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ABSTRACT 

The availability of cost-effective high throughput screening assays combined with an 

enhanced understanding of oncogenesis has driven the development of more potent, specific, 

and less toxic anti-cancer agents.  At the forefront of these advances are immunoglobulin 

molecules and their fragments.  However, difficulties in producing antibodies in sufficient 

quantity and quality for commercial application have driven the development of alternative 

systems that can produce antibodies efficiently and cost-effectively.  This thesis focuses on the 

engineering of an antibody fragment referred to as a single chain variable fragment (scFv), 

which consists of antibody light and heavy chain variable domains fused together by a peptide 

linker. 

Although the use of scFvs circumvents many of the issue of full-length antibody 

production, they still possess their own unique set of difficulties, including stability.  In this 

thesis, we explored the following strategies to increase scFv stability.  First, we increased the 

number of linkers used to join the variable light and heavy domains.  We constructed two linear 

and two cyclic permutated scFvs that contained additional peptide linkers.  Two linear 

permutated scFvs, named Model 1 and Model 3, showed increased stability with calculated 

melting temperatures (Tms) exceeding that of the unpermutated scFv.  The two cyclic scFvs 

were less stable with Tms less than that of the unpermutated scFv.  Second, we mutated light 

and heavy variable domains by introducing prolines or mutating glycine to alanine in the 

variable domain framework regions.  Sites for proline mutations and glycine to alanine 

mutations were identified and scFvs containing the mutations were purified and their thermal 

stability tested.  Unfortunately, there were no discernible differences between purified scFv 

mutants and the control scFv.  Third, we designed a new selection/screening strategy using 

phage display and yeast two-hybrid assays to identify complementarity determining regions on 

scFvs that increased intracellular stability.  We used this strategy to isolate anti-Abl-SH3 scFvs.  

Transient expression of scFvs in K562 cells indicated that two anti-Abl-SH3 scFv decreased 

viability. 
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1 Introduction 
Understanding the function and therapeutic potential of proteins has been greatly 

enhanced due to advances in genomic analysis.  However, directed experimentation is still 

necessary to form a comprehensive understanding of protein function.  Strategies for 

performing reverse analysis on protein function, such as gene deletion or loss of function 

mutations, are informative but such techniques are difficult to perform rapidly and on a variety 

of organisms.  Technologies that inhibit protein function in a dominant, manner such as 

antisense RNA, ribozymes, dominant negative proteins, and antibodies, do not alter the genetic 

material that encodes the protein.  These technologies have the advantage of being easier to use 

in diploid and polypoid organisms.  Further, antibodies and dominant-negative proteins inhibit 

protein function by directly interacting with the protein target.  Therefore, they can block 

specific interaction while leave others unperturbed.  This makes them useful for evaluating the 

therapeutic potential of a protein target.   

Antibodies are highly specific for their targets and have the potential to interact with 

proteins in vivo (Antman and Livingston, 1980).  However, expression of antibodies inside cells 

is problematic (Fellouse and Sidhu, 2007).  Fortunately, antigen-binding regions of an antibody 

exist solely on two variable fragments (Fvs); the variable light (VL) and variable heavy (VH) 

domains.  Although VL and VH are the minimum required elements for antigen binding, when 

separated from each other, they tend to unfold and aggregate (Jäger and Plückthun, 1999).  

These fragments can be stablized by joining them together with a short peptide linker.  The 

peptide-linked VL and VH fusion is defined as a single chain variable fragment (scFv). 

Bacterial expression of scFvs has been problematic as many scFvs are insufficiently 

stable for intracellular expression.  Multiple strategies have been employed to increase scFv 

stability, including framework mutations (Barthelemy et al., 2008; Jespers et al., 2004; Kügler 

et al., 2009; Wörn and Plückthun, 2001) and the addition of extra peptide linkers (Brinkmann et 

al., 1997) or disulphide-bonds (Young et al., 1995; Glockshuber et al., 1992) that join VL and 

VH domains.  Attempts have been made to abandon the VL chain and focus on stabilizing only 

the VH chain (Dolk et al., 2005; Jespers et al., 2004).  All of these attempts have been met with 

varying levels of success and a highly stable scFv that can accommodate a wide range of 

complementarity determining regions (CDRs) has not yet been obtained.  
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2 Literature Review 

2.1 Therapeutic Target Discovery 

2.1.1 Drug Discovery 

Advances in genomic and proteomic methods have revolutionized our understanding of 

roles that genes and their encoded proteins play in living cells.  Novel techniques for molecular 

cloning and cultured cell transfection have provided relatively rapid and efficient ways to 

determine consequences of overexpression or deletion of specific proteins.  Combined with the 

knowledge obtained from the completion of the human genome project, many therapeutic 

targets for various cancers have been identified. 

Until recently, most cancer treatments were chemotherapeutic agents discovered by 

high-throughput ligand binding assays, biochemical assays, or cell-based assays (Liu et al., 

2004).  These approaches led to several target-specific anti-cancer agents being approved for 

treatment of cancer patients.  These agents include small molecules such as: all-trans-retinoic 

acid or ATRA for promyelocytic leukemia, EGF-receptor protein tyrosine kinase inhibitor 

(Irresa®) for the treatment of non-small cell lung cancer, and Bcr-Abl tyrosine kinase and c-kit 

tyrosine kinase inhibitor (Gleevec®) used for the treatment of chronic myeloid leukemia 

(CML) and for gastric intestinal stromal tumor (Atkins and Gershell, 2002).  Using similar 

techniques, a number of antibodies have been approved for treatment.  They include anti-HER2 

monoclonal antibody (Herceptin®) used for HER-2 positive breast cancer treatment, anti-CD34 

monoclonal antibody (Myelotarg®) for acute myelocytic leukemia treatment, and anti-CD20 

antibody (Rituxan®, Zevalin®, and Bexxar®) used for treatment of low grade B-cell 

lymphoma (Liu et al., 2004). 

Many therapeutics have been developed by screening large collections of complex 

natural products or chemical compounds for their cytotoxic activity on cancer cell lines.  Most 

of these drugs are relatively non-specific, toxic, and cause significant side effects on cancer 

patients.  Further, their targets may not be validated with an absolute level of certainty, as the 

opportunity costs of delaying new treatments must be considered.  In fact, the FDA and other 

regulatory bodies do not require the target of the drug to be known (Hardy and Peet, 2004). 

Still, their development is very cost prohibitive, such that only large pharmaceutical companies 

can afford the extensive collections of natural products and compounds required. 
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The pace of identifying new potential drug targets now far exceeds the development of 

new therapeutics.  Faster methods of drug discovery are needed if we are to fully exploit this 

flood of information.  Indeed, with recent developments in combinatorial chemistry methods 

(Kennedy et al., 2008); Ng et al., 2012; Messeguer and Cortés, 2007) and biologically-driven 

library creation (Marasco, 1995; Rimmele, 2003; Sidhu and Koide, 2007), libraries can now be 

generated by smaller start-up companies and academic laboratories.  

With our ever-increasing understanding of oncogenesis combined with the availability 

of cost-effective high throughput screening assays, more potent, specific, and less toxic anti-

cancer agents will be developed.  It is anticipated that antibodies and their fragments will be at 

the forefront of these advances. 

2.1.2 Antibodies 

Antibodies provide a key portion of our defense against pathogenic organisms and 

toxins.  They are able to bind antigens with high specificity and affinity.  Therapeutic 

antibodies are almost exclusively generated from the main serum antibody, immunoglobulin G 

(IgG).  As shown in Figure 2.1, the intact form of an antibody is a Y-shaped multi-domain 

protein composed of two light chains and two heavy chains.  The heavy chain is comprised of 

one variable heavy (VH) domain, and three constant heavy (CH) domains, identified as CH1, CH2, 

and CH3.  The smaller light chain consists of one variable light (VL) domain and one constant 

light region (CL).  The antigen-binding fragment (Fab) is comprised of the CH1, CL, VH, and VL 

domains, where the antigen-binding site is located on VH, and VL domains.  Variable domains 

each contain three hyper-variable loops or CDRs, which are responsible for antigen binding.  

Recruitment of effector functions are mediated by the stem crystallisable fragment (Fc) domain 

comprised of constant heavy domains, CH2 and CH3. 

In research and therapeutic applications, antibodies can be used in reverse genetics 

approaches.  Although requiring injection into cells, antibodies have been shown to block the 

function of intracellular targets (Antman and Livingston, 1980).  Through binding to the target, 

they have been shown to promote the activation of specific biochemical steps (Hori, 1991; Kim 

et al., 1993) or couple their natural effector functions (Dyer et al., 1989; Reff et al., 1994).  

Additionally, through conjugation to secondary proteins or molecules, they can provide even 

further functions (Hinman et al., 1993; Liu et al., 1996).   
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Figure 2.1.  Structure of the Immunoglobulin G Antibody  
A schematic view of the heterotetramer Immunoglobulin G (IgG) molecule composed of two 
light chains and two heavy chains.  The heavy chain is comprised of one variable heavy (VH) 
domain, and three constant heavy (CH) domains.  The smaller light chain consists of one 
variable light (VL) domain, and only one constant light region (CL).  The antigen-binding 
fragment (Fab) is comprised of the CH1, CL, VH, and VL domains and is depicted as a cartoon 
(PDB ID: 3DVG (Newton et al., 2008)).  Variable light (VL) and variable heavy (VH) domains 
each contain three hyper-variable loops known as CDRs, which are shown in blue and bound to 
the antigen.  Interchain disulphide-bonds are shown as (- S - S -) and the glycosylation site on 
the CH2 domain is shown as (- G).  A missing attachment between the VL and CL domain was 
manually inserted and shown as a dashed green line.   
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Therapeutic monoclonal antibodies (mAbs) entered clinical study in the early 1980s.  

However, these antibodies were produced by fusing mouse lymphocytes and myeloma cells to 

produce murine hybridomas.  Problems arose due to patients’ production of human anti-mouse 

antibodies.  This immune reaction causes anaphylaxis and serum sickness.  Moreover, 

subsequent administration of the antibody would be ineffective as the immune system would be 

prepared to destroy them (Shawler and Bartholomew, 1985).  To improve the potential of 

therapeutic mAbs, attempts were made to decrease mAb immunogenicity by reducing the 

number of murine sequences.  This was accomplished through development of mAb chimeras 

derived from both human and mouse DNA (Morrison et al., 1984), and production of fully 

human mAbs through CDR grafting onto a human framework or obtained from mice 

genetically engineered to produce human antibodies (Roque et al., 2004)(Cole et al., 1984). 

However, removing the murine component was not sufficient to make the immunogenicity 

problem disappear.  Most of the FDA-approved mAbs report that some patients have developed 

detectable antibodies to the therapeutic (Reichert et al., 2005).  Indeed, any protein therapeutic 

has the potential to cause the human immune system to produce antibodies.   

Another problem is the difficulty in producing antibodies in sufficient quantity and 

quality for therapeutic and commercial applications.  Currently, mammalian cells such as 

Chinese hamster ovary (CHO) and NS0 cells remain the most prominent cell lines of choice for 

the production of therapeutic antibodies.  However, large doses (in some cases over one gram 

per patient per year) are often required for therapeutic purposes (Andersen and Reilly, 2004).  

This need has driven the development of alternative systems that can produce antibodies 

efficiently and cost-effectively.  

Ideally, antibody expression would occur in a bacterial host where rapid growth of 

expression cultures is possible and efficient mutagenesis and DNA manipulation have been 

established.  However, expression of antibodies inside bacterial cells is problematic for a 

number of reasons: First, antibodies, such as IgGs, contain two heavy chains and two light 

chains.  Folding and assembly of the heterotetramer occurs after translocation through the 

endoplasmic reticulum membrane and assisted by several molecular chaperones such as BiP 

and PDI (Gonzalez et al., 2001).  This mechanism is not possible using a bacterial expression 

system.  Second, these chains are linked together by several disulphide-bonds.  In the cytoplasm 

of E. coli, formation of stable disulphide-bonds does not occur.  Indeed, in early antibody-
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engineering experiments, antibodies expressed in the cytoplasm of bacteria showed low levels 

of antigen-binding activity (Boss et al., 1984).  Third, a post-translational modification, 

glycosylation of the heavy chain, is required for biological specific activities of antibodies 

(Andersen and Reilly, 2004).  Gylcosylation is not possible in bacterial since they lack the 

appropriate glycosylation machinery.  Further, antibodies lacking glycosylation can be 

improperly folded or degraded by the cell (Gonzalez et al., 2001).   

The desire for efficient antibody production has led to the recent development of 

transgenic plant and fungal antibody production systems (Roque et al., 2004) and producing 

full-length glycosylated antibodies in E. coli (Simmons et al., 2002).  Nevertheless, mammalian 

cells are still the dominant system used to produce antibodies.  

2.2 Single Chain Variable Fragments 

2.2.1 ScFv Development 

Since the entire antibody is not required for antigen binding, other development paths 

have been taken to circumvent many of the issues facing antibody production.  The antigen-

binding regions of antibodies exist solely on VL and VH domains.  Each variable domain 

contains three CDRs that are responsible for binding.  These CDRs are hyper-variable loops 

held together by a moderately conserved framework region (FR) (Kabat et al., 1987).  

However, when separated from each other, VL and VH domains tend to unfold and aggregate.  

Thus, interaction between the two domains is required for maximum stabilization.  In a 

complete antibody, the VH-VL interface is stabilized by fusion to constant regions, which are 

linked by a disulphide-bond.  However, it is possible to stabilize variable domains by joining 

them together with a short peptide linker (Jäger and Plückthun, 1999).  The fusion of a VL and a 

VH together by a peptide linker is defined as a single chain variable fragment (scFv) (Figure 

2.2). 

Natural antibodies contain intra-molecular and inter-molecular disulphide-bonds.  With 

the construction of an scFv, the inter-molecular disulphide-bonds are no longer of concern as 

they are removed with the constant regions.  However, many scFvs expressed in the cytoplasm 

of bacteria show low levels of antigen binding.  This is a result of improper folding due, in part, 

from a failure to form stable intra-molecular disulphide-bonds (Morino et al., 2001).  Attempts 

to create an scFv without disulphide-bonds have been unsuccessful (Wörn and Plückthun, 
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1998).  Introducing a signal sequence, such as pelB or ompA, onto the N terminus of the Fv 

facilitated the transport of the scFv to the periplasm, where conditions are more conducive for 

the formation of disulphide-bonds.  This resulted in the successful production of Fv with 

“adequate” antigen-binding capabilities (Skerra and Plückthun, 1988).  

2.2.2 ScFvs in Research Applications 

With the ability to produce antibody fragments on a relatively large scale, techniques 

evolved to exploit their benefits.  For example, antibody microarrays using individually 

addressable electrodes are able to run thousands of assay in tandem; this is compared to a 

conventional immunoassay, which is limited to just a couple of hundred assays per day.  

Moving towards antibody fragment biosensors provides a small, stable and highly specific 

reagent against the target antigen.  This has allowed the movement away from immobilization 

onto glass-surface microarrays towards more protein friendly surfaces (Hamelinck et al., 2005).  

As a result, companies such as Biosite, Zyomyx, PerkinElmer, and Pointilliste, have released 

microarray platforms, incorporating this new technology (Holliger and Hudson, 2005).  

Effector functions such as antibody-dependent cell-mediated cytotoxicity are mediated 

though interaction of the Fc domain with various Fcγ receptor.  Successful antibody interaction 

with its activating receptor is often critical for effective antibody therapeutics (Dyer et al., 

1989).  Due to the removal of the Fc domain, scFvs lack effector functions.  Although effector 

functions are desirable in many therapeutic treatments, there are some conditions where their 

removal may have a positive effect on treatment (Simmons et al., 2002). For example, removal 

of the effector function can be advantageous for imaging applications, where a long serum half-

life results in poor contrast (Holliger and Hudson, 2005).  Even so, if effector functions are 

desirable, such as killing the target cell, techniques such as coupling the scFv to a chemical 

toxin are possible.   

Indeed, through conjugation, possibilities of using scFv in diagnostics are only limited 

by one’s imagination.  For example, Markiv et al. (2011) have created a chimeric scFv for use 

in screening by bridging the VL and VH chains with a red fluorescent protein.  Since the 

monomeric β-barrel fluorophore architecture is essentially the same as other colour variants, the 

modular nature of this chimeric scFv enables the creation of a palette of fluorescent scFvs for 

simultaneous multi-analyte detection.  Another modification, the addition of cysteine or 

histidine to the peptide linker, enabled the scFv to self-assemble onto gold nanoparticles.  This  
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Figure 2.2.  ScFv Structure   
Crystal structure of anti-ubiquitin single chain variable fragment (scFv) (PDB ID code 3DVG) 
depicted in cartoon format (Newton et al., 2008).  This scFv contains the same framework as 
the anti-MBP scFv used in this thesis.  (A) Variable light (VL) and (B) variable heavy (VH) 
domains consist of a pair of β sheets with a single disulphide bond (S-S) bridging the two 
sheets.  When the VL and VH are fused together by a short peptide linker (manually inserted and 
shown as dashed line), it is defined as an scFv.  Each variable domain contains three hyper-
variable loops called complementarity determining regions (CDRs) (shown in blue) that are 
responsible for binding. (C) The variable domains associate through the five strand β sheets 
(yellow) although strand 3c (orange) does not participate in the packing.  
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allowed for the development of a highly sensitive colorimetric immunosensor (Liu and 

Mernaugh, 2009).  Even more exotic applications have been developed such as the recent 

conjugating of scFvs to quantum dots.  Using this technology, scFv can potentially be used for 

targeted imaging and early diagnosis of cancer (Lu et al., 2011).  

2.2.3 ScFvs as Therapeutics 

Beyond the use of antibody fragments in diagnostics, recent developments have shown 

their use as therapeutic agents.  New display and selection technologies, such as phage display, 

are improving the speed at which binders can be generated or improved.  With the creation of 

large synthetic in vitro repertoires of antibody fragments, library-screening technologies have 

now superseded hybridoma technology.  ScFvs are also commonly used in high throughput 

screening methods such as phage display (Prins et al., 2005; Sidhu and Koide, 2007) and yeast 

display (Boder and Wittrup, 1997).  Recently, Ho et al. (2006) showed that mammalian cells 

can be engineered for cell surface display of functional scFvs.  This was accomplished by 

fusing the anti-CD22 scFv to the trans-membrane domain of human platelet-derived growth 

factor receptor (PDGFR) displayed on human embryonic kidney (HEK) 293T cells.  Using a 

combinatorial library created by randomizing the CDR3 of the VL chain, they showed that an 

scFv with an increased binding affinity for CD22 could be obtained after a single round of 

selection (Ho et al., 2006).  

As a result of these high throughput selection methods, antibody fragments are joining 

mAbs as powerful therapeutic agents.  In particular, scFvs show promise targeting cancer, 

inflammatory, autoimmune, and viral diseases.  Recently a number of scFv therapeutics been 

entered into clinical trials.  Pexelzumab, a humanized scFv used to block the complement 

activation following heart bypass surgery, is now in phase III clinical trials (Smith et al., 2011;  

Testa et al., 2008). Another scFv, SNG-17, used for treating melanoma by targeting the P97 

antigen, is now in preclinical trails (Pucca et al., 2011).  The breast cancer therapy named 

F5cys-MP-PEG(2000)-DSPE is an anti-HER2 scFv-lipopolymer conjugate in the preclinical 

stage (Nellis et al., 2005). Other antibody fragments have entered the preclinical or clinical 

phase, such as bispecific scFvs and scFvs diabodies, where the VL and VH of one scFv bind the 

VH and VL, respectively, of another scFv (Pucca et al., 2011;  Holliger and Hudson, 2005).  

To highlight the rapid pace of scFv development, a patent search using the free 

worldwide patent site espacenet (http://ep.espacenet.com) showed a total of 757 scFv patents 
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have been published since 1996.  In comparison, a paper looking at the same search parameters 

in 2009 found 315 scFv published patents (Pucca et al., 2011).  Technologies with the ability to 

improve both pharmacokinetics and functionality of engineered mAb fragments should lead to 

further increasing the approval and use of scFvs in diagnosis and therapy. 

2.2.4 Strategies for ScFv Drug Delivery 

In vivo studies have confirmed that molecular size is an important parameter for tissue 

penetration and retention (Holliger and Hudson, 2005).  Proteins, peptides, or small molecules 

can be directed at extracellular targets.  However, if an intracellular target is of interest, then the 

drug must cross the cell membrane.  Traditionally, this has been accomplished with small 

molecules or peptidomimetic compounds (Liu et al., 2004).  Large IgG molecules that have 

been developed for tumor specific targets, with a size of 150 kDa, have slow solid tumor 

penetration and high serum levels.  Conversely, small scFv fragments with a size of 28 kDa are 

able to penetrate the tumor rapidly (Holliger & Hudson, 2005).  Recently, scFvs targeting the 

hepatocyte growth factor receptor c-Met, selectively bound to several lung cancer cell lines 

expressing c-Met and became internalized.  Additionally, conjugation of the anti-c-Met scFv 

with PEGylated liposomes enabled the efficient delivery of doxorubicin into cancer cells (Lu et 

al., 2011).  These results suggest that scFv-mediated drug delivery systems show promise in 

tumor-targeted therapy.  

Unfortunately, although these smaller fragments rapidly penetrate tumors, they are just 

as rapidly cleared from the blood.  This is common to most small molecules, which has fostered 

the movement towards larger constructs, such as scFv-CH3 dimers (75 kDa) called minibodies.  

Minibodies have shown higher tumor uptake and retention than their IgG counterparts.  

Combined with their substantially faster clearance, minibodies may be ideal for tumor therapy 

(Olafsen et al., 2004).  However, the rapid clearance of scFvs may be due in part to their 

monovalent binding properties.  Faced with the necessity of frequent delivery of antibody 

fragments, research has also moved towards the creation of bivalent diabodies (55 kDa).  Due 

to their relatively small size, they retain rapid tissue penetration and blood clearance and have 

high avidity.  These attributes make them ideal for intracellular therapeutic and imaging 

applications (Robinson et al., 2005).  

To circumvent problems with rapid blood clearance and difficulties with large-scale 

production of scFvs, another strategy for delivery is being developed.  In situ methods of gene 
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delivery allow for localized and sustained expression of the scFv.  This can be accomplished by 

transforming cells ex vivo and then reintroducing them into the patient.  By allowing the 

synthesis of proteins of interest directly in the host, difficulties with large-scale production are 

overcome.  In situ experiments performed with an anti-vascular endothelial growth factor 

(VEGF) scFv reduced the tumor growth in mice by 50%.  When injections of recombinant 

adenovirus encoding the scFv are administered systemically, substantial tumor inhibition is 

observed (Afanasieva et al., 2003).  Additionally, by administering multiple virus injections the 

results were improved even further. 

2.3 Strategies to Stabilize scFvs 

2.3.1 Introduction 

Due to the enormous potential of antibody fragments in diagnostics and therapeutics, 

there has been considerable interest in overcoming the inherit instability of these fragments.  

Techniques to create a tighter integration between VL and VH domains, such as the addition of 

disulphide-bonds (Young et al., 1995; Glockshuber et al., 1992), VL and VH interface point 

mutations (Tan et al., 1998), or introduction of additional linkers  (Brinkmann et al., 1997) 

have shown moderate success.  Other techniques that focus on the framework region have 

varied levels of success.  For example, the introduction of point mutations in the framework 

(Barthelemy et al., 2008; Jespers et al., 2004; Kügler et al., 2009; Wörn and Plückthun, 2001) 

or complete transfer of the CDRs to another framework (Jung and Plückthun, 1997) have  

increased scFv stability. 

Another strategy in development to overcome the scFv stability problem is the use of 

even smaller antibody fragments.  Nanobodies, such as the VhH in camelids and V-NAR in 

sharks, are single VH-like domains.  These domains have four amino acid substitutions in their 

framework region.  This renders the surface more hydrophilic and can explain the observed 

increase in solubility.  VhH also has improved penetration against immuno-evasive target 

antigens (Stijlemans et al., 2004). However, humanization may be crucial to reduce 

immunogenicity for in vivo administration.  Although studies of llama VhH domains have 

shown to be only minimally immunogenic (Cortez-Retamozo, 2004), for therapeutic 

applications, human domains would be preferable, provided that  problems of poor stability and 

solubility can be solved. 
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2.3.2  ScFv Peptide Linkers with Improved Stability 

Creating a scFv by fusing VL and VH domains together with a linker causes a unique 

problem; there is a potential for these linkers to cause the formation of dimers and multimers, 

where the VL domain of one chain binds to the VH domain of another chain.  Although, 

formation of multimeric scFvs may be beneficial in some circumstances (Holliger et al., 1993), 

these multimers result in reduced stability.  Therefore, linkers that favour the formation of a 

monomer over a dimer may increase scFv stability.  The length of the peptide linker largely 

determines the oligomer formation preference.  As linker length increases, the proportion of 

dimer decreases.  Linkers that are 0, 5, or 10 amino acids in length mainly form dimers (Arndt 

et al., 1998).  However, as the linker becomes longer, the antigen-binding activity of the scFv is 

decreased (Desplancq et al., 1994) and the linker may be more susceptible to proteolytic 

degradation (Alfthan et al., 1995).  Therefore, the linker length must be a compromise between 

antigen-binding potential and degradation resistance of short linkers, and the monomer 

formation potential of longer linkers.  

Using this information, Robinson and Sauer determined that linkers 19 amino acid long 

have the greatest equilibrium stability to thermal denaturation (Robinson and Sauer, 1998).  

They further refined the linker composition and created a linker with seven Ser and nine Gly 

framed by three Gly on either side.  This linker provides preference for monomer formation and 

has suitable antigen-binding activity.  The interpretation of these experiments has led to the use 

of the peptide linker (G3S)4 as the most common scFv linker.  However, currently unpublished 

data from the Geyer lab identified eleven potential linkers using phage display that may further 

increase the stability of the scFvs.  Thermal stability testing on these linkers has shown that four 

linkers (C1, C3, E3, E5) (Table 2.1) provide increased thermal stability with one in particular 

(C3) being the most stable.  However, their intracellular stability has yet to be determined. 

Table 2.1.  Novel ScFv Linkers 
Linker Amino Acid Sequence 

Traditional GGGSGGGSGGGSGGGS 

C1 AGSSSSGGSTTGGSTT 

C3 GTTAASGSSGGSSSGA 

E3 SSATATAGTGSSTGST 

E5 TSGSTGTAASSTSTST 
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2.3.3 ScFv Permutation 

In 1997, Brinkmann et al. developed a novel method to stabilize scFvs.  Typically, the 

C-terminal end of the VL chain is joined to the N-terminal end of the VH chain with the peptide 

linker (G3S)4.  Brinkmann et al. (1997) joined VL and VH domains together at the base-loop 

position (Figure 2.3b).  By linking the C-terminus of the VH domain back to the N-terminus of 

the same domain they created a permutated scFv.  They termed this new scFv, a permutated Fv 

(pFv).  When compared to the non-permutated scFv, the pFv retained its affinity and 

specificity.  The pFv is relatively stable; after 24 hours of incubation at 37˚C, both the 

unpermutated scFv and the pFv retained similar levels of activity (Brinkmann et al., 1997).  

                      
 
Figure 2.3.  Schematic of the Permutated ScFv.    
The standard unpermutated scFv (A) is included for reference.  Arrows indicate the direction of 
synthesis from the N- to C-terminis.  Peptide linkers are shown in blue.  In the top row of 
images, base-loops are depicted as circular loops located at the bottom of the variable regions.  
Schematic representations are included in the bottom row.  The numbered triangles represent 
the orientation of strands in β sheets.  Model X pFv (B) connects the VL and VH though the 
base-loop regions. 
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2.3.4 Lariat Peptide Technology 

In an attempt to overcome difficulties associated with displaying peptides, such as 

degradation by proteases, an intein-mediated method has been developed to produce cyclic 

peptides and proteins in vivo (Scott et al., 1999). These naturally occurring intein proteins 

catalyze a self-splicing reaction, which involves the removal of the intein from a precursor 

protein to produce a mature protein (Figure 2.4A).  A permutated form of the precursor protein 

where the order of intein domains are changed results is a cyclic protein with no free N or C 

terminus (Figure 2.4B).  Although the elimination of free ends confers increased resistance to 

protease degradation, it also excludes the potential to fuse additional protein/peptide moieties.  

Thus, the cyclic technology is not useful for high throughput screen techniques such as the 

yeast two-hybrid assay.  In an attempt to overcome this limitation for use in reverse analysis 

experiments, a lariat peptide was developed (Barreto et al., 2009) (Figure 2.4C).  The lariat 

peptide is produced by blocking the cyclic peptide reaction at an intermediate step, which 

produces a lariat peptide fused to a transcription activation domain that is required for the yeast 

two-hybrid.  This lariat peptide strategy has been used to generate combinatorial libraries of 

lariat scFvs.  Lariat scFv libraries performed better in the yeast two-hybrid assay relative to a 

linear scFv (Bernhard, 2008). 

 

2.3.5 Variable Domain Framework Mutations 

Structural studies on the VH domain showed that a single mutation has dramatic effects 

of the stability of variable domains.  For example, stabilizing experiments performed on the 

camelid VhH domain showed that mutation of a single amino acid, Gln44 to Arg, significantly 

increased its affinity for the target (Dolk et al., 2005).  Further, using structural knowledge 

about the camelid VhH domain, the stability of a VH domain derived from a human framework 

has been improved by mutating Ser35 of the heavy chain to Gly (Jespers et al., 2004).  These 

results indicate that a single mutation can have a significant stabilizing effect on antibody 

fragments.  However, these results may not be applicable to all VH-like domains. 
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Figure 2.4.  Intein-Mediated Protein Splicing 
(A) Naturally occurring inteins (grey) catalyze a self-splicing reaction, removing the intein 
from a precursor protein and joining exteins (white) to produce a mature protein.  (B) A 
permutated form of the intein changes the relative order of the intein domains.  In this 
permutated arrangement, the self-splicing reaction produces a head to tail cyclization of the 
extein.  (C) A mutation of the C-intein (*) blocks the reaction at an intermediate step where 
only the N-intein is removed.  A lariat protein is produced which retains the C-intein domain.  
This lariat peptide strategy has been used to generate combinatorial libraries of lariat scFvs.   
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The stabilizing strategies, involving the mutation of Gly to Ala and any amino acid 

(Xaa) to Pro, was first described by Matthews et al. (1987).  This study showed that mutating 

certain amino acids to Pro or mutating Gly to Ala increased the stability of bacteriophage T4 

Lysozyme (Matthews et al., 1987).  This is due to the relationship between the stability of 

proteins and Gibbs free energy of unfolding (ΔGu).  For most proteins, as the temperature 

increases, the ΔGu decreases (Schellman, 1997).  When the concentrations of folded and 

unfolded proteins are equal, ΔGu equals zero.  The temperature at which this occurs is the 

melting temperature (Tm) (Niesen et al., 2007).  By reducing the conformational flexibility of 

the protein, these mutations are able to decrease the entropy of unfolding.   

Framework mutations as described by Matthews have been successfully applied to Beta-

propeller phytase (Tung et al., 2008), Cold shock protein B, Histidine-containing 

phosphocarrier protein (HPr), and several ribonucleases (Fu et al., 2009).  In 2009, Robert et al. 

successfully prevented aggregation of the WO-2 scFv with a Ser46 to Pro mutation (Robert et 

al., 2009).  

2.3.6 Phage Display 

In 1985, George Smith first described the phage display technology for selecting 

peptides from combinatorial peptide libraries (Smith, 1985).  Five years later it was shown that 

this technique could also be used to display antibody fragments (McCafferty et al., 1990).  The 

strength of this technique is that it provides a physical link between the genotype and 

phenotype.  This is possible due to the use of a specialized vector called a phagemid, which 

contains the following components:  First, the phagemid contains a dsDNA origin of replication 

as well as an ssDNA filamentous phage origin of replication (f1 ori).  The f1 ori allows 

packaging of the DNA into the phage particles.  Second, the phagemid contains a fusion protein 

consisting of the protein of interest fused to the gene-3 minor coat protein of the filamentous 

bacteriophage M13 (P3 or pIII) (Lee et al., 2007).  The fusion protein is displayed on the 

outside surface of the bacteriophage with the DNA that encodes the protein encapsulated inside 

the phage particle (Figure 2.5A).   

ScFv libraries that are displayed on phage particles are screened for interactions with a 

target as shown in Figure 2.5B.  Library members that are able to bind to the target are retained.  

Conversely, library members that do not bind to the target are washed away.  The bound phage 

are eluted and used immediately for infection and amplification in a bacterial host strain.  Once 
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purified, the newly enriched phage library can be used for analysis or another round of 

enrichment. 

The power and utility of the phage display technique cannot be overstated: the 

development of scFv-cys stabilized gold NPs (Liu and Mernaugh, 2009), the isolation of anti-

CEA nanobodies (Cortez-Retamozo, 2004), and the development of scFvs with improved 

solubility and thermodynamic stability (Jespers et al., 2004), are all accomplished using the 

phage display technique.  Indeed, many of the technologies mentioned in this thesis have also 

been developed using phage display. 

 

 
Figure 2.5.  Phage Display Selection 
(A) Phage structure.  ScFvs are fused to the pIII coat protein and displayed on the outside 
surface of the bacteriophage with the ssDNA that encodes the protein encapsulated inside the 
phage particle.  (B) Phage display selection: A library of phage particles are incubated in a well 
coated with the target protein.  The well is washed and phages that bind to the target remain.  
Bound phage are eluted and amplified by infection into a bacterial host.  Phage can be 
harvested and used for analysis or another round of enrichment. 
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3 Objectives and Specific Aims 
The development of antibody fragments, such as scFvs, circumvents many of the issues 

faced with full-length antibody production.  However, they are not without their own unique set 

of limitations such as stability.  Due to the enormous potential of antibody fragments in 

diagnostics and therapeutics, there has been considerable interest in overcoming the inherit 

instability of these fragments.  To improve the stability of scFvs the following strategies were 

pursued: (i) Increasing the number of linkers that join the VL and VH domains together. (ii) 

Introducing stabilizing mutations into the framework region of variable domains.  (iii) 

Designing new genetic selections to isolate scFvs with stable CDRs.  

3.1 Specific Aim 1: Increase ScFv Stability Using Novel Linkers 
Permutated scFvs will be designed with an increased number of linkers joining the VH 

and VL domains.  Purification of permutated scFvs will be attempted using two new plasmids 

and two E.coli expression strains.  Following purification, thermal stability assays will be 

performed to determine the stability of the permutated scFvs as well as cyclic and lariat scFvs. 

3.2 Specific Aim 2: Increase ScFv Stability Using Variable Domain Framework 

Mutations  

Amino acids in the framework region of the variable domains that can tolerate a proline 

mutation or a glycine to alanine mutation will be identified.  A phage library containing all 

possible combinations of mutations will be created by Kunkel mutagenesis.  Mutations 

favouring the antigen binding properties of scFvs will be identified using phage display 

selection.  ScFvs containing favourable mutations will be purified and their thermal stability 

will be will be tested. 

3.3 Specific Aim 3: Increase the Intracellular Stability of ScFvs  
A library of scFvs enriched by phage display selection will be panned against their 

targets using the yeast two-hybrid assay.  The yeast two-hybrid assay will be performed using 

two of our prey vectors (linear and lariat) and compared for their relative efficiency in 

promoting scFv interaction with its target.  CDRs of scFvs isolated by yeast two-hybrid 

screening will be compared to CDRs isolated by the phage display assay.  ScFvs that interact 
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with their target in the yeast two-hybrid assay and the phage display screening will be 

identified.  The effects of two anti-Abl-SH3 scFvs on chronic myeloid leukemia cell viability 

will conducted by transient expression in leukemia cells.  
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4 Materials and Methods 

4.1 General Information  

4.1.1 Reagents and Suppliers 

Table 4.1.  Reagents 
Reagent Supplier 
Gel Purification Kit Qiagen 
PCR Clean-up Kit  Qiagen 
Miniprep Kit Qiagen 
QIAPrep Spin M13 Kit Qiagen 
PCR Purification Kit Bio Basic Inc. 
Plasmid DNA Kit Bio Basic Inc. 
Nitrocellulose Bio-Rad 
Odyssey Blocking Buffer LI-COR Biosciences 
Oligonucleotides Integrated DNA Technologies (IDT) 
Salmon Sperm DNA Sigma 
Fast SYBR® Green Master Mix Applied Biosystems 
EZ-Link Sulfo-NHS-LC-Biotin Thermo Scientific 
Protein Assay Dye Reagent Concentrate Bio-Rad 
SYPRO Orange  Sigma 
TMB Liquid Substrate Sigma 
Strep-Tactin Superflow Agarose Novagen 
MicroAmp® Fast Optical 96-Well Reaction Plate, 
0.1 ml 

Applied Biosystems 

MicroAmp® 96- & 384-Well Optical Adhesive 
Film 

Applied Biosystems 

 
 
Table 4.2.  Enzymes 
Enzyme Supplier 
Calf Intestinal Phosphatase (CIP) New England Biolabs 
HotStar Taq Invitrogen 
Platinum Taq DNA Polymerase High Fidelity Invitrogen 
T4 DNA ligase New England Biolabs 
T4 DNA ligase High Concentration Invitrogen 
EcoRI New England Biolabs 
XhoI New England Biolabs 
SalI New England Biolabs 
NruI New England Biolabs 
T7 DNA Polymerase New England Biolabs 
T4 Polynucleotide Kinase (PNK) New England Biolabs 
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Table 4.3.  Antibodies 
Antibody Supplier 
Goat Anti-Mouse LI-COR IRDye 800CW LI-COR Biosciences 
Mouse Anti-SBP antibody LI-COR Biosciences 
Horseradish peroxidase/anti-M13 antibody 
conjugate 

GE Healthcare 

 

Table 4.4.  Oligonucleotides 
Oligonucleotides were obtained from IDT.  Restriction enzyme cut sites are italicized and 
linkers are underlined. 
S.N
o 

Name Sequence (5’ -> 3’) 

1 P1 scFv/pET-LP2 5’ GCG GAA TTC GAT ATC CAG ATG ACC CAG TCC 
2 P2 scFv/pET-LP2 3’ GCG GTC GAC CGA GGA GAC GGT GAC CAG 
3 ProAla Sub p1 ATG ACC CAG TCC CCG YTC TCC CTG TCC GCC TC 
4 ProAla Sub p2 AGC TCC CTG TCC GCC YCT SYG GGC GAT CSG GTC ACC ATC 

ACC TG 
5 ProAla Sub p3 ATC AAC AGA AAC CAG SAA AAS CGC CGA AGC TTC TGA TT 
6 ProAla Sub p4 GAA AAG CTC CGA AGC YGC TGA TTT ACT CGG C 
7 ProAla Sub p5 TAC TCT GGA GTC CCT YCA CGC TTC TCT GGT A 
8 ProAla Sub p6 CTT CTC GCT TCT CTG SAA GCC GTT CCG SGA CGG ATT TCA 

CTC T 
9 ProAla Sub p7 TTC ACT CTG ACC ATC YCC YCC CTG CAG CCG GAA G 
10 ProAla Sub p8 TCA CGT TCG GAC AGG SAA CCA AGG TGG AGA TC 
11 ProAla Sub p9 AGC TGG TGG AGT CTG SCS SAG GCC TGG TGC AGC CAG 
12 ProAla Sub p10 TGG TGC AGC CAG GGG SAT CAC TCC GTT TGT C 
13 ProAla Sub p11 CAC TGG GTG CGT CAG SCG CCG GGT AAG GGC C 
14 ProAla Sub p12 GTG CGT CAG GCC CCG GSA AAG GSC CTG GAA TGG GTT GC 
15 ProAla Sub p13 ACT ATA AGC GCA GAC MCG YCC AAA AAC ACA GCC T 
16 ProAla Sub p14 GCC TAC CTA CAA ATG MMC AGC CYA AGA GCT GAG GAC AC 
17 ProAla Sub p15 GGG GTC AAG GAA CCC YAG TCM CCG TCT CCT CGG TCG 
18 P1 VL G41A CCT GGT ATC AAC AGA AAC CAG CAA AAG CTC CGA AGC TTC 

TGA TTT AC 
19 P2 VL G64A CCT TCT CGC TTC TCT GCT AGC CGT TCC GGG ACG 
20 P3 S76/77P GAT TTC ACT CTG ACC ATC CCC CCT CTG CAG CCG GAA GAC 

TTC 
21 P4 VH G9R CTG GTG GAG TCT GGC CGT GGC CTG GTG CAG C 
22 P5 VH G16A CTG GTG CAG CCA GGG GCC TCA CTC CGT TTG TCC 
23 P6 VH G42A GTG CGT CAG GCC CCG GCT AAG GGC CTG GAA TG 
24 3BP2-SH2 5' 

/pEG202 
CTG GCG GTT GGG GTT ATT CGC AAC GGC GAC TGG CTG GAA 
TTC ACG ACA GAG TCC TGC GAG 

25 3BP2-SH2 3' 
/pEG202 

AAT TCG CCC GGA ATT AGC TTG GCT GCA GGT CGA CTC GAG 
TTA AGC GTA GCC GTA TGG GTG 

26 ABL1-SH3 5' 
/pEG202 

GCG GTT GGG GTT ATT CGC AAC GGC GAC TGG CTG GAA TTC 
GGA CCC AGT GAA AAT GAC CCC 

27 ABL1-SH3 3' AAT TCG CCC GGA ATT AGC TTG GCT GCA GGT CGA CTC GAG 
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/pEG202 TTA AAT TCC CCC TCG AGG GAC 
28 SRC-SH3 5' 

/pEG202 
CTG GCG GTT GGG GTT ATT CGC AAC GGC GAC TGG CTG GAA 
TTC GGG GCA CTG GCT GGC GGC 

29 SRC-SH3 3' 
/pEG202 

TCG CCC GGA ATT AGC TTG GCT GCA GGT CGA CTC GAG TTA 
TTC AGC CTG GAT GGA GTC TGA 

30 scFv/pJG4-5 5' 
 

TAT GAT GTG CCA GAT TAT GCC TCT CCC GAA TTC GGA TCC 
GAT ATC CAG ATG ACC CAG TCC 

31 scFv/pJG4-5 3'  AAC CTC TGG CGA AGA AGT CCA AAG CTT CTC GAG TTA CGA 
GGA GAC GGT GAC CAG GGT TCC 

32 scFv/pIN01 5' 
 

CAC AAC TTC TTG TTG GCT AAC GGT GCT ATT GCT CAC GCT 
TCG GGA TCC GAT ATC CAG ATG 

33 scFv/pIN01 3' CAA AAT TTC AGT ACC GAA AGA CAA ACA AGA GCC GCC 
GCC TTT TTC GAA CTG CGG GTG AGA CCA AGA ACC ACC ACC 
CGA GGA GAC GGT GAC 

34 pEG202 near 5' TCG AGT CGA CCT GCA GCC AA 
35 pEG202 near 3' GAG TCA CTT TAA AAT TTG TAT ACA C 
36 pJG4-5 near 5' GAG TGG AGA TGC CTC CTA CC 
37 pJG4-5 near 3'  AAC CTT GAT TGG AGA CTT GAC C 
38 KB41 near 5' GCC ACA AGA TCA CAA CTT CTT G 
39 KB41 near 3'  GGC AAT GGA CCG TAT TCA ACA G 
40 P1 scFv/pMSCV 5’ GCG GAA TTC ATG TAC CCT TAT GAT GTG CCA GAT TAT GCC 

GAT ATC CAG ATG ACC CAG TCC 
41 P2 scFv/pMSCV 3’ GCG CTC GAG TTA CTT ATC ATC ATC ATC CTT GTA ATC CGA 

GGA GAC GGT GAC CAG 
42 pMSCV Seq P1 CCC TTG AAC CTC CTC GTT CGA CC 

 

4.1.2 Strains 

Table 4.5.  S. cerevisiae Strains and Genotypes 
Strain Genotype Reference 
EY93 MATa ura2 his3 trp1 leu2 ade2::URA3 (Barreto et al., 2009) 
EY111 MATα his3 trp1 ura3::LexA8op-LacZ ade2::URA3-

LexA8op-ADE2 leu2::LexA6op-LEU2 
(Barreto et al., 2009) 

 
 
Table 4.6.  E. coli Strains and Genotypes 
Strain Genotype Reference 
MC1061 F– araD139 Δ(araA-leu)7697 galE15 galK16 Δ(lac)X74 

rpsL (Strr) hsdR2 (rK-mK+) mcrA mcrB1 
(Wertman et al., 1986) 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac (F ́ 
proAB lacIqZΔM15 Tn10 (Tetr)) 

Stratagene 

CJ236 FΔ(HindIII)::cat (Tra+ Pil+ CamR)/ ung-1 relA1 dut-1 thi-1 
spoT1 mcrA 

New England Biolabs 

BL21 (DE3) F– ompT hsdSB(rB
–, mB

–) gal dcm (DE3[lacI lacUV5-T7 
gene 1 ind1 sam7 nin5]) 

Novagen 

SS320 hsdR mcrB araD139 Δ(araABC-leu)7679 ΔlacX74 
galUgalK rpsL thi  

Lucigen 
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SHuffleTM F´ lac pro lacIq / Δ(ara-leu)7697 araD13 fhuA2 Δ(lac)X74 
Δ(phoA)PvuII phoR ahpC* galE (or U) galK 
Δλatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB 
rpsL150(StrR) Δgor Δ(malF)3 

New England Biolabs 
(C3028H) 

 

Table 4.7.  Mammalian Cell Lines  
Strain Disease  Description Reference 
K562  Chronic myelogenous 

leukemia (CML) 
Erythrocytic cell type, triploid, 
multiple  t(9;22)  translocations,  
 b3-a2  Bcr -Abl  fusion 

American Type Culture 
Collection (ATCC) 
(CCL243) 
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4.1.3 Plasmids 

The following plasmid maps were created using the free online web source PlasMapper 

(http://wishart.biology.ualberta.ca/PlasMapper/) (Dong et al., 2004) 

 
Figure 4.1.  pET-LP3 Plasmid 
pET-LP3 was used to express proteins in E. coli.  Protein genes were cloned between EcoRI 
and SalI sites using restriction enzyme cloning.  Proteins were expressed with a C -terminal six-
histidine sequence tag (6xHis), and an N-terminal Strep-tag II.  Expression and termination 
were controlled by the IPTG inducible T7 promoter (T7 prom) and the T7 terminator sequence, 
respectively.  When required the F1 origin of replication  (F1 ori) was used for single -stranded 
DNA (ssDNA) production.  The pBR322 origin was used to maintain a high copy plasmid 
number in E. coli.  The ampicillin-resistance gene (amp marker) was used to select for the 
plasmid in E. coli. 
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Figure 4.2.  HP153/ scFv Phagemid 
The HP153 phagemid was designed for scFv display.  The phagemid contained a double-
stranded DNA origin of replication (pBR322 ori) for replication in E. coli and a single-stranded 
DNA filamentous phage origin of replication (f1 ori) to allow packaging into phage particles.  
To maintain the plasmid in E. coli, the ampicillin-resistance gene (amp marker) was used.  For 
scFv display, the phagemid also contained a cassette, consisting of a promoter that controlled 
transcription of the scFv, which was fused to an N-terminal secretion signal (Signal peptide) 
and a C-terminal phage coat protein (pIII gene).  Following infection with the helper phage 
M13K07, ssDNA replication was initiated.  The scFv fusion protein was incorporated onto 
phage particles, whereas the phagemid ssDNA was packaged inside. 
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Figure 4.3.  pEG202 Yeast Two-hybrid Bait Plasmid. 
pEG202 (GenBank accession U89960) was used as the bait plasmid for the yeast two-hybrid 
assay.  Bait protein expression and termination were controlled by the alcohol dehydrogenase 
promoter (yADH1 prom) and the yeast alcohol dehydrogenase terminator (yADH1 term), 
respectively.  Targets were cloned between EcoRI and XhoI sites using homologous 
recombination, which allowed genes to be cloned as C-terminus fusions to the DNA binding 
domain LexA.  The 2 µm origin of replication was used to maintain a high copy number of the 
plasmid in yeast, whereas the pBR322 was used to maintain the high copy number in E. coli.  
The HIS3 gene is an auxotrophic marker used to maintain the plasmid in yeast.  To maintain the 
plasmid in E. coli, the ampicillin-resistance gene (amp marker) was used. 
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Figure 4.4.  pJG4-5 Yeast Two-hybrid Prey Plasmid. 
pJG4-5 (GenBank accession U89961) was used as the prey plasmid for the yeast two-hybrid 
assay. Prey scFv expression and termination were controlled by the galactose promoter (GAL1 
Prom) and the yeast alcohol dehydrogenase terminator (yADH1 term), respectively.  Prey genes 
were cloned between EcoRI and XhoI sites using homologous recombination, which allowed 
genes to be cloned as C-terminus fusions to the fusion tag consisting of the hemagglutinin tag 
(HA), nuclear localization sequence (NLS), and B42 activation domain  (B42_AD).  The 2 µm 
origin of replication was used to maintain a high copy number of the plasmid in yeast, whereas 
the pBR322 was used to maintain the high copy number in E. coli.  The TRP1 gene auxotrophic 
marker was used to maintain the plasmid in yeast.  To maintain the plasmid in E. coli, the 
ampicillin-resistance gene (amp marker) was used. 
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Figure 4.5.  KB41 Lariat Yeast Two-hybrid Prey Plasmid. 
KB41 was used as the lariat prey plasmid for the Y2H assay.  Prey scFv expression and 
termination were controlled by the galactose promoter (GAL1 Prom) and the yeast alcohol 
dehydrogenase terminator (yADH1 term), respectively.  Genes were cloned at the NruI site 
using homologous recombination, which allowed genes to be cloned as a fusion to the Ssp-IC 
and Ssp-IN domains for intein processing.  Following processing, targets would remain as C-
terminus fusions to the fusion tag consisting of the haemagglutinin tag (HA), nuclear 
localization sequence (NLS), and B42 activation domain (B42_AD).  The 2 µm origin of 
replication was used to maintain a high copy number of the plasmid in yeast, whereas the 
pBR322 was used to maintain the high copy number in E. coli.  The TRP1 gene auxotrophic 
marker was used to maintain the plasmid in yeast.  To maintain the plasmid in E. coli, the 
kanamycin-resistance gene (kan marker) was used. 
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Figure 4.6.  pMSCV-YFP Plasmid 
pMSCV-YFP is a murine stem cell virus (MSCV) retroviral expression plasmid.  This plasmid 
contained a specially designed 5’ long terminal repeat (5’ PCMV LTR) that controlled high 
level, constitutive expression of the target in mammalian cell lines, including stem cells.  A 
separate promoter, the murine phosphoglycerate kinase (PGK) promoter, controlled the 
expression of the YFP marker gene.  In packaging cell lines, the pMSCV plasmid produced 
replication incompetent, infectious retrovirus particles that can infect the target and transmit 
genes of interest to them.  The plasmid contains a double-stranded DNA origin of replication 
(pBR322 ori) to enable replication in E. coli.  To maintain the plasmid in E. coli, the ampicillin-
resistance gene (amp marker) was used.  ScFvs were subcloned into the plasmid at restriction 
sites EcoRI and XhoI.  This plasmid was provided to our lab by Dr. Craig Jordan.  
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4.2 General Protocols 

4.2.1 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Protein samples were prepared by suspending proteins in 4x SDS loading dye (240 mM 

Tris-HCl pH 6.8, 20% (v/v) glycerol, 8% (w/v) SDS, 16% (v/v) 2- mercaptoethanol, 0.01% 

(w/v) bromophenol blue) for a final concentration of 1x.  E. coli samples were resuspended in 

4x SDS loading dye for a final concentration of 3x.  Samples were boiled for 5 minutes and 

cooled before loading. 

SDS-PAGE was performed using a Mini-Protean 3 electrophoresis unit (Bio-Rad) as 

described by Laemmli (Laemmli, 1970).  Sample fractions were resolved on a 12% 

polyacrylamide gel (0.375 M Tris-HCl pH 8.8, 0.1% SDS, 12% degassed acrylamide:bis-

acrylamide (37.5:1), 0.05% (v/v) TEMED, and 0.05% (w/v) ammonium persulphate) with a 4% 

stacking gel (125 mM Tris-HCl pH 6.8, 0.1% SDS, 4% degassed acrylamide:bis-acrylamide 

(37.5:1), 0.1% (v/v) TEMED, and 0.05% (w/v) ammonium persulphate) in 1x running buffer 

(25 mM Tris-HCl pH 8.3, 190 mM glycine, 0.1% (w/v) SDS) at 180 V for 55 minutes.  

Proteins were visualized by Coomassie-staining or by Western analysis.  For Coomassie 

staining, SDS-PAGE gels were incubated in staining solution (0.12% (w/v) Coomassie Brilliant 

Blue R-250, 50% methanol, 10% acetic acid) for 1 hour and washed with destaining solution 

(40% methanol, 10% acetic acid) for 4 hours to overnight.  Destained gels were visualized and 

scanned using an Odyssey infrared imager (LI-COR Biosciences) at 700 nm. 

For Western analysis, proteins were transferred from SDS-PAGE gels to nitrocellulose 

membranes using a semi-dry electrophoretic transfer cell (Trans-Blot) at 15 V for 20 minutes in 

the presence of transblot buffer (48 mM Tris-HCl pH 8.3, 39 mM glycine, 20% (v/v) methanol, 

0.04% (w/v) SDS).  Membranes were blocked with Odyssey blocking buffer (LI-COR 

Biosciences) for 1 hour at room temperature, then incubated 45 minutes with primary antibody 

(diluted in Odyssey blocking buffer, 0.2% Tween-20) at 4°C.  Membranes were washed three 

times with PBT (PBS with 0.1% Tween-20) and incubated with a fluorescently labeled 

secondary antibody (diluted in Odyssey blocking buffer, 0.2% Tween-20) for 30 minutes at 

4°C.  Membranes were washed three times with PBT, and two times with PBS. Blots were 

visualized and scanned using an Odyssey infrared imager (LI-COR Biosciences). 
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4.2.2 Agarose Gel Electrophoresis 

PCR products and plasmids were visualized using agarose gel electrophoresis.  Samples 

were mixed with 6x loading dye (50% (v/v) glycerol, 0.2 M EDTA pH 8.3, 0.05% (w/v) 

bromophenol blue) for a final dye concentration of 1x.  Samples were resolved in an agarose 

gel consisting of 0.8 to 1% (w/v) ultrapure agarose in 1x TAE Buffer (40 mM Tris- acetate, 1 

mM EDTA, pH 8.0) and 0.5 µg/mL ethidium bromide.  Gels were run at 100 to 120 V for 30 to 

60 minutes in 1x TAE Buffer and photographed using a UV light transilluminator (Bio-Rad). 

4.2.3 Purification and Extraction of DNA 

PCR products were purified using a PCR cleanup kit (Qiagen/Bio-Basic) according to 

manufacturer’s instructions.  Restriction enzyme-digested plasmids were purified using a gel 

purification kit (Qiagen/Bio-Basic), according to manufacturer’s instructions. 

4.2.4 DNA Sequencing 

DNA samples were diluted to a concentration of 50 µg/mL.  DNA was sequenced at the 

Plant Biotechnology Institute, National Research Council of Canada.   

4.3 Polymerase Chain Reactions 

4.3.1 High Fidelity PCR 

High fidelity PCR reactions were used for gene amplification and library creation.  

Reactions (50 - 100 µL), contained 60 mM Tris-SO4 (pH 8.9), 180 mM (NH4)2SO4, 1.5 mM 

MgSO4, 200 µM dNTPs, 1 µM of forward and reverse primers, 50 - 200 ng template DNA, and 

1 Unit/50 µL of Platinum® Taq DNA Polymerase High Fidelity.  PCR products were amplified 

with a 2 minutes initial denaturation step at 95°C followed by 25 cycles of amplification.  Each 

cycle contained denaturation step of 94°C for 30 seconds, 55°C for 30 seconds, 68°C for 1 

minute per kilobase pair.  A final extension step of 10 minutes at 68°C was included. 

4.3.2 Low Fidelity PCR 

Low fidelity PCR was used to check plasmids for the product after cloning.  A standard 

PCR reaction was performed in a 50 µL reaction containing 1x Taq Buffer (10 mM Tris-HCl 

pH 8.3, 50 mM KCl, 1.5 mM MgCl2), 200 µM dNTP, 1 µM Primers, 10 - 300 ng template, and 

1 µL of Taq DNA Polymerase.  The DNA template was denatured with a 15 minutes 

denaturation step at 95°C, followed by 25 cycles of amplification.  Each amplification cycle 
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contained a denaturation step at 94°C for 30 seconds, an annealing step at 55°C for 30 seconds, 

and an extension step at 72°C for 1 minute per kilobase pair of DNA.  A final extension step of 

7 minutes at 72°C was included. 

4.3.3 E.coli Colony PCR 

Colony PCR was performed to verify the construction of an insert before subsequent 

plasmid purification.  A single colony was picked from an LB agar plate, containing the 

appropriate antibiotic.  The colony was resuspended in 150 µL of LB broth, containing the 

appropriate antibiotic.  One microlitre of the LB broth was used as the template for the PCR 

reaction using the low fidelity PCR protocol.  The remaining media was incubated at 37°C until 

the completion of the colony PCR.  If the PCR result was positive, then the sample was used to 

inoculate 5 mL of LB broth, containing the appropriate antibiotic for subsequent plasmid 

purification.  

4.3.4 Yeast Colony PCR 

Yeast colony PCR was performed to verify the homologous recombination of a DNA 

insert into a plasmid before subsequent plasmid purification and sequencing.  A single yeast 

colony was picked, resuspended in 20 µL of 0.02 N NaOH, heated at 95°C for 5 minutes, and 

centrifuged at 13,000 X g for 5 minutes.  Three microliters of the mixture was used as a 

template for the PCR reaction using the low fidelity PCR protocol (4.3.2) or high fidelity PCR 

protocol (4.3.1). 

 

4.4 General E.coli Protocols 

4.4.1 Bacterial Media 

Lysogeny Broth (LB): LB media was prepared with 1% (w/v) tryptone, 0.5% (w/v) 

yeast extract, 85.6 mM NaCl, and 1 mM NaOH in ddH2O.  Solid media contained 1.5% (w/v) 

agar. 

2x Yeast Extract and Tryptone Broth (2YT): 2YT media was prepared with 1.6% 

(w/v) tryptone, 1.0% (w/v) yeast extract, 85.6 mM NaCl, and 1 mM NaOH in ddH2O.  Solid 

media contained 1.5% (w/v) agar. 
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Super Optimal Broth with Catabolic Repressor Medium (SOC): SOC media was 

prepared with 2% (w/v) peptone, 0.5% (w/v) Yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2 , 10 mM MgSO4, 20 mM Glucose. 

Antibiotics: Antibiotics were prepared at a 1000x stock in ddH2O (or methanol for 

Chloramphenicol) and stored at -20°C.  The appropriate antibiotics were added at 

concentrations listed on Table 4.8 after the media had cooled to 55°C. 

Table 4.8.  Antibiotic Concentrations 
Antibiotic Concentration (µg/mL) 
Ampicillin (amp) 75 
Carbenicillin (carb) 50 
Chloramphenicol (cap) 5 
Kanamycin (kan) 25 
Tetracycline (tet) 5 

 

4.4.2 Strain Propagation 

Standard techniques were used to culture and propagate E. coli (Elbing and Brent, 

2001).  Unless otherwise noted, liquid cultures were grown at 37°C with shaking at 200 rpm. 

Cultures on solid media were grown overnight at 37°C. 

4.4.3 Plasmid DNA Preparation 

Plasmid DNA was prepared by inoculating 5 - 10 mL of media, containing the 

appropriate antibiotic with a single colony and grown to saturation.  Cells were collected by 

centrifugation at 4000 X g for 5 minutes and the supernatant was removed.  Plasmid DNA was 

purified using both Qiagen and Biobasic mini-preparation kits (modified Alkaline Lysis) as 

described by the manufacturer.  DNA concentration was determined using the NanoDrop 2000c 

spectrophotometer (Thermo Scientific)  

4.4.4 E. coli Transformation 

Bacterial cells were transformed using electroporation.  One microlitre of plasmid DNA 

at a concentration of 50 - 150 ng/µL was mixed with 50 µL of competent cells.  The mixture 

was transferred to an ice-cold electroporation cuvette.  Cells were then electroporated using a 

field strength of 12.5 kV/cm (Ec2 on Bio-Rad Micro Pulser).  Electroporated cells were rescued 
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with 500 µL of SOC media and incubated for 30 to 60 minutes at 37°C.  Cells were then plated 

onto agar plates, containing the appropriate antibiotic. 

4.5 General Yeast Protocols 

4.5.1 Yeast Media 

Synthetic Plates and Liquid Media: Synthetic media was prepared with 0.67% (w/v) 

yeast nitrogen base without amino acids and was supplemented with complete supplemental 

media (CSM) lacking the appropriate amino acid(s).  2% (w/v) dextrose or 2% (w/v) galactose 

supplemented with 1% (w/v) raffinose or sucrose was used as the carbon source.  Solid media 

contained 1.5% (w/v) agar. 

Synthetic media was defined by an S, followed by the type of sugar and any 

modifications to the media.  A negative sign indicates the removal of an amino acid or 

nucleotide.  A plus sign indicates a media supplement.  For example, a typical bait selection 

plate was SD H-, meaning the synthetic media was supplemented with dextrose (D) and lacked 

Histidine (H-). 

X-Gal Plates: X-Gal plates were prepared similar to the synthetic plates except they 

were supplemented with BU salts and 80 mg/L of 5-bromo-4-chloro-3-indolyl-β-D- 

galactopyranoside (X-gal). 10x BU salts were prepared by dissolving 70 g of Na2HPO4 · 7H2O, 

30 g of NaH2PO4 in 900 mL of ddH2O, and pH adjusted to 7.0.  The X-Gal solution was 

prepared by dissolving X-Gal in dimethyl formamide to a final concentration of 80 µg/mL.  

Yeast Peptone Dextrose Adenine (YPDA) Plates and Liquid Media:  YPDA media 

was prepared with 1% (w/v) yeast extract, 2% (w/v) peptone, 80 mg/L adenine, and 2% (w/v) 

dextrose in ddH2O. Solid media contained 1.5% (w/v) agar. 

4.5.2 Yeast Strain Propagation 

Standard techniques were used to culture and propagate S. cerevisiae (Geyer and Brent, 

2000).  Liquid cultures were grown at 30°C with shaking at 200 rpm.  Cultures on solid media 

were inverted and grown at 30°C.   

4.5.3 Plasmid DNA Preparation from Yeast 

Plasmids were isolated according to the “smash and grab” protocols previously 

described (Hoffman and Winston, 1987);(Geyer and Brent, 2000).  A single yeast colony was 
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used to inoculate 1.5 mL of appropriate synthetic amino acid dropout media and grown 

overnight at 30°C and 200 rpm.  Cells were pelleted by centrifugation at 10,000 X g for 2 

minutes.  The cell pellet was resuspended in 200 µL of yeast breaking buffer (2% (v/v) Triton 

X-100, 1% (v/v) SDS, 100 mM NaCl, 10 mM Tris -HCl pH 8.0, 1 mM EDTA).  Next, 300 µg 

of glass beads and 200 µL of phenol-chloroform-isoamyl alcohol (25:24:1, v/v/v) were added to 

the solution.  Yeast cell walls were disrupted by vortexing the mixture for 5 minutes.  The 

mixture was centrifuged for 5 minutes at 18,000 X g.  Approximately 50 to 100 µL of the DNA 

containing aqueous layer was removed.  Between 2 and 5 µL were used for transforming 

bacterial cells by electroporation.  The remaining samples were stored at -20°C.   

4.5.4 Yeast Lithium Acetate Transformation 

The high efficiency method previously described (Gietz and Schiestl, 2007) was used 

for library generation and for routine cloning.  Lithium acetate competent yeast cells were 

prepared by inoculating 25 mL 2x YPDA media and grown overnight at 30°C and 200 rpm.  

The cell density was measure spectrophotometry and using the conversion factor of 1.0 x 107 

CFU/mL at OD600 of 1.0.  2.5 x 109 cells were added to 500 mL of pre-warmed 2x YPDA for a 

concentration of 5 x 106 cells/mL.  The cells were grown at 30°C and 200 rpm to an OD600 of 

0.6 - 0.8.  Cells were collected by centrifuging 5 minutes at 3,000 X g and washed once in 250 

mL sterile water.  The supernatant was removed and the pellet was resuspended in 5 mL of 

sterile water.  The sample was centrifuged 5 minutes at 3,000 X g and resuspended in 5 mL of 

sterile frozen competent cell (FCC) solution (5% v/v glycerol, 10% v/v DMSO).  The 

competent cells were divided into 50 µL aliquots.  The cells were stored at -80°C or used 

immediately for transformation. 

A supermix was prepared for the number of transformants plus one extra for a control.  

The supermix consisted of 260 µL polyethylene glycol (50% (w/v) PEG -3350), 36 µL of 1 M 

LiAc, 50 µL of 2 mg/mL single-stranded carrier DNA, 14 µL plasmid DNA (1 µg).  The 

plasmid DNA was prepared by restriction digestion followed by gel purification.  When 

performing this protocol for homologous recombination a 30 µL PCR insert was included.  This 

PCR insert was amplified using the high fidelity PCR protocol mentioned in 4.3.1 followed by 

PCR purification.  Aliquots containing 50 µL of competent cells were centrifuged at 13,000 X g 

for 2 minutes.  After the supernatant was removed, the cell pellet was resuspended in 360 µL of 

the supermix.  The mixture was incubated for 45 minutes at 42°C, centrifuged for 30 seconds at 
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13,000 X g, and the supernatant was removed.  The pellet was resuspended in 200 µL sterile 

water and 150 µL was plated on the appropriate media.  The plates were incubated for 1 - 3 

days at 30°C.  Plates containing libraries were scraped and resuspended in FCC solution and 

stored at -80°C.  Individual colonies were isolated from plates containing a single transformant 

and prepared for sequencing according to section 4.5.3.  

4.5.5 Yeast Two-Hybrid Interaction Mating Assay 

Yeast interaction mating (Kolonin et al., 2000) was  used  to  test  interactions between  

the  scFv library and the corresponding bait. 

Bait genes were cloned into the pEG202 bait plasmid (Figure 4.3) using the lithium 

acetate transformation protocol (section 4.5.4) into the bait strain, EY111.  Cells were plated on 

SD H- plates as the bait plasmid has the histidine auxotrophic selection marker.  Proper clones 

were confirmed first by colony PCR (section 4.3.4) followed by sequencing (section 4.2.4).   

 Prey genes were cloned into pJG4-5 (Figure 4.4) and KB41 (Figure 4.5) bait plasmids 

using the lithium acetate transformation protocol (section 4.5.4) into the prey strain EY93.  

Serial dilutions were plated on SD W- plates (prey plasmids have the tryptophan auxotrophic 

selection marker) to determine the library diversity.  The remaining cells were plated on a large 

SD W- plate and incubated 2 days at 30°C.  Cells were scraped off the plates and resuspended 

in FCC solution and stored at -80°C. 

The bait strain was prepared for mating by inoculating 10 mL of SD H- and incubating 

overnight at 30°C and 200 rpm.  The cells were pelted by centrifugation at 4000 X g for 10 

minutes.  The pellet was resuspended in 1 mL of sterile water and the number of bait and prey 

cells were calculated by the optical density using the conversion factor where OD600 of 1.0 is 

equal to 1.0 x 107 CFU/mL.  Prey and bait strains were combined in a 1:2.5 ratio respectively.  

In a total volume of 300 µL, 1.0 x 107 prey cells were mixed with 2.5 x 107 bait cells.  The 

entire 300 µL yeast mixture was plated on a large YPDA plate and incubated overnight at 30°C. 

The following day, plates were scraped and cells resuspended in 1 mL of FCC solution.  

Serial dilutions were made and plated in triplicate on: YPDA plates (to determine the total 

number of cells), SD H-W- plates (to determine the concentration of diploids per mL of media), 

and SGR H-W-L-A- Xgal+ plates (to estimate the number of interactions per mL of media).  

The remaining cells were stored at -80°C.  Mating efficiency was calculated by dividing the 

number of colonies on the YPDA plates by the number of diploids on the SD H-W- plates.  The 
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positive (blue) colonies on SGR H-W-L-A- Xgal+ were mixed with FCC solution and stored at 

–80°C for further analysis. 

For each variable, sixteen blue colonies from the SGR H-W-L-A- Xgal+ plates were 

used to inoculate 100 µL of SD W- in a 96-well plate.  The media was incubated for 48 hours at 

30°C.  The culture was transferred using the 96-pin replicator to a SD H-W- plate to confirm 

they contained both bait and prey plasmids.  The culture was also transferred to a SGR H-W-L- 

plate and SD H-W-L- plate to confirm the cells dependence on galactose as a sugar source, and 

a SGR H-W-A- Xgal+ plates to observe the strength of the interactions.  The 96-pin replicator 

was washed between replicating in 10% bleach for 1 minute, rinsed with water by raising and 

lowering the replicator five times, sterilized in 95% ethanol, and dried using a flame.  Plates 

were incubated for 2 - 7 days at 30°C. 

 

4.6 Phage Display 

4.6.1 Kunkel Mutagenesis 

4.6.1.1 Template Purification 

A single colony of CJ236, containing the HP153/anti-MBP scFv phagemid, was used to 

inoculate 1 mL of 2YT/carb/cap medium supplemented with M13K07 helper phage and 

incubated at 200 rpm and 37°C.  After 2 hours, kanamycin was added (25 µg/mL) to select for 

clones that were co-infected with the M13K07 helper phage.  Infected cells were shaken at 200 

rpm and 37°C for 6 hours and then transferred to 30 mL of 2YT/carb/kan/uridine medium.  The 

medium was then incubated overnight at 200 rpm and 37°C.  Phage were purified from the 

overnight medium and described in section 4.6.3.   

Purification of the uracil-containing ssDNA (dU-ssDNA) was performed at room 

temperature using a modified version of the Qiagen QIAprep Spin M13 kit protocol.  Following 

phage purification, 7 µL of buffer MP (Qiagen) was added to 500 µL of the phage solution and 

incubated for 2 minutes.  The sample was then added to a QIAprep spin column (Qiagen) and 

centrifuged for 30 seconds a 10,000 X g.  The flow-through was discarded as the phage 

remained bound to the column.  To separate the DNA from the phage protein coat, the column 

was washed twice by the addition of 0.7 mL of buffer MBL (Qiagen) and centrifuged 30 

seconds at 10,000 X g.  The DNA remained bound to the column matrix and the protein coat 
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containing flow-through was discarded.  The column was washed an additional two times by 

the addition of 0.7 mL of buffer PE (Qiagen) and centrifuged 30 seconds at 10,000 X g to 

remove additional salts and proteins.  The column was centrifuged for an additional 30 seconds 

to remove any residual buffer PE.  The dU-ssDNA was then eluted from the column by the 

addition of 100 µL of buffer EB (Qiagen) to the center of the membrane, incubated for 10 

minutes, and then centrifuged at 10,000 X g for 1 minute into a clean microcentrifuge tube. 

4.6.1.2 Synthesis of Covalently Closed Circular dsDNA (CCC-dsDNA) 

Although the library size used in this thesis is less than 105 members, the procedure 

described below is sufficient for the construction of a library of up to 1010 members.  

First, mutagenic oligonucleotides were phosphorylated using 0.6 µg of the 

oligonucleotide, 2.0 µL 10x TM buffer, 2.0 µL 10 mM ATP, 1.0 µL 100 mM DTT, and ddH2O 

for a final volume of 20 µL.  After the addition of 20 units of T4 polynucleotide kinase, the 

reaction was incubated for 1 hour at 37°C.  After the phosphorylation reaction was complete, 

oligonucleotides were immediately annealed to the dU-ssDNA template under the following 

conditions: 20 µg of dU-ssDNA, 20 µL 10x TM buffer, 20 µL of each of the phosphorylated 

oligonucleotides, and ddH2O to a final volume of 250 µL.  The reaction was then incubated at 

90 °C for 3 minutes, 50°C for 3 minutes, and then 20°C for 5 minutes.  

The CCC-dsDNA was synthesised from the annealed oligonucleotide/template mixture 

by the addition of 10 µL of 10 mM ATP, 10 µL 25mM dNTP mix, 15 µL 100 mM DTT, 30 

units of T4 DNA ligase, and 30 units of T7 DNA polymerase.  The reaction was incubated 

overnight at 20°C.  The DNA was then purified and desalted using the Qiagen QIAquick DNA 

purification kit protocol with the following changes: First, 1 mL of buffer QG (Qiagen) was 

added to the annealed oligonucleotide/template mixture.  This mixture was separated and 

applied to two columns.  Second, the CCC-dsDNA was eluted from each column membrane 

using 35 µL of ultrapure irrigation USP water following 2 minutes incubation.   

4.6.2 Phage Display Library Creation 

Following the creation of the CCC-dsDNA library, the phage display library was 

created and amplified in a bacterial host.  The E. coli SS320 strain (E. coli MC1061 strain with 

the F’ episome from XL1-blue) was used as it has both a high electroporation efficiency of 
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MC1061 with the ability to be infected by M13 helper phage conferred by the F’ episome 

(Tonikian et al., 2007).  

First, 5 µg of CCC-dsDNA, 80 µL of electrocompetent SS320 cells, and ultrapure water 

for a final volume of 350 µL, were added to a chilled electroporation cuvette.  Cells were 

electroporated with a Bio-Rad Gene Pulser with the following settings: 2.5 kV field strength, 

200 ohms resistance, and 25 µF capacitance.  Cells were immediately rescued with 1 mL of 

SOC medium and transferred to a baffled flask containing 22 mL of pre warmed SOC.  The 

cuvette was then wash twice more with SOC and transferred to the flask for a final volume of 

25 mL.  The cells were incubated for 30 minutes at 200 rpm and 37°C.  To determine the 

library diversity, serial dilution were plated on 2YT/carb plates and incubated overnight at 

37°C.  The liquid culture was transferred to a 2 L baffled flask containing 500 mL of 

2YT/carb/kan medium and incubated overnight at 200 rpm and 37°C.  The following morning 

the phage library was purified using the following protocol (4.6.3).   

4.6.3 Phage Purification 

An overnight culture of phage infected E. coli were centrifuged for 10 minutes at 16,000 

X g and 4°C.  The supernatant was transferred to a tube containing 1/5 volume of PEG/NaCl 

and incubated for 30 minutes on ice to precipitate the phage.  The mixture was centrifuged for 

10 minutes at 12,000 X g and 4°C.  The supernatant was discarded and then was centrifuged for 

an additional 2 minutes at 2,000 X g and 4°C.  The remaining supernatant was removed with a 

pipette.  The phage pellet was resuspended in 1:25 of the overnight culture volume in PBS.  To 

pellet the remaining insoluble matter, the sample was centrifuged for 5 minutes at 27,000 X g 

and 4°C.  The purified phage was then transferred to a clean tube and used immediately for 

selection experiments, stored at 4°C or at -80°C in 10% glycerol.  

4.6.4 Selection of Phage against Adsorbed Antigen 

Maxisorp immunoplate wells were coated with 100 µL of 5 µg/mL Protein A in coating 

buffer (50 mM NA2CO3, adjusted to pH 9.6 using concentrated HCl) and incubated at room 

temperature for 2 hours.  The coating solution was removed and the wells were blocked with 

200 µL of PBS with 0.2% BSA.  After incubation for 1 hour, wells were washed four times 

with PT buffer.  100 µL of the phage library was added to each of the coated wells in a 

concentration of 1 x 1012 phage/mL in PBT buffer.  The solution was incubated at room 
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temperature for 2 hours.  The phage solution was removed and the wells were washed ten times 

with PT buffer.  The bound phage were eluted by the addition of 100 µL of 100 M HCl and 

incubated for 5 minutes at room temperature.  The solution was neutralized by the addition of 

27 µL of 1.0 M Tris-HCl (pH 8.0).  The eluted phages were amplified as described in section 

4.6.5. 

4.6.5 Phage Amplification 

Phage amplification was performed by the addition of 60 µL of eluted phages to 600 µL 

of actively growing E. coli XL1-Blue and incubated for 20 minutes at 37°C and 200 rpm.  To 

determine the enrichment, ten-fold serial dilutions of the infected E. coli culture was plated on 

2YT/carb plate and incubated overnight at 37°C.  The culture was then infected with M13K07 

helper phage for a final concentration of 1010 phage/mL and incubated for 45 minutes at 37°C 

and 200 rpm.  The culture was transferred to a baffled flask containing 16.7 mL of 

2YT/carb/kan medium and incubated overnight at 200 rpm and 37°C.  The following morning, 

the phage library was purified using the protocol 4.6.3.   

4.6.6 Protein Biotinylation  

To allow non-specific immobilization of maltose binding protein (MBP) to Maxisorp 

plate wells, MBP was biotinylated using EZ-Link NHS-SS-biotin.  First, MBP was expressed in 

BL21 using the pHFT2-MBP plasmid obtained from Dr. Koide’s lab at the University of 

Chicago (Koide et al., 2007) and purified using a 6x-His column.  The protein was then diluted 

to 2 mg/mL using MOPS buffer (50 mM MOPS, 250 mM NaCl, pH 6.5).  It was dialyzed in 

200 mL of the same buffer overnight, replacing the buffer 3 times.  The protein was diluted 

with the MOPS buffer for a final concentration of 1 mg/mL.  EZ-Link NHS-SS-biotin was 

dissolved in ddH2O for a final concentration of 1 mg/mL.  The biotinylation reagent solution 

was then mixed with the MBP solution with a 1:19 ratio, respectively.  The mixture was 

incubated at room temperature for 60 minutes with occasional gentle mixing.  1/10 volume of 

1M Tris-CL buffer (pH 7.5) was added to quench the reaction.  To remove the unreacted biotin, 

the solution was dialyzed in PBS buffer (pH 7.5) overnight, replacing the buffer three times.  

Protein concentration was determined using the Bradford assay and aliquots were stored at 4°C 

for short-term storage or -80°C in 10% glycerol for long-term storage.  
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4.6.7 Selection of Phage against Neutravidin-Immobilized Antigen 

A modified version of the phage display technique described in section 4.6.4 was used 

when MBP was the immobilized antigen.  First, MBP was biotinlyated as described in section 

4.6.6.  Library phage was combined with the biotinylated MBP for a final concentration of 1 x 

1012 phage/mL and 10 nM MBP.  The solution was incubated at room temperature for 2 hours.  

Maxisorp immunoplate wells were coated with 100 µL of 5 µg/mL Neutravidin solution in 

coating buffer (50 mM Na2CO3 pH 9.6) and incubated at room temperature for 2 hours.  The 

coating solution was removed and the wells were blocked with 200 µL of PBS with 0.2% BSA.  

Wells were washed four times with PT buffer followed by the addition of 100 µL of the 

phage/antigen mixture to the Neutravidin-coated wells.  After incubating 15 minutes at room 

temperature, the phage solution was removed and wells were washed 10 times with PT buffer.  

Bound phages were eluted by the addition of 100 µL of 100 M HCl and incubated for 5 minutes 

at room temperature.  The solution was neutralized by the addition of 27 µL of 1.0 M Tris-HCl 

(pH 8.0).  Eluted phages were amplified as described in section 4.6.5.   

4.6.8 Quantification of Phage-Antigen Interaction Using Enzyme-Linked 

Immunosorbent Assay (ELISA) 

To determine relative affinities of individual anti-MBP scFv clones, direct binding 

ELISAs were performed.  First, purified library phage was combined with the biotinylated 

MBP for a final concentration of 1 x 1012 phage/mL and 10 nM MBP.  The solution was 

incubated at room temperature for 2 hours.  Maxisorp immunoplate wells were coated with 100 

µL of 5 µg/mL Neutravidin solution in coating buffer (50 mM Na2CO3, pH 9.6) and incubated 

at room temperature for 2 hours.  The coating solution was removed and the wells were blocked 

with 200 µL of PBS with 0.2% BSA.  Wells were washed four times with PT buffer followed 

by the addition of 100 µL of the phage/antigen mixture to each of the Neutravidin-coated wells 

and incubated for 15 minutes.  The phage solution was removed and wells were washed eight 

times with PT buffer.  Next, 100 µL of horseradish peroxidase/anti-M13 antibody conjugate 

diluted 1:3000 with PBT was added to wells and incubated for 30 minutes at room temperature.  

The antibody solution was removed and wells were washed six times with PT buffer and two 

times with PBS.  Next, 100 µL of TMB substrate (Sigma) was added to the wells and incubated 

for 2 - 10 minutes until colour had developed.  The reaction was stopped using 100 µL of 1.0 M 
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H3PO4.  Absorbance was measured at 450 nm using SpectraMax M5 microplate reader 

(Molecular Devices).  

4.7 Thermal Stability Assay 

4.7.1 ScFv Expression  

The SHuffle E. coli strain (NEB) was transformed with the pET-LP3 protein expression 

plasmid containing the desired scFv gene according to section 4.4.4.  A colony from the freshly 

transformed E. coli was used to inoculate 10 mL of 2YT/carb and grown overnight at 30°C and 

200 rpm.  The overnight culture was then used to inoculate 250 mL to 1 L of 2YT/carb in a 

baffled flask.  The culture was incubated at 30°C and 200 rpm until mid-log phase (OD600 0.500 

to 0.800).  Protein expression was induced with 100 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) for a final concentration of 0.1 mM.  The culture was incubated 

overnight at room temperature and 200 rpm.  Cells were centrifuged 30 minutes at 4°C and 

6000 X g and the supernatant was removed.  The pellet was used immediately for protein 

purification as described in section 4.7.2 or stored at -80°C until needed. 

4.7.2 ScFv Strep-Tactin Purification 

The cell pellet containing cells expressing scFvs of interest was resuspended in 1/10 of 

the overnight volume in 1x Strep-Tactin Wash Buffer (150 mM NaCl, 100 mM Tris-HCl, 1 

mM EDTA, pH 8.0).  Cells were lysed at 4°C using a cell disruptor (Constant Systems LTD) 

with 10,000 PSI.  The insoluble fraction was pelleted by centrifugation for 45 minutes at 27,000 

X g and 4°C.  The scFv containing supernatant was removed and filter purified using a 0.8 µm 

syringe-driven filter (Millipore).  The solution was then added to a 250 µL bed volume of 

prewashed Strep-tactin, a strepavidin derivative, Superflow Agarose (Novagen) which has the 

theoretical capacity to yield up to 0.7 mg of purified scFvs.  The entire sample was allowed to 

pass though the column using gravity flow.  The column was then washed five times with 500 

µL of 1x Strep-tactin wash buffer.  Samples were collected at each step for further analysis if 

needed.  The bound protein was then eluted by the addition of 250 µL of 1x Strep-Tactin 

Elution Buffer (150 mM NaCl, 100 mM Tris-HCl, 1 mM EDTA, 2.5 mM desthiobiotin, pH 

8.0).  The elution step was repeated five times with each elution fraction collected separately.  

Success of the purification was determined by analysis on SDS-PAGE gel (section 4.2.1) and 

protein concentrations of the eluted fractions were determined by the Bradford assay. 
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4.7.3 Thermal Stability Assay 

ScFv melt curves were generated using a modified version of the high-throughput 

thermal scanning method as described by Laviner et al. (2009).  After protein purification, the 

scFv concentration was determined using the Bradford assay.  ScFvs were diluted to a 

concentration of 10 µM in Strep-tactin Elution Buffer.  One µL of 300x SYPRO Orange 

(provided at 5000x stock concentration) was added to 19 µL of scFv solution.  A sample used 

for background correction was created by loading a well with 1 µL of 300x SYPRO Orange to 

19 µL of Strep-tactin Elution Buffer without any protein.  Samples were loaded in triplicate into 

a 0.1 mL MicroAmp Fast Optical 96-well reaction plate (Applied Biosystems) and sealed with 

MicroAmp optical adhesive film (Applied Biosystems).  Samples were centrifuged for 5 

minutes at 3700 X g to ensure the samples were at the bottom of the well and bubble free.  

Thermal denaturation was performed using a StepOnePlus Real-time PCR system (Applied 

Biosystems) with 0.2°C per 12 seconds steps.  A melting curve was generated by measuring the 

fluorescence intensities after each step using a 490 nm excitation filter and a 575 nm emission 

filter.  

Calculations of the scFv Tms and visualization of the melt curves were performed using 

a Differential Scanning Fluorimetry (DSF) tool (Niesen et al., 2007).  This Excel program is 

freely provided by the Frank Niesen lab (ftp://ftp.sgc.ox.ac.uk/pub/biophysics).  This worksheet 

calculates the Tm values using the first derivative curve but to achieve a more accurate fitting to 

the Boltzmann equation, GraphPad Prizm was used.  Detailed descriptions of the method are 

also available (Niesen et al., 2007).  

 

4.8 Mammalian Cell Studies 

The effect of anti-Abl1-SH3 scFvs on chronic myelogenous leukemia cells were 

conducted with the K562 cell line obtained from ATCC.  Cells were cultured in Iscove’s 

Modified Dulbecco’s Media (IMDM) supplemented with 10% fetal bovine serum, 100 IU/mL 

penicillin and 100 mg/mL streptomycin.  Cells were grown at 37°C with 5% CO2. 

K562 cells were transiently transfected with pMSCV plasmids using the Nucleofector II 

system (Amaxa Biosystems) according to manufacturer’s instruction.  First, 1 x 106 cells were 

suspended in 100 µL of nucleofector solution.  5 µg of plasmid DNA was added to the solution.  

Nucleofection was performed using program T-016.  The cells were immediately rescued by 
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the addition of 500 µL of pre-warmed culture media (IMDM supplemented with 10% fetal 

bovine serum, 100 IU/mL penicillin and 100 mg/mL streptomycin).  Cells were grown at 37°C 

with 5% CO2.  

Cell viability was assessed by staining the cells with trypan blue and counting cells 

using a hemocytometer.  The transfection efficiency was determined by measuring the YFP 

expression using Coulter’s Epics XL flow cytometer.  
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5 Results 

5.1 Specific Aim 1: Increase ScFv Stability Using Novel Linkers 

5.1.1 Introduction 

Permutation of VL and VH domains by joining them together using multiple linkers was 

first shown to be possible by Brinkmann et al. (1997) with their permutated scFv (pFvs) design.  

Their pFv (referred to as Model X) retained specificity and affinity for its antigen.  Although 

the thermal stability of this permutated scFv did not show an improvement over the “standard” 

unpermutated scFv, it still retained 25% of its binding activity after 24 hours incubation at 

37ºC.  We hypothesised that permutating an scFv to increase the number of peptide linkers 

joining VL and VH domains would increase scFv stability.  We designed two new permutated 

scFvs (Table 5.1), named Model 1 (Figure 5.1C) and Model 3 (Figure 5.1D).  These permutated 

scFvs had an increased number of peptide linkers that joined VH and VL domains relative to the 

unpermutated scFv.  

Previous attempts by the Geyer lab to purify Model X, 1, and 3 using a modified pET 

expression plasmid, pET-LP1, were unsuccessful.  This plasmid expressed scFvs using a T7 

inducible promoter with an C-terminal His-Tag followed by a pelB leader sequence.  In 

previous studies, Models 1 and 3 were successfully expressed in the periplasm of E. coli strain 

BL-21 and after isolation of Models by osmotic shock, pFvs remained in the soluble fraction.  

However, pFvs could not be purified further since they did not bind to the Ni2+- NTA column.  

These results, combined with our inability to purify other scFvs using C-terminal His tags 

(unpublished), suggested that this affinity tag was not suitable for purifying scFvs. 

Following these experiments, we developed new expression plasmids, pET-LP2 and 

pET-LP3 (Figure 4.1), to express scFvs.  pET-LP2 was a modified pET-LP1 plasmid that 

included a N-terminal Strep-tag.  The pET-LP3 plasmid was modified to include a N-terminal 

Strep-tag and to remove the pelB leader sequence.   

Table 5.1.  pFv’s Permutated Sequences 
 pFv Permutated Sequence 

Model X VL(1-42)/GSSAGG/VH(43-END)/(G3S)3/VH(1-42)/SSAGG/VL(43-END) 

Model 1 VL(1-42)/(G3S)3/VH/(SG3)3/VL(43-END) 

Model 3 VL(1-42)/(G3S)3/VH(1-42)/(G3S)2/VL(43-END)/(SG3)3/VH(43-END) 
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Figure 5.1.  Schematics of Permutated ScFvs.  
The standard unpermutated scFv (A) is included for reference.  Arrows indicate the direction of 
synthesis from the N- to C-terminis.  Peptide Linkers are shown in blue.  In the top row of 
images, base-loops are depicted as circular loops located at the bottom of the variable regions.  
Schematic representations are included in the bottom row.  Numbered triangles represent the 
orientation of strands in β sheets.  Model X pFv (B) connects the VL and VH though the base-
loop regions.  Model 1 (C) connects two fragments together using the base-loop of the VL 
domain.  The N-terminal end of the VL base loop is attached to the C-terminal of the VH chain.  
The C-terminal of the VH is attached to the C-terminal end of the VL base loop, thus completing 
the formation of a single chain protein.  Similar to Model 1, in Model 3 (D) the N-terminal end 
of the VL base loop is attached to the C-terminal of the VH chain.  In this model, the N-terminal 
end of VH base-loop is connected back to the VL chain at the C-terminal end of the base-loop.  
The single chain is completed with the C-terminal of the VL connected to the C-terminal end of 
the VH base-loop. 
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Further, we obtained a protein expression strain, SHuffle (NEB), which was engineered 

to allow the formation of disulphide-bonds in the cytoplasm.  This modifications in the SHuffle 

strain, such as the expression of disulfide bond isomerase DsbC in the cytoplasm and the 

lacking two reductases (trxB and gor), were thought to favour the expression of proteins that 

rely on disulphide-bonds for stability, such as scFvs (de Marco, 2009).  

We performed experiments to determine if scFvs could be expressed and purified using 

these new expression plasmids and Shuffle strain.  Upon successful purification, thermal 

stability assays on the permutated scFvs were performed. 

 

5.1.2 Optimization of ScFv Expression 

pET-LP1 plasmids encoding standard and permutated scFvs were used to transform E. 

coli XL1-Blue.  Plasmids were amplified and purified as per section 4.4.3.  Genes encoding 

scFvs were isolated by digesting plasmids with EcoRI and SalI and gel purifying DNA 

fragments (Section 4.2.3).  Purified genes were cloned into pET-LP2 and pET-LP3 using 

restriction cloning.  Following sequence verification, scFvs were expressed under a variety of 

conditions to optimize expression by varying Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

concentration, induction time, and incubation temperature.  There was no noticeable increase in 

scFv expression using the pET-LP2 expression plasmid with the pelB leader sequence over 

pET-LP3 plasmid.  Following expression using pET-LP2, the Strep-tactin purified scFvs 

showed multiple bands on a Coomassie-stained SDS-PAGE gel.  Further, there was no 

noticeable increase in expression when IPTG concentration was increased above 0.1 mM.  

However, after IPTG induction, incubating the scFv expression culture at room temperature 

increased pFv levels in the soluble fraction compared to levels observed when the culture was 

incubated at 30ºC or 37ºC.  Further, we observed that 4 hours incubation following induction 

was insufficient for high levels of scFv expression, whereas 24 hours after induction, high 

levels of scFvs were detected. 

We also compared scFv expression in the SHuffle strain to the BL21 expression strain.  

Expression levels were higher for pFvs expressed in the SHuffle strain (Figure 5.2).  As a 

result, we expressed scFvs in pET-LP3 plasmids in the SHuffle strain at room temperature with 

using 0.1 mM IPTG for induction. 
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5.1.3 Purification of Permutated ScFvs 

After optimization, pFvs were expressed according to Section 4.7.1, followed by Strep-

tactin purification according to Section 4.7.2 (Figure 5.3).  Due to the appearance of multiple 

bands, Western analysis was performed to identify the correct location of the pFv (Figure 

5.3B).  

5.1.4 Thermal Stability of Permutated ScFvs 

Thermal stability testing of the unpermutated scFv and pFvs was performed according 

to Section 4.7.3 with one exception; proteins were diluted to 9 µM (Figure 5.4).  The 

unpermutated scFv had a calculated Tm of 55.0 ± 0.1ºC.  Model X had a Tm calculated at 44.5 ± 

0.2ºC.  Both Model 1 and Model 3 showed improved stability with calculated Tms of 64.0 ± 

0.8ºC and 67.1 ± 0.4ºC, respectively. 

                    
Figure 5.2.  Comparison of ScFv and pFv Expression Levels Using BL21 and SHuffle 
Strains. 
Unpermutated scFv (A) and the Model X permutated scFv (B) were expressed using pET-LP3 
in BL21 and SHuffle expression bacteria strains.  IPTG induction is indicated by a + sign, 
whereas a – sign indicates that no IPTG was added to the media.  Following induction, cells 
were incubated at room temperature and samples were removed at 0, 4, and 24 hours post IPTG 
induction.  The whole bacterial lysate was resolved on a SDS-PAGE gel.  Proteins were 
visualized by Coomassie staining.  Arrows indicate the expected location of the scFv or pFv. 
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Figure 5.3.  Strep-tactin Purification of pFvs.  
pFvs were expressed in the SHuffle expression strain using the pET-LP3 plasmid.  At 24 hours 
post-IPTG induction, scFvs were purified using strep-tactin purification (4.7.2).  The lane 
labeled with “Ladder” refers to molecular weight marker ladder.  Following purification, pFvs 
were detected by Coomassie staining (A) and by Western analysis using an anti-SBP antibody 
(B).  
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Figure 5.4.  Melting Temperatures of Permutated ScFvs 
The thermal stability assay was performed on permutated and unpermutated scFvs as per 
Section 4.7.3.  Briefly, scFvs were diluted to a concentration of 9 µM in Strep-tactin elution 
buffer.  Samples were loaded in triplicate into a 96-well plate.  Thermal denaturation was 
performed using the Step One Plus Real-time PCR system (Applied Biosystems) with 0.2°C per 
12 seconds steps.  Calculations of the scFv Tms and visualization of melting curves were 
performed using a Differential Scanning Fluorimetry (DSF) tool.  A melting curve of all pFvs 
compared to the unpermutated scFv is shown.  Assays were repeated three times with a 
standard deviation of ± 0.1ºC for the unpermutated scFv, ± 0.2ºC for Model X,  ± 0.8ºC for 
Model 1, and ± 0.4ºC for Model 3. 
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5.1.5 Purification of Cyclic and Lariat ScFvs 

Following optimization of scFv expression and purification, attempts were made to determine 

the thermal stability of cyclic and lariat scFvs.  Cyclic and lariat scFvs were created using a 

permutated design of the intein-mediated protein splicing reaction (Scott et al., 1999).  The 

scFv was synthesised with the C-intein domain fused to the N-Terminal of the scFv and the N-

intein domain fused to the C-Terminal with a short peptide linker (Figure 5.5A).  The linker 

was included to provide sufficient length for the N-intein and C-intein domains to interact.  

Catalysis of the intein processing reaction releases the N-intein domain.  However, a mutation 

of an asparagine to alanine in the C-intein domain stops the reaction at this intermediate step 

producing a lariat scFv (Barreto et al., 2009) (Figure 5.5C).  If the C-intein domain is not 

mutated, the intein processing reaction will continue producing the cyclic scFv (Figure 5.5D).   

 

 

 

 

 

 

Figure 5.5.  Creation of Lariat and Cyclic ScFvs 
IN and IC represents the N-terminal and C-terminal domains of the intein, respectively.  The 
standard peptide linker joining the VL and VH domains is shown in blue.  (A) The protein is 
synthesised with the IC fused to the N-Terminal of the scFv and the IN fused to the C-Terminal 
with a short peptide linker (red).  (B) The linker allows the IN and the IC domains to come into 
contact.  (C) Catalysis of the intein processing reaction releases the IN domain.  Mutation of an 
asparagine in the IC domain to alanine stops the reaction at this lariat intermediate.  (D) If the IC 
domain is not mutated, the intein processing reaction will continue producing the cyclic scFv. 
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pET-LP1 plasmids encoding cyclic and lariat scFvs were used to transform the E. coli 

strain XL1-Blue.  Plasmids were amplified and purified as per Section 4.4.3.  Plasmids were 

digested with EcoRI and SalI followed by gel purification (4.2.3) Genes were cloned into pET-

LP3 using restriction cloning and plasmids with the correct inserts were verified by DNA 

sequencing (4.2.4).  Cyclic and lariat scFvs were expressed according to Section 4.7.1 and 

purification was performed according to Section 4.7.2.  We were unable to purify samples to 

homogeneity as indicated by multiple bands on the Coomassie-stained gel (Figure 5.6).  One 

band in particular, the unprocessed form of the lariat scFv, has been previously identified 

(Bernhard, 2008).  However, there are still multiple bands that have not been identified.    

  

 

 

 
 
Figure 5.6.  Strep-tactin Purification of Cyclic and Lariat ScFvs  
Cyclic and lariat scFvs were expressed in the SHuffle expression strain using the pET-LP3 
plasmid.  At 24 hours post-IPTG induction, scFvs were purified using strep-tactin purification 
(4.7.2).  Following purification, samples were resolved on a 1% SDS-PAGE gel and scFvs were 
detected with Coomassie stain.  Arrows indicate the expected location of the corresponding 
scFv.    
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5.1.6 Thermal Stability of Cyclic and Lariat ScFvs 

Although we were unable to purify cyclic and lariat scFvs to homogeneity, we assayed 

the thermal stability of the mixture.  Protein levels were quantitated using a Bradford assay and 

were diluted to a concentration of 10 µM for thermal stability testing.  Thermal stability testing 

of cyclic and lariat scFvs was performed according to Section 4.7.3 and results are shown in 

Figure 5.7.  Tms of cyclic and lariat scFvs were 43.2 ± 0.1ºC and 44.2 ± 0.2ºC, respectively.  

Both of these were lower than the linear scFv, which has a Tm of 46.0 ± 0.1ºC.   

 

 
Figure 5.7.  Cyclic and Lariat ScFv Melting Curves 
The thermal stability assay was performed on cyclic and lariat scFvs as per Section 4.7.3.  
Briefly, scFvs were diluted to a concentration of 10 µM in Strep-tactin elution buffer.  Thermal 
denaturation was performed using the Step One Plus Real-time PCR system (Applied 
Biosystems) with 0.2°C per 12 seconds steps.  Calculations of the scFv Tms and visualization of 
melting curves were performed using a Differential Scanning Fluorimetry (DSF) tool.  A 
melting curve of the linear scFv is included for comparison. 
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5.2 Specific Aim 2: Increase ScFv Stability Using Variable Domain Framework 

Mutations 

5.2.1 Introduction 

We hypothesised that by reducing the conformational flexibility of the scFv through 

framework mutations, we would be able to decrease the entropy of unfolding.  This would 

result in an scFv with increased stability.   

We used phage display to screen a library of mutant anti-maltose-binding protein 

(MBP) scFvs for their ability to bind MBP.  We selected sites in framework regions of the scFv 

in a semi-rational manner using the proline mutation and glycine to alanine mutation strategy as 

first shown by Brinkman et al. (1987) and recently shown to work with scFvs (Robert et al., 

2009).  Framework mutations were performed on an anti-MBP scFv using Kunkel mutagenesis.  

We used phage display to identify mutations that did not affect the ability of the scFv to bind 

MBP.  We hypothesized that these mutations would have enhanced thermostability. 

5.2.2 Designing Mutations to Stabilize ScFvs 

To determine locations that could tolerate a proline or alanine substitution, the 

frequency of these amino acids at specific locations were determined using a multiple sequence 

alignment obtained using data from PDB blast (Appendix 2).  The reference sequences used 

were VL and VH domains of the anti-ubiquitin Fab (PBI reference: 3DVG) (Newton et al., 

2008).  Although 3DVG was a Fab, VL and VH domains were used as the blast reference since 

our anti-MBP scFv framework was identical to 3DVG.  We focused on identifying loops that 

could tolerate a proline substitution and glycine positions that could tolerate an alanine 

mutation.  We hypothesized that if these substitutions exist in nature, that they would be 

tolerated in the anti-MBP scFv.  CDR regions were not mutated, as they were responsible for 

antigen-binding.  Three amino acids on each side of the CDRs were also not mutated as to 

avoid interfering with antigen binding.  Glycine positions that contained at least one alanine, as 

determined by Blast results, were selected for mutation.  The secondary structure of the scFv 

was used to determine possible sites for proline substitutions.  Only loop regions were 

considered for proline substitution.  Positions where an scFv contained at least one proline in 

PDB Blast results were selected for mutation.  A total of twenty-six positions were identified as 

mutation candidates (Table 5.2, Figure 5.8).  
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Figure 5.8.  Location of Alanine and Proline Mutations in Anti-MBP ScFv.   
A modified ribbon diagram of VL (left) and VH (right) domains (PBI ID: 3DVG (Newton et 
al., 2008)) with mutation sites shown.  The short peptide linker has been manually inserted and 
shown as dashed line.  Complementarity determining regions (CDRs) are shown in blue.  
Glycine to alanine mutations sites (A), and proline mutations (B), are shown in the stick format 
and highlighted with a dot radius.  
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Table 5.2.  Mutation Candidates.  
Pro Substitutions Ala Substitutions 
VL VH VL VH 
S9P G9P G41A G8A 
S14P A40P G64A G9A 
V15P T73P G68A G16A 
R18P S74P G101A G42A 
A43P N82aP  G44A 
L46P L82cP   
S60P L108P   
S76P T110P   
S77P    
 

 

 

5.2.3 Construction of Anti-MBP Framework Mutation ScFv Libraries  

Anti-MBP scFv libraries containing different combinations of mutations were created 

by performing multiple Kunkel mutagenesis reactions in tandem using pools of primers.  

Primers were designed with relatively similar lengths and annealing temperatures.  Further, 

silent mutations were incorporated into every primer to allow us to distinguish between failed 

and successful Kunkel mutagenesis reactions.  Further, following phage display selection, we 

could determine if original amino acids were preferred by observing silent mutations in the 

sequence.  Oligonucleotides and locations of silent mutations are shown in Appendix 3A.   

To increase the Kunkel mutagenesis efficiency, multiple Kunkel reactions were 

performed using a sub-set of primers.  Pools were determined by grouping primers that had 

similar Tms in the same pool with the requirement that there was no overlap in primer annealing 

positions.  The phagemid library was created by performing Kunkel mutagenesis on each pool 

as described in section 4.6.1.  The mutagenesis efficiency was calculated by sequencing twenty 

clones from each reaction and counting the number of silent mutations.  If the calculated 

mutagenesis efficiency was sufficiently high, then pools were combined to create a complete 

library for use in phage display selections.  

5.2.4 Phage Display Enrichment of Mutant ScFv Libraries A and B. 

Our first library, Library A, was created using five separate Kunkel reactions with three 

primers per pool.  Oligonucleotides used for each pool are shown in Appendix 3B.  After 
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creation of Library A, phage display screening was performed as per Section 4.6.4.  Previous 

attempts to use MBP as the target were unsuccessful.  Although it has not been confirmed, we 

speculated that the MBP preferentially binds to wells in a specific orientation, which blocked 

the scFv-binding site.  Therefore, our phage display work used Protein A as the scFv target, 

since it is known to bind the scFv framework region.  Following two rounds of selection, 

twenty colonies were isolated from plates used for calculating enrichment and sequenced.  

Unfortunately, only five mutations were observed (Table 5.3, Mutants 9 - 13).  Further, only the 

G64A mutation was observed in multiple sequences.  To determine which amino acid 

substitutions are potentially favourable, higher mutagenesis efficiency would be needed.  

To improve phage display selection, we first needed to optimize the Kunkel 

mutagenesis procedure to make libraries that are more comprehensive.  We analyzed the effect 

of primer to template ratios and the number of primers per Kunkel reaction on library diversity.  

During optimization, a library was created that had a sufficient mutagenesis efficiency.  This 

library was called Library B and was created using only two pools of primers, with eight and 

seven primers per pool.  Oligonucleotides used for each pool are shown in Appendix 3B and 

consisted of primer pools PA11 and PA12 (Appendix 3A).  Following Kunkel mutagenesis on 

separate pools, colonies were isolated from plates that were used for calculating library 

diversity and sequenced to calculate the mutagenesis efficiency.  For the PA11 pool, out of 48 

maximum potential primer-annealing positions, 21 silent mutations were found (Appendix 4), 

which reflects a 44% mutagenesis efficiency.  For PA12, out of 35 potential primer-annealing 

positions, 19 silent mutations were found (Appendix 4), which reflects a 54% mutagenesis 

efficiency.  Since the total combinations of scFvs in the mutant library was 6.7 x 107 members 

(226) and the calculated library diversity was 9.18 x 1012 members, a 40% efficiency would 

ensure that each permutation would be covered approximately 55,000 times.   

Two rounds of phage display were performed on Library B. Twenty colonies were 

isolated and sequenced.  The sequence analysis of Library B yielded only one mutation out of 

the twenty clones sequenced.  Further, no silent mutation markers were present.  This result was 

surprising considering the 44% and 58% mutation efficiencies of naïve libraries.   
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Table 5.3.  Isolated Mutant ScFvs 
Mutant # VL mutations VH Mutations 
1 L46P  
2 S14P L108P 
3 R18P  
4 S14P  
5 V15L  
6 S76P N82aT      L82cS 
7  N82aT 
8 S77P N82cH 
9 G64A  
10  G9A          G42A 
11 G64A  
12 G41A G16A 
13 G64A G9R 
14 V15P  
15 R18P  
16 R18P        L46P N82aT 
17 S14P        V15A 

G68A       G101A 
G42A       L82cP 

18 L46P N82aT      L82cP 
19 S9F           A43P 

S60P         S76P 
S77P 

G9R 

20 S76P        S77P  
21 S9F         A43P  
22 S9F  
23 Wild-Type 
24  T73P          S74P 

V109L 
 

There were two possible explanations for this: first, no mutations were beneficial and 

very few mutations were tolerated.  Therefore, they were removed from the library during 

phage display selections.  The second explanation was that the Kunkel mutagenesis was not 

efficient and very few phagemids were successfully mutated.  This would result in a starting 

library with almost all wild-type scFvs.  Analysis of silent mutations provided insight; if the 

first explanation is correct and the Kunkel mutagenesis was effective, but no mutations were 

favourable, we would still expect to see silent mutations in sequences.  However, this is not the 

case; with only a few exceptions, all sequences contained wild-type codons and no silent 

mutations. 

There was a contradiction; the naïve Library B contained almost 50% mutated library 

members.  This indicated that the Kunkel reaction was successful.  Nevertheless, after only two 
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rounds of panning, the lack of any silent mutation makers indicates a failed Kunkel reaction.  

To avoid additional troubleshooting, we abandoned the scFv library selection strategy and 

focused on characterizing specific framework mutations. 

5.2.5 Analysis of Anti-MBP scFv Mutants Using ELISA 

Previously, the strength of interaction between the anti-MBP scFv and MBP could not 

be quantified using ELISA.  Since we were using protein A as the target, the Horseradish 

peroxidase/anti-M13 antibody conjugate that is required for ELISA quantitation would also 

bind to Protein A and a signal would be detected.  To overcome this problem, we obtained a 

MBP protein expression plasmid and an optimized MBP biotinylation protocol from Dr. 

Koide’s Lab at the University of Chicago.  In this protocol, anti-MBP scFv mutants expressed 

on phage were incubated with biotinylated MBP.  Following incubation, the mixture was added 

to a well that has been coated with NeutrAvidin.  The biotinylated MBP binds to the 

NeutrAvidin coating the well and consequently any scFvs that were bound to the MBP also 

remained in the well throughout the subsequent washing steps. 

Using biotinylated MBP, allowed us to quantitate the strength of the scFv interaction 

with MBP.  At the same time, a relatively large number of phagemids with known scFv 

mutations had been identified (Table 5.3) as a result of troubleshooting and optimization of the 

Kunkel mutagenesis reaction.   

Each mutant scFv was amplified as per Section 4.6.5.  The relative strength of their 

interaction with MBP was quantified by ELISA as described in Section 4.6.8 and compared to 

the non-mutated anti-MBP scFv.  Several isolated mutants showed a larger signal than the anti-

MBP scFv (Figure 5.9).  All anti-MBP scFv mutants isolated from the Library A phage display 

selection (Mutants 9-13) had a higher signal.  This indicated that the phage display assay was 

successful in selecting and enriching for mutations that did not affect MBP binding.  In 

particular the G64A mutant showed up in three of the five mutants and showed an 

approximately 100% increase in ELISA signal over the standard scFv.  Mutant 20, which 

contained a Ser76Pro and Ser77Pro mutation showed a significant increase in ELISA signal 

compared to the anti-MBP scFv.  In total, seven mutations showed strong ELISA signals: 

G41A, G64A, S76P with S77P, G9R, G16A, and G42A (Figure 5.10).  
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Figure 5.9.  ELISA Signal of Isolated Mutants Relative to Anti-MBP ScFv 
Relative binding strength of mutant scFvs were determined by ELISA.  The strength of 
interaction was calculated as the ELISA signal divided by the negative control for the 
corresponding mutant.  Quantitation was standardized to the anti-MBP scFv signal, which was 
set at 100%.  Mutations contained in each mutated scFv are listed in Table 5.3. 
   

 
 
Figure 5.10.  Potential ScFv Stabilizing Mutations 
A modified ribbon diagram of VL (left) and VH (right) domains (PBI ID: 3DVG (Newton et al., 
2008)) with mutations showing strong interactions in the phage ELISA.  The framework region 
is green and CDRs are blue.  Mutations are shown in stick format and highlighted with a dot 
radius.   
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5.2.6 Quantification of Single and Double ScFv Mutants Binding to MBP Using ELISA 

Another set of mutant scFvs was created, consisting of combinations of mutants 

described in Section 5.2.5.  Some of single and double mutants had previously been isolated 

while others were created using Kunkel mutagenesis.  The list of mutants along with phagemids 

and oligonucleotides used to create them are listed on Table 5.4. 

Following sequence confirmation, mutant scFvs displayed on the surface of phage were 

purified and the strength of scFv interactions with MBP were quantified by ELISA.  All single 

and double mutants showed either equal or greater ELISA signals as compared to the anti-MBP 

scFv (Figure 5.11).  In particular, the G64A single mutant showed a very strong ELISA signal.  

The three highest double mutants all contained the G64A mutation.  

 

 

Table 5.4.  Single and Double Mutant anti-MBP ScFvs 
Mutant Mutations Previously 

Isolated 

Phagemid 

Template 

Oligonucleotides 

M1 G41A  w.t. 18 

M2 G64A PA1   

M3 S76/77P PA11-2   

M4 G9R  w.t. 21 

M5 G16A  w.t. 22 

M6 G42A  w.t. 23 

M12 G41A + G64A  PA1 18 

M13 G41A + S76/77P  PA11-2 18 

M14 G41A + G9R  w.t. 18 and 21 

M15 G41A + G16A PA18   

M23 G64A + S76/77P  PA1 20 

M24 G64A + G9R PA20   

M25 G64A + G16A  PA1 22 

M34 S76/77P + G9R  PA11-2 21 

M35 S76/77P + G16A  PA11-2 22 

M45 G9R + G16A  w.t. 21 and 22 

 



 62 

The G64A mutation was isolated in three of five mutants from Library A phage display 

screening and it consistently showed higher ELISA signals than standard scFv.  When coupled 

with the G64A mutation, there were other mutations, such as S76/77P, G41A, and G16A, 

which had high ELISA signals.   

5.2.7 Purification of Single and Double Mutant ScFvs 

Since all mutants showed higher ELISA signals than the anti-MBP scFv, four mutants 

with the highest signals were identified for thermal stability testing.  One single mutant, M2 

(G64A), and three double mutants, M12 (G64A + G41A), M23 (G64A + S76/77P), and M25 

(G64A + G16A) were chosen for further analysis.  

 

 

 
Figure 5.11.  ELISA Signal of Single and Double Mutants Relative to anti-MBP ScFv. 
Quantification of mutant scFvs strength of interaction with MBP was determined using ELISA.  
The strength of interaction was calculated as the ELISA signal divided by the negative control 
for the corresponding mutant.  Quantitation is standardized to the anti-MBP scFv signal, set at 
100%. 
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We cloned mutant scFvs from the phagemid HP153 to the protein expression plasmid 

pET-LP3 (Figure 4.1) by restriction cloning.  Genes encoding mutated scFvs were amplified 

from the corresponding phagemids using oligonucleotides 1 and 2 as per Section 4.3.1.  Genes 

were then cloned into the protein expression plasmid pET-LP3 using restriction cloning.  

Expression of scFvs were performed in the E. coli SHuffle strain according to Section 4.7.1.  

Purification of the control and mutant anti-MBP scFvs were performed according to Section 

4.7.2.  M2, M12, and M25 were successfully purified as shown in Figure 5.12.  Upon difficulty 

purifying M23, a fifth mutant was chosen, M3 (S77/77P).  This mutant was included to ensure 

that difficulties with M23 purification were due to the S76/77P mutation and not some other 

anomaly.  Indeed, difficulties in purification of the M23 were also observed with the M3 

mutant.        

 

 

 

 

 

 

Figure 5.12.  Coomassie-stained SDS-PAGE Gel of Purified Mutant scFvs 
Mutant scFvs, Mutant 2 (G64A), Mutant 3 (S76/77P), Mutant 12 (G64A + G41A), Mutant 23 
(G64A + S76/77P), and Mutant 25 (G64A + G16A) were expressed in the SHuffle strain and 
purified by a strep-tactin column as per Section 4.7.2.  Following purification, the whole cell 
lysate (WCL), and elution fractions 2 (E2) and 3 (E3) were run on a SDS-PAGE gel and 
Coomassie-stained as per Section 4.2.1. 
 

      Mutant 2          Mutant 3      Mutant 12    Mutant 23      Mutant 25 
   WCL   E2     E3   WCL  E2  E3  WCL  E2   E3   WCL  E2   E3  WCL  E2    E3  
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5.2.8 Thermal Stability of Single and Double Mutant ScFvs 

We tested the thermal stabilities of mutant anti-MBP scFvs, M2, M12, and M25 using 

the thermal stability assay as described in Section 4.7.3.  Melting curves for all samples 

including the control are shown in Figure 5.13.  Tms were calculated using a Differential 

Scanning Fluorimetry (DSF) tool, which was provided by the Frank Niesen lab 

(ftp://ftp.sgc.ox.ac.uk/pub/biophysics) (Niesen et al., 2007).  The control anti-MBP scFv had a 

Tm of 49.3 ± 0.8ºC.  The Tm of M2 was 46.7 ± 0.4ºC with a p-value of 0.0073, which indicated 

that the lower Tm was statistically significant.  In fact, all mutants had a statistically significant 

lower Tm than the control scFv.  The Tm of M12 was 47.9 ± 0.1ºC with a p-value of 0.0396 and 

the Tm of M25 was 46.4 ± 0.4ºC with a p-value of 0.0024.   

 

 

 

 
Figure 5.13.  Melting Curves of Mutant anti-MBP ScFvs 
The thermal stability assay was performed on the mutant scFvs diluted to 10 uM.  Thermal 
denaturation was performed on Step One Plus Real-time PCR system (Applied Biosystems) 
with 0.2°C per 12 seconds steps.  Calculations of scFv Tms and visualization of melting curves 
were performed using a Differential Scanning Fluorimetry tool.  A melting curve showing all 
mutant anti-MBP scFvs are shown with the non-mutated scFv.  
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5.3 Specific Aim 3: Increase the Intracellular Stability of ScFvs 

5.3.1 Intracellular ScFv Inhibitors of Bcr-Abl 

Chronic myeloid leukaemia (CML) is associated with the chromosomal abnormality 

called the Philadelphia translocation [t(9;22) (q34;ql l)].  This chromosomal translocation leads 

to the constitutively activated expression of Bcr-Abl, a fusion of the breakpoint cluster region 

(BCR) gene and the Abelson tyrosine kinase (ABL1) (Wong and Witte, 2004).  

The breakthrough treatment of imatinib (Gleevec) leads to remission in the majority of 

CML patients in the early chronic phase of the disease.  Imatinib functions as a highly specific 

Bcr-Abl tyrosine kinase inhibitor.  However, point mutations in the Bcr-Abl kinase domain can 

cause imatinib resistance.  Since this resistance leads to patient relapse, there is a need for 

further development of second-generation inhibitors.  Two examples of next generation Bcr-

Abl inhibitors are nilotinib and dasatinib, which target most imatinib-resistant Bcr-Abl variants 

(Shah and Sawyers, 2003; Quintás-Cardama et al., 2007).  However, all of these approaches are 

aimed at targeting the ATP-binding pocket of the Bcr-Abl kinase domain and do not target the 

disease-initiating leukemic stem cells (Perrotti et al., 2010).  The result is the development of 

resistance mutations and reduced responses in advanced disease stages (Jabbour et al., 2010).  

Therefore, targeting additional sites on Bcr-Abl for use in combination with the commonly 

targeted ATP-binding pocket may result in improved future therapeutic options. 

Substantial research, including work done in our lab (VMaruthachalam, 2011), has been 

devoted to targeting the Abl-SH2 domain (Grebien et al., 2011; Wong and Witte, 2004).  

However, studies have also shown the potential for targeting the Abl-SH3 domain (Skorski et 

al., 1998;  Gross et al., 1999).  The Abl-SH3 domain has been shown to bind to several 

different proteins including; 3BP-1, 3BP-2, Abi-1, Abi-2, AAP-1, Ena, SHPTP-1, PAG, and 

Rin (Gross et al., 1999).  Through these binding proteins, the Abl-SH3 domain of Bcr-Abl may 

play a role in cellular transformation and leukemogenesis.  For these reasons, we chose to 

develop scFv inhibitors of the Abl SH3 domain.  

Although phage display is a powerful technique for enriching scFvs against specific 

targets, the resulting scFvs are not guaranteed to function in vivo.  Phage display is an in vitro 

technique that uses bacteria to propagate the phage that are fused to a coat protein.  Fusion to 

the coat protein may stabilize the scFv, which may not be as stable when expressed natively.  

This was possibly what we noticed with M3 and M23 scFvs in Section 5.2.7, where these scFvs 
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showed high ELISA signals when fused to the pIII protein, but they were unable to be purified 

for downstream experiments.  Further, the objective of these thermal stability assays was to 

develop scFvs that were sufficiently stable for use as diagnostics and therapeutic reagents.  

However, there are enormous differences between the controlled in vitro conditions used during 

phage display and the intracellular environment.   

Yeast two-hybrid assay is a common technique used to characterize protein interactions.  

The yeast two-hybrid assay is carried out in the nucleus of yeast cells and is therefore a 

eukaryotic in vivo technique.  However, the yeast two-hybrid assay can screen ~107 cells 

(Benatuil et al., 2010), whereas phage display libraries can have a diversity of greater than 1010 

(Tonikian et al., 2007).  Therefore, screening of large libraries, such as a naïve scFv library, is 

far more cumbersome with yeast two-hybrid screening when compared to phage display.  We 

hypothesised that the yeast two-hybrid assay could be performed on an scFv library already 

enriched to bind a target by phage display.  This strategy may provide further enrichment 

towards scFvs that are suitable for a eukaryotic cellular environment.   

In collaboration with Dr. Sidhu’s lab at the University of Toronto, we performed yeast 

two-hybrid assays using scFv libraries that were enriched for several targets by phage display.  

In addition, our lab showed the benefit in using a lariat peptide for yeast two-hybrid screening 

(Barreto et al., 2009).  We were interested in determining if scFvs would also benefit from 

lariat structure when used in this yeast two-hybrid assay.  

5.3.2 Construction of Prey Library from Enriched Phage Display ScFv Libraries 

Three Src Homology (SH) domains were chosen as scFv targets (baits); 3BP2-SH2, 

ABL1-SH3, and v-SRC-SH3.  Naïve scFv libraries were enriched against each target by 

members of Dr. Sidhu’s lab at the U of T.  

Genes encoding SH2 and SH3 domains used for selection by Dr. Sidhu lab were 

received and amplified by PCR as per Section 4.3.1 using oligonucleotides 24 and 25 for 3BP2-

SH2, oligonucleotides 26 and 27 for Abl1-SH3-SH2, and oligonucleotides 28 and 29 for Src-

SH3.  SH2 and SH3 domains were cloned into the yeast two-hybrid bait plasmid, pEG202 

(Figure 4.3), by homologous recombination as per Section 4.5.4.   

Following four rounds of phage display, enriched phage libraries were sent to our lab.  

The scFv library was cloned into the yeast two-hybrid prey plasmid (pJG4-5, Figure 4.4), as 

well as our yeast two-hybrid lariat prey plasmid (KB41, Figure 4.5).  ScFv libraries were 
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amplified from phagemids by PCR as per Section 4.3.1 using oligonucleotides 30 and 31 for the 

yeast two-hybrid linear prey plasmid (pJG4-5) and oligonucleotides 32 and 33 for the yeast 

two-hybrid lariat prey plasmid (KB41).  In order for the lariat to properly form, a linker was 

added to oligonucleotides 33 (underlined in Table 4.4) to provide sufficient length for the N-

intein domain to interact with the C-intein domain (Figure 5.5).  ScFvs were cloned into the 

corresponding prey plasmid by homologous recombination as per Section 4.5.4.   

5.3.3 Comparison of Lariat and Linear Prey Constructs  

Since the Geyer lab showed the benefit in using a lariat structure for yeast two-hybrid 

screening of peptides (Barreto et al., 2009), we were interested in determining if scFvs would 

also benefit from lariat structure when used in this yeast two-hybrid assay.  Yeast containing 

prey library plasmids were mated with yeast containing their corresponding bait plasmid using 

a 1:2.5 prey to bait ratio as per Section 4.5.5.  Serial dilutions were plated on SD H-W- to 

determine the number of diploid yeast cells, and on SGR H-W-A-L- Xgal+ plates to identify 

scFvs that interacted with the bait.  Diploid yeast cells were incubated at 30ºC and colonies 

were counted after 5 days.  Blue colonies were observed on X-gal plates, indicating an 

interaction between the scFv and the target.  This result indicated that scFvs isolated by phage 

display are sufficiently stable in vivo to interact with their target and can be used in yeast two-

hybrid assays. 

The effectiveness of two different prey plasmids, which expressed the linear and lariat 

scFvs, were compared by determining the probability of an scFv prey interacting with the bait 

target.  This was done by calculating the ratio of interacting colonies (on SGR H-W-A-L- 

Xgal+ plates) to the total number of diploids (on SD H-W- plates).  Error! Reference source 

not found. shows that for each target, the lariat prey plasmid had less interactions/diploid than 

the linear plasmid. 

5.3.4 Analyzing CDR Preferences for Intracellular scFvs 

To determine if there was any enrichment in scFvs after screening for interaction using 

the yeast two-hybrid assay, colonies were isolated and the prey plasmids prepared for 

sequencing.  Thirty-two yeast colonies showing positive yeast two-hybrid reporter gene outputs 

(sixteen from the lariat and sixteen from the linear prey libraries) were picked from SGR H-W-
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A-L- Xgal+ plates for each target.  Each colony was used to inoculate 100 µL of SD H-W- 

media in a 96 well plate.  Cells were incubated overnight at 30ºC.  The following day, 5 µL of 

the media was spotted on SG H-W- plates, SGR H-W-A-L- Xgal+ plates, and SD H-W-A-L- 

Xgal+ plates to select for diploids, scFvs that interacted with the bait, and galactose-dependent 

activation, respectively.     

SG HW- plates were incubated for one day at 30ºC and prey plasmids from colonies 

from these plates were used for sequencing.  A small portion of cells were picked from colonies 

on SG H-W- plates and prepared for colony PCR as per Section 4.3.4.  Genes encoding scFv 

library members were amplified from the prey plasmid using high fidelity PCR as per Section 

4.3.1 with oligonucleotide 36 and 37 (linear plasmid) or oligonucleotides 38 and 39 (lariat 

plasmid).  Following PCR clean up, amplicons were sequenced using oligonucleotides 36 

(linear plasmid) or 38 (lariat plasmid).  

 

 

 

 

Figure 5.14.  Interactions/ Diploid of the Linear and Lariat Prey  
Yeast cells containing prey libraries were mated with yeast cells containing their corresponding 
bait plasmid.  The percent of interacting colonies (on SGR H-W-A-L- Xgal+ plates) to the total 
number of diploids (on SD H-W- plates) is plotted on the y-axis.  ScFv interactions from linear 
plasmid (pJG4-5) and lariat plasmid (KB41) are compared for each target listed on the x-axis. 
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Sequencing results were aligned using MacVector software and CDRs were identified.  

The complete list of all CDRs is shown in Appendix 5.  Frequency counts of each CDR were 

compared between lariat and linear scFv preys.  No discernible differences between colonies 

isolated from linear and lariat prey plasmids were found.  When comparing scFvs to those 

isolated by phage display in the Sidhu lab, there was some correlation.  First, scFvs that had a 

frequency greater than one (Table 5.5A) were also isolated at a higher frequency by Dr. Sidhu’s 

lab (Table 5.5B).  Further, ELISA experiments performed by Dr. Sidhu’s lab showed affinity 

measurements higher than 70% for scFv that were isolated at the highest frequency by both 

techniques. 

Table 5.5.  Highest Frequency CDRs Isolated from Yeast Two-Hybrid Screening 
A 
ScFv Name CDR1-VL CDR2-VL CDR3-VL CDR1-VH CDR2-VH CDR3-VH 

3BP2-A QYY--SY GASYLYS QQSWYAHSGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

3BP2-B QYY--SY GASYLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

3BP2-C QSY--SY GASSLYS QQWYYVSGSPIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

ABL-A QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

ABL-B QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

SRC-A Q-YY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISPYSGYTG ARSSSFHGWV-HYVGALDY 

SRC-B QGYY-GS YASYLYS QQAPS---ALIT GFNI--YYYYI SISPYSGYIG ARGGW----------AIDY 

SRC-C Q-YGYSS GASGLYS QQFWG-SHSLIT GFNLS--YSGM GIYSSYGYTY ARYVSSS--------GLDY 

SRC-D Q-YSYGY GASYLYS QQPAG-PWHPIT GFNL--YYGYI SIYPPYGSTS ARSVY---------SGLDY 

SRC-E Q-YY-GS GASGLYS QQAHG----PIT GFNIYYGSYGI YISSYYGYTS ARTVRGSKKPYFSGWAMDY 

B 
ScFv Name Yeast Two-Hybrid Frequency  

(count/ total sequences) 
Phage Display Frequency 
 (count/ total sequences) 

Affinity Measurement 
10 nM 50 nM 

3BP2-A 3 / 32 2 /19 71% 77% 
3BP2-B 2 / 32 8 / 19 72% 81% 
3BP2-C 2 / 32 1 / 19 26% 46% 
ABL-A 6 / 27 2 / 20 82% 84% 
ABL-B 5 / 27 5 / 20 86% 87% 
SRC-A 3 / 29 12 / 22 90% 92% 
SRC-B 3 / 29 5 / 22 70% 87% 
SRC-C 2 / 29 0 / 22 N/A N/A 
SRC-D 2 / 29 0 / 22 N/A N/A 
SRC-E 2 / 29 0 / 22 N/A N/A 
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A galactose-inducible promoter regulates expression of scFv prey libraries.  In the 

presence of glucose the scFv prey is not expressed and no interaction can occur.  Therefore, to 

ensure that the expression of reporter genes was a result of bait and prey protein interaction, 

colonies were incubated on plates with dextrose.  Colonies were incubated on SGR H-W-A-L- 

Xgal+ plates and SD H-W-A-L- Xgal+ plates for 7 days at 30ºC (Figure 5.15).  Several ABL1-

SH3 and SRC-SH3 interacting colonies grew on the SD H-W-A-L- Xgal+ plates indicating a 

lack of galactose-dependent activation.  Sequences of non-sugar dependent clones are shown in 

red in Appendix 5.  

5.3.5 Construction of Anti-Abl SH3 ScFv Retroviral Plasmid 

Following the identification of CDR preferences, two of the highest occurring scFvs for 

each target were chosen for biological studies.  ScFvs were selected if they were isolated from 

the phage display library by Dr. Sidhu’s lab and showed high affinity in the competition assay 

performed by Dr. Sidhu’s lab (shown under affinity measurements in Table 5.5B).  ScFvs 

labeled as 3BP2-A, 3BP2-B, ABL-A, ABL-B, SRC-A, and SRC-B were identified as 

containing all the above criteria.   

Genes were amplified from amplicons previously used for sequencing using the high 

fidelity PCR protocol as per Section 4.3.1 with oligonucleotides 40 and 41.  Amplified 

fragments  were  digested  with  EcoRI  and  XhoI  and  cloned  into  the  pMSCV-YFP plasmid             

 
Figure 5.15.  Yeast Colonies Isolated From Yeast Two-Hybrid Assay.   
EY111 yeast strains containing baits were mated with EY93 yeast strains containing their 
corresponding bait scFv.  Following the yeast two-hybrid screening, sixteen colonies from each 
condition were isolated and spotted on SGR H-W-A-L- Xgal+ plates (A) and SD H-W-A-L- 
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Xgal+ plates (B).  Colonies that grew on the SD H-W-A-L- Xgal+ plates indicate a lack of 
Galactose dependence for reporter gene activation.  
(Figure 4.6) using restriction based cloning procedures.  Successful clones were identified using 

colony PCR as described in Section 4.3.3 followed by sequence confirmation using 

oligonucleotide 42.  Newly constructed retroviral plasmids were sent to the Rottepel Lab at the 

University of Toronto for further experimentation.  As of writing, the results are not yet known. 

5.3.6 Inhibitory Activity of anti-ABL1 ScFvs in Chronic Myelogenous Leukemia Cell 

Lines 

We tested whether the anti-Abl SH3 domain scFvs had activity in K562 cells, a CML 

cell line that express the Bcr-Abl fusion gene.  K562 cells are an undifferentiated pluripotent 

cell line, which was isolated from a CML patient in 1970 (Rodley et al., 1997). Using K562 

cells as a model, effects of our anti-Abl1-SH3 scFv on CML cell survival were assayed. 

Transient transfection of K562 cells was performed using Amaxa nucleofection kit 

described in Section 4.8.  Cell viability was assessed by tryphan blue exclusion at 0, 24, and 48 

hours post-nucleofection.  To determine the effect of electroporation alone, cells were also 

subjected to nucleofection without plasmid DNA.  Results are shown in Figure 5.16. Cells that 

were electroporated had survival counts reduced following nucleofection.  After 48 hours both 

the K562 and MBP controls maintained a viability above 70%.  However, both the Abl-A and 

Abl-B transfected cells were reduced to below 50%.  

 

 
Figure 5.16.  Effects of anti-ABL1-SH3 ScFvs on K562 Cell Viability 
K562 cells were transiently infected with the retroviral plasmid pMSCV-YFP containing the 
MBP control and two anti-ABL1-SH3 scFv, ABL-A and ABL-B.  To determine effect of 
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electroporation, cells were also subjected to nucleofection without plasmid DNA (K562).  Cell 
viability was assessed by tryphan blue exclusion at 0, 24, and 48 hours post-nucleofection.   

6 Discussion 
Antibodies are widely used in both therapeutic and diagnostic applications.  However, 

obstacles such as immunogenicity of animal-derived antibodies, and difficulties in producing 

antibodies with high quality and sufficient quantity need to be overcome.  This has driven the 

development of alternative systems that can produce antibodies efficiently and cost-effectively.  

Since the entire antibody is not required for target binding, other development paths have been 

taken to produce antibody-like molecules that are easier to produce.  The development of 

antibody fragments, such as scFvs, circumvents many of the issues faced with full-length IgG 

antibody production.  However, they are not without their unique set of limitations and 

obstacles.  Still, due to the enormous potential of antibody fragments in diagnostics and 

therapeutics, there has been considerable interest in overcoming the inherit instability of these 

fragments.  In this thesis, we explored whether increased linkages between the VL and VH 

domains, framework mutations, and specific CDRs could be used to generate stable scFvs.  

Experiments to increase the strength of interaction between the VL and VH domains 

were performed first.  Preliminary results using permutated scFv designs, Model 1 and Model 

3, showed enhanced Tms that exceed the Tm of the unpermutated scFv.  Model 1 and 3 

contained two and three linkers joining the VH and VL domains, respectively.  This result 

suggested that increasing the number of linkers stabilizes the scFv.  In contrast, cyclic and lariat 

scFvs, where the VH and VL were joined by two linkers, were less stable, with Tms less than that 

of the unpermutated scFv.  However, there was some concern about the accuracy of the Tm 

values.  Assuming equal concentrations of samples in the thermal stability assays, the initial 

baseline florescence should be similar.  However, there were significant differences between 

control and sample scFvs.  This increase in initial fluorescence may be due to impure samples 

containing partially unfolded proteins, or multiple forms of the scFvs due incomplete 

processing.  Multiple bands on both Coomassie-stained gels (Figure 5.3 and Figure 5.6) 

indicated that both these scenarios were likely. 

Another strategy that we attempted to increase the stability of scFvs was to introduce 

mutations into framework regions of the scFv.  We made a library of framework mutations and 

used phage display to select for mutations that were tolerated by scFv framework regions.  We 



 73 

hypothesized that Gly to Ala and Pro mutations tolerated by the framework region would 

increase the stability of scFvs.  Conversely, mutations that decreased scFv stability would 

misfold and be unable to bind the target.  Difficulties with creation of a mutant library led us to 

another strategy involving assaying the ability of specific mutated scFvs ability to bind their 

target using ELISA.  Initial results from the ELISA experiments identified several mutations 

that were tolerated by the framework region that might also increase scFv stability.  However, 

downstream thermostability assays indicated that this was not the case.  First, we could not 

purify the mutant that had the highest ELISA signal, M23 (G64A and S76/77P).  The mutant, 

M2, with a G64A mutation, was easily purified and therefore, the destabilizing mutations were 

most likely the S76/77P mutations.  To determine that the S76/77P mutation was causing 

purification difficulties, M3 containing only the S76/77P mutation was cloned into the pET-

LP3 expression plasmid.  Similar to M23, M3 could not be purified (Figure 5.12).  Considering 

the strong ELISA results, this suggested that the phage stabilizes this mutant.  When this mutant 

was fused to the pIII coat protein in phage display, the scFv was stabilized, which allowed for 

proper folding.  However, when expressed without the pIII fusion, the mutant scFv was not able 

to fold properly and could not be purified.  If this line of experiments were to continue, it would 

be beneficial to express the M23-pIII fusion scFv with the pET-LP3 plasmid. 

The thermostability of remaining scFvs that we could be purified also did not show 

increased Tms.  As shown in Figure 5.13, there were no significant differences between mutants 

and the anti-MBP scFv.  Considering the promising ELISA results, there are two possible 

explanations for this discrepancy.  First, inspection of the G6A mutant’s location on the scFv 

tertiary structure reveals its close proximity to CDR-L2.  Since all mutants tested for stability 

contained this mutation, it is possible the G64A mutation may have improved the binding of the 

scFv to MBP through modifications of the binding interface.  To determine if this is the case, 

G64A mutations should be performed on several scFvs containing the same framework, but 

designed to bind different targets.  A lack of improved ELISA signal may indicate that this 

mutation was only beneficial for anti-MBP scFvs.  The second explanation is that there were 

slight improvements in stabilities of scFvs, but that the SYPRO orange assay was not sensitive 

enough to measure the differences.  Traditionally this assay is used to determine optimal buffer 

and ligand condition where the differences may be more profound (Crowther et al., 2009; 

Niesen et al., 2007).  Other papers that attempted to increase the thermal stability of scFvs used 
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other methods for measuring stability such as the thermal challenge assay (Brinkmann et al., 

1997; Barthelemy et al., 2008; Young et al., 1995; Kügler et al., 2009; Jespers et al., 2004) or 

urea denaturation (Wörn and Plückthun, 1998).  If we were interested in devoting more 

resources into characterizing these mutants (and/or future ones) these alternative thermal 

stability assays may prove useful. 

Lastly, it was discovered that variations in protein concentrations affected the melting 

curves.  As shown in Appendix 6, the amplitude of melting curves decreased with decreasing 

protein concentration.  This was not surprising; however, what was unexpected was that when 

the concentration of protein decreased, the calculated Tm increased.  The Tm of the anti-MBP 

scFv increased from 43.7 ± 0.8ºC at 30 µM to 44.5 ± 0.2ºC at 20 µM, and up to 46.7 ± 0.2ºC at 

10 µM.  Typically, in melting curve analysis, other conditions such as buffers or ligands are 

variables.  However, scFv melting curve experiments performed in this thesis (Sections 5.1.4, 

5.1.6, and 5.2.8), different protein samples were compared.  The ability to calculate the 

concentration following purification was critical as small errors in the concentrations affected 

the experimental outcome.  Diluting samples based on inaccurate initial concentration reading 

would lead to slight differences in scFv concentrations.  These small differences in 

concentrations could lead to the interpretation of inherent Tm differences that were in fact due 

to concentration differences.  In the permutated scFvs and cyclic/lariat scFv experiments, 

impure samples were used.  Since the Bradford assay calculates the total protein concentration 

of the sample, impurities would also be included in the calculation.  The result would be less of 

the desired scFv in the thermal melting curve samples.  This could explain the significantly 

higher Model 1 and Model 3 Tms with the decreased amplitude.  This would also cast doubt on 

any subtle differences of the mutants Tms, as any variations could be attributed to variations in 

the concentration.  Therefore, the use of differential scanning fluorimetry to determine thermal 

stability between modified scFvs, or any independently expressed proteins, may not be ideal.  

Further, if this technique is used, quantitation and purification optimizations are vital to get 

accurate Tm readings and must be considered for future experiments.  

The third aim of this thesis was an alternative approach to stabilize scFvs that did not 

involve rational design.  Instead, it selected for CDRs that stabilized the scFv in intracellular 

environments.  First a large naïve scFv library was enriched for binding to 3bp2-SH2, Abl1-

SH3, and Src-SH3 domains by the Sidhu lab at U of T.  After four rounds of phage display 
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selection, an scFv library that was enriched to bind the SH2 and SH3 targets was obtained.  

This scFv library was screened for binding activity in an intracellular environment using the 

yeast two-hybrid assay.  ScFvs from the phage display selection were cloned into yeast two-

hybrid prey plasmids that expressed the scFvs as linear (Figure 4.4) and lariat preys (Figure 

4.5).   

Although, panning for interactions were successful for all domain targets with both the 

lariat and linear prey, the lariat was less efficient at screening for binders; Error! Reference 

source not found. shows that for all three of the targets, scFv libraries using the lariat prey 

plasmid had a lower proportion of interactions than those using the linear plasmid.  However, 

yeast two-hybrid experiments comparing linear and lariat scFvs had been performed previously 

(Bernhard, 2008).  In those experiments, there was a statistically significant increase in binding 

capacity when using the lariat conformation.  This contradicts the result presented in this thesis 

where the linear scFvs construct was preferred.  However, it should be noted that the phage 

display enrichment performed by Dr. Sidhu’s lab used a linear scFv phagemid.  If the 

enrichment was carried out using a lariat scFv design, then the lariat prey plasmid may have 

been preferred in subsequent yeast two-hybrid screens. 

Beyond determining the prey construct that was preferred in the yeast two-hybrid assay, 

CDRs of scFvs were determined and compared to those isolated by the Sidhu lab.  When 

comparing scFvs to those isolated by phage display, there was some correlation.  First, scFvs 

that had a frequency greater than one were also isolated at a higher frequency by Dr. Sidhu’s 

lab (Table 5.5B).  Further, ELISA experiments performed by Dr. Sidhu’s lab showed affinity 

measurements higher than 70% for scFv that were isolated at the highest frequency by both 

techniques.  This result suggests that following phage display panning with the yeast two-

hybrid assay can select scFv with favourable CDRs.  This combination could provide 

potentially favourable binders beyond what each technique would be capable individually.  

Phage display would be able to screen a large naïve library for all possible binder, while 

removing all members of the library that could not interact with the target.  The subsequently 

reduced library could then be transferred to the yeast two-hybrid system to screen the remaining 

library for those members that favour binding in a eukaryotic cellular environment.  

Although results were positive, further analysis of isolated scFvs need to be performed.  

Two of the most promising scFvs targeting each domain were identified (Section 0) and cloned 
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into a retroviral plasmid.  Preliminary work was done in our lab using the scFvs developed 

against Abl1-SH3 domain.  Effects of the anti-Abl-SH3 scFvs on CML cell line viability were 

assessed (Figure 5.16). Ectopic expression of the both anti Abl-SH3 scFvs (Abl-A, Abl-B) 

caused a significant loss of CML cell viability.  Considering this favourable result, further 

validation of the effectiveness of these scFvs was warranted.  Additional downstream 

experiments are underway; including mouse model studies where mice were injected with a 

CML cell line expressing the scFvs.  In addition, Dr. Rottapel’s lab at the U of T is also 

including these scFvs in their mammalian cell experiments.   

Although the results of downstream experiments for these particular targets are not yet 

known, the techniques described in development of these scFvs should be transferable to a 

variety of targets.  Indeed, phage display and yeast two-hybrid have already been shown useful 

in with a vast number of targets independently.  Experiments presented in this thesis have 

shown that adapting these techniques to be used in conjunction is possible.    
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8 Appendix 
 

8.1.1 Appendix 1 

Sequence of the anti-MBP ScFv: Anti-MBP scFv nucleotide sequence (a) and amino acid 
sequence (b).  The VL and VH are linked together with the C3 linker indicated in bold. 
 
 
  

(a)  
GAT ATC CAG ATG ACC CAG TCC CCG AGC TCC CTG TCC GCC TCT GTG 
GGC GAT AGG GTC ACC ATC ACC TGC CGT GCC AGT CAG TCC GTG TCC 
AGC GCT GTA GCC TGG TAT CAA CAG AAA CCA GGA AAA GCT CCG AAG 
CTT CTG ATT TAC TCG GCA TCC AGC CTC TAC TCT GGA GTC CCT TCT 
CGC TTC TCT GGT AGC CGT TCC GGG ACG GAT TTC ACT CTG ACC ATC 
AGC AGT CTG CAG CCG GAA GAC TTC GCA ACT TAT TAC TGT CAG CAA 
TCT TCT TAT TCT CTG ATC ACG TTC GGA CAG GGT ACC AAG GTG GAG 
ATC AAA GGT ACT ACT GCC GCT AGT GGT AGT AGT GGT GGC AGT AGC 
AGT GGT GCC GAG GTT CAG CTG GTG GAG TCT GGC GGT GGC CTG GTG 
CAG CCA GGG GGC TCA CTC CGT TTG TCC TGT GCA GCT TCT GGC TTC 
AAC TTT TCT TCT TCT TCT ATA CAC TGG GTG CGT CAG GCC CCG GGT 
AAG GGC CTG GAA TGG GTT GCA TCT ATT TCT TCT TCT TAT GGC TAT 
ACT TAT TAT GCC GAT AGC GTC AAG GGC CGT TTC ACT ATA AGC GCA 
GAC ACA TCC AAA AAC ACA GCC TAC CTA CAA ATG AAC AGC TTA AGA 
GCT GAG GAC ACT GCC GTC TAT TAT TGT GCT CGC ACT GTT CGT GGA 
TCC AAA AAA CCG TAC TTC TCT GGT TGG GCT ATG GAC TAC TGG GGT 
CAA GGA ACC CTG GTC ACC GTC TCC TCG GTC  
 
(b)  
DIQMTQSPSERSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASSLYSG
VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQSSYSLITFGQGTKVEIKGTTAASGSS
GGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGFNFSSSSIHWVRQAPGKGLEWVASIS
SSYGYTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARTVRGSKKPYFSGW
AMDYWGQGTLVTVSSV 
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8.1.2 Appendix 2 

 

Secondary Structure of the anti-MBP ScFv and Mutation Positions:  Glycine positions that 
contained at least one alanine and proline mutations were determined by the BLAST results and 
the secondary structure.  Only areas of loop conformation (green) were considered for proline 
substitution.  CDR regions (grey) were ignored, as they are responsible for antigen binding.  
Positions +3 and -3 from all CDRs were also ignored as to not interfere with their antigen 
binding ability.  Blast results were obtained from www.consurf.tau.ac.il with a 250-homologue 
parameter.  The PBI ID used for the blast was 3DVG chain A for the VL region and chain B for 
the VH region.  Sequence alignment and analysis was performed using MacVector.  The Kabat 

Kabat	
  Numbering 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Structure
Region
Sequence	
   D I Q M T Q S P S S L S A S V G D R V T I T C R A S Q S V S S A V A W Y Q Q
Conservation	
  Score 8 8 6 8 8 8 7 7 7 6 4 7 5 8 7 8 6 6 9 6 6 5 9 8 5 8 8
Alanine	
  in	
  Blast
Proline	
  in	
  Blast y y y y y y
Mutation P P P P
Kabat	
  Numbering 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Structure
Region
Sequence	
   K P G K A P K L L I Y S A S S L Y S G V P S R F S G S R S G T D F T L T I
Conservation	
  Score 5 6 4 3 6 6 5 1 8 7 6 8 8 7 6 7 8 7 7 8 5 8 8 7 4 7 8 6 9 9
Alanine	
  in	
  Blast y
Proline	
  in	
  Blast y y y y
Mutation A P P P A A
Kabat	
  Numbering 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

Structure
Region
Sequence	
   S S L Q P E D F A T Y Y C Q Q S S Y S L I T F G Q G T K V E I K R T
Conservation	
  Score 8 6 6 6 1 7 8 1 6 3 9 2 9 9 8 1 8 8 4 4 1 1 8 9
Alanine	
  in	
  Blast y
Proline	
  in	
  Blast y y
Mutation P P A

Kabat	
  Numbering 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Structure
Region
Sequence	
   E V Q L V E S G G G L V Q P G G S L R L S C A A S G F N F S S S S I H W V R Q A P G K
Conservation	
  Score 5 7 6 8 4 8 8 6 6 6 6 6 4 7 8 1 7 6 5 6 8 9 4 5 8 7 1 6 7 5 8 6 8 8 3 6 7 5
Alanine	
  in	
  Blast y y y y
Proline	
  in	
  Blast y y y y y
Mutation A A/P 	
   	
   A 	
   	
   P A
Kabat	
  Numbering 44 45 46 47 48 49 50 51 52a 52b 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 82a 82b 82c

Structure
Region
Sequence	
   G L E W V A S I S S S Y G Y T Y Y A D S V K G R F T I S A D T S K N T A Y L Q M N S L
Conservation	
  Score 6 7 7 6 6 5 8 6 7 6 8 6 8 4 8 5 8 6 6 5 8 5 7 4 5 6
Alanine	
  in	
  Blast y
Proline	
  in	
  Blast y y y y y
Mutation A P P P P
Kabat	
  Numbering 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 100a 100b 100c 100d 100e 100f 100g 100h 100i 101 102 103 104 105 106 107 108 109 110 111 112 113

Structure
Region
Sequence	
   R A E D T A V Y Y C A R T V R G S K K P Y F S G W A M D Y W G Q G T L V T V S S
Conservation	
  Score 3 5 6 7 7 8 3 9 4 9 4 4 9 9 4 9 8 1 7 9 9 7 8
Alanine	
  in	
  Blast n
Proline	
  in	
  Blast y y n n y y n n n
Mutation 	
   P P 	
  

F	
  R	
  2

F	
  R	
  3

F	
  R	
  2

F	
  R	
  3

F	
  R	
  1 CDR1

Loop

C	
  D	
  R	
  2

F	
  R	
  1 C	
  D	
  R	
  1

C	
  D	
  R	
  3

Sheet
Helix

F	
  R	
  4

F	
  R	
  4

C	
  D	
  R	
  2

C	
  D	
  R	
  3

Va
ria

bl
e	
  
Li
gh
t

Va
ria

bl
e	
  
He

av
y
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amino acid numbering was used (Kabat et al., 1987).  Framework and CDR regions were 
obtained from Jung and Plückthun (1997).  Secondary structure was obtained using the web 
based program from www.ebi.ac.uk using the crystal structure of K63-specific FAB APU.3A8 
(PBI ID 3DVG) (Newton et al., 2008). 
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8.1.3 Appendix 3 

(A) 

Sn. # Tm 
(ºC) 

Sequence 

3 72 ATG ACC CAG TCC CCG YTC TCC CTG TCC GCC TC 
4 78 AGC TCC CTG TCC GCC YCT SYG GGC GAT CSG GTC ACC ATC ACC 

TG 
5 64 ATC AAC AGA AAC CAG SAA AAS CGC CGA AGC TTC TGA TT 
6 65 GAA AAG CTC CGA AGC YGC TGA TTT ACT CGG C 
7 66 TAC TCT GGA GTC CCT YCA CGC TTC TCT GGT A 
8 73 CTT CTC GCT TCT CTG SAA GCC GTT CCG SGA CGG ATT TCA CTC T 
9 70 TTC ACT CTG ACC ATC YCC YCC CTG CAG CCG GAA G 

10 68 TCA CGT TCG GAC AGG SAA CCA AGG TGG AGA TC 
11 76 AGC TGG TGG AGT CTG SCS SAG GCC TGG TGC AGC CAG 
12 65 TGG TGC AGC CAG GGG SAT CAC TCC GTT TGT C 
13 68 CAC TGG GTG CGT CAG SCG CCG GGT AAG GGC C 
14 72 GTG CGT CAG GCC CCG GSA AAG GSC CTG GAA TGG GTT GC 
15 65 ACT ATA AGC GCA GAC MCG YCC AAA AAC ACA GCC T 
16 69 GCC TAC CTA CAA ATG MMC AGC CYA AGA GCT GAG GAC AC 
17 75 GGG GTC AAG GAA CCC YAG TCM CCG TCT CCT CGG TCG 

 
(B) 
Library Pool Oligonucleotides 

Library A PA1 8 11 14      

PA2 5 10 12      

PA3 4 17 13      

PA4 6 7 15      

PA5 3 9 16      

Library B PA11 3 5 7 9 11 13 15 17 

PA12 4 6 8 10 12 14 16  

 
Oligonucleotides Used for the Mutant Library Creation: (A) Oligonucleotides were 
designed with a focus on maximizing annealing potential while maintaining relatively similar 
Tms.  To ensure we could distinguish between inefficient mutagenesis and a strong selection for 
wild-type amino acids, silent mutations (yellow) were incorporated into every primer.  Blue 
indicates proline mutation points and red indicates the location of alanine mutations.  If a 
mutation could result in a proline or alanine, it is coloured in green.  (B) Pools of primers for 
library A and B creation were determined by matching oligionucleotides with similar Tms with 
the condition that they did not overlap.  
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8.1.4 Appendix 4 

 PA11-1 PA11-2 PA11-3 PA11-4 PA11-5 PA11-6 
P1 S9F  S9F S9F   
P3 A43P Marker A43P Marker Marker  
P5 S60P  Marker    
P7 S76P, S77P S76P, S77P Marker Marker   
P9 G9R  Marker    
P11   Marker    
P13   Marker   T73P,S74P 
P15   Marker   V109L 
 
 PA12-1 PA12-2 PA12-3 PA12-4 PA12-5  
P2 - Marker R18P V15A, S14P -  
P4 Marker - L46P Marker L46P  
P6 Marker Marker - G68A -  
P8 - Marker - G101A -  
P10 - Marker - Marker -  
P12 - Marker - G42A -  
P14 - - N82aT L82cP N82aT, L82cP  
Isolated Mutants from Naïve Library PA11 and PA12:  Following creation of the PA11 and 
PA12 library, the mutagenesis efficiency was determined by sequencing plasmids form each 
library.  Each column indicates the mutations for individual colonies.  Rows indicate the 
corresponding primer for each mutation. 
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8.1.5 Appendix 5 

Sample  
(Well Bait/Plasmid) 

CDR1-
VL 

CDR2-
VL 

CDR3-VL CDR1-VH CDR2-VH CDR3-VH 

A01 3BP2/pJG4-5 QYY--SY GASYLYS QQSYYGYSSLIT GFNL--YGYGI YIGSGSSGTY ARTVRGSKKPYFSGWAMDY 

A02 3BP2/pJG4-5 QSY--SY GASSLYS QQWYYVSGSPIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

A03 3BP2/pJG4-5 QSY--SY GASSLYS QQWYWA-SSPIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

A04 3BP2/pJG4-5 QYY--SY GASYLYS QQSWYAHSGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

B01 3BP2/pJG4-5 QYY--SY GASSLYS QQWYYVSGSPIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

B02 3BP2/pJG4-5 QYY--SY GASYLYS QQSFYWGGSLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

B03 3BP2/pJG4-5 QYY--SY GASYLYS QQWYYVSGSPIT GFNI--GSYGM CISSYSSGTY ARTVRGSKKPYFSGWAMDY 

B04 3BP2/pJG4-5 QSY--SY GASSLYS QQWYYVSGSPIT GFNI--GSYGM YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

C01 3BP2/pJG4-5 QYY--SY GASYLYS QQGFWSSYSLIT GFNL-SYYSSM                                

C02 3BP2/pJG4-5 QYY--SY GASYLYS QQSYYSSGGLIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

C03 3BP2/pJG4-5 QYY--SY YASYLYS QQSYYSGHSLIT GFNL--YGYGI YIGSGSSGTY ARTVRGSKKPYFSGWAMDY 

C04 3BP2/pJG4-5 QYY--SY GASYLYS QQVYW---PLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

D01 3BP2/pJG4-5 QYY--SY GASYLYS QQGYFPYHSLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

D02 3BP2/pJG4-5 QGY--SY YASYLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

D03 3BP2/pJG4-5 QYY--SY GASYLYS QQSYYSSGGLIT GFNI--GSYGM YISSYSSGTY ARTVRGSKKPYFSGWAMDY 

D04 3BP2/pJG4-5 QYY--SY GASYLYS QQWSF--PSLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

E01 3BP2/KB41 QYY--SY YASYLYS QQSYYGYSSLIT GFNL--YGYGI YIGSGSSGTY ARTVRGSKKPYFSGWAMDY 

E02 3BP2/KB41 QYY--SY GASYLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

E03 3BP2/KB41 QYY--SY GASYLYS QQSYYSPSSLIT GFNI--GGGST YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

E04 3BP2/KB41 QYY--SY GASYLYS QQSWYAHSGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

F01 3BP2/KB41 QYY--SY GASYLYS QQGFWSSYSLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

F02 3BP2/KB41 QYY--SY YASYLYS QQSYYGHYGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

F03 3BP2/KB41 QYY--SY YASYLYS QQSYYSGHSLIT GFNL--YGYGI YIGSGSSGTY ARTVRGSKKPYFSGWAMDY 

F04 3BP2/KB41 QYY--SY GASYLYS QQFYY---PLFT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

G01 3BP2/KB41 QYY--SY GASYLYS QQSWYAHSGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

G02 3BP2/KB41 QYY--SY GASYLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

G03 3BP2/KB41 QYY--FY GASYLYS QQSYYGYASLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

G04 3BP2/KB41 QYY--SY GTSYLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

H01 3BP2/KB41 QYY--SY GASYLYS QQHYY---SLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

H02 3BP2/KB41 QYY--SY YASGLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

H03 3BP2/KB41 QYY--SY YASGLYS QQSYYSSGGLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

H04 3BP2/KB41 QYY--SY GASYLYS QQHY---GPLIT GFNI--GGGSI YIYPGYSSTY ARTVRGSKKPYFSGWAMDY 

A05 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYYG---------AGMDY 

A06 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYFYP---------AGMDY 

A07 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

A08 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

B06 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 
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B07 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

B08 ABL1/pJG4-5 QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

C05 ABL1/pJG4-5 QYG-YSS GASGLYP QQHGW---SLIT GFNL--SYSGM GIYSSYGYTY ARYSGYGSYYYPAPYSGFDY 

C06 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY---ALIT GFNL--SYSGM GIYSSYGYTY ARYSYS------YYGAGMDY 

C08 ABL1/pJG4-5 QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

D05 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

D06 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY--GWPIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

D07 ABL1/pJG4-5 QSS--GY GASYLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYWSS------YGGGMDY 

D08 ABL1/pJG4-5 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYHYSW-------YSGMDY 

E07 ABL1/KB41 QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

E08 ABL1/KB41 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYYY------YGAYGLDY 

F05 ABL1/KB41 QYG-YSS GASGLYS QQYSY--ASPIT GFNL--SYSGM GIYSSYGYTY ARYYYY------YGAYGLDY 

F07 ABL1/KB41 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYYAVP------VHGMDY 

F08 ABL1/KB41 QYG-YSS GASGLYS QQYGY---ALIT GFNL--SYSGM GIYSSYGYTY ARYYYG---------AGMDY 

G05 ABL1/KB41 QYYSYGY GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYYG---------AGMDY 

G06 ABL1/KB41 QYG-YSS SASGLYS QQYGY---ALIT GFNL--SYSGM GIYSSYGYTY ARYSYS------YYGAGMDY 

G07 ABL1/KB41 QYG-YSS GASGLYS QQHGW---SLTT GFNL--SYSGM GIYSSYGYTY ARYSGYGSYYYPAPYSGFDY 

G08 ABL1/KB41 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SYSGM GIYSSYGYTY ARYYYFG------SAVGMDY 

H05 ABL1/KB41 QYG-YSS GASGLYS QQYGY---SLIT GFNL--SCSGM GIYSSYGYTY ARYWYGW-------CAGMDY 

H06 ABL1/KB41 QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

H07 ABL1/KB41 QYC-YSY CASGLYS RQYSY--ASPIT GFNL--SYSAM GIYSSYCYSY ARYYWSS------YSDGMDY 

H08 ABL1/KB41 QYYSYGY YASYLYS QQAAG---SPIT GFNIG-SGSSI YISPGYSYTS ARGWW----------WAMDY 

A09 vSRC/pJG4-5 QGYY-GS YASYLYS QQAPS---ALIT GFNI--YYYYI SISPYSGYTG ARGGW----------AIDY 

A10 vSRC/pJG4-5 QGYY-GS YASYLYS QQAPS---ALIT GFNI--YYYYI SISPYSGYIG ARGGW----------AIDY 

A11 vSRC/pJG4-5 QGYY-GS YASYLYS QQPWH-YSYPIT GFNI--YYYYI SISPYSGYTG AAGGH----------AIDY 

A12 vSRC/pJG4-5 Q-YY-GY GASYLYS QQYSG---PPIT GFNI--YYYYI SISPYSGYTG ARSSSFHGWV-HYVGALDY 

B09 vSRC/pJG4-5 QGYY-GS YASYLYS QQSHG---ALFT GFNI--YYYYI SISPYSGYTG AAGGW----------AIDY 

B10 vSRC/pJG4-5 QCY--SY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

B11 vSRC/pJG4-5 QGGY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

B12 vSRC/pJG4-5 Q-YY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM YIYPYGGYTS ARSSSFHGWV-HYVGALDY 

C09 vSRC/pJG4-5 QGYY-GS YASYLYS QQPHGGSYYPIT GFNI--YYYYI SISPYSGYTG ARSGW----------AFDY 

C10 vSRC/pJG4-5 Q-Y-GGY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

C11 vSRC/pJG4-5 QGSY-GY GASYLYS QQYGY----LIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

C12 vSRC/pJG4-5 QGGY-GY YASYLYS QQSSY---SLIT GFNI--YYYYI SISPYSGYTG AAGGW----------AIDY 

D09 vSRC/pJG4-5 QGYY-GS YASYLYS QQAPS---ALIT GFNI--YYYYI SISPYSGYTG ARGGW----------AIDY 

D10 vSRC/pJG4-5 Q-Y-GGY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

D11 vSRC/pJG4-5 Q-YSYGY GASYLYS QQPAG-PWHPIT GFNL--YYGYI SIYPPYGSTS ARSVY---------SGLDY 

D12 vSRC/pJG4-5 Q-YSYGY GASYLYS QQPAG-PWHPIT GFNL--YYGYI SIYPPYGSTS ARSVY---------SGLDY 

E09 vSRC/KB41 QGSY-GY GASYLYS QQYGY----LIT GFNI--YYYYI SISPYSGYTS ARSSSFHGWV-HYVGALDY 

E10 vSRC/KB41 QGYY-GS YASYLYS QQSSG----PIT GFNI--YYYYI SISPYSGYTG ARGGF----------AMDY 
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E11 vSRC/KB41 Q-YY-GY GASYLYS QQYSG---PPIT GFNISSGSYGI YIYPSYGYTY ARSSSFHGWV-HYVGALDY 

E12 vSRC/KB41 Q-YY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISPYSGYTG ARSSSFHGWV-HYVGALDY 

F10 vSRC/KB41 Q-YY-SY GASYLYS QQYGS----PIT GFNIYYGYSGI YIYPYSGYTY ARSSSFHGWV-HYVGALDY 

F11 vSRC/KB41 Q-YY-GY YASYLYS QQAPS---ALIT GFNI--YYYYI SISPYSGYTG ARGGW----------AIDY 

F12 vSRC/KB41 Q-YY-GS GASGLYS QQSHG----PIT GFNIYYGSYGI YISSYYGYTS ARTVRGSKKPYFSGWAMDY 

G09 vSRC/KB41 Q-YY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

G10 vSRC/KB41 Q-YGYSS GASGLYS QQFWG-SHSLIT GFNLS--YSGM GIYSSYGYTY ARYVSSS--------GLDY 

G11 vSRC/KB41 Q-YY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

G12 vSRC/KB41 Q-YGYSS GASGLYS QQFWG-SHSLIT GFNLS--YSGM GIYSSYGYTY ARYVSSS--------GLDY 

H10 vSRC/KB41 Q-YY-GS GASGLYS QQAHG----PIT GFNIYYGSYGI YISSYYGYTS ARTVRGSKKPYFSGWAMDY 

H11 vSRC/KB41 QDYY-SS YASYLYS QQDPS---ARTT                                            

H12 vSRC/KB41 QGSY-GY GASYLYS QQYSG---PPIT GFNLG-YSSYM SISSYGGSTG ARSSSFHGWV-HYVGALDY 

CDRs of ScFvs Isolated by Yeast Two-Hybrid: ScFvs that bound to their target were 
determined by yeast two-hybrid screening as per section 4.5.5.  Individual clones were isolated 
and prepared for sequencing as per section 4.3.4.  CDRs were determined by MacVector 
alignment.  Colonies that did not show sugar dependence are indicated in red.  
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8.1.6 Appendix 6  

 

Concentration Dependence of Melt Curves: The thermal stability assay was performed on 
the anti-MBP scFv as per section 4.7.3.  Briefly, scFvs were diluted to a concentration of 10, 
20, and 30 µM in Strep-tactin elution buffer.  One microliter of 300x SYPRO Orange was 
added to 19 µL of scFv solution.  Samples were loaded in triplicate into a 96-well reaction 
plate.  Thermal denaturation was performed on Step One Plus Real-time PCR system (Applied 
Biosystems) with 0.2°C per 12 seconds steps.  Calculations of the scFv Tms and visualization of 
the melt curves were performed using a Differential Scanning Fluorimetry tool.  The Tm drops 
from 46.7 ± 0.2ºC at 10 µM to 44.5 ± 0.2ºC at 20 µM, and down to 43.7 ± 0.8ºC at 10 µM.  For 
comparison, melt curves of the standard scFvs are shown in absolute fluorescence (a) and in 
relative fluorescence (b).   
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