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Abstract

Fluidized beds have widespread application in industry due to their increased rate of heat, mass, and

momentum transfer. In order to effectively design fluidized beds at the industrial scale, it is essential to

have an understanding of the complex hydrodynamic behavior of the dense gas-particle flows inside them.

This thesis is focused on the bubbling fluidization of Geldart B particles. The Eulerian–Eulerian “Two-fluid

model” (TFM) approach was used to simulate dense gas-particle flows inside two different three-dimensional

(3D) bubbling beds. The numerical code Multiphase Flow with Interphase eXchanges (MFIX) was used to

perform all the 3D simulations. The results were validated against published experimental data.

This manuscript-based thesis documents four different studies. The first study, Chapter 2, reports an

in-depth investigation of two different models for the particle stress tensor in the elastic-inertial regime and

assesses their ability to predict the hydrodynamics of a 3D cylindrical fluidized bed. Contours of inertial

number, defined as the ratio of the inertial forces to the frictional forces, were used to visualize the flow

properties. Analysis of the flow properties for a range of gas-particle regimes based on the inertial number

enhances our insight into the flow behavior in such a complex system.

Chapter 3 reports a comprehensive study to assess the effect of three different particle-wall boundary

conditions (BCs) on the structural features of a dense gas-particle flow inside a 3D thin bubbling bed.

Accordingly, the effect of each wall model on the velocity field, 3D bubble statistics, gas-pressure fluctuations,

and particle resolved-scale Reynolds stress were investigated. Also, the dominant mixing regions inside the

bed were identified in order to quantitatively describe the bed performance.

Chapter 4 performs an in-depth systematic study that uses a particle energy budget analysis to investigate

the dynamics of the bubbling bed discussed in Chapter 3. The budget analysis helps not only to quantify

the relative importance of various terms contributing to the energy cascade, but also to identify the regions

in the bed where most of the energy transfer takes place.

Chapter 5 applies state-of-the-art post-processing methodologies, namely, the Proper Orthogonal Decom-

position (POD) and the swirling strength criterion to the fluctuating particle flow fields predicted by the

TFM of a bubbling bed to identify and analyze the dominant spatio-temporal patterns of the particulate

phase. The variation of the POD temporal coefficients associated with the particle volume fraction fluctu-

ation field suggested the existence of a low-dimensional attractor and irregular periodicity in the flow. The

particle vortical motions were characterized by their flat structure. POD was used to obtain a reduced-order

reconstruction of the particle velocity and volume fraction fields using a subset of eigenmodes.

In summary, this thesis attempts to quantitatively describe some important features of bubbling beds

dynamics that have received relatively little attention in the literature. To this end, it was observed that the

use of inertial number, investigation of the energy cascade process, and studying particle vortical structures

were helpful to quantitatively explore the underlying physics of bubbling beds. A major objective was also to

identify a set of proper TFM parameters and particle-wall BC for high-fidelity simulation of bubbling beds.
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Chapter 1

Introduction

Fluidization refers to a process where solid particles are transformed into a fluid-like state through sus-

pension in a gas (or liquid). This process, shown schematically in Figure 1.1, is initiated by the injection of

a pressurized gas into a bed of particles. Figure 1.1 shows the variation of gas pressure drop (left vertical

axis) and bed height (right vertical axis) with the superficial gas velocity. At low superficial gas velocities,

i.e., lower than the velocity corresponding to point B in Figure 1.1, the pressure drop increases with the gas

velocity to overcome the weight of the particles in the bed. The process from A to B is referred to as a

fixed bed condition because the initial height of the bed remains unchanged. At point B, the intermeshed

fixed-bed particles are unlocked and bed starts to expand. Point C corresponds to the condition where the

drag force associated with the gas pressure drop counterbalances the apparent weight of the particles in the

bed. The velocity corresponding to this point is referred to as the minimum fluidization velocity. By further

increasing the superficial gas velocity the bed continues to expand, but the pressure drop remains approxi-

mately constant. Note that if the ABCD process is traced backward by gradually decreasing the superficial

gas velocity, a new curve (DCA) is observed. This is due to the variation in the fixed-bed voidage.
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Figure 1.1: Variation of the gas pressure drop and bed height with the superficial gas velocity.

Geldart [3] classified the behavior of solid particles fluidized by gases into four clearly recognizable groups,

characterized by the density difference (ρp−ρg) and mean particle size. Here, ρ is the density and subscripts
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p and g stand for the particle and gas phases, respectively. According to Geldart’s classification, particles in

group A exhibit dense phase expansion after minimum fluidization and prior to the bubble initiation. The

group B particles give rise to bubble formation at the minimum fluidization. Group C contains extremely fine

and mostly cohesive particles that are difficult to fluidize; and group D particles are characterized by their

high density and can form stable spouted beds. Goossens [1] also distinguished different classes of fluidized

particles based on the Archimedes (Ar) and Reynolds (Re) numbers:

Ar =
d3pρg (ρp − ρg) g

µ2
g

, Re =
dpρgU

µg
, (1.1)

where d, µ, U , and g (non-subscript) are the diameter, viscosity, superficial gas velocity, and gravitational

acceleration, respectively. Figure 1.2 shows a general classification diagram plotted by Goossens [1], where

he specified each type of Geldart group based on a range of Ar.
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Figure 1.2: Classification diagram for fluidized particles [1].

Glicksman [4] determined the non-dimensional parameters governing the dynamics of fluidized beds, which

include:

Ar, Re, Fr =
U

√
gdp

,
βdp
ρpU

,
ρp
ρg

,
H0

D
,
D

dp
, (1.2)

and particle size distribution and shape. Here Fr, β, H0, and D indicate the Froude number, coefficient of the

fluid-to-particle drag force per unit volume, initial height of the bed, and physical length-scale corresponding

to the bed size, respectively. Following Goossens [1], Re can be empirically expressed as a function of Ar.

Also, Glicksman et al. [5] indicated that Fr, and
βdp
ρpU

can be related to the other parameters for fluidization

in air. Therefore, the governing non-dimensional parameters may be simplified to [5]:

Ar,
ρp
ρg

,
U

Umf
,
H0

D
,
D

dp
, (1.3)

where Umf refers to the minimum fluidization velocity. This thesis is focused on the bubbling fluidization of

Geldart B particles, typically corresponding to 103 < Ar < 105 and 2 <
U

Umf
< 4.
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1.1 Motivation

Fluidized beds are widely employed in the petroleum, chemical, power-generation, and agricultural industries

for processes involving drying, separation and mixing of particles, and chemical reactions [6]. Gas-particle

fluidized beds have the distinct advantage of creating a highly suitable medium for heat and mass transfer

and rapid mixing of particles. In order to effectively design fluidized beds at the industrial scale, it is essential

to have an understanding of the complex hydrodynamic behavior of the dense gas-particle flows inside them.

This understanding is achieved through theoretical and numerical models, and data collected from physical

experiments.

In principle, the motion of an assembly of solid particles suspended in a fluid can be completely described

by directly solving the Navier–Stokes equations for the interstitial fluid and Newton’s equation of motion for

each particle. These sets of equations are linked by the no-slip boundary condition between the solid and

fluid on the surface of each particle. This fundamental level of description provides more information than is

needed in practice. Moreover, this approach is computationally expensive for systems where a large number of

particles is required, as for example in fluidized beds. Due to the difficulties associated with direct solutions,

there have been various attempts to derive equations whose solutions determine the average properties of

interest without resolving all details of the motion. In deriving these averaged equations, often referred to as

the “two-fluid model” (TFM) formulation in the literature, Anderson and Jackson [7] used a weight function

to calculate the spatial averages of the point variables over a spatial domain that is much smaller than the

flow domain but larger than the particle spacing. In contrast, Ishii [8] used a phase indicator function and

took the averages over a fixed volume. Using another approach, Drew [9] averaged at each point of space

over an ensemble of macroscopically equivalent systems. Zhang and Prosperetti [10] also used an ensemble

average method and derived a set of equations similar to that of [7]. We note that the basic assumption used

to derive the averaged equations in the work of Anderson and Jackson, as stated above, is the condition of

scale separation, i.e., the domain over which the average is taken is much larger than the size of a single

particle but much smaller than the macroscopic length scale of the system. This implies that the shortest

significant length scale of the motion that can be captured by this sort of averaging is larger than the particle

spacing. Regardless of the method adopted for deriving the averaged equations, the process of averaging itself

generates some undetermined terms, dependent on motions at the scale of the particles, that must be closed

by specifying constitutive relations; specification of constitutive relations account for most of the differences

between different theoretical approaches [11]. In this thesis, the Eulerian–Eulerian TFM, based on the locally

averaged equations derived by Anderson and Jackson [7], is used to simulate dense gas-particle flows inside

two different bubbling beds.

Overall, the TFM approach attempts to simplify the exact equations governing the dynamics of fluidized

beds. However, there still exist complexity issues mostly in the details of particulate phase and related to

the unsteadiness and challenging dynamics. These challenges are discussed in more detail in the following
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section.

1.2 Challenges to numerical modeling of fluidized beds

The experimental study of inherently three-dimensional (3D) flows inside fluidized beds can be difficult and

costly in terms of flow visualization and measurements. However, advanced computational models that

provide realistic predictions of the gas-particle flows could be used to provide similar information. There

are many published numerical and experimental studies of flows in dense fluidized beds; most of these are

two-dimensional (2D) because they are less computationally expensive and simpler to perform [12]. Many

researchers have simulated pseudo-2D fluidized beds, which have a small depth in comparison with their

other dimensions, using 2D Cartesian coordinates [13, 14, 15]. However, several authors have reported

significant discrepancies between experimentally measured particle velocities and their numerically predicted

counterparts in 2D simulations [15, 16, 17]. In pseudo-2D systems, the particle movements are restricted by

front and back walls, and the friction exerted by these walls can have a significant effect on the particles

and the bubble rise velocity. Also, considerable flow disparities have been reported between 2D and 3D beds

[18, 19]. Thus, using 2D simulations to predict the hydrodynamic behavior of fluidized beds is problematic.

One major challenge in performing high-fidelity simulations of the dynamics of fluidized beds, using the

Eulerian–Eulerian approach, is deriving proper constitutive relations to close the governing equations. For

example, in turbulent fluidized beds, where the interstitial fluid plays a significant role in the dynamics of the

system, the major challenge is to model the complicated interaction of particles and the turbulence of the

fluid. In such systems, the granular particles rarely reach a volume fraction εmin
p where the friction between

particles starts to play a role. Consequently, the particle stress tensor can be described by the kinetic theory

of granular flows. However, in bubbling fluidized beds, where the turbulence of the fluid, if any, is damped by

the inertia of the particles, not only does the particle volume fraction reach εmin
p , but it is also likely to exceed

the packed bed limit, εmax
p . Therefore, in bubbling beds, in addition to the so-called rapid-flow regime, a

quasi-static slow regime is likely to be present. Obviously, there are regions in the bed in which the granular

flow undergoes a transitional intermediate regime that is neither rapid nor slow in nature. Accordingly, in

modeling of bubbling beds, the main challenge is to have a comprehensive model that is able to distinguish

the different behavior of the granular flow for each regime and appropriately describe the stresses.

Another challenge in realistic flow prediction of fluidized beds is specifying the appropriate particle-wall

boundary condition. There are different particle-wall boundary conditions available in the literature to

account for the particle slip velocity and the granular energy flux at the wall. However, it is not yet clear

how these different wall boundary conditions affect the simulated flow behavior, nor is it clear which are the

most realistic.

In order to be able to effectively design fluidized beds at the industrial scale, it is essential to have an

understanding of the complex behavior of the gas-particle flows inside them. To gain deeper insight into
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the complex dynamics of bubbling beds, it is helpful to perform a budget analysis on the particle energy

equations, i.e., the fluctuating and mean kinetic energy equations, and visualize contours of different terms

that appear in the energy equations. Note that less attention has been given to the investigation of energy

cascade in a fluidized bed in the literature. Energy cascade, in this context, refers to energy exchange between

various scales based on a variety of mechanisms. The energy budget analysis helps not only to quantify the

relative importance of various terms contributing to the energy cascade but also to identify the regions in

the bed where most of the energy cascade takes place.

Finally, most of the bubbling bed studies available in the literature have focused on the time-averaged

features of the flow fields, whereas only a few studies have investigated the fluctuating flow fields. As

a matter of fact, the particle flow fields inside bubbling beds exhibit unsteady structures accompanied by

intense meso-scale fluctuations induced by the motion of the bubbles. Therefore, sophisticated post-processing

methodologies are required to identify and analyze the dominant spatio-temporal patterns associated with

the fluctuating fields. This will enable to quantitatively explore the significance of the fluctuating fields in

the mixing dynamics of bubbling beds.

1.3 Objectives of the thesis

Considering the challenges recognized above, the present thesis has four objectives:

1. A critical investigation of the closure relations: Two different models for the particle stress

tensor that use different constitutive equations in the elastic-inertial regime are examined to assess

their ability to predict the dynamics of the bed. To understand how the particle stress models affect

structural features of the flow, a quantitative analysis is performed on some important aspects of the

mechanics of bubbling beds that have received relatively little attention in the literature. Accordingly,

different flow regimes are identified in the context of fluidized beds through the dimensionless inertial

number, and the main characteristics of each regime are discussed. In addition, the effects of the

particle stress tensor on the bubble characteristics, natural frequency of the bed, and particle Reynolds

stress are investigated.

2. A comprehensive assessment of different particle-wall boundary conditions: Three different

particle-wall boundary conditions are examined to assess their ability to predict the dynamics of a dense

gas-particle flow inside a three-dimensional bubbling bed, using the two-fluid model. The effect of each

wall model on the velocity field, three-dimensional bubble statistics, gas-pressure fluctuations, and

particle resolved-scale Reynolds stress are investigated. Also, the predicted dominant mixing regions

inside the bed are identified and visualized in order to quantitatively describe the bed performance.

3. Energy budget analysis: An in-depth systematic study is performed that uses a particle energy

budget analysis to examine the dynamics of a three-dimensional bubbling bed. The budget analysis
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helps not only to quantify the relative importance of various terms contributing to the energy cascade

but also to identify the regions in the bed where most of the energy cascade takes place.

4. Identifying dominant spatio-temporal patterns and vortical structures: State-of-the-art post-

processing methodologies, namely the Proper Orthogonal Decomposition (POD) and the swirling

strength criterion, are applied to the fluctuating particle flow fields predicted by the two-fluid model of

a bubbling bed to identify and analyze the dominant spatio-temporal patterns of the particulate phase.

The ability of the POD eigenmodes to reproduce the instantaneous fields is systematically assessed.

To achieve these objectives, the Eulerian–Eulerian TFM, based on the locally averaged equations derived

by Anderson and Jackson [7], is used to simulate dense gas-particle flows inside two different 3D bubbling

beds, namely a cylindrical, and a thin rectangular bubbling bed. The numerical code Multiphase Flow with

Interphase eXchanges (MFIX) [11] is used to perform the simulations. Some additional FORTRAN sub-

routines are developed and integrated into the MFIX code to implement different particle-wall boundary

conditions. The numerical model predicts such output properties as the particle volume fraction, gas pres-

sure, the velocity components of each phase, and the granular temperature of the particle phase. Python

subroutines are developed to post-process these properties and calculate spatially and time-averaged quan-

tities of interest, such as the phasic velocity profiles, particle-flow patterns, 3D bubble characteristics, power

spectral density of the gas pressure, and resolved-scale particle Reynolds stresses. Special Python subroutines

are also developed to perform the energy budget analysis, POD analysis and to identify the particle vortex

motions using the swirling strength method. Extensive 3D simulations are performed to obtain the model

parameter values that compared most favorably with the experimental data. All simulations are performed

in parallel using 60 cores on an architecture consisting of dual Hex Core Intel Xeon X5650 2.66 GHz with 12

GB of RAM each and running Red Hat Enterprise Linux Server 5.7.

This thesis adopts a manuscript-based format. In all studies reported in this thesis, the main author

conducted the simulations, post-processed and analyzed the results, and prepared the first draft of each

manuscript. He then worked with the co-authors to discuss the results and finalize the content and form of

the manuscripts.
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1.4 Structure of the thesis

The remainder of this manuscript-based thesis is structured into five chapters, as following.

Chapter 2 presents the numerical results of a dense gas-particle flow inside a cylindrical bubbling bed,

where the effect of particle stress tensor on the flow behavior is assessed. The closure relations for a high

fidelity simulation of bubbling beds are quantitatively explored. It starts with a literature review, followed by

the governing/constitutive equations that are used throughout the thesis and an explanation of the simulation

set-up. This study was published in “Particuology” in 2017 (Haghgoo et al.[20]).

In Chapter 3 the effect of different particle-wall boundary conditions on the simulation of a 3D thin

bubbling bed is comprehensively investigated. It starts with a literature review, followed by the mathematical

description of particle-wall boundary conditions, numerical methodology, grid study, and simulation set-up

details. In this study, the boundary condition that produced most comparable results to the measured data

was identified and used in the next two studies that make up the next two chapters of this thesis. This work

was published in the “International Journal of Multiphase Flow” in 2017 (Haghgoo et al.[2]).

In Chapter 4 a particle energy budget analysis is performed to examine the dynamics of the same bed

considered in Chapter 2. To this end, an equation for the kinetic energy of the mean particle flow is rigorously

derived in the context of the TFM approach, and a particle energy budget analysis is performed. The physical

implications of various terms in the energy equations are discussed, and their spatial distributions are plotted.

A diagram is provided to summarize how the energy cascades in a dense gas-particle flow. The numerical

simulation set-up and the values of physical parameters are discussed. In addition, the contribution of the

wall to the energy cascade is quantitatively discussed. This study is still under review by the “Powder

Technology”(Haghgoo et al.[21]).

Chapter 5 represents the application of the 3D POD technique to the particle flow fields predicted by

a TFM of the same bed used in the previous two chapters to identify and analyze the dominant spatio-

temporal patterns associated with the the meso-scale fluctuating particle flow fields. Also, the particle

vortical structures in the bubbling bed are identified using a swirling strength criterion applied to the particle

velocity gradient tensor. 3D POD is used to extract the dominant vortex motions and obtain a reduced-order

reconstruction of the particle velocity and volume fraction fields using a subset of the energetic modes.

Note that these four chapters have strong ties with each other. Chapters 2 and 3 both attempt to

determine a proper set of constitutive relations and boundary conditions necessary for high-fidelity simulation

of fluidized beds. Based on the outcomes of these two chapters, a set of simulations was conducted, and the

result was used to perform the energy budget and POD analyses presented in chapters 4 and 5. Overall,

chapters 2 and 3 deal with the proper set of equations to build a realistic numerical model of bubbling beds,

whereas chapters 4 and 5 utilize the results of this numerical model to throughly analyze the flow using

state-of-the-art post-processing techniques.

Conclusions and recommendations for future extension are presented in Chapter 6.

7



Chapter 2

Effect of particle stress tensor in simulations of dense

gas-particle flows in fluidized beds

A similar version of this chapter has been published as:

• M. R. Haghgoo, D. J. Bergstrom, and R. J. Spiteri. Effect of particle stress tensor in simulations of

dense gas-particle flows in fluidized beds. Particuology 38 (2018) 31–43.

The first author conducted the simulations, post-processed and analyzed the results, and prepared the

first draft of the manuscript. He then worked with the co-authors to discuss the results and finalize the

content and form of the manuscript.
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Preamble

The first step in a realistic “Two-fluid model” prediction of bubbling fluidized beds is to specify a proper set

of constitutive relations to close the governing equations. It is well-established that in gas-particle bubbling

beds, there exist three distinct flow regimes, namely, rapid-flow, transitional intermediate, and quasi-static

slow regimes. In each of these specific regimes, the particle flow behaves differently, as does the particle

stress dependency on its strain rate. Therefore, it is significant to understand how the particle stress models

affect predicted features of the flow. To this end, a more in-depth study of two different models for the

particle stress tensor in the transitional intermediate regime is conducted and their ability to predict the

hydrodynamics of a 3D cylindrical fluidized bed is assessed.

A major contribution of this chapter is that different flow regimes are identified, in the context of fluidized

beds, through the dimensionless inertial number, and the main characteristics of each regime are discussed.

Analysis of the flow properties for a range of gas-particle regimes based on their inertial number enhances

our understanding of the flow behavior in such a complex multiphase system. In addition, the effect of

the particle stress tensor on bubble formation, bubble behavior, natural frequency of the bed, and particle

Reynolds stress are investigated.
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Abstract

A two-fluid model based on the kinetic theory of granular flow for the rapid-flow regime and the Coulomb

friction law for the quasi-static regime is applied to predict the hydrodynamics of dense gas-particle flow

in a three-dimensional fluidized bed. Two different models for the particle stress tensor that use different

constitutive equations in the elastic-inertial regime are examined to assess their ability to predict the dynamics

of the bed. To understand how the particle stress models affect structural features of the flow, a quantitative

analysis is performed on some important aspects of the mechanics of bubbling beds that have received

relatively little attention in the literature. Accordingly, different flow regimes are identified in the context

of fluidized beds through the dimensionless inertial number, and the main characteristics of each regime are

discussed. In addition, how the particle stress tensor manifests itself in the bubble characteristics, natural

frequency of the bed, and particle Reynolds stress are investigated, all of which help to better understand the

complex dynamics of the fluidized bed. The numerical results are validated against published experimental

data and demonstrate the significant role of the stress tensor in the elastic-inertial regime.

2.1 Introduction

Successful prediction of the hydrodynamics of fluidized beds requires accurate modeling of particulate stress

terms in the momentum equation. It is generally accepted to apply the kinetic theory of granular flow to

model the kinetic-collisional stresses in dilute regions, corresponding to the rapid-flow regime, where the

streaming of the individual particles and binary collisions between them are the dominant mechanisms of

momentum transport, see e.g., Lun et al. [22], Savage [23] and van Wachem et al. [24]. However, there

is no general consensus in modeling the frictional stresses in dense regions where there is sustained contact

between particles. In their model, Johnson and Jackson [25] assumed that the total stresses acting on the

particle phase are the sum of the kinetic stresses and the frictional stresses. Although the validity of this

assumption is not assured, it is capable of capturing the two extrema of granular flows, i.e., viscous flow and

plastic flow [26]. Syamlal et al. [11] proposed a model, referred to as the Schaeffer model, in which the effects

of the frictional stresses are activated only at particle volume fractions higher than εmax
p , corresponding to

the quasi-static slow regime. For frictional stresses, following Schaeffer [27], they assumed that the shear

stress is proportional to the normal stress. In this model, there is a sharp transition between the rapid-flow

and quasi-static regimes that could result in erroneous bubble shape and bed expansion [28]. Using the

additive approach of Johnson and Jackson [25], Srivastava and Sundaresan [26] proposed another model for

the particulate phase stresses, referred to as the Princeton model. In this model, the frictional stress is added

to the kinetic-collisional stress tensor in the intermediate regime, referred to as the elastic-inertial regime

[29]. In this model, the frictional stresses affect the granular flow at a minimum frictional particle volume

fraction εmin
p .
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Although there are other frictional stress models available, e.g., see Schneiderbauer et al. [30], the most

pervasive ones for the simulation of bubbling beds are the Schaeffer and Princeton models. Therefore, it

is relevant to determine which of these two models is more realistic, and this in turn requires a detailed

knowledge of how these models affect the simulated flow structure of the gas-particle flows. These models

have already been the subject of several studies that assessed their ability to predict the overall behavior

of fluidized beds, e.g., see Benyahia [31], Passalacqua and Marmo [32], Reuge et al. [33], and Verma et

al. [34]. Passalacqua and Marmo [32] performed a comparison of the frictional stress models applied to a

two-dimensional (2D) fluidized bed and used the mean bubble diameter to interpret their numerical results.

Reuge et al. [33] studied the effects of dissipation parameters on the dynamics of the bed with a focus on

the bed expansion ratio and its fluctuation. Although these are undoubtedly useful parameters in the study

of fluidized beds, the flow patterns were not discussed. In a more comprehensive study, Verma et al. [34]

investigated the effect of several parameters on the numerical simulation of a three-dimensional (3D) bubbling

fluidized bed and demonstrated the significance of the frictional models. Most of studies have only focused

on a comparison of the model results. Relatively few studies have investigated how the particle stress models

affect structural features such as flow regimes, flow patterns, velocity profiles, and bubble formation; such

studies would advance our understanding of the complex behavior of these multiphase flows.

This paper reports a more in-depth study of two different models for the particle stress tensor in the elastic-

inertial regime and assesses their ability to predict the hydrodynamics of a 3D cylindrical fluidized bed. A

major objective is to gain insight into how these models modify the simulated flow structure. The paper

attempts to quantitatively describe some important features of the mechanics of the bubbling/slugging beds

that have received relatively little attention in the literature. To that end, different flow regimes are identified,

in the context of fluidized beds, through the dimensionless inertial number, and the main characteristics of

each regime are discussed. To the best of authors’ knowledge, it is the first time that contours of inertial

number are used to visualize the flow properties. Analysis of the flow properties for a range of gas-particle

regimes based on their inertial number enhances our understanding of the flow behavior in such a complex

multiphase system. In addition, the effect of the particle stress tensor on bubble formation, bubble behavior,

natural frequency of the bed, and particle Reynolds stress are investigated. The numerical code Multiphase

Flow with Interphase eXchanges (MFIX) is used to perform the simulations (Syamlal et al. [11]), using the

Eulerian–Eulerian framework. The results are validated against published experimental data by Laverman

et al. [35].

2.2 Mathematical modeling

The Eulerian–Eulerian two-fluid model, based on the locally averaged equations derived by Anderson and

Jackson [7], is used to simulate an isothermal gas-particle system.

The governing equations, for phases m, m′ (where m,m′ = g, p for gas or particles, respectively, and
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m 6= m′), are conservation of mass

∂ (εmρm)

∂t
+

∂ (εmρmumi)

∂xi
= 0, (2.1)

and conservation of momentum

∂ (εmρmumi)

∂t
+

∂ (εmρmumjumi)

∂xj
= −εm

∂Pg

∂xi
+

∂τmij

∂xj
− γm

∂Pp

∂xi
+ β (um′i − umi) + εmρmgi, (2.2)

where γm = 1 if and only if m = p; otherwise, γm = 0. The gas phase (air) is modeled as an ideal gas so

that ρg is calculated from Pg. Here ρ, ε, u, P , τ , β, and (non-subscript) g represent the density, volume

fraction, velocity vector, pressure, stress tensor, inter-phase momentum transfer coefficient, and gravitational

acceleration, respectively. Noting that εp + εg = 1, only εp is treated as an independent variable. The

interfacial drag coefficient β is defined by

β = 18εgεpµ
F (εp, Re)

d2p
, (2.3)

where F (εp, Re) and dp are the dimensionless drag force and particle diameter, respectively, and µ is the gas

viscosity. In this study, the drag force proposed by Beetstra et al. [36] is used; it is defined as

F (εp, Re) =
10εp

(1− εp)
2 + (1− εp)

2 (
1 + 1.5

√
εp
)
+

0.413Re

24 (1− εp)
2 ×

[

(1− εp)
−1

+ 3εp (1− εp) + 8.4Re−0.343

1 + 103εpRe−(1+4εp)/2

]

,

(2.4)

where Re = dp|ug − up|ρgεg/µ represents the particle Reynolds number.

To close Eq. 2.2 for the particle phase, an expression for the stress tensor is required. Following Johnson

and Jackson [25], the particle stress tensor is assumed to be the sum of the kinetic-collisional stresses and

the frictional stresses; i.e.,

τpij = τkcpij + τfpij , (2.5)

where the kinetic-collisional stress tensor, commonly modeled by the kinetic theory of granular flow, is given

by

τkcpij =

(

ηµb
∂upi

∂xi

)

δij + 2µpSpij , (2.6)

and the frictional stress tensor is given by

τfpij = 2µfSpij , (2.7)

where δij is the Kronecker delta,

δij =







1, i = j,

0, otherwise,

(2.8)

and the quantity η is defined by

η =
1 + e

2
, (2.9)

where e is the particle-particle coefficient of restitution. In this study, the value of e is 0.86.
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The bulk viscosity is given by [22],

µb =
256

5π
µ′ε2pg0, (2.10)

where

µ′ =
5

96
ρpdp

√

πΘp, (2.11)

and g0 is the radial distribution function taking into account the probability of collision of the particles.

The particle strain-rate tensor is given by

Spij =
1

2

(
∂upi

∂xj
+

∂upj

∂xi

)

− 1

3

∂upi

∂xi
. (2.12)

Lun et al. [22] also proposed an expression for the particle viscosity. However, they did not consider the

effect of the interstitial fluid. Following Ma and Ahmadi [37], the particle viscosity, in which the interstitial

fluid effect is included, is given by

µp =

(
2 + α

3

)[
µ∗

p

g0η(2 − η)

(

1 +
8

5
ηεpg0

)(

1 +
8

5
η (3η − 2) εpg0

)

+
3

5
ηµb

]

, (2.13)

with

µ∗

p =
ρpεpg0Θpµ

′

ρpεpg0Θp + (2βµ′/ρpεp)
, (2.14)

where α is a dimensionless constant equal to 1.6 [25].

In Eq. 2.2, the particle pressure is given by

Pp = P kc
p + Pf , (2.15)

where, following Lun et al. [22], P kc
p = εpρsΘp[1 + 4ηεpg0] and Pf is the frictional pressure for the particle

phase.

In these equations, Θp is the granular temperature, which is calculated by solving the granular energy

transport equation,

3

2
εpρp

[
∂Θp

∂t
+ upj

∂Θp

∂xj

]

=
∂

∂xi

(

κp
∂Θp

∂xi

)

− P kc
p

∂upi

∂xi
+ τkcpij

∂upi

∂xj
+Πp − εpρpJp. (2.16)

The first term on the right-hand side of Eq. 2.16 represents the conductive transport of the particle fluctuation

energy. The particle conductivity of the granular energy, κp, is given by [22],

κp =

(
κ∗

p

g0

)[(

1 +
12

5
η2 (4η − 3) εpg0

)(

1 +
12

5
ηεpg0

)

+
64

25π
(41− 33η) η2 (εpg0)

2

]

, (2.17)

where

κ∗

p =
ρpεpg0Θpκ

ρpεpg0Θp +

(
6βκ

5ρpεp

) (2.18)

and

κ =
75ρpdp

√
πΘp

48η (41− 33η)
. (2.19)
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The second term on the right-hand side of Eq. 2.16 models the production of kinetic fluctuation energy by

the particle stress tensor. The forth term is the exchange of fluctuation energy due to interphase momentum

transport and is given by [11]

Πp = −3βΘp +
81εpµ

2
g|ug − up|2

g0d
3
pρp
√
πΘp

. (2.20)

Unfortunately, there is no consensus on the form of this term in literature [38]. The final term in Eq. 2.16 is

the dissipation of granular energy due to inelastic particle-particle interaction [22],

Jp =
48√
π
η (1− η)

εpg0
dp

Θ3/2
p . (2.21)

For the dense regions of the bed where particles are flowing slowly with extended contact and hence

frictional stresses are dominant, there are different approaches to calculate the frictional stress tensor. Syamlal

et al. [11] proposed that frictional stresses need to be considered only for regions where the solid volume

fraction is higher than the maximum packing limit, εmax
p . In this model, referred to as the Schaeffer model,

the frictional parameters are expressed as

Pf =







1025
(
εp − εmax

p

)10
, εp > εmax

p ,

0, εp ≤ εmax
p ,

(2.22)

µf =







Pf sin(ϕ)

2
√
I2D

, εp > εmax
p ,

0, εp ≤ εmax
p ,

(2.23)

where I2D represents the second invariant of the deviator of the strain rate tensor and ϕ is the angle of

internal friction, taken to be 28 degrees, in agreement with Ocone et al. [39]. Srivastava and Sundaresan

[26] proposed a particulate stress model to account for the strain rate fluctuations. This model, which has

its roots in the model proposed by Schaeffer [27], is referred to as the Princeton model in the literature [11].

In this model, the frictional stresses affect the granular flow at a minimum frictional solid volume fraction

εmin
p . The frictional pressure for the particle phase is given by

Pf

Pc
=



1− ∇ · up

n
√
2 sin(ϕ)

√

Sp : Sp +Θp/d2p





n−1

, (2.24)

where : indicates the scalar invariant of the tensor product and the critical state pressure is given by

Pc =







1025
(
εp − εmax

p

)10
, εp > εmax

p ,

F r

(
εp − εmin

p

)r

(
εmax
p − εp

)s , εmin
p ≤ εp < εmax

p ,

0, εp ≤ εmin
p ,

(2.25)

where the values for the empirical constants are chosen according to Ocone et al. [39], namely, Fr = 0.05

[N.m−2], r = 2, εmin
p = 0.5, and s = 3. In this model, the frictional viscosity is expressed as

µf =

√
2Pf sin(ϕ)

2
√

Sp : Sp +Θp/d2p

{

n− (n− 1)

(
Pf

Pc

)1/(n−1)
}

. (2.26)
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The value of the coefficient n depends on whether the solid phase is undergoing dilatation or compaction;

i.e.,

n =







√
3

2 sin(ϕ)
, ∇ · up ≥ 0,

1.03, ∇ · up < 0.

(2.27)

Note that both the Princeton and Schaeffer models use the same granular rheology for the rapid and slow

regimes.

Following Rangarajan et al. [40], Passalacqua and Fox [41], Vikas et al. [42], and Huilin et al. [43], the

radial distribution function derived by Carnahan and Starling [44] is used in the simulations,

g0 =
1− 0.5εp
(1 − εp)3

. (2.28)

Its application is physically justified because in the vicinity of the packed bed region the flow behavior is

dominated by friction, and it is the frictional pressure, Eqs. 2.22 and 2.25, that diverges for the closed packed

regions and ensures an infinite particle pressure.

In the present study, the wall boundary conditions are those from Johnson and Jackson [25]; partial slip

model for the particle phase and no-slip for the gas phase. With these boundary conditions, the particle-wall

slip velocity, usl, and granular energy at the wall can be expressed as

usl.(σp).n̂

|usl|
+

φwπρpεpg0
√
Θp|usl|

2
√
3εmax

p

+Nf tan(ϕw) = 0 (2.29)

and

κp
∂Θp

∂n̂
=

φwπ|usl|2ρpεpg0
√
Θp

2
√
3εmax

p

−
√
3πρpεpg0(1− e2w)

√
Θp

4εmax
p

Θp, (2.30)

where n̂, φw, and ew are the normal direction to the wall surface, specularity coefficient at the wall, and

particle-wall restitution coefficient, respectively. It has been reported that ew plays a minor role in the overall

performance of a fluidized bed, whereas φw is believed to be of significant importance in numerical simulation

of fluidized beds [45, 46, 47]. Following Li and Benyahia [48], the values of φw and ew are taken to be 0.5

and 1.0, respectively. In Eq. 2.29, σp is the total particle stress tensor defined by, σpij = −Ppδij + τpij . Also,

Nf , is the component of frictional stress normal to the wall surface, and ϕw is the angle of internal friction

for particles sliding over the wall. Note that in this study the governing equations are discretized and solved

in a cylindrical coordinate system. Therefore, an axis boundary condition (at r = 0) is required. A free

slip boundary condition, i.e., zero gradient, for the azimuthal and axial velocity components and a vanishing

radial velocity component at the centerline were used in this study. Detailed discussion on the centerline

boundary conditions can be found in [34].

2.3 Numerical methodology

The computational domain was taken to be a cylindrical fluidized bed. The height of the bed was 160 cm with

an initial particle bed height of 45 cm. The diameter of the cylinder was 30.6 cm. The numerical code MFIX,
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a set of open-source FORTRAN subroutines, was used to perform the simulations. The numerical results

of this study have been compared with the experimental measurements of Laverman et al. [35]. Table 2.1

shows the simulation parameters based on the experimental set-up.

Table 2.1: Simulation parameters for comparison with experimental study.

Particle type Glass

Particle diameter, dp 0.5 mm

Particle density, ρp 2500 kg m−3

Minimum fluidization velocity, umf 0.18 m s−1

Superficial gas velocity, uz,0 3.5umf

To produce realistic flow patterns in an efficient manner, the higher-order Superbee scheme was used

as the spatial discretization scheme [49]. To enhance numerical stability, a deferred correction scheme was

implemented. The time discretization was the backward Euler method with a variable time step [11]. The

numerical technique is based on a modified SIMPLE algorithm for multiphase flows to solve the pressure and

volume fraction correction equations [11]. All simulations were performed in parallel using 60 cores on an

architecture consisting of dual Hex Core Intel Xeon X5650 2.66 GHz with 12 GB of RAM each and running

Red Hat Enterprise Linux Server 5.7. The first 10 seconds of the fluidization process were simulated. The

simulations using the Schaeffer and Princeton models required approximately 504 and 336 hours, respectively.

2.4 Results and discussion

It is reported that a grid-independent simulation requires a typical resolution of no lower than approximately

10 times the particle diameter (dp) [50, 51]. Agrawal et al. [52], Andrews et al. [53], and Igci et al. [54]

performed “highly resolved” simulations of a flow in a small periodic domain and found that a grid size of

8.3dp was sufficient to capture all the spatiotemporal structures that they needed to develop sub-grid scale

models. Wang [55] and [56] studied a 2D bed using a grid size of 7 and 8.3dp, respectively, to perform a

“high-resolution Eulerian simulation”.

Given the current state of the art described above, in this study, a grid of 45×470×30 cells was used

in the radial, axial, and azimuthal directions, respectively. This resolution, which was approximately 6.8dp,

was found sufficient to capture the meso-scale structures, without any sub-grid scale model, and qualitatively

reflected the experimental data. We note that further refinement of the grid size led to convergence issues

and required time steps on the order of 10−7 s, which in turn, resulted in unacceptably long run times.

2.4.1 Effects of the stress models on the bed dynamics

In order to assess the validity of the two-fluid model, the numerical results were compared with the experi-

mental measurements of Laverman et al. [35]. To calculate the azimuthally and time-averaged axial velocity,
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the following calculation was performed [34]:

uavg
z,p =

〈εpuz,p〉
〈εp〉

,

where 〈·〉 and ·̄ indicate azimuthal-averaging and time-averaging, respectively. The variables were time-

averaged over the 10 seconds of the simulation after the first second so as to minimize any transient start-up

effects.

Figure 2.1 presents the azimuthally and time-averaged axial velocity profile for the particles at three

different heights. This figure shows the experimental data of Laverman et al. [35] and the numerical results of

3D simulations using both the the Schaeffer and Princeton stress models. At the height of 11 cm (Figure 2.1a),

the results using the Schaeffer model are in poor agreement with the measured data compared with the results

using the Princeton model. At the height of 21 cm (Figure 2.1b), the results using the Schaeffer model disagree

with the experimental data in the region near the center by predicting a downward particle flow. At the height

of 31 cm (Figure 2.1c), in contrast to both the experimental data and results predicted by the Princeton

model, the Schaeffer model predicts a local maximum and minimum near the center. Note that the larger

discrepancy in the velocity profile in the central region at the height of 31 cm should not be entirely attributed

to the local dynamics of the bed at that location. Instead, it also depends on the predicted behavior of the

bed in the lower region. For example, it is suggested that the formation of larger-structure bubbles at the

higher heights is due to the coalescence of small bubbles being formed near the inlet. Therefore, the formation

frequency of small bubbles near the inlet can have a significant effect on the velocity profile at higher heights.

Also note that reducing the effect of friction, by increasing εmin
p from 0.5 to 0.6, did not improve the velocity

profile in the central region at the height of 31 cm.

To understand the differences between the results predicted by each model, it is helpful to look at the

overall averaged-velocity distribution inside the bed. Figure 2.2 shows the azimuthally and time-averaged

particle flow structure from experimental observation and as predicted by both stress models. The circulation

pattern is mainly governed by the interaction of the moving bubbles with the particulate phase, giving rise

to the formation of two main vortices above each other in the bed. Recall from Figure 2.1, near the bottom

of the bed, i.e., at a height of 11 cm, there is an overall downward flow of the particles near the center and

a small upward flow in the near-wall region. The particle flow behavior near the top, i.e., at a height of

31 cm, is opposite with upward flow near the center and downward flow near the wall. This contrasting

behavior is explained by the formation of the two main vortices of opposite sign. It appears that the lower

vortex predicted by the Schaeffer model, Figure 2.2b, is more extended than the experimental observation,

resulting in a different flow pattern in the region between the two vortices. Therefore, it seems that the

differences between the numerical results in Figure 2.1 are due to the extent of the lower vortex predicted by

each model. Accordingly, it is appropriate to explore the mechanism that results in one vortex being more

extensive than the other. After examining several factors, it was determined that the extent of the lower

vortex is mainly governed by the inertia of the particles and the friction between them. The dimensionless
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Figure 2.1: Radial profiles of azimuthally and time-averaged axial particle-velocity profiles at three
different heights.
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inertial number, I = |γ̇p|dp/
√

Pp/ρp, is defined to be the ratio of the inertial forces to the frictional forces

[57]. Here, |γ̇p| is the second invariant of the deviator of the particle strain rate tensor. Figure 2.3 shows the

azimuthally and time-averaged inertial number predicted by each stress model. For clarity, only the values

between 2.0 ≤ I ≤ 6.0 and 0.1 ≤ I ≤ 0.7 are plotted for the Schaeffer and Princeton models, respectively.

Comparing Figures 2.2 and 2.3 reveals that for the circulation pattern predicted by the Schaeffer model,

Figure 2.2b, the inertial number for the upward particle stream of the lower vortex in the region near the

wall, i.e., z = 2 to 15 cm and r ≥ 10 cm, is greater than unity and an order of magnitude greater than its

corresponding value for the same region as predicted by using the Princeton model. This indicates that for

this region, the upward stream of particles predicted by the Schaeffer model has higher inertia and is less

affected by friction, which in turn tends to elongate the lower vortex, whereas in the corresponding stream of

particles predicted by the Princeton model the inertia of the particles is damped by the inter-particle friction

and hence the vortex remains more compact. The reason that the Schaeffer model predicts regions with

higher inertia is discussed shortly. We recall from Figure 2.1a that the results from the Schaeffer model show

a stronger downward flow in the region near the center that can be attributed to the predicted high inertia

of the particles and the fact that the overall momentum transport mechanism is due to the streaming of

the individual particles and instantaneous collisions between them. On the other hand, the Princeton model

improves the prediction of the averaged velocity by considering the inter-particle friction as a momentum

transport mechanism in addition to the kinetic and collisional parts. In summary, the discrepancy in the

results predicted by the Schaeffer model in Figure 2.1b is due to the predicted size of the lower vortex. After

examining various terms in the momentum equation, it was found that the strong unrealistic inflection of the

averaged axial velocity predicted by the Schaeffer model, as shown in Figure 2.1c, can be attributed to the

extent of the lower vortex.

From Figure 2.2, the Schaeffer and Princeton models also predict different flow patterns for the region

above the upper principal vortex. In order to estimate the significance of this difference in flow pattern

on the bed operation, it is helpful to consider the azimuthally and time-averaged particle volume fraction

contours. As shown in Figure 2.4, the region above the upper principal vortex is a dilute region with a

particle volume fraction less than 0.1. Consequently, the different flow structures predicted by the Schaeffer

and Princeton models for this region may not have a significant effect on the overall operation of the bed due

to the fact that, on average, there are relatively few particles in this region. Figure 2.4 also shows that the

region near the wall, up to z = 45 cm, and near the center, up to z = 20 cm, are the densest regions of the

bed. The formation of these high-density regions at these relative locations may be considered as a typical

characteristic of bubbling fluidized beds.

Note the experimental data of Laverman et al. [35], that is used to validate the numerical results, did not

provide any information about the gas holdup. Therefore, to assess the validity of the current computational

model in predicting the gas holdup, another case-study is considered. In this case-study a gas-particle fluidized

bed that was experimentally studied by Taghipour et al. [58] is numerically simulated. Figure 2.5 shows,
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(a) Laverman et al. [35]. (b) Schaeffer model. (c) Princeton model.

Figure 2.2: Azimuthally and time-averaged particle flow structure.
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(a) Schaeffer model. (b) Princeton model.

Figure 2.3: Azimuthally and time-averaged inertial number.

(a) Schaeffer model. (b) Princeton model.

Figure 2.4: Azimuthally and time-averaged particle volume fraction.
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at a specific height in the bed, the measured gas holdup versus the profiles predicted by the simulations

performed by Taghipour et al. [58], and the Schaeffer and Princeton models used in the present study. This

figure indicates that the present computational model predicts values of the gas holdup that are in better

agreement with the experimental data than the numerical result of [58]. As shown in Figures 2.4 and 2.5,

overall, the difference in the values of gas holdup predicted by the Schaeffer and Princeton models is minimal.
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Figure 2.5: Experimentally measured and model predicted profiles of gas holdup across the bed.

2.4.2 Effects of the stress models on the prediction of flow regimes

To understand the differences between the results predicted by each model, it is helpful to note the behavior

of the granular materials under different circumstances. At a large applied stress, particles deform at the

contact point(s) and are compressed into the vacant inter-particle space. In this quasi-static regime, the

particle pressure and shear stresses are independent of the strain rate. In contrast, at high shear strain rates

for the rapid-flow regime, the momentum transport is due to the instantaneous binary collisions as well as

the inertia of the inter-particle motions. Therefore, in this regime, the rheology of the particles is described

by the coefficient of restitution and granular temperature and Pp, τp ∼ γ̇2
p . Between these two asymptotic

regimes is the so-called intermediate or elastic-inertial regime, where Pp, τp ∼ γ̇n
p , with 0.5 ≤ n ≤ 1 [59]. In

the rapid-flow regime, the collisions are assumed to be infinitely rigid. However, once a particle is in multiple

contact with surrounding particles, the elastic forces do play a role in the momentum transport, and the

force chains [60] emerge to be a distinguished structural feature of this elastic-inertial regime. We note that

the above relations for the dependence of Pp and τp on γ̇p is valid for dry granular flows. These relations

show more complicated behaviors when the effect of the interstitial fluid is introduced into the constitutive
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equations.

To understand and quantify the dynamics of dense gas-particle flows, it is helpful to look at the local

inertial number, as introduced above, whose value can be used to identify the regime of the flow. We note

that the inertial number, which is the square root of the Savage number [23], can be interpreted as the ratio

of the inertial timescale to the macroscopic deformation timescale. For the rapid or inertial regime, I has

large values on the order of unity, whereas for the quasi-static regime, I has small values in the order of

10−3; values in between correspond to the elastic-inertial regime. Figure 2.6 shows instantaneous values of

the particle volume fraction, the inertial number, and the particle viscosity in a single plane. We note that

three consecutive planes in the azimuthal direction are chosen to calculate |γ̇| on the middle plane. Both

models predict that the flows inside the bubbles and free-board have the largest value of I corresponding

to the rapid-flow regime and the lowest value of the particle viscosity. For the regions around and between

the bubbles, I has moderate values, mapping the flow to the elastic-inertial regime. In these regions, the

values of viscosity are also moderate. The regions of dark blue in the inertial number contour plot indicate a

slow flow corresponding to the highest values of viscosity. Overall, based on Figure 2.4, the slow-flow regime

predicted by both models is mostly located near the wall region. We note that regions in which the flow is

elastic-inertia are extensive. However, the Schaeffer model treats these regions as a rapid flow, whereas the

the Princeton model tries to improve their treatment by adding a frictional stress to the kinetic stresses. We

recall from Figure 2.3 that the overall values of I predicted by the Schaeffer model are an order of magnitude

greater than their counterparts predicted by the Princeton model. This is due to the fact that the Schaeffer

model does not differentiate between the rapid-flow regime, corresponding to I ∼ 1.0, and the intermediate

regime, corresponding to I ∼ 10−1, and applies the same constitutive equations for both regimes.

Figure 2.7 shows instantaneous values of the second invariant of the total particle stress tensor as well as

the frictional and kinetic/collisional contributions in the same plane used in Figure 2.6. Figure 2.7a clearly

shows that there is an abrupt transition between the values of frictional and kinetic/collision stresses. The

contours suggest that for the Schaeffer model the stress tensor in a specific region is dominated by either

the frictional or kinetic/collisional counterparts. There is no region where both mechanisms are of the same

significance. In contrast, Figure 2.7b illustrates that for the Princeton model there are extended regions in

the bed where both frictional and kinetic/collisional stresses are of the same order of magnitude. For other

regions where friction is dominant the changes in the values of the frictional and kinetic/collisional stresses

are smoother compared to those in Figure 2.7a.

2.4.3 Effects of the stress models on the bubble characteristics

The inlet gas velocity in the present study is 3.5 times the minimum fluidization velocity, and the flow

corresponds to the bubbling and/or slugging regime. Here, a bubble is understood to be a localized region

of gas, typically moving as an entity through the particulate phase.

Figure 2.8 shows the instantaneous gas fraction in the vertical mid-plane of the fluidized bed, together
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with a 3D visualization of the instantaneous bubble structures at four consecutive times. Here, red and blue

contours indicate gas and particle phases, respectively. Although there is no precise criterion for defining

the extent of a bubble, for the current study, a gas fraction of 0.8 has been used as the threshold value to

determine the bubble boundary as has been used in, e.g., Verma et al. [34], Li et al. [45], and Passalacqua

[32]. Figure 2.8 illustrates that the larger bubbles tend to become elongated due to wall effects and create a

core-annular flow structure that consists of a core region in which the bubbles carry the particles up and an

annular region where the particles descend along the wall. From Figure 2.8, it can be seen that the formation

of large bubble structures occurs due to the coalescence of small bubbles that originate in the bottom and

near-wall regions of the bed. Also, it can be observed that as the bubbles rise, they tend to migrate towards

the centerline due to the lower resistance in the central region [6]. Eventually, the bubbles burst at the surface

of the bed, and the particles, being carried by the bubbles, fall toward the walls, leading to fluctuations in

the bed surface. We note that Figure 2.8 shows only the results from using the Princeton model for frictional

stresses.

In order to assess the bubble characteristics quantitatively, the equivalent bubble diameter and average

number of bubbles have been calculated for a transverse cross-section at different heights. Assuming that

individual bubbles detected in a given cross-section (in the rθ-plane) have a circular shape, the equivalent

bubble diameter, De, is first calculated and then time-averaged based on the following expressions [61]:

De =
1

Nb

Nb∑

i=1

Db,i,

where

Db,i =

√

4Ab,i

π
,

Nb is the number of detected bubbles, and Ab,i and Db,i are the area and equivalent bubble diameter of

bubble i, respectively, at each transverse cross-section.

In this study, the predicted equivalent bubble diameters are compared with the correlations proposed by

Hilligardt and Werther [62], Darton et al. [63], and Cai et al. [64] given in Table 2.2. Here z is the height of

the bubble above the distributor plate, and uz,0 − umf is the excess gas velocity, i.e., the difference between

the superficial gas velocity at the inlet and minimum fluidization velocity. Figures 2.9a and 2.9b show the

time-averaged equivalent bubble diameter and the average number of bubbles as a function of height. This

figure illustrates the fact that there are fewer but relatively larger bubbles (as a result of the coalescence

process) with increasing height in this region of the bed. Figure 2.9a indicates that the numerically predicted

values by both the Schaeffer and Princeton models are much closer to the Hilligardt and Werther correlation

than that of Darton et al. and Cai et al. The discrepancy between values calculated based on the numerical

simulations and the correlation of Darton et al. has also been reported by Verma et al. [61]. Based on

Figure 2.9a, comparing the equivalent bubble diameter predicted by both frictional stress models indicates

that the values associated with the Princeton model are in better agreement with the Hilligardt and Werther

correlation. It is worth noting that in the calculation of the equivalent bubble diameter and average number
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of bubbles, it is assumed that the bubbles have a spherical shape, whereas their actual shape is not spherical.

In other words, the equivalent bubble size and average number of bubbles are useful tools to study the

general trend of bubble formation; however, the actual bubble field is significantly more complex. According

to Hilligardt and Werther [62], bubble growth is affected by both coalescence and splitting mechanisms.

Therefore, in order to describe the bubble growth more accurately, it is essential to consider the relevant

physical mechanisms. However, there is no splitting mechanism in the bubble growth correlation of Darton

et al. Figure 2.10 considers a different location in the bed where the rate of bubble growth decreases with

height and the average number of bubbles begins to increase, indicating the dominance of bubble splitting

and breakage in this region of the bed.

Table 2.2: Correlations for equivalent bubble diameter.

Author(s) Correlation Particle type Bed Geometry D0

Hilligardt and Werther (1986) De = D0(1 + 27(uz,0 − umf))
1/3(1 + 6.84z)1.2 Geldart A, B, and D 3D 0.0061

0.0085

0.0123

Darton et al. (1977) De = 0.54(uz,0 − umf )
0.4(z + 4

√
A0)

0.8g−0.2 Geldart B 2D —

4
√
A0 = 0.03 m (Porous plate)

Cai et al. (1994) De = 0.38h0.8(uz,0 − umf ))
0.42exp(0.25(uz,0 − umf )

2 − 0.1(uz,0 − umf )) Geldart A, B, and D 3D —

2.4.4 Effects of the stress models on the gas pressure fluctuations

It is evident from Figure 2.8 that the dynamics of the bed is highly influenced by the bubbles moving up

through the bed. The chaotic motion of the bubbles is reminiscent of large-scale eddies in single-phase

turbulent flows. To gain a better understanding of such an unsteady flow, it is helpful to look at the Power

Spectral Density (PSD) of gas pressure field. In order to do this, two probes were placed at the center of

the bed at heights of z = 31 cm and 32 cm to measure the gas pressure. Figure 2.11 plots the difference

between the pressure values at these heights for the period from 3 to 5 s. In order to interpret the signal

fluctuations depicted in Figure 2.11, it is helpful to look at the instantaneous snapshots of the bubble contours

in the 3D bed, as depicted in Figure 2.8. These snapshots correspond to the four successive time instants

marked in Figure 2.11, arranged sequentially, from left to right. In the left-most snapshot of Figure 2.8,

the bubble is approaching the probes (represented by two white points), leading to an increase in the gas

pressure difference as illustrated in Figure 2.11. This pressure difference starts to decrease from Point 1 to

a minimum at Point 3 due to the fact that the bubble is traversing the probes. Eventually, the pressure

difference recovers and reaches a second peak right after the bubble has passed both probes, as can be seen in

the right-most snapshot in Figure 2.8. Figure 2.12 explains why the pressure difference reaches its minimum

value when both probes are located within the bubble. This figure shows the gas pressure and particle volume

fraction at the times corresponding to points 1 and 3 in Figure 2.11, respectively. According to Figure 2.12a,

the higher probe experiences a lower pressure than the lower probe as the bubble approaches. However, as

shown in Figure 2.12b, once both probes are located within the same bubble, they experience approximately
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the same pressure field, resulting in a minimum pressure difference.

It has been suggested that the pressure difference signals carry local information, whereas the absolute

pressure signals are more reflective of the global behavior [65]. Therefore, in order to investigate the global

behavior of bubbles predicted by each stress model it is helpful to look at the PSD of the pressure field.

Figure 2.13 shows the PSD of the pressure signals at a height of 10 cm for both the Schaeffer and Princeton

models in the frequency domain. In bubbling beds, the low frequencies may be associated with the movement

of the bulk particle flow, i.e., bubbling motions [66], whereas the high frequencies may be related to the gas

interaction with the particles. Also, the dominant frequency is attributed to the natural frequency of the

bed fluctuations [65]. Figure 2.13 indicates that the the Schaeffer model predicts a stronger intensity in

the gas pressure fluctuations, suggesting more vigorous bubbles compared to the results predicted using the

Princeton model. This is because the Schaeffer model does not consider the friction between particles in the

elastic-inertia regime. Consequently, the gas inside the bubbles experiences a smaller pressure drop while

carrying the particles across the bed. Due to the more vigorous bubbles predicted by the Schaeffer model, a

higher natural frequency of the system is also obtained. The PSD analysis shows that the natural frequencies

predicted by the Schaeffer and Princeton models are 3.5 Hz and 2.75 Hz, respectively. More vigorous bubbles

may also be coupled to a larger particle Reynolds stress, discussed in the following section.

2.4.5 Effect of the stress models on the “resolved-scale” particle Reynolds stress

There are two types of granular temperature in fluidization [67], namely, the particle granular temperature,

originating from the random oscillation of individual particles, and a granular temperature due to the motion

of bubbles, referred to as the turbulent granular temperature by Gidaspow et al. [67]. We note that the

term “turbulent granular temperature” may be misleading because there is a clear distinction between the

small-scale molecular fluctuations and resolved-scale fluctuations. Therefore, to avoid any misunderstanding,

the terminology “resolved-scale fluctuations” is used. The resolved-scale fluctuations due to the motion of

bubbles can be calculated by taking the variance of the particle velocity predicted by the two-fluid model.

Following Gidaspow et al. [67], the particle Reynolds stress per unit bulk density is defined as:

u
′

iu
′

j(x)
=

1

T

∫ t0+T

t0

(ui(x) − ui(x))(uj(x) − uj(x)) dt, (2.31)

ui(x) =
1

T

∫ t0+T

t0

ui(x,t) dt. (2.32)

Similar to the definition of the particle granular temperature, the resolved-scale fluctuations is defined as

[67]:

θbubble(x) =
1

3
u

′

iu
′

i(x) (2.33)

Figure 2.14 shows the time-averaged profiles of the granular temperature and the resolved-scale fluctuations

for each stress model at a height of 21 cm. This figure illustrates that the resolved-scale particle Reynolds

stress, is much larger than the particle granular temperature indicating that the particle oscillations associated
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with clusters dominate the individual particle oscillations. Figure 2.14 also indicates that the resolved-scale

fluctuations predicted by the Schaeffer model are larger than those predicted by the Princeton model. As

discussed in the previous section, the larger resolved-scale particle Reynolds stress is a result of the more

vigorous bubble activity predicted by the Schaeffer model. To understand why the Schaeffer model predicts

an overall higher granular temperature at this height, it is helpful to look at the production and dissipation

terms in the granular energy Eq. 2.16. Figure 2.15a, which shows the azimuthally and time-averaged value

of the production term at the height of 21 cm, indicates that the Princeton model predicts higher values for

the production of granular temperature. We note that the granular temperature can be produced in both

the rapid-flow and intermediate regimes. In the intermediate regime, because particles are in longer contact

compared to the rapid-flow regime, it is also expected that the production of granular temperature would be

higher due to both shear and normal stresses. Because the intermediate regime is captured by the Princeton

model, a greater overall production of granular temperature is expected to be predicted. Longer contacts in

this regime also imply greater dissipation of granular energy. The level of the granular temperature depends

on the net production, i.e., the production less the dissipation term, and is presented in Figure 2.15b. The

Schaeffer model predicts higher values of the net production, which in turn leads the Schaeffer model to

predict higher values of the granular temperature. The effect of the interphase exchange term was found to

be negligible compared to production and dissipation terms. We note that the value of granular temperature

is not solely determined by these source terms because unsteady and convection/diffusion effects are also

present.

2.5 Conclusion

This study demonstrates the significant role of the particle stress tensor in the prediction of dense gas-

particle flows using a two-fluid model. The model, which is based on the kinetic theory of granular flow for

the rapid-flow regime and the Coulomb friction law for the slow-plastic regime, was applied to predict the

hydrodynamics of dense gas-particle flow in a 3D fluidized bed.

Although both the Schaeffer and Princeton models have already been the subject of several studies that

assessed their ability to predict the overall behavior of fluidized beds, the main focus of this study was on

how these models modified the simulated flow structures. To that end, a dimensionless inertial number

was used to identify different flow regimes corresponding to different particle stress behaviors. It appears

that this is the first time that contours of inertial number have been used to visualize the flow properties.

Analysis of the flow properties for a range of gas-particle regimes based on the inertial number enhances our

insight into the flow behavior in such a complex multiphase system. The paper quantitatively explains some

important features of the mechanics of bubbling/slugging beds that have received relatively little attention

in the literature. For example, the effects of two different stress models on the circulation patterns, velocity

profiles, bubble characteristics, natural frequency of the bed and “resolved-scale” particle Reynolds stress
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were investigated in detail.

The results using the Princeton stress model were found to be closer to the experimental data for the

axial particle velocity and flow circulation pattern than those based on the Schaeffer model. This was

because, unlike the Schaeffer model, the Princeton model differentiates between the rapid-flow regime and

the intermediate elastic-inertia regime and applies different constitutive equations for each regime.

The Schaeffer model predicted a higher natural frequency for the bed and more vigorous bubble activity

compared to that predicted by the Princeton model. The particulate phase showed turbulent-like behavior

partly due to the motion of bubble structures in the bed. The Reynolds stress associated with this turbulent-

like behavior was calculated from the resolved-scale fluctuations and found to be much larger than the

fluctuations associated with the particle granular temperature. Comparing the results of the two stress

models indicated that the Schaeffer model predicted a larger particle Reynolds stress; this behavior was

attributed to the prediction of more vigorous bubbles. We also note also that the use of the Princeton model

results in a faster algorithm that is less prone to divergence. Finally, the Schaeffer model was found to predict

a higher level for the granular temperature that was explained on the basis of the enhanced level of the net

production term in the transport equation.

Looking forward, the results of this study indicate that a particle stress model that uses an inertial number

dependent rheology would be an especially promising approach for predicting the flow dynamics in bubbling

fluidized beds.
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(a) Schaeffer model.

(b) Princeton model.

Figure 2.6: Distributions of particle volume fraction, inertial number, and particle viscosity at t = 4
s.
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(a) Schaeffer model.

(b) Princeton model.

Figure 2.7: Distributions of total particle stress and frictional and kinetic/collisional contributions
at t = 4 s. White regions indicate no contribution.
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Figure 2.8: Instantaneous snapshots of green bubble contours in the mid-plane for four successive
instants of t = 4.40, 4.43, 4.47, and 4.60 s from left to right (Princeton model), respectively. Red and
blue contours in the mid-plane indicate gas and particle phases, respectively.
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Figure 2.9: Comparison between Schaeffer and Princeton frictional models. (a) Average bubble size
and (b) Average number of bubbles vs. height z.
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(a) (b)

Figure 2.12: Gas pressure and particle volume fraction contours corresponding to (a) point 1 and
(b) point 3, respectively, in Figure 2.11. Probes are located at z = 31 cm and 32 cm.
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Figure 2.13: Power Spectral Density of pressure signals at z = 10 cm.
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Figure 2.15: Azimuthally and time-averaged values of source terms in the granular energy equation
at z = 21 cm.
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Chapter 3

A comprehensive assessment of different wall boundary

conditions on the simulation of bubbling fluidized beds

A similar version of this chapter has been published as:

• M. R. Haghgoo, D. J. Bergstrom, and R. J. Spiteri. A comprehensive assessment of different wall

boundary conditions on the simulation of bubbling fluidized beds. Int. J. Multiphase Flow 99 (2018)

500–511.

The first author conducted the simulations, post-processed and analyzed the results, and prepared the first

draft of the manuscript. He then worked with the co-authors to discuss the results and finalize the content

and form of the manuscript.
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Preamble

In addition to the closure relations discussed in the previous chapter, to perform a realistic prediction of

fluidized beds, it is also significant to determine a proper set of boundary conditions for the particle-wall

interaction. To this end, three different particle-wall boundary conditions are examined to assess their ability

to predict the dynamics of a dense gas-particle flow inside a three-dimensional thin bubbling bed.

One contribution of this chapter is that it quantitatively explores the effect of each particular boundary

condition on the predicted flow behavior through a comprehensive study and determines the boundary con-

dition that predicts better agreement with the measured data. Another contribution of this chapter is that,

for the first time, the contours of particle Reynolds stress are used to identify the dominant mixing regions

inside the bed.
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Abstract

There are different particle-wall boundary conditions available in the literature to account for the particle

slip velocity and the granular energy flux at the wall. However, it is not yet clear how these different wall

boundary conditions affect the simulated flow behavior, nor is it clear which are the most realistic. To this

end, three different particle-wall boundary conditions are examined to assess their ability to predict the

dynamics of a dense gas-particle flow inside a three-dimensional bubbling bed, using the two-fluid model. To

understand how the wall models affect structural features of the flow, a quantitative analysis is performed

on some important aspects of the mechanics of bubbling beds that have received relatively little attention

in the literature. Accordingly, the effect of each wall model on the velocity field, three-dimensional bubble

statistics, gas-pressure fluctuations, and particle resolved-scale Reynolds stress are investigated. Also, the

predicted dominant mixing regions inside the bed are identified and visualized in order to quantitatively

describe the bed performance. It is found that the more energetic bubbles result in a lower level of granular

temperature, a less-expanded bed, and more extensive mixing regions inside the bed. It is also observed that,

in the case of bubbling beds, the mixing caused by the Reynolds normal stress is much stronger than that

caused by the Reynolds shear stress. Overall, the flows predicted by the three wall models are structurally

similar. However, some specific features can differ in a systematic way that can be tracked to the effect

of wall boundary condition on the bubble behavior. The numerical results are validated against published

experimental data and demonstrate the significant role of the particle-wall boundary condition.

3.1 Introduction

A great deal of work has been performed in the attempt to derive an accurate and computationally efficient

set of governing/closure equations to numerically predict fluid-particle flows. To this end, Anderson and

Jackson [7], among other researchers, derived a set of locally averaged equations to describe both the particle

and fluid phases as inter-penetrating continua. This Eulerian–Eulerian description is the most widely used

approach to simulate large-scale fluid-particle flows in various applications, e.g., fluidized beds. Despite

numerous efforts to improve this method, e.g., the so-called “two-fluid model” (TFM), less attention has

been given to the corresponding wall boundary conditions (BCs) in the literature. In general, specifying an

appropriate BC is as important as the set of governing/closure equations for realistic flow prediction.

There is a general consensus to apply a no-slip wall boundary condition on the fluid phase in the numerical

study of fluid-particle flows. Regardless of the modeling approach, e.g., in the “Direct Numerical Simulation”

of fluid-particle flows or in the TFM approach, applying a no-slip boundary condition to the fluid phase seems

realistic because all of its velocity components vanish at the wall. As a result, the fluid’s turbulence kinetic

energy and its gradient, if any, should also vanish at the wall. Accordingly, a no-slip wall BC can be applied

for the fluid phase in a TFM prediction of dense fluid-particle flows, where the turbulence of the carrier
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phase, if any, is damped by the inertia of the particles.

Generally, three types of wall BC can be applied on the particle phase, i.e., no-slip, free-slip, and partial-

slip BCs. Among these three BCs, the partial-slip one appears most realistic compared to the other two

because particles, being a discrete phase, tend to slip over the wall. However, no-slip and free-slip BCs are

used in some numerical studies of dense and dilute gas-particle flows, respectively, e.g.,Lu et al. [68] and

Bahramian et al. [69]. There are various wall BCs proposed in the literature to account for the partial slip of

the particles, namely, the BC of Johnson and Jackson [25], a revised form of the Johnson and Jackson BC by

Li and Benyahia [70], the Jenkins BC [71], a revised form of the Jenkins BC by Jenkins and Louge [72], the

BC of Schneiderbauer et al. [73], the BC of Zhao et al. [74] that takes into account the effect of rotation of

particles at the wall, and the BC of Yang et al. [75].

In the heuristic model of Johnson and Jackson [25], the effect of momentum and energy transfer of the

colliding particles is characterized by a specularity coefficient, and the momentum transfer of the sliding

particles is characterized by a friction coefficient. The specularity coefficient value varies between zero for

perfectly specular collisions and unity for perfectly diffuse collisions. The main challenge with the Johnson–

Jackson model is that the value of the specularity coefficient must be specified by the user. In this sense,

the specularity coefficient is not a measurable physical parameter but a tuning parameter. Accordingly, its

value should be adjusted to achieve the best agreement with the measured data. In a seminal study, Fede et

al. [76] investigated the effect of specularity coefficient on the predicted flow behavior in a three-dimensional

(3D) bubbling bed. Also, Altantzis et al. [46] and Bakshi et al. [47] analyzed different flow patterns resulting

from different values of the specularity coefficient. Regardless of the issue of determining a proper value

for specularity coefficient, because of its relatively simple form, the Johnson–Jackson model is the most

pervasively used BC in the literature. For example, Igci and Sundaresan [77], Passalacqua and Fox [78],

Verma et al. [34], and Rangarajan [40] are a few recent works that used this particle-wall model. Li and

Benyahia [70] revised the Johnson and Jackson BC and suggested an analytical expression for the specularity

coefficient as a function of the measurable collision properties, i.e., the particle-wall restitution coefficient,

the frictional coefficient, and the normalized slip velocity at the wall. Their work, however, did not include

any modification to the original equation of the Johnson–Jackson model for flux of granular energy. Inspired

by the the work of Li and Benyahia [70], Zhao et al. [79] also proposed a semi-analytical and flow-dependent

model for the specularity coefficient.

Jenkins [71], on the other hand, distinguished between sticking and sliding collisions and calculated

analytical expressions for the two extremes of flow behavior, where in one case all collisions involve sliding

and in the other case friction is so large that particles do not slide. He called these asymptotic cases “small

friction/all sliding” and “large friction/no sliding”, respectively [71]. He assumed that flows between these

two limits can be captured by interpolating between the two extremes. Louge [80], however, using computer

simulations, showed that Jenkins’s model greatly over predicted the flux of fluctuating energy. Jenkins and

Louge [72] refined Jenkins’s calculations, proposed some corrections, and connected the two limits.
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Schneiderbauer et al. [73] proposed a model to include the sliding and sticking collisions in one expression.

Moreover, this model was derived to account for an unsteady condition of moving walls by considering the

compression and expansion of the granular flow. Soleimani et al. [81] compared the wall shear stress and

granular energy flux calculated by the model of Schneiderbauer et al. with the discrete element simulations

of Louge [80] and observed fairly good agreement. Cloete et al. [82] performed a study to compare the

predicted results of the Schneiderbauer et al. model with the Johnson–Jackson model in a 2D riser.

It is not yet clear how these different wall boundary conditions affect the simulated flow behavior, nor is

it clear which are the most realistic. To this end, a comprehensive study is performed to assess the effect

of three different wall BCs on the flow characteristics of a dense gas-particle flow inside a 3D bubbling bed.

The wall BCs considered in this study include the Johnson–Jackson model [25], the Jenkins–Louge model

[72], and the Schneiderbauer et al. model [73]. The BC of Li and Benyahia [70] was not included in this

study because, as mentioned above, no improvement was suggested for the original wall granular temperature

equation in the Johnson–Jackson model. The BC proposed by Zhao et al. [74] and Yang et al. [75] take into

account the effect of particle rotation at the wall and require solving two extra conservation equations for

the particle rotational momentum and rotational granular temperature and hence render them beyond the

scope of this study. Although each of the three wall models mentioned above has already been the subject of

several studies, this is the first time, to the best of authors’ knowledge, that an in-depth systematic study is

performed to assess and compare their abilities in the prediction of the hydrodynamics of a 3D bubbling bed.

The paper attempts to quantitatively describe some important features of the mechanics of the bubbling

beds that have received relatively little attention in the literature. For example, the effect of wall BC on

the velocity field, 3D bubble statistics, gas-pressure fluctuations, and particle resolved-scale Reynolds stress

are investigated. Also, to the best of our knowledge, it is the first time that contours of particle Reynolds

stress are used to identify the dominant mixing regions inside the bed. The numerical code Multiphase Flow

with Interphase eXchanges (MFIX) [11] was used to perform the simulations, using the Eulerian–Eulerian

framework. Some additional subroutines were developed and integrated into the MFIX code to implement the

BCs of Jenkins and Louge [72] and Schneiderbauer et al. [73]. The results were validated against published

experimental data by Laverman et al.[83].

3.2 Mathematical modeling

The Eulerian–Eulerian TFM, based on the locally averaged equations derived by Anderson and Jackson [7],

is used to simulate a dense gas-particle flow inside a 3D thin fluidized bed. All the governing/constitutive

equations can be found in our previous study [20], except that in the current study the drag model of

Gidaspow [84] is used. Haghgoo et al. [20] previously showed that the frictional stress proposed by Srivastava

and Sundaresan [26] predicted more realistic results than the one proposed by Schaeffer [27]. Therefore, in

this study the former frictional model was used to account for the longer-lasting multiple-particle contacts

39



with the frictional stress initiating at a particle volume fraction of εmin
p = 0.6.

In the present study, the effects of three different particle-wall boundary conditions on the simulated flow

structure are investigated. The first one used is the Johnson–Jackson wall BC [25]. The particle-wall shear

stress, ~τw, and granular energy flux, qw, at the wall can be expressed as

~τw = −φwπρpεpg0
√
Θp

2
√
3εmax

p

~usl − µwNf
~usl

|~usl|
(3.1)

and

qw =
φwπ|~usl|2ρpεpg0

√
Θp

2
√
3εmax

p

−
√
3πρpεpg0(1 − e2w)

√
Θp

4εmax
p

Θp, (3.2)

where ~usl, φw, and ew are the particle-wall slip velocity, specularity coefficient at the wall, and particle-wall

restitution coefficient, respectively. Here, ρp, εp, g0, Θp, ε
max
p , and κp are the particle density, particle volume

fraction, radial distribution function, granular temperature, packed bed particle volume fraction, and particle

conductivity of the granular energy, respectively. Also, Nf is the component of frictional stress normal to

the wall surface, and µw is the wall friction coefficient.

For the Jenkins–Louge BC [72], the wall shear stress is obtained from

~τw
N

= −µw

µ0

R
~usl

|~usl|
− µw

Nf

N

~usl

|~usl|
, R =







3

2
r r ≤ 2µ0

3
; large friction/no sliding,

µ0 r >
2µ0

3
; small friction/all sliding.

(3.3)

Following Schneiderbauer et al. [73], the wall normal stress is calculated by N =
1

2
(1 + ew) ρpεpg0Θp. In

Eq. 3.3, µ0 ≡ µ0

1 + β0
and µ0 ≡ 7

2 (1 + ew)µw, where β0 is the tangential restitution coefficient. Here, the

normalized slip velocity is defined by r =
|~usl|
√
3Θp

. The granular energy flux is calculated by

qw
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(3.4a)

qw

N
√
3Θp

=
2

(1 + ew)

√

2

3π

[
1

7
µ2
0 −

1

2

(
1− e2w

)
− µwµ0ew

(
1 + ew

ew + 2
e
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In Eq. 3.4, φ0 = arctan(µ0), and e is the particle-particle restitution coefficient. Following Jenkins and Louge

[72], for a given value of r, a minimum of granular energy flux between the values calculated by the small

sliding curve Eq. 3.4a and the all-sliding limit Eq. 3.4b is implemented at the wall.

For the model of Schneiderbauer et al. [73], the wall shear stress is calculated by

~τw
N

= µwerf

(√

3

2

r

µ0

)

~usl

|~usl|
− µw

Nf

N

~usl

|~usl|
, (3.5)
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and the particle fluctuating energy flux is expressed by

qw

N
√
3Θp

=
1√
6π

{

2 (ew − 1) + 3µ2
w (1 + ew) +

µ2
w

µ2
0

exp
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[
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7 (1 + ew)− 4
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µw
(1 + µw)− 3µ2

0 (1 + ew)

]}

,

(3.6)

where u ≡
√

3
2

r

µ0

. Detailed discussions on the derivation of these BCs are available in the original papers

referenced above.

3.3 Numerical simulation

Using the TFM approach of Anderson and Jackson [7], 3D simulations of a thin fluidized bed were performed

to assess the effect of particle-wall BC on the numerical prediction of the bed dynamics. The numerical code

MFIX, a set of open-source FORTRAN subroutines, was used to perform the simulations. The MFIX code

did not originally include the wall BCs proposed by Jenkins and Louge [72] and Schneiderbauer et al. [73].

Therefore, additional subroutines were developed to implement these wall BCs. The numerical results of

this study were compared with the experimental measurements of Laverman et al. [83]. Table 3.1 shows the

simulation parameters based on the experimental set-up.

Table 3.1: Simulation parameters for comparison with experimental study

Property Value

Fluidized bed height 70 cm

Fluidized bed width 30 cm

Fluidized bed thickness 1.5 cm

Initial bed height 30 cm

Particle diameter, dp 0.485 mm

Particle density, ρp 2500 kg m−3

Minimum fluidization velocity, umf 18 cm s−1

Superficial gas velocity 2.5umf

3.3.1 Numerical methodology

The governing equations are discretized using the finite volume method, resulting in a set of linear algebraic

equations in the form of a septa-diagonal matrix of unknown variables. At each interior control volume, there

are nine unknowns to be solved for, including three phasic velocity components, a pressure correction for

the gas phase, a volume correction for the particle phase, and a granular temperature. An iterative method

using a biconjugate gradient technique was used to solve the system of linear equations. It is reported that

first-order discretization schemes produce unrealistic bubble shapes caused by excessive numerical diffusion
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[85], which in turn can affect the flow structure. To produce realistic flow patterns in an efficient manner,

the higher-order Superbee scheme was used in the spatial discretization scheme [49]. To enhance numerical

stability, a deferred correction (DC) scheme was implemented so that it used an upwind method implicitly

and the Superbee method explicitly to calculate the convection terms. The time discretization was the

backward Euler method with a variable time step [11]. The non-linear source terms are linearized and

treated with a semi-implicit method that also serves to reduce instabilities. The numerical technique is based

on a modified SIMPLE algorithm for multiphase flows to solve the pressure and volume fraction correction

equations [11]. The interphase transfer terms strongly couple the momentum equations of each phase to

one another. In order to decouple the equations, the interphase transfer terms can be calculated from the

previous iteration values. However, this approach makes the solutions unstable and prone to divergence. On

the other hand, solving the discretized equations simultaneously requires solving a large and non-standard

matrix of unknowns. Following Spalding [86], MFIX uses a Partial Elimination Algorithm to preserve the

septa-diagonal form of the matrix while offering a high degree of coupling between the equations.

All simulations were performed in parallel using 60 cores on an architecture consisting of dual Hex Core

Intel Xeon X5650 2.66 GHz with 12 GB of RAM each and running Red Hat Enterprise Linux Server 5.7.

The first 100 seconds of the fluidization process are simulated to achieve statistically steady-state solutions.

Table 3.2 gives the computational time required to perform a simulation for each wall BC. We observe that

the computational time required by the BCs Jenkins and Louge and Schneidenbauer et al. are approximately

double that of Johnson and Jackson. We note that although the functional forms of the Jenkins–Louge and

Schneiderbauer et al. BCs are more complex than the form of Johnson–Jackson BC, their complexity is not

the reason for the significant differences in the computational time. It was observed that the simulations using

the Jenkins–Louge and Schneiderbauer et al. BCs required much smaller time steps to achieve convergence.

This indicates that these BCs make the system of equations more stiff, and hence smaller time steps were

required for convergence compared to the system of equations closed by the Johnson–Jackson BC.

Table 3.2: Comparison of computational cost of various wall BCs

Boundary condition Cores used Computational time

Johnson and Jackson [25] 60 20 days and 10 h

Jenkins and Louge [72] 60 40 days and 14 h

Schneiderbauer et al. [73] 60 41 days and 2 h

3.3.2 Physical parameters

It is well-established that the results of the TFM are highly dependent on the constitutive relations used to

close the governing equations. Accordingly, the values of the model parameters that appear in the consti-

tutive relations must be carefully chosen to ensure realistic behavior. To this end, extensive 3D simulations
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were performed to obtain the model parameter values that yielded the most comparable results with the

experimental data. For example, for the particle-particle restitution coefficient, the values of 0.86, 0.88, 0.92,

and 0.95 were examined. It was determined that e = 0.88 along with a specularity coefficient of 0.03 yielded

the best results compared to the experimental data of Laverman et al. [83]. Values of 0.01, 0.03, 0.05, and 0.4

were examined for the specularity coefficient. Also, it was determined that εmin
p = 0.6 gave better agreement

with the measured data than εmin
p = 0.5. Table 3.3 reports the optimal values of the model parameters used

in the current study.

Table 3.3: TFM model parameters used in the simulations

Parameter Value

Particle-particle restitution coefficient, e 0.88

Particle-wall restitution coefficient, ew 0.90

Tangential restitution coefficient, β0 0.33

Specularity coefficient, φw 0.03

Wall friction coefficient, µw 0.30

Minimum frictional particle volume fraction, εmin
p 0.60

Maximum packing limit, εmax
p 0.64

3.3.3 Geometry and mesh

The computational domain was taken to be a 3D thin fluidized bed with dimensions listed in Table 2.1. There

are several studies in the literature that attempt to address the effect of mesh on the numerical simulation of

fluidized beds. For example, Agrawal et al. [52], Andrew IV et al. [53], and Igci et al. [54] performed “highly

resolved” simulations of a flow in a small periodic domain and found that a grid size of 8.3dp was sufficient

to capture all the spatiotemporal structures that they needed to develop sub-grid scale models. Wang in [55]

and [56] also studied a 2D bed using a grid size of 7dp and 8.3dp, respectively, to perform a “high-resolution

Eulerian simulation”.

Given the current state of the art described above, in this study, a grid of 280×120×6 cells was used in the

axial, longitudinal, and lateral directions, respectively. Here, the axial, longitudinal, and lateral directions

are aligned with the y, x, and z axes, respectively. This resolution, which corresponds with 5.3dp, was found

sufficient to capture the meso-scale structures without using any sub-grid scale model and qualitatively

reflected the experimental data. Following Parmentier et al. [87], who performed a grid study on a dense

fluidized bed with a flow configuration roughly similar to the current study, the effect of grid size is negligible

when ∆∗, a dimensionless grid size, is smaller than 0.04. Here, ∆∗ =
∆

L

√

L

τSt
p uy,g@in

and ∆, L, and uy,g@in

are the grid size, width of the bed, and superficial gas velocity at the inlet, respectively, with τSt
p = ρpd

2
p/18µg,

the particle response time based on the Stokes law. In this study, the grid size is ∆ = 2.5× 10−3 m, leading
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to a value of ∆∗ = 0.005, which is lower than the limiting value. Further refinement of the grid size required

time steps on the order of 10−7 s, which in turn, resulted in excessively long run times.

3.3.4 Post-processing

The numerical model predicts such output properties as the particle volume fraction, the gas pressure, the

velocity components of each phase, and the granular temperature of the particle phase. Python subroutines

were developed to post-process these properties and calculate spatially and time-averaged quantities of in-

terest, such as the phasic velocity profiles, particle-flow patterns, 3D bubble characteristics, power spectral

density (PSD) of the gas pressure, and resolved-scale particle Reynolds stresses. The variables were time-

averaged over the 100 seconds of simulation after the first 10 seconds so as to minimize any transient start-up

effects.

3.4 Results and discussion

In order to assess the validity of the two-fluid model, the numerical results are compared with the experimental

measurements of Laverman et al. [83], where Particle Image Velocimetry (PIV) coupled with Digital Image

Analysis (DIA) were used to study the behavior of glass particles at different superficial gas velocities inside

a thin fluidized bed. The time-averaged particle velocity at different heights above the distributor were

measured.

Before investigating the effect of boundary conditions on the mean flow, it is helpful to look at the profiles

of the wall momentum flux (shear stress) and granular energy flux predicted by each wall BC. The wall shear

stress and granular energy flux collapse onto a single curve when the normalized wall shear stress and wall

granular energy flux are plotted versus the normalized wall slip velocity, as shown in Figure 3.1. We note that

in Figure 3.1, only the kinetic-collisional contribution of the wall shear stress, represented by S, is considered.

Figure 3.1 indicates that the difference in the predicted values of the wall fluxes by the Jenkins–Louge and

Schneiderbauer et al. models is minimal. In contrast, the Johnson–Jackson BC predicts quite different values

for the wall momentum and granular energy fluxes compared to the other two wall BCs.

3.4.1 Effect of wall BC on the bed dynamics

The time-averaged axial particle velocity is calculated as follows:

uavg
y,p =

εpuy,p

εp
, (3.7)

where ·̄ indicates time-averaging.

Figure 3.2 shows the time-averaged axial velocity profiles of the particles at two different heights. This

figure compares the experimental data of Laverman et al. [83] and the numerical results of 3D simulations.

At a height of 10.5 cm (Figure 3.2a), there is a downward particle-flow in the near-wall region, i.e., x < 4
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Figure 3.1: Variation of the normalized (a) wall shear stress and (b) wall granular energy flux with
the normalized wall slip velocity predicted by each wall BC.

cm and x > 26 cm, and in the central region, i.e., 11 cm < x < 18 cm. In the near-wall region, all three

BCs predict a similar downward flow. However, in the central region quite different profiles are predicted

by each wall BC. To quantify the differences between the model predictions and the experimental data, the

root-mean-square error, Erms, is calculated by,

Erms =

√
√
√
√

n∑

i=1

(Vnum,i − Vexp,i)
2

n
,

where Vnum, Vexp, and n, represent the predicted axial particle velocity, experimentally measured axial particle

velocity, and number of samples, respectively. Note that, Erms is a global metric that quantifies the overall

difference between the numerical results and their experimental counterpart. At the height of 10.5 cm, the

values of Erms for the Johnson–Jackson, Jenkins–Louge, and Schneiderbauer et al. models are 1.7 cm/s, 1.0

cm/s, and 1.7 cm/s, respectively. At a height of 24.5 cm, the experimental data show a downward flow in

the region x < 8 cm and x > 21 cm. In the region in between, i.e., the central region, an upward flow is

observed with a peak located near the center. The discrepancy between the predicted velocity profiles and

their experimental counterpart in the near-wall region at this height could be attributed to the collective

deficiency of the modeling, e.g., the interaction of the BC with the particle stress model. At this height,

the values of Erms for the Johnson–Jackson, Jenkins–Louge, and Schneiderbauer et al. BCs are 3.1 cm/s, 2.7

cm/s, and 3.2 cm/s, respectively. This indicates that the lowest value of Erms, at both heights, corresponds

to the numerical results predicted by the Jenkins–Louge wall BC. We note, however, this by itself is not

sufficient to conclude that the Jenkins–Louge wall BC is superior to the other two BCs. Overall, Figure 3.2

indicates that the system of governing equations is sensitive to the type of particle-wall BC. Although all

three wall BCs used in this study are physically meaningful and have been applied extensively by other

researchers, it appears that they produce somewhat different particle-flow patterns, especially in the central
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region of the bed. In this regard, it is helpful to look at the overall time-averaged velocity pattern inside the

bed.

Figure 3.3 shows the time-averaged velocity field from the experiment and as predicted by each wall

BC at a plane located at z = 0.375 cm. Figure 3.3 also shows the corresponding time-averaged particle

volume fraction contours in the background. Qualitatively, it appears that the Johnson–Jackson BC has

predicted a slightly higher particle volume fraction in the region 5 cm < x < 25 cm and 10 cm < y < 28 cm.

Regarding the flow pattern, as shown in this figure, the overall particle motion is governed by the formation

of two elongated vortices of opposite sign. Table 3.4 reports the locations of the centers of the two vortices

as predicted by the experimental data and each wall BC. Note that the first and second numbers in each

ordered pair indicate the x and y coordinates, respectively. This table also shows the net distance between the

predicted vortex location for each wall BC and its experimental counterpart. It is observed that the centers

of the vortices predicted by the Jenkins–Louge and Schneiderbauer et al. BCs are closer to the measured data

than those predicted by the Johnson–Jackson BC. All three BCs also predict a similar downward particle-flow

for the high-density near-wall region. However, each BC predicts quite different flow patterns in the central

region. For example, in the lower part of the bed, i.e., y < 10 cm, a stronger upward flow is predicted by the

Johnson–Jackson BC compared to the other two BCs. Also, qualitatively, it appears that the flow pattern

predicted by the Jenkins–Louge BC is more symmetric compared to the other two BCs in the central region

of the bed. The reason might be attributed to the dominant influence of bubbles on the the particle motion

in the central region. Because the bubble formation is affected by the wall BC, e.g., through the mean kinetic

energy of the particles dissipated at the wall, different flow patterns might be expected from each wall BC

in the central region.

Table 3.4: Location of the vortices for experimental data and different wall BCs; units are cm.

BC type
Center of the

left vortex

Center of the

right vortex

Net distance to

the exp. left vortex

Net distance to

the exp. right vortex

Exp. data [83] (7.5, 29.6) (22.0, 30.3) – –

Johnson–Jackson BC (7.4, 27.4) (22.7, 28.0) 2.2 2.4

Jenkins–Louge BC (7.6, 28.6) (21.8, 28.5) 1.0 1.8

Schneiderbauer et al. BC (7.3, 28.6) (21.9, 28.5) 1.0 1.8

Figure 3.4 shows the time-averaged particle holdup along the bed as predicted by each wall BC. Although

there is no precise criterion for defining the expanded bed height, for the current study, a particle volume

fraction of 0.2 is used as the threshold value to determine the time-averaged height of the bed. As shown in

Figure 3.4, the BCs of Jenkins–Louge and Schneiderbauer et al. predict quite similar particle holdup profiles

and a bed height of 33.7 cm. The Johnson–Jackson BC predicts a somewhat under-expanded bed with a

height of 33.1 cm. A reduction in the bed expansion, as predicted by the Johnson–Jackson BC compared

to the other two BCs, may be attributed to the energy level of the bubbles. Here, a bubble is understood
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Figure 3.2: Time-averaged axial particle-velocity profiles predicted by various wall BCs at different
heights.
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(a) Measured data of [83] (b) Johnson–Jackson BC

(c) Jenkins–Louge BC (d) Schneiderbauer et al. BC

Figure 3.3: Time-averaged particle volume fraction and particle velocity field: comparison between
measured data and numerical results predicted by different models.
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to be a localized region of gas, typically moving as an entity through the particulate phase. In this context,

the energy level of a bubble corresponds to the level of bubble activity associated with the gas pressure

fluctuation, that induces enhanced resolved-scale velocity fluctuations in the particle flow. It is shown in

Section 3.4.3 that the bubbles predicted by the Johnson–Jackson BC are more vigorous, due to stronger

gas pressure fluctuations, than those predicted by the other two BCs. More vigorous bubbles tend to bring

particles closer to each other, leading to a decrease in the level of the particle fluctuating energy, i.e., granular

temperature. As a result, particles are less granular, resulting in a less expanded bed. Figure 3.5 shows the

time-averaged granular temperature predicted by each wall BC at the height of 24.5 cm. It illustrates that

the Johnson–Jackson BC, as explained above, predicts a lower level of granular energy compared to that

predicted by the other two BCs. It is noteworthy that the Jenkins–Louge BC also predicts a more symmetric

profile compared to that of the BC of Schneiderbauer et al.
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Figure 3.4: Particle holdup profiles predicted by different wall BCs.

Figure 3.6 shows the spatially-averaged variance of void fraction along the bed to characterize the meso-

scale variations of the local instantaneous void fraction corresponding to the bubbles. This figure indicates

that the variance of the void fraction increases with the height and reaches a maximum value at approximately

the bed surface. Figure 3.6 also shows that the Jenkins–Louge and the Schneiderbauer et al. BCs predict

almost similar profiles in the region where the maximum of void fraction variance takes place, whereas the

Johnson–Jackson BC predicts a quite different profile in that region.
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Figure 3.5: Time-averaged granular temperature, predicted by different wall BCs, at the height of
24.5 cm.
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Figure 3.6: Profile of the variance of void fraction along the bed predicted by different wall BCs.
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Figure 3.7: Instantaneous snapshots of bubble contours in the bed for four successive instants from
left to right; predicted by the Jenkins–Louge wall BC.

3.4.2 Effect of wall BC on the bubble characteristics

The inlet gas velocity in the present study is 2.5 times the minimum fluidization velocity, and the flow

corresponds to the bubbling regime. Figure 3.7 shows the 3D visualization of the instantaneous bubble

structures at four consecutive times as predicted by the Jenkins–Louge wall BC. Although there is no precise

criterion for defining the extent of a bubble, for the current study, a gas fraction of 0.8 has been used as the

threshold value to determine the bubble boundary. Figure 3.7 illustrates that the small bubble structures,

which originate in the bottom and near-wall regions of the bed, coalesce to form the large bubbles structures.

As bubbles rise through the bed, they tend to migrate towards the centerline and eventually burst at the bed

surface.

In order to assess the bubble characteristics quantitatively, the bubble rise velocity, equivalent bubble

diameter, and average number of bubbles have been calculated using the 3D Matlab code developed by

Bakshi et al. [88]. The code, based on the void fraction data, applies a void-fraction threshold and bubble-

linking method to identify individual bubbles. The code then tracks bubbles across successive time frames to

calculate time-averaged bubble statistics. Approximating individual detected bubbles by a spherical shape,

the equivalent bubble diameter is calculated from De =
3

√

6Vb/π, where Vb, is the volume of the bubble.

Figure 3.8 shows the equivalent bubble diameter and bubble rise velocity along the bed. Figure 3.8a

illustrates that, as the bubbles move upward through the bed, they merge and form larger bubbles. This

figure also indicates that, overall, the Johnson–Jackson BC predicts smaller bubbles. This relates to the more

vigorous bubbles predicted by the Johnson–Jackson BC. More energetic bubbles, as discussed in Section 3.4.1,

lead to a lower granular temperature (Figure 3.5) and a higher average particle volume fraction; see discussion

of Figure 3.3b. This leads the bubbles to experience more resistance to their expansion and thus have a smaller

size. Figure 3.9 shows the size distribution of bubbles predicted by each wall BC. In summary, it appears that

the Johnson–Jackson BC predicts a larger number of smaller bubbles compared to those predicted by the

other two BCs. As discussed previously, the small bubble structures are formed near the bottom of the bed.
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We have seen from Figure 3.3b that the stronger upward particle-flow in the lower part of the bed can be

attributed to the larger number of bubbles as predicted by the Johnson–Jackson BC. No significant difference

is observed between the predictions of the BCs of Jenkins–Louge and Schneiderbauer et al. in Figure 3.9.
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Figure 3.8: Comparison between different wall BCs: (a) Average bubble size and (b) Bubble rise
velocity vs. height.
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Figure 3.9: Bubble size distribution predicted by different wall BCs.

3.4.3 Effects of wall BC on the gas pressure fluctuations

The dynamics of the bed is strongly influenced by the upward motion of bubbles through the bed. The chaotic

motion of bubbles introduces complex unsteady flow patterns. To gain a better insight into such unsteady

flow patterns, it is helpful to look at the Power Spectral Density (PSD) of the gas pressure field. To calculate
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the PSD of the pressure signals, the value of absolute pressure was recorded at intervals of approximately 10−4

s at a height of 10 cm. Because the MFIX code uses a variable time-step method, pressure data were recorded

at irregular time intervals. To obtain a uniform time intervals of 10−4 s, a Chebyshev polynomial of order 10

was used to interpolate the data. Figure 3.10 shows the PSD of pressure signals predicted by different wall

BCs in the frequency domain. All three BCs predict roughly the same natural frequency of approximately 8

Hz. It can be seen that the Johnson–Jackson BC predicts a stronger intensity in the gas pressure fluctuations,

i.e., by approximately one order of magnitude, for frequencies higher than 100 Hz, suggesting more vigorous

bubbles compared to the results predicted by the other two BCs. More vigorous bubbles may also be coupled

to a larger resolved-scale particle Reynolds stress, discussed in the Section 3.4.4. For frequencies between

200 to 1000 Hz, the BC of Schneiderbauer et al. predicts a relatively stronger intensity in the gas pressure

signal compared to the Jenkins–Louge BC. To the best of our knowledge, this is the first time that a PSD of

pressure data is calculated for frequencies higher than 500 Hz. The PSD analysis does not show the classical

small-scale turbulence behavior, indicating that gas turbulence, if any, is damped by the inertia of particles

in the bubbling bed.
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Figure 3.10: PSD of pressure signals predicted by different wall BCs.
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3.4.4 Effect of wall BC on the “resolved-scale” particle Reynolds stress

In bubbling beds, particles extract energy from the mean kinetic energy of the gas flow to produce kinetic

energy that corresponds to the fluctuating motions at the level of individual particles, i.e., granular tempera-

ture. Therefore, granular temperature represents the small-scale fluctuating motions of particles that might

have a small contribution to the mixing process in the bed. On the other hand, the chaotic motion of bubbles

leads to large-scale fluctuations at the level of collections of particles that contribute to the mixing process

in the bed. Once the instantaneous particle velocity field is obtained, the resolved-scale particle Reynolds

stress per unit bulk density can be calculated as

u
′

iu
′

j =
1

T

∫ t0+T

t0

(ui − ui)(uj − uj) dt, (3.8)

ui =
1

T

∫ t0+T

t0

ui dt. (3.9)

Figure 3.11 shows the contours of time-averaged particle normal Reynolds stress in the axial direction,

calculated at the same plane as in Figure 3.3. All three components of Reynolds normal stress are calculated,

and it is found that u′

yu
′

y > u′

xu
′

x > u′

zu
′

z. For brevity, only the contours of the dominant component, u′

yu
′

y,

are plotted. Compared to Figure 3.5, this figure illustrates that the resolved-scale fluctuations are much

more intense than the particle-scale fluctuations and hence are the main mechanism of mixing inside the bed.

Figure 3.11 indicates that the resolved-scale Reynolds normal stress predicted by the Johnson–Jackson BC is

larger than that predicted by the other two BCs. As discussed in the previous section, the larger resolved-scale

particle Reynolds stress is a result of the more vigorous bubble activity predicted by the Johnson–Jackson

BC. We note that all three BCs predict the largest fluctuations to occur at 30 cm < y < 35 cm, corresponding

to the region of fluctuations in the bed surface. It also appears that the Johnson–Jackson BC has predicted

more extensive regions of large u′

yu
′

y compared to the other two BCs.

A significant feature of fluidized beds, as far as applications are concerned, is the enormous mixing that

takes place in them and causes increased rates of momentum, heat, and mass transfer. Therefore, it is

important to identify and visualize the regions in the bed where on average most of the mixing takes place.

It is well-established that in incompressible single-phase turbulent flows, Reynolds shear stresses are mainly

responsible for the mixing. Similarly, contours of particle Reynolds shear stress, u′

xu
′

y, reveal the regions of

dominant mixing in the bed. Figure 3.12 shows the contours of time-averaged u′

xu
′

y in the same plane as

in Figure 3.11. It shows that there are two high-mixing regions near the bed surface, 30 cm < y < 35 cm.

Figure 3.3 suggests that these two regions might be a result of bubbles bursting at the bed surface that direct

particles transversely towards the wall from a vertically oriented motion. For lower heights, 20 cm < y < 30

cm, there are also two moderate-mixing regions near the center of the principal vortices depicted in Figure 3.3.

In the lower part of the bed, y < 20 cm, there are also two moderate-mixing paths between the high-density

regions near the wall and the moderate-density low-velocity region in the lower central region. As discussed

above, the Johnson–Jackson BC tends to predict more vigorous bubbles compared to the other two BCs.
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(a) Johnson–Jackson (b) Jenkins–Louge

(c) Schneiderbauer et al.

Figure 3.11: Time-averaged particle Reynolds normal stress, i.e., u′

yu
′

y, predicted by different wall
BCs.
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Consequently, more extensive mixing regions are predicted by this BC, specifically in the lower part of the

bed. Comparing Figures 3.11 and 3.12 shows that the mixing caused by the normal Reynolds stress is much

stronger than the one caused by the shear Reynolds stress. This observation is unlike that observed in

incompressible single-phase turbulent flows. However, it is important to note that the particles in the TFM

approach are treated as a compressible phase.

(a) Johnson–Jackson (b) Jenkins–Louge

(c) Schneiderbauer et al.

Figure 3.12: Time-averaged particle Reynolds shear stress, i.e., u′

xu
′

y, predicted by different wall
BCs.

The results of this study indicate that overall the most notable difference in the flow characteristics is

predicted by the Johnson–Jackson BC compared to the BCs of Jenkins–Louge and Schneiderbauer et al.

Although some differences are observed in the flow structures predicted by these two BCs, they might be

insignificant in the overall performance of the bed. We note that the lowest value of the root-mean-square

error corresponded to the numerical results predicted by the Jenkins–Louge wall BC. As discussed previously,

this by itself is not sufficient to conclude that the Jenkins–Louge wall BC is superior to the Schneiderbauer
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et al. BC.

3.5 Conclusion

This study demonstrates the significant role of the particle-wall boundary condition in the prediction of dense

gas-particle flows using a two-fluid model. A comprehensive study is performed to assess the effect of three

different wall BCs on the structural characteristics of a dense gas-particle flow inside a 3D bubbling bed. The

wall BCs considered in this study included the Johnson–Jackson BC [25], the Jenkins–Louge BC [72], and

the BC of Schneiderbauer et al. [73].

The paper assessed the ability of the aforementioned particle-wall BCs to predict the hydrodynamics

of the bed. The main focus of this study was to perform an in-depth systematic study to compare the

effect of these wall BCs on the simulated flow behavior. The paper quantitatively explained some important

features of the mechanics of the bubbling beds that have received relatively little attention in the literature.

For example, the effect of wall BC on the velocity field, 3D bubble statistics, gas-pressure fluctuations, and

particle resolved-scale Reynolds stress were investigated.

To quantify the differences between BC predictions and the experimental data, the value of the root-mean-

square error was calculated for each wall BC. It was determined that the lowest value of the root-mean-square

error corresponded to the numerical results predicted by the Jenkins–Louge wall BC. Also, it was observed

that the Jenkins–Louge BC consistently produced a more symmetric velocity field compared to the other

two wall BCs. However, there is a significant discrepancy between the BC predictions and the experimental

observation. This discrepancy can be attributed to the collective deficiency of the overall model. Accordingly,

one must be cautious in drawing a definitive conclusion.

Overall, the flows predicted by the three wall BCs were structurally similar. However, some specific

features differed in a systematic way that were tracked to the effect of wall boundary condition on the bubble

behavior. For example, the flow characteristics predicted by the Johnson–Jackson BC were in some ways

different from those predicted by the other two BCs. The reason was attributed to the more vigorous bubbles

predicted by the Johnson–Jackson wall BC. The more energetic bubbles resulted in a lower level of granular

temperature, a less-expanded bed, and more extensive mixing regions inside the bed. It was also found that

in bubbling beds the mixing caused by the particle Reynolds normal stress is much stronger than the one

caused by the particle Reynolds shear stress.
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Chapter 4

Energy budget analysis of a dense gas-particle flow inside

a fluidized bed
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• M. R. Haghgoo, D. J. Bergstrom, and R. J. Spiteri. Energy budget analysis of a dense gas-particle flow

inside a fluidized bed. Powder Technol., Under Review, 2018.
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Preamble

The energy cascade process plays a significant role in the dynamics of single-phase turbulent flows. Based

on the observations in single-phase turbulent flows, it is logical to perform an energy budget analysis on the

gas-particle flow inside a bubbling bed to understand the energy exchange between various scales based on a

variety of mechanisms. A thorough study of the dynamics of fluidized beds is incomplete without performing

an energy budget analysis. The budget analysis helps not only to quantify the relative importance of various

terms contributing to the energy cascade, but also to identify the regions in the bed where most of the

energy cascade takes place. In this chapter special consideration is given to the three particle-wall boundary

conditions discussed in the previous chapter to quantify their contribution to the overall energy cascade.

In this chapter, an equation for the kinetic energy of the mean particle flow is rigorously derived in the

context of the TFM approach, and a particle energy budget analysis is performed. The physical implications

of various terms in the energy equations are discussed, and their spatial distributions are plotted. This is

the first time that an in-depth systematic study is performed that uses a particle energy budget analysis to

discuss the dynamics of a three-dimensional bubbling bed.
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Abstract

Deeper insight into the complex dynamics of dense gas-particle flows can be gained from the investigation of

the energy cascade of the particulate phase. To this end, an in-depth systematic study is performed that uses

a particle energy budget analysis to examine the dynamics of a three-dimensional bubbling bed. The budget

analysis helps not only to quantify the relative importance of various terms contributing to the energy cascade

but also to identify the regions in the bed where most of the energy cascade takes place. It was determined

that most of the energy cascade takes place in the central region of the bed, whereas the contribution from

the near-wall region was insignificant. It was also found that the flow inside the bed tends on average toward

local equilibrium. In this regard, it was determined that the wall boundary conditions significantly affect the

local equilibrium.

4.1 Introduction

It is well-established that the dynamics of a bubbling fluidized bed is highly influenced by the bubbles moving

up through the bed. Using a non-linear stability analysis, Anderson et al. [89] demonstrated that bubbles

form due to a loss of stability of upward traveling waves subject to horizontal perturbations that results in

particle clustering. The chaotic motion of bubbles is reminiscent of large-scale eddies in single-phase turbulent

flows. However, the cascade of energy in gas-particle flows differs from that in single-phase turbulent flows.

In the latter, it is well-known that on average the energy cascades from large to small scales. However, the

scenario is more complicated in the case of gas-particle flows, where the meso-scale structures, i.e., bubbles in

the current study, emerge initially at small length scales and develop into larger scales. Hence, there is energy

transfer from the small to the large scales in addition to a cascade of energy from large to smaller scales [52].

We note that in the context of fluidized beds, the term “cascade” is used to refer to the exchange of energy

between various scales based on variety of mechanisms. Goldschmidt et al. [13] performed an energy balance

analysis and reported the values of selected terms that appear in the particle mechanical energy equation

for both the “Two-fluid model” (TFM) and “Discrete particle model” approaches. Their analysis focused

on the comparison between the values predicted by each approach and did not include the contribution of

physical walls and dissipation of kinetic energy by frictional stresses in the TFM approach. Using discrete

particle simulation and energy balance analysis, Li and Kuipers [90] showed that the competition between

particle-particle collision and particle-fluid interaction determines flow structure formation in fluidized beds.

In general, it appears that if more particle kinetic energy is dissipated, bubbles can grow more vigorously,

leading to stronger particle clusters. In bubbling beds, there are two principal mechanisms through which

the particle kinetic energy is dissipated. In one mechanism, the particle normal and shear stresses extract

kinetic energy of the mean particle flow to produce fluctuating energy, i.e., granular temperature. In the other

mechanism, some of the kinetic energy of the mean particle flow is dissipated into internal energy through
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frictional stresses. Figure 4.1 compares the energy cascade in the particulate phase of a dense gas-particle

flow, where the frictional stress plays a significant role, with that in a single-phase turbulent flow.

Kinetic energy of mean particle flow

Kinetic energy
of fluctuating
particle motion
(granular energy)

Production of
particle internal

energy by
frictional stress

Dissipation
of granular

energy as heat

(a) Particulate phase in a dense gas-particle flow

Kinetic energy of mean flow

Kinetic energy of
large-scale eddies

Viscous dissipa-
tion by small-
scale eddies

(b) Single-phase turbulent flow

Figure 4.1: Energy cascade in: (a) the particle phase of a dense gas-particle flow, and (b) a single-
phase turbulent flow.

To gain deeper insight into the complex dynamics of bubbling beds, it is helpful to perform a budget

analysis on the particle energy equations, i.e., the fluctuating and mean kinetic energy equations, and visualize

contours of different terms that appear in the energy equations. This budget analysis helps not only to

quantify the relative importance of various terms contributing to the energy cascade but also to identify the

regions in the bed where most of the energy cascade takes place. To this end, an equation for the kinetic

energy of the mean particle flow is rigorously derived in the context of the TFM approach, and a particle

energy budget analysis is performed. The physical implications of various terms in the energy equations are

discussed, and their spatial distributions are plotted. To the best of the authors’ knowledge, this is the first

time that an in-depth systematic study is performed that uses a particle energy budget analysis to discuss

the dynamics of a three-dimensional (3D) bubbling bed. Special consideration is given to the contribution

of walls to the overall bubble behavior and the energy cascade. In this regard, three different wall boundary

conditions (BCs) for the particulate phase that account for the particle slip-velocity and the granular energy

flux at the wall are assessed, and the overall contribution to the dissipation of mean particle kinetic energy

and random particle fluctuating energy, predicted by each wall model, is determined. The numerical code

Multiphase Flow with Interphase eXchanges (MFIX) [11] was used to perform the simulations, using the

Eulerian–Eulerian framework. Some additional Fortran subroutines were developed and integrated into the

MFIX code to implement the BCs of Jenkins and Louge [72] and Schneiderbauer et al. [73]. Special Python

subroutines were developed to perform the energy budget analysis. The results were validated against limited

published experimental data of Laverman et al. [83].

It was determined that most of the energy cascade takes place in the central region of the bed, whereas
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the contribution from the near-wall region was insignificant. It was also found that the source terms, i.e.,

dissipation and production, in the granular energy equation played a more significant role in the energy

cascade than the convective and diffusive terms. This indicates that on average the flow inside the bed tends

toward local equilibrium. In this regard, it was determined that the wall boundary conditions had significant

effect on the local equilibrium, and the effect of each wall boundary condition investigated was quantified.

The remainder of this paper is organized as follows. In Section 4.2, an equation for the kinetic energy of

the mean particle flow is rigorously derived in the context of the TFM approach, and the physical implications

of various terms in the energy equations are discussed. A diagram is provided to summarize how the energy

cascades in a dense gas-particle flow. In Section 4.3, the numerical simulation set-up and the values of

physical parameters are discussed. In Section 4.4, a particle energy budget analysis is performed, and the

time-averaged spatial distribution of different terms contributing to the energy cascade is plotted. In addition,

the contribution of wall to the energy cascade is quantitatively discussed.

4.2 Mathematical modeling

The Eulerian–Eulerian TFM, based on the locally averaged equations derived by Anderson and Jackson [7],

is used to simulate a dense gas-particle flow inside a 3D thin fluidized bed. The governing/constitutive

equations describing the dynamics of such a system can be found in our previous study [20] and accordingly

is not repeated here. We note, however, that the current study uses the drag model of Gidaspow [84].

Haghgoo et al. [20] previously showed that the frictional stress proposed by Srivastava and Sundaresan [26]

predicted more realistic results than the one proposed by Schaeffer [27]. Therefore, in this study the former

frictional model was used to account for the longer-lasting multiple-particle contacts with the frictional stress

initiated at a minimum particle volume fraction of εmin
p = 0.6.

We also note that in the TFM of Anderson and Jackson, a spatial averaging is applied to the carrier

phase to obtain the equations for the fluid phase and also to the particles to obtain the “fluid-like” equations

for the particle phase. Hence, in this description each point can be occupied simultaneously by both phases,

and the fluid phase is not the interstitial fluid but rather an average that is defined throughout the domain.

Following Hinze [91], an equation for the kinetic energy of the mean particle-flow can be derived by taking

the inner product of the particle momentum equation and the mean particle velocity, resulting in:

D

Dt

(
1

2
εpρp|~up|2

)

− εpρp~up · ~g = −εp~up · ~∇Pg

(I)

− ~up · ~∇Pp

(II)

+ ~up · ~∇ (¯̄τkc + ¯̄τf )

(III)

+ ~up · β (~ug − ~up)

(IV)

, (4.1)

where, ε, ρ, ~u, P , ¯̄τ , and β represent volume fraction, density, velocity vector, pressure, stress tensor, and

inter-phase momentum transfer coefficient, respectively. The subscript p, g, kc, and f stand for the particle

phase, gas phase, kinetic/collisional, and frictional, respectively. The first and second terms on the left-hand

side of Eq. 4.1 indicate the changes of mean kinetic and potential energies, respectively, for an ensemble

of particles per unit volume per unit time. The first and second terms on the right-hand side ((I) and
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(II)) express the rate of work, per unit of volume, performed by the gas and particle pressure gradients,

respectively. The third term (III) indicates the work, per unit of volume and time, performed by the gradient

of the total particle stress, including the kinetic-collisional and frictional stresses. The last term (IV) describes

the change in the particle mean kinetic energy, per unit of volume and time, due to drag force between two

phases. Eq. 4.1 shows the net contribution of different terms to the mean kinetic energy of the particle-flow;

it does not show explicitly which terms correspond to the energy exchange between the mean particle-flow

and the fluctuating random motion of particles. It also does not explicitly show how the mean kinetic energy

dissipates into internal energy by frictional stress. We note that it is important to calculate the portion

of the mean kinetic energy being dissipated because it in turn affects bubble behavior and the overall bed

dynamics. To this end, following Hinze [91], each term on the right-hand side of Eq. 4.1 is decomposed into

a contribution to the particle total energy, including the mean kinetic energy, the fluctuating energy, and the

internal energy, and a contribution to the dissipation of the mean kinetic energy, as follows,

(I): εp~up · ~∇Pg = ~∇ · (Pgεp~up)

(i)

− Pg
~∇ · (εp~up)

(ii)

.

Here, term (i) indicates the rate of work, per unit of volume, performed by the gas pressure, giving a

contribution to the particle total energy. Term (ii), that indicates the rate of work done by compression

or expansion, is converted into heat. However, this term might be neglected based on the particle phase

continuity, assuming that the time derivative part of the particle continuity is negligible compared to

term (i).

(II): ~up · ~∇Pp = ~∇ · (Pp~up)

(i)

− Pkc
~∇ · ~up

(ii)

− Pf
~∇ · ~up

(iii)

,

where Pp = Pf +Pkc. Here, term (i) represents the rate of work, per unit of volume, performed by the

total particle pressure, contributing to the total energy of the particle phase. Both terms (ii) and (iii)

represent the rate of work done by compression or expansion of the particulate phase. Term (ii) extracts

some portion of the particle mean kinetic energy to produce particle fluctuating energy, whereas term

(iii) converts some part of the mean kinetic energy into heat by frictional pressure.

(III): ~up · ~∇ (¯̄τkc + ¯̄τf ) = ~∇ · [~up · (¯̄τkc + ¯̄τf )]

(i)

− ¯̄τkc : ~∇~up

(ii)

− ¯̄τf : ~∇~up

(iii)

.

Here, term (i) describes the rate of work, per unit of volume, by the total particle stress, contributing

to the total particle energy. Term (ii) indicates the dissipation of particle mean kinetic energy, per unit

time, to produce fluctuating energy by kinetic-collisional stress, whereas term (iii) shows the rate of

dissipation of mean kinetic energy into heat by frictional stress.

Based on the above discussion, it appears that terms (II,ii) and (III,ii) are the granular energy production

terms that are supplied by the kinetic energy of the mean particle-flow and eventually dissipate into heat, as

indicated in Figure 4.1. The granular energy equation is:

D

Dt

(
3

2
εpρpθ

)

= −~∇ ·
(

κp
~∇θ
)

− Pkc
~∇ · ~up + ¯̄τkc : ~∇~up + Γslip − Jcoll − Jdrag, (4.2)
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where θ, κ, Γslip, Jcoll, and Jdrag represent the granular temperature, conductivity of the granular energy,

production of granular energy due to gas-particle slip, dissipation of granular energy into heat by inelastic

collisions, and exchange of granular energy between two phases due to drag, respectively. Similarly, the

particle internal energy includes terms (II,iii) and (III,iii). We also note that the fluctuating energy produced

is dissipated into internal energy by inelastic collisions. The particle internal energy equation reads:

D

Dt
(εpρpEh) = −~∇ ·

(

κh
~∇T
)

− Pf
~∇ · ~up + ¯̄τf : ~∇~up + Jcoll, (4.3)

where Eh, κh, and T represent internal energy and thermal conductivity, and temperature, respectively.

Consequently, the particle total energy equation is obtained by adding Eqs. 4.1– 4.3, as follows,

D

Dt

[

εpρp

(
1

2
|~up|2 +

3

2
θ + Eh

)]

− εpρp~up · ~g = −~∇ · (Pgεp~up)− ~∇ · (Pp~up) + ~∇ · [~up · (¯̄τkc + ¯̄τf )]

− ~∇ ·
(

κp
~∇θ
)

− ~∇ ·
(

κh
~∇T
)

+ Γslip − Jdrag + ~up · β (~ug − ~up) .

(4.4)

Figure 4.2 summarizes the role of each term, as discussed above, in the energy cascade of a dense gas-particle

flow.

Particle
mean kinetic

energy

Gas kinetic
energy

Gas internal
energy

Gas pseudo-
turbulent
energy

Particle
granular tem-
perature, θ

Particle
internal

energy, Eh

(II,ii),
(III,ii), Γslip

(II,iii), (III,iii)

(I), (IV)

Jcoll heat

transfer

viscous

dissipation

Jdrag

Figure 4.2: Energy cascade in a dense gas-particle flow.

In the context of dense gas-particle flows, where any turbulence of the gas is damped by the inertia of

the particles, there is no gas pseudo-turbulent kinetic energy. The pseudo-turbulent kinetic energy is the

energy associated with the gas velocity fluctuations caused, for instance, by particle wakes [92]. Figure 4.2

indicates that the drag term makes two contributions to the particle energy cascade: the exchange of (a)

mean kinetic energy and (b) granular energy between the gas and particle phases. As discussed by Fox [92],

the granular energy is converted into the gas pseudo-turbulent kinetic energy through the drag term, which

in turn, dissipates into gas internal energy. This part of energy cascade is shown as a dashed line because the

gas fluctuating kinetic energy in dense gas-particle flows is negligible, and therefore no transport equation is
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solved to obtain it. In this scenario, the particle granular energy is directly converted into the gas internal

energy by viscous dissipation term.

In addition to the aforementioned mechanisms by which the particle-energy cascades inside a bubbling

bed, the walls also contribute to the energy cascade. It is thus important to assess the contribution of the

wall to the overall particle-energy cascade taking place in the system. The particle wall shear stress extracts

kinetic energy from the mean particle-flow and converts it to granular energy and then ultimately to heat.

Additionally, the frictional stress at the wall converts the mean kinetic energy to heat. In the current study,

three different particle-wall BCs, i.e., the BC of Johnson and Jackson [25], Jenkins and Louge [72], and

Schneiderbauer et al. [73], are examined to assess their contribution to the particle-energy cascade and their

effect on the overall predicted bed dynamics. The mathematical descriptions for each BC for the wall shear

stress and fluctuating energy flux and details about their implementation in the MFIX code can be found in

our recent work [2]. We note that for all three BCs, the effect of frictional stress at the wall is taken into

account by

~τfw = −µwNf
~usl

|~usl|
, (4.5)

where ~τfw, µw, Nf , and ~usl represent the wall shear stress due to friction between particles and the wall,

friction coefficient at the wall, frictional stress normal to the wall, and particle slip velocity vector at the

wall, respectively. Therefore, the rate of mean kinetic energy, per unit area, dissipated as heat by frictional

stress at the wall is Df
w = ~τfw ·~usl. For particles slipping along the wall, the work performed by the wall shear

stress, due to the collisional stress, extracts the mean kinetic energy and converts it to granular energy. As a

result, the rate of production of granular energy, per unit area, at the wall is Pc
w = ~τw ·~usl. Accordingly, given

the granular energy flux at the wall, the rate of dissipation of granular energy is obtained by Dc
w = Pc

w − qw.

4.3 Numerical simulation

Using the TFM approach of Anderson and Jackson [7], 3D simulations of a bubbling fluidized bed were

performed to evaluate the contribution of different terms in the energy cascade. The numerical code MFIX

was used to perform the simulations. The MFIX code did not originally include the wall BCs proposed by

Jenkins and Louge [72] and Schneiderbauer et al. [73]. Therefore, additional FORTRAN subroutines were

developed to implement these wall BCs. Special Python subroutines were developed to perform the energy

budget analysis. The numerical results of this study were compared with the experimental measurements of

Laverman et al. [83]. Table 4.1 shows the simulation parameters based on the experimental set-up.

All simulations were performed in parallel using 60 cores on an architecture consisting of dual Hex Core

Intel Xeon X5650 2.66 GHz with 12 GB of RAM each and running Red Hat Enterprise Linux Server 5.7. The

first 100 seconds of the fluidization process are simulated to achieve statistically steady-state solutions. The

computational time required to perform a single simulation using the Jenkins–Louge particle-wall BC [72] was

approximately 40 days and 14 hours. Extensive 3D simulations (more than 15) were performed to obtain the
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Table 4.1: Simulation parameters for comparison with experimental study.

Property Value

Fluidized bed height 70 cm

Fluidized bed width 30 cm

Fluidized bed thickness 1.5 cm

Initial bed height 30 cm

Particle diameter, dp 0.485 mm

Particle density, ρp 2500 kg m−3

Minimum fluidization velocity, umf 18 cm s−1

Superficial gas velocity 2.5umf

model parameter values that yielded the most comparable results with the experimental data. Details on the

optimal values of the model parameters, numerical methodology, grid study, and CPU-hours of computing

to produce the results are available in [2]. Table 4.2 reports the optimal values of the model parameters used

in the current study.

Table 4.2: TFM model parameters used in the simulations

Parameter Value

Particle-particle restitution coefficient, e 0.88

Particle-wall restitution coefficient, ew 0.90

Tangential restitution coefficient, β0 0.33

Specularity coefficient, φw 0.03

Wall friction coefficient, µw 0.30

Minimum frictional particle volume fraction, εmin
p 0.60

Maximum packing limit, εmax
p 0.64

4.4 Results and discussion

The validity of the TFM for the simulations was established by comparing the numerical results with the

limited experimental measurements of [83] in [2]. We note that the variables were time-averaged over the

100 seconds of simulation after the first 10 seconds so as to minimize any transient start-up effects. Haghgoo

et al. [2] showed that the Jenkins–Louge particle-wall boundary condition [72] predicts the bed dynamics

somewhat better than the more widely used boundary condition of Johnson–Jackson [25]. Therefore, in this

study the former particle-wall boundary condition was used to plot the contours of different terms involved

in the energy cascade. At the bed inlet, a constant velocity with a flat profile was imposed for the gas phase,
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whereas the particle velocity was set to zero.

Figure 4.3 shows the time-averaged velocity field from the experiment and as predicted by the Jenkins–

Louge BC in a plane located at z = 0.375 cm [2]. Figure 4.3 also shows the corresponding time-averaged

particle volume fraction contours in the background. This figure indicates that the overall particle motion is

governed by the formation of two elongated vortices of opposite sign.

(a) Measured data of [83] (b) Jenkins–Louge BC

Figure 4.3: Time-averaged particle volume fraction and particle velocity field: comparison between
measured data and numerical result predicted by the Jenkins–Louge BCs [2].

As discussed previously, it is helpful to look at the time-averaged contours of various terms contributing to

the energy cascade. Recall from Figure 4.2, terms (I) and (IV) represent the rate of mean kinetic energy ex-

change between two phases by the gas pressure gradient and drag coupling terms. The first term corresponds

to the work performed by reaction on the particles of large scale pressure gradients in the fluid, whereas

the second term corresponds to the work performed by drag. Overall, the mean kinetic energy of particles

is supplied by the mean kinetic energy of the carrier phase through the work performed by the large-scale

pressure gradients and drag force. Figure 4.4 shows the time-averaged spatial distribution of work, per unit

time, performed by these terms in the same plane as in Figure 4.3.

In the dilute gas-particle flow, the relative importance of term (IV) is determined by the mass loading

[92]. However, Figure 4.4 indicates that both terms contribute almost equally to the energy cascade in dense

gas-particle flows. This figure depicts regions in the bed where the two phases strongly interact with each

other. It appears that, on average, most of the energy exchange between two phases occurs in the central

regions of the bed located away from the walls and bottom inlet. We note that the dominant values of

energy exchange correspond to the region where two principal upward streams of particles engage each other

(10 cm < x < 20 cm and 18 cm < y < 28 cm) as shown in Figure 4.3. As mentioned previously, the drag
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(a) Term (I) (b) Term (IV)

Figure 4.4: Time-averaged contour plots of the energy exchange rate between two phases by (a)
term (I), i.e., gas pressure gradient and (b) term (IV), i.e., drag. The color-bar values are in g

cms3 =

10−1 J
m3s .

term also makes a second contribution to the energy exchange between phases by converting the particle

fluctuating energy into internal energy of the gas phase. Figure 4.5 shows the time-averaged contours of the

corresponding term, i.e., Jdrag. A comparison of Figures 4.4 and 4.5 indicates that the contribution of drag

to the energy cascade through term Jdrag is negligible compared to those by terms (I) and (IV). We note

that both Figures 4.4 and 4.5 indicate that the contribution to the energy cascade of the high-density flow

in the near-wall region is insignificant.

Figure 4.5: The time-averaged contour plots of the energy exchange rate between two phases through
Jdrag. The color-bar values are in g

cms3 = 10−1 J
m3s .

Figures 4.6a and 4.6b show the time-averaged contours of energy, per unit time, extracted from the mean
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kinetic energy of the particles and converted into the particle internal energy through frictional shear stress

and pressure, respectively. As shown, the main contribution of the frictional stress to the energy cascade is

via the shear stress; the effect on the energy cascade of frictional pressure is negligible. Although the frictional

stress plays a significant role in the momentum transport in the highly dense near-wall region, Figure 4.6a

indicates that its contribution to the energy cascade is negligible due to a minimal velocity gradient in this

region. It appears that the dominant region of mean kinetic energy dissipation by the frictional stress is

located at the center of the bed, possibly due to the collision of two principal upward particle streams, as

mentioned.

(a) Term (III,iii) (b) Term (II,iii)

Figure 4.6: The time-averaged contour plots of energy, per unit time, dissipated as heat by (a) term
(III,iii), i.e., frictional shear stress and (b) term (II,iii), i.e., frictional pressure. The color-bar values
are in g

cms3 = 10−1 J
m3s .

Recalling Figure 4.2, the particle mean kinetic energy dissipates into particle fluctuating energy via

terms (II,ii), (III,ii), and Γslip. Figure 4.7 represents the time-averaged spatial distribution of the granular

energy production, per unit time, through these terms. A comparison of Figures 4.7a and 4.7b indicates

that the granular energy produced by the kinetic-collisional pressure is comparable to that produced by

the kinetic-collisional shear stress. Therefore, the kinetic-collisional part of the particle pressure contributes

substantially to the production of fluctuating energy via extracting energy from the mean particle-flow. This

observation is unlike that observed in single-phase incompressible turbulent flows, where the contribution of

fluid pressure to the production of turbulence kinetic energy is negligible compared to that of the mean shear

stress. Figure 4.7c shows that the production of granular energy due to the slip velocity between the two

phases, i.e., Γslip, is negligible in dense gas-particle flows. This term might play a more significant role in the

energy cascade of dilute to moderately dense gas-particle flows where the gas turbulence is not negligible.

A comparison of Figures 4.7a and 4.6a, indicates that, although the frictional stress is taken into account

for only a narrow window of particle volume fraction, i.e., 0.6 ≤ εp ≤ 0.64, the contribution of the frictional
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stress in the cascade of energy is comparable to that of the kinetic-collisional stress, whereas in the dilute or

moderately dense flows, frictional stress is typically not important.

(a) Term (III,ii) (b) Term (II,ii)

(c) Term Γslip

Figure 4.7: The time-averaged contour plots of granular energy production, per unit time, by (a)
term (III,ii), i.e., kinetic-collisional shear stress, (b) term (II,ii), i.e., kinetic-collisional pressure, and
(c) term Γslip. The color-bar values are in g

cms3 = 10−1 J
m3s .

As shown in Figure 4.2, the produced granular energy dissipates into particle internal energy through

inelastic particle collisions, i.e., Jcoll. Figure 4.8a represents the time-averaged contour plots of the rate of

fluctuating energy dissipation through Jcoll. This figure indicates that the central region where two principal

upward particle streams interact with each other, i.e., 10 cm < x < 20 cm and 18 cm < y < 28 cm,

corresponds to the dominant region of granular energy dissipation. Figure 4.8b shows the time-averaged

spatial distribution of the granular energy production, per unit time, via both kinetic-collisional pressure and

shear stress. Figures 4.8a and 4.8b are almost identical, indicating that overall, the rate of granular energy
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supply is equal to the rate of dissipation. Therefore, the well-known algebraic approximation of the transport

equation for the granular energy can be used to produce an accurate distribution of granular temperature.

(a) Term Jcoll (b) Terms (II,ii)+(III,ii)

Figure 4.8: The time-averaged contour plots of (a) dissipation of granular energy, per unit time, into
heat through particle inelastic collisions and (b) net production of granular energy by both kinetic-
collisional shear stress and pressure. The color-bar values are in g

cms3 = 10−1 J
m3s .

Figure 4.9 represents the time-averaged contours of the rate of mean kinetic energy converted to potential

energy. This figure indicates that the principal role of the highly dense flow in the near-wall region is limited

to the conversion of particle mean kinetic energy to potential energy. As shown in previous figures, this

region does not play a significant role in the energy cascade. Overall, most of the energy cascade occurs

in the central region of the bed surrounded by the high-concentration near-wall flows. This is due to the

migration of bubbles, initially formed as small structures near the bottom and wall regions, that coalesce as

they rise towards the central region.

Although the near-wall region in the bubbling bed does not significantly participate in the energy cascade,

the effect of the particle-wall boundary condition itself might be significant in the prediction of the flow. As

mentioned above, the dynamics of bubbling beds are dominantly influenced by the motion of bubbles. Because

the bubble formation is highly dependent on the particle energy level, the particle-wall boundary condition

may affect the bubble behavior through the dissipation of the particle mean kinetic energy. Therefore, it

is important to evaluate the contribution of the wall to the overall energy cascade that occurs in the bed.

Figure 4.10 represents the time-averaged contribution of different terms involved in the particle-wall BC to

the energy cascade, as described at the end of Section 4.2. This figure shows the corresponding time-averaged

contour plots on the front wall located at z = 0 cm. Figures 4.10a and 4.10b show the contour plots of the

production of granular energy, per unit time, supplied by the particle mean kinetic energy, and the rate of

dissipation of granular energy into heat by inelastic particle-wall collisions at the wall, respectively. The rate

of production of granular energy by the work performed by the wall collisional stress is approximately equal
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Figure 4.9: The time-averaged contour plots of potential energy, per unit time. The color-bar values
are in g

cms3 = 10−1 J
m3s .

to its rate of dissipation into heat. Comparing these figures and Figure 4.8 shows that the rate of production

of granular energy by the wall collisional stress is less than, but comparable to, that of the kinetic-collisional

stress in the interior plane. Figure 4.10c also shows the rate of dissipation of the mean kinetic energy by the

wall frictional stress. Figures 4.10c indicates that the regions on the wall corresponding to the maximum

values of dissipation of the mean kinetic energy by the particle-wall friction are located away from the center

and near the side-walls, whereas Figure 4.6a shows that the region where the maximum values of dissipation

of the mean kinetic energy by the particle-particle friction occur is located in the central region. We note

that the work performed by the wall frictional stress is related to the particle slip velocity on the wall (see

Eq. 4.5), whereas the work performed by the particle-particle frictional stress is related to the particle velocity

gradient; see term (III,iii) in Section 4.2. Figure 4.10 shows qualitatively that the overall contribution of the

collisional stress on the wall to the energy cascade is larger than that of the frictional stress.

An energy budget analysis was performed to quantify the energy cascade in the bubbling bed. Table 4.3

summarizes the contribution of the previously discussed terms to the energy cascade, for different wall BCs,

over the last 10 seconds of the simulation.

Table 4.3: Results of energy budget analysis (t = 90 s− 100 s); units are kJ.

Inside the bed At the wall

BC type (I) (IV) (II,ii)+(III,ii) (II,iii)+(III,iii) Γslip Jdrag Jcoll Df
w Pc

w Dc
w

Johnson–Jackson [25] 13.4 12.4 8.5 5.9 0.0024 0.31 9.4 3.4 5.0 2.2

Jenkins–Louge [72] 14.1 12.9 11.8 5.9 0.0025 0.36 11.5 0.59 0.99 1.0

Schneiderbauer et al. [73] 14.1 12.9 12.0 6.0 0.0026 0.36 11.5 0.62 0.94 1.0

This table indicates that, inside the bed, the effect on the energy cascade of the gas pressure gradient, i.e.,
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(a) Term P
c
w (b) Term D

c
w

(c) Term D
f
w

Figure 4.10: The time-averaged contour plots of (a) rate of production of granular energy at the
wall, i.e., Pc

w, (b) rate of dissipation of granular energy to heat via inelastic particle-wall collisions,
i.e., Dc

w, and (c) rate of dissipation of mean kinetic energy by frictional stress at he wall, i.e., Df
w. The

unit of color-bar values is g
s3 = 10−3 J

m2s .
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term (I), is slightly larger than that of the drag, i.e., term (IV). Also, it appears that the dissipation of the

particle mean kinetic energy through both kinetic-collisional and frictional stresses are comparable, with the

former giving a relatively larger contribution to the energy cascade. We note that the contribution of Γslip to

the energy cascade is minimal among all the terms involved. The overall net granular energy, i.e., production

minus dissipation produced inside the bed corresponding to the BCs of Johnson–Jackson, Jenkins–Louge,

and, Schneiderbauer et al. are −1.21 kJ, −0.06 kJ, and −0.14 kJ, respectively. This indicates that on

average the flow inside the bed as predicted by the Jenkins–Louge BC tends toward local equilibrium, i.e.,

the production of granular energy is approximately equal to its dissipation, compared to the flow predicted

by the other two BCs. Consistent with the result of [2], this indicates that the Jenkins–Louge BC predicts

the bed dynamics somewhat better than the more widely used boundary condition of Johnson–Jackson.

From Table 4.3, it can be seen that 36.8%, 8.2%, and 8.0% of the total dissipation of the particle mean

kinetic energy occurs at the bed walls as predicted by the BCs of Johnson and Jackson, Jenkins and Louge,

and Schneiderbauer et al., respectively. Also, the wall contribution to the total production of granular

energy is 37.1%, 7.7%, and 7.3%, corresponding to the BCs of Johnson and Jackson, Jenkins and Louge,

and Schneiderbauer et al., respectively. These results indicate that the energy budget predicted by the

Johnson–Jackson BC substantially differs from those predicted by the other two BCs at the wall. Table 4.3

shows no significant difference between the predictions of the BCs of Jenkins and Louge and Schneiderbauer

et al. In the Johnson–Jackson BC, the contributions of both wall collisional and frictional stresses to the

dissipation of the mean kinetic energy, i.e., Pc
w and Df

w, are highly overestimated. Consequently, much more

particle mean kinetic energy is dissipated at the wall as predicted by the Johnson–Jackson BC, leading to

the formation of more vigorous bubbles. More vigorous bubbles tend to bring particles closer to each other,

leading to a decrease in the level of the particle fluctuating energy, which in turn results in a less expanded

bed. We note that the Johnson–Jackson BC was developed heuristically such that the effect of momentum

and energy transfer of the colliding particles is characterized by the specularity coefficient, whereas in the

more sophisticated BCs of Jenkins and Louge and Schneiderbauer et al., the particle-wall collisions are more

accurately accounted for, and the sticking and sliding collisions are distinguished.

4.5 Conclusions

An in-depth systematic study that used a particle energy budget analysis was performed to investigate the

dynamics of a 3D bubbling bed. An equation for the kinetic energy of the mean particle flow was rigorously

derived in the context of TFM approach, and the physical implications of the terms involved were discussed.

The time-averaged spatial distribution of different terms appearing in the energy equation was visualized.

The budget analysis not only quantifies the relative importance of various terms contributing to the energy

cascade, but it also identifies the regions in the bed where most of the energy cascade takes place.

The results of the energy analysis indicate that the mean particle-flow gains its kinetic energy from the
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mean kinetic energy of the gas phase through large-scale gas pressure gradient and drag terms. It was found

that the role of each term was equally significant in the exchange of mean kinetic energy between the two

phases and happens in the central region of the bed. The conversion of particle fluctuating energy into

internal energy of the gas phase was estimated to be negligible. The contributions to the energy cascade

of both kinetic-collisional and frictional stresses were found to be comparable. The kinetic-collisional stress

extracts mean kinetic energy to produce granular energy, whereas the frictional stress dissipates it into heat.

It was also observed that the kinetic-collisional part of the particle pressure contributes substantially to

the production of fluctuating energy by extracting energy from the mean particle-flow. It was determined

that, among the terms involved in the energy cascade process, the minimum contribution corresponds to the

production of granular energy due to slip velocity between the two phases. It was observed that highly dense

flow in the near-wall region did not contribute much to the energy cascade, and its role was limited to the

conversion of particle mean kinetic energy to potential energy.

In addition to the energy cascade that happens through particle-particle and particle-gas interactions, the

energy cascade that occurs at the physical walls due to the wall-particle interaction was investigated. In this

regard, three different wall boundary conditions for the particulate phase that account for the particle slip-

velocity and the granular energy flux at the wall were assessed, and the wall contribution to the dissipation of

mean particle kinetic energy and random particle fluctuating energy predicted by each BC was determined.

The wall BCs considered in this study included those of Johnson and Jackson [25], Jenkins and Louge [72],

and Schneiderbauer et al. [73].

The energy budget predicted by the Johnson–Jackson BC substantially diverges from those predicted

by the other two wall BCs. For example, the wall contribution to the total dissipation of particle mean

kinetic energy was found to be 36.8%, 8.2%, and 8.0% as predicted by the BCs of Johnson and Jackson,

Jenkins and Louge, and Schneiderbauer et al., respectively. For the Johnson–Jackson BC, the contributions

of both wall collisional and frictional stresses to the dissipation of the mean kinetic energy were highly

overestimated. It was also found that the source terms, i.e., dissipation and production contributions, in the

granular energy equation played a more significant role in the energy cascade compared to the convective

and diffusive terms. The overall net granular energy produced inside the bed corresponding to the BCs

of Johnson–Jackson, Jenkins–Louge, and Schneiderbauer et al. were −1.21 kJ, −0.06 kJ, and −0.14 kJ,

respectively. This indicates that on average the flow inside the bed as predicted by the Jenkins–Louge BC

tends more toward local equilibrium than the flows predicted by the other two BCs.
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Chapter 5

Identifying particle flow structures in a dense gas-particle

fluidized bed using proper orthogonal decomposition

A similar version of this chapter is submitted as:

• M. R. Haghgoo, D. J. Bergstrom, and R. J. Spiteri. Identifying particle flow structures in a dense

gas-particle fluidized bed using proper orthogonal decomposition. J. Fluid Mech. Submitted, 2018.

The first author conducted the simulations, post-processed and analyzed the results, and prepared the first
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Preamble

The motion of bubbles through the bed induces strong unsteady flow patterns and creates intense fluctuations

in the particle velocity and volume fraction fields. The complex fluctuating components of the particle

flow fields, giving rise to an enhanced particle mixing, are not reflected in the time-averaged flow features.

Therefore, it is significant to quantitatively assess the particle-flow fluctuating fields. To this end, state-of-

the-art post-processing methodologies namely, the Proper Orthogonal Decomposition (POD) and the swirling

strength criterion, are applied to the fluctuating particle flow fields predicted by the two-fluid model of the

bubbling bed discussed in the previous two chapters to identify and analyze the dominant spatio-temporal

patterns of the particulate phase.

The instantaneous particle flow is determined to be characterized by the formation of high-vorticity regions

in the vicinity of the bubble boundaries with a relatively higher vorticity magnitude in the wake region of

bubbles. The dominant particle meso-scale fluctuating velocity patterns (the first two most energetic POD

modes) are principally aligned in the axial direction, corresponding to the particle mixing by the bubble

wakes, with laterally directed fluctuating velocity vectors at the bed surface, corresponding to the mixing

caused by the bubbles bursting. Applying the swirling strength criterion reveals the existence of smaller

ring-like vortex sheets in the lower part of the bed, larger ribbon-like structures in the middle of the bed,

and a laterally oriented vortex sheet at the bed surface. It is observed that the main characteristic feature

of the particle vortical motions is their flat structure. The flat vortex sheets appear to be stable structures

in bubbling beds, unlike the case of single-phase turbulent flows, that emerge due to the collective effect of

instabilities occurring in the particulate phase.
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Abstract

The particle flow fields, i.e., particle volume fraction and velocity fields, inside bubbling beds exhibit strong un-

steady flow patterns accompanied by intense meso-scale fluctuations induced by the motion of bubbles. State-

of-the-art post-processing methodologies, the Proper Orthogonal Decomposition (POD) and the swirling

strength criterion, are applied to the fluctuating particle flow fields predicted by the two-fluid model of a

bubbling bed to identify and analyze the dominant spatio-temporal patterns of the particulate phase. The

variation of the POD temporal coefficients associated with the particle volume fraction fluctuation field in-

dicates the existence of a low-dimensional attractor and irregular periodicity in the flow. Three-dimensional

POD results indicate that the dominant particle meso-scale fluctuating velocity patterns (first two ener-

getic POD modes) are principally aligned in the axial direction, corresponding to the particle mixing by the

bubble wakes, with laterally directed fluctuating velocity vectors at the bed surface, corresponding to the

mixing caused by the bubbles bursting. The identified particle vortical motions are characterized by their

flat structure. These flat vortex sheets appear to be stable structures in bubbling beds that emerge due to

the collective effect of instabilities occurring in the particulate phase. POD is used to obtain a reduced-order

reconstruction of the particle velocity and volume fraction fields using a subset of the high-energy containing

modes. The ability of the POD eigenmodes to reproduce the instantaneous fields is systematically assessed.

5.1 Introduction

Fluidization refers to a process where solid particles are transformed into a fluid-like state through suspension

in a gas (or liquid). Gas-particle fluidized beds have widespread application in industry due to their increased

rate of heat, mass, and momentum transfer, and particle mixing. Using a non-linear stability analysis,

Anderson et al. [89] demonstrated that in bubbling fluidized beds the meso-scale structures, i.e., bubbles,

form due to a loss of stability of upward traveling waves subject to horizontal perturbations. Here, a bubble

is understood to be a localized region of gas, typically moving as an entity through the particulate phase.

As indicated in our previous study [20], the formation of large bubble structures in bubbling fluidized beds

occurs due to the coalescence of small bubbles that originate in the bottom and near-wall regions of the bed.

As the bubbles rise, they tend to migrate towards the central region due to its lower resistance. Eventually,

the bubbles burst at the surface of the bed, and the particles, being carried by the bubbles, are dispersed

transversely from a vertically oriented motion toward the walls, leading to fluctuations in the bed surface.

The motion of bubbles through the bed induces strong unsteady flow patterns and creates intense fluc-

tuations in the particle velocity and volume fraction fields. The mean transport of particle fluctuating

momentum by meso-scale particle velocity fluctuations, i.e., resolved-scale particle Reynolds stress, gives

rise to a significant increase in the particle mixing. In this regard, it is shown in our recent study [2] that

the mixing caused by the resolved-scale particle Reynolds normal stress is much stronger than the mixing
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caused by the particle Reynolds shear stress. This indicates that, in addition to the mean flow field, it is

significant to quantitatively explore the fluctuating particle flow field. However, most of the studies available

in the literature have focused on the time-averaged features of bubbling beds: only a few studies investigate

the fluctuating topologies of the particle flow fields. The complex fluctuating components of the particle

flow fields that give rise to enhanced particle mixing are not reflected in the time-averaged flow features.

Therefore, it is significant to assess the particle-flow fluctuating fields in a quantitative manner. Indeed, a

strong motivation for undertaking the present study was to utilize state-of-the-art post-processing tools to

identify particle vortical structures and quantitatively analyze dominant spatio-temporal patterns associated

with the particle fluctuating fields.

The introduction of proper orthogonal decomposition (POD) as a powerful tool for the analysis and

synthesis of numerical and experimental solutions has improved our understanding of the flow behavior in

complex systems. The POD performs a modal decomposition of an ensemble of functions, such as data

obtained from numerical or experimental studies, to extract the most dominant features of the process. In

the context of fluid flow these dominant features are typically the spatio-temporal patterns, e.g., coherent

structures in turbulent flows. Lumley [93] was the first to introduce the POD in the context of turbulence.

Cizmas et al. [94] applied a two-dimensional (2D) POD on the flow field predicted by a “two-fluid model”

(TFM) of a spouting bed to explore the utility of a reduced-order model (ROM). Palacios et al. [95] also

applied 2D POD on a set of experimental data of a spouting bed and showed that the overall dynamics of

the bed can be captured by only a few POD eigenfunctions. Cizmas et al. [96] applied several acceleration

techniques to a POD-based ROM of a 2D gas-particle fluidized bed. Overall, these three seminal studies

utilized 2D POD for the purpose of developing a ROM of fluidized beds and hence are less focused on the

investigation of the particle flow structures as a tool to analyze the particle flow fields. Although POD

is frequently used to examine single-phase turbulent flows, the use of three-dimensional (3D) POD is still

relatively rare even in such applications [97]. To the best of the authors’ knowledge, the use of 2D POD

in dense gas-particle flows is limited to the three studies mentioned above, mainly focused on developing a

ROM. In the current study, a 3D POD technique is used to quantitatively assess the dominant spatio-temporal

patterns of the fluctuating particle velocity and volume fraction fields in a bubbling fluidized bed.

The motion of bubbles through a bed induces particle vortical structures in the particulate phase. The in-

stantaneous particle flow consists of a complex mixture of these structures that play a dynamically significant

role in the particle kinetic energy and its dissipation, particle mixing, and transport of mass, momentum,

and heat through the bed reactor. Therefore, it is significant to identify these vortical structures that mainly

originate due to the interaction of bubbles with the particulate phase and give rise to the particle mixing in

bubbling beds. Identification of these structures not only helps to gain a deeper insight into the complex flow

phenomena in fluidized beds, but also is a prerequisite for flow prediction and control. It is well-established

that the vortical structures play a significant role in the dynamics of single-phase turbulent flows. Based on

this knowledge, it is logical to explore the role of vortical motions in the particle phase inside a bubbling
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bed. To identify and visualize the local vortex structures, several vortex identification methods have been

developed, mostly based on the velocity gradient tensor. The most widely used vortex identification tech-

niques are associated with determining the following parameters: the second invariant (Q) [98], ∆ [99], λ2

[100], and swirling strength (λci) [101]. In this study, the Q, ∆, and λci criteria were initially implemented to

identify particle vortical structures. However, no significant difference was observed in the vortical structures

captured by each criterion. Therefore, following Hossain et al. [97], who conducted a comparative study

among these different criteria and showed that the swirling strength criterion resulted in the cleanest visual-

ization, only the results using the λci criterion are discussed in this study. The swirling strength technique

uses the imaginary part of the complex eigenvalue of the velocity gradient tensor to visualize vortices [102].

The swirling strength, determined by λci, is a measure of the local swirling rate inside the vortex. One

distinctive feature of the swirling strength criterion is that it identifies not only the vortex core region but

also the strength and the local plane of swirling [103].

It is significant to quantitatively explore the meso-scale fluctuating particle flow fields induced by the

motion of bubbles through a fluidized bed. To this end, for the first time, a 3D POD technique is applied

to the particle flow fields predicted by a TFM of a bubbling bed to identify and analyze the dominant

spatio-temporal patterns. The instantaneous particle velocity fields inside the bed are used to investigate

the particle-flow structures, including the vortical ones, that characterize the flow. Based on the analogy

with the single-phase turbulent flow, for the first time, the particle vortical structures in a bubbling bed are

identified using a swirling strength criterion to assess their role in the dynamics of the bed. 3D POD is used

to extract the dominant vortical motions and obtain a reduced-order reconstruction of the particle velocity

and volume fraction fields using a subset of the high-energy containing modes. The ability of the eigen-modes

to reproduce the instantaneous particle velocity and volume fraction fields is systematically assessed.

5.2 Mathematical modeling

The Eulerian–Eulerian TFM, based on the locally averaged equations derived by Anderson and Jackson [7],

is used to simulate a dense gas-particle flow inside a 3D thin fluidized bed. The governing and constitutive

equations describing the dynamics of such a system can be found in our previous study [2] and accordingly are

not repeated here. Haghgoo et al. [2, 21] showed that the Jenkins–Louge particle-wall boundary condition

[72] predicts the bed dynamics somewhat better than the more widely-used boundary condition of Johnson–

Jackson [25]. Therefore, in this study the former particle-wall boundary condition was used to account for

the particle momentum and granular energy fluxes at the walls.

5.2.1 Proper orthogonal decomposition

We consider an ensemble of numerical or experimental observations of a scalar variable u(x, t). It is significant

to know which single function is “most similar” to the observations of u(x, t), on average. The mathematical
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statement of the notion “most similar” corresponds to choosing a function ϕ to maximize the normalized

average projection of u onto ϕ [104]:

max
ϕ∈L2(D)

〈
| (u, ϕ) |2

〉

‖ϕ‖2 , (5.1)

where 〈.〉, |.|, (., .), and ‖.‖ denote the averaging operation, absolute value, inner product, and L2-norm,

respectively. Here, L2 is a Hilbert space and D is a bounded subset of real Euclidean space. Finding a

function ϕ such that its normalized inner product with the field u is maximized is a classical problem in the

calculus of variations [104]. Holmes et al. [105] showed that the condition in Eq. 5.1 reduces to an eigenvalue

problem:
∫

D

〈u(x, t)u∗(x′, t)〉
︸ ︷︷ ︸

R(x,x′)

ϕ(x
′)dx′ = λϕ(x). (5.2)

Here, ∗ denotes the complex conjugate and R is defined to be the averaged autocorrelation tensor. Eq. 5.2

can be rewritten as an operator equation: Rϕ = λϕ. Therefore, the extremal basis is the eigenfunction

corresponding to the largest eigenvalue of the autocorrelation tensor. It is also known that there are numerous

solutions for the eigenvalues, λi, and eigenfunctions, ϕi, that satisfy Eq. 5.2. In POD analysis, It is common

practice to sort the eigenvalues so that λi ≥ λi+1, where λi ≥ 0.

It is known that, see, e.g., Sirovich [106], almost every member of the ensemble can be reconstructed by

a model decomposition based on a family of orthogonal basis functions Φi(x):

u(x, t) =

∞∑

i=1

ai(t)Φi(x), (5.3)

where the ai are the temporal coefficients of the basis functions. We note that the Φi(x) in Eq. 5.3 can be

any set of orthogonal basis functions, e.g., Fourier, Chebyshev, Legendre, and POD modes. However, what

distinguishes the POD modes from other sets of orthonormal basis functions is the claim that the POD is in

some sense optimal for reproducing the function u(x, t). It implies that among all linear decompositions, the

POD is the most efficient for reconstructing u(x, t) in the sense that for a given number of basis functions

it captures the most energy. Mathematically, for a given number of modes, say N , the reconstruction of the

signal u(x, t) by the POD modes converges in energy faster compared to the basis functions obtained by any

other linear decomposition. This indicates that the average least-squares truncation error,

εN =

〈

‖u(x, t)−
N∑

i=1

ai(t)Φi(x)‖2
〉

, (5.4)

is minimal if the basis functions are the POD modes [94]. The optimality condition of Eq. 5.4 is equivalent

to Eq. 5.1 [94]. Therefore, it implies that the POD basis functions must be the ϕi(x). Stated differently, the

truncation error in Eq. 5.4 is minimum if Φi(x) = ϕi(x). It is shown in [105] that the diagonal representation

of the autocorrelation tensor results in,

〈aj(t)a∗k(t)〉 = δjkλj , (5.5)
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implying that the modal coefficients of the POD modes are uncorrelated, on average. If u(x, t) is a velocity,

the average specific kinetic energy is:
∫

D

〈u(x, t)u∗(x, t)〉 dx =
∑

i

〈ai(t)a∗i (t)〉 . (5.6)

Equations 5.5, and 5.6 imply that the eigenvalues λi represent the averaged specific kinetic energy of mode

i, and
∑N

i=1 λi is the energy contained in the first N modes.

The most widely used method to find the PODmodes, i.e., Eq. 5.2, is the method of snapshots proposed by

Sirovich [106]. The main simplifying assumption used in this technique to calculate the eigenfunctions is that

the data vector ui and the eigenvectors ϕi span the same linear space [105], implying that the eigenvectors

can be written as a linear combination of the data vectors; i.e.,

ϕk =

M∑

i=1

υk
i ui, (5.7)

where M is the number of observations or snapshots. Sirovich [106] approximated the autocorrelation tensor

as

R(x, x′) =
1

M

M∑

i=1

ui(x, t)ui(x′, t). (5.8)

The constants υk
i are found by introducing Eqs. 5.7 and 5.8 in Eq. 5.2, which yields:

Cv = λv, (5.9)

where vk = (υk
1 , ..., υ

k
M ) is eigenvector k of Eq. 5.9, and C is a symmetric M × M matrix defined by

[Cij ] = (1/M)(ui,uj). The instantaneous flow field can be reconstructed using a finite number (N) of POD

modes,

u(x, t) = u (x) +

N∑

k=1

ak(t)ϕk(x), (5.10)

where u (x) represents the time-average u(x, t). The temporal coefficients ak can be determined using the

orthonormality property of the eigenfunctions:

ak(t) =

∫

D

u′(x, t).ϕk(x)dx, (5.11)

where u′(x, t) = u(x, t)− u (x).

5.2.2 Vortex identification methodology

To investigate the instantaneous vortex dynamics corresponding to the particle meso-scale fluctuating mo-

tions, a vortex identification method is required. As discussed previously, in this study the swirling strength

[101] criterion is used to identify the particle vortical structures. The swirling strength technique uses the

imaginary part of the complex eigenvalue of the velocity gradient tensor λci to identify vortices [102]. The

strength of the local swirling motion inside the vortex is characterized by λci. We note that whenever the

iso-surface of λci is plotted to visualize the vortical structures, an arbitrary threshold value is selected to

ensure clarity of the structures.
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5.3 Numerical simulation

The computational domain was taken to be a 3D thin fluidized bed with dimensions of 70 cm × 30 cm × 1.5

cm in the axial, longitudinal, and lateral directions, respectively. Here, the axial, longitudinal, and lateral

directions are aligned with the y, x, and z axes, respectively. 3D simulations of a bubbling fluidized bed

were performed using the TFM approach of Anderson and Jackson [7]. The Multiphase Flow with Interphase

eXchanges (MFIX) [11] software was used to perform the simulations. Additional Fortran subroutines were

developed and integrated into the MFIX code to implement the Jenkins–Louge boundary condition [72]. All

simulations were performed in parallel using 60 cores on an architecture consisting of dual Hex Core Intel

Xeon X5650 2.66 GHz with 12 GB of RAM each and running Red Hat Enterprise Linux Server 5.7. The first

100 seconds of the fluidization process were simulated to achieve statistically steady-state solutions. Detailed

information on the flow configuration, numerical methodology, grid study, and CPU-hours of computing

to produce the results are provided in our recent work [2]. Extensive 3D simulations were performed to

obtain the model parameter values that yielded the most comparable results with the experimental data.

For detailed information, readers are referred to our previous study [2]. Special Python subroutines were

developed to perform the POD analysis and identify the particle vortex motions using the swirling strength

method.

5.4 Results and discussion

The validity of the numerical results predicted by the TFM was assessed in our previous study [2] by comparing

them with the limited experimental measurements of Laverman et al. [83]. In this work, the first 100 seconds

of the fluidization process were simulated, and 3D POD analysis was performed on the last 5001 snapshots

at an interval of 0.01 s corresponding to the last 50 s of the simulation.

5.4.1 Time-averaged particle flow fields

Before studying the instantaneous flow characteristics of the bubbling bed, it is helpful to review the time-

averaged particle flow structure. Figures 5.1a and 5.1b show contours of time-averaged particle volume

fraction and particle vorticity fields based on 5001 snapshots, superposed over the particle-volume-fraction-

weighted time-averaged (referred to as “time-averaged” for brevity) particle velocity vectors at a plane located

at z = 0.375 cm. Figure 5.1a shows the formation of high-concentration regions near the wall that may be

considered as a typical characteristic of bubbling fluidized beds. The velocity vectors plotted in Figure 5.1

indicate that, on average, the interaction of bubbles with the particles creates two elongated vortices of

opposite sign contributing to the overall particle mixing in the bed. Figure 5.1b represents the vorticity field

corresponding to these two vortices. This figure indicates that overall the near-wall region (x < 4 cm and

x > 26 cm and 15 cm < y < 30 cm) does not contain particle-flowmotion corresponding to significant vorticity

83



strength and hence does not effectively contribute to the particle mixing inside the bed. This confirms the

result of our last study [21], where it is shown that the near-wall region does not significantly contribute to

the energy exchange, and this in turn results in the formation of a low-mixing region. This indicates that,

unlike single-phase turbulent flows, the physical wall is not a significant source of local vorticity generation in

bubbling beds. This is partly due the particle partial-slip velocity boundary condition at the wall, compared

to the no-slip boundary condition in the case of single-phase turbulent flow. However, the main reason is due

to the migration of bubbles as the major source of vorticity production towards the central region as they

rise.

(a) (b)

Figure 5.1: Contours of time-averaged (a) particle volume fraction, and (b) particle vorticity fields,
superposed over the time-averaged particle velocity vectors at a plane located at z = 0.375 cm.

5.4.2 3D POD analysis of the particle volume fraction field

3D POD analysis is performed on the particle volume fraction fluctuation field to explore the main character-

istic features of the dominant POD modes. Figure 5.2 shows the four dominant spatial modes of the particle

volume fraction fluctuation. The time-averaged particle volume fraction field, which can be considered as

the zeroth POD mode and was discussed in Figure 5.1a, is symmetric about the x-midplane. Figure 5.2a

indicates that this reflective symmetry also appears in the first POD mode, even though none of the instan-

taneous snapshots are symmetric. This is in agreement with Dellnitz et al. [107], who observed that the

symmetries of the attractors of partial differential equations in phase space manifest themselves as symmetry

of the time-averaged solution. The second mode, i.e., Figure 5.2b shows an anti-symmetry of sorts, whereas

the third and fourth modes show no symmetry. Overall, Figure 5.2 indicates that the dominant fluctuations

in the particle volume fraction occur in the upper part of the bed (10 cm < y < 30 cm), where the larger

bubble structures form, due to coalescence of smaller bubble structures initially formed in the lower part of
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the bed, and also at the bed surface (30 cm < y < 35 cm), where the bubbles burst.

Figure 5.3 shows the instantaneous field and 3D POD reconstructions of the bubble structures repre-

sented by the iso-surface for a particle volume fraction of 0.2. Here, the first 50, 150, and 300 eigenmodes

contain approximately 63%, 80%, and 88% of the total POD (energy), respectively. Figures 5.3b and 5.3c

indicate that the reconstruction of the bubble structures based on the first 50 and 150 POD eigenmodes was

successful in capturing the dominant features of the corresponding instantaneous field, i.e., larger structure

bubbles. Increasing the number of POD modes to 300 resolves a number of smaller bubble structures near

the distributor and hence results in a voidage field, as shown in Figure 5.3d, which is more similar to the

original snapshot. Figure 5.3 illustrates the process of higher modes adding more detail. It appears that the

structure and location of larger structure bubbles are captured by the first 50 modes and further addition

of higher modes serves to refine the shape and size of the previously captured structures, in addition to

detection of smaller structure bubbles.

Recall that the POD temporal coefficients, ak(t), modulate the contributions of the POD spatial modes

in time to reproduce the actual flow field and represent the amplitude of the POD modes in the linear

decomposition of the instantaneous fluctuation field. To gain deeper insight into the characteristics of and

relations between POD modes, the temporal coefficients are investigated. Figure 5.4a shows the evolution of

the first two eigenmodes associated with the particle volume fraction field in time, while Figures 5.4b and 5.4c

present cross-plots of the same and a1-a3 temporal coefficients, respectively. If Figure 5.4a is considered as

a dynamical system, its phase-space projection, i.e., Figure 5.4b, informs that the system evolves within a

confined space, which might be indicative of an attractor. This is in agreement with Cizmas et al. [94], who

suggested that the relatively closed nature of the resulting curves in a cross-plot of POD temporal coefficients

indicates the existence of a low-dimensional attractor. We note that the cross correlation between a1 and

a2, i.e., Figure 5.4b, has a distribution that is more concentrated in the first and fourth quarters of the

state space, whereas Figure 5.4c shows a relatively more uniform distribution of a1-a3 in the state space.

The variation of the POD temporal coefficients implies periodicity in the flow. However, the power spectral

density of the POD temporal coefficients did not show a unique and well-defined dominant frequency but

rather a plateau. This is in agreement with the results of our previous study [2], where the power spectral

density of gas phase pressure fluctuations did not show a strong dominant frequency. These observations

may suggest that the periodicity in the overall flow is irregular.

5.4.3 2D POD analysis of particle flow fields

To investigate the vortex generation by bubbles, the instantaneous particle velocity and volume fraction

are considered as well as the vorticity field, i.e., the curl of velocity field. Figure 5.5a and 5.5b show the

particle volume fraction and particle vorticity contours, respectively, superposed over the particle velocity

vectors at the same plane as in Figure 5.1 at an arbitrary time of t = 85 s. Figure 5.5a qualitatively shows

the presence of bubbles, i.e., regions of low particle volume fraction, inside the bed. Figure 5.5b indicates
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(a) First POD eigenmode (b) Second POD eigenmode

(c) Third POD eigenmode (d) Fourth POD eigenmode

Figure 5.2: First four dominant 3D POD modes of the particle volume fraction fluctuation field.
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(a) Instantaneous bubble structure (b) POD reconstruction with 50 eigenmodes

(c) POD reconstruction with 150 eigenmodes (d) POD reconstruction with 300 eigenmodes

Figure 5.3: (a) Instantaneous bubble structure at t = 85 s; 3D POD reconstruction of the in-
stantaneous structures with (b) 50 eigenmodes (c), 150 eigenmodes, and (d) 300 eigenmodes, using
iso-surfaces of particle volume fraction of 0.2.
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Figure 5.4: (a) time evolution of coefficients [a1-a2] (b) cross plot of coefficients [a1-a2] and (c) cross
plot of coefficients [a1-a3].
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that the instantaneous particle flow is characterized by the formation of high vorticity regions in the vicinity

of the bubble boundaries with a relatively higher vorticity magnitude in the wake of the bubbles. This is

in agreement with the well-established mechanism of particle mixing in bubbling beds. It is known that

particles are entrained into the bubble wakes and carried upward [108]. To preserve continuity, particles

rain down in the region surrounding the rising bubbles. Furthermore, particles are dispersed transversely

from a vertically oriented motion by bubble burst at the bed surface. Finally, mixing is caused, to a lesser

extent, by the lateral motion of bubbles due to interaction and coalescence of neighboring bubbles [109].

Each vorticity region detected in Figure 5.5b can be attributed to one of these particle mixing mechanisms.

Figure 5.5c shows the particle velocity divergence superposed over the particle velocity vectors. It indicates

that particle-flows are compressed and entrained into the wake region of bubbles, whereas they tend to expand

at the region near the top of bubbles. In the context of the TFM, this is due to the compressibility of the

particle phase.

(a) particle volume fraction (b) particle vorticity

(c) particle velocity divergence

Figure 5.5: Instantaneous (a) particle volume fraction (b) particle vorticity (c) particle divergence,
superposed over the particle velocity field at t = 85 s.
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Before studying the particle vortical structures captured by 3D POD, it is helpful to look at the dominant

velocity patterns predicted by the 2D POD in the same plane as in Figure 5.1. Figure 5.6 shows the first

four dominant spatial POD modes corresponding to the particle meso-scale fluctuating velocity field. These

modes contain 17.7%, 5.3%, 4.9%, and 4.3% of the total energy, respectively. The most energetic POD mode

indicates that the meso-scale fluctuating particle velocity field is strongest in the stream-wise (axial) direction

with intense velocity fluctuations at the bed surface (30 cm < y < 35 cm). This is consistent with the fact that

the resolved-scale particle normal Reynolds stress, i.e., u′

yu
′

y, is greater than the the resolved-scale particle

Reynolds shear stress, i.e., u′

yu
′

x (for details see [2]). The dominant feature of the second mode is the presence

of axially oriented velocity vectors in the region y > 20 cm. In addition, the second mode is characterized

by the presence of two pairs of source and sink-like velocity patterns at the heights of approximately 35 cm

and 20 cm, respectively. The contribution of the lateral particle fluctuating velocity is more significant in

the next pair of POD modes such that the topology of these two modes is quite different from the first two

modes due to the formation of a number of vortices. In the third mode, there exist a larger vortex and two

smaller vortices of opposite sign that tend to rotate the particles. In the fourth eigenmode, the two vortices

of opposite sign draw the particle-flow from the bottom and direct it towards the wall. We observe that

the flow pattern of the time-averaged particle velocity field is evident in the fourth POD mode. Overall,

Figure 5.6 indicates that the dominant particle meso-scale fluctuating velocity patterns (POD modes 1 and

2) are principally aligned in the axial direction, corresponding to the particles being mixing by the bubble

wakes, with a significant laterally directed fluctuating velocity vectors at the bed surface, corresponding to

mixing caused by the bubbles bursting.

To assess the ability of 2D POD in reconstruction of the instantaneous particle flow field from the high-

energy containing modes, the instantaneous particle vorticity and velocity fields of Figure 5.5b are considered.

Figure 5.7 shows the POD reconstruction of the instantaneous particle vorticity field superimposed on the

velocity field with 50 and 200 eigenmodes. We recall that POD modes provide an optimal decomposition

for the fluctuating particle flow field in the sense that much of the flow topology can be captured by using

a small number of modes. The first 50 and 200 eigenmodes capture approximately 74% and 90% of the

total fluctuating energy, respectively. Comparing Figure 5.7a and Figure 5.5b indicates that the formation of

vortex motions corresponding to the larger bubble structures is reproduced by the first 50 modes. In order

to reconstruct the evolution of the vortices more accurately, a reconstruction based on additional spatial

modes is presented in Figure 5.7b. This figure shows that 2D POD reconstruction based on 200 modes is

similar enough to the selected snapshot to conclude that first 200 POD bases, among a total of 5001 modes,

are sufficient to recover the major features of the particle flow field. We note that the reconstruction of the

instantaneous field by POD modes in this figure results in a relatively smoother field compared to the actual

flow, as expected.
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(a) First POD eigenmode (b) Second POD eigenmode

(c) Third POD eigenmode (d) Fourth eigenmode

Figure 5.6: The dominant four POD eigenmodes of the particle velocity field.
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(a) reconstruction with 50 eigenmodes (b) reconstruction with 200 eigenmodes

Figure 5.7: POD reconstruction of instantaneous particle vorticity field superimposed over the veloc-
ity field for the instantaneous field shown in Figure 5.5 using (a) 50 eigenmodes and (b) 200 eigenmodes.

5.4.4 3D POD analysis of the particle velocity field

The 3D POD was successful in capturing the dominant components of the particle meso-scale fluctuating

velocity field with a small fraction of total modes as shown in Figure 5.8. The first energetic mode contains

approximately 16% of the total energy, with the first 100 and 280 snapshots cumulatively capturing close to

80% and 90% of the total energy, respectively. Capturing 90% of the total energy with only 280 3D POD

modes from a total of 5001 snapshots indicates the remarkable potential of POD-based ROM for predicting

the essential features of a bubbling bed.
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Figure 5.8: 3D POD energy distribution.

92



Figure 5.9 shows the particle vortical structures corresponding to the first four dominant POD eigenmodes

as captured by the swirling strength criterion. There exist smaller ring-like vortex sheets in the lower part

of the bed for all four modes. Also, all four modes show the formation of larger ribbon-like structures in the

middle of the bed (10 cm < y < 30 cm). Comparing Figures 5.6 and 5.9 indicates that these large ring-like

structures in general correspond to the vortical motions in the first four planar POD modes, as shown in

Figure 5.6. For example, the two large closed ribbon-structures in the region of 20 cm < y < 30 cm in

Figure 5.9d are associated with the two vortices of opposite sign in Figure 5.6d. The laterally oriented vortex

sheet at the bed surface in the first eigenmode can be attributed to the bubble burst, as discussed above,

directing particles transversely from an axially oriented flow towards the side walls. Overall, Figure 5.9

represents a set of dominant vortex filaments associated with the particle meso-scale velocity fluctuations

that strongly contribute to the particle mixing in the bed. In this regard, the particle flow field in the bed

can be characterized as a tangle of vortical structures that evolve in time, interact with one another, couple

to the background gas phase, and govern the bed dynamics.

One striking feature of the vortex filaments shown in Figure 5.9 is their ribbon-like structure. This

observation is unlike that observed in single-phase turbulent flows, where the dominant vortical structures

are tubular. The presence of ribbon-like structures have also been observed in single-phase turbulent flow;

see for example Moisy and Jimenez [110] and Orlandi [111]. In single-phase turbulent flows, it is believed

that unstable ribbon-like vortex sheets appear at first and then roll up, due to shear instabilities, to form

stable tubular structures [111, 112]. Orlandi [111] also concluded that, in single-phase turbulent flows,

ribbon-like structures are generated due to inviscid interaction of vortical structures and indicated that, for

inviscid turbulent flows, ribbon-like structures dominate over the tubular ones. We note that, in single-phase

flows, the instabilities due to the interaction of viscous terms and nonlinear convective terms give rise to

turbulence and hence vortical structures. Therefore, it may also be helpful to review the instabilities in

particle systems to gain a deeper insight into the particle vortical structures. Fullmer and Hrenya [113]

investigated the mechanisms that result in clustering, with an emphasis on kinetic theory-based continuum

models. They critically reviewed the validation studies of kinetic theory-based models to explore their

accuracy and limitations. Garzó [114] performed a linear stability analysis of the hydrodynamic equations for

a granular (no interstitial fluid) system and showed that the instability is often driven by the transversal shear

mode, i.e., velocity vortex instability. Mitrano et al. [115] determined the critical length scales, analogous

to the critical Reynolds number in single-phase turbulent flows, associated with the onset of vortices and

cluster instabilities. They demonstrated that the particle velocity vortex instability temporally precedes a

clustering instability. Yin et al. [116] were the first to report particle velocity vortex instabilities in gas-

particle systems. They observed instabilities similar to those previously observed in their granular (no fluid)

counterparts. In bubbling beds, the bubble structures arise due to the collective effect of various types of

instabilities occurring in the particulate phase [52]. Therefore, similar to single-phase turbulent flows, the

appearance of ribbon-like vortex structures in Figure 5.9 may be attributed to the instabilities in the particle
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phase that result in bubble formation. However, unlike single-phase turbulent flows, it appears that these flat

vortex sheets are stable structures in bubbling beds. We note that in single-phase turbulent flows, the larger

vortices break up into smaller vortices, and then into even smaller vortices. This continuous process whereby

larger vortices break down to generate smaller vortices, which is due to shear instabilities, corresponds to the

energy cascade from larger to smaller structures. However, in bubbling beds there is no continuous energy

cascade from larger to smaller scales, i.e., the particle phase does not exhibit this characteristic of canonical

turbulence.

Figure 5.10 shows the instantaneous particle vortical structures at t = 85 s and its 3D POD reconstruction

based on 150 and 300 eigenmodes, capturing approximately 85% and 90% of the total energy, respectively.

Figure 5.10b indicates that the reconstruction based on the first 150 POD modes has captured the dominant

features of the instantaneous field. Addition of higher-order modes, as shown in Figure 5.10c, adds details

but mostly to the previously captured structures reconstructed from 150 modes.

5.5 Conclusions

The particle flow fields, i.e., particle volume fraction and velocity fields, inside a bubbling bed exhibit strong

unsteady flow patterns accompanied by intense meso-scale fluctuations induced by the motion of bubbles.

State-of-the-art post-processing methodologies namely, POD and the swirling strength criterion, were applied

to the particle flow fields predicted by a TFM of a bubbling bed to identify and analyze the dominant spatio-

temporal patterns of the particulate phase. To the best of our knowledge, this is the first time that 3D

POD was used to quantitatively explore the meso-scale fluctuating particle fields. Also, for the first time,

the particle vortical structures in a bubbling bed were identified using the swirling strength criterion applied

to the particle velocity gradient tensor.

3D POD analysis of the particle volume fraction fluctuation field indicated an approximate reflective

symmetry in both the zeroth POD mode (time-averaged particle volume fraction field) and the first POD

mode, even though none of the instantaneous snapshots were symmetric. It was observed that the dominant

fluctuations in the particle volume fraction occur in the upper part of the bed, where the larger bubble

structures form, and also at the bed surface where the bubbles burst. Although the variation of the POD

temporal coefficients associated with the particle volume fraction field implied periodicity in the flow, their

power spectral density did not show a well-defined dominant frequency, indicating the presence of an irregular

periodicity in the flow. The temporal coefficient were used to plot the phase-space projections. Their relative

closed nature suggested the presence of a low-dimensional attractor.

It was determined that the instantaneous particle flow is characterized by the formation of high vorticity

regions in the vicinity of the bubble boundaries with a relatively higher vorticity magnitude in the wake

regions of the bubbles. The dominant particle meso-scale fluctuating velocity patterns (i.e., the first two most

energetic POD modes) are principally aligned in the axial direction, corresponding to the particle mixing by
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ring-like structure

(a) First eigenmode

ribbon-like structure

(b) Second eigenmode

(c) Third eigenmode (d) Fourth eigenmode

Figure 5.9: Particle vortical structures of: (a) first POD eigenmode, (b) second POD eigenmode, (c)
third POD eigenmode, (d) fourth POD eigenmode, represented by iso-surfaces of λci = 30, 35, 40 and
50, respectively.

95



(a) Instantaneous vortical structures (b) POD reconstruction with 150 eigenmodes

(c) POD reconstruction with 300 eigenmodes

Figure 5.10: (a) Instantaneous vortex structures at t = 85 s and λci = 30; 3D POD reconstruction
of the instantaneous structures with (b) 150 eigenmodes and (c) 300 eigenmodes using iso-surfaces of
λci = 10.
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the bubble wakes, with a laterally directed fluctuating velocity vectors at the bed surface, corresponding to

the mixing caused by the bubbles bursting. Applying the swirling strength criterion revealed the existence of

smaller ring-like vortex sheets in the lower part of the bed, larger ribbon-like structures in the middle of the

bed, and a laterally oriented vortex sheet at the bed surface. It was observed that the main characteristic

feature of the particle vortical motions was their flat structure. The flat vortex sheets appear to be stable

structures in bubbling beds, in stark contrast to the case of single-phase turbulent flows, that emerge due to

the collective effect of instabilities occurring in the particulate phase.

A 3D POD was used to obtain a reduced-order reconstruction of the particle velocity and volume fraction

fields using a subset of the high-energy containing modes. The ability of the POD eigenmodes to reproduce

these instantaneous fields was systematically assessed.
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Chapter 6

Concluding remarks

6.1 Summary

Fluidized beds are widely employed in the energy, chemical, power-generation, and agricultural industries

for processes involving drying, separation and mixing of particles, and chemical reactions [6]. Gas-particle

fluidized beds have the distinct advantage of creating a highly suitable medium for heat and mass transfer

and rapid mixing of particles. In order to be able to effectively design fluidized beds at the industrial scale, it

is essential to have an understanding of the complex hydrodynamic behavior of the dense gas-particle flows

inside them. This understanding is achieved through theoretical and numerical models and data collected

from physical experiments.

The experimental study of inherently 3D flows inside fluidized beds can be difficult and costly in terms of

flow visualization and measurements. However, advanced computational models that provide realistic predic-

tions of the gas-particle flows could be used to provide similar information. Numerical simulations enable us

to not only conduct a virtual experiment of the actual fluidized bed but also make detailed localized measure-

ments that would be almost impossible in a physical experiment. The results of such numerical simulations

are used to visualize the unsteady and complex motions that occur inside the fluidized bed. In this thesis

the Eulerian–Eulerian TFM, based on the locally averaged equations derived by Anderson and Jackson [7],

was used to simulate dense gas-particle flows inside two different 3D bubbling beds. The numerical code

Multiphase Flow with Interphase eXchanges (MFIX) [11] was used to perform the simulations, using the

Eulerian–Eulerian framework. Some additional FORTRAN subroutines were developed and integrated into

the MFIX code to implement the particle-wall boundary conditions of Jenkins and Louge [72] and Schneider-

bauer et al. [73]. The numerical model predicts such output properties as the particle volume fraction, gas

pressure, the velocity components of each phase, and the granular temperature of the particle phase. Python

subroutines were developed to post-process these properties and calculate spatially and time-averaged quan-

tities of interest, such as the phasic velocity profiles, particle-flow patterns, 3D bubble characteristics, power

spectral density of the gas pressure, and resolved-scale particle Reynolds stresses. Special Python subroutines

were also developed to perform the energy budget analysis, POD analysis, and to identify the particle vortex

motions using the swirling strength method. Extensive 3D simulations were performed to obtain the model

parameter values that yielded the most comparable results with the experimental data. All simulations were
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performed in parallel using 60 cores on an architecture consisting of dual Hex Core Intel Xeon X5650 2.66

GHz with 12 GB of RAM each and running Red Hat Enterprise Linux Server 5.7.

6.2 Conclusions and contributions

The first study case, Chapter 2, reports an in-depth study of two different models for the particle stress

tensor in the elastic-inertial regime and assesses their ability to predict the hydrodynamics of a 3D cylin-

drical fluidized bed. Overall, this study demonstrated the significant role of the particle stress tensor in the

prediction of dense gas-particle flows using a two-fluid model. A major objective was to gain insight into how

these models modify the simulated flow behavior. To this end, a dimensionless inertial number was used to

identify different flow regimes corresponding to different particle stress behaviors. It appears that this was

the first time that contours of inertial number were used to visualize the flow properties. Analysis of the flow

properties for a range of gas-particle regimes based on the inertial number enhances our insight into the flow

behavior in such a complex multiphase system. The study quantitatively explained some important features

of the mechanics of bubbling/slugging beds that have received relatively little attention in the literature.

For example, the effects of two different stress models on the circulation patterns, velocity profiles, bubble

characteristics, natural frequency of the bed, and “resolved-scale” particle Reynolds stress were investigated

in detail. The results using the Princeton stress model were found to be closer to the experimental data for

the axial particle velocity and flow circulation pattern than those based on the Schaeffer model. This was

due to the fact that, unlike the Schaeffer model, the Princeton model differentiates between the rapid-flow

regime and the intermediate elastic-inertia regime and applies different constitutive equations for each regime.

Comparing the results of the two stress models indicated that the Schaeffer model predicted a larger particle

Reynolds stress; this behavior was attributed to the prediction of more vigorous bubbles. We also note that

the use of the Princeton model results in a faster algorithm that is less prone to divergence. Finally, the

Schaeffer model was found to predict a higher level for the granular temperature that was explained on the

basis of the enhanced level of the net production term in the transport equation.

In Chapter 3, a comprehensive study was performed to assess the effect of three different wall BCs on

the structural characteristics of a dense gas-particle flow inside a 3D thin bubbling bed. The wall BCs

considered in this study included the Johnson–Jackson model [25], the Jenkins–Louge model [72], and the

model of Schneiderbauer et al. [73]. The results using the Jenkins–Louge model were found to be closer to

the experimental data for the axial particle velocity and flow circulation pattern than those based on the

models of Johnson–Jackson and Schneiderbauer et al. Although the difference in other flow characteristics

predicted by the Jenkins–Louge and the Schneiderbauer et al. models were insignificant, it appeared that the

Jenkins–Louge model required slightly less computational time to obtain results comparable to the measured

data within the same time-averaging window. Overall, the flows predicted by all three wall models were

structurally similar. However, some specific features differed in a systematic way that were tracked to the
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effect of wall boundary condition on the bubble behavior. For example, the flow characteristics predicted by

the Johnson–Jackson BC were in some ways different from those predicted by the other two models. The

reason was attributed to the more vigorous bubbles predicted by the Johnson–Jackson wall model. The more

energetic bubbles resulted in a lower level of granular temperature, a less-expanded bed, and more extensive

mixing regions inside the bed. It was also found that in bubbling beds the mixing caused by the normal

particle Reynolds stress is much stronger than the one caused by the shear particle Reynolds stress.

In Chapter 4, an in-depth systematic study that used a particle energy budget analysis was performed

to investigate the dynamics of a 3D bubbling bed. An equation for the kinetic energy of the mean particle

flow was rigorously derived in the context of the TFM approach, and the physical implications of the terms

involved were discussed. The time-averaged spatial distribution of different terms appearing in the energy

equation was visualized. The results of the energy analysis indicate that the mean particle-flow gains its

kinetic energy from the mean kinetic energy of the gas phase through large-scale gas pressure gradient and

drag terms. It was found that the role of each term was equally significant in the exchange of mean kinetic

energy between the two phases which occurs in the central region of the bed. The conversion of particle

fluctuating energy into internal energy of the gas phase was estimated to be negligible. The contributions

to the energy cascade of both kinetic-collisional and frictional stresses were found to be comparable. The

kinetic-collisional stress extracts mean kinetic energy to produce granular energy, whereas the frictional stress

dissipates it into heat. It was also observed that the kinetic-collisional part of the particle pressure contributes

substantially to the production of fluctuating energy by extracting energy from the mean particle-flow. It

was determined that, among the terms involved in the energy cascade process, the minimum contribution

corresponds to the production of granular energy due to the slip velocity between the two phases. It was

observed that highly dense flow in the near-wall region did not contribute much to the energy cascade, and

its role was limited to the conversion of particle mean kinetic energy to potential energy. In addition to

the energy cascade that happens through particle-particle and particle-gas interactions, the energy cascade

that occurs at the physical walls due to the wall-particle interaction was investigated. In this regard, three

different wall boundary conditions for the particulate phase that account for the particle slip-velocity and

the granular energy flux at the wall were assessed, and the wall contribution to the dissipation of mean

particle kinetic energy and random particle fluctuating energy predicted by each BC was determined. The

energy budget predicted by the Johnson–Jackson BC substantially diverges from those predicted by the other

two wall BCs. For example, the wall contribution to the total dissipation of particle mean kinetic energy

was found to be 36.8%, 8.2%, and 8.0% as predicted by the BCs of Johnson and Jackson, Jenkins and

Louge, and Schneiderbauer et al., respectively. For the Johnson–Jackson BC, the contributions of both wall

collisional and frictional stresses to the dissipation of the mean kinetic energy were highly overestimated. It

was also found that the source terms, e.g., dissipation and production contributions, in the granular energy

equation played a more significant role in the energy cascade compared to the convective and diffusive terms.

The overall net granular energy (equal to net transport) produced inside the bed corresponding to the BCs
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of Johnson–Jackson, Jenkins–Louge, and Schneiderbauer et al. were −1.21 kJ, −0.06 kJ, and −0.14 kJ,

respectively. This indicates that on average the flow inside the bed as predicted by the Jenkins–Louge BC

tends more toward local equilibrium than the flows predicted by the other two BCs.

In Chapter 5, state-of-the-art post-processing methodologies namely, POD and the swirling strength

criterion were applied to the particle flow fields predicted by the TFM of the thin bubbling bed, discussed in

Chapters 3 and 4, to identify and analyze the dominant spatio-temporal patterns of the particulate phase.

To the best of our knowledge, this was the first time that 3D POD was used to quantitatively explore the

meso-scale fluctuating particle flow fields. Also, for the first time, the particle vortical structures in a bubbling

bed were identified using a swirling strength criterion applied to the particle velocity gradient tensor. 3D

POD analysis of the particle volume fraction fluctuation field indicated an approximate reflective symmetry

in both the zeroth POD mode (time-averaged particle volume fraction field) and the first POD mode, even

though none of the instantaneous snapshots were symmetric. It was observed that the dominant fluctuations

in the particle volume fraction occur in the upper part of the bed, where the larger bubble structures form,

and also at the bed surface where the bubbles burst. Although the variation of the POD temporal coefficients

associated with the particle volume fraction field implied periodicity in the flow, their power spectral density

did not show a well-defined dominant frequency, indicating the presence of an irregular periodicity in the

flow. The temporal coefficient were used to plot the phase-space projections. Their relative closed nature was

attributed to the presence of a low-dimensional attractor. It was determined that the instantaneous particle

flow is characterized by the formation of high vorticity regions in the vicinity of the bubble boundaries with

a relatively higher vorticity magnitude in the wake region of bubbles. The dominant particle meso-scale

fluctuating velocity patterns (first two energetic POD modes) are principally aligned in the axial direction,

corresponding to the particle mixing by the bubble wakes, with laterally directed fluctuating velocity vectors

at the bed surface, corresponding to mixing caused by the bubble bursting. Applying the swirling strength

criterion revealed the existence of smaller ring-like vortex sheets in the lower part of the bed, larger ribbon-like

structures in the middle of the bed, and a laterally-oriented vortex sheet at the bed surface. It was observed

that a significant characteristic feature of the particle vortical motions was their flat structure. The flat

vortex sheets appear to be stable structures in bubbling beds, unlike the case of single-phase turbulent flows,

that emerge due to the collective effect of instabilities occurring in the particulate phase. 3D POD was used

to obtain a reduced-order reconstruction of the particle velocity and volume fraction fields using a subset

of the high-energy containing modes. The ability of the POD eigenmodes to reproduce these instantaneous

fields was systematically assessed.

6.3 Future work

Looking forward, the results of Chapter 2 indicate that a particle stress model that uses an inertial number

dependent rheology would be an especially promising approach for predicting the flow dynamics in bubbling
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fluidized beds. Developing a particle stress model that is dependent on inertial number is still an ongoing

research area. In this regard, Chialvo et al. [117] investigated the rheology of granular materials via molec-

ular dynamics simulations of homogeneous, simple shear flows of soft, frictional spheres. They proposed a

rheological model that blends the asymptotic relations in the three regimes, i.e., the rapid-flow, quasi-static

and elastic-inertial regimes, to obtain a general description for these flows. Therefore, it is suggested to

implement this particle stress model into the MFIX code and investigate its effect on the prediction of the

bed dynamics.

Another important undertaking as an extension to this study is to perform an energy budget analysis on

a moderately dense gas-particle flow in a circulating fluidized bed (CFB). The energy analysis performed in

Chapter 4 dealt with a dense gas-particle flow inside a bubbling bed, where the effect of frictional stress is

significant and the turbulence in the gas phase, if any, is damped by the inertia of particles. In gas-particle

flows inside CFBs, in addition to the gas phase, the particulate phase might show turbulent behavior. The

fluctuating kinetic energy associated with the organized motion of collections of particles was appreciated in

the work of Dasgupta, Jackson, and Sundaresa [118]. The inertial instability in the particle phase can occur

in a shear flow of a granular material [119], in the absence of any interstitial fluid, resulting in organized

motion of collections of particles. Similar behavior was observed in the computer simulation of granular

flows performed by Hopkins and Louge [120]. They observed that packets of particles traveled randomly

and formed and broke up in a continuous manner, reminiscent of the motion of the eddies in single-phase

turbulent flows. Consequently, a comprehensive model would be “turbulent gas-turbulent particle” in nature

to allow for generation and dissipation of turbulence kinetic energy in both phases and exchange of this

energy between them [118]. Dasgupta et al. [118] and Hrenya and Sinclair [121] were the first to model the

effect of collective motion of particle packets in a dense gas-particle flow in a fully developed vertical pipe. In

a seminal study, Fox [92] rigorously derived a Reynolds-average turbulence model for collisional fluid-particle

flows. It is suggested to consider a turbulent gas-particle flow inside a CFB and perform an energy budget

analysis to quantitatively determine the significance of various terms contributing to the energy cascade (or

exchange) in CFBs.

Finally, another effort that would constitute advancement to this research is to perform a 3D POD on a

gas-particle flow inside a CFB. It is important to identify and analyze the dominant spatio-temporal patterns

in a CFB, where the effect of turbulence in both phase is significant. Moreover, it was observed in Chapter

5 that the particle vortical motions in bubbling beds are typically flat structures. However, in CFBs the

particulate phase is expected to show turbulent behavior. Therefore, in CFBs the stable particle vortical

structures might not be flat.
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