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Abstract

Antibodies form an essential component of the adaptive immune system, but they also have important

scientific and clinical applications. These applications exploit the proven ability of antibodies to bind strongly

and specifically to nearly any biomolecular target (e.g. protein) of interest. To produce antibodies for scientific

and clinical applications, researchers can use a wet-lab technique called antibody phage display. Antibody

phage display starts with a library of diverse antibody fragments and selects and amplifies those fragments

that bind to the target. Antibody phage display combined with next-generation sequencing (NGS) technology

has the potential to yield greater insight into the selection process.

Machine learning is an area of artificial intelligence uniquely suited to recognizing patterns in large

datasets, like those produced by NGS.

The research goals of this thesis were to (1) train machine learning models to predict the selection of

antibody fragments in antibody phage display using only the sequence of the fragment; (2) validate the

ability of the trained models to generalize to different experiments; and (3) reverse engineer the trained

models to gain greater insight into the learned patterns and the selection process.

Antibody phage display data produced by the Geyer lab (University of Saskatchewan, SK) using two

libraries called F and S was used to train a set of machine learning models: naive Bayes network (NB), linear

model (LM), artificial neural network (ANN), support vector machine (SVM) with a radial basis function

kernel (RBF-SVM), a SVM with a string kernel (SSK-SVM), and a random forest (RF). In addition, key

parameters of the RBF- and SSK-SVM were tuned using a gridsearch. The trained models were then used

to predict which antibody-displaying phage would be observed after the 5th round of panning, and their

prediction accuracy on this data was used to help select models for subsequent analyses. The models selected

were the RBF- and SSK-SVM. To achieve the second research goal, data originating from library F was used

to train the two SVMs while library S data was used to test them. Finally, the two SVM models trained on

library F were deconstructed to understand what features of the input correspond to negative predictions,

and what features correspond to positive predictions.

The ANN, SVMs, and RF models had the best average classification accuracy (81.5%), but of this group,

there was not one classifier that performed significantly better than the others. These classifiers could be

used to help non-experts select clones from either library F or S for further wet-lab analyses.

The SVMs trained on library F and tested on library S achieved an average classification accuracy of

66.7%, significantly better than would be achieved by relying on chance. These two SVMs could be used to

help non-experts select clones for further wet-lab analyses, provided the library being used is not too different

from library S.

Finally, deconstructing the SVMs trained on library F yielded insight into the basis for their predictions.

The predictions of the RBF-SVM were found to be highly dependent on the molecular weight of the relevant

binding region (i.e. CDRH3).
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Chapter 1

Introduction

The general aim of this thesis was to apply methods from an area of artificial intelligence called machine

learning to a lab technology used for antibody discovery called antibody phage display. This introduction

provides (1) a brief background for understanding this aim, (2) the motivation for this aim, (3) the research

goals of this thesis, (4) an outline of the methodology of this thesis, and (5) an explanation of how this

document is organized.

To defend against microbes and prevent infection, the human body is equipped with multiple layers of

defence including the two main branches of the immune system: the innate immune system and the adaptive

immune system. The innate immune system, evolving much earlier in history, recognizes molecular hallmarks

of pathogenicity and responds to these hallmarks by sending cells and proteins to eliminate the hallmark-

bearing pathogen. Some pathogens, however, do not carry any hallmarks that the innate immune system can

recognize. To handle threats like these, vertebrates have evolved an adaptive immune system, which consists

of specialized cells and proteins that recognize molecules that are not part of the organism. Proteins called

antibodies play a pivotal role in this recognition mechanism.

Antibodies help the adaptive immune system distinguish self from non-self and focus resources toward

eliminating the latter. The body is capable of producing a variety of antibodies that recognize the vast

majority of non-self molecules. Even though each antibody only recognizes a specific molecular signature,

the variety of antibodies produced by the body is so immense (roughly 1012 [1]) that, for any given target,

it is very likely that there exists an antibody that can bind to that target. Antibody structure and function,

and clonal selection—the process the body uses to produce pathogen-fighting antibodies—is discussed in the

background of this thesis (Section 2.1).

The ability of organisms to produce antibodies that bind strongly and selectively to proteins has been

exploited to produce polyclonal antibodies (pAbs) for use in diagnostics (e.g. ELISA) and therapeutics. In

addition to pAbs, there is great interest in developing monoclonal antibodies (mAbs). MAbs differ from

pAbs in that all of the antibodies in a mAb originate from the same cell and are thus identical in sequence

and structure, whereas the the antibodies in a pAb originate from different cells and are thus heterogeneous.

MAbs are attractive because, among other reasons, they are easier to study and easier to reproduce [2].

Since the production of the first monoclonal antibodies in 1975 and the first FDA licence in 1986, mAbs

have become an important weapon in the clinician’s arsenal [3]. Today, there are approximately 30 mAbs
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approved by the FDA for treating human disease and conditions like cancer, chronic inflammatory diseases,

transplantation rejection, infectious disease, and cardiovascular diseases [3]. The importance of mAbs is

underscored by their global market value, which stands at approximately 20 billion USD per year; and the

success of mAbs like Ramicade and Rituxan, which have annual sales exceeding 1 billion USD [4].

There are a variety of methods for developing mAbs with an affinity towards a target of interest. One such

method is called antibody phage display. Antibody phage display uses bacterial viruses, called bacteriophage,

to achieve clonal selection of target-binding antibodies in the lab. The procedure begins with a library of

bacteriophage expressing antibody fragments on their capsid and carrying the corresponding gene in their

genetic payload. In a process called panning, phage displaying target-binding antibody fragments are enriched

by incubating the phage in a target-coated well, rinsing the unbound phage away, and then amplifying the

immobilized target-bound phage by infecting a bacterial culture. A more detailed explanation of antibody

phage display is given in Section 2.2.

One of the main goals of antibody phage display is to isolate phage that bind strongly, and specifically, to

the target of interest. For therapeutic applications, target affinity is critical for increasing efficacy, reducing

the required dosage, and easing side effects [5]. Because antibody phage display cannot generate antibody

fragments that do not already exist in the library, the diversity of the initial library is critical to the success

of the technique. Even if the library is sufficiently diverse and contains target-binding phage, antibody phage

display may still fail due to other phage out-competing the target-binding phage, essentially masking them

from discovery.

In order to understand library diversity and the enrichment process that happens during panning, studies

have incorporated next-generation sequencing (NGS) [6, 7, 8]. NGS allows researchers to identify every

sequence in a phage pool and approximate its concentration; however, to conduct an in-depth analysis on

this data, intelligent and efficient computational methods are needed. Making sense of large datasets is a

focus of machine learning. In addition, machine learning stresses computational efficiency and makes few

assumptions about the process that gave rise to the data. An overview of machine learning as well as some

of the specific techniques used in this thesis is given in Section 2.4.

This thesis will explore machine learning methods of leveraging NGS outputs from antibody phage display

experiments with a view toward the following goals: (1) comparing the effectiveness of various machine

learning techniques to this problem domain, (2) choosing the best machine learning method and validating

its performance, and (3) demonstrating how machine learning can be used to inform the design of antibody

libraries with enhanced specificity. These research goals are described further in Chapter 3.

To realize the goals of this thesis, NGS sequence outputs from real antibody phage display experiments

conducted by the Geyer lab were processed to make them suitable for input to machine learning methods. A

software package called Weka was used to train various machine learning methods for the task of predicting

whether or not a specific clone will be observed after 5 rounds of panning given the CDRH3 sequence of that

clone. Cross-validation was used to compare the performance of the machine learning methods and hone in
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on one of the best techniques, called Support Vector Machines, which is described in Section 2.4.5. The SVMs

were trained to predict outcomes of antibody phage display and then they were dissected to understand the

basis for their performance and to suggest ways of modifying the antibody phage display library to improve

specificity toward the targets used in the experiments. A complete description of the methodology is given

in Chapter 4.

Listed in order, this thesis includes the following chapters: Background, Research Goals, Methodology,

Results & Conclusions, and Discussion & Future Work. Background will overview theory, techniques, and

literature that are necessary to understand the rest of the text. Research Goals states the specific objectives

of this thesis. Methodology lays out the work that was done to complete the research goals, and provides

the necessary detail for reproducing the work. Results & Conclusions presents the observations and con-

clusions made during execution of the methodology. Discussion provides general commentary including the

implications of the results, conjectures, and directions for future work.
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Chapter 2

Background

2.1 Antibodies

2.1.1 Overview

To avoid infection the human body must fight off microbes like viruses, bacteria, and parasites and to mount

a defence against these pathogens, the body must have the capacity to distinguish them from self-molecules.

A big part of this recognition mechanism is the responsibility of proteins called antibodies.

Antibodies are symmetrical Y-shaped proteins capable of recognizing and binding specific molecular sur-

faces (called epitopes) with two of its three branches (called the variable regions). During the development

of antibody-producing cells, called B-cells, the antibody-coding genes of these cells are systematically ran-

domized so that each B-cell produces its own antibody variant that recognizes a unique molecular surface.

Because the number of antibody variants produced by this randomization process is so immense, the body

has the capacity to produce antibodies that recognize nearly any molecular surface. To eliminate antibodies

that are self-reactive and leave only those that react to foreign molecules, B-cells producing antibodies that

are self-reactive are culled out in a process called negative selection. The result is an antibody repertoire

that reacts to almost any threat but not to the body [9].

To accommodate such a large diversity of antibodies, the concentration of each antibody in the body

is minuscule. In response to an infection, the body uses a process called clonal selection to increase the

concentration of antibodies that bind to the invading pathogen. The process of clonal selection depends on

the cells that produce antibodies, called B-cells. In addition to producing free-floating antibodies, a B-cell

is decorated with membrane-bound proteins resembling antibodies, called B-cell receptors (BCRs). When a

suitable antigen binds to a BCR, the BCR sends a signal to the B-cell that causes it to proliferate. As the

B-cell proliferates, it also upregulates the production of antibodies. In this way, only antibodies that can

actually aid in the battle against the invading pathogen are actually produced [9].

2.1.2 Structure

A detailed view of an antibody molecule is shown in Figure 2.1. Conceptually, the structure of an antibody

has the shape of the letter Y. This Y is composed of four chains: two identical heavy chains (Hc) and two
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Figure 2.1: Structure of an antibody [10, 11]. Heavy chains are coloured red and light chains are

coloured yellow.

identical light chains (Lc). The C-terminal halves of both heavy chains associate to form the stem of the Y

while the N-terminal halves are divided between the two top branches, each associating with one of the light

chains (Figure 2.2a) [9].

The parts of an antibody can be classified based on their function within the molecule. In order of

increasing specificity, these regions are Fc, Fab, Fv (Figure 2.2b), and CDRs. The Fc region refers to the

stem of the Y and is also called the constant fragment because it is identical in every antibody. The Fc

region is also the part that is recognized and bound by other components of the immune system. The two

remaining branches of the Y-shaped antibody are called Fabs, or antibody binding fragments. Within each

Fab is the Fv region, also called the variable region. Finally, at the N-terminal tip of the Fv region resides

the CDRs (complementarity determining regions). The CDRs are six loops (three from the heavy chain

and three from the light chain) which are responsible for sticking to the molecular surface of the antigen

(termed the epitope). Three of these CDRs (CDRH1, CDRH2, and CDRH3) come from the heavy chain.

The other three (CDRL1, CDRL2, and CDRL3) come from the light chain. Antibody diversity is created

by randomizing the genes encoding these loops. The reader can learn more about antibodies in the text by

Sompayrac [9].
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(a) Antibody molecule coloured by chain. Heavy

chains are coloured blue and light chains are coloured

green.

Fab

Fc

Fv

(b) Antibody molecule coloured by region. The con-

stant region (Fc) is shown in green, the Fabs are

shown in red (light and dark), and the variable re-

gions (Fv) are shown in dark red.

Antigen

(c) An antibody bound to an antigen. The surface making contact with the antigen is formed by the 6 CDRs (not

shown) of the variable region. The surface of the antigen making contact with the antibody is called the epitope.

Figure 2.2: A diagram of an antibody molecule.
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2.2 Antibody Phage Display

2.2.1 Overview

The observation that (1) human antibodies are well-tolerated by the body, (2) antibodies are highly specific

to their target, and (3) an antibody can be made for any given target, has lead to a great investment in

using antibodies for research, diagnostics, and therapeutics [3]. Much of the interest in antibodies is focused

on monoclonal antibodies (mAbs). A mAb is a collection of antibodies that are identical copies, or clones,

of one another. To avoid confusion, in the remainder of this document, the term clone means “a collection

of identical antibodies”. This definition will replace the alternate meaning of the word, which is “a single

copy of an antibody”. For example, a mAbs consists of a single clone, whereas polyclonal antibodies (pAbs),

which are heterogeneous collections of antibodies, consist of multiple clones.

Antibody phage display is a lab technique used for developing mAbs with affinity toward targets of

interest. Whereas the proliferation of antigen-binding antibodies within the human body is an example of

in vivo clonal selection, antibody phage display is a method for in vitro clonal selection. Antibody phage

display exploits the biology of bacteriophage (viruses that infect bacteria) to achieve this selection.

2.2.2 In Vitro Selection via Panning

Antibody phage display begins with a library: a collection of phage-antibody hybrids displaying antibody

fragments on their surface. An antibody phage display library typically contain over 1010 different clones

[12], comparable to the diversity of the human antibody repertoire. One might then expect that, for a given

target, there exists an antibody in the library that can bind to that target. Such a hypothesis is tested

using a selection process called panning. Panning has three basic steps: incubate, wash, and amplify. When

conditions are ideal, these steps enrich target-binding phage. Panning can be repeated a number of times

to achieve further enrichment. In the incubation step the phage are pipetted into target-coated wells. With

time, phage that display antibodies with target-affinity become immobilized on the surface of the well. The

next step is to rinse the well several times to wash away any unbound phage. With separation of bound and

unbound phage achieved, the final step is to either recover the DNA of the phage or to amplify the bound

phage remaining in the well so that further enrichment steps can be completed. Amplification is achieved by

infecting a suitable bacterial culture.

Sequencing of the antibody fragments present in the phage results in thousands to millions of sequences

in which a number of highly redundant sequences can be found. Barring sequencing errors, each set of

redundant sequences come from a set of identical phage, called clones. The general idea is that the more

abundant a sequence, the more abundant the clone, and thus the higher affinity that clone has for the target.

Next-generation sequencing of antibody phage display samples is common [6, 7, 8]. The reader can find an

overview of phage display in the work of Carmen & Jermutus [14].
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Figure 2.3: A pool of Fab-phage are selected and amplified to enrich those that bind to the target

(also called the antigen). (1) A pool of Fab-phage are incubated in an antigen-coated well; (2) Unbound

Fab-phage are removed by washing the well with solution, leaving Fab-phage that bound the antigen;

and (3) the antigen-bound Fab-phage are eluted from the antigen and amplified in an E. coli host.

The process can be repeated to further enrich antigen-binding Fab-phage [13]
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2.2.3 Antibody Library

In antibody phage display, a population of phage is called a library. One common, albeit simplistic, metric

for the quality of a library is its diversity, or number of distinct clones. Some state-of-the-art libraries have

estimated diversities of over 1010 clones, rivalling the diversity of the human antibody repertoire [12].

Libraries are constructed with DNA coding for antibody fragments with diverse variable regions. Each

DNA fragment is then inserted into a vector coding for a bacteriophage capsid protein such that the expression

product of the vector is a fusion protein between the capsid and the antibody fragment. The recombined

vector is then transfected into a bacterial culture infected with the same type of bacteriophage. During

virion assembly, the fusion protein is incorporated into the phage capsid alongside the wild-type capsid

proteins, producing bacteriophage that display the antibody fragment on their surface. Moreover, the DNA

of the vector contains specific signals that allow it to be packaged within the phage progeny. The result is

bacteriophage carrying the DNA of the antibody that decorates their surfaces. The linkage between antibody

DNA and antibody fragment turns out to be crucial for in vitro selection [14].

The DNA used to construct antibody phage display libraries can be derived from the antibody repertoire

of an organism, or synthesized using a template antibody and a suitable mutagenesis technique. Constructing

an antibody library synthetically offers greater control over the makeup of the constructed library. The CDRs

of synthetic libraries can be made to follow a specific design. For example, the libraries studied in this thesis,

library F and library S, were constructed synthetically according to the specification shown in Table 2.1 [14].

Library F is a synthetic antibody phage display library that uses a constant antibody framework and

variable CDR-H1, H2, H3, and L3, with most diversity focused toward CDR-H3. The length of CDR-L3 and

H3 varies from 8 to 12 residues and 7 to 23 residues, respectively. Library S was designed around library F,

but unlike library F, contains no variability in CDR-H1 and H2, and has a CDR-H3 that can vary in length

from 7 to 25 residues. The specification for library F and library S is shown in Table 2.1 [13].

2.2.4 Panning Target

In antibody phage display, the molecule one wishes to develop an antibody for is called the target. Seven

protein targets used in experiments carried out by the Geyer Lab are shown in Table 2.2.

2.3 Computational Biology

2.3.1 Sequence Alignment

Biological sequences, such as DNA and proteins, are easily represented using strings of symbols (i.e. sequences

of characters). For example, the DNA sequence consisting of the bases guanine-adenine-thymine-thymine-
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Table 2.1: CDR specifications for library F and library S. One-letter abbreviations are used to signify

amino acids. Brackets signify that any of the contained amino acids may appear at the position in the

sequence. Superscripts denote repetitions in the sequence.

CDR Library Specification

L1 F RASQSVSSAVA

L1 S RASQGISNYLA

L2 F YSASSLYS

L2 S YAASSLQS

L3 F QQ[YSGAFWHPV]3-7[PL][IF]T

L3 S QQ[YSGTAPHREFWVL]4PLT

H1 F AASGFN[IL][YS][YS][YS][YS][IM]H

H1 S AASGFTFSSYGMH

H2 F [YS]I[YS][PS][YS][YS][SG][YS]T[YS]

H2 S VISYDGSNKY

H3 F AR[YSGAFWHPV]1-17[AG][FLIM]DY

H3 S AR[YSGTAPHREFWVL]1-10[AGDY]FDY and

AR[YSGAFWHPV]7-15YYYY[GY][MF]DV
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Table 2.2: Summary of protein targets.

Short Name Full Name Gene Description [15]

Axl Tyrosine-protein kinase receptor AXL Cell signalling receptor that helps
regulate cell survival, cell prolif-
eration, migration, and differen-
tiation.

Jagged1 Protein jagged-1 JAG1 Ligand for Notch receptors. Be-
lieved to affect cell-fate decisions
during hematopoiesis.

Jagged2 Protein jagged-2 JAG2 Ligand for Notch receptors. Af-
fects limb, craniofacial, and
thymic development.

Mer Tyrosine-protein kinase Mer MERTK Cellular signal receptor that reg-
ulates cell survival, migration,
differentiation, and phagocytosis.

Notch1 Neurogenic locus notch homolog protein 1 NOTCH1 Receptor for jagged-1 and jagged-
2 (see JAG1/JAG2).

Notch2 Neurogenic locus notch homolog protein 2 NOTCH2 Receptor for jagged-1 and jagged-
2 (see JAG1/JAG2).

Notch3 Neurogenic locus notch homolog protein 3 NOTCH3 Receptor for jagged-1 and jagged-
2 (see JAG1/JAG2).

adenine-cytosine-adenine can be represented as the string “GATTACA”. This unambiguous representation

is easily manipulated by computers, which enables computers to carry out useful biological operations like

sequence alignment.

Sequence alignment is usually carried out to determine whether two sequences are similar enough to

assume they share some characteristic (e.g. evolutionary history, protein structure, function etc.). In silico,

determining how similar two sequences are is carried out by finding the alignment which maximizes an

objective function called the scoring function. The scoring function expresses, in formal terms, how good an

alignment is. The resulting alignment can itself be represented as two strings, one shown above the other

as in Figure 2.4a. Sequence alignment can be performed on more than two sequence. Such an alignment is

called a multiple sequence alignment (MSA). An example of an MSA is shown in Figure 2.4b.

2.3.2 Position-weight matrix

A position-weight matrix (PWM) is one way to represent a MSA. In a position-weight matrix, the rows

represent each of the 20 amino acids and the columns represent each position in the MSA. The value stored

in the element at row i and column j is the probability of observing amino acid i at position j of the MSA.
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-ATT --A

(a)
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(b)

Figure 2.4: (a) Two possible alignments of the DNA sequence ATTA with the DNA sequence GAT-

TACA. A priori, the first alignment is better because it does not contain internal gaps. (b) A multiple

sequence alignment of the DNA sequences GATTACA, ATTA, and GATACA.

Figure 2.5: An example of a sequence logo [16].

2.3.3 Sequence Logo

A sequence logo is a visualization of an MSA. An example is shown in Figure 2.5. A sequence logo shows

the positions of the MSA along a horizontal axis. Above each position, a number of pictures are stacked

vertically. Each picture in the stack depicts a single symbol, but the symbol is stretched or squashed to occupy

a specific amount of vertical space. The vertical space occupied by the picture signifies the probability in

bits (− log2 P ) of observing the depicted symbol at the corresponding position in the MSA.

2.4 Machine learning

2.4.1 Overview

In data analysis, one deals with sets of repeated measurements, e.g. species, petal length, and petal width

for each iris in a garden. In their entirety, these measurements form a dataset.

The measurements in a dataset are often dealt with mathematically as vectors, e.g. an iris of species

versicolor having a petal length of 1.4′′, and a petal width of 0.2′′ can be encoded as the 3-dimensional vector

(versicolor, 1.4′′, 0.2′′). If all of the measurements are numerical, the vector can be thought of as a point in
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N -dimensional space, where N is the number of measurements associated with the observation. Thought of

this way, the observation is called a datapoint.

Machine learning deals with the development and application of algorithms that extract meaningful

patterns from large datasets. Sometimes these patterns reveal hidden structure in the dataset. Looking

for these kinds of patterns is dealt with in the area of unsupervised machine learning. An example of

unsupervised machine learning is shown in Figure 2.6. Other times, these patterns are used to predict the

unknown attributes from partial observations, e.g. predicting the species of an iris from its petal length and

width. Looking for these kinds of patterns is dealt with in the area of supervised machine learning [17].

To predict unknown attributes, supervised machine learning techniques use a function or combination

of functions that takes a datapoint as input and outputs a number or label. This number or label output

by the model becomes the prediction for the unknown attribute. Before the model can make reasonable

predictions, however, it must first be trained with a dataset. Training allows the model to learn apparent

relationships between the known attributes, also called predictor variables, and the unknown attributes, also

called response variables.

Supervised machine learning can be further separated into classification and regression problems. A

regression problem arises when the response variable is continuous (in the mathematical sense). An example

of a regression problem is trying to predict the height of an individual based on a set of genetic predictors. A

classification problem arises when the response variable is categorical (i.e. can be enumerated). An example

of a classification problem would be trying to diagnose a patient as either infected or healthy based on a set

of clinical observations.

2.4.2 Training and learning

The functions that make up a machine learning model contain a number of adjustable parameters that affect

the predictions the model makes. A training algorithm is an optimization procedure that adjusts these

parameters in order to minimize the prediction error on the training dataset. For example, in a linear model

having the form y = mx + b, the slope m and y-intercept b are the parameters that are optimized during

linear regression, a sort of training algorithm.

2.4.3 Testing and validation

After training a machine learning model on the training dataset, it is necessary to test the model on another

dataset, called the testing dataset. The purpose of testing is to show that the model has not simply learned to

remember the training dataset, but has actually learned meaningful patterns that generalize to observations

outside of the training dataset.
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Figure 2.6: A hypothetical example of unsupervised machine learning. (a) The initial data consisting

of two measurements: sepal length and sepal width. The initial data was subjected to clustering, which

tries to divide the data into well-defined groups. (b) The same data coloured red or blue according to

the clusters identified by a clustering procedure.

2.4.4 Hyperparameters

In addition to normal parameters, which are optimized during training, machine learning models often have

parameters which can be set by the user. These parameters are called hyperparameters. Hyperparameters can

have a broader impact on the resulting model than normal model parameters. An important consideration

in machine learning is finding the hyperparameter values that work best for a particular problem.

2.4.5 Machine Learning Techniques

Correlation-Based Feature Selection

In machine learning, raw input is often processed into a smaller set of variables, called features, which are

then fed into the machine learning tool to predict the response variable. The processing of raw input into

features is called feature extraction.

For a given prediction task, there may be features that do not correlate well with the response variable.

These features are said to be noisy. There may also be features that correlate so well with each other that

their combined predictive power is worth no more than the predictive power of each feature alone. These

features are said to be redundant. Correlation-based features selection (CFS) is a procedure invented by

Mark A. Hall [18] that selects noisy and redundant features to discard.

The main contribution of CFS is a method for measuring the merit of a feature set. The method uses

an equation that measures the average correlation between each predictor and the response variable, but

14



penalized for correlation between predictors. CFS can handle not only continuous variables but ordinal,

nominal, and binary variables as well.

The Weka interface to CFS provides a number of common search strategies for finding the features that

maximize the CFS equation. One of these search strategies—the one used in this thesis—is called best-first

search.

The best-first search implementation can start with either (1) the empty set of features or (2) the set of

all features. In this thesis, the empty set of features was used, so only this method will be described but

before best-first search is described, some basic terms and concepts need to be defined:

Child: A feature set A is said to be the child of another feature set B if A contains all of the features of B

plus one more.

Expansion: The expansion of a feature set is the enumeration of all its children.

Best-first starts by expanding the empty set (e.g. Figure 2.7a). Expansion of the empty set results in the

discovery of a number of features sets, each containing only a single feature. The search continues by choosing

the best unexpanded set to expand next (e.g. Figure 2.7b). The search stops when 5 consecutive expansions

do not improve upon the CFS score of the best set. When the stopping criteria is met, the algorithm returns

the best set that was discovered.

{}

{a} {b} {c}
(a)

{}

{a} {b}

{a, b} {b, c}

{c}

(b)

Figure 2.7: (a) The empty feature set is expanded, resulting in the discovery of three new feature

sets. (b) The feature set with the best CFS score ({b}) is expanded, resulting in the discovery of two

more feature sets.

Decision Trees and Random Forests

A decision tree is a classifier that uses a structured set of rules for classifying new instances (Figure 2.8). To

classify a datapoint using a decision tree, the rule at the root of the tree is applied first. If the rule is satisfied,

the next rule applied is the left descendent of the root, otherwise it is the right descendent. This proceeds

down the tree until a leaf node is reached. The label contained in the leaf node becomes the predicted class

of the datapoint.
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A decision tree can be built to correctly classify every datapoint in a dataset; however, the ability of such

a tree to generalize to other data is typically poor. A random forest is an attempt to counteract the poor

generality of a decision tree. A random forest is a collection of decision trees, each trained on a different

subset of the training data [19]. After training, the random forest contains a collection of decision trees that

are d ifferent, yet are trained to do the same thing. By averaging over the predictions of each decision tree,

a classifier that is less prone to overfitting results (i.e. less dependent on the training data).

For random forests, bagging and random feature selection are two methods for injecting randomness into

the training of each decision tree. In bagging, the training dataset is resampled before training each decision

tree. In random feature selection a random subset of features is used to train each decision tree [20].

Expression
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True
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Figure 2.8: A hypothetical decision tree for deciding whether a pair of proteins interact [21].

Logistic Model

A logistic model is a prediction tool used for binary classification problems. The two classes of a binary

classification problem will be called the positive and negative classes. The input to a logistic model is a set

of numeric variables and the output is a number between 0 and 1 that approximates the probability that

the input belongs to the positive class. For a given input, if the logistic model produces a value of 0.5 or

greater, the model predicts that the input belongs to the positive class; otherwise, the model predicts that

the datapoint belongs to the negative class. A logistic model is trained by maximizing the likelihood function

of the model. The likelihood function expresses the probability that the model generates the observed data,

and is described in the text by Witten and Frank [19].
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Figure 2.9: An example of a maximum-margin separating plane. (a) Datapoints with two variables

represented on the x and y axes. The red dots belong to one class and the blue dots belong to another.

(b) The maximum-margin separating plane shown as a solid black line. Datapoints labelled v1, v2,

and v3 are the support vectors of this plane. The margin is the space between the two dotted black

lines.

Support Vector Machine

A support vector machine (SVM) is a popular machine learning model used for binary classification problems.

SVMs can be understood by first visualizing data as coloured points in k-dimensional space, where the colour

denotes the class of the data point and the value on each of the k axes is the value of each of the k predictor

variables (Figure 2.9a). The goal in training an SVM is to find the maximum-margin separating plane, which

is the plane that separates points of different colours such that there is a maximum amount of space between

the plane and the points (Figure 2.9b). Visually, if the plane has a thickness, the goal is to find the thickest

plane that separates the points. Once the maximum-margin separating plane is found, predictions for new

datapoints depend on what side of the plane the new datapoint falls. The reader can learn more about SVMs

in the text by Alpaydin [17].

Support vector machines get their name from the fact that the maximum-margin separating plane can

be defined in terms of a subset of the datapoints in the training dataset, called the support vectors. The

decision to classify a new data point as belonging to either the positive or negative class is made based on

the result of a linear combination of the inner-products between the new data point and each of the support

vectors. For example, in Figure 2.9b, the datapoints labelled v1, v2, and v3 are the support vectors of the

maximum-margin separating plane; the maximum-margin separating plane is defined completely by these 3

datapoints.
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In addition to linear separating planes, support vector machines can classify using non-linear surfaces

by mapping the training data into another space with a special function and then performing the training

procedure in this new space. This mapping can be achieved implicitly by substituting the inner-product in

the decision function with another function. These functions are called kernels.

For real classification problems, separating all of the datapoints into their respective classes with a plane

may be impossible. For this reason, most SVMs use a soft-margin, which allows some of the training data

to be misclassified. The parameter C is introduced to control the balance between (1) the goal of making

the margin as large as possible, and (2) the soft-constraint that all training data be on the correct side of

the plane and outside of the margin [22]. Lowering the value of C softens the constraint, but the value of C

must remain positive.

Radial Basis Function

One example of an SVM kernel is a radial basis function (RBF). A RBF is shown in Equation 2.1, where γ

is an adjustable parameter and x and x′ are two vectors. Intuitively, the RBF kernel is a similarity function

that maps pairs of vectors into the interval [0, 1]. The RBF kernel is at a maximum (equal to 1) when the

pair of vectors are equal. As the distance between the vectors increases, the RBF kernel decays to 0. γ

controls how fast a RBF decays and must be positive.

K(x,x′) = exp(−γ||x− x′||) (2.1)

When fed a vector as input, a RBF-SVM classifies the vector through the following procedure: For each

support vector, the RBF-SVM calculates the distance to the input vector, multiplies this distance by −γ,

then takes the exponential of the result. The resulting term is multiplied by the weight of the support vector.

Finally, the RBF-SVM sums the resulting terms and adds a constant term, which was also learned during

training. If the sum is positive, the RBF-SVM classifies the input as positive; otherwise, it classifies the input

as negative.

Strings, Subsequences, and the String Subsequence Kernel

A string is a sequence of symbols from a predefined alphabet. For example, a DNA sequence is a string that

is made from the symbols A, T, G, and C. A substring of a string s is a string that can be made into s by

adding symbols to either end. A subsequence of a string s is a string that can be made into s by adding

symbols anywhere in the string. For example, consider the string s = GATTACA. ATTA is a substring of s

but ATTC is not; however, ATTC is a subsequence of s.

In the context of molecular biology, DNA or amino acid sequences can be represented by strings. A

substring of a string s can therefore be thought of as an ungapped local alignment on s that does not contain

mismatches. Likewise, a subsequence can be thought of as a local alignment on s that does not contain
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s FTFTALILLAVAV

||||||

s′ ---TALILL ----

(a)

s FTFTALILLAVAV

||||||

s′′ ---TALILL ----

s FTFTALILLAVAV

| |||||

s′′ -T--ALILL ----

(b)

Figure 2.10: Substrings and subsequences in a molecular biology context. (a) A substring s′ of s is

an ungapped local alignment of s′ onto s that contains no mismatches. (b) A subsequence s′′ of s is a

local alignment of s′′ onto s that contains no mismatches and only contains gaps in the s′′ part of the

alignment.

mismatches and only contains gaps in the subsequence part of the alignment. Examples of a substring and

subsequence in this context are shown in Figure 2.10.

The string subsequence kernel (SSK) is a more exotic SVM kernel because it operates on strings instead

of vectors [23]. Intuitively, the SSK is the number of subsequences shared between two strings and weighted

by the number of gaps in the shared subsequences. The SSK kernel is parameterized by two parameters, the

decay λ and the subsequence length n. Intuitively, the decay λ determines how much shared subsequences

are penalized for containing gaps.

Artificial Neural Network

An artificial neural network (ANN) is a machine learning tool composed of nodes and edges. An example of

a small ANN is shown in Figure 2.11. The nodes in an ANN are processing units which sum together signals

from adjacent nodes, apply a function, and send the resulting signal to nodes further down the network

through its outgoing edges. The edges in an ANN not only connect node outputs to node inputs, but also

multiply the signals they carry by a weight.

In feedforward ANNs (the kind of ANN used in this thesis) nodes are organized into layers, where the

first layer contains nodes that receive the input, and the final layer contains nodes that produce the output.

The layers in between the input layer and output layer are called hidden layers. Every node in layer i is

connected to every node in layer i+ 1. In addition, each layer has a bias node capable of shifting the entire

signal up or down. Figure 2.11 shows an example of a feedforward ANN.

The goal of training an ANN is to find values for the edge weights that minimize the prediction error

of the ANN with respect to the training dataset. This minimization problem has no direct mathematical

solution, but a numerical procedure called gradient descent can find values that are locally optimal.

Gradient descent requires initial values for the edge weights. The initial values may be supplied by the user

and drastically affect the outcome. Using the initial values, the direction of steepest descent is determined by

taking the derivative of the training error with respect to each edge weight. Each edge weight is then adjusted
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2,1

Figure 2.11: An example of a small artificial neural network. Nodes are labelled x, y where x and

y denote the layer and node, respectively. By convention, layer 0 is the input layer and node 0 is the

constant bias. The nodes in the input layer (shown in blue) take on the values of the predictor variables.

The signal propagates down the edges to adjacent nodes. At each edge the signal is multiplied by a

weight. At each node the signals are added together, transformed with the activation function, and

sent through the outgoing edges. Eventually the signal reaches the output node (shown in red) which

predicts the value of the response variable.

to move in this direction by a certain amount. The size of this step is determined by the learning rate. The

gradient descent process is often compared to the trajectory of a ball that has been placed randomly on a

curved surface. The ball has a random initial position (the initial edge weights) and the elevation of the

ball (the training error) is determined by the surface (the training error). The ball moves in the direction of

steepest descent, eventually stopping at the bottom of the basin. By analogy, the edge weights move in the

direction of steepest descent (with respect to the training error) and stop when the edge weights reach values

where any movement, no matter the direction, increases training error. Optionally, a momentum may also

be introduced to allow the ball to roll against the direction of descent and jump from one basin to another.

The reader can learn more about ANNs in the text by Bishop [24].

Naive Bayes Network

A naive Bayes network is a simple machine learning model in which every predictor variable X is assumed to

be conditionally dependent on the response variable Y but independent of all the other predictor variables.

Naive Bayes networks are trained by estimating the conditional probability (P (X|Y )) for each predictor

variable using maximum likelihood estimation [19]. A trained naive Bayes network is used for prediction by

applying Bayes’ rule (Equation 2.2). The graph of a naive Bayes network is shown in Figure 2.12.

P (Y |X) =
P (X|Y )P (Y )

P (X)
(2.2)
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Y

X1 X2 · · · Xn

Figure 2.12: A naive Bayes network. Nodes denote variables and arrows denote conditional depen-

dencies between variables.

2.4.6 Related Machine Learning Applications

Machine learning has many fruitful applications in the field of molecular biology. One example is the detection

of CpG islands with hidden Markov models [25]. Another example is the prediction of protein secondary

structure from protein sequence using artificial neural networks [26]. A third example is the prediction of

interacting protein pairs using random forests [27]. Machine learning has also been used in drug development

for screening millions of drug candidates for those that are likely to fail [28].

2.5 Statistical Methods

Statistical tests allow one to support or refute hypotheses by deferring to statistical probabilities.

2.5.1 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric (i.e. distribution-free) test that can be used to compare

the medians of two related samples. The samples must be related in the sense that there is a natural way to

pair the data. An example of two such samples arises when a medical intervention is being tested on a patient

group and measurements are taken before and after the intervention. In this example, the pre-intervention

measurements form one sample, and the post-intervention measurements form the other. In addition, the

measurements in both samples can be paired according to the patient they came from. Pairing the samples

has the advantage of controlling for variables that differ between patients.

Using the example of the previous paragraph, the Wilcoxon signed-rank test helps answer the question

“are the measurements taken after the intervention consistently higher (or lower) than the measurements

taken before the intervention?” [29].

2.5.2 Friedman Test

If the data can be tabulated like the example shown in Table 2.3, the Friedman test can be used to test

the hypothesis that the observations in one or more of the rows are statistically higher (or lower) than the

other rows, while controlling for variables that differ between columns. The Friedman test is similar to the

Wilcoxon signed-rank test except that the Friedman test is not limited to pairs of datapoints. The drawbacks
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Table 2.3: The grades receieved by 3 students in the subjects math, science, and english. The

Friedman test could be used to test the hypothesis that one or more students received statistically

higher (or lower) marks than the others.

Student Math Science English

A 65 50 95
B 60 70 90
C 80 85 60

of the Friedman are that (1) it is less sensitive than the Wilcoxon signed-rank sum test (i.e. more likely to

falsely accept the null hypothesis) and (2) it does not indicate which row is dominant [29].

2.5.3 Mann-Whitney U test

Like the Wilcoxon signed-rank test, the Mann-Whitney U test can be used for comparing two samples, except

that the samples do not need to be paired [29].

2.5.4 Multiple Hypothesis Testing and the Bonferroni Correction

If, instead of a single hypothesis, a group of hypotheses are being tested using a dataset, the probability of

falsely rejecting a null hypothesis increases in proportion to the number of hypotheses. Using the example

from Section 2.5.1, such a situation might arise if, instead of testing one intervention, multiple interventions

are being tested.

One way to account for the increased chance of error associated with multiple hypotheses is to use the

Bonferroni correction [29]. The Bonferroni correction ensures that the change of falsely rejecting a single null

hypothesis is less than the significance level α.

2.6 Software

2.6.1 MUSI

Clustering is one example of unsupervised machine learning. The goal of clustering is to find groups (i.e.

clusters) of datapoints that are similar to each other but different from datapoints in other groups. An

example application of clustering is classifying patients diagnosed with a particular disease into disease sub-

types based on clinical observations and disease outcomes.

MUSI (Multiple Specificity Identifier) [30] is a software package that performs clustering on a set of short

peptide sequences. The MUSI algorithm first performs a mulitple sequence alignment (Section 2.3.1) on

the peptide sequences before selecting a set of PWMs (Section 2.3.2) to represent the MSA. The selection

procedure returns the maximum number of PWMs (fit using expectation maximization) that satisfy the
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MUSI criteria: (1) each PWM (i.e. cluster) has enough sequences and (2) no two PWMs are too similar.

Each PWM returned by the selection procedure corresponds to a single cluster.
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Chapter 3

Research Goals

Next-generation sequencing has enabled scientists to examine the DNA of biological systems (e.g. hu-

mans, eukaryotes, bacteria, viruses, and environments) with unprecedented detail. With the high volume of

information produced by NGS, however, comes the oft-cited challenge of storing, organizing, processing, and

analyzing this sequence data. Comprehending such high volumes of data is impossible to do manually. Not

excluded from these difficulties is the area of antibody phage display, where phage populations containing

millions of genetically distinct clones can be characterized in a single NGS run, allowing researchers equipped

with the right tools to perform an in-depth analysis of the sequence landscape present within the population.

The deluge of sequence data produced by applying NGS to antibody phage display presents a unique

challenge to the computational biologist. Each sequenced sample provides a detailed snapshot of the make-

up of the contained phage; but the factors that account for changes in the population observed between

snapshots is understood primarily on a qualitative level. While this high-level understanding coupled with

the researcher’s own experience has been sufficient to bring about major advances in the field [31], there is

still opportunity to bring to bear machine learning techniques to this exciting new area.

The aim of this thesis is to explore applications of machine learning to antibody phage display in the

following context: Given the sequence of a clone and a target, can the presence or absence of a clone after

the 5th panning round be predicted? As the presence or absence of a clone in the third, fourth, and fifth

rounds of panning is one of the first criteria the analyst uses in selecting clones for further experimentation,

this prediction task is a good candidate for machine learning.

The aim of this thesis was distilled into three research goals, which are presented in the following three

sections (Sections 3.1 to 3.3).

3.1 Compare the Performance of Various Machine Learning Tech-

niques in Application Area

The field of machine learning is rife with techniques for learning complex patterns from data and making

predictions based on those learned patterns [17, 24, 19]. No single technique is strictly dominant, but

each has areas of application where it excels. The first research goal of this thesis is to develop a general

methodology for applying different machine learning models to the prediction task at hand, and then to
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use this methodology to compare the classification accuracy of a variety of machine learning models. The

general methodology must prescribe methods for (1) identifying and extracting informative features from the

CDRH3 sequence data and (2) tuning the hyperparameters of the models.

3.2 Assess the Generality of the Prediction Pipeline

The usefulness of a trained machine learning model depends crucially on its ability to generalize to data not

observed in the original training set, a concept called generality. The second research goal is to determine to

what extent the best machine learning technique (chosen based on the results from the previous research goal)

can generalize to antibody phage display experiments that use different libraries. Such a finding would suggest

that the selected machine learning technique can find relationships between a clone’s CDRH3 sequence and

its outcome that are independent of the library.

3.3 Present a Methodology for Interpreting the Trained Models

Decisions for library construction are made on the basis of experience, intended targets, and resources.

Libraries may go through an iterative process of improvement by altering the original specification or con-

struction protocols. Machine learning models vary in their explanatory power; that is, the ease at which their

predictions can be understood in terms of the material inputs. By reverse engineering the learned classifier

in the prediction pipeline, general properties can be derived which correlate with the experiment outcomes

and the fate of clones. These properties can be interpreted as a prescription for further specialization of

the antibody library into a focused antibody library. The third goal of this thesis is to develop one possible

methodology for extracting this information from the learned models.
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Chapter 4

Data & Methods

4.1 Work Performed by the Geyer Lab

Using antibody phage display, the Geyer Lab [13] selected clones from library F and library S for affinity to

seven targets named Axl, Jagged1, Jagged2, Mer, Notch1, Notch2, and Notch3 (Table 2.2). Screening was

carried out in a series of 14 antibody phage display experiments, each experiment using a different library-

target combination. To achieve sufficient enrichment of target-binding clones, 5 rounds of panning were used

in each experiment. After each round of panning, samples of the resulting phage population were sequenced

using an Ion Torrent sequencer.

For sequencing, the Geyer Lab [13] amplified the CDRH3 region of selection outputs (phage samples)

using designed primers; then performed emulsion PCR on the amplicons using proprietary Ion sphere particles

(ISPs); and finally sequenced the enriched ISPs on an Ion semiconductor chip. The sequences output by Ion

Torrent were prepared for data analysis with a sequence of steps that included the removal of reads that

diverged significantly from the library specification and reads with a low overall quality.

Because the sequenced samples form the basis of the following analysis, an unambiguous terminology

for referring to different collections of them was devised. Samples can be identified uniquely by the library,

target, and panning round from which they were collected; therefore, they can be said to form a 3-dimensional

array with library, target, and panning round represented on the 3 axes. Figure 4.1 shows this 3-dimensional

representation. Using this analogy, when an analysis is described as being performed on the S-Notch3 sample

array, samples from S-Notch3 rounds 0-5 are implied (Figure 4.1b).

For a typical sample, thousands of sequences were identified, many of which were identical. It was

assumed that identical sequences came from identical clones and that the number of identical sequences was

proportional to the concentation of that clone.

4.2 Data Organization

The CDRH3 DNA sequences produced by the Geyer Lab were translated into amino acid sequences using

the transeq program from the EMBOSS package [32]. The resulting protein sequences were inserted into a

PostgreSQL [33] table called reads. The sequences in the reads table were grouped by the sequence, library,
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(a) Library S-Notch3-Round 1 sample.
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(b) Library S-Notch3 sample array.

Figure 4.1: The phage samples viewed as a 3-dimensional array of cubes. (a) The sample collected

following round 5 of panning Library S against Notch3, denoted S-Notch3-5. (b) The samples collected

in all Library S versus Notch3 panning rounds, denoted S-Notch3.

target, and round columns; and then counted. These unique entries were inserted, along with their counts,

into a table called clones.

The reason for managing data with a DBMS like PostgreSQL was two-fold: (1) PostgreSQL ensures that

the entered data is valid and (2) querying a flatfile requires that, at worst, the entire file first be read, a

time-consuming operation, whereas PostgreSQL stores data in a native binary format which is designed for

rapid retrieval of information.
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4.3 Feature Extraction

The sequences in the clones table were preprocessed to extract a diverse collection of potentially informa-

tive features. These features can be divided into 3 groups. The first of these groups contains the amino

acid compositions of the 20 amino acids (Section 4.3.1). The second contains the counts of each dipeptide

(Section 4.3.2). The third contains a variety of physicochemical properties (Section 4.3.3). After extracting

these features, a preliminary analysis was conducted to gain a better understanding of the data.

4.3.1 Amino acid composition

The amino acid composition of a clone was the fraction of the clone’s variable CDRH3 sequence made up by

each of the 20 possible amino acids. An example calculation is shown in Table 4.1.

Table 4.1: Calculating the amino acid composition for the sequence YYYYVYDFDY.

Amino Acid Sequence Composition

D YYYYVYDFDY 0.2

F YYYYVYDFDY 0.1

V YYYYVYDFDY 0.1

Y YYYYVYDFDY 0.6

4.3.2 Dipeptide counts

The dipeptide counts for a clone were the number of each of the 384 different dipeptides present in the clonal

variable CDRH3 sequence. Out of the 400 possible dipeptides, 16 were omitted from this set of features

because they were not observed in any of the sequenced samples. A sequence of length l contained l − 1

dipeptides, so the sum of the dipeptide counts for a clone with a sequence of length l was equal to l − 1.

Calculating the dipeptide counts for the sequence YYYYVYDFDY is shown in Table 4.2.

The motivation for using dipeptide counts instead of fractions was based on an analogy with binding

motifs in protein sequences. Let X be a well-known binding motif for target T and let A and B be two

proteins that have X in their sequence. Also, assume that the number of amino acids in protein B is half the

number in protein A. In this hypothetical scenario, knowing how many times X occurs in A or B is more

relevant than whether these proteins bind to T than knowing the fraction of A or B made up by X because

the answer does not depend on the size of the protein. Following the analogy, if a dipeptide is viewed as

a micro-motif of the CDRH3, which can vary is size, then the question of how many times that dipeptide
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occurs in the CDRH3 is more informative than the question of what fraction of the sequence is made up by

that dipeptide.

Table 4.2: Calculating the dipeptide counts for the sequence YYYYVYDFDY.

Sequence Dipeptide

YYYYVYDFDY YY

YYYYVYDFDY YY

YYYYVYDFDY YY

YYYYVYDFDY YV

YYYYVYDFDY VY

YYYYVYDFDY YD

YYYYVYDFDY DF

YYYYVYDFDY FD

YYYYVYDFDY DY

(a) Decomposing the sequence into dipeptides.

Dipeptide Count

YY 3

YV 1

VY 1

YD 1

DF 1

FD 1

DY 1

(b) Counting the dipeptides.

4.3.3 Physicochemical Properties

In addition, a collection of physicochemical properties were estimated for each clone’s sequence. These

features included the following eight physicochemical properties, calculated using the R package Peptides

(version 1.1.1) [34].

Aliphatic index: From Ikai [35]: “The relative volume of a protein occupied by aliphatic side chains (ala-

nine, valine, isoleucine, and leucine).”

Boman index: The average solubility value of the amino acids in the sequence.

Charge: The net charge of the sequence.

Hydrophobicity: The average hydrophobicity index of the amino acids in the sequence.

Instability Index: An index of how rapidly a protein will degrade. A protein that has an index less than

40 is considered stable (e.g. has a very long half life) [36].

Length: The number of amino acids in the sequence.

Molecular weight: The combined molecular weight of the amino acid sequence.

Isoelectric point: The pH at which the protein has a net charge of 0.
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4.4 Comparison of Machine Learning Techniques

4.4.1 Overview

Each clone that was observed after 5 rounds of panning received a label of persistent and each clone that

was observed in the naive library, but not after round 5 received the label transient. A panel of classifiers

was trained to classify clones as either persistent or transient based on the clonal sequence. The panel of

classifiers consisted of a logistic model (LM), random forest (RF), support vector machine (SVM), artificial

neural network (ANN), and naive Bayes network (BN). Although by no means exhaustive, this list of classifiers

covers many of the popular machine learning classifiers used today. Using Weka [37], each classifier in the

panel was trained and tested on the features calculated for each library-target sample array. Because there

were 2 libraries, 7 targets, and 5 different classifiers, the analysis consisted of 70 subanalyses (2× 7× 5).

4.4.2 Dataset Preparation

For each experiment, the unique clones observed in round 5 were labelled positive. The positive dataset was

then subtracted from the unique clones identified in the naive library (round 0) to form the negative dataset.

Because the number of negative clones was much greater than the number of positive clones, the negative

dataset was randomly down-sampled until the size of the two datasets matched.

4.4.3 Feature Selection

Generally, the number of classifier parameters increases with the dimensionality of the feature space. A

large number of classifier parameters is associated with (1) longer training times, (2) overfitting, and (3) less

interpretable models. Because of these issues, dimensionality reduction is highly desirable.

A total of 413 features were extracted from each clone. These features were made up of 8 physicochemical

properties, 20 amino acid compositions, and 384 dipeptide counts. Uninformative features were removed

from the data to reduce the dimensionality of the feature space without compromising the ensuing analysis.

Two components were needed to find a subset of features (i.e. remove uninformative features): (1) a

criterion for evaluating the informativeness of a subset of features, and (2) a search algorithm. The criterion

was correlation-based feature selection (CFS) [18] and was described further in Section 2.4.5. CFS penalizes

noisy and redundant features when evaluating informativeness. An exhaustive search of feature subsets to

find the subset with the maximum CFS criterion was prohibitive because of the large size of the space of

feature subsets (2#-of-features). For computationally tractability, a best-first search was used with a stopping

point of 5 consecutive non-improving nodes.

The search algorithm was initialized with the empty set of features and proceeded through the feature

subset space by adding one feature at a time. The feature subset search was run on a dataset consisting of

250 positive clones and 250 negative clones from each library-target sample array.
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4.4.4 Training and Validation

Each classifier was trained and tested using 10-fold cross-validation on the feature-reduced datasets. The

following parameters were used for each classifier and training algorithm used to train that classifier.

Logistic Model: Default parameters were used.

Bayesian Network: Default parameters were used.

Random Forest: The random forest consisted of 100 decision trees. Each decision tree was trained using

the entire training dataset. Randomness was injected into the training procedure by randomly selecting

log2(num-of-features + 1) features from the feature-reduced dataset prior to training each decision tree.

This was the default heuristic used by Weka.

Support Vector Machine (RBF kernel): The support vector machine was equipped with an RBF kernel.

The cost C was set to 1 and γ was set to 0.01. Different parameter settings were investigated in the

analysis described in Section 4.6.2.

Artificial Neural Network: The number of hidden layers in the artificial neural network was set to 1. The

number of nodes per hidden layer was set to num-of-features+2
2 , the default heuristic used by Weka. The

learning rate and momentum (described in Section 2.4.5) were left at their default values of 0.3 and

0.2, respectively. Weka normalizes (centers and scales to unit variance) features by default prior to

training. This was not changed. Different numbers of hidden layers were also investigated as described

in Section 4.5.

4.4.5 Quantifying Prediction Performance

The classification accuracy was used for comparing the performance of the classifiers studied in this thesis.

The accuracy is the fraction of clones correctly classified (Equation 4.1).

#-of-correctly-classified-clones

total-#-of-clones-in-dataset
(4.1)

4.5 Improving ANN Classification Accuracy

In an attempt to improve the classification performance of the ANN, different numbers of hidden layers were

tried. ANNs with 1, 2, and 3 hidden layers were trained and tested. Figure 4.2 shows the three ANNs that

were used.
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1,0 1,1 1,2 · · · 1,m

2,0 2,1 2,2 · · · 2,m

3,1

0,0 0,1 0,2 · · · · · · 0,n

1,0 1,1 1,2 · · · 1,m

2,0 2,1 2,2 · · · 2,m

3,0 3,1 3,2 · · · 3,m

4,1

Figure 4.2: Artificial neural networks with 1, 2, and 3 hidden layers. The input layer is coloured red

and the output layer is coloured blue. n is the number of inputs to the ANN and m is the number of

nodes per hidden layer. By default, Weka sets m to n+2
2 .

4.6 Improving SVM Classification Accuracy

Two methods of improving SVM prediction accuracy were explored. The first was the introduction of a new

type of kernel, called the String Subsequence Kernel (SSK). Whereas the RBF kernel, which was used in the

original comparison, operates on numerical vectors, the SSK kernel operates on strings allowing the clonal

sequence to be used as input. The second method of improving the SVM prediction accuracy was a gridsearch

to determine optimal parameter settings. The gridsearch was performed on both the origin RBF-SVM and

the newly introduced SSK-SVM.
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4.6.1 String Subsequence Kernel

The input to an SVM equipped with an RBF kernel is vectors in Rn, where n is the number of numerical

features describing each data point. The raw data used in this thesis consists of variable length sequences

and it was only by extracting various numerical features from these sequences that the sequences could be

projected into Rn so that the RBF-SVM could be used. To avoid having to choose a mapping of CDRH3

sequences to a vector space, which may not be information preserving, a kernel which operates directly on

sequences was used. This kernel is called the string subsequence kernel (SSK).

4.6.2 Gridsearch

Gridsearch was used to tune the parameters of the RBF- and SSK-SVMs. Because the computation time

of gridsearch scales exponentially with the dimensionality of the grid (i.e. the number of hyperparameters),

gridsearch was performed on just two hyperparameters at a time. For the RBF-SVM, the gridsearch was

performed on the parameter space formed by C and γ of the RBF-SVM and covering C = 10x for x =

−5,−4, . . . , 4, 5 and γ = 10x for x = −5,−4, ..., 4, 5. At each vertex of the grid and for each target, the

classification accuracy was measured using 10-fold cross-validation. For the SSK-SVM, the gridsearch was

performed on the parameter space formed by λ and n. The search covered λ = 0.1, 0.2, . . . , 0.9 and n =

1, 2, . . . , 6. At each vertex of the grid and for each target, the classification accuracy was obtained using

10-fold cross-validation.

4.6.3 Comparing the Tuned SVMs to the Original Classifiers

For both the optimized SVMs and the classifiers tested in Section 4.4, the cross-validation accuracies of each

classifier-dataset combination were averaged to obtain a mean accuracy. The mean accuracy of each SVM

was then compared to the mean accuracy of the original classifiers.

4.7 Cross-Library Validation of SVMs

In a separate analysis, the tuned RBF- and SSK-SVM were trained to predict clone persistence in one library

and then tested on the data from another library to see if the model generalized to a different experimental

setting. The library chosen to train the SVMs was library F because experiments by the Geyer lab showed

that library F worked well on all of the targets. Data from library S was used to test the SVMs. For

each target, an SSK-SVM was trained on the Library F sample array for that target and then tested on the

corresponding sample array in Library S. Classification accuracy was measured using 10-fold cross-validation.

The same analysis was conducted for the RBF-SVM.

The reasons for choosing the RBF- and SSK-SVM for this analysis and subsequent analyses are manifold:

(1) the RBF- and SSK-SVM were among the best performing classifiers in the analyses that was described
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in Section 4.4 (results are presented in Section 5.2.5); (2) compared to the ANN, the SVMs had a smaller

number of hyperparameters to tune; and (3) compared to RF, the SVMs were easier to interpret; and (4)

the SVM training procedure is guaranteed to find the best parameter settings. In addition, the SSK-SVM

works with sequence inputs. Using the CDRH3 sequence as input to the SSK-SVM avoided the problem of

choosing an intermediate vector representation of the CDRH3 sequence.

4.8 Interpreting the Trained SVMs

The SVMs that were trained on library F were inspected to understand the basis for their predictions. As

explained in the background (Section 2.4.5), SVMs make decisions based on a learned subset of training

examples called support vectors and a learned set of weights. These support vectors together with their

weights will be used to interpret the RBF- and SSK-SVMs.

4.8.1 Interpreting the Trained RBF-SVM

As described in Section 2.4.5, the decision function is a linear combination of the kernel between the input

and each support vector; therefore, the function resembles Equation 4.2, where K(·, ·) is a RBF, x is the

input, w1, w2, . . . , wn are the learned weights and v1,v2, . . . ,vn are the learned support vectors.

f(x) = b+ w1K(x,v1) + w2K(x,v2) + · · ·+ wnK(x,vn) (4.2)

As described in Section 2.4.5, the RBF is a similarity function that decays exponentially from 1 to 0 as

the Euclidean distance between the vectors increases; thus, each RBF in the decision function 4.2 creates

a peak or valley (depending on the magnitude of the wi). The decision function, when visualized in two

dimensions with a heatmap, contains “hotspots” at the positive-weighted support vectors and “coldspots”

at the negative-weighted support vectors. To visualize the decision function of the trained RBF-SVMs, the

decision function was projected onto two dimensions and plotted as a heatmap.

4.8.2 Interpreting the Trained SSK-SVM

As described in Section 2.4.5 the SSK maps a string s to a space of dimension |Σn|, where each dimension

is the weighted sum of occurrences of a particular word w ∈ Σn as a subsequence in s. The result of the

gridsearch over the parameter space of the SSK-SVM (to be described in Section 5.2.4) revealed that a

substring length of 2 (i.e. n = 2) was optimal, therefore the SSK used in subsequent analyses mapped strings

to a space of dimension 400 (i.e. one dimension per dipeptide). For example, the value of dimension AR for

sequence s was the number of times the dipeptide AR occurred as a subsequence in s. The decision function

of an SVM can be understood in terms of its support vectors, so the support vectors for the SSK-SVM

were decomposed into their underlying 400-component vectors consisting of dipeptide occurences. A positive
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weight on a dipeptide indicated that the presence of that dipeptide (as a subsequence) in a sequence made

it more likely to be predicted as a positive by the SSK-SVM. A negative weight meant the opposite.

4.9 Statistical Methods

In this thesis, non-parametric tests were generally preferred to parametric tests because of certain assumptions

required for the latter. One of the assumptions required for parametric tests is that the observations follow a

probability distribution (e.g. Gaussian distribution). As will be seen in future sections, no such assumption

can be made. The type of non-parametric tests used in this thesis were (1) the Mann-Whitney U test, (2) the

Wilcoxon signed-rank test, and (3) the Friedman test. The Bonferroni correction was used wherever multiple

hypotheses are tested. Unless indicated otherwise, hypothesis tests used a signficance level of 0.05 (i.e. if the

p < 0.05, the null hypothesis was rejected).

Whenever a test is used to support an observation like “the median of A is greater than B”, the null

hypothesis is the opposite; that the median of A is equal to or less than B. This is called a one-tailed test.

And whenever a test is used to support an observation like “the medians of A and B are not equal”, the null

hypothesis is, again, the opposite; that the medians of A and B are equal. This is called a two-tailed test.

The results of statistical tests are given in parenthesis, as close as possible to where they are mentioned.

Sometimes only a p-value is given (e.g. p = 0.05) and sometimes a confidence interval is given (e.g. M=1.0

CI=[-1.0,3.0]). When the statistic is a confidence interval, the median is denoted by the variable M , and the

95% confidence interval is denoted by the variable CI.

4.10 Hardware and Software

The classifier cross-validation jobs were run on the University of Saskatchdwan Bioinformatics Eldorado

server (hostname eldorado.usask.ca, 2 × 8-core Intel Xeon 2.60GHz, 384GB memory) taking advantage of

multiple cores where possible. Visualizations were generated on a laptop running Mac OS X.

Data manipulation was carried out at the database level with PostgreSQL and externally using Python

with pandas and Biopython [38]. The Weka machine learning workbench provided the routines for feature

selection and cross-validation [37]. LATEX and the ggplot2 R package (v2.1.0) were used for visualizing

results [39].
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Chapter 5

Results & Conclusions

5.1 Preliminary Analysis

The sequenced samples from the 14 experiments were submitted to a preliminary analysis in order to gain

a better understanding of the data. The preliminary analysis had three parts: (1) sequence clustering, (2)

calculating the diversity over panning round, and (3) computing the physicochemical property distribution.

5.1.1 MUSI Clusters and Sequence Logos

MUSI was used to cluster sequences from the round 5 samples [30] and then to generate sequence logos for

each cluster. The sequence logos for Axl and Mer round 5 clusters along with the size of each cluster are

shown in Tables 5.1 and 5.2. The remaining sequence logos are shown in Tables A.1 to A.5.

Table 5.1 shows that MUSI identified 10 clusters in sample F-Axl-5 (Table 5.1a). The C-terminal DY was

highly conserved across all clusters because the library F specification only allowed DY at the C-terminus.

Likewise, positions 12 and 13 were highly conserved across all clusters because the specification only allowed

A and G at position 12 and F, L, I, and M at position 13. Particularly striking was conservation of glycine

midway along the sequences (positions 6, 7, and 8) in clusters 2, 4, 9, and 11 (from the top).

For sample S-Axl-5 MUSI identified only 4 clusters (Table 5.1b). The C-terminal positions were less

conserved than in sample F-Axl-5 because the S library specification allowed more residues in these positions.

Salient features of the clustering included a conserved N-terminal YGSYY motif and a variable mid-region

followed by a low-complexity poly-Y, T, or L region.

For samples F-Mer-5 and S-Mer-5 MUSI identified 6 and 3 clusters, respectively (Table 5.2). In sample

F-Mer-5 (Table 5.2a) there was a prominent N-terminal YYPGS motif and sequences appear to be 17 residues

long on average. In sample S-Mer-5 (Table 5.2b), sequence length varied considerably, and there was a distinct

lack of consensus at the N-terminal half of the sequence.

5.1.2 Diversity over Panning Round

The number of distinct clones in each sample is shown in Figure 5.1. From this figure, one can see that

the diversity in each experiment trended downward over panning round, which agreed with basic principles
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Table 5.1: Sequence logos for clusters in samples F-Axl-5 and S-Axl-5. The first row in each table

shows the sequence logo for the entire sample. The column labelled “size” shows the number of distinct

CDRH3 sequences falling into each cluster.

Size Logo

190

21

17

40

17

5

15

13

20

16

21

(a) Library F

Size Logo

171

49

78

21

20

(b) Library S

[40]. In library F the initial diversity (1.008 56× 105) was an order of magnitude greater than library S

(1.0801× 104); however, after the first round of panning, diversity in library F dropped significantly relative

to library S. The result of this drop was that, after round one, the diversity of the two libraries were nearly

identical.

The greater drop in library F diversity relative to library S may be explained by distinguishing sequence

diversity from functional diversity. Whereas sequence diversity is simply the number of distinct CDRH3

sequences, functional diversity only counts CDRH3 sequences that result in functional antibody fragments.

It is possible that the great drop in library F sequence diversity was an initial culling of non-functional clones

(e.g. clones expressing aberrant antibody fragments).
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Table 5.2: Sequence logos for clusters in samples F-Mer-5 and S-Mer-5. The first row in each table

shows the sequence logo for the entire sample. The column labelled “size” shows the number of distinct

CDRH3 sequences falling into each cluster.

Size Logo

84

15

6

14

41

7

(a) Library F

Size Logo

969

526

442

(b) Library S

Experiment S-Mer presents one exception to the general downward trend observed in Figure 5.1. Whereas

sequence diversity of most samples decreased by 2 orders of magnitude from rounds 1 to 5, the sequence

diversity of S-Mer decreased less than one order of magnitude. As a consequence, the sequence diversity of

S-Mer-5 is much higher than other round 5 samples. This result seems to contradict MUSI, which identified

only two clusters in S-Mer-5 (Table 5.2b). However, these observations are not necessarily incompatible

because the sequence logos in Table 5.2b show a lack of consensus in N-terminal half of the sequences, which

means that the clusters subsume a lot of the diversity in these regions.

5.1.3 Distribution of Physicochemical Properties

The physicochemical properties listed in Section 4.3 were calculated using the Peptides R package (version

1.1.1) [34]. Violin plots were created to show the distribution of physicochemical properties in each sample.

The most striking of these plots are shown in Figure 5.3. The rest of the plots can be found in Figures A.2

to A.5 of Appendix A. Figure 5.3 shows that there was a distinct trend to the distribution of some physico-

chemical properties. For example, aliphatic index trended upwards over panning rounds. In the same figure,

the length plot, which depicts the length distribution of distinct CDRH3 sequences, shows that the change in

length distribution over panning round was different for each target. Additionally it shows that, for the same

target, the change of the mean length was similar across libraries. These observations support the hypothesis

that targets exhibit strong length preferences during panning [13]. The figure also showed that, in many
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Figure 5.1: Log-scale bar graph of phage sample diversity over 5 rounds of panning for libraries F

and S. The panning round is shown on the x-axis and the logarithm of the number of unique clonal

sequences is shown on the y-axis. The red line running horizontally across each facet shows the initial

library diversity (round 0).
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Figure 5.2: Log-scale bar graph of phage sample diversity over 5 rounds of panning for libraries F

and S. The target is shown on the x-axis and the logarithm of the number of unique clonal sequences

is shown on the y-axis. The red line running horizontally across each facet shows the initial library

diversity (round 0).
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cases, the length distribution in round 5 was multi-modal, suggesting that clones in round 5 had multiple

specificities.

The two clusters identified by MUSI in S-Jagged1-5 (Table A.1) seem to support the hypothesis that

two modes correspond to multiple specificities. The sequences in the first cluster identified by MUSI are

approximately 11 amino acids long (positions 2-12 in Table A.1b; position 1 largely absent), while the

sequences in the second cluster are approximately 6 amino acids long (positions 7-12 in Table A.1b). These

lengths, 6 and 11, are the approximate modes of the length distributions shown in Appendix A.3.

The Wilcoxon ranked-sum test was used in conjunction with the Bonferroni correction to test the hy-

pothesis that the median X in round 0 is not equal to round 5, where X was one of the physicochemical

properties described in Section 4.3.3. The test found that, using a significance level of 0.01, the null hypoth-

esis was rejected for the following physicochemical properties: aliphatic index (p = 6.914× 10−5), Boman

index (p < 2.2× 10−16), instability index (p < 2.2× 10−16), length (p < 2.2× 10−16), and molecular weight

(p < 2.2× 10−16). Rejecting the null hypothesis meant that the difference of the median X between round

0 and 5 was statistically significant and, therefore, that panning selected clones with different median values

of X than those clones present in either library F or library S. The conclusion is that these physicochemical

properties have a statistically significant effect on clone outcomes.

5.2 Predicting Persistent Clones

5.2.1 Feature Selection

A total of 413 features were calculated from each CDRH3 sequence. These features were made up of 8

physicochemical properties, 20 amino acid compositions, and 384 dipeptide counts. A subset of these features

were selected for inclusion in the machine learning datasets. The motivation and method for selecting these

features was laid out Section 4.4.3. The selected features contained the following 20 features: aliphatic index;

bowman index; charge; molecular weight; isoelectric point; the relative frequency of amino acids C, D, L,

and S; and the absolute frequency of dipeptides DY, ER, LG, LL, LR, NW, QA, QG, QS, TT, and VL.

5.2.2 Cross-Validation

As explained in Section 4.4, a panel of five classifiers was trained on the feature-reduced datasets arising from

Section 5.2.1. The task was to classify clones as persistent or transient based on their CDRH3 sequence.

The panel consisted of a random forest (RF), artificial neural network (ANN), logistic model (LM), support

vector machine with an RBF kernel (SVM), and naive Bayes Network (NB).

The feature-reduced dataset arising from Section 5.2.1 was divided into 14 datasets according to which

experiment the data had originated from (i.e. the library and target that were used). Each of these 14

datasets were then balanced by randomly down-sampling the negative dataset until its size was equal to the
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Figure 5.3: Violin plots of the length and aliphatic index across the set of distinct clones identified

in each sample. Within each facet of the grid, the area of the violins is held constant; however,

across facets, the area of the violins is proportional to the number of distinct clones identified in the

experiment (i.e. library-target combination). Horizontal lines within the violins show the 25%, 50%,

and 75% quantiles. The red line tracking across each series of violins shows the mean value in each

sample.
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Library Target Size (Rebalanced)

F Axl 380

Jagged1 252

Jagged2 484

Mer 168

Notch1 132

Notch2 132

Notch3 440

S Axl 342

Jagged1 104

Jagged2 318

Mer 500

Notch1 84

Notch2 176

Notch3 188

Table 5.3: The number of datapoints in each balanced dataset.

size of the positive dataset. The size of the resulting datasets are shown in Table 5.3. Classifiers were then

trained and tested on each of these 14 balanced datasets using 10-fold cross-validation. The classification

accuracy was calculated for each left-out fold to estimate the performance of each classifier on unseen data.

Figure 5.4 shows the distribution of the accuracy achieved by each classifier-dataset pairing. The average

accuracy of each classifier on each of the datasets is shown in Table A.7.

Figure 5.4 shows that, with the exception of the LM and perhaps the NB, the accuracy achieved by the

classifiers was comparable. The best one appeared to be the random forest classifier. A one-tailed Wilcoxon

signed-rank test showed that, using a significance level of 0.05 (0.0125 with the Bonferroni correction), the

RF classifier is at least better than the LM (p = 7.5× 10−7) and NB (7.2× 10−4), but not necessarily better

than the ANN (0.047) or RBF-SVM (0.112). A similar test was carried out and confirmed that the LM was

the worst classifier (p = 8.4× 10−5, 1.7× 10−6, 6.8× 10−6, 7.5× 10−7, respectively).

Figure 5.5 shows a multi-faceted boxplot that compares the classification accuracy obtained on each

dataset. Seen in this figure is the poor performance of classifiers on the S-Mer dataset relative to the other

datasets. A one-tailed Wilcoxon signed-rank test failed to support this observation. In fact, because of the

small sample sizes, the Wilcoxon signed-rank test could not, theoretically, produce p-values low enough to

reject the null hypothesis because only the ranks of datapoints are considered, not the degree of difference. To

account for the degree of difference, a one-tailed t-test using a significance level of 0.05 (0.0038 after Bonferroni

correction) was used. The t-test revealed that, assuming a Gaussian distribution, the accuracies achieved
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Figure 5.4: Boxplots showing the distribution of the accuracy achieved with each classifier on each

of the 14 balanced datasets. The solid circles show outliers. The dotted line running across each plot

marks the classification accuracy of a random classifier.
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Figure 5.5: Boxplots showing the same thing as Figure 5.4, but with the subplots arranged by target

instead of classifier.
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on S-Mer were statistically lower than F-Axl (p = 8.0× 10−4), S-Axl (2.2× 10−4), F-Jagged2 (2.6× 10−5),

S-Jagged2 (1.9× 10−3), and F-Notch3 (3.0× 10−3), but not F-Jagged1 (0.058), S-Jagged1 (0.043), F-Mer

(9.3× 10−3), F-Notch1 (0.011), S-Notch1 (0.066), F-Notch2 (0.066), S-Notch2 (0.042), and S-Notch3 (0.033).

5.2.3 Improving ANN Performance

Artificial neural networks can be classified based on the structure of the network formed by their nodes and

edges. Feedforward ANNs (described in Section 2.4.5) have nodes organized into layers and edges connecting

one layer to the next. One simple way to vary the architecture of a feedforward ANN is by changing the

number of hidden layers in the network. Hidden layers were described in Section 2.4.5 and the specific

methodology in Section 4.5. The cross-validation procedure used for comparing the panel classifiers was used

to determine the affect of adding more hidden layers to the ANN. The accuracy was plotted in Figure 5.6.
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Figure 5.6: Boxplots showing the performance of the artificial neural networks with 1, 2, and 3

hidden layers. The solid circles represent outliers. The dotted line running horizontally across each

plot marks the classification accuracy of a random classifier.

Looking at Figure 5.6, it appears that additional layers did not offer any noticeable improvement. The

hypothesis that the performance of any one of the ANNs was statistically different from another is rejected

by the Friedman test using a significance level of 0.05 (p = 0.095).

Across libraries, it appears that the only difference in accuracy occurred on the Mer dataset. Accuracy

for the library S Mer dataset was significantly worse than for the library F Mer dataset, and only slightly

better than the accuracy achieved with random classification.
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5.2.4 Optimizing SVM Parameters

As explained in Section 4.6.2, a gridsearch was used to tune the hyperparameters of the RBF-SVM and

SSK-SVM for the prediction task set out in Section 4.4.1. At each vertex of the grid the average classification

accuracy achieved using 10-fold cross-validation is shown in Figure A.1. The average accuracy at each vertex

across all datasets is shown in Figures 5.8a and 5.8b. In these figures, there appears to be a boundary on

each grid, past which classification accuracy drops significantly. From the averaged gridsearch results, the

parameters with the highest accuracy were used in all of the subsequent SVM analyses. Using this criteria,

the parameters chosen were C = 10 and γ = 1 for the RBF-SVM and n = 2 and λ = 0.6 for the SSK-SVM.

Of all the hyperparameters tested during gridsearch, the RBF-SVM hyperparameters γ = 1 and C = 10

resulted in the highest classification accuracy. As explained in Section 2.4.5, γ is a parameter of the RBF

and the RBF kernel acts as a similarity measure between vectors. The similarity measure is one that decays

exponentially as the distance between two vectors increases. Intuitively, the parameter γ is the sensitivity of

the similarity metric to small changes in the distance. For a large γ, the difference between two vectors is

multiplied giving a low measure of similarity. Conversely, for a small γ, the difference between two vectors is

scaled down leading to a higher measure of similarity. The affect on a RBF of changing the original γ = 0.01

to the tuned value γ = 1.0 is shown in Figure 5.9.

5.2.5 Comparing the Tuned SVMs to the Original Classifier Panel

Figure 5.10 shows that that the tuned SVMs (denoted by a trailing “(t)”) compared favourably with the

original classifiers; however, a Wilcox ranked-sum test on each pair of the top classifiers (ANN, RBF-SVM,

RF, RBF-SVM (t), and SSK-SVM (t)) failed to identify a statistically significant difference between the

median accuracies achieved within this group. The p-values for these tests are shown in Table 5.4. A p-value

less than 0.005 was required to reject the null hypothesis due to the Bonferroni correction. This corresponded

to a significance level of 0.05.

Figure 5.11 and Figure 5.12 shows more clearly the change in mean accuracy after switching from one

of the original classifiers to the tuned SVMs. Figure 5.11 shows that the tuned RBF-SVM has nearly the

same performance of the RBF-SVM with default parameters. Figure 5.12 shows that the SSK-SVM performs

better than the RBF-SVM in most cases and better than all of the classifiers on the Axl and Notch2 datasets.

The average accuracy of each classifier (including the tuned SVMs) on each of the datasets is also shown

in Table A.7.

5.2.6 Conclusions

For many of the machine learning methods used in this thesis, the input had to be in the form of a numerical

vector. It was found that extracting an array of CDRH3 chemical properties (i.e. the physicochemical, amino

acid, and dipeptide properties) was one way of encoding the CDRH3 sequences as a vector for subsequent use
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Figure 5.7: Boxplots showing the same thing as Figure 5.6, but with subplots arranged by target

instead of classifier.

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

log10(C)

lo
g 1

0(γ
)

(a) RBF-SVM

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

Le
ng

th

Accuracy (%)

40

50

60

70

80

90

100

(b) SSK-SVM

Figure 5.8: Average performance of the RBF- and SSK-SVM using different parameters.
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Figure 5.9: A comparison of the effect of the γ parameter on the RBF kernel when one of the vectors

is held at the origin. (Left) The value of the RBF kernel over two dimensions using the original setting

of γ = 0.01. (Right) The value of the RBF kernel over two dimensions using the tuned value of γ = 1.0.

The tuned value of γ is much more sensitive to the distance between vectors.

ANN RBF-SVM RF RBF-SVM (t) SSK-SVM (t)

ANN 1.00 0.96 0.09 0.55 0.29
RBF-SVM 0.96 1.00 0.22 0.70 0.25

RF 0.09 0.22 1.00 0.06 0.60
RBF-SVM (t) 0.55 0.70 0.06 1.00 0.16
SSK-SVM (t) 0.29 0.25 0.60 0.16 1.00

Table 5.4: p-values from the Wilcoxon ranked-sum test comparing pairs of classifiers. Only the

classifiers with the best classification accuracy were tested. None of the p-values were less than 0.005;

therefore, none of the tests rejected the null hypothesis.

with these machine learning tools. Moreover, it was determined that such an encoding retains information

that is useful for predicting clone persistence.

By comparing various machine learning models, ANNs, SVMs, and RFs were shown to be capable of

achieving classification accuracy significantly better than achieved by chance. Moreover, the difference in

accuracy between the models was not statistically significant. Any of these models are thus suitable candidates

for further study of machine learning applications to antibody phage display. The SSK-SVM, which accepts

sequences as input thus eliminating the need to choose a vector encoding scheme, are particularly well-suited

to this application domain.

5.3 Generalizing the SVM Models

The utility of a machine learning model hinges on its ability to predict data not observed in the training set.

This ability is called generality. To test the generality of the RBF- and SSK-SVM, the SVMs were trained
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Figure 5.10: Boxplots showing the performance comparison of tuned SVMs and the original classifier

panel.

on the library F experiments and tested on library S experiments, keeping the target constant between runs.

The hyperparameters of the SVMs were set to the optimal values determined by a gridsearch (Section 5.2.4).

The analysis was described further in Section 4.7. The classification accuracy of each trained SVM on the

testing datasets (i.e. library S data) is shown in Figure 5.13. This figure shows that the accuracy of all

trained SVMs was better than random assignment, which would achieve 50% accuracy.

5.3.1 RBF-SVM Versus SSK-SVM Accuracy on Library S

The difference in mean classification accuracy of the RBF- and SSK-SVM on the testing data is shown

in Figure 5.13. Across all targets, the median difference in classification accuracy of the SVMs was not

statistically significant because the 95% confidence interval spans 0 (M=1.0%, CI=[-14.8%, 11.0%]); however,

for certain targets, the performance diverged considerably. For example, with targets Axl and Notch2, the

performance of the RBF-SVM exceeded that of the SSK-SVM by 16.4% and 14.8%, respectively. Conversely,

for targets Jagged2 and Notch3, the performance of the SSK-SVM exceeded that of the RBF-SVM by 17.3%

and 10.1%, respectively. This shows that, a priori one does not know whether one SVM will perform better

than the other, but for a given target it may be the case that one SVM will perform significantly better than

the other.

5.3.2 Conclusions

Both the tuned RBF- and SSK-SVM were trained on library F data and tested on library S data. Both

models achieved testing accuracy significantly better than achieved by chance, showing that the RBF- and
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Figure 5.11: Improvement in accuracy after switching from a classifier in the original panel to the

RBF-SVM with optimal hyperparameters. Improvement is measured as the increase in classification

accuracy.

SSK-SVM are capable of generalizing to other libraries and could potentially be used to help non-experts in

selecting clones for further study.

5.4 Interpreting the SVM Parameters

After training the RBF-SVM and the SSK-SVM models on the library F dataset, the model parameters were

inspected in order to better understand the basis for their predictions. As explained in Section 2.4.5, the

goal of SVM training is to select a subset of the training data, called support vectors, and an equal number

of weights such that these weights and support vectors define the maximum-margin separating plane.

5.4.1 SSK-SVM

As explained in Section 4.8.2, the support vectors of the SSK-SVM model can be decomposed into their

underlying 400-component vectors (one per dipeptide). Each of these 400 components multiplied by the sup-

port vector weight contributes additively to the decision function when the input contains the corresponding

dipeptide as a subsequence. Thus, the 400-component support vectors multiplied by their weights can be

summed (component-wise) to get an overall term for each dipeptide that determines the impact of a dipep-

tide on the prediction outcome. The dipeptides that have contributions greater than 1.0 or less than -1.0 are

shown in Figure 5.17. All of the dipeptide contributions can be found in Table A.6.

For the trained SSK-SVM model, Figure 5.17 shows which dipeptides in a clonal sequence that have

a significant contribution to the class prediction and the sign (+/-) of that contribution. The dipeptides
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Figure 5.12: Improvement in accuracy after switching from a classifier in the original panel to the

SSK-SVM with optimal hyperparameters. Improvement was measured as the increase in classification

accuracy.
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Figure 5.13: Accuracy of the trained RBF- and SSK-SVMs on the 7 library S datasets. The SVMs

in this analysis were trained only on the library F data.

observed in Figure 5.17 can be classified into 3 categories: (1) dipeptides with mostly negative contribution

across all targets, (2) dipeptides with mostly positive contribution across all targets, and (3) dipeptides whose

contribution is target-dependent (e.g. HG, AG, and VG). Unsurprisingly, the large majority of dipeptides

fall into the third category.
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Table 5.5 shows the dipeptides with the highest and lowest weights for the SVM-SSK trained on each

target dataset.

Both the Wilcoxon rank-sum test and t-test were performed on each of the seven contributions of each

dipeptide. Using a significance level of 0.05, and the Bonferroni correction, both tests rejected the claim that

the median contribution of any of the dipeptides across all targets (including those outside of the 7 studied

here) is greater than or less than 0.

5.4.2 RBF-SVM

The input to the RBF-SVM can be thought of a 20-component vector that contains the values of each of the

20 features selected in Section 4.4.3. To understand how the RBF-SVM classifies the input, only a pair of

features was considered at a time. For each pair of features x and y, the x and y range covered by all the

support vectors was divided into 10× 10 grid. Each vertex in the grid was then input to the RBF-SVM. The

corresponding output of the RBF-SVM are shown in the tileplots in Figures 5.14 to 5.16 and Figures A.6

to A.8. The tileplots resulting from this procedure can be viewed as 2-dimensional projections of the decision

function. A red tile indicates that the corresponding vector parameters are more likely to be associated with

the persistent label, according to the SSK-SVM. A blue tile denotes an association with the transient

label.

5.4.3 Conclusions

The tuned SVMs models that were trained on library F data were deconstructed to yield greater insight into

the basis for their predictions.

Figure 5.14 shows that the predictions of the RBF-SVMs were highly dependent on the molecular weight of

the CDRH3 sequences. Molecular weight is highly correlated with CDRH3 length; therefore, this observation

is consistent with a study by Bharathi noting CDRH3 length preferences of the seven targets studied in this

thesis [13].

Strong dependencies on the amino acid concentrations and dipeptide counts were also observed. For

example, in Figure 5.15b, the bottom left corner of the C-D facet is red, suggesting that CDRH3 sequences

with low C and low D amino acid concentrations were preferentially selected during panning. Albeit less

pronouned, the pattern in Figure 5.16a shows that predictions were sensitive to the LG dipeptide count, with

low counts generally preferred for prediction of persistent clones.

Figures 5.14 to 5.16 suggest that considering at least two variables simultaneously can be highly beneficial

for predicting clone persistence. For example, in Figure 5.14a, in the facet showing molecular weight and

charge, the tiles in the bottom left and bottom right corners are red, showing that a CDRH3 with a low or

high molecular weight (using a relative scale) is preferred, but only when the charge of that CDRH3 is low.

Figure 5.17 shows that some peptides (e.g. DY, GD, and ID) have mostly a positive contribution across

the 7 targets. Likewise, some peptides (e.g. LG, LW, and YT) have mostly a negative contribution across
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Figure 5.14: RBF-SVM support vector projections for the physicochemical properties. Panels (a),

(b), (c), and (d) show the projections for the RBF-SVMs trained on datasets F-Axl, F-Jagged2, F-Mer,

and F-Notch3, respectively. In each facet, the dimension of the vertical axis is equal to the name of

the feature in that row of facets. Likewise, the dimension of the horizontal axis is equal to the name

of the feature in that column of facets. The range of each axis is from the minimum support vector

to the maximum support vector. Values have been centered; therefore, colour is only an indication of

relative magnitude.

53



C

D

L

S

(a) Axl

C

D

L

S

(b) Jagged2

C

D

L

S

(c) Mer

C

D

L

S

(d) Notch3

Figure 5.15: RBF-SVM support vector projections for the amino acid compositions. Refer to Fig-

ure 5.14 for a description.
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Figure 5.16: RBF-SVM support vector projections for the dipeptide counts. Refer to Figure 5.14 for

a description.

55



Table 5.5: Dipeptides with the biggest contribution to each SSK-SVM model. The dataset used to

train the SSK-SVM model is shown in the top row.

Axl Jagged1 Jagged2 Mer

Dipep Weight Dipep Weight Dipep Weight Dipep Weight

SP −1.5505 GH −1.3492 AP −1.5584 PS −1.1571
AY −1.4057 SM −1.1722 GH −1.5152 YM −0.9283
HG −1.3518 YG −1.1051 DD −1.4967 PG −0.7832
AG −1.3415 FW −1.0176 SH −1.2213 SV −0.7051
YM −1.2585 YT −1.0072 FV −1.2193 YY −0.6474

GI 1.0953 AG 1.1856 ID 1.3375 GM 0.5203
PA 1.1276 HA 1.4545 WY 1.4020 PA 0.5426
PH 1.1357 VG 1.6149 HY 1.4633 GD 0.5853
WA 1.2419 FY 1.6241 VA 1.4663 WA 0.6054
PY 1.3257 AW 2.3992 YM 2.1515 WV 0.6275

Notch1 Notch2 Notch3

Dipep Weight Dipep Weight Dipep Weight

FS −0.7649 VY −0.7848 GA −1.4380
SW −0.5493 SF −0.7296 WL −0.6782
GA −0.5385 GY −0.5237 HH −0.6460
FD −0.5130 YD −0.5213 GL −0.6009
GF −0.4720 FD −0.5094 LF −0.5194

GD 0.9241 SV 0.7618 PS 1.3934
GG 0.9687 HW 0.7628 FA 1.4871
MD 1.0184 MD 0.8076 GS 1.5433
YG 1.0518 SA 0.8677 VS 1.6188
SG 1.1320 HG 1.4999 AS 2.3154
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Figure 5.17: Dipeptide contributions for each of the 7 SSK-SVM models.
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the 7 targets. Additionally, Table 5.5 shows that each target has a unique set of dipeptides that contribute

positively and negatively to the predicted persistence of a clone. The dipeptides that contributed positively

for target Mer had contributions of less magnitude than the other targets.
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Chapter 6

Discussion & Future Work

6.1 Predicting Persistent Clones

This thesis focused on the task of predicting whether a naive clone from either library F or library S will still

be observed after 5 rounds of panning against one of the seven targets described in Section 2.2.4. The labels

persistent and transient were used to distinguish between these two possibilities.

6.1.1 Machine Learning Comparison

Initially, five different classifiers were trained to predict a clone as either persistent or transient based on

its CDRH3 sequence. These classifiers were a random forest (RF), artificial neural network (ANN), support

vector machine (SVM), logistic model (LM), and a naive Bayes network (NB). These five classifiers were

cross-validated using the steps set out in Section 4.4 and then compared on the basis of their classification

accuracy in Section 5.2.2. A multifaceted barplot of the classification accuracy with facets arranged by

classifier is shown in Figure 5.4 and by dataset in Figure 5.5.

Although ANN, RF, and SVMs all achieved similar accuracies, each classifier entailed different advan-

tages/disadvantages. For example, one advantage of the random forest was that little effort was required to

tune its hyperparameters because the random forest only had one hyperparameter: the number of decision

trees. Preliminary trials showed quite readily that using more than the default 100 decision trees did not

produce a noticeable improvement in accuracy. On the other hand, it was difficult to interpret the random

forest because it was made up of so many decision trees, each trained using a slightly different subset of the

data; therefore, each decision tree was different. Contrasting with the random forest, the artificial neural

network had many hyperparameters, including the number of hidden layers, the number of nodes per layer,

the activation function of each layer, the initial weights prior to training. The abundance of hyperparameters

could be viewed as an advantage or a disadvantage. It could be an advantage because the ability to customize

ANNs allows them to be applied to a variety of problems. It could also be a disadvantage because, a priori,

finding the structure that works best for a given problem has the potential to be a time-consuming process

of trial-and-error. One advantage that the SVMs had over the RF and ANN models was that, whereas the

outcome of ANN training depends on the initial parameter values and the outcome of RF training is random

by design, the outcome of SVM training is deterministic. That is, there is a single globally optimal solution
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which the training procedure is guaranteed to converge to. A disadvantage of the SVM is that there are a

limited number of practical kernel types, which imposes certain restrictions on the flexibility of SVMs.

From Figure 5.5, it is apparent that the average performance on the S-Mer dataset was significantly lower

than on other datasets. Perhaps the poor performance is related to the exceptional nature of the S-Mer

dataset noted in Section 5.1.1, Section 5.1.2, and Section 5.4.3 and the independent observation that S-Mer

failed to produce target-specific clones [13]. The lack of well-defined clusters in Section 5.1.1 suggests that,

contrary to other experiments, there were no learnable patterns in the S-Mer-5 CDRH3 sequences to begin

with.

6.1.2 Improving SVM Performance

The best hyperparameters for the SSK-SVM were determined by gridsearch to be n = 2 and λ = 0.6.

Intuitively, n and λ are the length of the substrings and the gap penalty, and are described further in

Section 2.4.5. The hyperparameter n = 2 meant that considering amino acid pairs gave the best performance.

The λ = 0.6 meant that for each additional gap between the two amino acids, the contribution was diminished

almost by half. It is interesting to note that when gapped matches were discounted (λ = 0), classification

accuracy decreased, meaning that accounting for gapped matches actually improved classification accuracy.

This finding is significant because it supports the use of the SSK over simpler methods that only consider

continuous stretches of amino acids, called k-mers [41].

6.2 Generalizing the Trained SVM Models

RBF- and SSK-models were trained on library F data and tested on library S data to determine the extent

to which the models can generalize to other libraries.

6.2.1 SVM Performance on Library S

Figure 5.13 shows accuracy of the RBF- and SSK-SVMs compared to the accuracy that would be achieved by

a random assignment of the persistent and transient labels. The figure shows that both SVMs surpassed

the accuracy that would be achieved by relying on chance by a significant margin. This result was encouraging

because, although library F and library S have similar CDRH3 specifications (see Table 2.1), a significant

portion of CDRH3 sequences in library S are exclusive to library S. More work needs to be done to determine

to what degree the machine learning models generalize to this exclusive portion.

Although only library S was used for testing, this result suggests that the SVMs trained on library F

generalize to other experiments using the same target. Assuming this to be true, these SVMs could be used

to select clones in experiments that use the same targets provided that the library specification and antibody

framework are similar. More testing is needed to verify this hypothesis and future work could focus on

cross-validating the accuracy of the trained SVMs on libraries other than F and S.
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Because library F experiments were more successful at isolating target-binding clones than library S

experiments, it is possible that the SVMs trained on library F could identify target-binding clones from

library S experiments that yielded no obvious candidates, and thus were deemed to have failed.

6.3 SVM Models to Library Recommendations

6.3.1 Features of the CDRH3 Sequences

The SSK-SVM function projections in Figure 5.14 show that there is a steep colour transition on most facets

involving molecular weight. The steep colour transition indicates that the classification of the SSK-SVM is

highly dependent on the molecular weight of the input vector. Stated another way, all else being equal, a

vector that falls in the blue region is more likely to be classified as persistent than a vector that falls in

the red region. The high dependence on CDRH3 molecular weight, which is highly correlated with CDRH3

length, is consistent with the effect that CDRH3 length was seen to have on the fate of clones [13].

If one were to use the tileplots in Figures 5.14 to 5.16 to design better CDRH3 sequences, one could

change the amino acids in the CDRH3 sequence such that the sequence properties fall further into the red

regions of the tileplots than the blue regions. For example, in Figure 5.14a, in the molecular weight versus

charge facet, the bottom left and bottom right corners are bright red while the rest is blue. To create a

focused antibody library for Axl, one might start with library F and modify it such that more clones have

low or high molecular weights, and low charge.

6.3.2 Dipeptide Compositions of the CDRH3 Sequences

The dipeptide contributions suggest a way to construct focused antibody libraries. For example, to focus

library F towards all seven targets, one might rework the library specification to increase the occurrence

of dipeptides that have mostly positive contributions towards the 7 targets and decrease the occurence of

dipeptides with mostly negative contributions towards the 7 targets. Further, to focus library F towards

just one of the seven targets, Axl for example, one might additionally increase and decrease the occurence of

dipeptides that contribute positively and negatively to Axl, respectively.

The reader may wonder whether any of the dipeptides with contributions mostly positive or mostly

negative might have similar effects across targets outside of the 7 studied in this thesis. Assuming the 7

targets studied in this thesis were a random sampling of all possible antibody phage display targets, this

hypothesis (i.e. that the median contribution of a dipeptide is greater than or less than 0) can be tested

with the Wilcoxon ranked-sum test. Unfortunately, the result in Section 5.4.1, which used the Bonferroni

correction, rejected this hypothesis.
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Admittedly, the Bonferroni correction is one of the most conservative methods for controlling error in a

multiple hypothesis test. Future work will try less sensitive methods, including the S̆idák procedure, Holm

procedure, and procedures that achieve greater sensitivity by accepting a proportion of false discoveries [42].

6.4 Relation to Other Work

The work of this thesis explored a niche application of machine learning that has received little to no attention

in the scientific community. Although attempts to consolidate and make sense of phage display data is not a

new concept (bioinformatics applications to phage display has been reviewed by Huang et al. [43]), the vast

majority of work applies to general peptide phage display, as opposed to antibody phage display (i.e. display

of antibody fragments).

MimoDB 2.0 [44], a database containing peptides with known affinities for various targets, was considered

as an additional data source for the machine learning pipeline of this thesis; however, very few antibodies

were stored in this database; and of those antibodies, the listed target was different from the 7 targets of this

thesis. Future work could focus on creating a database similar in principal to MimoDB, but focused toward

antibody fragments. If such a database were developed, the information could be used to train and validate

future iterations of the machine learning pipeline presented of this thesis.

Another bioinformatics tool applicable to phage display is called SAROTUP [45]. The goal of SAROTUP

is to identify peptides in phage display experiments that contain motifs known to bind contaminants, reagents,

and substrates commonly encountered in phage display. These peptides are called target-unrelated peptides

because they can become enriched during panning and can therefore be mistaken for true target-binding

peptides. SAROTUP was considered for use in the pipeline presented in this thesis, but SAROTUP was

designed with general peptide phage display in mind as opposed to antibody phage display, and given the

highly structured nature of the antibody variable region (i.e. 6 loops from two different chains form the

final binding surface), it was decided that using sequence patterns with no consideration of antibody-specific

structure was not conducive to identifying target-unrelated antibodies.

A search for existing applications of machine learning to antibody phage display turned up only one

result, a technology called Abtracer. Abtracer is a data-driven technology owned by the company Molcure.

Unfortunately, the Molcure website provides no citations to papers describing the construction or validation of

the Abtracer pipeline [46]—possibly due to the proprietary nature of the technology. Molcure does, however,

provide a sketch of the pipeline, which includes the extraction of over 400 features (only molecular weight,

isoelectric point, and amino acid composition are explicitly listed), and developing classifiers via SVMs,

random forests, and deep neural networks (i.e. a many-layered artificial neural network).
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6.5 Training Data Quantity and Quality

The amount of training data used for training the machine learning models is shown in Table 5.3. The size

of the training dataset was deemed suitable for machine learning methods with a low to moderate number

of parameters, like the models used in this thesis. Using complex models with many parameters would have

lead to overfitting during training.

Some of the features that were extracted from the CDRH3 sequences were not independent of other

features (e.g. molecular weight and length were correlated). The CFS routine, which was used for fea-

ture selection, attempted to exclude correlated features so that the selected subset of features were nearly

independent.

6.6 Contributions

There are several potential uses for the classifiers that were developed in this thesis. The first potential use

is in selecting clones for further testing when the most abundant clones were found to be unsuitable (e.g. the

clones were target-unrelated, or they lost their binding ability when converted to full antibody molecules).

Whereas clone abundance is the first criteria used by analysts for picking clones for further study, studies have

shown that in some situations, clone abundance correlated poorly with target affinity [47]. The classifiers

developed in this thesis consider only the properties of the clonal sequence; therefore, they can be used when

clone abundance does not appear to be a suitable criteria.

6.7 Future Work

The work presented here is a first step towards using artificial intelligence to understand the seemingly

chaotic patterns of clone enrichment in antibody phage display. There are a number of ways this work could

be extended.

6.7.1 Feature Selection

The set of features extracted from the CDRH3 sequence of a clone was not exhaustive; therefore, future

work could consider features outside of those used in this thesis, like secondary structure or the Kidera

factors [48], which were derived using principal component analysis and are therefore independent. Another

possible feature to include is the abundance of the clone in the naive library. Although including abundance

as a feature would make the prediction more library-dependent, it might improve the prediction accuracy

substantially. Further, methods beside CFS could be explored for selecting a subset of features to include in

the final machine learning dataset.
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6.7.2 Alternative Classification Models

Figure 5.4 and the statistical tests in Table 5.4 show that, with respect to classification accuracy, the difference

between the ANN, RBF-SVM, and RF was insignificant. Moreover, this result held after tuning the ANN

(with respect to the number of hidden layers) and the RBF-SVM, and adding the SSK-SVM to the classifier

panel. The similar accuracies of these classifiers suggest that improving classification accuracy beyond that

achieved in this thesis may require a drastically different approach. One such approach might be to consider

the structural characteristics of all six CDRs and the structural characteristics of the target. Since the six

CDRs interact with each other to form the surface that may or may not bind the target, these structures

are of paramount importance to the problem of predicting clone persistence. Unfortunately, the structure of

CDRs and the target will not be available in many cases, and to try to predict these structures from their

sequence encroaches on a very difficult problem in computational biology. An acceptable compromise may

be to predict coarse structural features of the CDRs and target (e.g. alpha helices, beta strands, or buried

residues) and use those features in a machine learning pipeline instead/in addition to the features used in

this thesis.

Another approach that could be the focus of future work is to use machine learning models with dedicated

inputs for each position of the CDRH3 sequence. One example of such a model is an ANN that has a set

of input nodes for each position of a CDRH3 sequence and instead of a node being set to a property of

the entire sequence, a node is set to a property of the amino acid at a particular position in the sequence.

Such an ANN could then learn position-dependent patterns in the CDRH3 sequences and maybe achieve

better classification accuracy than achieved in this thesis. In pursuing this future work, one would need to

consider the increased computational demand and potential for over-fitting that characterize models with

many parameters.

Another method for achieving increased classification accuracy are ensemble methods, methods that

combine multiple models to improve prediction performance. One simple ensemble method is called “majority

voting”. Majority voting combines the predictions of several models by selecting the prediction that is output

from a majority of the models. To implement a majority voting scheme with the classifiers developed in this

thesis, the clonal sequence would be input to each of the models in the ensemble and the prediction would

be the class that was predicted by a majority of the models [49].

6.7.3 Predicting Clone Abundance

The aim of this thesis was to predict the presence of absence of a clone after the fifth round of panning based

on the clonal sequence. A slightly different prediction task would be to predict the abundance of the clone

after the fifth round of panning.
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6.7.4 Target-Independent Method

Two variations on the methodology of this thesis could solve related problems of interest to antibody phage

display researchers. The first variation would involve combining the datasets from all the experiments and

training the machine learning models on the combined dataset. By training the models on all of the data,

the hypothesis would be that there are some general properties of sequences that relate to clone persistence,

independent of the target.

The second variation would use a dataset from an antibody phage display experiment that used no target.

By training models to predict clones that are observed after five rounds of panning against no target, the

models might learn properties of CDRH3 sequences that are characteristic of target-unrelated clones. With

such a model, target-unrelated clones could be filtered from the sequence outputs of future experiments.

6.7.5 Size of the Training Dataset

It would be interesting to also look at the correlation between the size of the training datasets and the

prediction performance of the models. In the case that there is a correlation between dataset size and

prediction performance, one could improve this work by increasing the size of the datasets used to train

the machine learning models. The number of sequences (i.e. datapoints) collected from an antibody phage

display experiment is limited by the sequencing technology and protocol used for sequencing. More sequences

could be obtained by increasing the sequencing depth of a single sample. A more labour-intensive approach

to increasing the number of sequences would be to perform replicates of the same experiment.
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Appendix A

Supplementary Figures

A.1 MUSI Clusters

Table A.1: Sequence logos for clusters in samples F-Jagged1-5 and S-Jagged1-5. The first row in each

table shows the sequence logo for the entire sample. The column labelled “size” shows the number of

distinct clonal sequences falling into each cluster.

Size Logo

All

11

77

36

(a) Library F

Size Logo

All

19

32

(b) Library S
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Table A.2: Sequence logos for clusters in samples F-Jagged2-5 and S-Jagged2-5. The first row in each

table shows the sequence logo for the entire sample. The column labelled “size” shows the number of

distinct clonal sequences falling into each cluster.

Size Logo

All

242

(a) Library F

Size Logo

159

13

8

120

9

7

(b) Library S

Table A.3: Sequence logos for clusters in samples F-Notch1-5 and S-Notch1-5. The first row in each

table shows the sequence logo for the entire sample. The column labelled “size” shows the number of

distinct clonal sequences falling into each cluster.

Size Logo

66

17

9

12

17

8

(a) Library F

Size Logo

42

42

(b) Library S
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Table A.4: Sequence logos for clusters in samples F-Notch2-5 and S-Notch2-5. The first row in each

table shows the sequence logo for the entire sample. The column labelled “size” shows the number of

distinct clonal sequences falling into each cluster.

Size Logo

66

18

8

11

16

10

(a) Library F

Size Logo

88

27

60

(b) Library S

Table A.5: Sequence logos for clusters in samples F-Notch3-5 and S-Notch3-5. The first row in each

table shows the sequence logo for the entire sample. The column labelled “size” shows the number of

distinct clonal sequences falling into each cluster.

Size Logo

220

165

54

(a) Library F

Size Logo

94

12

32

49

(b) Library S
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A.2 SVM Gridsearch
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Figure A.1: Tileplots showing the cross-validated classification accuracy for (left) the RBF-SVM and

(right) the SSK-SVM.

72



A.3 Physicochemical Property Distributions
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Figure A.2: Violin plots showing the distribution of the aliphatic and Boman indices across the set

of distinct clones identified in each sample. Refer to Figure 5.3 for a description.
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Figure A.3: The distribution of the charge and hydrophobicity across the set of distinct CDRH3

sequences identified in each sample. Refer to Figure 5.3 for a description.
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Figure A.4: The distribution of the instability index and isoelectric point across the set of distinct

CDRH3 sequences identified in each sample. Refer to Figure 5.3 for a description.
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Figure A.5: The distribution of the length and molecular weight across the set of distinct CDRH3

sequences identified in each sample. Refer to Figure 5.3 for a description.
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A.4 RBF-SVM Support Vector Projections
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Figure A.6: RBF-SVM support vector projections for the physicochemical properties. Panels (a),

(b), and (c) show the projections for the RBF-SVMs trained on datasets F-Jagged1, F-Notch1, and

F-Notch2, respectively. In each facet, the dimension of the vertical axis is equal to the name of the

feature in that row of facets. Likewise, the dimension of the horizontal axis is equal to the name of the

feature in that column of facets. The range of each axis is from the minimum support vector to the

maximum support vector. Values have been centered; therefore, colour is only an indication of relative

magnitude.
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Figure A.7: RBF-SVM support vector projections for the amino acid compositions. Refer to Fig-

ure 5.14 for a description.
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Figure A.8: RBF-SVM support vector projections for the dipeptide counts. Refer to Figure 5.14 for

a description.
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A.5 SSK-SVM Dipeptide Contributions

Table A.6: Dipeptide contributions of the 7 SSK-SVM models.

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

AA 0.14 0.10 0.56 -0.01 0.45 0.17 0.34
AC -0.39 -0.08 -0.12 -0.22
AD -0.29 0.53 0.32 0.20 -0.19 0.66 1.12
AE -0.11 -0.01 0.02
AF 0.34 0.97 0.60 -0.17 -0.06 -0.32 0.37
AG -1.34 1.19 0.68 0.31 0.59 -0.26 0.85
AH 0.59 -0.06 0.06 0.22 -0.35 -0.44 0.84
AI -0.82 0.75 1.12 0.10 0.19 0.25 0.88
AL -0.75 0.50 0.45 0.16 -0.36 0.57 0.65
AM 0.05 -0.85 0.38 -0.10 0.67 0.65 -0.13
AN -0.22 0.07
AP 0.09 -0.47 -1.56 0.02 0.61 0.29 0.43
AR -0.01 -0.25 -0.01 -0.14
AS 0.79 -0.71 0.61 -0.31 0.07 -0.50 2.32
AT -0.19 -0.25 -0.07 -0.06 -0.03 -0.23
AV -0.32 0.58 -0.24 0.33 0.19 -0.22 0.42
AW -0.67 2.40 -0.64 0.35 0.27 -0.34 -0.52
AY -1.41 -0.57 0.95 0.35 0.36 0.72 0.74
CA -0.03 -0.33 -0.02 -0.01 -0.04
CC -0.11 -0.03
CD -0.65 -0.45 -0.11 -0.01 -0.05 -0.00 -0.00
CF 0.02 -0.18 -0.05 -0.32 -0.02
CG 0.11 -0.00 -0.00 -0.18 -0.01
CH 0.01 -0.03 -0.02
CI -0.00 -0.00
CL -0.06 -0.09 -0.05 -0.06 -0.14 -0.01
CM -0.59 -0.06 -0.19 -0.01 -0.00
CP -0.03 -0.03
CR -0.00 -0.01
CS -0.06 -0.05 -0.31 -0.04
CT -0.02
CV -0.05 -0.11 -0.00 -0.01 -0.08 -0.00
CW 0.03 -0.15 -0.03 -0.05
CY -0.39 -0.42 -0.41 -0.17 -0.33 -0.06 -0.07
DA 0.08 -0.22 -0.94
DC -0.02
DD 0.02 -0.08 -1.50 -0.01 -0.02
DF -0.03 0.10 -0.10 -0.03
DG -0.14 -0.58 -0.11 -0.03 -0.05
DH -0.49
DI 0.05 -0.43
DL -0.57 -0.06
DM -0.01 -0.13 -0.35
DN 0.36
DS -0.36 -0.08 -0.05 -0.22
DW 0.01 -0.05 -0.13
DY 0.60 0.49 1.31 0.50 0.47 0.42 0.95
EL -0.02
EY -0.16 0.03
FA -0.47 0.47 0.68 0.12 0.03 0.32 1.49

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

FC -0.13 -0.33 -0.21 -0.05 -0.04
FD 0.92 0.53 1.23 -0.30 -0.51 -0.51 -0.07
FF -0.85 0.61 -0.43 -0.12 0.29 0.62 0.22
FG 0.12 0.04 -0.01 0.45 0.25 0.64 0.33
FH 0.65 -0.30 -0.47 0.13 -0.42 0.04
FI 0.03 -0.20 -0.27 0.02 -0.05 -0.21
FL 0.03 -0.29 -0.39 -0.18 0.03 0.17 0.60
FM -0.00 -0.02 0.06 0.15 0.25 0.24 0.59
FN 0.00 -0.10 -0.04
FP 0.49 -0.80 0.04 0.04 0.22 0.17 0.16
FR -0.15 -0.01
FS 1.00 0.57 0.14 -0.08 -0.76 0.42 0.41
FT -0.03 -0.02 -0.05 -0.10 -0.10
FV -0.17 0.25 -1.22 -0.01 -0.18 -0.13 0.06
FW 0.14 -1.02 -0.44 0.20 0.83 0.06 0.33
FY 0.40 1.62 0.15 -0.07 0.50 0.43 0.92
GA 0.80 -0.18 0.48 -0.56 -0.54 -0.27 -1.44
GC -0.02 -0.08 -0.22 -0.02 -0.24 -0.37 -0.07
GD 0.81 1.06 0.95 0.59 0.92 0.47 0.03
GE 0.00
GF 0.19 0.50 0.64 0.08 -0.47 0.21 0.02
GG -0.34 0.19 0.24 0.26 0.97 0.08 0.45
GH 0.55 -1.35 -1.52 0.14 0.17 -0.16 0.86
GI 1.10 0.85 0.23 0.21 0.54 0.09 0.05
GK -0.25
GL -0.34 0.68 0.12 0.15 -0.13 0.00 -0.60
GM 0.50 0.44 0.01 0.52 0.72 0.08 0.47
GN 0.15 -0.06 0.17 -0.22
GP -1.12 0.65 0.10 -0.19 0.24 0.19 0.31
GQ -0.40
GR -0.11 -0.06 -0.52 -0.00 -0.11
GS 0.11 1.04 0.43 -0.58 -0.02 -0.24 1.54
GT -0.04 -0.47 -0.11 -0.02 -0.27 -0.26
GV -0.04 -0.06 0.56 0.10 0.19 -0.26 0.93
GW -1.09 -0.08 0.88 0.42 0.17 0.18 0.46
GY 0.43 0.39 -0.07 0.28 -0.20 -0.52 0.94
HA 0.05 1.45 0.34 0.24 0.40 0.18 -0.34
HC -0.02 -0.09
HD 0.21 0.21 0.06 -0.01 -0.04 0.12 0.07
HF 0.04 -0.19 0.11 0.06 -0.28 -0.06 -0.09
HG -1.35 0.07 0.83 0.04 -0.14 1.50 0.18
HH -0.11 0.43 0.50 0.05 0.15 0.19 -0.65
HI 0.10 0.15 0.67 0.04 0.43
HL 0.01 -0.02 -0.38 0.01 -0.10 0.20 0.13
HM 0.49 0.58 -0.06 0.02 0.13 0.01 -0.28
HP -0.17 -0.55 0.53 -0.24 0.24 0.19 0.91
HR -0.09
HS -0.59 -0.88 -0.89 0.44 0.06 -0.50 -0.37
HT -0.00 -0.01
HV -0.11 0.56 0.74 0.07 -0.13 0.15 0.07
HW -0.02 -0.43 -0.52 -0.06 -0.34 0.76 -0.45
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Table A.6 (cont.): Dipeptide contributions of the 7 SSK-SVM models.

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

HY -0.15 0.98 1.46 0.04 0.33 0.03 0.08
IA -0.52 0.00 -0.02 0.22 0.00 0.01
IC -0.04
ID 0.15 1.09 1.34 0.24 0.49 0.57 0.99
IE 0.00
IF 0.03
IG 0.17 -0.27 -0.02 -0.07
IH -0.00 -0.11
II -0.01
IL -0.12 -0.07 -0.01 -0.05 0.00
IM -0.30 0.02 -0.01 0.13 0.00
IN 0.27
IP 0.04
IR -0.01 -0.22
IS -0.01 -0.18
IT -0.06 -0.36
IV -0.35 0.36 -0.13
IW 0.01 0.18
IY 0.08 0.66 0.49 -0.07 0.25 0.38 0.22
KA -0.02
KD -0.01
KF -0.15
KG -0.05
KK -0.26
KM -0.01
KP -0.41
KS -0.09
KW -0.03
KY -0.25
LA -0.33 -0.08 -0.39 -0.07 -0.04 -0.01 -0.00
LC -0.30 -0.63 -0.03 -0.05
LD 0.66 0.96 0.24 0.35 0.01 0.31 0.25
LF -0.06 -0.02 -0.08 -0.10 -0.14 -0.52
LG -1.15 -0.12 -0.58 -0.21 -0.12 -0.04 -0.13
LH -0.01 -0.15 -0.24 -0.06 -0.00
LI -0.03 -0.34 -0.04 -0.21 -0.01
LL -0.57 -0.58 -0.26 -0.54 -0.12 -0.02 -0.02
LM -0.20 -0.06 -0.15 -0.11 -0.00
LN 0.22
LP -0.54 -0.22 -0.05
LR -0.15 -0.03 -0.36 -0.22 -0.02 -0.21
LS -0.75 -0.13 -0.26 -0.25 -0.05 -0.06
LT -0.49 -0.01 -0.27 -0.01 -0.01
LV -0.19 -0.52 -0.44 -0.05 -0.02 -0.21 -0.12
LW -1.07 -0.71 -0.26 -0.00 -0.08 -0.04
LY -1.01 -0.10 -0.44 0.10 -0.12 0.17 -0.15
MA -0.30 -0.22
MC -0.11 -0.13
MD -0.31 -0.09 0.07 0.15 1.02 0.81 0.40
ME -0.16 -0.02 0.03
MF -0.04 -0.36 -0.04

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

MG -0.18 -0.28 -0.23 -0.10
MI -0.01 -0.36
ML -0.51 -0.01 -0.36 -0.14
MM -0.01
MN -0.36 -0.36
MS -0.00
MT -0.04 -0.05
MV -0.03
MW -0.18
MY -0.30 -0.22 0.08 -0.13 0.61 0.29 0.03
NA 0.36 -0.07
ND 0.13 -0.00
NF -0.18
NL 0.22
NW -0.34
NY 0.08 -0.11 -0.36 0.23 -0.36
PA 1.13 -0.41 -0.24 0.54 0.51 0.23 1.08
PC -0.05 -0.01
PD -0.08 0.33 -0.07 0.07 0.26 0.20 0.27
PE 0.01
PF -1.12 -0.31 0.12 -0.06 0.55 0.16 0.36
PG -0.58 0.31 0.32 -0.78 0.56 0.67 0.68
PH 1.14 0.27 -0.65 -0.02 0.30 -0.04
PI 0.09 0.03 0.42 -0.00 0.01 0.08
PL -0.61 0.62 -0.12 -0.03 0.22 0.18 0.14
PM 0.13 -0.43 0.39 0.09 0.14 0.03 -0.03
PN 0.01
PP 0.69 0.18 -0.65 0.03 0.01 0.41
PR -0.03 -0.03 -0.00
PS 0.08 0.19 0.33 -1.16 0.66 0.57 1.39
PT -0.25 -0.04 -0.01
PV 1.01 -0.52 0.56 -0.09 0.26 0.64
PW -0.77 0.13 0.96 0.12 0.65 0.06 -0.03
PY 1.33 0.60 1.17 0.36 0.20 0.30 0.59
QA -0.40 -0.02
QC -0.04
QD -0.14 -0.00 -0.01
QG -0.13
QL -0.02 -0.02
QM -0.22 -0.00
QS -0.12 -0.13
QV -0.03
QW -0.07 -0.06
QY -0.09 -0.01 -0.01
RA -0.31 -0.00 -0.55 -0.03
RC -0.05
RD -0.22 -0.03 -0.59 -0.06 -0.01 -0.21
RF -0.01 -0.07 -0.20 -0.16 -0.01 -0.22
RG -0.19 -0.27 -0.36 -0.02 -0.22
RH -0.04 -0.05
RI -0.06 -0.13
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Table A.6 (cont.): Dipeptide contributions of the 7 SSK-SVM models.

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

RK -0.15
RL -0.42 -0.04 -0.06 -0.05 -0.13
RM -0.30 -0.04 -0.16 -0.10
RP -0.17 -0.03
RR -0.01 -0.02
RS -0.04 -0.19 -0.43 -0.15 -0.02
RT -0.09 -0.01
RV -0.15 -0.07 -0.02 -0.36
RW -0.21 -0.02 -0.50 -0.00
RY -0.20 -0.04 -0.17 -0.10 -0.00 -0.12
SA 1.00 1.07 0.77 0.16 0.01 0.87 0.84
SC -0.64 -0.07 -0.14 -0.08 -0.08 -0.01
SD 0.58 -0.84 0.12 0.21 -0.36 0.32 0.21
SE -0.04 -0.01
SF 0.02 -0.34 1.04 0.22 -0.06 -0.73 0.45
SG -0.30 -0.21 0.61 0.36 1.13 0.75 0.62
SH 0.72 -0.61 -1.22 0.17 0.58 0.24 1.04
SI 0.24 0.74 0.40 0.01 0.24 0.22 0.20
SK -0.41
SL 0.24 -0.63 -0.01 -0.08 -0.20 0.16 0.39
SM -0.60 -1.17 -0.63 0.05 -0.07 0.42 -0.05
SN 0.36 0.08 -0.17 0.08
SP -1.55 0.10 0.65 -0.05 0.12 0.26 -0.45
SR -0.33 -0.02 -0.40 -0.03 -0.02
SS 0.61 -0.04 0.87 0.07 0.90 0.31 0.08
ST -0.02 -0.38 -0.06 -0.19 -0.00 -0.02
SV 0.32 -0.25 -0.21 -0.71 0.57 0.76 0.28
SW 0.00 -0.74 0.19 0.06 -0.55 0.03 0.25
SY -1.01 -0.05 -0.30 -0.11 0.38 -0.44 -0.20
TA -0.33 -0.70 -0.35 -0.00 -0.25 -0.02 -0.13
TC -0.08 -0.01
TD -0.27 -0.50 -0.22 -0.12 -0.04 -0.12 -0.01
TF -0.00 -0.13 -0.05 -0.01 -0.02
TG -0.27 -0.09 -0.21 -0.02 -0.15 -0.06
TH -0.03 -0.04
TI -0.26 -0.33 -0.02 -0.16
TK -0.05
TL -0.51 -0.21 -0.17 -0.05 -0.18
TM -0.17 -0.09 -0.02 -0.13 -0.06 -0.16
TP -0.01 -0.16
TR -0.09 -0.15 -0.36
TS -0.10 -0.06 -0.24 -0.02
TT -0.06 -0.28 -0.04 -0.01
TV -0.02 -0.26 -0.06 -0.00 -0.12 -0.22
TW -0.19 -0.26 -0.03 -0.22
TY 0.07 -0.31 -0.14 -0.07 -0.03 -0.20 -0.01
VA 1.03 0.55 1.47 -0.33 0.46 0.45 0.96
VC -0.10 -0.15 -0.05 -0.08
VD -0.07 0.10 -0.77 0.19 0.03 -0.23 -0.18
VF 0.36 0.13 -0.62 0.15 0.24 0.70 0.51
VG -1.05 1.61 0.75 -0.01 0.05 0.05 0.48

Dip. Axl Jag1 Jag2 Mer Not1 Not2 Not3

VH 0.55 0.21 1.23 0.02 0.10 0.25 -0.51
VI -0.22 0.24 -0.82 0.04 0.06 -0.15 -0.15
VK -0.09
VL -0.35 -0.18 0.51 -0.30 -0.04 -0.26 -0.18
VM 0.13 0.72 0.10 0.23 0.14 -0.39 0.18
VN -0.28 0.04 -0.13
VP -0.13 -0.39 -0.06 0.01 0.20 0.21 0.00
VR -0.19 -0.26 -0.01 -0.01 -0.14
VS 0.38 0.76 -0.18 -0.13 0.34 0.23 1.62
VT -0.01 -0.01 -0.06 -0.25 -0.26
VV 0.19 0.28 -0.83 -0.02 0.25 0.58 0.64
VW -0.55 1.06 0.68 0.22 -0.13 0.34 0.16
VY 0.58 0.91 -0.89 0.40 0.26 -0.78 0.07
WA 1.24 0.75 -0.61 0.61 0.56 0.64 0.97
WC -0.13 -0.07 -0.19 -0.08 -0.14 -0.02
WD 0.04 -0.04 0.35 -0.03 0.14 -0.03 -0.08
WE -0.00
WF -0.03 -0.64 -0.47 0.24 0.38 -0.15 0.58
WG -0.10 0.30 0.53 -0.31 -0.07 -0.07 0.54
WH 0.31 -0.33 -0.22 0.20 -0.23 -0.43 0.13
WI -0.29 0.52 0.66 0.09 0.23 0.33
WL 0.00 -0.06 -0.74 -0.01 -0.20 -0.16 -0.68
WM -0.04 0.12 0.73 0.16 0.27 0.10 -0.19
WN 0.05
WP 0.68 -0.84 -0.83 -0.16 0.73 0.74
WQ -0.06
WR -0.30 -0.02 -0.08 -0.05
WS -0.05 0.09 -0.73 -0.10 0.09 0.29 -0.08
WT 0.15 -0.15 -0.19 -0.02
WV -0.04 -0.93 0.56 0.63 0.02 0.02 1.18
WW -0.44 0.80 -0.23 0.31 0.27 -0.36 0.34
WY 0.57 0.40 1.40 0.27 0.32 -0.31 0.02
YA -0.57 0.35 -0.45 -0.17 0.09 0.22 0.44
YC -0.26 -0.19 -0.06 -0.32 -0.01
YD -1.14 -0.33 1.27 -0.45 -0.10 -0.52 0.39
YE -0.08 -0.00 0.02
YF 0.77 0.10 0.08 -0.63 0.33 -0.11 0.84
YG 0.49 -1.11 0.03 0.20 1.05 0.45 0.41
YH 0.84 0.17 0.31 -0.16 -0.00 0.56 0.08
YI -0.47 0.02 0.37 -0.01 0.60 0.22 0.13
YL -0.08 0.37 -0.14 -0.07 0.33 -0.28 0.38
YM -1.26 0.79 2.15 -0.93 -0.09 0.32 -0.14
YN 0.04 -0.21 -0.01 -0.08
YP -0.09 -0.98 0.11 -0.27 0.66 0.03 -0.31
YQ -0.18 -0.21 -0.04
YR -0.08 -0.33 -0.38 -0.03
YS 0.35 -0.05 -0.01 0.39 0.37 0.31 0.41
YT -0.11 -1.01 -0.26 -0.21 -0.00 -0.04
YV 0.03 -0.51 0.22 0.10 0.79 0.42 0.99
YW 0.69 0.02 -0.60 -0.35 0.43 -0.17 0.47
YY 0.93 0.23 0.37 -0.65 0.14 0.29 1.12
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A.6 Average Classification Accuracies

Table A.7: The average classification accuracy of the compared machine learning models. The

accuracy was measured using 10-fold cross-validation.

Library Target Classifier Accuracy

F Axl NB 76.05
F Axl LM 65.79
F Axl ANN 78.68
F Axl RBF-SVM 81.32
F Axl RF 83.68
F Axl RBF-SVM (t) 75.00
F Axl SSK-SVM (t) 87.11
F Jagged1 NB 71.02
F Jagged1 LM 51.58
F Jagged1 ANN 70.98
F Jagged1 RBF-SVM 69.80
F Jagged1 RF 74.58
F Jagged1 RBF-SVM (t) 71.37
F Jagged1 SSK-SVM (t) 72.63
F Jagged2 NB 78.28
F Jagged2 LM 71.68
F Jagged2 ANN 81.38
F Jagged2 RBF-SVM 78.30
F Jagged2 RF 83.67
F Jagged2 RBF-SVM (t) 80.15
F Jagged2 SSK-SVM (t) 80.99
F Mer NB 78.53
F Mer LM 61.29
F Mer ANN 89.30
F Mer RBF-SVM 85.15
F Mer RF 91.69
F Mer RBF-SVM (t) 88.71
F Mer SSK-SVM (t) 92.83
F Notch1 NB 85.44
F Notch1 LM 60.82
F Notch1 ANN 93.13
F Notch1 RBF-SVM 92.36
F Notch1 RF 93.08
F Notch1 RBF-SVM (t) 93.08
F Notch1 SSK-SVM (t) 89.40
F Notch2 NB 78.68
F Notch2 LM 51.98
F Notch2 ANN 76.37
F Notch2 RBF-SVM 67.25
F Notch2 RF 83.30
F Notch2 RBF-SVM (t) 71.81
F Notch2 SSK-SVM (t) 87.97
F Notch3 NB 82.27
F Notch3 LM 65.45
F Notch3 ANN 88.86
F Notch3 RBF-SVM 87.27
F Notch3 RF 90.23
F Notch3 RBF-SVM (t) 89.32
F Notch3 SSK-SVM (t) 89.55

Library Target Classifier Accuracy

S Axl NB 71.04
S Axl LM 77.76
S Axl ANN 79.53
S Axl RBF-SVM 82.15
S Axl RF 84.21
S Axl RBF-SVM (t) 79.24
S Axl SSK-SVM (t) 88.31
S Jagged1 NB 58.64
S Jagged1 LM 55.73
S Jagged1 ANN 79.64
S Jagged1 RBF-SVM 73.82
S Jagged1 RF 74.82
S Jagged1 RBF-SVM (t) 68.36
S Jagged1 SSK-SVM (t) 76.82
S Jagged2 NB 76.43
S Jagged2 LM 64.45
S Jagged2 ANN 83.02
S Jagged2 RBF-SVM 85.51
S Jagged2 RF 89.95
S Jagged2 RBF-SVM (t) 77.96
S Jagged2 SSK-SVM (t) 91.17
S Mer NB 61.20
S Mer LM 56.00
S Mer ANN 62.40
S Mer RBF-SVM 58.40
S Mer RF 60.80
S Mer RBF-SVM (t) 60.60
S Mer SSK-SVM (t) 55.60
S Notch1 NB 79.03
S Notch1 LM 62.78
S Notch1 ANN 84.44
S Notch1 RBF-SVM 91.67
S Notch1 RF 90.69
S Notch1 RBF-SVM (t) 86.81
S Notch1 SSK-SVM (t) 87.92
S Notch2 NB 66.96
S Notch2 LM 54.38
S Notch2 ANN 75.07
S Notch2 RBF-SVM 72.75
S Notch2 RF 82.91
S Notch2 RBF-SVM (t) 71.60
S Notch2 SSK-SVM (t) 84.12
S Notch3 NB 77.72
S Notch3 LM 52.11
S Notch3 ANN 90.96
S Notch3 RBF-SVM 94.15
S Notch3 RF 91.55
S Notch3 RBF-SVM (t) 90.96
S Notch3 SSK-SVM (t) 88.86
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