(s) to be employed is needed in order to determine the procedure of how to divide 
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a field into different management zones. Once the management units are determined, each zone 
should represent a unique combination of potential yield-limiting factors for which we can 
improve the site-specific management prescription.  Relative to management dependent on 
soil/landscape variation, the question considered here is “how should different management 
zones be determined?”  
   
Objectives 
 
The primary objective of this research was to evaluate if data obtained from scanned aerial-
infrared color photographs can be used to predict and map variation of wheat grain yield within a 
managed field. The second objective was to compare management units delineated using 
information extracted from photograph and information gathered through intensive-sampling. An 
important aspect of this work was to ensure that observed spatial patterns in crop productivity 
were consistent with soil and topographical variability.  
  
Materials and Methods 
 
The study site was near highway 13, in Shaunavon (NE10-09-18w3; area 24.09 ha).  A color 
infrared aerial photograph (Figure 1) of this area was taken in 21st August 2000. 
 

 
 
Figure 1: The Study Area 
 
The field was planted with spring wheat under uniform fertilization. Each plot inside the study 
area (bounded by red polygon, area 0.963 ha) received different amount of fertilizer in previous 
year (i.e. from 1997 to 1999). Darker red pigmentation on the photograph is the indication of 
more green vegetation. Topographically the area is more undulated as shown in Figure 2 below. 
3D image of both study area was based on the elevation information obtained from the ground 
control points using geographic positioning systems(GPS). 
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Figure 2. Topography of the study area 
 
 
Color infrared image of each study area were scanned at 600 dpi using flat-bed scanner to give 
eight bit (256 levels), three band (RGB) tagged image file format (TIFF) images.  The scanner 
measures relative intensity of light reflected from the photographs after passing filters that allow 
transmission of red, green and blue wave lengths.  Red, green and blue image bands indicate 
photographic half tones within infra-red , red, and green bands, respectively. Greater half tone 
value indicate greater reflectance in that band.  The resulting image files were imported into 
IDRISI geographic information system (Clark University, Worcester, MA) where they were 
band separated and georegistered.  Georegistration was carried out using reference points 
obtained from a global positioning system (GPS). During geo-registration the images were re-
sampled so that the number of image cells per crop row width were adjusted to the whole 
number nearest to the original image.  
 
There are many vegetation indices that could be used to interpret aerial photograph. Almost all of 
these are based on formulas involving the magnitude of the number representing the red band 
intensity, denoted R, and that representing the IR band intensity, denoting IR. We have used a 
Normalized Difference Vegetation Index (NDVI).  NDVI is calculated as  
 
                                                 NDVI = IR – RED / IR + RED  
 
The resulting vegetation index for each study area is presented in Figure 3 . 
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Figure 3. NDVI of the Study Area 
 
Yield Data 
 
Grain yield measurements were obtained using a combine sampling. Mid position of combined 
area (may be several within each plot based on the landscape position) were noted. A grid 
surface was generated using kriging from normalized point sample information, normalization 
was done based on the mean yield of the field. Grid surface reveals the yield pattern of the crop 
(Figure 4), which shows variation within and between experimental plots. Once the yield 
information is collected correlation between vegetation index and yield were calculated.  
 

 
Figure 4. Normalized grain yield 
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Clustering Process 
 
The main objective of unsupervised classification or clustering is to identify naturally occuring 
clusters in a data. The clustering algorithm used was the fuzzy k-means with extragrades 
(deGruijter & McBratney 1988) which is a modification of fuzzy c-means (Bezdek, 1981).  This 
modified algorithm based on the assumption that continuous classes should provide better 
representations of outliers or atypical individuals than discontinuous classes. This is especially 
the case with outliers located between clusters in property space. (i.e., intragrades) Fuzzy k-
means, for instance, will indeed give intermediate memberships to intragrades. However, outliers 
outside the main body of data points, referred to as extragrades, are still not suitably represented 
by fuzzy k-means.  deGruijter & McBratney (1988)  modified the objective function to account 
for extragrades. This improvement makes the memberships directly depend upon the distances to 
the class centroids. The classification was accomplished using the program “FuzME”. developed 
at the Australian Centre for Precision Agriculture (Minasny and  McBratney  2000). This 
software determines membership in each cluster through an iterative process beginning with a 
random set of cluster means.  Each observation is assigned to the closest to these means.  New 
means are recalculated for each cluster based on the distance (Euclidean, Diagonal, or 
Mahalanobis) from the observation to cluster mean. To ensure cluster stability, the process is 
repeated until either the specified convergence criterion is met or the maximum number of 
iterations, stopping criterion, fuzziness exponent, and distance metric. The software generates a 
data file containing each observation, the cluster to which it belongs, and a vector of membership 
values to indicate how closely each individual resembles each cluster. To obtain good 
convergence, a stopping criterion of 0.00001 was used in this study, which means the change in 
membership with an iteration of means calculation was less than 0.00001. Because, the variables 
used for classification exhibited significantly different ranges, the distance metric was set as to 
Mahalanobis.  In this mode, the data set is transferred to one in which all attributes have zero 
mean and unit variance. Correlations between variables are accounted for as well (McBratney 
and Moore, 1985).   The optimum number of zones were decided based on the fuzziness 
performance index (FPI) and modified partition entropy (MPE). FPI estimates the degree of 
fuzziness generated by a specified number of classes.  MPE estimates the degree of 
disorganization created by a specified number of classes. The optimum number of classes was 
established on the basis of minimizing these two measures (Roubens 1982).  
 
Results and Discussion 
  
To better represent the grain yield , it was normalized with the average yield of the entire field, 
then these normalized point information were used in generating surface using kriging 
interpolation.  Yield variance for the entire filed was calculated as 991624, which was used in the 
comparison of variance reduction after the field was divided into a number of management zone 
using clustering process.  
 
Determination of Management Zones 
 
The unsupervised classification procedure was used to delineate management zones beginning 
with three zones and further dividing into maximum of fifteen zones.  As the number of zones 
increased less pronounced and possibly less interpretable features were included.  Figure 4 shows 
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the results obtained when field was classified into thirteen zones using NDVI information. When 
compared with the surface generated using yield information (Figure 3), we can see a similarity, 
but the problem may arise in the actual management due to it’s salt and pepper nature. 
 

 
Figure 4. 13 zones delineated using Fuzme2 Information. 
 
Determination of the Optimum Number of Zones 
 
The Fuzme2 software was used to divided the study area into three to sixteen zones using NDVI 
as the input variables. After calssification, optimum number of management zones were 
determined based on the FPI and MPE. The FPI and MPE only model the variation in the 
attributes used to perform the classification which serves as a first step in the determination of 
the optimum zones. The FPI is a measure of the degree to which different classes share 
membership and is constrained to values between 0 and 1. As FPI approaches 1, membership 
sharing increases.  As the FPI approaches 0, classes become more distinct with less membership 
sharing.  The MPE is an estimate of the amount of disorganization created by a specified number 
of classes.  Like the FPI, it is also constrained to value between 0 and 1.  As MPE approaches 1 , 
disorganization predominates while values approaching 0 indicate excellent organization. 
Plotting the values of FPI and MPE against the number of classes and choosing a classification 
that minimizes both measures was the criteria used in the identification of optimum number of 
zones. The plots of clustering performance (FPI and MPE) against the number of zones is 
presented in the Figure 5 and 6 respectively. 
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Figure 5. Clustering performance FPI against the number of zones. 
 

 
Figure 6. Clustering performance MPE against the number of zones 
 
 
The result of the plotting of the FPI and MPE against the number of zones indicates poor initial 
segregation of the data and a large amount of disorganization starting with three zones. The FPI 
attains a minimum value at 13 zones, but the MPE plot shows the early minimum near five zone, 
but it eventually decreases after seven zones and reaches minimum at 13 zones. Hence we have 
checked the performance of both 5 zones and 13 zones.  But in the absence of crop information 
such a s grain yield., the decision criteria for selecting optimum number of zones should be the 
minimum of both FPI and MPE with a qualifier that if such zones defined are large (depending 
on the area under consideration) then select the zones which hits early minimum (e.g., in our 
case looking at the MPE, plot hits initial minimum near zone 5 ).  If the additional variable like 
grain yield information is available, it will be used to validate the zone identified by the FPI and 
MPE. 
 
Yield Analysis 
 
Yield information from the study area were used to validate the optimal number of zones 
identified by the FUZME indices. Yield data were normalized by dividing the measured yield for 
each grid cell by the mean value for the entire field so the amount of uniformity gained within 
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each zone by dividing the field into additional zones could be determined.  If we continued 
dividing the field into a large number of zones, ultimately there would be as many zones as grid 
cells and there would be no yield variability within a zone. Fraisse and others (1999) weighted 
yield variances for each zone based on the area of the zone using: 
 
Where: 
Sz

2 = Weighted variance for zone Z; 
Yi = Yield measured for cell I; 
 - 
Yz = Mean of the measured yield in the zone Z; 
nz = Number of cells in zone Z; 
nT = Total number of cells in the map. 
 
The decrease in total within-zone variance was used to select the most appropriate number of 
zones. Total within-zone yield variance of a map was defined as the sum of weighted within-
zone yield variances for each zone: 
 
 
     ST

2  = S1
2 + S2

2 +……+Sz
2
 

 

The average yield in 13 zones identified above is shown in Table 1. The superscript number 
indicates the reclassed number based on the significance of yield variability between each zone. 
 
                           Table 1. Average grain Yield inside each zone 
                                                (For 13 zones identified) 
 
                    ZONE          YIELD         ZONE    YIELD          ZONE        YIELD  
                        1              43631              5           18623              9            18333 
                        2              31132              6          18823             10           11625  
                        3              19003              7          23424             11           21294 

                        4              16215              8          22404             12           18623 

                                                                                                  
                                                              13           13805 
 
Total within-zone yield variance: 546376 (55% of entire field  variance). The percentage 
decrease in within-field variance obtained by dividing the study area into management zones 
using fuzzy k)means algorithm is shown in Figure 7. Yield variance for entire field was used as 
the reference, 100% level.  In this case the total variance in yield is within the zone. As the 
number of zones increases, a portion of the total yield variance is explained by the zone 
partitioning (between zone variance) causing the within- zone variance to decrease.  The early 
maximum decrease in yield variance was obtained by dividing the field into five. With the 
increase in the zone number there are further decrease in variance. This plot resembles just like 
MPE plot. 
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Figure 7. Decrease in within-zone yield variance (%) obtained by dividing  field into 
management zones. 
 
The average yield within each of the five management zones identified by the variance reduction 
process is given in the Table 2 below. Total within-zone yield variance: 744632 (75% of entire 
field  variance). The management zone identified is presented in Figure 8. 

 
                              Table 2. Mean Yield inside each zone 
              (Optimum zone based on variance reduction information) 
 
                                   ZONE                                  YIELD  

                                                1                                        2357  
                                                2                                        2079  
                                                3                                        1898  
                                                4                                        1962 
                                                5                                        1789 
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Figure 8. Management Zone Delineated using variance reduction information 
 
The original 13 management zones identified using FPI and MPE criteria were aggregated using 
the difference in average yield into five zones as indicated in Table 1. The result is given in 
Figure 9. 
 

 
Figure 9. Management Zone Delineated  By aggregating original 13 zones into 5 zones. 
 
Table 3 shows the average yield within each of these aggregated zones. The variance reduction 
information shows the total within-zone yield variance: 56% of entire field for year 2000 and  
70% of entire field variance for year 1998. 
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                                 Table 3. Mean grain yield inside each zone 
                                           (Based on the aggregated zones) 

 
ZONE     YIELD1998     YIELD 2000 

    1              1616                4363  
    2              1445                3113  
    3              1188                1863  
   4              1240                2233 
   5              1130                1486 

 
The table has shown the requirement to increase the number of zone for 1998 to achieve the 
same amount of efficiency as that of the year 2000. This indicates that though we can defined a 
management zone to fit a condition for a particular year, we have to increase or decrease 
management zone based on the most important limiting factor moisture condition.  
 
The results of the classification explained above were compared with the management zone 
delineated using crops and soil information. The correlation between grain yield and these 
factors are given in Table 4. 
        
                            Table 4. PEARSON CORRELATION MATRIX FOR 2000. 

 NDVI YIELD ABHORI BIOM H2O N 

NDVI 1      
YELD 0.622 1     

ABHORI 0.353 0.312 1    
BIOM 0.529 0.855 0.193 1.0   
H2O 0.500 0.458 0.744 0.313 1  

N 0.083 0.171 -0.057 0.160 -0.069 1 
 
The correlation matrix shows the strong relationship between vegetation index and yield. For soil 
and crop information biomass, spring soil moisture are strongly related to the grain yield. For the 
delineation of management zone based on soil and crop information, we have used biomass, 
spring moisture and spring soil nitrogen. The result of 5 management zones delineated using soil 
and crop information is given in the Figure 10 below.  Due to the strong relationship between 
crop biomass and grain yield, when compared with the yield surface it matches more that we 
have identified using NDVI information alone. 
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Figure 10. 5 Management Zone Delineated using crops & Soil Information (Biomass, Soil N and 
Soil Moisture) 
     
The average yield inside each of the five zones delineated using soil and crop information is 
given in the Table 5. We have presented the results from the five zones to compare with the 
optimal zones i.e. five identified using the vegetation index. The total within-zone yield variance: 
568925 (57% of entire field  variance) which is comparable to that of zones identified based on 
the aggregation of original 13 zones. 
 
 
                              Table 5. MEAN  GRAIN YIELD INSIDE EACH ZONE  
                               (Management zone based on crop & soil information) 

 
ZONE                                  YIELD  
    1                                        3182  
    2                                        2558  
    3                                        1522  
   4                                        1887 
   5                                        1527 

 
The crop response to N-fertilization rate and uniqueness of each zonederived from NDVI were 
checked by plotting N-uptake and grain yield against N-rate. The result is given in Figure 11 and 
12 which shows that fertilizer response in each of these management zone is different, thus 
validating the management zone delineation process. Future work will focus on validating low-
cost methods for delineating management zones for fertilization using data from this site and 
others.      
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Figure 12. Response to N Fertilization                     Figure 11. Response to N Fertilization 
inside Each Management Zone  In 1997                  inside Each Management Zone In 1999. 
                
 
Conclusions 
 
Infrared aerial photographs can provide important information for the delineation of in-field 
management zone. Unsupervised clustering process such as described here can help in the 
delineation process. In the absence of yield information index such as FPI and MPE can be used 
to select best number of in-field zones. A greater number of zones is generally required during 
years with below average precipitation (e.g.; in 1998). 
This is the first step in identification of in-field management zones, which can be improved with 
the temporal information. 
 
Hardware and Software Used 
 

• GPS unit (FOR POSITION AND ELEVATION INFORMATION) 
• DESKTOP COMPUTER (FOR DATA PROCESSING AND ANALYSIS) 
• IDRISI SOFTWARE (FOR IMAGE ANALYSIS) 
• ARCVIEW SOFTWARE (TOPOGRAPHIC, SOIL AND CROPS DATA ANALYSIS, 

AND FINAL ANALYSIS) 
• FUZME2 SOFTWARE (FOR CLUSTERING) 
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