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We address the problem of the correct description of light-matter coupling for excitons and cavity

photons in the case of systems with multiple photon modes or excitons, respectively. In the litera-

ture, two different approaches for the phenomenological coupling Hamiltonian can be found:

Either one single Hamiltonian with a basis whose dimension equals the sum of photonic modes and

excitonic resonances is used. Or a set of independent Hamiltonians, one for each photon mode, is

chosen. Both are usually used equivalently for the same kind of multi-photonic systems which can-

not be correct. However, identifying the suitable Hamiltonian is difficult when modeling experi-

mental data. By means of numerical transfer matrix calculations, we demonstrate the scope of

application of each approach: The first one holds only for the coupling of a single photon state to

several excitons, while in the case of multiple photon modes, separate Hamiltonians must be used

for each photon mode. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937462]

Exciton-polaritons are still an interesting field of

research of strong light-matter interaction in solid state sys-

tems with bosonic statistics.1–3 After various demonstrations

of polariton condensation in planar microcavities,4–6 micro-

and nanowire systems have raised more interest.7–10 In such

wire cavities as well as in thick cavities, the photonic system

is usually multi-modal where the modes can be of Fabry-

P�erot or whispering gallery type.10,11 All of those modes

can, in principle, couple to excitonic resonances if they are

energetically close to the resonance. Furthermore, materials

interesting for polaritonics like wide-gap semiconductors as

ZnO12 or GaN13 possess several energetically split exciton

ground states. Hence, coupling of several cavity photon

modes with several excitons has to be considered.14

The physics of the coupling between excitons and cavity

photons has been described in exact quantum-mechanical

models,15,16 which consider wave function overlap and quan-

tum degeneracies. However, for evaluations of experimental

data, simplified phenomenological models are suitable. Two

different approaches of coupled oscillator models are fre-

quently used in the literature to describe the polariton disper-

sion in systems with N photonic modes and one exciton.

However, no distinction is made regarding their appropri-

ability. Either one total ðN þ 1Þ � ðN þ 1Þ system

Hamiltonian is used as, e.g., in Refs. 17–20, i.e.,

H ¼

EX V1 V2 … VN

V1 EC1 0 0

V2 0 EC2 0

..

. . .
. ..

.

VN 0 0 … ECN

0
BBBBBBB@

1
CCCCCCCA
; (1)

with coupling strengths Vj 2 R. Or, alternatively, the total

system Hamiltonian is being composed of a set of N single

2� 2 coupling Hamiltonians for each photonic mode with

the exciton separately as used, e.g., in Refs. 7 and 21.

Constructing one system Hamiltonian would give a block-

diagonal 2N � 2N matrix with N-fold degenerate exciton,

i.e.,

H ¼�
N

j¼1

EX Vj

Vj ECj

 !

�

EX V1 0 0 … 0 0

V1 EC1 0 0 … 0 0

0 0 EX V2
..
. ..

.

0 0 V2 EC2

..

. . .
.

0 0 … EX VN

0 0 … VN ECN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (2)

Although approaches 1 and 2 result in different disper-

sions and deduced coupling strengths, both are used equiva-

lently in the literature for interpretation of experimental data.

Even an improper Hamiltonian can provide a sufficient fit. In

order to verify which Hamiltonian is the correct approxima-

tion, we utilize numerical simulations to study Fabry-P�erot

modes in a thick planar microcavity with several photon

modes. We stick first to systems with one exciton before we

extend the investigation to systems with multiple excitonic

resonances.

As long as we restrict the study to the linear response re-

gime, quasi-particle dispersion and electromagnetic wave

calculation provide similar descriptions of the modes.22,23 In

the following, we introduce the wave representation we use

and then discuss how to obtain quasi-particle dispersions

from it.

We use a complex 4� 4 transfer matrix T̂ in order to

describe the incoming and outgoing electromagnetic field

components E at both sides (z and zþ d) of the structure

under consideration. The transfer matrix considers Maxwell’s
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equations at all layers and interfaces of a plane parallel struc-

ture for a given photon energy E and propagation angle

ha (angle between surface normal and light propagation in

the ambient) or inplane-wavevector kjj ¼ E
�hc0

na sinðhaÞ,
respectively24

Ein
s ðzÞ
Eout

s ðzÞ
Ein

p ðzÞ
Eout

p ðzÞ

0
BBBBB@

1
CCCCCA ¼ T̂ðE; kjjÞ

Eout
s ðzþ dÞ
Ein

s ðzþ dÞ
Eout

p ðzþ dÞ
Ein

p ðzþ dÞ

0
BBBBB@

1
CCCCCA: (3)

Here, p and s refer to the polarizations parallel and perpen-

dicular to the propagation plane. The constants c0 and �h are

speed of light in the vacuum and reduced Planck constant.

Details about the construction of the transfer matrix can be

found in the supplementary material.25 Optical constants and

electronic resonances of the cavity enter T̂ through the mate-

rials dielectric function. Using the transfer matrix, mode

energies can be found by applying the mode condition to

each inplane-wavevector kjj. For a photonic (polaritonic)

mode, it holds (with Eout
p=s 6¼ 0)26,27

0

Eout
s ðzÞ

0

Eout
p ðzÞ

0
BBBB@

1
CCCCA ¼ T̂ðE; kjjÞ

Eout
s ðzþ dÞ

0

Eout
p ðzþ dÞ

0

0
BBBB@

1
CCCCA: (4)

Hence, modes are given as (with ker referring to the matrix’

kernel)

Eout
s ðzþ dÞ
Eout

p ðzþ dÞ

 !
¼ ker

T11 T13

T31 T33

 ! !
;

‘forward’–traveling wavesð Þ
Eout

s ðzÞ
Eout

p ðzÞ

 !
¼

T21 T23

T41 T43

 !
Eout

s ðzþ dÞ
Eout

p ðzþ dÞ

 !
:

ð‘backward’–traveling wavesÞ

The sub-transfer matrix considered for the forward-traveling

waves becomes singular at the respective mode energy.

Hence, we find mode energies by investigating where the de-

terminant of
T11 T13

T31 T33

� �
approaches zero. Generally, such

mode energies need to be complex where the imaginary part

represents losses causing mode broadening. However, it is

sufficient here to neglect the imaginary part.

If no cross-polarization (block off-diagonal elements in

the sub-transfer matrix) occurs, as in the isotropic case, the

problem can be separated into independent problems for p-

and s-polarization and the mode condition is fulfilled if

T11 ¼ 0 (s-polarization) or T33 ¼ 0 (p-polarization), respec-

tively. For finding the mode energies numerically, it is then

sufficient to minimize jT11j and jT33j with respect to the

energy.

Considering a transparent cavity, pure cavity photon

modes occur which can be treated as free quasi-particles in

2D. Depending on the optical thickness ncavdcav of a cavity

layer, one obtains a set of mkC0=2-cavity modes with

mode numbers m, where kC0 ¼ 2ncavdcav=m (EC0 ¼ mhc0=
2ncavdcav) at kjj ¼ 0. If the reflectance in the cavity layer

against its surroundings is sufficiently high, the broadening

of those cavity modes gets small enough (i.e., the cavity

photons lifetime becomes large enough) to observe them.

The cavity photon energy depends on kjj. Considering a 2D

quasi-particle dispersion relation, it can be approximated

by

EC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

C0 þ
�h2c2

0

n2
eff

k2
jj

s
� EC0 þ

�h2k2
jj

2meff

: (5)

The effective refractive index neff of the electromagnetic

wave description is related to the cavity photon’s effective

mass meff in the parabolic quasi-particle approximation. EC0

is determined by the quantized part of the wavevector k? ¼
kz as EC0 ¼ �hc0k?= ncav ¼ mhc0=2ncavdcav.

If the cavity material contains electronic (excitonic)

resonances in the considered spectral range, polariton modes

are observed. With the cavity photon dispersion according to

Eq. (5), the polariton energies result directly from applying

the coupling Hamiltonian (Eq. (1) or (2), respectively).

As an example system, we consider a symmetric

(planar) resonator structure consisting of 29.5 layer pair

Bragg mirrors (DBR) surrounding a bulk cavity layer. The

structure parameters and optical constants are chosen similar

to previous experimental work (cf. Ref. 28) and slightly

adapted with respect of the contrast of the refractive indices

of the DBR layers and the cavity thickness. The DBR materi-

als are transparent and fulfill the k=4 condition with a central

Bragg wavelength of k � 400 nm (E¼ 3.1 eV). The contrast

in the refractive indices Dn ¼ 1 ensures a large energetic

width of the Bragg stop band and permits investigation of

the cavity photon and polariton modes in a wide spectral

range. We use a model-dielectric function for the cavity ma-

terial which, depending on the considered case, consists of

one or two excitonic resonances at EX¼ 3.35 eV and

3.30 eV, respectively, as well as a constant real valued back-

ground dielectric function e1cav. The excitonic resonance is

described by a Lorentz oscillator in the dielectric function of

the cavity layer

ecav Eð Þ ¼ e1cav þ
fXE2

X

E2
X � E2 � icXE

: (6)

Values used for the broadening cX and oscillator strength fX
are listed in Table I. In order to compare the pure photonic

system with the coupled one, we set fX either to zero (pure

photonic modes) or to the finite value (polariton modes).

The simplified approach using Eq. (6) assumes an infinite

exciton mass. In the quantization direction, this approxima-

tion is justified by the large cavity width. For the inplane

direction, the small wavevectors we consider allow neglect-

ion of the parabolic dispersion of the 2D free exciton.

Practically, this means we assume a degenerate exciton

ground state.

We keep the system isotropic throughout the whole con-

sideration here and restrict the further consideration to the s-

231104-2 Richter et al. Appl. Phys. Lett. 107, 231104 (2015)



polarization. However, there is no principal difference to the

p-polarized case.

In order to study multiple photonic modes, we choose

the cavity layer thickness dcav in the model sufficiently large.

Figure 1(a) shows jT11j to illustrate the dispersion of the s-

polarized cavity photon modes. Several cavity photon modes

can be recognized as minima of jT11j. Note that this illustra-

tion does not directly correspond to reflectance spectra22 as it

represents the modes in terms of well- or ill-definedness of

the considered sub-transfer matrix. As shown by the blue

solid lines, the dispersion of the photon modes can be well

described as 2D quasi-particles using Eq. (5). We only con-

sider the four plotted cavity photon modes with mode num-

bers m ¼ f23; 24; 25; 26g (k? in the order of 40 mm�1) in the

further discussion. The broadening, i.e. photonic loss, obeys

more sophisticated laws, depending on the mode polariza-

tion.28 However, it is sufficient to neglect it here.

When introducing the (Lorentzian-shaped) exciton as

described above, coupling of the photonic modes to the exci-

ton occurs, and the modes evolve as shown in Figs. 1(b) and

1(c). It should be noted that at the energy of the exciton the

absolute value of T11 gets very large, referring to poles rather

than singularities of the considered (sub-)transfer matrix. For

the polariton dispersion, we can model the modes by means

of either Eq. (1) or Eq. (2) using the photonic mode energies

obtained before by applying Eq. (5) and leaving the coupling

constants Vj as fit parameters. Both approaches are depicted

in Figs. 1(b) and 1(c), respectively. It becomes immediately

clear that only the ansatz using a series of single

Hamiltonians (Eq. (2)) gives the correct description where

none of the polariton modes crosses the exciton resonance

energy. Thinking in terms of quantized wavefunctions for

cavity photon and exciton with cavity resonance at mkC0=2,

it becomes clear that our single exciton resonance used in

Eq. (6) is degenerate with respect to m in the quasi-particle

description. Coupling with a photonic mode lifts the degen-

eracy.29 Hence, to each mode quantum number m, there is

one photon mode and one exciton. Consequently, a separate

2� 2 Hamiltonian is needed for each photon mode. The 2N-

dimensional system Hilbert space is indicated by the number

of modes visible in jT11j. A comparison to full quantum-

mechanical derivations shows that Eq. (2) is a good approxi-

mation.16 If the spatial differences of the wavefunctions for

the confined excitons and photons are considered, the block

off-diagonal elements become finite (but usually small),

expressing coupling between modes with different quantum

numbers m. Remarkably in Fig. 1(b), the spectral density of

the modes increases strongly when approaching the exciton

resonance energy. This is a consequence of being upper and

lower polariton branches to those higher and lower m modes

(see supplementary material25).

It turns out that in the phenomenological approximation

Eq. (2) the coupling strengths Vj of the exciton to the jth cav-

ity photon are the same for each cavity photon mode. This is

expected because the coupling strength is determined by the

exciton oscillator strength and the spatial overlap of the

mode with the excitons (cavity thickness).30

Due to valence band fine structure, several semiconduc-

tors have more than one excitonic transition involved in the

coupling with cavity photon modes (e.g., ZnO in Ref. 14).

Hence, several excitons have to be considered in the light-

matter coupling Hamiltonian. Exemplarily, we consider the

case of N photon modes and two excitons at 3.30 eV and

3.35 eV. Similarly to the case with one exciton considered

above, the excitons are introduced through the cavity layer’s

dielectric function. For simplicity and generalization, we still

assume isotropic excitons. Figure 2 shows the resulting

FIG. 1. Logarithmic plot (color bar signifies decimal power) of jT11j (s-polarization). (a) Pure photonic system with quasi-particle mode dispersions according

to Eq. (5) (solid blue lines) and pure exciton energy (dashed blue line, 3.35 eV). (b) Multi-photonic polariton system with one exciton along with quasi-particle

dispersion modeling (blue lines) using Eq. (1) (best fit). (c) The same using Eq. (2).

TABLE I. Parameters used for the resonator model.

Ambient/substrate refractive index na¼ ns 1

DBR layer 1 thickness dDBR1 40 nm

DBR layer 2 thickness dDBR2 67 nm

DBR layer 1 refractive index nDBR1 2.5

DBR layer 2 refractive index nDBR2 1.5

Cavity layer thickness dcav 1.83mm

Cavity layer high freq. dielectric const. e1cav 6.25

Exciton energy Ex 3.35 eV; 3.30 eV

Exciton broadening cX 1 meV

Exciton oscillator strength fX 1:5� 10�3

231104-3 Richter et al. Appl. Phys. Lett. 107, 231104 (2015)



dispersion of the polariton modes. As for the single exciton

case, no mode crosses any of the excitons. Hence, the exci-

tons must not be treated independently, and only the follow-

ing Hamiltonian describes the polariton modes correctly,

i.e.:

H ¼�
N

j¼1

EX1 0 V1j

0 EX2 V2j

V1j V2j ECj

0
B@

1
CA: (7)

This is consistent with Refs. 30 and 31 where only one cavity

mode is considered. In general, for each cavity photon, one

coupling Hamiltonian involving all excitons has to be applied.

Regarding a system of N photon modes and NX excitons, the

system must be described by a set of N Hamiltonians of size

ðNX þ 1Þ � ðNX þ 1Þ (which would result in a single ðNNX

þNÞ � ðNNX þ NÞ system Hamiltonian, similar to Eq. (2)).

This dimension has also been derived quantum-mechani-

cally.15 Also here, the coupling strengths Vij are constant for

all j, i.e., constant for the coupling of all photonic modes i with

a given exciton j, but they can differ for different excitonic

resonances.3

In summary, investigating singularities of electromag-

netic transfer matrices for planar microcavities enables rigor-

ous investigations of photonic and polaritonic mode energies

and, hence, verification of applied quasi-particle coupling

Hamiltonians by considering Maxwell’s equations. For a

polaritonic system with N photon modes and NX excitons, we

showed that N independent ðNX þ 1Þ � ðNX þ 1Þ coupling

Hamiltonians like Eqs. (2) and (7) must be used, considering

each involved cavity photon mode separately. A description

with one ðN þ NXÞ � ðN þ NXÞ system Hamiltonian similar

to Eq. (1) is clearly wrong and results in qualitatively incor-

rect and unphysical polariton dispersion and extracted cou-

pling strengths. As a consequence, NNX þ N polariton states

occur and the respective NNX þ N-dimensional Hilbert space

consists of N independent sub-spaces, one for each pho-

tonic mode. Those findings within simple phenomenologi-

cal models are consistent with full quantum-mechanical

approaches.15

The results shown here for Fabry-Perot resonator modes

can be transferred directly to the case of whispering gallery

modes but with a different photonic mode dispersion. It is

generally valid for all photonic resonator modes, especially

also the broad edge modes of the Bragg stop band (leaky

modes).32 Hence, this study clarifies how to correctly

describe multi-photonic polariton systems with phenomeno-

logical models.
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school BuildMoNa.

1B. Deveaud, Annu. Rev. Condens. Matter Phys. 6, 155 (2015).
2V. Kalevich, M. Afanasiev, V. Lukoshkin, D. Solnyshkov, G. Malpuech,

K. Kavokin, S. Tsintzos, Z. Hatzopoulos, P. Savvidis, and A. V. Kavokin,

Phys. Rev. B 91, 045305 (2015).
3C. Ouellet-Plamondon, G. Sallen, F. Jabeen, D. Oberli, and B. Deveaud,

Phys. Rev. B 92, 075313 (2015).
4J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.

Keeling, F. Marchetti, M. Szyma�nacuteska, R. Andr�e, J. Staehli, V.

Savona, P. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409

(2006).
5T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B.

Gil, R. Butt�e, N. Grandjean, L. Orosz, F. R�everet, J. Leymarie, J. Z�u~niga-

P�erez, M. Leroux, F. Semond, and S. Bouchoule, Appl. Phys. Lett. 99,

161104 (2011).
6H. Franke, C. Sturm, R. Schmidt-Grund, G. Wagner, and M. Grundmann,

New J. Phys. 14, 013037 (2012).
7A. Trichet, L. Sun, G. Pavlovic, N. Gippius, G. Malpuech, W. Xie, Z.

Chen, M. Richard, and L. S. Dang, Phys. Rev. B 83, 041302(R)

(2011).
8Y. Yan and Y. S. Zhao, Adv. Funct. Mater. 22, 1330 (2012).
9L. van Vugt, S. R€uhle, P. Ravindran, H. Gerritsen, L. Kuipers, and D.

Vanmaekelbergh, Phys. Rev. Lett. 97, 147401 (2006).
10C. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann,

New J. Phys. 13, 103021 (2011).
11T. Nobis, E. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys.

Rev. Lett. 93, 103903 (2004).
12F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T.

Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G.

Patriarche, F. R�everet, D. Solnyshkov, J. Z�u~niga-P�erez, and G. Malpuech,

Phys. Rev. Lett. 110, 196406 (2013).
13P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A.

Das, Phys. Rev. Lett. 112, 236802 (2014).
14T. Hasegawa, R. Kishimoto, Y. Takagi, T. Kawase, D. Kim, and M.

Nakayama, APEX 7, 032003 (2014).
15S. Yang and S. John, Phys. Rev. B 75, 235332 (2007).
16D. Gerace and L. Andreani, Phys. Rev. B 75, 235325 (2007).
17L. Orosz, F. R�everet, S. Bouchoule, J. Z�u~niga-P�erez, F. M�edard, J.

Leymarie, P. Disseix, M. Mihailovic, E. Frayssinet, F. Semond, M.

Leroux, M. Mexis, C. Brimont, and T. Guillet, Appl. Phys. Express 4,

072001 (2011).
18S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. M�edard, D.

Lagarde, P. Disseix, J. Z. J. Leymarie, M. Leroux, E. Frayssinet, J. Moreno,

F. Semond, and S. Bouchoule, Appl. Phys. Lett. 95, 121102 (2009).
19F. R�everet, P. Disseix, J. Leymarie, A. Vasson, F. Semond, and M.

Leroux, Superlattices Microstruct. 52, 541 (2012).
20R. Schmidt-Grund, H. Hilmer, A. Hinkel, C. Sturm, B. Rheinl€ander, V.

Gottschalch, M. Lange, J. Z�u~niga-P�erez, and M. Grundmann, Phys. Status

Solidi B 247, 1351 (2010).
21J. Bloch, R. Planel, V. Thierry-Mieg, J. G�erard, D. Barrier, J. Y. Marzin,

and E. Costard, Superlattices Microstruct. 22, 371 (1997).
22V. Savona, L. Andreani, P. Schwendimann, and A. Quattropani, Solid

State Commun. 93, 733 (1995).
23D. Solnyshkov, M. Glazov, I. Shelykh, A. Kavokin, E. Ivchenko, and G.

Malpuech, Phys. Rev. B 78, 165323 (2008).
24M. Schubert, in Handbook of Ellipsometry, edited by H. Tompkins and E.

Irene (William Andrew, New York, 2005), Chap. 9, pp. 637–717.
25See supplementary material at http://dx.doi.org/10.1063/1.4937462 for

construction of the transfer matrices and a more detailed discussion of the

number of polariton modes.

FIG. 2. Logarithmic plot of jT11j (s-polarization). Multi-photonic polariton

system with two excitons at 3.30 eV and 3.35 eV along with quasi-particle

dispersion modeling (blue lines) according to Eq. (7). The color scale is the

same as in Fig. 1.

231104-4 Richter et al. Appl. Phys. Lett. 107, 231104 (2015)

http://dx.doi.org/10.1146/annurev-conmatphys-031214-014542
http://dx.doi.org/10.1103/PhysRevB.91.045305
http://dx.doi.org/10.1103/PhysRevB.92.075313
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1063/1.3650268
http://dx.doi.org/10.1088/1367-2630/14/1/013037
http://dx.doi.org/10.1103/PhysRevB.83.041302
http://dx.doi.org/10.1002/adfm.201102173
http://dx.doi.org/10.1103/PhysRevLett.97.147401
http://dx.doi.org/10.1088/1367-2630/13/10/103021
http://dx.doi.org/10.1103/PhysRevLett.93.103903
http://dx.doi.org/10.1103/PhysRevLett.93.103903
http://dx.doi.org/10.1103/PhysRevLett.110.196406
http://dx.doi.org/10.1103/PhysRevLett.112.236802
http://dx.doi.org/10.7567/APEX.7.032003
http://dx.doi.org/10.1103/PhysRevB.75.235332
http://dx.doi.org/10.1103/PhysRevB.75.235325
http://dx.doi.org/10.1143/APEX.4.072001
http://dx.doi.org/10.1063/1.3232228
http://dx.doi.org/10.1016/j.spmi.2012.06.002
http://dx.doi.org/10.1002/pssb.200945530
http://dx.doi.org/10.1002/pssb.200945530
http://dx.doi.org/10.1006/spmi.1996.0317
http://dx.doi.org/10.1016/0038-1098(94)00865-5
http://dx.doi.org/10.1016/0038-1098(94)00865-5
http://dx.doi.org/10.1103/PhysRevB.78.165323
http://dx.doi.org/10.1063/1.4937462


26D. Felbacq, Phys. Rev. E 64, 047702 (2001).
27D. Bykov and L. Doskolovich, J. Lightwave Technol. 31, 793

(2013).
28C. Sturm, H. Hilmer, B. Rheinl€ander, R. Schmidt-Grund, and M.

Grundmann, Phys. Rev. B 83, 205301 (2011).
29G. Panzarini and L. Andreani, Phys. Rev. B 60, 16799 (1999).

30M. Vladimirova, A. Kavokin, and M. Kaliteevski, Phys. Rev. B 54, 14566

(1996).
31F. R�everet, P. Disseix, J. Leymarie, A. Vasson, F. Semond, M. Leroux,

and J. Massies, Solid State Commun. 150, 122 (2010).
32M. Richard, R. Romestain, R. Andr�e, and L. S. Dang, Appl. Phys. Lett. 86,

071916 (2005).

231104-5 Richter et al. Appl. Phys. Lett. 107, 231104 (2015)

http://dx.doi.org/10.1103/PhysRevE.64.047702
http://dx.doi.org/10.1109/JLT.2012.2234723
http://dx.doi.org/10.1103/PhysRevB.83.205301
http://dx.doi.org/10.1103/PhysRevB.60.16799
http://dx.doi.org/10.1103/PhysRevB.54.14566
http://dx.doi.org/10.1016/j.ssc.2009.09.036
http://dx.doi.org/10.1063/1.1861979

	d1
	d2
	d3
	d4
	l
	d5
	d6
	f1
	t1
	d7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	f2
	c26
	c27
	c28
	c29
	c30
	c31
	c32

