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ABSTRACT 

 

This thesis investigates two aspects of phytoalexin metabolism by the 

phytopathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary: (i) determination of 

detoxification pathways of structurally different molecules; (ii) design and synthesis of 

potential inhibitors of enzyme(s) involved in detoxification steps.  

First, the transformations of important cruciferous phytoalexins by the 

economically important stem rot fungus, S. sclerotiorum, were investigated. During 

these studies a number of new metabolic products were isolated, their chemical 

structures were determined using spectroscopic techniques, and further confirmed by 

synthesis. The metabolic products did not show detectable antifungal activity against S. 

sclerotiorum which indicated that these metabolic transformations were detoxification 

processes. Overall, the results of these transformations suggested that S. sclerotiorum 

produces various enzymes that can detoxify cruciferous phytoalexins via different 

pathways. While the detoxifications of strongly and moderately antifungal phytoalexins 

such as brassilexin, sinalexin, and 1-methoxybrassinin were fast and led to glucosylated 

products, the transformations of the weakly antifungal phytoalexins brassicanal A, 

spirobrassinin and 1-methoxyspirobrassinin were very slow and yielded non-

glucosylated compounds. 

Next, the design of potentially selective inhibitors of the brassinin 

detoxification enzyme, BGT, was sought. Two sets of potential inhibitors of BGT were 

designed: (i) a group was based on the structure of brassinin, where the indole ring of 

brassinin was replaced with benzofuran, thianaphthene, 7-azaindole and pyrazolo[1,5-

a]pyridine and/or the position of side chain was changed from C-3 to C-2; and (ii) 

another group based on the structure of camalexin where the thiazole ring of camalexin 

was replaced with a phenyl group. The syntheses and chemical characterization of 

 ii



these potential detoxification inhibitors, along with their antifungal activity, as well as 

screening using fungal cultures and cell-free extracts of S. sclerotiorum, were 

examined. The results of these screening indicated that 3-phenylindoles, 3-

phenylbenzofuran, 5-fluorocamalexin, methyl (indol-2-yl)methyl-dithiocarbamate, 

methyl (benzofuran-3-yl)methyldithiocarbamate and methyl (benzo-furan-2-

yl)methyldithiocarbamate could slow down the rate of detoxification of brassinin in 

fungal cultures and also in cell-free extracts of S. sclerotiorum. Among the designed 

compounds, 3-phenylindole appeared to be the best inhibitor both in fungal cultures 

and in cell-free extracts. Metabolism studies of all the designed compounds using 

fungal cultures of S. sclerotiorum indicated that they were metabolized by S. 

sclerotiorum to glucosyl derivatives, although at much slower rates. 

It is concluded that some inhibitors that can slow down the rate of metabolism 

of brassinin could be good leading structures to design more active inhibitors of BGT. 
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Chapter 1: INTRODUCTION 
 

1.1 General objectives 

Sclerotinia sclerotiorum (Lib.) de Bary causes stem rot disease in a wide range 

of plant families, including Brassicaceae (syn. Cruciferae). The disease is an important 

problem and prevalent in many regions of the world. S. sclerotiorum attack affects 

plant development and may lower the quality and production of crops (Pedras and 

Ahiahonu, 2004). Common practices to prevent the spread of fungal diseases are crop 

rotations, use of certified seeds, removal of infected stubble, and application of 

fungicides. However, these approaches are expensive and the use of fungicides is 

environmentally detrimental. Due to increasing problems and concerns over the use of 

fungicides, there is a great interest in chemical defenses produced by plants. Plants 

produce secondary metabolites that may have antifungal activity and are part of their 

defense mechanisms against fungal attack. Some of these compounds are 

biosynthesized de novo by plants in response to pathogen attack, and are known as 

phytoalexins (Brooks and Watson, 1985).  These phytoalexins are effective only as 

long as they are not metabolized and detoxified by the pathogen. It is well established 

that certain microorganisms that are pathogenic to plants are able to overcome these 

plant chemical defenses through metabolism and detoxification by utilizing a variety of 

enzymatic reactions (Pedras and Ahiahonu, 2005). A number of economically 

important pathogens of crucifers has been reported that can successfully detoxify many 

cruciferous phytoalexins (Pedras and Ahiahonu, 2005).  The metabolic detoxification 

of phytoalexins can potentially deplete cruciferous plants from important inducible 
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chemical defenses and render plants susceptible to pathogenic attack. It is thus 

important to understand the detoxification pathway of phytoalexins by phytopathogenic 

fungi and to inhibit these degradation processes. The possibility of controlling plant 

pathogens by selectively inhibiting the phytoalexin detoxification enzymes is an 

attractive and new approach (Pedras and Jha, 2006). This inhibition might allow the 

plant to accumulate naturally occurring phytoalexins to a level at which the pathogen 

would not develop or spread.  

In order to control the stem rot fungus a project dedicated to the determination 

of detoxification pathways of phytoalexins in S. sclerotiorum and the design and 

synthesis of potential phytoalexin detoxification inhibitors was undertaken. Altogether 

the following aspects were investigated: 

 Synthesis and evaluation of the antifungal activity of  some important 

phytoalexins to Sclerotinia sclerotiorum; 

 Biotransformation studies of cruciferous phytoalexins and their analogues by S. 

sclerotiorum; 

 Design and synthesis of phytoalexin detoxification inhibitors; 

 Co-transformation of brassinin with potential inhibitors by S. sclerotiorum; 

 Screen for inhibitors using cell-free extracts containing BGT and compare with 

in vivo studies. 

 

1.2 Cruciferous plants 

Cruciferous plants are cultivated worldwide and are important sources of edible 

roots, stems, leaves, buds and inflorescences, as well as of edible or industrial oils, 

condiments and forage. Many well known vegetables such as kale (Brassica oleracea 

var. acephala), cabbage (B. oleracea var. capitata), broccoli (B. oleracea var. botrytis), 

cauliflower (B. oleracea var. italica), Brussels sprouts (B. oleracea var. gemmifera), 
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kohlrabi (B. oleracea var. gongylodes), Chinese cabbage (B. campestris var 

pekinensis), turnip (B. campestris var. rapifera), rutabaga (B. napus var. napobrassica), 

etc. are part of this botanical family, the Brassicaceae (Gomez-Campo, 1999). Oilseed 

crucifers (Brassica spp.) are the third largest source of edible vegetable oils, and brown 

(B. juncea) and white (Sinapis alba) mustard seeds, as well as wasabi (Wasabiae 

japonica) are well-known condiments (Pedras, 1998). Varieties of B. napus and B. rapa 

whose seeds meet certain defined standards, i.e. low-erucic acid content in the oil and 

low-glucosinolate content in the residual seed meal were named “canola” by Canadian 

researchers. The meal of oilseed brassicas is an important source of protein for animal 

feed. Historically, most cultivated cruciferous plants and some of their wild relatives 

were used in medicine as anti-escorbutic; a modern version of their medicinal value is 

the anti-carcinogenic effect of some of their constituents (Gomez-Campo, 1999). The 

scientific interest for cruciferous plants and its economical importance is best assessed 

by the tremendous number and variety of scientific articles published annually. The 

wild crucifer, Arabidopsis thaliana, whose genome sequence was published in 2000 

(Theologis et al., 2000), is a model plant for carrying out research on plant-pathogen 

interactions. 

 

1.3 Fungal pathogens of cruciferous crops 

Pathogens affect plant communities in many ways, with widely different 

consequences. Plant pathogenic fungi are ubiquitous in plant communities, and their 

impacts are diverse and often profound. Similar to other plants, crucifers have a whole 

host of fungal pathogens that cause a variety of diseases. These fungal infections result 

in large losses of crop yields worldwide. The increase in economic importance of 

Brassica crops, and in particular of oilseed rape, has led to an increase in research on 

host-pathogen interactions. Similar to other plant fungi, the fungal pathogens of 
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crucifers are categorized depending on parasitism into two distinct groups: biotrophic 

and necrotrophic fungi. 

Biotrophic lifestyle of fungi is defined as deriving energy from living plant cells 

(Schulze-Lefert and Panstruga, 2003). Most biotrophic fungi are obligatory parasites 

surviving only limited saprophytic phases; especially the development of a fruiting 

body is dependent on the presence of a host. The cultivation of single (vegetative) 

stages of these fungi in cell-free nutrient medium succeeded only in a few cases. 

Several biotrophic fungi are known to be important pathogens of crucifers. Albugo 

candida (Pers.) Kuntze is one of the important biotrophic fungi that causes white rust 

and staghead diseases in numerous members of Brassicaceae and some other families 

(Goyal et al., 1995). Among the crucifers, the host list includes many oleiferous, 

vegetable, ornamental, and wild types. Peronospora parasitica (Pers. Ex Fr.) Fr. is 

another important biotrophic fungus of crucifers that causes downy mildew disease and 

is distributed almost all over the world (Casimiro et al., 2006) in parallel with A. 

candida. Clubroot is also a major disease of crucifers caused by a biotrophic fungus, 

Plasmodiophora brassicae Wor. This fungus infects the majority of cruciferous species 

and causes significant damage in all temperate areas (Manzanares-Dauleux et al., 

2000). 

Necrotrophic fungi are a destructive group of plant pathogens that have 

pathogenesis strategies distinct from biotrophic fungi (Veronese et al., 2006). Whereas 

necrotrophic pathogens induce cell death in their hosts by secreting phytotoxins and/or 

enzymes into host tissue before and during colonization, biotrophic pathogens require 

living cells to complete their life cycle. Leptosphaeria maculans (Desm.) Ces. and de 

Not, Alternaria brassicae (Berk.) Sacc., Sclerotinia sclerotiorum (Lib.) de Bary and 

Rhizoctonia solani Khun are some important necrotrophic fungi of crucifers. They 

cause different diseases in crucifers which have large negative impact on quality and 
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production of crops. Some of the important diseases of crucifers caused by 

necrotrophic fungi are described below. 

1.3.1 Blackleg disease 

Leptosphaeria maculans (Desm.) Ces. and de Not is the most important 

nectrophic pathogen of oilseed Brassica crops, causing stem canker or blackleg disease 

(Pedras, 1998). Crop losses caused by L. maculans, in Canada alone, exceeds tens of 

millions of dollars annually. The role of toxins in the development of diseases by this 

pathogen has been investigated by several researchers. Ferezou et al. (1977) first 

described the production of the toxin sirodesmin PL (1) in liquid cultures of L. 

maculans (Pedras, 1998). Pedras et al. (1988, 1989) subsequently reported the 

occurrence of other structurally related toxins (Pedras, 2001). Although the blackleg 

fungus is a host-selective pathogen, these toxins are host non-specific, that is, they 

cause necrosis and cell death of both host and non-host plants. However, the role of 

these toxins in the infection process is not clear and remains to be clarified. It was later 

reported that phomalide (2) was a host selective toxin isolated from 30 to 60-hour-old 

cultures of blackleg fungus (Pedras et al., 1993). Recently, depsilairdin (3), produced 

by isolate Laird 2, was found to cause strong necrotic lesions only on brown mustard 

leaves that host the fungal isolate (Pedras et al., 2004a).   

1.3.2  Alternaria blackspot disease 

Alternaria blackspot, caused by A. brassicae and other related species, are 

widespread and found around the world especially where crucifers are commercially 

grown (Gomez-Campo, 1999). A. brassicae is common in many temperate parts of the 

world during the summer and in many subtropical and tropical parts during the winter. 

All commercial brassicas are essentially susceptible to A. brassicae. However, there are 

some differences in their degrees of susceptibility (Jasalavich et al., 1993). Crucifers 
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such as B. napus and B. carinata are less susceptible to A. brassicae than B. rapa and 

B. juncea. A. brassicae produces phytotoxic compounds which may be important in 

pathogenesis by these fungi. The major phytotoxic compounds produced by A. 

brassicae have been chemically characterized and consist of destruxin B (4) and related 

compounds (Pedras, 1998). Destruxin B (4) causes chlorotic and necrotic foliar lesions 

on diverse Brassica species and other cruciferous host-plants. However, the molecular 

basis for the selective phytotoxicity of destruxin B and related toxins is not understood. 

1.3.3  Root rot disease 

Damping off and root rot diseases caused by Rhizoctonia solani Kuhn are 

widespread in western Canada especially in the northern prairies and are usually caused 

by anastomosis group AG 2-1 (Sippell et al., 1985). The disease also appears to be of 

some importance in Germany. To date no phytotoxic compounds were reported from R. 

solani which showed toxicity on crucifers (Pedras et al., 2005a). However, some 

secondary metabolites such as phenylacetic acid, m- and p-hydroxyphenylacetic acid 

were reported from R. solani, which were considered to be phytotoxins due to their 

toxicity to roots of sugar beet.  

 6



O N N

O OAc OH

H

O

O
HO

S S

HN O
O

N
H

O
O

NH

O
O

O

N
N

N

O

O

O

OH

OH

OH

OO

HHO

HN O
O

N

O
O

O

NHOO
N

N

O

OH

O

O

 

2 1 

5 
3 4  

 

Figure 1.1 Major phytotoxins of some important necrotrophic fungi of crucifers: 
sirodesmin PL (1); phomalide (2); depsilairdin (3); destruxin B (4); sclerin (5).   
 

1.3.4  Stem rot disease 

Sclerotinia stem rot or cottony soft rot is caused by S. sclerotiorum (Lib.) de 

Bary and is common around the world in the temperate regions (Boland and Hall, 

1994). The disease is also serious during storage of cruciferous vegetables. S. 

sclerotiorum has a very broad host range consisting of 42 subspecies or varieties, 408 

species, 278 genera, and 75 families of plants. This includes 48 members of 

Brassicaceae consisting of oleiferous, vegetable, ornamental and wild types (Boland 

and Hall, 1994).  

During its life cycle, S. sclerotiorum produces many black fleshy structures 

called sclerotia which allow the fungus to survive in soil for many years (Adams and 
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Ayers, 1979). Infection of susceptible host plants can occur from mycelium originating 

from eruptive germination of sclerotia in the soil. Sclerotia on or near the soil surface 

germinate to form fruiting bodies called apothecia (stalks with funnels on the end, like 

tiny mushrooms) (Dillard et al., 1995). The apothecia produce and eject ascospores 

(Huang and Dueck, 1980) which are carried by the wind and settle on non-living or 

senescent plant parts where, if there is sufficient moisture and temperatures are cool (5-

20 ˚C), they germinate. The fungus then invades the green tissue. White cottony 

mycelia may develop and sclerotia subsequently produced externally on affected plant 

parts and internally in stem pith cavities. The black sclerotial bodies reach the soil, 

where they remain on the surface or become buried as a result of farming practices, so 

completing the life-cycle of the fungus. 

In oleiferous brassicas, infection due to S. sclerotiorum is usually seen starting 

from the early flowering stage (Boland and Hall, 1994). Yield loss in oleiferous 

brassicas varies considerably based on stage of plant when infection took place, 

maximum loss taking place when the plants get infected during early bloom stage. 

Yield losses due to Sclerotinia stem rot in the canola and rapeseed (B. napus, B. rapa) 

can cause losses up to 50% depending on environmental and weather conditions 

(Pedras and Ahiahonu, 2004; Lefol et al., 1997). Appreciable degrees of resistance to S. 

sclerotiorum in cultivated crucifers are not known. A wild crucifer Erucastrum 

gallicum was discovered recently to be resistant to S. sclerotiorum (Lefol et al., 1997). 

Oxalic acid was known to be the pathogenicity determinant for S. sclerotiorum 

and oxalic acid minus mutants were non-pathogenic (Godoy et al., 1990). The role of 

oxalic acid in the pathogenicity of S. sclerotiorum has been confirmed by using A. 

thaliana (L.) Heynh. as a model system (Dickman and Mitra, 1992). Although oxalic 

acid was reported to cause wilt damage to sunflower (Helianthus annuus) and other 

plant species (Hu et al., 2003), it did not cause any macroscopic damage to B. napus, B. 
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juncea, S. alba, and E. gallicum (Pedras and Ahiahonu, 2004). However, it has been 

reported that S. sclerotiorum produces sclerin (5) that is phytotoxic to three cruciferous 

species (B. napus, B. juncea, S. alba) susceptible to Sclerotinia stem rot disease but not 

to resistant species (E. gallicum) (Pedras and Ahiahonu, 2004). 

 

1.4 Chemical defenses of plants 

Due to fungal diseases, every year enormous crop losses take place in 

Cruciferae or Brassicaceae. The approaches that have been used to control fungal 

diseases are non-chemical control and chemical control. Chemical control (such as 

fungicides) has been very successful to control fungal diseases. However, because of 

their negative environmental impact, fungicides are posing major concerns over the last 

40 years. Therefore, there is a strong interest in chemical defenses produced by plants 

to prevent fungal attack. In order to effectively manipulate these defenses, it is very 

important to understand plant-pathogen interactions in detail. 

A multitude of potential microbial pathogens are present in cultivated fields. 

Most of these pathogens, however, are unable to breach structural barriers or withstand 

chemical defenses of the plant (Huang, 2001). Only pathogens with the ability to 

circumvent the defense mechanisms are able to successfully infect and colonize the 

plant. Upon invasion, some plants build defenses by reinforcing cell walls with callose, 

lignin, hydroxyproline-rich glycoproteins, antimicrobial secondary metabolites, and 

hydrolytic enzymes to confine the pathogen. Plant disease resistance may be divided 

into two categories: preformed or constitutive resistance, and induced resistance. 

Preformed resistance is dependent upon the characteristics of normal, uninfected plants, 

such as thickness of cuticle and presence of constitutive antimicrobial compounds 

(Grayer and Harborne, 1994). The induced resistance is expressed after microbial 
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attack in the form of fortification of cell walls, biosynthesis of phytoalexins, and 

accumulation of pathogenesis-related proteins (Grayer and Harborne, 1994). In this 

section, constitutive and induced chemical defenses as a part of plant resistance 

mechanisms will be discussed. 

1.4.1 Constitutive chemical defenses 

Constitutive chemical defenses are preformed antifungal compounds of low 

molecular weight or macromolecules produced by plants (Grayer and Harborne, 1994). 

The preformed antifungal compounds of low molecular weight are called preinfectional 

metabolites, prohibitins or phytoanticipins. It has become apparent that the presence of 

antifungal macromolecules such as proteins may play an important role in the defense 

systems of higher plants against pathogens (Grayer and Harborne, 1994). The 

distinction between phytoanticipins and phytoalexins is not always clear. It has been 

found that some secondary metabolites are constitutive in one plant species but are 

induced in another plant species (Grayer and Harborne, 1994). 

A large number of constitutive plant compounds have been reported to have 

antifungal activity. Well-known examples include phenols and phenolic glycosides, 

unsaturated lactons, saponins, cyanogenic glycosides, and glucosinolates (Osbourn, 

1996; Grayer and Harborne, 1994; Bennett and Wallsgrove, 1994). Glucosinolates, 

sulfur-containing glucosides, are important phytoanticipins of the family Cruciferae, 

including the agronomically important genus Brassica and the cruciferous weed 

Arabidopsis. High glucosinolate levels have been associated with resistance of oilseed 

rape and Indian mustard to L. maculans (Mithen and Magrath, 1992; Osbourn, 1996) 

and with resistance of cabbage to P. parasitica (Osbourn, 1996, Greenhalgh and 

Mitchell, 1976). The oat saponins, avenacins (e.g., 6), are representatives of the 

glycosylated triterpenoid saponins and include four structurally-related molecules that 

are found in oat roots (Osbourn, 2003). The avenacins are involved in defense against a 
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variety of pathogens. The soilborne pathogen Gaeumannomyces graminis var. avenae 

relies on the enzymatic detoxification of these compounds in order to infect oat roots. 

A mutant of G. graminis that was obtained by transformation-mediated targeted 

disruption of the gene encoding the saponin-detoxifying enzyme avenacinase was 

unable to sucessfully infect oat roots, but retained full pathogenicity on wheat, which 

does not produce avenacins  (Bowyer et al., 1995). This work is a clear demonstration 

of the significance of detoxification reactions in successful fungal invasion. 
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Figure 1.2 Chemical structure of major oat root saponin avenacin A-1 (6). 
 

1.4.2 Induced chemical defenses 

Some of the important induced chemical defenses of plants include 

phytoalexins and pathogenesis-related (PR) proteins. By definition, phytoalexins are 

low molecular weight antimicrobial compounds biosynthesized by plants from remote 

precursors in response to pathogen attack, probably as a result of de novo synthesis of 

enzymes (Osbourn, 1996). On the other hand, PR proteins are plant proteins that 

respond hypersensitively and whose syntheses are induced in pathological or related 

situations (Huang, 2001). Enzymes involved in phytoalexin biosyntheses and other 

metabolic pathways induced by pathogenic infection are generally not considered to be 
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PR proteins. In this section, the discussion will be restricted to phytoalexins, 

particularly to cruciferous phytoalexins because of the subject matter of this thesis. 

1.4.2.1  Phytoalexins 

The phytoalexin theory was first given by Müller and Börger (1940) based on 

their studies of interactions between Phytophthora infestans and Solanum tuberosum 

(potato) (Hammerschmidt, 1999). Müller and Börger showed that the virulent race of 

P. infestans developed freely all over the potato tuber with the exception of the area 

that was pre-inoculated with an avirulent race of the same fungus. From these results, 

they suggested that tuber cells, when inoculated with an avirulent race of P. infestans, 

produced an inhibitory substance or phytoalexin that inhibited mycelial growth of the 

virulent race. The putative phytoalexin was latter discovered by Tomiyama et al. (1968) 

and named rishitin (7) although the first known phytoalexin was pisatin (8) and isolated 

by Perrin and Bottomley (1962) from the seed cavities of pea.  

 

O

O

O

O

OH

H

H3CO

HO

HO

 
7 8  

Figure 1.3 Chemical structures of rishitin (7) and pisatin (8). 

 

To date a large number of phytoalexins have been isolated from different plant 

families. Interestingly, closely related plants synthesize phytoalexins of similar 

chemical structures. For example, plants from Leguminosae produce predominantly 

isoflavonoid phytoalexins (Harborne, 1999; Ingham, 1982); plants from Solanaceae 

synthesize mostly terpenoid phytoalexins (Brooks and Watson, 1991; Jadhav et al., 
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1991); plants from Caryophyllaceae accumulate phytoalexins derived from 

anthranilamide (Niemann, 1993); and cruciferous plants accumulate sulfur-containing 

indole phytoalexins (Pedras et al., 2003a). However, exceptions have been noted in 

some cases. Phytoalexins play an important role in disease resistance and the 

importance in defense mechanisms has been reviewed by Smith (1996).   

1.4.2.2  Phytoalexins from Cruciferae 

Phytoalexins from the family Cruciferae have structural uniqueness and contain 

an indole ring with substitution at the C-3 position and additional nitrogen and sulfur 

atoms. Close to 35 phytoalexins (Figs. 1.4 and 1.5, compounds 9-46) from crucifers 

have been isolated and their structures elucidated since they were first reported in 1986 

by Takasugi and co-workers (Takasugi et al., 1986). The first reported cruciferous 

phytoalexins were brassinin (9), 1-methoxybrassinin (11) and cyclobrassinin (18) 

isolated from Chinese cabbage (B.  campestris L. ssp. pekinensis) heads after 

inoculating with Pseudomonas cichorii (Takasugi et al., 1986). Phytoalexins from 

crucifers have been reviewed several times (Gross, 1993; Rouxel et al., 1995; Pedras et 

al., 2000 and 2003a). Since the last review (Pedras et al., 2003a), eight new 

phytoalexins have been reported from crucifers (Fig. 1.5). Arvelexin (39) was isolated 

from Thlaspi arvense (stinkweed) (Pedras et al., 2003b); isalexin (40), brassicanate A 

(41), and rutalexin (42) were isolated from B. napus, ssp. rapifera (rutabaga) (Pedras et 

al., 2004b); erucalexin (43) was isolated from Erucastrum gallicum (dog mustard) 

(Pedras et al. 2006a); and caulilexin A (44), caulilexin B (45) and caulilexin C (46) 

were reported from the flower of B. oleracea var. botrytis (cauliflower) (Pedras et al., 

2006b). 
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Figure 1.4 Phytoalexins from crucifers: brassinin (9); brassitin (10); 1-
methoxybrassinin (11); 4-methoxybrassinin (12); 1-methoxybrassitin (13); 1-
methoxybrassenin A (14); 1-methoxybrassenin B (15); wasalexin A (16); wasalexin B 
(17); cyclobrassinin (18); cyclobrassinin sulfoxide (19); sinalbin B (20); sinalbin A 
(21); cyclobrassinone (22); dehydro-4-methoxybrassinin (23); brassilexin (24); 
sinalexin (25); dioxibrassinin (26); spirobrassinin (27); 1-methoxyspirobrassinin (28); 
1-methoxyspirobrassinol (29); 1-methoxyspirobrassinol methyl ether (30); camalexin 
(31); 1-methylcamalexin (32); 6-methoxycamalexin (33); brassicanal A (34); 
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brassicanal C (35); methyl 1-methoxyindole-3-carboxylate (36); brassicanal B (37); 
indolyl-3-acetonitrile (38) (Pedras et al., 2003a). 
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Figure 1.5 New phytoalexins from crucifers: arvelexin (39) (Pedras et al., 2003b); 
isalexin (40); brassicanate A (41); rutalexin (42) (Pedras et al., 2004b); erucalexin (43) 
(Pedras et al., 2006a); caulilexin A (44); caulilexin B (45); caulilexin C (46) (Pedras et 
al., 2006b). 
 

1.5 Metabolic detoxification of phytoalexins 

Phytoalexins are effective in the defense mechanism of plants only as long as 

they are not metabolized and detoxified by the pathogen. It is well established that 

certain microorganisms that are pathogenic to plants are able to overcome these plant 

chemical defenses through metabolism and detoxification (Pedras and Ahiahonu, 

2005). The outcome of this detoxification favors the pathogen and is unfavorable to 

plants. To date, there are many examples that show phytoalexins can be detoxified to 

less toxic compounds by phytopathogenic fungi. The pathways used by plant 

pathogenic fungi to metabolize and detoxify phytoalexins have been recently reviewed 

(Pedras and Ahiahonu, 2005). This review covered the phytoalexin detoxifications that 

had been investigated to date. Therefore, this topic is not reviewed in this thesis 

introduction, although the subject mater is relevant to my research project. Only new 

works on the metabolism and detoxification of phytoalexins, which were reported after 

the last review, are reviewed here. As well, the transformations of cruciferous 
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phytoalexins that have been studied using the fungus, S. sclerotiorum, are summarized 

in this section. Although the biotransformation of the pea (Pisum sativum) phytoalexin 

(+)-pisatin (8) was reviewed (Pedras and Ahiahonu, 2005), it is an important example 

to show the significance of phytoalexin detoxification in successful fungal invasion. 

Pisatin (8) was detoxified by the pea fungal pathogen, Nectria haematococca, through a 

demethylation reaction, which was catalyzed by a microsomal cytochrome P-450 

monooxygenase, pisatin demethylase (PDA). The virulence of N. haematococca 

isolates on pea depended on their ability to detoxify pisatin (8) through demethylation.  

Only those isolates that had PDA were virulent on pea. Results with specific mutants of 

N. haematococca confirmed this hypothesis and showed that phytoalexin detoxification 

can be a virulence trait (VanEtten et al. 2001).  

The metabolism of crucifer phytoalexins have been studied mainly using three 

economically important cruciferous fungal pathogens, namely Leptosphaeria 

maculans, Sclerotinia sclerotiorum, and Rhizoctonia solani (Pedras and Ahiahonu, 

2005). Recently, the biotransformation pathway of brassilexin (24), sinalexin (25) and 

their analogues by the fungus, L. maculans, was described (Pedras and Suchy, 2005). It 

was discovered that L. maculans transformed brassilexin (24) to the very polar 

metabolite 3-formylindolyl-2-sulfonic acid (49) as shown in Scheme 1.1. The first step 

in the transformation of brassilexin (24) involved reduction of its isothiazole ring 

yielding 3-aminomethyleneindole-2-thione (47), which was subsequently hydrolyzed to 

2-sulfanylindolyl-3-carbaldehyde (48) followed by oxidation to 3-formylindolyl-2-

sulfonic acid (49). Although aldehyde 48 was not detected in the fungal cultures 

incubated with brassilexin (24) or 3-aminomethyleneindole-2-thione (47), an 

incubation experiment with 48 showed its complete metabolism to sulfonic acid 49. 

The biotransformation of brassilexin (24) was shown to be a detoxification, since the 

antifungal activities of brassilexin (24) and its metabolites indicated that brassilexin 
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(24) was more antifungal to L. maculans than any of the products 47-49. Investigation 

of the metabolism of sinalexin (25) and its analogues 1-methylbrassilexin (50) and 1-

acetylbrassilexin (51) in L. maculans suggested that sinalexin (25) and 1-

methylbrassilexin (50) were detoxified to enamines 52 and 53 (Scheme 1.2), 

respectively, whereas 1-acetylbrassilexin (51) was transformed to brassilexin (24), 

whose biotransformation followed the pathway depicted in Scheme 1.1 (Pedras and 

Suchy, 2005). Enamine 52 was found to decompose in aqueous solution and 53 was 

biotransformed slowly to undetermined products. 
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Scheme 1.1 Detoxification pathway of brassilexin (24) in Leptosphaeria maculans 
(Pedras and Suchy, 2005). 
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Scheme 1.2 Detoxification pathway of sinalexin (25), 1-methylbrassilexin (50) and 1-
acetylbrassilexin (51) in Leptosphaeria maculans (Pedras and Suchy, 2005). 
 

It was reported (Scheme 1.3) that brassinin (9) was detoxified in mycelial 

cultures or cell free extracts of L. maculans to less toxic indole-3-carboxaldehyde (54) 

(Pedras et al., 2005b). In order to inhibit this detoxification in L. maculans, a large 

number of potential brassinin detoxification inhibitors was designed by replacement of 

its dithiocarbamate group (toxophore) with carbamate, dithiocarbonate, urea, thiourea, 
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sulfamide, sulfonamide, dithiocarbazate, amide, and ester functional groups and by 

substituting the indolyl moiety with naphthalenyl and phenyl moiety (Pedras and Jha, 

2006). Among all these designed compounds, compounds 55-61 were reported to be 

biotransformed in mycelial cultures of L. maculans (Fig. 1.6). Although methyl 3-

phenyldithiocarbazate (56) and tryptophol dithiocarbonate (57) could slow down the 

rate of detoxification of brassinin (9), they were metabolized to methyl 3-

phenylthiocarbazate (63) and tryptophol (62), respectively, by L. maculans. On the 

other hand, methyl N-benzyldithiocarbamate (55) and N-(indol-3-ylmethyl)-N′- 

methylthiourea (58) did not affect the rate of detoxification of brassinin (9) but they 

were metabolized to benzoic acid and indole-3-carboxaldehyde (54), respectively. 

Compounds 59-61 were metabolized to 3-(indol-3-yl)propanoic acid (64) by L. 

maculans without affecting the metabolism of brassinin (9). 
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Scheme 1.3 Detoxification of brassinin (9) in mycelial cultures or cell free extracts of 
Leptosphaeria maculans (Pedras et al., 2005b). 
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Figure 1.6 Structure of potential brassinin detoxification
biotransformed in mycelial cultures of Leptosphaeria maculans (P
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Figure 1.7 Biotransformation products of potential brassinin detoxification inhibitors 
obtained from mycelial cultures of Leptosphaeria maculans (Pedras and Jha, 2006). 
 

The biotransformation of brassinin (9) was also investigated by the stem rot 

fungus, S. sclerotiorum (Pedras et al., 2004c). It was reported that S. sclerotiorum 

metabolized brassinin (9) to 1-β-D-glucopyranosylbrassinin (66), an unusual pathway, 

as shown in Scheme 1.4. The antifungal activity of brassinin (9) and its metabolite 66 

was compared using radial mycelial growth assay, which indicated that the metabolism 

of brassinin (9) by S. sclerotiorum was a detoxification, as the glucoside 66 had no 

significant antifungal activity. Furthermore, the transformation of brassinin (9) to 

glucoside 66 was also observed in the crude cell-free extracts of mycelia of S. 

sclerotiorum when the mycelia were grown in the presence of compounds related to 

brassinin (9) such as camalexin (31), methyl tryptaminedithiocarbamate (65), methyl 1-

methyltryptaminedithiocarbamate (68), or spirobrassinin (27) (Pedras et al., 2004c). 

Without stimulating the fungus with these compounds, the transformation of brassinin 

(9) to 66 was not observed in the cell-free extracts. These results suggested that an 

inducible brassinin glucosyltransferase (BGT) was responsible for the detoxification of 

brassinin (9) in S. sclerotiorum. The BGT activity was found to be UDP-glucose 

dependent as no BGT activity was observed in the absence of UDP-glucose. 
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Scheme 1.4 Detoxification of the phytoalexin brassinin (9) and its analogues methyl 
tryptaminedithiocarbamate (65) by the fungus Sclerotinia sclerotiorum (Pedras et al., 
2004c). 
 

To probe the selectivity of the BGT involved in the detoxification of brassinin, 

the metabolism of brassinin analogues such as methyl tryptaminedithiocarbamate (65), 

methyl 1-methyltryptaminedithiocarbamate (68) and methyl 2-naphthylmethyl 

dithiocarbamate (70) was investigated in mycelial cultures of S. sclerotiorum (Pedras et 

al., 2004c). It was reported that compounds 65, 68 and 70 were metabolized by S. 

sclerotiorum to their respective glucosides 67, 69 and 71 as shown in Schemes 1.4-1.6. 

When the N-1 position was blocked as in 68, the metabolism involved in the oxidation 

of C-7 followed by O-glucosylation. 2-Naphthylmethyl dithiocarbamate 70 was also O-

glucosylated at C-5, similar to the N-1 protected indole 68. 
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Scheme 1.5 Detoxification of the phytoalexin analogue methyl 1-methyltryptamine 
dithiocarbamate (68) by Sclerotinia sclerotiorum (Pedras et al., 2004c). 
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Scheme 1.6 Detoxification of the phytoalexin analogue methyl 2-naphthylmethyl 
dithiocarbamate (70) by Sclerotinia sclerotiorum (Pedras et al., 2004c). 
 

The biotransformation of camalexin (31) and 6-methoxycamalexin (33) were 

investigated in the mycelial cultures of S. sclerotiorum (Pedras and Ahiahonu, 2002). 

The results of these investigations suggested that S. sclerotiorum metabolized 

camalexin (31) to 6-oxy-(O-β-D-glucopyranosyl)camalexin (73) via 6-

hydroxycamalexin (72) (Scheme 1.7). Similar to this metabolism, the phytoalexin 6-

methoxycamalexin (33) was also metabolized by S. sclerotiorum to 73 via 72 (Schemes 

1.7 and 1.8). In addition, 6-methoxycamalexin (33) was partly transformed to the minor 

metabolite 74. Therefore, the metabolism of 6-methoxycamalexin (33) in S. 

sclerotiorum occurred via two pathways, with the major product 73 resulting from 

demethylation of the methoxy group at C-6, followed by glucosylation (Pedras and 

Ahiahonu, 2002). Interestingly, similar to brassinin (9) detoxification, the minor 

product 74 resulted from direct N-glucosylation (Scheme 1.8). The metabolism of 

camalexin (31) and 6-methoxycamalexin (33) by S. sclerotiorum were also 

detoxification processes as their metabolites had no significant antifungal activity.    
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Scheme 1.7 Detoxification of the phytoalexin camalexin (31) by Sclerotinia 
sclerotiorum (Pedras and Ahiahonu, 2002). 
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Scheme 1.8 Detoxification of the phytoalexin 6-methoxycamalexin (33) by Sclerotinia 
sclerotiorum (Pedras and Ahiahonu, 2002). 
 

To probe the detoxification pathway of camalexins in S. sclerotiorum, 

camalexins 75 and 77 were synthesized and separately fed to mycelial cultures of S. 

sclerotiorum. 6-Fluorocamalexin (75) was transformed to N-1 glucosylated compound 

76, as expected since the C-6 position was blocked (Scheme 1.9) (Pedras and 

Ahiahonu, 2002). Interestingly, when both C-6 and N-1 positions were blocked, as in 

77, transformation involved the oxidation of C-7 followed by glucosylation to 78 

(Scheme 1.10). In addition, compound 79 was formed from the transformation of 

camalexin 77. However, the rates of transformation of 75 and 77 were significantly 

slower than that of camalexins 31 and 33.   
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Scheme 1.9 Detoxification of the phytoalexin analogue 6-fluorocamalexin (75) by 
Sclerotinia sclerotiorum (Pedras and Ahiahonu, 2002). 
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Scheme 1.10 Detoxification of the phytoalexin analogue 6-fluoro-1-methylcamalexin 
(77) by Sclerotinia sclerotiorum (Pedras and Ahiahonu, 2002). 
 

In conclusion, plants can synthesize phytoalexins as part of the defense 

mechanisms against fungal attack, while fungi may utilize enzymes that metabolize and 

detoxify phytoalexins (Pedras and Ahiahonu, 2005). Therefore, investigation of 

phytoalexin detoxification mechanisms, followed by isolation of fungal enzymes 

involved in the crucial detoxification steps will assist the biorational design of 

inhibitors of phytoalexin detoxification enzymes that may selectively control the 

particular pathogen. 

 

1.6 Glucosyltransferases 

From the above description of published work, it is clear that the 

phytopathogenic fungus, S. sclerotiorum, is an exceptional pathogen that utilizes 

glucosyltransferases for the detoxification of phytoalexins. To the best of my 

knowledge, confirmed by a recent publication (Pedras and Ahiahonu, 2005), there are 

no other phytopathogenic fungi that detoxify phytoalexins through glucosylation. 

Glucosylation reactions are very common in plants. Therefore, it was suggested that S. 

sclerotiorum has obtained proficient glucosyltransferases due to continuous adaptation 

and co-evolution with plants (Pedras et al., 2004c). Since glucosyltransferases of S. 

sclerotiorum play an important role in detoxification of phytoalexins, it was of great 
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interest to survey glucosyltransferases of other living systems to compare their 

substrate specificity, reaction mechanisms and potential inhibitors. Information from 

this literature survey contextualizes the glucosyltransferases of S. sclerotiorum. 

Therefore, in this section, glucosyltransferases (plant and microbial) that are involved 

in glucosylation of secondary metabolites and also in the detoxification of bioactive 

secondary metabolites are reviewed. 

The glycosylation reaction that conjugates a carbohydrate molecule with 

endogenous and exogenous organic molecules is an important tool for all organisms 

(Jones and Vogt, 2001). Glycosylation can increase water solubility, reduce chemical 

reactivity and alter biological activity of compounds. Secondary metabolites are 

glycosylated at O (-OH and –COOH), N, S and C atoms by glycosyltransferases using 

nucleotide-activated sugars as donor substrates (Fig. 1.8). The glycosyltransferases 

involved in glycosylation of small molecules have been grouped into family 1 of the 78 

families that are classified on the basis of substrate recognition and sequence 

relatedness (Lim and Bowles, 2004; http://afmb.cnrs-mrs.fr/CAZY/). In plants, these 

transfer reactions generally use UDP-glucose with acceptors that include hormones 

such as auxins and cytokinins, secondary metabolites such as flavonoids, and foreign 

compounds such as pesticides and secondary metabolites (e.g., phytotoxins, 

allelochemicals) from other organisms (Lim and Bowles, 2004). When 

glycosyltransferases transfer a glucose molecule to an acceptor molecule they are 

called glucosyltransferases. Although glucosylation is a very common detoxification 

mechanism among plants, it is less usual in microorganisms (Hall et al., 2000). 

Glucosyltransferases are also uncommon in mammalian organisms; however, typically 

UDP-glucuronosyltransferases are used to transfer glucuronic acid from UDP-

glucuronic acid to endogenous (e.g. steroids, bilirubin and bile acids) and exogenous 
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(e.g., dietary flavonoids, and drugs) acceptors in mammalian systems (Radominska-

Pandya et al., 2001). 
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Figure 1.8 Formation of glucoside by glucosyltransferases (GTs) (RX is the aglycone). 

 

1.6.1 Plant glucosyltransferases 

Plants are capable of synthesizing a great diversity of low-molecular-weight 

compounds, defined as secondary plant metabolites. Part of this diversity arises from 

multiple reactions of a common skeleton such as hydroxylation, methylation, acylation 

or conjugation with small molecules. For instance, the diversity of more than 5000 

known flavonoids originates from such combinatorial modifications of their common 

aromatic structure (Gachon et al., 2005). Glucosylation is one of the most widespread 

of these modifications. Foreign compounds originating from other organisms and man-

made chemicals, defined as xenobiotics, are also glucosylated by plants (Pflugmacher 

and Sandermann, 1998). Overall, glucosylating activities in any given individual plants 

must therefore be regarded as broad. However, the number of expressed 

glucosyltransferases involved in secondary plant metabolism and the substrate 

specificities of these enzymes remain largely unknown (Jones and Vogt, 2001). In this 

section, the substrate specificities of glucosyltransferases involved in the biosynthesis 

of plant secondary metabolites are discussed first. Subsequently, glucosyltransferases 
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involved in detoxification of foreign compounds that originate from organisms that co-

habit (i.e. share the same space) are discussed. However, the detoxification of man-

made chemicals such as herbicides, insecticides and other that occur also through 

glucosylation (Cole and Edwards, 2000; Hall et al., 2000) will not be covered. 

1.6.1.1  Biosynthesis of secondary metabolites 

 Phenylpropanoids 

The phenylpropanoid pathway in plants leads to the synthesis of a wide range of 

secondary metabolites, many of which accumulate as glucosides. Many researchers are 

investigating glucosyltransferases (GTs) and genes encoding GTs that are capable of 

transferring a glucose moiety to phenylpropanoids. Most phenylpropanoids are known 

to form 4-O-glucosides through glucosylation; in addition, phenylpropanoids 

containing a carboxylic acid group also form glucose esters (Fig. 1.9). The glucose 

ester of sinapic acid (90), 1-O-sinapoylglucose (96) is formed by a GT and genes 

encoding enzymes capable of this transfer reaction have been identified in both 

Brassica napus and in Arabidopsis (Lim et al., 2001; Milkowski et al., 2000a, 2000b, 

2004).   

Five closely related genes (UGT84A1-3 and UGT72E2-3) from Arabidopsis 

encoding enzymes that can glucosylate sinapic acid (90), sinapyl alcohol (83) and their 

related phenyl propanoids in vitro have been identified (Lim et al., 2001). The 

UGT84A1 and UGT84A3 glucosyltransferases showed significant activity in forming 

glucose ester conjugates with cinnamic acid, p-coumaric acid, caffeic acid (88), ferulic 

acid (89) and sinapic acid (90) whereas UGT84A2 displayed activity only towards 

sinapic acid (90). The enzyme UGT72E2, which produced 4-O-glucoside, showed 

activity towards ferulic acid (89), sinapic acid (90), coniferyl alcohol (82) and sinapyl 

alcohol (83), where high specific activity was found. The UGT72E3 
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glucosyltransferase was able to form 4-O-glucosides 87 and 93 only with sinapyl 

alcohol (83) and sinapic acid (90) respectively. Recently, it was reported that 

UGT72E2 glucosyltransferase was responsible for the accumulation of coniferyl and 

sinapyl alcohol 4-O-glucosides 86 and 87 in A. thaliana (Lanot et al., 2006). They have 

shown that transgenic plants in which UGT72E2 was downregulated produced 50% 

less glucosides (86 and 87), whereas glucoside levels were increased in leaves and 

roots of transgenic plants containing elevated expression of UGT72E2. A 

glucosyltransferase was isolated from B. napus that showed highest relative activity 

towards sinapic acid (90) in vitro to give 1-O-sinapoylglucose (96) (Milkowski et al., 

2000a). 
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Figure 1.9 Phenylpropanoids and formation of their 4-O-glucosides and glucose esters. 

An Arabidopsis glucosyltransferase (UGT71C1) that can regioselectively 

glucosylate the 3-OH of caffeic acid (88) has been expressed in Escherichia coli, 

purified and assayed against a range of substrates in vitro (Lim et al., 2003) (Scheme 

1.11). The enzyme did not show any activity towards the 4-OH position on the other 

phenylpropanoids, but the enzyme could recognize the 3-OH of m-coumaric acid (98) 

and the 2-OH of o-coumaric acid. The UGT71C1 enzyme was also able to glucosylate 

the 3-OH position of isoferulic acid (97).  
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1.11 Glucosylation at 3-OH position of different hydroxycinamic acids: 
id (88), isoferulic acid (97), m-coumaric acid (98). 

ecently, Lunkenbein et al. (2006) have reported the isolation of a cDNA 

 glucosyltransferase (FaGT2) from ripe strawberry cv. Elsanta that catalyzes 

tion of glucose esters of cinnamic acid and their derivatives in vitro. The 

FaGT2 could accept compounds containing a carboxylic group and an 

ring structure as substrates. Substituents at the aromatic ring were tolerated as 

ey were not located in the ortho position. Thus p-coumaric acid, caffeic acid 

lic acid (89), sinapic acid (90), and 5-hydroxyferulic acid were glucosylated. 

ds 

avonoids represent a very interesting group of plant secondary metabolites 

biquitous in plants. Many flavonoids exist as glucosides in plants. To date, an 
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overwhelming number of flavonoid glycosides have been identified. For example, out 

of a total of 5,000 different flavonoids, 300 different glycosides of one single flavonol, 

quercetin, have already been identified (Harborne and Baxter, 1999). Although 

flavonoid glucosides are abundant in plants, there are not many studies on the 

glucosyltransferases that are responsible for the glucosylation of this huge number of 

flavonoid glucosides. Substrate specificity tests with flavonoids and heterologously 

expressed (e.g. in E. coli or yeast) GTs were conducted by a few groups and were 

reviewed by Vogt and Jones (2000). Some flavonoid glucosyltransferases showed a 

wide range of substrate specificity with poor regioselectivity in vitro. However, some 

glucosyltransferases showed regioselectivity for particular hydroxyl groups. For 

example, flavonoid 3-O-glucosyltransferase, that transfers a glucose moiety to the 3-

OH position of a flavonoid, have been studied by several researchers (Suzuki et al., 

2005; Kim et al., 2006; Offen et al., 2006; Tohge et al., 2005). Suzuki et al (2005) 

isolated and purified a flavonoid 3-O-glucosyltransferase from buckwheat (Fagopyrum 

esculentum) cotyledons that can regioselectively glucosylate quercetin (102) at the 3-

OH position (Scheme 1.12). The enzyme showed little affinity towards kaempferol 

(103), although it has a free 3-OH group. Apigenin (110) and luteolin (111) containing 

no 3-OH group were not active substrates for this buckwheat GT and only UDP-

glucose was found to be a good sugar donor. It has been reported that a UGT73B2 

glucosyltransferase from Arabidopsis was able to transfer a glucose unit to 3-OH 

preferentially when both 3-OH and 7-OH were available (Scheme 1.12) (Kim et al., 

2006). However, glucosylation occurred at the 7-OH when the 3-OH was absent 

(Schemes 1.13 and 1.14). For example, quercetin (102), kaempferol (103), and 

isorhamnetin (104) were glucosylated by UGT73B2 at 3-OH position, whereas 

apigenin (110), luteolin (111), naringenin (114), and eriodictyol (115), where 3-OH 

were not available, were glucosylated at 7-OH. Another recombinant Arabidopsis 

glucosyltransferase (UGT78D2) was reported that glucosylate both flavonols and 
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anthocyanidins at the 3-OH position (Tohge et al., 2005). Three flavonols such as 

quercetin (102), kaempferol (103), and myricetin (105) (Scheme 1.12) and three 

anthocyanidins such as cyanidin (126), delphinidin (127), and pelargonidin (128) were 

tested as substrates for the reaction catalyzed by recombinant UGT78D2. All of them 

were suitable substrates for the reaction catalyzed by recombinant UGT78D2 to yield 

the corresponding 3-O-glucosides.  
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Although the 7-O-glucoside flavonoid is one of the major flavonoid glycosides 

rally produced in plants, there are few studies on the enzyme activity and genes of 

onoid 7-O-glucosyltransferases. Hirotani et al. (2000) reported the cloning, 

acterization and high-level expression in E. coli of a cDNA encoding 

osyltransferase from hairy roots (Scutellaria baicalensis), which is responsible for 

glucosylation of flavonoids at the 7-O-position. The substrate specificity of this 

mbinant GT was examined using different flavonoids as acceptor substrate and 

G as glucose donor. As shown in Scheme 1.15, the flavones such as baicalein 

), wogonin (119), apigenin (110), scutellarein (120), and 7-4′-dihydroxyflavone 

) and the flavonols, kaempferol (103) were accepted by the recombinant hairy root 

 The GT showed high specific activity towards 118, 110, and 103. In a different 

y, another glucosyltransferase (NTGT2) from tobacco cells (Nicotiana tabacum L.) 

transferred a glucose unit on the 7-OH group of flavonol and 3-OH group of 

arin was cloned in E. coli and characterized (Taguchi et al., 2003). The 

mbinant NTGT2 displayed high specific activity towards kaempferol (103) and 3-

oxycoumarin, although it had broad substrate specificities. 
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Scheme 1.15 Glucosylation at 7-OH position of different flavones: baicalein (118), 
wogonin (119), apigenin (110), scutellarein (120), 7,4′-dihydroxyflavone (121). 
 

Recently, different flavonoids, such as 102, 103, 110, 111, 114, and 115 were 

tested as substrates with a cloned glucosyltransferase (RUGT-5) from rice (Ko et al., 

2006). The enzyme showed very poor regioselectivity; at least two products were 

obtained from each flavonoid. Glucosylation occurred at the hydroxyl groups at C-3, C-

7 or C-4′ positions of flavonoids. The most efficient substrate was kaempferol (103), 

followed by apigenin (110), and luteolin (111). Two flavonoid glucosyltransferases 

(UGT73A4 and UGT71F1) from Beta vulgaris were reported to exhibit a broad 

substrate specificity, but a distinct regioselectivity, glucosylating a variety of flavonols, 

flavones, flavonones, and coumarins (Isayenkova, et al., 2006). UGT73A4 showed a 

preference for the 4′- and 7-OH position in the flavonoids, whereas UGT71F1 

preferentially glucosylated the 3- or the 7-OH position. 

Anthocyanins are the principal pigments in flowers, conferring intense red-to-

blue cyanic colors on petals and helping to attract pollinators (Ogata et al., 2005). Its 

biosynthesis involves glucosylation steps that are important for the stability of the 

pigment and for its aqueous solubility in vacuoles. 3-O-Glucosyltransferases that 

catalyze the first 3-O-glucosylation event are common to the biosynthetic pathway of 

all anthocyanins (Yamazaki et al., 1999). Ford et al. (1998) reported the cloning of a 
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cDNA encoding 3-O-glucosyltransferase (VvGT1) from grapes of Vitis vinifera that is 

responsible for the biosynthesis of cyanidin 3-O-glucoside (129) from cyanidin (126) 

(Scheme 1.16). The recombinant VvGT1 accepted only UDP-glucose as a donor 

substrate but it could transfer a glucose moiety to flavonols such as quercetin (102) and 

kaempferol (103) at the 3-hydroxyl position as well. Kinetic analyses showed that kcat 

for glucosylation of cyanidin (126) is 48 times higher than for glucosylation of the 

flavonol, quercetin (102). The enzyme VvGT1 also showed activity towards other 

anthocyanidins such as delphinidin (127) and pelargonidin (128). Recently, the 3-D 

structure of VvGT1 has been solved at 1.9 Å resolution in a UDP (product) bound form 

and, subsequently, in its ‘Michaelis’ complex with both an intact UDP-glucose donor 

and the acceptor kaempferol (103), also at 1.9 Å resolution and in ‘nonproductive’ 

complex with UDP and quercetin (102), at 2.1 Å (Offen et al., 2006). 3-O-

glucosyltransferase from Gentiana triflora was also expressed in E. coli and its 

substrate specificity was determined using various anthocyanidins and flavonols 

(Tanaka et al., 1996). The enzyme showed higher substrate specificity towards 

anthocyanidins (126, 127, 128) than that of flavonols (102, 103, 105). Delphinidin 

(127) was found to be the best substrate for the Gentian 3GT. 
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 Formation of anthocyanidin 3-O-glucoside is known to be an early-stage 

reaction, common to most anthocyanin biosynthesis (Yamazaki et al., 1999). The late 

stage involves the reactions of further modifications such as glycosylation, acylation 

and methylation. The late-stage transformations of the biosynthetic pathway involving 

5-O-glucosyltransferase have been studied in the plant Perilla frutescens var. crispa 

(Gong et al. 1997, Yamazaki et al., 1999). The cDNA encoding 5-O-

glucosyltransferases from P. frutescens and Verbena hybrida (verbena) were isolated 

by over expressing in yeast cells and their molecular and biochemical properties were 

characterized (Yamazaki et al., 1999). Both the recombinant enzymes in the yeast 

extracts catalyzed the conversion of anthocyanidin 3-O-glucosides (129, 130, 131) into 

the corresponding anthocyanidin 3,5-di-O-glucosides (132, 133, 134) using UDP-

glucose as a cofactor (Scheme 1.17). Recently, a single glucosyltransferase that 

synthesized the cyanidin 5-O-glucoside (135) first, followed by the cyanidin 3,5-di-O-

glucoside (132) was identified in Rosa hybrida (Scheme 1.18) (Ogata et al., 2005). The 

activity was confirmed to reside in a single gene product by in vitro assay of the 

recombinant enzyme (RhGT1), which could use either cyanidin (126) or cyanidin 5-O-

glucoside (135) as an acceptor, but not the cyanidin 3-O-glucoside (129). 
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Scheme 1.18 Sequential glucosylation of cyanidin (126) by a glucosyltransferase 
(RhGT1) from rose petals. 

 

Betalains 

Betalains, red betacyanins and yellow betaxanthins, comprise a class of 

chromogenic compounds which replace the anthocyanins as flower and fruit pigments 

in most families of the Caryophyllales (Vogt et al., 1999). Although not studied as 

extensively as the anthocyanin pigments, a number of studies have focused on the 

synthesis of betacyanins and particularly their glycosylation. Betanidin 5-O-

glucosyltransferase (5-GT) was purified from cell suspension cultures of 

Dorotheanthus bellidiformis (Vogt et al., 1997), and shown to catalyze specifically the 

transfer of glucose to the 5-OH group of betanidin (136) (Scheme 1.19). The cDNA 

encoding 5-GT was cloned and expressed, and the highest activity of the recombinant 

enzyme in vitro was shown toward betanidin (136), with regiospecific transfer of 

glucose to the 5-OH position (Vogt et al., 1999). In addition, the enzyme accepted o-

dihydroxylated flavonoids, e.g. quercetin (102), transferring glucose to the 4′-OH and 

7-OH positions. 
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Scheme 1.19 Formation of betanin 137 catalyzed by betanidin 5-O-glucosyltransferase. 
 

Terpenoids and steroids 

In Stevia rebaudiana, glycosyltransferases are involved in the production of 

steviol glycosides, compounds that are unique in the plant world because of their 

intense sweetness and high concentration in leaf tissue (Richman et al., 2005). The 

synthesis of steviol glycosides starts with steviol (138). As shown in Scheme 1.20, the 

C-13 alcohol is glucosylated first, yielding steviolmonoside (139), which undergoes a 

number of sequential glucosylation reactions yielding complex steviol glycosides (e.g., 

rubusoside, steviolbioside, stevioside, etc.). Recently, three GTs (UGT74G1, 

UGT76G1, and UGT85C2) were identified and cloned from Stevia leaves; and 

regioselective glucosylation of steviol (138) was confirmed through in vitro analysis of 

the recombinant enzymes (Richman et al., 2005). Among them, UGT85C2 was 

reported to catalyze the formation of steviolmonoside (139) from steviol (138) (Scheme 

1.20). 
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Scheme 1.20 Formation of steviolmonoside (139) catalyzed by Stevia rebaudiana 
glucosyltransferase, UGT85C2. 
 

Steroidal glycoalkaloids are a family of nitrogenous secondary metabolites 

produced in solanaceous plants (Moehs et al., 1997). Addition of glycosyl residues to 

the aglycon, steroidal alkaloids (Fig. 1.10), has been proposed to occur in a sequential 

manner, initiated by UDP-glucose and UDP-galactose glycosyltransferases. For 

example, the enzyme solanidine UDP-glucose glucosyltransferase (StSGT) catalyzes 

the biosynthesis of solanidine 3-O-glucoside (also known as γ-chaconine, 143) from 

UDP-glucose and solanidine (140) (Scheme 1.21). Moehs et al. (1997) reported the 

isolation of a cDNA clone encoding StSGT from wound-induced potato (Solanum 

tuberosum). The recombinant StSGT from yeast could glucosylate solanidine (140) at a 

slower rate than the other two aglycons, solasodine (141) and tomatidine (142). The 

enzyme showed the highest substrate specificity towards the substrate, tomatidine 

(142). Recently, Kohara et al. (2005) showed that the glucosyltransferase StSGT also 

glucosylated steroidal sapogenins such as diosgenin (144), nuatigenin (145), and 

tigogenin (146), in addition to its reported substrates, solanidine (140), solasodine (141) 

and tomatidine (142) (Moehs et al., 1997). Another cDNA encoding 

glucosyltransferase (SaGT4A) from S. aculeatissimum has been reported that catalyzed 

the 3-O-glucosylation of steroidal sapogenins, such as diosgenin (144), nuatigenin 

(145), and tigogenin (146) forming saponins (Fig. 1.11 and Scheme 1.22) (Kohara et 
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al., 2005). Similar to StSGT, the enzyme SaGT4A also glucosylated steroidal alkaloids, 

solanidine (140), solasodine (141) and tomatidine (142).  
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Figure 1.10 Chemical structures of steroidal alkaloids: solanidine (140), solasodine 
(141) and tomatidine (142). 
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Scheme 1.21 Formation of solanidine 3-O-glucoside (143) catalyzed by solanidine 
UDP-glucose glucosyltransferase (StSGT). 
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Figure 1.11 Chemical structures of steroidal sapogenins: diosgenin (144), nuatigenin 
(145) and tigogenin (146). 
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Scheme 1.22 Formation of nuatigenin 3-O-glucoside (147) catalyzed by the 
glucosyltransferase, SaGT4A. 
 

Glucosinolates and cyanogenic glucosides 

Glucosinolates 152 are a class of secondary metabolites with important roles in 

plant defense and human nutrition produced mainly by Brassicaceae. Biosynthesis of 

glucosinolates 152 involves the oxidation of the amino group of amino acid 148, 

followed by oxidation/decarboxylation to aldoxime 149 which is subsequently 

converted to thiohydroximate 150 in several steps. The thiohydroximate 150 

intermediate is then glucosylated on the sulfur by UDP-glucose:thiohydroximate S-

glucosyltransferase (S-GT) to give desulfoglucosinolate 151. The final step is the 

exchange of the hydroxyl on the nitrogen with a sulfate group by a sulfotransferase to 

give a glucosinolate anion 152 (Scheme 1.23) (Halkier and Gershenzon, 2006). A 

thiohydroxymate S-glucosyltransferase (S-GT) that catalyzed the formation of 

desulfobenzylglucosinolate (151, R=Ph) was partially purified from leaves of 

Tropaeolum majus L. and its substrate specificities were determined using a number of 

acceptor substrates, thiohydroximates (Matsuo and Underhill, 1971). Except 

acetothiohydroximate, all of the thiohydroximate homologues (e.g. 

propiothiohydroximate, butyrothiohydroximate, isobutyrothiohydroximate, 4-

methylthiobutyrothiohydroximate, and benzothiohydroximate) were active as glucose 

acceptors. The authors found similar glucosyltransferase activity in the cell-free 

extracts of other glucosinolate containing plants such as Sinapis alba L., Nasturtium 
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officinale R. Br. and Armoracia lapathifolia Gilib. The S-GT enzyme from Brassica 

napus L. seedlings was purified to near homogeneity and specific activities were 

determined using phenylacetothiohydroximate, 3-phenylpropanothiohydroximate, and 

2-(3-indolyl)acetothiohydroximate as glucose acceptors (Reed et al., 1993). The 

enzyme showed similar substrate specificities towards these acceptors. S-GT enzymes 

were also reported from florets of B. oleracea ssp. botrytis (cauliflower) and A. 

thaliana inflorescences (GrootWassink et al., 1994; Guo and Poulton, 1994). The first 

gene encoding a thiohydroxymate S-glucosyltransferase (S-GT) was cloned from B. 

napus and the activity of the recombinant enzyme partially characterized in vitro 

(Marillia et al., 2001). Grubb et al. (2004) also reported a gene encoding 

thiohydroxymate S-glucosyltransferase (UGT74B1) from Arabidopsis that catalyzed 

the synthesis of desulfobenzylglucosinolate (151, R=Ph) from 

phenylacetothiohydroximate (150, R=Ph) and UDP-glucose in vitro (Scheme 1.23). 

The role of UGT74B1 was also analyzed in plant using a T-DNA insertional mutant. In 

the mutant, significantly decreased levels of glucosinolates were observed together 

with chlorosis along the leaf veins, suggested to be caused by toxicity from the build up 

of thiohydroximates. 

Mandelonitrile was used as substrate to purify a glucosyltransferase (HMNGT) 

from Sorghum bicolor, and its sequence used to clone a gene whose recombinant 

product was assayed in vitro for activity against a range of acceptors (Jones et al., 

1999; Hansen et al., 2003). The recombinant enzyme showed a broad substrate 

specificity including the conversion of p-hydroxymandelonitrile (153) to yield the 

cyanogenic glucoside, dhurrin (154) (Scheme 1.24). 
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Scheme 1.23 Partial pathway for the biosynthesis of glucosinolates 152 and 
glucosylation of thiohydroximates (150) to desulfoglucosinolate (151) catalyzed by 
thiohydroximate S-glucosyltransferase (S-GT) (Halkier and Gershenzon, 2006). 
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Scheme 1.24 Formation of cyanogenic glucoside, dhurrin (154) catalyzed by p-
hydroxymandelonitrile O-glucosyltransferase (HMNGT). 
 

1.6.1.2  Detoxification of secondary metabolites 

Plants need to detoxify or regulate the bioactivity of a diverse set of low-

molecular-weight compounds (Jones and Vogt, 2001). These chemicals are either 

produced as endogenous defense or signaling molecules or they are imposed on plants 

from exogenous sources. Plants are known to have a wide range of glucosyltransferases 

to detoxify endogenous or exogenous toxic secondary metabolites produced by 

themselves or by other organisms. Endogenous aglycones originate from biosynthetic 

as well as degradative or turnover metabolism (Bak et al., 1999; Walter et al., 2000). 

For example, some phytoanticipins are detoxified to non-toxic glucosides and stored in 
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vacuoles of plant cells. Upon invasion by pathogens or herbivores, these non-toxic 

glucosides are then hydrolyzed to active phytoanticipins by glycosidases and act as a 

plant defense mechanism (Osbourn, 1996). Plants also utilize glucosyltransferases to 

detoxify exogenous secondary metabolites produced by other organisms such as 

phytotoxins and allelochemicals. For the glucosylation, where functional groups such 

as –OH, -NH, -SH or –COOH are not present in the aglycones, they may be introduced 

by oxidation, most typically catalyzed by mono-oxygenases, or may be produced by 

hydrolysis or reduction of the molecule (Cole and Edwards, 2000). It has been known 

that glucosylations in plants usually take place in the cytosol and then the glucosylated 

products are transported either into the vacuole or into the apoplast (Sandermann et al., 

1997). 

During the last two decades, a significant number of reports on detoxification of 

secondary metabolites such as mycotoxins, phytotoxins, and allelochemicals where 

glucosyltransferases play important roles has been reported. The results of these 

detoxifications and the related glucosyltransferases that have been isolated and 

characterized from different plant sources are discussed in the following sections. 

Fungal secondary metabolites 

Cultivated plants are potential hosts for pathogenic fungi during crop growth 

and are colonized by saprophytic fungi after the harvest. Some field and storage fungi 

are producers of a variety of secondary metabolites, some of which are known as 

mycotoxins- fungal metabolites that affect human and animal health (Gilbert, 1995). 

Mycotoxins can be toxic, mutagenic, carcinogenic, immunosuppressive or interfere 

with hormonal functions. Many secondary metabolites of plant pathogenic fungi, 

termed phytotoxins, are involved in pathogenesis (Graniti, 1991). Some secondary 

metabolites can be regarded as both mycotoxins and phytotoxins. 
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Mycotoxins 

4-Deoxynivalenol (155), produced by Fusarium species such as F. 

graminearum and F. culmorum, is an important mycotoxin that causes inhibition of 

protein synthesis in eukaryotes and is also phytotoxic, causing chlorosis, necrosis and 

wilting in planta (Lemmens et al., 2005). Fusarium species are causative agents of 

Fusarium head blight (FHB) of wheat and ear rot of maize (Sewald et al., 1992). 

Results of several studies suggested that the in vitro resistance of wheat cultivars 

toward 4-deoxynivalenol (155) correlates with FHB resistance in the field (Mesterhazy, 

2003). Miller and Arnison (1986) found that cell suspension cultures of the FHB-

resistant wheat cv. Frontana converted more 14C-labeled 155 into uncharacterized 

products than cell cultures derived from the susceptible wheat cv. Casavant. When they 

incubated 14C-labeled 155 with cell suspension cultures of wheat, three metabolites of 
14C-labeled 155 were detected. One of these metabolites was proposed to be a 

glucoside of 155 based on the molecular weight. Later Fujita et al. (1990) also found 

three metabolites of 155 in sweet potato root tissues in a similar experiment with 

radiolabeled material, but the structures of the glucosylated metabolites were not 

elucidated. Later on, the isolation and structure elucidation of this glucosylated 

compound was first reported by Sewald et al. (1992). They also detected three 

metabolites of 155 when 14C-labeled 155 was incubated with cell suspension cultures 

of maize. The main metabolite was isolated from the cultures and the structure was 

elucidated as 3-β-D-glucopyranosyl-4-deoxynivalenol (156) by using different 1D and 

2D NMR techniques (Scheme 1.25).  
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Scheme 1.25 Glucosylation of 4-deoxynivalenol (155): (i) in cell suspension cultures 
of maize (Sewald et al., 1992); (ii) Arabidopsis DOGT1 glucosyltransferases expressed 
in yeast cells (Poppenberger et al., 2003). 
 

Poppenberger et al. (2003) reported the isolation and characterization of a gene 

from A. thaliana encoding a UDP-glucosyltransferase that is able to glucosylate 4-

deoxynivalenol (155) (Scheme 1.25). The enzyme, assigned as DOGT1 (previously 

assigned as UGT73C5), can catalyze the transfer of glucose from UDP-glucose to the 

hydroxyl group at carbon 3 of 155 (Scheme 1.25). They found that the expression of 

this glucosyltransferase was developmentally regulated and induced by 155, as well as 

salicylic acid, ethylene and jasmonic acid. They also showed that, compared with 155, 

3-β-D-glucopyranosyl-4-deoxynivalenol (156) had a strongly reduced ability to inhibit 

protein synthesis by a wheat germ extract in vitro (Poppenberger et al., 2003). This 

result indicated that glucosylation of 4-deoxynivalenol (155) represents a detoxification 

process. The transgenic A. thaliana constitutively expressing DOGT1 displayed 

resistance against 4-deoxynivalenol (155) (Poppenberger et al., 2003). Compared with 

wild type, germination occurred earlier, roots were formed, cotyledons did not bleach, 

and true leaves appeared in the transgenic A. thaliana. The glucosyltransferase DOGT1 

was also found to detoxify the acetylated derivative 15-acetyl-4-deoxynivalenol (157), 

whereas no protective activity was observed against the structurally similar nivalenol 

(158) (Poppenberger et al., 2003) (Fig. 1.12). Recently, Lemmens et al. (2005) 

examined ninety-six double haploid lines of wheat from a cross between CM-82036 

(highly resistant to FHB) and Remus (susceptible) for 4-deoxynivalenol (155) 
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resistance. They found that in resistant wheat lines, the applied compound 155 was also 

converted to the glucoside 156 as the detoxification product. From their observations, it 

was suggested that resistance to 155 is important in the FHB resistance complex of 

wheat and hypothesized that the resistant genes either encode a deoxynivalenol-

glucosyltransferase or regulate the expression of such an enzyme.   
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Figure 1.12 Structure of 15-acetyl-4-deoxynivalenol (157) and nivalenol (158). 
 

The mycotoxin zearalenone (159) is a secondary metabolite with estrogenic 

activity produced also by a series of Fusarium strains, especially Fusarium 

graminearum and F. culmorum on cereal grains in the field and in storage (Bennett and 

Shotwell, 1979). Zearalenone (159) contaminated feed has been implicated in 

numerous cases of fertility disturbances in farm animals, especially pigs (Kuiper-

Goodman et al., 1987). Engelhardt et al. (1988) reported the transformation of 159 in 

cell suspension cultures of Zea mays. In this study, 14C-labeled 159 was incubated with 

cell suspension cultures of maize and monitored the disappearance of the toxin. Three 

metabolites were isolated from the cultures which were identified as α-zearalenol 

(160), β-zearalenol (161) and zearalenone-4-β-D-glucopyranoside (162) by co-

chromatography with authentic samples and by mass spectrometry (Scheme 1.26). 

Although the structure elucidation of 162 was only performed by LC-MS and specific 

hydrolysis with β-glucosidase, it was later confirmed by the comparison of 1H NMR 

data of the isolated compound with that of the synthetic compound (Zill et al., 1990). 

Zearalenone-4-β-D-glucopyranoside (162) was also detected as a product of 
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zearalenone (159) metabolism in wheat cells (Schneweis et al., 2002). It has been found 

that attachment of the glucose moiety to zearalenone (159) prevented the interaction of 

the mycotoxin with the human estrogen receptor in vitro (Poppenberger et al., 2006). 

Though plants can inactivate zearalenone (159) as glucosylated zearalenone 162, this 

glucoside can be easily hydrolyzed to free zearalenone (159) during digestion and 

implicated in the development of mycotoxicosis (Schneweis et al., 2002). 
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Scheme 1.26 Biotransformation of zearalenone (159) in cell suspension cultures of 
maize (Engelhardt et al., 1988). 

 

Poppenberger et al. (2006) recently reported that two similar UGT73C genes of 

A. thaliana encoded glucosyltransferases that glucosylate zearalenone (159) to 

zearalenone-4-β-D-glucopyranoside (162) in yeast (Saccharomyces cerevisiae) 

(Scheme 1.27). Comparison of chemically synthesized 162 and the yeast product by 

HPLC-MS/MS indicated that 159 was converted to this glucoside by the Arabidopsis 

UGT73C5 and UGT73C6 glucosyltransferases. The other four highly similar 

glucosyltransferases encoded by the UGT73C cluster did not make this conversion. 

These results were not consistent with the hypothesis that sequence similarity indicates 

similar substrate specificities for glucosyltransferases (Poppenberger et al., 2006). 
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Scheme 1.27 Glucosylation of zearalenone (159) by two Arabidopsis UGT73C 
glucosyltransferases expressed in Saccharomyces cerevisiae (Poppenberger et al., 
2006). 
 

Phytotoxins 

Maculosin (163) is a host-specific phytotoxin produced by the fungal pathogen, 

Alternaria alternata, on a weedy plant, spotted knapweed (Centaurea maculosa) (Park 

et al., 1994). The toxin 163 is a dioxopiperazine of cyclo(L-Pro-L-Tyr). Although a 

number of dioxopiperazines were reported from A. alternata, only maculosin (163) was 

found to cause chlorotic spots developing into black necrotic lesions on the leaves of 

knapweed (Stierle et al., 1988; Park et al., 1994). The metabolism of 163 in leaves of 

spotted knapweed was investigated by Park et al. (1994) using 14C-labeled 163. It was 

reported that 163 was converted to three metabolites which were more polar than 163. 

The major metabolite was isolated and characterized as maculosin β-O-D-glucoside 

(164) (Scheme 1.28). The glucoside 164 did not induce any symptoms on the leaves of 

spotted knapweed in contrast to maculosin (163). These results indicated that the 

metabolism of 163 in spotted knapweed was a detoxification process. The other two 

metabolites of 163 were not characterized although one of them was proposed to be a 

methyl ester of dipeptides (L-Pro-L-Tyr-COOH or L-Tyr-L-Pro-COOH), resulting 

from hydrolysis followed by methylation of the dioxopiperazine moiety of maculosin 

(163), on the basis of its chemical properties.    
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Scheme 1.28 Biotransformation of maculosin (163) in leaves of spotted knapweed 
(Centaurea maculosa) (Park et al., 1994). 
 

Fomannoxin (165) is a phytotoxic secondary metabolite produced by the 

pathogenic root and butt rot fungus Heterobasidion annosum during the infection 

process (Hirotani et al., 1977; Heslin et al., 1983). Sonnenbichler et al. (1989) reported 

that 165 had strong inhibitory effect on the growth of various organisms such as 

antagonistic fungi, bacteria and plant cells, and on the protein biosynthesis in 

protoplasts of Picea abies and Nicotiana tabacum. The biotransformation of 165 was 

investigated in Pinus sylvestris cultures (conifer cell cultures); 165 was completely 

metabolized in five days to fomannoxin alcohol (166) and fomannoxin carboxylic acid-

β-D-glucoside (167) (Scheme 1.29) (Zweimüller et al., 1997). The authors reported that 

the reduction of fomannoxin (165) to the corresponding alcohol 166 started 

immediately, then the alcohol concentration decreased together with a continuous 

increase of the glucoside 167 both in the culture supernatant and in the cells. The 

chemical structures of both metabolites (166 and 167) were determined 

spectroscopically (IR, MS, NMR) and confirmed by chemical synthesis. Fomannoxin 

(165) showed phytotoxic and growth inhibition effects on callus of P. sylvestris, with 

necrotization. In contrast to 165, both 166 and 167 did not show any toxic effect which 

indicated that these metabolic products were detoxification products.      
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Scheme 1.29 Biotransformation of fomannoxin (165) in conifer (Pinus sylvestris) cell 
cultures (Zweimüller et al., 1997). 
 

Acremonium sp. is an endophytic fungus of the European yew, Taxus baccata. 

The fungus is a producer of an extremely bioactive peptide, leucinostatin A (168) 

which is phytotoxic, broadly antifungal, and has toxicity against certain cancer cell 

lines (Strobel et al., 1997; Fukushima et al., 1983). Using 14C-leucinostatin A (168) in 

aseptic Taxus tissues, Strobel and Hess (1997) showed that 168 was metabolized to a 

unique product, leucinostatin A β di-O-glucoside (169) (Scheme 1.30), which has a 

lower bioactivity against plants, fungi and cancer cell lines than leucinostatin A (168). 

Acetone powder extracts from various plants were also shown to have UDP-

glucose:leucinostatin A glucosyltransferase that could catalyze the production of 

leucinostatin A β di-O-glucoside (169) from leucinostatin A (168). Higher levels of 

enzymatic activity were generally associated with those plants that are relatively 

resistant to the phytotoxic effects of leucinostatin A (168), including all yew species 

tested (Strobel and Hess, 1997). 
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Scheme 1.30 Glucosylation of leucinostatin A in European yew (Taxus baccata) 
(Strobel and Hess, 1997). 
 

Destruxin B (4) is a host-selective phytotoxin produced both in vitro and in 

plants by the fungal pathogen Alternaria brassicae, which causes blackspot disease in 

crucifers (Pedras et al., 2001). The toxin 4 is a cyclic depsipeptide that causes tissue 

damage similar to that observed in plants naturally infected with A. brassicae (Agarwal 

et al., 1994). Pedras et al. (2001) reported that white mustard (Sinapis alba cultivar 

Ochre, resistant to black spot) was able to metabolize 14C-labeled destruxin B (4) to a 

less toxic compound, hydroxydestruxin B (170) (Scheme 1.31). This transformation 

occurred substantially faster than in any of the susceptible Brassica species (B. napus 

cultivar Westar and B. juncea cultivar Cutlass). They also reported that the 14C-labeled 

170 was further metabolized to β-D-glucosyl hydroxydestruxin B (171) and that this 

glucosylation of 170 in resistant species occurred at a slower rate than that of 

susceptible species. The chemical structures of both metabolites (170 and 171) were 

elucidated from their spectroscopic data (NMR, HR-MS, IR) and confirmed by 

chemical synthesis. Bioassays using leaves and cell suspension cultures to determine 

the phytotoxicity of 170 and 171 indicated that the hydroxylated compound 170 was 

less phytotoxic than destruxin B (4) and that the glucosylated compound 171 had no 
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toxic effect on either leaves or cell suspension cultures. Wild crucifers such as 

Camelina sativa, Capsella bursa-pastoris, and Eruca sativa are also reported to 

detoxify destruxin B (4) by hydroxylation followed by glucosylation as shown in 

Scheme 1.31 (Pedras et al., 2003c).   
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Scheme 1.31 Biotransformation of destruxin B (4) by crucifers: (i) hydroxylation; (ii) 
glucosylation (Pedras et al., 2001). 
 

Thaxtomin A (172) is a bacterial secondary metabolite produced by 

Streptomyces scabies which is a causal organism of common scab disease in potato 

(King et al., 2000). Thaxtomin (172) is known to be a phytotoxin which causes typical 

symptoms of the common scab disease (King et al., 1992). Acuna et al. (2001) reported 

that scab-resistant potato tubers were able to metabolize 172 to thaxtomin A-β-di-O-

glucoside (173) (Scheme 1.32), which was six-fold less phytotoxic to potato tuber 

tissue, thus avoiding cell collapse and necrosis. Using mini tubers of scab-resistant and 

-susceptible individuals treated with 14C-labeled 172, they showed that resistant plants 

were able to produce a higher amount of a radioactive metabolite, with Rf similar to 

that of thaxtomin A-β-di-O-glucoside (173), than susceptible ones. They have also 

evaluated the thaxtomin A glucosyltransferase activity in crude enzyme extracts of 

scab-resistant and –susceptible plants and found almost twice as much enzyme-specific 
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activity in resistant than in susceptible individuals. Their results suggested that 

glucosylation of thaxtomin A (172) was a detoxification mechanism of thaxtomin A 

(172) in potato plants, and it was related to scab resistance and susceptibility in potato 

plants.     
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Scheme 1.32 Glucosylation of thaxtomin A (172) in potato tubers (Acuna et al., 2001). 
 

Plant secondary metabolites 

Allelochemicals 

Environmental concerns about the use of herbicides and other pesticides have 

inspired the search for alternative weed and pest control strategies. Interdisciplinary 

investigations by biologists, biochemists, and chemists are now stimulated by the 

interest to make environmental friendly agrochemicals from natural sources. For 

example, the natural phenomenon of allelopathy offers a potential new methodology to 

supplement conventional weed control programs. Allelopathy is the chemical inhibition 

of one plant species by another and it represents a form of chemical warfare between 

neighboring plants competing for limited light, water, and nutrient resources (Inderjit 

and Duke, 2003; Weston and Duke, 2003). One of the more intensively studied classes 

of allelochemicals is benzoxazinoids and their benzoxazolinone derivatives. For 

example, the genes encoding all of the enzymes required for the biosynthesis of the 

benzoxazinoid, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (175) have 
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been identified in maize and they represent the first known example of a plant 

secondary metabolic pathway organized as a gene cluster (Frey et al., 1997) (Scheme 

1.33).  

Benzoxazinoids such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (174) and 

2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (175) are abundant secondary 

metabolites of Poaceae, including the major agricultural crops maize, wheat and rye 

(Sicker et al., 2000). While benzoxazinoid 174 is found to be predominant in rye, 175 

is the main benzoxazinoid in maize and wheat. Benzoxazinoids 174 and 175 not only 

play an important role as allelochemicals but also act as defense compounds against 

microbial pathogens and insect herbivores (Sicker et al., 2000). Benzoxazinoids 174 

and 175 are known to have strong phytotoxicity. Therefore, the plants that produce 

benzoxazinoids usually add a glucose moiety at the 2-position of 174 and 175 (Scheme 

1.33) in order to reduce their toxicity and store the glucosides in the vacuole as inactive 

compounds (von Rad et al., 2001). When the plant tissue is damaged by pathogen 

infection or herbivore attack, plants produce benzoxazinoids by hydrolyzing the 

glucosides using glucosidases. For example, it has been reported that the enzymatic 

release of toxic benzoxazinoid 175 occurred in maize within 30 min after wounding is 

completed (von Rad et al., 2001). 
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Scheme 1.33 Biosynthesis of benzoxazinoids (174, 175) and their glucosides (176, 
177) in maize (Frey et al., 1997; von Rad et al., 2001). 
 

The presence of the benzoxazinoid glucosides 176 and 177 in maize and wheat 

was first established in 1959 (Wahlroos and Virtanen, 1959). Bailey and Larson (1989) 

latter reported that two glucosyltransferases are involved in the biosynthesis of 176 and 

177 in maize seedlings. They have shown with the partially purified enzymes that 175 

was a substrate for both transferases with similar Km value whereas 174 was a better 

substrate for one glucosyltransferase than the other. Two glucosyltransferases capable 

of transferring glucose at the 2-position of 174 and 175 were also partially purified 

from rye, wheat and a wild barley species (Hordeum lechleri) (Leighton et al., 1994; 

Sue et al., 2000). von Rad et al. (2001) reported the isolation and characterization of 

two maize glucosyltransferases, BX8 and BX9, via functional cloning (Scheme 1.33). 

Although BX8 and BX9 displayed 89% similarity to each other at the amino acid 

sequence, they had no close relationship to any other known glucosyltransferases. The 
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glucosyltransferase BX8 accepted benzoxazinoids 174 and 175 equally well as 

substrates, whereas the enzyme BX9 converted 175 more actively to the respective 

glucoside 177 than it did 174. von Rad et al. (2001) also showed that the presence of 

benzoxazinoids 174 and 175 reduced the growth of wild-type Arabidopsis at 

concentrations that had proven to be effective in natural plant communities (Sicker et 

al., 2000) whereas transgenic plants expressing Bx8 and Bx9 had no toxicity effect of 

174 and 175. These results indicated both the allelopathic capacity of 174 and 175 and 

the potency of two glucosyltransferases (BX8 and BX9) in reducing the phytotoxicity 

of these chemicals to a level that is tolerable for the plant. 

In nature, not only benzoxazinoids 174 and 175 but also their decomposition 

products such as benzoxazolin-2(3H)-one (178) and 6-methoxy benzoxazolin-2(3H)-

one (184) act as allelochemicals. It has been known that benzoxazolin-2(3H)-one (178) 

results from a two-step degradation of the glucoside 176 (Scheme 1.34) (Sicker et al., 

2004). These compounds are secondary metabolites in several species of Acanthaceae, 

Poaceae, Ranunculaceae and Scrophulariaceae families (Sicker et al., 2004). Once 

released to the environment, benzoxazolinones 178 and 184 cause dose-dependent 

growth inhibitions in dicotyledonous and to a smaller extent, in monocotyledonous 

species. However, a number of plant species exhibit tolerance to benzoxazolinones and 

are able to detoxify them to less phytotoxic glucoside and glucoside carbamate 

derivatives (Scheme 1.35) (Sicker et al., 2004).  
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Scheme 1.34 Formation of benzoxazolin-2(3H)-one (178) from enzymatic and 
chemical degradation of 2-β-D-glucopyranosyloxy-4-hydroxy-2H-1,4-benzoxazin-
3(4H)-one (176) (Sicker et al., 2004). 
 

As shown in Scheme 1.35, two major pathways leading to the formation of 

benzoxazolinone metabolites exhibiting reduced phytotoxicity have been identified in 

plants. Earlier, when oat roots were analyzed after incubation of benzoxazolinone 178 

with seedlings, two new products were detected in the extracts, which were 

characterized as 6-hydroxybenzoxazolin-2(3H)-one (179) and its glucoside, 6-O-β-D-

glucopyranosyloxybenzoxazolin-2(3H)-one (180) (Wieland et al., 1998) (Scheme 

1.35). It was reported that the glucoside 180 was formed via the intermediate 179, 

which was subsequently O-glucosylated. Later a third product, representing the second 

route of metabolism, was found that increased with incubation time. It was slightly less 

polar than 179 with an UV spectrum very similar to benzoxazolin-2(3H)-one (178). 

Subsequently, the third product was isolated from oat roots and characterized as 3-β-D-

glucopyranosylbenzoxazolin-2(3H)-one (181) which undergoes spontaneous 

isomerization to form 1-(2-hydroxyphenylamino)-1-deoxy-β-glucopyranoside 1,2-

carbamate (182) (Scheme 1.35). The structures of glucoside 181 and its isomeric 

carbamate 182 were determined from their spectroscopic data and confirmed by 

chemical synthesis (Wieland et al., 1998, Sicker et al., 2001). Sicker et al. (2001) 

reported an additional compound as detoxification product of 178 in corn roots, which 

was characterized as 1-(2-hydroxyphenylamino)-1-deoxy-β-D-gentiobioside 1,2-

carbamate (183) from its spectroscopic data and chemical analysis. It was proposed that 

compound 183 was formed from further glucosylation of 182 in corn roots (Scheme 
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1.36). The phytotoxicity of benzoxazolin-2(3H)-one (178) and of the metabolites 179, 

180, and 182 was investigated using the cress test (Schulz and Wieland, 1999). Only 

the carbamate 182 had no inhibitory influence on radicle growth up to 1 mM, the O-

glucoside 180 was still slightly toxic, but 179 was more toxic than the original 

compound 178.   

N
H

O
O

N
H

O
O

HO O

OH
HO

HO
HO

N
H

O
O

O

NO

O

O
HO

OH

OH

OH
O

OH

OH

OH

ON

O

HO

 

182 181 

178 
179 180  

Scheme 1.35 Common detoxification pathways (O- and N-glucosylation) of 
benzoxazolin-2(3H)-one (178) in plants (Sicker et al., 2004). 
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Scheme 1.36 Formation of gentiobioside carbamate 183 by glucosylation of glucoside 
carbamate 182 in corn roots (Sicker et al., 2001). 
 

    Schulz and Wieland (1999) investigated the ability to metabolize 178 by a 

number of weeds associated with rye and wheat and compared the metabolism with 

species of other associations. They found that all tested species were able to metabolize 

benzoxazolin-2(3H)-one (178) to 179 and its glucoside 180. Except three species, the 

second way of metabolism of 178 resulting in N-glucoside 181 was also possible with 
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all tested species. The detoxification of benzoxazolin-2(3H)-one (178) in Arabidopsis 

was also investigated (Baerson et al., 2005) and it was found that detoxification 

occurred predominantly through O-glucosylation of the intermediate 179. 

Recently, Hofmann et al. (2006) investigated the detoxification of 6-

methoxybenzoxazolin-2(3H)-one (184) in Zea mays. When maize seedlings were 

incubated with 184 for 24 h, a large amount of glucoside 180 was found in the 

methanolic extract of maize roots along with a trace amount of new metabolite 185. 

When the incubation time was increased up to 48 h, the metabolite 185 was 

accumulated in higher amount. Subsequently, the metabolite 185 was isolated, purified 

and characterized as 1-(2-hydroxy-4-methoxyphenylamino)-1-deoxy-β-

glucopyranoside 1,2-carbamate (185) from its spectroscopic data (Scheme 1.37). 

Therefore, similar to detoxification of benzoxazolin-2(3H)-one (178), the detoxification 

of its methoxy derivative 184 occurred in two pathways: (i) demethylation of 184 

followed by O-glucosylation to the corresponding glucoside 180 and (ii) direct N-

glucosylation of 184 followed by isomerization to yield 185.    
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Scheme 1.37 Detoxification of 6-methoxybenzoxazolin-2(3H)-one (184) in Zea mays 
(Hofmann et al., 2006). 
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Hydroquinone (186) is a simple phenol that is strongly phytotoxic to leafy 

spurge (Euphorbia esula) and is biosynthesized by small everlasting (Antennaria 

microphylla) (Manners and Galitz, 1986). This phytotoxin participates in the 

allelopathic interaction between small everlasting and leafy spurge. Hogan and 

Manners (1990) reported the biotransformation of hydroquinone (186) to its 

nonphytotoxic monoglucoside, arbutin (187), in callus and suspension cultures of small 

everlasting and leafy spurge (Scheme 1.38). Small everlasting was able to detoxify 186 

more efficiently than leafy spurge. Differences in the ability of the two species to 

detoxify hydroquinone were proposed to be a prominent factor in the observed 

dominance of small everlasting over leafy spurge. UDPG-dependent 

glucosyltransferase activities were reported in cell-free extracts of small everlasting 

callus as well as in cell-free extracts of leafy spurge. However, the specific activity of 

the enzyme preparation from small everlasting callus was six-fold greater than in 

preparation obtained from leafy spurge (Hogan and Manners, 1991).  
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Scheme 1.38 Detoxification of hydroquinone (186) in everlasting (Antennaria 
microphylla) and leafy spurge (Euphorbia esula) (Hogan and Manners, 1990). 
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1.6.2 Microbial glucosyltransferases 

Glycosyltransferases play important roles in the biosynthesis of secondary 

metabolites in microbes, particularly in bacteria.  Bacterial glycosyltransferases and 

their corresponding carbohydrate donating substrates contribute significantly to the 

diversity of pharmaceutically important metabolites (Thorson et al., 2001; Coutinho et 

al., 2003a). Secondary metabolites from bacteria containing a carbohydrate moiety and 

their role in biologically active natural products have been extensively reviewed 

(Weymouth-Wilson, 1997; Thorson et al., 2001). Although glycosylated secondary 

metabolites are widespread in bacteria, monoglucosylated (i.e., glucose containing 

compounds) compounds are less common. One of the extensively studied bacterial 

glucosyltransferases is the enzyme that transfers a D-glucose to the phenolic hydroxyl 

of 4-OH-Phegly of a heptapeptide scafold during the biosynthesis of vancomycin (188) 

family (Fig. 1.13) (Mulichak et al., 2001). There are three glycosyltransferase genes in 

tandem in the chloroeremomycin (189) biosynthetic cluster corresponding to GtfA, 

GtfB and GtfC, respectively. Among these three enzymes, GtfB is responsible for 

transferring the glucose moiety from a UDP-glucose donor to the vancomycin aglycone 

acceptor. As shown in Fig. 1.13, two other enzymes, GtfA and GtfC, are responsible 

for transferring the corresponding carbohydrate moiety indicated by arrows. The X-ray 

crystal structures of the glucosyltransferase GtfB and two glycosyltransferases GtfA 

and GtfD have been reported by Mulichak et al. (2001, 2003 and 2004). All these 

structures contain two Rossmann folds, each built with a central sheet of several β-

strands flanked on either side by α-helices. Results from the co-crystallization of these 

enzymes with their substrates indicated that residues in the N-terminal half of the 

protein were responsible for acceptor biding, whereas those in the C-terminal half were 

involved mainly in donor interactions. 
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Figure 1.13 Structure and glycosylation pattern of vancomycin (188) and 
chloroeremomycin (189); the enzymes reponsible for the glycosyl transfer are shown 
above the indicated carbohydrate (Mulichak et al., 2001). 
 

Monoglucosylated secondary metabolites have been reported from a number of 

fungi. However, the glucosyltransferases involved in the biosynthesis of these 

metabolites have not been described. Therefore, the microbes that have been used for 

the biotransformation of biologically active secondary metabolites where 

glucosyltransferases appear to play an important role are discussed below. 

The biotransformation of the mycotoxin zearalenone (159) has been studied 

with a number of nonmycotoxigenic fungi (Kamimura, 1986). Among them, Rhizopus 

sp. was the only fungus which produced zearalenone 4-β-D-glucopyranoside (162) 

from zearalenone (159) in addition to α- and β-zearalenol 160 and 161 (Scheme 1.26). 

This was a similar biotransformation pathway that was also observed in cell suspension 

cultures of maize (Engelhardt et al., 1988). The flavonoids psiadiarabin (190) and its 6-

demethoxy analogue 191 were reported to be metabolized by the fungus 

Cunninghamella elegans NRRL 1392 to yield two glucosylated compounds 192 and 
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193 (Ibrahim et al., 1997). As shown in Scheme 1.39, the glucosylation position was 

found to be at C-3′, which was determined by spectroscopic data. 

Microbial biotransformation of thaxtomin A (172) and thaxtomin B (194), the 

two major phytotoxins associated with the common scab of potato disease, were 

investigated by King et al. (2000) using the bacterium, Bacillus mycoides, in oatmeal 

broth. It was reported that B. mycoides could O-glucosylate both thaxtomin A and B 

(172 and 194) to yield glucosides 195 and 196 respectively. Glucosides 195 and 196 

were less toxic to potato tubers than the phytotoxins 172 and 194.  
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Scheme 1.39 Biotransformation of psiadiarabin (190) and its 6-demethoxy analogue 
191 by the fungus Cunninghamella elegans NRRL 1392 (Ibrahim et al., 1997). 
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Scheme 1.40 Biotransformation of thaxtomin A (172) and thaxtomin B (194) by 
Bacillus mycoides (King et al., 2000). 
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1.7 Conclusions 

From the results described in the previous section, it is concluded that a single 

glucosyltransferase can accept multiple substrates and that multiple 

glucosyltransferases within a single plant species can recognize the same substrate. 

However, some glucosyltransferases display a high degree of substrate specificity and 

regioselectivity towards a particular substrate. Despite the progress in the isolation and 

gene cloning of plant glucosyltransferases, catalytic mechanisms and complete 

structural information about these glucosyltransferases have not been reported. This 

information is fundamental to understand the substrate selectivity, regiospecificity and 

to design inhibitors of glucosyltransferases. While a plausible system based on 

sequence and 3D structure comparisons has been proposed for 65 UGT families 

(Coutinho et al., 2003b; Hu and Walker, 2002; Ünligil and Rini, 2000), for which 

different folds, active sites and mechanisms were discussed, efforts to obtain suitable 

crystal structures of Family 1 glucosyltransferases (GT1) have not been reported. To 

date, only two GT1 from plants (Shao et al., 2005; Offen et al., 2006) and one GT1 

from bacteria (Mulichak et al., 2001) have been crystallized and their three-

dimensional structures have been solved. A catalytic mechanism for UDP-glucose 

dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis was 

proposed on the basis of results obtained from site-directed mutagenesis and protein 

3D-homology modeling using a homologous bacterial glucosyltransferase template 

(Hans et al., 2004). However, because of a limited sequence homology to the bacterial 

template, this model of the glucosyltransferase may have a high probability of 

uncertainty. Although Family 1 glucosyltransferases of plant and bacteria have been 

investigated, fungal glucosyltransferases of Family 1 have not been reported to date. It 

will thus be interesting to investigate glucosyltransferases of S. sclerotiorum that are 

responsible for detoxification of phytoalexins. It is expected that additional structural 

 63



information of these glucosyltransferases will be a discovery that may lead to a better 

understanding of fungal enzyme evolution, as well as catalytic enzyme mechanisms. 

No doubt that this understanding will help to design inhibitors of phytoalexin 

detoxification that may be applicable to the selective control of the stem rot fungus S. 

sclerotiorum.    
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Chapter 2: RESULTS 
 

2.1 Synthesis and antifungal activity of phytoalexins and 
analogues 

Phytoalexins are important antimicrobial secondary metabolites produced by 

plants in response to biological, physical, or chemical stress. However, isolation of 

such compounds from plants is very difficult and time consuming because of their 

extremely low quantity in plants. To study the biological activity and biotransformation 

of phytoalexins by phytopathogenic fungi, relatively large amounts of phytoalexins are 

required. Sufficient quantities for such studies are obtainable through synthesis. Among 

38 reported cruciferous phytoalexins, synthetic methods are known for 31 (Pedras et 

al., 2003a, Pedras et al., 2006a, 2006b). Thus, the phytoalexins used in my research 

project were synthesized following known procedures. Before probing the 

biotransformation pathways of cruciferous phytoalexins in S. sclerotiorum, it was 

necessary to determine their bioactivity. The minimal inhibitory concentrations of 

phytoalexins and analogues were determined using antifungal assays (Pedras and 

Ahiahonu, 2002). 

2.1.1 Synthesis 

There are several methods reported for the synthesis of particular phytoalexins 

(Pedras et al., 2003a). For example, three methods are known for the synthesis of 

brassinin (9) using different starting materials. In my research project, the synthetic 

methods were chosen according to the yields reported in the literature. Therefore, the 
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synthesis of brassinin (9), cyclobrassinin (18) (Takasugi et al., 1988), 1-

methoxybrassinin (11) (Pedras and Zaharia, 2000), brassilexin (24), sinalexin (25) 

(Pedras and Zaharia, 2001), camalexin (31) (Ayer et al., 1992), brassicanal A (34) 

(Pedras and Okanga, 1999), spirobrassinin (27) (Monde et al., 1994) and 1-

methoxyspirobrassinin (28) (Kutschy et al., 2002) were carried out as shown in 

Schemes 2.1 to 2.9 and reported in the experimental section. The spectroscopic data 

were consistent with the structures of the products and identical to the reported data. 1-

Methylbrassilexin (215), an analogue of brassilexin (24), and 1-methylspirobrassinin 

(216), an analogue of spirobrassinin (27), were synthesized from their parent 

compounds following treatment with NaH and  MeI   as shown  in Scheme 2.10 and 

2.11 (Pedras and Hossain, 2006).   
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Scheme 2.1 Synthesis of brassinin (9). Reagents and conditions: (i) NH2OH.HCl, 
Na2CO3, 91%; (ii) Devarda’s alloy, NaOH, MeOH, 72%; (iii) Et3N, pyridine, CS2, 0 
°C; (iv) MeI, 5 °C, 80% (Takasugi et al., 1988). 
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Scheme 2.2 Synthesis of cyclobrassinin (18). Reagents and conditions: (i) Pyridinium 
bromide perbromide, THF; (ii) DBU, 58% (Takasugi et al., 1988). 
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Scheme 2.3 Synthesis of 1-methoxybrassinin (11). Reagents and conditions: (i) 
Na2WO4.2H2O, 30% H2O2; (ii) Me2SO4, K2CO3, 56%; (iii) POCl3, DMF; (iv) NaOH, 
86%; (v) NH2OH.HCl, Na2CO3, EtOH/H2O, 99%; (vi) NaBH3(CN), TiCl3, NH4OAc, 
MeOH; (vii) Py, Et3N, CS2, CH3I, 65% (Pedras and Zaharia, 2000). 
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Scheme 2.4 Synthesis of brassilexin (24). Reagents and conditions: (i) P4S10, NaHCO3, 
THF, 86%; (ii) POCl3, DMF; (iii) NH4OH; (iv) I2, Pyridine, 22% (Pedras and Zaharia, 
2001). 
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Scheme 2.9 Synthesis of (±)-1-methoxyspirobrassinin (28). Reagents and conditions: 
(i) dioxane, Br2; (ii) Et3N, H2O, 86%; (iii) CrO3, AcOH, 30% (Kutschy et al., 2002). 
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enantiopurity of (R)- and (S)-spirobrassinin (27) was measured by 1H NMR using (R)-

2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE) as chiral solvating agent as described in 

section 2.2.10. 
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Scheme 2.12 Enantioresolution of (±)-spirobrassinin (27). Reagents: (i) Et3N, acetone; 
(ii) CH3ONa, CH3OH (Suchy et al., 2001). 

 

2.1.2 Antifungal activity 

There are several types of bioassays useful for the determination of antifungal 

activity, namely the fungal spore germination assay on agar or TLC plates (Pedras, 

1998; Pedras and Sorenson, 1998), fungal radial growth assay using minimal media or 

PDA media (Pedras and Ahiahonu, 2002; Pedras and Montaut, 2003), and filter paper 

disc assay (Lazarevic et al., 2001). For simplicity and to obtain reproducible results and 

because S. sclerotiorum does not form spores in vitro, fungal radial growth assays 

performed on minimal media (Pedras and Ahiahonu, 2002) were selected to determine 

the antifungal activity of phytoalexins and analogues against S. sclerotirum. 
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The antifungal activity of brassinin (9), cyclobrassinin (18), 1-methoxybrassinin 

(11), brassilexin (24), 1-methylbrassilexin (215), sinalexin (25), brassicanal A (34), 

spirobrassinin (27), 1-methoxyspirobrassinin (28), 1-methylspyrobrassinin (216), and 

camalexin (31) against S. sclerotiorum were investigated using the mycelial radial 

growth bioassay reported in the experimental section. Solutions of each compound in 

DMSO (50 mM) were used to prepare assay solutions in minimal media (0.5, 0.3, 0.1, 

0.05, and 0.02 mM) by serial dilution; control solutions contained 1% DMSO in 

minimal media. Sterile tissue culture plates (12-well, 23mm diameter) containing test 

solutions and control solution (1 ml per well) were inoculated with mycelium plugs 

(4mm cut from 3-day-old PDA plates of S. sclerotiorum, clone # 33) placed upside 

down on the center of each plate and incubated under constant light for 3 days. All 

bioassay experiments were carried out in triplicate, at least two times. 

After incubation for three days, the mycelium of control plates incubated with 

S. sclerotiorum covered full plate surfaces. As shown in Table 2.1, brassilexin (24) 

caused complete growth inhibition at 0.05 mM while sinalexin (25) caused complete 

inhibition at 0.1 mM and 1-methylbrassilexin (215) at 0.3 mM. Camalexin (31) also 

caused 100% inhibition in the fungal growth at 0.1 mM. Brassinin (9) and 1-

methoxybrassinin (11) displayed similar antifungal activity against S. sclerotiorum 

causing complete inhibition at 0.3 mM. Due to lower solubility of cyclobrassinin (18) 

in aqueous solutions, the minimum inhibitory concentration of 18 could not be 

determined. Brassicanal A (34), spirobrassinin (27), 1-methoxyspirobrassinin (28), and 

1-methylspyrobrassinin (216) did not cause complete inhibition even at the highest 

concentration. Among all the cruciferous phytoalexins that were tested against S. 

sclerotiorum, brassilexin (24) showed the strongest antifungal activity against S. 

sclerotiorum.  
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Table 2.1 Percentage of growth inhibitiona of Sclerotinia sclerotiorum incubated with 
phytoalexins (9, 11, 18, 24, 25, 27, 28, 31, 34) and derivatives (215, 216) (48 h, 
constant light). 

 

Compound assayed against S. 
sclerotiorum 

Concentration 
(mM) 

Inhibition ± SD 
(%)a

Brassinin (9) 
 
 

0.50 
0.30 
0.10 

100 ± 0 
100 ± 0 
42 ± 5 

1-Methoxybrassinin (11) 
 
 

0.50 
0.30 
0.10 

100 ± 0 
100 ± 0 
56 ± 6 

Cyclobrassinin (18) 
 
 

0.50 
0.30 
0.10 

Not soluble 
Not soluble 

<10 
Brassilexin (24) 
 
 

0.10 
0.05 
0.02 

100 ± 0 
100 ± 0 
76 ± 5 

Sinalexin (25) 
 
 

0.10 
0.05 
0.02 

100 ± 0 
80 ± 4 
60 ± 6 

Spirobrassinin (27) 
 
 

0.50 
0.30 
0.10 

58 ± 3 
38 ± 8 
23 ± 5 

1-Methoxyspirobrassinin (28) 
 
 

0.50 
0.30 
0.10 

24 ± 4 
10 ± 4 

No inhibition 
Camalexin (31) 
 
 

0.30 
0.10 
0.05 

100 ± 0 
100 ± 0 
81 ± 6 

Brassicanal A (34) 
 
 

0.50 
0.30 
0.10 

42 ± 5 
17 ± 4 

No inhibition 
1-Methylbrassilexin (215) 
 
 

0.30 
0.10 
0.05 

100 ± 0 
43 ± 3 
24 ± 6 

1-Methylspirobrassinin (216) 
 
 

0.50 
0.30 
0.10 

49 ± 2 
36 ± 7 
20 ± 7 

 
a The percentage of inhibition was calculated using the formula: % inhibition = 100 – 
[(growth on amended/growth in control) × 100]. 
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2.2 Metabolism of phytoalexins and analogues in Sclerotinia 
sclerotiorum 

A possible strategy for controlling the stem rot fungus is the inhibition of the 

enzymes involved in the detoxification of phytoalexins (Pedras and Khan, 1996; Pedras 

and Hossain, 2006). However, before such inhibitors can be rationally designed, it is 

important to determine whether the stem rot fungus metabolizes and detoxifies 

phytoalexins. Ultimately, a correlation between the bioactivity of the phytoalexins and 

of their biotransformation products will allow an understanding of the detoxification 

mechanisms utilized by the stem rot fungus to overcome the plant’s defenses. Previous 

results demonstrated that S. sclerotiorum can effectively detoxify brassinin (9), 

camalexin (31) and 6-methoxycamalexin (243) to their glucosylated derivatives 

(Schemes 1.4, 1.7 and 1.8) (Pedras et al., 2004c; Pedras and Ahiahonu, 2002). In 

continuation of these investigations of phytoalexin detoxification reactions occurring in 

S. sclerotiorum, the metabolism of the phytoalexins 1-methoxybrassinin (11), 

cyclobrassinin (18), brassilexin (24), sinalexin (25), brassicanal A (34), spirobrassinins 

27 and 28, as well as methyl derivatives 215 and 216 were investigated. So, in this 

section the detoxification pathways and the characterization of various new metabolites 

as well as the chemistry involved in these processes will be described.   

2.2.1 1-Methoxybrassinin (11) 

The concentration of 1-methoxybrassinin (11) used in the biotransformation 

experiment was based on results of antifungal bioassays. The concentration that was 

moderately toxic to fungal growth was selected for biotransformation studies. 

Subsequently, fungal cultures of S. sclerotiorum were initiated by inoculating sclerotia 

of S. sclerotiorum in minimal media. After 6 days of incubation, 1-methoxybrassinin 

(11) dissolved in CH3CN was administered to fungal cultures and to uninoculated 

media (final concentration in media 0.1 mM). Control cultures of the fungus were 
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grown separately. Cultures were incubated and samples were withdrawn at different 

time intervals, extracted with ethyl acetate and the extracts were analyzed by HPLC. 

Comparison of the HPLC chromatograms of extracts of fungal cultures containing 1-

methoxybrassinin (11) and control cultures indicated that 1-methoxybrassinin (11) was 

completely metabolized to a major product (HPLC tR = 9.2 min) in ca. 12 h. To 

establish the structure of this product, larger scale cultures of S. sclerotiorum were 

incubated with 1-methoxybrassinin (11) for 12 h, were extracted, and the extract was 

fractionated by reverse phase silica gel chromatography. Each fraction was analyzed by 

HPLC. The fraction containing the biotransformation product, substantially more polar 

than 1-methoxybrassinin, was further separated by prep. TLC. The structure of this 

polar metabolite (220) was determined by analyses of its spectroscopic data as follows. 

Comparison of its 1H NMR spectrum, obtained in CD3CN, with that of 1-

methoxybrassinin (11) indicated the presence of an additional substituent either at C-4 

or C-7, since only three protons were displayed in the benzene nucleus. The new 

metabolite (220) contained the intact methylene protons (δH 5.00), SCH3 (δH 2.59), and 

N-methoxy groups (δH 4.14). Additional proton signals at δH 5.14 (d, J = 8 Hz, 1H) and 

several multiplets at δH 3.42–3.84 suggested the presence of a carbohydrate moiety. As 

well, the molecular formula of C18H25N2O7S2 obtained by HRMS-ESI and the 13C 

NMR spectral data corroborated the presence of a carbohydrate residue. The identity of 

the monosaccharide unit was established through homonuclear 1H-1H decoupling 

experiments (upon addition of D2O). The coupling constants (J = 7-9 Hz) indicated 

axial-axial proton couplings in a pyranose ring, thus allowing the assignment of a β-

glucopyranose substituent. In addition, as summarized in Fig. 2.1, NOE difference 

experiments (enhancement of the H-6 signal at δH 7.02 upon irradiation of H-1′ at δH 

5.14 and vice-versa; enhancement of both CH2 and H-5 at δH 5.00 and 7.06, 

respectively, upon irradiation of H-4 at δH 7.33; enhancement of H-2 at δH 7.41 upon 

irradiation of CH3-(O)) and HMBC (correlation between H-1′ and C-7 at δC 144.0) 
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spectral data confirmed that the β-glucopyranose unit was located at C-7 and not at C-

4. Thus, the structure of this metabolic product was assigned as 7-oxy-(O-β-D-

glucopyranosyl)-1-methoxybrassinin (220) (Scheme 2.13). 
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Scheme 2.13 Biotransformation of 1-methoxybrassinin (11) in Sclerotinia sclerotiorum 
(Pedras et al., 2004c). 
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Figure 2.1 Selected NOE (dashed lines) and HMBC (solid line) correlations for 7-oxy-
(O-β-D-glucopyranosyl)-1-methoxybrassinin (220). 
 

2.2.2 Cyclobrassinin (18) 

Similar to 1-methoxybrassinin (11), antifungal bioassays were performed to 

determine the minimum inhibitory concentration of cyclobrassinin before carrying out 

the biotransformation experiment. Due to the lower solubility of cyclobrassinin (18) in 

aqueous solutions, the minimum inhibitory concentration could not be determined; a 

slight inhibitory effect was observed at 0.5 mM. Subsequently, liquid cultures of S. 

sclerotiorum were initiated by inoculating minimal media with sclerotia of S. 

sclerotiorum. Cyclobrassinin (18) dissolved in CH3CN was administered to 6-day-old 
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fungal cultures (final concentration 0.1 mM) and to uninoculated minimal medium. 

Cultures were incubated, samples were withdrawn at different time intervals and 

extracted with EtOAc. Cyclobrassinin (18) was found to be stable in uninoculated 

medium for at least 8 days. HPLC analysis of EtOAc extracts of fungal cultures 

incubated with cyclobrassinin (18) indicated it to be completely metabolized to a major 

product (HPLC tR = 8.6 min) in ca. 12 h. To establish the structure of this metabolic 

product, larger scale cultures of S. sclerotiorum incubated with cyclobrassinin (18) for 

8 h, were filtered, extracted, and the organic extract fractionated by column 

chromatography followed by prep. TLC to yield a major metabolite (221) with HPLC 

tR = 8.6 min and also a minor metabolite (34) with HPLC tR = 10.2 min. The structure 

of the major metabolite (221) was determined by analyses of standard spectroscopic 

methods including 1H and 13C NMR spectroscopy, 2D-NMR and HRMS. Comparison 

of the 1H NMR spectrum of the major metabolite (221) with that of cyclobrassinin (18) 

indicated the presence of the intact cyclobrassinin (18) tricyclic system, as well as the 

intact SCH3 group of the side-chain. In addition, several multiplets at δH 3.63–4.09 

suggested the presence of a carbohydrate moiety. The molecular formula of 221 

(C17H20N2O5S2) determined by HRMS-FAB also corroborated the presence of a 

carbohydrate residue. As described above for metabolite 220, the identity of the 

carbohydrate moiety was determined to be a β-glucopyranosyl substituent. HMBC 

spectral data confirmed that the β-glucopyranose unit was located at N-1 (correlations 

of the anomeric proton H-1 with C-2 and C-7a of indole) and thus the structure of 221 

was assigned as 1-β-D-glucopyranosylcyclobrassinin (221) (Scheme 2.14). The 

structure of the minor metabolic product of cyclobrassinin (18) was established to be 

brassicanal A (34) by comparison with a synthetic sample (Pedras and Khan, 1996). 
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Scheme 2.14 Biotransformation of cyclobrassinin (18) in Scleroti
(Pedras et al., 2004c). 
 

2.2.3 Brassilexin (24) 

2.2.3.1  Biotransformation 

Similar to 1-methoxybrassinin (11) and cyclobrassinin 

bioassays were performed to determine the minimum inhibitory 
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biotransformation steps, enamine 47 was synthesized and administered to cultures of S. 

sclerotiorum. Culture samples were withdrawn at different times, these were extracted 

and the extracts were analyzed by HPLC; the chromatograms indicated that enamine 47 

was completely metabolized to brassicanal A (34) in ca. 12 h. Subsequently, to isolate 

the unknown metabolite with tR = 4.5 min (222), larger scale cultures of S. sclerotiorum 

were incubated with brassilexin (24). After 24 h, the extracts obtained from these 

cultures were fractionated by reverse phase silica gel chromatography, and each 

fraction was analyzed by HPLC. The fractions containing the unknown metabolite 

(222) were combined and further separated by preparative TLC to yield 

chromatographically homogeneous material. The 1H NMR spectrum, obtained in 

CD3OD, indicated the presence of the intact brassilexin (24) tricyclic system plus a 

doublet at δH 5.75 (J = 9 Hz, 1H) and several multiplets at δH 3.49–3.96, suggesting the 

presence of a carbohydrate moiety. Both the molecular formula (C15H16N2O5S obtained 

by HRMS-ESI) and the 13C NMR spectral data corroborated the presence of a 

carbohydrate residue. The identity of the carbohydrate moiety was assigned as β-

glucopyranosyl residue from 1H–1H homonuclear decoupling experiments (axial-axial 

couplings, J = 7–9 Hz, between the various protons). The β-glucopyranosyl unit was 

established to be located at N-1 from analysis of the HMBC data (correlations of the 

anomeric proton H-1′ with C-2 and C-7a of the indole moiety). Furthermore, the 

structure of this new metabolic product of brassilexin (24) was confirmed to be 1-β-D-

glucopyranosylbrassilexin (222) by synthesis, as described below. Hence, the 

biotransformation of brassilexin (24) in S. sclerotiorum proceeded via two different 

pathways (Scheme 2.15): (i) glucosylation of brassilexin at N-1, and (ii) reductive ring 

opening of the isothiazole moiety. Although the yield of glucoside 222 was lower than 

that of brassicanal A (34) (Table 2.4), since 222 was further metabolized at a faster rate 

than brassicanal A (34) (48 h vs. 7 d), it becomes apparent that glucosylation represents 

the main metabolic pathway (Pedras and Hossain, 2006). 
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Scheme 2.15 Biotransformation of brassilexin (24) in Sclerotinia sclerotiorum: (i) 
main pathway, (ii) minor pathway (Pedras and Hossain, 2006). 
 

2.2.3.2  Chemical synthesis of 1-β-D-glucopyranosylbrassilexin (222) 

The chemical synthesis of 1-β-D-glucopyranosylbrassilexin (222) was carried 

out to confirm the absolute stereochemistry of the biotransformation product of 

brassilexin (24) and to obtain sufficient amounts for bioassays. N-Glucosylation of 

indolyl-containing molecules has been reported for a number of substrates (Ohkubo et 

al., 1997; Gallant et al., 1993) including the syntheses of N-glucosylated brassinin (9), 

brassenins A and B, cyclobrassinin (18) and related compounds (Humenik, et al., 

2005a; Humenik, et al., 2005b; Humenik, et al., 2004; Kutschy, et al., 2004). However, 

the indoline-indole methodology (Preobrazhenskaya and Korbukh, 1988) or the various 

carbohydrate donors used in those preparations were not readily applicable to 

brassilexin (24). On the other hand, the reaction of 6-nitroindole with 2,3,4,6-tetra-O-

acetyl-α-D-glucopyranosyl bromide (223) in the presence of silver oxide, reported to 

yield a mixture of O-acetylated 1,2-O-[1-(6-nitroindol-1-yl)ethylidene]-α-D-glucose 

and 1,2-O-[1-(6-nitroindol-3-yl)ethylidene]-α-D-glucose, appeared promising 

(Sokolova, et al., 1980). Although in that synthesis no N-glucosylated product was 
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observed, because brassilexin (24) had the C-2 and C-3 positions of the indole moiety 

blocked and no electron withdrawing groups were present, it was expected to be 

substantially more reactive than 6-nitroindole. Thus, an approach similar to that used 

for 6-nitroindole was chosen to synthesize 1-β-D-glucopyranosylbrassilexin (222). 

Subsequently, coupling of brassilexin (24) with 1-bromo-2,3,4,6-tetra-O-acetyl-α-D-

glucopyranose (223) in the presence of silver oxide yielded a mixture of D-

glucopyranosylbrassilexins 224 and 225 in a 1 : 1 ratio (Scheme 2.16). Finally, 

deacetylation of 224 yielded 1-β-D-glucopyranosylbrassilexin (222, 12% yield) (Pedras 

and Hossain, 2006). Synthetic 1-β-D-glucopyranosylbrassilexin (222) was identical in 

all respects to the sample isolated from fungal cultures of S. sclerotiorum and was used 

to carry out all bioassays. It is likely that the yield of 224 could be improved by using 

other protecting groups in 223, to prevent the neighboring group assistance effect 

depicted in Scheme 2.16 (Nukada et al., 1998). The absolute stereochemistry of the 

stereogenic center C-1′ of compound 225 was established using NOESY data. The 

NOESY spectrum of 225 showed a correlation between the methyl group at C-1′ and 

the H-5′′ of the glucosyl residue (Scheme 2.16). This correlation suggested that the new 

stereocenter C-1′ had the S configuration, which was consistent with that reported for 

tryptophan N-glucoside (Schnabel, et al., 2004). Furthermore, contrary to 1-β-D-

glucopyranosylbrassilexin (222), the H-H coupling constants obtained for H-1′′, H-2′′ 

and H-3′′ (see experimental data) suggest that the glucosyl moiety of 225 is not in a 

chair conformation. 
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Scheme 2.16 Synthesis of 1-β-D-glucopyranosylbrassilexin (222) and selected NOE of 
compound 225 (Pedras and Hossain, 2006). 

2.2.4 Sinalexin (25) 

Similar to the above phytoalexins, after determining the minmum inhibitory 

concentration of sinalexin (25) by antifungal bioassys, a time course experiment was 

conducted with sinalexin (25) using fungal cultures of S. sclerotiorum. The fungal 

cultures were grown in minimal media by inoculating sclerotia of S. sclerotiorum. 

Sinalexin (25, final concentration 0.1 mM) was added to fungal cultures and to 

uninoculated media (to determine the stability of sinalexin in minimal media), the 

cultures were incubated, and samples were collected at different time intervals and 

extracted with ethyl acetate. The HPLC analysis of EtOAc extracts of uninoculated 
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media incubated with 25 suggested that sinalexin (25) was stable in media for at least 8 

days whereas the HPLC analysis of the broth extracts of cultures incubated with 

sinalexin (25) indicated it to be completely metabolized to two products with tR = 4.9 

and 12.0 min, in ca. 48 h (Fig. 2.2). To obtain sufficient quantities of each product for 

both chemical characterization and bioassay, larger scale mycelial cultures incubated 

with 25 were extracted, the extract was fractionated by reverse phase silica gel 

chromatography and each fraction was analyzed by HPLC. The fractions containing 

new metabolites were combined and further separated by reverse phase preparative 

TLC. The molecular formula of the less polar metabolite (226, tR = 12.0 min) (obtained 

by HRMS-EI) indicated the presence of an additional oxygen atom relative to that of 

sinalexin (25) (C10H8N2O2S vs. C10H8N2OS) and the 1H NMR spectrum indicated the 

presence of a substituted sinalexin, since only four protons were displayed in the 

aromatic region. Three of the signals were assigned to the spin system in the benzene 

ring and a singlet at δH 8.63 was assigned to the isothiazole ring. These spectroscopic 

data suggested that the less polar metabolite (226) contained an OH group located 

either at C-5 or C-6. That the OH group was attached to C-6 rather than C-5 was finally 

deduced from NOE experiments, as follows. Irradiation of the N-methoxy group at δH 

4.14 caused an enhancement of the signal due to H-7 (δH 6.98) and vice versa. That is, 

assignment of the resonance of H-7 demonstrated that the HO group was located at H-6 

and thus 226 was the structure of the less polar metabolite. The molecular formula of 

the more polar metabolite (227, tR = 4.9 min, C16H18N2O7) obtained by HRMS-ESI 

indicated the presence of a hexose unit, which was corroborated by NMR data. The 

identity of the hexose unit was determined as β-D-glucopyranose from homonuclear 

(1H) decoupling experiments and X-ray crystallography (Fig 2.3). To establish the 

sequence of biotransformation steps of sinalexin (25), compound 226 was administered 

to cultures of S. sclerotiorum, samples were withdrawn at different times, and these 

were extracted and analyzed by HPLC. As expected, compound 226 was completely 
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metabolized to 227 in ca. 12 h. This result indicated that sinalexin (25) was 

metabolized to 6-oxy-(O-β-D-glucopyranosyl)sinalexin (227) via 6-hydroxysinalexin 

(226) (Scheme 2.17) (Pedras and Hossain, 2006). 
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Figure 2.2 Progress curves of the metabolism of brassilexin (24), sinalexin (25) and 1-
methylbrassilexin (215) in Sclerotinia sclerotiorum. Cultures were extracted and 
extracts were analyzed by HPLC; concentrations were determined using calibration 
curves; each point is an average of experiments conducted in triplicate ± standard 
deviation (Pedras and Hossain, 2006). 
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Scheme 2.17 Biotransformation of sinalexin (25) in Sclerotinia sclerotiorum (Pedras 
and Hossain, 2006). 
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Figure 2.3 X-ray structure of 6-oxy-(O-β-D-glucopyranosyl)sinalexin (227): general 
ORTEP-3 view with non-H atom displacement ellipsoids drawn at the 50% probability 
level. The H atoms are drawn as small spheres of arbitrary size (Pedras and Hossain, 
2006). 
 

2.2.5 1-Methylbrassilexin (215) 

To probe the substrate specificity of the enzyme(s) involved in the metabolism 

of brassilexin (24) and sinalexin (25), 1-methylbrassilexin (215) was synthesized and 

incubated (final concentration 0.1 mM) with cultures of S. sclerotiorum as described 

for brassilexin (24). Culture samples were withdrawn at different time intervals and 

analyzed by HPLC. HPLC chromatograms of extracts of fungal cultures containing 1-

methylbrassilexin (215) suggested that the rate of metabolism of 215 was slower than 

the transformation rates of brassilexin (24) and sinalexin (25) (Fig. 2.2).While the 

naturally-occurring 24 and 25 were completely metabolized in about two days, 1-

methylbrassilexin (215) was completely metabolized to an unknown polar compound 

(228, tR = 4.4 min) in about four days. To establish the structure of this polar metabolite 

(228), larger scale cultures of S. sclerotiorum incubated with 1-methylbrassilexin (215) 

were extracted and the extracts were fractionated by reverse phase silica gel column 

chromatography. Fractions containing the new metabolite were further separated by 
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preparative TLC to yield a chromatographically homogeneous solid material. The 1H 

NMR spectrum of this compound [228, (CD3)2CO)] showed five aromatic hydrogens, 

suggesting the presence of an intact brassilexin moiety, and a methylene group (δH: 

6.13, d, J = 11.5 Hz, 1H; 5.90, d, J = 11.5 Hz) instead of the (N)Me group. The 13C 

NMR spectrum of 228 confirmed the absence of the (N)Me group and the presence of 

the methylene at δC 73.4, which indicated that the (N)Me group had been oxidized to 

(N)CH2O–R. Additional signals at δH 4.39 (d, J = 8 Hz, 1H) and several multiplets at 

δH 3.85–3.50 suggested the presence of a carbohydrate moiety. The molecular formula 

of C16H18N2O6S (obtained by HRMS-ESI) and 13C NMR spectral data also indicated 

the presence of a carbohydrate residue. The identity of the carbohydrate moiety was 

assigned as a β-glucopyranosyl residue from 1H-1H homonuclear decoupling 

experiments (axial-axial couplings, J = 7–9 Hz). HMBC spectral data showed 

correlations of (N)CH2O protons with C-2 and C-7a of indole and also with the 

anomeric carbon (C-1′) as shown in Scheme 2.18, suggesting that the β-glucopyranose 

unit was attached to the oxygen atom of the (N)CH2O group. From this reasoning the 

structure of the biotransformation product of 1-methylbrassilexin (215) was assigned as 

1-methyl-(oxy-O-β-D-glucopyranosyl)brassilexin (228) (Scheme 2.18) (Pedras and 

Hossain, 2006). 
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2.2.6 Brassicanal A (34) 

Brassicanal A (34, final concentration 0.1 mM) was incubated with fungal 

cultures of S. sclerotiorum (grown in minimal media by inoculating sclerotia), samples 

were collected and analyzed by HPLC over a period of several days to determine the 

best time to isolate potential metabolic products. Comparison of the HPLC 

chromatograms of extracts of fungal cultures containing brassicanal A (34) and control 

cultures indicated that brassicanal A (34) was completely metabolized to 3-

(hydroxymethyl)indole-2-methylsulfoxide (230) via brassicanal A sulfoxide (229) 

(Scheme 2.19) in ca. 7 d (Fig. 2.4). After isolation of metabolites 229 and 230 their 

structures were deduced from comparison of their spectroscopic data to those of 

brassicanal A as described below and finally confirmed by synthesis. The 1H NMR 

spectrum of each compound showed the four hydrogens characteristic of a 2,3-

disubstituted indole nucleus. In addition, the sulfoxide 229 showed the aldehyde 

hydrogen, as well as the signal for the Me group, which was shifted downfield in both 

the 1H (2.68 ppm in 34 vs 3.08 ppm in 229) and the 13C (16.9 ppm in 34 vs 42.2 ppm in 

229) NMR spectra. These changes in the chemical shifts suggested that the S-Me group 

present in brassicanal A (34) had been oxidized to the corresponding Me-S=O by the 

fungus. EIMS of 229 (molecular ion peak at 207) also confirmed that the addition of 

oxygen had occurred. Further corroboration of the structure was confirmed by synthesis 

as described in the experimental section (Pedras and Khan, 1996). In addition to the 

indolyl hydrogens, compound 230 showed a Me-S=O group, a methylene group 

(doublets at 4.88 and 4.81 ppm), and the absent of aldehyde hydrogen. EIMS of 230 

(molecular ion peak at 209) confirmed that the aldehyde group of brassicanal A (34) 

had been reduced to the corresponding alcohol. The structure of 230 was also 

confirmed by synthesis (Pedras and Khan, 1996). To ascertain the sequence of the 

biotransformation steps, compound 229 was separately incubated with cultures of S. 
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sclerotiorum, and extracts of the fungal cultures collected at different times were 

analyzed by HPLC. These experiments confirmed that the aldehyde group of 

brassicanal A (34) was enzymatically reduced to alcohol 230 (Scheme 2.19) (Pedras 

and Hossain, 2006). 
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Scheme 2.19 Biotransformation of the phytoalexin brassicanal A (34) in Sclerotinia 
sclerotiorum (Pedras and Hossain, 2006). 
 

2.2.7 (±)-Spirobrassinin (27) 

Similar to other phytoalexins, after determining the minmum inhibitory 

concentration of (±)-spirobrassinin (27) by antifungal bioassys, the biotransformation 

of this phytoalexin was studied by carrying out a time course experiment. 

Spirobrassinin (27, 0.1 mM) was added to fungal cultures of S. sclerotiorum, cultures 

were incubated and analyzed by HPLC over a period of several days. From these 

analyses, it was found that compared to the transformation of other phytoalexins such 

as 1-methoxybrassinin (11), cyclobrassinin (18), brassilexin (24) and sinalexin (25), the 

biotransformation of the phytoalexin (±)-spirobrassinin (27) in S. sclerotiorum was a 

much slower process. Spirobrassinin (27) was detected in cultures up to nine days after 

incubation with S. sclerotiorum (Fig. 2.4); a single biotransformation product (231, 

HPLC tR = 5.1 min) substantially more polar than spirobrassinin was detected. Similar 

to the experiments described above, to establish the structure of this metabolic product, 

larger scale cultures of S. sclerotiorum were incubated with (±)-spirobrassinin (27) for 

seven days, then filtered, extracted, and the broth extract fractionated by column 
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chromatography followed by preparative TLC to yield a new metabolite (231). 

Standard spectroscopic analyses (1H and 13C NMR, HMQC, HMBC, and HRMS-EI) 

indicated the molecular formula C10H8N2O2S. Comparison of the 1H NMR spectra of 

spirobrassinin (27) and that of the new metabolite (231) revealed the presence of an NH 

signal at δH 6.40 and the absence of the SCH3 signal in the latter. A downfield shift for 

the C-2′ carbon (δH 163.2 in 27 to 171.9 in 231) in the 13C NMR spectrum suggested 

the presence of a carbonyl group (NHC=OSR). Hence, on the basis of these spectral 

data, the structure of the new metabolite 231 was assigned as a spirothiazolidinone 

attached to C-3 of the oxoindole ring (Scheme 2.20, 231, [α]D = −35). The 

enantiomeric excess (ee) of untransformed spirobrassinin (27) recovered from cultures 

after a seven day incubation period was determined to be 14% by 1H NMR 

spectroscopy (integration of the SMe resonances) using the chiral solvating agent (R)-

2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE, Table 2.2) as described in section 2.2.10 

(Pedras et al., 2004d). However, the enantiomeric excess of metabolite 231 could not 

be determined (the diastereotopic methylene protons were not sufficiently resolved in 

the presence of the chiral solvating agent TFAE) (Pedras and Hossain, 2006). 
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Scheme 2.20 Biotransformation of (±)-spirobrassinin (27) in Sclerotinia sclerotiorum 
(Pedras and Hossain, 2006). 
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Figure 2.4 Progress curves of the metabolism of brassicanal A (34), (±)-spirobrassinin 
(27), 1-methoxyspirobrassinin (28) and 1-methylspirobrassinin (216) in Sclerotinia 
sclerotiorum. Cultures were extracted and the extracts were analyzed by HPLC; 
concentrations were determined using calibration curves; each point is an average of 
experiments conducted in triplicate ± standard deviation (Pedras and Hossain, 2006). 
 

2.2.8 (±)-1-Methoxyspirobrassinin (28) 

Similar to other phytoalexins, the metabolism of (±)-1-methoxyspirobrassinin 

(28) by S. sclerotiorum was investigated in liquid cultures. Initially, an experiment was 

carried out to determine the time required for complete metabolism of (±)-1-

methoxyspirobrassinin (28), as well as the best time for isolation of potential metabolic 

products of 28. Fungal cultures and control medium were incubated with (±)-1-

methoxyspirobrassinin (28) up to two weeks; samples were withdrawn at different 

times and analyzed by HPLC. 1-Methoxyspirobrassinin (28) was found to be stable in 
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control over the period of analysis. Comparison of the HPLC chromatograms of 

extracts of fungal cultures containing 1-methoxyspirobrassinin (28) and control 

cultures indicated that 1-methoxyspirobrassinin (28) was completely metabolized to 

two products with tR = 7.5 and 11.5 min in ca. 10 days (Fig. 2.4). The structure of each 

product was determined from comparison of their spectroscopic data and those of 1-

methoxyspirobrassinin (28). The 1H NMR spectra of both compounds (232 and 233) 

showed four aromatic hydrogens, characteristic of a 2-oxoindole nucleus and two 

additional hydrogens (H-4′) with geminal coupling. In addition, both compounds 

showed a signal for an exchangeable hydrogen and the absence of the SCH3 signal. The 
13C NMR spectrum of the compound with tR = 7.5 min (232) displayed a downfield 

shift attributable to C-2′ (δC 163.2 in 28 to 171.4 in 232), suggesting the presence of a 

carbonyl group [NH(S)C=O], whereas the compound with the tR = 11.5 min (233) 

showed a substantially higher chemical shift for C-2′ (δC 163.2 in 28 to 198.3 in 233), 

suggesting the presence of a thiocarbonyl group [NH(S)C=S]. These data were 

consistent with the molecular formula of each compound determined by HRMSEI (232, 

C11H10N2O3S, and 233, C11H10N2O2S2). That is, the SCH3 group of 1-

methoxyspirobrassinin (28) had been transformed to a carbonyl group in 232 and to a 

thiocarbonyl group in 233. On the basis of these results, the structure of the major 

metabolite (tR = 7.5 min) was established as the spirothiazolidinone 232 and the 

structure of the minor metabolite (tR = 11.5 min) was established as the 

spirothiazolidinethione 233 (Scheme 2.21) (Pedras and Hossain, 2006). As established 

for spirobrassinin (27), the ee of 1-methoxyspirobrassinin (28) isolated after incubation 

for seven days (33% ee) and of metabolites 232 (11% ee) and 233 (30% ee) were 

determined by 1H NMR spectroscopy using the chiral solvating agent TFAE (Table 

2.2) as described in section 2.2.10 (Pedras et al., 2004d). 
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Scheme 2.21 Biotransformation of 1-methoxyspirobrassinin (28) in Sclerotinia 
sclerotiorum (Pedras and Hossain, 2006). 

 

Table 2.2 Enantiomeric excess (ee) and optical rotation of spirobrassinins 27, 28, 216, 
and metabolites 231, 232, 233, and 234 (Pedras and Hossain, 2006). 
 
Compounds; amount recovered from 
cultures after incubation for 7 d 
 

ee (%)a Optical rotation [α]D

Spirobrassinin (27); 20% 14b -15 (c 0.34, MeOH) 

1-Methoxyspirobrassinin (28); 20% 33d +11(c 0.21, MeOH) 

1-Methylspirobrassinin (216); 16% 26e +7 (c 0.25, MeOH) 

Spirooxathiazolidinone (231); 22% ndc -35 (c 0.33, MeOH) 

Spirooxathiazolidinone (232); 16% 11d -7 (c 0.34, MeOH) 

Spirooxathiazolidinethione (233); 7% 30d -31 (c 0.10, MeOH) 

Spirooxathiazolidinone (234); 16% 33e -5 (c 0.20, MeOH) 

 
a Enantiomeric excess {ee=([R−S]/[R+S])×100}was determined using chiral solvating 
reagent (R)-2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE) by 1H NMR. b Determined by 
integration of the 1H NMR signals of SCH3. c nd = not determined as 1H NMR signals 
were not resolved. d Determined by integration of the 1H NMR signals of OCH3. 
eDetermined by integration of the 1H NMR signals of NCH3. 
 

2.2.9 (±)-1-Methylspirobrassinin (216) 

To probe the detoxification pathway of spirobrassinins 27 and 28 in S. 

sclerotiorum, (±)-1-methylspirobrassinin (216), a synthetic analogue of spirobrassinin 

(27), was incubated with fungal cultures of S. sclerotiorum and cultures were analyzed 

by HPLC over a period of several days. Similar to the biotransformation of 
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spirobrassinins 27 and 28, it was found that the biotransformation of (±)-1-

methylspirobrassinin (216) by S. sclerotiorum was a very slow process. Compound 216 

was completely metabolized only after incubation for 12 days (Fig. 2.4). The 

metabolism of this compound by the fungus S. sclerotiorum led to the detection of 

three metabolites with tR = 6.6, 11.1 and 13.2 min (234, 235, and 27, respectively, 

Scheme 2.22). Subsequently, to isolate these metabolites, larger scale cultures were 

incubated with 1-methoxyspirobrassinin (216) for 7 days; cultures were filtered and 

extracted with EtOAc. The EtOAc extract was subjected to reverse phase FCC 

followed by preparative TLC to yield the metabolites 234, 235, and 27. The structure of 

each metabolite was determined from comparison of its spectroscopic data and those of 

1-methylspirobrassinin (216). The 1H NMR spectrum of the most polar compound (tR = 

6.6 min, 234) showed the four aromatic hydrogens characteristic of a 2-oxoindole 

nucleus and two additional hydrogens (H-4′) showing geminal coupling. In addition, 

compound 234 showed a proton resonance attributable to the NH and the absence of 

the proton resonance due to SCH3. The 13C NMR of 234 showed a downfield shift for 

the C-2′ carbon (δC 163.2 in 216 to 171.9 in 234) which suggested the presence of a 

carbonyl group, i.e. transformation of the N=C(SCH3)S group to the NH–C=O(S) 

group. These assumptions were consistent with the molecular formula obtained by 

HRMS-EI (C11H10N2O2S,). Thus, on the basis of these results the structure of this 

metabolite was assigned as the spirothiazolidinone 234 (Scheme 2.22). The compound 

of intermediate polarity (tR = 11.1 min, 235), relative to 1-methylspirobrassinin (216) 

(C12H12N2OS2) contained an additional oxygen atom (C12H12N2O2S2), as determined by 

HRMSEI. Comparison of the 1H NMR spectrum of the parent compound 216 with that 

of 235 indicated the presence of signals attributable to NCH2OH (δH 5.21 and 5.35) and 

the absence of the NCH3 signal. This reasoning was corroborated by the 13C NMR 

spectrum [downfield shift for the (N)CH2OH carbon δC 26.7 in 216 to 64.7 in 235]. 

That is, the N–CH3 group was oxidized enzymatically to the N–CH2–OH group. 
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Therefore, the structure of this metabolite was assigned as 1-

hydroxymethylspirobrassinin (235, Scheme 2.22). The third metabolite was established 

as spirobrassinin (27) based on its spectroscopic data and comparison with an authentic 

sample. To establish the sequence of biotransformation steps, compound 235 was 

administered to cultures of S. sclerotiorum. As expected, spirobrassinin (27) was 

detected in the HPLC chromatogram of the broth extract of these cultures, 

demonstrating it to be a metabolite of 235 resulting from enzymatic oxidation followed 

by decarboxylation of 235 (Scheme 2.22) (Pedras and Hossain, 2006). As described for 

1-methoxyspirobrassinin (28), the ee values of untransformed 1-methylspirobrassinin 

(216) and metabolite 234 were determined using the chiral solvating agent TFAE 

(Table 2.2) as described in section 2.2.10 (Pedras et al., 2004d). 
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Scheme 2.22 Biotransformation of 1-methylspirobrassinin (216) in Sclerotinia 
sclerotiorum (Pedras and Hossain, 2006). 
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2.2.10 Determination of the enantiomeric excess of spirobrassinins 

27, 28, 216, and metabolites 232, 233, and 234 

As shown in Table 2.2, the optical rotation values of untransformed 

spirbrassinins 27, 28, 216, and metabolites 232, 233, and 234 recovered from cultures 

after a seven day incubation period suggested that some of these compounds were 

optically active. Thus, it was of interest to determine the enantiomeric excess of these 

compounds. Because chiral HPLC did not give baseline resolution of racemic 

spirobrassinin (27), and the specific optical rotation values of small amounts of sample 

were not sufficiently accurate to determine the enantiomeric excess, NMR methods 

were sought (Pedras et al., 2004d). Chiral solvating agents (CSA) are a simple and 

inexpensive choice to determine enantiomeric excess using NMR spectroscopy. CSA 

have been used for more than three decades to analyze mixtures of enantiomers and 

measure the enantiomeric composition of samples of chiral compounds of unknown 

enantiomeric excess using 1H NMR (Wenzel, 2000; Parker, 1991; Pirkle and Hoover, 

1982). Subsequently, this section describes a simple and inexpensive method for 

enantiomeric discrimination of the phytoalexins spirobrassinin (27), 1-

methoxyspirobrassinin (28) and synthetic analog 1-methylspirobrassinin (216) and their 

metabolites 232, 233, and 234 using the chiral solvating agent (R)-2,2,2-trifluoro-1-(9-

anthryl)ethanol (TFAE) in C6D6 (Pedras et al., 2004d). 

Initially, the 1H NMR spectra of (±)-spirobrassinin (27) was obtained in CDCl3 

containing increasing amounts of TFAE. Enantiodifferentiation with peak baseline 

resolution was observed for the signals corresponding to protons of the (S)CH3 group 

when the concentration of TFAE was four times that of 27. Close inspection of the 1H 

NMR spectra showed several additional resonances related to spirobrassinin, 

suggesting modifications in its structure. Eventually it was discovered that 

spirobrassinin (27) decomposed slowly (<5% in 24h) on standing in CDCl3 to yield a 
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mixture of undetermined compounds. Next, additional deuterated solvents in which 

spirobrassinin was stable were tested. Although spirobrassinin (27) appeared stable in 

both CD3OD and CD3CN, these solvents did not allow sufficient chiral discrimination 

of both spirobrassinin enantiomers. Finally, chiral discrimination of spirobrassinins 27, 

28, and 216 was achieved in C6D6 containing 6 equiv of (R)-TFAE and D2O (to 

exchange OH of TFAE). By comparing the spectra of racemic spirobrassinins (27, 28, 

216) in the free state and in the presence of the chiral solvating agent (CSA), it was 

established that (R)-TFAE induced non-equivalence in the –SCH3 protons of the two 

enantiomers of each spirobrassinins (27, 28, 216). Significant chemical-shift non-

equivalence (∆δH
RS) for –SCH3 resonance in the diastereoisomeric complexes was 

observed in C6D6 (Fig. 2.5-2.7). Higher values of ∆δH were found near 1:6 

stoichiometry of spirobrassinins: CSA. The chemical-shift non-equivalence ∆δH 

between two enantiomers for –SCH3 protons are listed in Table 2.3. The observed shift 

non-equivalence of the –SCH3   resonance   is   sufficient   not   only   to   determine   

the   enantiomeric  purity  of enantiomerically enriched samples of spirobrassinins (27, 

28, 216) but also for assignment of the absolute configuration.  For example, naturally 

occurring samples of spirobrassinin (27) isolated from rutabaga ([α]D -53; c 0.30 g/100 

ml in CHCl3) (Pedras et al., 2004b), and cauliflower ([α]D -109; c 0.35 g/100 ml in 

CD2Cl2) (Pedras et al., 2006b) were determined to have the S configuration (Fig. 2.5D) 

upon comparison with an authentic sample of (S)-spirobrassinin (27) synthesized  and  

resolved  as shown in Scheme 2.8 and 2.12 respectively (Fig 2.5C). The enantiomeric 

excess of resolved synthetic and naturally occurring spirobrassinin (27) samples could 

be accurately measured by integration of the areas of the 1H NMR peaks corresponding 

to the (S)CH3 group of each enantiomer (δH 2.14 for R and 2.10 for S). Partial chemical 

shift non-equivalence was observed for the CH2 group. The enantiomers of 1-

methoxyspirobrassinin (28) and 1-methylspirobrassinin (216) could also be 

discriminated, and the percentage of each enantiomer could be measured accurately by 
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integration of areas of the 1H NMR peaks corresponding to the (S)CH3 group of each 

one (28, δH 2.13 and 2.10; 216, δH 2.16 and 2.13), as shown in Figs. 2.6 and 2.7, 

respectively. Partial chemical shift non-equivalence was also observed for the 

additional methyl groups in the case of 28 and 216. The enantiomeric excess of 

spirooxathiazolidinone 232, and 234 (metabolites of 28 and 216 respectively) and 

spirooxathiazolidinethione 233 (metabolite of 28) could also be determined using the 

same procedure. Significant chemical-shift non-equivalence (∆δH
RS) for –OCH3 

resonance in case of 232 and 233 and for –NCH3 resonance in case of 234 in the 

diastereoisomeric complexes was observed in C6D6 with 6 equiv of R-TFAE (Table 

2.3). However, enantiomeric excess of 231 (metabolite of 27) could not be determined 

using the same procedure as the peaks corresponding to the CH2 group were not 

resolved sufficiently (Pedras et al., 2004d).  

 

Table 2.3 Chemical shift non-equivalence observed between two enantiomers of each 
spirobrassinins 27, 28, 216 and metabolites 232, 233, 234 treated with 6-equiv of R-
TFAE in C6D6 and D2O (ca. 20 µl) (Pedras et al., 2004d) 
 
Compounds ∆ δH (ppm) 

Spirobrassinin (27) 0.038a

1-Methoxyspirobrassinin (28) 0.027a

1-Methylspirobrassinin (216) 0.038a

Spirooxathiazolidinone (232) 0.018b

Spirooxathiazolidinethione (233) 0.021b

Spirooxathiazolidinone (234) 0.043c 

 
a 1H NMR peaks corresponding to –SCH3 group; b 1H NMR peaks corresponding to –OCH3 
group; c 1H NMR peaks corresponding to –NCH3 group. 

 

 

 

 96



 4.14.24.34.44.54.6 ppm 2.102.15 ppm

D 

C 

B 

A 
2.10 2.14 

2.16 
-SCH3-CH2- 

 
 

Figure 2.5 1H NMR spectra of spirobrassinin (27): A – racemic mixture (1.8 mg) in 
C6D6 (500 µl); B – racemic mixture containing six equivalents of (R)-TFAE in C6D6 
and D2O (ca. 20 µl); C – synthetic S enantiomer containing six equivalents of TFAE in 
C6D6 and D2O (ca. 20 µl); naturally occurring from cauliflower containing six 
equivalents of TFAE in C6D6 and D2O (ca. 20 µl) (Pedras et al., 2004d). 
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Figure 2.6 1H NMR spectra of 1-methoxyspirobrassinin (28): A – racemic mixture (1.5 
mg) in C6D6 (500 µl); B – racemic mixture containing six equivalents of (R)-TFAE in 
C6D6 and D2O (ca. 20 µl) (Pedras et al., 2004d). 
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Figure 2.7 1H NMR spectra of 1-methylspirobrassinin (216): A – racemic mixture (1.4 
mg) in C6D6 (500 µl); B – racemic mixture containing six equivalents of (R)-TFAE in 
C6D6 and D2O (ca. 20 µl) (Pedras et al., 2004d). 
 

2.2.11 Summary 

The results of these biotransformations suggested that S. sclerotiorum produces 

various enzymes that can detoxify cruciferous phytoalexins via different pathways. The 

metabolism and detoxification of strongly antifungal phytoalexins in S. sclerotiorum 

were fast and led to glucosylated products whereas the metabolism of weakly 

antifungal phytoalexins were very slow and yielded non-glucosylated compounds 

(Pedras and Hossain 2006). These results of biotransformations are summarized below 

in Table 2.4.  
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Table 2.4 Products of metabolism of phytoalexins 11, 18, 24, 25, 27, 28 and 34 and 
their analogues 215, and 216 (0.1 mM) in cultures of Sclerotinia sclerotiorum (Pedras 
et al., 2004c; Pedras and Hossain, 2006). 

 
Compound added to cultures Incubation 

time 
Products of 

metabolism (%)a
Recovered 

starting 
material (%)a

1-Methoxybrassinin (11) 12 h 220 (15%) 5 

Cyclobrassinin (18) 12 h 34 (6%); 221 (36%) 10 

Brassilexin (24) 24 h 34 (18%); 222 (7%) 10 

Sinalexin (25) 30 h 226 (2%); 227 (15%) 8 

Spirobrassinin (27) 7 d 231 (22%) 20 

1-Methoxyspirobrassinin (28) 7 d 232 (16%); 233 
(17%) 

20 

Brassicanal A (34) 6 d 229 (15%); 230 
(13%) 

28 

3-(Amino)methylenindoline-2-
thione (47) 

6 h 34 (10%) None 

1-Methylbrassilexin (215) 4 d 228 (7%) 10 

1-Methylspirobrassinin (216) 7 d 27 (7%) 234 (16%); 
235 (5%) 

16 

7-Oxy-(O-β-D-glucopyranosyl)-
1-methoxybrassinin (220) 

24 h Complete transforma-
tion to undetermined 

products 

None 

1-β-D-
Glucopyranosylbrassilexin (222) 

48 h Complete transforma-
tion to undetermined 

products 

None 

1-β-D-
Glucopyranosylcyclobrassinin 
(221) 

24 h Complete transforma-
tion to undetermined 

products 

None 

6-Oxy-(O-β-D-
glucopyranosyl)sinalexin (227) 

48 h Complete transforma-
tion to undetermined 

products 

None 

a Percentage yields (molar) of products represent HPLC-determined yields. 
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2.3 Design and synthesis of potential brassinin detoxification 
inhibitors 

Previous work (Pedras and Ahiahonu, 2002; Pedras et al., 2004c) and the results 

described in the above section suggested that S. sclerotiorum has acquired or evolved 

efficient glucosyltransferase(s) that can disarm some of the most active plant chemical 

defenses (Pedras and Hossain 2006). By considering the antifungal activity of 

phytoalexins against S. sclerotiorum and their role as the plant chemical defenses, it 

can be suggested that glucosylation reactions could be reasonable metabolic targets to 

control the stem rot fungus. For example, application of potential phytoalexin 

detoxification inhibitors to infected plants might prevent the pathogen from 

metabolizing these phytoalexins. A concentration increase of strongly antifungal 

phytoalexins is expected to slow down if not stop growth of S. sclerotiorum. However, 

among the phytoalexins that were studied, the detoxification of brassinin (9) appeared 

to be one of the most important reactions to inhibit. Brassinin (9) is known to be a 

biosynthetic precursor of cyclobrassinin (18), brassilexin (24), brassicanal A (34), 

spirobrassinin (27), and dioxibrassinin (26) (Pedras et al., 2003a). Therefore, selective 

inhibition of brassinin detoxification might allow plants to accumulate brassinin (9) and 

other phytoalexins that would be expected to slow down if not stop the growth of S. 

sclerotiorum. As depicted in Scheme 1.4, the detoxification of brassinin (9) in S. 

sclerotiorum involves glucosylation at the N-1 position of the indole ring and this 

glucosylation reaction requires an inducible brassinin glucosyltransferase (BGT) 

(Pedras et al., 2004c). Furthermore, it was reported that 6-fluorocamalexin (75) could 

slow down substantially the rate of metabolism of brassinin (9) both in fungal cultures 

and in cell-free extracts of S. sclerotiorum. Thus, based on these results two groups of 

potential brassinin detoxification inhibitors were designed: (i) one group was based on 

the structure of brassinin (Fig. 2.8) and (ii) another group was based on the structure of 
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camalexin (31) (Fig. 2.9). Since BGT appeared to be selective, it was anticipated that 

replacing the indole nitrogen with other heteroatoms, e.g. oxygen and sulfur, in 

compounds 236 and 237 respectively, or changing the position of side chain of 

brassinin (9) from C-3 to C-2, e.g. compounds 240 and 241, could inhibit the 

glucosyltransferase involved in the metabolism of brassinin. It was found that blocking 

the N-1 position of the indole ring in brassinin (9) with a methoxy group would lead to 

oxidation at C-7 followed by glucosylation (Scheme 2.13). Hence, compounds 238 and 

239 were designed by replacing C-7 or C-7a carbons in brassinin with nitrogen in order 

to stop the possible oxidation of 238 and 239 at C-7. In addition, compounds 242 and 

243 were designed by replacing the dithiocarbamate side chain with an ester or an 

amide to reduce the overall antifungal activity. Since 6-fluorocamalexin (75) could 

slow down the rate of metabolism of brassinin it was anticipated that compounds 244, 

245, 246, 247, 248, 249, and 250 could slow down the rate of metabolism of brassinin 

as well (Fig 2.9). It was also thought that replacing the thiazole ring in camalexin with 

a phenyl group would reduce the antifungal activity of potential inhibitors, thus 3-

phenylindoles 245, 246, 247 were designed. However, because biotransformation of 3-

phenylindole (245) yielded the N-1 glucosylated compound, 3-phenylbenzofuran (248) 

was designed by replacing nitrogen of indole ring with oxygen. In addition, 2-

phenylindole (249) and thiabendazole (250) were designed by changing the position of 

the aromatic side chain from C-3 to C-2. 

 Among all these potential inhibitors (Figs. 2.8 and 2.9), syntheses of 240, 242, 

244, and 245 were known (Pedras et al., 2006a; Elsner et al., 2006; Pedras and Liu, 

2004; Rodriguez et al., 2000) and compounds 249, and 250 were commercially 

available. The remaining compounds 236, 237, 238, 239, 241, 246, and 247 were 

synthesized for the first time as described below. 
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Figure 2.8 Potential brassinin detoxification inhibitors with structures based on 
brassinin (9). 
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Figure 2.9 Potential brassinin detoxification inhibitors with structures based on 
camalexin (31). 
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2.3.1 Synthesis of methyl (indol-2-yl)methyldithiocarbamate (240), 

fluorocamalexins (75, 244) and 3-(N-acetylamino)quinoline (243) 

Methyl (indol-2-yl)methyldithiocarbamate or isobrassinin (240) was 

synthesized as shown in Scheme 2.23 (Pedras et al., 2006a), starting from indole-2-

carboxylic acid (251) in 6-steps. Similar to the synthesis of camalexin (31), 5-

fluorocamalexin (244) and 6-fluorocamalexin (75) were also synthesized from 5-

fluoro- and 6-fluoroindoles (257, 258), respectively, upon treatment with a Grignard 

reagent followed by reaction with 2-bromothiazole as shown in Scheme 2.24 (Pedras 

and Liu, 2004; Pedras and Ahiahonu, 2002). 3-(N-acetylamino)quinoline (243) was 

synthesized by acetylation of 3-aminoquinoline using acetic anhydride and pyridine. 
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Scheme 2.23 Synthesis of methyl (indol-2-yl)methyldithiocarbamate (240). Reagents: 
(i) EtOH, H2SO4, 115 °C, 85%; (ii) LiAlH4, THF, 0 °C; (iii) MnO2, CH2Cl2, 81%; (iv) 
NH2OH.HCl, Na2CO3, EtOH/H2O, 99%; (v) NaBH4, NiCl2.6H2O, MeOH; (vi) Py, 
Et3N, CS2, CH3I, 43% (Pedras et al., 2006a). 
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Scheme 2.24 Synthesis of 6-fluorocamalexin (75) and 5-fluorocamalexin (244). 
Reagents and conditions: (i) Mg, CH3I, Et2O; (ii) benzene, 2-bromothiazole, 90 °C, 
57% (Pedras and Liu, 2004; Pedras and Ahiahonu, 2002). 
 

2.3.2 Synthesis of methyl (benzofuran-3-yl)methyldithiocarbamate 

(236) 

Methyl (benzofuran-3-yl)methyldithiocarbamate (236) was prepared from 

benzofuran-3-carboxaldehyde (263) as shown in Scheme 2.25. Benzofuran-3-

carboxaldehyde (263) was obtained upon oxidation of 3-methylbenzofuran (262) 

(Zaidlewicz et al., 2001) which was obtained from o-hydroxyacetophenone (259) 

(Nielek and Lesiak, 1982). Oxidation of 3-methylbenzofuran (262) with selenium 

dioxide afforded a mixture of aldehyde 263, and alcohol 264 in an 11:1 ratio. The 

resulting aldehyde 263 was allowed to react with hydroxylamine hydrochloride to give 

a mixture of (E)- and (Z)- oximes (265), which after reduction with sodium 

cyanoborohydride in the presence of TiCl3 yielded 3-benzofuranylmethylamine (266). 

Reaction of amine 266 with carbon disulfide in the presence of pyridine and 

triethylamine gave a dithiocarbamate salt, which was subsequently methylated with 

iodomethane to give methyl (benzofuran-3-yl)methyldithiocarbamate (236) in 22% 

overall yield in a 7-step process (Scheme 2.25). 
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Scheme 2.25 Synthesis of methyl (benzofuran-3-yl)methyldithiocarbamate (236). 
Reagents and conditions: (i) ClCH2CO2Et, K2CO3, acetone, 65 °C, 92%; (ii) Na2CO3, 
H2O, 100 °C, 92%; (iii) NaOAc, Ac2O, 160 °C, 65%; (iv) SeO2, 1,4-dioxane, 105 °C, 
96%; (v) NH2OH.HCl, Na2CO3, EtOH/H2O, 84%; (vi) Na(CN)BH3, NH4OAc, TiCl3, 
MeOH; (vii) Py, Et3N, CS2, CH3I, 48%. 
 

2.3.3 Synthesis of methyl (benzofuran-2-yl)methyldithiocarbamate 

(241) 

Similar to dithiocarbamate 236, methyl (benzofuran-2-

yl)methyldithiocarbamate (241) was synthesized from benzofuran-2-carboxaldehyde 

(268) which was obtained by Vilsmeier formylation (Jones and Stanforth, 1997; Suu et 

al., 1962) of benzofuran (267) using POCl3 (6 eq.) and DMF (Scheme 2.26). Reaction 

of the carboxaldehyde 268 with hydroxylamine hydrochloride afforded oxime 269, 

which was reduced to the corresponding amine 270 using Na(CN)BH3 and TiCl3. The 

amine 270 was converted to dithiocarbamate 241 after treatment with carbon disulfide 

and iodomethane in 40% overall yield (Scheme 2.26). 
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Scheme 2.26 Synthesis of methyl (benzofuran-2-yl)methyldithiocarbamate (241). 
Reagents and conditions: (i) POCl3, DMF, 95 °C, 78%; (ii) NH2OH.HCl, Na2CO3, 
EtOH/H2O, 93%; (iii) Na(CN)BH3, NH4OAc, TiCl3, MeOH; (iv) Py, Et3N, CS2, CH3I, 
56%. 

2.3.4 Synthesis of methyl (thianaphthen-3-yl)methyldithiocarbamate 

(237) 

Dithiocarbamate 237 was synthesized from 3-bromothianaphthene (271) as 

shown in Scheme 2.27. The 3-bromothainaphthene (271) was converted to 

thianaphthene-3-carboxaldehyde (272) after lithiation of 271 with t-butyllithium 

followed by reaction with dimethylformamide. The resultant aldehyde 272 was 

converted to a mixture of (E)- and (Z)- oximes (273) upon reaction with hydroxylamine 

hydrochloride. Finally, the dithiocarbamate 237 was obtained upon reduction of oximes 

273 with sodium cyanoborohydride, TiCl3 and NH4OAc, followed by standard 

treatment with carbon disulfide and iodomethane in 48% overall yield (based on 3-

bromothianaphthene (271), Scheme 2.27). 
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Scheme 2.27 Synthesis of methyl (thianaphthen-3-yl)methyldithiocarbamate (237). 
Reagents and conditions: (i) t-BuLi, Et2O, -78 °C; (ii) DMF, 73%; (iii) NH2OH.HCl, 
Na2CO3, EtOH/H2O, 93%; (iv) Na(CN)BH3, NH4OAc, TiCl3, MeOH; (v) Py, Et3N, 
CS2, CH3I, 71%. 
 

2.3.5 Synthesis of methyl (7-azaindole-3-yl)methyldithiocarbamate 

(238) 

Methyl (7-azaindol-3-yl)methyldithiocarbamate (238) was synthesized starting 

from commercially available 7-azaindole (275) as shown in Scheme 2.28. The 

azaindole (275) was first converted to 7-azaindole-3-carboxaldehyde (276) by 

Vilsmeier formylation which was allowed to react with hydroxylamine hydrochloride 

to give a mixture of (E)- and (Z)-oximes (277). The oximes 277 were reduced to the 

corresponding amine 278 using Zn/HCl, which upon treatment with carbon disulfide in 

the presence of pyridine and triethylamine followed by iodomethane afforded methyl 

(7-azaindol-3-yl)methyldithiocarbamate (238) in 12% overall yield, based on 7-

azaindole (275). 
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Scheme 2.28 Synthesis of methyl (7-azaindol-3-yl)methyldithiocarbamate (238). 
Reagents and conditions: (i) POCl3, DMF, 105 °C, 47%; (ii) NH2OH.HCl, Na2CO3, 
EtOH/H2O, 94%; (iii) Zn, HCl, 35%; (iv) Py, Et3N, CS2, CH3I, 83%. 
 

2.3.6 Synthesis of methyl (5-methoxypyrazolo[1,5-a]pyridin-3-yl)me-

thyldithiocarbamate (239) 

Dithiocarbamate 239 was synthesized from methyl 5-methoxypyrazolo[1,5-

a]pyridine-3-carboxylate (242) (Scheme 2.30), which was obtained as previously 

reported (Elsner et al., 2006) in a 4-step process shown in Scheme 2.29. Elsner et al. 

recently reported the synthesis of N-aminopyridinium salt 283 by taking advantage of a 

highly efficient synthesis of O-(2,4-dinitrophenyl)hydroxylamine (282) (Legault and 

Charette, 2003). 1,3-Dipolar cycloaddition of 283 with methylpropiolate under 

oxidative conditions furnished methyl 5-methoxypyrazolo[1,5-a]pyridine-3-carboxylate 

(242) in good yield (Scheme 2.29). Reduction of the resultant ester 242 with LiAlH4, 

followed by oxidation with MnO2 afforded the corresponding aldehyde 285. The 

aldehyde 285 was allowed to react with hydroxylamine hydrochloride to yield the 

corresponding oximes 286, which after reduction with Zn/HCl followed by reaction 

with CS2 and iodomethane afforded  methyl (5-methoxypyrazolo[1,5-a]pyridin-3-

yl)methyldithiocarbamate (239) in 10% overall yield based on 279. 
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Scheme 2.29 Synthesis of methyl 5-methoxypyrazolo[1,5-a]pyridine-3-carboxylate 
(242). Reagents and conditions: (i) Et3N, acetone, 92%; (ii) NH2NH2.xH2O, CH2Cl2, 
MeOH, 0 °C, 87% (Legault and Charette, 2003); (iii) 4-methoxypyridine, MeCN, 45 
°C, 96%; (iv) methyl propiolate, K2CO3, air-O2, DMF, 40% (Elsner et al., 2006). 
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Scheme 2.30 Synthesis of methyl (5-methoxypyrazolo[1,5-a]pyridin-3-
yl)methyldithiocarbamate (239). Reagents and conditions: (i) LiAlH4, THF, 0 °C; (ii) 
MnO2, CH2Cl2, 65%; (iii) NH2OH.HCl, Na2CO3, EtOH/H2O, 91%; (iv) Zn, HCl; (v) 
Py, Et3N, CS2, CH3I, 49%. 
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2.3.7 Synthesis of 3-phenylindoles (245, 246, 247) 

3-Phenylindoles 245, 246, 247 were synthesized by means of the Fischer indole 

reaction, starting from the phenylhydrazones (291, 292) of the phenylacetaldehyde 

(290) in the presence of ZnCl2 (Rodriguez et al., 2000). Reaction of phenylhydrazines 

288 and 289 with phenylacetaldehyde (290) at 100 ºC afforded phenylhydrazones 291 

and 292 respectively, which on treatment with ZnCl2 in ethanol afforded 3-

phenylindole (245) and a mixture of 4-fluoro- and 6-fluoro-3-phenylindoles (246, 247), 

respectively (Scheme 2.31). 

NHNH2

+ N
N
H

H

O

N
HR1 R1 R1

i

R2

ii

 290 
288, R1=H 
289, R1=F 

291, R1=H 
292, R1=F 

245, R1=H, R2=H 
246, R1=H, R2=F 
247, R1=F, R2=H 

 
 
 
 
 

Scheme 2.31 Synthesis of 3-phenylindoles (245, 246, 247). Reagents and conditions: 
(i) 100 ºC, 1 h (ii) ZnCl2, EtOH, 100 ºC (Rodriguez et al., 2000). 
 

2.3.8 Synthesis of 3-phenylbenzofuran (248) 

Roshchin et al. reported (Roshchin et al., 1998) the synthesis of substituted 2-

methylbenzofurans from 2-allylphenols via Pd(II)-catalyzed oxidative cylization using 

Cu(OAc)2-LiCl as a reoxidant and DMF-H2O as a solvent. A similar method was 

applied to synthesize 3-phenylbenzofuran (248) from o-(1-phenylvinyl)phenol (294) as 

shown in Scheme 2.32. Compound 294 was obtained from commercially available 2′-

hydroxyacetophenone (259), upon reaction with a Grignard reagent prepared from 

bromobenzene and magnesium followed by elimination of H2O by iodine (Brady and 

Giang, 1985). The resultant o-(1-phenylvinyl)phenol (294) was converted to 3-
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phenylbenzofuran (248), albeit in a rather poor yield (10%), after Pd(II)-catalyzed 

oxidative cyclization of 294 using Cu(OAc)2-LiCl and DMF-H2O system as shown in 

Scheme 2.32.   

OOH

OH
Ph

OH

Ph

OH

O

i ii iii

 
 248 294 293 259 
 

Scheme 2.32 Synthesis of 3-phenylbenzofuran (248). Reagents and conditions: (i) Ph-
Br, Mg, THF, 80 ºC, 82%; (ii) I2, benzene, 90 ºC, 93%; (Brady and Giang, 1985) (iii) 
Cu(OAc)2.H2O, LiCl, PdCl2, DMF/H2O, 100 ºC, 10%. 
 

2.4 Antifungal activity of potential brassinin detoxification 
inhibitors against Sclerotinia sclerotiorum 

The antifungal activity of potential brassinin detoxification inhibitors was 

determined using mycelial growth antifungal assay, as described in the experimental 

section. The percentage of growth inhibition of S. sclerotiorum due to each potential 

inhibitor 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, and 250 

is summarized in Table 2.5. As shown in Table 2.1 and 2.5, dithiocarbamates 236, 237, 

238, and 239 showed lower antifungal activity against S. sclerotiorum than the 

naturally occurring dithiocarbamate brassinin (9). Dithiocarbamates 240 and 241 

showed similar antifungal activity against S. sclerotiorum as brassinin (9). Similar to 

brassinin (9), dithiocarbamates 240 and 241 caused complete inhibition at 0.3 mM. By 

contrast, dithiocarbamates 236, 237, and 238 did not show inhibition even at the 

highest concentration (0.5 mM). However, at 0.5 mM, dithiocarbamates 237, 238, and 

236 caused 89%, 65% and 45% growth inhibition of S. sclerotiorum, respectively. The 

antifungal activity of dithiocarbamate 239 could not be determined as compound 239 

(at 0.1 mM) was not soluble in aqueous media. The ester containing pyrazolo[1,5-
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a]pyridine nucleus, 242, displayed very little antifungal activity (ca. 20% inhibition) 

and the amide containing quinoline nucleus, 243, displayed no antifungal activity. 5-

Fluorocamalexin (244) was found to be less antifungal against S. sclerotiorum than 

naturally occurring camalexin (31). For example, camalexin (31) caused complete 

inhibition at 0.3 and 0.1 mM whereas 5-fluorocamalexin (244) caused 85% and 70% 

inhibition respectively at the similar concentrations. The antifungal activity of 3-

phenylbenzofuran (248) and 5-fluorocamalexin (244) were similar. Among all the 

potential brassinin detoxification inhibitors, 3-phenylindoles 245, 246, and 247 were 

found to be the most antifungal against S. sclerotiorum, even stronger than the 

commercial fungicide thiabendazole (250). While 3-phenylindoles completely inhibited 

fungal growth at 0.08 mM concentration, thiabendazole (250) caused about 90% 

growth inhibition at 0.5 mM concentration. Due to the lower solubility of 2-

phenylindole (249) in aqueous solution, the antifungal activity of 249 could not be 

determined. 

 
Table 2.5 Percentage of growth inhibitiona of Sclerotinia sclerotiorum incubated with 
potential brassinin detoxification inhibitors (236, 237, 238, 239, 240, 241, 242, 243, 
244, 245, 246, 247, 248, 249, and 250) (48 h, constant light). 
 
Compound assayed against S. 
sclerotiorum 
 

Concentration 
(mM) 

Inhibition ± SD 
(%)a

Brassinin (9) 0.50 
0.30 
0.10 

100 ± 0 
100 ± 0 
37 ± 8 

Camalexin (31) 0.30 
0.10 
0.05 

100 ± 0 
100 ± 0 
81 ± 6 

Methyl (benzofuran-3-
yl)methyldithiocarbamate (236) 
 

0.50 
0.30 
0.10 

45 ± 6 
23 ± 4 

No inhibition 
Methyl (thianaphthen-3-
yl)methyldithiocarbamate (237) 
 

0.50 
0.30 
0.10 

89 ± 4 
63 ± 3 
10 ± 5 
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Compound assayed against S. 
sclerotiorum 

Concentration 
(mM) 

Inhibition ± SD 
(%)a 

 
Methyl (7-azaindol-3-
yl)methyldithiocarbamate (238) 
 

0.50 
0.30 
0.10 

65 ± 5 
28 ± 4 

No inhibition 
 

Methyl (5-methoxypyrazolo[1,5-a]pyridin-
3-yl)methyldithiocarbamate (239) 
 

0.10 Not soluble 

Methyl (indol-2-yl)methyldithiocarbamate 
(240) 
 

0.50 
0.30 
0.10 

100 ± 0 
100 ± 0 
48 ± 2 

Methyl (benzofuran-2-
yl)methyldithiocarbamate (241) 
 

0.50 
0.30 
0.10 

100 ± 0 
100 ± 0 
32 ± 8 

Methyl-5-methoxypyrazolo[1,5-a]pyridine-
3-carboxylate (242) 
 

0.50 
0.30 
0.10 

20 ± 3 
No inhibition  
No inhibition 

3-(N-acetylamino)quinoline (243) 
 

0.50 
0.30 
0.10 

No inhibition  
No inhibition 
No inhibition 

5-Fluorocamalexin (244) 
 
 

0.30 
0.10 
0.05 

85 ± 3 
70 ± 4 
61 ± 2 

3-Phenylindole (245) 
 
 

0.08 
0.05 
0.01 

100 ± 0 
93 ± 1 
78 ± 4 

4-Fluoro-3-phenylindole (246) 
 
 

0.08 
0.05 
0.01 

100 ± 0 
100 ± 0 
47 ± 3 

6-Fluoro-3-phenylindole (247) 
 

0.08 
0.05 
0.01 

93 ± 1 
87 ± 6 
65 ± 5 

3-Phenylbenzofuran (248) 
 
 

0.50 
0.30 
0.10 

80 ± 1 
64 ± 3 
32 ± 5 

2-Phenylindole (249) 
 

0.10 Not soluble  
 

Thiabendazole (250) 
 
 

0.50 
0.30 
0.10 

93 ± 0 
93 ± 0 
86 ± 1 

 
a The percentage of inhibition was calculated using the formula: % inhibition = 100 – 
[(growth on amended/growth in control) × 100]. 
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2.5 Metabolism of potential inhibitors of brassinin 
detoxification in Sclerotinia sclerotiorum 

Before determining the inhibitory activity of designed compounds towards 

brassinin detoxification, it was important to investigate the metabolism of these 

potential inhibitors (236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 

249, and 250) in fungal cultures of S. sclerotiorum. Time course experiments were 

conducted with each of the designed compounds. To be a good candidate to inhibit the 

brassinin detoxification, the inhibitor must not be metabolized by the fungus or if it is 

metabolized the metabolism has to be much slower than that of brassinin (9). The 

results of the time course experiments suggested that all of the designed compounds 

were metabolized in fungal cultures within 12 to 48 hours to undetermined products. 

However, in order to design more active inhibitors of brassinin detoxification, the 

metabolic products of selected compounds were isolated and their chemical structures 

were elucidated. In this section, the metabolism of methyl (indol-2-

yl)methyldithiocarbamate (240), methyl (thianaphthen-3-yl)methyldithiocarbamate 

(237), and  3-phenylindole (245) in S. sclerotiorum will be discussed. 

2.5.1 Methyl (indol-2-yl)methyldithiocarbamate (240) 

Dithiocarbamate 240 was administered to fungal cultures of S. sclerotiorum, the 

cultures were incubated and analyzed over a period of several days to determine the 

best time to isolate potential metabolic products. HPLC analysis of the broth extracts of 

fungal cultures indicated that dithicarbamate 240 was completely metabolized in ca. 48 

h to a major product with HPLC tR = 9.4 min. To establish the structure of this 

metabolite (295), larger scale cultures of S. sclerotiorum were incubated with 

dithiocarbamate 240, were extracted, and the extract was fractionated by reverse phase 

silica gel chromatography. The fractions containing the metabolite with tR = 9.4 min 

(295) were combined and further separated by prep. TLC. The structure of this 
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metabolite (295) was determined by analyses of spectroscopic data as follows. The 

HRMS-ESI spectral data indicated a molecular formula of C17H22N2O6S2. The FTIR 

spectral data displayed a broad absorption band at ca. 3300 cm-1 indicative of the 

presence of hydroxyl groups. The 1H NMR spectrum showed two broad singlets at δH 

9.58 and 9.25 (D2O exchangeable), and resonances for an indole system with 

substitutions at C-2 and C-3 (δH 7.65, d, J = 8 Hz, 1H, 7.37, d, J = 8 Hz, 1H, 7.17, dd, J 

= 8, 8 Hz, 1H, 7.08, dd, J = 8, 8 Hz, 1H), signals for an intact side chain (δH 5.34, dd, J 

= 14.5, 6.5 Hz, 1H, 4.84, dd, J = 14.5, 6.5 Hz, 1H, 2.62, SCH3), and resonances for a 

hexose unit. As in the biotransformation of phytoalexins, the identity of the hexose unit 

was determined to be β-D-glucopyranose from homonuclear (1H-1H) decoupling 

experiments. The HMBC correlations of the anomeric proton with C-2 and C-7a of 

indole suggested that the β-D-glucopyranose unit was located at N-1 position of indole 

ring. A downfield shift for the C-3 carbon (δC 102.5 in 240 to 125.7 in 295) in the 13C 

NMR spectrum suggested that a hydroxyl group was also attached to the C-3 carbon of 

the indole ring. Thus the structure of this metabolic product was assigned as methyl (1-

β-D-glucopyranosyl-3-hydroxylindol-2-yl)methyldithiocarbamate (295) (Scheme 

2.33). 
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Scheme 2.33 Biotransformation of methyl (indol-2-yl)methyldithiocarbamate (240) in 
Sclerotinia sclerotiorum. 
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2.5.2 Methyl (thianaphthen-3-yl)methyldithiocarbamate (237) 

Dithiocarbamate 237 was administered to cultures of S. sclerotiorum and 

culture samples were withdrawn and analyzed over a period of time.  The HPLC 

chromatograms of EtOAc extracts of fungal cultures indicated that dithiocarbamate 237 

was completely metabolized in ca. 6 h to two main products with tR = 9.6 and 11.0 min. 

While the less polar metabolite (296, tR = 11.0 min) was detected in culture after 6 

hours, the more polar metabolite (297, tR = 9.6 min) was detected after 12 hours and 

increased up to 48 hours. Subsequently, larger scale cultures of S. sclerotiorum were 

incubated with the dithiocarbamate 237 for 6 hours to isolate the metabolite with tR = 

11.0 min (296) and for 48 hours to isolate the metabolite with tR = 9.6 min (297). After 

isolation and purification, the structure of each compound was determined by standard 

spectroscopic methods, including 1H and 13C NMR spectroscopy, HMQC, HMBC, and 

HRMS-ESI. The molecular formula of the less polar metabolite (296, tR = 11.0 min) 

(obtained by HRMS-ESI) indicated the presence of an additional oxygen atom relative 

to that of dithiocarbamate 237 (C11H11NOS3 vs. C11H11NS3). The 1H NMR spectrum of 

296, obtained in CD3OD, indicated the presence of five aromatic hydrogens 

characteristic of a 3-substituted thianaphthene ring system, two additional hydrogens 

(H-1′, AB quartet) and a singlet for a –SCH3 group. These spectroscopic data suggested 

that the additional oxygen atom of metabolite 296 was attached to a sulfur atom as a 

sulfoxide either at the thainaphthene ring or at the dithiocarbamate group. That the 

sulfoxide group was present in the thianaphthene ring rather than in the 

dithiocarbamate group was suggested by the up field chemical shift for H-2 hydrogen 

(δH 7.54 in 237 to 7.01 in 296) in the 1H NMR. Hence, on the basis of these spectral 

data, the structure of the less polar metabolite of methyl (thianaphthen-3-

yl)methyldithiocarbamate (237) was assigned as methyl (thianaphthen-3-yl-1-S-
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oxide)methyldithiocarbamate (296) (Scheme 2.34). Furthermore, the structure of this 

metabolite 296 was confirmed by synthesis, as described below. 
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Scheme 2.34 Biotransformation of methyl (thianaphthen-3-yl)methyldithiocarbamate 
(237) in Sclerotinia sclerotiorum and selected NOE of compound 297. 

 

The molecular formula of the polar metabolite (297, tR = 9.6 min, 

C17H21NO6S3) obtained by HRMS-ESI indicated the presence of a hexose unit, which 

was corroborated by NMR data. The identity of the hexose unit was determined as β-

D-glucopyranose from homonuclear (1H-1H) decoupling experiments. In addition, the 
1H NMR spectrum suggested that the β-D-glucopyranose unit was located either at C-4 

or C-7. That the β-D-glucopyranose unit was attached to C-7 rather than C-4 was 

finally deduced from NOE experiments (upon addition of pyridine-d5 to separate the 

signals due to H-1′′ and H-1′), as follows. Irradiation of H-1′ at δH 5.15 caused an 

enhancement of the signal due to H-4 (δH 7.53) and vice-versa (Scheme 2.34). Hence, 

on the basis of these spectral data, the structure of the polar metabolite of 

dithiocarbamate 237 was assigned as methyl (7-oxy-O-β-D-

glucopyranosylthianaphthen-3-yl)methyldithiocarbamate (297) (Scheme 2.34). To 

establish the sequence of biotransformation steps of dithiocarbamate 237, compound 

296 was administered to cultures of S. sclerotiorum, culture samples were withdrawn at 

different times and analyzed by HPLC. Interestingly, it was found that compound 296 
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was metabolized to 297 at a much slower rate than other dithiocarbamates (e.g. 

brassinin (9) was metabolized completely in ca. 12 h whereas 296 was metabolized in 

ca. 3 d). This result indicated that dithiocarbamate 237 was metabolized to methyl (7-

oxy-O-β-D-glucopyranosylthianaphthen-3-yl)methyldithiocarbamate (297) via methyl 

(thianaphthen-3-yl-1-S-oxide)methyldithiocarbamate (296) (Scheme 2.34). 

To confirm the structure of the biotransformation product of methyl 

(thianaphthen-3-yl)methyldithiocarbamate (237) and to obtain sufficient amounts for 

bioassay and biotransformation the chemical synthesis of methyl (thianaphthen-3-yl-1-

S-oxide)methyldithiocarbamate (296) was carried out. Thus, amine 274 was oxidized to 

the corresponding sulfoxide 298 using H2O2 in TFA-CH2Cl2 (1:2), which upon 

treatment with carbon disulfide in the presence of pyridine and triethylamine followed 

by iodomethane afforded multiple undetermined products; one of these products was 

identified as methyl (thianaphthen-3-yl-1-S-oxide)methyldithiocarbamate (296) 

(overall yield 5%, based on 274) (Scheme 2.35). 
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Scheme 2.35 Chemical synthesis of methyl (thianaphthen-3-yl-1-S-oxide)methyldithio-
carbamate (296). Reagents: (i) H2O2, TFA/CH2Cl2 (1:2); (ii) Py, Et3N, CS2, CH3I, 5%. 
 

2.5.3 Metabolism of 3-phenylindole (245) 

Similar to the metabolism of dithiocarbamates 240 and 237, HPLC analysis of 

the EtOAc extracts of fungal cultures incubated with 3-phenylindole (245) indicated it 

to be completely metabolized to an unknown compound (HPLC tR = 10.9 min) in about 

24 h. As described in the above examples, to establish the structure of this metabolic 
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product, larger scale cultures of S. sclerotiorum incubated with 3-phenylindole (245) 

for 24 h, were filtered, extracted, and the EtOAc extract fractionated by reverse phase 

column chromatography followed by prep. TLC to yield the unknown metabolite (299). 

The structure of this metabolite 299 was determined by analyses of standard 

spectroscopic methods including 1H and 13C NMR spectroscopy, a variety of 2D-NMR 

techniques and HRMS. Comparison of its 1H NMR spectrum with that of 3-

phenylindole (245) indicated the presence of an intact 3-phenylindole. In addition, 

several multiplets at δH 3.51–3.98 suggested the presence of a carbohydrate moiety. 

The molecular formula of 299 (C20H21NO5) determined by 13C NMR and HRMS-ESI 

spectral data also corroborated the presence of a carbohydrate residue. As described 

above for metabolites 295 and 297, the identity of the carbohydrate moiety was 

determined to be a β-glucopyranose substituent. HMBC spectral data confirmed that 

the β-glucopyranose unit was located at N-1 (correlations of the anomeric proton H-1 

with C-2 and C-7a of indole) and thus the structure of 299 was assigned as 1-β-D-

glucopyranosyl-3-phenylindole (299) (Scheme 2.36). 
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Scheme 2.36 Biotransformation of 3-phenylindole (245) in Sclerotinia sclerotiorum. 
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2.5.4 Summary 

Results of the biotransformations of potential inhibitors of brassinin 

detoxification suggested that S. sclerotiorum utilizes oxidases and/or 

glucosyltransferases to metabolize potential inhibitors, as in the case of strongly 

antifungal phytoalexins. The antifungal activity of the biotransformed products of these 

potential inhibitors indicated that all these transformations were detoxification 

processes.  

 

2.6 Co-metabolism of brassinin, camalexins and potential 
brassinin detoxification inhibitors in Sclerotinia sclerotiorum 

Since brassinin (9) was shown to be detoxified to 1-β-D-

glucopyranosylbrassinin (66) in fungal cultures of S. sclerotiorum, it was important to 

screen the potential inhibitors to determine their effect on the rate of brassinin (9) 

transformation. In a typical experiment, brassinin and the potential inhibitor were co-

incubated in mycelial cultures of S. sclerotiorum, samples were withdrawn at different 

time intervals, extracted with ethyl acetate, and the ethyl acetate extracts were analyzed 

by HPLC. To obtain consistent results, all cultures used in the screening experiments 

were inoculated with mycelial plugs. Inoculation using sclerotia resulted different 

amounts of mycelia in different flasks due to the size variation of sclerotia. The 

concentration of brassinin (9) and potential inhibitors to be used in the screening 

experiments were determined on the basis of the antifungal bioassay results (reported in 

sections 2.1.2 and 2.4). Concentrations that were moderately toxic or non-toxic to 

fungal growth were selected for screening experiments. That is, brassinin was added at 

0.05 mM concentration while potential inhibitors were added at two different 

concentrations (0.05 and 0.1 mM).  
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Initial experiments were conducted to determine the rate of metabolism of 

brassinin in mycelial cultures of S. sclerotiorum at two different concentrations (0.05 

and 0.1 mM). Mycelial plugs of 4-day-old mycelial plates (6 mm diameter, 3 pieces per 

50 ml) of S. sclerotiorum were inoculated in minimal media for four days; brassinin 

dissolved in DMSO was then added to fungal cultures (Final concentration 0.05 and 0.1 

mM). Samples were withdrawn immediately after addition of brassinin (9) and at 2, 5, 

8, 12 and 24 h. It was found that brassinin at 0.05 mM concentration was almost 

completely metabolized in fungal cultures of S. sclerotiorum in 8 h whereas at 0.1 mM 

concentration the complete metabolism of brassinin (9) to glucoside 66 occurred in 12 

h (Figure 2.10). In both cases (0.05 and 0.1 mM) the highest amount of the 

biotransformation product glucoside 66 was obtained after 12 h of incubation (Figure 

2.10).      
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Figure 2.10 Curves for transformation of brassinin (9, 0.05 and 0.1 mM) to 1-β-D-
glucopyranosylbrassinin (66) in culture of Sclerotinia sclerotiorum.  
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After establishing the rate of metabolism of brassinin at different concentrations 

in cultures of S. sclerotiorum, each potential inhibitor was screened to find out the 

inhibitory activity. First, three pieces of mycelial plugs (4-day old, 6 mm) were 

inoculated in 50 ml of minimal media for 4 days; potential inhibitors were added at two 

different concentrations (0.05 and 0.1 mM) and cultures were incubated for 10 min (to 

allow absorption/transport of compounds into cells) before adding brassinin (9, 0.05 

mM). Control cultures of S. sclerotiorum containing only brassinin (9, 0.05 and 0.1 

mM) or each potential inhibitor (0.1 mM) were incubated separately. The stability of 

brassinin and all potential inhibitors was determined by incubation in uninoculated 

minimal media under similar conditions. Samples were withdrawn from cultures 

immediately after addition of brassinin and at different time intervals and extracted 

with ethyl acetate. The organic extract was analyzed using HPLC (brassinin tR = 18.8 ± 

0.5 min) to determine the concentration of brassinin (9) remaining in cultures at 

different times. Brassinin (9) and all other potential inhibitors were found to be stable 

in minimal media for at least 8 days. The rate of disappearance of brassinin (9) in the 

presence of the potential inhibitor was compared with that in the controls (fungal 

cultures containing only brassinin at 0.05 and 0.1 mM, Figure 2.10). Several of the 

potential inhibitors were able to affect the rate of metabolism of brassinin (9). For 

example, in the first set of compounds (that were designed based on structure of 

brassinin (9), Figure 2.8), methyl (benzofuran-3-yl)methyldithiocarbamate (236), 

methyl (indol-2-yl)methyldithiocarbamate (240), and methyl (benzofuran-2-

yl)methyldithiocarbamate (241) (Figure 2.11) slowed down the rate of metabolism of 

brassinin (9). In the second set of compounds (that were designed based on the 

structure of camalexin (31), Figure 2.9), 3-phenylindoles (245, 247) and 5-

fluorocamalexin (244) (Figure 2.11) were able to slow down the rate of metabolism of 

brassinin (9). The remaining compounds (237, 238, 239, 242, 243, 249, and 250) did 

not show a detectable effect on the rate of brassinin metabolism. The compounds that 
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did not affect the rate of metabolism of brassinin (9) in cultures of S. sclerotiorum are 

shown in Figure 2.12. 
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Figure 2.11 Chemical structure of compounds that slowed down the rate of metabolism 
of brassinin (9) in mycelial cultures of Sclerotinia sclerotiorum. 
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Figure 2.12 Chemical structure of compounds that did not affect the rate of metabolism 
of brassinin (9) in mycelial cultures of Sclerotinia sclerotiorum. 

 
 

 123



 The effects of dithiocarbamates 236, 240, and 241 on rate of metabolism of 

brassinin (9) in mycelial cultures of S. sclerotiorum are shown in Figs. 2.13-2.15. As 

shown in Fig. 2.13, complete metabolism of brassinin (9, 0.05 mM) took place in ca. 

16 h in the presence of methyl (benzofuran-3-yl)methyldithiocarbamate (236, 0.1 mM) 

whereas in the absence of compound 236, brassinin (9) was completely metabolized in 

8 h at 0.05 mM concentration and in 12 h at 0.1 mM concentration. In the presence of 

236 at 0.05 mM concentration, brassinin was also found to be metabolized in 12 h but 

at a much slower rate (Fig. 2.13). This can be rationalized as dithiocarbamate 236 was 

itself metabolized to an undetermined O-glucosylated compound (detected by LC-MS) 

in the cultures of S. sclerotiorum in ca. 12 h. It was found that brassinin (9) was 

completely metabolized in the cultures only after the complete metabolism of 

dithiocarbamate 236. A similar effect was observed when brassinin (9) was co-

incubated with methyl (benzofuran-2-yl)methyldithiocarbamate (241). As shown in 

Fig. 2.14, the detoxification of brassinin (9) in S. sclerotiorum took place in 12 h in the 

presence of 241 (0.05 mM) but at a slower rate than that of control cultures (fungal 

cultures containing only brassinin). Upon doubling the concentration of 241 (0.1 mM) 

the detoxification of brassinin (9) was found to be complete in 24 h (Fig. 2.14). Similar 

to dithiocarbamate 236, compound 241 was also completely metabolized in the cultures 

of S. sclerotiorum to undetermined O-glucosylated compounds (detected by LC-MS) in 

12 h and brassinin (9) was completely metabolized in the cultures only after the 

complete metabolism of 241. The rate of metabolism of brassinin (9) in cultures when 

brassinin (9, 0.05 mM) was co-incubated with methyl (indol-2-

yl)methyldithiocarbamate (240) at 0.05 mM was not affected but a significant effect 

was observed when 9 was co-incubated with 0.1 mM of 240 (Fig. 2.15). Brassinin (9, 

0.05 mM) was found to be completely metabolized in ca. 16 h in the presence of 0.1 

mM of 240. 
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Figure 2.13 Transformation of brassinin (9, 0.05 mM) in the presence of methyl 
(benzofuran-3-yl)methyldithiocarbamate (236, 0.05 and 0.1 mM) in cultures of 
Sclerotinia sclerotiorum. 
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Figure 2.14 Transformation of brassinin (9, 0.05 mM) in the presence of methyl 
(benzofuran-2-yl)methyldithiocarbamate (241, 0.05 and 0.1 mM) in cultures of 
Sclerotinia sclerotiorum. 
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Figure 2.15 Transformation of brassinin (9, 0.05 mM) in the presence of methyl (indol-
2-yl)methyldithiocarbamate (240, 0.05 and 0.1 mM) in cultures of Sclerotinia 
sclerotiorum. 
 

 Since 6-fluorocamalexin (75) can slow down the rate of metabolism of 

brassinin (9) in mycelial cultures of S. sclerotiorum (Pedras et al., 2004c), the 

phytoalexin camalexin (31) and its derivative 5-fluorocamalexin (244) were screened in 

cultures to determine their inhibitory activity on brassinin detoxification. When 

camalexin (31, 0.1 mM) was co-incubated with brassinin (9, 0.05 mM), brassinin was 

completely metabolized in about 24 h. On the other hand, 5-fluorocamalexin (244) had 

a stronger effect on the brassinin metabolism than camalexin (31). For example, 0.05 

mM of 5-fluorocamalexin (244) slowed down the brassinin metabolism to 24 h and 0.1 

mM of 5-fluorocamalexin (244) slowed down to 48 h. The strongest effect was 

observed when brassinin (9) was co-incubated either with 3-phenylindole (245) or with 

6-fluoro-3-phenylindole (247). As shown in Figs. 2.16 and 2.17, both 3-phenylindoles 

(245, 247) were able to slow down the rate of metabolism of brassinin. As long as 3-

phenylindoles (245, 247) were present in the cultures, brassinin (9) was not 

metabolized. It was found that both 245, and 247 were completely metabolized in 
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cultures of S. sclerotiorum to 299 and to an undetermined compound, respectively, in 

about 24 h. However, in the presence of 3-phenylindole (245, 0.05 mM) or 6-fluoro-3-

phenylindole (247, 0.05 mM), brassinin (9, 0.05 mM) was completely metabolized in 

about 24 h and upon doubling the concentration of 245, or 247 (0.1 mM) complete 

metabolism of brassinin occurred in 72 h.   
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Figure 2.16 Transformation of brassinin (9, 0.05 mM) in the presence of 3-
phenylindole (245, 0.05 and 0.1 mM) in cultures of Sclerotinia sclerotiorum. 
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Figure 2.17 Transformation of brassinin (9, 0.05 mM) in the presence of 6-fluoro-3-
phenylindole (247, 0.05 and 0.1 mM) in cultures of Sclerotinia sclerotiorum. 

 
 

2.7 Screening of potential brassinin detoxification inhibitors 
using crude cell-free extracts 

Brassinin (9) is detoxified to non toxic 1-β-D-glucopyranosylbrassinin (66) by 

the stem rot fungus S. sclerotiorum through enzymatic glucosylation. This 

transformation of brassinin (9) to glucoside 66 suggested the involvement of a putative 

brassinin glucosyltransferase (BGT) in the detoxification process (Pedras et al., 2004c). 

Isolation and purification of BGT has not been reported to date. However, considering 

the importance of brassinin (9) in plant chemical defenses, one of my research goals 

was to design inhibitors of BGT and to screen them using cell-free extracts containing 

BGT. Results obtained from the initial screening of potential inhibitors of brassinin 

detoxification using fungal cultures (Section 2.6) indicated that compounds 236, 240, 

241, 244, 245, and 247 slowed down the rate of metabolism of brassinin (9). To 

determine whether the decrease in the rate of brassinin metabolism was due to growth 
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inhibition of S. sclerotiorum (because of toxicity of added compounds) or due to 

inhibition of BGT responsible for brassinin detoxification, screening using cell-free 

extracts was undertaken. Therefore, all the potential inhibitors (Fig. 2.8 and 2.9) were 

screened using cell-free extracts in order to find out their inhibitory activity against 

BGT. Pedras’ group (Pedras et al., 2004c) reported a method to prepare crude cell-free 

extracts from mycelia of S. sclerotiorum for glucosylation of brassinin (9). It was also 

reported that the brassinin glucosyltransferase (BGT) was an inducible enzyme. That is, 

BGT activity was detected in crude cell-free extracts only when S. sclerotiorum was 

grown in the presence of compounds related to brassinin (9) such as camalexin (31), 

methyl tryptamine dithiocarbamate, methyl-1-methyltryptamine dithiocarbamate or 

spirobrassinin (27). BGT activity was also found to be UDPG dependent. Without 

UDPG no BGT activity was detected in cell-free extracts prepared from induced 

mycelia of S. sclerotiorum.  

Cell-free extracts were prepared by modifying the published procedure (Pedras 

et al., 2004c) as follows. Cultures of S. sclerotiorum were grown in PDB media for 7 

days after which camalexin (final concentration, 5 × 10-5 M) in DMSO was added to 

induce the production of BGT. After an additional 24 h, the mycelia were collected by 

filtration and stored at -20 ºC. Frozen mycelial cells were homogenized in ice cold Tris 

HCl (50 mM) buffer pH 8.0 (containing 5% glycerol, 2 mM dithiothreitol, 2 mM 

PMSF, and 0.01% triton X-100) at 4 ºC using a mortar and pestle. The cell-free 

homogenate was obtained by centrifuging the mixture at 22,000 rpm for 40 min and 

used to assay the enzymatic activity. The Bradford protein assay was used to quantify 

proteins in cell-free extracts using bovine serum albumin standard curves. The specific 

activity of cell-free extracts was defined as the amount (nmol) of 1-β-D-

glucopyranosylbrassinin (66) product formed per min per mg of protein. 
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BGT activity was determined using brassinin (9) as a substrate and UDPG as a 

glucose donor. The 0.5 ml standard assay mixture contained 0.5 ml of cell free extract 

as enzyme source, 3 µl of 50 mM UDPG (final concentration 0.3 mM) solution in 

water, and 3 µl of 50 mM brassinin (final concentration 0.3 mM) in DMSO. After 

incubation of the assay mixture for 1 hour at 25 ºC, solvent extraction and HPLC 

analysis were used for the detection and quantification of the reaction product. In 

subsequent experiments the enzyme assays were carried out with different 

concentrations of brassinin (9) to determine the ideal concentration for inhibition 

assays. As shown in Fig. 2.18, the Vmax (concentration for saturated activity) of BGT 

was obtained at 0.3 mM of brassinin (9). Therefore, in a typical enzyme inhibition 

assay, 0.3 mM of brassinin (9) and UDPG were used as substrate and glucose donor 

respectively and the potential inhibitor was used at two concentrations, 0.3 and 0.6 

mM. 
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Figure 2.18 Specific activity of brassinin glucosyltransferase (BGT) in crude cell-free 
extracts of Sclerotinia Sclerotiorum at different brassinin (9) concentrations (two 
independent experiments conducted in triplicate). 
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Camalexins (31, 75, 244), dithiocarbamates 236, 237, 238, 239, 240, and 241, 

3-phenylindoles (245, 246, 247), ester 242, amide 243, 3-phenylbenzofuran (248), and 

2-phenylindole (249) were tested as potential inhibitors of BGT as follows. First, the 

stability of each compound was tested under identical reaction conditions in the assay 

buffer. All compounds were found to be stable within 1.5 h of incubation in the assay 

mixture. Each potential inhibitor (final concentration 0.3 and 0.6 mM) dissolved in 

DMSO was added to a vial containing 2.0 ml of cell-free extracts and UDPG (final 

concentration 0.3 mM, dissolved in water) and the mixture was incubated at room 

temperature for 30 min. After that, brassinin (9, 0.3 mM) was added in each vial and 

the mixture was immediately divided into four samples in separate vials (0.5 ml each). 

Three samples were incubated for additional 60 min and the remaining sample was 

extracted immediately with ethyl acetate. After 60 min of incubation the three samples 

were extracted separately with ethyl acetate and the extracts were analyzed by HPLC 

for the detection and quantification of the reaction product 1-β-D-

glucopyranosylbrassinin (66) to determine the enzyme specific activity (Table 2.6). 

Control experiments containing only brassinin (9, 0.3 mM) were performed similarly. 

The relative activity (Table 2.6) of BGT was determined by comparing the specific 

activity of BGT in presence of the potential inhibitor with that in control samples. The 

calculated relative activity suggested that the BGT activity was inhibited by the 

presence of some compounds. As shown in Table 2.6, the inhibition effect was much 

higher with 3-phenylindole (245) and 6-fluoro-3-phenylindole (247) (about 80% 

inhibition) and moderate (about 60% inhibition) with dithiocarbamates 236, 240, and 

241, 4-fluoro-3-phenylindole (246), 3-phenylbenzofuran (248), and 2-phenylindole 

(249). Camalexins (31, 75, 244) showed about 40% inhibition and methyl (7-azaindol-

3-yl)methyldithiocarbamate (238) showed about 30% inhibition of BGT activity in 

cell-free extracts while very low inhibition was observed with methyl (thianaphthen-3-

yl)methyldithiocarbamate (237) (about 20% inhibition) and almost no inhibitory 
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activity was observed with 239, 242, and 243. Although 3-phenylindole (245) appears 

to be a strong inhibitor among all other potential inhibitors, it undergoes enzymatic 

transformation (with specific activity, 0.03 nmol/mg/min) slowly to 1-β-D-

glucopyranosyl-3-phenylindole (299) in cell-free extracts. Therefore, in order to 

determine the type of inhibition of BGT with 3-phenylindole (245), the kinetics of 

enzyme inhibition using cell-free extracts was obtained from multiple curves of 

brassinin (9) transformation (Fig. 2.19). Each of the curves was obtained by calculating 

enzyme specific activities for a constant concentration of 3-phenylindole (245) with 

different concentrations of brassinin (9). As shown in Fig. 2.19, the pattern of the 

multiple curves of brassinin transformation suggested that the inhibition of BGT 

activity due to 3-phenylindole (245) is noncompetitive inhibition.  

 
Table 2.6 Effect of compounds on brassinin glucosyltransferase (BGT) in cell-free 
extracts of mycelia of Sclerotinia sclerotiorum. 
 
Substrate + Inhibitor Specific activity a (× 10-1 

nmol/mg/ min) ± SD 
Relative activity 

% 
(brassinin = 100) 

 
Brassinin (9) 1.50 ± 0.01 100 

 
Brassinin (9) + camalexin (31) 0.95 ± 0.02 

(1 : 1) 
 

0.84 ± 0.03 
(1 : 2) 

63 
(1 : 1) 

56 
(1 : 2) 

Brassinin (9) + 6-fluorocamalexin 
(75) 

0.97 ± 0.01 
(1 : 1) 

 

1.00 ± 0.02 
(1 : 2) 

66 
(1 : 1) 

63 
(1 : 2) 

Brassinin (9) + methyl (benzofuran-3-
yl)methyldithiocarbamate (236) 

0.75 ± 0.02 
(1 : 1) 

 

0.55 ± 0.03 
(1 : 2) 

50 
(1 : 1) 

37 
(1 : 2) 

Brassinin (9) + methyl (thianaphthen-
3-yl)methyldithiocarbamate (237) 

1.22 ± 0.06 
(1 : 1) 

 

1.12 ± 0.04 
(1 : 2) 

81 
(1 : 1) 

75 
(1 : 2) 

Brassinin (9) + methyl (7-azaindol-3-
yl)methyldithiocarbamate (238) 

1.02 ± 0.03 
(1 : 1) 

 

0.75 ± 0.07 
(1 : 2) 

68 
(1 : 1) 

50 
(1 : 2) 
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Substrate + Inhibitor Specific activity a (× 10-1 

nmol/mg/ min) ± SD 
Relative activity % 
(brassinin = 100) 

 
Brassinin (9) + methyl (5-
methoxypyrazolo[1,5-a]pyridin-3-
yl)methyldithiocarbamate (239) 
 

1.47 ± 0.05 
(1 : 1) 

1.48 ± 0.05 
(1 : 2) 

98 
(1 : 1) 

99 
(1 : 2) 

Brassinin (9) + methyl (indol-2-
yl)methyldithiocarbamate (240) 

0.63 ± 0.06 
(1 : 1) 

 

0.41 ± 0.05 
(1 : 2) 

42 
(1 : 1) 

27 
(1 : 2) 

 
Brassinin (9) + methyl (benzofuran-2-
yl)methyldithiocarbamate (241) 

0.64 ± 0.01 
(1 : 1) 

 

0.43 ± 0.03 
(1 : 2) 

43 
(1 : 1) 

29 
(1 : 2) 

Brassinin (9) + methyl-5-
methoxypyrazolo[1,5-a]pyridine-3-
carboxylate (242) 

1.51 ± 0.03 
(1 : 1) 

 
 

1.49 ± 0.08 
(1 : 2) 

100 
(1 : 1) 

100 
(1 : 2) 

Brassinin (9) + 3-(N-
acetylamino)quinoline (243) 

1.58 ± 0.06 
(1 : 1) 

 

1.53 ± 0.02 
(1 : 2) 

100 
(1 : 1) 

100 
(1 : 2) 

Brassinin (9) + 5-fluorocamalexin 
(244) 

0.81 ± 0.06 
(1 : 1) 

 

0.72 ± 0.05 
(1 : 2) 

54 
(1 : 1) 

48 
(1 : 2) 

Brassinin (9) + 3-phenylindole (245) 0.35 ± 0.02 
(1 : 1) 

 

0.19 ± 0.03 
(1 : 2) 

23 
(1 : 1) 

13 
(1 : 2) 

Brassinin (9) + 4-fluoro-3-
phenylindole (246) 

0.55 ± 0.08 
(1 : 1) 

 

0.43 ± 0.01 
(1 : 2) 

37 
(1 : 1) 

29 
(1 : 2) 

Brassinin (9) + 6-fluoro-3-
phenylindole (247) 

0.34 ± 0.06 
(1 : 1) 

 

0.20 ± 0.04 
(1 : 2) 

23 
(1 : 1) 

13 
(1 : 2) 

Brassinin (9) + 3-phenylbenzofuran 
(248) 

0.79 ± 0.03 
(1 : 1) 

 

0.63 ± 0.01 
(1 : 2) 

53 
(1 : 1) 

42 
(1 : 2) 

Brassinin (9) + 2-phenylindole (249) 0.59 ± 0.02 
(1 : 1) 

 

0.59 ± 0.02 
(1 : 2) 

39 
(1 : 1) 

39 
(1 : 2) 

a Results are from three triplicate data; 1:1, both brassinin and inhibitor were at 0.3 mM; 
1:2, brassinin was at 0.3 mM and inhibitor was at 0.6 mM. 
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Figure 2.19 Curves for the transformation of brassinin (9) at different concentrations in 
crude cell-free extracts of Sclerotinia sclerotiorum. 1. with no inhibitor; 2. with 0.01 
mM 3-phenylindole (245); 3. with 0.05 mM 3-phenylindole (245); 4. with 0.1 mM 3-
phenylindole (245); 5. with 0.2 mM 3-phenylindole (245). 

 

2.8 Summary 

A noticeable decrease in the rate of brassinin detoxification was observed in the 

presence of dithiocarbamates 236, 240, 241, 3-phenylindoles 245, 247 and 5-

fluorocamalexin (244) as shown in Fig 2.13-2.17. Furthermore, these active compounds 

were found to be metabolized in the fungal cultures of S. sclerotiorum. However, as 

long as they were present in the cultures, brassinin (9) was not metabolized completely. 

The remaining tested compounds 237, 238, 239, 242, 243, 248, 249, and 250 did not 

show a detectable effect on the rate of brassinin detoxification. Consistent with the 

results of co-metabolism, both 3-phenylindole (245) and 6-fluoro-3-phenylindole (247) 

showed the strongest inhibition of BGT in cell-free extracts (Figure 2.21). This result 

indicated that inhibition of brassinin detoxification by 245 and 247 in fungal cultures 

was not due to mycelial growth inhibition. Moderate inhibition of BGT in cell-free 
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extracts was observed with dithiocarbamates 236, 240, 241, 3-phenylbenzofuran (248) 

(ca. 60%) and with camalexins 31, 75, 244 (ca. 40%) (Figures 2.20 and 2.21) which 

were also consistent with the results obtained in co-metabolism studies. 
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Figure 2.20 Inhibitory effect of compounds 236, 237, 238, 239, 240, and 241 on 
brassinin glucosyltransferase (BGT) in cell-free extracts of mycelia of Sclerotinia 
sclerotiorum. 
 

 
 

 135



0

20

40

60

80

100

R
el

at
iv

e 
ac

tiv
ity

 
75 75 

244 
248 

C
on

tr
ol

 

C
on

tr
ol

 

244 
248 249 249 

245 247 
245 247 

1 2

 Brassinin + Inhibitor (1:1 and 1:2) 

1 : 1 1 : 2 

 
 
 
Figure 2.21 Inhibitory effect of compounds 75, 244, 245, 247, 248, and 249 on 
brassinin glucosyltransferase (BGT) in cell-free extracts of mycelia of Sclerotinia 
sclerotiorum. 
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Chapter 3: DISCUSSION 
 

3.1 Antifungal activity 

Phytoalexins are toxic to fungi, bacteria, nematodes and plant and animal cells. 

However, very little is known about the mode of action of phytoalexins. Due to the 

diversity in chemical structures of phytoalexins, a single mode of action is unlikely. 

Since most of the phytoalexins are lipophilic, one of the most common chemical 

features is the disruption of membranes that is central to the toxicity of phytoalexins 

(Laks and Pruner, 1989; Arnoldi and Merlini, 1990). Like other phytoalexins, 

cruciferous phytoalexins show toxicity within a range of 10-5 to 10-4 M for in vitro 

inhibition. Except for camalexin (31) the mode of toxicity of cruciferous phytoalexins 

is not known. It was reported that camalexin (31), like other phytoalexins, rapidly 

disrupts the integrity of the inner membrane of Pseudomonas syringae pv. maculicola 

(Rogers et al., 1996). 

The cruciferous phytoalexins brassilexin (24) and sinalexin (25) have been 

known to possess strong antifungal activity against some major pathogens of crucifers 

such as Alternaria brassicae, L. maculans, R. solani and S. sclerotiorum (Pedras and 

Zaharia, 2001). Consistent with the previous results, both brassilexin (24) and sinalexin 

(25) at 0.1 mM showed complete inhibition of mycelial growth of S. sclerotiorum 

(Table 2.1). In addition, in this investigation it was found that brassilexin inhibited S. 

sclerotiorum completely at 0.05 mM whereas sinalexin showed ca. 80% inhibition at 

the same concentration. The synthetic analogue of brassilexin (24), that is 1-
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methylbrassilexin (215), was found to be less antifungal against S. sclerotiorum than 

the naturally occurring brassilexin (24) and sinalexin (25) (Table 2.1).  
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Figure 3.1 Structure of compounds discussed in Section 3.1. 
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Although the mode of action of dithiocarbamate containing phytoalexins such 

as brassinin (9) and 1-methoxybrassinin (11) have not been reported, most likely their 

toxicity arises from the reaction of dithiocarbamates with the HS-containing enzymes 

and coenzymes of fungal cells or by complex formation of the dithiocarbamates with 

the metal ions of metal containing enzymes. It has long been known that 

dithiocarbamates containing fungicides have similar effects on fungal cells (Matolcsy 

et al., 1988). In this investigation, it was found that brassinin (9) and 1-

methoxybrassinin (11) were highly growth inhibitory to S. sclerotiorum at 0.5 and 0.3 

mM concentration but they showed moderate antifungal activity at 0.1 mM (Table 2.1). 

However, phytoalexins 9 and 11 were found to be less toxic to S. sclerotiorum than 

brassilexin (24), sinalexin (25), and camalexin (31). 

The antifungal activity of the designed compounds 236, 237, 238, 239, 240, and 

241 containing dithiocarbamates was investigated against S. sclerotiorum (Table 2.5). 

Dithicarbamates 240 and 241 showed antifungal activity similar to the naturally 

occurring brassinin (9) and 1-methoxybrassinin (11), whereas dithiocarbamates 236, 

237, and 238 showed lower antifungal activity than 9, and 11. The antifungal activity 

of dithiocarbamate 239 could not be determined as it was not soluble in aqueous 

solution at 0.1 mM concentration. The results of antifungal activity of all synthetic 

dithiocarbamates showed that dithiocarbamates in 2-substituted indole or benzofuran 

nuclei such as compounds 240 and 241 were more antifungal against S. sclerotiorum 

than the dithiocarbamates in 3-substituted nuclei.    

Camalexin (31) has been known to inhibit spore germination of L. maculans 

(isolate BJ-125) (Pedras et al., 1998) and is strongly effective in inhibiting the mycelial 

growth of L. maculans at 0.5 mM in PDA agar media (Pedras et al., 2005b). Similar 

antifungal activity of camalexin was found against other fungi such as R. solani and S. 

sclerotiorum (Pedras and Liu, 2004; Pedras and Ahiahonu, 2002). Complete inhibition 
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of mycelial growth of S. sclerotiorum up to 7 days was reported with 0.5 mM 

camalexin (31). The antifungal activity of a camalexin analogue and some designed 

compounds, structurally similar to camalexin (31), were determined in the current 

investigation. 5-Fluorocamalexin (244) was found to be less antifungal against S. 

sclerotiorum compared to camalexin (31). The highest antifungal activity was obtained 

with 3-phenylindole (245) and its analogues 246 and 247. Although these three 

compounds were expected to have lower antifungal activity compared to camalexin 

(31), they were found to have the highest antifungal activity against S. sclerotiorum 

among all tested compounds including phytoalexins. In addition, 3-phenylbenzofuran 

(248) showed lower toxicity (ca. 80% growth inhibition at 0.5 mM) (Table 2.5). 

Interestingly, commercially available fungicide thiabendazole (250) was not very toxic 

to S. sclerotiorum. Little growth (ca. 10%) of S. sclerotiorum was observed in the 

presence of thiabendazole (250) even at 0.5 mM concentration. 

The phytoalexins brassicanal A (34) and spirobrassinins 27 and 28 were not 

very effective against S. sclerotiorum. Complete inhibition was not observed for these 

phytoalexins even at 0.5 mM. 
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3.2 Synthesis and metabolic detoxification of phytoalexins 
and analogues in Sclerotinia sclerotiorum 
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Figure 3.2 Structure of compounds discussed in Section 3.2. 
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3.2.1 Synthesis 

All the phytoalexins in this investigation were synthesized following known 

procedures. Brassinin (9) was synthesized from indole-3-carboxaldehyde (54) in good 

overall yield (52%) as shown in Scheme 2.1 (Takasugi et al. 1988). It was reported that 

cyclization of brassinin (9) using pyridinium bromide perbromide yielded 

cyclobrassinin (18) in 35% yield (Takasugi et al. 1988). This cyclization was also 

accomplished with NBS and triethylamine instead of pyridinium bromide perbromide 

and DBU in 45% yield (Mehta et al., 1995). However, the latter method was not 

effective (very low yield) in this investigation but with a modification (slow addition of 

pyridinium bromide perbromide at 0 °C) to Takasugi’s method, cyclobrassinin (18) was 

obtained in higher yield (58%) (Scheme 2.2). 1-Methoxybrassinin (11) was synthesized 

from indoline (199) (Scheme 2.3) in seven steps in good overall yield (31%), in which 

the key step was the reduction of oximes 202 to the corresponding amine (Pedras and 

Zaharia, 2000). Brassilexin (24) and sinalexin (25) were obtained from their 

corresponding indoline-2-thiones 205 and 210 by formylation under Vilsmeier 

conditions followed by ammonia work-up (Scheme 2.4 and 2.5) (Pedras and Zaharia, 

2001). A modification (2 equiv POCl3, 50 °C) of this method for synthesizing 

brassilexin (24) and its analogues with improved yield was reported recently (Pedras 

and Jha, 2005). (±)-Spirobrassinin (27) was synthesized from isatin (212) in a 4-step 

process in good overall yield (35%) (Scheme 2.8) by following the procedure published 

by Monde (Monde et al., 1994) and it was resolved into its enantiomers through 

coupling with (S)-(-)-1-phenylethylisocyanate (217) followed by chromatographic 

separation (Scheme 2.12) (Suchy et al., 2001). The first synthesis of (±)-1-

methoxyspirobrassinin (28) was reported by Kutschy and co-workers (Kutschy et al., 

2002). Dioxane dibromide mediated spirocyclization of 11 followed by oxidation with 

chromium trioxide provided (±)-1-methoxyspirobrassinin (28) in 36% overall yield 
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(Scheme 2.9). The same procedure was applied to obtain (±)-1-methoxyspirobrassinin 

(28) in this project with similar yield. It is worthy to note that a more efficient synthesis 

of (±)-1-methoxyspirobrassinin (28) from 1-methoxybrassinin (11) was reported 

recently through direct oxidation of 11 with chromium trioxide (Pedras et al., 2006a) 

which was one step less than the previously reported work. 

3.2.2 Metabolism 

The results described in Section 2.2 demonstrated that S. sclerotiorum produces 

different enzymes to transform different phytoalexins. The metabolites resulting from 

the fungal transformation of phytoalexins (11, 18, 24, 25, 27, 28, 34) and analogues 

(215 and 216) did not show detectable antifungal activity against S. sclerotiorum. 

Theses results indicated that all these metabolic transformations were detoxification 

processes. From the results of antifungal activity of phytoalexins shown in Table 2.1 

and Figure 2.1, all the phytoalexins can be divided into three classes, based on their 

antifungal activity: (i) high antifungal compounds; (ii) medium antifungal compounds; 

and (iii) low antifungal compounds. 

Highly antifungal compounds, which include brassilexin (24), sinalexin (25), 

and camalexin (31), displayed complete inhibition of mycelial growth of S. 

sclerotiorum at 0.1 mM. Camalexin (31) is known to be detoxified by S. sclerotiorum 

to a glucosylated compound via 6-hydroxycamalexin (Pedras and Ahiahonu, 2002). 

The metabolic transformations of other highly antifungal phytoalexins brassilexin (24) 

and sinalexin (25) in S. sclerotiorum were studied in the current investigation and 

reported recently (Pedras and Hossain, 2006). The results of the metabolism of 

brassilexin (24) suggested that the main pathway of brassilexin detoxification involved 

glucosylation at N-1 to yield the corresponding N-glucosylated compound 224, whereas 

in the case of sinalexin (25), in which the N-1 position is blocked with a methoxy 

group, detoxification involved oxidation to 6-hydroxysinalexin (226) followed by 
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glucosylation to 6-oxy-(O-β-D-glucopyranosyl)sinalexin (227). In addition, a minor 

pathway for detoxification of brassilexin (24) in S. sclerotiorum involved reductive ring 

opening of the isothiazole to the enamine 47, followed by methylation and hydrolysis 

(or vice versa) to the known phytoalexin brassicanal A (34). The yield of metabolite 

222 was lower than that of brassicanal A (34) (Table 2.2); however, since 1-β-D-

glucopyranosylbrassilexin (222) was metabolized at a faster rate than brassicanal A 

(34) was metabolized (48h vs. 7d), the main pathway for brassilexin (24) detoxification 

appears to be glucosylation (Scheme 2.15). Compared to brassilexin (24) and sinalexin 

(25), detoxification of 1-methylbrassilexin (215), an unnatural compound, occurred at a 

substantially slower rate (ca. 2d vs. 4d) (Pedras and Hossain, 2006). Because oxidation 

of C-6 of the indole moiety was observed in the transformation of sinalexin (25), it was 

surprising to observe oxidation of 1-methylbrassilexin (215) at the (N)-CH3 rather than 

at C-6. These differences are likely due to the substrate specificity of the enzymes 

involved in the transformations of the natural substrates 24 and 25. The substrate 

specificity of such enzymes was previously formulated and probed using analogues of 

camalexin (31) (Pedras and Ahiahonu, 2002). 

The phytoalexins brassinin (9) and 1-methoxybrassinin (11) belong to medium 

antifungal activity group compounds as they showed about 50% growth inhibition of S. 

sclerotiorum at 0.1 mM concentration. Although the antifungal activity of 

cyclobrassinin (18) could not be determined because of its low solubility in aqueous 

media, the results of metabolism of cyclobrassinin (18) will be discussed with the 

metabolism of 9 and 11. It was reported that brassinin (9) and cyclobrassinin (18) were 

detoxified in S. sclerotiorum through direct N-glucosylation of indole moiety whereas 

1-methoxybrassinin (11), in which the N-1 position is blocked with a methoxy group, 

was regioselectively oxidized at C-7 and then O-glucosylated (Pedras et al., 2004c). 

The unnatural compound methyl tryptamine dithiocarbamate (65) (no 1-N-substituents) 
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was also reported to be detoxified through direct N-glucosylation whereas the 

detoxification of another unnatural compound, methyl-1-methyltryptamine 

dithiocarbamate (68, N-1 position is blocked with a methyl group) followed the same 

pathway as did 1-methoxybrassinin (11) (Pedras et al., 2004c). Thus, it appeared that 

glucosylation occurred at N-1 of brassinin-like molecules when there was no N-

substituent, otherwise glucosylation would occur after regioselective hydroxylation at 

C-7. In addition to the metabolism of cyclobrassinin (18) to 1-β-D-

glucopyranosylcyclobrassinin (221), there was a minor pathway for detoxification of 

cyclobrassinin (18) in S. sclerotiorum. This pathway involved enzymatic oxidation of 

18, followed by hydrolysis and methylation (or vice versa) to the known phytoalexin 

brassicanal A (34). In previous studies, it was also reported that brassicanal A (34) was 

found to be an intermediate in the detoxification of cyclobrassinin (18) by another 

crucifer pathogen R. solani (Pedras and Okanga, 1999). A mechanism, similar to 

detoxification of 18 in R. solani, can also be proposed for the minor pathway of 

cyclobrassinin (18) detoxification in S. sclerotiorum. These detoxification mechanisms 

suggested that the fungal pathogens R. solani and S. sclerotiorum could metabolize the 

phytoalexin cyclobrassinin (18) by utilizing pathways that may operate in the plant 

(Pedras and Okanga, 1999).  

 The third group of phytoalexins displayed low antifungal activity against S. 

sclerotiorum and contains brassicanal A (34), spirobrassinin (27), and 1-

methoxyspirobrassinin (28). These phytoalexins caused none or less than 25% growth 

inhibition of S. sclerotiorum at 0.1 mM concentration. The detoxification reactions of 

the ‘low antifungal phytoalexins’ brassicanal A (34), spirobrassinin (27) and 1-

methoxyspirobrassinin (28) and an analogue 216 in S. sclerotiorum were slower and 

yielded no glucosylation products (Pedras and Hossain, 2006). The detoxification of 

brassicanal A (34) involved the oxidation of S(CH3) to the corresponding sulfoxide and 
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reduction of the aldehyde to the alcohol, a process similar to the detoxification of 

brassicanal A in L. maculans (Pedras and Khan, 1996). The detoxification of 

spirobrassinins 27, 28, and 216 involved the hydrolysis of the spirothiazolidine moiety 

to spirothiazolidinones 231, 232, and 234, respectively. In addition, 

spirothiazolidinethione 233 was isolated as a minor metabolite of 1-

methoxyspirobrassinin (28), and 1-hydroxymethylspirobrassinin (235) was isolated as a 

minor metabolite of 1-methylspirobrassinin (216). The optical rotation of metabolite 

231 and the significant ee of metabolites 233 and 234 suggested that their enzymatic 

formation was somewhat stereoselective in S. sclerotiorum. Furthermore, the following 

suggest that two or more enzymes are involved in these processes (Table 2.3): (1) the 

significant ee of 28 and 216 (recovered from cultures, Table 2.3) and similarity to the 

ee of their biotransformation products 233 and 234, (2) the high percentages of 

conversion of spirobrassinins 27, 28 and 216 (ca. 80%), and (3) the similar rates of 

transformation of either (R)- or (S)- spirobrassinin in S. sclerotiorum (Pedras and 

Hossain, 2006). However, further studies with purified enzymes would be required to 

determine their potential substrate stereoselectivity. 

 Overall, from the above discussion it can be suggested that the plant pathogen 

S. sclerotiorum utilizes different enzymes that can detoxify selectively cruciferous 

phytoalexins via different pathways. The metabolism and detoxification of strongly and 

moderately strong antifungal phytoalexins in S. sclerotiorum were fast and led to 

glucosylated products whereas the metabolism of weakly antifungal phytoalexins was 

very slow and yielded non-glucosylated compounds. The enzymes involved in the 

biotransformation of the weakly antifungal phytoalexins brassicanal A (34), 

spirobrassinin (27) and 1-methoxyspirobrassinin (28) might be house-keeping enzymes 

used in general detoxification processes. By contrast, the detoxification reactions of 

strongly antifungal phytoalexins (camalexin (31), brassilexin (24) and sinalexin (25)) 

 146



and of moderately strong phytoalexins (brassinin (9), 1-methoxybrassinin (11) and 

cyclobrassinin (18)) might be catalyzed by selective glucosyltransferases although 

selective oxidases might be required as well for 11, 25, and 31. Glucosylation is less 

usual in microorganisms, particularly in plant pathogens, but O-glucosylation and, to a 

lesser extent, N-glucosylation are common detoxification mechanisms among plants 

(Section 1.6.1). The results of biotransformation of strongly and moderately antifungal 

phytoalexins suggest that S. sclerotiorum in its continuous adaptation and co-evolution 

with plants, has acquired efficient glucosyltransferases that can disarm the plant 

chemical defenses (Pedras et al., 2004c). Ultimately, it is anticipated that knowledge of 

the mechanisms of fungal detoxification can lead to the design of effective inhibitors 

that could prevent phytoalexin detoxification. Nonetheless, before such inhibitors can 

be designed, a better understanding of the enzymes and enzymatic mechanisms 

involved in these fungal transformations is required (Pedras and Hossain, 2006). 
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3.3 Design, synthesis, and metabolism of potential brassinin 
detoxification inhibitors in Sclerotinia sclerotiorum 
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Figure 3.3 Structure of compounds discussed in Section 3.3. 
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3.3.1 Design 

As depicted in Scheme 1.4, the detoxification of brassinin (9) in S. sclerotiorum 

involves glucosylation at N-1 position of the indole ring and this glucosylation reaction 

requires an inducible brassinin glucosyltransferase (BGT) (Pedras et al., 2004c). 

Furthermore, it was reported that 6-fluorocamalexin (75) could slow down substantially 

the rate of metabolism of brassinin (9) both in fungal cultures and in cell-free extracts 

of S. sclerotiorum. Thus, based on these results two groups of potential brassinin 

detoxification inhibitors were designed: (i) one group was based on the structure of 

brassinin (Fig. 2.8) and (ii) another group was based on the structure of camalexin (31) 

(Fig. 2.9). Since BGT appeared to be selective, it was anticipated that replacing the 

nitrogen of indole with other heteroatoms, e.g. oxygen and sulfur, in compounds 236 

and 237 respectively, or changing the position of side chain of brassinin (9) from C-3 to 

C-2, e.g. compounds 240 and 241, could inhibit the glucosyltransferase involved in the 

metabolism of brassinin. It was found that blocking the N-1 position of indole ring in 

brassinin (9) with a methoxy group would lead to oxidation at C-7 followed by 

glucosylation (Scheme 2.13). Hence, compounds 238 and 239 were designed by 

replacing C-7 or C-7a carbons in brassinin with nitrogen in order to stop the possible 

oxidation of 238 and 239 at C-7. In addition, compounds 242 and 243 were designed 

by replacing the dithiocarbamate side chain with ester or amide to reduce the overall 

antifungal activity. Since 6-fluorocamalexin (75) could slow down the rate of 

metabolism of brassinin it was anticipated that compounds 244, 245, 246, 247, 248, 

249, and 250 could slow down the rate of metabolism of brassinin as well (Fig 2.9). It 

was also thought that replacing the thiazole ring in camalexin with a phenyl group 

would reduce the antifungal activity of potential inhibitors, thus 3-phenylindoles 245, 

246, 247 were designed. However, because biotransformation of 3-phenylindole (245) 

yielded the N-1 glucosylated compound, 3-phenylbenzofuran (248) was designed by 
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replacing nitrogen of indole ring with oxygen. In addition, 2-phenylindole (249) and 

thiabendazole (250) were designed by changing the position of aromatic side chain 

from C-3 to C-2. 

3.3.2 Synthesis 

As shown in Scheme 2.1, brassinin (9) was synthesized from the aldehyde 54 in 

a 4-step process (Takasugi et al., 1988). Similar synthetic strategy was used for 

synthesis of dithiocarbamates 236, 237, 238, 239, 240, and 241. Since aldehydes 254, 

263, 268, 272, 276, and 285 were expensive or not commercially available, their 

synthesis followed known procedures. Aldehydes 254, 263, and 272 were obtained in 

yields similar to those reported previously (Pedras et al., 2006a; Zaidlewicz et al., 

2001) (Scheme 2.23, 2.25 and 2.27). Syntheses of aldehydes 268 and 276 were 

accomplished through Vilsmeier formylation of benzofuran (267) and 7-azaindole 

(275), respectively, in good yields as shown in Scheme 2.26 and 2.28 (Jones and 

Stanforth, 1997; Oh et al., 2004). It was reported that the reaction of 7-azaindole (275) 

with equimolar of POCl3/DMF at 80 °C yielded 7-azaindole-3-carboxaldehyde (276) in 

50% yield (Oh et al., 2004). Application of this procedure yielded a mixture of 1-

formyl-7-azaindole (yield 8%) and 276 (yield 10%) along with recovered starting 

material (yield 50%). Eventually, the synthesis of aldehyde 276 was achieved in ca. 

50% yield using 10 equivalents of POCl3/DMF and refluxing the reaction mixture. 

Elsner et al. reported recently the synthesis of aldehyde 285 through hydrolysis and 

decarboxylation of ester 242, followed by Vilsmeier formylation (Elsner et al., 2006). 

However, since this method did not work, selective reduction of the ester 242 with 

DIBALH at -78 °C was attemted to yield the corresponding alcohol 284 in a very low 

yield. Next, the aldehyde 285 was obtained in 65% yield after reducing the ester 242 to 

alcohol 284 with LiAlH4, followed by oxidation with MnO2. 
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Similar to the synthesis of brassinin (9), all the synthesized aldehydes 254, 263, 

268, 272, 276, and 285 were converted to their corresponding dithicarbamates 240, 

236, 241, 237, 238, and 239 in which the key step was reduction of oximes to the 

corresponding amines (Scheme 2.23, 2.25-2.28, and 2.30). Since NaBH4 in presence of 

NiCl2 was unable to reduce the oximes 265, 269, 273, 277, and 286, a milder reducing 

agent, Na(CN)BH3 in presence of TiCl3 was employed for the reduction of these 

oximes. However, although Na(CN)BH3 in presence of TiCl3 was able to reduce the 

oximes 265, 269, and 273, it did not work for 277 and 286. Finally, reduction of 277, 

and 286 to corresponding amines was achieved with Zn/HCl in good yields. 

As shown in Scheme 2.31, Rodriguez et al. reported the synthesis of 3-

phenylindole from phenylhydrazine (288) and phenylacetaldehyde (290) (Rodriguez et 

al., 2000). When this method was applied to synthesize 6-fluoro-3-phenylindole by 

reaction between 3-fluorophenylhydrazine (289) and phenylacetaldehyde (290), a 

mixture of 4-fluoro- and 6-fluoro-3-phenylindoles (246, 247, 72%) was obtained in 1:1 

ratio. These two compounds were separated by reverse phase (C18) column 

chromatography (silica gel chromatography did not work). The synthesis of 3-

phenylbenzofuran (248) was accomplished by following the procedure used for the 

synthesis of substituted 2-methylbenzofurans from 2-allylphenols (Roshchin et al., 

1998). Although the reported yield for synthesis of 2-methylbenzofurans was quite 

good, the yield of 3-phenylbenzofuran (248) from o-(1-phenylvinyl)phenol (294) was 

rather poor. 

3.3.3 Metabolism 

The metabolites 295, 296, 297, and 299 resulting from fungal transformation of 

potential brassinin detoxification inhibitors were not toxic to S. sclerotiorum which 

indicated that, similar to transformations of phytoalexins, these metabolic 

transformations were detoxification processes. The results of detoxification of methyl 
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(indol-2-ylmethyl)dithiocarbamate (240) in S. sclerotiorum suggested that compared to 

brassinin (9), its detoxification occurred at a substantially slower rate (ca. 12h vs. 48h). 

Although detoxification of brassinin (9) in S. sclerotiorum involved N-1 glucosylation, 

the detoxification of its isomer i.e. methyl (indol-2-ylmethyl)dithiocarbamate (240) 

took place at two sites, glucosylation at N-1 along with oxidation at C-3 (Scheme 2.33). 

The detoxification of methyl (thianaphthen-3-ylmethyl)dithiocarbamate (237) was 

found to be faster than that of brassinin (9) (6h vs. 12h). Although 237 was expected to 

have slow rate of metabolism due to replacement of the nitrogen of the indole ring in 

brassinin (9) with a sulfur atom, 237 was quickly metabolized to a sulfoxide 296 which 

was further metabolized slowly to methyl (7-oxy-O-β-glucopyranosylthianaphthen-3-

yl)methyldithiocarbamate (297) (Scheme 2.34). Since the glucoside 297 was obtained 

from metabolism of 296, it was surprising to observe the absence of the sulfoxide 

moiety in 297. The metabolism of this sulfoxide 296 in S. sclerotiorum appears to 

involve enzymatic reduction of 296 to its original form i.e. 237 and then oxidation 

followed by O-glucosylation at C-7 (or vice versa). The detoxification of the strongest 

antifungal compounds (among all the tested compounds), 3-phenylindole (245) in S. 

sclerotiorum involved direct N-glucosylation of indole moiety whereas the structurally 

related phytoalexin, camalexin (31) was detoxified to 6-hydroxycamalexin followed by 

O-glucosylation to 6-oxy-(O-β-D-glucopyranosyl)camalexin (73) (Scheme 1.7 and 

2.36). However, it was reported that 6-fluorocamalexin (75) was detoxified in S. 

sclerotiorum through direct N-glucosylation of the indole moiety (Pedras and 

Ahiahonu, 2002). Although the metabolic product of 5-fluorocamalexin (244) could not 

be isolated due to its low yield, the LC-MS data suggested that similar to 6-

fluorocamalexin (75), the metabolism of 5-fluorocamalexin in S. sclerotiorum occurred 

through direct N-glucosylation of the indole moiety. It was reported that the 

metabolism of 5-fluorocamalexin (244) in Rhizoctonia solani occurred at the thiazole 

ring yielding 5-fluoroindole-3-carbonitrile as a major product (Pedras and Liu, 2004). 
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The metabolism of other potential inhibitors such as dithiocarbamates (236 and 241) 

and 3-phenylbenzofuran (248) in S. sclerotiorum was analyzed by LC-MS as well. The 

LC-MS data suggested that metabolism of 236, 241, and 248 were completed in about 

12 to 24 h and involved oxidation at an undetermined position followed by O-

glucosylation. Overall, the results of these metabolisms suggested that S. sclerotiorum 

employs different oxidases and/or glucosyltransferases to metabolize these designed 

compounds.  

Recently, a number of potential inhibitors were designed to inhibit brassinin (9) 

detoxification in Leptosphaeria maculans by replacing the dithiocarbamate group 

(toxophore) of brassinin (9) with carbamate, dithiocarbonate, urea, thiourea, sulfamide, 

sulfonamide, dithiocarbazate, amide and ester functional groups and by substituting the 

indolyl moiety with naphthalenyl and phenyl moiety (Pedras and Jha, 2006). Their 

metabolic transformations were investigated in fungal cultures of L. maculans. It was 

reported that most of these compounds remained unaffected in the cultures and few of 

them were metabolized by the fungus. The metabolism was found to occur mainly at 

side chains yielding carboxaldehydes or carboxylic acids. On the contrary, all the 

designed compounds in the current investigation were metabolized by S. sclerotiorum 

yielding mainly N- or O-glucosylated compounds and instead of side chain 

transformation, metabolism occurred at the aromatic ring only. Probably, due to the 

ability to detoxify different natural and non-natural compounds, the fungus S. 

sclerotiorum has a wide range of host species whereas L. maculans has fewer host 

species.  
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3.4 Effect of potential inhibitors on brassinin detoxification 

All the designed compounds (Fig 2.8 and 2.9) were screened for inhibition of 

brassinin detoxification in cultures of S. sclerotiorum by co-incubating compounds 

236-250 with brassinin (9). A noticeable decrease in the rate of brassinin detoxification 

was observed in the presence of dithiocarbamates 236, 240, 241, 3-phenylindoles 245, 

247 and 5-fluorocamalexin (244) as shown in Fig 2.13-2.17. Furthermore, these active 

compounds were found to be metabolized in the fungal cultures of S. sclerotiorum. 

However, as long as they were present in the cultures, brassinin (9) was not 

metabolized completely. The remaining tested compounds 237, 238, 239, 242, 243, 

248, 249, and 250 did not show a detectable effect on the rate of brassinin 

detoxification. These results might be explained either because the compounds do not 

affect BGT or are unable to reach the metabolic site inside the cell. On the other hand, 

it is possible that the decrease in the rate of detoxification of brassinin in the presence 

of 236, 240, 241, 244, 245 and 247 is due to strong inhibitory activity of the compound 

on mycelium growth or on BGT. These hypotheses were confirmed by co-incubating 

these compounds with cell-free extracts containing BGT. Therefore, further testing of 

all designed compounds was carried out using cell-free extracts containing BGT. 

Consistent with the results of co-metabolism, both 3-phenylindole (245) and 6-fluoro-

3-phenylindole (247) showed the strongest inhibition of BGT in cell-free extracts. This 

result indicated that inhibition of brassinin detoxification by 245 and 247 in fungal 

cultures was not due to mycelial growth inhibition. Moderate inhibition of BGT in cell-

free extracts was observed with dithiocarbamates 236, 240, 241, 3-phenylbenzofuran 

(248) (ca. 60%) and with camalexins 31, 75, 244 (ca. 40%) which were also consistent 

with the results obtained in co-metabolism studies. Although 2-phenylindole (249) 

showed 60% inhibition on BGT, it did not affect the rate of brassinin detoxification in 
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mycelial cultures probably due to its faster metabolism (complete metabolism of 249 

occurred in ca. 6h). 

 

3.5 Overall conclusions and future work 

In this thesis, it has been shown that the stem rot fungus S. sclerotiorum is able 

to circumvent phytoalexins of crucifers through metabolism and detoxification. 

Phytoalexins, strongly and moderately antifungal to S. sclerotiorum, can be detoxified 

to glucosylated products whereas weakly antifungal phytoalexins are detoxified to non-

glucosylated pathways. Therefore the glucosylation reactions are important metabolic 

targets to selectively control the stem rot fungus as the inhibition of this glucosylation 

process may allow plants to accumulate strongly antifungal phytoalexins (Pedras and 

Hossain, 2006). These accumulated phytoalexins are then expected to slow if not stop 

the growth of S. sclerotiorum. 

The cruciferous phytoalexin brassinin (9) is of great interest due to its biological 

activity and intermediacy in the biosynthetic pathway of other relevant phytoalexins 

such as cyclobrassinin (18), brassilexin (24), rutalexin (42), brassicanal A (34), and 

spirobrassinin (27) (Pedras et al., 2003a). Therefore, it is expected that the inhibition of 

brassinin (9) detoxification will allow plants to accumulate all these phytoalexins. 

Because brassinin (9) can be detoxified by S. sclerotiorum to an N-glucosylated 

compound (66) and this glucosylation reaction is catalyzed by an inducible enzyme, 

brassinin glucosyltransferase (BGT) (Pedras et al., 2004c), inhibitors of BGT are 

expected to be potential protection agents against stem rot disease of crucifer crops. It 

is expected that in the presence of such inhibitors, the combined effect of brassinin (9) 

and its biogenetically related phytoalexins in plants may have a deleterious effect on S. 

sclerotiorum. Thus inhibitors of BGT were designed and synthesized in this project and 
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their bioactivities, metabolism and screening in mycelial cultures as well as in cell-free 

extracts of S. sclerotiorum were investigated. The results of screening of designed 

compounds suggested that 3-phenylindoles 245, 247 and dithiocarbamates 236, 240, 

241 are compounds that can slow down the rate of brassinin detoxification in cultures 

and inhibit BGT in cell-free extracts. However, likely because these compounds are 

metabolized in cultures, they are not able to completely stop brassinin detoxification. 

Nonetheless, these lead structures (236, 240, 241, 245, 247) may help, in the future to 

design more active inhibitors of BGT. There are many examples where initial 

knowledge of the structural features, obtained from primary inhibitors, led to design of 

active inhibitors. For example, resorcinol was found to be a poor inhibitor of 

tyrosinase, a key enzyme in melanin biosynthesis (Kim and Uyama, 2005). Further 

research on derivatives of resorcinol led to inhibitors of tyrosinase. It was reported that 

4-substituted resorcinols, particularly, 4-hexylresorcinol was the most effective 

inhibitor for use in the food industry. 

In this thesis, it has been shown that potential inhibitors can be detoxified in S. 

sclerotiorum to glucosylated products by direct glucosylation or by oxidation followed 

by glucosylation. These results indicated that S. sclerotiorum has different oxidases 

and/or glucosyltransferases to metabolize potential inhibitors. Therefore, in order to 

selectively control the stem rot fungus, the inhibitors of brassinin detoxification have to 

be designed to inhibit not only BGT but also oxidase(s), as these enzymes appear to 

play an important role in metabolizing the potential inhibitors. It is expected that 

isolation and characterization of BGT involved in the detoxification of brassinin (9) 

will greatly facilitate the design of more effective and selective inhibitors. 
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Future work 

1. Purification and characterization of brassinin glucosyltransferase (BGT) 

2. Testing of lead compounds using purified BGT 

3. Kinetic and substrate specificity studies using purified BGT 

4. Design and synthesis of more effective potential inhibitors of brassinin 

detoxification. Since oxidase(s) play important role in metabolizing potential 

inhibitors, the following compounds might be good inhibitors of brassinin 

detoxification: 

N
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F
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F
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SCH3
F O
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NH
SCH3

F
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F
F
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Chapter 4: EXPERIMENTAL 
 

4.1 General methods 

All chemicals were purchased from Sigma-Aldrich Canada Ltd., Oakville, ON, 

Canada. All solvents were used as such, except for CH2Cl2 and CHCl3 which were 

redistilled. Solvents used in syntheses were dried over the following drying agents prior 

to use: THF and diethyl ether over sodium/benzophenone, CH2Cl2, CH3CN and 

benzene over CaH2 and acetone over CaSO4.  

Analytical thin layer chromatography (TLC) was carried out on precoated silica 

gel TLC aluminum sheets (Merck, 60 F254 5 × 2 cm × 0.2 mm). Compounds were 

visualized under UV light (254/366 nm) after elution with a suitable solvent system. 

Plates were dipped in 5% (w/v) aqueous phosphomolybdic acid solution containing 1% 

(w/v) ceric sulfate and 4% (v/v) H2SO4, followed by heating on a hot plate. 

Preparative thin layer chromatography (PTLC) was performed on silica gel 

plates (Merck, 60 F254 or reversed phase RP-8 20 × 20 cm × 0.25 mm). Flash column 

chromatography (FCC) was performed on silica, Merck grade 60, mesh size 230-400, 

60 Å or on J. T. Baker C-18 reversed-phase silica gel, 40 µm. 

High performance liquid chromatography (HPLC) analysis was carried out with 

a high performance liquid chromatograph equipped with quaternary pump, automatic 

injector, and diode array detector (wavelength range 190–600 nm), degasser, and a 

Hypersil octadecylsilane (ODS) column (5 µm particle size silica, 200 mm × 4.6 mm 
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identical diameter), equipped with an in-line filter. Mobile phase: 75% H2O-25% 

CH3CN to 100% CH3CN, for 35 min, linear gradient, and a flow rate 1.0 ml/min.  

NMR spectra were obtained on Bruker Avance 500 spectrometers. For 1H NMR 

(500 MHz), the chemical shifts (δ) are reported in parts per million (ppm) relative to 

TMS. The δ values were referenced to CDCl3 (CHCl3 at 7.27 ppm), CD2Cl2 (CHDCl2 

at 5.32 ppm), CD3CN (CHD2CN at 1.94 ppm), (CD3)2SO (CHD2SOCD3 at 2.50 ppm), 

(CD3)2CO (CHD2COCD3 at 2.05 ppm) and CD3OD (CHD2OD at 3.30 ppm). First-

order behavior was assumed in analysis of 1H NMR spectra and multiplicities are as 

indicated by one or more of the following s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet and br = broad.  Spin coupling constants (J values) are reported 

to the nearest 0.5 Hz. 13C data were collected on the Bruker Avance 500 spectrometers 

at 125.8 MHz. The 13C chemical shift (δ values) were referenced to CDCl3 (77.2 ppm), 

CD2Cl2 (54.0 ppm), CD3CN (118.7 ppm), (CD3)2SO (39.5 ppm), (CD3)2CO (29.9 ppm) 

and CD3OD (49.2 ppm). The multiplicities of 13C signals refer to the number of 

attached protons: s = C, d = CH, t = CH2, q = CH3) and were determined based upon 

HMQC experiments. In some cases it was determined based on chemical shift and 

consistency within a series of similar structures, as well as the relative intensity of each 

signal. 

Fourier transform infrared (FTIR) spectra were recorded on Bio-Rad FTS-40 

spectrometers. Spectra were measured by the diffuse reflectance method on samples 

dispersed in KBr. 

Specific rotations, [α]D were determined at ambient temperature on a Rudolph 

DigiPol DP781 polarimeter using a 1 ml, 10 cm path length cell; the units are 10-1 deg 

cm2 g-1 and the concentrations (c) are reported in g/100mL. UV spectra were recorded 

on Varian-Cary spectrophotometer in MeOH or CH3CN. Mass spectra (MS) were 
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obtained on a VG 70 SE mass spectrometer using a solid probe or on a Q Star XL, 

Applied Biosystems. 

The Bradford protein assay was used to quantify proteins in cell-free extracts 

using bovine serum albumin standard curves. The optical densities (at 595 nm) were 

recorded on a Bio-Rad SmartSpec 3000 spectrophotometer. 

 

4.2 Synthesis of phytoalexins and analogues 

4.2.1 Brassinin (9) 

N
H

S

NH
SCH3

 
 9  

To a solution of indole-3-carboxaldehyde (54, 1.0 g, 6.9 mmol) in EtOH (30 

ml), a solution of NH2OH.HCl (952 mg, 13.7 mmol) and Na2CO3 (803 mg, 7.6 mmol) 

in water (14 ml) was added. After stirring for 3 hours at 60 °C, EtOH was removed 

under reduced pressure and the resulting precipitate was filtered off and air dried to 

afford indole-3-carboxaldehyde oxime (197, 1.0 g) in 91% yield (Pedras et al., 1992).  

The oxime (200 mg, 1.25 mmol) was dissolved in MeOH (10 ml) and an 

aqueous solution of NaOH (50 ml, 1M) was added. After stirring for 15 min at 0 °C, 

Devarda’s alloy (5.8 g) was added with vigorous stirring and the reaction was allowed 

to stir for 20 min at rt. The reaction mixture was diluted with water (50 ml), filtered, 

MeOH was evaporated and the reaction mixture was extracted with Et2O (3 x 100 ml). 

The combined organic extracts were dried over Na2SO4 and concentrated. The residue 

was subjected to FCC (CHCl3-MeOH-28% aq. NH3, 80:20:1) to afford 3-

indolylmethylamine (198, 136 mg) in 72% yield as colorless oil (Pedras et al., 1992).  
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The amine (198, 136 mg, 0.9 mmol) was dissolved in pyridine (1.5 ml) and 

Et3N (142 µL), cooled to 0˚ C and treated with CS2 (85 µL, 1.4 mmol). After stirring 

for 1 hour at 0˚ C, CH3I (79 µL, 1.3 mmol) was added and the reaction mixture was 

kept at 3 ˚C for 15 hours. The reaction mixture was poured into 1.5 M H2SO4 (50 ml) 

and immediately extracted with Et2O (2 x 100 ml). The extracts were dried over 

Na2SO4 and concentrated under reduced pressure. The residue was subjected to FCC on 

silica gel [gradient elution, CH2Cl2-hexane (20:80, 30:70, 40:60 & 50:50)] to give 

brassinin (9) (178 mg, 52%, based on the aldehyde 54) (Pedras et al., 1992). 

Mp: 132-133 °C (CH2Cl2-hexane) 

HPLC tR = 18.9 min. 

1H NMR (300 MHz, CD3CN) δ  9.44 (br s, 1H, D2O exchangeable), 8.49 (br s, 1H, 

D2O exchangeable), 7.63 (d, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.30 (d, J= 2 Hz, 

1H), 7.16 (ddd, J = 8, 8, 1 Hz, 1H), 7.08 (ddd, J = 8, 8, 1 Hz, 1H), 5.03 (d, J = 5 Hz, 

2H), 2.55 (s, 3H) and minor signals (ca. 1/10 itensity of the major peaks) due to 

rotamers at 4.77 (d) and 2.32 (s). 

13C NMR (300 MHz, CD3CN) δ 200.7 (s), 139.4 (s), 129.7 (s), 127.8 (d), 124.8 (d), 

122.3 (d), 121.6 (d), 114.5 (d), 113.5 (s), 45.2 (t), 20.12 (q). 

EIMS m/z (% relative intensity): 236 (43), 162 (11), 130 (100), 129 (44), 102 (18). 

FTIR νmax 3397, 3310, 3055, 2995, 1618, 1555, 1487, 1339 cm-1. 
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4.2.2 Cyclobrassinin (18) 
 

N
H

S

N
SCH3

 
 18 
 

Pyridinium bromide perbromide (234 mg, 0.73 mmol) was added in small 

portions to a solution of brassinin (9) (169 mg, 0.72 mmol) in dry THF (20 ml) at room 

temperature. The reaction mixture was stirred at room temperature for 40 minutes, and 

then basified with DBU (340 µL) (Takasugi et al., 1988). After stirring for another hour 

at room temperature the solvent was evaporated and the residue was subjected to FCC 

on silica gel [gradient solvent, CH2Cl2 : hexane (10:90, 20:80, 30:70, 40:60, 50:50)] to 

give cyclobrassinin (18, 97 mg, 58%). 

HPLC tR = 25.1 min. 

1H NMR (500 MHz, CDCl3) δ 7.73 (br s, 1H, D2O exchangeable), 7.49 (d, J = 7.5 Hz, 

1H), 7.33 (d, J = 7.5 Hz, 1H), 7.15-7.18 (m, 2H), 5.10 (s, 2H), 2.57 (s, 3H). 

13C NMR (500 MHz, CDCl3) δ 152.5 (s), 137.0 (s), 125.5 (s), 122.7 (s), 122.4 (d), 

120.7 (d), 117.6 (d), 111.1 (d), 104.3 (s), 49.1 (t), 15.7 (q). 

EIMS m/z (% relative intensity): 234 (M+, 30), 161 (100), 160 (23). 

FTIR νmax 3373, 2921, 2832, 1601, 1450, 1430, 1337, 978 cm-1. 
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4.2.3 1-Methoxybrassinin (11) 
 

N
OCH3

S

NH
SCH3

 
 11 
 

A solution of Na2WO4.2H2O (1.17 g, 3.5 mmol) in water was added to the 

solution of indoline (199) in MeOH (80 ml) with stirring. The mixture was cooled to    

-15 ºC using NaCl-ice system. During 30 minutes a solution of 30% H2O2 (17.7 ml, 

173 mmol) in MeOH (20 ml) was added slowly to the reaction mixture. The stirring 

was continued for further 10 minutes and then solid K2CO3 (22.1 g, 160 mmol) and 

dimethyl sulphate (5 ml, 53 mmol) were added with vigorous stirring. The mixture was 

stirred for further 1.5 hour at 8-13º C, was poured into water (200 ml) and extracted 

with Et2O (2×150 ml). After drying (Na2SO4) and evaporation of solvent, the greenish 

oily residue was column chromatographed on silica gel (CHCl3: hexane; 1:4) yielded 1-

methoxyindole (200) (1.51 g, 56%) (Kawasaki et al., 1991). 

To the solution of 1-methoxyindole (200) (333 mg, 2.3 mmol) in DMF (1.5 ml) 

was added distilled POCl3 (252 µl, 2.7 mmol). After stirring at room temperature for 1 

hour, the mixture was neutralized with 5 M NaOH, and then boiled for 5 minutes. The 

solution was extracted with Et2O (2 × 10 ml), the organic phase was dried over Na2SO4 

and concentrated to dryness to give a residue which was purified by column 

chromatography on silica gel using gradient elution [CH2Cl2, CH2Cl2/CH3OH (100%, 

99:1)] to yield 1-methoxyindole-3-carboxaldehyde (201, 340 mg, 86%) (Pedras and 

Zaharia, 2000).  

The aldehyde (201, 140 mg, 0.8 mmol) was dissolved in EtOH (3 ml) and a 

solution of NH2OH.HCl (166 mg, 2.38 mmol) and Na2CO3 (126 mg, 1.19 mmol) in 

water (1 ml) was added. After stirring at 60 ºC for 4 hours, the reaction mixture was 
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diluted with water and extracted with Et2O (2 × 10 ml). The organic phase was dried 

over Na2SO4 and concentrated to dryness to yield 1-methoxyindole-3-carboxaldehyde 

oxime (202) (mixture of E and Z isomer) (151 mg, 99%). 

Na(CN)BH3 (327 mg, 5.2 mmol) and NH4OAc (439 mg, 5.7 mmol) were added 

to a cooled (0 ºC ) solution of 1-methoxyindole-3-carboxaldehyde oxime (202) (99 mg, 

0.52 mmol) in MeOH (1 ml). To this mixture a neutralized solution of TiCl3 30% wt in 

2N HCl (2.1 ml, 4.1 mmol) was added. After stirring for 15 min at 0 ºC, the reaction 

mixture was diluted with 1% aqueous NH4OH (40 ml), basified with 5N NaOH and 

extracted with EtOAc (2 × 40 ml). The organic phase was dried over Na2SO4 and 

concentrated to afford crude 1-methoxyindolyl-3-methylamine (203).  

To the cooled (0 ºC) solution of crude amine (203) in pyridine (0.5 ml), Et3N 

(105 µl) and CS2 (93 µl, 1.55 mmol) were added. After 1 hour of stirring at 0 ºC, CH3I 

(96 µl, 1.57 mmol) was added and the reaction was left at 5 ºC for 16 hours. The 

reaction mixture was poured into 1.5 M H2SO4 (10 ml) and extracted with Et2O (2 × 15 

ml). The organic phase was dried over Na2SO4 and concentrated and the residue was 

subjected to FCC on silica gel (CH2Cl2/hexane, 40:60 & 50:50) to afford 1-

methoxybrassinin (11, 90 mg, 31% overall yield from indoline 199) (Pedras and 

Zaharia, 2000). 

HPLC tR = 24.2 

1H-NMR (500 MHz, CD3CN) δ 8.29 (br, s, D2O exchangeable, 1H), 7.68 (d, J = 8 Hz, 

1H), 7.49-7.43 (m, 2H), 7.28 (dd, J = 7, 7 Hz, 1H), 7.14 (dd, J = 7, 7 Hz, 1H), 5.04 (d, 

J = 5 Hz, 2H), 4.09 (s, 3H), 2.59 (s, 3H). 

HREIMS m/z measured 266.0547 (266.0548 calcd. for C12H14N2OS2). 

EIMS m/z (% relative intensity): 266 (M+, 8), 235 (100), 160 (99), 145 (21), 129 (48), 

128 (23), 102 (21), 90 (33). 
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FTIR νmax 3325, 2938, 1494, 1451, 1352, 1304, 1076, 920 cm-1. 

 

4.2.4 Brassilexin (24) 
 

N
H

S
N

 
24  

A mixture of 2-oxindole (204) (500 mg, 3.8 mmol), P4S10 (1 g, 2.3 mmol, and 

NaHCO3 (631 mg, 7.5 mmol) in THF (25 ml) was stirred for 4 hours at room 

temperature. THF was removed under reduced pressure and ice cold water was added 

to the residue. The ppt was filtered off, washed with ice cold water and air dried to 

yield indoline-2-thione (205, 484 mg, 86%) (Kamila and Biehl, 2004). 

The thione 205 (460 mg, 3.1 mmol) was dissolved in dry DMF (6 ml), cooled to 

0 ˚C and then distilled POCl3 (600 µL, 6.5 mmol) was added slowly. After stirring at 

room temperature for 2 hours, the reaction mixture was cooled to 0 ˚C, basified 

carefully with 28% NH4OH (100 ml) and extracted with CH2Cl2 (3 x 100 ml). The 

extracts were dried over Na2SO4 and concentrated under reduced pressure. The residue 

was dissolved in pyridine (5 ml) and then I2 (680 mg, 2.7 mmol) was added to it. After 

stirring for 1.5 hours at room temperature, the reaction mixture was acidified with 1.5 

M H2SO4 (30 ml) and extracted with CH2Cl2 (3 × 30 ml). The extracts were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was subjected to 

FCC on silica gel (EtOAc-hexane, 20:80) to give brassilexin (24, 120 mg, 19% yield 

from the oxindole 204) (Pedras and Jha, 2005). 

HPLC tR = 12.2 
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1H NMR (500 MHz, CD3CN) δ 9.85 (br s, 1H, D2O exchangeable), 8.70 (s, 1H), 7.91 

(d, J = 8 Hz, 1H), 7.56 (d, J = 8 Hz, 1H), 7.33 (dd, J = 8, 8 Hz, 1H), 7.22 (dd, J = 8, 8 

Hz, 1H). 

13C NMR (500 MHz, CD3CN) δ 159.5 (s), 147.8 (d), 144.6 (s), 127.7 (s), 124.1 (d), 

120.9 (d), 120.4 (s), 120.2 (d), 112.4 (d). 

 

4.2.5 1-Methylbrassilexin (215) 
 

N
CH3

S
N

 
215 

 

Sodium hydride (60% suspension in mineral oil, 35 mg, 1.46 mmol) was added 

to a solution of brassilexin (24) (51 mg, 0.29 mmol) in THF (3 ml) at 0 ºC under an 

argon atmosphere. After 15 minutes of stirring at 0 ºC, methyl iodide (27 µl, 0.44 

mmol) was added, and stirring was continued at 0 ºC for 1 more hour. Ice cold water 

was added to quench the reaction, the reaction mixture was extracted with CH2Cl2 (2 × 

10 ml) and the combined extracts were dried and concentrated. The crude reaction 

mixture was subjected to column chromatography on silica gel (CH2Cl2/hexane, 80:20) 

to yield 1-methylbrassilexin (215, 52 mg, 94%) (Pedras and Hossain, 2006) 

Mp: 68-69 ºC (CH2Cl2-hexane) 

HPLC tR = 16.9 min. 

1H NMR (500 MHz, CD3CN) δ 8.71 (s, 1H), 7.93 (d, J = 8 Hz, 1H), 7.48 (d, J = 8 Hz, 

1H), 7.40 (dd, J = 7.5, 8 Hz, 1H), 7.27 (dd, J = 7.5, 7.5 Hz, 1H), 3.88 (s, 3H).  
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13C NMR (125.8 MHz, CD3CN): δ 162.2 (s), 148.4 (d), 145.2 (s), 125.9 (s), 124.0 (d), 

120.8 (d), 120.4 (d), 120.4 (s), 110.3 (d), 33.2 (q).  

HRMS-EI m/z: measured 188.04082 ([M]+, calcd. 188.040773 for C10H8N2S).  

MS-EI m/z (% relative intensity): 188 ([M]+, 100), 155 (15), 146 (11).  

FTIR νmax: 1490, 1464, 1319, 1261, 912, 743 cm-1. 

 

4.2.6 Sinalexin (25) 
 

N
OCH3

S
N

 
25 

 

2-Phenylacetylchloride (206) (428 µl, 3.23 mmol) was added to a vigorously 

stirred solution of methoxylamine hydrochloride (297 mg, 3.56 mmol) and sodium 

carbonate (686 mg, 6.47 mmol) in a mixture of benzene (6 ml) and water (6 ml) with 

cooling at 0 ºC. The reaction mixture was stirred for ca. 4 hours at room temperature, 

and extracted with EtOAc (3 × 20 ml). The combined extracts were washed with brine, 

dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was 

subjected to column chromatography on silica gel (EtOAc/hexane 3:2) to afford N-

methoxy-2-phenylacetamide (207, 452 mg, 85%). 

To a solution of N-methoxy-2-phenylacetamide (207) (399 mg, 2.42 mmol) in 

CH2Cl2 (10 ml) was added slowly t-butyl hypochlorite (339 mg, 3.12mmol) at 0 ºC. 

The reaction mixture was stirred at 0 °C in dark for about 20 minutes, solvent was 

evaporated under reduced pressure, and the residue was subjected to FCC on silica gel 
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(EtOAc/hexane 1:5) to afford N-chloro-N-methoxy-2-phenylacetamide ( 208, 458 mg, 

95%) as a yellow oil (Kawase et al., 1989). 

The N-chloro-N-methoxy-2-phenylacetamide (208) (400 mg, 2 mmol) was 

dissolved in TFA (0.6 ml) and was added to a solution of silver carbonate (654 mg, 4 

mmol) in TFA (4 ml) at 0 °C with stirring. The stirring was continued for 30 minutes to 

complete the reaction and then the solvent was removed under reduced pressure. The 

residue was basified with 5% Na2CO3 with cooling at 0º C, the precipitated salts were 

filtered off, and the filter cake was washed with CH2Cl2. The aqueous solution was 

extracted with CH2Cl2 (3 × 15 ml). The combined CH2Cl2 solution was washed with 

brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was 

purified by column chromatography on silica gel, eluting with EtOAc/hexane (2:5) to 

yield 1-methoxy-2-oxindole (209, 225 mg, 69%). 

To a solution of 1-methoxy-2-oxindole (209) (150 mg, 0.92 mmol) and P4S10 

(245 mg, 0.55 mmol) in THF (3.5 ml) was added sodium bicarbonate in small portions 

at room temperature. The reaction mixture was stirred at room temperature for about 15 

hours, the THF was removed and water was added to the residue. The suspension was 

then extracted with CH2Cl2 (3 × 30 ml). The combined extracts were dried over 

Na2SO4, concentrated under reduced pressure and the residue was crystallized from 

EtOH/water mixture to yield 1-methoxyindoline-2-thione (210) (142 mg, 86%). 

The thione 210 (58 mg, 0.32 mmol) dissolved in dry DMF (1 ml) was first 

treated with POCl3 (90 µL, 0.98 mmol) (3 h at 40° C), and then the reaction mixture 

was cooled to 0° C, basified with aqueous NH3 (pH > 11), and extracted with CH2Cl2 

(3 × 15 ml). The combined CH2Cl2 extracts were dried and concentrated under reduced 

pressure. The reaction residue was dissolved in pyridine (1 ml) and I2 (85 mg) (1.5 hour 

at room temperature). The mixture was then acidified with 1.5 M H2SO4 (15 ml) and 

extracted with CH2Cl2 (3×15 ml). After evaporation of CH2Cl2 the residue was purified 
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by column chromatography on silica gel, eluting with ether/hexane (1:9) to give 

sinalexin (25, 24 mg, 36%) (Pedras and Jha, 2005). 

HPLC tR = 20.1 min 

1H NMR (500 MHz, CD3CN) δ 8.72 (s, 1H), 7.94 (d, J = 8 Hz, 1H), 7.58 (d, J = 8 Hz, 

1H), 7.44 (m, 1H), 7.31 (m, 1H), 4.16 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 156.2 (s), 148.5 (d), 141.7 (s), 124.8 (d), 124.3 (s), 

122.0 (d), 120.8 (d), 117.5 (s), 109.7 (d), 64.7 (q). 

4.2.7 Brassicanal A (34) 

N
H

CHO

SCH3

 
34  

NaH (60%, 514 mg, 21.4 mmol, washed with hexane) was added to a solution 

of indoline-2-thione (205) (159 mg, 1.1 mmol) in HCOOEt (4 ml, 40 mmol), and the 

reaction mixture was stirred at room temperature. After 3 hours, the reaction mixture 

was diluted with water, the mixture was acidified with 2.5 M HCl, and the precipitate 

formed was filtered off and washed with water. The precipitate was dried to yield 2-

mercaptoindole-3-carboxaldehyde (48) in 99% yield. 

To a solution of 2-mercaptoindole-3-carboxaldehyde (48) (178 mg, 1 mmol) in 

Et2O (7 ml) a solution of diazomethane (5 ml) in Et2O was added. After stirring the 

reaction mixture at room temperature for 2 hours, the solvent was removed and the 

residue was subjected to FCC on silica gel (CH2Cl2-MeOH, 99:1) to afford brassicanal 

A (34, 54% yield from 205) (Pedras and Okanga, 1999). 

HPLC tR = 10.8 min 
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1H NMR (500 MHz, CD3CN) δ 10.16 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.47 (d, J = 7 

Hz, 1H), 7.26-7.24 (m, 2H), 2.67 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 184.7 (d), 146.6 (s), 137.9 (s), 127.2 (s), 124.4 (d), 

123.6 (d), 120.5 (d), 116.8 (s), 112.2 (d), 16.9 (q). 

HRMS-EI m/z: measured 191.0402 ([M]+, calcd. 191.0405 for C10H9NOS).  

MS-EI m/z (% relative intensity): 191 ([M]+, 100), 176 (23), 158 (55), 148 (13). 

 

4.2.8 Spirobrassinin (27) 

N
H

O
S

N SCH3

 27 
 

4.2.8.1   Synthesis 

Isatin (212) (1.0 g, 6.8 mmol) was suspended in a solution of nitromethane (1.6 

g, 27.2 mmol) and EtOH (2 ml). After cooling to 0 ºC, Et3N (150 µl) was added and the 

mixture was kept at -10 °C for 24 hours. The resulting precipitate was filtered, washed 

with cold CHCl3 and air dried to yield (3-hydroxy-2-oxindol-3-yl)nitromethane (213, 

1.3 g). The (3-hydroxy-2-oxindol-3-yl)nitromethane (213) (1.30 g, 6.24 mmol) was 

dissolved in a mixture of MeOH (20 ml) and glacial acetic acid (700 µl) and 10% Pd/C 

(130 mg) was added. The reduction was performed at atmospheric pressure of H2. 

Reaction mixture was stirred for 20 hours, filtered, acidified with conc. HCl and the 

solvent was removed under reduced pressure. The residue was crystallized form glacial 

acetic acid. The crystals were washed with Et2O and dried to yield (3-hydroxy-2-

oxindol-3-yl)methylammonium chloride (214, 758 mg, 57%). 
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To a solution of (3-hydroxy-2-oxindol-3-yl)methylammonium chloride (214) 

(400 mg, 1.86 mmol) in pyridine (2 ml) was added Et3N (395 µl, 2.79 mmol) and CS2 

(174 µl, 2.8 mmol) at 0 ºC. After 2 hours of stirring at 0 ºC, CH3I (153 µl, 2.42 mmol) 

was added and the mixture was stirred at room temperature for 4 hours. The mixture 

was acidified with 1.5 M H2SO4 (30 ml), extracted with EtOAc (2 × 50 ml), dried over 

Na2SO4, and concentrated under reduced pressure. The residue was subjected to 

column chromatography on silica gel [gradient elution, acetone/hexane (10:90, 20:80, 

30:70, 40:60)] to afford dioxibrassinin (26) (373 mg, 75%). 

The dioxibrassinin (26) (79 mg, 0.29 mmol) was dissolved in pyridine (0.8 ml) 

and SOCl2 (63 mg, 39 µl, 0.53 mmol) was added in portions with continuous stirring. 

After one hour stirring at room temperature, the reaction mixture was acidified with 5% 

HCl (10 ml), extracted with EtOAc (2 × 20 ml), the extracts were dried over Na2SO4 

and concentrated. The residue was subjected to column chromatography on silica gel 

(CH2Cl2-MeOH, 99:1)]. Finally, pure spirobrassinin (27, 61 mg, 82%) was obtained 

after crystallization from acetone-hexane mixture (Monde et al., 1994). 

HPLC tR = 12.8 

1H NMR (500 MHz, CD3CN): δ 8.59 (br, s, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.28 (ddd, J 

= 7.5, 7.5, 1 Hz, 1H), 7.08 (ddd, J = 7.5, 7.5, 1 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 4.56 

(d, J = 15.5 Hz, 1H), 4.44 (d, J = 15.5 Hz, 1H), 2.60 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 177.5 (s), 163.2 (s), 141.1 (s), 130.9 (s), 130.1 (d), 

124.6 (d), 123.4 (d), 110.5 (d), 75.0 (t), 64.8 (s) 15.3 (q). 
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4.2.8.2   Enantioresolution 

Synthesis of diastereomeric amides 

N
O

S

N SCH3

O

Ph

NH

CH3

N
O

S

N SCH3

O

Ph

NH

CH3  
(+)-218 (+)-219  

(S)-(-)-1-Phenylethyl isocyanate (217, 50 mg, 48 µL, 0.34 mmol) and Et3N (32 

mg, 43 µL, 0.31 mmol) were added to a solution of (±)-spirobrassinin (27, 60 mg, 0.24 

mmol) in dry acetone (1.5 ml) were added. After stirring for 48 hours at room 

temperature, the reaction mixture was concentrated and the residue was submitted to 

column chromatography (CH2Cl2). The first fraction gave (+)-218 (34 mg, 36%) and 

the second fraction afforded (+)-219, contaminated with (+)-218. Repeated 

chromatography of the second fraction afforded pure (+)-219 (19 mg, 20%) (Suchy et 

al., 2001). 

(+)-N1-[(1S)-1-Phenylethyl]-1-[(R)-spirobrassinin]carboxamide [(+)-218]  

[α]23
D = +64 (c 2.54, CH2Cl2) 

1H NMR (500 MHz, CDCl3): δ 8.81 (br d, J = 7 Hz, 1H, NH), 8.23 (d, J = 8 Hz, 1H), 

7.37 (m, 6H), 7.29 (m, 1H), 7.24 (dd, J = 7.5, 7.5 Hz, 1H), 5.13 (quintet, J = 7 Hz, 1H), 

4.72 (d, J = 15 Hz, 1H), 4.52 (d, J = 15 Hz, 1H), 2.72 (s, 3H), 1.60 (d, J = 7 Hz, 3H). 

13C NMR (125.8 MHz, CDCl3): 179.2 (s), 164.0 (s), 150.6 (s), 143.0 (s), 139.1 (s), 

130.2 (d), 128.7 (d), 128.3 (s), 127.4 (d), 126.1 (d), 125.6 (d), 123.7 (d), 116.7 (d), 75.5 

(t), 65.5 (s), 50.0 (d), 22.7 (q), 15.7 (q). 

HRMS-EI m/z: measured 397.0916 ([M]+, calcd. 397.0919 for C20H19N3O2S2).  
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MS-EI m/z (% relative intensity): 397 ([M]+, 8), 250 (100), 249 (23), 202 (17), 177 

(27), 145 (21), 132 (13), 105 (34).  

(+)-N1-[(1S)-1-Phenylethyl]-1-[(S)-spirobrassinin]carboxamide [(+)-219]    

[α]25
D = +19 (c 2.97, CH2Cl2) 

1H NMR (500 MHz, CDCl3) δ 8.79 (br d, J = 7 Hz, 1H, NH), 8.24 (d, J = 8 Hz, 1H), 

7.37 (m, 6H), 7.29 (m, 1H), 7.24 (dd, J = 7.5, 7.5 Hz, 1H), 5.13 (quintet, J = 7 Hz, 1H), 

4.76 (d, J = 15 Hz, 1H), 4.56 (d, J = 15 Hz, 1H), 2.74 (s, 3H), 1.60 (d, J= 7 Hz, 3H). 

13C NMR (125.8 MHz, CDCl3): 179.2 (s), 164.1 (s), 150.6 (s), 142.9 (s), 139.3 (s), 

130.2 (d), 128.9 (d), 128.4 (s), 127.4 (d), 126.1 (d), 125.6 (d), 123.7 (d), 116.6 (d), 75.5 

(t), 65.5 (s), 50.2 (d), 22.7 (q), 15.7 (q). 

HRMS-EI m/z: measured 397.0908 ([M]+, calcd. 397.0919 for C20H19N3O2S2).  

MS-EI m/z (% relative intensity): 397 ([M]+, 9), 250 (100), 249 (27), 202 (18), 177 

(31), 148 (20), 144 (19), 132 (13), 105 (34).  

Synthesis of enantiomers of spirobrassinin [(R)-(+)-27, (S)-(-)-27] 

 

N
H

O
S

N SCH3

N
H

O
S

N SCH3

 
(R)-(+)-27 (S)-(-)-27 

 

To a stirred solution of (+)-218 or (+)-219 (65 mg, 0.16 mmol) in dry CH3OH 

(4 ml) was added a solution of CH3ONa (89 mg, 1.7 mmol) in dry CH3OH (2 ml) 

within 5 min at -10 °C. After being stirred at the same temperature for 40 min, the 

reaction mixture was diluted with water (1 ml) and neutralized with 1 N HCl. After 

removal of CH3OH, the product was extracted with EtOAc, and the extract was dried 
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over Na2SO4 and was concentrated in vacuo. Purification of the residue by flash 

chromatography (CH2Cl2/CH3OH 99:1) afforded (R)-(+)-27 [15 mg, 37% from (+)-

218] and (S)-(-)-27 [12 mg, 30% from (+)-219] (Suchy et al., 2001).  

(R)-(+)-Spirobrassinin [(R)-(+)-27]:  [α]24
D +83 (c 0.38, CH2Cl2), 1H NMR, UV and 

HPLC retention time identical with those of synthetic (±)-spirobrassinin. 

(S)-(-)-Spirobrassinin [(S)-(-)-27]: [α]24
D  -84 (c 0.36, CH2Cl2); 1H NMR, UV and 

HPLC retention time were identical with those of synthetic (±)-spirobrassinin. 

 

4.2.9 1-Methylspirobrassinin (216) 

N
CH3

O
S

N SCH3

 
216 

 

Sodium hydride (60% suspension in mineral oil, 30.6 mg, 1.28 mmol) was 

added to a solution of spirobrassinin (27) (127 mg, 0.51 mmol) in THF (10 mL) at 0º C 

under argon atmosphere. The reaction mixture was allowed to stir for 10 minutes, 

methyl iodide (49 µl, 0.77 mmol) was added and stirring at room temperature was 

continued for 4 hours. Ice cold water was added to quench the reaction, the reaction 

mixture was extracted with EtOAc (3×30 ml) and the combined extracts were dried and 

concentrated. The crude reaction mixture was subjected to column chromatography on 

silica gel (CH2Cl2/CH3OH, 99:1) to yield 1-methylspirobrassinin (216) (125 mg, 93%) 

(Pedras and Hossain, 2006). 

HPLC tR = 15.9 min.  
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1H NMR (500 MHz, CD3CN): δ 7.38-7.36 (m, 2H), 7.12 (ddd, J = 7.5, 7.5, 1 Hz, 1H), 

6.95 (d, J = 7.5 Hz, 1H), 4.53 (d, J = 15.5 Hz, 1H), 4.44 (d, J = 15.5 Hz, 1H), 3.17 (s, 

3H).  

13C NMR (125.8 MHz, CD3CN): δ 176.0 (s), 163.2 (s), 143.5 (s), 130.5 (s), 130.1 (d), 

124.1 (d), 123.6 (d), 109.2 (d), 75.0 (t), 64.5 (s), 26.7 (q), 15.3 (q).  

HRMS-EI m/z: measured 264.0389 ([M]+, calcd. 264.0389 for C12H12N2OS2).  

MS-EI m/z (% relative intensity): 264 ([M]+, 67), 217 (82), 191 (100), 159 (22), 158 

(21), 130 (41), 87 (41), 71 (32).  

FTIR νmax (KBr): 2934, 2855, 1737, 1620, 1581, 1465, 1086, 945, 743 cm-1. 

4.2.10 1-Methoxyspirobrassinin (28) 

N
OCH3

O
S

N SCH3

 
28 

 

To a stirred solution of 1-methoxybrassinin (11) (62.5 mg, 0.24 mmol) in a 

mixture of dioxane/water (95:5, 5.4 ml) was added a freshly prepared solution of 

dioxane dibromide (DDB, 2.2 ml, 0.25 mmol; the stock solution was obtained by 

dissolving of 26.7 µl of bromine in 4 ml of dioxane). The reaction mixture was stirred 

for 10 minutes at room temperature, then Et3N (35 µl, 0.25 mmol) was added. The 

mixture was poured into water (30 ml), extracted with diethyl ether (2 × 30 ml), and the 

extracts were dried over Na2SO4. The residue obtained after evaporation of the solvent 

was subjected to flash column chromatography on silica gel (EtOAc/hexane, 1:5) to 

obtain 1-methoxyspirobrassinol (29, 67 mg) in 86% yield. To a stirred solution of 1-

methoxyspirobrassinol (29) (57 mg, 0.2 mmol) in 98% acetic acid (4.8 ml) was added 
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CrO3 (22 mg, 0.22 mmol). After stirring for 1 hour at room temperature, the reaction 

mixture was poured into water and extracted with diethyl ether. The extracts were dried 

over Na2SO4 and concentrated. The residue was subjected to PTLC on silica gel 

(CH2Cl2/MeOH, 98/2) to afford 1-methoxyspirobrassinin (28, 17 mg, 30%) (Kutschy et 

al., 2002).  

HPLC tR = 16.9 min 

1H NMR (500 MHz, CD3CN) δ 7.44-7.39 (m, 2H), 7.17 (dd, J = 7.5, 7.5 Hz, 1H), 7.06 

(d, J = 7.5 Hz, 1H), 4.59 (d, J = 15.5 Hz, 1H), 4.46 (d, J = 15.5 Hz, 1H), 3.99 (s, 3H), 

2.61 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 171.0 (s), 163.2 (s), 140.0 (s), 130.3 (d), 126.9 (s), 

124.6 (d), 124.3 (d), 108.2 (d), 74.6 (t), 72.6 (s), 63.9 (q), 15.3 (q). 

HRMS-EI m/z: measured 280.0336 ([M]+, calcd. 280.0339 for C12H12N2O2S2).  

MS-EI m/z (% relative intensity): 280 ([M]+, 100), 252 (9), 249 (13), 234 (15), 221 

(25), 176 (52), 148 (50), 87 (37).  

FTIR νmax (KBr): 2925, 2854, 1737, 1618, 1584, 1465, 1086, 945, 747 cm-1. 
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4.2.11 Camalexin (31) 

N
H

NS

 
31 

 

Methyl iodide (295 µL, 4.75 mmol) was added slowly by injection at room 

temperature under argon atmosphere to magnesium turning (77 mg, 3.2 mmol) in dry 

ether (15 ml). After all magnesium had reacted, the ether was distilled off and dry 

benzene (7 ml) was added. A solution of indole (211) (200 mg, 1.7 mmol) in benzene 

(1 ml) was added to the solution of methyl magnesium iodide in benzene and stirred for 

15 minutes after which 2-bromothiazole was added. After refluxing at 90 ºC for 24 h, 

the reaction mixture was poured into 20 ml of saturated NH4Cl solution and was 

extracted with EtOAc (2 × 20 ml). The EtOAc extract was dried over Na2SO4, 

concentrated under reduced pressure and the residue was chromatographed first with 

normal phase column using silica gel (EtOAc/hexane, 20/80) and then with reverse 

phase column using C18 (H2O/CH3CN, 60/40) to yield camalexin (31, 191 mg, 60%) as 

an off white solid (Ayer et al., 1992). 

1H NMR (500 MHz, CD3CN): δ 9.79 (br, s, D2O exchangeable, 1H), 8.24 (dd, J = 9, 

2.5 Hz, 1H) 7.91 (d, J = 3 Hz, 1H), 7.77 (d, J = 3.5 Hz, 1H), 7.52 (dd, J = 9, 2.5 Hz, 

1H), 7.33 (d, J = 3.5 Hz, 1H), 7.35 (m, 2H). 

13C NMR (125.8 MHz, CD3CN): δ 166.1 (s), 145.5 (d), 140.0 (s), 128.9 (d), 127.5 (s), 

125.6 (d), 124.1 (d), 123.5 (d), 118.9 (d), 115.0 (d), 114.3 (s). 

HRMS-EI m/z: measured 200.0408 ([M]+, calcd. 200.0408 for C11H8N2S).  

MS-EI m/z (% relative intensity): 200 ([M]+, 100), 142 (20), 56 (18). 
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4.2.12 5-Fluorocamalexin (244) 

N
H

NS

F

 
244 

 

This compound was prepared as described above for camalexin (31) using 5-

fluoroindole (257) (100 mg, 0.74 mmol), Et2O (10 ml), magnesium turning (31 mg, 1.3 

mmol), CH3I (120 µl, 1.9 mmol), 2-bromothiazole (80 µl, 0.89 mmol) and benzene (6 

ml) yielding 5-fluorocamalexin (244, 70 mg, 57% based on recovered starting material) 

after purification by normal (silica gel, EtOAC/hexane, 20/80) and reverse phase (C18, 

CH3CN/H2O, 35/65) column chromatography as an off white solid (Pedras and Liu, 

2004). 

1H NMR (500 MHz, CDCl3): δ 7.99 (s, 1H), 7.81 (dd, J = 9, 2.5 Hz, 1H), 7.80 (d, J = 

3.5 Hz, 1H), 7.45 (dd, J = 9, 4.5 Hz, 1H), 7.44 (d, J = 3.5 Hz, 1H), 7.02 (ddd, J = 9, 9, 

2.5 Hz, 1H). 

13C NMR (125.8 MHz, CDCl3): δ 164.4 (s), 159.0 (d, 1JC-F = 235 Hz), 142.0 (s), 134.0 

(s), 127.5 (s), 125.2 (d, 3JC-F = 10 Hz), 116.1 (s), 113.1 (d, 3JC-F = 10 Hz), 111.3 (d, 4JC-F 

= 5 Hz), 111.0 (d, 2JC-F = 26 Hz), 104.9 (d, 2JC-F = 25 Hz). 

HRMS-EI m/z: measured 218.0312 ([M]+, calcd. 218.0314 for C11H7N2FS).  

MS-EI m/z (% relative intensity): 218 ([M]+, 100), 58 (20). 
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4.2.13 6-Fluorocamalexin (75) 

N
H

NS

F  
75 

 

This compound was prepared as described above for camalexin (31) using 6-

fluoroindole (258) (100 mg, 0.74 mmol), Et2O (10 ml), magnesium turning (31 mg, 1.3 

mmol), CH3I (120 µl, 1.9 mmol), 2-bromothiazole (80 µl, 0.89 mmol) and benzene (6 

ml) yielding 6-fluorocamalexin (75, 75 mg, 60%, based on recovered starting material) 

after purification by normal (silica gel, EtOAC/hexane, 20/80) and reverse phase (C18, 

CH3CN/H2O, 35/65) column chromatography as an off white solid (Pedras and 

Ahiahonu, 2002). 

1H NMR (500 MHz, CD3CN): δ 9.75 (br, s, D2O exchangeable, 1H), 8.25 (dd, J = 9, 

5.5 Hz, 1H) 7.90 (s, 1H), 7.77 (d, J = 3.5 Hz, 1H), 7.34 (d, J = 3.5 Hz, 1H), 7.23 (dd, J 

= 10, 2.5 Hz, 1H), 7.04 (ddd, J = 10, 9, 2.5 Hz, 1H). 

HRMS-EI m/z: measured 218.0313 ([M]+, calcd. 218.0314 for C11H7N2FS).  

MS-EI m/z (% relative intensity): 218 ([M]+, 100), 58 (20). 
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4.3 Synthesis of potential brassinin detoxification inhibitors 

4.3.1 Methyl (indol-2-yl)methyldithiocarbamate (240) 
 

N
H

NH
S

SCH3

 
240 

 

To a solution of indole-2-carboxylic acid (251, 1.6 g, 10 mmol) in EtOH (15 

ml) was added H2SO4 (0.5 ml). The mixture was refluxed at 115 °C for 20 hours with 

stirring, cooled to room temperature and diluted with CH2Cl2 (30 ml). The reaction 

mixture was then washed with 10% Na2CO3 (2×20 ml) and water. The organic layer 

was dried over Na2SO4 and concentrated. The residue was subjected to FCC on silica 

gel (Acetone-hexane, 30/70) to afford ethyl indole-2-carboxylate (252, 1.6 g) in 85% 

yield.  

The carboxylate 252 (959 mg, 5.1 mmol) was dissolved in dry THF (Ar 

atmosphere, 17 ml) and the solution was cooled to 0 °C with stirring. LiAlH4 (230 mg, 

6.1 mmol) was then added in small portions during 10 minutes and stirring was 

continued for further 1 hour at 0 °C. Reaction was quenched with 5 N NaOH (1 ml) and 

the precipitate was filtered off through a celite pad. The celite pad was washed with 

THF, the filtrate was dried (Na2SO4) and concentrated under reduced pressure to yield 

indole-2-methanol (253, 790 mg). The crude alcohol 253 (774 mg, 5.3 mmol) was 

dissolved in CH2Cl2 (20 ml), MnO2 was added and the mixture was stirred for 18 h at 

room temperature. MnO2 was filtered off, the filter cake was washed with acetone and 

the filtrate was concentrated under reduced pressure to yield indole-2-carboxaldehyde 

(254, 620 mg, 81%) as a brown solid (Meyer and Kruse, 1984). 
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To a solution of indole-2-carboxaldehyde (254, 550 mg, 3.8 mmol) in EtOH (10 

ml), a solution of NH2OH.HCl (792 mg, 11.4 mmol) and Na2CO3 (645 mg, 6.1 mmol) 

in water (5 ml) was added. After refluxing for 1 hour at 95 °C, EtOH was removed 

under reduced pressure, water (5 ml) was added and the resulting precipitate was 

filtered off and air dried to afford indole-2-carboxaldehyde oxime (255, 601 mg) in 

99% yield.  

The oxime (215 mg, 1.3 mmol) and NiCl2.6H2O (319 mg, 1.3 mmol) were 

dissolved in MeOH (20 ml). NaBH4 (320 mg, 8.5 mmol) was added and the mixture 

was stirred for 5 min. at room temperature. The black precipitate was filtered off, 

filtrate was concentrated (ca. 25%) and then poured into 30 ml of 1% aqueous NH4OH. 

The mixture was extracted with EtOAc (2×30 ml), the combined organic extracts were 

dried over Na2SO4 and concentrated. The residue was dissolved in pyridine (0.5 ml) 

and Et3N (208 µl, 1.5 mmol), cooled to 0˚ C and treated with CS2 (180 µl, 3 mmol). 

After stirring for 1 hour at 0 ˚C, CH3I (140 µl, 2.3 mmol) was added and the reaction 

mixture was kept at 3 ˚C for 15 hours. The reaction mixture was poured into 1.5 M cold 

H2SO4 (15 ml) and immediately extracted with Et2O (2 x 15 ml). The extracts were 

dried over Na2SO4 and concentrated under reduced pressure. The residue was subjected 

to FCC on silica gel [gradient solvent, CH2Cl2-hexane (30:70, 40:60 & 50:50)] to give 

methyl (indol-2-yl)methyldithiocarbamate (240) (138 mg, 43% from oxime 255) 

(Pedras et al., 2006a). 

Mp = 83-84 ˚C 

HPLC tR = 21.3 min 

1H NMR (500 MHz, CDCl3): δ 8.94 (br, s, D2O exchangeable, 1H), 7.59 (d, J = 8 Hz, 

1H), 7.36 (d, J = 8 Hz, 2H, 1H D2O exchangeable), 7.21 (dd, J = 8, 8 Hz, 1H), 7.12 

(dd, J = 8, 8 Hz, 1H), 6.43 (s, 1H), 5.09 (d, J = 5.5 Hz, 2H), 2.69 (s, 3H).. 
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13C NMR (125.8 MHz, CDCl3): δ 201.6 (s), 136.6 (s), 134.8 (s), 127.9 (s), 122.9 (d), 

120.9 (d), 120.4 (d), 111.6 (d), 102.5 (d), 44.2 (t), 18.9 (q). 

HRMS-EI m/z: measured 236.0445 ([M]+, calcd. 236.0442 for C11H12N2S2).  

MS-EI m/z (% relative intensity): 236 ([M]+, 20), 188 (21), 163 (13), 130 (100).  

FTIR νmax (KBr): 3387, 3312, 2917, 1499, 1294, 1067, 919, 749 cm-1. 

 

4.3.2 Methyl (benzofuran-3-yl)methyldithiocarbamate (236) 

4.3.2.1  Synthesis of ethyl (2-acetylphenoxy)acetate (260) 

O

O

O

O  260 
 

To a solution of 2′-hydroxyacetophenone (1.1 g, 8.0 mmol) in acetone (7 ml) 

were added anhydrous K2CO3 (1.2 g, 8.8 mmol) and ethyl chloroacetate (1.3 ml, 12 

mmol). The mixture was refluxed at 65 ˚C for 56 hours. The formed precipitate was 

filtered off and washed with acetone. The filtrate was concentrated and the residue was 

subjected to FCC on silica gel (CH2Cl2, 100%) to afford ethyl (2-acetylphenoxy)acetate 

(260, 1.67 g, 92%) (Nielek and Lesiak, 1982).  

1H NMR (500 MHz, CDCl3): δ 7.76 (dd, J = 7.5, 1.5 Hz,1H), 7.44 (ddd, J = 7.5, 7.5, 

1.5 Hz, 1H), 7.05 (dd, J = 7.5, 7.5 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 4.73 (s, 2H), 4.28 

(q, J = 7 Hz, 2H), 2.72 (s, 3H), 1.31 (t, J = 7 Hz, 3H). 

13C NMR (125.8 MHz, CDCl3): δ 200.1 (s), 168.5 (s), 157.3 (s), 133.9 (d), 131.1 (d), 

129.3 (s), 122.1 (d), 112.6 (d), 65.9 (t), 61.9 (t), 32.4 (q), 14.5 (q). 

HRMS-EI m/z: measured 222.0888 ([M]+, calcd. 222.0892 for C12H14O4).  
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MS-EI m/z (% relative intensity): 222 ([M]+, 31), 207 (29), 151 (63), 149 (100), 121 

(68), 105 (34), 91 (34).  

FTIR νmax (KBr): 3107, 3073, 2978, 2929, 1757, 1668, 1597, 1488, 1410, 1302, 1214, 

1167, 1082, 968, 761 cm-1. 

4.3.2.2  Synthesis of 2-acetylphenoxyacetic acid (261) 

O

O

OH

O  261 

 

To a vigorously stirred solution of Na2CO3 (847 mg, 8.0 mmol) in water (12 

ml), ethyl (2-acetylphenoxy)acetate (260, 1.36 g, 6.1 mmol) was added and the mixture 

was refluxed at 100 ˚C. After 1 hour refluxing, the reaction mixture was cooled to 0 ˚C 

and was acidified with concentrated HCl. The ppt was filtered off, washed with ice cold 

water and crystallized from hot water to yield 2-acetylphenoxyacetic acid (261, 1.1 g, 

92 %) (Nielek and Lesiak, 1982). 

Mp = 114-115 ˚C 

1H NMR (500 MHz, CDCl3): δ 7.81 (dd, J = 8, 1.5 Hz,1H), 7.55 (ddd, J = 8, 8, 1.5 Hz, 

1H), 7.15 (dd, J = 8, 8 Hz, 1H), 6.97 (d, J = 8 Hz, 1H), 4.79 (s, 2H), 2.70 (s, 3H). 

13C NMR (125.8 MHz, CDCl3): δ 200.9 (s), 171.2 (s), 157.2 (s), 135.0 (d), 131.7 (d), 

127.9 (s), 122.9 (d), 115.0 (d), 67.2 (t), 30.5 (q). 

HRMS-EI m/z: measured 194.0581 ([M]+, calcd. 194.0579 for C10H10O4).  

MS-EI m/z (% relative intensity): 194 ([M]+, 5), 179 (8), 151 (22), 150 (14), 135 (37), 

121 (100), 105 (14).  
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FTIR νmax (KBr): 3088, 1736, 1661, 1597, 1485, 1452, 1422, 1359, 1299, 1238, 1168, 

1131, 758 cm-1. 

 

4.3.2.3  Synthesis of 3-methylbenzofuran (262) 

O

CH3

 
262 

 

A mixture of 2-acetylphenoxyacetic acid (261, 1 g, 5.2 mmol), anhydrous 

NaOAc (1.8 g, 22.4 mmol) and Ac2O (4 ml, 36.4 mmol) was refluxed at 160 ˚C for 4 

hours. After cooling to room temperature, the mixture was poured into water (20 ml) 

and extracted with Et2O (2×20 ml). The combined ether extracts were washed with 

10% Na2CO3 solution (2×15 ml), dried over Na2SO4 and concentrated under reduced 

pressure. The residue was subjected to FCC on silica gel (Et2O-hexane, 1:9) to afford 

3-methylbenzofuran (262, 443 mg, 65%) (Nielek and Lesiak, 1982). 

1H NMR (500 MHz, CDCl3): δ 7.61 (dd, J = 8, 1 Hz, 1H), 7.55 (d, J = 8 Hz, 1H), 7.48 

(d, J = 1 Hz, 1H), 7.39-7.32 (m, 2H), 2.32 (s, 3H). 

13C NMR (125.8 MHz, CDCl3): δ 155.7 (s), 141.8 (d), 129.5 (s), 124.5 (d), 122.7 (d), 

119.8 (d), 116.1 (s), 111.8 (d), 8.3 (q). 

HRMS-EI m/z: measured 132.0578 ([M]+, calcd. 132.0575 for C9H8O).  

MS-EI m/z (% relative intensity): 132 ([M]+, 94), 131 (100), 113 (8), 103 (11), 97 (12), 

85 (13), 83 (14).  

FTIR νmax (KBr): 3061, 2922, 2862, 1588, 1451, 1280, 1186, 1087, 855, 788, 742 cm-1. 

 

 

 184



4.3.2.4  Synthesis of benzofuran-3-carboxaldehyde (263) and benzofuran-3-

methanol (264) 

O

OH

O

CHO

 
263 264  

SeO2 (488 mg, 4.4 mmol) was added to a solution of 3-methylbenzofuran (262, 

288 mg, 2.2 mmol) in 1,4-dioxane (3 ml) and the mixture was refluxed at 105 ˚C for 48 

hours. Black precipitate was filtered off, washed with CH2Cl2 and the filtrate was 

concentrated under reduced pressure. The residue was subjected to FCC on silica gel 

eluted first with CH2Cl2-hexane, 3:7 and then with CH2Cl2, 100% to obtain benzofuran-

3-carboxaldehyde (263, 280 mg, 88%) and benzofuran-3-methanol (264, 28 mg, 8%) 

respectively (Zaidlewicz et al., 2001). 

Benzofuran-3-carboxaldehyde (263) 

1H NMR (500 MHz, CDCl3): δ 10.20 (s, 1H), 8.29 (s, 1H), 8.21 (dd, J = 7, 1.5 Hz, 1H), 

7.58 (dd, J = 7, 1.5 Hz, 1H), 7.45-7.39 (m, 2H). 

13C NMR (125.8 MHz, CDCl3): δ 185.1 (d), 156.4 (s), 155.7 (d), 126.7 (d), 125.3 (d), 

124.1 (s), 123.3 (s), 123.0 (d), 112.1 (d). 

HRMS-EI m/z: measured 146.0361 ([M]+, calcd. 146.0367 for C9H6O2).  

MS-EI m/z (% relative intensity): 146 ([M]+, 79), 145 (100), 89 (25).  

FTIR νmax (KBr): 3132, 3086, 2827, 2741, 1680, 1556, 1480, 1449, 1121, 1075, 857, 

785, 745 cm-1. 
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Benzofuran-3-methanol (264) 

1H NMR (500 MHz, CDCl3): δ 7.68 (d, 7.5 Hz, 1H), 7.62 (s, 1H), 7.51 (d, J = 8 Hz, 

1H), 7.34 (dd, 8, 7.5 Hz, 1H), 7.29 (dd, 8, 7.5 Hz, 1H), 4.84 (s, 2H), 1.89 (s, 1H D2O 

exchangeable). 

13C NMR (125.8 MHz, CDCl3): δ 156.02 (s), 142.7 (d), 127.1 (s), 125.0 (d), 123.2 (d), 

120.8 (s), 120.3 (d), 112.0 (d), 56.1 (d). 

HRMS-EI m/z: measured 148.0528 ([M]+, calcd. 148.0524 for C9H8O2).  

MS-EI m/z (% relative intensity): 148 ([M]+, 37), 147 (19), 132 (20), 131 (100), 103 

(13), 91 (22), 77 (13).  

FTIR νmax (KBr): 3355, 3116, 3060, 2933, 2875, 1586, 1451, 1279, 1186, 1099, 1008, 

856, 745 cm-1. 

4.3.2.5  Synthesis of benzofuran-3-carboxalde oxime (265) 

O

N
OH

 

265  

To a solution of benzofuran-3-carboxaldehyde (263, 285 mg, 1.95 mmol) in 

EtOH (24 ml) was added a solution of NH2OH.HCl (475 mg, 6.8 mmol) and Na2CO3 

(371 mg, 3.5 mmol) in water (9 ml) and the mixture was refluxed for 2 hours at 95 ˚C. 

EtOH was removed under reduced pressure, water (10 ml) was added and the mixture 

was extracted with Et2O (2×20 ml). The combined organic extracts were dried over 

Na2SO4, concentrated under reduced pressure to leave chromatographically pure 

benzofuran-3-carboxaldehyde oxime (265, 265 mg, 84%). 
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4.3.2.6  Synthesis of benzofuran-3-methanamine (266) 

O

NH2

 
266 

 

Na(CN)BH3 (788 mg, 12.5 mmol) and NH4OAc (1.06 g, 13.7 mmol) were 

added to a cold solution (0 ˚C) of benzofuran-3-carboxaldehyde oxime (265, 202 mg, 

1.25 mmol) in MeOH (1.5 ml). To this mixture, a neutralized (neutralization was 

carried out using 2 ml of 5N NaOH) solution of TiCl3 (30% wt in 2N HCl, 5 ml) was 

added. After stirring for 20 min at 0 ˚C, the reaction mixture was diluted with 1% 

aqueous NH4OH (50 ml) and extracted with EtOAc (2×50 ml). The combined organic 

extracts were dried over Na2SO4, concentrated under reduced pressure to yield 200 mg 

of crude benzofuran-3-methanamine (266). 

1H NMR (500 MHz, CD3CN): δ 7.69 (d, J = 7.5 Hz, 1H), 7.64 (s, 1H), 7.50 (d, J = 8 

Hz, 1H), 7.33 (dd, J = 8, 8 Hz, 1H), 7.27 (dd, J = 8, 7.5 Hz, 1H), 3.94 (s, 2H). 

13C NMR (125.8 MHz, CD3CN): δ 155.9 (s), 142.0 (d), 127.7 (s), 124.7 (d), 123.6 (s), 

122.7 (d), 120.4 (d), 111.5 (d), 36.2 (t). 

HRMS-EI m/z: measured 147.0683 ([M]+, calcd. 147.0684 for C9H9NO).  

MS-EI m/z (% relative intensity): 147 ([M]+, 36), 146 (35), 132 (16), 131 (100), 130 

(13).  

FTIR νmax (KBr): 3172, 3057, 2929, 2867, 1665, 1601, 1452, 1222, 1186, 1099, 856, 

746 cm-1. 
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4.3.2.7  Synthesis of methyl (benzofuran-3-yl)methyldithiocarbamate (236) 

 

O
S

NH
SCH3

 
236  

The crude amine (266, 200 mg, 1.4 mmol) was dissolved in pyridine (1 ml) and 

Et3N (390 µl, 2.8 mmol) and cooled to 0 ˚C. After adding CS2 (336 µl, 5.6 mmol), the 

mixture was stirred for 1 hour at 0 ˚C, CH3I (262 µl, 4.2 mmol) was added and the 

mixture was kept at 3 ˚C for 15 hour. The reaction mixture was poured into water (15 

ml) and extracted with Et2O (2×20 ml). The combined organic extracts were dried over 

Na2SO4 and concentrated under reduced pressure followed by addition of toluene (2×2 

ml) and concentration under reduced pressure. Finally, the residue was subjected to 

FCC on silica gel (CH2Cl2-hexane, 3:7 and 5:5) to yield 145 mg of methyl (benzofuran-

3-yl)methyldithiocarbamate (236) in 48% yield from the oxime (265). 

Mp = 79-81 ˚C 

HPLC tR = 24.3 min 

 1H NMR (500 MHz, CD3CN): δ 8.39 (br, s, 1H), 7.80 (s, 1H), 7.71 (d, J = 7.5 Hz, 1H), 

7.54 (d, J = 7.5 Hz, 1H), 7.37 (dd, J = 7.5, 7.5 Hz, 1H), 7.31 (dd, J = 7.5, 7.5 Hz, 1H), 

5.05 (d, J = 5 Hz, 2H), 2.59 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 199.5 (s), 155.6 (s), 144.5 (d), 127.3 (s), 125.1 (d), 

123.3 (d), 120.4 (d), 116.9 (s), 111.8 (d), 40.4 (t), 17.7 (q). 

HRMS-EI m/z: measured 237.0275 ([M]+, calcd. 237.0282 for C11H11NOS2).  

MS-EI m/z (% relative intensity): 237 ([M]+, 10), 189 (16), 131 (100).  
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FTIR νmax (KBr): 3339, 3232, 1498, 1451, 1379, 1322, 1305, 1185, 1101, 923, 856, 746 

cm-1. 

4.3.3 Methyl (benzofuran-2-yl)methyldithiocarbamate (241) 

4.3.3.1  Synthesis of benzofuran-2-carboxaldehyde (268) 

O

H

O  
268 

 

To a mixture of benzofuran (267, 1.02 g, 8.6 mmol) and DMF (4.0 ml, 51.8 

mmol) was added POCl3 (4.8 ml, 51.8 mmol) in small portions at room temperature. 

The mixture was refluxed at 95 ˚C for 16 hours, poured into ice cold water (50 ml) and 

basified with 5N NaOH (ca. 30 ml). The reaction mixture was extracted with Et2O 

(2×100 ml), the combined extracts were washed with brine and water and dried over 

Na2SO4. After evaporation of the solvent, the residue was subjected to FCC on silica 

gel (CH2Cl2-hexane, 1:1) to afford benzofuran-2-carboxaldehyde (268, 987 mg) in 78% 

yield (Jones and Stanforth, 1997; Suu et al., 1962). 

1H NMR (500 MHz, CDCl3): δ 9.89 (s, 1H), 7.77 (d, J = 8 Hz, 1H), 7.62 (d, J = 8 Hz, 

1H), 7.59 (s, 1H), 7.54 (ddd, J = 8, 8, 1 Hz, 1H), 7.36 (dd, J = 8, 8 Hz, 1H). 

13C NMR (125.8 MHz, CDCl3): δ 180.1 (d), 156.7 (s), 153.2 (s), 129.5 (d), 127.1 (s), 

124.6 (d), 124.0 (d), 117.8 (s), 113.1 (d). 

HRMS-EI m/z: measured 146.0370 ([M]+, calcd. 146.0368 for C9H6O2).  

MS-EI m/z (% relative intensity): 146 ([M]+, 98), 145 (100), 118 (8), 89 (34).  

FTIR νmax (KBr): 3122, 3091, 2855, 1681, 1610, 1556, 1448, 1328, 1288, 1120, 948, 

884, 832, 752 cm-1. 
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4.3.3.2  Synthesis of benzofuran-2-carboxaldehyde oxime (269) 

O

N

HO

 
269 

 

To a solution of benzofuran-2-carboxaldehyde (268, 843 mg, 5.8 mmol) in 

EtOH (30 ml) was added a solution of NH2OH.HCl (1.4 g, 20.2 mmol) and Na2CO3 

(1.1 g, 10.4 mmol) in water (10 ml) and the mixture was refluxed for 2 hours at 95 ˚C. 

EtOH was removed under reduced pressure, the precipitate formed (in water) was 

filtered off, washed with ice cold water and air dried to yield chromatographically pure 

benzofuran-2-carboxaldehyde oxime (269, 870 mg) in 93% yield. 

4.3.3.3  Synthesis of benzofuran-2-methanamine (270) 

O

NH2

 

270  

Na(CN)BH3 (788 mg, 12.5 mmol) and NH4OAc (1.06 g, 13.7 mmol) were 

added to a cold solution (0 ˚C) of benzofuran-2-carboxaldehyde oxime (269, 202 mg, 

1.25 mmol) in MeOH (1.5 ml). To this mixture, a neutralized (neutralization was 

carried out using 2 ml of 5N NaOH) solution of TiCl3 (30% wt in 2N HCl, 5 ml) was 

added. After stirring for 30 min at 0 ˚C, the reaction mixture was basified with 5N 

NaOH (~3 ml), diluted with 1% aqueous NH4OH (50 ml) and extracted with EtOAc 

(2×50 ml). The combined organic extracts were dried over Na2SO4 and concentrated 

under reduced pressure to yield 244 mg of crude benzofuran-2-methanamine (270) as 

colorless oil. 

1H NMR (500 MHz, CD3CN): δ 7.57 (d, J = 7.5 Hz, 1H), 7.47 (d, J = 8 Hz, 1H), 7.28-

7.21 (m, 2H), 6.62 (s, 1H), 3.91 (s, 2H). 
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13C NMR (125.8 MHz, CD3CN): δ 161.4 (s), 155.1 (s), 129.2 (s), 123.9 (d), 123.0 (d), 

121.1 (d), 111.0 (d), 101.8 (d), 39.7 (t). 

HRMS-EI m/z: measured 147.0682 ([M]+, calcd. 147.0684 for C9H9NO).  

MS-EI m/z (% relative intensity): 147 ([M]+, 28), 146 (52), 132 (11), 131 (100), 130 

(34).  

FTIR νmax (KBr): 3379, 3286, 3055, 2912, 2849, 1602, 1453, 1252, 1175, 945, 876, 801 

cm-1. 

4.3.3.4  Synthesis of methyl (benzofuran-2-yl)methyldithiocarbamate (241) 

O

NH
S

SCH3

 
241  

CS2 (408 µl, 6.8 mmol) was added to a cold (0 ˚C) solution of crude 

benzofuran-2-methanamine (270, 244 mg, 1.7 mmol) and Et3N (463 µl, 3.3 mmol) in 

pyridine (1 ml). After stirring for 1 hour at 0 ˚C, CH3I (318 µl, 5.1 mmol) was added 

and the mixture was kept at 3 ˚C for 15 hours. The reaction mixture was poured into 

water (20 ml) and extracted with Et2O (2×20 ml). The combined organic extracts were 

dried over Na2SO4 and concentrated under reduced pressure. Toluene (2×2 ml) was 

added to the residue to make an azeotropic mixture with pyridine and a rotary 

evaporator was used to remove them. Finally, the residue was subjected to FCC on 

silica gel (CH2Cl2-hexane, 3:7 and 5:5) to afford methyl (benzofuran-2-

yl)methyldithiocarbamate (241, 167 mg, 56% yield from oxime 269) as colorless oil. 

HPLC tR = 24.7 min 
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 1H NMR (500 MHz, CD3CN): δ 8.48 (br, s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 

7.5 Hz, 1H), 7.32 (dd, J = 7.5, 7.5 Hz, 1H), 7.26 (dd, J = 7.5, 7.5 Hz, 1H), 6.77 (s, 1H), 

5.05 (d, J = 5 Hz, 2H), 2.61 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 200.2 (s), 155.2 (s), 153.6 (s), 128.7 (s), 124.7 (d), 

123.4 (d), 121.5 (d), 111.3 (d), 105.4 (d), 43.8 (t), 17.8 (q). 

HRMS-EI m/z: measured 237.0287 ([M]+, calcd. 237.0282 for C11H11NOS2).  

MS-EI m/z (% relative intensity): 237 ([M]+, 28), 189 (10), 132 (10), 131 (100), 77 

(14).  

FTIR νmax (KBr): 3337, 3239, 2993, 2917, 1497, 1452, 1303, 1253, 1175, 1085, 932, 

750 cm-1. 

 

4.3.4 Methyl (thianaphthen-3-yl)methyldithiocarbamate (237) 

4.3.4.1  Synthesis of thianaphthene-3-carboxaldehyde (272) 

S

CHO

 
272 

 

To a solution of 3-bromothianaphthene (271, 218 mg, 1.01 mmol) in dry Et2O 

(4 ml), a solution of t-BuLi in pentane (1.30 M, 1.57 ml, 2.02 mmol) was added drop 

wise at -78 ºC under argon atmosphere. After stirring the reaction mixture at  -78 ºC for 

30 min., dry DMF (118 µL, 1.53 mmol) was added and the mixture was stirred for 1.5 

hour at room temperature. Water (10 ml) was added to quench the reaction and the 

mixture was extracted with Et2O (2 × 15 ml).  After drying (Na2SO4) and evaporation 

of solvent, the residue was subjected to FCC on silica gel (CH2Cl2-hexane; 3:7) to yield 

thianaphthene-3-carboxaldehyde (272, 122 mg) in 73% yield as white solid. 
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1H NMR (500 MHz, CDCl3): δ 10.17 (s, 1H), 8.70 (d, J = 8 Hz, 1H), 8.34 (s, 1H), 8.90 

(d, J = 8 Hz, 1H), 7.54 (dd, J = 8, 8 Hz, 1H), 7.48 (dd, J = 8, 8 Hz, 1H). 

13C NMR (125.8 MHz, CD3CN): δ 185.7 (d), 143.4 (d), 140.9 (s), 136.9 (s), 135.6 (s), 

126.6 (d), 126.5 (d), 125.2 (d), 122.8 (d). 

HRMS-EI m/z: measured 162.0137 ([M]+, calcd. 162.0139 for C9H6OS).  

MS-EI m/z (% relative intensity): 162 ([M]+, 100), 161 (99), 134 (16), 133 (22), 89 

(26).  

FTIR νmax (KBr): 3084, 2818, 2719, 1675, 1500, 1462, 1424, 1385, 1136, 1098, 857, 

758 cm-1. 

4.3.4.2  Synthesis of thianaphthene-3-carboxaldehyde oxime (273) 

S

N
OH

 

273  

An aqueous solution (2 ml) of NH2OH.HCl (186 mg, 2.7 mmol) and Na2CO3 

(170 mg, 1.6 mmol) was added to a solution of thianaphthene-3-carboxaldehyde (272) 

(219 mg, 1.34 mmol) in EtOH (6 ml). After stirring at 90º C for 2 hours, EtOH was 

removed, water (10 ml) was added and the mixture was extracted with CH2Cl2 (2×15 

ml). The organic phase was dried over Na2SO4 and concentrated to dryness. The 

residue was subjected to FCC on silica gel (CH2Cl2/hexane; 3:7) to afford 

thianaphthene-3-carboxaldehyde oxime (mixture of E and Z isomer, 220 mg, 93%) as 

white solid. 
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4.3.4.3  Synthesis of thianaphthene-3-methanamine (274) 

S

NH2

 
274 

 

Sodium cyanoborohydride (637 mg, 10.1 mmol) and NH4OAc (856 mg, 11.1 

mmol) were added to a solution of thianaphthene-3-carboxaldehyde oxime (273, 180 

mg, 1.02 mmol) in MeOH (1.5 ml) at 0 ºC. To this mixture a neutralized (neutralization 

was carried out with 5N NaOH, 1.64 ml) solution of TiCl3 30% wt in 2N HCl (4.1 ml, 

8.08 mmol) was added. After stirring for 10 min at 0 ºC, the reaction mixture was 

diluted with 1% NH4OH (40 ml) and extracted with EtOAc (2 × 50 ml). The organic 

phase was dried over Na2SO4 and concentrated to dryness to yield 264 mg of crude 

thianaphthene-3-methanamine (274) as colorless oil. 

1H NMR (500 MHz, CD3CN): δ 7.93 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8 Hz, 1H), 7.44-

7.37 (m, 3H), 4.07 (s, 2H). 

13C NMR (125.8 MHz, CD3CN): δ 141.0 (s), 139.5 (s), 138.5 (s), 124.7 (d), 124.3 (d), 

123.1 (d), 122.2 (d), 122.0 (d), 40.4 (t). 

HRMS-EI m/z: measured 163.0457 ([M]+, calcd. 163.0456 for C9H9NS).  

MS-EI m/z (% relative intensity): 163 ([M]+, 100), 162 (80), 149 (30), 147 (93), 135 

(57), 134 (28), 91 (26).  

FTIR νmax (KBr): 3372, 3287, 3057, 2912, 2851, 1589, 1459, 1427, 1255, 825 cm-1. 
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4.3.4.4  Synthesis of methy (thianaphthen-3-yl)methyldithiocarbamate (237) 

S
S

NH
SCH3

 
237 

 

To a solution of crude thianaphthene-3-methanamine (274, 264 mg, 1.6 mmol) 

in pyridine (1 ml) were added Et3N (448 µl, 3.2 mmol) and CS2 (288 µl, 4.8 mmol) at 0 

ºC. After 1 hour of stirring at 0 ºC, CH3I (299 µl, 4.8 mmol) was added and the reaction 

mixture was kept at 3 ºC for 16 hours. The mixture was poured into cold 1.5 M H2SO4 

(30 ml), extracted with Et2O (2 × 30 ml). The combined organic extracts were dried 

over Na2SO4 and concentrated to dryness to yield residue. Finally pure methyl 

(thianaphthen-3-yl)methyldithiocarbamate (237,184 mg, 71% yield from oxime 273) 

was obtained after fractionation by FCC (silica gel, CH2Cl2/hexane, 40:60 & 50:50). 

1H NMR (500 MHz, CD3CN): δ 8.42 (br, s, D2O exchangeable, 1H), 7.96 (d, J = 7.5 

Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.54 (s, 1H), 7.47-7.40 (m, 2H), 5.16 (d, J = 5 Hz, 

2H), 2.60 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 199.5 (s), 140.7 (s), 138.4 (s), 132.0 (s), 125.9 (d), 

125.1 (d), 124.8 (d), 123.3 (d), 122.2 (d), 44.6 (t), 17.7 (q).  

HRMS-EI m/z: measured 253.0063 ([M]+, calcd. 253.0054 for C11H11NS3).  

MS-EI m/z (relative intensity): 253 ([M]+, 15), 205 (18), 163 (18), 147 (100). 

FTIR νmax (KBr): 3335, 3228, 2916, 1495, 1427, 1376, 1301, 1074, 925, 757 cm-1. 
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4.3.5 Methyl (7-azaindol-3-yl)methyldithiocarbamate (238) 

4.3.5.1  Synthesis of 7-azaindole-3-carboxaldehyde (276) 

N N
H

CHO

 

 

POCl3 (3.2 ml, 34 mmol) was added to DMF (2.6 ml, 34 mmol) at 0 ºC and the 

mixture was stirred until it was solidified. To this solid mixture, 7-azaindole (275, 400 

mg, 3.4 mmol) was added and the mixture was heated at 105 ºC for 14 hours. The 

reaction mixture was diluted with ice cold water (20 ml), basified with 5N NaOH (30 

ml) and extracted with CH2Cl2 (3×45 ml). The combined organic extracts were washed 

with water and brine, dried over Na2SO4 and concentrated under reduced pressure. The 

resulting residue was subjected to FCC on silica gel (acetone-hexane, 1:3) to afford 7-

azaindole-3-carboxaldehyde (276, 233 mg, 47% yield) as white solid (Oh et al., 2004). 

1H NMR [500 MHz, (CD3)2SO]: δ 12.69 (br, s, 1H), 9.92 (s, 1H), 8.40 (d, J = 8 Hz, 

1H), 8.36 (d, J = 5 Hz, 1H), 7.27 (dd, J = 8, 5 Hz, 1H). 

13C NMR [125.8 MHz, (CD3)2SO]: δ 186.2 (d), 150.2 (s), 145.7 (d), 139.5 (s), 130.1 

(d), 119.3 (d), 117.5 (d), 117.3 (s). 

HRMS-EI m/z: measured 146.0478 ([M]+, calcd. 146.0480 for C8H6N2O).  

MS-EI m/z (% relative intensity): 146 ([M]+, 86), 145 (100), 117 (28), 90 (17).  

FTIR νmax (KBr): 3109, 3082, 3025, 2893, 2813, 2736, 1657, 1590, 1464, 1282, 794 

cm-1. 

 

 

276 
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4.3.5.2  Synthesis of 7-azaindole-3-carboxaldehyde oxime (277) 

N N
H

N
OH

 
277 

 

To a solution of 7-azaindole-3-carboxaldehyde (276, 327 mg, 2.2 mmol) in 

EtOH (25 ml) was added a solution of NH2OH.HCl (545 mg, 7.8 mmol) and Na2CO3 

(427 mg, 4.0 mmol) in water (10 ml) and the mixture was refluxed for 2 hours at 95 ˚C. 

After removing EtOH under reduced pressure, the resulting precipitate was filtered off, 

washed with ice cold water and air dried to yield 7-azaindole-3-carboxaldehyde oxime 

(277, 341 mg) in 94% yield as white solid. 

4.3.5.3  Synthesis of 7-azaindole-3-methanamine (278) 

N N
H

NH2

 
278  

Zinc powder (1.2 g) was added in portions to a stirred solution of 7-azaindole-3-

carboxaldehyde oxime (277, 100 mg, 0.6 mmol) in 17% HCl (20 ml) at room 

temperature, after which stirring was continued for a further 45 min. at room 

temperature. Excess 5N NaOH was added to basify the reaction mixture, the precipitate 

was filtered off under vacuum and the precipitate was washed with EtOAc. The filtrate 

was extracted with EtOAc (3×50 ml), the combined organic extracts were dried over 

Na2SO4 and concentrated under reduced pressure. The residue was applied for FCC on 

silica gel (CHCl3-MeOH-NH4OH, 80:20:1) to yield 7-azaindole-3-methanamine (278, 

32 mg, 35% yield) as a colorless oil. 
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1H NMR [500 MHz, CD3CN]: δ 9.98 (br, s, 1H), 8.26 (dd, J = 4.5, 1 Hz, 1H), 8.03 (d, J 

= 8, 1 Hz, 1H), 7.29 (s, 1H), 7.07 (dd, J = 8, 4.5 Hz, 1H), 3.97 (s, 2H). 

13C NMR [125.8 MHz, CD3CN]: δ 149.5 (s), 143.3 (d), 127.5 (d), 122.6 (s), 119.3 (s), 

117.5 (d), 115.5 (d), 37.6 (t). 

HRMS-EI m/z: measured 147.0799 ([M]+, calcd. 147.0796 for C8H9N3).  

MS-EI m/z (% relative intensity): 147 ([M]+, 100), 146 (70), 131 (72), 119 (53).  

FTIR νmax (KBr): 3126, 3086, 2924, 2862, 1579, 1537, 1449, 1419, 1335, 1294, 1120, 

769 cm-1.  

4.3.5.4  Synthesis of methyl (7-azaindol-3-yl)methyldithiocarbamate (238) 

N N
H

S

NH
SCH3

 
238 

 

7-Azaindole-3-methanamine (278, 105 mg, 0.7 mmol) was dissolved in 

pyridine (3 ml) and Et3N (398 µl, 2.8 mmol) and cooled to 0 ˚C. After adding CS2 (168 

µl, 2.8 mmol), the mixture was stirred for 1 hour at 0 ˚C, CH3I (175 µl, 2.8 mmol) was 

added and the mixture was kept at 3 ˚C for 15 hour. The reaction mixture was poured 

into water (15 ml) and extracted with EtOAc (2×20 ml). The combined organic extracts 

were dried over Na2SO4 and concentrated under reduced pressure followed by addition 

of toluene (2×2 ml) and concentration under reduced pressure. Finally, the residue was 

subjected to FCC on silica gel (CH2Cl2-methanol, 98:2) to obtain methyl [(7-azaindol-

3-yl)methyl]dithiocarbamate (238, 140 mg, 83%) as white solid. 

Mp = 167-169 ˚C 

HPLC tR = 15.3 (br) min 
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 1H NMR (500 MHz, CD3OD): δ 8.19 (dd, J = 5, 1 Hz, 1H), 8.12 (dd, J = 8, 1 Hz, 1H), 

7.44 (s, 1H), 7.11 (dd, J = 8, 5 Hz, 1H), 5.07 (s, 2H), 2.60 (s, 3H). 

13C NMR (125.8 MHz, CD3OD): δ 198.9 (s), 148.4 (s), 142.5 (d), 128.3 (d), 125.4 (d), 

120.2 (s), 115.6 (d), 110.5 (s), 42.2 (t), 16.9 (q). 

HRMS-EI m/z: measured 237.0396 ([M]+, calcd. 237.0394 for C10H11N3S2).  

MS-EI m/z (% relative intensity): 237 ([M]+, 23), 163 (7), 132 (9), 131 (100), 104 (9), 

103 (8).  

FTIR νmax (KBr): 3252, 3147, 3030, 2985, 2921, 1581, 1492, 1420, 1380, 1326, 1068, 

921, 764 cm-1. 

 

4.3.6 Methyl (5-methoxypyrazolo[1,5-a]pyridin-3-yl)methyldithiocar-

bamate (239) 

4.3.6.1  Synthesis of 2-(2,4-dinitrophenoxy)-1H-isoindole-1,3(2H)-dione (281) 

 

N

O

O

O

O2N

NO2

 
281  

To a suspension of N-hydroxyphthalimide (279, 2 g, 12.3 mmol) in acetone (40 

ml), Et3N (1.9 ml, 13.4 mmol) was added in one portion and the mixture was stirred at 

room temperature until all the N-hydroxyphthalimide was dissolved. When the solution 

became homogeneous mixture, 2,4-dinitrochlorobenzene (280, 2.5 g, 12.3 mmol) was 

added in one portion and the reaction was stirred at room temperature for 2 hours. The 

reaction mixture was poured into ice water (40 ml), the precipitate was filtered, and 

 199



washed with cold MeOH and cold hexane respectively. Finally, the solid was dried 

under vacuum to yield 2-(2,4-dinitrophenoxy)-1H-isoindole-1,3(2H)-dione (281, 3.7 g, 

92% yield) as an off white solid (Legault and Charette, 2003). 

Mp = 185-186 ˚C 

1H NMR (500 MHz, CDCl3): δ 9.00 (d, J = 2.5 Hz, 1H), 8.46 (dd, J = 9, 2.5 Hz, 1H), 

8.02-7.99 (m, 2H), 7.94-7.91 (m, 2H), 7.48 (d, J = 9 Hz, 1H). 

13C NMR (125.8 MHz, CDCl3): δ 162.4, 156.8, 143.7, 137.8, 136.2, 129.8, 129.1, 

125.1, 122.9, 116.3. 

HRMS-EI m/z: measured 329.0282 ([M]+, calcd. 329.0284 for C14H7N3O7).  

MS-EI m/z (% relative intensity): 329 ([M]+, 49), 284 (17), 283 (100), 237 (11), 197 

(11), 184 (22).  

FTIR νmax (KBr): 3113, 3094, 1799, 1731, 1609, 1531, 1352, 1230, 1111, 1077, 970 

cm-1. 

4.3.6.2  Synthesis of O-(2,4-dinitrophenyl)hydroxylamine (282) 

 

O

O2N

NO2H2N
 

 282 

To a solution of 2-(2,4-dinitrophenoxy)-1H-isoindole-1,3(2H)-dione (281, 2 g, 

6.1 mmol) in CH2Cl2 (40 ml), a solution of hydrazine hydrate (1 ml, 17.6 mmol) in 

MeOH (5.8 ml) was added in one portion at 0 ˚C. A bright yellow solution was formed 

rapidly and a precipitate was formed. The suspension was allowed to stand at 0 ˚C for 8 

hours, cold aqueous HCl (1N, 40 ml) was added, and the reaction was shaken rapidly at 

0 ˚C. The mixture was filtered over a celite pad and the celite was washed with 
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acetonitrile. The filtrate was poured into a separatory funnel and the organic phase was 

separated. The aqueous phase was extracted with CH2Cl2 (2×40 ml). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. The 

residue was subjected to FCC on silica gel (EtOAc-hexane, 25:75) to afford O-(2,4-

dinitrophenyl)hydroxylamine (282, 1.06 g, 87% yield) as an orange solid (Legault and 

Charette, 2003). 

Mp = 111-112 ˚C 

1H NMR (500 MHz, CDCl3): δ 8.82 (d, J = 2.5 Hz, 1H), 8.45 (dd, J = 9, 2.5 Hz, 1H), 

8.07 (d, J = 9 Hz, 1H), 6.42 (br, s, 2H). 

13C NMR (125.8 MHz, CDCl3): δ 160.0 (s), 141.1 (s), 136.9 (s), 129.6 (d), 122.3 (d), 

116.8 (d). 

HRMS-EI m/z: measured 199.0229 ([M]+, calcd. 199.0229 for C6H5N3O5).  

MS-EI m/z (% relative intensity): 199 ([M]+, 7), 184 (100), 181 (39), 154 (27), 107 

(24), 92 (16), 91 (31).  

FTIR νmax (KBr): 3324, 3261, 3118, 1605, 1516, 1340, 833, 742 cm-1. 

4.3.6.3  Synthesis of N-amino-(4-methoxy)pyridinium 2,4-dinitrophenolate 

(283) 

O

O2N

NO2
N

OCH3

NH2  

283  

To a solution of O-(2,4-dinitrophenyl)hydroxylamine (282, 1 g, 5 mmol) in 

MeCN (9.7 ml) was added 4-methoxypyridine (464 µl, 4.6 mmol) at room temperature 

and the mixture was stirred at 45 ˚C for 24 hours. After the addition of Et2O (20 ml), 
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the resulting yellow-orange solid was filtered, washed with Et2O and dried under 

vacuum to yield N-amino-(4-methoxy)pyridinium 2,4-dinitrophenolate (283, 1.35 g, 

96% yield) (Elsner et al., 2006). 

Mp = 138-139 ˚C 

1H NMR [500 MHz, (CD3)2SO]: δ 8.66 (d, J = 7 Hz, 2H), 8.57 (d, J = 3 Hz, 1H), 7.77 

(dd, J = 9.5, 3 Hz, 1H), 7.76 (br, s, 2H, D2O exchangeable), 7.52 (d, J = 7 Hz, 2H), 

6.31 (d, J = 9.5 Hz, 1H), 4.04 (s, 3H). 

13C NMR [125.8 MHz, (CD3)2SO]: δ 171.3 (s), 169.0 (s), 144.4 (d), 137.0 (s), 128.5 

(s), 128.4 (d), 127.2 (d), 125.7 (d), 114.1 (d), 58.6 (q). 

HRMS-EI m/z: measured 184.0112 ([M]+- C6H8N2O, calcd. 184.0120 for C6H4N2O5).  

MS-EI m/z (% relative intensity): 184 ([M]+- C6H8N2O, 100), 168 (11), 153 (27), 107 

(26), 92 (18), 91 (33).  

FTIR νmax (KBr): 3198, 3095, 1535, 1507, 1256, 740 cm-1. 

4.3.6.4  Synthesis of methyl 5-methoxypyrazolo[1,5-a]pyridine-3-carboxylate 

(242) 

N N

H3CO
OCH3

O

 

242  

To a mixture of N-amino-(4-methoxy)pyridinium 2,4-dinitrophenolate (283, 

362 mg, 1.18 mmol), K2CO3 (245 mg, 1.8 mmol) and DMF (2.5 ml), methyl propiolate 

(108 µl, 1.3 mmol) was added drop wise and the mixture was stirred vigorously at 

room temperature for 24 hours. The reaction mixture was poured into water (25 ml), 

extracted with Et2O (3×25 ml) and the combined organic extracts were washed two 

times with 50 ml of water. The organic extract was dried over Na2SO4 and concentrated 
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under reduced pressure. The resulting residue was applied to FCC on silica gel (EtOAc-

hexane, 1:5) to yield methyl 5-methoxypyrazolo[1,5-a]pyridine-3-carboxylate (242, 96 

mg, 40% yield) as a white solid (Elsner et al., 2006). 

1H NMR (500 MHz, CDCl3): δ 8.33 (d, J = 7.5 Hz, 1H), 8.28 (s, 1H), 7.42 (d, J = 2.5 

Hz, 1H), 6.62 (dd, J = 7.5, 2.5 Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H). 

13C NMR (125.8 MHz, CDCl3): δ 164.4 (s), 160.1 (s), 145.6 (d), 143.2 (s), 130.4 (d), 

108.6 (d), 102.8 (s), 96.7 (d), 56.3 (q), 51.3 (q). 

HRMS-EI m/z: measured 206.0684 ([M]+, calcd. 206.0691 for C10H10N2O3).  

MS-EI m/z (% relative intensity): 206 ([M]+, 62), 176 (11), 175 (100), 160 (9), 148 (8).  

FTIR νmax (KBr): 3088, 2951, 1697, 1649, 1537, 1482, 1379, 1277, 1250, 1214, 1055 

cm-1. 

4.3.6.5  Synthesis of 5-methoxypyrazolo[1,5-a]pyridine-3-methanol (284) 

N N

H3CO
OH

 

284  

Methyl 5-methoxypyrazolo[1,5-a]pyridine-3-carboxylate (242, 118 mg, 0.57 

mmol) was dissolved in dry THF (Ar atmosphere, 3.5 ml) and the solution was cooled 

to 0 °C with stirring. LiAlH4 (87 mg, 2.3 mmol) was then added in small portions 

during 5 minutes and stirring was continued further for 2 hours at room temperature. 

The reaction was quenched with 5 N NaOH (0.8 ml) and the precipitate was filtered off 

through a celite pad. The pad was washed with THF and EtOAc, the filtrate was dried 

(Na2SO4) and concentrated under reduced pressure to yield 5-methoxypyrazolo[1,5-

a]pyridine-3-methanol (284, 118 mg), that was used in the next step. 
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4.3.6.6  Synthesis of 5-methoxypyrazolo[1,5-a]pyridine-3-carboxaldehyde (285) 

N N

H3CO
H

O

 

285  

The crude 5-methoxypyrazolo[1,5-a]pyridine-3-methanol (284, 118 mg, 0.58 

mmol) was dissolved in CH2Cl2 (6 ml), MnO2 (406 mg, 4.7 mmol) was added and the 

mixture was stirred for 18 h at room temperature. MnO2 was filtered off, the filter cake 

was washed with EtOAc and the filtrate was concentrated under reduced pressure. The 

residue was applied to FCC on silica gel (EtOAc-hexane, 2:3) to afford 5-

methoxypyrazolo[1,5-a]pyridine-3- carboxaldehyde (285, 66 mg, 65% yield from the 

ester 242) as a white solid. The 1H NMR data of 285 was identical with that of reported 

data (Elsner et al., 2006). 

Mp = 92-93 ˚C 

1H NMR (500 MHz, CDCl3): δ 9.95 (s, 1H), 8.37 (d, J = 7.5 Hz, 1H), 8.27 (s, 1H), 7.58 

(s, 1H), 6.71 (dd, J = 7.5, 2 Hz, 1H), 3.95 (s, 3H). 

13C NMR (125.8 MHz, CDCl3): δ 183.5 (d), 161.6 (s), 147.7 (d), 141.9 (s), 130.4 (d), 

113.6 (s), 109.7 (d), 97.6 (d), 56.5 (q). 

HRMS-EI m/z: measured 176.0582 ([M]+, calcd. 176.0585 for C9H8N2O2).  

MS-EI m/z (% relative intensity): 176 ([M]+, 83), 175 (100), 160 (9), 131 (11), 119 

(16).  

FTIR νmax (KBr): 3095, 1664, 1644, 1538, 1483, 1282, 1203, 1086, 1015, 831 cm-1. 
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4.3.6.7  Synthesis of 5-methoxypyrazolo[1,5-a]pyridine-3-carboxaldehyde 

oxime (286) 

N N

H3CO
N

OH

 
286  

A solution of NH2OH.HCl (124.5 mg, 1.79 mmol) and Na2CO3 (97.6 mg, 0.92 

mmol) in water (2.3 ml) was added to a solution of 5-methoxypyrazolo[1,5-a]pyridine-

3- carboxaldehyde (285, 90 mg, 0.51 mmol) in EtOH (7.5 ml) and the mixture was 

refluxed at 95 ˚C for 3 hours. EtOH was removed under reduced pressure and water (5 

ml) was added to the mixture. The resulting precipitate was filtered, washed with water 

and dried under vacuum to yield 5-methoxypyrazolo[1,5-a]pyridine-3-carboxaldehyde 

oxime (286, 89 mg, 91%) as a white solid. 

4.3.6.8  Synthesis of 5-methoxypyrazolo[1,5-a]pyridine-3-methanamine (287) 

 

N N

H3CO
NH2

 
287 

 

To a stirred solution of 5-methoxypyrazolo[1,5-a]pyridine-3-carboxaldehyde 

oxime (286, 120 mg, 0.63 mmol) in 17% HCl (20 ml), zinc powder (1.2 g) was added 

in portions at room temperature, after which the stirring was continued for a further 45 

min. at room temperature. Excess 5N NaOH was added to basify the reaction mixture, 

the precipitate was filtered off under vacuum and the filter cake was washed with 

EtOAc. The filtrate was extracted with EtOAc (3×50 ml), the combined organic 

extracts were dried over Na2SO4 and concentrated under reduced pressure to yield 
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crude 5-methoxypyrazolo[1,5-a]pyridine-3-methanamine (287, 82 mg) as a colorless 

oil. 

4.3.6.9  Synthesis of methyl (5-methoxypyrazolo[1,5-a]pyridin-3-yl)methyldi-

thiocarbamate (239) 

N N
S

NH
SCH3H3CO

 

239  

CS2 (111 µl, 1.85 mmol) was added to a solution of crude amine 287 (82 mg, 

0.46 mmol) and Et3N (258 µl, 1.85 mmol) in pyridine (1 ml) at 0 ˚C. After stirring the 

reaction mixture at 0 ˚C for an hour, CH3I (115 µl, 1.85 mmol) was added and the 

mixture was kept at 3 ˚C for 15 hour. The reaction mixture was poured into water (20 

ml) and extracted with EtOAc (3×20 ml). The combined organic extracts were dried 

over Na2SO4 and concentrated under reduced pressure followed by addition of toluene 

(2×2 ml) and concentration. Finally, the residue was subjected to FCC on silica gel 

(CH2Cl2-MeOH, 99:1) to afford methyl (5-methoxypyrazolo[1,5-a]pyridin-3-

yl)methyldithiocarbamate (239, 82 mg, 49% yield from the oxime 286) as a white 

solid. 

Mp = 148-149 ˚C 

HPLC tR = 15.5 min 

 1H NMR (500 MHz, CD3OD): δ 8.30 (d, J = 7.5 Hz, 1H), 7.88 (s, 1H), 7.14 (d, J = 2 

Hz, 1H), 6.57 (dd, J = 7.5, 2 Hz, 1H), 5.03 (s, 2H), 3.87 (s, 3H), 2.60 (s, 3H). 

13C NMR (125.8 MHz, CD3OD): δ 199.1 (s), 157.3 (s), 142.8 (d), 140.3 (s), 129.2 (d), 

107.4 (d), 106.2 (s), 94.5 (d), 55.2 (q), 40.3 (t), 16.9 (q). 

HRMS-ESI m/z: measured 266.0434 ([M-1]-, calcd. 266.0427 for C11H12N3OS2).  
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MS-ESI m/z (% relative intensity): 266 ([M-1]-, 100)  

FTIR νmax (KBr): 3142, 2946, 1649, 1527, 1470, 1396, 1254, 1228, 1087, 922 cm-1. 

 

4.3.7 3-Phenylindole (245) 

N
H  

245 
 

A mixture of phenyl acetaldehyde (290, 341 µl, 3.05 mmol) and phenyl 

hydrazine (288, 300 µl, 3.05 mmol) was stirred for 1 hour at room temperature and 

then for 30 minutes at 100 ºC. After that a solution of ZnCl2 (1.2 g, 9.15 mmol) in 

EtOH (4 ml) was added, the mixture was stirred at 100 ºC for another 1 hour. After 

cooling, the mixture was filtered, the solvent was removed under reduced pressure and 

an aqueous solution of HCl (4%, 10 ml) was added. The mixture was extracted with 

CH2Cl2 (2×15 ml), the combined organic extracts were dried over Na2SO4 and 

concentrated under reduced pressure. The residue was then crystallized from hexane to 

give 3-phenylindole (245, 370 mg, 70%) as an off white solid (Rodriguez et al., 2000). 

HPLC tR = 25.6 min 

1H NMR (500 MHz, CD3CN) δ 9.48 (br, s, D2O exchangeable, 1H), 7.92 (d, J = 7.5 

Hz, 1H), 7.72 (d, J = 7.5 Hz, 2H), 7.53-7.51 (m, 2H), 7.46 (dd, J = 7.5, 7.5 Hz, 2H), 

7.29 (dd, J = 7.5, 7.5 Hz, 1H), 7.23 (dd, J = 7.5, 7.5 Hz, 1H), 7.16 (dd, J = 7.5, 7.5 Hz, 

1H). 

13C NMR [125.8 MHz, CD3CN]: δ 137.5 (s), 136.3 (s), 129.2 (d), 127.4 (d), 126.1 (d), 

125.9 (s), 123.2 (d), 122.3 (d), 120.4 (d), 119.6 (d), 117.2 (s), 112.2 (d). 
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HRMS-EI m/z: measured 193.0900 ([M]+, calcd. 193.0891 for C14H11N). 

MS-EI m/z (% relative intensity): 193 ([M]+, 100), 192 (12), 165 (23).  

FTIR νmax (KBr): 3411, 3120, 3055, 1599, 1543, 1457, 1237, 1013 cm-1. 

 

4.3.8 4-Fluoro-3-phenylindole (246) and 6-fluoro-3-phenylindole 

(247) 

N
H

F

N
HF  

247 246 
 

To a solution of 3-fluorophenyl hydrazine hydrochloride (200 mg, 1.23 mmol) 

in water (5 ml), solid Na2CO3 (80 mg, 0.75 mmol) was added. When all the Na2CO3 

was dissolved, the mixture was extracted with CH2Cl2 (2×10 ml), the combined organic 

extracts were dried over Na2SO4 and concentrated under reduced pressure. To this 

residue, phenyl acetaldehyde (290, 108 µl, 0.97 mmol) was added and the mixture was 

stirred for 1 hour at room temperature and then for 30 minutes at 100 ºC. After that a 

solution of ZnCl2 (376 mg, 2.91 mmol) in EtOH (3 ml) was added and the mixture was 

stirred at 100 ºC for another 1 hour. After cooling, the mixture was filtered, the solvent 

was removed under reduced pressure and an aqueous solution of HCl (4%, 10 ml) was 

added. The mixture was extracted with CH2Cl2 (2×15 ml), the combined organic 

extracts were dried over Na2SO4 and concentrated under reduced pressure. The residue 

was then subjected to FCC on silica gel (CH2Cl2-hexane, 1:4) to give a mixture (150 

mg, 72% yield) of 4-fluoro-3-phenylindole (246) and 6-fluoro-3-phenylindole (247) in 
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equal ratio. Finally, these two compounds were separated by reverse phase column 

chromatography using H2O/CH3CN (55/45) as eluant. 

4-fluoro-3-phenylindole (246) 

HPLC tR = 25.8 min 

1H NMR (500 MHz, CD3CN): δ 9.69 (br, s, D2O exchangeable, 1H), 7.64 (dd, J = 8, 

1.5 Hz, 2H), 7.43 (dd, J = 7.5, 7.5 Hz, 2H), 7.41 (d, J = 2.5 Hz, 1H), 7.34 (d, J = 8 Hz, 

1H), 7.31 (dd, J = 7, 7 Hz, 1H),  7.18-7.16 (m, 1H), 6.83 (dd, J = 8, 12 Hz, 1H).  

13C NMR (125.8 MHz, CDCl3): δ 157.5 (d, 1JC-F = 248 Hz), 139.7 (d, 3JC-F = 12 Hz), 

135.3, 129.2, 129.1, 128.6, 126.6, 123.3 (d, 3JC-F = 8 Hz), 122.9, 118.0 (d, 4JC-F = 3 Hz), 

115.0 (d, 2JC-F = 19 Hz), 107.7 (d, 4JC-F = 3.5 Hz), 106.0 (d, 2JC-F = 21 Hz). 

HRMS-EI m/z: measured 211.0834 (M+, calcd. 211.0797 for C14H10NF). 

MS-EI m/Z (% relative intensity): 211 (M+, 100), 183 (21). 

FTIR νmax (KBr): 3418, 3054, 1625, 1600, 1546, 1502, 1419, 1327, 1222, 1035, 758 

cm-1. 

6-fluoro-3-phenylindole (247) 

HPLC tR = 27.4 min 

1H NMR (500 MHz, CD3CN): δ 9.54 (br, s, D2O exchangeable, 1H), 7.87 (dd, J = 5, 9 

Hz, 1H), 7.69 (dd, J = 8, 1 Hz, 2H), 7.52 (d, J = 2.5 Hz, 1H), 7.47 (dd, J = 8 Hz, 2H), 

7.30 (dd, J = 7.5, 7.5 Hz, 1H), 7.24 (dd, J = 10, 2 Hz, 1H), 6.96 (ddd, J = 10, 9, 2.5 Hz, 

1H). 

13C NMR (125.8 MHz, CDCl3): δ 160.5 (d, 1JC-F = 239 Hz), 137.0 (d, 3JC-F = 12.5 Hz), 

135.5, 129.2, 127.9, 126.6, 122.9, 122.2 (d, 4JC-F = 3.5 Hz), 121.1 (d, 3JC-F = 10 Hz), 

118.9, 109.4 (d, 2JC-F = 24 Hz), 98.0 (d, 2JC-F = 26 Hz). 

HRMS-EI m/z: measured 211.0797 (M+, calcd. 211.0797 for C14H10NF).  
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MS-EI m/z (% relative intensity) 211 (M+, 100), 183 (26). 

FTIR νmax (KBr): 3419, 3054, 1626, 1601, 1503, 1419, 1222, 1035, 960, 758, 733 cm-1. 

 

4.3.9 3-Phenylbenzofuran (248) 

4.3.9.1  Synthesis of 1-phenyl-1-(2-hydroxyphenyl)ethanol (293) 

OH

OH
Ph

 
293 

 

To a Grignard solution prepared from bromobenzene (1.5 ml, 14.6 mmol), 

magnesium (368 mg, 15.3 mmol) and THF (15 ml), a solution of 2′-

hydroxyacetophenone (259, 1 g, 7.3 mmol) in THF (10 ml) was added with stirring. 

After refluxing the resulting solution at 80 ºC for 6 hours, THF was removed under 

reduced pressure, the residue was treated with 15% aqueous AcOH (20 ml) and 

extracted with benzene (2×25 ml). The combined organic extracts were washed with 

5% NaHCO3 (2×30 ml), dried over Na2SO4 and concentrated under reduced pressure. 

The residue was subjected to FCC on silica gel (CH2Cl2, 100%) to afford 1-phenyl-1-

(2-hydroxyphenyl)ethanol (293, 1.3 g, 82%) as a white solid (Brady and Giang, 1985). 

4.3.9.2  Synthesis of o-(1-phenylvinyl)phenol (294) 

OH

Ph

 
294  

Iodine (40 mg) was added to a solution of 1-phenyl-1-(2-

hydroxyphenyl)ethanol (293, 1.26 g, 5.9 mmol) in benzene (12 ml) and the mixture 
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was refluxed at 90 ºC for 8 hours. After cooling, the reaction mixture was washed with 

5% aqueous sodium thiosulphate (2×10 ml), dried over Na2SO4 and concentrated under 

reduced pressure. The residue was subjected to FCC on silica gel (CH2Cl2-hexane, 1:1) 

to afford o-(1-phenylvinyl)phenol (294, 1.08 g, 93% yield) as colorless oil (Brady and 

Giang, 1985).  

1H NMR (500 MHz, CDCl3): δ 7.42-7.36 (m, 5H), 7.29 (dd, J = 7.5 Hz, 1H), 7.18 (dd, 

J = 7.5, 1 Hz, 1H), 7.00-6.96 (m, 2H), 5.91 (s, 1H), 5.46 (s, 1H), 5.21 (s, 1H). 

13C NMR (125.8 MHz, CDCl3): δ 153.5 (s), 145.7 (s), 139.9 (s), 130.8 (d), 129.9 (d), 

129.1 (d), 129.0 (d), 128.0 (s), 127.4 (d) 120.9 (d), 117.1 (d), 116.3 (d). 

HRMS-EI m/z: measured 196.0880 ([M]+, calcd. 196.0888 for C14H12O).  

MS-EI m/z (% relative intensity): 196 ([M]+, 57), 195 (100), 183 (20), 181 (52).  

FTIR νmax (KBr): 3433, 3057, 3030, 1600, 1477, 1448, 1144, 913, 751 cm-1. 

4.3.9.3  Synthesis of 3-phenylbenzofuran (248) 

 

O  
248 

 

To a solution of o-(1-phenylvinyl)phenol (294, 98 mg, 0.5 mmol) in DMF (1.25 

ml) were added Cu(OAc)2.H2O (300 mg, 1.5 mmol), aqueous LiCl (10 M, 150 µl, 1.5 

mmol) and aqueous PdCl2 (0.1 M, 100 µl, 0.01 mmol). After refluxing at 100 ºC for 20 

hours, the reaction mixture was poured into water (25 ml) and extracted with Et2O 

(2×25 ml). The combined organic extracts were dried over Na2SO4 and concentrated 

under reduced pressure. The residue was subjected to FCC on silica gel (CH2Cl2-

hexane, 1:9) to afford 3-phenylbenzofuran (248, 8 mg, 10% yield based on recovery of 
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starting material) as colorless oil. The spectroscopic data of 248 was identical with that 

of reported data (Kashulin and Nifant’ev, 2004).  

HPLC tR = 32.3 min 

1H NMR (500 MHz, CDCl3): δ 7.88 (d, J = 7.5 Hz, 1H), 7.83 (s, 1H), 7.69 (d, 7.5 Hz, 

2H), 7.59 (d, J = 7.5 Hz, 1H), 7.51 (dd, J = 7.5, 7.5 Hz, 2H), 7.42-7.34 (m, 3H). 

13C NMR [125.8 MHz, CDCl3]: δ 156.2 (s), 141.7 (d), 132.5 (s), 129.4 (d), 127.9 (d), 

127.8 (d), 126.9 (s), 124.9 (d), 123.4 (d), 122.7 (s), 120.8 (d), 112.2 (d). 

HRMS-EI m/z: measured 194.0734 ([M]+, calcd. 194.0731 for C14H10O). 

MS-EI m/z (% relative intensity) 194 (M+, 100), 165 (32), 139 (6). 

FTIR νmax (KBr): 3121, 3054, 1599, 1543, 1457, 1237, 1013 cm-1. 

 

4.4 Metabolic detoxification of phytoalexins, analogues and 
potential inhibitors 

4.4.1 Preparation of minimal media 

A solution of glucose (15.0 g) in 700 ml of distilled water was mixed with 

solution 1 (100 ml) containing 31.2 g/l KNO3, 7.5 g/l K2HPO4, 7.5 g/l KH2PO4, 1.0 g/l 

NaCl and 2.8 g/l asparagine. Solution 3 (1 ml) containing 0.39 g/l ZnSO4.7H2O, 0.08 

g/l CuSO4.5H2O, 0.41 g/l MnSO4.4H2O, 0.018 g/l MoO3 (85%), 0.54 g/l ferric citrate 

and 0.38 g/l Na2B4O7.10H2O was added to it. The mixture was diluted up to 900 ml 

using distilled water and autoclaved. Solution 2 (100 ml), containing 1.0 g/l CaCl2. 

7H2O and 5.0 g/l MgSO4.7H2O was prepared separately and autoclaved. After 

autoclaving, the two solutions were allowed to cool to room temperature before mixing 

them together. A sterile solution 4 (1 ml) containing 100 mg/l of thiamine was then 

mixed to obtain the minimal media (Pedras et al., 1997). 
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4.4.2 Preparation of fungal cultures 

Sclerotia of S. sclerotiorum (clone # 33) were obtained from C. Lefol, AAFC, 

Saskatoon, Canada. The fungal isolate was grown on potato dextrose agar (PDA) plates 

by inoculating one piece of sclerotia per plate and the plates were incubated at 20±1 ºC 

in the dark. Sclerotia were collected over a 4-week period and stored at 20 ºC in the 

dark. Erlenmeyer flasks (250 ml) containing 100 ml of minimal media were inoculated 

with sclerotia of S. sclerotiorum and were incubated at 22±1 ºC on a shaker at 120 rpm 

under constant light. 

4.4.3 Time-course experiments 

Six-day-old cultures of S. sclerotiorum were incubated with phytoalexins or 

analogues or potential inhibitors at 22±2 ºC on a shaker at 120 rpm under constant 

light. Each compound dissolved in CH3CN (200 µl) was added to fungal cultures (final 

concentration 1 × 10-4 M) and to uninoculated medium (control); CH3CN (200 µl) was 

added to control cultures. Samples (5 ml each) were taken from the flasks at 

appropriate times, frozen or immediately extracted with EtOAc (2 × 10 mL). Both, 

organic and water phases were concentrated, dissolved in CH3CN (0.5 mL) or CH3OH 

(0.5 mL) and analyzed by HPLC. 

4.4.4 Scale up experiments: isolation of metabolites 

To obtain larger amounts of extract to isolate the products of metabolism of 

each compound, experiments were carried out with 1-L batches, as described above for 

time-course studies. Only the chromatograms of the EtOAc extracts of fungal broth 

showed peaks not present in chromatograms of extracts of control cultures. Thus, the 

EtOAc extracts were fractionated by FCC on reverse phase silica gel (C-18, gradient 

elution: H2O–CH3CN, 90:10, 80:20, 70:30, 50:50, 0:100), and each fraction was 

analyzed by HPLC. Finally, the metabolites were isolated by preparative TLC (silica 
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gel, CH2Cl2–CH3OH, 90:10, multiple development) and/or reverse phase preparative 

TLC (RP C-18 silica gel, H2O-CH3CN, 60:40). 

4.4.5  Synthesis 

4.4.5.1  1-β-D-Glucopyranosylbrassilexin (222) 

Synthesis of 2,3,4,6-tetra-O-acetyl-1-β-D-glucopyranosyl brassilexin (224) and 1-

[1-(3,4,6-tri-O-acetyl-1,2-O-α-D-glucopyranosyl)ethylidene]brassilexin (225) 

 

N
S
N

O
OAc

OAcAcO

AcO

H

OAcO

AcO
AcO O

O

H3C
N

S
N

1'

1''
2''

5''

 
225 224 

 

A solution of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (223) (142 

mg, 0.35 mmol) in dry benzene (3 ml) was added dropwise during 30 min to a mixture 

of brassilexin (24) (20 mg, 0.11 mmol) and Ag2O (31 mg, 0.13 mmol) in dry benzene 

(3 ml) under stirring. The reaction mixture was allowed to reflux for 20 h at 90 °C, was 

filtered through a tight cotton plug and the insoluble material was washed with 

benzene. The combined filtrate and washings were concentrated, the residue was 

subjected to column chromatography (silica gel, EtOAc–hexane, 3 : 7), followed by 

preparative TLC to afford 2,3,4,6-tetra-O-acetyl-1-β-D-glucopyranosyl brassilexin 

(224) [6 mg, 12% based on recovered brassilexin (24)] and 1-[1-(3,4,6-tri-O-acetyl-1,2-

O-α-D-glucopyranosyl)ethylidene]brassilexin (225) [6 mg, 12% based on recovered 

brassilexin (24)] (Pedras and Hossain, 2006).  
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2,3,4,6-tetra-O-acetyl-1-β-D-glucopyranosyl brassilexin (224) 

[α]D = −3 (c 0.40, CH3OH).  

1H NMR (500 MHz, CD2Cl2): δ 8.71 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 8 

Hz, 1H), 7.41 (dd, J = 7.5, 8 Hz, 1H), 7.31 (dd, J = 7.5, 7.5 Hz, 1H), 5.90 (d, J = 9 Hz, 

1H), 5.56 (dd, J = 9.5, 9.5 Hz, 1H), 5.43–5.37 (m, 2H), 4.33 (s, br, 2H), 4.18–4.16 (m, 

1H), 2.17 (s, 3H), 2.12 (s, 3H), 2.02 (s, 3H), 1.52 (s, 3H). 

13C NMR [125.8 MHz, CD2Cl2]: δ170.7 (s), 170.2 (s), 169.7 (s), 168.7 (s), 157.8 (s), 

147.6 (d), 143.6 (s), 127.9 (s), 124.3 (d), 122.0 (d), 121.0 (d), 120.8 (d), 110.8 (d), 83.5 

(d), 75.5 (d), 72.6 (d), 70.5 (d), 68.2 (d), 61.8 (d), 20.9 (q), 20.8 (q), 20.7 (q), 20.0 (q). 

HRMS-ESI m/z: measured 503.1110 ([M − 1]−, calc. 503.1124 for C23H23N2O9S). 

MS-ESI m/z (% relative intensity): 503 ([M − 1]−, 100), 461 (10), 173 (6).  

FTIR νmax (KBr): 3059, 2945, 1752, 1503, 1473, 1444, 1370, 1222, 1102, 1039 cm−1.  

UV (CH3OH) λmax (log ε): 222 (4.7), 244 (4.1), 264 nm (4.0). 

1-[1-(3,4,6-tri-O-acetyl-1,2-O-α-D-glucopyranosyl)ethylidene]brassilexin (225) 

[α]D = −19 (c 0.30, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2): δ 8.70 (s, H-3′), 7.90 (d, J =8 Hz, H-4), 7.82 (d, J = 8 

Hz, H-7), 7.41 (dd, J = 7.5, 8 Hz, H-6), 7.33 (dd, J = 8, 7.5 Hz, H-5), 5.88 (d, J = 5 Hz, 

H-1′′), 5.37 (underneath the solvent peak, H-3′′), 4.99 (d, J = 9.5, Hz, H-4′′), 4.35–4.26 

(m, H-6a′′, H-6b′′, H-2′′), 4.19–4.17 (m, H-5′′), 2.19 (s, 3H), 2.15 (s, 3H), 2.06 (s, 3H), 

2.04 (s, 3H). 

13C NMR [125.8 MHz, CD2Cl2]: δ 170.8 (s), 170.0 (s), 169.3 (s), 158.6 (s), 147.5 (d), 

142.0 (s), 126.7 (s), 126.4 (s) 124.5 (d), 122.0 (d), 120.5 (d), 113.9 (s), 113.1 (d), 98.3 

(d), 73.7 (d), 69.5 (d), 68.4 (d), 67.8 (d), 63.5 (d), 22.2 (q), 21.1 (q), 20.9 (q), 20.8 (q). 

HRMS-ESI m/z: measured 505.1280 ([M + 1]+, calc. 505.1275 for C23H25N2O9S).  
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MS-ESI m/z (relative intensity): 505 ([M + 1]+, 100), 331 (9). 

FTIR νmax (KBr): 3057, 2932, 1746, 1469, 1439, 1370, 1225, 1175, 1131, 1093, 1042, 

967 cm−1. 

UV (CH2Cl2) λmax (log ε): 229 (4.7), 245 (4.2), 264 nm (4.1). 

Synthesis of 1-β-D-glucopyranosylbrassilexin (222) 

 

N
S
N

O
OH

OHHO

HO

 
222 

 

Sodium methoxide (0.1 M methanolic solution, 0.015 mmol) was added to a 

stirred solution of 89 (8.0 mg, 0.015 mmol) in dry MeOH (0.3 ml) and the reaction 

mixture was allowed to stir at room temperature for 45 min. After concentration under 

reduced pressure, the crude residue was chromatographed using a small Pasteur pipette 

containing reverse phase silica to yield 1-β-D-glucopyranosylbrassilexin (222) (5 mg, 

94% yield) (Pedras and Hossain, 2006).  

HPLC tR = 4.5 min;  

[α]D = +19 (c 0.22, CH3OH).  

1H NMR (500 MHz, CD3OD): δ 8.75 (s, 1H), 7.92 (d, J = 8 Hz, 1H), 7.69 (d, J = 8.5 

Hz, 1H), 7.39 (ddd, J = 7.5, 8, 1 Hz, 1H), 7.27 (dd, J = 7.5, 8 Hz, 1H), 5.75 (d, J = 9 

Hz, 1H), 3.94 (dd, J = 10, 1 Hz, 1H), 3.86 (dd, J = 9, 9 Hz, 1H) 3.76–3.67 (m, 3H), 

3.49 (dd, J = 9, 9 Hz, 2H). 
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13C NMR [125.8 MHz, CD3OD]: δ 157.9 (s), 147.4 (d), 145.0 (s), 127.4 (s), 124.1 (d), 

121.3 (d), 120.7 (s), 120.0 (d), 111.3 (d), 85.1 (d), 80.0 (d), 77.6 (d), 72.6 (d), 70.6 (d), 

61.9 (d). 

HRMS-ESI m/z: measured 337.0858 ([M + 1]+, calc. 337.0858 for C15H17N2O5S). 

MS-ESI m/z (% relative intensity): 337 ([M + 1]+, 100) 

FTIR νmax (KBr): 3349, 3069, 2910, 1510, 1475, 1446, 1376, 1256, 1075, 742 cm−1.  

UV (CH3OH) λmax (log ε): 221 (4.6), 245 (4.1), 265 nm (4.0). 

4.4.5.2  Brassicanal A sulfoxide (229) 

N
H

CHO

S
CH3

O

 

229  

m-Chloroperbenzoic acid (20.7 mg, 0.12 mmol) was added to a stirred solution 

of brassicanal A (34, 19.5mg, 0.10 mmol) in MeOH (3 ml) at 0 °C. After 30 min 

stirring at 0 °C, the reaction mixture was treated with Me2S (200 µl), concentrated and 

subjected to FCC on silica gel (CH2Cl2-MeOH, 99/1) to afford brassicanal A sulfoxide 

(229, 18 mg, 85%) as an off white solid (Pedras and Khan, 1996). 

HPLC tR = 6.3 min; [α]D = −245 (c 0.33, CH3OH). 

1H NMR (500 MHz, CD3OD): δ 10.26 (s, 1H), 8.11 (d, J = 8 Hz, 1H), 7.59 (d, J = 8 

Hz, 1H), 7.36 (ddd, J = 8, 8, 1 Hz, 1H), 7.31 (ddd, J = 8, 8, 1 Hz, 1H), 3.08 (s, 3H). 

13C NMR [125.8 MHz, CD3OD]: δ 186.0 (s), 147.7 (s), 138.6 (s), 127.9 (s), 126.3 (d), 

124.7 (d), 121.4 (d), 116.9 (s), 114.1 (d), 42.2 (q).  

HRMSEI m/z: measured 207.0353 (M+, calc. 207.0354 for C10H9NO2S). 

MS-EI m/z (% relative intensity): 207 (M+, 21), 190 (100), 175 (14), 146 (16). 
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FTIR νmax (KBr): 3166, 2925, 2854, 1656, 1488, 1448, 1391, 1095, 1035, 747 cm−1. 

4.4.5.3   3-(Hydroxymethyl)indole-2-methylsulfoxide (230) 

N
H

CH2OH

S
CH3

O

 
230  

NaBH4 (5.2 mg, 0.14 mmol) was added to a stirred solution of brasssicanal A 

sulfoxide (229, 10.6 mg, 0.05 mmol) in MeOH (2 ml) at room temperature. After 30 

min stirring at room temperature, the reaction was quenched with water (0.5 ml) and 

the solvent was removed under reduced pressure. The crude product was purified by 

preparative TLC (CH2Cl2-MeOH, 99/5) to yield 3-(hydroxymethyl)indole-2-

methylsulfoxide (230, 7 mg, 65%) as an off white solid (Pedras and Khan, 1996). 

HPLC tR = 3.9 min.  

1H NMR (500 MHz, CD3CN): δ 10.40 (br s, 1H D2O exchangeable), 7.69 (d, J = 8 Hz, 

1H), 7.49 (d, J = 8 Hz, 1H), 7.28 (ddd, J = 7, 8, 1 Hz, 1H), 7.14 (ddd, J = 8, 7, 1 Hz, 

1H), 4.88 (d, J = 13 Hz, 1H), 4.81 (d, J = 13 Hz, 1H), 2.9 (s, 3H). 

13C NMR [125.8 MHz, CD3OD]: δ 139.3 (s), 134.5 (s), 127.8 (s), 126.1 (d), 121.3 (d), 

121.1 (d), 120.7 (s), 113.3 (d), 55.1 (t), 41.1 (q). 

HRMS-EI m/z: measured 209.0508 (M+, calc. 209.0511 for C10H11NO2S). 

MS-EI m/z (% relative intensity): 209 (M+, 54), 192 (87), 176 (100), 147 (68), 117 

(52), 91 (28).  

FTIR νmax (KBr): 3268, 2929, 1711, 1667, 1450, 1212, 1023, 749 cm−1. 
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4.4.5.4  Methyl (thianaphthen-3-yl-1-S-oxide)methyldithiocarbamate (296) 

S
S

NH
SCH3

O  
296  

To a solution of thianaphthene-3-methanamine (274, 19 mg, 0.12 mmol) in 

CF3COOH-CH2Cl2 (1:2, 0.75 ml), H2O2 (30%, 53 µl, 0.47 mmol) was added at 0 °C 

and the reaction mixture was stirred at the same temperature. After 3 hours, the mixture 

was neutralized with 10% NaHCO3 and extracted with CH2Cl2 (2×10 ml). The 

combined organic extracts were dried over Na2SO4 and concentrated under reduced 

pressure. The residue was immediately dissolved in CH2Cl2 (0.5 ml), cooled to 0 °C, 

Et3N (50 µl) and CS2 (50 µl) was added and the mixture was stirred at 0 °C. After 60 

mins, CH3I (50 µl) was added and the reaction mixture was stirred for 30 mins at room 

temperature. The reaction mixture was poured into water (10 ml) and extracted with 

CH2Cl2 (2×10 ml). The combined organic extracts were dried over Na2SO4, 

concentrated under reduced pressure and the residue was applied for FCC on silica gel 

(CH2Cl2-MeOH, 99/1) to afford methyl (thianaphthen-3-yl-1-S-oxide)methyl-

dithiocarbamate (296, 3 mg, 9%) as an off white solid. 

HPLC tR = 10.8 min.  

[α]D = -252 (c 0.18, MeOH). 

1H NMR (500 MHz, CD3OD): δ 7.97 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.67 

(dd, J = 7.5, 7.5 Hz, 1H), 7.61 (dd, J = 7.5, 7.5 Hz, 1H), 7.01 (s, 1H) 5.05 (AB quartet, 

J = 17, 17 Hz, 2H), 2.65 (s, 3H). 

13C NMR [125.8 MHz, CD3OD]: δ 201.1 (s), 146.3 (s), 145.6 (s), 136.8 (s), 132.7 (d), 

131.7 (d), 129.7 (d), 126.4 (d), 123.4 (d), 44.0 (t), 17.2 (q). 
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HRMS-ESI m/z: measured 270.0079 ([M+1]+, calc. 270.0075 for C11H12NOS3).  

MS-EI m/z (% relative intensity): 270 ([M+1]+, 100). 

FTIR νmax (KBr): 3230, 3037, 2922, 1518, 1237, 1121, 1012, 935, 757 cm−1. 

UV (CH3OH) λmax (log ε): 222 (4.4), 246 (4.1), 270 nm (4.0). 

4.4.6 Spectral data of metabolites 

4.4.6.1   7-Oxy-(O-β-D-glucopyranosyl)-1-methoxybrassinin (220) 

N
OCH3

O
OH

OHHO

HO

O

S

NH
SCH3

 220 

 

HPLC tR = 9.2 min 

[α]D = -55 (c 0.54, MeOH). 

1H-NMR (500 MHz, CD3CN): δ 8.22 (br, s, 1H D2O exchangeable), 7.41 (s, 1H), 7.33 

(d, J = 8 Hz, 1H), 7.06 (dd, J = 8, 8 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 5.14 (d, J = 8 Hz, 

1H), 5.00 (d, J = 4.5 Hz, 2H), 4.14 (s, 3H), 3.42-3.84 (m, 10H, 4H D2O exchangeable), 

2.59 (s, 3H). 

13C NMR (125.8 MHz, CD3CN): δ 198.5 (s), 144.0 (s), 126.8 (s), 125.5 (d), 123.6 (s), 

121.2 (d), 113.7 (d), 108.7 (d), 107.7 (s), 101.6 (d), 77.1 (d), 76.9 (d), 74.1 (d), 70.5 (d), 

67.2 (q), 61.9 (d), 42.1 (t), 17.6 (q). 

HRMS-ESI m/z: measured 445.1094 ([M+1]+, calcd. 445.1097 for C18H25N2O7S2). 

MS-ESI m/z (% relative intensity): 445 ([M+1]+, 58), 414 (72), 338 (100), 249 (25). 
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FTIR νmax (KBr): 3347, 2926, 2855, 1698, 1578, 1496, 1249, 1077 cm-1. 

UV (CH3CN) λmax (log ε): 221 (4.5), 270 (4.0). 

4.4.6.2   1-(β-D-glucopyranosyl)cyclobrassinin (221) 

N
O

OH

OHHO

HO

S

N
SCH3

 221 

 

HPLC tR = 8.6 min 

[α]D = -14 (c 0.23, MeOH). 

1H NMR (500 MHz, (CD3)2CO): δ 7.57 (d, J = 8 Hz, 1H), 7.50 (d, J = 8 Hz, 1H), 7.09-

7.16 (m, 2H), 5.48 (br, s, 1H), 5.32 (d, J = 18 Hz, 1H), 4.77 (d, J = 18 Hz, 1H), 4.66 

(br, s, 1H, D2O exchangeable), 3.63-4.09 (m, 8H, 2H D2O exchangeable), 2.54 (s, 3H). 

13C NMR (125.8 MHz, (CD3)2CO): δ 152.5 (s), 137.0 (s), 125.5 (s), 121.9 (s), 121.8 

(d), 120.4 (d), 117.3 (d), 111.1 (d), 104.5 (s), 86.1 (d), 80.4 (d), 78.1 (d), 72.7 (d), 70.8 

(d), 62.4 (t), 48.5 (t), 14.7 (q). 

HRMS-FAB m/z: measured 397.0881 ([M+1]+, calcd. 397.0891 for C17H21N2O5S2). 

MS-FAB m/z (% relative intensity): 397 ([M+1]+, 100), 396 (63), 395 (34), 329 (50). 

FTIR νmax (KBr): 3380, 2923, 2852, 1617, 1452, 1346, 1249, 1079, 901, 734 cm-1. 

UV (CH3CN) λmax (log ε): 231 (4.4), 286 (3.9) nm. 
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4.4.6.3   6-Hydroxysinalexin (226) 

N
OCH3

S
N

HO
 

226 
 

HPLC tR = 12.0 min. 

1H-NMR (500 MHz, CD3CN): δ 8.63 (s, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.24 (br s, 1H 

D2O exchangeable), 6.98 (d, J = 2 Hz, 1H), 6.83 (dd, J = 8.5, 2 Hz, 1H), 4.14 (s, 3H). 

HRMS-ESI m/z: measured 221.0377 ([M+1]+, calc. 221.0379 for C10H9N2O2S). 

MS-ESI m/z (% relative intensity): 221 ([M+1]+ 100), 190 (56), 114 (34). 

FTIR νmax (KBr): 3353, 2928, 2857, 1611, 1460, 1248, 1203, 1075 cm−1. 

UV (CH3CN) λmax (log ε): 228 (4.5), 266 (4.0) nm. 

4.4.6.4   6-Oxy-(O-β-D -glucopyranosyl)sinalexin (227) 

N
OCH3

S
N

O
O

OH

OHHO

HO

 227 

 

HPLC tR = 4.9 min. 

[α]D = −57 (c 0.20, MeOH). 

1H NMR (500 MHz, (CD3)2CO): δ 8.73 (s, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.33 (d, J = 2 

Hz, 1H), 7.06 (dd, J = 8.5, 2 Hz, 1H), 5.10 (d, J = 7.5 Hz, 1H), 4.23 (s, 3H), 3.94–3.47 

(m, 8H, 2H D2O exchangeable). 
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13C NMR (125.8 MHz, (CD3)2CO): δ 156.3 (s) 155.7 (s), 147.9 (d), 142.5 (s), 123.9 (s), 

121.1 (d), 112.8 (s), 112.6 (d), 102.1 (d), 97.7 (d), 77.4 (d), 77.1 (d), 74.0 (d), 70.6 (d), 

63.9 (q), 61.7 (t). 

HRMS-ESI m/z: measured 383.0928 ([M + 1]+, calc. 383.0912 for C16H18N2O7S). 

MS-ESI m/z (% relative intensity): 383 ([M + 1]+, 95), 185 (11), 114 (100).  

FTIR νmax (KBr): 3359, 2926, 2854, 1611, 1459, 1248, 1205, 1073 cm−1.  

UV (CH3CN) λmax (log ε): 228 (4.6), 267 (4.0) nm. 

X-Ray crystal data: C16H18N2O7S, M = 382.38, monoclinic, space group P21, a = 

13.8821(3), b = 4.5502(2), c = 14.6589(4) Å, β = 109.8086(17)°, U = 871.16(5) Å3, T = 

173(2) K, Z = 2, µ(Mo-Kα) = 0.228 mm−1, 10 196 reflections collected, 3438 

independent reflections (Rint = 0.0632), final R values: R1 = 0.0471, wR2 = 0.1037 [I > 

2σ(I)]; R1 = 0.0559, wR2 = 0.1090 (all data). CCDC reference number 603052. 

4.4.6.5   1-Methyl-(oxy-O-β-D-glucopyranosyl)brassilexin (228) 

N
S
N

O
O

OH

OHHO

HO

 
228 

 

HPLC tR = 4.4 min. 

[α]D = −109 (c 0.06, MeOH). 

1H NMR (500 MHz, (CD3)2CO, after adding D2O): δ 8.80 (s, 1H), 7.98 (d, J = 8 Hz, 

1H), 7.76 (d, J = 8 Hz, 1H), 7.40 (ddd, J = 7, 7, 1 Hz, 1H), 7.29 (dd, J = 8, 7 Hz, 1H), 

 223



6.13 (d, J = 11.5 Hz, 1H), 5.90 (d, J = 11.5Hz, 1H), 4.39 (d, J =7.5Hz, 1H), 3.86 (dd, J 

=12, 3Hz, 1H), 3.70–3.60 (m, 3H), 3.58–3.48 (m, 2H). 

13C NMR (125.8 MHz, (CD3)2CO): δ 161.6 (s), 148.3 (d), 144.6 (s), 124.5 (d), 121.7 

(d), 121.2 (s), 120.8 (s), 120.5 (d), 111.1 (d), 100.0 (d), 76.5 (d), 73.5 (d), 73.4 (t), 70.1 

(d), 63.4 (d), 61.4 (d). 

HRMS-FAB m/z: measured 367.0968 ([M+1]+, calc. 367.0963 for C16H19N2O6S). 

FTIR νmax (KBr): 3350, 3068, 2910, 1509, 1476, 1446, 1375, 1257, 1073, 745 cm−1. 

UV (CH3OH) λmax (log ε): 221 (4.4), 243 (3.9), 264 nm (3.8). 

4.4.6.6  Spiro[3H-indole-3,5′-thiazolidin]-2(1H),2′-dione (231) 

N
H

O
S

H
N O

 
231  

HPLC tR = 5.1 min. 

[α]D = −35 (c 0.33, MeOH). 

1H-NMR (500 MHz, CD3CN): δ 8.63 (br s, 1H D2O exchangeable), 7.53 (d, J = 7.5 Hz, 

1H), 7.31 (ddd, J = 7.5, 7.5, 1 Hz, 1H), 7.10 (ddd, J = 7.5, 8, 1.0 Hz, 1H), 6.95 (d, J = 8 

Hz, 1H), 6.40 (br s, 1H D2O exchangeable), 3.82 (d, J = 11 Hz, 1H), 3.77 (d, J = 11 Hz, 

1H). 

13C-NMR (125.8 MHz, CD3CN): δ  176.7 (s), 171.9 (s), 141.2 (s), 130.4 (d), 129.9 (s), 

124.7 (d), 123.4 (d), 110.6 (d), 57.0 (s), 51.0 (t). 

HRMS-EI m/z: measured 220.0304 (M+, calc. 220.0306 for C10H8N2O2S). 

MS-EI m/z (% relative intensity): 220 (M+, 48), 191 (59), 164 (36), 135 (27). 
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FTIR νmax (KBr): 3273, 2919, 2854, 1719, 1619, 1472, 1328, 1247, 1185, 1079, 748 

cm−1. 

UV (CH3CN) λmax (log ε): 212 (4.4), 250 (3.7), 297 (3.2) nm. 

4.4.6.7   1-Methoxyspiro[3H-indole-3,5′-thiazolidin]-2(1H),2′-dione (232) 

N
OCH3

O
S

H
N O

 
232 

 

HPLC tR = 7.5min. 

[α]D = −7 (c 0.34, MeOH); ee 11% (calculated using chiral solvating agent by 1H 

NMR). 1H-NMR (500 MHz, CD3CN): δ 7.59 (d, J = 7.5 Hz, 1H), 7.43 (dd, J = 7.5, 7.5 

Hz, 1H), 7.20 (dd, J = 7.5, 7.5 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.45 (br s, 1H D2O 

exchangeable), 4.01 (s, 3H), 3.85 (d, J = 11 Hz, 1H), 3.80 (d, J = 11 Hz, 1H). 

13C-NMR (125.8 MHz, CD3CN): δ 171.4 (s), 170.2 (s), 139.9 (s), 130.6 (d), 126.0 (s), 

124.7 (d), 124.4 (d), 108.0 (d), 63.8 (q) 55.3 (s), 50.6 (t). 

HRMS-EI m/z: measured 250.0410 (M+, calc. 250.0412 for C11H10N2O3S). 

MS-EI m/z (% relative intensity): 250 (M+, 100), 194 (24), 163 (23), 162 (39), 148 

(53), 131 (32). 

FTIR νmax (KBr): 3268, 2935, 2883, 1704, 1617, 1466, 1324, 1226, 1080, 750 cm−1. 

UV (CH3CN) λmax (log ε): 212 (4.3), 256 (3.7) nm. 
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4.4.6.8   1-Methoxy-2′-thioxospiro[3H-indole-3,5′-thiazolidin]-2(1H)-one (233) 

N
OCH3

O
S

H
N S

 
233 

 

HPLC tR = 11.5 min. 

[α]D = −31 (c 0.10, MeOH); ee 30% (calculated using chiral solvating agent by 1H 

NMR). 

1H-NMR (500 MHz, CD3CN): δ 8.18 (br s, 1H D2O exchangeable), 7.57 (d, J = 7.5 Hz, 

1H), 7.41 (dd, J = 7.5, 7.5 Hz, 1H), 7.19 (dd, J = 7.5, 7.5 Hz, 1H), 7.05 (d, J = 7.5 Hz, 

1H), 4.23 (d, J = 13 Hz, 1H), 4.20 (d, J = 13 Hz, 1H), 3.98 (s, 3H). 

13C-NMR (125.8 MHz, CD3CN): δ198.3 (s), 169.6 (s), 139.9 (s), 130.8 (d), 124.8 (d), 

124.5 (s), 124.3 (d), 108.2 (d), 63.9 (q) 59.5 (s), 58.7 (t). 

HRMS-EI m/z: measured 266.0189 (M+, calc. 266.0184 for C11H10N2O2S2). 

MS-EI m/z (% relative intensity): 266 (M+, 100), 194 (36), 175 (26), 162 (44), 148 

(36), 144 (37), 116 (19).  

FTIR νmax (KBr): 3220, 2935, 2859, 1731, 1617, 1503, 1463, 1291, 1058, 753 cm−1. 

UV (CH3CN) λmax (log ε): 217 (4.4), 264 (4.2) nm. 
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4.4.6.9   1-Methylspiro[3H-indole-3,5′-thiazolidin]-2(1H),2′-dione (234). 

N
CH3

O
S

H
N O

 
234 

 

HPLC tR = 6.6 min. 

[α]D = −5 (c 0.20, CH3OH). 

1H-NMR (500 MHz, CD3CN): δ 7.57 (dd, J =7.5, 0.5Hz, 1H), 7.39 (ddd, J =8, 8, 

1.1Hz, 1H), 7.15 (ddd, J = 8, 8, 1 Hz, 1H), 6.98 (d, J = 8 Hz, 1H), 6.39 (br s, 1H D2O 

exchangeable), 3.81 (d, J = 11 Hz, 1H), 3.75 (d, J = 11 Hz, 1H), 3.19 (s, 3H). 

13C-NMR (125.8 MHz, CD3CN): δ 175.2 (s), 171.9 (s), 143.6 (s), 130.4 (d), 129.6 (s), 

124.3 (d), 123.6 (d), 109.3 (d), 56.9 (s), 51.1 (t), 26.6 (q). 

HRMS-EI m/z: measured 234.0459 (M+, calc. 234.0463 for C11H10N2O2S). 

MS-EI m/z (% relative intensity): 234 (M+, 44), 179 (11), 178 (100), 177 (17), 174 

(18), 158 (11). 

FTIR νmax (KBr): 3263, 3058, 2935, 2883, 1706, 1611, 1470, 1372, 1347, 1247, 1133, 

1077, 754 cm−1. 

UV (CH3CN) λmax (log ε): 214 (4.5), 257 (3.9), 299 (3.3) nm. 

 

 

 

 

 

 227



4.4.6.10 1-Hydroxymethylspirobrassinin (235) 

N
O

S

N SCH3

OH  
235 

 

HPLC tR = 11.1 min. 

1H-NMR (500 MHz, CDCl3): δ 7.45 (d, J = 8 Hz, 1H), 7.4 (dd, J = 8, 8 Hz, 1H), 7.20–

7.14 (m, 2H), 5.35 (d, J = 11 Hz, 1H), 5.21 (d, J = 11 Hz, 1H), 4.76 (d, J = 14.5 Hz, 

1H), 4.55 (d, J = 14.5 Hz, 1H), 2.82 (s, 3H). 

13C-NMR (125.8 MHz, CDCl3): δ 176.9 (s), 164.7 (s), 140.8 (s), 130.6 (s), 130.3 (d), 

124.7 (d), 124.6 (d), 110.0 (d), 75.4 (t), 64.8 (s), 64.7 (t), 16.1 (q). 

HRMS-EI m/z: measured 280.0348 (M+, calc. 280.0340 for C12H12N2O2S2). 

MS-EI m/z (% relative intensity): 280 (M+, 26), 250 (49), 203 (40), 177 (100), 149 

(51), 117 (47), 87 (57). 

FTIR νmax (KBr): 3311, 2935, 2854, 1739, 1620, 1583, 1464, 1086, 945, 743 cm−1. 
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4.4.6.11 1-β-D-glucopyranosyl-3-phenylindole (299) 

N
O

OH

OHHO

HO

 
299 

 

HPLC tR = 11.8 min. 

[α]D = −21 (c 0.20, CH3OH). 

1H-NMR (500 MHz, CD3CN/D2O, 5.0/0.01, v/v): δ 7.93 (d, J = 8 Hz, 1H), 7.74 (d, J = 

7.5 Hz, 2H), 7.69 (s, 1H), 7.61 (d, J = 8 Hz, 1H), 7.49 (dd, J = 7.5, 7.5 Hz, 2H), 7.34-

7.29 (m, 2H), 7.23 (dd, J = 7.5, 7.5 Hz, 1H), 5.54 (d, J = 9 Hz, 1H), 3.96 (dd, J = 9, 9 

Hz, 1H), 3.79 (dd, J = 10, 2 Hz, 1H), 3.68-3.50 (m, 4H). 

13C-NMR (125.8 MHz, CD3CN): δ 137.9 (s), 135.8 (s), 129.3 (d), 127.6 (d), 126.8 (s), 

126.4 (d), 123.8 (d), 122.7 (d), 121.1 (d), 119.9 (d), 117.9 (s), 111.2 (d), 85.2 (d), 79.2 

(d), 77.9 (d), 72.6 (d), 70.5 (d), 61.9 (t). 

HRMS-ESI m/z: measured 354.1345 [(M-1)-, calc. 354.1346 for C20H20NO5). 

FTIR νmax (KBr): 3347, 2925, 1708, 1602, 1462, 1378, 1215, 1077, 1033, 746 cm−1. 

UV (CH3CN) λmax (log ε): 202 (4.2), 224 (4.2), 267 (3.8) nm. 
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4.4.6.12 Methyl (7-oxy-O-β-D-glucopyranosylthianaphthen-3-yl)methyl-

dithiocarbamate (297) 

S
S

NH
SCH3

O
O

OH

OHHO

HO

 297 
 

HPLC tR = 8.8 min. 

[α]D = −60 (c 0.26, CH3OH). 

1H-NMR [500 MHz, (CD3)2CO]: δ 9.33 (br, s, 1H), 7.61 (s, 1H), 7.58 (d, J = 8 Hz,1H), 

7.36 (dd, J = 8, 8 Hz, 1H), 7.18 (d, J = 8 Hz, 2H), 5.23-5.21 (m, 3H), 3.90 (d, J = 10 

Hz, 1H), 3.74-3.71 (m,  1H), 3.59-3.49 (m, 4H), 2.61 (s, 3H). 

13C-NMR (125.8 MHz, (CD3)2CO: δ 199.3 (s), 153.2 (s), 140.5 (s), 132.4 (s), 130.3 (s), 

126.2 (d), 126.1 (d) 116.1 (d), 109.5 (d), 101.6 (d), 77.6 (d), 77.5 (d), 74.1 (d), 70.8 (d), 

62.1 (t), 44.8 (t), 17.5 (q). 

HRMS-ESI m/z: measured 430.0478 [(M-1)-, calc. 430.0458 for C17H20NO6S3). 

FTIR νmax (KBr): 3335, 2925, 1710, 1602, 1552, 1462, 1378, 1216, 1078, 1032, 746 

cm−1. 

UV (CH3CN) λmax (log ε): 224 (4.4), 254 (4.1), 304 (3.5) nm. 
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4.4.6.13 Methyl (1-β-D-glucopyranosyl-3-hydroxylindol-2-yl)methyldi-

thiocarbamate (295) 

N

NH

S
SCH3

HO

O
OH

OHHO

HO

 295 
 

HPLC tR = 9.5 min. 

[α]D = −211 (c 0.12, CH3OH). 

1H-NMR (500 MHz, CD3CN/D2O, 5.0/0.01, v/v): δ 9.57 (br, s, D2O exchangeable, 

1H), 9.25 (br, s, D2O exchangeable, 1H), 7.66 (d, J = 8 Hz,1H), 7.37 (d, J = 8 Hz,1H), 

7.16 (dd, J = 8, 8 Hz, 1H), 7.08 (dd, J = 8, 8 Hz, 1H), 5.33 (d, J = 14.5 Hz, 1H), 4.86 

(d, J = 14.5 Hz, 1H), 4.56 (d, J = 8 Hz, 1H), 3.93 (dd, J = 12, 2 Hz, 1H), 3.64 (dd, J = 

12, 7 Hz, 1H), 3.45 (dd, J = 8, 8 Hz, 1H), 3.38 (dd, J = 8, 8  Hz, 1H), 3.31-3.24 (m, 

2H), 2.62 (s, 3H). 

13C-NMR (125.8 MHz, CD3CN): δ 201.6 (s), 135.2 (s), 133.9 (s), 126.6 (s), 123.6 (d), 

121.6 (s), 120.2 (d), 118.6 (d), 112.9 (d), 105.9 (d), 77.3 (d), 77.1 (d), 74.4 (d), 71.2 (d), 

62.7 (t), 41.2 (t), 18.4 (q). 

HRMS-ESI m/z: measured 413.0840 [(M-1)-, calc. 413.0846 for C17H21N2O6S2). 

FTIR νmax (KBr): 3359, 2922, 1471, 1384, 1256, 1072 cm−1. 

UV (CH3CN) λmax (log ε): 223 (4.5), 272 (4.2) nm. 
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4.5 Antifungal activity 

The antifungal activity of compounds was determined using the following 

mycelial radial growth bioassay. First the isolate of S. sclerotiorum (clone # 33) was 

grown on potato dextrose agar (PDA) plates by inoculating one piece of sclerotia per 

plate and the plates were incubated for 3 days at 20±1 ºC in the dark. Solutions of each 

compound in DMSO (50 mM) were used to prepare assay solutions in minimal media 

(0.5, 0.3, 0.1, 0.05, and 0.02 mM) by serial dilution; control solutions contained 1% 

DMSO in minimal media. Sterile tissue culture plates (12-well, 23mm diameter) 

containing test solutions and control solution (1 ml per well) were inoculated with 

mycelium plugs (4 mm cut from 3-day-old PDA plates of S. sclerotiorum, clone # 33) 

placed upside down on the center of each plate and incubated under constant light for 3 

days. All bioassay experiments were carried out in triplicate, at least two times. 

 

4.6 Co-metabolism of brassinin, camalexins and potential 
brassinin detoxification inhibitors in Sclerotinia sclerotiorum 

Six Erlenmeyer flasks (125 ml) each containing 50 ml minimal media were 

employed. Five of the flasks were each inoculated with three pieces of mycelial plugs 

(4-day old, 6 mm) of S. sclerotiorum clone # 33, the flasks were incubated at 22 ± 2º C 

on a shaker at 120 rpm in light. After four days of incubation potential inhibitors (final 

concentration 0.05 mM) in CH3CN [final concentration 0.5% (v/v)] were added to 

fungal cultures in two of the flasks (flasks 1 and 2). Similarly, the potential inhibitors 

(final concentration 0.1 mM) were added to fungal cultures in two other flasks (flasks 3 

and 4). These four flasks (flasks 1, 2, 3 and 4) were incubated for 10 min and then 

brassinin (9, final concentration 0.05 mM) in CH3CN [final concentration 0.5% (v/v)] 

were added to each of the four flasks (flasks 1, 2, 3 and 4). To the flask 5, both 
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brassinin (9) (dissolved in CH3CN, final concentration 0.05 mM) and potential 

inhibitors (dissolved in CH3CN, final concentration 0.05 mM) were added to 

uninoculated medium (control 1). To the fungal culture in flask 6 (control 2) was added 

CH3CN (150 µl). Samples (5 ml each) were withdrawn from the flasks immediately 

after adding the compounds. Subsequently 5 ml samples were withdrawn after 2, 4, 6, 

10, 12, 48 hours and so on until all the brassinin (1) was completely metabolized. Each 

sample was either frozen or immediately extracted with EtOAc (2 × 10 ml). The 

organic extracts were concentrated, dissolved in acetonitrile (500 µL), and filtered 

through a tight cotton plug into a HPLC vial for analysis. 

4.7 Screening of potential brassinin detoxification inhibitors 
using crude cell free extracts 

4.7.1 Preparation of crude cell free extracts 

Erlenmeyer flasks (250 ml × 5) each containing 100 ml of PDB media were 

employed.  All the flasks were inoculated with sclerotia (5 pieces) of S. sclerotiorum 

clone # 33. After seven days, a solution of camalexin (50 mM, 100 µl) in DMSO was 

added as an inducer to each of the five flasks (final concentration 0.05 mM) and 

incubated for 24 hours. The fungal mycelium was filtered off, washed with water, the 

remaining water squeezed out between filter paper and the mycelial pad frozen 

immediately. Frozen mycelia were mixed with ice-cold Tris HCl (50 mM, pH 8.0, 

containing 5% glycerol, 2 mM dithiothreitol, 2 mM PMSF, and 0.01% triton X-100) 

buffer (ca. 15 ml) and ground at 4 ºC using a mortar and pestle until a homogenous 

mixture was obtained. The mixture was then centrifuged at 58,545g (22,000 rpm) for 

40 min to obtain the cell homogenate and the pellet was discarded. 
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4.7.2 Protein measurements 

4.7.2.1  Preparation of BSA calibration curve 

The Bradford protein assay was used to estimate the quantities of proteins in the 

cell homogenate using a calibration curve prepared from bovine serum albumin (BSA). 

A stock solution (1 mg/ml) of BSA in the extraction buffer was prepared from which 

five other concentrations (0.30, 0.25, 0.20, 0.15, and 0.10 mg/ml) were prepared by 

serial dilution using the same buffer. In a spectrophotometric cell (1 ml) were taken 

100 µl of each solution and 1 ml of Bradford reagent. After mixing, the solution 

mixture was incubated for 5 min and the optical density was measured at 595 nm. A 

blank sample containing 100 µl extraction buffer and 1 ml Bradford reagent was used 

as control. All samples were prepared in triplicate and finally the calibration curve was 

obtained by plotting concentration vs. optical density. 

4.7.2.2  Protein measurements 

40 µl of cell homogenate was diluted to 1 ml using the extraction buffer. In a 

spectrophotometric cell (1 ml) were taken 100 µl of this diluted solution and 1 ml of 

Bradford reagent. After mixing, the solution mixture was incubated for 5 min and the 

optical density was measured at 595 nm. A blank sample containing 100 µl extraction 

buffer and 1 ml Bradford reagent was used as control. All samples were prepared in 

triplicate and finally the concentration of proteins was determined using the BSA 

calibration curve. 

4.7.3 Enzyme assays 

Enzyme assays were carried out at 25 ºC, using brassinin (9) (or other 

compounds as reported) as a substrate and UDPG as a glucose donor. The specific 

activity of cell-free extracts was defined as the amount (nmol) of 1-β-D-

glucopyranosylbrassinin (66) product formed per min per mg of protein. The 0.5 ml 
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standard assay mixture contained 0.5 ml of cell free extract as enzyme source, 3 µl of 

50 mM UDPG (final concentration 0.3 mM) solution in water, and 3 µl of 50 mM 

brassinin (final concentration 0.3 mM) in DMSO. The assay mixture was incubated at 

25 ºC with constant shaking for 1 hour and EtOAc (2×2 ml) was used to extract the 

reaction product. After concentrating, the EtOAc extract was dissolved in 100 µl of 

CH3CN and analyzed by HPLC. Quantification of the reaction product was carried out 

using a standard calibration curve (Pedras et al. 2004c). 

The screening of potential inhibitors was carried out in the following way. Each 

potential inhibitor (final concentration 0.3 and 0.6 mM) dissolved in DMSO was added 

to a vial containing 2.0 ml of cell-free extracts and UDPG (final concentration 0.3 mM, 

dissolved in water) and the mixture was incubated at room temperature for 30 min. 

After that, brassinin (9, 0.3 mM) was added in each vial and the mixture was 

immediately divided into four samples in separate vials (0.5 ml each). Three samples 

were incubated for one more hour and the remaining sample was extracted immediately 

with EtOAc. After 60 min of incubation the three samples were extracted separately 

with EtOAc (2×2 ml), the extracts were dissolved in CH3CN (100 µl) and analyzed by 

HPLC for the detection and quantification of the reaction product 1-β-D-

glucopyranosylbrassinin (66). Control experiments containing only brassinin (9, 0.3 

mM) were performed similarly. 
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