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ABSTRACT

At the heart of the field of photonics is the control of the reflection and transmission

of light. Plasmonics looks at this problem of control of electromagnetic radiation in the

context of surface plasmon polaritons (SPP). SPPs are propagating electromagnetic modes

localized at the interfaces between media with positive and negative permittivities. Their

excitation can accompany the enhancement of transmission, reflection, or absorption of

EM radiation. There are a number of ways to excite SPPs and this work looks at several

geometries and analyzes the transmission and reflection characteristics using a numerical

approach based on the finite element method.

The first method of excitation is by incident evanescent wave that was totally internally

reflected from an earlier interface. It is shown that an evanescent wave can excite SPPs and

create resonant transmisison. It is also found that high values of dissipation limit transmis-

sion and instead create resonant absorption. The second method involves the modulation

of the negative permittivity of the plasma slab itself. Numerical results are compared to

analytical ones and are in good agreement because harmonics of the solution above the

first are negligible. An investigation of transmission through a plasma slab with a sin-

gle thin diffraction grating placed nearby follows. Analytical and numerical calculations

show that a single thin grating is sufficient to create transmission resonance. It is found

that for large values of diffraction grating modulation parameter, higher harmonics, usu-

ally not accounted for in analytical solutions, results in discrepancies between analytical

and numerical results. The next geometry considered is of a plasma layer with only part of

it having modulated permittivity. The presence of modulation of only part of the plasma

layer is shown to create transmission and reflection resonances. By tailoring parameters

of the system, it is shown how the resonant frequencies can be shifted. The final geometry

considers a copper grating beside a plasma and transmission of a radio frequency wave.

Even though the copper used here in this simulation is very absorbing, there are ranges of

frequencies when transmission or reflection are enhanced.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Plasmonics, a new but rapidly expanding discipline, studies the physics and technological

applications of collective electromagnetic excitations on the surface of negative permittiv-

ity materials (like a metal or plasma). Such collective modes (plasmons) generally exist

at any interface between two materials with opposite signs of dielectric constants, e.g.

air which has positive permittivity, ε = 1, and a metal with negative permittivity, ε < 0

for frequencies in the optical range. For many applications structures of interest involve

nanofilms of noble metals and/or semiconductors on dielectric substrates. Though this re-

search field only found its name less than a decade ago [1], its foundations go back over a

century. The history of plasmonics can be traced back to studies of radio wave propagation

along a surface. As early as 1899, Sommerfeld found a solution to Maxwell’s equations

for wave propagation on the surface of a single conducting wire [2]. In 1907, his student,

Zenneck, continued that work on surface waves localized at the boundary between a con-

ductor and dielectric. In his studies of radio frequency wave propagation at the air-earth

interface, he analytically solved for localized wave solutions that propagated on a flat in-

terface between a half space with finite conductivity, σ, and a half space with permittivity

ε equal to the permittivity of free space [3]. Plasmonics can also be traced back to exper-

iments by Wood, who in 1935 had observed an anomalous drop in the intensity of light

reflected from metallic gratings [4]. Wood’s anomaly, as it is called today, is understood

to be due the result of surface wave excitation.

The actual application of plasmonic effects can be traced even further back to the

staining of glass in ancient Rome (such as the Lycurgus cup). The cup, dated to the 4th
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century on stylistic grounds, depicts Lycurgus, a king of the Thracians (around 800 BC)

as he becomes entrapped and tormented by Dionysus after lashing out at the Greek god.

The cup, when viewed by light that is reflected from the surface, appears green. When it

is viewed by light transmitted from inside the cup, it appears red. This curious property is

in fact due to gold nanoparticles, typically 5-60 nm, inside the ruby glass [5]. It has been

realized that this behaviour occurs due to resonant absorption of light. These so-called

Mie resonances [6] are simply the surface wave modes on a conducting sphere.

In a wider sense, plasmonics deals with the propagation of electromagnetic radiation in

materials with negative dielectric permittivity and permeability (the so-called metamateri-

als). Such materials are typically based on metallic sub-wavelength structures immersed

in the host dielectric. Surface waves (plasmons) supported by free electrons in the metal

and localized at the metal-dielectric interfaces represent a key mode of electromagnetic

excitations in such materials. Control of surface plasmons allows for the guiding and ma-

nipulation of electromagnetic radiation below the diffraction limit, e.g. the surface waves

operating at visible range frequencies (few hundreds THz) can be squeezed into the trans-

verse dimensions below 100 nanometres [7]. This possibility opens up a vast area of

applications ranging from terahertz computer chips and the next generation of integrated

opto-electronic devices [11] to ultra-sensitive molecular detectors [12, 13] and even an

invisibility cloak [14]. The established framework of methods and tools of classical elec-

tromagnetic theory (both analytical and computational) and the modern technology of film

deposition and nanofabrication create the conditions for dramatic scientific advances and

a new class of sub-wavelength integrated opto-electronic components.

There are several key phenomena due to surface waves which are related to our in-

vestigation. The anomalously high transmission of electromagnetic radiation has drawn

much attention since Ebbesen’s pioneering experimental paper [15]. In these experiments,

it was found that the observed transmission through an array of sub-wavelength holes in a

metal film is an order of magnitude larger than the values expected from standard diffrac-

tion theory. The exact nature of this phenomenon is still under debate in the literature

but the prevailing view is that it is due to the resonant enhancement of the local electro-

magnetic field accompanying surface wave excitations. The transmission of light through

2



optically thick materials is of interest for many applications, in particular, in communica-

tion technologies, e.g. as a building block for optical switching [16] and multiplexing [17]

devices.

The phenomenon of resonant transmission through opaque materials is closely re-

lated to the amplification of evanescent waves. Normally, the information contained in

the evanescent part of the wave spectrum is lost due to the fast decays of the evanescent

waves. This is an underlying reason for the so-called diffraction limit. The amplification of

evanescent waves allows for the retention of the information in the diffraction region thus

opening the way to the so-called superlens [18]. Full realization of superlenses requires

artificial materials, called metamaterials, with both permittivity, ε(ω), and permeability,

µ(ω), being negative [19–21]. A partial superlens, a ′′poor man’s′′ superlens may be pos-

sible based on a material that only has negative permittivity (such as silver) and can, at

plasmonic resonance, amplify evanescent waves [22, 23].

Plasmon resonance and evanescent wave amplification are accompanied by strong en-

hancement of the electromagnetic field in a narrow region in space, a confinement of

electromagnetic waves [24]. Usually light focused by dielectric lenses cannot be confined

to dimensions less than λ/2. Plasmonics phenomena allows for the confinement of ra-

diation to lengths much smaller than λ/2. This opens new possibilities for ultrasensitive

detectors, more efficient solar cells [25], and surface wave based lasers [26].

Central to these applications are surface plasmon polariton excitations that create anoma-

lous transmission. SPPs cannot be excited on a flat surface by normally incident electro-

magnetic radiation. As such, it is the goal of this work to investigate different geometry

to excite SPPs. We use numerical results from the finite element method (described in

Chapter 2) to calculate the transmission characteristics.

The first structure considered is a double layer configuration in Chapter 3. Here SPPs

are resonantly excited by an incident evanescent wave which is the result of internal reflec-

tion at an earlier interface. Transmission, reflection, and absorption through this structure

are calculated for different plasma parameters and comparison is made with analytical

results obtained with the transfer matrix method.

In Chapter 4, a metal film layer with sinusoidally modulated permittivity is analyzed
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numerically and the results are compared with published analytical results.

Evanescent waves, in this case generated by a diffraction grating, are used again in

Chapter 5 to excite SPPs on a plasma layer. Presented is an impedance analytical solu-

tion that only considers the contribution of the fundamental and first harmonics to calcu-

late transmission. Accompanying numerical solutions are presented which show the role

played by higher harmonics that were neglected in the analytical theory. This analysis

shows that for small amplitude of the grating modulations the higher harmonics are small

and the numerical and analytical solutions show good matching. For larger amplitudes,

the higher harmonics are important and the numerical solution can different substantially

from the analytical theory.

In Chapter 6, a plasma with permittivity partially modulated is considered. The effects

of changing geometrical parameters, such as permittivity and thickness, on the transmis-

sion characteristic are analyzed.

Chapter 7 considers the transmission of incident EM radiation through an unmodulated

plasma slab with an adjacent square copper grating. As the copper grating’s permittivity

is mostly imaginary, it is found that, while total reflection resonances exists, transmission

resonances are not as pronounced.

1.2 Maxwell’s Equations

For completeness we give Maxwell’s macroscopic equations [27] as they are used here. In

the absence of external charges and sources,

∇ ·D = 0, (1.1a)

∇ ·B = 0, (1.1b)

∇× E = − ∂B

∂t
, (1.1c)

∇×H =
∂D

∂t
. (1.1d)

These four equations relate the macroscopic fields D (the electric displacement), E (the

electric field), H (the magnetic field), and B (the magnetic flux density or magnetic induc-

tion). If we limit ourselves to linear and isotropic media, then the field D can be related to
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the field E and the field B can be related to the field H using the constitutive relations

D = ε0εE, (1.2a)

B = µ0µH, (1.2b)

where ε is called the dielectric constant or relative permittivity, ε0 is the permittivity of free

space (8.85× 10−12 C2/Nm2), µ is the relative permeability, and µ0 is the permeability of

free space (4π × 10−7 N/A2). In nonmagnetic media, which are dealt with exclusively in

this work, µ = 1.

1.3 Classical Electron Model of Permittivity

Over a wide range of frequencies (as high as UV for alkali metals and as high as visible

frequencies for noble metals), the optical properties of metals can be explained by a plasma

model. The electrons can be modelled as oscillating in response to the applied electric

field. Their motion is damped by collisions characterized by the collision frequency γ and

γ is on the order of 10−14 s at room temperature for a metal. We assume the electrons obey

the following equation of motion:

m
d2

dt2
x +mγ

d

dt
x = −eE, (1.3)

where x is the relative position of the electron, m is the mass of the electron, E is the

applied electric field, and−e is the electron charge. Because the wavelength of the optical

wave is much longer than the atom size, we can take E to be constant across the atom. We

also assume that E has a harmonic time dependence, that is to say E = E0e
−iωt, where ω

is the frequency of oscillation. The solution for x then is

x =
e

m(ω2 + iγω)
E(t). (1.4)

The macroscopic polarization inside the material due to the displacement of electrons from

their positively charged nucleus is simply P = −enx, where n is the electron density.

More explicitly,

P =
−ne2

m(ω2 + iγω)
E(t). (1.5)
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Using Eq. (1.5), the electric displacement can be defined as D = ε0E+P, and comparing

to the constitutive relations in Eq. (1.2), we find the permittivity, ε, can be expressed as

ε(ω) = 1−
ω2
p

ω2 + iγω
, (1.6)

where ω2
p = ne2/ε0m. If γ is non-zero then ε(ω) is a complex value and is often expressed

as ε(ω) = ε′(ω)+iε′′(ω). In this case, the real and imaginary components can be calculated

as,

ε′(ω) = 1−
ω2
pτ

2

1 + ω2τ 2
, (1.7)

ε′′(ω) =
ω2
pτ

ω(1 + ω2τ 2)
, (1.8)

where τ is the relaxation time of the free electrons and τ = 1/γ. The electron plasma and

the collision frequencies for metals are often expressed in energy units. An example of

typical values are those for silver which has ωp = 9.1 eV and γ = 0.021 eV.

1.4 The Wave Equation

Maxwell’s equations are the general equations of classical EM phenomena. To address

wave phenomena it is convenient to cast Maxwell’s equations in the form of the wave

equation. Combining Maxwell’s equations (1.1) and the constitutive relations (1.2) one

arrives at the equation

∇× (ε−1∇×H) = −ε0µ0µ
∂2

∂t2
H (1.9)

If we assume that the time evolution for the E and H fields is harmonic,

E(x, y, z, t) = E(x, y, z)e−iωt (1.10a)

H(x, y, z, t) = H(x, y, z)e−iωt (1.10b)

then Eq. (1.9) can be further written as

∇× (ε−1∇×H)− k2
0H = 0, (1.11)
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where k0 = ω/c is the free space wave vector. We have assumed that the relative permit-

tivity, µ = 1. In general, ε is a complex permittivity ε = ε′(ω) + iε′′(ω). The imaginary

part of ε(ω) is responsible for dissipative losses. An equivalent wave equation can be

written in terms of the electric field

∇× (µ−1∇× E) = −ε0µ0ε
∂2

∂t2
E, (1.12)

or

∇× (∇× E) = εk2
0E. (1.13)

These equations are equivalent but one or another is more convenient depending on

the wave polarization. Contrary to waves in free space, where both electric and magnetic

field are transverse to the direction of the propagation, in two-dimensional geometry one

can distinguish two polarizations: TE and TM modes. For the field which depends on

x-y coordinates, the TM mode is defined H(x, y, t) = (0, 0, Hz), E(x, y, t) = (Ex, Ey, 0)

and the TE mode is defined H(x, y, t) = (Hx, Hy, 0), E(x, y, t) = (0, 0, Ez). Respec-

tively, Eq. (1.11) is more convenient for TM modes and the equation (1.13) for TE modes

respectively.

1.5 Surface Waves at a Single Interface Boundary

The simplest geometry that can sustain surface wave oscillations is that of a single inter-

face (taken to be in the x-y plane for simplicity) between a dielectric half-space with a real

positive permittivity and another material half-space whose real part of the permittivity is

negative [28]. The second condition is easily met by materials which have a plasma-like

response ε = 1 − ω2
p/ω

2, for ω < ωp, where ωp is the plasma frequency (this relation is

true for most metals at visible frequencies).

Assuming solutions in the form of E(x, y, z, t) = E(x)eiβye−iωt (ie. waves that prop-

agate along the interface, β is the wave vector along the y direction) there are two sets of

self-consistent solutions, the familiar TE and TM modes. From Eq. (1.11) one finds that

7



Figure 1.1: Profile of the magnetic field in a surface wave; ε1 > 0 for x < 0
and ε2 < 0 for x > 0.

TE modes are governed by the system of equations

∂2Ez
∂x2

+ (k2
0ε− β2)Ez = 0 (1.14a)

Hy =
i

ωµ0

∂Ez
∂x

(1.14b)

Hx =
β

ωµ0

Ez (1.14c)

and the TM modes by

∂2Hz

∂x2
+ (k2

0ε− β2)Hz = 0 (1.15a)

Ey = − i

ωε0ε

∂Hz

∂x
(1.15b)

Ex = − β

ωε0ε
Hz. (1.15c)

Considering first the TM mode, the electric and magnetic fields are given below. In the

half-space x > 0 they are

Hz(x) = A2e
iβye−k2x, (1.16a)

Ey(x) =
iA2k2

ωε0ε2
eiβye−k2x, (1.16b)

Ex(x) =
−A2β

ωε0ε2
eiβye−k2x, (1.16c)
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and in the half-space x < 0 the fields are

Hz(x) = A1e
iβyek1x, (1.17a)

Ey(x) =
−iA1k1

ωε0ε1
eiβyek1x, (1.17b)

Ex(x) =
−A1β

ωε0ε1
eiβyek1x, (1.17c)

where k2
1 = β2 − k2

0ε1 and k2
2 = β2 − k2

0ε2. The boundary condition of continuity of the

magnetic field, Hz, at the interface gives

A1 = A2. (1.18)

By using the boundary condition of continuity of Ey or continuity of 1
ε
∂Hz

∂x
at the interface,

one obtains the dispersion relation for the TM modes

k2

k1

+
ε2
ε1

= 0. (1.19)

It is easy to see that ε2 and ε1 should have opposite signs (as it is required that Re[k2],

Re[k1] > 0 for mode confinement). The resulting dispersion equation for the TM mode

can be written in the form

β = k0

√
ε1ε2
ε1 + ε2

. (1.20)

Similarly, using Eq. (1.14), it can be shown that no surface wave solutions exist for TE

polarization for the two half-spaces having opposite signs of permittivity. If, instead of

having opposite signs of permittivity, the two half spaces had opposite signs of permeabil-

ity and ε = 1, then the TE mode could excite surface waves and would have the dispersion

equation
k2

k1

+
µ2

µ1

= 0, (1.21)

which is an equation analogous to Eq. (1.19).

Equation (1.19) is illustrated by Figure 1.2 for a single interface between ε1 = 1 and ε2

described by Eq. (1.6) with negligible damping constant γ. At low β, the characteristics

of the surface wave are similar to that of an EM field in free space and is weakly confined

to the surface. These are also termed Sommerfeld-Zenneck waves. As β gets very large,

ω approaches what is called the surface plasmon frequency, ωsp = ωp/
√

1 + ε1. Inserting
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Figure 1.2: The solid line shows the dispersion relation of SPPs for an
interface between air and a material with a Drude like response. The dashed
line shows the dispersion relation for free space, k = ω/c

Eq, (1.6) into Eq. (1.20) shows that the denominator in Eq. (1.20) approaches 0 as ω

approaches ωsp, β goes to infinity and the group velocity, vg approaches 0. As a result, the

surface waves becomes a static mode and no longer propagates along the surface and is

known as a surface plasmon. Surface plasmon polaritons are the laterally confined modes

that propagate along the surface. They exist at the frequencies below ωsp.

1.6 Negative Refraction and Energy Flow in Surface Modes

Here we briefly describe the negative refraction phenomenon to illustrate that its basic

features are related to properties of surface waves. Moreover, the artificially engineered

metamaterials, are based on composites which involve metal structures immersed in a host

dielectric. It is crucial that the metal structures exhibit surface mode resonances.

Formally, negative refraction can be introduced on a basis of the reflection and refrac-

tion laws:

φ = φ
′

(1.22a)

n1 sinφ = n2 sinφ
′′
. (1.22b)

What is not often mentioned is that the angle π − φ
′′ also satisfies the Refraction law.

Figure 1.3b shows this solution. Usually, the exclusion of the latter solution is considered

reasonable as for a wave incident from medium 1 the energy in medium 2 should propagate
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away from the interface. The other interpretation of negative refraction is based on the

notion that negative refraction occurs in a material with negative refraction index, n2 < 0.

Hence changing signs of both n2 → −n2, φ′′ → −φ′′ provides the negative refaction

solution. It was argued that simultaneous negative ε and µ are required to choose the

negative sign root in the expression for the refractive index, n2 = −√ε2µ2. These formal

interpretations based on Snell’s law provide limited physics insight into the phenomenon

and can be misleading at times.

The physical meaning of negative refraction is better described by using the concept of

the phase and group velocity. For simplicity we consider the case of an isotropic medium1.

In this case the direction of the phase velocity is defined to be along the wave vector

vp =
ω

k

k

k
. (1.23)

It is the phase velocity that is normally associated with the direction of the wave propaga-

tion. The energy propagates with the group velocity, S = Uvg, where S is the energy flux,

and U is the time-averaged energy density, U > 0 in thermodynamic equilibrium. For an

isotropic medium the group velocity is

vg =
dω(k)

dk
=

k

k

∂ω(k)

∂k
. (1.24)

Therefore, the group velocity can be parallel or anti-parallel with k depending on whether

∂ω/∂k is positive or negative. Regular refraction occurs for ∂ω/∂k, when phase and

group velocity are in the same direction. This situation is illustrated in Figure 1.3a .

If the energy in medium 2 is to propagate away from the interface and the derivative

∂ω/∂k < 0, then the solution in Figure 1.3b is the one to keep. In this situation, the

refracted wave actually propagates towards the interface, in the direction of the phase

velocity, while the energy propagates away from the interface, at the group velocity. As a

result, the components of energy propagation along the interface are in opposite directions

in the two media.

Therefore negative refraction occurs in the media with negative group velocity, ∂ω/∂k <

0. Such waves are sometimes called backward waves and often occur in plasmas and flu-

1Note that in an anisotropic medium., e.g photonic crystal, negative refraction can also occur through a
somewhat different mechanism
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ids. A possibility of negative refraction for backward waves was noted a long time ago in

the works of Lamb, Schuster and was fully worked out by Mandelstam (for a historical

note see [29]).

The following simple example illustrates the double negative condition often cited in

the problem of negative refraction, ε < 0 and µ < 0. Consider the dispersion equation of

the form

εµω2 = k2c2. (1.25)

Consider the case of a plasma like medium with ε = 1−ω2
p/ω

2. In the standard case, with

µ = 1 one has the standard dispersion relation for electromagnetic waves in plasma

ω2 = ω2
p + k2c2. (1.26)

Figure 1.3: Direction of phase velocities during the reflection and refraction
of an incident plane wave with a medium with (a) positive group velocity
and (b) negative group velocity

Such waves are propagating only for ω > ωp and are evanescent for ω < ωp. Consider

now the case µ ' −1. Then the dispersion equation becomes

ω2 = ω2
p − k2c2. (1.27)

These waves have negative dispersion, ∂ω/∂k < 0, they are propagating for ω < ωp, and

both ε < 0 and µ < 0 are negative. As a result negative refraction will occur in such a

medium.
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It is worth noting that negative values of the dielectric constant, ε, and permeability, µ,

are only possible for dispersive materials, ε = ε (ω) and µ = µ (ω). Negative permeability

is possible in engineered metamaterials where the magnetic response occurs due to reso-

nances on sub-wavelength metallic structures. In general, these resonances have a surface

wave type nature.

We illustrate now that the energy flow in surface wave excitations is consistent with

the main feature of negative refraction.

Energy flow is described by Poynting’s vector, which is calculated as

S = E×H =
1

µ
(E×B). (1.28)

We consider the energy flow for the surface wave as described above in Eq. (1.16) and Eq.

(1.17). Substituting these expressions we find the energy flow for x > 0 as

S = −|A2|2
β

2ωε0ε2
e−2k2xĵ, (1.29)

and

S = −|A1|2
β

2ωε0ε1
e2k1xĵ, (1.30)

for x < 0. Because ε1 and ε2 have opposite sign, the flow of energy along the interface

on one side of the interface is opposite in direction to the flow of energy on the other side.

Again, this is just as is the case at the interface between a positive refraction index material

and a negative refraction index material.

1.7 Insulator-Metal-Insulator System

A very important and basic structure is that of a thin metallic layer sandwiched between

two semi-infinite dielectrics, also called a insulator/metal/insulator (IMI) heterostructure.

For the general TM mode, the fields inside the three media are

Hz = Aeiβye−k3x (1.31a)

Ey =
iAk3

ωε0ε3
eiβye−k3x (1.31b)

Ex =
−Aβ
ωε0ε3

eiβye−k3x (1.31c)
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for x > a,

Hz = Beiβyek2x (1.32a)

Ey =
−iBk2

ωε0ε2
eiβyek2x (1.32b)

Ex =
−Bβ
ωε0ε2

eiβyek2x (1.32c)

for x < −a, and

Hz = Ceiβyek1x +Deiβye−k1x (1.33a)

Ey =
−iCk1

ωε0ε1
eiβyek1x +

iDk1

ωε0ε1
eiβye−k1x (1.33b)

Ex =
Cβ

ωε0ε1
eiβyek1x +

Dk1

ωε0ε1
eiβye−k1x (1.33c)

for −a < x < a. The wave equation (1.15a) further imposes the condition,

k2
i = β2 − k2

0εi (1.34)

for i = 1, 2, 3. An implicit expression for the dispersion relation can be solved for from

the system of equations

exp(−4k1a) =
k1/ε1 + k2/ε2
k1/ε1 − k2/ε2

k1/ε1 + k3/ε3
k1/ε1 − k3/ε3

. (1.35)

When ε1 = ε3, Eq. (1.35) is split and there are now two different eigenmodes that excite

surface waves

tanh k1a = −k2ε1
k1ε2

(1.36a)

tanh k1a = −k1ε2
k2ε1

. (1.36b)

These two solutions describe modes of odd vector parity (Ex is odd, Hy and Ez are

even) and even vector parity (Ex is even, Hy and Ez are odd), respectively. These modes

also differ in frequency with the odd mode having a higher frequency than the even mode.

When dissipation is included, the propagation constant, β, becomes complex and as

a result the field is damped. The two modes, the odd mode, ω+, and the even mode,

ω−, respond differently as the thickness of the film is decreased or increased. As the

film becomes thinner, the odd mode experiences decreased confinement (and as a result
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Figure 1.4: The single eigenmode of Figure 1.1 splits into two eigenmodes,
an even solution and an odd solution.

increased propagation distance as the film becomes thinner). This mode has come to

be known as long-ranging SPPs [30] and is especially of interest in designing plasmon

waveguides. The even mode, on the other hand, has its confinement increased as the film

is made thinner.

For large wave vector, β, the modes become electrostatic and the frequencies can be

expressed as

ω+ =
ωp√

1 + ε2

√
1 +

2ε2e−2βa

1 + ε2
(1.37a)

ω− =
ωp√

1 + ε2

√
1− 2ε2e−2βa

1 + ε2
. (1.37b)

1.8 Excitation of Surface Plasmon Polaritons

Surface plasmon polaritons (SPP) propagate at a flat interface between metal and a dielec-

tric. For the case when ε1 = 1 and ε2 < 0, we define n2 = −ε2. Rewriting the expression

for the propagation constant, β, of the surface waves as

β =
k0n√
n2 − 1

. (1.38)

we can see that the phase velocity of the SPPs along the interface (in the y-direction),

cp = ω/β = c
√
n2 − 1/n < c is less than the speed of light c. On the other hand, the

wave in free space propagating in the (x,y) plane, ω2 =
(
k2
y + k2

x

)
c2, for k2

x > 0 has phase

velocity along y which is larger than the speed of light, ω/ky = c
(
1 + k2

x/k
2
y

)1/2
> c.

These two waves cannot be matched in frequency and ky (β). As such, SPPs cannot be
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excited by a wave incident from vacuum.

Special configurations have to be arranged to allow for phase matching between the

wave vectors ky of the incident light and β of the surface wave for the excitation of the

SPPs [28]. Two conditions are discussed in this paper.

The first condition involves matching ω and β of the SPP with those of an incident

evanescent wave, so that k2
x < 0 and ω/ky = c

(
1 + k2

x/k
2
y

)1/2
< c. Several configurations

have been employed to that purpose.

For experiments in the optical range, prisms are used to create total internal reflection

of the wave in configurations called the Kretschmann [31] or Otto configurations [32]

(Figure 1.5). These schemes involves the tunnelling of the the field through the to-

tally internally reflecting barrier to the interface where the SPPs are excited [28]. In the

Kretschmann configuration, the field is incident at the prism/metal interface at an angle

above the critical angle. It tunnels from the prism through the metal and excites the SPP

on the other side of the metal. In the Otto configuration, the field is incident above the

critical angle at the prism/air interface. It tunnels through the layer of air to the metal

interface to excite SPPs. While the Kretschmann configuration is the most common one,

the Otto configuration is used when direct contact with the metal surface is undesirable.

Figure 1.5: (a) Kretschmann configuration (b) Otto configuration. Also
illustrated are possible lightpaths.

In our work we will use a transition layer with 0 < ε < 1 to create the evanescent

wave which can effectively excite the surface wave. This configuration will be utilized in

Chapter 3.

The second way of coupling SPPs with incident light is to create periodic modulation

of the layer, e.g. permittivity of the opaque layer, ε = εm(1 + g sin qy), with εm < 0, g
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Figure 1.6: Geometry of a two layer plasma system. Here 0 < ε1 < 1 and
ε2 < 0.

being the modulation strength, and q the wavenumber for the spatial modulation). Then the

condition β = ky ±mq, (where ky is the y-component of the incident wavenumber, m =

1, 2, 3...) also allows for the excitation of SPPs at the interface [28]. Chapters following

Chapter 3 will utilize this method of coupling. This method allows SPP excitation even

for normal incident of the external wave.
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CHAPTER 2

FINITE ELEMENT METHOD

2.1 Numerical Methods

There are only a limited number of problems that analytical solutions to Maxwell’s, or

even most differential, equations are known. In plasmonics, analytical methods, like Mie

theory, are limited to planar geometries or objects with simple shapes (such as spheres or

cylinders). As such, numerical methods must be employed to look for solutions in most

problems. While the finite element method (FEM) is the choice method of this work, there

also exist a number of other numerical methods that are in use in plasmonics research. To

mention a few, the Green dyadic method and the discrete dipole approximation are used to

calculate the scattering from metallic structures embedded in uniform or planarly layered

media. The finite-difference frequency methods use piecewise constant expressions to

approximate solutions to derivatives. For a more comprehensive review, see [33].

2.2 Finite Element Method

The finite element method is a numerical technique for solving differential equations.

Though FEM has its earliest roots in structural mechanics and is found in papers as early

as the 1940’s [34, 35], today it covers a wide range of areas, including electromagnetism.

Though FEM can be applied to a multitude of multidimensional systems, the focus here

will be on 2D problems as they are the sort of problems discussed here.

The general 2nd order partial differential equation that is solved is

− ∂

∂x

[
αx(x, y)

∂φ(x, y)

∂x

]
− ∂

∂y

[
αy(x, y)

∂φ(x, y)

∂y

]
+ β(x, y)φ(x, y) = f(x, y), (2.1)

18



where φ(x, y) is the unknown value, αx, αy, and β(x, y) are known physical quantities

and f(x, y) is the source or excitation function.

For most systems Eq. (2.1) is very difficult to solve. In FEM one approximate solution

is not sought for the whole domain, Ω. Instead the domain is divided into smaller subdo-

mains called elements. If the elements are small enough, then the value of φ(x, y) does

not vary in a complicated way over the element and can be approximated by simple trial

functions (such as polynomials).

Figure 2.1: Examples of two dimensional elements

The discretization of the domain into elements is the first step in FEM analysis. The

elements must not overlap and there must be no gaps between the elements. The shapes of

elements are also kept simple to make computations easier. In two dimensional systems,

the simple shapes used are triangles or quadrilaterals (Figure 2.1).

2.3 Formulation of Finite Element Method Equations

For each element the value of the approximate function is interpolated from the values at

the nodes. For example, for a triangle element e (an element with three nodes), we can

derive an expression for the approximate function in the following form:

φ̃e =
3∑
i=1

N e
j φ

e
j = {N e}T{φe} = {φe}T{N e}, (2.2)

where φej is the value of φ at node j on element e and N e
j are the interpolation functions.

The interpolation functions’ form varies by shape and order of polynomial used by the

element and specifics can be found in any FEM text, such as [36]. An important quality of

the interpolation functions is that N e
j is only non-zero in elements connected with node j.
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To form the approximate solution on each element the residual is defined as

r = − ∂

∂x

(
αx
∂φ

∂x

)
− ∂

∂y

(
αy
∂φ

∂y

)
+ βφ− f = 0. (2.3)

For the exact solution, r = 0 is true everywhere. If an approximate solution, φ̃, is substi-

tuted for the exact solution, φ, then r will no longer be 0. The family of weighted residual

methods for finding approximate solution seeks to reduce the residual r when finding a

satisfactory approximate solution φ̃. To this end, on each element in the domain they

enforce the condition

Ri = −
∫

Ωe

wirdΩ = 0, (2.4)

where Ri is the weighted residual. This condition, rather than seeking r = 0 only requires

that, after weighted by a function wi, r should average out to 0 over the area of each

element. The Galerkin method [36] is the most widely used of the weighted residual

methods and uses the interpolation functions, N e
j , as the weighing functions, wi.

The equation for the weighted residual using Galerkin’s method is (for convenience,

we will designate the approximate solution as φ rather than continue with φ̃)

Re
i =

∫∫
Ωe

N e
i

[
− ∂

∂x

(
αx
∂φ

∂x

)
− ∂

∂y

(
αy
∂φ

∂y

)
+ βφ− f

]
dxdy. (2.5)

Using the identity

∂

∂x

(
α
∂φ

∂x
ψ

)
= ψ

∂

∂x

(
α
∂φ

∂x

)
+ α

(
∂φ

∂x

)(
∂ψ

∂x

)
(2.6)

and the divergence relation∫∫
Ω

(
∂U

∂x
+
∂V

∂y

)
dΩ =

∮
Γ

(U x̂ + V ŷ) · n̂dΓ (2.7)

Eq. (2.5) becomes

Re
i =

∫∫
Ωe

(
αx
∂N e

i

∂x

∂φ

∂x
+ αy

∂N e
i

∂y

∂φ

∂y
+ βN e

i φ

)
dxdy

−
∫∫

Ωe

N e
i fdxdy −

∮
Γe

N e
i D · n̂edΓ

(2.8)

with

D =

(
αx
∂φ

∂x
x̂ + αy

∂φ

∂y
ŷ
)
. (2.9)
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Substituting the expression for the approximate solution in terms of the nodal values and

the interpolation functions, Eq. (2.2), the expression for the weighted residual is

Re
i =

3∑
j=1

∫∫
Ωe

(
αx
∂N e

i

∂x

∂N e
j

∂x
+ αy

∂N e
i

∂y

∂N e
j

∂y
+ βN e

iN
e
j

)
φejdxdy−∫∫

Ωe

N e
i fdxdy −

∮
Γe

N e
i D · n̂edΓ.

(2.10)

Eq. (2.10) can be also written in matrix form as

{Re} = [Ke]{φe} − {be} − {ge} (2.11)

where

[Ke]ij =

∫∫
Ωe

(
αx
∂N e

i

∂x

∂N e
j

∂x
+ αy

∂N e
i

∂y

∂N e
j

∂y
+ βN e

iN
e
j

)
dxdy, (2.12)

{be} =

∫∫
Ωe

N e
i fdxdy, (2.13)

{ge} =

∮
Γe

N e
i D · n̂edΓ. (2.14)

Since only the elements that are directly connected to the node i contribute to the weighted

residual Ri, we may expand Eq. (2.11) using local and global relations and sum over all

M elements to arrive at

{R} =
M∑
e=1

{R̄e} =
M∑
e=1

[K̄e]{φe} − {b̄e} − {ḡe} (2.15)

where the bar denotes the vector or matrix has been augmented or expanded. The process

of summing over the elemental equations to form the final system of equations is called the

assembly. Though described separately from the assembly in computer implementation

the formulation of the elemental equations happens during the assembly. Further entwined

with the elemental formulation and the assembly is the application of boundary conditions

which must be applied before solving the problem.

21



2.4 Boundary Conditions

To solve any differential equation one must also have appropriate boundary conditions.

Only by specifying the boundary conditions associated with the domain of the differential

equation it is possible to determine the real solution.

If φ is the unknown function, then on a boundary of the domain, a boundary condition

of the form,

φ|C = p(x, y), (2.16)

where C is the boundary curve, is referred to as a boundary condition of the first kind or a

Dirichlet condition. It specifies the field at the boundary. Conditions that specify the value

of the derivative normal to the boundary and have the form(
αx
∂φ

∂x
+ αy

∂φ

∂y

)
C = q(x, y), (2.17)

are referred to as boundary conditions of the second kind or a Neumann condition. Here

p and q are known parameters that come about from the known physical properties of

the boundary. They could be a boundary source or excitation (such as surface charge or

surface current). It is of course possible to make conditions that use both the value of the

function as well as its derivative and those are referred to as boundary conditions of the

third kind or mixed boundary conditions.

2.4.1 Continuity Condition

The continuity boundary conditions at the interface between two media follow from Maxwell’s

equations. They are expressed mathematically as

n̂× (E1 − E2) = 0, (2.18a)

n̂ · (D1 − D2) = ρs, (2.18b)

n̂× (H1 −H2) = Js, (2.18c)

n̂ · (B1 − B2) = 0, (2.18d)

where n̂ is the unit vector normal to the interface pointing from medium 2 into medium 1,

ρs and Js are the surface charge and surface current at the interface. These equations are
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known as the field continuity equations. They are also called internal boundary conditions

because the boundary described is inside the model between two subdomains that have

their own properties.

2.4.2 Matched Boundary Condition

To apply FEM for an infinite domain it is necessary to truncate the model’s exterior with

an artificial boundary. The matched boundary is an example of such an external boundary

condition. It can be used to represent open space if the form of the field is known. The

generic geometry is illustrated in Figure 2.2. If a plane wave is incident from the left,

then it will interact with the discontinuity illustrated. If the boundaries AB and CD are

far enough from the discontinuity, the field at AB can be expressed as the total sum of the

incident and reflected waves,

Figure 2.2: Wave incident on an object as well as the reflected and trans-
mitted wave.

Hz = H inc
z +Href

z = H0e
−ik0x + rH0e

ik0x, (2.19)

where H0 is a constant, r is the reflection coefficient, and k0 is the propagation constant.

On boundary CD there is only the transmitted wave

Hz = H trans
z = tH0e

−ik0x, (2.20)

where t is the transmission coefficient.
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After some algebra, the boundary condition at AB can be expressed as

∂Hz

∂x
= −ik0Hz − 2ik0H0e

−ik0x. (2.21)

In this way we have a boundary condition at AB that excludes r and has only one free

parameter, H0, that can be designated in our model. The boundary condition at CD can be

expressed as
∂Hz

∂x
= −ik0Hz, (2.22)

in much the same way. Once the field, Hz, has been found r and t can be calculated from

Eq. (2.19) and (2.20):

r =
Hz(x1)−H0e

−ik0x1

H0eik0x1
, (2.23)

t =
Hz(x2)

H0e−ik0x2
, (2.24)

where x1 denotes the position of boundary AB and x2 denotes the position of boundary

CD. If there are no lossy materials in the model, then

|r|2 + |t|2 = 1 (2.25)

because of the conservation of energy. If there are lossy materials present, the amount of

energy dissipated can be calculated as

A = 1− |r|2 − |t|2. (2.26)

2.4.3 Periodic Boundary Condition

Another way to limit or reduce the size of the simulation is to account for periodicity.

If there is periodic structure in the model, a periodic boundary condition can be utilized.

An example would be the boundaries AC and BD in Figure 2.2. The periodic boundary

condition links two opposite boundaries by either specifying the tangent field components

of the solution variable are equal,

Hdst = Hsrc, (2.27)
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or that the components have opposite sign,

Hdst = −Hsrc, (2.28)

or have their values shifted by a phase difference,

Hdst = Hsrce
−ik·(rdst−rsrc). (2.29)

The phase shift is defined by a wave vector k and the distance between the source and

destination.

2.5 Perfectly Matched Layers

The matched boundary condition allows us to truncate a model that would extend to infin-

ity but it assumes that the form of the fields at the boundary is known. A relatively new

and different way to truncate the model is the perfectly matched layer method that was

proposed in 1994 by Berenger [37]. Beyond the truncated boundary, it creates a space,

as illustrated in Figure 2.3, that is lossy but does not reflect plane waves for all angles of

incidence, polarizations, and frequencies. Since Berenger’s work, there have been many

ways to interpret perfectly matched layers and here we will focus on the interpretation by

Chew and Weedon [38].

In the perfectly matched layer space a set of modified Maxwell’s equations are solved

that stretch the coordinates in the frequency domain. Consider the set of modified source-

Figure 2.3: Use of PML layers to truncate the computational domain along
the x-axis
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free Maxwell’s equations below:

∇s × E = −iωµH, (2.30)

∇s ×H = iωεE, (2.31)

∇s · (εE) = 0, (2.32)

∇s · (µH) = 0, (2.33)

where∇s is defined by

∇s = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
. (2.34)

∇s is in a sense the standard ∇ operator in Cartesian coordinate system but whose

x, y, and z axes are stretched by a factor sx, sy, and sz, respectively. Also, sx = sx(x),

sy = sy(y), and sz = sz(z).

If we substitute a plane wave whose electric and magnetic fields are given by

E = E0e
−ik·r = E0e

−i(kxx+kyy+kzz), (2.35)

H = H0e
−ik·r = H0e

−i(kxx+kyy+kzz), (2.36)

into the system of equations (2.30), then

ks × E = ωµH, (2.37)

ks ×H = −ωεE, (2.38)

ks · E = 0, (2.39)

ks ·H = 0, (2.40)

where

ks = x̂
kx
sx

+ ŷ
ky
sy

+ ẑ
kz
sz
. (2.41)

Combining the first two equations of (2.37) gives

ks × (ks × E) = ωµks ×H = −ω2µεE, (2.42)

which becomes

(ks · ks)E = ω2µεE. (2.43)
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The resultant dispersion relation is

ks · ks = ω2µε = κ2, (2.44)

or (
kx
sx

)2

+

(
ky
sy

)2

+

(
kz
sz

)2

= κ2. (2.45)

The solution to Eq. (2.45) is

kx = κsx sin θ cosφ, (2.46)

ky = κsy sin θ cosφ, (2.47)

kz = κsz cos θ. (2.48)

It is easy to see that if si is a complex number, the wave will be attenuated in the i-direction.

The wave impedance, however, is unchanged by the stretching factor since

η =
|E|
|H|

=
|ks|
ωε

=
ωµ

|ks|
=

√
µ

ε
. (2.49)

We now consider the reflection of a TM plane-wave from the interface between two

half-spaces in the stretched coordinate system (2.30). For a TM plane wave the incident,

reflected, and transmitted fields can be written as

Hi = H0e
−iki·r, (2.50)

Hr = rTMH0e
−ikr·r, (2.51)

Ht = tTMH0e
−ikt·r, (2.52)

where H0 is a constant vector perpendicular to x̂ and rTM and tTM are the reflection and

transmission coefficients for TM polarization, respectively. Using the continuity of the

tangential components of the E and H fields, we can solve for rTM

rTM =
k1zs2zε2 − k2zs1zε1
k1zs2zε2 + k2zs1zε1

. (2.53)

The subscript 1 denotes the half-space for z < 0 and the subscript 2 denotes the half-

space for z > 0. For a TE wave, the reflection coefficient can be similarly calculated

as

rTE =
k1zs2zµ2 − k2zs1zµ1

k1zs2zµ2 + k2zs1zµ1

. (2.54)
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From the matching phase conditions, k1x = k2x and k1y = k2y and equations (2.46),

we arrive at

κ1s1x sin θ1 cosφ1 = κ2s2x sin θ2 cosφ2, (2.55)

κ1s1x sin θ1 sinφ1 = κ2s2x sin θ2 sinφ2. (2.56)

If the parameters are chosen such that ε1 = ε2, µ1 = µ2, s1x = s2x, and s1y = s2y, then

θ1 = θ2, (2.57)

φ1 = φ2, (2.58)

must be true and, consequently,

rTM = rTE = 0. (2.59)

The remarkable fact is that this remains true regardless of the incident angle of the wave, its

frequency, or our choice of s1z and s2z. As such, if we make s2z of the form s2z = s′− is′′,

where s′ and s′′ are constants and real numbers that meet the conditions s′ ≥ 1 (for

faster decay of evanescent waves) and s′′ ≥ 0 (for absorption of propagating waves), then

k2z = κ2(s′ − is′′) cos θ. As a result, the transmitted wave will decay by the exponential

factor exp(κ2s
′′z cos θ) in the z-direction.

Of course, the PML layer also cannot extend to infinity and must be truncated as well.

Usually it will be truncated with a metal place at a distance L away from the interface.

The metal plate creates a reflection of the highly attenuated wave as

|r(θ)| = e−2κ2s′′L cos θ, (2.60)

as long as κ2 is a real value. The PML layer thus must be long enough that |R(θ)| is

small and negligible. In this manner, a metal-backed PML can be used as a reflectionless

absorbing layer to simulate a material, such as vacuum, extending to infinity.

The PML layer as derived, however, is only reflectionless in continuum space. In

discretized space some reflections will always happen. This unfortunate reflection from a

PML is angle dependent and can be very high for angles of incidence approaching 90◦. In

this report, PML layers were only used for normal incidence where the reflections can be

made very small.
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2.6 COMSOL Multiphysics

The FEM software package employed in this paper is COMSOL Multiphysics version

3.5a [39]. COMSOL is a multipurpose FEM program but also comes with modules with

predefined equations and variables for a wide range of applications. It allows for the

coupling of equations between modules so that different sets of physical equations can

be solved simultaneously. COMSOL also offers a large toolbox of preprocessing and

postprocessing capabilities as well as allowing for scripting and running simulations with

MATLAB.

While the basic application modes cover a number of different applications, such as

heat transfer, acoustics, etc., more in depth modules are available to be licensed. Specif-

ically, the RF module, which deals with the characterizations of electromagnetic fields

for high-frequency applications, was invaluable in this work. The solved equations and

boundary conditions, except for the diffraction grating boundary condition in Chapter 5,

were provided by the RF module. Scripts in MATLAB were used to parameterize the

simulations as well as perform and assist in much of the post-processing.
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CHAPTER 3

RESONANT AMPLIFICATION OF EVANESCENT WAVES

AND REFLECTIONLESS ABSORPTION

The simplest geometry that can sustain SPPs, excited by a TM polarized wave, is a

single interface between a dielectric with permittivity, Re[ε1] > 0 and a material with

Re[ε2] < 0. To excite a SPP with an incident electromagnetic field requires phase match-

ing techniques. One such method to match phases between the EM field and the SPP is

to use a field that is evanescent near the interface. To that end, [40] investigates a layer of

negative permittivity material in vacuum preceded by a layer of material with 0 < ε < 1,

illustrated in Figure 3.1. Since the field is incident from vacuum, ε0 = 1, and ε0 > ε1,

the incident wave will be totally internally reflected for incident angles greater than the

critical angle, θc = sin−1(n1/n sin θ1). When a wave is totally internally reflected, it does

still penetrate into the lower permittivity material as an evanescent wave (ie. kx is imag-

inary). The evanescent field then has ky =
√
ω2/c2 − k2

x component greater than that of

the incident field in vacuum. It is then possible to excite SPPs at the interface between

materials with ε1 and ε2 with the evanescent field from the interface with ε0 and ε1.

The negative permittivity in the negative permittivity material is modelled as,

ε2 = 1−
ω2
p2

ω2 + iωγ
, (3.1)

for ω < ωp2 and γ is the absorption parameter.

The case of no absorption was studied analytically in Ref. [40]. The result was con-

firmed by using the finite element method [39] providing a benchmark test of the numerics.

The results of FEM simulations is shown, as a function of the plane wave incidence an-

gle, in Figure 3.2. The wave is almost completely reflected everywhere except at a small
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Figure 3.1: Geometry of a two layer plasma system. Here 0 < ε1 < 1 and
ε2 < 0.

range of angles. The angles at which the wave experiences extraordinary transmission

are also greater than the critical angle for total internal reflection and the wave is actually

evanescent in the medium with permittivity ε1 as well as the medium with ε2.

Expanding on the γ = 0 case, further results of transmission and reflection were cal-

culated using the finite element method [39] as well as analytically calculated using the

transmission matrix method (see Appendix). These calculations were done for a plasma

with finite dissipation. We look to understand how transmission and reflection are changed

as different levels of absorption. Absorption is accounted for by introducing the absorption

parameter, γ, in the negative permittivity material.

Absorption was calculated using the energy conservation relation A = 1 − R − T .

Results from the transmission matrix method and the finite element method agreed with

each other, proving this to be a benchmark for the numerical method. The parameters for

the simulations are ε1 = 0.3428, ω/ωp2 = 0.5019, d1 = 27c/ωp2, d2 = 3.12c/ωp2. In

our case, f = 1 was used and that means that d1 = 64.702 cm and d2 = 7.4769 cm,

approximately.

Figure 3.2 displays the numerical result for the γ = 0 case. Figures 3.3-3.8 show the
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Figure 3.2: Transmission coefficient for γ = 0 and ε1 = 0.3428, ω/ωp2 =
0.5019, d1 = 64.702 cm, d2 = 7.4769 cm

Figure 3.3: Transmission coefficient for γ = 0.1ω and ε1 = 0.3428,
ω/ωp2 = 0.5019, d1 = 64.702 cm, d2 = 7.4769 cm
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Figure 3.4: Reflection (solid line) and absorption (dashed line) coefficient
for γ = 0.1ω and ε1 = 0.3428, ω/ωp2 = 0.5019, d1 = 64.702 cm, d2 =
7.4769 cm

Figure 3.5: Transmission coefficient for γ = 0.2ω and ε1 = 0.3428,
ω/ωp2 = 0.5019, d1 = 64.702 cm, d2 = 7.4769 cm
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Figure 3.6: Reflection (solid line) and absorption (dashed line) coefficients
for γ = 0.2ω and ε1 = 0.3428, ω/ωp2 = 0.5019, d1 = 64.702 cm, d2 =
7.4769 cm

Figure 3.7: Transmission coefficient for γ = ω and ε1 = 0.3428, ω/ωp2 =
0.5019, d1 = 64.702 cm, d2 = 7.4769 cm
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Figure 3.8: Reflection (solid line) and absorption (dashed line) coefficients
for γ = ω and ε1 = 0.3428, ω/ωp2 = 0.5019, d1 = 64.702 cm, d2 = 7.4769
cm

absorption, transmission, and reflection plots for successively larger values of the damping

constant, γ. Of particular interest is that, though the transmission peak does get smaller

and more rounded with γ 6= 0, other peaks appear, as illustrated in Figure 3.3. As γ is fur-

ther increased, these peaks also then become even higher than the original peak, as Figures

3.5-3.7 demonstrate. In fact, though the angle of maximum transmission remains mostly

unchanged, at a certain value of γ, it changes to a different value that stays unchanged for

greater values of the damping constant. When γ = ω, the narrow transmission peak at

γ = 0 cannot be found. Transmission, even at its highest, is very small and when reflec-

tion does go below 1, it is absorption that absorbs most of the non-reflected energy and

very little is transmitted.

The same analysis was repeated for a system where both plasma layers are thinner.

The thicknesses were d1 = 16.68 cm and d2 = 3 cm. Figures 3.9-3.14 show the values

for absorption, reflection, and transmission, calculated with the numerical method. The

permittivities are ε1 = 0.5428 and ε2 is modelled again with Eq. (3.1) with the incident

frequency f = 1 GHz and ωp2 = 2ω.

This geometry has about 30% transmission when only the ε2 plasma layer is present.
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When the ε1 layer is added and ε2 is not absorbing, a resonant transmission peak appears.

This peak, however, is wider than in the earlier result in this chapter. As absorption is

included in the second layer, modelled as before, it is easy to see that absorption too is

resonant at the same frequencies as transmission and reflection were resonant at. As such,

while absorption lowers the values of reflection and transmission at every incident angle,

it affects transmission most at the resonant frequency.

Figure 3.9: Transmission coefficient for γ = 0 and ε1 = 0.5428, ω/ωp2 =
0.5, d1 = 16.68 cm, d2 = 3 cm

3.1 Summary

In this chapter, we have demonstrated that FEM analysis can agree with analytical results

for plasmonic behaviour of both the methods of Ref. [40] and the transmission matrices

method of Appendix A. It is shown that for γ = 0, an evanescent wave can be used to

create resonant transmission. This transmission behaviour is modified in the presence of

absorption, which greatly limits the transmission. In that case, most of the energy that is

not reflected at resonant angles is absorbed.
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Figure 3.10: Transmission coefficient for γ = 0.1ω and ε1 = 0.5428,
ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3 cm

Figure 3.11: Reflection (solid line) and absorption (dashed line) coeffi-
cients for γ = 0.1ω and ε1 = 0.5428, ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3
cm
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Figure 3.12: Transmission coefficient for γ = 0.2ω and ε1 = 0.5428,
ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3 cm

Figure 3.13: Reflection (solid line) and absorption (dashed line) coeffi-
cients for γ = 0.2ω and ε1 = 0.5428, ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3
cm
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Figure 3.14: Transmission coefficient for γ = 0.5ω and ε1 = 0.5428,
ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3 cm

Figure 3.15: Reflection (solid line) and absorption (dashed line) coeffi-
cients for γ = 0.5ω and ε1 = 0.5428, ω/ωp2 = 0.5, d1 = 16.68 cm, d2 = 3
cm
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CHAPTER 4

RESONANT TRANSMISSION THROUGH A FILM WITH

MODULATED PERMITTIVITY

The excitation of SPPs at optical frequencies is of great interest because of the array of

possible applications. This includes using the sharp resonances for applications in optical

switching [16], enhancement of fluorescent emission [41], imaging [18, 23], as well as

sensing [42]. One focus is the study of extraordinary transmission of optical frequencies

through thin metal films. Though this work was sparked by transmission through sub-

wavelength apertures [15], there is now also work about the transmission of light through

a film without apertures.

Resonant transmission through a thin metal film without apertures was studied in

Ref. [43] (as well as later in Ref. [44]). The film was assumed to have a modulated

permittivity, ε = εm(1 + g sin qy) to create phase matching between the incident electro-

magnetic wave and the surface mode wave vector. Such a modulation could be imposed in

the manufacturing process. It is also possible to induce such modulations with an external

source of powerful radiation that can induce surface or bulk modification via, for example,

Kerr nonlinearity [45].

In Ref. [43], the absorption and transmission of a normally incident electromagnetic

wave was calculated analytically and the results were presented graphically. To model the

behaviour of the silver film, a Drude model was utilized with the form,

εm = εb −
ω2
p

ω(ω + iγ)
. (4.1)

The values used were thickness d = 0.12µm, spatial period of modulation a = 0.5µm,

modulation parameter g = 0.2, interband transition contribution εb = 5, plasma frequency
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Figure 4.1: Geometry of a periodically modulated film of thickness d.

Figure 4.2: Transmittance versus wavelength of incident plane wave for a
modulated silver film: γ = 0

41



Figure 4.3: Transmittance for a modulated silver film: γ = 0.5ωτ

Figure 4.4: Transmittance versus wavelength of incident plane wave for a
modulated silver film: γ = ωτ .
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Figure 4.5: Transmittance for a modulated silver film: γ = 1.5ωτ

Figure 4.6: Absorption versus wavelength of incident plane wave for a
modulated silver film: γ = 0.5ωτ .
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Figure 4.7: Absorption for a modulated silver film: γ = ωτ

Figure 4.8: Absorption versus wavelength of incident plane wave for a
modulated silver film: γ = 1.5ωτ
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ωp = 9.1 eV, and damping coefficient γ = ωτ = 0.021 eV, (where ωτ is the relaxation

frequency). Though the transmittance is < 0.02 % in the absence of modulation (inside

the silver layer, the wave decays as e−λx), the transmission becomes strongly enhanced

when the modulation is introduced.

We have solved for various parameters of γ in units of ωτ using finite element analysis.

Figures 4.2-4.8 shows the transmission and absorption coefficients as a function of the

wavelength of the incident electromagnetic wave. Included as well is the γ = ωτ case

covered by the analytical analysis of Ref. [43]. We note that though Ref. [43] has come

under some criticism for the validity of approximations that was made by the authors

[44], for these parameters the results of Ref. [43] agreed with our numerical results. It

is important to note that analytical theory of Ref. [43] is based on the truncation of an

infinite sequence of side-bands to a single pair of the first side-band (see more details in

Chapter 5). Our FEM simulations are free from this assumption and take into account all

harmonics. Our results show that the role of higher harmonics, which were neglected in

Ref. [43], is insignificant and, as a result, results of the approximate analytical theory are

well reproduced by exact numerical simulations.

Figure 4.9: Profile of the normalized |H0|2 harmonic of the left transmis-
sion peak along the x-axis. The metal layer is located between x = 0 and
x = d.

45



Figure 4.10: Profile of the normalized |H1|2 harmonic of the left transmis-
sion peak along the x-axis. The metal layer is located between x = 0 and
x = d.

Figure 4.11: Profile of the normalized sum
8∑

n=2

|Hn|2 harmonics of the left

transmission peak along the x-axis. The metal layer is located between
x = 0 and x = d.
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Figure 4.12: Profile of the normalized |H0|2 harmonic of the right trans-
mission peak along the x-axis. The metal layer is located between x = 0
and x = d.

Figure 4.13: Profile of the normalized |H1|2 harmonic of the right trans-
mission peak along the x-axis. The metal layer is located between x = 0
and x = d.
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Figure 4.14: Profile of the normalized sum of the
8∑

n=2

|Hn|2 harmonics of

the right transmission peak along the x-axis. The metal layer is located
between x = 0 and x = d.

4.1 Summary

Here we have compared the analytical solution of Ref. [43] with numerical results of the

same problem. The analytical solution makes the assumption that the fundamental and

first harmonics are sufficient to describe the field. As we have shown, for the sets of

parameters used by Ref. [43], this assumption is true and we find that the analytical and

numerical solutions agree.
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CHAPTER 5

RESONANT AMPLIFICATION OF EVANESCENT WAVES

WITH A DIFFRACTION GRATING

As it was noted in Chapter 1, the phenomenon of anomalously large transmission of

electromagnetic waves through media with negative dielectric permittivity, such as a dense

plasma, has attracted great interest in the last decade [46]. It was observed experimentally

that sub-wavelength features in an electrodynamically opaque material can dramatically

enhance transmission through the material [15]. Generally, the enhancement of the trans-

mission is thought to be related to the resonant excitation of evanescent waves in the near

field of the sub-wavelength structure. Such resonant modes exist both for a single struc-

ture, such as a sub-wavelength aperture, as well as for periodic arrays of defects such as

holes or slits. The resonances may be related to the excitation of surface electromagnetic

modes (polaritons) existing at the interface of two media with opposite signs of dielectric

permittivities or with the excitation of cavity or waveguide modes of the individual de-

fect. It is important to note that both types of resonances have been invoked to explain

extraordinary transmission in various geometries [47–58]. The resonant modes in general

have complicated structure and the exact mechanism can be different depending on the

geometry [53, 59].

Most clearly the effects of surface wave [60, 61] excitation present themselves in ex-

traordinary transmission through solid metal films. As it was discussed in Chapter 1,

surface waves existing on the boundary of a metal film and vacuum are superluminal and

therefore cannot be matched with propagating electromagnetic waves. One way matching

between the incident EM wave and the surface charges can be achieved is via the periodic

modulation of the film parameters, such as the dielectric constant, or corrugation of the
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film thickness. Such modulation shifts the wave vector of the incoming wave to that of

the surface wave resulting in resonance. Analytical models of strong enhancement of the

transmission through the film with modulated density were presented in Refs. [43,62–64].

These effects were experimentally observed with prefabricated [65] and photo-induced

diffraction grating [62, 63] modulations. The crucial role of surface wave resonances has

been established for a number of situations, however, there are still ongoing discussions

about the role of other mechanisms [66–68] in extraordinary transmission.

In this chapter, we present a simple analytical model describing the role of surface

modes in the transmission of electromagnetic waves through a flat film with negative di-

electric permittivity and show the results of finite element simulations for the same geom-

etry.

It was shown in Ref. [69] that extraordinary transmission through a dense film is pos-

sible in a configuration where two sub-wavelength diffraction gratings are placed on both

sides of the film. Matching of the localized surface mode with the propagating wave in

vacuum is achieved via the wave vector shift due to the diffraction grating. The analytical

model presented in Ref. [70] demonstrates that extraordinary transmission also exist with

a single diffraction grating placed near the dense layer film.

As it was mentioned earlier, a normally incident wave cannot excite a SPP resonance

and so we have to find a method to match the phases between the incident and surface

waves. The diffraction grating allows the excitation of the surface wave even for a nor-

mally incidence wave. Here we present the results of our FEM analysis of the geometry

studied by Ref. [70]. The analytical solutions mentioned above consider only the funda-

mental harmonic and the first side-band harmonics. It is then the intention here not only

to verify the accuracy of the analytical solution but also to investigate the role played by

the higher harmonics, if any.

5.1 Analytical Model

Consider a TM polarized wave incident on a slab with permittivity εp (where εp < 0)

preceded by a thin diffraction grating placed a distance a from the negative permittivity
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slab (metal or plasma) as shown in Figure 5.1. The geometry is composed of 4 regions.

The region of x < 0 will be termed region 1, 0 < x < a will be termed region 2, and

x > d will be region 3. The region of a < x < d, where the plasma is situation, will be

referred to as region P. The components of the electric field are E = (Ex, Ey, 0) and of the

magnetic field are H = (0, 0, Hz). In this geometry, Maxwell’s equations simplify to

ε
∂

∂x

(
1

ε

∂Hz

∂x

)
− k2

yHz +
ω2

c2
εHz +

ω2

c2
hg(εg + α cos(qy))δ(x− xg)Hz = 0. (5.1)

Figure 5.1: Geometry of the problem. A plasma (bounded by the solid
lines) with permittivity εp is situated between two half-spaces of air ε = 1
with an infinitely thin diffraction grating a distance a in front of the plasma.

Regions 1, 2, and 3 have vacuum permittivity ε0. Region P has permittivity ε and has

thickness l (a + l = d). For the diffraction grating interface, we will use the model as

suggested in Ref. [69]. The diffraction grating is located at x = 0 and its wave vector is

q, while α is a modulation parameter. From Eq. (5.1) one obtains the following boundary

conditions at the diffraction grating

[Hz]
+
− = 0 and [

dHz

dx
]+− = −kα

2
(eiqy + e−iqy)Hz|x=0. (5.2)

It is easy to see that Eq. (5.2) leads to a shift of the ky wave vector and coupling of

side-band harmonics. In the general case, there are multiple harmonics. Considering only

the fundamental and the first side-band harmonics, the field can be written out in the form
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H(x, y, t) =
[
H0(x) expikyy +H+(x)ei(ky+q)y +H−(x)ei(ky−q)y

]
eiωt. (5.3)

With this, it is possible to find a closed form solution. Higher order harmonics were also

neglected in Ref. [43] and [69]. Eq. (5.2) then gives the following boundary conditions,[
dH0

dx

]xg+δ

xg−δ
= − kgH0|x=xg −

kα
2

(H+ +H−)|x=xg , (5.4)[
dH±

dx

]xg+δ

xg−δ
= − kgH±|x=xg −

kα
2
H0|x=xg , (5.5)

where kg = ω2

c2
εghg and kα = ω2

c2
αhg. At the plasma-vacuum interface the derivative of the

magnetic field is discontinuous and the boundary condition is,[
1

ε

dHz

dx

]
= 0. (5.6)

The magnetic field is still continuous at all interfaces, [Hz] = 0. A convenient way to write

and solve for this is using impedances. Considerable simplifications of the expressions

occur because in the impedance formulation two matching conditions reduces to a single

one. The wave impedance is defined as,

Z = −Ey
Hz

= − i

ωε0εr

1

Hz

∂Hz

∂x
. (5.7)

In the general case, to the left of the plasma and grating, there are incident and reflected

plane waves and the magnetic field is of the form

Hx = A(eikx + Γe−ikx). (5.8)

The current impedance in the region is

Z(x) = κ
exp(ikx)− Γ exp(−ikx)

exp(ikx) + Γ exp(−ikx)
, (5.9)

where κ is the characteristic impedance in this region, κ = k
ωε0εr

. Equation (5.9) defines

the transformation of the impedances for a finite interval of a length a as,

Z(a) = κ
Z(0) + κ tanh(ika)

κ+ Z(0) tanh(ika)
, (5.10)

Z(0) = κ
Z(a)− κ tanh(ika)

κ− Z(a) tanh(ika)
. (5.11)

These expressions also work for evanescent waves with the replacement k → iγ. In this

case, the characteristic impedance, κ, will be imaginary.
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5.1.1 Vacuum Region 1

In the left outmost vacuum region, we have the incident and reflected wave,

H0
1 = A0

1(exp(ikx) + Γ0
1 exp(−ikx)), (5.12)

where k is the wave vector of the propagating waves in vacuum and k2 = k2
0 − k2

y > 0.

The first harmonics are evanescent in a vacuum region. In region 1, they exponentially

decay to the left and have the form

H±1 = A±1 exp(γ±v x), (5.13)

where γ±2
v = (ky + q)2 − k2

0 , γ±v > 0. The amplitude of the reflected wave, Γ0
1, is

determined by only the values of the characteristic impedance in the medium and the load

impedance at the diffraction grating, where the wave is being reflected from,

Γ0
1 =

κv − Z0
1

κv + Z0
1

, (5.14)

where κv ≡ k/ω/ε0 is the characteristic impedance of the vacuum for the principal com-

ponent. The first harmonics have impedance

Z±0 = −iγ
±
v

ωε0
≡ −κ±v . (5.15)

5.1.2 Vacuum Region 2

In the second vacuum region, between the diffraction grating and the plasma layer, the

fields of the principle component and side-bands are defined, respectively, as

H0
2 = A0

2(exp(ikx) + Γ0
2 exp(−ikx)), (5.16)

and

H±2 = A±2 (exp(−γ±v x) + Γ±2 exp(γ±v x)). (5.17)

At the diffraction grating, Eq. (5.4) and Eq. (5.5) give the boundary condition

Z0
1 = Z0

2 +
k2
α

2ω2ε20

1

Z+
2 − Z+

1

. (5.18)
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At the right boundary of region 2, where vacuum meets plasma, the impedances are con-

tinuous,

Z±2 (a) = Z±p (0), (5.19)

Z0
2(a) = Z0

p(0). (5.20)

The relations between the impedances of the principle component and the sidebands at the

left and right of region two are

Z0
2(a) = κ0

v

Z0
2(0) + iκ0

v tan(ka)

κ0
v + iZ0

2(0) tan(ka)
, (5.21)

Z+
2 (a) = κ+

v

Z+
2 (0)− iκ+

v tanh(γ+
v a)

κ+
v − iZ+

2 (0) tanh(γ+
v a)

. (5.22)

5.1.3 Plasma Region

Inside the plasma, the principle components and side-band components are evanescent,

H0
p = A0

p(exp(−γpx) + Γ0
p exp(γpx)), (5.23)

H±p = A±p (exp(−γ±p x) + Γ±p exp(γ±p x)), (5.24)

where γ2
p = k2

y − k2
0εp > 0, γ±2

p = (k2
y + q)2 − k2

0εp > 0. The relations between

the impedances of the principle component and the sidebands at the left and right of the

plasma region are

Z0
p(0) = κ0

p

Z0
p(l) + κ0

p tanh(γpl)

κ0
p + Z0

p(l) tanh(γpl)
, (5.25)

Z+
p (0) = κ+

p

Z+
p (l) + κ+

p tanh(γ+
p l)

κ+
p + Z+

p (l) tanh(γ+
p l)

, (5.26)

where κ±p = iγ±p /ωε0εp, κ
0
p = iγp/ωε0εp are characteristic impedances in the plasma

region. At the right of the plasma boundary, the impedance is matched to the impedances

in vacuum region 3 through

Z0
p(l) = Z0

3 , (5.27)
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Z±p (l) = Z±3 . (5.28)

5.1.4 Vacuum Region 3

In the last vacuum region, there is only a transmitted propagating wave and the side-bands

decay exponentially as z →∞,

H0
3 = A0

p exp(ikz), (5.29)

H±3 = A±p exp(−γ±v z). (5.30)

The impedances in this region are simply the characteristic impedance of vacuum,

Z0
3 =

k

ωε0
= κv, (5.31)

Z±3 =
iγ±v
ωε0

= κ±v . (5.32)

Starting with the impedance of vacuum, Eq. (5.31) and (5.32), it is possible to work back-

wards through the geometry, calculating the impedances in each region using Eq. (5.25)-

(5.28) and (5.19)-(5.22) with the boundary condition (5.18). The transmission coefficient

T = 1− |Γ0
1|

2 is determined from Eq. (5.14).

5.1.5 Surface Wave Resonance

For a sufficiently thick negative permittivity material, γpl ≥ 1, the transmittivity of a

single film is low and most of the radiation is reflected. The transmission can be strongly

enhanced by adjusting the parameters of the diffraction grating and the distance between

the grating and the film. Such an example of strong enhancement of the transmission

is shown in Figure 5.2 for the following parameters: thickness of the film, l = 20 nm,

the wavelength of the incident radiation, λ = 630 nm, and the dielectric permittivity of

the film, εp = −9. The parameters of the diffraction grating were chosen as follows:

α = 5.7366, εg = 0 and it was placed a distance a = 71.89 nm from the film. The
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transmission coefficient is plotted as a function of the wave vector of the grating. It was

found that there are two resonant values: q1 = 107 1/m and q2 = 1.52 · 107 1/m.

Figure 5.2: Analytical calculation of the reflection coefficient as a function
of q, the periodic wave vector of the diffraction grating, for a metal film.

It can be shown analytically that the resonances in the transmission coefficient corre-

spond to surface wave excitation. Let us consider the conditions for absolute transmission

when Γ0
1 = 0 and Z0

1 = κv. The impedances of the decaying sidebands in the vacuum

region 1 are Z+
1 = Z−1 = −κ+

v . Then the matching condition at the diffraction grating

(5.2) takes the form

κv = Z0
2 (0) +

k2
α

2ω2ε2
0

1

Z+
2 (0) + κ+

v

. (5.33)

One can see that Z+
2 (0) and κ+

v are imaginary and Z0
2 (0) is generally complex. The

role of the last term in (5.33) is to cancel the imaginary part of the Z0
2 (0):

iIm
(
Z0

2 (0)
)

+
k2
α

2ω2ε2
0

1

Z+
2 (0) + κ+

v

= 0. (5.34)

The second condition is that the real part of Z0
2 (0) matches to κv :

Re
(
Z0

2 (0)
)

= κv. (5.35)
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Eq. (5.35) and Eq. (5.34) have to be satisfied simultaneously to provide absolute trans-

mission, T = 1.

After some algebra, Eq. (5.35) takes the form

[
1 + β2

] [
L2
p + β2L2

vL
2
p + 2βLvLp

]
= 0, (5.36)

or equivalently

(1 + βLvLp)
2 = 1− L2

p, (5.37)

where Lv ≡ tan (ka), Lp = tanh (γpl) , and κp/κv = iβ (β is a real number). Eq. (5.37)

has two roots so that for a given value of the film permittivity, εp, and fixed Lp one finds

two values of Lv which defines the distance between the plasma slab and the diffraction

grating. For large thickness of the plasma slab, Lp → 0 and Eq. (5.37) gives Lv ' −1/β.

Note that the condition Eq. (5.37) does not depend on the diffraction grating parameters.

For small α, the resonance condition Eq. (5.34) becomes

Z+
2 (0) + κ+

v = 0.. (5.38)

After some algebra, it takes the form[
1 + L+

v

] [
2κ+

v k
+
p + k+2

v L+
p + k+2

p L+
p

]
= 0, (5.39)

and the resonant condition is

2
κ+
p

κ+
v

+

(
κ+
p

κ+
v

)2

L+
p + L+

p = 0 (5.40)

where L+
p = tanh

(
γ+
p l
)
, L+

v ≡ tanh (γ+
v a) . It is easy to see that this is the exact dis-

persion equation for the surface wave on a metal layer with a finite thickness l. There are

two roots corresponding to the symmetric and antisymmetric bonding of the surface waves

localized on the opposite boundaries of the film.

For large thickness L+
p → 1 and (5.40) becomes

κ+
v + κ+

p = 0, (5.41)

giving the dispersion equation for a surface mode at the interface of vacuum and semi-

infinite layer with εp < 0. Two roots of (5.40) merge at

q2 = k2
0

εp
εp + 1

. (5.42)
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5.2 Numerical Results

The first numerical results we’d like to consider are for an optical frequency plane wave in-

cident on a metal film with parameters the same as the result in Figure 5.2. The wavelength

of the plane wave is λ = 630 nm, the permittivity of the metal is εp = −9, the metal’s

thickness is l = 20 nm, and the distance between the metal and the diffraction grating

is a = 71.89 nm, Other parameters were set to α = 5.7366, εg = 0, and hg = 10−8.

The numerical and analytical results agree with each other. The reason for this is shown

in Figures 5.4 and 5.5. These two figures show the contributions to the field by the fun-

damental, first, and the total contribution of the second through eight harmonics. As is

evident, most of the field contribution is from the fundamental and first harmonics while

the higher harmonics are relatively quite small. This may be because of the small value of

the product hg · α that is the amplitude of the nonlinear term in Eq. (5.1).

Figure 5.3: Numerical calculation of the reflection coefficient as a function
of q, the periodic wave vector of the diffraction grating, for a metal film.

We’d like to compare these results to a different set of parameters that use a higher

value of hg · α. The parameters used were a = 0.0682 m, l = 0.02 m, εp = −35, εg = 0.

As a first look, setting α = 2, Figures 5.6 and 5.7 show visually how closer the numerical

calculated resonances are to the analytically calculated resonances for a smaller value of
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Figure 5.4: Profile of the magnitude of the normalized harmonics |H0|2

(solid line), |H1|2 (dashed line),
8∑

n=2

|Hn|2 (dotted line) for q1

Figure 5.5: Profile of the magnitude of the normalized harmonics |H0|2

(solid line), |H1|2 (dashed line),
8∑

n=2

|Hn|2 (dotted line) for q2
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hg to confirm the role of the product hg · α.

Figure 5.6: Reflection as a function of the modulated wave vector, q for
α = 2 and hg = 0.025. The solid line shows the analytical solution and the
dashed line shows the numerical solution.

Setting hg = 0.05, Figures 5.8, 5.10, and 5.12 show the analytical results for α = 2,

α = 4, and α = 6 respectively. Figures 5.9, 5.11, and 5.13 show the numerical results for

α = 2, α = 4, and α = 6. The analytical method takes into account only the fundamental

and first harmonics generated by the diffraction grating. For the numerical solution that is

not the case. There are similarities for the two sets of figures. For each value of α, there

are two peaks. The left peak (the peak at a lower value of resonant q), q1, doesn’t change

in position much as α changes. In fact, that solution seems to converge to one value of

resonant q as α is increased. The other solution, q2, the right peaks at the higher resonant

value of q, are wider than the lower value of q peaks and, rather than converge on a value

of q, they seem to diverge faster and faster from each other.

There are also differences between the values of resonant q, which, while showing sim-

ilar behaviour as α changes, do not actually correspond to each other. As illustrated in Fig-

ure 5.20, the q1 analytical and numerical results agree well but there is a wider and wider

divergence between the analytical and numerical calculations of q2. This can explained by

the role played by harmonics higher than the fundamental first. Figures 5.14-5.26 show
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Figure 5.7: Reflection as a function of the modulated wave vector, q for
α = 2 and hg = 0.05. The solid line shows the analytical solution and the
dashed line shows the numerical solution.

Figure 5.8: Analytical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 2
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Figure 5.9: Numerical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 2

Figure 5.10: Analytical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 4
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Figure 5.11: Numerical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 4

Figure 5.12: Analytical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 6
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Figure 5.13: Numerical calculation of reflection coefficient as a function of
q, the periodic wave vector of the diffraction grating for α = 6

Figure 5.14: The normalized harmonic |H0|2 for resonance at q = q1 and
α = 2.
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Figure 5.15: The normalized harmonic |H0|2 for resonance at q = q1 and
α = 4.

Figure 5.16: The normalized harmonic |H0|2 for resonance at q = q1 and
α = 6.
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Figure 5.17: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q1 for α = 2

Figure 5.18: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q1 for α = 4
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Figure 5.19: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q1 for α = 6

the magnitude of the normalized fundamental harmonic, |H0|2, the magnitude of the first

harmonic, |H0|2, as well as the total contribution of the 2nd through 8th harmonics, in this

case calculated as
8∑

n=2

|Hn|2.

As α is increased, there is an increasing disconnect between the analytically calculated

values of resonant q and the numerically calculated values of resonant q. As Figures 5.17-

5.19, for q1, and 5.24-5.26, for q2, clearly illustrate, this is because the higher harmonics

begin to play a larger and larger role in determining the field in the area around the diffrac-

tion grating. Even though the higher harmonics are highly localized at that grating, much

more than the first harmonic, they grow in influence as α is increased. Figures 5.27-5.32

display that further. These figures show how the field at the grating is distributed among

the first 8 harmonics. Again, as α is increased, the magnitude of the higher harmonics is

increased. In the case of the q1 resonance for α = 6, the field’s largest components are the

2nd and 3rd harmonics, rather than the fundamental and first.
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Figure 5.20: Analytical and numerical results for resonant q as a function of
the modulation parameter, α. Solid lines show analytical results and circles
show numerical results

Figure 5.21: The normalized harmonic |H0|2 for resonance at q = q2 and
α = 2.
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Figure 5.22: The normalized harmonic |H0|2 for resonance at q = q2 and
α = 4.

Figure 5.23: The normalized harmonic |H0|2 for resonance at q = q2 and
α = 6.
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Figure 5.24: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q2 for α = 2

Figure 5.25: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q2 for α = 4
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Figure 5.26: The normalized harmonic |H1|2 (solid line) and the normal-

ized sum
8∑

n=2

|Hn|2 (dashed line) for resonance q = q2 for α = 6

Figure 5.27: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q1 and α = 2.

71



Figure 5.28: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q2 and α = 2.

Figure 5.29: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q1 and α = 4.
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Figure 5.30: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q2 and α = 4.

Figure 5.31: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q1 and α = 6.
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Figure 5.32: The normalized magnitude of the harmonics, |Hn|2 at the
diffraction grating at x = 0 at q = q2 and α = 6.

5.3 Summary

This chapter has examined further the role of higher hamonics in the solution of the fields.

Analytical solutions often only account for the fundamental and first harmonics. We have

shown that if the coefficient of the nonlinear term in the differential equation, Eq. (5.1), is

small enough, then the harmonics are not large and the analytical and numerical solutions

agree. If the coefficient of the nonlinear term is made larger, however, the solutions do

diverge as the harmonics higher than the first grow in size in comparison to the first and

fundamental harmonics.
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CHAPTER 6

PLASMA LAYER AS A DIFFRACTION GRATING

It was shown in Chapter 4 that external modulation of the permittivity of an optically

opaque layer creates conditions that allow for the excitation of surface waves and the

resonant amplification of evanescent modes, resulting in anomalous transparency. In this

chapter, we investigate whether partial modulation would allow the same effect. That is

we consider a dense plasma slab consisting of two layers: one of uniform density and,

next to it, another layer that has periodically modulated density, as illustrated in Figure

6.1. Such a modulation can be achieved by applying a strong electric or magnetic field or

perhaps by applying other external forces, e.g. with the launching of ultrasound waves.

We assume that the density modulation causes a modulation of the permittivity in the

form ε2 = εm(1 + g sin qy), q = 2π/a. The uniform layer has permittivity in the form

ε1 = 1 − f 2
p2/f

2 with fp2 = 2.3 GHz. The spacial period of the modulation is a = 0.15

m. FEM simulations were performed with these parameters. Figure 6.2 shows the effect

that adding modulation to part of the plasma has on the transmission. It is interesting to

note that there are two resonances, one corresponding to full transmission and the other

one to full reflection. As such, not only can the wave be fully transmitted but it can also

be fully reflected from the plasma depending on the incident frequency. Figures 6.3 and

6.4 show that the resonant frequencies of these peaks in transmission and reflection can

be adjusted by changing some parts of the geometry. Specifically, Figure 6.3 shows the

effect that changing the thickness of the second layer has on the transmission. In this case,

increasing the thickness of the second layer increases the resonant frequencies. Figure 6.4

shows the effect that changing the permittivity coefficient, εm, of the modulated layer has

on the transmission. As εm is increased, the resonant frequencies are increased as well.
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Figure 6.1: Geometry of two layers of plasma, one of which has a periodi-
cally modulated permittivity.

Figure 6.2: Transmission coefficients for two layers of plasma. The dashed
line is with g = 0 and the solid line is with g = 0.2. Other parameters are
fp = 2.3 GHz, a = 0.15 m, εm = ε1, d1 = 0.4 cm, d2 = 2 cm
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Figure 6.3: Transmission with parameters fp = 2.3 GHz, a = 0.15 m,
εm = ε1, d2 = 2 cm, d1 = 0.1 cm (solid line), 0.2 cm (dashed line), 0.4 cm
(dotted line)

Figure 6.4: Transmission with parameters fp = 2.3 GHz, a = 0.15 m,
d1 = 2 cm, d2 = 0.1 cm, εm = ε1 (solid line), 2ε1 (dashed line), 3ε1 (dotted
line), 10ε1 (dotted and dashed line)
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6.1 Summary

In this chapter, we investigated resonant transmission through a partly modulated plasma

layer. As we are not aware of an analytical solution, we use a numerical method to cal-

culate transmission through the system. We found that by modulating the permittivity of

even part of the plasma, complete reflection and transmission is realized at resonant an-

gles. We also show that by tweaking the parameters, the resonances can also be tailored

to different frequencies.
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CHAPTER 7

ENHANCED TRANSMISSION WITH METAL GRID

In Chapter 6, we investigated how transmission could be enabled through a plasma

layer by modulating part of the plasma itself. The modulated part of the plasma served

to excited the SPPs that would enable resonant transmission. In this chapter, as an alter-

native, we will consider placing a square diffraction grating made of a metal with finite

conductivity and finite thickness beside the plasma which we wish to enhance transmission

through. This geometry is illustrated in Figure 7.1.

The metal grating alternates between metal permittivity, εm, and air permittivity, ε0. εm

is not negative, unlike most materials discussed in this work. At radio frequencies, metals

are mostly absorptive and their permittivities are mostly imaginary. Here εm is modelled

as εm = 1− jσ/ωε0, where σ = 5.998 · 107 S/m. The periodicity of the grating is a = 15

cm. The plasma permittivity is modelled as ε1 = 1 − f 2
p/f

2 with fp = 2.3 GHz and has

thickness d1 = 8 cm.

A transmission plot for different values of grating thickness, d2, is shown in Figure

7.2. It seems that for any values of d2, there is a minimum frequency for resonance. From

the figure, it looks like there are one or two main resonances and a handful of smaller ones

that either increase transmission or suppress it. While there are a number of peaks that

reach T = 0, there are none that reach T = 1 and transmission seems to be magnified by

a factor of two or three at best.

The behaviour over a wider frequency range is illustrated in Figure 7.3. The transmis-

sion is shown for d2 = 0.5 cm and is over a wider frequency range, starting from 0 GHz to

near the plasma frequency, fp. Again, there are no resonance peaks below a set frequency.

There are some transmission peaks as well as reflection peaks. As the incident frequency,

f , approaches the plasma frequency, fp, the transmission smooths out and acts more like
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it would without the plasma or if the plasma was a dielectric.

Figure 7.4 shows the transmission for a thinner plasma, one with only d1 = 0.02 cm

with all other parameters same as before. For a thinner plasma, the transmission is of

course higher (in this case it ranges from T = 0.4− 0.6 over the frequency range without

the diffraction grating). With the diffraction grating, transmission is enhanced over some

wider frequency resonances. Still, the transmission does not surpass T = 0.8 but complete

reflection is still possible at a number of frequencies.

In both cases, very little power is absorbed (less than 0.1 %). The fields are localized

to inside the pockets of air between the metal in the grating where there is no absorption,

as opposed to the metal areas that have very high absorption.

Figure 7.1: Geometry of a plasma layer with permittivity ε1 = 1 − f 2
p/f

2

and thickness d1. To the right of it is a square diffraction grating that alter-
nates permittivity εm = 1 − iσ/ωε0 and the free space permittivity ε0. The
grating has periodicity a and thickness d2.

We have shown that a metallic square grating of finite width enhances transmission and

reflection through a plasma layer. We found many more resonances than in the previous

structures that used only sinusoidal modulation. In the system of this chapter, completele

tranmission is not attained for any angle. Despite that, no matter the opaqueness of the

plasma layer, resonances which completely reflected the incident wave did exist.
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Figure 7.2: Transmission through the plasma and diffraction grating con-
figuration for different thicknesses of the diffraction grating, d2. The dotted
line has d2 = 0 cm, the solid line has d2 = 0.5 cm, and the dashed line has
d2 = 2 cm

Figure 7.3: Transmission through the plasma and diffraction grating config-
uration over a wider range of frequencies. Solid line is with the diffraction
grating and dashed line is without the diffraction grating.
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Figure 7.4: Transmission through a thinner plasma and a thinner diffraction
grating configuration. Solid line is with the diffraction grating and dashed
line is without the diffraction grating.
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CHAPTER 8

SUMMARY

This thesis has presented investigations of the phenomena of resonant excitation, am-

plification of surface modes, and associated resonant transmission for several different

geometries. We have analyzed resonant transmission in multi-layer structures which in-

clude layers of opaque materials with negative dielectric permittivity, ε < 0 as well as the

resonant transmission facilitated by a diffraction grating.

It was shown that resonant tunnelling occurs near the resonant eigenmodes associated

with surface modes. In the configuration analyzed in Chapter 2, the surface eigenmodes

are excited by the incident wave and required matching is achieved due to the transition

layer with 0 < ε < 1. This configuration requires a finite incidence angle.

A diffraction grating placed in front of a dense plasma region induces a finite wave

vector along the interface so the SPP excitation is possible for normal incidence.

The periodic modulation of plasma density may play a role of the diffraction grating

as in Chapter 4. Our numerical simulations have confirmed the resonant transmission that

was analytically investigated in earlier work. It was found that numerical and analytical

results are in good agreement in this case. The analytical theory presented in Ref. [43]

is based on truncation of higher harmonics so that only the first side-band is included.

The amplitude of the higher harmonics is proportional to the grating amplitude which is

a measure of the effective nonlinearity of the system which can be characterized by the

value of the αhg parameter, where α is modulation parameter. The approximation of weak

nonlinearity works well for considered parameters and, as it was shown in Chapter 4, is

consistent with the low amplitude of higher harmonics.

In Chapter 5, the excitation of SPP by ideal grating in front of the plasma region, was

considered. Earlier work has considered the SPP in the system of two gratings [69]. Re-
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cently, an analytical theory was developed that shows that a single grating is sufficient for

resonant excitation of SPP and resonant transmission [70]. The elements of this theory

are presented in Chapter 5. We have performed numerical simulations of this geometry

and confirmed resonant transmission. Further we investigated the role of higher harmon-

ics in this geometry. Our analysis demonstrates that for larger values of the modulation

parameter α, the amplitude of higher harmonics increases and that leads to a deviation of

numerical results from analytical theory: the location of resonant frequencies shifts for

larger α. The development of the analytical theory which includes higher harmonics may

be a subject of further studies.

Chapter 6 investigates a hybrid geometry where only a partial depth of plasma layer is

modulated. Resonant transmission was shown to occur in this geometry as well.

In Chapter 7, we have attempted the investigation of SPP excitation mediated by the

realistic diffraction grating made of copper for radio frequencies. Contrary to the case of

high (optical) frequencies where the dense region can be well approximated by negative

permittivity (with some dissipation), metal at RF frequencies is a good conductor with a

large imaginary permittivity. Our results in Chapter 7 indicate that the transmission may

be resonantly enhanced but not as dramatically for thick layers. Multiple resonances are

detected in this case.

Control of the dielectric permittivity or, in particular, control of the periodic modula-

tions in the dielectric permittivity can be achieved with an external electric field applied

to semiconductor materials and/or with another laser beam utilizing the nonlinear polar-

ization in strong fields. For plasmas in the RF frequency range, control may be possible

by an external magnetic field. The resonant properties of the structures studied in this

thesis can be of interest for various plasmonic applications. It is worth noting that the

leaky mode regimes (or equivalently, the resonant transmission regimes) are characterized

by the strong enhancement of the wave amplitude inside the structure. The modes in the

evanescent regimes can be realized at dimensions below half a wavelength which possibly

can be used as a laser cavity resonator.
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APPENDIX A

TRANSMISSION MATRICES

Figure A.1: Reflection and refraction of a TM wave (p wave)

For transmission and reflection problems through layered media, transmission matrices
provide a systematic way of calculating reflection and transmission coefficients. As layers
repeat themselves, so do the boundary conditions and a matrix formulation seems natural.
In Fig. A.1, we consider a transverse magnetic (TM) wave at an interface. The boundary
conditions impose the continuity of Ey and Hz:

(E1+ + E1−) cos θ1 = (E2+ + E2−) cos θ2 (A.1a)√
ε1
µ1

(E1+ − E1−) =

√
ε2
µ2

(E2+ − E2−) (A.1b)

These equations can be rewritten, in concise matrix form, as:

D1

(
E1+

E1−

)
= D2

(
E2+

E2−

)
(A.2)

where

Di =

(
cos θi cos θi√

εi
µi
−
√

εi
µi

)
(A.3)

and are called the dynamical matrices of the p wave for medium i (i = 1,2). The transmis-
sion matrix M , the matrix that links the amplitudes of the waves on the two sides of the
interface, comes about as,(

E1+

E1−

)
= D−1

1 D2

(
E2+

E2−

)
= M

(
E2+

E2−

)
. (A.4)
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The propagation matrix is written as,

Pl =

(
eiklxd 0

0 e−iklxd

)
(A.5)

where klx = knl sin θl (k = ω/c) and d is the thickness of layer l. Pl accounts for the
phase shift acquired while the wave propagates through the layer. The general expression
for a transmission matrix for a system with s layers is,(

E1+

E1−

)
=

(
M11 M12

M21 M22

)(
E ′s+
E ′s−

)(
M11 M12

M21 M22

)
= D−1

0 (
s∏
l=1

DlPlD
−1
l )Ds (A.6)

It is the matrix M that gives the relation between the incident, reflected, and transmitted
waves. Knowing that, we can calculate the reflection and transmission coefficients from
the elements of the matrix M [71],

r =
M21

M11

(A.7a)

t =
1

M11

. (A.7b)
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