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Abstract

In this thesis, we applied local analysis tools (eigenvalue and eigenvalue elasticity

analysis, global function elasticity/sensitivity analysis), and global analysis tools

(deriving the location and stability of fixed points) to both aggregate and individual-

level dynamic models of infectious diseases. We sought to use these methods to gain

insight into the models and to evaluate the use of these methods to study their

short-term and long-term dynamics and the influences of parameters on the models.

We found that eigenvalues are effective for understanding short-term behaviours

of a nonlinear system, but less effective in providing insights of the long-term impacts

of a parameter change on its behaviours. In term of disease control, local changes of

behaviours, yielded from the changes of parameters based on eigenvalue elasticity, are

able to alter behaviours in a short-term, especially in the period of a disease outbreak.

While eigenvalue elasticity analysis can be helpful for understanding the impact of

parameter changes for simple aggregate models, such analyses prove unwieldy and

complicated, particularly for models with large number of state variables; and eas-

ily fall prey to eigenvalue multiplicity problems for large individual-based models,

and distracting artifacts associated with small denominators. In response to these

concerns, we introduced other local methods (global function elasticity/sensitivity

analyses) that capture many of the advantages of eigenvalue elasticity methods with

much greater simplicity. Unfortunately, parameter changes guided by these local

analysis techniques are often insufficient to alter behaviours in the longer-term, such

as when system behaviours approach stable endemic equilibria. By contrast, the

global analytic tools, such as fixed point location and stability analysis, are effective

for providing insights into the global behaviours of disease spread in the long-term, as

well as their dependence on parameters. Using all of the above analysis as a toolset,

we gained some possible insights into combination of local and global approaches.

Choice of applying local or global analysis tools to infectious disease models is de-

pendent on the specific target of policy makers as well as model type.
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Chapter 1

Introduction

1.1 Motivations

We are living in a dangerous world due to infectious diseases: while in the past

we faced bubonic plague, smallpox and typhoid, today we face Human Immunode-

ficiency Virus (HIV), Severe Acute Respiratory Syndrome (SARS) and chlamydia.

Many researchers from diverse research areas have contributed many new ideas to

the research on the spread of infectious disease and disease control.

Infectious diseases exhibit complex dynamic behaviours (e.g., sudden outbreak,

oscillations, periods of quiescence, sudden die off) [1]. They also respond to control

measures in complex and sometimes unexpected ways. This complexity can render

some well-intentioned policies ineffective, and complicated policy choices. Therefore,

we need mathematical models to capture complexities and hidden dynamic charac-

teristics and structures of the outbreak, spread, and response to policies of infectious

diseases.

Classic aggregate or compartmental models of infectious disease, such as SIR

model firstly developed by W. Kermack and G. McKendrick in 1927 [1], seek to

model the progress of an epidemic in a large population by representing the shift of

the population between different compartments, for example representing individuals

in natural history of infection. More elaborate versions of the Kermack-McKendrick

model and other aggregate models that better reflect the actual biology of a given

disease have been researched in terms of mathematics for a long time [1].

While powerful, aggregate infectious disease models pose difficulties in character-

izing the detailed impacts of network contact between individuals in the population
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on the progress of disease spread, especially for some sexually transmitted diseases,

of which the transmission exhibits distinct complex dynamics in some sub-groups

such as a particular ethnic group or a group of sex trade workers [2]. In terms of dis-

ease control, policy makers should consider different policies for these special groups

of people from the occasionally infected patients.

One of the new lines of inquiry is social network analysis, and its close variant of

network analysis in static agent-based models. Network analysis can help us identify

the significant people in the network to whom public health field nurses or policy

makers should pay more attention. However, classic social network analysis mainly

emphasizes static network properties and characteristics of nodes in the network,

and therefore cannot provide insight into the best time and important factors of

each individual to control the spread of infectious diseases. In addition, most agent-

based models use discrete rules to describe inner state transitions for each agent

in the network, which typically have only coarse representations of individual-level

dynamics, such as the dynamics of infection, building of naturally acquired or vaccine

introduced immunity, and waning of immunity.

Meanwhile in the level of individual biological dynamic processes, mathematical

models of disease dynamics in aspect of immunology and virology have recently

begun to provide details of dynamics of infected cells, uninfected cells, virus, and

immune responses by differential equations models. Within this study we study a

new type of model that combines agent-based models and immunological dynamic

models to establish a relatively detailed “immune-epidemiological” dynamic model

of infectious diseases spread.

Fixed point and stability analysis have been widely applied to mathematical mod-

els of compartmental infectious disease models and some individual-based models.

Such methods provide evidence for understanding the long-term outcome of disease

control strategies. Thus we analyze equilibria and their stability to find out the

global attributes of our infectious disease models. Application of eigenvalue analy-

sis, which has been applied in linear and simple nonlinear dynamical models, could

be taken into consideration to analyze local behaviours and characteristics of both
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compartmental and individual-based models of infectious disease spread. Further-

more, in terms of local disease control, we investigate eigenvalue elasticity and global

function elasticity with respect to parameters in hopes of identifying parameters that

have great influences on the disease spread.

The thesis is arranged as follows: Chapter 2 reviews past literature concerning

eigenvalue elasticity analysis, mathematical modeling of infectious diseases, agent-

based modeling, and equilibrium and stability analysis of infectious disease models.

Chapter 3 provides details on these methodologies. Chapter 4 analyzes an aggregate

model and an individual-based virus dynamic model with eigenspace and eigenvalue

elasticity methods. Chapter 5 presents a novel global function elasticity analysis for

both an SIR model and an individual-based virus dynamic model. Finally Chapter

6 gives conclusions and future directions for our study.

1.2 An Overview of Eigenvalue Elasticity Analysis

Eigenvalue elasticity analysis methods originated in control theory and control

engineering [25]. In 1982, N. Forrester proposed and applied eigenvalue elasticity

analysis (EEA) to system dynamics models as a tool to analyze the relationship be-

tween the strength (gains) of feedback loops and the behaviour modes of a linearized

system [7]. Forrester focused on the gains of the causal links which constitute the ba-

sic structure of the system. A gain matrix was presented that is similar to a Jacobian

matrix of a nonlinear system near an equilibrium point. He used EEA to explore how

the eigenvalues change as link gains change, and described the relationship between

model structure and behaviour by eigenvalues and corresponding eigenvectors of the

gain matrix.

In addition, eigenvalue elasticities with respect to parameters were used to iden-

tify the influential parameters of a model. In Forrester’s study, such elasticities to

parameter changes helped confirm the dominant role of inventory adjustment in a

business cycle [7]. In our study, eigenvalue elasticities with respect to parameters

are mainly discussed to identify the timing and character of effective public health
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interventions. Although it is possible to re-run simulations with different parameter

settings to investigate the importance of a parameter, as classic parameter sensitiv-

ity experiments do, for a large system, like an individual-based model with a large

population size, such the method is time-consuming. Therefore, we use elasticity

analysis to gain characteristics of parameters at the same time when the simulation

runs.

1.3 An Overview of Individual-based Modeling

A multi-agent system is a system consisting of multiple interacting agents, where

an agent is defined as “a system component that has autonomy in its actions and has

a social ability to interact with other agents in the system through some patterns

like cooperation, coordinations and negotiation” [35]. An agent-based model (ABM)

is a multi-agent system acting as a computational model for simulating actions of

individual agents and interactions between agents in a network. The most distinct

aspect of agent-based modeling is the interaction between individual agents. The

model simulates the simultaneous operations of agents and their interactions in an

attempt to re-create and anticipate the system’s complex high-level behaviours. This

behaviour reflects the emergence of the system dynamics from a micro level to a

macro level; as a disaggregated modeling technique, a central aim of the agent-based

modeling is to discover the global consequences emerging from local actions [4].

Agent-based modeling has been applied in fields such as logistics, ecology, modeling

of consumer behaviour, vehicle traffic analysis, and the spread of epidemics [23].

Given the above definition of agents, it is apparent that an individual actor

(e.g. a human being or an animal) can be abstracted and represented as a situated

agent for many purposes. However, in this thesis, we thus prefer to use the term

“individual-based models” to “agent-based model” because 1) “agent-based models”

is often used to denote models using discrete objects and interacting rules, the terms

sometimes carry implications not just about the level of aggregate of the model,

but also its implementation techniques. In our study, distinctive from traditional
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agent-based models which are usually described by state charts, the model of this

study use differential equations to describe dynamics of the number of virus, infected

cells and T cells for each individual in a network rather than discrete behaviour

changes; 2) individual-based models can be formulated by using either classic state-

equation methods (as used in system dynamics) or traditional agent-based modeling

techniques [23]. 3) In the health science, the term “agent” is widely used with a

distinct meaning as a factor, such as a microorganism or chemical substance, whose

presence or relative absence can result in the occurrence of a disease [19].

1.4 Epidemiological Background

Most extant dynamic infectious disease models can be classified as either com-

partmental models or individual-level network models [15]. The dynamics of com-

partmental models are usually described by ordinary differential equations, an exam-

ple being the SIR model (Susceptible-Infected-Recovered) [34]. This type of model

presents dynamics of infectious disease transmission at an aggregated level, and such

models commonly impose assumption of continuous mixing of population within

compartments [26]. SIR models and their variants are epidemiological models that

compute the theoretical number of people who are infected with an infectious dis-

ease in a closed population over time [34]. One of the simplest and earliest examples

of SIR models is the Kermack-McKendrick model [14]. This model describes the

spread of an infectious disease in an aggregated level in a closed group of people: it

involves state equations relating the number of susceptible people S(t), the number

of infected people I(t), and the number of recovered people R(t). Many variants of

this model exist, with multiple classes of infective and susceptible individuals [24].

Network models explicitly represent individuals with connections and mainly de-

scribe the influence of topology or structure of a network on the spread of infectious

disease. One type of network model is individual-based dynamic models. This type

of model mathematically describes changes over time in the epidemiology and natu-

ral history of infectious diseases at a level of population members. In such models,
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network structure frequently is based on the reported contacts of individuals [20].

In immunology, cytotoxic T lymphocytes (CTL) are regarded as a kind of white

blood cell whose function is mainly to induce the death of infected cells and attack

viruses. CTLs proliferate following an infection. Like other T lymphocytes, CTLs

kill cells infected with viruses or other pathogens and dysfunctional cells. We use the

term ‘immune responsiveness’ to describe the rate at which an individual mounts an

immune response to a given virus, and ‘CTL responsiveness’ is the average rate at

which specific CTLs proliferate after encountering infected cells [22].

Virus dynamics describes how viruses spread from cell to cell. This micro-level

epidemiology provides a novel perspective from which to understand infectious dis-

eases in terms of dynamical systems using characterized mathematical tools such as

differential equations. The purpose of research in this field is to reveal the basic laws

that control the spread of infectious agents within an individual, their interactions

with the immune system, and their responses to treatment [22]. In this thesis, we

build on a simple model of virus dynamics that considers the populations of unin-

fected cells, infected cells, free virus particles, and the effect of CTL responses that

can eliminate infected cells. Based on the basic model for an individual, we fol-

low an individual-based network model developed in [33] with the assumption that

interactions between individuals result in flow of free virus particles among those

people.

1.5 Thesis Contributions

In this study, we seek to use analytic techniques to better understand mathemati-

cal models simulating the spread of infectious disease in the population. Specifically,

by applying both global techniques (fixed points and their stability analysis) and lo-

cal techniques (eigenspace analysis, eigenvalue elasticity analysis, and global function

elasticity analysis) to both aggregate and individual-based infectious disease models,

we aim to address the following questions: 1) how well do linear eigenspace-based

approaches for assessing the sensitivity of model behaviours to a parameter function
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when applied to nonlinear models of infectious disease spread? 2) In light of the

large number of different eigenvalues associated with larger state-variable models,

can elasticity with respect to parameters of summary measures of model functioning

help provide high-level insight into the short-term impact of parameter changes on

model behaviours? 3) Can symbolic or (if required) numeric analysis of the location

and stability of equilibria help provide insight into how the long-term behaviour of

models depends on parameter values?

Within this thesis, eigenvalue and eigenvalue elasticity analysis are applied to

analyze the evolution of the system behaviours of nonlinear infectious disease mod-

els as a tool of parameter sensitivity analysis in order to identify parameters that

have great impacts on the system, as well as proper time points to perturb these pa-

rameters with the purpose of altering the system evolution. Drawing on eigenspace

techniques employed in previous studies of model behaviour, we find that for non-

linear systems, eigenvalues are effective to understand short-term behaviours, but

form a poor tool determining for the long-term impacts of a change on behaviours.

This reflects the fact that, for a non-linear system far from equilibrium, eigenvalues

of the Jacobian matrix at a particular time point only represent local behaviour

modes for a short period of time. In addition, we find that in an individual-based

model, because of similar equations for individuals in the network, the multiplicity of

eigenvalues of the Jacobian matrix occurs frequently, that may hamper the efficiency

of eigenspace analysis on individual-based models. In eigenvalue elasticity analysis,

while changes of parameters based on eigenvalue elasticities could yield significant

changes to eigenvalues in a short period of time, such changes may not directly change

state behaviours. In terms of disease control, local changes of eigenmodes are able

to alter behaviours in a short-term, especially in the period of the disease outbreak,

though such changes may not be sufficient to decrease the prevalence or average

infection among the population in the later stages of disease spread, as system be-

haviours approach to stable endemic equilibria. We found that for highly nonlinear

systems, a focus on the dominant eigenvalues – or even all eigenvalues – alone may

not be sufficient to describe the dynamics of the system even in a short time period,
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given that the structure of eigenvectors, as well as coefficients, could mediate and

moderate the impacts of such an eigenvalue change on state variables in important

ways. This difficulty poses particular challenges for larger systems, because of the

large number of state variables and eigenvalues, as well as their associated coefficients

and eigenvectors.

Inspired by some of the difficulties associated with the eigenvalue elasticity anal-

ysis method, we developed global function elasticity and sensitivity in order to better

anticipate the impacts of parameters on the global behaviours of a large system. We

then applied this method to analyze both aggregate and individual-based models.

With perturbations of parameters at time points when the elasticities or the sen-

sitivities have high values, the trajectory of the global function achieves significant

changes in a short period of time after the perturbations. This result is especially

useful during the period of disease outbreak. But in the long-term, such pertur-

bations may not bring the significant changes of the global function because the

changes based on these locally high global function elasticities or sensitivities cannot

guarantee either changes of the position of the endemic equilibrium nor significant

global changes to the system trajectory. Even when large trajectory deviations can

be achieved, the global structure of the system may cause the shifted trajectory to

exhibit a changed elasticity from what was originally expected.

In contrast to the local understanding afforded by eigenspace methods, fixed

points and stability analysis give insights into the global behaviours of disease spread

in the long-term, as well as their dependence on parameters. A change of one pa-

rameter when all other parameters are left unchanged might change the positions

or stability of equilibria for a model, thereby shifting the position of the trajectory

in the long run. To help understand this dependence, we derived formulas for the

location of fixed points for both aggregate and individual-based models, and suggest

how they may be generalized for individual-based models with arbitrarily large pop-

ulation size but simple network structure. Similarly, we performed numeric analysis

of eigenvalue structure for such models around equilibria, in order to understand

how network structure and selected parameters impact the stability of equilibria.
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Following the Routh-Hurwitz Criterion, we derived a series of ranges for all per-

turbed parameters, within which an increment or a decrement of a parameter will

not change the stability of the equilibrium.

With fixed points analysis and eigenspace analysis, as well as global function

elasticity, we gained some possible insights into combination of local and global

approaches. If the value of a global function (such as prevalence) at a fixed point is

directly related with the parameter to be perturbed, any change of the parameter

could result in shifting the global function in the long run. The time point at which

the global function elasticity has the largest absolute value could be considered as

an advantage deadline to change the parameter. Any perturbation of the parameter

before that time point may allow the global function to rapidly approach to the

shifted fixed point in time.
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Chapter 2

Literature Review

Anderson and May [1] described mathematical models of the transmission of in-

fectious agents with human populations which can help policy makers to interpret

observed epidemiological trends, understand and control the process of the spread

of diseases, such as measles, malaria, river blindness, sleeping sickness, and schis-

tosomiasis, and the advent of AIDS/HIV and other emerging viruses. They dealt

with the dynamics of the basic linear and nonlinear model of infectious diseases and

focused on the non-seasonal oscillations in incidence observed for many infections.

Spectral analysis was applied to analyze the data for measles, pertussis, and mumps

that showed that well-determined cycles explained most of the variability of these

data; and the estimated period of damped oscillations of the basic model for en-

demic infections, described in the form of T ' 2π[(D + D
′
)A]1/2 (where D + D

′
is

the duration of the latent plus infectious intervals, A is the average age at infection

and D is the period between oscillations in years), was in good agreement with the

observed periods of oscillations for these diseases.

In the paper of Korobeinikov et al [17], the stability of compartment infectious

disease models was studied using a SIRS (susceptive-infection-recover-susceptive)

model and a SEIRS (E for exposed host) model. With the assumption that the

incidence rate can be represented by an arbitrary function f(S, I, N) and the popu-

lation size is constant, they showed that these models exhibit asymptotically stable

steady states and proved that the concavity of the incidence rate with respect to the

number of infective individuals is a sufficient condition for stability, i.e., the models

have either a unique and stable endemic equilibrium state or no endemic equilibrium

at all. In [32] and [21], authors of two papers separately analyzed the equilibrium
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of compartmental models of infectious diseases transmission, and indicated that the

basic reproduction number R0 is a threshold for the stability of the models. The

disease-free state is asymptotically stable when R0 < 1 and unstable if R0 > 1, and

whether the stability of such equilibrium is global or local depends on the model

structures. In addition, it was proved out that there was a unique endemic state for

the two-stage model studied in the paper and such state is globally asymptotically

stable if R0 > 1.

The methodology of eigenvalue elasticity analysis in the field of system dynamics

was first used by N. Forrester in 1982 [7]. In his PhD thesis, he proposed the concept

of eigenvalue elasticity and used this concept relative to the model feedback structure

to understand model behaviours. He described the magnitude of ‘the loop elasticity’

as a measurement of the significance of a feedback loop to a dynamic behaviour

mode. Because the sum of all link elasticities arriving at one node equals the sum

of all link elasticities departing this node, ‘link elasticity’ was defined as a sum of

all loop elasticities passing through a link. With this definition, it is possible to set

up a linear system to identify the loop elasticities of the model for each eigenvalue

of the system matrix. Forrester applied this methodology in a linear system and a

nonlinear system which was linearized for particular time points.

Recent work on loop dominance analysis was contributed by Saleh [28, 29]. In

his work, he refined many aspects of the eigenvalue analysis, especially in nonlinear

models. In [28], he suggested that eigenvalue elasticity analysis is also suited for

nonlinear systems by noting how the eigenvalues change as causal link gains change

in the linearized model in addition to conventional computation of eigenvalues of the

Jacobian matrix at particular time points. Eigenvalues can be regarded as defining

different behaviour modes, the superposition of which describes the overall behaviour

of the system. Eigenvalue elasticity analysis provides a method to find the dominant

structures (e.g., loops) in the model [29].

As an improvement of formal dynamic model analysis tools, Guneralp [11, 10]

proposed a ten-step procedure to measure all modes of the model and to calculate

the elasticity values with a normalized method, which overcomes the drawbacks,
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particularly the computational expenses, of the traditional experimental iterative

analysis of models. The methodology is able to track the loop dominance dynamics

over time and the influences of feedback loops on a specific variable. This method

also made it possible to plot relative loop elasticities over time for visualization of

how loop dominance dynamics unfold through simulation [11]. His analysis is useful

in understanding the impact of the structural causes underlying oscillations and the

other modes of system behaviour, as well as potential policy options for prevention

and management of an economic system. However, the methodology was shown to

be effective only for simple nonlinear systems with a small number of state variables

(less than ten), and the influences of evolutions of eigenvectors and coefficients on

the system analysis were not discussed.

In recent years, more and more scholars begin to concern the pros and cons of

two approaches to system modeling: aggregated compartmental modeling (such as

is classically the focus of the methodology of System Dynamics) and disaggregated

agent-based modeling. Demirel [4] analyzed a supply chain model by both system

dynamics method and agent-based modeling techniques. In this work, he proved that

there are some factors and effects captured by the aggregate method that emerge

in an agent-based model, but there are also cases where aggregate models cannot

capture certain dynamics generated by agent-based modeling, even at an aggregate

level [4]. In addition, aggregate models cannot capture all detailed dynamics and

make no distinction among agents; it is therefore unable to capture context-based

rational choices and autonomy of the agents. The results suggested that a macro-

level approach to dynamical systems can show dynamics at an aggregated level but

misses the heterogeneity among agents emerging from the increase of rationality.

There are pitfalls of traditional compartmental modeling techniques in epidemi-

ology, e.g., it assumes that each individual in a population has an equal chance of

spreading the disease to others within a compartment. Meyers, etc. [20] indicated

that conventional compartmental models to SARS have resulted in estimates of the

fundamental quantity of the basic reproductive number R0 [1] were not consistent

with the observed value. This paper gave explanations of the inconsistency between
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predictions and the observed epidemiology and applied the powerful quantitative

methods of network epidemiology to illustrate that a single R0 in the same param-

eter setting may produce very different epidemiological outcomes [20]. Thus, the

application of disaggregated individual-based network provides a valuable perspec-

tive to the research on epidemiology.

Recent study of infectious disease modeling focuses on individual-based models,

where viral dynamics of each individual in the population is described by differ-

ential equations. Glasser et al [9] put forward dynamic individual-based models

with current US age distributions and typical spatially distributed social structures

based on biologically realistic systems that reproduced the spatiotemporal pattern

of the importation of smallpox into Yugoslavia in 1972. In this study, the disease

models were represented by compartments and ordinary differential equations, and

they modeled hypothetical current US communities of “village”, “town” and “city”

with different populations and municipal constructions that included hospitals. Age-

appropriate activities determined social connections between neighbourhoods and

schools or workplace, and other interconnections were considered dynamically with

different probabilities of individuals to be exposed to social activities within their

community and between neighbour communities. With exposure of 10, 50, or 10,000

people in various settings, surveillance and containment (S&C) coupled with vacci-

nation of hospital-based health care workers (HCWs) within 2 days after the first

diagnosis were modeled. If 90% of patients were isolated within days after their ini-

tial symptom onset and 75% of contacts were vaccinated and monitored, S&C would

reduce cases by 82%-99%. But immunization of HCWs, closing schools would con-

tribute little to control the disease. Therefore, they suggested in this paper that for

policy makers, stockpiling vaccine, training HCWs, improving laboratory capacity

and further understanding of S&C should be emphasized [9]. In addition, [18] mod-

eled each individual in a population based on an immune response model described

by ordinary differential equations and studied the effect of individual responses on

the disease spread at the population level. The simulation results showed that the

immune responses of infection in an individual are not necessarily valid when the
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individuals are connected in a network. The length of an infection and the viral load

peak values in the network changed from the single individual case, and it is possible

for a few individuals with weak immune response to maintain the infection in the

whole population. Based on the conclusion, the paper gave explanations of chronic

infections reappearing in large group of people in a certain environment. In addition,

the paper also provided the prerequisite to stable infection-free equilibriums of the

models.
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Chapter 3

Methodology

3.1 Background of Dynamical Systems

System Dynamics is an approach to understanding the behaviour of complex

systems over time. It deals with internal feedback loops and time delays that affect

the behaviour of the entire system [12, 31]. Different from other methods to study

complex systems, System Dynamics employs feedback loops and stocks and flows to

describe the structure of a dynamic system. A stock is an accumulation or integration

of its inflows and outflows. In term of mathematics, the structure of stock and flows

can be represented to the following equations [31]:

Stock(t) =

∫ t

t0

[Inflow(s)−Outflow(s)]ds + Stock(t0)

dStock(t)

dt
= Inflow(t)−Outflow(t)

Examples of such systems are common in chaos theory and social dynamics [13, 27].

Although the key elements of System Dynamics are feedback, accumulation of flows

into stocks, and time delay which can be abstracted graphically, the details of these

elements are described by ordinary differential equations, frequently nonlinear ones.

Therefore, a system analyzed by System Dynamics can be considered as a dynamical

system in which the system state can be represented as a point in state space, each of

whose axes corresponds to a particular state variable. Mathematically, the evolution

of such a system can be studied with differential equations methods.
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3.1.1 Eigenvalues and Eigenvectors of Linear Constant-Coeffi-

cient Systems

The simplest linear system with N states can be written as

ẋ = Ax (3.1)

where x is the vector of state in the system like
x1

x2

...

xN


A is a constant matrix of N × N dimension, which is called the coefficient matrix

of the system. If A is time-variant but a constant matrix at a particular time point,

Eq. 3.1 can be written as

ẋ = A(t)x (3.2)

For both Eq. 3.1 and Eq. 3.2, at a particular time point, the system matrix is a

constant matrix, and its eigenvalues and eigenvectors describe the normal dynamic

mode of behaviours inherent in this linear constant-coefficient system at that time

point (for simplicity we call such linear constant-coefficient systems “linear systems”

later in this thesis). The non-zero vector r is defined to be a right eigenvector of the

matrix A if it satisfies the eigenvalue equation Ar = λr for some scalar λ. In this

situation, the scalar λ is called an eigenvalue of A corresponding to the eigenvector r

[16]. In principle, the eigenvalues can be determined by computing the roots of the

characteristic equation

det(A− λI) = 0

where I is the identity matrix of N×N dimension. For small systems (of fewer state

variables), it is frequently possible to derive symbolic expressions for eigenvalues in

terms of model parameters; however, for large systems this is typically not possible.

In the common case when the λs are distinct the eigenvalue solutions of the linear

system given in Eq. 3.1 is a linear combination of N linearly independent solutions
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of Eq. 3.1 each of which evolves as xi = eλitri [6]:

x = c1e
λ1tr1 + c2e

λ2tr2 + · · ·+ cNeλN trN =
N∑

i=1

cie
λitri (3.3)

each ci(i = 1, · · · , N) is a constant. Therefore, the overall behaviour of the state

variables in a linear system can be computed with this linear combination of the

modes described by eigenvalues of the coefficient matrix A.

3.1.2 Nonlinear Systems and Jacobian Matrix

In our real physical world, truly linear systems are rare and nonlinear systems

dominate. However, such systems very frequently act in a linear fashion within

the commonly experienced operating range. Even when the non-linearity plays an

important role in the observed dynamics, we can often use linearization to understand

their behaviour around a particular time point or point in state space. A subset of

nonlinear systems can be expressed with first order ordinary differential equations,

in the form

ẋi = fi(x1, x2, · · · , xN)xi (3.4)

where N is the number of state variables in the system and fi is a nonlinear function

of the state variables.

One simple example of such a nonlinear system is the Lotka-Volterra equations

(also known as the predator-prey equations) [13], mathematically described as:

ẋ = x(α− βy)

ẏ = −y(γ − δx)
(3.5)

where y is the population size of some predator, x is the population size of its prey

and α, β, γ, δ are parameters associated with the demographics and interaction of

two species. To analyze the behaviour modes of this nonlinear system as we do for a

linear system, we linearize the system at each time point using the Jacobian matrix.

The Jacobian matrix is defined as the matrix of all first-order partial derivatives

of a vector-valued function. For the vector-valued function (fi)N×1 in Eq. 3.4, its
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Jacobian matrix is 
∂f1

∂x1
· · · ∂f1

∂xN

...
. . .

...

∂fN

∂x1
· · · ∂fN

∂xN


The Jacobian matrix J is constant for linear systems and is equivalent to A in Eq. 3.1

for that case. For nonlinear systems, the Jacobian matrix depends on the values

of state variables and J(x) represents the linear approximation to a differentiable

function near a particular point, i.e., for the system Eq. 3.4, ẋ = J(x0)x is almost

linear in x in sufficiently small neighbourhoods around the point x0. For example,

for the nonlinear Lotka-Volterra equations, the Jacobian matrix isα− βy −βx

δy δx− γ


which is time-variant depending on the values of x and y.

3.1.3 Transfer an Inhomogeneous System to a Homogeneous

System

In the above sections, we discuss homogeneous systems, but inhomogeneous sys-

tems are more common in our real world. For a nonlinear system, a linearized model

at a particular time point t0 can be derived by a Taylor expansion around t0:

ẋ|t0 = f(xt0) + Jxt0
· (x− xt0) + H.O.T. (3.6)

Where, Jij = ∂ẋi/∂xj is the entry in the ith row and jth column of the Jacobian

matrix of the system at the time point t0. By omitting the higher order terms,

Eq. 3.6 can be approximated as an inhomogeneous system:

ẋ = Jxt0
x + b (3.7)

For simplicity of expression, we denote Jxt0
as J , and b = −Jxt0 + f(xt0) is a

constant vector at time t0.

With differentiation with t in both sides of Eq. 3.7, we obtain

ẍ = J ẋ (3.8)
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Suppose λi is one eigenvalue of J , and ri is its corresponding (right) eigenvector

(i = 1 . . . N). In eigenspace, ẋ can be expressed as a linear combination of the right

eigenvectors [10], i.e.,

ẋ =
N∑

i=1

ciri (3.9)

where ci is the coefficient of the linear combination for the eigenvector ri. Differen-

tiating Eq. 3.9 on both sides, we obtain

ẍ =
N∑

i=1

ċiri (3.10)

Equating the righthand sides for ẍ given by Eq. 3.8 and Eq. 3.10, and using the

definition of ẋ in Eq. 3.9, we have

J
N∑

i=1

ciri =
N∑

i=1

ċiri

Because ri are the eigenvectors of J , and Jri = λiri ∴

N∑
i=1

ciλiri =
N∑

i=1

ċiri

∴

ċi = λici (i = 1 · · ·N)

∴

ci = ci(t0)e
λi(t−t0) (i = 1 · · ·N) (3.11)

With Eq. 3.9 and Eq. 3.11, we have

ẋ =
N∑

i=1

ci(t0)e
λi(t−t0)ri (3.12)

From the above, it can be observed that the slope trajectory (the rate of a state

variable changing) is composed of several behaviour modes, each expressed by an

eigenvalue and its associated right eigenvector [10]. For nonlinear system, its change

rates over a period of time can also be approximated by eigenvalues and eigenvectors.

To express the formula for x(t), we must deal with the non-homogeneous constant

term in Eq. 3.7. We proceed Eq. 3.7 by rewriting:

ẋ = J(x− J−1b) (3.13)
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Suppose X = x− J−1b. We have Ẋ = ẋ. Therefore, we have a homogeneous linear

system

Ẋ = JX (3.14)

The eigenvalue solution of Eq. 3.14 is

X =
N∑

i=1

Ci(t0)e
λi(t−t0)ri

and therefore

x =
N∑

i=1

Ci(t0)e
λi(t−t0)ri + J−1b (3.15)

We note that the constant term does not affect the behaviours (eigenmodes) of

the system. For our eigenspace analysis at a particular point of time with a small

time interval in the next chapters, this constant term can be neglected because the

interventions of parameters based on eigenvalue elasticities aim to alter behaviour

patterns, as captured by eigenvalues. Therefore, in following sections, we do not take

the constant terms into consideration.

3.2 Eigenvalue Elasticity Analysis

3.2.1 Eigenvalue Analysis

For a linear system, eigenvalues of its system matrix correspond to elemental

behaviour modes of the system, and the overall behaviour of the system is a su-

perposition of these elemental behaviour modes. Table 3.1 presents five forms of

eigenvalues of a linear system and their corresponding behaviour modes. When the

imaginary part of an eigenvalue is zero and the real part is nonzero, i.e., in expo-

nential growth or decay mode, the inverse of the real part is the time constant of

growth or the negative inverse of real part is the time constant of decay. When both

the imaginary and real parts of the eigenvalue are nonzero, the observed frequency

of oscillation equals to the absolute value of the imaginary parts of the eigenvalues,

and when the behaviour mode is convergent oscillation, such a frequency is called

the damped frequency [7].
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Table 3.1: Eigenvalue classes and corresponding behaviour modes.

Eigenvalue Class Behaviour Mode

0 Constant

a + 0 · i, a > 0 Exponential Divergent Growth

a + 0 · i, a < 0 Exponential Convergent Decay

0± b · i, b 6= 0 Sustained Oscillation

a± b · i, a > 0, b 6= 0 Divergent Oscillation

a± b · i, a < 0, b 6= 0 Convergent Oscillation

Because the total system behaviours are determined by the superposition of all

the eigenmodes, it becomes more difficult to study all eigenvalues when the size

of state variables of a large complex system grows, and we therefore seek to focus

attention on the ‘important’ eigenvalues. When the real parts of all eigenvalues of a

linear system are negative, the magnitude of variations in system behaviours will die

away and the system eventually approaches equilibrium. If not all eigenvalues are

negative, the eigenvalue with the largest real part will also eventually dominate the

system behaviours [7]. Therefore, we term the eigenvalue with the largest real part

the ‘dominant eigenvalue’ of the system, as it will determine the behaviour mode of

a linear system. In this study, we assume that there is a unique dominant eigenvalue,

and if the dominant eigenvalue is complex we treat that conjugate pair of complex

eigenvalues as the same dominant eigenvalue.

With an eye towards identifying these ‘important’ eigenvalues, we define domi-

nant eigenvectors as the following.

Definition 1 For a linear system

ẋ(t) = Ax(t)

where A is the constant system matrix, its general solution [6] is

x =
∑

i

cirie
λit
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Where ci are constants and are called the coefficients of the eigenvectors ri. The

eigenvalue with the largest real part is called the dominant eigenvalue, and its

corresponding eigenvector is termed the dominant eigenvector.

For a nonlinear continuous system, the linearization of it in the immediate vicinity

period of the point around which the linearization is performed is adequate to de-

scribe system behaviours in that period of time [7]. Therefore, in the short term1, the

superposition of eigenmodes of the Jacobian matrix approximates the observed be-

haviour of the nonlinear system in a particular time period. The dominant eigenvalue

and eigenvector, as well as its coefficient, together determine the most important be-

haviour mode of the nonlinear system in this period.

3.2.2 Eigenvalue Sensitivity and Elasticity

Eigenvalue elasticities measure transient-response sensitivities of the model to

parameters [10]. And since the values of elasticities are dimensionless, they can be

compared with each other. This can aid us identifying the parameters which could

greatly influence the system.

3.2.2.1 Eigenvalue Sensitivity with Respect to a Parameter

We define sensitivity of an eigenvalue with respect to a parameter as the partial

derivative of the eigenvalue with respect to that parameter.

Definition 2 (Eigenvalue Sensitivity) For a linear system

ẋ = Ax

where λi is the ith eigenvalue of the system matrix A, where i = 1, · · · , N and N is

the dimension of the state vector x, the eigenvalue sensitivity Si with respect to

the jth parameter of the system pj is defined as:

Si(pj) = lim
∆pj→0

∆λi

∆pj

=
∂λi

∂pj

(3.16)

1The time constant associated with “short term” will depend on the the particulars of the
system, and specifically, on the speed with which the system’s Jacobian evolves.
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We define [•] denoting the unit of • and we can observe that eigenvalue sensitivity

is not dimensionless:

[Si(pj)] =
[λ]

[p]

which indicates that eigenvalue sensitivity prevents comparisons across different pa-

rameters with different dimension.

3.2.2.2 Eigenvalue Elasticity with Respect to a Parameter

In contrast to eigenvalue sensitivity (which measures the ratio of the absolute

change in an eigenvalue to the absolute change in a parameter), eigenvalue elasticity

measures the ratio of the proportional (e.g. percentage) change in the eigenvalue

to the proportional (e.g. percentage) change in a parameter. As defined in [7], the

eigenvalue elasticity with respect to a parameter is defined as the partial

derivative of the eigenvalue with respect to that parameter normalized for the size of

the parameter and the size of the eigenvalue. And with this definition, assuming a

non-zero value of the parameter, the elasticity of eigenvalue could also be described

as the product of the eigenvalue sensitivity and the ratio of the eigenvalue and

parameter. Thus the eigenvalue elasticity of λi, with respect to a parameter pj is as

Eq. 3.17.

εi(pj) = lim
∆pj→0

∆λi

λi
∆pj

pj

=
∂λi

λi

∂pj

pj

=
∂λi

∂pj

· pj

λi

= Si(pj) ·
pj

λi

(3.17)

In this definition, since [∂λi] = [λi] and [∂pj] = [pj], eigenvalue elasticity is dimen-

sionless, enabling us to compare elasticities of the eigenvalue with respect to different

parameters. Therefore, if an eigenvalue elasticity with respect to one parameter is

larger than for others, it means that behaviour mode is more sensitive to a certain

proportional change in that parameter than to similar proportional changes in other

parameters. A similar comparison of elasticities is also possible between different

time points. Thus, a large elasticity might suggest that:

1. Extra effort should be made to obtain a good estimate of parameter;

2. The parameter should be investigated as a possible policy lever [7];
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3. The time when the elasticity arrives at a peak might be the ‘best’ time to

exercise this possible policy lever.

In the next chapter, we use the largest eigenvalue elasticity rather than the elastic-

ity of the dominant eigenvalue because the eigenvalue with the largest elasticity does

not always correspond to the dominant eigenvalue. For example, in an individual-

based model of infectious disease spread with 3 persons, the dominant eigenvalue

differs from the second and the third dominant eigenvalue a little, and their values

of elasticities with respect to a parameter are close to each other. Therefore, we ap-

ply the largest eigenvalue elasticity to distinguish the greatest impact of a parameter

on system behaviours.

3.2.2.3 Implementation Issues

It is difficult to calculate eigenvalue sensitivity or elasticity with Eq. 3.17, because

for all but the smallest systems of state equations the computation of derivatives of

an eigenvalue is complicated. Specifically, it is not in general possible to derive ex-

pressions for eigenvalues in closed form, and numeric differentiation is associated with

its own difficulties. The following part of this section tries to simplify the expression

of eigenvalue elasticities for the purpose of convenient and accurate computation.

Suppose J is the Jacobian matrix of a nonlinear system, and λi, (i = 1, · · · , N)

are eigenvalues of J . The matrix Λ is a diagonal matrix whose diagonal elements

are all eigenvalues of J , the eigenvalue sensitivity matrix S(pj) is a diagonal matrix

whose entries are eigenvalue sensitivities Si(pj), (i = 1, · · · , N) and the matrix R =

[r1, r2, · · · , rN ] is a matrix of eigenvectors ri of J .

∵ Jri = λiri

∴ JR = RΛ

∴ Λ = R−1JR (3.18)

then by applying the chain rule for matrices we can derive the following:

S(pj) =
∂Λ

∂pj

=
∂R−1JR

∂pj

= R−1 ∂J

∂pj

R + R−1J
∂R

∂pj

+
∂R−1

∂pj

JR (3.19)
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As proven in [27], supposing M(t) is a matrix depending on the variable t, the

following identity holds:

dM(t)−1

dt
= −M(t)−1dM(t)

dt
M(t)−1

Thus, Eq. 3.19 can be written as:

∂Λ

∂pj

= R−1 ∂J

∂pj

R + R−1J
∂R

∂pj

+ (−R−1 ∂R

∂pj

R−1JR) (3.20)

and finally applying Eq. 3.18 twice we have:

∂Λ

∂pj

= R−1 ∂J

∂pj

R + ΛR−1 ∂R

∂pj

−R−1 ∂R

∂pj

Λ (3.21)

Suppose li is the left eigenvector of J corresponding to the eigenvalue λi (i.e.

li
T J = λili

T ) whose right eigenvector is ri, and L is an N × N matrix, L =

[l1, l2, · · · , lN ]. With an assumption that the left and right eigenvectors are in unit

length, we have [28]:

LT = R−1 (3.22)

With Eq. 3.22, Eq. 3.21 can be written as:

∂Λ

∂pj

= LT ∂J

∂pj

R + ΛR−1 ∂R

∂pj

−R−1 ∂R

∂pj

Λ (3.23)

Now we focus on the last two terms of the right part of Eq. 3.23. Given A is a

square matrix and Λ is a diagonal matrix, the matrix AΛ has the same entries in the

diagonal with the matrix ΛA. Therefore, we have

Λ(R−1 ∂R

∂pj

)− (R−1 ∂R

∂pj

)Λ =


0 ∗ . . . ∗

∗ 0 ∗ . . .
...

...
. . . ∗

. . . ∗ 0

 (3.24)

.

As a result, we can say that in Eq. 3.23 the diagonal entries of the left hand side

of Eq. 3.23 equal the diagonal entries of the first term of the right side, i.e.

Si(pj) =
∂λi

∂pj

= li
T ∂J

∂pj

ri (3.25)
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And Eq. 3.17 can be written as Eq. 3.26

εi(pj) = li
T ∂J

∂pj

ri
pj

λi

(3.26)

With this equation, eigenvalue elasticity with respect to a parameter can be com-

puted using left and right eigenvectors and the partial derivatives of the linearized

Jacobian matrix with respect to a parameter. Because J and ∂J
∂pj

can often be easily

determined symbolically and because the eigenvalues can be computed for particular

parameter values and points in time, both eigenvalue elasticity and sensitivity with

respect to a parameter can be computed without the need to either compute closed-

form expressions for eigenvalues nor to perform numeric differentiations. In previous

work on eigenvalue elasticity analysis of Forrester [7], Saleh [28] and Guneralp [11],

Eq. 3.25 and Eq. 3.26 were applied without explanations. To clarify them we have

given the deduction of these two equations in the above.

3.3 Improvements: Global Function Elasticity and

Sensitivity Analysis

For a large system with many state variables, the number of eigenvalues is too

large to analyze one by one in combination with each parameter. In addition, due to

the variation of coefficients, the eigenvalue with the largest real part alone may not

describe the dominant behaviour of the system over a short period of time, and there

might be several eigenvalues of the system Jacobian matrix that jointly determine

the behaviour pattern.2 In such cases, it is difficult to analyze eigenvalue elasticities

to find significant parameters of the system. In this section, we introduce global

function in state space and its sensitivity and elasticity to analyze a large system.

In contrast to previous sections which synthesized and recast findings from other

contributions, the work presented in this section is novel to this thesis.

A global function in state space is defined as a scalar function summarizing the

global state of a system (G : <N 7→ <, where N is the number of state variables in the

2More explanations on this point are provided in Ch. 4.
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system) at particular time points, e.g. the average viral load in population members,

the total number of infected people, or cumulative mortality in the application field

of epidemiology. In a fashion similar to the definition of eigenvalue sensitivity with

respect to parameters, we define global function sensitivity as

gs = lim
∆p→0

∆G

∆p
=

∂G

∂p
(3.27)

And the global function elasticity is defined as

ge = lim
∆p→0

∆G
G
∆p
p

=
∂G
G
∂p
p

=
∂G

∂p

p

G
= gs

p

G
(3.28)

The derivative of a global function over time can also describe the global behaviour

of the system by indicating the rate of change of the global function. Explicating

this, we define the elasticity of the global function’s rate of change with respect to

a parameter to show how much the rate of growth or decrease of a global function

could be affected by a small change in a parameter. In this study, this elasticity or

sensitivity is called Ġ elasticity or Ġ sensitivity.

ġs(p) = lim
∆p→0

∆Ġ

∆p
=

∂Ġ

∂p
(3.29)

ġe(p) = lim
∆p→0

∆Ġ
Ġ
∆p
p

=
∂Ġ
Ġ
∂p
p

=
∂Ġ

∂p

p

Ġ
= ġs

p

Ġ
(3.30)

Using the total differential and Eq. 3.7, Ġ could be written as

Ġ =
dG

dt
=

∂G

∂t
+

N∑
i=1

∂G

∂xi

ẋi (3.31)

We note that each of the ẋi is specified by the series of differential equations.

With proper choice or construction of a global function, the term ∂G
∂t

and ∂G
∂xi

could

be computed symbolically prior to the start of simulation. Based on these definitions,

we can analyze the impact of a parameter on the system on some global summaries

of the system states. When there are high-level global functions of clear interest, this

method provides a more direct view than eigenvalue elasticity analysis for informing

policy to control the spread of an infectious disease.
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Chapter 4

Eigenspace Analysis of Infectious Disease

Models

As indicated in Section 1.4, most epidemiological models can be classified into

compartmental models and network models. In this chapter, an aggregate compart-

mental model and an individual-based model within a network are studied using

eigenspace methods.

4.1 Eigenspace Analysis of an Aggregate Infec-

tious Disease Model

An SIRS model is a basic aggregate epidemiological model describing dynamic

changes of the number of people at different stages of disease exposure and progres-

sion in a relatively closed population over time. Because this basic model includes

just three state variables, it is relatively easy to quantitatively analyze. But the

SIRS model is also of value in serving as representative of a larger and somewhat

more elaborate class of infectious disease models. This section studies the systematic

behaviours and parameter sensitivity of an SIRS model by analyzing eigenvalues and

their corresponding eigenvectors of the linearized SIRS model over time, as well as

the eigenvalue elasticities with respect to parameters of the model.
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4.1.1 An Improved SIRS Model: Description

Elaborating the typical SIR model of Kermack-McKendrick [14], this study added

several parameters with consideration of health care workers, young children, and

people who have died from infectious diseases. Much of the model structure draws

on the work of [24]. Fig. 4.1 shows a stock-and-flow diagram of the model used in

this section. For some serious infectious diseases, such as SARS, hepatitis B and

Figure 4.1: The stock-flow diagram of an SIRS model.

C, and potentially many sexually transmitted infections, limitations of health care

capacity (and particularly contact tracing) can play a major role in the evolution

of an epidemic. For such pathogens, factoring limitations of health care workers

into a model is reasonable. Another change in this model relates to the recovery of

individuals. The recovery is partitioned into two parts: 1) Recovery Delay, which is

the time delay due to medical treatment, including a period from the time a patient

is infected until the time the patient seeks treatment and a period for a patient to

be treated by health workers once presenting for treatment; 2) Time of Recovery

per Infected which is the time for an individual to physically clear the disease once

treated. The third change of the model is a flow from Recovery to Susceptible,

because for many infections, such as flu and many sexually transmitted diseases,

patients cannot get lifelong immunity despite recovery. The model representation

also assumes that in this model only infected people die off. Because this SIRS model
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Table 4.1: Parameter settings of an SIRS model.

Parameter Full Name Default Value Unit

β Per Infected Contact Infection Rate 0.01 1/person

c Mean Contacts Per Capita 12 person/day

τ Immunity Loss Delay 275 day

p Staff Time Per Patient 0.5 hcw · day/person

q Time Until Seek Treatment 2 day

h Health Care Workers 10 hcw

d Time of Recovery Per Infected 7 day

µ Mortality Rate 0.02 1/day

σ Birth Rate 0.01 1/day

has not been calibrated with empirical data drawn from a particular epidemiological

context, this model is a stylized general model used for testing and exploring our

methodology and considerations of time delay of patients treatment, and will likely

behave in a manner representative of a particular real-world context.

Eq. 4.1 provides the state equations of the model in Fig. 4.1.

Ṡ =
R

τ
− βc

I

N
S + σN

İ = βc
I

N
S − I

q + pI
h

+ d
− Iµ

Ṙ =
I

q + pI
h

+ d
− R

τ

(4.1)

where N = S + I + R, and the initial values are S(0) = 200, 000, I(0) = 200 and

R(0) = 0. We also define Prevalence = I/N .

The parameters of the model are explained in Table 4.11, that are based on the

work of [24]. All state variables are of unit ‘person’.

4.1.2 Equilibrium and Stability Analysis of an SIRS Model

Epidemiological models of the spread of infection in a population are usually

associated with a threshold quantity: the basic reproductive constant R0, defined

1‘hcw’ in this table means Health Care Worker
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as the mean number of secondary infections resulting from the introduction of one

infected individual into an otherwise susceptible population [1]. If R0 < 1, the

introduced infection will die out in the long run and the disease-free equilibrium

(DFE) is asymptotically stable; if R0 > 1 the level of infection will grow in the

population and the DFE is unstable [17, 21, 32]. A general-purpose methodology

exists for deriving R0 from the structure of the system [32].

We define the next generation matrix of an SIRS model to be a matrix whose the

(i, j) entry is the expected number of new infections in compartment i produced by

the infected individual originally introduced into compartment j [32]. Following [32]

and [5], we derive the next generation matrix at the DFE (S = N, I = 0, R = 0) for

the model Eq. 4.1: 
0 − βc

1
d+q

+µ
0

0 βc
1

d+q
+µ

0

0 0 0


R0 is defined as the spectral radius of the next generation matrix, therefore in this

SIRS model

R0 =
βc

1
d+q

+ µ
(4.2)

This result is identical to the symbolic expression of R0 derived from the heuristic

method of multiplying the infection rate and the mean duration of the infection [32].

With the parameter settings in Table 4.1, R0 = 0.9153 < 1.

We can derive the fixed points of the system by setting the derivatives of the

state variables to zero, and solving for values of S, I and R. The equations in this

SIRS model are associated with one endemic equilibrium, where the size of infected

population and recovered population are in balance with the size of the susceptible

population:

Ŝ =
hµ(µστ + µ− σ)((µ− σ)βc(q + d)− µ(q + d)2 − στβc− µ)

pσ(µ + στβc)(µ2 + σβc− µβc)

Î =
h((µ− σ)βc(q + d)− µ(q + d)2 − στβc− µ)

p(µ2 + σβc− µβc)

R̂ =
hτ((µ− σ)βc(q + d)− µ(q + d)2 − στβc− µ)

p(µ + στβc)

(4.3)
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With the parameter settings in Table 4.1, the endemic equilibrium listed in Eq. 4.3

is (to the nearest integer):

Ŝ = 3183, Î = 8570, R̂ = 5387 (4.4)

and the numeric eigenvalues of the Jacobian matrix at the endemic equilibrium are

−0.036795, −0.011122, −0.0034814

Because all eigenvalues are negative at this point, this endemic equilibrium is asymp-

totically stable with respect to the current parameter settings.

By contrast, the eigenvalues of the Jacobian matrix at the DFE (S̃ = N, Ĩ =

0, R̃ = 0) are:

λ1 = σ, λ2 = −1

τ
, λ3 = βc− µ− 1

d + q

Because all parameters are non-negative, λ1 is positive if the birth rate is positive,

λ2 is always negative, and λ3 may be positive if an infective person infects other

people faster than the infected people recover or die. With respect to the current

parameter settings, there is at least one eigenvalue with positive real part (λ1) and

the DFE is unstable.

It departs from the normal intuition stated above that the DFE is unstable when

R0 < 1. The underlying reason is the varying population size. In our model, the

death rate is different from the birth rate and we assume only infective people will

die. Given the parameters at hand, the value of N grows over time and the DFE is

unstable. To factor out the effects of the changing population size, we look at the

fraction of the population that is infected, susceptible or recovered.

We consider the fractions of individuals in the three compartments, namely

s = S/N, i = I/N, r = R/N (4.5)

Eq. 4.1 becomes

ṡ = σ − βcsi +
r

τ
− σs + µsi

i̇ = −µi− g(I)i + βcsi + σi + µi2

ṙ = − r

τ
+ g(I)i− σr + µir

(4.6)
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where g(I) = (d + q + pI/h)−1 and s + i + r = 1. For the DFE of this system,

s̃ = 1, ĩ = 0, r̃ = 0 (corresponding to S̃ = N, Ĩ = 0, R̃ = 0), and the eigenvalues of

the Jacobian matrix at DFE is

λ1 = −σ, λ2 = −1 + στ

τ
, λ3 = βc− µ− σ − 1

d + q

With the current parameter settings, they are

λ1 = −0.01, λ2 = −0.0136, λ3 = −0.0211

The DFE for the fractional model is stable. The endemic equilibrium of the fractional

model is ŝ = 0.1857, hati = 0.5, r̂ = 0.3143. This corresponds to the fractional val-

ues of each state variable at the endemic equilibrium in the original model (Eq. 4.4).

Similar to the original model, the endemic equilibrium is stable because the real parts

of all eigenvalue of the Jacobian matrix at the endemic equilibrium are negative. As

indicated in [3], there are two different ways of considering a disease as being con-

trolled in a population of varying size. The stricter way requires that the population

of infective I(t) → 0, while the weaker way requires the proportion of infective within

the whole population i(t) → 0. For our model and parameter settings, because of

varying population size, the infective population cannot be completely eliminated,

but the fraction of infective population to the whole population can approach to

0, i.e., the DFE of the fractional model is stable but that of the original model is

unstable.

Later in this section, based on eigenvalue elasticity, we will perturb each param-

eter to increase or decrease its value based on its eigenvalue elasticity, which would

change both position and stability of the endemic equilibrium. According to the

Routh-Hurwitz Criterion [8], if we fix values of other parameters, we may be able to

derive a range of one specific parameter’s value. While any change of the value of

this parameter within this range may shift the location of the endemic equilibrium

within state space, it is guaranteed not to change the stability of that equilibrium.

Based on the parameter settings listed in Table 4.1, we can obtain the range of each
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parameter respectively if all other parameters are kept constant:

β : (0.00333, ∞) p : (0, ∞)

h : (0, ∞) τ : (0, ∞)

σ : (0.00258, 0.0167) c : (4, ∞)

d : (0, 435.5) q : (0, 430.5)

µ : (0.01101, 0.0895) ∪ (0.0939, 0.10899)

Therefore, the stability of the endemic equilibrium does not change if we increase

or decrease one parameter by 10% from its default value and keep other parameters

unchanged at the same time.

4.1.3 Eigenvalue Analysis of an SIRS Model

Figure 4.2: The value of S, I, and R over time for an SIRS model.

For the SIRS model described above, Fig. 4.2 shows the trajectories of three

states in the system, where the X-axis is time and the Y-axis represents the number

of susceptible/infected/recovered people. The numerical simulations for the following

analysis were carried out with the Euler method with step size 1. In order to evaluate

the adequacy of this step size, we also did simulations for the system with the

Euler method with step size 0.1 and 0.01. These simulations produced very close

results to that with the same method with step size 1. We approximated the system
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to be a linear one at regularly spaced time points with the Jacobian matrix, and

obtained eigenvalues of the Jacobian matrix over time. Fig. 4.3 shows all eigenvalues

of the Jacobian matrix of the SIRS model over time, where the horizontal axis is

time and the vertical axis shows the value of the real and imaginary components

of the eigenvalues. In this figure, three solid lines represent real parts of three

eigenvalues; meanwhile the dashed line is the magnitude of the imaginary part of

complex eigenvalues. Because the Jacobian matrix has three eigenvalues and complex

eigenvalues come in conjugate pairs, the imaginary part of eigenvalues is unique if

the system has complex eigenvalues. Fig. 4.4 presents the largest real part of the

eigenvalues over time. Here the horizontal axis is also the time axis and the vertical

axis represents the value of the largest real part of the three eigenvalues.

Figure 4.3: All eigenvalues of the Jacobian matrix of an SIRS model
over time.

From time = 82 to time = 101, the imaginary parts of two eigenvalues are

nonzero. Correspondingly, as shown in Fig. 4.2, there are oscillations in this short

period of time of S and I. However, the value of R does not oscillate during that

time period. The reason for this is that the component of the dominant eigenvector

representing R has a very small value, and this behaviour mode exerts little influence
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Figure 4.4: The largest real components of eigenvalues of the Jacobian
matrix of an SIRS Model over time.

on R. For example, at time = 82, three eigenvalues of the Jacobian matrix are:

λ1,2 = +2.21361× 10−2 ± 5.720× 10−3i, λ3 = −3.63619× 10−3

and the pair of conjugate eigenvalues has the largest real part. And their corre-

sponding eigenvectors are defined as dominant eigenvectors, namely
−9.24918× 10−1

−3.60966× 10−1

3.92696× 10−6


Because two eigenvalues are conjugate, they have identical real components for

the entries of the eigenvectors. For this mode at time = 82, the system oscillates

divergently, and since the entries of S and I in the dominant eigenvector are relatively

large, the changes of S and I are dramatically controlled by the mode, and oscillate

in pronounced manner. And because the third entry of the dominant eigenvector

is almost zero, the variable R which it represents is not significantly controlled by

this mode, and does not oscillate. From time = 97 to time = 101, the real part

of the conjugate eigenvalues becomes negative, and the system tends to oscillate

convergently. Because the rate of convergence is sufficiently high, the oscillations

are not apparent. From time = 102 forward, all eigenvalues are real, and the largest
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real part of eigenvalues are negative, therefore the system tends to be convergent, as

Fig. 4.3 and Fig. 4.4 show.

4.1.4 Eigenvalue Elasticity Analysis of an SIRS Model

From the above section, we know that there are 9 parameters for this SIRS

model. This section analyzes the elasticity of eigenvalues with respect to selected

parameters.

As indicated in the last chapter, the elasticity of all eigenvalues with respect

to a parameter can be computed using Eq. 3.26. Because the eigenvalue elasticity

with respect to a parameter describes the proportional change of eigenvalues with

respect to the proportional change of the parameter, the imaginary parts of the

eigenvalues might also be altered by the change of the parameter. Fig. 4.5 and

Fig. 4.6 show eigenvalue elasticities with respect to β and p over time. In these

graphs, solid red, green, and blue lines represent real parts of elasticities of three

eigenvalues, and dashed black is the imaginary part. As above, because complex

eigenvalues come in pairs, two eigenvalues are complex conjugates of each other, and

the third is real. A single specification of the imaginary component is adequate.

From Eq. 4.1, the parameter q and d have same position in the governing equations,

thus the symbolic expressions of elasticity with respect to q and d are same, and the

values of this elasticity are also same. Similarly, perturbation of the parameter c has

similar effects to identical perturbation of the parameter β, because c and β are in

the mathematically identical positions. In the following analysis, the parameter d

and c are therefore neglected.

By computing eigenvalue elasticities with respect to parameters, we found that

q, h and τ have little impacts on eigenvalues, i.e., eigenvalues of the system are

not sensitive to these parameters, thus we neglect their influences in this discussion.

In the following section, we choose the parameter β and p to analyze the changes

of state variables over time resulting from perturbation of these two parameters at

times when the values of eigenvalue elasticity are large.

The perturbation of a parameter at time = t∗ here means to increase or decrease
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Figure 4.5: Eigenvalue elasticity with respect to β (Per Infected

Contact Infection Rate) of the SIRS model over time.

Figure 4.6: Eigenvalue elasticity with respect to p (Staff Time Per

Patient) of the SIRS model over time.

it by 10% of its value from time = t∗ to the end of the simulation. In our elasticity

analysis, the parameter is perturbed not at one short period of time, but changed

for a long time. Through experiments, we have found that a perturbation of a

parameter for a vary brief interval of time can not visibly change the behaviour of

state variables. Although it has the shortcoming of causing a long-term effects in that

the perturbation of a parameter at one particular time may be accumulated or offset
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in later stages, such persistent perturbation of a parameter can help us study the

local and global changes of the state behaviours. We note that because the eigenvalue

elasticity with respect to a parameter quantifies the impact of a parameter change on

the eigenvalues rather than directly on state variables, the impacts of perturbation

of the parameter on state variables depend on eigenvalues, the coefficients, and the

structure of the eigenvector associated with that eigenmode in the rates of state

change.

4.1.4.1 Eigenvalue Elasticity with Respect to β for an SIRS model

As depicted in Fig. 4.5, eigenvalue elasticity with respect to β (Per Infected

Contact Infection Rate) is quite large at time = 81 for the real parts (with values

of 269.4 and −132.4) and time = 82 for the imaginary part (with a value of 206.9).

Thus we perturb β to decrease it by 10% at time = 81. The trajectory of the state

variables is perturbed as shown in Fig. 4.7 to Fig. 4.10. From these figures, it can

be seen that the decrease in β altered the trajectory of S, I and Prevalence, but

has little effect on R. As indicated in above section, at time = 82 the dominant

eigenvector has a very small value on the third entry representing R, and large

changes of the eigenvalues with largest real parts will not have correspondingly large

influences on R. The same condition also obtains at time = 81.

Figure 4.7: The value of S with a perturbation (decreasing by 10%)
of β (Per Infected Contact Infection Rate) at time = 81.
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Figure 4.8: The value of I with a perturbation (decreasing by 10%)
of β (Per Infected Contact Infection Rate) at time = 81.

Figure 4.9: The value of R with a perturbation (decreasing by 10%)
of β (Per Infected Contact Infection Rate) at time = 81.

Decreasing β (Per Infected Contact Infection Rate) by 10% changes the

endemic equilibrium in Eq. 4.3 to be

Ŝ|β∗ = 3750, Î|β∗ = 9144, R̂|β∗ = 5394

where Ŝ, Î, and R̂ are increased by 17.8%, 6.7%, and 0.13% respectively from their

values without perturbations. As would be anticipated from the eigenvalue elas-

ticity, such change decreases the number of infected people for a short period of

time. However, after time = 101, the reduced level of β increases the number of

infected people. For S, this perturbation increases the number of susceptible people.
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Figure 4.10: The value of Prevalence with a perturbation (decreasing
by 10%) of β (Per Infected Contact Infection Rate) at time =
81.

Therefore a small decrease of the rate contacting infection for an infected patient can

increase the number of infected and susceptible people in the longer term, with the

epidemic playing out more slowly with an decreased infection rate for per infected

contact than with the original rate.

4.1.4.2 Eigenvalue Elasticity with Respect to p for an SIRS model

As shown in Fig. 4.6, eigenvalue elasticity with respect to p (Staff Time Per

Patient) has the largest values at time = 0, time = 946 and time = 957 (with values

of 0.7032, 0.18125 and −0.10058 respectively). Based on Eq. 4.3, increasing p will

lower the values of state variables at the endemic equilibrium, and 10% increment

of p shifts the endemic equilibrium to be

Ŝ|p∗ = 2894, Î|p∗ = 7791, R̂|p∗ = 4897

where Ŝ, Î, and R̂ are decreased by 9.1% respectively from their values without

perturbations. If we increase p at time = 0, the value of R changes from the starting

time point, as Fig. 4.11 shows. We now analyze perturbation of p at time = 946.

Fig. 4.12 to Fig. 4.15 show the effects of the perturbation of increasing p by 10%.

Different from perturbation of β, perturbation of p has small effects on S and I, but
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greatly changes the trajectory of R. Most of the increase in Prevalence could be

attributed to the great change of R.

Figure 4.11: The value of R with a perturbation (increasing by 10%)
of p (Staff Time Per Patient) at time = 0.

Figure 4.12: The value of S with a perturbation (increasing by 10%)
of p (Staff Time Per Patient) at time = 946.

At time = 946, the large elasticities of eigenvalues with respect to p correspond to

the 2nd and 3rd eigenvalues: −1.1218×10−2 and−3.46976×10−3. The corresponding

eigenvectors are 
+5.07910× 10−2

−9.98687× 10−1

+6.68735× 10−3

 ,


+1.69634× 10−1

+9.42675× 10−1

+2.87382× 10−1
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Figure 4.13: The value of I with a perturbation (increasing by 10%)
of p (Staff Time Per Patient) at time = 946.

Figure 4.14: The value of R with a perturbation (increasing by 10%)
of p (Staff Time Per Patient) at time = 946.

where the third entries of two eigenvectors, representing R, are much larger than

the third entry of the eigenvector corresponding to the largest eigenvalue elasticity

at time = 82 (a time point that was of interest for eigenvalue elasticity with respect

to β) in Section 4.1. The corresponding coefficients of the eigenvectors are 1.97632

and 1.86503. The second entries of two eigenvectors, which represent I, have op-

posite values, with similar coefficients, the change of eigenvalues on I brought by

perturbation of p thus almost offset each other. Although the first entries of the

two eigenvectors have relatively large values, S also has relatively small proportional

changes possibly because of the time delay associated with the loss of immunity from
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Figure 4.15: The value of Prevalence with a perturbation (increasing
by 10%) of p (Staff Time Per Patient) at time = 946.

R to S. Direct change of p alters the third entries greatly.

This experiment suggests that given the number of health care workers assumed,

a bit longer time of treatment on an individual patient will result in a significant

decrease in the total number of recovered people and an increase in Prevalence. Thus,

timely treatments are necessary to guarantee that people recover from the disease.

4.1.5 Discussion

In this section we studied eigenvalues and eigenvalue elasticity with respect to

parameters for an SIRS model. Despite its nonlinearity, the behaviours of the system

could be quantitatively described by eigenvalues of its Jacobian matrix over time. In

addition to experiments listed in above sections, we also perturbed other parameters

at time points when the values of their eigenvalue elasticities are large. Because of

the space limitation we do not list the experimental results in this thesis and only

discuss the experimental results briefly in this section.

Eigenvalue elasticity analysis reveals that the parameter β (Per Infected Contact

Infection Rate) has great impacts on S and I. Its decrease temporarily lowers the

values of S and I in a short period after perturbation, but increases them in the long

run. In fact, Prevalence is the variable i in Eq. 4.6, the fraction of infectives in the
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population. Based on Eq. 4.3, we have the endemic equilibrium of Eq. 4.6:

ŝ =
(β cµ− σ β c− µ2) σ τ

µ (σ τ β c + µ)
, î =

σ

µ
, r̂ =

µ σ τ − σ + µ

σ τ β c + µ

The fixed point of Prevalence will not be changed by decreasing β. Commonly

it is believed that if the infection rate of an infective patient can be controlled by

behaviour change, the total infective population could be decreased. However, for the

model with varying population size, such a policy is not globally effective because the

overall measurement Prevalence keeps constant in the long-term. However, during a

period of disease outbreak, during which Prevalence and I grow quickly, decreasing

β decreases the number of infected people, and the prevalence in the short-term.

If we aim at decreasing the value of Prevalence or I in the long-term around the

endemic equilibrium, the value of β should be increased, i.e., we should increase the

infection rate for each contacted infective, and the number of infected people would

increase when the disease outbreaks massively.

The parameter p (Staff Time per Patient) has significant influences on R.

Increasing the treatment time for each patient will decrease the population of sus-

ceptible, infected, and recovered people in the long run. Because long time waiting

for infected people will increase their chances to die and to infect susceptible peoples,

more infected patients die and the total population declines. Such perturbation also

increases Prevalence shortly after the perturbation, though it does not eventually

change the location of the fixed point of Prevalence. Therefore, the efficiency of

health workers is very important to control the number of infected and susceptible

people.

We mentioned in Section 3.2.2 that the eigenvalue elasticity with respect to a

parameter is dimensionless and can be compared with that with respect to another

parameter to determine which parameter has more important impacts on the system.

From Fig. 4.5 and Fig. 4.6, we expect that because of high elasticities, the change of

β should produce more significant changes than the change of p. However, because

of the effects of eigenvectors and coefficients, the comparison of the importance of

two parameters is not given by the values of eigenvalue elasticities alone if the largest
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elasticities appear at different times.

There are other parameters with relatively small values of eigenvalue elasticities

for this model, such as the number of health care workers h and the immunity

loss delay τ . However, perturbations of these parameters could also change the

trajectories of state variables. From Eq. 4.3, the position of the endemic equilibrium

is associated with h and τ . An increment of h will increase the value of Ŝ, R̂ and

Î by saving lives, but does not change the position of Prevalence. An increment of

τ does not change Prevalence either, but decreases Î, and the direction of change of

Ŝ or R̂ depends on the specific amount of increment and parameter values assumed.

If we increase the values of parameters h and τ by 10% and decrease p by 10%

at time = 0, when the eigenvalue elasticities are −0.03516, −0.0037 and 0.7032

respectively, we can get illustrating results of the changes of R shown in Fig. 4.16.

The application of perturbation on a parameter with a high eigenvalue elasticity

can generate more significant changes of the trajectories of state variables in the

short-term. Because the eigenvalue elasticity is dimensionless we can anticipate the

importance of a parameter for the system over a short time based on the value of

its eigenvalue elasticity. Such values can be thus employed for a sort of dynamic

Figure 4.16: The comparison of the value of R with perturbations
of h (Health Care Workers), p (Staff Time Per Patient) and τ
(Immunity Loss Delay).
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sensitivity analysis.

In terms of the value of elasticity, at time = 0 the absolute value of elasticity

of p is almost as 20 times as that of h, and as 180 times as that of τ , but in

the behaviours of R under those three scenarios of perturbations, such differences

are not reflected. One reason for this is that eigenvalues indicate the behaviour

modes of the system, and changes of a parameter based on its eigenvalue elasticity

only affect the behaviour mode but not directly behaviours. Another reason is that

the linearization of a nonlinear system is local but we change the parameter for a

long period. Therefore the immediate effects of the perturbation of a parameter at

time when the elasticity is high might be accumulated or offset in the later stage.

Ultimately, the trajectories for this model all approach the endemic equilibria, and

the long-term behaviour is more shaped by the dependence of the fixed point location

on the parameters than by elasticities.

4.2 Eigenspace Analysis of an Individual-based In-

fectious Disease Model

In this section, we use an individual-based system dynamics model to describe

the spread of an infectious disease within a given population in which a nonlinear

CTL response characterizes each population member’s individual immune response

to an infectious disease.

4.2.1 An Individual-based Viral Dynamic Model: Descrip-

tion

The base virus dynamic model for an individual contains four state variables:

the population size of uninfected cells x, the population size of infected cells y, the

number of free virus particles v, and CTL z. The state equations of the model are

based on those of [22].
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Figure 4.17: The stock-flow diagram of an individual-based viral dy-
namic model.

ẋ = λ− dx− βxv

ẏ = βxv − ay − pyz

v̇ = ky − uv

ż = cyz − bz

(4.7)

The unit for x, y, v, and z is cells, cells, virions, and CTLs respectively. Explanations

and initial settings of parameters are listed in Table 4.2.

The simulations in the following for individual-based models are carried out with

a Runge-Kutta method of order 4 with step size 0.0625. We checked simulations

with the same methods with smaller step size, which produced very close results to

the simulation with step size 0.0625. There are two reasons for us to use the Runge-

Kutta method for individual-based models rather than the Euler method, which is

used for the SIRS model in the above section. Firstly numeric results for the model

with the Runge-Kutta method of order 4 with step size 0.0625 are as the same as

that with the Euler method with step size 0.0078125. Thus to reduce computational

costs, we chose the Runge-Kutta method of order 4 with step size 0.0625. Another

reason is that solving systems with imaginary eigenvalues of local Jacobian by the
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Table 4.2: Parameter settings of an individual-based viral dynamic
model.

Parameter Full Name Value Units

β the rate of uninfected cells to be infected 10−5 1/day·virions

k the rate of infected cells to produce free virus 3 virions/day·cells

d the death rate of uninfected cells 0.1 day−1

u the death rate of free virus 3 day−1

a the death rate of infected cells 0.5 day−1

λ the replenishing uninfected cell rate 105 cells/day

p the rate of infected cells to be eliminated by the CTL response 1 1/day·CTLs

c the production rate of CTL 0.7 1/day·CTLs

b the death rate of CTL 0.05 day−1

Euler method sometimes gives unstable solutions [30]. In terms of this system, we

observed that simulation with the Euler method with step size 0.0625 gave infinite

values of state variables.

Fig. 4.18 describes the early stage of dynamical changes of the state variables

of the individual in one person model described by Eq. 4.7. The initial conditions

for this one person model are x(0) = 106, y(0) = 0, v(0) = 0.01, z(0) = 1. Infected

by initial viruses, and then by endogenous viruses, the number of infected cells, y,

increases exponentially at the beginning of the system evolution and at the same

time the number of uninfected cells, x decreases. Shortly after the rise of infected

cells, y, the viral load, v, begins to increase exponentially because of the release

of virions from infected cells. Later the value of z, representing the number of

CTLs, grows, reflecting CTLs proliferation in response to the rise of infected cells. z

declines more slowly than y and v so that the individual largely clears the infection

and receives some degree of protective immunity. Because the number of infected

cells decreases, the immune response begins to decline. As their protective immunity

wanes, a ‘critical’ point is reached at which the rate of the death of infected cells

falls below the rate of infection of cells and y begins to increase again. The amount

of CTLs does not decline to zero because when it is decreasing infected cells start to
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increase. Because of the immune memory built up in response to the first infection,

the second peak value of y is much smaller than the first one. We should note here

the scale of infected cells, viral loads and CTLs in this figure are relatively small

compared with that of uninfected cells because of our default parameter settings.

Practically, the values of parameters vary over different types of diseases, and for the

purpose of methodology study we did not calibrate the model and parameter settings

with real data. The reader can choose to view the state variables and parameters as

associated with specific dimensions but arbitrary units.

Figure 4.18: Dynamic behaviours of state variables in one-person
model.

To understand the implications of individual viral dynamics to infection spread

in the population, we follow the multi-individual model depicted in [33], whose state

equations are shown as Eq. 4.8. In this model, an individual interacts with others in
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form of exchanging free virus v.

ẋi = λ− dxi − βxivi

ẏi = βxivi − ayi − pyizi

v̇i = kyi − uvi + ω
∑
i6=j

σijvj

żi = cyizi − bzi

(4.8)

Where, i, j = 1, · · · , P and P is the size of population.

σij indicates whether the ith individual and the jth individual are connected.

This parameter varies for different individuals in the network, and we assume that

σij = σji(i 6= j) and σii = 0. ω is the connection weight between individuals, with

the unit of 1/day.

In individual-based models, the behaviours of state variables for each individual

are influenced not only by values of parameters, but also by network structures and

population size.

If we call the individual in the above one person model Person 1 and add another

person (Person 2), who is free from disease initially, i.e., x2 = 106, y2 = 0, v2 =

0, z2 = 1. Connect those two individuals with connection weight (ω) 10−6, the

resulting connection matrix is:

(σij)2×2 =

0 1

1 0


The behaviours of state variables of Person 1 will change only slightly, as Fig. 4.19

and Fig. 4.20 illustrate. But if we add the third person connected to Person 2 with

the same weight and initial conditions (to form a line-shape three-person model),

the connection matrix becomes:

(σij)3×3 =


0 1 0

1 0 1

0 1 0


The behaviours of state variables of Person 1 in this three-person model remain

the same as in the two-person model (all new introduced individuals have no virus
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initially, i.e., v(0) = 0 and other initial conditions and parameters are as same

as the first individual). We select the viral load (v) of Person 1 in these three

models with different population size and illustrate it in Fig. 4.19. In this figure the

magnitudes of oscillations of v in three models do not change. In the very beginning

of system evolution, the behaviours of v for Person 1 are almost same, but later on

the oscillations of v in two-person and three-person models appear a bit earlier than

in the one-person model. This information reflects the fact that connecting additional

persons to an infected individual will not cause his/her infection to deteriorate, but

will shift slightly earlier the oscillations of the viral load in late stages of system

evolution. The first surges of the viral loads for two indirectly infected individuals

are delayed because of the process of transmitting virus from Person 1 and necessary

time for infection to take off. However, the new introduced individuals have relatively

larger magnitudes of viral loads than the first individual in the early period, as

Fig. 4.20 presents. Later on, the magnitudes of viral loads for each individual differ

very little, although the timing remains significantly offset. The trajectories of y

(infected cells) also show similar behaviour patterns as v. We could conclude that

an uninfected individual might be severely sick during “primary infection” when

he/she is firstly contact with an infected person.

Connection weight (ω) plays an important role in disease spread. A large con-

nection weight means an infected individual could transmit a high rate of virions

to other people connected with him/her. We here focus on the simplest connection

model, in which two individuals are connected with each other. Person 1 is exactly

same as in the above analysis; Person 2 has no virus initially but is otherwise identi-

cal to initial conditions and parameters to Person 1. Fig. 4.21 shows the behaviours

of v for the first individual in the models with different connection weights. With

increasing time, the oscillation of the viral load for the first individual appears ear-

lier for the model with larger connection weight than that with smaller connection

weight, and the magnitude of the oscillation slightly decreases when the connection

weight increases. Meanwhile a large value of ω could shorten the interval between

the oscillations of different individuals (Fig. 4.22) and increase the average viral loads
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Figure 4.19: Dynamic behaviours of v for Person 1 in models with
different population size, and different subfigures show successive oscil-
lations.

of the population (Fig. 4.23). In practice, the information bolster intuition that in

a place where individuals are in close contact, like a classroom in a primary school,

the period of infectious disease outbreak could be shorter but the disease might be

more serious.

Network structure of an individual-based model also affects the accumulation

of the population-wide viral loads [33]. Here we analyze two simple three-person

models with different connection types: one line-shape model as described above

and another full connection model in which the second and third individuals in the

line-shape model are connected with the same connection weight (10−6), i.e., the

connection matrix appears as:

(σij)3×3 =


0 1 1

1 0 1

1 1 0


The magnitudes of the viral load (v) of Person 1 do not change in the early periods,

but the oscillation of v appears a bit earlier for the first person in the full connection
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Figure 4.20: Dynamic behaviours of v in models with different pop-
ulation size.

model than in the line-shape model in a long run, as shown in Fig. 4.24. In the

line-shape model, Person 3 begins to be infected after the infection of Person 2

and initially has a relatively larger magnitude of viral load oscillation. In the full

connection model, Person 2 and Person 3 are in symmetric position therefore their

behaviours are same (Fig. 4.25). Therefore, in the level of population, the time

duration of oscillations of the average viral load in the full connection model is

shorter than in the line-shape model but with a larger peak value of the magnitude

of oscillations (Fig. 4.26).

4.2.2 Equilibrium and Stability Analysis

We define the basic reproduction rate R0 for this viral dynamic model as the

number of newly infected cells that are infected by any one infected cell when all

other cells are uninfected [22]. To distinguish the parameter λ from the symbol of

eigenvalue, we use λ̄ to represent the eigenvalue in the following sections. For the

one-person model described by Eq. 4.7, the rate at which an infected cell produces
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Figure 4.21: Dynamic behaviours of v for Person 1 in two-person
models with different connection weights, and different subfigures show
successive oscillations.

new virus is k, the new born free virions and uninfected cells produce new infected

cells at rate β via mass-action dynamics, and meanwhile the life duration of an virus

is 1/u, therefore the infection incidence rate is βkx/u: the number of newly infected

cells caused by one infected cell per day. Initially, x = λ/d when there are no infected

cells. The life duration of an infected cell is 1/a, therefore we have

R0 =
βλk

adu

The equations of the one-person model are associated with three equilibrium

states. The disease-free equilibrium, where no cell is infected and there is no free

virus, as well as CTL cells are absent, is:

x̂ = x(0) =
λ

d
, ŷ = 0, v̂ = 0, ẑ = 0 (4.9)

The symbolic expressions of the eigenvalues of Jacobian matrix at the DFE are:

λ̄1 = −d, λ̄2 = −b

λ̄3 = −1

2

(
u + a−

√
(u− a)2 + 4

λ

d
βk

)
, λ̄4 = −1

2

(
u + a +

√
(u− a)2 + 4

λ

d
βk

)
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Figure 4.22: Dynamic behaviours of v in two-Person models with
different connection weights.

Because the parameters u, a, d and b are all non-negative, the stability of the DFE

depends on the third eigenvalue. With our assumption that all parameters are pos-

itive for the one-person model, λ̄3 is negative if

u + a >

√
(u− a)2 + 4

λ

d
βk

∴ ua >
λ

d
βk

∴ R0 =
λβk

adu
< 1

Therefore, as expected, we derive that if R0 < 1 the DFE is asymptotically stable

and the DFE is unstable when R0 > 1. With parameter settings listed in Table 4.2,

R0 = 20 > 1 and the DFE is unstable.

The second equilibrium is called a “defense-free” equilibrium [33] where CTLs

absent and the individual is unable to eliminate infected cells:

x∗ =
au

βk
, y∗ =

λβk − dau

aβk
, v∗ =

λβk − dau

aβu
, z∗ = 0
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Figure 4.23: Dynamic behaviours of average v in two-Person models
with different connection weights, and different subfigures show succes-
sive oscillations.

If R0 < 1 this defense-free equilibrium is physically meaningless, as it implies non-

physical values of y∗ and v∗. Because of the complicated expressions of the defense-

free equilibrium, we did not derive the symbolic expressions of the eigenvalues of

Jacobian matrix. With current parameter settings, the numeric eigenvalues of Jaco-

bian matrix at this equilibrium are:

λ̄1,2 = −0.8059± 0.29 i, λ̄3 = −3.8882, λ̄4 = 1.33× 105

Because λ̄4 > 0, the defense-free equilibrium is unstable. The endemic equilibrium

is given as

x̃ =
λuc

duc + λkb
, ỹ =

b

c
, ṽ =

kb

uc
, z̃ =

βλck − aβkb− adcu

p(dcu + βkb)

Similar to the defense-free equilibrium, symbolic expressions for eigenvalues could

not be obtained, and here we only focus on their numeric values based on current

parameter settings. The endemic equilibrium is asymptotically stable because all

57



Figure 4.24: Dynamic behaviours of v for Person 1 in three-person
models with different connection types, and different subfigures show
successive oscillations.

Figure 4.25: Dynamic behaviours of v in three-person models with
different connection types.
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Figure 4.26: Dynamic behaviours of average v in three-person models
with different connection types, and different subfigures show successive
oscillations.

real parts of the numeric eigenvalues of Jacobian matrix at this point are negative:

λ̄1,2 = −0.0141± 0.3311 i, λ̄3 = −0.1, λ̄4 = −12.97

For an individual-based viral dynamic model with population size larger than

one, described by Eq. 4.8, the number of equilibrium states grows geometrically

with population size. A model with population size P has at most 3P equilibrium

states, associated with each possible combination of equilibria in one-person model.

There is a unique disease-free equilibrium of the multi-person model, in which state

variables in each system of equations representing an individual share the same val-

ues as Eq. 4.9, and similarly the stability of this unique DFE depends on R0. The

multi-person model is associated with a unique endemic equilibrium, in which state

variables for each individual have similar values of the endemic equilibrium in one-

person model with slight differences on x, v and z because of the connections with

other individuals (examples will be given later). For any other ‘combined’ equilibrium

state, it could be stable only when state variables in this equilibrium representing ev-
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ery individual correspond to a stable disease-free/defense-free/endemic equilibrium.

Because both the DFE and the defense-free equilibrium in the one-person model

are unstable, for the multi-person model in our analysis, only the unique endemic

equilibrium could be stable.

For the connected two-person model, the endemic equilibrium is

x̃1 = x̃2 =
λc(u− ω)

dc(u− ω) + βkb

ỹ1 = ỹ2 =
b

c

ṽ1 = ṽ2 =
kb

c(u− ω)

z̃1 = z̃2 =
βλck − aβkb− adc(u− ω)

p(dc(u− ω) + βkb)

(4.10)

For the three-person model with a line-shape, the endemic equilibrium is located at

x̃2 =
λc(u2 − 2ω2)

dc(u2 − 2ω2) + βkb(u + 2ω)
, x̃1 = x̃3 =

λc(u2 − 2ω2)

dc(u2 − 2ω2) + βkb(u + ω)

ỹ1 = ỹ2 = ỹ3 =
b

c

ṽ2 =
kb(u + 2ω)

c(u2 − 2ω2)
, ṽ1 = ṽ3 =

kb(u + ω)

c(u2 − 2ω2)

z̃2 =
βλck(u + 2ω)− aβkb(u + 2ω)− adc(u2 − 2ω2)

p(dc(u2 − 2ω2) + βkb(u + 2ω))

z̃1 = z̃3 =
βλck(u + ω)− aβkb(u + ω)− adc(u2 − 2ω2)

p(dc(u2 − 2ω2) + βkb(u + ω))

(4.11)

The endemic equilibrium for the three-person model with full connections is located

at

x̃1 = x̃2 = x̃3 =
λc(u− 2ω)

dc(u− 2ω) + βkb

ỹ1 = ỹ2 = ỹ3 =
b

c

ṽ1 = ṽ2 = ṽ3 =
kb

c(u− 2ω)

z̃1 = z̃2 = z̃3 =
βλck − aβkb− adc(u− 2ω)

p(dc(u− 2ω) + βkb)

(4.12)

For an individual-based model with population size P , it is difficult to derive the

symbolic expression of the endemic equilibrium because the expressions will depend

on network structure. However, for the model with full connections, because the
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endemic equilibrium of each individual is located at the same position, and because

each individual is connected with other P − 1 individuals in a symmetric fashion,

the system equations Eq. 4.8 at the endemic equilibrium are equivalent to:

˙̃xi = λ− dx̃i − βx̃iṽi

˙̃yi = βx̃iṽi − aỹi − pỹiz̃i

˙̃vi = kỹi − uṽi + ω(P − 1)ṽi

˙̃zi = cỹiz̃i − bz̃i

(4.13)

where i = 1, · · · , P . Forcing the equations of Eq. 4.13 to be equal to zero, we get the

general formula of the endemic equilibria for the P -person fully connected model:

x̃i =
λc(u− (P − 1)ω)

dc(u− (P − 1)ω) + βkb

ỹi =
b

c

ṽi =
kb

c(u− (P − 1)ω)

z̃i =
βλck − aβkb− adc(u− (P − 1)ω)

p(dc(u− (P − 1)ω) + βkb)

(4.14)

The state variables x, v and z at the endemic equilibrium of an individual-based

model are shifted from the positions of the corresponding state variables at the

endemic equilibrium of the one-person model and offset by the connection weight

ω. For the values of ω and P explored in this thesis, this offset will be small.

Eq. 4.11 and Eq. 4.12 indicate that the position of the endemic equilibrium for

an individual-based model depends on the network structure. In our study, the

network graph is undirected and no individual is connected with him/herself, i.e.,

the connection matrix is a symmetric matrix with all zero diagonal entries. Therefore,

for an individual-based model with population size P , there are a total of 2
P (P−1)

2

types of connection.

Network structure affects not only the location, but also the stability of the

equilibria. One particular concern is the stability of the endemic equilibrium for

different connection types, which is dependent on eigenvalues of the Jacobian matrix

for the particular network topology. Here we examine the largest real parts of the
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eigenvalues of Jacobian matrix at the endemic equilibrium for each connection type

of the individual-based model with population size of 2, 3 and 4 respectively (all

parameter values are based on Table 4.2).

The two-person model has only two types of connection if the connection weight

ω is fixed to be 10−6: connected and not connected. The largest real part of the

eigenvalues of Jacobian matrix at the endemic equilibrium of these two scenarios are

−0.140751814×10−1 and−0.140751769×10−1 respectively. The endemic equilibrium

is stable for each scenario. With connection between two persons, the largest real

part of the eigenvalues of Jacobian matrix at the endemic equilibrium decreases by a

factor of 10−7. For the model with three persons, there are eight types of connections.

The largest real part of the eigenvalues of Jacobian matrix at the endemic equilibrium

varies between −0.140751861 × 10−1 and −0.140751769 × 10−1. As for the single-

person model, the scenario of full connection shares the smallest value of this range,

and the scenarios in which the initially infected person (Person 1) has no connection

with others shares the largest value of the range. The maximum absolute difference

between these largest real parts of the eigenvalues at the endemic equilibrium is of

the order of 10−7.

Similarly, the range of the largest real part of the eigenvalues of Jacobian matrix

at the endemic equilibrium for the model with four persons is

[
−0.140751907× 10−1,−0.140751769× 10−1

]
As before, the case of full connection shares the smallest value of this range, and

the cases where Person 1 has no connection with others shares the largest value of

the range. As above, the length of this range is of the order of 10−7. If we increase

the value of the connection weight ω to be 10−4 and 10−2 respectively for the model

with four persons, correspondingly this range becomes

[
−0.14076553× 10−1,−0.140751769× 10−1

]
whose length is with the order of 10−5, and

[
−0.14213103× 10−1,−0.140751769× 10−1

]
62



in which the largest real part of the eigenvalues at the endemic equilibrium for the

fully connected case decreases by a factor of 10−3.

In fact, the largest real part of eigenvalues of the Jacobian matrix at the endemic

equilibrium for the one-person model is −0.140751769 × 10−1. For a multi-person

model in which the initially infected person (Person 1 in our study) has no contact

with any other person, the largest real part of eigenvalues of the Jacobian matrix

at the endemic equilibrium is as the same as in the one-person model, though the

lack of connection prevents the system from approaching to the endemic equilibrium,

because all individuals except the initially infected one will not come in contact with

the virus. If this person is connected to anyone else in the model, the largest real part

of eigenvalues of Jacobian matrix at the endemic equilibrium will decrease a little.

If the connection is stronger, the largest real part of eigenvalues becomes smaller. If

the connection becomes weaker, the largest real part of eigenvalues is closer to that

in the scenario of no connection.

The less stability of the case of no connection has an epidemiological interpreta-

tion that medical treatments could change the states of an individual in the model;

however, in the fully connected case, because of connections to other infected indi-

viduals, the effects of changing states by medical treatment could be offset by newly

transmitted viruses from neighbours and the endemic equilibrium is relatively more

stable. For example, consider a family without immune memory to Herpes Simplex

Virus (HSV), where all family members live together and virus are able to be trans-

mitted in their daily life. The effects of medical treatments could be blunted by

virions obtained from other family members suffering from reactivation. In contrast,

if all family members are quarantined from each other, medical treatments (e.g.,

Acyclovir) could kill virus and produce new CTLs, and each member would not be

influenced by others, permitting an easier “escape” from the endemic equilibrium.

In such case, the state variables of each individual at the endemic equilibrium could

also be slightly altered. Thus, if this family were to achieve to the endemic equilib-

rium, this endemic equilibrium would be more stable in the case of full connections

than in the case of no connection. Therefore we suggest (although do not prove)
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that if the one-person model is stable at the endemic equilibrium, any multi-person

model, in which all the parameters share the same values, will also be stable at the

endemic equilibrium.

When we change other parameters in the one-person model, like c (the production

rate of CTL), if such change does not alter the stability of the endemic equilibrium

of the one-person model, we suggest that it likely does not alter the stability of the

endemic equilibrium for a multi-person model with the same parameter settings.

Based on the Routh-Hurwitz Criterion, if the value of c is in the range (0.545,∞)

or the value of u is in the range (0, 60) when all other parameter values are fixed,

any change of exactly one of these two parameters within in its respective range

(leaving the value of the other constant) will not alter the stability of the endemic

equilibrium for the one-person model. Following our analysis above, the stability of

the endemic equilibrium for other multi-person models will not be changed if one of

these two parameters is perturbed within this range. The default values of c and u

in our models is 0.7 and 3, therefore if we increase or decrease them by a very small

amount the stability of the endemic equilibrium does not change.

4.2.3 Eigenvalue Analysis of an Individual-based Viral Dy-

namic Model with 3 Persons

In a very short period around a particular point of time, a linearized model can

be an excellent approximation to its associated nonlinear model [7]. The following

sections describe dynamic behaviours of the individual-based model through eigen-

values and eigenvalue elasticities of a linearized individual-based model described at

each time point.

For the model described by Eq. 4.8, there are N = 4P states and correspondingly

4P eigenvalues of the system’s Jacobian matrix. It is difficult to study all states and

eigenvalues clearly for a system with a large population, therefore in this section,

we start the study with a model of small populations: the line-shape three-person

model, where P = 3.
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Behaviours of state variables in the system over time are plotted in Fig. 4.27,

where the X-axis is time and Y-axis represents the number of viral loads/uninfected

cells/infected cells/CTLs.

Figure 4.27: Behaviours of state variables for an individual-based
model with 3 persons in line-shape.

4.2.3.1 Eigenvalue Clustering

Approximating the system to be a linear one at regularly spaced time points with

the Jacobian matrix, we obtained eigenvalues of the Jacobian matrix over time.

Fig. 4.28 shows all real components of eigenvalues of the Jacobian matrix of the

model over time, where the horizontal axis is time and the vertical axis shows the

value of real components of eigenvalues. With time increasing, the magnitude of

oscillation of the eigenvalues becomes quite small,which means the system tends to-

wards the endemic equilibrium. Because there are twelve real parts of eigenvalues

and at most six imaginary parts of eigenvalues it is difficult to see clearly how these

eigenvalues evolve. Fig. 4.29 shows the eigenvalues of system Jacobian matrix in the
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Figure 4.28: The real components of all eigenvalues over time for an
individual-based viral dynamic model with 3 persons in line-shape.

complex plane at different times.2 From these four figures, it can be appreciated

that the 12 eigenvalues of the system Jacobian matrix are generally clustered in four

groups, representing the four system behaviours associated with each person. The

first group of eigenvalues are real and oscillate between −8 and −10, yielding strong

exponential damping toward equilibrium. The second group of eigenvalues are also

real and oscillate in the region (−0.5, 0). The third and the fourth group contain con-

jugate pairs of eigenvalues; eigenvalues in these final two groups could have nonzero

imaginary parts at some time points, which contribute to the oscillations of the state

2A video recording the evolution and clustering of eigenvalues of the Jacobian matrix of the
system can be found at http://homepage.usask.ca/˜qiz765/eigenvalueClustering.htm
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variables.
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(d) time = 960
Figure 4.29: Eigenvalues of system’s Jacobian matrix in the complex
plane for an individual-based viral dynamic model with 3 persons in
line-shape.

4.2.3.2 Eigenspace Analysis

Because of the large number of eigenvalues in the system, the relationship between

the system behaviours and eigenvalues is still not intuitively clear. In the following

part of this section, we focus on the dominant eigenvalues, i.e. eigenvalues with the
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largest real parts. Fig. 4.30 gives both the real and imaginary parts of the dominant

eigenvalues over time for the 3-people model, where the horizonal axis is time axis

and the vertical axis presents the value of real and imaginary parts of the eigenvalues.

Figure 4.30: The largest real component of eigenvalues and the corre-
sponding imaginary component over time for an individual-based viral
dynamic model with 3 persons.

The largest real parts of the eigenvalues oscillate dramatically before time = 200,

and its imaginary part is nonzero when the real part falls at the end of each period.

Correspondingly, in general, behaviours of the states xi, yi, vi and zi (i = 1, 2, 3)

appear with pronounced oscillations during this period of time, as shown in Fig. 4.27.

From time = 200 to time = 300, the magnitude of the oscillation of the imaginary

parts are smaller, indicating the damping time for each oscillation is a big longer

than in the previous period. After time = 300, both real and imaginary parts of

the dominant eigenvalue became increasingly stable. Eventually, the real part of the

dominant eigenvalue is below zero, and the imaginary part is around 0.35, which

means the system decays toward an equilibrium with a almost constant frequency of

oscillation, as shown in Fig. 4.27.

Because of the long time frame involved and the pronounced dynamics, the dy-
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namics of behaviours and their corresponding eigenmodes in Fig. 4.27 is not fully

clear. The following part of this section therefore focuses a short period of time

when the dominant eigenvalues are complex. For example, from time = 9.54 to

time = 10.28, the imaginary part of dominant eigenvalues are nonzero, and the state

variables v2 and y2 oscillate during this period. Fig. 4.31 gives local views of state

variables in this period of time. In this period, x2 decreases while x1 and x3 slowly

increase; y2 increases first and declines later, while y1 and y3 are almost zero; v2

increases while v1 and v3 are almost zero; and z2 begins to increase at later time

while z1 and z3 are slowly decreasing.

Figure 4.31: An early view of behaviours of state variables for an
individual-based viral dynamics model with 3 persons, where v1, v2, y1,
and y2 are near zero.

Particularly, four phases in this period are listed as: phase I (time = 10.04 to

time = 10.09), phase II (time = 10.10 to time = 10.15), phase III (time = 10.16

to time = 10.21), and phase IV (time = 10.22 to time = 10.28). The dominant

eigenvalues of these four phases are: 2.277± 3.263i, 1.493± 3.307i, 0.6693± 3.023i

and 0.00394± 2.524i. The real parts of the dominant eigenvectors of the four phases
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are listed respectively in the following:

x1

y1

v1

z1

x2

y2

v2

z2

x3

y3

v3

z3



+2.440× 10−11

+2.593× 10−15

+7.709× 10−15

+1.674× 10−15

−8.896× 10−8

+1.235× 10−8

+4.299× 10−8

+5.287× 10−8

−6.184× 10−1

+3.905× 10−2

+1.470× 10−1

+3.740× 10−1



,



−1.398× 10−11

+3.164× 10−15

+8.986× 10−15

−1.811× 10−15

−9.466× 10−8

+1.315× 10−8

+4.428× 10−8

+5.590× 10−8

−6.432× 10−1

−8.102× 10−2

+1.025× 10−1

+4.787× 10−1



,



−4.835× 10−11

+4.143× 10−15

+1.160× 10−14

−8.211× 10−15

−1.099× 10−7

+1.402× 10−8

+4.547× 10−8

+6.517× 10−8

−6.859× 10−1

−1.444× 10−1

+5.278× 10−1

+5.561× 10−1



,



−6.841× 10−11

+6.000× 10−15

+1.607× 10−14

−1.672× 10−14

−1.380× 10−7

+1.412× 10−8

+4.429× 10−8

+8.335× 10−8

−7.298× 10−1

−1.447× 10−1

+1.018× 10−2

+5.889× 10−1



From these eigenvectors, it can be observed that during this period of time, compo-

nents in the dominant eigenvectors which represent states of Person 3 (the final 4

components) have larger values than other components, which means in this period,

the dominant eigenvalue primarily determines the behaviour mode of Person 3. In

Fig. 4.27, the states of other two persons exhibit little change, and those of Person

3 alter significantly. Complex eigenvalues here indicate oscillations of y3 and v3. In

fact, x3 and z3 also oscillate before and after this period respectively. Because new

virions are mainly produced by infected cells, the oscillation of v3 occurs a bit later

than that of y3; meanwhile z3 begins to grow a bit later than y3 because CTL pro-

liferates in response to the growth of infected cells. In phase I and II, components

of y3 in the dominant eigenvector are relatively smaller, and its change rate ẏ3 is

smaller than the change rates of other three states, as shown in Fig. 4.32. In all

of these four phases, components representing x3 in the dominant eigenvectors have

relatively large absolute values, and its changing rate ẋ3 is also very large.
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Figure 4.32: An early view of v̇i, ẋi, ẏi, żi i = 1, 2, 3 for an individual-
based viral dynamic model with 3 persons in line-shape.

4.2.3.3 Multiplicity of Eigenvalues

If we add another person, Person 4 to be connected with Person 2 in the three-

person model of line-shape, who has the same connections and initial values as

Person 3 and re-analyze the model, from symmetry considerations we would expect

that the final 4 entries of the eigenvectors (representing Person 4) and the second

last 4 entries of eigenvectors (representing Person 3) are identical. However, for

some eigenvectors (usually the last 6 eigenvectors) entries for Person 3 and Person

4 are not identical. One reason for that is eigenvalue multiplicity.

An eigenvalue of the square matrix A is of multiplicity of K if it is a K-fold

root of the characteristic equation |A − λI| = 0. If an eigenvalue has K linearly

independent associated eigenvectors, this eigenvalue of multiplicity K is complete.

However, not all multiple eigenvalues are complete, and an incomplete eigenvalue

of multiplicity of K > 1 can be termed defective [6]. A matrix with any defective

eigenvalue is called a defective matrix. The computation of eigenvalue solutions for

linear differential equations with defective eigenvalues is very complicated, and its
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eigenspace is also hard to analyze.

In our study, at time = 0.5 the last 4 eigenvectors share the same eigenvalue −0.1,

associated with die-off of uninfected cells, which comes from the constant entry of

Jacobian matrix, and the second last four eigenvalues of −0.05, associated with die-

off of infected cells. These two eigenvalues are of multiplicity of 4. At time = 0.5

the rank of the matrix of eigenvectors is 16, and the matrix is of full rank3. Thus

eigenvectors at this time point are linearly independent. We checked eigenvectors

of the Jacobian matrix at several time points when the multiplicity of eigenvalues

occurs, and we found that all these eigenvectors are linearly independent. Hereby we

assume (though do not prove) that in our model, when there are multiple eigenvalues,

they are complete and their corresponding eigenvectors are linearly independent.

Thus the expansion of state variables around a point x0 at time t0 could be presented

as the following:

x(t) =
16∑
i=1

cirie
−λi(t−t0) + b (4.15)

Where x is the vector of state variables, ri is the ith eigenvector of the Jacobian

matrix of the system, and b is the constant term. As we indicated in Section 3.1.3,

the constant term does not affect the analysis of eigenmodes and behaviour patterns,

and thus we neglect this constant term in following discussions. For this model,

the last four eigenvalues are −0.1 and the second last four eigenvalues are −0.05.

Therefore, we could rewrite the expansion of λs in Eq. 4.15 into the eigenmodes as:

x(t) =
8∑

i=1

cirie
−λi(t−t0) + (

12∑
i=9

ciri)e
−0.05(t−t0) + (

16∑
i=13

ciri)e
−0.1(t−t0) (4.16)

The last two weighted eigenvectors
∑12

i=9 ciri and
∑16

i=13 ciri can be calculated yield-

ing the following:

16∑
i=13

ciri = [. . . ,−1.49× 10−3,−1.24× 10−17, 2.30× 10−16, 1.69× 10−16,

−1.49× 10−03,−1.24× 10−17, 2.30× 10−16, 1.69× 10−16]T

3This matrix of eigenvectors is listed in Appendix B.
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12∑
i=9

ciri = [. . . , 5.89× 10−9, 9.86× 10−11,−1.44× 10−9,−4.88× 10−2,

5.89× 10−9, 9.86× 10−11,−1.44× 10−9,−4.88× 10−2]T

From the above, we can see that sum of eigenvector entries for Person 3 and Person

4 are identical. This suggests that for an individual-based model, if several individ-

uals share the same parameters, connections, and initial conditions we could group

them together and regard them as a single individual with multiple links. In ad-

dition, because the individuals in the network share similar equations, and some of

them share the same parameters and initial conditions, the multiplicity of eigenval-

ues occurs more frequently for the individual-based model than for the aggregate

SIRS model, as shown in Fig. 4.3 and Fig. 4.28. This might be a significant limi-

tations of eigenvalue analysis for individual-based models, and deserves our further

investigations.

4.2.4 Eigenvalue Elasticity Analysis of an Individual-based

Viral Dynamic Model with 3 Persons

There are ten parameters for the individual-based viral dynamics model; however,

although eigenvalue elasticities with respect to parameters can be analyzed math-

ematically, some of these parameters are difficult to alter biologically, for example,

β (the rate at which uninfected cells are infected). In this section, we fo-

cus on the parameter c (the production rate of CTL) and ω (the connection

weight) and the eigenvalue elasticity with respect to them, because practically c

might be changed by behaviour changes (e.g. exercise, smoking cessation, improved

nutrition) or medical treatments (e.g. prevention of progress of kidney disease),

and ω can be perturbed by social policies, such as policies to reduce risk-taking

behaviours or to enhance hygiene or encourage reduced mixing.

With the symbolic expression for eigenvalue sensitivity in Eq. 3.16 and the ex-

pression of eigenvalue elasticity with respect to a parameter in Eq. 3.26, we computed

the elasticities of eigenvalues with respect to ω and c. Because we have 12 eigenvalues
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for this individual-based viral dynamics model, it is natural to find the eigenvalue

elasticities with the largest real parts and try to perturb this parameter at the time

point when the first peak of eigenvalue elasticity appears, as Section 3.2.2 suggests.

Fig. 4.33 plots the largest real parts of eigenvalue elasticity with respect to ω, and

its corresponding imaginary parts. From these two figures, it can be observed that

the first peak of the real parts of the eigenvalue elasticity appears from time = 0 to

time = 0.03 with the value of 1.86× 10−7, the second significant peak appears from

time = 139.10 to time = 139.15 with the value of 1.02 × 10−7, and the elasticity

arrives at the highest value of 4.53× 10−7 when time = 934.04. The imaginary part

of the elasticity at the first and the second peak is zero, and is 1.52 × 10−6 at the

time of the third peak.

The past studies of eigenvalue elasticity, such as [7], indicated that a parameter

with higher eigenvalue elasticities is more important than those with lower elasticities

to the system. As a policy lever, the perturbation of this parameter might be more

effective than that of other parameters. However, we also want to know proper times

to change the parameter. In our study of infectious disease, it is generally desirable

to intervene earlier because we want to reduce the number of infected people and

delay the spread of diseases. Here, although the eigenvalue elasticity with respect to

ω arrives at the highest peak at time = 934.04, it is nearly meaningless to perform a

policy at this time in practice because the system approaches to an equilibrium after

time = 500 and any change then will not influence the system too much. Therefore,

we perturb ω at time = 0.03 (when the largest eigenvalue elasticity is 1.86 × 10−7)

and time = 139.1 (when the largest eigenvalue elasticity is 1.02×10−7). A simulation

of a perturbation of ω at time = 10 (when the largest elasticity is −3.58× 10−12) is

performed as a control. We decrease the ω to be 90% of the original value of 10−6

for the perturbation.

Fig. 4.34 is the comparison of the value of average v across the population with

perturbations of ω at three time points (each associated with the red, green and

grey curve respectively), and the blue curve is the original value of average v in the

population. Due to small values of elasticities (on the order of magnitude 10−7), the
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(a) Real Parts

(b) Imaginary Parts
Figure 4.33: The largest real part of eigenvalue elasticity with respect
to ω (the connection weight) for an individual-based viral dynamic
model with 3 persons and the corresponding imaginary parts.
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change of behaviour from the perturbation is not significant and is hard to observe

in Fig. 4.34. Locally between time = 148 and time = 156, the oscillation of average

v is a bit delayed with perturbation of ω at time = 0.03 or time = 10.

Figure 4.34: The value of average v in the population with a small
perturbation of ω (the connection weight) at time = 0.03, time =
10, and time = 139.1 respectively for an individual-based viral dynamic
model with 3 persons and its local view.

However, the change of behaviour is quite small and the difference between per-

turbations at different time points are difficult to observe because of small changes

of ω and small values of the elasticities. Therefore, we give ω a bigger alteration,

and change it to be 10% of its original value. Shortly after the perturbations of ω at

time = 0.03, time = 10, and time = 139.1, the average of v in the population does

not change at all. But in a bit longer term, the effects of such perturbations could

be reflected.

As shown in the local view of Fig. 4.35, during the period from time = 148

to time = 156, the value of the average v in the population is a bit larger with

perturbations than the original one, but the oscillations are delayed. Particularly,

the perturbation at time = 0.03 has a longer delay of oscillation compared with the

original curves than that at time = 10 because of the larger value of the elasticity.

But this figure does not clearly show the influence of the perturbation at time =
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139.1.

Table 4.3: The value of average v in population with perturbations of
ω at different time for an individual-based viral dynamic model with 3
persons.

average v in the population

Time (Day) 148 148.125 148.375 148.5 148.625

Baseline 0.0433 0.0488 0.0490 0.0516 0.0547

perturbed at time = 0.03 0.0246 0.0241 0.0235 0.0235 0.0237

perturbed at time = 10.0 0.0277 0.0275 0.0278 0.0283 0.0291

perturbed at time = 139.1 0.0433 0.0488 0.0490 0.0516 0.0547

Table 4.3 gives the value of average v in the population at a selected set of time

points. In this table, the perturbation of ω at time = 139.1 nearly has no effect on

the value of average v, i.e., such perturbation does not apparently change the system

behaviour. With Eq. 3.17, we have

∆λi ≈ εi(pj)
∆pj

pj

λi (4.17)

With a given change of pj, the value of ∆pj/pj is fixed, and the change of λi is

determined by both the elasticity and the eigenvalue itself. From Table 4.4, it can be

observed that at time = 139.1, the eigenvalue corresponding to the largest elasticity

is much smaller than the dominant eigenvalue. In contrast, at time = 10, the

eigenvalue corresponding to the largest elasticity is with the same order of magnitude

of the dominant eigenvalue; and at time = 0.03 the eigenvalue with the largest

elasticity is the dominant eigenvalue at that time. Therefore, we conjecture that the

perturbation at time = 0.03 alters the system behaviour most significantly, because

the perturbation of the parameter affects the dominant eigenvalue.

At the endemic equilibrium, the average value of v in the population for three-

person model in the line-shape is

v̄ =
bk (3 u + 4 ω)

3 (u2 − 2 ω2) c
(4.18)

With the default values of parameters, the population mean value of v at the endemic

equilibrium is 0.07142860. When ω is decreased to be 10% of the default value, the
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(a) Overall view and local view in the long run

(b) Local view between time = 148 and time = 156
Figure 4.35: The value of average v in population with a large per-
turbation of ω (the connection weight) at time = 0.03, time = 10,
and time = 139.1 respectively for an individual-based viral dynamic
model with 3 persons and its local views.
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Table 4.4: The dominant eigenvalues and eigenvalues with the largest
elasticity at different times for an individual-based viral dynamic model
with 3 persons.

Time (Day)
Eigenvalue with

the Largest Elasticity
Dominant Eigenvalue

The Largest

Eigenvalue Elasticity

0.03 3.278 3.278 1.86× 10−7

10.0 −1.744 2.814 1.02× 10−7

139.1 2.738× 10−3 6.908× 10−1 −3.58× 10−12

population mean value of v at the endemic equilibrium becomes 0.07142857. The

difference between the original value and the shifted value is only of the order of

magnitude of 10−6. Therefore, the perturbation of ω by a small amount cannot

significantly decrease the mean viral load across the population in the long-term,

shown in Fig. 4.35, but could locally alter the trajectory of the average v in the

population, and especially at the time points when the elasticity is high and when

the eigenvalue with the large elasticity is close to the dominant eigenvalue.

The elasticity of the eigenvalue with respect to ω is of the order of magnitude

of 10−7, and a small change of ω does not result in a significant alteration of the

system behaviour. Because the eigenvalue elasticity is dimensionless, we now choose

the parameter with the largest elasticity. Fig. 4.36 illustrates the real and imaginary

parts of the largest eigenvalue elasticity with respect to c (the production rate

of CTL) respectively. The maximum elasticity of the eigenvalues with respect to

c has much larger value than that with respect to ω. The first significant peak of

the eigenvalue elasticity with respect to c appears from time = 94.85 to time = 94.9

with the value of −225.9, and the most significant peak of the elasticity appears from

time = 158.72 to time = 158.78 with the value of −2264. The elasticity also arrives

at another peak from time = 165.97 to time = 166.03 with the value of −747.34.

We perturb c to change it to be 110% of the original value 0.7 at time = 94.85

and time = 158.72. With 10% increment of c, the mean value of v in the population

at the endemic equilibrium in Eq. 4.18 becomes 0.06493509, decreased by 9.1% from

the original value. Such perturbation changes the behaviour of the average v in the

population in the long run (Fig. 4.37).

79



(a) Real Parts

(b) Imaginary Parts
Figure 4.36: The largest real part of eigenvalue elasticity with respect
to c (the production rate of CTL) for an individual-based viral dy-
namic model with 3 persons and the corresponding imaginary parts.
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Similar to the perturbation of ω, we also add an experiment to perturb c at time =

10 as a control when the elasticity is 0.768 ± 0.362i. Fig. 4.37 is the comparison of

the value of average v with perturbations of c at three different time points and

its local view from time = 600 to time = 700, presenting by red, green and grey

curves respectively, and the blue curve is the original value of average v in the

population. Table 4.5 illustrates the local changes of the average v shortly after the

perturbation of c. From these figures, the trajectory of average v has been changed

by the perturbations. The value of the average v across the population becomes

smaller in a short period of time after perturbations of c at these time points than

the original values, which indicates such policy causes the mean viral loads in the

population to decline. In addition, the proportional changes of the average v brought

by the perturbation at time = 158.72 is a bit more significant than that from the

perturbation at time = 94.85. The eigenvalue corresponding to the largest elasticity

at time = 158.72 is the dominant eigenvalue (3.360 × 10−1) at that time, while the

eigenvalue associated with the largest elasticity at time = 94.85 is −3.208 × 10−4.

The coefficients of those two eigenvalues are on the order of magnitude of 10−1 at

that time when the largest and the smallest order of magnitude of the coefficient are

101 and 10−5. According to Eq. 4.17, the change of the behaviour mode from the

perturbation of c at time = 158.72 is a bit more significant than that at time = 94.85,

as demonstrated in the local view.

However, similar to the perturbation of ω, as a control experiment the pertur-

bation of c at time = 10 alters the system behaviour greatly in a short period of

time after the perturbation. In fact, the eigenvalue of the largest elasticity is the

dominant eigenvalue at that time (2.814±2.989i). In addition, the coefficient of this

eigenvalue is 33.72, the largest coefficient at that time, which means the eigenvector

of this eigenvalue must be an eigenvector which dominates the system significantly.

Therefore, a small change of the eigenvalue from the perturbation of c can generate

distinct changes of the behaviour. Because eigenvalue elasticities at a particular time

point are computed with the Jacobian matrix at that time, the largest elasticity can

only predict local proportional changes of eigenvalues. In a long run, eigenvectors,
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Figure 4.37: The value of average v in the population with a perturba-
tion of c (the production rate of CTL) at time = 10, time = 94.85,
and time = 158.72 respectively for an individual-based viral dynamic
model with 3 persons and its local view.

as well as coefficients, can also jointly determine the evolution of the system, and

locally high eigenvalue elasticities are not necessarily indications of global results of

the perturbation of the parameters.

4.2.5 Discussion

We analyzed an individual-based viral dynamics model with three people with

equilibria, eigenvalues, eigenvectors and eigenvalue elasticities in this section. The

number of equilibria of the equations grows geometrically with the population size.

With current parameter settings, the disease-free and defense-free equilibria are un-

stable and the endemic equilibrium is stable for both the one-person model and

multi-person model. Perturbations of the connection weight ω or the production

rate of CTL c in our eigenvalue elasticity analysis do not change the stability of the

endemic equilibrium, but will slightly shift its position.

Unlike the SIRS model discussed in the above section, the individual-based model

exhibits complexity due to relatively large number of state variables and network

connections. Even for the model of three people it is hard to describe the system
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Table 4.5: The value of average v in the population shortly after per-
turbations of c at different time for an individual-based viral dynamic
model with 3 persons.

average v in the population

Time (Day) 10.0078 10.0391 10.0703 10.1016 10.1328

Baseline 1.47217 1.56318 1.64619 1.71767 1.77432

perturbed at time = 10.0 1.47217 1.56299 1.64507 1.71432 1.76699

proportional changes 0 −1.2155× 10−4 −6.8036× 10−4 −0.002 −0.004

Time (Day) 94.5859 94.6172 94.6484 94.6797 94.7109

Baseline 0.0222304 0.0219134 0.0216387 0.0213912 0.0211761

perturbed at time = 94.58 0.0222304 0.0219134 0.0216386 0.0213911 0.0211758

proportional changes 0 0 −4.6213× 10−6 −4.6748× 10−6 −1.4167× 10−5

Time (Day) 158.727 158.773 158.813 158.852 158.898

Baseline 0.122342 0.121043 0.119902 0.118709 0.117216

perturbed at time = 158.72 0.122341 0.121039 0.119889 0.118681 0.117162

proportional changes −8.1738× 10−6 −3.3046× 10−5 −1.0842× 10−4 −2.3587× 10−4 −4.6069× 10−4

behaviours with eigenvalues alone; evolving eigenvectors and coefficients also play

an important role in determining the behaviour patterns. Multiple eigenvalues of

the Jacobian matrix for an individual-based model occur more frequently than for

the SIRS model analyzed early in this chapter. All of these difficulties hamper the

efficiency of the application of eigenvalue analysis for individual-based models of

infectious disease spread.

Because the eigenvalue elasticity is dimensionless, we could compare it with re-

spect to different parameters. In our analysis of the individual-based model, the

eigenvalue elasticity with respect to c is much higher than that with respect to ω (by

the order of the magnitude 108). When both of these two parameters are changed

with the same proportion, the changes after perturbations of c are more distinct than

after the perturbations of ω. The perturbations of a parameter based on eigenvalue

elasticity analysis is also determined by the elasticities, the eigenvalues and their co-

efficients. For example, an eigenvalue with a small value may have a large elasticity

with respect to a parameter, and in such a case, because the eigenvalue does not

determine the major behaviour of the system, changing the value of the parameter

may not result in notable alterations of the system behaviour. In addition, the per-
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turbation of a parameter with a large eigenvalue and a large elasticity at a particular

point might also have a very limited impact on the system because the coefficient

may have a small value. Consequently, the perturbation of a parameter with a high

elasticity cannot be guaranteed to yield a significant change of the system behaviour

over time, even in the short-term. In next chapter, we will see how global behaviours

of the system can limit effectiveness of parameter sensitivity analysis. Furthermore,

if we analyze a more complex model consisting of 30 or 100 or even one thousand

people, eigenvalue elasticity analysis can likely not provide instant and effective sug-

gestions. To sum up, the eigenvalue elasticity analysis, which aims to provide policy

levers, is not as powerful for a complicated infectious disease model as it can be for

simple models.
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Chapter 5

Global Function Elasticity and Sensi-

tivity Analysis of

Infectious Disease Models

As introduced in Section 3.3, a consideration of a global function in state space

and its elasticity analysis offers an easier insight into the influence of a parameter

on a system than for eigenvalue elasticity analysis. This reflects the fact discussed

in Section 4.2.4 that the effects of perturbations of a parameter on eigenvalues may

not directly be reflected by state variables. In this chapter, we analyze global func-

tion elasticity and sensitivity with respect to parameters for both aggregate and

individual-based infectious disease models. A global function in state space is de-

fined as a mapping from the state space of the system to the real domain R. Such

a function summarizes state variables in the state space at a particular time. For

simplicity, we call a global function in state space a “global function” for short.

5.1 Global Function Elasticity Analysis of an In-

dividual-based Viral Dynamic Model with 30

Persons

The motivations for the analysis of parameter impact on global functions is

several-fold. For an individual-based model with a large population, we believe that

policy makers cannot limit their concerns to one or two individuals in the system, and
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Figure 5.1: The connection network for an individual-based viral dy-
namic model with 30 persons.

their aim is control the disease on a macro-level. Another direct inspiration for our

introduction of global function elasticity and sensitivity is the difficulty of applying

eigenvalue elasticity methods to an individual-based model with a large population

size, as we analyzed in the last chapter. Therefore in the following, we concentrate

on an individual-based viral dynamic model with a relatively large population size

(30) by global function elasticity and sensitivity. The model with the 30 persons is

similar to that with 3 persons except for presence of a larger population size and the

presence of a different connection matrix (σ)ij(i, j = 1, · · · , 30). Fig. 5.1 shows the

network of connection among 30 persons in this model.

For the purpose of disease control, one possible target could be decreasing the

amount of virus or the rate at which the quantity of viral particles grows on a level

of the whole population. Thus we define G to be the average virus load in the

population. Because any change of a parameter cannot instantly influence the state

variables, as Table 4.5 shows, but the changing rate of state variables and of functions

of state variables can be changed immediately, in this chapter, we apply our analysis

of the impact of parameter changes on the rate of change of global functions. The

global function we study here is its the rate of changing: Ġ. If P is the population
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size of the model, G is defined as:

G =
1

P

P∑
i=1

vi (5.1)

According to Eq. 3.31, we have

Ġ =
∂G

∂t
+

P∑
i=1

∂G

∂xi

ẋi = 0 +
P∑

i=1

∂G

∂xi

ẋi (5.2)

From the definition of G in Eq. 5.1, we have

∂G

∂xi

=
∂G

∂yi

=
∂G

∂zi

= 0

∂G

∂vi

=
1

P

With Eq. 4.8, we have

Ġ =
1

P

P∑
i=1

v̇i =
1

P

P∑
i=1

(kyi − uvi + ω
∑
i6=j

σijvj) (5.3)

From Eq. 5.3, it can be observed that the global function Ġ depends on three pa-

rameters: k (the rate at which infected cells produce free virus), u (the

death rate of the free virus), and ω (the connection weight, dictating the

rate of viral transmission between neighbours). In this section, we analyze the global

function elasticity with respect to u and ω. We do so because in practice it may be

possible to perturb the parameter u by biological or medical treatment, and the

parameter ω by interventions focused on risk behaviour modification, hygiene, etc.

With Eq. 3.29 and Eq. 5.3, the sensitivity of Ġ with respect to parameters u and

ω is as follows:

ġs(u) = − 1

P

P∑
i=1

vi (5.4)

ġs(ω) =
1

P

P∑
i=1

∑
i6=j

σijvj (5.5)

We now analyze the elasticity of the global function Ġ with Eq. 5.4, Eq. 5.5 and

Eq. 3.30. From Eq. 3.30, we have

ġe(p) = lim
∆p→0

∆Ġ
Ġ
∆p
p

(5.6)

87



In this section, we calculate anticipated (theoretic) changes in Ġ resulting from

changing a parameter using the following approximations:

∆Ġ

Ġ
≈ ġe(p)

∆p

p
(5.7)

∆Ġ ≈ ġe(p)Ġ
∆p

p
(5.8)

Eq. 5.7 tells us that the proportional change of Ġ approximately equals the mul-

tiplication of the elasticity of Ġ with respect to a parameter p and the proportional

change of p. In this study, one purpose of parameter perturbations is to decrease

Ġ so that the average free viral particles v could decrease faster or increase more

slowly (i.e., ∆Ġ < 0). Whether we should increase or decrease the parameter p to

accomplish this depends on values of both the elasticity and Ġ.

5.1.1 Global Function Elasticity with Respect to ω

The Ġ elasticity with respect to ω over time for the 30-person model is presented

in Fig. 5.2. The elasticity has large values after time = 300, especially after time =

500. Policy makers will prefer to intervene when the disease first breaks out in

order to decrease the cost brought by disease spread. Although the global function

elasticity has large values in the late stage of the system evolution, it also attains

relatively high absolute values in the early stage of the system evolution. From

this figure we could know that there are peak values from time = 0 to time = 150

when the system first evolves, though these peaks are almost invisible compared with

significant peaks in the later stages.

Three time points with apparent peak values in the time period from time = 0

to time = 100 are selected to perturb the parameter ω separately for the 30-person

model. The global function elasticity with respect to ω arrives at a peak value at

time = 4.37 (Ġ = 6.73317 × 10−5) with the value of 1.029 × 10−3, and another

peak value at time = 9.89 (Ġ = −7.89554× 10−3) with the value of −1.374× 10−3

and the third peak value at time = 36.51 (Ġ = 5.52824 × 10−17) with the value of

3.673 × 10−3 when other values of the elasticity are on the order of magnitude of
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Figure 5.2: The global function elasticity with respect to ω (the
connection weight) for an individual-based viral dynamic model with
30 persons and its early view.

10−5 or smaller. ω was decreased to 10% of the original value at these time points

according to Eq. 5.8 so that the value of Ġ can be decreased. With Eq. 5.7 we have

at time = 4.37, ∆Ġ
Ġ

= 1.029 × 10−3 × −0.9 = −9.2610 × 10−4; at time = 9.89,

∆Ġ
Ġ

= −1.374 × 10−3 × −0.9 = 0.0012; and at time = 36.51, ∆Ġ
Ġ

= 3.673 × 10−3 ×

−0.9 = −0.0033. Initially such perturbations change the trajectory of Ġ, shown in

Table 5.1, Table 5.2 and Table 5.3. From these tables, we can see that immediately

after the perturbation, the proportional change of Ġ is not far from the prediction

of the global function elasticity and the proportional change of ω. We should note

here and in following analysis that such immediate periods after perturbations are

practically too short to control disease spread, but for methodological study, it could

indicate the local effectiveness of such techniques.

Fig. 5.3 shows the views of the changes of Ġ in later stage. The perturbation

at time = 4.37 produces the most significant changes of the behaviour of Ġ that

perturbations at other time points: the oscillation of Ġ is largely delayed and the

magnitude is slightly reduced. The perturbation at time = 9.89 has similar influences
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Table 5.1: The proportional change of Ġ with a perturbation of ω
at time = 4.37 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −9.2610× 10−4).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

4.37087 1.13633× 10−4 1.13528× 10−4 −9.2403× 10−4

4.37287 2.06512× 10−4 2.06458× 10−4 −2.6149× 10−4

4.37487 2.99617× 10−4 2.99564× 10−4 −1.7689× 10−4

4.37687 3.92984× 10−4 3.92931× 10−3 −1.3487× 10−4

Table 5.2: The proportional change of Ġ with a perturbation of ω
at time = 9.89 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ 0.0012).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

9.8904 −7.89544× 10−3 −7.90492× 10−3 0.0012

9.9004 −6.39224× 10−2 −6.39313× 10−2 1.3923× 10−4

9.9104 −0.120613 −0.120622 7.4619× 10−5

9.9204 −0.178024 −0.178032 4.4938× 10−5

Table 5.3: The proportional change of Ġ with a perturbation of ω
at time = 36.51 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −0.0033).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

36.5116 5.52797× 10−17 5.5174× 10−17 −0.0019

36.5216 2.72388× 10−16 2.72285× 10−16 −3.7814× 10−4

36.5316 4.88221× 10−16 4.88119× 10−16 −2.0892× 10−4

36.5416 7.02807× 10−16 7.02707× 10−16 −1.4229× 10−4

90



on Ġ to the perturbation at time = 36.51.

Figure 5.3: A local view of value of average v̇ in population with a per-
turbation of ω (the connection weight) at time = 4.37, time = 9.89
and time = 36.51 respectively when the largest Ġ elasticities appear
in the early stage for an individual-based viral dynamic model with 30
persons.

A control experiment is added to decrease ω by 90% at time = 5.43 when the elas-

ticity of the global function with respect to ω is 1.864×10−6 and Ġ = 3.00334×10−1,

to compare with the perturbation at time = 4.37 when the perturbation produces

relatively more significant changes of Ġ for 30 people model. The proportional change

of Ġ at time = 5.43 should be 1.864 × 10−6 × −0.9 = −1.6776 × 10−6. Table 5.4

gives details of the proportional changes of Ġ in a small window of time. Compared

with Table 5.1, Table 5.4 shows that in a very short period of time after changing

ω, the proportional change of Ġ at time = 5.43 is indeed much smaller than that

at time = 4.37, but later on the differences of the proportional changes at two time

points become less notable. As shown in Fig. 5.4, in the long run, the perturbation

at an early time point with a small value of the elasticity generates similar trajectory

changes of Ġ to the perturbation at another early time point with a large elasticity

value, because the state variables approaches to the equilibrium, and the changing

rate of G approaches to zero.

91



Table 5.4: The proportional change of Ġ with a perturbation of ω
at time = 5.43 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −1.6776× 10−6).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

5.4398 0.31028 0.3102794 −1.9337× 10−6

5.4498 0.320531 0.3205304 −1.8719× 10−6

5.4598 0.331095 0.3310945 −1.5101× 10−6

5.4698 0.341979 0.3419785 −1.4621× 10−6

Figure 5.4: A local view of the comparison of the value of average v̇
in the population with a perturbation of ω (the connection weight)
at time = 4.37 when the largest Ġ elasticity appears in the early stage
and at time = 5.43 when the elasticity is small for an individual-based
model with 30 persons.
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Figure 5.5: The value of average v in the population with a perturba-
tion of ω (the connection weight) in the long run for an individual-
based model with 30 persons.

When approaching the endemic equilibrium, Ġ approaches to zero no matter

the parameters are perturbed or not. Thus if we check the changes of G near the

endemic equilibrium, we can see the impacts of the changes of a parameter in the

long time. Fig. 5.5 illustrates the changes of the global function G: the average virus

loads across the population in the long run with perturbations of ω. Globally the

average virus loads are not changed significantly. As we analyzed in the last chapter,

for an individual-based model the connection weight does not greatly influence the

position of the endemic equilibrium because of its relatively low value. Here we also

observe that the average virus loads near the endemic equilibrium vary little with

perturbations of ω.

5.1.2 Global Function Elasticity with Respect to u

The impact of the Ġ elasticity with respect to u over time for the 30 people model

is similar to that to ω. Because the parameter u can be increased by biological or

medical treatment and because the purpose of perturbation is to decrease the global

function Ġ, we choose the time points when the elasticity is negative, and thus the

large elasticity here means the negative values with large absolute values. Similar
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to the Ġ elasticity with respect to ω, the global function elasticity with respect to

u attains relatively high absolute values in the early stage of the system evolution.

There are peak values from time = 0 to time = 100 when the system first evolves and

Ġ has large values, though these peaks are almost invisible compared with significant

peaks in the late stages, as described in Fig. 5.6.

Figure 5.6: The global function elasticity with respect to u (the
death rate of the free virus) for an individual-based viral dy-
namic model with 30 persons and its early view.

The global function elasticity with respect to u arrives at the peak value at the

same time points as the elasticity of ω: time = 4.37, time = 9.89 and time = 36.51,

when the value of the elasticity is −296.9, 529.1 and −993.5, while the values of the

elasticities are on the order of magnitude of 101 or below at most of other time points

during the early stage. We perturb u to increase it by 10% at these time points so that

∆Ġ < 0. Based on Eq. 5.7, we have ∆Ġ
Ġ

= −296.9 × 0.1 = −29.69 at time = 4.37,

∆Ġ
Ġ

= 529.1 × 0.1 = 52.91 at time = 9.89 and ∆Ġ
Ġ

= −993.5 × 0.1 = −99.35 at

time = 36.51. Table 5.5, Table 5.6 and Table 5.7 provide details of the changes of Ġ

shortly after the perturbations, from which we could see that the perturbation of u at

a time point of a high global function elasticity could produce a significant alteration

94



of Ġ in a very short time period after the perturbation, i.e. the proportional change

in a very short period after altering u produced by the perturbation at time = 36.51

is larger than those changes generated by the perturbation at time = 4.37 and

time = 9.89.

Table 5.5: The proportional change of Ġ with a perturbation of u
at time = 4.37 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −29.69).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

4.37087 1.13633× 10−4 −0.0018 −16.8363

4.37287 2.06512× 10−4 −0.0017 −9.2320

4.37487 2.99617× 10−4 −0.0016 −6.3402

4.37687 3.92984× 10−4 −0.0015 −4.8169

The behaviour of Ġ is changed significantly by these perturbations over a long

time period. If we focus on the trajectories with perturbations in later stage of the

system evolution when the system approaches an endemic equilibrium (Fig. 5.7), we

find that the perturbation at time = 9.89 reduces the magnitude of oscillation of Ġ

greatly, while the perturbations at time = 4.37 and at time = 36.51 increase the

magnitude of oscillation.

A control experiment for the perturbation of u is performed at time = 5.43, when

Table 5.6: The proportional change of Ġ with a perturbation of u
at time = 9.89 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ 52.91).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

9.8904 −7.89544× 10−3 −0.425076 52.8382

9.9004 −6.39224× 10−2 −0.468083 6.3227

9.9104 −0.120613 −0.513025 3.2535

9.9204 −0.178024 −0.558728 2.1385
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Table 5.7: The proportional change of Ġ with a perturbation of u
at time = 36.51 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −99.35).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

36.5116 5.52797× 10−17 −5.40869× 10−15 −98.8422

36.5216 2.72388× 10−16 −5.0248× 10−15 −19.4472

36.5316 4.88221× 10−16 −4.6619× 10−15 −10.5487

36.5416 7.02807× 10−16 −4.31748× 10−15 −7.1432

Figure 5.7: A long-term view of the value of average v̇ in population
with a perturbation of u (the death rate of the free virus) at
time = 4.37, time = 9.89, and time = 36.51 respectively, when the
largest Ġ elasticities appear in the early stage for an individual-based
viral dynamic model with 30 persons.
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Ġ = 3.00334× 10−1, with the value of the global function elasticity −9.089× 10−1.

Hereby the proportional change of Ġ approximates ∆Ġ
Ġ

= −9.089 × 10−1 × 0.1 =

−0.09089. Table 5.8 shows the proportional changes of Ġ after perturbing u at

time = 5.43. As was predicted, immediately after the perturbation, ∆Ġ
Ġ

is much

smaller than that in the case of the perturbation at time = 4.37 or at time = 9.89.

Table 5.8: The proportional change of Ġ with a perturbation of u
at time = 5.43 for an individual-based viral dynamic model with 30
persons (theoretically ∆Ġ/Ġ ≈ −0.09089).

Time (Day) Ġ Ġ with Perturbation ∆Ġ
Ġ

5.4398 0.31028 0.2829 −0.0882

5.4498 0.320531 0.293 −0.0859

5.4598 0.331095 0.3033 −0.0839

5.4698 0.341979 0.3138 −0.0824

However, over a long period, the perturbation in the control experiment also

produces apparent changes of the behaviour of Ġ, and the changes are almost similar

to the results produced by the perturbation at time = 4.37. In the later stage of

the system evolution, shown in Fig. 5.8, the trajectory of Ġ with perturbation at

time = 5.43 has little difference from that at time = 4.37. When the state variables

approaches to equilibrium, because G is associated with state variables, its changing

rate Ġ tends to be zero. In the long-term, trajectories converge and the perturbation

of the parameter at any time point should result in similar behaviours of Ġ.

Fig. 5.9 describes the changes of the average virus loads with perturbations of

u in the long run. Different from that with perturbations of ω, the changes of the

average v is more significant around the endemic equilibrium. The perturbations of

u have both local and global impacts on G and Ġ.
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Figure 5.8: A long-term view of the comparison of the value of average
v̇ in the population with a perturbation of u (the death rate of the

free virus) at time = 4.37 and time = 9.89 respectively, when the
largest Ġ elasticity appears in the early stage and at time = 5.43 when
the elasticity is small for an individual-based viral dynamic model with
30 persons.

Figure 5.9: The value of average v in the population with perturba-
tions of u (the death rate of the free virus) in the long run for
an individual-based viral dynamic model with 30 persons.
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5.1.3 Discussion

In the above two sections, a perturbation at a time point when the global function

elasticity is high can result in a significant proportional change of Ġ shortly after

the perturbation. But over a long period, such high elasticity may not produce

more notable proportional changes of Ġ. For the model at hand, the global function

elasticity usually has large value in the late stages of the system evolution. From

Eq. 3.30, we have ġe(p) = ∂Ġ
∂p

p

Ġ
. With a given expression of ∂Ġ

∂p
and the value of p,

the elasticity is large when Ġ is small. Thus for the current model (which approaches

the endemic equilibrium) the elasticity has peak values in the late stages when the

global function has very small values. As we analyzed in the last chapter, changing

a parameter ω or u by a small amount alters the position of the endemic equilibrium

but does not alter the stability of the endemic equilibrium. Any perturbation of a

parameter would produce similar trajectories of the global function in the long-term

when the system is near the endemic equilibrium. Therefore, the global function

elasticity analysis is only effective in a short period of time after the perturbation.

In a short period after the perturbation, the proportional changes of Ġ follow their

theoretical values, i.e., a large Ġ elasticity could produce a significant proportional

change of Ġ. Based on Eq. 5.8, we know that the absolute change of Ġ depends on

both the elasticity and the value of Ġ with a given change of a parameter, and thus

it is possible that a perturbation of a parameter at a time point when the elasticity

is low can result in an apparent absolute change of Ġ if Ġ has a high value at that

time. Therefore, because of the large values of Ġ in the early period of time, a small

change of a parameter can generate a significant alteration of the behaviour of Ġ,

though the elasticities at the time points when the perturbation of the parameter is

performed have small values.

A large value of the global function elasticity cannot guarantee a desired result

in a relatively long time. For example, in 30-person model, we want to decrease the

value of Ġ so that the value of G (average value of viral loads across the popula-

tion) is able to increase slowly or decline fast and have smaller values. As control
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experiments, as Fig. 5.8 shows, the perturbation of u at time = 5.43, when the

global function elasticity is low, also produces a desired result as perturbations at

later time points. One possible reason is that for a nonlinear system its Jacobian

matrix is changing over time. Great local proportional changes might become less

significant because the structure of the system is changing. Another reason might

be the accumulation or offset of the effects of changes of the parameter in later

time points when the elasticity is high or low. Thirdly, because the trajectory is

altered, the elasticity of the global function with a parameter could be changed if

the value of this parameter is altered, therefore our perturbation of a parameter in a

long time may neglect such changes of the elasticity. At last, because trajectories of

state variables converge towards endemic equilibrium, the change rate of the global

function approaches zero and any perturbation of a parameter will not change Ġ in

a long-term.

In addition, because the global function elasticity with a parameter is dimen-

sionless, like the eigenvalue elasticity, it is helpful for indicating the significance of a

parameter on the system. The Ġ elasticity with respect to u is much larger than that

to ω, and thus the small perturbations of u (10% increased) produce more significant

changes of the global function that the large perturbations of ω (90% decreased).

Because the global function elasticity is defined as the ratio of proportional

changes of the global function to proportional changes of parameters, as Eq. 3.30

shows, when the value of the global function is near zero, the value of the elasticity

can be extremely high. We conjecture (but have not demonstrated) that this is the

reason for the impulse-like values shown in Fig. 5.2 and Fig. 5.6. Although the pro-

portional changes of the global function with perturbations of parameters at time

points with those impulse-like elasticity values could be large, the absolute changes

of the global function is usually very small because of its near-zero values. Practi-

cally, it is less meaningful to change the global function with tiny absolute changes

at time points when its values are close to zero. There is a distinct risk of zero or

near-zero values in the denominator of the eigenvalue elasticity can distract us from

more practically important leverage points for changing system behaviour.
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5.2 Global Function Sensitivity Analysis of an In-

dividual-based Viral Dynamics Model with 30

Persons

In the last section, we saw that the rate of change in global function, Ġ, has

great influence on the value of the global function elasticity. Motivated by that

observation, in this section, we focus on the global function sensitivity with respect

to a parameter. Recall from Eq. 3.29, we have

ġs(p) = lim
∆p→0

∆Ġ

∆p
(5.9)

∆Ġ ≈ ġs(p)∆p (5.10)

From Eq. 5.10 we know that the absolute change of Ġ approximately equals the

product of the sensitivity of Ġ and the absolute change of the parameter p.1 Thus

we know that the global function sensitivity indicates how much the global function

changes in absolute terms when the parameter changes by a given absolute change

amount, as Eq. 5.10 indicates. Because a high global function sensitivity indicates

a large change to Ġ in response to a given change in a parameter regardless of the

value of Ġ, we investigate here whether it might yield greater insight into leverage

points than does the global function elasticity.

5.2.1 Global Function Sensitivity with Respect to ω

Ġ sensitivity with respect to ω (the connection weight) is shown in Fig. 5.10.

From this figure, we can learn that the sensitivity over time is positive and that before

time = 100, the Ġ sensitivity attains apparent peaks with large values, especially

between time = 0 and time = 50. The first peak of the value of the elasticity

appears at time = 2.37 with the value of 1.9239, the second peak appears around

1An absolute change of p here means ∆p = pnew − p, and an absolute change of Ġ is ∆Ġ =
Ġ|pnew − Ġ|p.
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Figure 5.10: The global function sensitivity with respect to ω (the
connection weight) for an individual-based viral dynamic model with
30 persons.

time = 6.39 when the value is 5.569, and the third peak is at time = 9.87 with the

value of 10.8567.

We now test new perturbations of parameters affecting Ġ. Similar to the global

function elasticity analysis, the parameter ω is changed to be 10−7 from the original

value 10−6, i.e., the absolute change of ω is −9× 10−7, at time = 2.37, time = 6.39,

and time = 9.87 respectively. Based on Eq. 5.10, the absolute change of Ġ here

should be −1.7315× 10−6, −5.0121× 10−6 and −9.7710× 10−6 respectively.

Table 5.9, Table 5.10 and Table 5.11 provide the absolute change of Ġ shortly

after the perturbation, from which it can be observed that in a short period of time

the absolute change of Ġ approximates its theoretical value. The absolute change

of Ġ in the case of the perturbation at time = 9.87 is greater than in the case of

the perturbation at time = 2.37 because of the higher sensitivity at time = 9.87.

Therefore, the perturbation at a time point with a high sensitivity could produce

more significant absolute changes of Ġ in the short-term than the perturbation at

time points with a low sensitivity.

Fig. 5.11 is a detailed view in the later stage of the change of the trajectory of Ġ

with perturbations. As this figure indicates, because the system is near the endemic
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Table 5.9: The absolute change of Ġ with a perturbation of ω at
time = 2.37 for an individual-based viral dynamic model with 30 people
(theoretically ∆Ġ ≈ −1.7315× 10−6).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

2.37 4.26869× 10−3 4.26763× 10−3 −1.1× 10−6

2.38 −7.70133× 10−3 −7.70236× 10−3 −1.0× 10−6

2.39 −1.94064× 10−2 −1.94074× 10−2 −1.0× 10−6

2.40 −3.07938× 10−2 −3.07948× 10−2 −1.0× 10−6

Table 5.10: The absolute change of Ġ with a perturbation of ω at
time = 6.39 for an individual-based viral dynamic model with 30 people
(theoretically ∆Ġ ≈ −5.0121× 10−6).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

6.39 5.86581× 10−2 5.86496× 10−2 −8.5× 10−6

6.40 −1.59672× 10−2 −1.59755× 10−2 −8.3× 10−6

6.41 −9.00328× 10−2 −9.0041× 10−2 −8.2× 10−6

6.42 −1.6318× 10−1 −1.63188× 10−1 −8.0× 10−6

Table 5.11: The absolute change of Ġ with a perturbation of ω at
time = 9.87 for an individual-based viral dynamic model with 30 people
(theoretically ∆Ġ ≈ −9.7710× 10−6).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

9.87 1.02612× 10−1 1.02602× 10−1 −1× 10−5

9.88 4.75688× 10−2 4.75594× 10−2 −9.4× 10−6

9.89 −7.89544× 10−3 −7.90453× 10−3 −9.1× 10−6

9.90 −6.39224× 10−2 −6.3931× 10−2 −8.6× 10−6
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equilibrium, at a later time after changing ω, the perturbation at time = 2.37 results

in similar changes as that at other time points, despite the fact that the value of

sensitivity then is not so large. The only difference is that it delays the oscillation a

bit and slightly decreases the magnitude.

Figure 5.11: A long-term view of the value of average v̇ in population
in the long run with a perturbation of ω (the connection weight)
at time = 2.37, time = 6.39, and time = 9.87 respectively, when the
largest Ġ sensitivities Appear for an individual-based viral dynamic
model with 30 persons.

5.2.2 Global Function Sensitivity with Respect to u

Fig. 5.12 shows the Ġ sensitivity with respect to u (the death rate of the

free virus) over time for a 30-person model. In this figure, the value of the sen-

sitivity is negative over time, and it is quite large in the early stage of the system

evolution. The first peak of the value of the sensitivity appears at time = 2.37, with

the value of −0.1489, the second peak appears at time = 6.41 which is −0.9593, and

the third peak is at time = 9.89 with the value of −1.3925. We change u by 10% of

the original value, i.e. increasing u by 0.3 absolutely, at these three time points to try

to change the behaviour of the global function. According to Eq. 5.10, the theoretical

absolute change of Ġ should be −0.0447, −0.2878 and −0.4178, respectively.
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Figure 5.12: The global function sensitivity with respect to u (the
death rate of the free virus) for an individual-based viral dy-
namic model with 30 persons.

Table 5.12, Table 5.13 and Table 5.14 list the absolute changes of Ġ in a small

window frame after the perturbations. During this period of time the values of ∆Ġ

are close to the product of the global function sensitivity and the absolute change

of u. The absolute changes of Ġ with a perturbation at time = 9.89 are larger than

the changes with a perturbation at time = 6.41, which are greater than the absolute

changes with a perturbation at time = 2.37, because ġs(u)|time=9.89 > ġs(u)|time=2.37.

Therefore, locally Ġ is mostly decreased with the perturbation of u at time point

when the sensitivity is high.

Table 5.12: The absolute change of Ġ with a perturbation of u at
time = 2.37 for an individual-based viral dynamic model with 30 per-
sons (theoretically ∆Ġ ≈ −0.0447).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

2.37 4.26869× 10−3 −4.01179× 10−2 −0.0443866

2.38 −7.70133× 10−3 −5.07052× 10−2 −0.0430039

2.39 −1.94064× 10−2 −6.11484× 10−2 −0.041742

2.40 −3.07938× 10−2 −7.13722× 10−2 −0.040578
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Table 5.13: The absolute change of Ġ with a perturbation of u at
time = 6.41 for an individual-based viral dynamic model with 30 per-
sons (theoretically ∆Ġ ≈ −0.2878).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

6.419 −9.00328× 10−2 −3.69063× 10−1 −0.27903

6.429 −1.6318× 10−1 −4.33865× 10−1 −0.27069

6.439 −2.35054× 10−1 −4.98038× 10−1 −0.26298

6.449 −3.05311× 10−1 −5.61106× 10−1 −0.25579

Table 5.14: The absolute change of Ġ with a perturbation of u at
time = 9.89 for an individual-based viral dynamic model with 30 per-
sons (theoretically ∆Ġ ≈ −0.4178).

Time (Day) Ġ Ġ with Perturbation ∆Ġ

9.89 −7.89544× 10−3 −4.25067× 10−1 −0.4172

9.90 −6.39224× 10−2 −4.68083× 10−1 −0.4042

9.91 −1.20613× 10−1 −5.13025× 10−1 −0.39241

9.92 −1.78024× 10−1 −5.59728× 10−1 −0.3817

Fig. 5.13 describes the changes of the behaviour of Ġ in the later stage with

the perturbation of u. All of these perturbations produces significant alterations of

the behaviour of Ġ. The perturbation at time = 9.89 results in a decrease of the

magnitude of the oscillation of Ġ, whereas the magnitude is enlarged by the pertur-

bations at other time points. Therefore, it is difficult to describe the significance of

the perturbation at those three time points in a long period of system evolution. In

terms of the endemic equilibrium, as analyzed in Section 5.1, the perturbations of u

change the position of the endemic equilibrium, and thereby change the value of G

at the endemic equilibrium. But the value of Ġ at the endemic equilibrium, where

Ġ = 0, is not influenced by the perturbations of u.
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Figure 5.13: A long-term view of the value of average v̇ in population
in later stage with a perturbation of u (the death rate of the free

virus) at time = 2.37, time = 6.41, and time = 9.89 respectively,
when the largest Ġ sensitivities appear for an individual-based viral
dynamics model with 30 persons.

5.2.3 Discussion

The above two sections suggest that global function sensitivities are effective for

indicating the ideal time for policy makers to perform the control over disease spread

in a short period of time. Because the global function sensitivities are not effected

by the influence of changes of the global function values, this method could indicate

the early time points when the Ġ is sensitive to parameters. The perturbation of

the parameter at time point when the sensitivity is large can locally change the

trajectory of the global function as the global function sensitivity indicates, but the

large sensitivity is neither necessary nor a sufficient condition of significant changes

of the global function in a long period of time. However, from the above sections, we

can find that the early control of parameters at time points when the global function

sensitivities are large can alter the behaviour of the global function. Practically,

it suggests that policies performed in the early stage when the system is far from

equilibrium have great influences on the system behaviours. On the disadvantage

side, because the global function sensitivity is not dimensionless, we cannot use it to
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compare the relative importance of parameters for the system, if those parameters

have different dimensions.

5.3 Global Function Elasticity Analysis of an Ag-

gregate Infectious Disease Model

Although the SIRS model is an aggregate model and its state variables to some

degree describe global states of the system, we could also define a global function

to describe the overall behaviour of the system with a measurement. For example,

in Section 4.1 we define Prevalence to be the infected fraction of the entire popu-

lation. Because some infectious diseases are already established, and because after

an outbreak it is possible that an infectious disease may evade elimination in a rel-

atively short period of time, we could consider it as the target of disease control

to decrease the endemic prevalence. Therefore, in this section, we use the changing

rate of Prevalence, ˙Prev , as the global function Ġ for an SIRS model described by

Eq. 4.1.

For the model of Eq. 4.1, there are no explicit symbolic solutions. Thus we cannot

use Eq. 3.31 to derive symbolic expressions for ˙Prev and the global function elasticity

with a parameter, and we compute it numerically instead. Specifically, we increase

each parameter by 1% over time to approximate the global function elasticity defined

in Eq. 3.28:

ġe ≈
∆Ġ
Ġ
∆p
p

(5.11)

We computed the global function elasticity with β (Per Infected Contact Infection

Rate) and µ (Mortality Rate) in the SIRS model based on Eq. 5.11, and plotted

them in Fig. 5.14.

The global function elasticities with respect to β have a positive peak value

0.11 at time = 79, which is larger than absolute peak values of the global function

elasticity with respect to µ. At time = 73, the elasticity with respect to µ arrives at

the negative values −0.022. We choose β and µ to perturb by 10%, based on their
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Figure 5.14: The global function elasticity with respect to β and µ
in an SIRS model.

elasticities. According to the stability analysis of the SIRS model in Section 4.1,

such small perturbations will not change the stability of the endemic equilibrium of

the SIRS model. We decrease the value of β by 10% at time = 79 because of the

positive value of the elasticity and ˙Prev . We add a control experiment at time = 53

when the elasticity is 0.02 to compare the results of perturbed trajectories of the

global function.

Fig. 5.15 and Fig. 5.16 plot these altered trajectories of ˙Prev and Prevalence.

Immediately after the perturbation, ˙Prev is instantaneously changed and the decre-

ment of ˙Prev with the perturbation of β at time = 79 is more significant than that at

time = 53. In aspect of Prevalence, the perturbation at time = 79 brings a bit more

decrement than the perturbation at time = 53 in a short period of time. However,

after time = 150 the difference between two scenarios is little; after time = 500 these

two trajectories of Prevalence and the original trajectory overlap.

We increase the value of µ to be 110% of the default value 0.02 at time = 73.

Similarly, we add two control experiments at time = 37 when the elasticities are
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(a) Changes of ˙Prev with perturbations in the long-term

(b) Changes of ˙Prev shortly after perturbations

Figure 5.15: Two views of the value of ˙Prev over time for an SIRS
model with a perturbation of β at time = 79 when the largest global
function elasticity appears and at time = 53 when the global function
elasticity is small and its early view.
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Figure 5.16: The value of Prevalence over time for an SIRS model
with a perturbation of β at time = 79 when the largest global function
elasticity appears and at time = 53 when the global function elasticity
is small.

−0.00087. Fig. 5.17 shows the behaviours of ˙Prev with perturbations at different

time points. ˙Prev is altered immediately after the perturbation. Shortly after the

perturbation, ˙Prev decreases more greatly when µ is perturbed at time = 73 than

when perturbing it at time = 37 because of the high absolute value of elasticity at

this time point. Compared with the perturbations of β, the local changes of ˙Prev

with a perturbation of µ at time = 73 because of the relatively lower value of the

elasticity. However, in the long run, the perturbation of µ at any of these two time

points leads ˙Prev to approach zero.

From Fig. 5.18, we could learn that the value of Prevalence is decreased signif-

icantly in the later stages, though changing µ does not produce great decline of it

shortly after the perturbation. In fact, the global function Prevalence here is the

variable i in Eq. 4.6, the fractional variable of I. As we mentioned in Section 4.1.5,

the fixed point of the global function Prevalence is equivalent to

î =
σ

µ

The position of i at the endemic equilibrium is related with µ but has no relation

with β. Thus, the perturbation of β at any time point will not change the stable
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(a) Changes of ˙Prev with perturbations in the long-term

(b) Changes of ˙Prev shortly after perturbations

Figure 5.17: Two views of the value of ˙Prev over time for an SIRS
model with a perturbation of µ at time = 73 when the largest global
function elasticity appears and at time = 37 when the global function
elasticity is small.
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value of Prevalence, i.e., although Prevalence could be decreased temporarily in a

short period of time after the perturbation, it will not be altered in the long run. In

contrast, the increase of µ will change the position of i at the endemic equilibrium,

which means the perturbation of µ at any time will permanently change the value of

the global function Prevalence. Fig. 5.18 also suggest that although the perturbation

of µ at other time points after time = 73, when the elasticity has the largest absolute

value, could also lower the values of the global function, such a perturbation will delay

the time for the global function to arrive at the changed stable value. Therefore, it

suggests that in terms of decreasing disease prevalence, changing µ before the time

point when its global function elasticity arrives at the largest absolute value could

yield more rapid changes than after that time point. Practically, we cannot suggest

policy makers to increase the mortality rate of infected individuals, however, based

on our analysis the quarantine of infected patients in time may be meaningful to

decrease the prevalence.

Figure 5.18: The value of Prevalence over time for an SIRS model
with a perturbation of µ at time = 73 when the largest global function
elasticity appears at time = 37 and at time = 400 when the global
function elasticities are small.

113



5.4 Summary

Global function elasticity analysis for the SIRS model is clearer than that for

the individual-based model. Although the SIRS model is nonlinear, it is much less

complex than the individual-based model. The effectiveness of the global function

elasticity method on the SIRS model might be attributed to 1) fewer state variables,

2) a less nonlinear model compared with the individual-based model, and 3) the

selection of the global function. However, for a system of high nonlinearity, such

as the individual-based model in this chapter, linearization of the system is local

and the eigenvalues of the Jacobian matrix only present the behaviour modes of

the system around the time point when the linearization is performed. Although

such changes may produce significant alterations at the time points when the global

function is highly sensitive to the parameter, the changes of a parameter may not

alter the global structure of the system and the trajectory of the global function in

a long-term (i.e., the individual-based model in our analysis), because these local

attributes of a nonlinear system are changing for long period of time, and probably

because 1) when we perturb a parameter based on the original value of the global

function, the trajectory changes of the global function might have different global

function elasticity or sensitivity from the baseline global function at the same time; 2)

because of the experimental designing, the effect of the perturbation of a parameter

may be accumulated or offset at later time points when the elasticities or sensitivities

are high, which could diverge original proportional or absolute changes of the global

function; 3) such changes of a parameter can make the trajectory shift in the state

space, but these shifted trajectories might evolve to the same equilibrium and in the

later stages of the system evolution, because of this convergence it is possible that

the trajectory of the global function with a perturbation of a parameter at a time

point when the elasticity or sensitivity is small will closely approach a trajectory

with a perturbation at a time point with high elasticity or sensitivity. As a result, of

all these factors, even for a simple system, local analysis is sometimes ineffective in

anticipating the impacts of a change on the global behaviour of the nonlinear system.
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Chapter 6

Conclusion

In this thesis, we studied two types of mathematical models of infectious disease

spread, an aggregate SIR model and individual-based viral dynamic models. We

applied local analysis tools, such as eigenvalue and eigenvalue elasticity analysis and

developed global function elasticity and sensitivity analysis, to these two types of

models to study the dynamics of the spread of diseases and the short-term influences

of parameters in a short period of time, especially during a disease outbreak. Global

analysis tools, like fixed points and stability analysis, are used in these two types

of models to study the long-term impacts of parameters and their changes on the

system evolution.

For the aggregate infectious disease model, an elaborate SIR model in our study,

we developed symbolic expressions of its three equilibria in terms of parameters. We

found that because of growing population size, its disease-free equilibrium is unsta-

ble when the basic reproductive ratio R0 is less than one, that contradicts a strong

requirement for stability. But when we studied the fractional model, the disease-free

equilibrium becomes asymptotically stable if R0 < 1. Dominant eigenvalues of the

Jacobian matrix are able to describe the major behaviour modes in a short period

of time, but the eigenvectors are also of the important factors to determine the be-

haviour patterns of state variables. The perturbations of a parameter based on the

eigenvalue elasticity could bring local changes of some state variables, but eigenvec-

tors, as well as coefficients, jointly determine which variables could be affected by the

perturbations of the parameter. By applying the Routh-Hurwitz Criterion, we know

that a small parameter change will not alter the stability of the endemic equilibrium

for the aggregate model, when the values of other parameters are fixed.
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For an individual-based viral dynamic model, both local eigenvalue analysis and

its elasticity methods and global fixed points analysis are also viable. We figured

out the symbolic expressions of the equilibria for models with small population size

and analyzed their stability. However, for a model with large population size, the

derivation of general symbolic expressions of the equilibria is difficult because 1) the

number of the equilibria grows geometrically with the population size, and 2) the

various network structures make the structure of the defense-free and the endemic

equilibria much complicated. We found that the stability of the endemic equilibrium

for a given population size can be determined by two extreme cases: the network

with no connection and with full connections. The case of no connection is the least

stable because medical treatments could change the states of an individual in the

model in isolation; by contrast, in the full connections case, because of connections to

other infected individuals, the effects of changing states by medical treatment could

be offset by newly transmitted virions and the endemic equilibrium is relatively

more stable. In addition, the strength of the connection weight also effects the

stability. If individuals are connected more strongly, the endemic equilibrium is

more stable, and vice versa. Therefore, for a model with a fixed population size, we

could learn the stability of its endemic equilibrium by studying that of the model

with no connections. Also following the Routh-Hurwitz Criterion, we derived a range

of values of a parameter, within which the changes of this parameter will not change

the stability of the endemic equilibrium, providing that the other parameters are

held constant.

However, for an individual-based viral dynamic model with relatively large pop-

ulation size, eigenvalue analysis is less effective than for the aggregate model, and

perturbations of a parameter based on high eigenvalue elasticities could not reliably

change state behaviours locally. The first reason for the challenge is the large num-

ber of eigenvalues and eigenvalue multiplicity. Similar mathematical equations and

parameter values for each individual make some of the eigenvalues of the Jacobian

matrix identical. Because the system behaviour is determined by the superposition

of eigenvalues, and because there might be more than one dominant eigenvalue that
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jointly control the evolution of the system; it is in general difficult to determine the

number of dominant eigenvalues. Secondly, the eigenvalue with high elasticity may

have a small value of coefficient which indicates that the corresponding eigenvector

is not the major direction of the system evolution or may not be a dominant eigen-

value. The perturbation of a parameter based on this elasticity thus might not alter

the system behaviour significantly. Because of the large number of eigenvalues, co-

efficients and eigenvalue elasticities, it is difficult to understand even the short-term

behaviour of a large system using the analysis of eigenvalue and their elasticities.

Thirdly, the perturbation of a parameter based on the eigenvalue elasticity does not

directly work on the state variables, but on the eigenvalues. Although the changes

of state variables are little shortly after the perturbation, persistent changes exert

their influences in a relatively long run. In terms of the disease control, especially

during the outbreak of the disease, such long time effects are not as we expected.

Accordingly, we used the global function elasticity to look for parameters and time

points to perturb in order to change the global behaviour of the system.

Inspired by traditional eigenspace analysis for nonlinear systems, we developed

global function analysis to discover the influences of the parameters on the global

functions associated directly with state variables for infectious disease models. By

applying this new method to both the aggregate and the individual-based models

of infectious disease spread, we found that in a short period of time after the per-

turbation at a time point when the elasticity or the sensitivity is high, the changes

of the global function are notable. Practically, this method is effective to inform

the control of disease spread in a short time, such as in the period of the disease

outbreak. Globally, such perturbations cannot reliably determine the changes of the

Ġ in a long period of time. This reflects the fact that for a nonlinear system, be-

cause local attributes, such as eigenvalues and eigenvectors of Jacobian matrix, vary

over time, we are unable to determine global attributes of the system behaviours for

long period of time. Around the endemic equilibrium, the behaviour of the global

function is only determined by parameters related with the endemic equilibrium.

Because eigenvalue elasticity and the global function elasticity are dimensionless,
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these methods make it possible for us to compare the importance of parameters for

a model, that is capable to help policy makers to find out crucial factors for disease

control in a short period of time, especially during the outbreak of an infectious

disease. However, the duration of such importance may not be in a long time. An

important parameter during the outbreak of a disease could have no influence or

unfavorable influence on the equilibria, e.g., the perturbation of a parameter at the

time point with high elasticity can lead the prevalence of disease or the virus loads

decrease significantly in a short period of time, but in the long time such changes

may not change or even slightly increase the prevalence or the virus loads when the

system evolves to the endemic equilibrium.

Therefore, we could say that for infectious disease models, where the attention

is on immediate disease control during a short time period around a disease out-

break, local analysis methods (eigenvalues, eigenvalue elasticity, and global function

elasticity and sensitivity) can be effective to indicate the behaviour patterns, the

importance of parameters, and the time to change parameters, so that policy makers

are able to decrease the prevalence or the severity of the disease in some degree. But

in the long run, these methods are not effective to predict the behaviour changes,

and the analysis of fixed points, as well as other methods could help us to better

anticipate the long-term behaviour patterns and parameter sensitivities.

The future work related with this study relates to three aspects. Firstly, more

complicated individual-based models deserve further study with the eigenvalue method,

such as the multiplicity of the eigenvalues and the independence of their correspond-

ing eigenvectors. Secondly, we could also apply eigenvalue elasticity and network

analysis methods to study the link between individuals to dynamically look for the

important individuals and subgroups. This would be motivated by the fact that for

a large population individual-based model, we are unable to change parameters for

all persons, and the important individuals and the significant sub-structure in the

whole society are valuable for policy makers to highlight particular groups of people

to which more attentions should be paid. Thirdly, a stricter mathematical proof

of the stability of the models at the endemic equilibrium is necessary for further
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research, especially for the individual-based models. Lastly, an effective method to

describe the local and global characteristics of infectious disease models deserves

to be developed. We make a balance between local eigenvalue and global function

analysis and the long-term fixed points analysis, but we are also interested in inves-

tigating other methods (such as those from control theory) that could be effective to

indicate the parameter sensitivities both locally and globally.
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Appendix A

Flowchart of Analysis Implementation

To analyze eigenvalue elasticities and global function elasticities, Vensimr is used
to simulate a system and to get all values of state variables over time. Matlabr

codes are run to calculate eigenvalue elasticities and global function elasticities where
symbolic expressions of them are generated from Mapler. The flowchart is shown
as Fig. A.1.

Figure A.1: The flowchart of implementing analysis programs.
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Appendix B

Eigenvectors of an Individual-based Vi-

ral Dynamic Model with 4 Persons

The row vectors of the matrix below are eigenvectors of the Jacobian matrix at
time = 0.5 for the individual-based viral dynamics model with four people in Section
Section 4.2.3.3, where Person 3 and Person 4 are identical.
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