
UNIVERSITY OF SASKATCHEWAN

Anomaly of Existing Intellectual Property Protection for

Software

A Thesis Submitted to the College of Graduate and

Postdoctoral Studies in Partial Fulfillment of the Requirements

for the Degree of Master of Laws (L.L.M) in the College of

Law, University of Saskatchewan

Saskatoon

By

Molla Mekonen Abey

 Copyright Molla Mekonen Abey, May, 2017. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226132662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor who supervised my

thesis work or, in their absence, by the Deans of the Colleges in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for financial

gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any scholarly use

which may be made of any material in my thesis.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part

should be addressed to:

Dean

College of Law

University of Saskatchewan

15 Campus Drive

Saskatoon, Saskatchewan S7N 5A6Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

105 Administration Place

Saskatoon, Saskatchewan S7N 5A2 Canada

ii

ABSTRACT

The digital sphere, “cyberspace,” is growing by leaps and bounds. Computers and programs are

making a profound impact on every aspect of human life: education, work, warfare,

entertainment and social life, health, law enforcement, etc.. So, the fact that people now need

access to digital technologies to sustain modern social, economic and political life is not in

dispute. Most digital devices such as computers are useless without programs. Simply stated,

access to digital technologies depends highly on software. More precisely, it is practically

impossible these days to find a life without the involvement of software and software-based

devices. Software used to be, in the 1970s and early 1980s, applied to huge mainframe

computers that took up the space of, maybe, an entire room. These days, we have software

applied everywhere, in many aspects of our lives. Before the 1960s, vendors distributed and sold

software bundled with computer hardware. During that time there was no clearly recognized

protection for computer programs. As time went on, vendors began to unbundle software from

hardware and started to provide programs to the public separately packaged.

With a view to responding to the needs of industry, on one hand, and to advancing innovation,

and encouraging the dissemination of useful arts for the general public on the other, different

jurisdictions began to afford separate legal protections to computer software. Many jurisdictions

opted for copyright protection as the best option. We also see the widespread protection of

software products by patent law. In spite of the absence of legislation which directly allows for

the patentability of computer software, we witness frequent disputes and litigation as regards the

scope and extent of software protection. In addition to intellectual property protections,

computing companies are using technological means to exclude others from using their digital

works. This approach is called self-regulation. They do so by using technology: encryption,

coding, etc. It is also illegal to reverse engineer and decompile computer programs. A trade

secret can be used to protect computer software, especially the inner working of software.

Software developers also use the law of industrial design as another form of protection for the

‘look and feel’ aspect of their software. On the other extreme, we see some movements which

advocate for free and open-source software.

This thesis argues the existing system has flaws and need a fix. The main problem with existing

software protection is that it overlooks its special nature. There is no dispute as to why software

iii

is protected. Writing those millions of lines of code requires an investment of time, intellect, and

money. Hence, protection is required. The issue is as to the choice of the form of protection. So,

this thesis argues the blanket copyright and patent protections of software raise a fairness issue,

particularly from the perspective of the consumer’s interest. It also argues the existing laws

governing computer software lack clarity and certainty. Overall, the thesis discusses the existing

legal framework for computer programs. It concludes that the system needs reform as it mainly

considers the interest of software industry. In other words, consumers and new entrants’ interests

have not been given much regard. More importantly, the thesis reflects on the general purpose of

intellectual property rights and their applicability to computer programs. The most important

reason for the reform is the unique nature of software. By doing so, the thesis suggests for the

adoption of a special law for computer programs.

iv

ACKNOWLEDGMENT

Where to begin? Although there are many to whom I owe thanks, certainly none are more

deserving than my supervisor, Professor Martin Phillipson, committee members, Professor

Barbara Von Tigerstrom and Robin Hansen, and College of Law Graduate Director, Professor

Heather Heavin. Their contribution in editing the thesis and forwarding expertise comments were

invaluable. I acknowledge with thanks, as well, to my supervisor, committee members and

Professor Heather Heavin in approving funding requests towards the completion of the thesis.

Special thanks are due to Professor Barbara Von Tigerstrom, Dr. Thomas Roberts, and Lorrie

Sorowski. Professor Barbara, I am grateful for your assistance. You were the one who helped me

in the admission, grant permission, and deferral processes.

I would like to thank my family and friends (Violet), and special thanks to my girlfriend, Azeb

Getnet, for her never failing enthusiasm and encouragement.

The unpayable debts are to my God, for his unconditional love and for giving me helpful persons

in my life.

v

TABLE OF CONTENTS

PERMISSION TO USE ... i

ABSTRACT .. ii

ACKNOWLEDGMENT.. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

INTRODUCTION .. 1

CHAPTER ONE ... 9

1. The Notion of Software/Computer Programs .. 9

1.1. Defining computer software ... 9

1.2. Legal/technological aspect of software .. 11

2. The big bang of computer software .. 17

3. Taxonomy of computer programs ... 21

3.1 Application and System Software .. 21

3.2 Free and Proprietary Programs ... 22

3.3 Program Source Code and Object Code ... 23

4. Justifying the protection of computer programs ... 24

CHAPTER TWO .. 31

2.1 Patenting Computer Software .. 31

2.1.1 Software patents in the U.S. ... 32

2.1.2 Software patenting in Canada ... 39

2.1.3 Software patenting in the European Union ... 42

2.2 Copyrighting Computer Software .. 46

2.2.1 Copyrighting software: International instruments .. 47

2.2.2 Copyrighting software in the U.S ... 47

2.2.3 Copyrighting software in Canada ... 52

2.2.4 Copyrighting software in the EU .. 54

2.3 Requirements for software copyright protection .. 59

2.4 Trade secret protection of computer software ... 61

CHAPTER THREE .. 63

3.1 Introduction .. 63

3.2 The “Cherry Picking” Nature of Current Intellectual Property Laws and Practices 63

vi

3.3 Abandoning the Current Legal Framework ... 69

3.3.1 Copyright misfits computer programs .. 70

3.3.2 Patent is inapplicable to computer software ... 72

3.3.3 Challenges of trade secret protection of computer software 73

3.4 The Special Nature of Computer Software .. 73

3.4.1 Software is not merely a literary work .. 73

3.4.2 Software is ubiquitous .. 74

3.4.3 Complex nature of software ... 74

3.4.4 Codes regulating software codes .. 75

3.4.5 The application of first-sale principle ... 76

3.5 Access rights of the public to technological outputs ... 78

3.5.1 Reverse engineering and the public interest ... 78

3.5.2 Free and Open Source software movements favoring the interest of the public 81

CHAPTER FOUR ... 85

4.1 Concluding remarks .. 85

4.2 Recommendations ... 91

BIBLIOGRAPHY ... 97

LEGISLATION .. 97

JURISPRUDENCE ... 98

SECONDARY MATERIAL .. 101

vii

LIST OF FIGURES

Figure Number Page Number

1-1. History of Computing…………………………………….………………………………19

2-1. Number of Software-Related Patents Granted per Year by USPTO, 1991 to

2011………………………………………………………………..…………………………..33

1

INTRODUCTION

The digital sphere, “cyberspace,” is growing by leaps and bounds. Computers and programs are

making a profound impact on every aspect of human life:1 education, work, warfare,

entertainment and social life, health, law enforcement, etc. For instance, software plays an

enormous role in the health sector by assisting in monitoring patients, refilling prescriptions and

billing and keeping medical records. In finance, transactions involving calculations such as

interest and account balances are operated by software. Air traffic control, flight schedules,

booking and related tasks in the airline industry; and calculations of all sorts of incomes,

benefits, expenses and interests in insurance and tax administration institutions have been

undertaken with the use of software. This is just at the macro/highest level. At the individual

level, the more we use digital devices, the more we need to use software to access services and

products. So, the fact that people now need access to digital technologies to sustain modern

social, economic and political life is not in dispute. Most digital devices such as computers are

useless without programs. Simply stated, access to digital technologies depends highly on

software. More precisely, it is practically impossible these days to find a life without the

involvement of software and software-based devices.2

A computer program is a series of logical instructions to be used in a computer so that the latter

produces a specific result, in the form of information. It is a technical, technological and legal

concept. By “computer program”, it appears we mean “programs for a computer.” However, we

mean more than that: software for other electronic devices, too. Software programs are useful to

almost all electronic devices. The computer hardware is nothing without its software, in the form

of system and application software. Other devices such as smart digital technologies, too, are

helpful only with the use and application of software algorithms.

Software used to be, in the 1970s and early 1980s, applied to huge mainframe computers that

took up the space of, maybe, an entire room. These days, we have software applied everywhere,

in many aspects of our lives. It is not just in laptops but also on our mobile devices and is

1 WIPO Intellectual Property Handbook, “Technological and Legal Developments in Intellectual Property”, (2nd ed.,

WIPO PUBLICATION No. 489 (E): 2004) at 435.
2 In this paper, “software” and “computer program(s)” will be used interchangeably.

2

increasingly integrated into all sorts of objects. We hear about the coming “internet of things,”3 a

phrase summing up the radically increasing connectivity of all sorts of items around us that,

expectedly, will be communicating with each other. They will be doing so on the basis of

software-based algorithms.4 Our computers, smartphones, etc. are dependent for their functions

on these logical instructions.

Before the 1960s, vendors distributed and sold software bundled with computer hardware.

Professor Pamela Samuelson quoted the work of Justice Stephen Breyer and has stated the

following: “Systems software was, ‘and should continue to be, created by hardware

manufacturers and sold along with their hardware at a single price”.5 During that time there was

no clearly recognized protection for computer programs. As time went on, vendors began to

unbundle6 software from hardware and started to provide programs to the public separately

packaged.

With a view to responding to the needs of industry, on one hand, and to advancing innovation,

and encouraging the dissemination of useful arts for the general public on the other, different

jurisdictions began to afford separate legal protections to computer software. Many jurisdictions

opted for copyright protection as the best option. Recent international copyright treaties such as

the World Intellectual Property Organization Copy Rights Treaty (WCT)7 and the World Trade

Organization Trade related aspects of Intellectual Property Right (TRIPS)8 have a clause on the

3 It is a recent agenda especially in Europe where the radical development and deployment of Internet of things

technology is sought. This is with the intent to converge technologies smart environments and integrated

ecosystems. See also European Commission, “Digital Economy and Society: The Internet of Things”,

http://ec.europa.eu/digital-agenda/en/internet-things>.
4 Software algorithms are just rules, principles or logic by which the SW is built up on. The term algorithm and its

application in software protection will be raised while discussing software patents (e.g. see, below Benson).
5 Pamela Samuelson, ‘‘The Uneasy Case for Software Copyrights Revisited”, (2011) 79 Geo. Wash. L. Rev. 1746 at

1751.
6 Yoshiyuki Miyashita, ‘‘International protection of Computer software’’, online: (1991), 11 Computer L.J. 41 at 47

<http://repository.jmls.edu/cgi/viewcontent.cgi?article=1390&context=jitpl>; Graeme Phillipson, “A Short History

of Computer”, (2004) , [Phillipson], at 10, [in 1968, IBM made a decision to unbundle its software for the first time

and started to charge separate fee]; Peter S. Menell, “Envisioning Copyright Law's Digital Future”, Online: (2002-

2003) 46 New York Law Review at 73 < https://papers.ssrn.com/sol3/papers.cfm?abstract_id=328561>;Friedman,

M. Mark, “Copyrighting Machine Language Computer Software-The Case Against”, online: (1989) 9 Computer L.J.

1 at 4< http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl >.
7 December 23, 1996, CRNR/DC/94 [hereinafter “WCT”].
8 Agreement on Trade-Related Aspects of Intellectual Property Rights, Annex 1C to the Final Act and Agreement

Establishing the World Trade Organization, December 15, 1993, 33 I.L.M. 76 (WTO). General Agreement on

Tariffs and Trade, Uruguay Round (including GATT 1994), Marrakesh, April, 1994 [hereinafter TRIPS].

http://ec.europa.eu/digital-agenda/en/internet-things
http://repository.jmls.edu/cgi/viewcontent.cgi?article=1390&context=jitpl
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=328561
http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl

3

copyrightability of computer programs.9 Obviously, it is reasonable to raise questions as to why

it is not included in early copyright instruments such as the Berne Convention for the Protection

of Literary and Artistic Works.10 There were early concerns as to the inclusion of computer

software in international copyright instruments. This was, partly, justified by the non-inclusion

of computer software in Berne Convention. 11 At the regional level, too, certain jurisdictions

have adopted separate copyright instruments for the protections of computer software.12 Nation

states such as the U.S.13, Canada14, Ethiopia15, etc. also have recognized the copyrightability of

computer programs. A closer look at the history of the tendency to regard software as a

copyrightable subject matter tells us that the choice was not the result of research and in-depth

study.16

We also see widespread protection of software products by patent law. In spite of the absence of

legislation which directly allows for the patentability of computer software, we witness frequent

disputes and litigation as regards the scope and extent of software protection. Dozens of software

patents have been granted to many high-tech companies, especially in the U.S17 and the EU.18

The Canadian Patent Office, too, has started granting patents to software and business method

inventions.19 Even though later rejected by the European parliament, there was a proposal to

adopt a law for patenting software in Europe.20 The U.K patent office has also granted patents to

9 Ibid, article 10
10 Berne Convention for the Protection of Literary and Artistic Works, September 9, 1986, Can T.S. 1948 No. 22.

828 U.N.T.S. 221, revised most recently by Paris Act relating to the Berne Convention, July 24, 1971, 1161

U.N.T.S. 3.
11 See, Beth Gaze, Copyright Protection of Software (Sydney, Australia: The Federation Press, 1989), at 189.
12 Council Directive on the Legal Protection of Computer Programs, No. 91/250, O.J. L 122/42 (1991).
13 US Copyright Act 1976, s. 101 [The Copyright Law of the United States of America and Related Laws Contained

in Title 17 of the United States Code, under subject matter and scope of copyright section, defines computer

program. We also have a wealth of software copyright cases battled in front of U.S courts].
14 R.S.C., 1985, c. C-42.
15 Proclamation No.410/2004 Copyright and Neighboring Rights Protection Proclamation, p. 2673
16 See generally, Bessen, James E., “A Generation of Software Patents”, online: (2011), Boston Univ. School of

Law, Law and Economics Research Paper No 11-31 & Berkman Center Research Publication No. 2011-04,

<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1868979 >.
17 Martin Kretschmer, “Software as Text and Machine: The Legal Capture of Digital Innovation”, online: (2003)

JILT, < https://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/ > [By 1999, the annual number of

software patents granted in the US had risen to about 20,000].
18 Eloise Gratton, “Should Patent protection be Considered for Computer Software- related Innovations”, (2003)

VII Computer L Rev & TJ at 229; Ibid [by 1999, about 13,000 patents covering software has been issued in

Europe].
19 Canada (Attorney General) v. Amazon.com, Inc., [2011] FCA 127
20 Procedure 2002/0047/COD COM (2002) 92: Proposal for a Directive of the European Parliament and of the

Council on the patentability of computer-implemented inventions.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1868979
https://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/

4

software inventions despite its clear exclusion in the European patent convention.21 Now we do

not know what will happen after Great Britain leaves the European Union.

In addition to intellectual property protections, computing companies are using technological

means to exclude others from using their digital works. This approach is called self-regulation.

They do so by using technology: encryption, coding, etc. It is also illegal to reverse engineer and

decompile computer programs. The famous quotation of Charles Clark- ‘‘the answer to the

machine is in the machine’’22 supports such an approach.

A trade secret can be used to protect computer software, especially the inner working of

software. Such protection arises through the laws of contract and equity.23It is possible to enter

into licensing arrangements designed to protect the trade secret in computer software.24 Software

developers also use the law of industrial design as another form of protection for the ‘look and

feel’ aspect of their software.25

On the other extreme, we see some movements which advocate for free and open-source

software. It is based on a unique model of innovation. Basically, there are two models of

innovations: the private investment model26 and the collective action model.27 The free software

approach is different from these two models – and it is called a private-collective model. In the

case of software, programmers contribute and share their knowledge, develop software and

finally, leave it to the public. Free software are kinds of programs neither restricted by

intellectual property rights such as copyright and patents nor by license agreements or digital

right management systems. Free software can have two formats: free or open-source software.

They are sometimes called FLOSS (Free/Libre/Open Source Software). When we say software

21 Ronald Robertson, Legal protection of Computer Software, (London, UK: Longman law,1990) at 128.
22 Charles Clark, “The Answer to the Machine is in the Machine”, in P. Bernt Hugenholtz, ed,,The Future of

Copyright in a Digital Environment, (The Hague: Kluwer Law International, 1996), at 139.
23 D. Jeffrey Brown & Marisia Campbell, “Copyright” in Stuart C. McCormack, ed., Intellectual Property Law of

Canada 2nd ed (New York, U.S.A: Juris Publishing, Inc., 2010) at 46.
24 Ibid, at 47.
25 See, for instance, Dominique Nolet, “The Protection of Icons and Interfaces by Industrial Design” ROBIC [the

visual aspect of Google’s home page is registered under the U.S. Industrial Design No. D599, 372] online: <

http://newsletter.robic.ca/nouvelle.aspx?lg=EN&id=241>
26 This is a model of innovation which allows inventors to appropriate the returns of their investment in time, money

and effort. Traditionally, intellectual property system is designed to pay off such kind of inventors
27 Collective action model is one innovation theory model that advocates for the production of public goods by

giving incentives (e.g. monetary incentives). Usually, specified central agents grant those incentives such as

research institutions.

http://newsletter.robic.ca/nouvelle.aspx?lg=EN&id=241

5

is free, we mean that users can use it as they wish, modify it or fix some of its bugs, redistribute

it, and access its source code.

The problem with existing software protection is that it overlooks its special nature. Software is

unique. It involves the writing of millions of lines of codes in the form of source code. One can

regard this part of software as a literary work and suggest copyright protection. It is true that

human beings write and read books; they too can write and read source code part of the software.

However, this is not the whole story. We have the compiled28 object codes, machine-readable

strings of binary numbers. It is disputable to consider those sequences of abstract algorithms as

literary works. Originally, copyright protection has only been available to source code part of

computer programs. Furthermore, protection is extended to the documentation and description of

program codes. This is one issue with copyrighting software algorithms. Furthermore, patenting

computer software raises concerns– most of which are the subject of court litigation. For

instance, it is not clear whether abstract ideas, mathematical formula and theorems are patentable

subject matters or fall under exclusionary clauses.

There is no dispute as to why software is protected. Writing those millions of lines of code

requires an investment of time, intellect and money. Hence, protection is required. The issue is as

to the choice of the form of protection. As has been said above, software is a very complicated

notion. It includes source and object codes with accompanying descriptions. It could take the

form of system and application software. So, the blanket copyright and patent protections of

software raise a fairness issue, particularly from the perspective of the consumer’s interest.

There are many threads of scholarly discourse as to whether these are the appropriate ways of

protecting computer software. We have also seen disagreements between courts in connection

with the protection of computer software. The existing system seems to favor only the software

industry. Few scholars tend to suggest the multiple protection of computer software.29 By doing

so, they disregard the general societal and new entrants’ interest as over protection denies access

28 Source code part of software is compiled to object code using a compiler so that the computer can understand

what the human programmer has written.

29 Pamela S., Randall D., Mitchel D., J.D. Reichman, “A Manifesto Concerning the Legal Protection of Computer

Programs”, (1994) 94 Colum L Rev 2308-2431[they suggest sui generis approach could be used with copyright,

patent and trade secrets]; see also Robert A. Gorman, “Comments on A Manifesto Concerning the Legal Protection

of Computer Programs,” (1994-1996) 5 Alb. L.J. Sci. & Tech. 277 [hereinafter Robert].

6

rights of users. Others suggest the modified version of copyright to computer software.30 Some

authors have gone further and argued for sui generis protection as the best and better way of

protecting software.31 Such a mode of protecting software was not a novel recommendation, as

the WIPO made a similar recommendation in the 1970s.32 Needless to say, computer software

requires strong protection as it is quite vulnerable to piracy.33 However, stricter protection does

not mean overprotection.

The existing laws governing computer software lack clarity and certainty. We may say

copyright legislation, internationally and nationally, is regarded as the settled regulatory

mechanism. However, these laws are devoid of clarity and predictability in terms of their breadth

and scope. Strong criticism is and has been provided by experts34; courts have not yet settled the

precise scope of copyright in regulating computer software.

The application of legal rules of other intellectual works to computer software without context is

problematic. It is argued that the multiple protection of computer programs only serves the

software industry’s interest. The law [intellectual property laws] has its own justification. The

utilitarian justification seems the predominant one, at least in the United States.35 Protecting

software using all the available forms of traditional intellectual property rights (IPRs) denies

access to software related services than achieving the unilateral justification of (IPRs). We

should not manipulate their original purpose. In the case of computer software, much of the stock

of IPRs is owned by gigantic hardware companies,36 in which case the economic incentive

30 John Swinson, “Copyright or Patent or Both: An Algorithmic Approach to Computer Software Protection,” (1991)

5 Harv JL & Tech 146 .The special copyright regulation of software in Europe confirms this suggestion
31 See, supra note 11 at 187. She discussed the problem of adapting copyright laws, and recommended a sui generis

regime as a suitable method of protecting computer programs- particularly operating system). For general

understanding of this proposal, see John C. Phillips, ‘‘Sui generis Intellectual Property Protection for Computer

Software’’, (1992) 60 Geo. Wash. L. Rev. 997
32 Model Provisions on the Protection of Computer Software, 12 Indus. PROP.: Monthly REV. WIPO 259-73

(1977)
33 Supra note 6 at 41
34 For instance, see Laurence Diver, “Would the current ambiguities within the legal protection of software be

solved by the creation of a sui generis property right for computer programs”, online: (2008) 3 J Intell Prop L &

Practice 2 at 126 < http://jiplp.oxfordjournals.org/content/3/2/125.abstract> .
35 Article I, paragraph 8, cl. 8 of empowers Congress ‘‘to promote the Progress of Science and useful Arts, by

securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries’’

[this shows intellectual property laws are designed to spur innovation and disclosure of novel ideas and works by

granting limited period of exclusive right to originators of those ideas and works].
36 John A. Gibby, “Software Patent Developments: A Programmer's Perspective”, (1997) 23 Rutgers Computer &

Tech LJ 293 [Most information technology firms such as IBM, Samsung, Canon, Panasonic, Toshiba and Microsoft

are being awarded patents by the U.S Patent and Trade Mark Office (USPTO]

http://jiplp.oxfordjournals.org/content/3/2/125.abstract

7

justification for software development is the weakest argument.

This thesis contains four chapters. The first chapter covers four major parts. Section I discusses

definitional issues. It specifically appreciates the technological and legal meaning of computer

software/programs. Section II, on the other hand, highlights the historical backdrop of computer

software. Accordingly, this part outlines a very brief evolution of software. Section III

appreciates the major classifications of computer software. The final part of chapter one tries to

justify the legal protection of computer software.

Chapter two covers the existing intellectual property protection for computer software. It

particularly discusses three forms of intellectual property rights: patent, copyright and trade

secret. The chapter investigates the available laws and judicial developments in three

jurisdictions and two international instruments. As a result, it examines the approaches in the

U.S., Canada, and the EU. It examines legislative developments in all jurisdictions from the

establishment of commissions to the adoption of laws (especially copyright). More importantly,

judicial case developments regarding computer software are appreciated in this chapter.

Chapter three spells out the issue of balance of interests and some flaws of the existing form of

protections. The chapter contains four parts. The first part analyzes the over-protection of

computer software. It also discusses the unfair nature of the existing system, arguing the existing

system disregards the interests of consumers and new entrants. Part two of this chapter

specifically argues to disregard the existing system. It does that by discussing the inapplicability

of the copyright, patent and trade secret to computer software. The most important part of this

thesis falls under part three of this chapter. This part discusses the unique nature of computer

software. For instance, the complex and omnipresent nature of software is examined in this part.

Section IV concerns some balancing attempts of the existing system. On the one hand, it

appreciates the doctrine of reverse engineering and public interest. It also examines the free and

open source software movements and their impact on those interests disregarded by the

traditional intellectual property rights.

Chapter four contains two parts. The first part provides concluding remarks. It concludes by

outlining the problem of the existing system of intellectual property protection for computer

software. In part two, the paper recommends the adoption of a special law for computer software.

8

Overall, the thesis discusses the existing legal framework for computer programs. It concludes

that the system needs reform as it mainly considers the interest of software industry. In other

words, consumers and new entrants’ interests have not been given much regard. More

importantly, the thesis reflects on the general purpose of intellectual property rights and their

applicability to computer programs. The most important reason for the reform is the unique

nature of software. By doing so, the thesis suggests for the adoption of special law for computer

programs.

9

CHAPTER ONE

INTRODUCTION, DEFINITIONAL ISSUES, AND BRIEF HISTORICAL

BACKGROUND

1. The Notion of Software/Computer Programs

1.1. Defining computer software

What is a computer program? Before defining “computer program”, it is imperative to clarify

what a computer refers to in this work. This is because the term “computer” connotes different

computing devices throughout the evolution of computing technology. Computers used to

include analog and digital computers in the early days. In regard to computers, this thesis only

applies to digital computers which use binary digits in order to carry out their intended function.

That does not mean analog computers are no longer functioning. The reason for limiting the

scope to digital computers is that modern dictionaries define computer in a way relevant to this

thesis. For instance, the Concise Oxford Dictionary defines computer as:

An electronic device which is capable of receiving information (data) and performing a

sequence of logical operations in accordance with a predetermined but variable set of

procedural instructions (program) to produce a certain result in the form of information or

signals.37

This being said about computers, the main issue here is programs. What is a computer program?

What is the difference between computer software and program? Analysis of the existing legal

protection for computer programs must begin with this definition. This question for lawyers is

somewhat difficult, because if we go to the international instruments38, we will not find an

express definition of a computer program or of software and that leaves us, as lawyers, to

struggle somewhat. And we struggle because it can potentially refer to a great deal, including a

37 The Concise Oxford Dictionary (11th ed. , 2004), “Computer”
38 We cannot find any reference in Bern Convention (this convention is used to be called the constitution for

Copyright) about software. However, article 10(1) and 4 of TRIPS agreement and WIPO Copyright Treaty

respectively define computer software. The EU software directive of 1991/2009 also defines software.

10

program’s source code, its object code and, potentially, preparatory design materials, sketches,

and drafts.39 So we need to have a clearer understanding of what exactly is being protected under

various types of regime.

Computer program is an ambiguous legal and technical concept. It is very difficult to strictly

define computer software. But, in order to get its general picture let us see the literary meaning

of computer program or software. The well-known dictionary for computer terms40 defines

computer program as a set of instructions for a computer to execute. A program tells a computer

what to do. The term contrasts with hardware, which refers to the actual physical machines that

make up a computer system.41 As has been stated in the introductory section of this paper,

computer programs and software are used interchangeably.

The Institute of Electrical and Electronics Engineers42 also defines software as "computer

programs, procedures, and possibly associated documentation and data pertaining to the

operation of a computer system."43 So, computer program or software is a set of organized

instructions that guide a computer.44

Computer programming45 has traditionally been an activity for trained specialists who work with

pencil and paper (notionally) in the careful construction of code.46 It is the process of translating

a variety of vague and fragmentary pieces of information about a task into an efficient machine-

executable program for doing that task.47

Computer program in isolation is nothing. It only helps the computer do a specific function(s).

39 Supra note 12.
40Douglas Downing, Michael Covington, Melody Covington, and Catherine Anne Covington, Barron's Dictionary

of Computer & Internet Terms, 10th ed., (Barron's Educational Series: 2009) at 386 “computer program”.
41 Ibid, at 449
42 This is one of the world’s largest technical professional organization dedicated to advancing technology for the

benefit of humanity, more information about this institute can be found at https://www.ieee.org/index.html
43 Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Software Engineering Terminology

66 (1990) cited in Kristen Osenga, “Debugging Software’s Schemas”, (2014) 82:6 Geo Wash L Rev 1833 at 1836
44 John W.L. Ogilvie, ‘‘Defining Computer Program Parts under Learned Hand's Abstractions Test in Software

Copyright Infringement Cases’’, Note, (1993) 91 Mich. L. Rev 526 at 530
45 Computer programing is the activity of writing, sequencing instructions for computers.
46 Alan Biermann and G. Guiho, eds, Computer Program Synthesis Methodologies: Proceedings of the NATO

Advanced Study Institute, (Bonas, France: Springer, 1982) at 335
47 Alan W. Biermann, Automatic Programming: A Tutorial on Formal Methodologies, (London: Academic Press

Inc., 1985) at 119

https://www.ieee.org/index.html

11

As guns do make it very easy for people to kill people, computer programs make it very much

easier for people to think about the meaning of their data.48At the same time, the hardware by

itself is of little value without the instructions that tell it what to do.49

As human beings use language to communicate with each other, computers use programming

codes to communicate instructions. Some equate programming language with human language.50

Of the two main defining elements of programs, ‘‘programming language’’ is one and the other

is the ‘‘sequence of instructions’’. This is because, generally, programmers use different

programming languages while writing millions of software instructions.

1.2. Legal/technological aspect of software

The subsequent sections address the legal definitions of computer programs.

International Level

We have many international multilateral treaties regulating intellectual property rights. Of these,

few directly or indirectly address the protection of computer programs. The most relevant ones

for this paper are the Berne Convention for the Protection of Literary and Artistic Works51,

WIPO Copyright Treaty52, and the TRIPS Agreement53. Although there were attempts54 to

protect computer programs with other ways such as sui generis protection,55 the most common

way of protection internationally is copyright.

If we look at most legal instruments at the international level (treaties), we cannot find a direct

definition of a computer program. The one exception in this regard is the EU software

directive.56 In what follows, we will examine how these instruments approach computer

48 Eben Weitzman, Matthew B. Miles, Computer Programs for Qualitative Data Analysis: A Software Sourcebook,

at 3
49 Supra note 40, at 449
50 See generally, Tutorials Point (I) Pvt. Ltd, “Computer Programing Tutorial”, Tutorials Point (2014) online:

Simply Easy learning

<https://www.tutorialspoint.com/computer_programming/computer_programming_pdf_version.htm
51 Supra note 10.
52 Supra note 7.
53 Supra note 8.
54 Supra note 26, WIPO Model Provisions
55 Sui generis is a Latin phrase which means ‘of its kind.’ It means a special way of protection, as in unique, as in

different from other types of IP law.
56 Supra 12, article 1.

https://www.tutorialspoint.com/computer_programming/computer_programming_pdf_version.htm

12

programs.

A recent international copyright instrument, which addresses computer programs, is the WCT.

Article 4 of this treaty regards computer programs as copyrightable subject matter. The

provision reads: “Computer programs are protected as literary works within the meaning of

Article 2 of the Berne Convention. Such protection applies to computer programs, whatever may

be the mode or form of their expression.”

This section of the treaty explicitly regards a computer program as a literary work. The word

‘literary’ comes from the Latin “litaritura” (or “litteratura”) which means written work.

Perhaps, to some, the writing is confined to letters. But, it is more than letters, as the adjective

“literary” must be understood as meaning all language and information-oriented productions

expressed in letters, numbers or any other similar symbols, irrespective of whether they are

legible for everyone or are coded (and thus available only to those who know and may use the

code, or through the use of appropriate equipment).57 This explanation is given under the section

concerning the substantive provisions of the Berne Convention. However, we do not have an

express section on computer programs in the Berne Convention. This may be because computer

programs are recent developments and were not put on the table by signatories during the

adoption (and subsequent revision) of this convention.

But, the most conceivable argument is that large computer programming industries are

American. The U.S. became a party to the Berne Convention only in 1989.58 Hence, there was

no need to deal with computer programs as one category of intellectual property in the Berne

Convention. This is because there were no interested groups which would bring the matter to the

table.

The 1996 WCT, as can be seen above, referred back to Article 2 of the Berne Convention. This

suggests the issue of computer program as a literary work should have been addressed by the

Berne Convention. The concept of computer program was familiar in 1970s. As discussed in

57 WIPO, guide to the copyright and related rights treaties administered by WIPO and glossary of copyright and

related rights terms, (2003) , at 25
58 Sunny Handa, Copyright in Canada, (Markham, Ontario: Butterworths Canada Ltd., 2002) at 158 [Major

Multinational software companies like Apple Inc., Adobe Systems Incorporated, Dell, HP, IBM, Intel Corporation

Microsoft Corporation, SmartZip Analytics, Superfish, Axtria, etc. are based in the U.S.A.]

13

chapter three of this thesis, it was in the late 1970s that the U.S. Congress established a

commission to investigate the copyrightability of computer software. Hence, there is no

conclusive justification why the Berne Convention has not included computer software as one

copyrightable work.

The other important instrument is the Trade-Related Aspects of Intellectual Property agreement

(TRIPS).59 According to Article 10, “computer programs, whether in source or object code, shall

be protected as literary works under the Berne Convention (1971). Though this clause does not

directly define software, it provides that both source and object codes (which are the main

elements of software) should be protected by copyright as literary works.

The U.S. used to be a pirate of intellectual property rights for centuries. This is evident from the

speech of Secretary of Commerce C. William Verity while explaining the implication of the

U.S.’s Policy on accession to the Berne Convention. It reads as follows:

“For most of our first century of nationhood, we were takers. We stole what others created.

Nobody could match us in our disdain for the rights of foreign authors such as Dickens,

Thackeray, or Gilbert and Sullivan. But we soon learned that our behavior came at a cost as

other nations denied our own authors the rights we had denied theirs. When nations behave that

way, all of them are net losers.”60

So, the U.S. has not been a party to many international intellectual property treaties until

recently.61 But when it found wealth and developed its own creative industries, then it became a

leader in the adoption and promotion of even newer agreements.62 It even used trade barriers as

means to get intellectual property rights to be recognized in other jurisdictions. The 1988

59 Supra note 8
60 Orrin G. Hatch,“Better Late Than Never: Implementation of the 1886 Berne Convention”, (1989), 22:2 Cornell

Int’l LJ, 1 169 at 173
61 U.S. acceded to Paris Convention on March 18, 1887, and to Berne convention on November 16, 1988 after these

long years.
62 U.S. tabled a negotiation for the adoption of international treaties which address the regulation of digital

intellectual products. A case in point is WIPO copyright treaty. The inclusion of IP laws under International trade

agreement is also argued to be U.S’s Agenda. See generally, Pamela Samuelson, ‘‘The U.S. Digital Agenda at

WIPO, 37 Va. J. Int'l L. 369 (1996)’’,available at: http://scholarship.law.berkeley.edu/facpubs/882

http://scholarship.law.berkeley.edu/facpubs/882

14

Omnibus Trade Act63 is an indication of this. Simply stated, in the following section, I will

discuss two international IP instruments which define computer programs.

There were model provisions that WIPO (1977) drafted to give sui generis protection to software

back in the late 1970s. This model provision tries to define computer programs in section 1(i) as

“a set of instructions capable, when incorporated in a machine-readable medium, of causing a

machine having information-processing capabilities to indicate, perform or achieve a particular

result”64. Computer program is defined here in terms of its function. It is a set of instructions

which will make a machine (computer) work, and achieve a particular result. And those set of

instructions have to be in a machine-readable form, in the form of 0’s and 1’s. This, in other

words, means a computer cannot understand human readable source codes.

The other important point in this definitional section is the phrase a machine having information-

processing ability. Even though the model provision is defining computer program, it did not use

the word “computer”. It rather uses “machine”, a machine with information-processing ability.

Computers have this capacity but are not unique in this regard. There are also other devices with

this ability, like other special-purpose machines such as an automatic telephone exchanges and

“intelligent” terminals or components thereof.65

According to this model provision, a distinction is made between computer program and

computer software. “Computer software” is defined in a way that embraces “computer program”

and “program descriptions” and “supporting material”. Program description refers to a complete

procedural presentation in verbal, schematic or other form, in sufficient detail to determine a set

of instructions constituting a corresponding computer program. 66 This description is protected

the same way computer program is protected under section 5 of the model provision. It is not a

computer program per se. But, a computer program can be developed in a relatively

63 Omnibus Trade and Competitiveness Act, 19 U.S.C. § 2242, 2411-2420 (West Supp. 1990) [it is an Act signed by

President Reagan to remedy the diminishing trade-surplus of U.S.). see also Peter Clark, “A Comparison of the

Antidumping Systems of Canada and the USA”, (1996) at III 23.
64 Supra note 26, WIPO Model Provisions
65 See the comments on model provisions on the protection of computer Software, at10; sea also Patent Law -

Patentable Subject Matter - Federal Circuit Applies New Factors in Deciding Patentability of a Computer Program. -

Ultramercial, LLC v. Hulu, LLC, 657 F.3d 1323 (Fed. Cir. 2011), reh'g and reh'g en banc denied, No. 2010-1544,

2011 U.S. App. LEXIS 25055 (Fed. Cir. Nov. 18, 2011), 125 Harv. L. Rev. 2167 (2012), at p, 2172-74. In this piece

the internet is argued to be a machine as regards computer programs is concerned.
66 Supra note 32 art-1(ii)

15

straightforward manner.67 The other important terminology is “supporting material”. It is

defined in an exclusionary manner. It can be any material, other than a computer program or a

program description, created for aiding the understanding or application of a computer program,

for example, problem descriptions and user instructions.68 So, this model provision defines

computer software and related terminologies unlike other instruments discussed below.

The European Union has made significant attempts to protect programs. As we will see in the

coming sections, the EU has a separate law in this area.69 The directive has some elaboration of

what a computer program is, in the sense that the directive says that the term “computer

program” shall embrace preparatory design material. It seems that the European Union has

adopted a broad definition of computer program: “The term ‘computer program’ shall include

programs in any form, including those which are incorporated into hardware. This term also

includes preparatory design work leading to the development of a computer program provided

that the nature of the preparatory work is such that a computer program can result from it at a

later stage.’’70 According to paragraph 2 of article 1 of the directive, “expression in any form of a

computer program” may be covered under this directive. Hence, a computer program does not

necessarily cover only object and source code. It could be covering other documentation such as

preparatory materials.

The EU directive seems to have adopted a broader definition than the other two international IP

instruments. This can be manifested by phrases used in the preamble and article 1 such as “….in

any form……preparatory design work/material….”

It seems there must be an intimate connection between the preparatory material and the computer

program which it has prepared.

The question arises as to whether the “preparatory material” as such, independent of the

67 See comment on model provisions- at 11
68 Supra note 32, art 1(iii)
69 EU has protected software with copyright since 1991(Directive 91/250/EEC) which is re- issued in slightly

modified version but the change is largely cosmetic- in 2009- the directive called Software directive.
70 Id recital 7; article 1(1) of the same directive also incorporated the same conception. It says ‘‘In accordance with

the provisions of this Directive, Member States shall protect computer programs, by copyright, as literary works

within the meaning of the Berne Convention for the Protection of Literary and Artistic Works. For the purposes of

this Directive, the term ‘computer programs’ shall include their preparatory design material’’.

16

associated computer program, may get protection under European law. If it does, is that

protection fully commensurate with the protection given to the computer program? It could be

argued that the directive makes it clear that preparatory materials also enjoy copyright protection

and the same sort of protection against unauthorized copying and distribution as would

traditional works of copyright. Further discussion will be in order in Chapter Two as to the

content of computer software protection.

But otherwise, the directive is silent on what a computer program is. Perhaps that is actually

advantageous to some people. This is because, in an era of radical technological change, if we

are going to define even a very basic concept like a computer program, there is a danger that we

may lock the definition into a particular type of technological platform that will soon be rendered

obsolete by other technology.71 But, at the same time, it does have disadvantages, as it lacks

guidance as to what exactly is being protected.

The other possible issue regarding the EU regime is the scope of protection. It is framed using

open “…shall include” language. In this regard, the definition laid down in WIPO model

provision seems clear. Unlike WIPO Model Provisions, the Directive uses the term “computer

program” instead of “computer software”. But, as we have seen above, computer software

includes computer program in the model Provisions definition and structure.

In the U.S., the Copyright Act of 1976 defines a computer program as ‘‘a set of statements or

instructions to be used directly or indirectly in a computer in order to bring about a certain

result’’72 This definition is closely related to the definition of the model provision. One

significant difference is that those instructions have to be used directly or indirectly by a

computer, not in any machine-readable medium.

The last definitional law we will see in this paper is the Canadian approach. Section 2 of the

Canadian Copyright Act73 defines a computer program as ‘‘a set of instructions or statements,

71 Pamela Samuelson, “Comparing U.S. and EC Copyright Protection for Computer Programs: Are They More

Different Than They Seem?” (1993)13 J.L. & Com. 279 at 282
72 US Copyright Act, 17 U.S.C. (1976) s. 101.
73 Copyright Act R.S.C. 1985, Chap. C-42; Unlike the case of the EU and the U.S., the Criminal Code of

Canada also defines computer program as ‘‘data representing instructions or statements that,

17

expressed, fixed, embodied, or stored in any manner, that is to be used directly or indirectly in a

computer in order to bring about a specific result.’’ The Canadian approach seems similar to the

American one. The only visible distinctions are the requirements of expression, fixation,

embodiment or storage of those instructions as defining elements in Canada.

We can generalize that computer program is defined in all of the above legislation in terms of its

use. It is defined as a set of instructions or statements which enables the computer to produce a

specific result. It is not like bells and whistles which serve a superfluous function. It, rather,

enables the computer or machine-readable device to produce a certain result or solve a problem.

In the aforementioned two sections, we have seen the literal definitions of computer program.

Let us conclude the definitional issues by contrasting with human language and instruction. It is

like giving instruction as to the whereabouts of a specific place. If Mr. X asks Ms. Y where the

College of Law is, Ms. Y will provide directions which, it is hoped, lead to the College. It can be

in the form of go straight, drive a kilometer, take a right, drive around two kilometer etc. We

apply the same logic for computer programs. Using computer programs, one gives instruction to

computers or machine readable machines to perform a specific task. For instance, we can give

instruction a computer to save or print our files. As humans use language to communicate

directions, programmers use programming language to give instructions.74

2. The big bang of computer software

If we review the historical development of the computer, the Chinese created the manual

operating device called the abacus in 50 BC.75 Then, in the mid-17th century, the French

mathematician Blaise Pascal invented the auditing machine by improving the abacus76. In 1820,

when executed in a computer system causes the computer system to perform a function [see
Criminal Code, R.S.C.1985, c. C-46, sub-section 342. 1(2)].
74 As we can use various kinds of languages to give directions (English, French, Spanish, Chinese), programmers

also use different programming languages to give instructions to computers or machine readable devices. The most

common programming languages are Java, C, C++, Python, PHP, Perl, and Ruby. See generally, Computer

Programming Tutorial Simply Easy Learning by tutorialspoint.com,

<http://www.tutorialspoint.com/computer_programming/computer_programming_tutorial.pdf>

75 J. B. Dixit, Sangeeta Dixit, Fundamentals of Computer Programming and Information Technology, (India:

Laxmi Publications, 2005) at 11; see also Saylor Foundation, “Brief History of Computer Systems, Software, and

Programing”, at <http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-

Systems-Software-and-Programming.pdf> (hereinafter “Saylor”)

76 Ibid

http://www.tutorialspoint.com/computer_programming/computer_programming_tutorial.pdf
https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22J.+B.+Dixit%22
http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-Systems-Software-and-Programming.pdf
http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-Systems-Software-and-Programming.pdf

18

another French engineer greatly improved the previous adding machine and produced the

multiplying machine.77 An English mathematician and computer pioneer Charles Babbage began

developing the first general purpose computing machine called the ‘Difference Engine’.78 Fifteen

years later, he proposed the other general purpose computer concept. Babbage called this

machine ‘Analytic Engine’. Unfortunately, his idea of building these programmable engines was

never successful during his lifetime because of funding.79

Ada Lovelace, the world’s first programmer, published a paper in which she demonstrated how

Babbage’s analytical engine could be programmed to perform various computations.80 Her

description is now regarded as the world’s first program.81 Later in the 1970s the U.S

Department of defense developed Ada Programing Language.82

In the 1950s, FORTRAN (‘Formula Translator’) and COBOL (‘Common Business Oriented

Language’) were released, and other programming languages such as BASIC (‘Beginner’s All

Purpose Symbolic Instruction Code’) also became popular.83 Soon, the term “systems analysis”

came to be used to describe the process of collecting information about what a computer system

was intended to do, and the codification of that information into a form from which a computer

program could be written.84

The history of software directly relates with the history of hardware or computing in general.

David Hayes’85 graphical description of computer and other emerged technologies help us better

grasp of the evolution.

77 Ibid

78 Graeme Phillipson, “A Short History of Computer”, (2004) at 2 (hereinafter “Phillipson”); see also Saylor at 3
79 Saylor, at 3
80 Ibid

81 Phillipson, at 3

82 See, “History of the Ada Programming Language”, <http://cs.fit.edu/~ryan/ada/ada-hist.html>

83 Phillipson, at 7

84 Ibid

85 David Hayes, ‘‘Brief History of Software: From main frame to mobile’’, Software IP: The 20th

Annual BCLT/BTLJ Symposium – Intellectual Property Protections for Computer Programs Past, Present, and

Future delivered at The 20th Annual BCLT/BTLJ Symposium of U.S, UC Berkeley School of Law, April

14th, 2016) [unpublished].

http://cs.fit.edu/~ryan/ada/ada-hist.html

19

Figure 1-1. History of computing

As can be seen from the above figure, the 1960s were dominated by mainframe computers. In

1959, IBM released its first transistor-based system called IBM 1400.86 Then, in 1970, Digital

Equipment Corporation (DEC) released its Programmed Data Processor (PDP 11) ushering in the

decade of minicomputers.87 The 1980s saw the rise of personal computers.88 IBM released IBM

PC in 1981, and in 1984 Apple released the first Macintosh (Mac).89 In 1990 Tim Berners-Lee

published a formal proposal for the hyperlink world wide web.90 In 1993 the Mosaic web

browser was released.91 The first decade of the 2000s saw the rise of cloud computing and the

entry of open source into the industry.92 In late 1990s Salesforce, a cloud computing company,

86 Mike E., John K. Wayne O., and Bill O., “Introduction to the New Mainframe: z/OS Basics”,

(02 January 2012), online IBM Readbooks <

http://www.redbooks.ibm.com/abstracts/sg246366.html?Open>
[This was the first mass-produced digital, all-transistorized, business computer that could be afforded by many

businesses worldwide]
87 Gordon Bell, “Stars: Rise and Fall of Minicomputers” IEEE Xplore (17 March 2017), online: Engineering and

Technology History Wiki http://ethw.org/Rise_and_Fall_of_Minicomputers >.
88 Supra note 86.
89Ibid.
90 Ibid.
91 Ibid.
92 Ibid.

http://www.redbooks.ibm.com/abstracts/sg246366.html?Open
http://ethw.org/Rise_and_Fall_of_Minicomputers

20

launched the first commercially successful software as a service, entirely browser based.93 In

2007 Google released the Android OS and open source license.94 In the same year, Apple

released the first iPhone. The current decade could be labeled as the decade of mobile

computing.95 In June 2015, Apple announced the 100 billionth download from its app store

online.96

Luanne Johnson97, in her early article nicely explained the history of computer software as

follows:

 ‘‘Software products are as readily available as music CDs or videotapes are to consumers

today, so it is almost inconceivable that only 40 years ago the concept of software as a

commercial product was considered harebrained. Yet that was the case in the 1960s. Computer

users had limited choices for acquiring the software they needed to run their applications. They

could obtain generalized programs from their hardware vendor at no cost because the cost of

software was bundled into the computer’s cost. Their second choice was to create, at great

expense by using their own programmers or a contract programming firm, customized programs

designed to their own specifications. Software was either free, obtained from the computer

manufacturer, or customized for use by a specific customer only. Consequently, it seemed an

impossibility to design software generalized enough to be sold to multiple users yet differentiated

enough from the hardware manufacturers’ free software that customers would willingly pay for

it. The 1960s were boom years for entrepreneurial firms established to sell programming and

system design skills under contract in a market where the rapidly expanding use of computers

created a high demand for those skills….

…These firms increasingly found opportunities to package the software they had already written

and deliver it to multiple customers, a situation that promised potentially high profits given the

low cost to reproduce already developed software. The term software packages appeared in the

93 Ibid.
94 Ibid.
95 Ibid.
96 Ibid.
97 Luanne Johnson, “Creating the Software Industry Recollections of Software Company Founders of the 1960s”,

IEEE Annals of the History of Computing, (07 August 2002), IEEE Xplore Digital Library at 14<
http://ieeexplore.ieee.org/document/988576/>

http://ieeexplore.ieee.org/document/988576/

21

late 1960s and implied that the customer deliverables included documentation and some level of

service, such as installation, as well as the program code.

Many early products were utility programs with greater functionality or efficiency than the

comparable free software from the hardware vendors. Other early products were software

applications like payroll or banking where external factors such as government regulations

imposed uniformity on the way that customers defined their specifications.

In January 1967, International Computer Programs (ICP) in Indianapolis, Indiana, began

publishing a quarterly catalog of computer programs available for sale, and the software

product industry began to take shape. In June 1969, IBM announced that, effective 1 January

1970, it would charge for some of its software. Other hardware manufacturers followed suit,

ending customers’ expectations that generalized software would always be free and setting the

stage for independent software vendors to become a significant source of software products by

the mid-1970s…… about 200 companies were selling, or developing, software before IBM’s

unbundling took effect.’’

Hence, in early days, consumers acquired software bundled into computer hardware and vendors

were not charging a separate cost for software. Consumers, however, did not have an opportunity

to choose specific software applications. Companies completely shifted their software

manufacturing and distribution strategy. The change resulted in extra cost and choice to

consumers, and commercial success to companies.

3. Taxonomy of computer programs

There are many ways of classifying computer programs. Hence, in order to capture the nature of

computer programs in a simple way, it is advisable to consider these typologies. We can classify

computer programs, firstly, as application or system software. Secondly, computer programs can

be classified as free or proprietary. One can also categorize computer programs as program

source code or object code. A key distinction is the difference between a computer program and

computer software. Separate discussion of these classifications is in order.

3.1 Application and System Software

Both application and system software are instructions and statements as defined under WIPO

22

model provisions, and U.S. and Canadian copyright acts. Application software specifically

directs the computer hardware to perform a specific or general function and helps users do

specific activities using a computer’s hardware. For instance, it helps users create documents

using a word processor (e.g., MS Word) or spreadsheet98 (e.g., MS Excel) which computes

numerical tasks, or a video editor (e.g., Virtual dub), or performs some other function such as

AVG anti-virus, FireFox internet browser, VLC Media player and CamStudio, which screen

records, and Skype, which helps to make video conferencing.

System software, on the other hand, helps a computer run properly. It controls and supports the

hardware system. System software does not perform a specific function that is transparent to a

user.

System software may be referred to as operating system programs (OSPs). OSPs (e.g.,

Windows), manage the internal functions of computers, and application programs (e.g.,

Microsoft Word and other word processing programs) perform specific data-processing tasks for

users.99

In general, a computer may not need more than one system software program, whereas users can

and often do use numerous application software programs, depending on what functions they

want to accomplish.

3.2 Free and Proprietary Programs

We can also classify computer programs as free or proprietary on the basis of how they are made

accessible to users; i.e., whether they are provided freely or for fee.

Proprietary software is the kind of software which usually is protected by intellectual property

laws.100 Users are required to pay a fee, usually in the form of a license, to access the software.

This is because software is seldom sold. In many cases, program-producing industries want to

98 See Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37 (D. Mass. 1990). (This case involves

application program software protection).
99 Alan Story, “Intellectual Property and Computer Software: A Battle of Competing Use and Access Visions for

Countries of the South”, (ICTSD and UNCTAD, 2004) at 12; see also Apple Computer, Inc. v. Franklin Compute

Corp, 714 F.2d 1240 (3d Cir. 1983), rev'g 545 F. Supp. 812 (E.D. Pa. 1982), 714 F.2d 1240 (3d Cir. 1983), rev'g

545 F. Supp. 812 (E.D. Pa. 1982).
100 Ibid (Alan) at 4.

23

transfer their software by a so-called “end user license agreement”. They are not willing to sell

software.101 And they can include many restrictions in agreements of this kind.

At the other extreme, we have free software. These kinds of programs are neither restricted by

intellectual property rights such as copyright and patents nor by license agreements or digital

right management systems. Free software can have two formats: free or open-source software.

They are sometimes called FLOSS (Free/Libre/Open Source Software). When we say software

is free, we mean that users can use it as they wish, modify it or fix some of its bugs, redistribute

it, and access source code.

3.3 Program Source Code and Object Code

The TRIPS agreement in Article 10(1) provides for protection of computer program whether in

source or object code. Other instruments do not contain such a distinction. When we say that a

computer program is in (expressed in) source code we mean software in a human-readable form.

Programmers develop such programs in way we humans can understand (at least those of us who

are computer programmers).

On the other hand, references to programs in object code mean machine-readable forms. They

are expressed in binary digits, a string of 0’s and 1’s. Human beings, even experts on the area,

cannot grasp and remember these machine codes.

A statement or mathematical expression can be made using a high-level programming language

(e.g., FORTRAN, BASIC, and PASCAL). And these high-level codes can be directly translated

to machine code using a translator program. However, it must be observed that it is possible to

translate first to assembler code before machine/object code. Then we need to have an

assembler (assembly language) to translate from assembler code to object code. We can also

automatically translate using a compiler (source code to object code). To make things even

clearer, we can have an interpreter whereby a translator immediately translates so that the user

101 This matter attracts attention if we consider digitally distributed software. Once owners of software transfer

software in the form of a sale, they will no longer control the further distribution of that specific software. As the

further redistribution of that software will have detrimental effect on the interest of the original sellers, the later will

opt to license rather than sell. However, recently the highest court of EU in its controversial UsedSoft decision,

equated software licenses with sales so that the doctrine of exhaustion applied to the transfer of software via license.

See below UsedSoft GmbH v Oracle International Corp, Case C-128/11).

24

understands automatically. This is just to show how one language level can be translated to

another level.102

Source code Compiler Assembly Code Object code

Computer programs may also include some documentation. In the wording of the WIPO model

provisions, this documentation includes program description and supporting materials. In EU

terminology, this may mean preparatory design materials or works.

4. Justifying the protection of computer programs

Justifying IP status for computer programs is directly related to the justifications of intellectual

property rights (IPRs) in general. IPRs may be justified by labor, utilitarian or personality

theories.

Seen from the point view of labor theory, IPRs protect computer programmers’103 efforts or

labor. Labor-based legal theory was originally developed by the English philosopher John Locke

to justify tangible property rights. However, subsequent commentators extended the application

of this theory to intangible property rights such as IPRs.

Locke, in the chapter entitled ‘Of Property’ in his 1690 book 104 explained the basis

of property as follows.

‘‘The earth and everything in it is given to men for the support and comfort of their existence. All

the fruits it naturally produces and animals that it feeds, as produced by the spontaneous hand of

nature, belong to mankind in common; nobody has a basic right—a private right that excludes

the rest of mankind—over any of them as they are in their natural state. But they were given for

the use of men, and before they can be useful or beneficial to any particular man there must be

102 See generally, Hugh Brett and Lawrence Perry, The legal Protection of Computer Software, (Oxford, UK: ESC

Publishing Ltd, 1981), at 5-11
103 A programmer is a person who prepares instructions for computers. By and large, programmers are natural

persons though there are a wider instance of cooperation, and assignment- assigning to the employers.
104 John Locke, Second Treatise of Government, Book II, Ch. V , 1690, at para 26 & 27

<http://www.earlymoderntexts.com/assets/pdfs/locke1689a.pdf >

http://www.earlymoderntexts.com/assets/pdfs/locke1689a.pdf

25

some way for a particular man to appropriate them... Though men as a whole own the earth and

all inferior creatures, every individual man has a property in his own person [= ‘owns himself’];

this is something that nobody else has any right to. The labor of his body and the work of his

hands, we may say, are strictly his. So when he takes something from the state that nature has

provided and left it in, he mixes his labor with it, thus joining to it something that is his own; and

in that way, he makes it his property’’.105

As asserted in the paragraph above, Locke reasoned that individuals have, by “natural law”, a

property right in their bodies and, consequently, in the fruits of the labor produced by their

bodies.106 Thus, through labor, an individual converts the raw material of nature into private

property, whether tangible or intangible.107 Computer software, being one category of intellectual

objects, can also be justified by this theory. In this case, our basis for protection will be that

programmers own their efforts and so also the products of their efforts.

Be this as it may, some case laws seem to disregard the labor theory. For instance, in the FEIST

PUBLICATIONS108 case, the court said: "The primary objective of copyright is not to reward the

labor of authors, but to promote the Progress of Science and useful Arts."109

A related basis is the personhood theory. Theorists argue that intellectual objects are the

extensions of the creators’ or inventors’ personalities. By this theory, a work or invention is an

embodiment of the personality of the creator.110 Hence, a programmer by developing software is

not intending to make profit or earn; he rather does it for personal development and growth.

105 Ibid. paragraph 26 and 27
106 Deborah Tusssey, Complex Copyright: Mapping the Information Ecosystem, (England: Routledge, 2012) at 42
107 Simon Stokes, Art and Copyright, (Oxford, UK: Hart Publishing , 2012) at 18; Law Society of Upper Canada v

CCH Canadian Ltd., [2004] 1 S.C.R. 340; rev’g (2001), 18 C.P.R. (4th) 161 (F.C.A.); allowing in part (1999) 2

C/P.R. (4th) 129 (F.C.T.D.); affirmed by Robertson v Thomson Corp. (2006), S.C.J. No. 43 (S.C.C.) [The court in

determining the originality of copyrightable works, seems to incorporate labor theory]
108 FEIST PUBLICATIONS, INC. v. RURAL TELEPHONE SERVICE CO., 499 U.S. 340 (1991)
109 Ibid, par 19.
110 See Tanya Alpin & Jennifer Davis, Intellectual Property Law: Texts, Cases and Materials, (New York; Oxford

University Press, 2009) at 52 [for them, unlike the economic arguments for [IPRs], IP law regime exists, not to

advance the common will, but to give force to certain ethical obligations owed to creators or [inventors]).

Continental law systems seem to give a pedestal position for moral right theory in justifying copyright. See, for

instance, Directive 2001/29/EC Of The European Parliament and of the Council of 22 May 2001 on the

harmonization of certain aspects of copyright and related rights in the information society [This is manifested from

its recital 11, which is formulated in the following manner:

‘‘A rigorous, effective system for the protection of copyright and related rights is one of the main ways of

ensuring…..of safeguarding the independence and dignity of artistic creators and performers’’.]

26

Another justification could be economic incentive-based theory. It is otherwise called

utilitarianism. This theory emphasizes on the duty of society to reward creators. The assumption

of this theory is that there will be an incentive to produce goods because their selling prices will

allow a producer [creator or inventor] to recoup both costs of production and the benefit of the

goods to a purchaser.111 For economic theorists, the intended beneficiary of the [intellectual

object] is the community as a whole, which demands production of and access to as many

creative works as possible.112 In the case of computer programs, besides being beneficial to

society they are expensive to develop. The painstaking process of formulation, coding and

testing a new program requires much valuable time.113

Which of the above justifications have been incorporated into software laws? In the U.S., there is

a constitutional clause which serves as the basis for intellectual property protection.114 We cannot

find specific justifying clauses for computer programs and other traditional intellectual objects.

On the other hand, software warrants protection as its development requires the investment of

considerable human, technical and financial resources, it plays an important role for

community’s industrial development,115 and it can be easily exploited by others in the absence of

property such as that provided through the creation of IPRs. It seems that the EU adopts the

utilitarian justification.116

Intellectual property rights and computer software may be justified either by natural rights, labor,

moral right, and personality theories on the one hand, or utilitarian theory on the other. However,

all of these theories are not without their critiques. In what follows, let us see the critics posed to

these theories.

Alternative ways of rewarding

The first question one can ask is why IPRs [for computer programs] at all? Is there no other

mechanism of rewarding creative minds? The counter argument, of course, will be that other

111 Ibid, (Tanya Alpin & Jennifer Davis) at 52.
112 Ibid
113 David Bender, “Trade Secret Protection of Software”, (1969-1970) 38 Geo. Wash. L. Rev. 909 at910; see also

Barron’s Dictionary of computer Terms at 449.
114Article I, paragraph 8, cl. 8 of empowers Congress ‘‘to promote the Progress of Science and useful Arts, by

securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries’’
115 Supra note 12, recital 2 and 3
116 Ibid, recital 3.

27

systems of rewards are not as effective as IPRs. The problem with this counter argument is we

have not tried them. However, some scholars believe that in the absence of IPRs, markets

[software markets] will fail.117 For these persons, somebody may invent or create useful works.

However, these intellectual objects will be under-produced unless the law intervenes to cure this

‘market failure’.118 Nonetheless, for Hettinger it is also equally important to think of alternative

ways. For instance, we can use awards, acknowledgements, and public finance support systems

to spur innovation and creativity, rather than IPRs.119 Kremer also proposes government buyout

of patent after conducting auction.120 Government sponsored cash rewards as partial or full

replacements of the patent system are also considerations. This is even important to address in

fields where the disparity between average cost and marginal cost is typically large –

biotechnology and computer software.121

Some Works created without expectation of IPRs

Do we have to treat all works/inventions equally? For one thing, it has been argued by many that

all works are not the result of 100% individual effort. At times, the contribution may be

negligible.122 The other conceivable reason is some people may write a book or a program for

their personal pleasure. Did Shakespeare write his works for incentive or IPRs? How about

people who create for religious purpose or other causes? Richard Stallman’s did not develop

GNU software for commercial success. The same holds true to Linus Torvald’s UNIX type Linux

operating system. These examples show that some intellectual works could be created without

consideration of IPRs.

117 Supra note 29 at 2382 [they explain the market destruction concept in the context of cloning of cloning

programs]
118 Supra note111 at 56
119 Edwin C. Hettinger, “Justifying Intellectual Property”, online: (1989) 18 Philosophy & Public Affairs 1 at 41, 49

https://www.jstor.org/stable/pdf/2265190.pdf
120 Michael Kremer, Patent buy outs: A mechanism for Encouraging Innovation 113Q.J.Econ.1137(1998) cited in

James E Daily and F. Scott Kief, Perspectives on Patentable Subject Matter, (New York, U.S.A.: Cambridge

University Press, 2015) at 407
121 See especially, Steven Shavell and Tanguy V. Ypersel, “Rewards Versus Intellectual Property Rights”, (2001)

44 J.L & Eco.525 (these authors argue that intellectual property rights may not always be an advantageous system

and they suggest government reward system as an alternative stimulating mechanisms)
122 For instance the required individual creation expected from author of copyrightable in U.K was very minimal. On

the other hand, the extent of creativity was very high in Germany. With the view to harmonize copyright laws in

Europe, the EU later adopted a copyright directive that is applicable all over Europe. See also CCH Canadian Ltd. v.

Law Society of Upper Canada,[2004] 1 S.C.R. 339, 2004 SCC ; Supra note 29at 2380 [software developers often

consult well known program elements while writing source codes of their own]

https://www.jstor.org/stable/pdf/2265190.pdf

28

Absence of Scientific Evidence

Even if there is an assumption that IPRs will encourage innovation, so far there is no research

which shows a direct relationship between intellectual property rights and economic incentive.

Simply because there is a strong belief, are we supposed to grant all creators powerful patent

monopoliesand perpetual copyright protections? So, in the absence of conclusive evidence or

research, it is not logical to restrain the public from freely using and commercializing their ideas.

In the U.S, a 1966 presidential commission on the patent system recommended that patents

should not be permitted for software, as satisfactory growth in the industry had taken place in the

absence of patent protection.123

 Hence, one cannot find a single theory fully justifying the existing system of IP law. The

combination of these theories may be a better alternative. We can say the existing IPRs may be

grounded by a combination of labor theory, personhood and economic incentive theories.

The EU, U.S, and Canadian intellectual property law regimes in one way or other incorporated

these theories. Be that as it may, there are grievances both from the rights holders’ and

consumers’ sides. For instance, the Pharma industry wants the further extension of patent

protection.124 There is also widespread piracy of copyrightable works for which the authors of

these works look to the public and the government for assistance.125 Authors, inventors, the

publishing and recording industries restrict the free flow of information using IPRs. On the other

hand, the public at large considers information as a basic necessity.

Because of these contentions, it is very difficult, if not impossible, to apply IP laws as they are to

computer software. Expansion of technology exacerbates the enforcement problem even more.

As the legal system is not effectively protecting their interests, the industries are devising self-

enforcement mechanisms. This is true for digital intellectual objects. The copy and print control

Digital Right Managements Systems (DRMS) employed by high tech corporations are an

123 Supra note 17.
124 Barrie McKenna, “Canada needs tougher drug patent protection: Report” The Globe and Mail (23 August 2012)

online: The Globe and Mail < http://www.theglobeandmail.com/report-on-business/canada-needs-tougher-drug-

patent-protection-report/article562405/> ; Tom Roberts, Intellectual and Industrial Property I: Introduction to

Patents, Lecture Notes, (College of Law, University of Saskatchewan, 2015)
125 See generally, Adrian Johns, Piracy the intellectual property wars from Gutenberg to Gates, (Chicago: The

University of Chicago Press, 2009);

http://www.theglobeandmail.com/report-on-business/canada-needs-tougher-drug-patent-protection-report/article562405/
http://www.theglobeandmail.com/report-on-business/canada-needs-tougher-drug-patent-protection-report/article562405/

29

example. They are going in the direction of “the answer to the machine is in the machine”126

approach. Simply stated, if we have a legal system that is based on fairly reasonable

justifications, we might not encounter such a problem.

A simple premise can be made. That is, intellectual property rights are bargains between the right

holder and users. These bargains have to be fair. By fair, I mean the right holder shall get what

they deserve. This again will be the other premise. The third premise might be the users’ right.

They shall have the right to access created works in a fairly reasonable manner. Of course, it is

very difficult to balance these two interests. So we have to come up with a plausible conclusion.

In what follows, I will forward my solutions to this basic contention.

Firstly, we have to see each category of intellectual objects separately. A “one size fits all”

approach is the heart of the cause of contention between users and holders. It is true that there

exists a separate rule for patents, copyrights, trademarks, and others. Nonetheless, there are

varieties of protectable subject matters in each of IPRs regimes. If we take copyright, there are

expansive lists of subject matters which are copyrightable. Programmers of software and writers

of songs shall be treated differently. The term of protection, breadth and scope of rights of these

authors should not be the same. This is so, without derogating the very principle of labor theory

or utilitarian theories. The same is true in determining the scope and duration of the exclusive

right of holders of audio-visual and dramatic work. In the same fashion, patentable subject

matters shall also be seen on a case by case basis. Hence, irrespective of the form of protection

for computer programs, the justification should be seen in context.

Secondly, patents are by their nature very strong. They also preclude parallel inventions. For this

reason, their term of protection is short. But it is unfair to prevent individuals, at least, from

using their ideas for themselves. We can ban them from commercializing their ideas as it is not

novel and somebody else is already making it available to society. But one cannot see the reason

for stopping them from personally using it.

The third and most important point which is often overlooked is that the monopoly right over

intellectual objects may not actually benefit the right holder. In the case of copyright, the interest

126 Supra note 22 (as mentioned above, recent copyright instruments protect technological protection mechanisms

and outlawed any attempt to circumvent those methods.

30

of publishing and distributing companies is not less important. The proposed reward may not

ultimately benefit the actual author. A person may write a book and sell it to the public. That

person then will share the net sale with those companies involved in publishing and distributing

the work. My proposal for this is the state may finance these publishing and distributing

industries so that the interest of the author and public at large will be reconciled. This is because

publicly funded publishing organization will not have profit motive. This way consumer of

copyrightable materials pays only the authors of works. The same is true for patents. Patent

application is very expensive. Even after the grant of a patent, if there is any challenge,

defending it is also very expensive.The consumer then bears the cost. The possible solution can

be simplifying the patent grant procedure without compromising the essential purpose of a

patent.

31

CHAPTER TWO

EXISTING INTELLECTUAL PROPERTY PROTECTION FOR COMPUTER

SOFTWARE

It has been about six decades since computer software came to affect our lives. As has been

explained in the preceding sections, at first we did not have a separate protection for software.

We rather considered computer software as part of the general notion of a computer. So, any

price we put on and protection granted to computers includes computer software. Software

applications other than computer software were unthinkable 20 years ago, let alone in the 1950s

and 60s.

However, discussion as to splitting software from hardware and requiring separate protection

was put on the table in 1967, at least at the United Nations (UN) level.127 The first idea was to

protect software with a special law. To conduct a thorough study and come up with a feasible

solution for this issue, an international committee was established. The committee prepared a

model law, though it was finally rejected, and a completely new approach has been adopted.128

Nowadays, one can protect software in various ways. In what follows, discussion is presented as

to patent, copyright, trade secret and other forms of protection of computer software. The

interpretations of laws and cases by patent offices and the judiciary as to the patent protection of

software are also part of the discussion in this section.

2.1 Patenting Computer Software

Computer programs were not originally considered patentable, since they were viewed as

mathematical discoveries by some and abstract ideas by others. Be that as it may, today patent

law is used as one way of protecting computer programs in many jurisdictions. So, in many

127 Supra note 6 (Yoshiyuki), at 47.
128 Ibid.

32

countries (notably in the United States), copyright was no longer the only way to protect

software. Nowadays, patent law is becoming increasingly a way of protecting software in some

parts of the world.129

As compared with the U.S. system, the EU and Canadian systems are more reluctant to grant

patents for computer programs.

2.1.1 Software patents in the U.S.

Patent laws of certain countries excluded computer programs130 in an explicit manner. However,

we cannot find an explicit exclusion for patenting computer programs in the United States and

some other jurisdictions.131

Although the U.S. Copyright Act explicitly regards computer programs as literary matter and,

hence, copyrightable, the following figure shows how the patent system also affords protection

to software and computer-related inventions.132 According to this figure, one can understand that,

although the United States Patent and Trademark Office ("USPTO") has no classification

specifically directed towards software and computer-related inventions, it does try to quantify

how many "software" patents it issues each year, stating that as many as one-half of the nearly

250,000 patents issued annually are directed towards software inventions.133 Similar studies from

the University of Edinburgh show that in a single year, the patent office granted 41,144 software

patents, where the total number of patents granted in that year was 336,643.134 Within 20 years, the

number of software-related patents in the U.S. grew from 3,078 to 41,144.135

129 Working group on Libre Software, ‘‘Free Software / Open Source: Information Society Opportunities for

Europe?’’, EU commission Community Research and Development Information Center (23 February 2000), Online:

EU Commission News & Events at 22 < http://cordis.europa.eu/news/rcn/14374_en.html> ; see also supra note 40at

367. In recent years, however, software patents have become common on the ground that software can be an

essential part of a machine.
130 For instance, see article 52(2) of European Patent convention. As will be discussed in the subsequent sections,

what is excluded in this convention though is ‘‘computer program as such’’
131 See, for instance David Bainbridge, “Court of Appeal Parts Company with the EPO on software patents”, (2007)

23 Computer L & Sec R at 199 (Japan’s and Australian Patent Acts have no such exclusionary provision).
132 U.S. Gov't Accountability Office, GAO-13-465, Intellectual Property: Assessing Factors That Affect Patent

Infringement Litigation Could Help Improve Patent Quality 12 Fig.1 & N.27 (2013).
133 Supra note 43at 1835-1836
134 Andrés Guadamuz González, Software Patentability: Emerging Legal Issues, IP and Software (06 December

2008), online: WIPO Magazine <http://www.wipo.int/wipo_magazine/en/2008/06/article_0006.html>
135 Ibid, in 1986, the USPTO has issued around 3078 software related patents; James Bessen and Robert M. Hunt,

“An Empirical Look at Software Patents”, online (2007) 16:1 Journal of Economics & Management Strategy at 158

< http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9134.2007.00136.x/epdf> .

http://cordis.europa.eu/news/rcn/14374_en.html
http://www.wipo.int/wipo_magazine/en/2008/06/article_0006.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9134.2007.00136.x/epdf

33

The following figure explains the trend in software patents in the U.S. It is strong evidence

showing the exponential growth of the USPTO’s granting software patents, although we see an

oscillating position between courts in the subsequent paragraphs.

Figure 2-1. Number of Software-Related Patents Granted per Year by USPTO, 1991 to 2011

Some have commented on the extent to which the U.S.A.’s stand on patenting computer

programs has greatly influenced other jurisdictions. Recently, Ravindra Chingale, in the Oxford

Journal of International Intellectual Property Law and Practice has written the following:

The decision of the US Supreme Court in Alice Corporation v CLS Bank International 573 US

(2014) has significantly affected attitudes to software patenting worldwide.136

In determining what is patentable about software, U.S. courts have been struggling to establish

136 Ravindra Chingale, ‘‘Alice and software patents: implications for India”, (2015), 10 J Intell Prop L & Prac. 5 at

353

34

tests for many years. Hence, the rise and fall of the patent as a protection mechanism for

computer software innovations in the U.S. has been witnessed in the last six decades. The

evolution of software patents began with three Supreme Court cases as the technology was

evolving from the mainframes into the PC era.137

Most information technology firms such as IBM,138 Samsung, Canon, Panasonic, Toshiba and

Microsoft are being awarded patents by the U.S. Patent and Trade Mark Office (USPTO)139.

Issues of patenting computer programs date back to the 1972 case of Gottschalk v Benson140. In

Benson case the court asked whether the claim would wholly preempt a mathematical algorithm.

This is one test. Then, the court said, "The patent would wholly pre-empt the mathematical

formula and in practical effect would be a patent on the algorithm itself." However, the court

gives a very restrictive meaning141 to the term algorithm- Procedure for solving a given type of

mathematical problem”.142

In Parker v. Flook143, the court asked whether the claim process contributed to the article’s

transformation in state or nature. At first, the patent examiner rejected144 the claim, arguing that

the only novel invention in this claim was the mathematical formula. Similarly, the Patent Trial

and Appeal Board affirmed the examiner’s rejection. However, the Court of Customs and Patents

Appeal (CCPA) granted the patent by reversing the decision of the board and examiner.145

Nonetheless , the Supreme Court finally reversed the decision of the CCPA, explaining:

“Respondent’s process is unpatentable under § 101 not because it contains a mathematical

137 There was, however, one other software patent granted by the United States Patent and Trademark Office

(USPTO) in 1968- U.S. Patent No.3, 380,029. For further information, see the discussion by Gene Quinn, “The

history of software patents in the United States” IPWatchdog (03 October 2014), online: Patent bar Review

<http://www.ipwatchdog.com/2014/11/30/the-history-of-software-patents-in-the-united-states/id=52256/>
138 In 2002 , IBM alone was issued 3411 patents, most of them relates to software, See Arun Mehta, “The Absurdity

of Software Patents”,(11 December 2003) http://world-information.org/wio/readme/992006691/1078487756
139 Supra note 30 (John a. Gibby) at 16
140Gottschalk v. Benson, 409 U.S. 63, and the Supreme Court in this case developed a machine-transformation test.

The court there said the transformation and reduction of an article to a different state or thing’ is the clue to the

patentability of a process claim that does not include particular machines. Under that test, a computer program is

patentable if and only if "(i) it is tied to a particular machine or apparatus, or (ii) it transforms a particular article into

a different state or thing.
141 Supra note 36 at 305.
142 Supra note 143 at 65.
143 Parker v. Flook, 437 U.S. 584 (1978).
144 Ibid, Flook, at 588.
145 This court is now replaced by the Federal Circuit courts.

http://www.ipwatchdog.com/2014/11/30/the-history-of-software-patents-in-the-united-states/id=52256/
http://world-information.org/wio/readme/992006691/1078487756
https://en.wikipedia.org/wiki/United_States_Reports
https://supreme.justia.com/cases/federal/us/409/63/

35

algorithm as one component, but because, once that algorithm is assumed to be within the prior

art, the application, considered as a whole, contains no patentable invention.”146

Three years later, in Diamond v. Diehr147 the court again reconsidered its decision and ruled that

computer program can be patented.148 In this particular case, the test used by court was whether

the claimed process involves the transformation of an article, transforming uncured synthetic

rubber into a different state or thing.

Then the court, in finding the computerized process patentable, explained:

 "A claim drawn to subject matter otherwise statutory does not become nonstatutory simply

because it uses a mathematical formula, computer program or digital computer. . . . A process is

not unpatentable simply because it contains a law of nature or a mathematical algorithm. It is

now commonplace that an application of a law of nature or mathematical formula to a known

structure or process may well be deserving of patent protection. As Justice Stone explained four

decades ago: “While a scientific truth or the mathematical expression of it, is not a patentable

invention, a novel and useful structure created with the aid of knowledge of scientific truth may

be"… Arrhenius’ equation is not patentable in isolation, but when a process for curing rubber is

devised which incorporates in it a more efficient solution of the equation, that process is at the

very least not barred at the threshold by Section 101.149

Before the Supreme Court entertained in 2010 other software related patents, the Federal Circuit

was struggling with determining the patentability of software claims. In consequence, the Court

adopted different tests. The Freeman-Walter-Abele Test150 is one often-cited test the Court has

applied. This test was based on the concept of preemption, and attempted to distinguish claims

that wholly preempt mathematical algorithm from those that did not. The focus of this was on

146 437 U.S. 584 (1978), supra note 140.
147 Diamond v. Diehr, 450 U.S. 175 (198).
148Ibid, in this case it has been said, in the realm of computer programs, the distinction between what is patentable

and what is unpatentable lies in whether a computer program is an application of an abstract idea, which may be

patentable, or instead an abstract idea itself, which is not.
149 Ibid; see also Cathy E. Crtsinger, “Patent: Patentability: Computer Software,: AT&T Corp. v. Excel

Communications, Inc.”, (2000) 15: 1 Berkeley Tech LJ, at 166 [In analyzing the patentability of these claims, the

Supreme Court has consistently stated that, while a mathematical algorithm standing alone is an unpatentable

abstract idea, a useful process that incorporates an algorithm may be patentable subject matter]; supra note 140.
150 It the test developed out of series of three court decision called Freeman, 573 F.2d 1237 (C.C.P.A. 1978); Walter,

618 F.2d 758 (C.C.P.A. 1980); and Abele, 684 F.2d 902 (C.C.P.A. 1982)

36

patenting mathematical algorithm. In determining the patentability of claims, the Court identified

two sub-step tests: whether the claim recites mathematical algorithm, and whether the claim as a

whole is no more than the algorithm itself. If our answer is positive, then the claim is non-

statutory subject matter.

The Freeman-Walter-Abele test was soon overridden by Federal Circuit.151 . Hence, a decade of

chaos and confusion followed as courts attempted to apply the test. During this era, the outcome

of cases largely depended upon the particular Federal Circuit panel. Three camps of thought have

been reflected among the Federal Circuit judges.152The first camp focuses on the preemption of

all sorts of algorithm under the Freeman-Walter-Abele test. The radicals, on the other hand,

believed in the patentability of software claims as long as the claim invention show some

‘‘technical application and provides some technologically useful effect’’.153Thirdly, some judges

believed software claims could be patented if the claim relates to a machine.

Arrhythmia Research Technology Inc. v. Corazonix Corp154 was the other software related case

entertained by U.S Courts. The software is used in monitoring heart attack victims. Although

there is a machine accepting input signals from the heart that is being monitored, the main

invention is the software.155 The Federal circuit granted a patent on this software invention by

reversing the United States District Court for the Northern District of Texas decision.

In 1994, the Federal Circuit Court of Appeal again attempted to clear up some of the confusions

in the Alappat case.156 Kuriappan Alappat was granted a software patent.157 In this later case, the

focus shifted from Freeman-Walter-Abele test of preemption to useful, concrete and tangible

test. Uncertainty continued for more years until the Federal circuit again developed another test

of patentability. In 1998, the Court in the State Street Bank case158 held that the transformation of

data representing dollar amount by a machine to a series of mathematical calculation into the

151 Emily Michiko Morris, “What Is “Technology”?”, online: (2014) B.U. SCI. & TECH. L. (2014) at 30 http://fstp-

expert-system.typepad.com/files/92-e.-morris_what-is-technology_iu_i.n..pdf .
152 Supra note 86.
153 Ibid.
154 Arrhythmia Research Technology Inc. v. Corazonix Corp , 958 F.2d 1053, 22 USPO2d 1033 (1992)
155 Supra note 143.
156 33 F.3d 1526. Also, see C. Mark Kittredget, “The Federal Circuit and Non-patentable Subject Matter Under In

Re Alappat and in Re Warmerdam”, (1995) 11 Santa Clara computer & High Tech. L.J. 261
157 Patent no. 5,440,676;supra note 16.
158 State Street Bank & Trust Co. v. Signature Financial Group, Inc.,149 F.3d 1368, 47 U.S.P.Q.2d (BNA) 1596

(Fed. Cir. 1998), cert. denied, 119S. Ct. 851 (1999)

http://fstp-expert-system.typepad.com/files/92-e.-morris_what-is-technology_iu_i.n..pdf
http://fstp-expert-system.typepad.com/files/92-e.-morris_what-is-technology_iu_i.n..pdf

37

final share price constitutes a patentable application of machine algorithm. This is because it

produces a useful, concrete and tangible result in the form of a final share price.

Following these Court decisions, the U.S. patent office issued many patents (some referred them

as ‘‘weak patents’’159), resulting in patent trolls, otherwise called non-practicing patents. Some,

like David Hayes, attribute this to two reasons.160 The absence of adequate database of prior arts

of software in the USPTO is one reason. Secondly, the prevalence of aggressive practitioners

who were seeking to protect software methods related to technology, in the decade of the internet

is the other reason for the issuance of many software patents.

In 2008, the Court rejected the Freeman-Walter- Abele test and the useful, concrete and tangible

result test adopted in Alappat,161 and state street bank test.162 Accordingly, the Federal Circuit in

Bilski163adopted the machine-transformation test. If the claimed machine/process ties in with a

particular apparatus or transforms a particular article to a different state or thing, then the claim

is patentable.

The Supreme Court, in the recent Bilski case164, has again rejected the machine-transformation

test as a sole test of process patent eligibility165. The Court stated the ultimate determination must

be whether the subject matter is a law of nature, physical phenomena or abstract idea, positing

that these categories of subject matter are absolutely not patentable. As will be discussed below,

the same Court analyzed the section 101 exception in Alice.166 Finally, the court held the claims

159 For more information about week and non-practicing patents, see Brian T. Yeh, “An Overview of the “Patent

Trolls” Debate, Prepared for Members and Committees of Congress”, CRS Report for Congress

 (16 April 2013) online: < https://archive.org/details/R42668AnOverviewofthePatentTrollsDebate-crs> ; and Anton,

James J., Hillary Greene, and Dennis Yao, “Policy Implications of Weak Patent Rights”, (2006) 6 Harvard Business

school Innovation Policy and the Economy at 1–26.
160Supra note 86.
161 Haewon Chung, “Lessons from Bilski”, online: (2011) 9 CJLT 1 179 at 184 <

https://ojs.library.dal.ca/CJLT/article/view/4846%3E>.
162 Supra note 162,1373.
163 Bernard L. BILSKI Rand A. Warsaw No. 2007-1130., 545 F.3d 943
164 Bilski v. Kappos, 130 S. Ct. 3218, 3225 (2010)
165 The court explicitly rejected the court of appeals stand, as the latter ruled that the machine-or-transformation test,

was the sole test to be used for determining the patentability of a “process” under the Patent Act, 35 U. S. C. §101.

See the analysis of Justice Kennedy in Bilski (2010) ; Michael B., Abramowicz, James E. Daily, and F. Scoot Kieff,

Perspective on Patentable Subject Matter, Cambridge (2015), p-33
166 Alice Corp. v. CLS Bank Int'l, 134 S. Ct. at 2354, [Section 101 “contains an important implicit exception: laws of

nature, natural phenomena, and abstract ideas are not patentable.”]

https://archive.org/details/R42668AnOverviewofthePatentTrollsDebate-crs
https://ojs.library.dal.ca/CJLT/article/view/4846%3E

38

unpatentable in that case because they were directed to the abstract idea of hedging risk.

In 2015, the Supreme Court in Alice Corporation Pty. Ltd. v. CLS Bank International et al167,

again established another test of patentability: a two-step test. In arriving at this test the Court

used its 2012 Mayo v. Prometheus case168. First, the [Court should] determine if "the claims at

issue are directed to one of those patent-ineligible concepts”169. Secondly, "If so, the [Court

should] then ask, what else is there in the claims before us?”170 In the latter step, the Court is

asking if there is an inventive concept that amounts significantly more than the patent ineligible

concept itself. The Court explained this in the following manner:

We have described step two of this analysis as a search for an "inventive concept—i.e., an element or combination of

elements that is 'sufficient to ensure that the patent in practice amounts to significantly more than a patent upon the

[ineligible concept] itself. "171

The Alice Court, using the two step tests, tried to distinguish patents that claim patent ineligible

subject matters from patent eligible ones. It, then, held- implementation of wholly computer

generated elements is not sufficient to add something to save the claims. The system claims to

recite the abstract idea of implementing a generic computer. It then concluded that “the method

claims, which merely require generic computer implementation, fail to transform that abstract

idea into a patent-eligible invention."172 Simply stated, Alice Corporation’s innovative idea i.e.

“concept of hedging” or “settlement of risk” is found a patent ineligible abstract idea.

Furthermore, the Court stated Alice’s claim does not add an element that transforms the patent

ineligible abstract idea. Accordingly, the Court held Alice’s registered patents were invalid as

they fell under §101 exception.173 The Court, first looked Alice’s if it is directed to patent-

ineligible abstract idea. The answer was positive. It then applied the second test i.e. if the claim

167 Ibid. Alice Corp. claims a patent on a method of intermediating financial settlement using a computer system. Respondents,

on the other hand, argued against the patentability of those claims based on §101of the U.S. Patent Act.
168 Mayo Collaborative Services, Dba Mayo Medical Laboratories, Et Al. V. Prometheus Laboratories, Inc.,132 S.

Ct. 1289 (2012)
169 Supra note 171 at 2355
170 Ibid
171Ibid
172 Ibid at 2357
173 Amanda Liverzani, “Fate of Software Patents Still Unclear Following SCOTUS Decision in Alice v. CLS

Bank”, Harv JL & Tech (28 June 2014), online: Harvard Journal of Law & Technology Digest

<http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-following-scotus-decision-in-alice-v-cls-

bank> .

http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-following-scotus-decision-in-alice-v-cls-bank
http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-following-scotus-decision-in-alice-v-cls-bank

39

has an inventive step which would help it pass the § 101 exception. This time the answer was

negative; hence, it did not pass the two-step tests.

Further controversy continued and new tests of patentability have been introduced by Courts.

Ultramercial Inc. v. Hulu LLC (Fed. Cir. 2014)174 is another patent case handled by Courts post-

Alice. In this case Ultramercial, Inc. sued Hulu, YouTube and WildTangent for patent

infringement. The claimant had its patent registered in 2008.175 The defendants moved to make

the claimed patent invalid. The District Court decided in their favor and dismissed

Ultramercial’s claim. The Court used the machine-transformation test and abstract idea176

exception, mentioned above, in rejecting the claim. Later, the Federal Circuit rejected the District

Court’s decision and introduced two other tests in assessing the patentability of computer

programs.177 These tests are 1) the requirement of complex programing and 2) the use of the

programs in the internet and cyber market environment or electronic commerce (electronic

commerce over the World Wide Web).178

In summary, the U.S. Patent Act does not exclude the patentability of software technologies.

All levels of Courts are developing different criteria of patenting software since the early days of

1970s. Likewise, the USPTO is struggling in entertaining software patent claims. The office has

also issued thousands of software patents.

2.1.2 Software patenting in Canada

The approach taken as regards patenting software varies across jurisdictions. In some jurisdiction

such as the U.S., we see leniency in permitting patents for software. The early U.S. Supreme

Court case of Diehr179 and some of its subsequent decisions support this benevolence in granting

174 Ultramercial, LLC v. Hulu, LLC, 657 f.3d 1323 (Fed. Cir. 2011), reh'g and reh'g en banc denied, No. 2010-1544,

2011 U.S. App. LEXIS 25055 (Fed. Cir. Nov. 18, 2011).
175 U.S. Patent No.7,346,545
176 The Harvard Law Review Association, “Patent Law - Patentable Subject Matter - Federal Circuit Applies New

Factors in Deciding Patentability of a Computer Program. - Ultramercial, LLC v. Hulu, LLC’, 657 F.3d 1323 (Fed.

Cir. 2011), reh'g and reh'g en banc denied, No. 2010-1544, 2011 U.S. App. LEXIS 25055 (Fed. Cir. Nov. 18,

2011),” online: (2012) 125 Harv. L. Rev. 2167 at 2169

<http://www.jstor.org/stable/23214434?seq=1#page_scan_tab_contents>
177 Ibid at 2170
178 Ibid at 2168
179 Supra note 151.

http://www.jstor.org/stable/23214434?seq=1#page_scan_tab_contents

40

patents. On the contrary, the EU approach as will be discussed below is a bit different. This

section examines the Canadian approach.

In a statutory regime similar to the practice in other countries, the grant and administration of

patent in Canada is guided by the 1985 Canadian Patent Act.180 In Canada, the Patent Act was

interpreted as excluding computer programs and algorithms as non-statutory subject matter.181

Section 27(8) of the Act excludes certain subject matters and states, "no patent shall be granted

for any mere scientific principle or abstract theorem." 182 Some argue that computer program

might fall under the abstract theorem exclusion.183The reason for this is that computer software

involves algorithms, and the latter are regarded as abstract theorems.184 But such interpretation

will only consider “computer programs per se”, or “computer programs as such”, to use the

European terminology. David Vaver states that before 2005, the Canadian Intellectual Property

Office (CIPO) considered computer programs as unpatentable subject matter for the reason that

they would halt the emerging field.185 The Patent Act being one major source of law regarding

patentability, the patent office has adopted numerous supplementary Notices and guidelines. The

2007 CIPO’s manual seems to mitigate its pre-existing position. According to this manual,

computer programs could be amenable to patentability provided they are ‘‘integrated with

traditionally patentable subject matter’’186.

Conrad Delbert Seaman, in his recent article, has properly articulated the current position of

Canadian software patents.187 The author put the Canadian approach as falling between the U.S.

180 Canadian Patent Act, R.S.C. 1985, c P-4
181 Ibid, See also Schlumberger Canada Ltd. V Commissioner of Patents , 56, 204(1984), see also Eloise Gratton,

“Should Patent protection be Considered for Computer Software- related Innovations?”, (2003) VII Computer L

Rev & TJ, at 225-226
182 Tennessee Eastman Co. v Canada (Commissioner of Patents) (1972), 8 CPR (2d) 202 (SCC),

P- 204.
183 Conrad D. Seaman, "Contextualizing the Software Patent Debate in Canada: A Practical Approach to Policy

Development”, (2014) 3:1 97 Osgoode Hall Review of Law and Policy 3.1 97 at 103; supra note 156 Eloise

Gratton, at 225.
184 Ibid, Eloise Gratton.
185 Supra note 187 at 105; David Vaver, Essentials of Canadian Law: Intellectual Property Law: Copyright,

Patents, Trademarks (Concorde Ontario: Irwin Law Concorde Ontario, 1997) at 129.
186 Canadian Intellectual Property Office - Manual of Patent Office Practice”, March

2007 at c.12 and c.16 as quoted by Seaman, Conrad Delbert, p-105.
187 Supra note 187.

41

and Europe, and described it as "a non-position"188. The Patent Act does not mention computer

programs at all, either as an exclusion or patentable subject matter. The “non-position” claim

seems to arise from the lack of clarity on the part of the judiciary and the Patent Office.

In recent years, though, the Canadian Patent Office has eased its restrictions on patenting

computer-related inventions. Patents are now rather routinely granted for inventions in the

computer and information processing field.189 Even the CIPO amended guideline once

considered computer programs as patentable subject matter.190 A case in point is the recent

patent granted in Amazon.com Inc.191 This case involves a method claim whereby a customer’s

profile data will be saved in their own computer. Additionally, the method saves a user’s

identification information in the customer’s server computer. The method is called “one click”

buying. It allows users to transact in online marketplaces using the predefined profile, mailing

and payment information. In this case, although the Patent Commissioner rejected Amazon’s

request based on Schlumberger Canada Ltd.192, the Federal Court of Appeal reversed its

decision.

Following the Amazon case, Patent Notice Practice guidance for examiners of computer

implemented innovations was prepared in March 2013.193 Based on this latest notice, although

computer-implemented inventions may be claimed as a method, machine, product, computer arts

– including computer programs – may not be claimed as such.194This is in accordance with the

earlier manual. The 2007 manual allows the patentability of computer programs so long as the

claim is integrated with other patent-eligible subject matter. Few additional facts have been

included in the 2013 Notice-evaluation of computer program’s patentability according to section

2 of the Patent Act should adhere to purposive construction. The other most important additions

188 Ibid at 100,105.
189 Ibid at 226.
190 Ibid, at105; Canadian Intellectual Property Office - Manual of Patent Office Practice”, March

2007 at c.12 and c.16 (revised in 2009). [This manual, in section 12.06.02, covers computer programs. Accordingly,

if the program is essentially abstract in character it is not an invention. However, as explained below, it could be

amenable to patent protection if it meets the technical contribution criteria].
191 Canada (Attorney General) v. Amazon.com, Inc., [2011] FCA 127.
192 Supra note 185 (Schlumberger Canada Ltd v Canada (Commissioner of Patents).
193 See, Canadian Intellectual Property Office, Examination Practice Respecting Computer-Implemented Inventions,

PN 2013-03
194 Ibid

42

in the manual, explains the convergence of the Canadian approach to the European Patent

Office’s and some of the U.S.’s patentability tests: the technical solution to technical problem

approach. A computer program could be patentable if it meets Section 15.05.03 of this manual.

The manual requires for claims to provide a novel and unobvious technological solution to a

technological problem. The presentation of contribution is not enough. It rather should provide

technological solution to a technological problem.

2.1.3 Software patenting in the European Union

Generally, computer programs, as such, are excluded from patentability in the EU.195 But we see

European authorities mitigating this exclusionary clause with the fulfillment of one requirement:

if the program has a technical effect, software related inventions196 can be patentable.

A relevant law for the analysis of patentability of computer programs in EU is the European

Patent Convention (EPC).197 Our analysis should begin with a discussion of Article 52 of this

convention. The first Subsection of this provision sets out the requirement of patentability.

Accordingly, an invention would be patentable if it meets three cumulative requirements:

industrial application198, novelty199, and inventive step.200 On the other hand, Sub-Article 2 lists

excluded subject matters. Programs for computers are among the excluded subject matters.201

What is excluded from the realm of patent is a pure computer program, in the abstract202 as Sub-

195 Article 52(3) of EPC (see below 172)
196 ‘‘Software patents’’, ‘‘software related inventions’’ and ‘‘computer-implemented inventions’’ are used

interchangeably by bulk of literature and case laws. See, Philip Leith, Software and Patents in Europe, Cambridge

Intellectual Property and Information Law, (Cambridge University Press), (2007), p-16 [indicating, at times these

terms can frequently be used interchangeably with ‘‘business method patents’’]; The proposed directive on the

patentability of computer implemented inventions (CII) defines CII as ‘‘any invention the performance of which

involves the use of a computer, computer network or other programmable apparatus and having one or more prima

facie novel features which are realized wholly or partly by means of a computer program or computer

programs’’(see article 2 (a) of Proposal for a Directive of the European Parliament and of the Council on

the Patentability of Computer-Implemented Inventions, COM(02)92 final available at http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=COM:2002:0092:FIN.
197 Convention on the Grant of European Patents (European Patent Convention of 5 October 1973 as revised by the

Act revising article 63 EPC of 17 December 1991 and the Act revising the EPC of 29 November 2000
198 Ibid, article 52 (1) & 56 [An invention shall be considered as susceptible of industrial application if it can be

made or used in any kind of industry, including agriculture]
199 Ibid, an invention shall be considered to be new if it does not form part of the state of the art, see article 52(1)

&54.
200 Ibid,Article 52(1), 56 [it is not obvious to a person skilled in the art]
201 Ibid article 52(2(c))
202 Paul England, ‘‘Computer-related inventions: from CFPH to Macrossan”, (2007), 2 J Intell Prop L & Prac. 5 305

at 306.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2002:0092:FIN
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2002:0092:FIN

43

Article 3 reads: Paragraph 2 shall exclude the patentability of the subject-matter or activities

referred to therein only to the extent to which a European patent application or European patent

relates to such subject-matter or activities as such.

The 1985 EPO guideline for examination, as amended in September 2016, has also addressed

excluded subject matters. Chapter VIII of the latest version deals with excluded subject matters.

Section 2.2 of this chapter is particularly concerned with sections 52 (2) & (3) of the EPC. The

guideline classifies those subject matters into two. The first limbs are non-technical. The

guideline, by this limb, wants to address excluded subject matters as such. In other words, article

52(3) matters are regarded as non-technical.203 Article 52 (2) of EPC lists excluded subject

matters, and Sub-Article (C) of this convention includes programs for computer. In other words,

the guideline considers, pure computer programs mentioned by article 52 (3) of the convention

as non-technical subject matters, and not patentable.

The second limb concerns claims involving technical features. These matters are listed under

Article 52 (2) of the convention. Though the convention states those matters are not patentable

inventions, the guideline qualifies the convention. Accordingly, if these matters demonstrate

technical features and contribution, they could be treated as patentable inventions. Significant

weight seems to be given to the “contribution” element. On the other hand, the claims

contribution may serve a technical purpose though it appears to be non-technical in its feature.204

The EPO guideline adopts the “technical solution to technical problem” criterion which is

incorporated in the Canadian Patent Office examination practice regarding computer

implemented inventions.205

Be this as it may, we see variations in approaches between member states and the European

Patent Office. For instance, the UK’s patent office and Courts used to follow the ‘technical

contribution’ approach, whereas the EPO considers whether the claim has a ‘technical feature at

203 EPO, Guidelines for Examination in the European Patent Office, Nov 2016, ISBN 978-3-89605-158-5<

http://www.epo.org/law-practice/legal-texts/guidelines.html >.
204 Ibid, section 2.2
205Supra note 194.

http://www.epo.org/law-practice/legal-texts/guidelines.html

44

all’.206 Stefan Steinbrenner, former chairman of an EPO Technical Board of Appeal, said the

following.

 “Any of the subject-matters listed in Article 52(2) EPC may comprise an invention if it has

technical character or contributes to it (in particular because a technical problem is solved by

using technical means or a technical effect is achieved, technical interactions occur or technical

adaptations are effected, in other words: if such subject-matter lends itself to a technical

application.”207

This shows that the patentability of computer programs should be assessed on a case by case

basis. As can be noted from the above remark, the technical element is repeatedly used:

technical problem, means, effect, adaptation, contribution, interaction, character and application.

This may be the reason for EPO granting thousands of software patents. It is not only the U.S.

authorities who are generous in granting software patents. The EPO, in its 1994 annual report,

noted that about 11,000 software patents have been granted.208 A data from 2007 show the

issuance of 8,981 patents classed under computing.209Since 1978, more than 30,000 software

related patents have been issued by European Patent Office.210 Andrés G. González, in his

interview for WIPO magazine, concurred with the idea of the European Patent Office issuing more

than 30,000 software patents.211

Even so, there are researchers who question the requirements of patentability of computer

programs. This is because extensive case law in the field shows that the ‘technical requirement’,

the main pillar of the traditional European patent system, as applied to computer programs, has

206 Supra note 208. Notice however, should been taken that this technical contribution and technical feature analysis

is used only to identify whether the subject matter is excluded or not. The other requirements of patentability set

forth under sub-article 1 remains intact
207 Stefan Steinbrenner, “The patentability of computer-implemented inventions”, EPO (24 March 2011)

<http://archive.is/e-courses.epo.org>.
208 Philip Leith, Software and Patents in Europe, (Cambridge, UK: Cambridge University Press, 2007) at 16
209 Supra note 137.
210 Robert Bray, The European Union "Software Patents" Directive: What is it? Why is it? Where are we now?,

(2005) Duke L & Tech Rev11 1-18.
211 David Koepsell, Innovation and Nanotechnology: Converging Technologies and the End of Intellectual

Property, (New York, U.S.: Bloomsbury Academic, 2011) at 17 [analyses the increasing patenting of software, and

he went on further in elaborating the fact that wealthier software companies have strong patent portfolios]; Supra

note 137.

http://archive.is/e-courses.epo.org

45

repeatedly proven inappropriate and confusing.212

The commission tried to make changes regarding patenting computer programs. Accordingly, it

sought suggestions from the general public, interest groups and member states. To achieve this

purpose, it announced a consultation in 2002.213 The bulk of responses to the consultation came

from a petition for a patent-free Europe organized by EuroLinux, and the results of the

consultation indicated that ninety-one percent of the respondents opposed software patents.214 In

2005, the European parliament rejected its proposed directive. However, the debate over the

patentability of software remains in Europe to this day.215 So the decision to withdraw the

proposed directive does not mean that the issues addressed in it and the interests affected by it

have been resolved. Real debate has merely been deferred, and it is important to recognize the

issues and interests clearly before the debate is resumed.216

The United Kingdom, observed at the national level, has an interesting approach toward software

patenting.217 In Slee & Harris application (1966) RPC 194218, the examiner granted a patent for a

program directed to a machine. In the same case, a separate claim of patenting the program itself

was requested, and the examiner allowed the claimed patent: ‘‘Linear programming means for

use in controlling data processing apparatus.’’219

The other early English software case for which a patent was granted was the International

Business Machines Corporation’s application [1980] FSR 59220. The Patent Appeal Tribunal

agreed with the superintending examiner’s view in allowing the patent, and explained as follows:

…what Mr. Nymeyer seeks to claim as a manner of new manufacture is a method involving

operating or controlling a computer in which the computer is programmed in a particular way or

212 Rosa Maria Ballardini, ‘‘Software patents in Europe: the technical requirement dilemma”, (2008), 3 Journal Intell

Prop L & Prac 9 563.
213 Supra note 20. See also supra note at 229.
214 Ibid; supra note 185.
215 John R. Allison, Abe Dunn & Ronald J. Mann, “Software Patents, Incumbents, and Entry”, (2006-2007) 85 Tex.

L. Rev. 1579 at 1621.
216 Andres Guadamuz Gonza´lez, ‘‘The software patent debate’’, (2006) 1 Journal Intell Prop L & Pract 3 at 196
217 Despite s. 1(2) of the 1977 UK Patent Act exclude the patentability of pure software inventions, the Intellectual

Property Office (IPO) and Courts have allowed software patents.
218 Supra note 21
219 Ibid.
220 Ibid at 129.

46

programs in physical form to control a computer so that it will operate in accordance with his

method. The method is embodied in the program and in the apparatus in physical form and in our

view the claims should be allowed to proceed [patentable]. We agree with the superintending

examiner that the law is that an inventive concept, if novel, can be patented to the extent that the

claims can be framed directed to an embodiment of the concept in some apparatus or process of

manufacture.

 When we see the above two cases (three claims), it seems the main emphasis is the embodiment

of programs to physical medium. In the first claim of Slee and Harris case, the examiner

reasoned “ …the claim is directed to a machine which has been…”, and in the ‘Linear

programming’ claim of the same case, the examiner opined that as “ …the means claimed is an

integer which physically cooperates with a computer…..therefore, when fixed in a machine…”.

The same holds true in the IBM case.

2.2 Copyrighting Computer Software

When the issue of computer program protection came up in the 1970s and early 80s there was a

fair deal of uncertainty about how to deal with these programs under copyright law. The question

then was whether the existing rules on copyright law could apply to computer programs without

amendment or further refinements.

Generally, the line was taken that computer programs can fit reasonably comfortably under the

category of literary works.221 So, copyright protection is the commonly accepted method of

protecting computer programs. Accordingly, since the 1980s, in many countries copyright in

protecting computer programs is taken for granted.222It falls under the category of literary works,

as the developer writes software instruction as other authors of literary works do.

There were, however, questions about the degree of comfort copyright gives to authors of

computer programs.223 This is because, unlike other works protected by copyright, the nature of

221 The provisions of WCT and TRIPS agreement with their referral sections to the Berne Convention on the

Protection of Artistic and Literary works is the manifestation of this fact.
222 Deborah Azar, “A Method to Protect Computer Programs: The Integration of Copyright, Trade Secrets, and

Anticircumvention Measures” online: (2008) Utah Law Review 4 1395 at 1397

http://epubs.utah.edu/index.php/ulr/article/view/135/117 .
223 See, for instance, Raymond T. Nimmer & Patricia Ann Krauthaus, “Software Copyright: Sliding Scales and

Abstracted Expression”, (1995) 32 Hous. L. Rev. 317 ; There were also litigations regarding the copyrightability of

http://epubs.utah.edu/index.php/ulr/article/view/135/117

47

software is unique. Generally speaking, computer software is technical in its attributes.

2.2.1 Copyrighting software: International instruments

 As stated above, the U.S., Canada, and the EU choose copyright as the best method of

protection. At the international level, we have the World Intellectual Property Organization

Copyright Treaty (WCT) and Agreement on Trade-Related Aspects of Intellectual Property

Rights (TRIPS) with referral provisions to the Berne Convention. These are the most recent

international copyright instruments governing copyright at the international level. The non-

inclusion of computer software in the earlier laws could be chalked up to many reasons.

Problems related to prediction software inventions224 in that time is one reason. The other one is

global leaders of the field such as the U.S.225 did not want to put the issue in the negotiation

process.

2.2.2 Copyrighting software in the U.S

At the national level, too, most jurisdictions choose copyright to protect computer software.

However, there were some objections regarding considering computer programs as copyrightable

subject matter. In one case from Australia,226 a Trial Court held that none of the programs were

literary works within the meaning of 1968 Copyright Act,227 but this case was reversed on

appeal. Professor Samuelsson and her colleagues argue copyright offers very thin protection

against software copying.228 Although we have these and related critical comments against the

copyright protection of computer software, the fact is that copyright remains, at least

legislatively speaking, a main method of software protection in the U.S.

It was in 1964 that the U.S copyright office registered two computer programs for the first

time.229Be this as it may, the first legislative initiative in determining the scope of copyright for

computer computers in the U.S.A and Australia, see for instance Computer Edge Pty. Ltd. v. Apple Computer Inc.

(1986) 161 CLR 171.
224 Nick Bassil, ‘‘An introduction to international IP instruments relevant to electronics and software’’ in Nicholas

Fox, Sian O’Neill & Carolyn Boyle, eds, Intellectual property in Electronics and Software: A Global Guide to

Rights and Their Applications (London: Globe business Publishing Ltd. 2013) at 15
225 Orrin G. Hatch, ‘‘Better Late Than Never: Implementation of the 1886 Berne Convention’’, (1989) 22: 2 Cornell

Inter’l LJ at 4.
226 Ibid; see also Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3rd Cir. 1983).
227J.McKeough, ‘‘Apple Computer Inc. V. Computer Edge Pty Ltd”, A Case Note’’, (1984) UNSWLJ 162 at 164
228 Supra note 29 (Robert, at 281).
229 Lee A. Hollaar, Legal Protection of Digital Information, (Washington DC, USA: BNA Books, 2002) at 57

48

computer software in the U.S came into the picture in 1980230 when Congress amended the 1976

Copyright Act.231 The intention of Congress to extend copyright protection for software was

explicit in the 1976 Copyright Act.232To further investigate the copyright issues on computer

programs, Congress allowed additional time to the National Commission on New Technological

Users of Copyrighted Works commonly referred to as CONTU.233 The Commission finally

proffered two recommendations. Its first recommendation is the inclusion of a definition in the

Copyright Act.234This recommendation was accepted and computer program was defined in the s.

101 of the 1980 Copyright Act235. Secondly, it recommended amendment of the limitation

clause, § 117 of the Act.236 It allowed the owner to make copies and adaptations as long as they

are used for archival purposes.

It was not only the legislative initiatives that attracted attention. Parallel judicial developments,

though tortuous, were underway. In 1982, the Federal Circuit handed down its decision in

Williams Electronics, Inc. v. Artic International, Inc.237The Court affirmed copyright protection

of computer programs and clarified traditional scope of software copyright, i.e. object and source

code. Furthermore, it addressed the fixation requirement mentioned in § 101. The Court of

appeal has also entertained for the first time the software copyright issue in the case of Apple

Computer, Inc. v. Franklin Computer Corp.238 Apple Computer Inc. brought the case to the

District court in 1982 alleging copyright infringement, among other things. The District Court

denied Apple’s motion and the plaintiff lodged an appeal. The defendant raised four defenses of

which three are important for our consideration. Firstly, it argued that machine readable codes

are not copyrightable. Secondly, the defendant challenged programs stored in the internal

memory of a computer (ROM). Thirdly, it regarded operating system software as an idea rather

230 Karen J. Kramer, “Extending Copyright Protection to a Computer Program's Structure. Whelan Associates, Inc.

v. Jaslow Dental Laboratory, Inc. 797 F.2d 1222 (3d Cir. 1986)”, online: (1987) 65:2 Wash. U. L. Q. 471 at 474 <

http://openscholarship.wustl.edu/law_lawreview/vol65/iss2/6/> .
231 Copyright Act , 17 U.S.C. (1976).
232 Supra note 233, at 58.
233 Public Law 93-573 and Public Law 95-146 [The commission (a composition of fourteen expertises) has been

established in 1967 to assist the president and Congress in adopting national copyright policy].
234 Supra note 233 at 60.
235 17 § 101(1980).
236 Supra note 233.
237 Williams Electronics, Inc. v. Artic International, Inc, 685 F.2d 870 (3d Cir. 1982).
238 Apple Computer, Inc. v. Franklin Computer Corp, 714 F.2d 1240 (3d Cir.1983).

http://openscholarship.wustl.edu/law_lawreview/vol65/iss2/6/

49

than expression of idea. The Court of Appeal for the Third Circuit, by heavily relying on the

CONTU report, reversed the motion and decided in favor of Apple.

The importance of copyrighting software began in parallel with computing evolution. Copyright

did not protect software in the 1950s-mainframe era. This means the use of software in mini and

personal computers (PC) is more widespread than in the small number of mainframe computers.

The early commercialization of PC software began to expand when the first spreadsheet computer

program known as VisiCalc239 was released for Apple II in 1979. Then, Lotus development (later

part of IBM) released its vital software, Lotus 1- 2- 3 in later years. With the further release of

Mackintosh in 1984, the software market began to explode. The decade witnessed intense

competition in the software business. We also saw a wavering uncertainty about software patents,

particularly in the Supreme Court. This uncertainty about software patents and strong competition

in the software industry seems one reason for software developers to push the confines of copyright

protection. Software as a copyrightable subject matter used to be regarded as a literary work240; as

such, copyright protected the literal element of it. As time passed, companies began to claim

copyright protection for the non-literal element of software. This non-literal element of software

is commonly referred to as the “look and feel” of computer software.241 Non-literal aspects of

software include visible and invisible aspects of software. The move to copyright non-literal

aspects of software is, in the words of Pamela Samuelsson, the move against the “minimalist” or

“thinner” copyright protection of software.242

Many “look and feel” copyright cases were filed and decided after the launch of Lotus 1-2-3; and

the broader scope of copyright protection was fueled by the Federal Circuit’s decision in Whelan

Assocs., Inc. v. Jaslow Dental Laboratory, Inc.243 The defendant developed a new program using

239 Tom Hormby, “VisiCalc and the Rise of the Apple II” Apple History (25 September 2006), online: Low End

Mac’s Online Groups < http://lowendmac.com/2006/visicalc-and-the-rise-of-the-apple-ii/>.
240 Appropriate copyrightable works, in all jurisdictions, relate to literary, artistic, musical and dramatic works.

However, their proper scope is the subject of fierce judicial and academic discourse.
241 See generally, Pamela Samuelson, “Why the look and feel of software user interfaces should not be protected by

copyright law”, online :(1989) 32Communications of the ACM 5 http://www.foo.be/andria/docs/p563-

samuelson.pdf
242 Pamela Samuelson, “Reflections on the State of American Software Copyright Law and the Perils of Teaching

It”, online: (1988) 13 Colum.-VLA J.L. & Arts 61 (1988) at 62 < http://scholarship.law.berkeley.edu/facpubs/128/>
243 Whelan Assocs. Inc. v. Jaslow Dental Laboratory Inc., 797 F.2d 1222 (3d Cir. 1986) cert. denied, 479 U.S. 1031

(1987).

http://lowendmac.com/2006/visicalc-and-the-rise-of-the-apple-ii/
http://www.foo.be/andria/docs/p563-samuelson.pdf
http://www.foo.be/andria/docs/p563-samuelson.pdf
http://scholarship.law.berkeley.edu/facpubs/128/

50

similar interfaces and different high-level programming language (BASIC). The first Dentlab

software ran on IBM minicomputer; however, the later244 ran on IBM PC. It was a copyright

infringement case, and the disputable software was dental laboratory software. In this case, the

court ruled that “the line between idea and expression may be drawn with reference to the end

sought to be achieved by the work in question. In other words, the purpose or function of the

utilitarian work would be the work’s idea, while everything that is not necessary to that purpose

and function would be part of the expression of that idea.”245 The main basis for the copyright

infringement verdict, in this case, was interface similarity between the two programs. For

Samuelsson, Whelan is the strongest expression of the maximalist view.246 This case also

established the structure, sequence and organization (SSO) test of software.247

Four years after Whelan, in Lotus Dev. Corp. v. Paperback Software and Mosaic Software248 the

District Court decided another landmark computer program and user interface case. Lotus

development owned “Lotus 1-2-3” spreadsheet, and the defendants owned another spreadsheet

known as “VP Planner”. Unlike Apple Computer, Inc. v. Franklin Computer Corp, Lotus

concerned application program software. The plaintiff claimed Paperback Software and Mosaic

Software’s “VP Planner” software infringed its copyright over “Lotus 1-2-3”. In contrast, the

defendants argued against the copyrightability of the non-literal element of software. The court

determined that Lotus had a copyright over the “look and feel” aspects of its user interface.249

In 1992, the 2nd circuit in Computer Associates International Inc. v. Altai Inc.250 tried to

articulate a more reliable and analytical framework for adjudicating software copyright cases.

Computer Associates (CA) had a job-scheduling computer program, Adapter, for IBM

mainframes. The defendant had a similar purpose program called “ZEKE”. Altai hired one of the

former employees of CA to write a new program, “OSCAR 3.4”. While writing “OSCAR”, the

244 The first Dentlab program was written in EDL programming language. Later, Jaslow developed similar program

using BASIC programming language.
245 Ibid, at 1235-40.
246 Supra note 246.
247 The court developed this test to determine if one software infringes the copyrighted works of

others. It is a test which helps determine the copyright violation of non-literal elements of software.
248 Whelan, in Lotus Dev. Corp. v. Paperback Software and Mosaic Software , 740 F. Supp. 37 (D. Mass. 1990).
249 Josh Lerner and Feng Zhu, “What is the impact of software patent shifts? Evidence from Lotus v. Borland”,

online: (2007) Int. J. Ind. Organ. 25 at 514 < http://www.nber.org/papers/w11168>.
250 Computer Associates International Inc. v. Altai Inc , 75 F.Supp. 544, 20 USPQ2d 1641.

http://www.nber.org/papers/w11168

51

programmer copied portions of “Adapter’s” source code, and CA claimed that the defendant

infringed copyright by copying parts of its “Adapter”. The defendant assigned a new team of

programmers who did not have access to or information about Adapter, and developed “OSCAR

3.5”. Determination was sought as to whether the “OSCAR 3.5” had infringed CA’s “Adapter”.

The two most important issues framed by the court were: access and substantial similarity check.

Although the court assumed the defendant’s accessing of the plaintiff’s Adapter, it concluded

that the rewritten OSCAR 3.5 was not substantially similar to the Plaintiff’s Adapter. The court

established a so-called abstraction, filtration and comparison test. The test requires classifying

works in different levels of abstraction, filtering out the protected elements in each level and

comparing the remaining protected works. Hence, the Federal Circuit used this three-step test to

determine the substantial similarity of the non- literal elements in Computer Associates’

“Adapter” and Alti’s “OSCAR 3.5” software.

In parallel, the Lotus Development Corp. v. Borland International, Inc. 251 litigation was going on,

which sought to determine whether computer menu command hierarchy was copyrightable. The

District Court decided in favor of Lotus and regarded those menu command hierarchies as

copyrightable. Borland appealed, and the Federal Circuit reversed the decision and decided in

favor of the defendant. The Supreme Court decision was in a tie, and therefore, affirmed the

Federal Circuit’s decision.

Following the Supreme Court’s decision, outcomes continued to oscillate, but the copyrightability

of look and feel began to die. Be that as it may, copyright continued to be the main protection

mechanism. For David Hayes, the increase in reliance on copyright as a software protection

mechanism depends on four factors.252 Firstly, copyright remained important for protection

against piracy in the mass market, especially with the rise of peer to peer networking and mass

downloading. The increase of uncertainty in software patents is the second factor. The third factor

is the rise of open source software which requires copyright protection as a legal basis for enforcing

the terms of an open source license, yet grants free and broad license rights. The final factor is the

move of software into the cloud, which reduces the opportunity for piracy and creation of similar

251 Lotus Development Corp. v. Borland International, Inc , 799 F. Supp. 203 (D. Mass. 1992) [Borland I1]; 788 F.

Supp. 78 (D. Mass. 1992).
252 Supra note 86.

52

programs.

In 2014, in Oracle America, Inc. v. Google, Inc.253, the Federal Circuit declared that the Java

APIS are copyrightable, potentially reinvigorating again the protection of functional and non-

literal elements of software.

Oracle developed a software code called Application Programing Interfaces (APIs) for Java

programming language. Google copied “declaring code,” the "structure, sequence and

organization" for 37 of the Java APIs. The case concerns whether APIs are copyrightable. The

Court decided in favor Oracle, and said the “37 API packages—including the declaring code and

the structure, sequence, and organizations are copyrightable”.

2.2.3 Copyrighting software in Canada

Canadian laws and jurisprudence as regards computer program protection are not as well

developed as in the EU and the United States systems. As discussed above, patent rules and

judicial pronouncement pertaining to Canada are not clear. There is not even much study and

academic discourse, again as compared to the EU and U.S. However, this does not mean there is

no attempt to address the issues of computer software. In the U.S. the foundation or starting point

in discussing IPRs protection is Article I, Section 8, Clause 8, of the United States Constitution.

Similarly, the Constitution Act254 of 1867 recognizes both patent and copyright protections.

Hence, the Copyright Act255 of Canada bases its source on this constitutional provision.

Statutorily speaking, computer program as a copyrightable subject matter came on the scene in

the 1988 copyright amendment Act.256 This amendment, like the Unites States’ CONTU, is the

result of suggestion from the House of Commons Sub-Committee on the Revision of

Copyright.257 The report of the committee is commonly referred to as A Charter of Rights for

253 Oracle America, Inc. v. Google, Inc , 750 F. 3d 1339 (2014).
254 Constitution Act,1867 (UK), 30 & 31 Vict, c 3, reprinted in RSC 1985, App II, No 5[section 92(23) bestows

subject matter jurisdiction to the Federal Parliament of Canada. Hence, copyright with its cousin intellectual

property rights falls in the ambit of Federal Acts].
255 Supra note 73.
256 Supra note 58.
257 Kimbery Hancock, “1997 Canadian Copyright Act Revisions”, (1998) 13 Berkeley Tech. L.J. at 517.

http://scholarship.law.berkeley.edu/btlj/vol13/iss1/33/>. Some considers one reason for the revision is to meet the

U.S. standard , see, for instance, Peggy Berkowitz, “Canada Is Drafting New Copyright Law to Satisfy Grievances

http://scholarship.law.berkeley.edu/btlj/vol13/iss1/33/

53

Creators.258 The revision process of the Copyright Act was implemented in two phases.259Phase

one is particularly important for this discussion as it was a phase when computer program has

acquired an explicit statutorily copyright protection.

Computer program has been considered as a literary260 work even before the inclusion of the

section 2 definition in the 1988 revised Copyright Act. Relevant cases in this regard are261

Spacefile Ltd v. Smart Computing Systems Ltd262, IBM v. Spirales Computer Inc.263, RDG Inc. v.

Dynabec Ltd264. The most important software copyright case before the revision of the Copyright

Act was the Apple Computer Inc. v. Mackintosh Computers Ltd Case.265 The Apple case is

particularly interesting. This case involved three levels of courts (trial, appellate and Supreme

Court). It involved the operating system copyright claim of Apple on “Applesoft” and “Autostart

ROM”. The defendant converted the written work of Apple to one of electrical code and encoded

it on one of its chips. Madam Justice Reedfound the case in favor of the plaintiff, deciding that

translating and reproducing (by encoding written programs on silicon chips) amounts to

infringement based on section 3(1) of the Copyright Act. An appeal was lodged to the Federal

Court of Appeal and the court dismissed the petition. A further petition was made to the Supreme

Court and the court unanimously agreed with Madam Justice Reed’s conclusion. Hence, this case

of U.S. Concerns”, Wall Street Journal (29 April 1986) online: Wall Street Journal

http://search.proquest.com/docview/398055666?rfr_id=info%3Axri%2Fsid%3Aprimo
258 Standing Committee on Communications and Culture, Canada House of Commons, Report of the Sub-

Committee on the Revision of Copyright, A Charter of Rights for Creators 4 (Issue No. 27, 1st Session, 33rd

Parliament, 1985) as cited in Kimbery Hancock, “1997 Canadian Copyright Act Revisions”, (1998) 13 Berkeley

Tech. L.J. at 517; Vaver, David, Copyright Law: Recent Canadian Developments”, Online: (1988) 16 Australian

Business Law Review at 413

<http://search.proquest.com/docview/223515078?OpenUrlRefId=info:xri/sid:primo&accountid=14739
259 Jay Makarenko, “Copyright Law in Canada: An Introduction to the Canadian Copyright Act”Mapleleafweb (13

March 2009), Judicial System & Legal Issues < http://www.mapleleafweb.com/features/copyright-law-canada-

introduction-canadian-copyright-act.html>.
260 Barry S., Steven M., and Carys C., Copyright Cases and commentary on the Canadian and International Law, 2nd

ed, 2013, Carswell, Canada,, ch 7 at 359.
261 George E. Fisk & Jane E. Clark, “Hardware and Software Protection in Canada” online: (1990) X 10 Computer

L.J. at 484-85 http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl
262 Spacefile Ltd v. Smart Computing Systems Ltd , 75 C.P.R. (2d) 281 (1983).
263 IBM v. Spirales Computer Inc , 80 C.P.R. (2d) 187 (1984).
264RDG Inc. v. Dynabec Ltd, 6 C.P.R. (3d) 299 (1985).
265 Apple Computer Inc. v. Mackintosh Computers Ltd ,10 C.P.R. (3d) 1 (F.C.T.D. 1986); aff'd, 18 C.P.R. (3d) 119

(F.C.A. 1987).

http://search.proquest.com/docview/398055666?rfr_id=info%3Axri%2Fsid%3Aprimo
http://search.proquest.com/docview/223515078?OpenUrlRefId=info:xri/sid:primo&accountid=14739
http://www.mapleleafweb.com/user/jay-makarenko
http://www.mapleleafweb.com/features/copyright-law-canada-introduction-canadian-copyright-act.html
http://www.mapleleafweb.com/features/copyright-law-canada-introduction-canadian-copyright-act.html
http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl

54

for the first time made clear that computer program both in source and object was copyrightable.

The case triggered Copyright amendment.266

The Canadian Copyright Act267, in section 2 provides a definitional clause for computer

program. Section 2 of the Canadian Copyright Act is similar to section 101 of the U.S Copyright

Act.268 Interestingly, there is no common-law copyright in Canada, especially subject matter, and

infringement issues269.Accordingly, we only see very few software cases applied and entertained

by the Canadian courts. Canada’s membership in the WTO and UN (WIPO) and its commitment

to the TRIPS agreement and the WCT is another important fact as to the copyrightability of

computer programs in Canada. Hence, by the applying these two agreements Canada is duty

bound to extend copyright protection to computer program.

2.2.4 Copyrighting software in the EU

As there is no separate law for computer programs in the U.S. or Canada, we simply apply the

respective general copyright and patent laws in order to determine the nature of specific rights

the right holder has. However, for the past 25 years, in the EU there was variation in approach as

regards software protection.270 Before adopting the software directive in 1991, member states of

EU have regulated software differently. For instance, in some member states the degree to which

software is required to be original to meet copyrightability test varied widely. Originality, in a

few countries such as Germany, should be the result of high intellectual creation. 271 But in other

countries, like the UK, the requirement of originality is not as high (as in Germany for example).

Of course, this variation is not unique to computer software. It is true for copyright protection in

266 Cheryl Cheung, “A Leading Canadian IP Case: Copyright for Computer Software” Deeth Williams Wall (13

March 2013), online: Deeth Williams Wall < http://www.dww.com/articles/a-leading-canadian-ip-case-copyright-

for-computer-software>; see also J. Fraser Mann, “Comment on Apple Computer v. Mackintosh Computers” online:

(1987) 32 McGill Law Journal 2 at 437ff < http://lawjournal.mcgill.ca/en/issue/1588>.
267 Supra note 73.
268 Sunny Handa, “Reverse Engineering Computer Programs under Canadian Copyright Law” (1994) 40 McGill LJ

621 at 627.
269 George E. Fisk & Jane E. Clark, “Hardware and Software Protection in Canada” online: (1990) X 10 Computer

L.J. at 483 http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl .
270 Mindy J. Weichselbaum, “The EEC Directive on the Legal Protection of Computer Programs and U.S. Copyright

Law: Should Copyright Law Permit Reverse Engineering of Computer Programs?” (1997) 3 Buffalo Journal of

International Law 519 at 521.
271 For instance, in German, the Federal Supreme Court said software is not copyrightable unless it is the result of

personal creation, at Hoeren, in H.D.J. Jongen & A.P. Meijboom (eds.), Copyright Software Protection in the EC

(Deventer/Boston: Kluwer, 1993), pp. 73ff; this point is of less relevant as, at least in EU case, there is directive

which harmonizes those variations across member states.

http://www.dww.com/articles/a-leading-canadian-ip-case-copyright-for-computer-software
http://www.dww.com/articles/a-leading-canadian-ip-case-copyright-for-computer-software
http://lawjournal.mcgill.ca/en/issue/1588
http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl

55

general. Thirteen years after CONTU recommended copyright protection of software to

Congress in the U.S, the EU Council adopted the directive on the legal protection of computer

programs.272 The directive was the result of three-year deliberation of the three EU highest

bodies: the Commission, Parliament, and Council of Ministers.273

Harmonization and standardization of rules pertaining to computer programs across Europe is the

main reason for this directive. Professor Samuelsson, recognizing the harmonization role of the

directive, claims there is another secondary purpose for this directive: the need to bring EU

software law in line with the United States law.274 As far as harmonization in Europe is

concerned, we have the following purpose clause in the directive:

 Certain differences in the legal protection of computer programs offered by the laws of the

Member States have direct and negative effects on the functioning of the internal market as

regards computer programs.275

Existing differences having such effects need to be removed and new ones prevented from

arising, while differences not adversely affecting the functioning of the internal market to a

substantial degree need not be removed or prevented from arising.276

Akin to other specific EU rules, the directive on the legal protection of computer program is

presented in a fairly detailed manner. It generally contains 11 articles and equally lengthy

purpose clauses (preamble). To broadly highlight what has been included, it begins by clarifying

the object of protection. The directive attempted, in Article 1, to delimit the proper scope of

copyright protection, and makes a referral to the Berne Convention for the Protection of Literary

and Artistic Works. Besides regarding computer programs as literary works, as addressed in

Chapter One above, it stretches the reach of software protection to preparatory design materials.

The EU copyright directive also has an exclusionary section. Article 1(2) excludes ideas and

principles which underlie any element of a computer program, including those which underlie its

272 Supra n.12.
273 See Proposal for a Council Directive on the Legal Protection of Computer Programs, O.J. C 91/4 (1989);

Amended Proposal for a Council Directive on the Legal Protection of Computer Programs, O.J. C 320/12 (Oct.

1990); and Council of Ministers, Common Position Paper, Art. 1, At 7 (Dec. 14, 1990).
274 Supra note 71 at 279.
275 Supra note 12, recital 4.
276 Ibid, recital 5.

56

interfaces. Recital 11 of the preamble backs up this exclusion. This exclusionary Article of the

directive seems to borrow the language used in 17 USC 102b.277 Nonetheless, it does not define

what it means. So, on its face, it leaves unresolved the issue as to whether “look and feel” such as

screen shots, icons, menus, commands, and like objects that make up the user interface get

protection. Protection only applies to expressions of ideas. This reflects the fundamental

principles of copyright law that protect expressions of ideas, not ‘ideas’ themselves.

The directive in Article 2 and 3 defines right holders in terms of authorship. Part of the reason

for the usage of this terminology is computer program in this directive is regarded as a literary

work. Accordingly, the author of the program could be a natural person or legal entities. Article

2 (2 &3) has also recognized joint authorship and entitlement to economic rights by employers.

Three important qualifications have been set out to bestow exclusive economic rights to

employers. Firstly, employees should write programs in the execution of their duties. The other

alternative is when they develop following the instruction of their employers. Finally, the

entitlement of such exclusive economic right goes to employers if there is no contrary

contractual agreement.

Notice should be made that the languages of computer programs are not protected. Programming

languages are languages used to give instructions to computers.278 In this regard, we have a

leading case in Europe. This case is between SAS Institute Inc. v World Programming Ltd279. In

the High Court of Justice of England and Wales, Mr. Justice Arnold rejected copyright claims on

programming language and functionality of programs. However, he referred the case to the Court

of Justice for the European Union (CJEU) for further clarification on the matter. The latter court

basically found that programming language is not protectable. The court explained the issue in

the following manner:

“Article 1(2) of Council Directive 91/250/EEC of 14 May 1991 on the legal protection of

computer programs must be interpreted as meaning that neither the functionality of a computer

program nor the programming language and the format of data files used in a computer

program in order to exploit certain of its functions constitute a form of expression of that

277 Greg Aharonian, “Deconstructing Software Copyright, 30 Years of Bad Logic”, (2001) online: Internet Patent

News Service < http://www.patenting-art.com/copyprob/softcopy.htm>.
278 Supra note 34at 386.
279 SAS Institute Inc. v World Programming Ltd , Case C-406/10.

http://www.patenting-art.com/copyprob/softcopy.htm

57

program and, as such, are not protected by copyright in computer programs for the purposes of

that directive.”.’280

Experts praised the high court judge, the opinion of the advocate general and the highest court of

EU position in excluding programming language and functionality (behavior) of programs from

the reach of the directive.281

There is also early case law which clearly says copyright cannot protect the functionality of

computer programs.282 In Navitaire Inc. v EasyJet Airline Co Ltd283 one English judge said:

“Copyright protection for computer software is a given, but I do not feel that the courts should

be astute to extend that protection into a region where only the functional effects of a program

are in issue. There is a respectable case for saying that copyright is not, in general, concerned

with functional effects, and there is some advantage in a bright line rule protecting only the

claimant’s embodiment of the function in software and not some superset of that software”.

Additionally, the directive in Article 4 laid out in a fairly detailed manner the specific rights

copyright holders have. Generally, it grants three basic exclusive economic rights. Firstly, the

author has reproduction rights – permanent or temporary reproduction, including loading,

displaying, transmission or storage right. Adaptation, translation, and arrangement or other

alteration of programs and reproduction of the result constitutes another exclusive right. The

third exclusive right relates to distribution of the program to the public. However, the principle

of exhaustion remains the limit for distribution right of authors of computer programs. Hence,

the entitlement to control public distribution of programs benefits the author up until the point of

first sale. What exactly is first sale in a digital context remains unclear. We have UsedSoft

GmbH v Oracle International Corp, a very controversial decision handed down by the Court of

280 Ibid. paragraph 71.
281 Pamela Samuelson, Thomas Vinje, & William Cornish, “Does Copyright Protection under the EU Software

Directive Extend to Computer Program Behavior, Languages and Interfaces?” online: (2012) European Intellectual

Property Review <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1974890>; Jeremy Phillips, “Save

Analytical Software”? That’s not what SAS stands for…” The IPKat blog (January 2013) The IPKat blog, online:

The IPKat: intellectual property news and fun for everyone < http://ipkitten.blogspot.ca/2013/01/save-analytical-

software-thats-not-what.html>.
282 Navitaire Inc v EasyJet Airline Co Ltd [2004] EWHC 1725 (Ch.) at para 178-185, and Nova Productions Ltd v

Mazooma Games Ltd [2007] EWCA Civ 219.
283 Ibid. para 94

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1974890
http://ipkitten.blogspot.ca/2013/01/save-analytical-software-thats-not-what.html
http://ipkitten.blogspot.ca/2013/01/save-analytical-software-thats-not-what.html

58

Justice for the EU.284 Oracle develops and markets software, mostly by offering programs online

in a downloadable format. It does this with the use of license agreements, the most important

terms of which include providing non-exclusive and non-transferable use rights for an unlimited

period upon the payment of a one-off fee. On the other hand, UsedSoft offered for sale Oracle’s

second-hand software. Oracle lodged a lawsuit against UsedSoft in Germany. The Munich

regional court decided in Oracle’s favor, and UsedSoft appealed to the Federal High Court. The

appellate court framed issues and referred the matter to Court of Justice for the European Union.

The latter court, by disregarding Oracle’s license agreement against exhaustion, said “use right

for unlimited period is a sale” for the purpose of exhaustion.

Given the broad rights granted to right holders under Article 4, it is imperative to have a clear

definition of what users may legitimately do with the programs. With this purpose in mind, the

directive in Article 5 introduces the notion of lawful acquirer and what he can and cannot do.

Accordingly, users are entitled to do three important acts without authorization of the right

holders. These are:

✓ The making of a back-up copy by a person having a right to use the computer

program may not be prevented by contract in so far as it is necessary for that use.

In this regard, determining what is necessary and what is could be a painstaking

task, and main source of litigation.

✓ To observe, study or test the functioning of the program in order to determine the

ideas and principles which underlie any element of the program if he does so

while performing any of the acts of loading, displaying, running, transmitting or

storing the program which he is entitled to do. This act is short of decompilation.

✓ Doing acts specified under Article 4 for the purpose of error correction.285

However, these user’s or lawful acquirer’s rights will kick in as much as they are

necessary for a particular purpose.

The directive also introduced the concept of decompiling for the sake of creating interoperability

284 UsedSoft GmbH v Oracle International Corp , Case C-128/11.
285Supra note 12, article 5(1, 2 & 3); However, sub (1) has another proviso which reads as…in the absence of

specific contractual provisions. It means this exception may be overridden by contract. This will again raise another

interesting tension with recital 16 of the preamble –which can be read differently.

59

of an independently created computer program with other programs.286 Sub-Article 3 of Article 5

seems to allow very limited forms of reverse engineering. If we view the sub-article as a whole,

it is very difficult to get a firm grip on it. But the argument that this sub-article is about reverse

engineering may raise a problem of a carefully worded concept of decompilation under Article 6.

What article 6 does is allow decompilation only for the purpose of achieving interoperability; i.e.,

interoperability with some other programs. The rights to reverse-engineer set out in Article 6 are

very restricted.287 One such restriction is the requirement of necessity. Decompilation is also not

allowed if the information necessary to achieve interoperability has previously been readily

available.

2.3 Requirements for software copyright protection

The other most important aspect, in discussing the legal protection of computer software is the

requirements for its protection. This is particularly relevant in the copyright area. Though not

complicated like patents, there are substantive and procedural requisites of copyright protection.

The substantive requirement concerns the broad and open-ended appropriate subject matters

warranting copyright protection.288 Computer programs being literary works, meet the subject

matter requirement. What come next are the requirements of originality and fixation. All

copyrightable works have to be original in the sense that they should result from the effort of the

author – creating a nexus between the work and the author (not copied from somewhere else).

Originality concerns expression of ideas [programs] not the ideas [function of the

software].Works need not be of a “never before” kind.289

However, some kind of intellectual involvement is required. In Canada, originality is not defined

in the Act although section 5 seems to provide some clues. In CCH Canadian Ltd. v. Law Society

of Upper Canada,290 the Supreme Court of Canada clarifies the extent of originality for

copyrightable works. McLachlin CJC, writing the decision, said the following:

286 Ibid, article 6
287 This restriction is also indicated in recital 15 of the preamble
288 See, for instance, 17 U.S.C § 102; supra note 73 s. 5.1
289 See, especially Carys J Craig, “The Evolution of Originality in Canadian Copyright Law: Authorship, Reward

and the Public Interest”, (2005) Osgoode Hall LJ 425 at 429.
290Supra note

60

For a work to be “original” within the meaning of the Copyright Act, it must be more than a

mere copy of another work. At the same time, it need not be creative, in the sense of being novel

or unique. What is required to attract copyright protection in the expression of an idea is an

exercise of skill and judgment. By skill, I mean the use of one’s knowledge, developed aptitude or

practiced ability in producing the work. By judgment, I mean the use of one’s capacity for

discernment or ability to form an opinion or evaluation by comparing different possible options

in producing the work. This exercise of skill and judgment will necessarily involve intellectual

effort.291

Hence, to pass this test, computer programs should result from the intellectual effort of

developers. In other words, the involvement of some sort of skill and judgment is necessary. The

EU software directive seems to have a similar clause. Section 1(3) of the directive requires

programs to be the intellectual creation of authors. The directive goes further and says no other

criteria are applied to determine the copyright protection of computer programs. In the U.S. too,

section 102(a) spells out the above two requirements. As stated, the general rules of copyright

apply to computer programs in Canada and the U.S. We rarely find court cases particularly

addressing originality and computer software. Accordingly, it is important to examine relevant

jurisprudence on other literary works so that we can apply the standard to computer programs.

The U.S Supreme Court’s decision in Feist Publ’ns, Inc. v. Rural Tel. Serv. C292 is particularly

important as far as the originality requirement is concerned. It is about selection, organization,

and arrangement of data otherwise referred to as compilation. Rural Tel. organized its customer

lists in alphabetical order, which is ordered by law. Feist Publishing Corp. took raw facts

(telephone directory) from the Rural Tel. The latter brought a copyright infringement claim. The

Supreme Court said information in a rural directory is not copyrightable as one cannot find

independent creation of the work on the part of the telephone company. Feist sets out many

copyright principles, and the part relating to the analysis of the constitutional clause is

fascinating. The court stated that the purpose of copyright is not rewarding mere efforts. It rather

intends to encourage creative expression.

291 Ibid at par. 24
292 Feist Pubs., Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340 (1991)

61

The other requirement for copyrighting a computer program is fixation. Generally speaking,

fixation is not a statutory requirement. Even the Berne Convention gives discretion to member

states.293 The EU software copyright laws do not incorporate fixation requirement. However, the

definitional section of the Copyright Act of Canada spells out fixation requirement of

copyrightability by stating a computer program must be “expressed, fixed, and embodied or

stored in any manner.”294 One notable Canadian court case, denied a copyright infringement

claim based on insufficiency in fixation criteria. The case is Canadian Admiral Corporation Ltd.

v. Rediffusion Inc.295 On the other hand, the U.S. law is very clear about fixation requirement is

concerned. Section 102 (a) of the Copyright Act reads “…fixed in any tangible medium of

expression…”296

2.4 Trade secret protection of computer software

Trade secret protection was important during the mainframe and minicomputer eras – as

software was rarely distributed in its source code form. It is and was an ideal mechanism to

protect the internal working and design of software source code. That remained true until the

beginning of the PC era, which means that around the year 1990 and over the next couple of

decades, the importance of Trade Secret declined somewhat. This decline could be attributed to

two reasons.297 Firstly, copyright protection rose to the forefront as a dominant paradigm. The

scope of copyright in relation to computer software broadened in this period. There was an

aggressive attempt to protect the structural aspects of software that previously would have been

protected by trade secret law. Secondly, with the rise of WWW in the 1990s, much of the

functional coding behind web pages was generally made visible.

That decline began to level out, however, for the launch of Salesforce, a cloud computing

company, in 1999, and we moved into cloud computing. For decades, we can say the use of trade

secret protection in the software industry remained at a constant and important level. Hence,

trade secret protection for the hidden part of software has not been overly controversial. It has

293 Supra note 10. Article 2 (2) reads: It shall, however, be a matter for legislation in the countries of the Union to

prescribe that works in general or any specified categories of works shall not be protected unless they have been

fixed in some material form..
294 Supra note 73.
295 Canadian Admiral Corporation Ltd. v. Rediffusion Inc, [1954] Ex. CR 382, 20 CPR 75
296 Supra note 72.
297 Supra note 86.

62

always protected source code, the interworking of software – things we cannot see. These days,

trade secret specialists propose expanding its scope – arguing for the possibility of protecting the

revealed aspects of software.298

298 See generally, Michael Risch , “Hidden in Plain Sight” , Online: (2o16) Villanova Public Law and Legal Theory

Working Paper Series, < https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100##> .

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100

63

CHAPTER THREE

FLAWS OF THE EXISTING SYSTEM AND SOME BALANCING EFFORTS

3.1 Introduction

The increasing expansion of computing and software technologies is a reality. Transactions are

becoming increasingly virtual. Software technologies play a greater role in those transactions.

This chapter contains four parts. In part I, I argue the industry sensitive nature of existing

software protection laws. Part II discusses strong criticisms forwarded to three of the intellectual

property protections of computer software. More particularly, this part analyses the

inapplicability of copyright, patent and trade secret laws to computer software. Section III covers

some balancing attempts in the current system. Accordingly, I discuss the open and free software

movements and their implication in ensuring the interest of the public. Additionally, the limited

instances of reverse engineering of software and the extent of its permission in the EU and U.S.

form another balancing attempt. Finally, the paper argues that software is unique, and discusses

the distinctive nature of computer software.

3.2 The “Cherry Picking” Nature of Current Intellectual Property Laws and Practices

The preceding two chapters testify to numerous facts about the existing protection of computer

software. Firstly, they show the overprotection aspect. We see multiple protection mechanisms

which amount to overprotection.299 Computer programs enjoy almost all traditional forms of

intellectual property rights. It is popularly believed that copyright forms the conventional

software protection mechanism. Additionally, thousands of patents are/being granted by patent

offices. This is particularly the case in the U.S., which is the leading nation in the software

industry. Significant software patents have been granted at the European level, too. Undoubtedly,

299 Mark M. Friedman, “Copyrighting Machine Language Computer Software-The Case Against”, online: (1989) 9

Computer L.J. 1 at 2 http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl ; Some even think

one form of intellectual property could over protect software let alone multiple protections. For

example, Samuelson and her team believe copyright is over protecting computer software (See,

supra note 23, at 2359).

http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl

64

trade secret has served as one of the trustworthy computer software protection paradigms for

decades. Software companies also use trademarks to protect some elements of computer

programs. Furthermore, other private contractual (licensing) mechanisms and self- regulations

(e.g. technological protection) are widely used means of protecting computer programs.

Some authors have gone further and argued for sui generis protection as the best or better way of

protecting software.300 Such a mode of protecting software was not a novel recommendation, as

the WIPO has suggested a similar recommendation in the1970s.301 The international bureau of

WIPO has adopted Model provisions for the protection of computer software, the main goal

being to assist in creating certainty.302 Needless to say, computer software requires strong

protection as it is quite vulnerable to piracy.303 Nonetheless, stricter and effective protection does

not mean overprotection. Applying patent, copyright, trade secret and other laws to protect

software equals overprotection. Currently, software is getting all those forms of protection.

Generally, software companies have been demanding every possible protection mechanism for

the last six decades. They do that through the help of lawyers and Software Company funded

researchers. Of course, it is true that software is unique and important. There is no dispute of this

proposition. Yet, although software is unique and invaluable, this does not mean it should enjoy

the protection of all intellectual property rights. These days, it is hardly possible to find an

intellectual property law that does not protect software algorithm. This is not the case in the other

protectable subject matters. Some authors even believe that intellectual property rights are

mutually exclusive by their nature.304 Let us see the mutually exclusive nature of the three of

intellectual property rights. Patent protects ideas while copyright protects their expressions.

Trade secret seeks the confidentiality of commercial information. In contrast, patent is known for

300 Supra note 11 at 187; for general understanding of this proposal, see John C. Phillips, supra note 25; & Steven B.

Toeniskoetter, “Protection of Software Intellectual Property in Europe: An Alternative Sui Generis Approach”,

online: (2007) 10 INTELL. PROP. L. BULL 65 at 76

<http://heinonline.org/HOL/Page?handle=hein.journals/iprop10&div=9&g_sent=1&collection=journals> [He

paralleled software and database protection and proposed a European wide sui generis software protection].
301Supra note 29, (Pamela Samuelson and her colleagues) at 2312. It was a 13 articles length draft model law for

software. This model provision defined software, and it proposed a twenty years protection.
302 Trevor Cook, ed., Sterling on World Copyright Law, 4th ed (London, UK: Sweet & Maxwell, 2015) at 1679
303 Mickey T. Mihm, “Software Piracy and the Personal Computer: Is the1980 Software Copyright Act Effective?”,

(1983) 4 Computer L.J. 1 at 171-193; supra note 6.
304 Supra not 215 at 16. However, there are overlapping scenarios in the intellectual property world although very

different in many respects from the software case. For further appreciation of this matter, see Neil Wilkof &

Shamnad Basheer, eds, Overlapping Intellectual Property Rights, (Oxford, U.K :Oxford University Press, 2012)

http://heinonline.org/HOL/Page?handle=hein.journals/iprop10&div=9&g_sent=1&collection=journals

65

its disclosure doctrine. Copyright does not bother with the utility of works, and their

functionality is not an issue. Instead, a patent protects functionality and weighs the utility aspect

of patentable subject matters. This implies those intellectual property rights are unique and

protect different aspects of creations or inventions. The question then becomes: why are

computer programs enjoying the protection of patents, copyrights, trade secrets, trademark and

trade dress laws, design laws, etc.?

Theoretically speaking, the utilitarian justification seems the main basis of computer software

protection. At the heart of this utilitarian justification is the promotion of the public interest. It is

thought that an intellectual object does something important for the wellbeing of society. The best

example in this regard is the United States IPRs system. Unlike many, if not all, jurisdictions of

the world, the U.S. Constitution has a clause about the justification of intellectual property. It

authorizes Congress ‘‘to promote the Progress of Science and useful Arts, by securing for limited

Times to Authors and Inventors the exclusive Right to their respective Writings and

Discoveries’’.305

A closer examination of the software directive of EU also reveals the implicit recognition of the

utilitarian approach the European Union has adopted. It says that protection of computer program

in Europe is also given for “industrial development purpose”.306 Member states of the EU also had

this theory incorporated in early IP statutes. For instance, the early copyright law of U.K, statutes

of Anne307, shows us that incentive theory has been recognized since the 18th century–

encouragement of learning.

The other assumption is that creation requires an investment of labor, as pro-labor theory writers

claimed. In addition to this, creation and invention require an investment of time, money, and

training or education. More specifically, the invention requires a huge investment of money.

People will not make an investment of effort, time and money unless there is a legal regime which

gives an opportunity to pay off these investments. There will be an incentive to produce goods

because their selling price will allow a producer [creator or inventor] to recoup both the costs of

production and the benefit of the goods to a purchaser.308 For economic theorists, the intended

305 Article I, paragraph 8, cl 8.
306 Supra note 12, recital 3.
307 Statute of Anne of 1709 (U.K), 8 Anne, c.21.
308 Supra note 111 (Tanya A. & Jennifer D) at 51.

66

beneficiary of [software product or service] is the community as a whole, which demands the

production of, and access to, as many creative works as possible.309

The main goal of the U.S.’s constitutional clause, based on the Supreme Court’s interpretation in

Twentieth Century Music Corp. v. Aiken310, is "by this incentive, to stimulate artistic creativity for

the general public good."311 The public interest role of intellectual property rights has been pointed

out even in much older cases. For instance, in Washingtonian Pub. Co. v. Pearson, the court stated

that the ultimate aim of granting patents and copyright was to provide lasting benefit to the

world.312 The U.S. Supreme Court in Mazer v. Stein,313 also said:

“The economic philosophy behind the clause empowering Congress to grant patents and

copyrights is the conviction that encouragement of individual effort by personal gain is the best

way to advance public welfare through the talents of authors and inventors in "Science and the

Useful Arts." Sacrificial days devoted to such creative activities deserve rewards commensurate

with the services rendered.”314

We have to carefully examine this assertion. For one thing, the law wants to encourage individual

effort, and one can say this is an application of labor theory – so that the right holder [programmer]

uses all sort of rights to prevent access. This is not an entirely incorrect assumption. But

encouragement of individual effort by personal gain is intended “to promote the progress of

Science and useful Arts”, or in the words of the Supreme Court, ‘to advance public welfare’. By

personal gain, the court means intellectual property rights or similar protections. The grant of the

right to creators or inventors is not an end. It is rather an incentivizing means, spurring creativity

and innovation. The court in Feist Publication, Inc. supports this notion, as it says "the primary

objective of copyright is not to reward the labor of authors, but to promote the Progress of Science

and useful Arts."

309 Ibid.
310 Twentieth Century Music Corp. v. Aiken,422 U.S. 45 L. Ed. 2d 84, 95 S. Ct. 2040 (1975);see, also United States

v. Paramount Pictures, Inc., 334 U.S 131 (1948) [Here, it seems primacy is given for advancement of science,

innovation and human knowledge than recognizing proprietors].
311 Supra note 315 at 151, 156.
312 Interstate Circuit, Inc. v. United States ,306 U.S. (1939) at par. 30; Mazer v. Stein, 347 U.S.(1954), at par. 219
313 Ibid, Mazer v. Stein, 347 U.S.(1954).
314Ibid, at Par 201..

67

This purpose may have many facets. Firstly, it could mean the subject matters created or

invented should play a utilitarian role. This facet concerns the aesthetic function of works or the

utility of inventions. Patent seems to meet the utility limb, as patent utility is one statutory

requirement for the grant of patents. On the other hand, usefulness is not a prerequisite to

copyrightability. The second limb concerns the access issue. The substantive usefulness of the

protected work or invention is by no means sufficient. Only when the public utilized it can we

say it is for the public good. That means if it is inaccessible for many reasons, the main purpose

of protection misses its point. In the case of software, there is no question of its utility in this

networked era and information economy. However, we see that the overprotection of software

seriously undermines the public good purpose of intellectual property laws. Intellectual property

rights are restraints on competitors, and affect consumers’ wide access need. Software IP even

results in much more impact to the consumer as software innovation affects almost all aspects of

consumer’s life.

In most cases, the effort to ensure the interest of the public/consumers while safeguarding the

interests of intellectual property owners/holders is a daunting task. In other words, these two

interests are at odds. The right holder wants broader, lengthy and stronger protection. In contrast,

consumers demand access – wider dissemination, less expensive, shorter protection, broad

exception, and open access. In software cases, broader and overprotection on the one hand, and

over-emphasis on the incentive role of intellectual property rights to computer software on the

other, seriously impacts the interests of consumers of digital products [software users]. Peter S.

Menell noted this phenomenon and described it:

The peculiar nature of the public goods problem with regard to computer software and the

network externality inherent in computer systems, however, breaks the neat link, in the typical

case, between broad protection and the inducement of the optimal level of innovation to promote

the public interest.315

Professor Menell in criticizing CONTU’s analysis identified three major problems since CONTU

recommended copyright to a computer program.316 The first and foremost problem is the barriers

to small entrants. Secondly, developing non-infringing and compatible programs costs vast

315 Peter S. Menell , Tailoring Legal Protection For Computer Software”, (1987), 39 Stan L Rev 6 at 1330.
316 Ibid.

68

resources. Lack of clarity of standards in the software industry is the third problem. He believes

these major problems can be attributed to the report’s failure to appreciate two significant aspects

of computer software: the problems to the public good that software poses, and its unique

characteristics.317

The United States Congress created CONTU to further study and recommend legal protections

of digital works, including computer software. In doing so, Congress underlined that the

recommended mechanism should ensure public access to those digital technologies.318

Accordingly, CONTU recommended copyright as a protecting mechanism for computer

software. Although many challenge the copyrightability of computer software, as has been

mentioned above it is not only copyright that protects software. The laws seems only be adopted

to benefit software and technology companies.

If we regard software as copyrightable subject matter, then we are considering it as a literary

work. Once the developer satisfies the requirement of originality of expression and in some

jurisdictions, fixation, then protection is given for longer periods of time than are typical for

patents.319 The rights holder, therefore, will enjoy an exclusive right to produce, reproduce and

distribute the program for the protection period. Someone else with permission could write his or

her program without violating the protection afforded by the copyright.320 But, unlike patent

protection, the danger here is that other developers can also come up with the same program

(functionally) independently without permission of the previous developer.

If we apply the regime of patent protection to software, there is a situation wherein it benefits

both the developer and the public at large. The patentee will have the monopoly on a patented

software invention321 and enjoy an exclusive right. At the same time, the public at large will find

out the owner and the scope of the right322 as the grant of a patent requires disclosure and

specification of rights in the form of a “claim(s)”. Besides, the disclosure of the way the

317 Ibid
318 Ibid at 1329
319 In Canada it lasts, for individual author, for 50 years and in US and EU life of a person plus 70years.
320 Bernard A. Galler, Software and Intellectual protection: Copyright and patent Issues for Computer and legal

Professionals, (London, UK: Quorum Books, 1996) at 12.
321 Henry Carr and Richard Arnold, Computer Software: Legal Protection in, 2nd ed.,(London, UK : Sweet &

Maxwell, 1992) at 127.
322 Ibid.

69

software is developed will enable the public to redevelop after the lapse of patent protection.323

So, the rights in those specific programs will be mentioned in the claims of the patent

application. Such an approach resolves the litigation on reverse engineering and decompilation

that will be discussed below.

3.3 Abandoning the Current Legal Framework

The existing legal framework regarding computer software is full of uncertainties. Completely

disregarding the current laws and approaching software regulation afresh may be a painstaking

task (in terms of resource, time etc.), but as one cannot make an omelet without breaking eggs,

we have to reconsider the existing system. Particular consideration should be made of the effect

of software on societal life and today’s reality.

There are many stakeholders in the software world (its development, uses and consumption). We

can at least discern three interests: the interest of the incumbents (huge hardware and software

companies); small entrants and individual software developers; and consumers of computer

software. Making software amenable to all forms of traditional intellectual property laws only

considers one of the aforementioned interests. That makes the system problematic, at least as

seen from the very purpose of IPRs and the other two interests’ point of view. It is not only the

multiple levels of protection that troubles the most. The extent and scope of each form of

protection are the subject of ongoing contentions. As regards the interest of new entrants,

gigantic hardware and software companies own thousands of patents and use other forms of

IPRs, and impact the competition.

The existing system does not properly address, among other things, the following issues. The

first relates to the availability and affordability issue. Developers of computer programmers do

not produce software out of anything. In the age of the internet, everyone is online, and all share

information. Hence, the cost they are speaking of and the profit they are making do not seem

reasonable, or require further study. They should only get what they deserve. This takes us to the

theoretical debates of intellectual property rights (the need to identify right holders’ investment

and what they gained from the common pool). Secondly, the compatibility and interoperability

323 After the expiry of the patent protection the invention will form public domain. In some jurisdiction patent

protection lasts for 20 years and in others expires shorter.

70

issue is not less important. There are multiple categories of electronic machines that consumers

use in the market (from a smart watch to mainframes). Hence, it is important to have a rule

addressing compatibility and interoperability of software to variants of devices. It seems we have

limited rules and case law on this point, but they are not adequate and, at times, not clear.

Thirdly, there is the question of adaptability: computer software is adaptable by its nature.324

These natures coupled with its unique features discussed below necessitate the reconsideration of

the existing system.

3.3.1 Copyright misfits computer programs

The copyrightability of computer software seems a fairly settled matter. However, the different

tests courts have developed and the approaches countries took prove the conventional

understanding wrong. There are still many challenges as regards the copyrightability of computer

software and its infringement issues.

One bold contention frequently raised is that of its copyrightability itself. Professor Samuelson

and her team believe that copyright is not suitable to a computer program. They regard a

computer program “as a virtual machine and as a medium of creation”325, and reject the

assumption that software codes constitute “literary texts”, hence non-copyrightable. Greg

Aharonian has also argued for the abolition of software copyright in light of 17 USC 102b and its

equivalents.326 The first reason for proposing this is “copyright is a bad law with no logical basis

in the mathematics and physics of information processing.”327

Moreover, copyright largely protects arts: writings and creative works of aesthetic value. On the

one hand, it achieves the utilitarian purpose – dissemination of information to the public and

recognition of the interest of the creator of the work. The recognition may relate to the

expression of personhood (as in the case of novels, musical or dramatic works) or economic

interest, or some other moral interest. Despite that, there is a limited element which constitutes

the literal element, as computer software is a technological output which falls into the category

324 Pamela Samuelson, “Modifying Copyrighted Software: Adjusting Copyright Doctrine to Accommodate a

Technology”, online: (1988) 28 Jurimetrics J 179 < http://scholarship.law.berkeley.edu/facpubs/653/>
325 Robert A. Gorman, Comments on a manifesto concerning on the protection of Computer Programs, (1994-1996)

5 Alb. L.J. Sci. & Tech. 277 at 279
326 Supra note 282.
327 Ibid.

http://scholarship.law.berkeley.edu/facpubs/653/

71

of basic science. It is the work of engineers [programmers], and the question of whether it forms

an art or not has remained an ongoing contentious issue.328

The CONTU report magnified the piracy problem and proposed copyright to guarantee the

protection of the huge investments made by hardware and software companies. Copyright may

serve this purpose by preventing the direct copying and usage of similar lines of codes. However,

it does not prevent among others, “the use of incorporated algorithms, ideas, and designs”.329

The software directive in EU, too, excludes “Ideas and principles which underlie any element of

a computer program, including those which underlie its interfaces.”330

Computer programs involve a great amount of mathematics.331 Certain patent claims have been

rejected based on mathematical formula criterion. What about copyright? Mathematical concepts

are not copyrightable under TRIPS agreement.332 On the other hand, the agreement explicitly

allows copyrighting of program source and object codes of any form.333 What if these codes

engage mathematics to a greater extent?

In copyright law, there is such a thing called derivative works.334 For instance, translations,

adaptations arrangements, modifications and other transformations of works are regarded as a

derivative work, and copyright subsists for these works. What if a programmer converts one

computer language or code into another? Is it like translating a novel or poem from one language

to another? Is there such a thing called derivative works in computer software? 335 Further

328 Information Society Technologies Advisory Group, “The Missing Key Enabling Technology Toward a Strategic

Agenda for Software Technologies in Europe” , online: (2012) EU Commission at 10 < https://ec.europa.eu/digital-

single-market/en/news/software-technologies-missing-key-enabling-technologies-istag-working-group-software>.
329 Hannes Westermann, How to treat software in the intellectual property framework (LLM thesis,

 Lund University Faculty of Law, 2016) [unpublished] at 7.
330 Supra note 12, article 1(2).
331 Supra note 30 at 147.
332 Supra note 8, article 9(2).
333 Ibid, article 10.
334 The Berne Convention, Art. 2 § 3(though it does not particularly use the phrase derivative works, it stipulates

that “Translations, adaptations, arrangements of music and other alterations of a literary or artistic work shall be

protected as original works without prejudice to the copyright of the original work.”);The TRIPS agreement in

article 9(1) has also incorporated Art 2, § 3 of Berne; U.S., 17 U.S.C § 101(defined derivative works) , 103(b) & §

106(2); For Canadian perspective, See generally, William J. Braithwaite, “Derivative Works in Canadian Copyright

Law”, (1982) 20: 2 Osgoode Hall LJ 192; However, some authors have criticism to such categories of works. See,

for instance, Daniel Gervais, “The Derivative Right, or Why Copyright Law Protects Foxes Better than Hedgehogs”,

(2013) 15: 4 Vand J Ent L & Prac 785
335 See US case Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 609 F. Supp. 1307, 225 U.S.P.Q. (BNA) 156 (E.D.

Pa. 1985. The court said-‘….transferring or converting from one computer language to another is not comparable to

translating a book written in English to French’.

72

discussion is needed on the application of certain derivative works in the doctrine of reverse

engineering.

3.3.2 Patent is inapplicable to computer software

With reference to patents, there is no explicit legislation which allows for software patentability.

Though unsuccessful, there was an attempt to adopt a patent law to computer-implemented

inventions (software inventions) in Europe.336 Most patent laws even exclude software from the

subject matter of patent. For instance, the European patent convention excludes patenting

computer program as such.337 Courts and patent offices interpreted this exclusion, and introduced

many criteria and tests, including the technical nature and contribution test. However much

neither the legislation explicitly allowed patentability nor courts clearly pronounced their

patentability, many software patents have been issued.

 Software is all about mathematics and logical sequencing of algorithms. It also involves a lot of

abstractions. This renders software unpatentable. Some believe software innovation requires little

investment, so patents are not needed to promote this type of innovation.338 The other factor that

makes software patents unfeasible is their term. In most cases, the span of patent term runs for

only 20 years. On the other hand, patent prosecution and application take much time. The short-

lived nature of software makes patents unsuitable to software. Some of them last for only weeks

and months.339

Copyrighting software generally believed to be the accepted rule. We normally copyright

expressions of ideas, not ideas themselves. The other cousins of copyright, patents protect ideas

rather than expressions of ideas. The question then is: why are we patenting expression of ideas,

if patent is meant to protect inventive ideas rather than expressions? Professor Kospsell questions

the categorization into patents and copyrights at all, and alternatively suggests that software is a

“hybrid” object.340

336 Supra note 20.
337 Supra note 201, article 52 (2(C)) and (3).
338 Robert E. Thomas, “Debugging Software Patents: Increasing Innovation and Reducing Uncertainty in the Judicial

Reform of Software Patent Law”, (2008) 25 Santa Clara Computer & High Tech. L.J. at 193.
339 Supra note 86; supra note 187 at 116.
340 Supra note 215 at 33.

73

3.3.3 Challenges of trade secret protection of computer software

Software protection through trade secret law may have been considered feasible in the past.

Then, technology was not widely distributed, and the issue of trust is not an issue. Conversely,

today’s reality is different. We see the wider distribution of computer and software, in the words

of Laurence Diver341 –“everywhere from the African shanty town to trading floors of Wall

Street”. The more software is distributed, the greater the possibility of disclosing confidential

information. In addition, we see the growing movement of labor in today’s integrated economy,

and there is no international trade secret treaty, unlike other forms of intellectual property

rights.342

Trade secret law is not in accordance with the open source and free software movements. The

latter group advocated for the wider availability and accessibility of software codes. The practice

of reverse engineering and decompilation also do not go with the notion of trade secrets.

3.4 The Special Nature of Computer Software

Software has many unique characteristics. Though software is copyrightable subject matter, its

literary nature is questionable. Unlike other literary works, software affects every aspect of

today’s world. It goes without saying that, its complex nature and technological aspect makes

software unique from other copyrightable works and patentable subject matters. The following

sub-sections discuss the unique features of software.

3.4.1 Software is not merely a literary work

Computer software is more than a traditional literary work. It is a technology343, too. It is a

technology that touches every aspect of human life. Software is becoming increasingly

indispensable in the information society era. Considering only copyright, software is unique.

That means if we take copyright law and look at what makes software copyrightable, we find

few attributes of software copyrightability. There is less confusion as to the distinction between

software and other copyrightable subject matters than literary works. One rarely finds

commonality among dramatic, musical and artistic works and software. Can one quote few lines

of software instructions, and properly reference them? We know that through the fair dealing

341 Supra note 34 at 125.
342 Supra note 226 at 1423.
343 Supra note 246 at 65.

74

exception we can use part of someone’s work as long as we give the proper recognition in a

proper format. That does not seem to work on computer software world, at least legally speaking.

Does that mean computer programmers entirely create something new out of nowhere? The

answer perhaps is “No”.

3.4.2 Software is ubiquitous

Fifty or sixty years ago, there were only limited computers in the market. In recent years,

however, the computing market increased dramatically. Every aspect of our life is tied in with

software. Almost all sectors (public and private) use computing technologies in their everyday

transactions. As a result of this, we find software everywhere. The omnipresent344 nature of

software makes it unique and warrants a special regulation. At the very least, the ubiquitous

nature of software makes the application of traditional intellectual property laws ill-suited.

3.4.3 Complex nature of software

Computer software is a complicated concept. This complexity remains one of the leading factors

for the existing uncertainty of its protection in patent, copyright or/and trade secret.345 It is very

difficult for an ordinary consumer to appreciate what amounts to software infringement and what

does not. Some of its parts are very complex. We may understand the source code aspect of

computer software. However, the object code aspect is not even intelligible to expert

programmers. The combination of binary numbers made it only susceptible to machine

understanding. Besides, software development involves different technologies of translation. The

different programming languages, assembler, compiler, and translator are a manifestation of the

complex nature of software.

The task of determining what does it include and does not raises an array of difficulties.

Concepts such as source code, object code, structure and organization of source and object

codes, micro codes, disk operating systems, programs running behind the screen, user support

documents (textual document and training), look and feel (the way screens interact with each

other), the organization and interaction of a program’s function, and macro code, require specific

regulation. The type of computer software, too, varies, depending on, among other things, its

344 Supra note 34at 126.
345 Howard K. Szabo, “International Protection of Computer Software: The Need for Sui Generis Legislation”,

(1986) 8 Loy L.A. Int'l & Comp. L. Rev511 at 515.

75

function, what companies produce and write them and who consumes them. For instance, we

have packaged software346, custom software application, and embedded software

application.347The complex nature of software makes it different and unique from literary works,

let alone from an extensive list of other copyrightable works.348

3.4.4 Codes regulating software codes

The concept of “the internet of things, ” raised above, and the advent of new technologies and

connected content349 can cut both ways. Firstly, it improves the access rights350 of consumers by

easily facilitating the dissemination of information and commercialization of works. At the same

time, it also creates problems for copyright holders351 by enabling “pirates to steal efficiently.”352

Also, it is difficult to control353 and trace technologies, if not impossible. Hence, the expansion

of those technologies exacerbates the enforcement problem even more. As the development of

digital media and computer technologies is creating difficulties in enforcing copyright laws,

industry is devising self-enforcement mechanisms.354 This is true for digital intellectual objects.

346 Report of an Industry Expert Group on a European Software Strategy, Playing To Win In the New

Software Market: Software 2.0: Winning For Europe, (June 2009 Version 3.5)
347 Ibid; For further appreciation of complexities as to what a computer program is and how they work see, Pamela

Samuelson, “CONTU Revisited: The Case against Copyright Protection for Computer Programs in Machine

readable Form”, (1984) Duke LJ 663 at 672-681
348 Berne Convention for the Protection of Literary and Artistic Works, opened for signature Sept. 9, 1886, 828

U.N.T.S. 221, S. Treaty Doc. No. 99-27, 99th Cong. (1986) (revised at Paris, July 24, 1979) article 2(1) enumerated

extensive copyrightable works; Trevor Cook, ed., Sterling on World Copyright Law, 4th ed (London, UK: Sweet &

Maxwell, 2015) at 262-284; Hector MacQueen et al, Contemporary Intellectual Property Law and Policy, 2nd ed (

Oxford, UK: Oxford University Press,2010) at 45, 62-87 ; and Lionel Bently & Brad Sherman, Intellectual Property

Law, 3rd ed (New York, U.S.A: Oxford University Press, 2009) at 59-90 [these books spell out the UK version of

copyrightable works. It, among others, categorizes these works in to Literary works (novels, short stories, poetry,

song lyrics, non-fiction books, periodical articles, computer programs, database, circuit diagrams), dramatic works

(e.g. dances, mimes),musical works, artistic works(e.g. graphics. paintings, drawings, photographs, sculptures,

collage, works of architectures, works of craftsmanship); To appreciate the Canadian context, see D. Jeffrey Brown

& Marisia Campbell, “Copyright” in Stuart C. McCormack, ed, Intellectual Property Law of Canada 2nd ed (New

York, U.S.A: Juris Publishing, Inc., 2010) at 218-229; supra note 51 (Sunny Handa) at 155-181
349 See, Graham Reynolds, “Towards a Right to Engage in the Fair Transformative Use of Copyright-Protected

Expression”, in Michael Geist, ed, From “Radical Extremism” to “Balanced Copyright”: Canadian Copyright and

the Digital Agenda (Toronto: Irwin Books, 2010) at 395.
350 Brad Sherman and Leanne Wiseman, ed, Copyright and the Challenge of the New, (The Netherlands: Kluwer

Law International, 2012) at 7.
351 Ibid.
352 Robin Andrews, “Copyright Infringement and the Internet: An Economic Analysis of Crime”, (2005)11:2 BUJ

Sci. & Tech L.
353 Supra note 23.
354 For the better appreciation of what the digital environment poses to copyright enforcement, see Sandra V.I.

Scmitz, The Struggle in Online Copyright Enforcement: Problems and Prospects (Luxemburg: Hart Publishing,

2015) at 30, 56.

76

The copy and print control Digital Right Managements Systems (DRMS), employed by High

Tech Corporation, is an example in this regard. Although the existing systems allow for the

multiple protection of software, there is also widespread piracy355 of artistic and literary

[software] works for which the authors of these works complain to the public and the

government. They are going in the direction of an approach where, to use Charles Clark’s

expression, “the answer to the machine is in the machine”’356. Lessig, in his book Code and

Other Laws of Cyberspace357, succinctly addressed the private regulation of digital copyrightable

materials. This private regulation for him is referred to as Code. Reidenberg 358 referred to this

regulatory mechanism as “network architecture”. Modern copyright instruments give legal effect

to these technological protection mechanisms (encryption, copy and access control

mechanisms).359

3.4.5 The application of first-sale principle

Normally, the exclusive right to use IP right ends up on the first sale of that specific subject

matter, be it a patentable product, process, or copyrightable work (artistic, literary, musical, and

dramatic works). For instance, the copyright owner loses control over their copies of specific

work upon getting the required remuneration from the user. Here, the most important fact is

determining whether the work is put on the market with the consent of the right holder.

Thereafter, the user can freely use or further transfer that specific work to other users. The

original owner has no right to interfere, with the exception of moral rights related instances. This

is the general rule for all copyrightable works. It is called the first sale doctrine in some countries

such as the U.S., and exhaustion principle in others such as the EU. The exhaustion principle

355 For a broader understanding of modern copyright statutes and the piracy problem, see Trajce Evetkovski,

Copyright and Popular media: Liberal Villains and Technological Change,(London, UK: Palgrave Macmillan,

2013) at153-162); Sterling on World Copyright Law, at 7, 33.
356 Charles Clark, “The Answer to the Machine is in the Machine”, in P. Bernt Hugenholtz, ed,

The Future of Copyright in a Digital Environment, (The Hague: Kluwer Law International, 1996), at 139.
357 Lawrence Lessig, Code: And Other Laws of Cyberspace, (New York, U.S.A: Basic Books, 2006). Lessig has also

reinforced the comparable regulatory role of codes in his other works, see, Lawrence Lessig, “Law Regulating Code

Regulating Law”, (2003) 35 Loy. U. Chi. L. J. 1 1-14; and Lawrence Lessig, “The Law of the Horse: What Cyber

law Might Teach”, (1999) 113 Harv L Rev 501-546.
358Joel R. Reidenberg, “Lex Informatica: The Formulation of Information Policy Rules through Technology”, online:

(1998) 76 Tex. L. Rev. 3 at 553-593 < http://ir.lawnet.fordham.edu/faculty_scholarship/42/>.
359 WIPO Copyright Treaty, adopted Dec. 20, 1996, WIPO Doc. CRNRIDC/94, Articles 11–12; U.S. Digital

Millennium Copyright Act 1998 (DCMS), Pub. L. No. 105-304, 112 Stat. 2860 (Oct. 28, 1998); Supra n. 10 (EU

InfoSoc Directive, article 6&7); and Copyright Act, R.S.C., 1985, c. C-42 , s.41.

http://ir.lawnet.fordham.edu/faculty_scholarship/42/

77

only affects the distribution right of copyright holders. In other words, it does not directly affect

reproduction, public performance and use rights of holders.

Does the above principle work for computer software? The answer is “yes” and “no”. Let us

examine the European approach first to address the “yes” answer. Article 4(2) of the Directive

explicitly allows the application of software exhaustion if the copy of the computer program is

placed in the community market by the right holder or with his consent. However, the

application of this section in connection with software licenses and their effect remained a

contentious issue among scholars and courts. A case in point is the 2012 UsedSoft European

Court of Justice Case. As has been explained in preceding sections, the court applied Article 4(2)

of the directive to used software licenses. Accordingly, Article 4(2) applies when the users

download computer programs online with the consent of the right holder. This acquirer again can

further distribute and the principle of exhaustion applies on one condition- when the first

acquirer erases the program or no longer uses it.360 The tricky part comes in proving this last

condition. Though the directive and the highest court’s decision in EU seem to weaken361 the

distribution rights of software holders, some believe that it is impossible for right holders to

prove this fact.362 Based on UsedSoft, permanent licensing of software upon receiving

commensurate fee amounts to sale. Such is not the case in other copyrightable works.

Contrary to the EU approach, the U.S. gives software right holders strong rights to control the

distribution of software. That means, the principle of first sale seldom applies in the U.S.

software market. Also, companies rarely sell software as their typical market model is licensing.

This being the practice, the U.S. Copyright Act in s. 109 (a) specifically addresses the principle

of exhaustion. According to this section, lawful acquirers are entitled to sell or dispose of works

provided they meet the conditions. Logic dictates acquirers of computer programs have similar

rights as programs have been regarded as copyrightable in the 1980 amendment. A further

360 Supra note 289, par 70 and 78
361 Lazaros G. Grigoriadis, “Exhaustion and Software Resale Rights in Light of Recent EU Case Law”, online:

2014) 5 J. Int’l Media & Entertainment Law 1 at 111

<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2403554>
362 See Ole-Andreas Rognstad , “Legally Flawed but Politically Sound? Digital Exhaustion of Copyright in Europe

after UsedSoft” online: (2014) 1 Oslo L Rev < https://www.journals.uio.no/index.php/oslawreview/article/view/977

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2403554

78

amendment undertaken in 1990 restricted the commercial rental, lease, and lending of computer

programs.363

3.5 Access rights of the public to technological outputs

Gigantic software companies like Microsoft and Apple obtain thousands of software patents and

build their portfolios. Such monopolies on software algorithm affect the software market

competition. It will be very difficult for small software companies to use those algorithms and

join markets.364 This monopoly leaves the public with no choice than living the “my way or the

highway” approach of software companies. Be this as it may, there are limited practices which

seem to consider the interests of new entrants and consumers of software: the doctrine of reverse

engineering and open source and free software movements.

3.5.1 Reverse engineering and the public interest

This is an attempt made by the existing system to address the interests of consumers and new

entrants. Reverse engineering is breaking down the computer readable object code to human

readable source code. Such activity may be done for numerous purposes. Achieving academic

and research goals can be regarded as one reason for reverse engineering: to show students or

researchers365 how software codes are written (“the inner workings”366). Secondly, by reverse

engineering programmers may help resolve software problems, as software is full of bugs. We

need to study the program to fix the problem and allow for the improvement of works. For

Lande and Sobin, the activity of reverse engineering could be undertaken for three purposes: to

create identical software products, to create equivalence or to build interoperable software.367

Reverse engineering can be called by many names. The one used under EU law is decompilation.

The precise parameter between these terms is unclear. This is a situation in which someone tries

to derive the source code from an analysis of object code.368 They may also try to derive source

363 Computer Software Rental Amendments Act, 17 U.S.C. § 109(b)(1)(a)) (1990).
364 Supra note 215.
365 Many copyright laws have a fair use or dealing exception which includes the lawful use of works for research or

private use.
366 Robert H. Lande and Sturgis M. Sobin, “Reverse Engineering of Computer Software and U.S. Anti-trust Law”,

(1996) 9 :2 Harv JL & Tech 238 at 240.
367 Ibid, at 241. The interoperability purpose has been widely accepted by cases and legislations as a main ground

for reverse engineering computer software.
368Gary R. Ignatin, "Let the Hackers Hack: Allowing the Reverse Engineering of Copyrighted Computer

79

code from the analysis of the function of software. Hollaar states: “the key decisions on the

legality of reverse engineering have dealt with disassembly: taking the publicly-available object

code and attempting to reconstruct the original source code to learn how the program works.”369

The point here is that these days there are zillions of software codes affecting our lives. Software

rights holders and firms want to fence off their respective programs so that they obtain the

optimal economic value, and they oppose the concept of reverse engineering370. On the other

side, scientists and programmers spend much of their time in studying the already available

codes. The public needs competition in the software market as well as quality, compatible and

interoperable software products. Hunda also extensively argued for a public interest defense of

reverse engineering computer software.371The open source and free software groups largely

advocate for open system software -the free and wider distribution of software, hence, claiming

for the permission of reverse engineering.

Reverse engineering or decompilation may be done to ascertain the underlying ideas and interface

specifications of that specific program. The act of disassembling programs and reverse

engineering them may constitute a copyright infringement, at least in the existing copyright

protection regime. But, one can also argue that such acts of reverse engineering can be supported

by the fair dealing372 exceptions of copyright law. The problem arises in defining fair dealing

concept in software, and in determining how much decompilation falls under the fair dealing

exception.

Basically, computer programs are protected in their source code and object code form. Source

codes can be read and easily understood by human beings. If the source code is complicated for

ordinary people, programmers can still read and understand it. In practice, programmers will not

make publicly available their source code. Buyers/licensees will only access the object code form

of the program, which is understood only by computers. Accordingly, users and some free

software advocates claim the permission of de-compilations and reverse engineering.

Programs to Achieve Compatibility" (1992) 140 U. Penn. L. Rev. 1999 at 2000 (for him reverse engineering is

transforming the ones and zeros in to a form that is readable by humans).
369 Supra note 233at 110.
370 Supra note 271 at 238.
371 Supra note 272 at 645-647.
372 Fair dealing is the grand exception in many copyright laws including international copyright treaties. It is called

fair use doctrine in U.S..

80

Software reverse engineering mostly raises trade secret and copyright violation issues. Patent

infringement is unlikely in this regard, as the concept of a patent requires complete disclosure. In

some countries such as the U.S., patent applicants need to explain the best mode of doing the

product or process [software]. Such requirement is missing in trade secret and copyright

scenarios.

In the U.S., the Supreme Court defined reverse engineering as “a fair and honest means of

starting with the known product and working backward to divine the process which aided in the

development of manufacture.”373 Though they approach reverse engineering broadly, some

authors believe the Supreme Court’s pronouncement is the standard definition.374

The other major case concerning software reverse engineering in the U.S. is Sega Enterprises

Ltd. v. Accolade, Inc.375 The case involves reverse engineering and the fair use doctrine in

software copyrights. Sega sued Accolade in the District Court claiming the defendant violated its

right by disassembling Sega’s software codes. Accolade, on the other hand, argued its act fell

under the fair use exception. The District Court ruled in favor of Sega, and the defendant

appealed to the court of appeal for the Federal Circuit. The later court reversed the District

Court's decision and allowed the disassembly based on the fair use doctrine. The court stated that

Accolade’s act of disassembly was intended to ensure compatibility.376

In the EU, the directive allows decompilation under limited grounds: for the sake of creating

interoperability of an independently created computer program with other programs.377 Recital

10 of the directive defines interoperability as “the ability to exchange information and mutually

373 Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974).
374 Pamela Samuelson and Suzanne Scotchmer, “The Law and Economics of Reverse Engineering”, (2001) 111 Yale

L.J. 1575 at 1577 (for them reverse engineering is “the process of extracting know-how or knowledge from a

human-made artifact”).
375 Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) (This is just one example). There other

court cases that reach on similar conclusion with Sega. See, for instance, Atari games Corp. v. Nintendo of America,

Inc.,975 F.2d 832 (Fed Cr. 1992)
376 Ibid at1518, 1522 (It particularly stated the disassembly is undertaken “solely in order to discover the functional

requirements for compatibility with the Genesis console-aspects of Sega's programs that are not protected by

copyright.”).
377 Supra note 12, article 6; supra note 336 at 1609 (The process of disassembling helps to obtain information

necessary to develop a program that will interoperate with the decompiled or disassembled program); Kathleen

Gilbert-Macmillan, “Intellectual Property Law for Reverse Engineering Computer Programs in the European

Community”, (1993) 9 Santa Clara High Tech. L.J. 247 at 248, 251.

81

to use the information which has been exchanged.” Sub-Article 3 of Article 5 seems to allow

very limited forms of reverse engineering. If we see the Sub-Article as a whole, it is very

difficult to get a firm grip on it. But the argument that this Sub-article is about reverse

engineering may raise a problem for a carefully worded concept of decompilation under Article

6.

What Article 6 does is allow decompilation only for the purpose of achieving interoperability; i.e.,

interoperability with some other programs. The rights to reverse engineer set out in Article 6 are

very restricted. This restriction is also underlined in recital 15 of the preamble. One such restriction

is the requirement of necessity. According to Article 6(1) (b), decompilation is also not allowed if

the information necessary to achieve interoperability has previously been readily available.

Reverse engineering copyright software codes faces other challenges. As have been raised in the

preceding sections, copyright holders use not only copyright laws to ensure protections over their

works. They also use Technological Protection Mechanisms (TPMs) to enforce digital

copyrightable works. Those TPMs or otherwise referred to as DRMS are protected under the

law. These laws indirectly outline the self-regulatory nature of technologies. Just to mention few,

the WCT under Articles 11 and 12, the EU information Society Directive under Articles 6 and 7,

and the US Digital Millennium Copyright Act lay down safeguards to TPMs/DRMS. By doing

so the law empower right holders to control access, copy, and protect the authenticity of their

works. Software is a very good example of digital software work. Accordingly, technologies

which are developed to circumvent these mechanisms (e.g. in the form of reverse engineering/

decompilation) should be outlawed based on the above laws. This, in other words, makes very

difficult or impossible to reverse engineer software codes. For instance, companies developing

video game software, using DRMS, make difficult to play certain games outside the specified

regions.

3.5.2 Free and Open Source software movements favoring the interest of

the public

In the foregoing sections, we discussed proprietary software. Software companies, as described

above, use all possible mechanisms to make optimal profits. They particularly use trade secret

82

and copyright so that source code lines (recipe) remain hidden from the reach of small entrants

and software users.378 Only software in its object form (machine readable) is made available to

the market. The open source approach helps balance the IBM- and Apple- like monopolist’s

strategy. Open source software intends, among other things, to make freely and publicly

available source codes.379 Sometimes, the free and open source approach is not only in the

interest of users’ rights. Also, developers of software in the computing industry, such as

bioinformatics scientists, are increasingly requesting the expansion of open source distribution

with their underlying software lines.

The Free and open source communities are not merely opposing proprietary software. They have

shown us a significant contribution to the public and small software industries. They developed

various software forms, most of which serve as an alternative to proprietary software. The

notable free and open source software developed so far include GNU operating system, Apache

Open office, Google Chrome and Firefox, Pdf Creator, Mplayer and VLC media player etc. The

societal benefits of this software and their detriment to proprietary software industry are

undeniable. For instance, Google Chrome and Firefox replace Internet Explorer, and Apache

open office totally replaces MS office.380

Different free and open source foundations and organizations have been established. The Free

Software Foundation (FSF) launched by Richard Stallman381 is one successful organization. It

started in developing the GNU operating system, and today it is contributing significantly to the

free and open source software community. It played an even greater role in the adoption of

legislation concerning computer software (for example, it played a significant role in the

rejection of EU software patent directive). To ensure the further free distribution of software, the

foundation developed the GNU “Copyleft public license” system. The license prohibits

378 David S. Evans & Anne Layne-Farrar, “Software Patents and Open Source: The Battle over Intellectual Property

Rights, (2004) 9:10 Va JL & TECH at 3; Ronald J. Mann, “Commercializing Open Source Software: Do Property

Rights Still Matter?” (2006) 20: 1 Harv JL & Tech at 23 [however, some companies such as Microsoft began to

allow access to certain source code parts.]; Jonathan Zittrain, “Normative Principles for Evaluating Free and

Proprietary Software”, (2004) 71 U Chicago L Rev (software companies hide source code recipe so that the public

cannot view it, and other programmer s do not develop a new and improved software).
379 Ibid (David S. Evans & Anne Layne-Farrar).
380 For further understanding of the societal benefit of free and open source software, see Richard Stallman and

Lawrence Lessig, Free Software, Free Society: Selected Essays of Richard M. Stallman., 2nd ed. (Boston:

Createspace, 2009).
381 He left his job from MIT to pursue his free software project. Stallman decided to replace ‘Unix’ with other

operating system. Accordingly, he developed GNU (GNU is not UNIX) operating system.

83

developers of derivative software from placing restrictions while distributing their work. This

way, the modified versions of software remain free. Without this license system, some

programmers would have changed their improved works to the proprietary software type. The

other notable organization is the Apache Software Foundation (ASF). Akin to FSF, ASF is also

assisting the open source software projects. Correspondingly, the GNU-like public license is also

in place in the ASF. The Electronic Frontier Foundation (EFF) is the other category that is

hugely supporting the open source movement. It defends digital rights of consumers and

challenges any attempt to restrict civil liberties in the digital environment. With regard to

software, it has launched a lawsuit to challenge the constitutionality of the US DMCA382, among

others. In the suit, the Foundation believes the expansion of software into a modern product is

effectively locking down everything. It then argues “the anti-circumvention section of DMCA

threatens fair use, impends competition, and innovation, and chills free expression and scientific

research.”383

One thing should be clear here. In the free and open source software system, the main issue is

access, particularly, to the software recipe (source code lines). It should not be related with

“free” as “free in price”. Improved or modified versions could be distributed freely (free of price)

or in the form of sale. As the ultimate aim is ensuring all users have the freedom to access the

software recipe, Copyleft public licenses place restrictions on subsequent developers: an

obligation to leave their works source code accessible. In explaining the significance of open and

free software to the public, Lessig has said:

“Open source and free software give consumers and the public something more than

proprietary software does: the ability to tinker and modify. Such software gives the public the

benefit of the information contained within the code.”384

Besides, the approach seems to be consistent with the traditional notions of innovation and

creation385, other than their importance to software consumers and the public.

382 Digital Millennium Copyright Act, online: The Electronic Frontier Foundation

<https://www.eff.org/issues/dmca>.
383 Ibid.
384 Lawrence Lessig, “Open Source Baselines: Compared to what?” in Frederick M. Abbot, Thomas Cottier and

Francis Gurry, International Intellectual Property in an Integrated World of Economy, (New York: Wolters Kluwer,

2015) 692 at 693.
385 Ibid.

https://www.eff.org/issues/dmca

84

To summarize, the importance of open and free software movement to the consumer and small

software companies is unquestionable. Consumers will be able to use and access software

application for no cost. Also, software developers could freely access the openly available

software algorithms and study the inner working of software codes. This creates an opportunity

for small entrants to develop a better software products. However, the existing system let alone

to regulate how these free and open source software organize develop and distribute their

software, it does not even mention of the existence of these categories of software.

85

CHAPTER FOUR

CONCLUDING REMARKS AND RECOMMENDATIONS

4.1 Concluding remarks

Today we call the era the information age, computer age or digital age. Whatever explanation

someone uses, the era is characterized by a huge explosion of technological innovations. Society

as a whole is now regarded as a knowledge-based society. Information is becoming a currency

and the economy is highly dependent on computer related technologies. Computer software is

the most important element of computing technology that has significantly enhanced the so-

called information economy. It is difficult to find a life without the direct or indirect involvement

of software technologies. Hence, the increasing importance of computer software demands

careful regulation. Accordingly, many efforts have been made to put in place regulatory

frameworks for the software industry but, to date, the industry remains the subject of fierce

academic discourse and court litigation.

One thing less controversial about software is its “intellectual object” nature. Although there is

no consensus as to the proper form of intellectual property rights software should enjoy, there is

no controversy regarding the need to have some sort of protection. In approaching the existing

framework for intellectual property protection for computer software, we observe many

concerns. For instance, it is not even clear what computer software is. The terms “computer

program” and “software” have been used interchangeably in much literature and in this work.

However, it is necessary to make a clear distinction between the two. The use of the subject

“computer” to software and programs is equally confusing. Software is not only used in a

computer. Other devices such as mobile phones, televisions etc. use software. Generally, we can

define software as a logical set of instructions that help a computing or other device perform a

specific function that produce a certain result. In other words, the computer only functions and

produces a result when the system software (OS) and the purpose- specific application software

are installed.

There are some attempts to define the subject in certain legislations, but that does not give relief.

The approach in the U.S. and Canada seems consistent. They define software in terms of what it

is and its function. However, the scenario is different when one sees the approaches taken by the

86

two most important international instruments and the EU directive. In the later instruments,

software is defined in terms of its scope. One unique element added in the EU directive is the

inclusion of preparatory material as a defining element. Though non-binding, the WIPO model

provision seems better and elaborative. For instance, “computer program” is a subset of

computer software as per the Model provision.

Hence, existing laws do not properly address the definitional issues. It would be helpful if those

definitions give clarification to different forms of software such as application software and

operating system software. What exactly constitutes source code, object code, interfaces,

preparatory documents, chips, and related notions should have been addressed either by

legislation or judicial pronouncement. Software development involves the writing of codes, the

application of different programming languages, etc. So, these elements and technical procedures

should be considered in clarifying software through definition or delimitation of scope.

The second point concerns the justification of software regulation. Why we do regulate software

at all? Does software fit into the general theoretical justification of property rights? As has been

pointed out in the foregoing sections, software is unique and is a very complex legal and

technological concept; thus, it requires a contextual approach in justifying its scope and terms of

protection. Borrowing certain principles from general and intellectual property laws is not

difficult. However, a carefully studied and contextual approach in justifying the legal protection

of computer software is imperative.

Even if there is ambiguity and uncertainty as regards many issues pertaining to computer

software, that does not signify an absence of law on the subject. There are various forms of

protection. If there is a single intellectual property right which is born under a lucky star, that is

software. Some, without considering other forms of protections, regard computer programs as

“the golden child”386in the realm of copyright. It gets the protection of almost all traditional

intellectual property rights.

For the most part, the U.S. is considered the leading country in the software industry. Software

developers claimed software protection in the early 1960s. The copyright office began

386 Christina M Reger, “Let's Swap Copyright for Code: The Computer Software Disclosure Dichotomy”, (2004) 24

Loy LA Ent LR 215 at 217 (the main reason for this is software copyright required limited disclosure unlike other

copyrightable literary works, nonetheless gets similar protection).

87

registering software copyrights before the Copyright Act was amended. During that time,

computer software was regarded as books, falling in the class of literary works. The then-famous

copyright law at the international level, Berne Convention for the Protection of Literary and

Artistic Works, did not even mention the term computer software (even in its 1979 version).

However, this was not surprising in the U.S. as the U.S. has not signed this document. A

comprehensive revision of the Copyright Act has been undertaken and copyrighting software

remained one controversial issue. As Congress believed in a sober examination of the matter, it

established a commission (CONTU) to come up with recommendations. Based on CONTU’s

recommendations, the Copyright Act was amended in 1980 and included two sections about

computer software.387 For some, this seemed the end of all the uncertainties and ambiguities.

However, the courts continued the tortuous battle of delineating the scope of software copyrights

and establishing tests for copyrightability. Markedly significant cases worthy of mentioning are

Williams Electronics, Inc. v. Artic International, Inc., Apple Computer, Inc. v. Franklin

Computer Corp, Whelan Assocs., Inc. v. Jaslow Dental Laboratory, Inc., Lotus Dev. Corp. v.

Paperback Software and Mosaic Software, Computer Associates International Inc. v. Altai Inc.,

Lotus Development Corp. v. Borland International, Inc., and the recent Oracle America, Inc. v.

Google, Inc. case.

Canada’s 1988 Copyright Amendment Act regarded computer software as a literary work.

Though not routine as in the U.S. approach, Canadian courts have held computer software

copyrightable in many cases, most notably Apple Computer Inc. v. Mackintosh Computers Ltd.

388 Firstly, it is a case which involved all the three levels of courts. Most importantly, it is the

case that marked for the first time that computer software in its source and object code is

regarded as copyrightable.

The approach in the EU is somewhat different. Though the EU is 13 years late in a legislative

rule on software, there is at least a harmonizing directive that applies to all member states in the

union. The directive is particularly interesting for the following reasons. Firstly, it has a referral

provision to the Berne convention for the Protection of Literary and Artistic Works (which is

regarded by many as the constitution for copyright). Secondly, it adopts a very general and broad

387 supra note 72, §101 and §117.
388 Supra note 269.

88

meaning for computer programs. Its broader definition is manifested, for instance, by the

inclusion of “preparatory design material” as one protectable work. The directive also attempted

to articulate the economic rights of software copyright holders. Another key point the directive

introduced is the notion of decompilation (often used synonymously with reverse engineering)

and interoperability issue. In similar fashion with the U.S. and Canadian courts, courts in Europe

have entertained many software copyright cases. Some of the decisions of the highest court of

the EU are even found having a strong effect on the existing software copyright discourse. The

most praised decision, SAS Institute Inc. v World Programming Ltd, excluded programming

language and functionality of programs from the scope of software copyright. Furthermore, the

court in the UsedSoft GmbH v Oracle International Corp case elaborated the doctrine of

exhaustion (first-sale) in the software context. The UsedSoft court pronounced that use right for

unlimited period is a sale. Hence, the acquirer (the licensee) is entitled to further transfer the

program. In October 2016, the court again handed down another software case, between

Mr. Aleksandrs Ranks and Mr. Jurijs Vasiļevičs v. Department for the Prosecution of Economic

and Financial Offences, Latvia and Microsoft Corp.389 The CJEU interpreted Article 4(a) and

(c) and Article 5(1) and (2) of the software directive. This shows the significant development of

software court cases.

At this time, it is clear that there is no law that permits the patentability of computer software. In

some jurisdictions, such as in Europe, computer programs are excluded from the reach of patent

law. Section 52 of the European patent convention is an excellent example in this regard as it

considers pure software inventions unpatentable. The convention only excludes computer

programs as such, leaving many unsolved questions as to programs other than ‘programs as

such’. Furthermore, there was an unsuccessful attempt to issue a directive for computer

software.390

The European patent office has developed interesting jurisprudence. It coined the tests of a

technicality in granting patents to software products. The test qualifies the blanket exclusion of

software patents under Article 52 (3) of EPC. Accordingly, patent could be available if the claim

involves technicality feature- provides technical solution to technical problem. The office has

389 Mr. Aleksandrs Ranks and Mr Jurijs Vasiļevičs v. Department for the Prosecution of Economic and Financial

Offences, Latvia and Microsoft Corp. Case C-166/15,
390

Supra note 20.

89

also recently amended its guideline391 for examination and uses similar terminology. Although

the EPC excludes computer programs per se, evidence shows that there is some kind of leniency

at the patent office level, and thousands of software patents have been issued since 1978.

In the U.S., although Congress decided that copyright law best suits computer software,

hundreds of thousands of software patents have been granted by the U.S. Patent and Trademark

Office (USPTO) and the number of software patents has grown exponentially. This, obviously,

shows the anomaly of protecting literary works with patent laws.

Unlike the EU and Canada, the U.S. has a lot of case laws concerning computer software. The

District Courts, Federal Circuits and Supreme Court have decided many software patent cases

since the beginning of the 1970s. At this time, one cannot know conclusively the position of

courts as regards the patentability of computer software. However, there is ample evidence for

and against software patents. Since Benson, courts continued to develop more than ten tests of

patentability of software. In Benson, the court used the preemption of claims to a mathematical

algorithm in determining patentability. The Parker court used the contribution of claimed

process in the article’s nature or state. In 1980 the Diehr court granted software based on the test

that the claimed process involves the transformation of an article and disregarded the blanket

exclusion of mathematical formula and algorithm. Two years later, the Federal circuit came up

with the Freeman-Walter- Abele Test. Two-step tests have been developed: if the claim recites a

mathematical algorithm, and whether the claim as a whole is no more than the algorithm itself:

if our answer is positive, then the claim is non-statutory subject matter. In 1994, the Alappat

court adopted the useful, concrete and tangible test. Controversy continued and in 2008, the

Bilski court coined another test – the machine and transformation test (a test that allows

patentability if the claimed machine/process ties with a particular apparatus or transforms a

particular article into a different state or thing). The Supreme Court rejected this test and stated

the ultimate determination must be whether the subject matter is a law of nature, physical

phenomena or abstract idea – arguing these categories of subject matters are absolutely not

patentable. The 2015 Alice court again adopted other two-step tests. First, the court should

determine if "the claims at issue are directed to one of those patent-ineligible concepts”.

Secondly, "If so, the [court should] then ask, what else is there in the claims before us?” In the

391 Supra note 207.

90

latter step, the court is asking if there is an inventive concept that amounts to significantly more

than the patent ineligible concept itself.

Similar to the U.S., there is no express exclusionary section of patenting computer software in

the Patent Act of Canada. However, we see some scholarly discourses on the matter – from the

interpretation of laws to exclude software patentability to the existence of legislation and

practices allowing patents for software. Some position the Canadian approach between the U.S.

and EU. What is clear is that certain software and business method patents have been granted in

Canada (e.g. the recent Amazon patents), and there is a guideline from 2007 (amended

recently)392 that allows patenting software so long as the claim is integrated with another patent

eligible subject matter.

As stated above, patent and copyright are not the only forms of intellectual property mechanisms

for computer software. A trade secret is known for protecting the internal working and design of

software source code. Unlike copyright and patent, trade secret protection for the hidden part of

software has not been particularly controversial. It has always protected source code, the inner

working of software – things we cannot see. Recent proposals even seek for the possibility of

protecting the revealed aspects of software.

All these protections, though favored by the software industry, disregard the very purpose of

intellectual property rights – the provision of limited protection to intellectual works for the

public good. There is nothing good for the public by over-protecting an intellectual good which

is so important to the everyday life of the public. It is not, therefore, hyperbole to claim the

existing system is a double-edged sword: it highly benefits gigantic hardware and software

companies and ignores the general interest of the public. Currently, one can only see a very

limited scenario in terms of the existing approach’s consideration towards the public interest: the

limited allowability of reverse engineering software and the Open Source and Free Software

movements. In particular, the Open source movement seems to significantly address the access

related issues of software. However, there is no recognition of that movement in the

abovementioned intellectual property laws.

392

Supra note 190 at105.

91

Studies show that computer software is a unique form of intellectual good.393 It is unique in the

sense that it is not a mere book like a work as understood by the 1964 U.S. copyright office and

subsequent laws and bodies. Software is also a complex technological innovation that affects

every aspect of human life. If we dissect and analyze it, we see a whole lot of complex legal and

technological notions: from source and object code to the look and feels aspects; from operating

system to application software; from chips, diskette, and memory to programming language;

from free and open source to proprietary software, etc.

It is also beyond doubt that traditional forms of intellectual property rights are not suitable to

software. The main reason, among others, is that software is unique, complex and omnipresent

and is an essential element of so much evolving technology. Many scholars have argued the

inapplicability of existing system as it is and proffered many alternatives. Some such as Pamela

Samuelsson challenge the copyright protection of computer software. Others oppose software

patents. Professor Peter Menell proposes the option of protecting some part of software

(operating system) with patent and copyright for the remainder. This research proposes a special

form of protection for computer software.

4.2 Recommendations

When one talks about computer software, emphasis should be given to its nature, especially to its

unique traits. The basic of these are the technological, complex (except for programmers) and

omnipresent nature. If something is unique, that means we have to approach it in context. Hence,

the main remedy to rectify the existing blanket copyright or patent or trade secret or trade dress

or other forms of protection of software is to devise a special law for software. There is even no

need to categorize software as a patentable or copyrightable subject matter. It is sufficient if it

enjoys the necessary (special) or standalone protection. This way we are avoiding, firstly, the

age-old litigation of attempting to determine whether software is an invention or literary creative

work. Additionally, we will have up-to-date and fully-fledged law that addresses many technical

issues from definition to scope and tests of infringement/encroachment. Above all, the new

393 For instance, see supra note 86. David Hayes argues software has seven unique

characteristics. Software is inherently functional, embodies multiple types of creativity, its evolution is often

incremental, it is increasingly short-lived, software development methodology has evolved, it exists in different

markets, and software has many different distribution and use architectures.

92

special law will take into consideration the real impact of software on society and its role in the

digital economy.

If one examines the existing legal regime, it is clear that the system ill-suits the interests of

consumers. Proponents of free software claim for software to be free. Of course, all consumers

want the free and open distribution of software products. A new entrant, too, needs some kind of

access to software innovation so that they can build up their own initiatives. However, the

intellectual object nature of software is less controversial. Software developing companies,

though they benefit from the wealth of freely available information, invest so much time, labor

and skill, and money in writing software codes. Logic dictates these companies should be able to

recover all the costs incurred and allowed to earn an appropriate (fair) profit. The problematic

question is “what is appropriate?” Obviously, the existing system is not appropriate. Allowing a

20 years patent protection, and after expiry extending that protection to fifty394 or seventy395

years is not by any means appropriate. Hence, recognition should be given to programmers of

software. But the reward we give for these programmers in the form of intellectual property

rights should also take into consideration of the reality, and the interests of various stakeholders.

For instance, attention should be given to the interest of the consumer, programmers and new

entrants.

This new regulation does not need to be called patent or software or copyright or even sui

generis protection for computer software. It is enough to enact a statute or an act for software.

The point is that it is not adequate in having a separate legal document for computer software.

EU has that. However, what EU has is a separate copyright directive for computer software.

WIPO proposed the sui generis approach in the late 1970s. It was a better proposal, but the

content is no better than the 11Articles length of EU software directive. The WIPO sui generis

model provisions proposed in early 1980s only addresses few issues. The only substantive

elements the model provision had introduced were definition of terminologies, duration of

protection and the impositions of general prohibitions. According to this proposal, computer

software includes computer program, program description and supporting document. Though it

provides a definition to computer programs like the U.S. and Canada Copyright Acts, the

394 Supra note 73, s.6.
395 Directive 2006/116/EC of the European Parliament and of the Council of 12 December 2006 on the Term of

Protection of Copyright and Certain Related Rights, articles 1(3)(6), 2 (2); supra note 72, s.302.

93

definition given to program description and supporting material is not clear. Furthermore, the

model provision does not take into context these days billions of software applications used in

smart devices. Even copyright laws have been revised to meet the needs of the information age.

WIPO’s adoption of copyright treaty is one such example. Hence, the model provision though it

introduced the notion of regulating software with special law, it did not solve todays software

related disputes. For instance, the model provisions let alone to address the look and feel aspects

of software it does not even mention of the object and source code elements of software.

The EU directive is adopted a decade after the WIPO proposed the model provisions, and it still

does not address central software protection issues. The directive is nothing, but a detailed

version of copyright law for software. For instance, whether the directive protects the literal

elements of software is not clear.

Perhaps regulating a specific subject matter of intellectual property rights is not that uncommon.

In Europe, database is one subject matter that is being governed by the special directive.396 This

directive gives copyright and sui generis protections to databases. In the U.S., Semiconductor

Chips have been regulated by a special Act397 since the 1980s.

As has been noted in the CONTU report, the main concern for protecting programs was avoiding

unauthorized copying of computer software.398 This recommendation shares that concern.

Nonetheless, avoiding illegal copying does not mean we must overprotect programs so that the

system unduly benefits the computing industry at the expense of the main purpose of IP laws and

other stakeholders.

As regards the structure of the recommended law, in the form of preamble or recital, mention

should be made as to what is the main basis for software protection. It may be difficult to find a

single justifying theory for computer software regulation. However, it is not appropriate just to

treat software like other works or innovation. It all goes with the unique and omnipresent nature

of computer software. The utilitarian justification seems the main basis for software protection.

All things considered, our justification should not encourage free riders to copy others’ ideas.

396 Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the Legal Protection of

Databases.
397 17 U.S.C. §§ 901-914 (1988).
398 Supra note 233 at 60.

94

Ideas are expensive to produce and easy to copy.399 The problem of piracy – illegal reproduction

and distribution – could be serious in digital works such as software. Hence, the justification

should encourage new innovations and creativities.

The content of this specific standalone legislation should include, among other things the

following points. Firstly, the proposed statute should provide an up-to-date definition for

computer software. The existing legislations does not take us far as regards clarification of what

a computer program is. Stipulating a clearer and concise meaning for technical terms such as

software is not an easy task. However, an attempt to stipulate a binding definition for those terms

will help to avoid possible confusions. In doing so, this standalone statute should make a clear

distinction among terminologies related to computer programs, such as “software”, “computer

software”, “source code”, “object code”, “programming language”, “programmer”, “developer”,

“interfaces”, “look and feel” etc. Furthermore, it should address if software only applies to

physical or tangible devices. This is because today internet is being regarded as a machine.

Secondly, the statute should delimit its scope of application. In this part, the legislation will

address what elements of software and computing technologies fall under the realm of the special

law. In connection to this, this law should identify excluded subject matters. This way, we can

reduce time and costs of courts and other concerned bodies. For instance, it could clarify the

status of object code, source code, preparatory materials, supporting documents and other non-

literal elements.

Thirdly, the statute should explicitly spell out specific rights or privileges developers of

computer programs have. At this level, it could be very difficult what rights should this specific

law entitles software developers. The law should identify parties involved in developing

software.400 It then should delimit their respective rights and entitlements. The right to store

programs in any medium for use or distribution may constitute examples of substantive rights.

Then, these rights could be further defined to meet the real software market. For instance, the

distribution part may form sale, license, hire or lease.

399 Barry Sookman, Steven Mason, and Carys Craig, Copyright Cases and commentary on the Canadian and

International Law, 2nd ed., (Toronto, Canada: Carswell, 2013) at 11
400 At times, individual software programmers could write software codes under the supervision or employment of

someone else. Hence, their relationship between those parties should spelled out.

95

The EU software directive tries to stipulate substantive rights of right holders. The directive,

however, only reiterates basic copyright entitlements of authors. It does not even say anything

about moral rights of authors, as EU copyright law bestows on authors both economic and moral

rights. It is essential for the recommended law to address what the right holder is permitted to do

and the extent of that entitlement. That could include delimiting the duration of protection, and

issues of transfer (e.g. assignment in the form of sale or license etc.). The extent of the right and

duration should enable holders recoup the cost of developing programs and spur innovation.

Additionally, the law should address issues of adaptation, translation or other ways of

modifications. Likewise, it is important if this special law clarifies the possibility and conditions

of reverse engineering computer programs. A related issue is the notion of interoperability of

software.

Fourthly, the law should have a clause on free and open source software. There is no a single

provision on the existing regime regarding free and open source software. Currently, they are

functioning based on contract and public licensing mechanisms. Hence, the new law should

recognize the reality and include regulatory sections for free and open source software. This law

assists the existing public licensing mechanisms that free and open source software movements

use. The law may guide how consumers use, copy, study and reverse engineer free and open

source software.

The most important part relates to infringement. As there is no clear test for infringement of

software patents and copyrights, courts are trying to develop different criteria. Therefore, the

recommended law by identifying criteria/tests401 of infringements could ease settlements of

litigations. We may have two types of tests. Firstly, it is important to stipulate criteria for

software protection. As we have novelty, inventive step and utility criteria for patents, we need to

have a specific test for software protection. The second test concerns infringement of protected

software. In connection to this, functional similarity could serve as one criteria to determine

infringement of right. Last but not least, this standalone legislation should encompass

administrative rules. Determination of substantive rights is not sufficient. Some procedural rules,

too, should form part of this special law for computer software. In this section, we could address

401 As has been discussed software is a complex legal and technological notion. Hence, it is not easy to recommend

a clear test of infringement. Further examination of the matter by specialists is indispensable in defining the scope of

protection and determining test of protection or infringement.

96

questions such as how to acquire and enforce rights. Should the acquisition of right be automatic

or does it require some sort of examination and registration? Also, it could define adjudicative

and other enforcement entities.

97

BIBLIOGRAPHY

LEGISLATION
Agreement on Trade-Related Aspects of Intellectual Property Rights, Annex 1C to the Final Act

and Agreement Establishing the World Trade Organization, December 15, 1993, 33 I.L.M. 76

(WTO). General Agreement on Tariffs and Trade, Uruguay Round (including GATT 1994),

Marrakesh, April, 1994.

Berne Convention for the Protection of Literary and Artistic Works, September 9, 1986, Can T.S.

1948 No. 22. 828 U.N.T.S. 221, revised most recently by Paris Act relating to the Berne

Convention, July 24, 1971,

Canadian Patent Act, R.S.C. 1985, c P-4

Computer Software Rental Amendments Act, 17 U.S.C. § 109(b)(1)(a)) (1990).

Constitution Act,1867 (UK), 30 & 31 Vict, c 3, reprinted in RSC 1985, App II, No 5

Convention on the Grant of European Patents (European Patent Convention of 5 October

1973 as revised by the Act revising article 63 EPC of 17 December 1991 and the Act revising

the EPC of 29 November 2000.

Copyright Act, R.S.C., 1985, c. C-42.

Council Directive on the Legal Protection of Computer Programs, No. 91/250, O.J. L 122/42

(1991).

Council of Ministers, Common Position Paper, Art. 1, At 7 (Dec. 14, 1990).

Criminal Code, R.S.C.1985, c. C-46

Directive 2001/29/EC Of The European Parliament and of the Council of 22 May 2001 on the

harmonization of certain aspects of copyright and related rights in the information society.

Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal

protection of databases

98

EPO, Guidelines for Examination in the European Patent Office, Nov 2016, ISBN 978-3-89605-

158-5< http://www.epo.org/law-practice/legal-texts/guidelines.html >.

Guidelines for Examination in the European Patent Office November 2016.

Model Provisions on the Protection of Computer Software, 12 Indus. PROP.: Monthly REV.

WIPO 259-73 (1977).

Omnibus Trade and Competitiveness Act, 19 U.S.C. § 2242, 2411-2420 (West Supp. 1990).

Patent Act, 35 U. S. C. §101.

Procedure 2002/0047/COD COM (2002) 92: Proposal for a Directive of the European Parliament

and of the Council on the patentability of computer-implemented inventions.

Proclamation No.410/2004 Copyright and Neighboring Rights Protection Proclamation.

Proposal for a Council Directive on the Legal Protection of Computer Programs, O.J. C 91/4

(1989); Amended Proposal for a Council Directive on the Legal Protection of Computer

Programs, O.J. C 320/12 (Oct. 1990).

Proposal for a Directive of the European Parliament and of the Council on the patentability of

computer-implemented inventions (2002/C 151 E/05) COM (2002) 92 final — 2002/0047(COD)

Statute of Anne of 1709 (U.K), 8 Anne, c.21.

US Copyright Act, 17 U.S.C. (1976)

U.S. Const. art. I, § 8, cl. 8.

U.S. Digital Millennium Copyright Act 1998 (DCMS), Pub. L. No. 105-304, 112 Stat. 2860

(Oct. 28, 1998

World Intellectual Property Organization Copyright Treaty, December 23, 1996, CRNR/DC/94.

JURISPRUDENCE

Alice Corp. v. CLS Bank Int'l, 134 S. Ct. at 2354

http://www.epo.org/law-practice/legal-texts/guidelines.html

99

Apple Computer, Inc. v. Franklin Compute Corp, 714 F.2d 1240 (3d Cir. 1983), rev'g 545 F.

Supp. 812 (E.D. Pa. 1982), 714 F.2d 1240 (3d Cir. 1983), rev'g 545 F. Supp. 812 (E.D. Pa.

1982).

Apple Computer Inc. v. Mackintosh Computers Ltd ,10 C.P.R. (3d) 1 (F.C.T.D. 1986); aff'd, 18

C.P.R. (3d) 119 (F.C.A. 1987).

Arrhythmia Research Technology Inc. v. Corazonix Corp , 958 F.2d 1053, 22 USPO2d 1033

(1992).

Bernard L. BILSKI Rand A. Warsaw No. 2007-1130., 545 F.3d 943.

Bilski v. Kappos, 130 S. Ct. 3218, 3225 (2010).

Canada (Attorney General) v. Amazon.com, Inc., [2011] FCA 127.

Canadian Admiral Corporation Ltd. v. Rediffusion Inc, [1954] Ex. CR 382, 20 CPR 75.

CCH Canadian Ltd. v. Law Society of Upper Canada , [2004] 1 S.C.R. 339, 2004 SCC 13.

Diamond v. Diehr, 450 U.S. 175 (198)

Computer Associates International Inc. v. Altai Inc , 75 F.Supp. 544, 20 USPQ2d 1641.

Computer Edge Pty. Ltd. v. Apple Computer Inc. (1986) 161 CLR 171

FEIST PUBLICATIONS, INC. v. RURAL TELEPHONE SERVICE CO., 499 U.S. 340 (1991).

Freeman, 573 F.2d 1237 (C.C.P.A. 1978); Walter, 618 F.2d 758 (C.C.P.A. 1980); and Abele,

684 F.2d 902 (C.C.P.A. 1982).

Gottschalk v. Benson, 409 U.S 63 (1972)

IBM v. Spirales Computer Inc , 80 C.P.R. (2d) 187 (1984).

Interstate Circuit, Inc. v. United States ,306 U.S. (1939) at par. 30.

Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974).

Lotus Dev. Corp. v. Paperback Software and Mosaic Software , 740 F. Supp. 37 (D. Mass.

1990).

100

Lotus Development Corp. v. Borland International, Inc , 799 F. Supp. 203 (D. Mass. 1992)

[Borland I1]; 788 F. Supp. 78 (D. Mass. 1992).

Mayo Collaborative Services, Dba Mayo Medical Laboratories, Et Al. V. Prometheus

Laboratories, Inc., 132 S. Ct. 1289 (2012).

Mazer v. Stein, 347 U.S. (1954).

Mr. Aleksandrs Ranks and Mr Jurijs Vasiļevičs v. Department for the Prosecution of Economic

and Financial Offences, Latvia and Microsoft Corp. Case C-166/15.

Navitaire Inc v EasyJet Airline Co Ltd [2004] EWHC 1725 (Ch.).

Nova Productions Ltd v Mazooma Games Ltd [2007] EWCA Civ 219.

Oracle America, Inc. v. Google, Inc , 750 F. 3d 1339 (2014).

Parker v. Flook, 437 U.S. 584 (1978).

RDG Inc. v. Dynabec Ltd, 6 C.P.R. (3d) 299 (1985).

SAS Institute Inc. v World Programming Ltd, Case C-406/10.

Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

Schlumberger Canada Ltd. V Commissioner of Patents , 56, 204(1984).

Spacefile Ltd v. Smart Computing Systems Ltd , 75 C.P.R. (2d) 281 (1983).

State Street Bank & Trust Co. v. Signature Financial Group, Inc.,149 F.3d 1368, 47 U.S.P.Q.2d

(BNA) 1596 (Fed. Cir. 1998), cert. denied, 119S. Ct. 851 (1999).

Tennessee Eastman Co. v Canada (Commissioner of Patents) (1972), 8 CPR (2d) 202 (SCC).

Twentieth Century Music Corp. v. Aiken,422 U.S. 45 L. Ed. 2d 84, 95 S. Ct. 2040 (1975).

Ultramercial, LLC v. Hulu, LLC, 657 f.3d 1323 (Fed. Cir. 2011), reh'g and reh'g en banc denied,

No. 2010-1544, 2011 U.S. App. LEXIS 25055 (Fed. Cir. Nov. 18, 2011).

UsedSoft GmbH v Oracle International Corp, Case C-128/11).

United States v. Paramount Pictures, Inc., 334 U.S 131 (1948).

101

Whelan Assocs. Inc. v. Jaslow Dental Laboratory Inc., 797 F.2d 1222 (3d Cir. 1986) cert.

denied, 479 U.S. 1031 (1987).

Williams Electronics, Inc. v. Artic International, Inc, 685 F.2d 870 (3d Cir. 1982).

SECONDARY MATERIAL

Aharonian, Greg, “Deconstructing Software Copyright, 30 Years of Bad Logic”, (2001) online:

Internet Patent News Service < http://www.patenting-art.com/copyprob/softcopy.htm>.

Andrews, Robin, “Copyright Infringement and the Internet: An Economic Analysis of Crime”,

(2005)11:2 BUJ Sci. & Tech L.

Aplin Tanya. & Davis Jennifer. Intellectual Property Law: Texts, Cases, and Materials, (New

York; Oxford University Press, 2009).

Arnold, Richard and Henry Carr, Computer Software: Legal Protection in, 2nd ed.,(London, UK :

Sweet & Maxwell, 1992).

Azar, Deborah, “A Method to Protect Computer Programs: The Integration of Copyright, Trade

Secrets, and Anticircumvention Measures” online: (2008) Utah Law Review 4

1395<http://epubs.utah.edu/index.php/ulr/article/view/135/117>.

Bainbridge, David, “Court of Appeal Parts Company with the EPO on software patents”, (2007)

23 Computer L & Sec R at 199.

Ballardini, Rosa Maria, ‘‘Software patents in Europe: the technical requirement dilemma”,

(2008), 3 Journal Intell Prop L & Prac 9 563.

Basheer, Shamnad, & Wilkof, Neil eds, Overlapping Intellectual Property Rights, (Oxford, U.K

:Oxford University Press, 2012)

Bell, Gordon, “Stars: Rise and Fall of Minicomputers” IEEE Xplore (17 March 2017), online:

Engineering and Technology History Wiki http://ethw.org/Rise_and_Fall_of_Minicomputers >.

Bender, David, “Trade Secret Protection of Software”, (1969-1970) 38 Geo. Wash. L. Rev. 909.

http://www.patenting-art.com/copyprob/softcopy.htm
http://epubs.utah.edu/index.php/ulr/article/view/135/117
http://ethw.org/Rise_and_Fall_of_Minicomputers

102

Berkowitz, Peggy, “Canada Is Drafting New Copyright Law to Satisfy Grievances of U.S.

Concerns”, Wall Street Journal (29 April 1986) online: Wall Street Journal

<http://search.proquest.com/docview/398055666?rfr_id=info%3Axri%2Fsid%3Aprimo>.

Bessen, James and Hunt M., Robert, “An Empirical Look at Software Patents”, online (2007)

16:1 Journal of Economics & Management Strategy at 158 <

http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9134.2007.00136.x/epdf>.

Beth Gaze, Copyright Protection of Software (Sydney, Australia: The Federation Press, 1989).

Bill O, and Mike E., John K. Wayne O. “Introduction to the New Mainframe: z/OS Basics”, (02

January 2012), online IBM Readbooks <

http://www.redbooks.ibm.com/abstracts/sg246366.html?Open> .

Biermann, Alan W., Automatic Programming: A Tutorial on Formal Methodologies, (London:

Academic Press Inc., 1985.

Boyle, Carolyn, Nicholas Fox, & Sian O’Neill eds, Intellectual property in Electronics and

Software: A Global Guide to Rights and Their Applications (London: Globe business Publishing

Ltd. 2013).

Braithwaite, William J., “Derivative Works in Canadian Copyright Law”, (1982) 20: 2 Osgoode

Hall LJ 192.

Bray, Robert, The European Union "Software Patents" Directive: What is it? Why is it? Where

are we now?, (2005) Duke L & Tech Rev11 1.

Canadian Intellectual Property Office - Manual of Patent Office Practice”, March 2007 at c.12

and c.16.

Canadian Intellectual Property Office, Examination Practice Respecting Computer-Implemented

Inventions, PN 2013-03.

Cheung, Cheryl, “A Leading Canadian IP Case: Copyright for Computer Software” Deeth

Williams Wall (13 March 2013), online: Deeth Williams Wall < http://www.dww.com/articles/a-

leading-canadian-ip-case-copyright-for-computer-software>.

http://search.proquest.com/docview/398055666?rfr_id=info%3Axri%2Fsid%3Aprimo
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9134.2007.00136.x/epdf
http://www.redbooks.ibm.com/abstracts/sg246366.html?Open
http://www.dww.com/articles/a-leading-canadian-ip-case-copyright-for-computer-software
http://www.dww.com/articles/a-leading-canadian-ip-case-copyright-for-computer-software

103

Chingale, Ravindra, ‘‘Alice and software patents: implications for India”, (2015), 10 J Intell

Prop L & Prac. 5.

Clark, Jane E., & George E. Fisk, “Hardware and Software Protection in Canada” online: (1990)

X 10 Computer L.J.

<http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl>.

Conrad Delbert, Seaman, "Contextualizing the Software Patent Debate in Canada: A Practical

Approach to Policy Development”, (2014) 3:1 97 Osgoode Hall Review of Law and Policy 3.1

97 at 103.

Cook, Trevor, ed., Sterling on World Copyright Law, 4th ed (London, UK: Sweet & Maxwell,

2015).

Cornish, William, Pamela Samuelson, & Thomas Vinje , “Does Copyright Protection under the

EU Software Directive Extend to Computer Program Behavior, Languages and Interfaces?”

online: (2012) European Intellectual Property Review

<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1974890>.

Craig, Carys, Barry Sookman, Steven Mason, and, Copyright Cases and commentary on the

Canadian and International Law, 2nd ed., (Toronto, Canada: Carswell, 2013

Craig, Carys J, “The Evolution of Originality in Canadian Copyright Law: Authorship, Reward

and the Public Interest”, (2005) Osgoode Hall LJ

Crtsinger, Cathy E., “Patent: Patentability: Computer Software,: AT&T Corp. v. Excel

Communications, Inc.”, (2000) 15: 1 Berkeley Tech LJ, at 166.

Chung, Haewon, “Lessons from Bilski”, online: (2011) 9 CJLT 1 179 <

https://ojs.library.dal.ca/CJLT/article/view/4846%3E>.

Digital Millennium Copyright Act, online: The Electronic Frontier Foundation

<https://www.eff.org/issues/dmca>.

http://repository.jmls.edu/cgi/viewcontent.cgi?article=1424&context=jitpl
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1974890
https://ojs.library.dal.ca/CJLT/article/view/4846%3E
https://www.eff.org/issues/dmca

104

Diver, Laurence, “Would the current ambiguities within the legal protection of software be

solved by the creation of a sui generis property right for computer programs”, online: (2008) 3 J

Intell Prop L & Practice 2 < http://jiplp.oxfordjournals.org/content/3/2/125.abstract> .

Dixit, Sangeeta and Dixit, J. B. , , Fundamentals of Computer Programming and Information

Technology, (India: Laxmi Publications, 2005).

Downing, Douglas, Michael Covington, Melody Covington, and Catherine Anne Covington,

Barron's Dictionary of Computer & Internet Terms, 10th ed., (Barron's Educational Series:

2009).

England, Paul, ‘‘Computer-related inventions: from CFPH to Macrossan”, (2007), 2 J Intell Prop

L & Prac. 5 305.

European Commission, “Digital Economy and Society: The Internet of Things”,

http://ec.europa.eu/digital-agenda/en/internet-things>.

Evetkovski, Trajce, Copyright and Popular media: Liberal Villains and Technological Change, (

London, UK: Palgrave Macmillan, 2013).

Farrar, Anne Layne- & Evans , David S., “Software Patents and Open Source: The Battle over

Intellectual Property Rights, (2004) 9:10 Va JL & TECH.

Friedman, Mark M. Friedman, “Copyrighting Machine Language Computer Software-The Case

Against”, online: (1989) 9 Computer L.J. 1

http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl .

Galler, Bernard A., Software and Intellectual protection: Copyright and patent Issues for

Computer and legal Professionals, (London, UK: Quorum Books, 1996).Gibby, John A.,

“Software Patent Developments: A Programmer's Perspective”, (1997) 23 Rutgers Computer &

Tech LJ 293

González, Andrés Guadamuz, Software Patentability: Emerging Legal Issues, IP and Software

(06 December 2008), online: WIPO Magazine

<http://www.wipo.int/wipo_magazine/en/2008/06/article_0006.html>

http://jiplp.oxfordjournals.org/content/3/2/125.abstract
https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22J.+B.+Dixit%22
http://ec.europa.eu/digital-agenda/en/internet-things
http://repository.jmls.edu/cgi/viewcontent.cgi?article=1430&context=jitpl
http://www.wipo.int/wipo_magazine/en/2008/06/article_0006.html

105

Gonzalez, Andres Guadamuz, ‘‘The software patent debate’’, (2006) 1 Journal Intell Prop L &

Pract 3.

Gorman, Robert A., “Comments on A Manifesto Concerning the Legal Protection of Computer

Programs,” (1994-1996) 5 Alb. L.J. Sci. & Tech. 277.

Gratton, Eloise, “Should Patent protection be Considered for Computer Software- related

Innovations”, (2003) VII Computer L Rev & TJ.

Gervais, Daniel, “The Derivative Right, or Why Copyright Law Protects Foxes Better than

Hedgehogs”, (2013) 15: 4 Vand J Ent L & Prac 785.

Grigoriadis, Lazaros G., “Exhaustion and Software Resale Rights in Light of Recent EU Case

Law”, online: 2014) 5 J. Int’l Media & Entertainment Law 1

<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2403554>. Guiho G., and Biermann, Alan,

eds, Computer Program Synthesis Methodologies: Proceedings of the NATO Advanced Study

Institute, (Bonas, France: Springer, 1982).

Gurry, Francis, Frederick M. Abbot, & Thomas Cottier, International Intellectual Property in an

Integrated World of Economy, (New York: Wolters Kluwer, 2015) 692

Hancock, Kimbery, “1997 Canadian Copyright Act Revisions”, (1998) 13 Berkeley Tech. L.J.

<http://scholarship.law.berkeley.edu/btlj/vol13/iss1/33/ >.

Handa, Sunny, Copyright in Canada, (Markham, Ontario: Butterworths Canada Ltd., 2002).

Handa, Sunny, “Reverse Engineering Computer Programs under Canadian Copyright Law”

(1994) 40 McGill LJ 621.

Hatch, Orrin G.,“Better Late Than Never: Implementation of the 1886 Berne Convention”,

(1989), 22:2 Cornell Int’l LJ, 1 169.

Hayes, David, ‘‘Brief History of Software: From main frame to mobile’’, Software IP: The 20th

Annual BCLT/BTLJ Symposium – Intellectual Property Protections for Computer Programs

Past, Present, and Future delivered at The 20th Annual BCLT/BTLJ Symposium of U.S, UC

Berkeley School of Law, April 14th, 2016) [unpublished].

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2403554
http://scholarship.law.berkeley.edu/btlj/vol13/iss1/33/

106

Hettinger, Edwin C, “Justifying Intellectual Property”, online: (1989) 18 Philosophy & Public

Affairs 1 at 41, 49 https://www.jstor.org/stable/pdf/2265190.pdf

Hollaar, Lee A., Legal Protection of Digital Information, (Washington DC, USA: BNA Books,

2002).

Hormby, Tom, “VisiCalc and the Rise of the Apple II” Apple History (25 September 2006),

online: Low End Mac’s Online Groups < http://lowendmac.com/2006/visicalc-and-the-rise-of-

the-apple-ii/>.

Hugenholtz , P. Bernt, ed, The Future of Copyright in a Digital Environment, (The Hague:

Kluwer Law International, 1996).

Ignatin, Gary R., "Let the Hackers Hack: Allowing the Reverse Engineering of Copyrighted

Computer Programs to Achieve Compatibility" (1992) 140 U. Penn. L. Rev. 1999.

Information Society Technologies Advisory Group, “The Missing Key Enabling Technology

Toward a Strategic Agenda for Software Technologies in Europe” , online: (2012) EU

Commission < https://ec.europa.eu/digital-single-market/en/news/software-technologies-

missing-key-enabling-technologies-istag-working-group-software>.

James E, Bessen , “A Generation of Software Patents”, online: (2011), Boston Univ. School of

Law, Law and Economics Research Paper No 11-31 & Berkman Center Research Publication

No. 2011-04, <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1868979 >.

Johns, Adrian, Piracy the intellectual property wars from Gutenberg to Gates, (Chicago: The

University of Chicago Press, 2009).

Johnson, Luanne, “Creating the Software Industry Recollections of Software Company Founders

of the 1960s”, IEEE Annals of the History of Computing, (07 August 2002), IEEE Xplore

Digital Library at 14< http://ieeexplore.ieee.org/document/988576/>.

Kief F., Scott and James E Daily and, Perspectives on Patentable Subject Matter, (New York,

U.S.A.: Cambridge University Press, 2015.

Kittredget, C. Mark, “The Federal Circuit and Non-patentable Subject Matter Under In Re

Alappat and in Re Warmerdam”, (1995) 11 Santa Clara computer & High Tech. L.J. 261.

https://www.jstor.org/stable/pdf/2265190.pdf
http://lowendmac.com/2006/visicalc-and-the-rise-of-the-apple-ii/
http://lowendmac.com/2006/visicalc-and-the-rise-of-the-apple-ii/
https://ec.europa.eu/digital-single-market/en/news/software-technologies-missing-key-enabling-technologies-istag-working-group-software
https://ec.europa.eu/digital-single-market/en/news/software-technologies-missing-key-enabling-technologies-istag-working-group-software
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1868979
http://ieeexplore.ieee.org/document/988576/

107

Koepsell, David, Innovation and Nanotechnology: Converging Technologies and the End of

Intellectual Property, (New York, U.S.: Bloomsbury Academic, 2011).

Krauthaus, Patricia Ann & Nimmer, Raymond T., “Software Copyright: Sliding Scales and

Abstracted Expression”, (1995) 32 Hous. L. Rev. 317.

Kramer, Karen J., “Extending Copyright Protection to a Computer Program's Structure. Whelan

Associates, Inc. v. Jaslow Dental Laboratory, Inc. 797 F.2d 1222 (3d Cir. 1986)”, online: (1987)

65:2 Wash. U. L. Q. 471 < http://openscholarship.wustl.edu/law_lawreview/vol65/iss2/6/>.

Kremer, Michael, Patent buy outs: A mechanism for Encouraging Innovation

113Q.J.Econ.1137(1998).

Kretschmer, Martin, “Software as Text and Machine: The Legal Capture of Digital Innovation”,

online: (2003) JILT, < https://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/

Leith, Philip, Software and Patents in Europe, (Cambridge, UK: Cambridge University Press,

2007).

Lessig, Lawrence, “Law Regulating Code Regulating Law”, (2003) 35 Loy. U. Chi. L. J 1.

Lessig, Lawrence, Code: And Other Laws of Cyberspace, (New York, U.S.A: Basic Books,

2006).

Lessig, Lawrence, “The Law of the Horse: What Cyber law Might Teach”, (1999) 113 Harv L

Rev 501.

Lessig, Lawrence & Stallman, Richard, Free Software, Free Society: Selected Essays of Richard

M. Stallman., 2nd ed. (Boston: Createspace, 2009).

Liverzani, Amanda, “Fate of Software Patents Still Unclear Following SCOTUS Decision in

Alice v. CLS Bank”, Harv JL & Tech (28 June 2014), online: Harvard Journal of Law &

Technology Digest <http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-

following-scotus-decision-in-alice-v-cls-bank>

Locke, John, Second Treatise of Government, Book II, Ch. V, 1690, at para 26 & 27

<http://www.earlymoderntexts.com/assets/pdfs/locke1689a.pdf >.

http://openscholarship.wustl.edu/law_lawreview/vol65/iss2/6/
https://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/
http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-following-scotus-decision-in-alice-v-cls-bank
http://jolt.law.harvard.edu/digest/fate-of-software-patents-still-unclear-following-scotus-decision-in-alice-v-cls-bank
http://www.earlymoderntexts.com/assets/pdfs/locke1689a.pdf

108

McKeough J., ‘‘Apple Computer Inc. V. Computer Edge Pty Ltd”, A Case Note’’, (1984)

UNSWLJ 162.

McCormack, Stuart C., ed., Intellectual Property Law of Canada 2nd ed (New York, U.S.A: Juris

Publishing, Inc., 2010).

McKeough J., ‘‘Apple Computer Inc. V. Computer Edge Pty Ltd”, A Case Note’’, (1984)

UNSWLJ 162.

Macmillan, Kathleen Gilbert-, “Intellectual Property Law for Reverse Engineering Computer

Programs in the European Community”, (1993) 9 Santa Clara High Tech. L.J. 247.

Makarenko, Jay , “Copyright Law in Canada: An Introduction to the Canadian Copyright

Act”Mapleleafweb (13 March 2009), Judicial System & Legal Issues <

http://www.mapleleafweb.com/features/copyright-law-canada-introduction-canadian-copyright-

act.html>.

Mann, Ronald J., “Commercializing Open Source Software: Do Property Rights Still Matter?”

(2006) 20: 1 Harv JL & Tech.

Mann, Ronald J., John R. Allison, & Abe Dunn, “Software Patents, Incumbents, and Entry”,

(2006-2007) 85 Tex. L. Rev. 1579.

McKenna, Barrie, “Canada needs tougher drug patent protection: Report” The Globe and Mail

(23 August 2012) online: The Globe and Mail < http://www.theglobeandmail.com/report-on-

business/canada-needs-tougher-drug-patent-protection-report/article562405/>.

Mehta, Arun, “The Absurdity of Software Patents”, (11 December 2003) http://world-

information.org/wio/readme/992006691/1078487756

Menell, Peter S. , “Envisioning Copyright Law's Digital Future”, Online: (2002-2003) 46 New

York Law Review < https://papers.ssrn.com/sol3/papers.cfm?abstract_id=328561>.

Menell, Peter S., “Tailoring Legal Protection For Computer Software”, (1987), 39 Stan L Rev 6.

Mihm, Mickey T., “Software Piracy and the Personal Computer: Is the1980 Software Copyright

Act Effective?”, (1983) 4 Computer L.J. 1

http://www.mapleleafweb.com/user/jay-makarenko
http://www.mapleleafweb.com/features/copyright-law-canada-introduction-canadian-copyright-act.html
http://www.mapleleafweb.com/features/copyright-law-canada-introduction-canadian-copyright-act.html
http://www.theglobeandmail.com/report-on-business/canada-needs-tougher-drug-patent-protection-report/article562405/
http://www.theglobeandmail.com/report-on-business/canada-needs-tougher-drug-patent-protection-report/article562405/
http://world-information.org/wio/readme/992006691/1078487756
http://world-information.org/wio/readme/992006691/1078487756
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=328561

109

Miles, Matthew B., and Weitzman, Eben, Computer Programs for Qualitative Data Analysis: A

Software Sourcebook

Miyashita, Yoshiyuki, ‘‘International protection of Computer software’’, (1991), 11 Computer

L.J. 41<http://repository.jmls.edu/cgi/viewcontent.cgi?article=1390&context=jitpl>.

Morris, Emily Michiko, “What Is “Technology”?”, online: (2014) B.U. SCI. & TECH. L. (2014)

http://fstp-expert-system.typepad.com/files/92-e.-morris_what-is-technology_iu_i.n..pdf .

Nolet , Dominique, “The Protection of Icons and Interfaces by Industrial Design” ROBIC online:

< http://newsletter.robic.ca/nouvelle.aspx?lg=EN&id=241>

Ogilvie, John W.L., ‘‘Defining Computer Program Parts under Learned Hand's Abstractions Test

in Software Copyright Infringement Cases’’, Note, (1993) 91 Mich. L. Rev 526

Osenga, Kristen, “Debugging Software’s Schemas”, (2014) 82:6 Geo Wash L Rev 1833.

The Harvard Law Review Association, “Patent Law - Patentable Subject Matter - Federal Circuit

Applies New Factors in Deciding Patentability of a Computer Program. - Ultramercial, LLC v.

Hulu, LLC’, 657 F.3d 1323 (Fed. Cir. 2011), reh'g and reh'g en banc denied, No. 2010-1544,

2011 U.S. App. LEXIS 25055 (Fed. Cir. Nov. 18, 2011),” online: (2012) 125 Harv. L. Rev.

2167 at 2169 <http://www.jstor.org/stable/23214434?seq=1#page_scan_tab_contentsPerry,

Lawrence and Hugh Brett, The legal Protection of Computer Software, (Oxford, UK: ESC

Publishing Ltd, 1981).

Phillipson, Graeme, “A Short History of Computer”, (2004).

Phillips, Jeremy, “Save Analytical Software”? That’s not what SAS stands for…” The IPKat

blog (January 2013) The IPKat blog, online: The IPKat: intellectual property news and fun for

everyone < http://ipkitten.blogspot.ca/2013/01/save-analytical-software-thats-not-what.html>.

Phillips, John C., ‘‘Sui generis Intellectual Property Protection for Computer Software’’, (1992)

60 Geo. Wash. L. Rev. 997.

Quinn, Gene, “The history of software patents in the United States” IPWatchdog (03 October

2014), online: Patent bar Review <http://www.ipwatchdog.com/2014/11/30/the-history-of-

software-patents-in-the-united-states/id=52256/>.

http://repository.jmls.edu/cgi/viewcontent.cgi?article=1390&context=jitpl
http://fstp-expert-system.typepad.com/files/92-e.-morris_what-is-technology_iu_i.n..pdf
http://newsletter.robic.ca/nouvelle.aspx?lg=EN&id=241
http://www.jstor.org/stable/23214434?seq=1#page_scan_tab_contents
http://ipkitten.blogspot.ca/2013/01/save-analytical-software-thats-not-what.html
http://www.ipwatchdog.com/2014/11/30/the-history-of-software-patents-in-the-united-states/id=52256/
http://www.ipwatchdog.com/2014/11/30/the-history-of-software-patents-in-the-united-states/id=52256/

110

Reger, Christina M., “Let's Swap Copyright for Code: The Computer Software Disclosure

Dichotomy”, (2004) 24 Loy LA Ent LR 215

Reidenberg,Joel R., “Lex Informatica: The Formulation of Information Policy Rules through

Technology”, online: (1998) 76 Tex. L. Rev. 3<

http://ir.lawnet.fordham.edu/faculty_scholarship/42/>.

Report of an Industry Expert Group on a European Software Strategy, Playing To Win In the

New Software Market: Software 2.0: Winning For Europe, (June 2009 Version 3.5).

Reynolds, Graham, “Towards a Right to Engage in the Fair Transformative Use of

Copyright-Protected Expression”, in Michael Geist, ed, From “Radical Extremism” to

“Balanced Copyright”: Canadian Copyright and the Digital Agenda (Toronto: Irwin Books,

2010).

Risch, Michael, “Hidden in Plain Sight” , Online: (2016) Villanova Public Law and Legal

Theory Working Paper Series, <

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100##> .

Roberts, Tom, Intellectual and Industrial Property I: Introduction to Patents, Lecture Notes,

(College of Law, University of Saskatchewan, 2015).

Robertson, Ronald, Legal protection of Computer Software, (London, UK: Longman law, 1990).

Rognstad, Ole-Andreas, “Legally Flawed but Politically Sound? Digital Exhaustion of Copyright

in Europe after UsedSoft” online: (2014) 1 Oslo L Rev <

<https://www.journals.uio.no/index.php/oslawreview/article/view/977 >.

Samuelson, Pamela, “CONTU Revisited: The Case against Copyright Protection for Computer

Programs in Machine readable Form”, (1984) Duke LJ 663.

Samuelson, Pamela, ‘‘The Uneasy Case for Software Copyrights Revisited”, (2011) 79 Geo.

Wash. L. Rev. 1746

Samuelson, Pamela, Randall D., Mitchel D., J.D. Reichman, “A Manifesto Concerning the Legal

Protection of Computer Programs”, (1994) 94 Colum L Rev 2308-2431

http://ir.lawnet.fordham.edu/faculty_scholarship/42/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100
https://www.journals.uio.no/index.php/oslawreview/article/view/977

111

Samuelson, Pamela, ‘‘The U.S. Digital Agenda at WIPO, 37 Va. J. Int'l L. 369 (1996)’’ <

http://scholarship.law.berkeley.edu/facpubs/882

Samuelson, Pamela, “Comparing U.S. and EC Copyright Protection for Computer Programs: Are

They More Different Than They Seem?” (1993)13 J.L. & Com. 279.

Samuelson, Pamela, “Reflections on the State of American Software Copyright Law and the

Perils of Teaching It”, online: (1988) 13 Colum.-VLA J.L. & Arts 61 (1988) <

http://scholarship.law.berkeley.edu/facpubs/128/>.

Samuelson, Pamela, “Modifying Copyrighted Software: Adjusting Copyright Doctrine to

Accommodate a Technology”, online: (1988) 28 Jurimetrics J 179 <

http://scholarship.law.berkeley.edu/facpubs/653/>.

Samuelson, Pamela, “Why the look and feel of software user interfaces should not be protected

by copyright law”, online :(1989) 32Communications of the ACM 5

<http://www.foo.be/andria/docs/p563-samuelson.pdf>.

Saylor Foundation, “Brief History of Computer Systems, Software, and Programing”,

<http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-

Systems-Software-and-Programming.pdf.

Scmitz, Sandra V.I., The Struggle in Online Copyright Enforcement: Problems and Prospects

(Luxemburg: Hart Publishing, 2015).

Scotchmer, Suzanne and Samuelson, Pamela, “The Law and Economics of Reverse

Engineering”, (2001) 111 Yale L.J. 1575.

Sherman, Brad & Bently, Lionel , Intellectual Property Law, 3rd ed (New York, U.S.A: Oxford

University Press, 2009).

Sobin, Sturgis M. and Lande, Robert H., “Reverse Engineering of Computer Software and U.S.

Anti-trust Law”, (1996) 9 :2 Harv JL & Tech.

Steinbrenner, Stefan, “The patentability of computer-implemented inventions”, EPO (24 March

2011) <http://archive.is/e-courses.epo.org>.

http://scholarship.law.berkeley.edu/facpubs/882
http://scholarship.law.berkeley.edu/facpubs/128/
http://scholarship.law.berkeley.edu/facpubs/653/
http://www.foo.be/andria/docs/p563-samuelson.pdf
http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-Systems-Software-and-Programming.pdf
http://www.saylor.org/site/wp-content/uploads/2014/07/CS101-1.1-Brief-History-of-Computer-Systems-Software-and-Programming.pdf
http://archive.is/e-courses.epo.org

112

Stokes, Simon, Art and Copyright, Oxford (Oxford, UK: Hart Publishing, 2012).

Story, Alan, “Intellectual Property and Computer Software: A Battle of Competing Use and

Access Visions for Countries of the South”, (ICTSD and UNCTAD, 2004)

Swinson, John, “Copyright or Patent or Both: An Algorithmic Approach to Computer Software

Protection,” (1991) 5 Harv JL & Tech 146.

Szabo, Howard K., “International Protection of Computer Software: The Need for Sui Generis

Legislation”, (1986) 8 Loy L.A. Int'l & Comp. L. Rev511.

Thomas, Robert E., “Debugging Software Patents: Increasing Innovation and Reducing

Uncertainty in the Judicial Reform of Software Patent Law”, (2008) 25 Santa Clara Computer &

High Tech. L.J.

Toeniskoetter, Steven B., “Protection of Software Intellectual Property in Europe: An Alternative

Sui Generis Approach”, online: (2007) 10 INTELL. PROP. L. BULL 65

<http://heinonline.org/HOL/Page?handle=hein.journals/iprop10&div=9&g_sent=1&collection=j

ournals>.

Tusssey, Deborah, Complex Copyright: Mapping the Information Ecosystem, (England:

Routledge, 2012).

Tutorials Point (I) Pvt. Ltd, “Computer Programing Tutorial”, Tutorials Point (2014) online:

Simply Easy learning

<https://www.tutorialspoint.com/computer_programming/computer_programming_pdf_version.

htm >.

The Concise Oxford Dictionary (11th ed., 2004).

U.S. Gov't Accountability Office, GAO-13-465, Intellectual Property: Assessing Factors That

Affect Patent Infringement Litigation Could Help Improve Patent Quality 12 Fig.1 & N.27

(2013).

U.S. Patent No.7,346,545

Vaver, David, Essentials of Canadian Law: Intellectual Property Law: Copyright, Patents,

Trademarks (Concorde Ontario: Irwin Law Concorde Ontario, 1997

http://heinonline.org/HOL/Page?handle=hein.journals/iprop10&div=9&g_sent=1&collection=journals
http://heinonline.org/HOL/Page?handle=hein.journals/iprop10&div=9&g_sent=1&collection=journals
https://www.tutorialspoint.com/computer_programming/computer_programming_pdf_version.htm
https://www.tutorialspoint.com/computer_programming/computer_programming_pdf_version.htm

113

Weichselbaum, Mindy J., “The EEC Directive on the Legal Protection of Computer Programs

and U.S. Copyright Law: Should Copyright Law Permit Reverse Engineering of Computer

Programs?” (1997) 3 Buffalo Journal of International Law 519.

Westermann, Hannes, How to treat software in the intellectual property framework (LLM thesis,

Lund University Faculty of Law, 2016) [unpublished].

WIPO, Guide to the copyright and related rights treaties administered by WIPO and glossary of

copyright and related rights terms, (2003).

WIPO Intellectual Property Handbook, “Technological and Legal Developments in Intellectual

Property”, (2nd ed., WIPO PUBLICATION No. 489 (E): 2004).

Wiseman, Leanne and Sherman, Brad, ed, Copyright and the Challenge of the New, (The

Netherlands: Kluwer Law International, 2012).

Working group on Libre Software, ‘‘Free Software / Open Source: Information Society

Opportunities for Europe?’’, EU commission Community Research and Development

Information Center (23 February 2000), Online: EU Commission News & Events <

http://cordis.europa.eu/news/rcn/14374_en.html>.

Vaver, David, Copyright Law: Recent Canadian Developments”, Online: (1988) 16 Australian

Business Law Review

<http://search.proquest.com/docview/223515078?OpenUrlRefId=info:xri/sid:primo&accountid=

14739

Yao Dennis, Anton, James J., and Hillary Greene, “Policy Implications of Weak Patent Rights”,

(2006) 6 Harvard Business school Innovation Policy and the Economy

Yeh, Brian T., “An Overview of the “Patent Trolls” Debate, Prepared for Members and

Committees of Congress”, CRS Report for Congress

 (16 April 2013) online: <

https://archive.org/details/R42668AnOverviewofthePatentTrollsDebate-crs>

Ypersel, Tanguy V and Shavell , Steven, “Rewards Versus Intellectual Property Rights”, (2001)

44 J.L & Eco.525.

http://cordis.europa.eu/news/rcn/14374_en.html
http://search.proquest.com/docview/223515078?OpenUrlRefId=info:xri/sid:primo&accountid=14739
http://search.proquest.com/docview/223515078?OpenUrlRefId=info:xri/sid:primo&accountid=14739
https://archive.org/details/R42668AnOverviewofthePatentTrollsDebate-crs

114

Zhu, Feng Josh and Lerner, “What is the impact of software patent shifts? Evidence from Lotus

v. Borland”, online: (2007) Int. J. Ind. Organ. 25 < http://www.nber.org/papers/w11168> .

Zittrain, Jonathan, “Normative Principles for Evaluating Free and Proprietary Software”, (2004)

71 U Chicago L Rev.

http://www.nber.org/papers/w11168

