
Improved sequence-read simulation for

(meta)genomics

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Stephen Johnson

c©Stephen Johnson, September 2014. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

There are many programs available for generating simulated whole-genome shotgun sequence reads. The

data generated by many of these programs follow predefined models, which limits their use to the authors’

original intentions. For example, many models assume that read lengths follow a uniform or normal dis-

tribution. Other programs generate models from actual sequencing data, but are limited to reads from

single-genome studies. To our knowledge, there are no programs that allow a user to generate simulated

data for metagenomics applications following empirical read-length distributions and quality profiles based

on empirically-derived information from actual sequencing data.

We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning ap-

proach to generate reads with lengths and quality values that closely match empirically-derived distributions.

BEAR can emulate reads from various sequencing platforms, including Illumina, 454, and Ion Torrent. BEAR

requires minimal user input, as it automatically determines appropriate parameter settings from user-supplied

data. BEAR also uses a unique method for deriving run-specific error rates, and extracts useful statistics

from the metagenomic data itself, such as quality-error models. Many existing simulators are specific to a

particular sequencing technology; however, BEAR is not restricted in this way. Because of its flexibility,

BEAR is particularly useful for emulating the behaviour of technologies like Ion Torrent, for which no dedi-

cated sequencing simulators are currently available. BEAR is also the first metagenomic sequencing simulator

program that automates the process of generating abundances, which can be an arduous task.

BEAR is useful for evaluating data processing tools in genomics. It has many advantages over existing

comparable software, such as generating more realistic reads and being independent of sequencing technology,

and has features particularly useful for metagenomics work.

ii

Acknowledgements

I would first like to thank my supervisor, Dr. Anthony Kusalik, for his enthusiasm and support for my

work over the course of my degree. I thank Brett Trost, Jeffrey Long, and Vanessa Pittet for being perpetual

sources of computer science and molecular biology knowledge and assisting me during the development of

BEAR. An additional thanks is due to Brett Trost for his writing of the sequence identity-based abundance

profile generation scripts and for allowing me to incorporate them as part of BEAR. I would also like to

thank Dr. Mik Bickis and Dr. Ian McQuillan for their feedback on my thesis. Lastly, I would like to thank

my parents Eric and Patricia and my younger brother Michael, whose unwavering support made graduate

school far less stressful than it could have been.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Background 4
2.1 Foundation of molecular biology . 4
2.2 Next-generation sequencing . 6

2.2.1 Pyrosequencing . 6
2.2.2 Ion semiconductor sequencing . 7
2.2.3 Illumina/Reversible dye terminator sequencing . 8
2.2.4 Prospective technologies . 9

2.3 Sequencing errors . 12
2.3.1 Quality scores . 13

2.4 Common file formats for sequence analysis . 15
2.4.1 FASTA . 15
2.4.2 FASTQ . 15
2.4.3 SAM . 16
2.4.4 SFF . 17

2.5 GC bias . 17
2.6 Metagenomics . 17
2.7 Community profiling . 19
2.8 Sequence assembly . 19
2.9 Read simulation . 20

2.9.1 Current sequence-read simulator programs . 21
2.9.2 Common features . 21
2.9.3 454sim . 21
2.9.4 SimSeq . 22
2.9.5 MetaSim . 22
2.9.6 Grinder . 23
2.9.7 GemSIM . 24

3 Research Goals 25
3.1 Creating BEAR . 25
3.2 Analyzing data from sequencing simulator programs . 27
3.3 Analyzing programs using simulated data . 28

3.3.1 Using simulated data to evaluate assembly programs 28
3.3.2 Using simulated data to evaluate metagenomics classification programs 29

iv

4 Data and Methodology 30
4.1 Real data . 30
4.2 Design . 30

4.2.1 Abundance profile generation . 31
4.2.2 Error model generation . 33
4.2.3 Read generation . 34
4.2.4 Read trimming and error incorporation . 34

4.3 Implementation . 36
4.3.1 Abundance profile generation . 36
4.3.2 Error rate emulation . 39
4.3.3 Error-quality modelling . 41
4.3.4 Generating uniform-length reads . 43
4.3.5 Read-length distribution emulation . 46
4.3.6 Quality score profile emulation . 47
4.3.7 GC profile emulation . 48

4.4 Evaluation . 51
4.4.1 Comparison of sequence simulator programs . 51
4.4.2 Evaluating assembly programs . 51
4.4.3 Evaluating metagenomics classification tools . 52

5 Results 54
5.1 Evaluation of BEAR and comparison of BEAR to other sequencing simulators 54

5.1.1 Read-length distributions . 56
5.1.2 Quality score profiles . 58
5.1.3 Error rates . 58
5.1.4 Error-quality models . 61

5.2 Effects of simple quality control measures on real and simulated reads 61
5.3 Evaluation of assembly programs using real and simulated data. 65

5.3.1 Effects of GC profile emulation and sequencing errors on assembly 66
5.4 Evaluation of metagenomics classification tools with BEAR 68

6 Discussion, Conclusion, and Future Work 72
6.1 Discussion . 72

6.1.1 BEAR provides improved emulation of reads without aligning to a reference genome . 72
6.1.2 Cases where BEAR outperforms GemSIM . 73
6.1.3 BEAR and GemSIM: a new family of sequencing simulators 73
6.1.4 State-of-the-art sequence-read simulators still underperform compared to real data . . 74

6.2 Conclusion . 75
6.3 Future work . 76

References 78

v

List of Tables

5.1 Summary of characteristics of read-length distributions and quality profiles for BEAR and
popular sequencing simulator programs. 55

5.2 Quality control statistics for real and simulated Ion Torrent data. 65
5.3 Results of Velvet assemblies for real and simulated genomic Ion Torrent data. 66
5.4 Results of MIRA assemblies for real and simulated genomic Ion Torrent data. 66
5.5 Results of Velvet assemblies for biased real data, and both biased and unbiased simulated data. 68

vi

List of Figures

2.1 Example of gel resulting from Sanger sequencing. 6
2.2 An example of a sequence generated from a pyrosequencing reaction. 8
2.3 Example of Illumina single clonal preparation. 10
2.4 Example of Illumina paired-end sequencing. 11
2.5 Examples of sequencing errors. 14
2.6 An example of a sequence in FASTA format. 15
2.7 An example of a pyrosequencing read in FASTQ format. 16

4.1 BEAR workflow . 32
4.2 Plot of GC content and read length for Ion Torrent data. 35
4.3 Example of adjustment of abundance values to allow for power law model derivation. 37
4.4 Abundance profiles derived from power regression. 38
4.5 An example of a sequence in genpept format. 40
4.6 Portion of a DRISEE output file. 42
4.7 Examples of insertion and substitution matrices generated by BEAR after processing DRISEE/uclust

output. 42
4.8 An example of a sequence cluster in Uclust format. 43
4.9 An example of alignment strings found in clusters in uclust format using the sequences GTACGTACGT

and CGTAGGCGT to generate the compressed alignment string D5M2I3M. 43
4.10 Error quality pipeline. 44
4.11 Portion of the output file from Algorithm 3. 46
4.12 Example of Markov chain-based approach to generating quality scores. 48

5.1 The linear relationship between real elapsed time and the number of simulated reads generated
in a given GemSIM ‘run’ with identical user-supplied parameters. 56

5.2 Comparison of read length distributions generated by metagenomics sequencing simulator
programs. 57

5.3 Comparison of quality score distributions for real and simulated WGS datasets. 59
5.4 Comparison of quality score profiles generated by different types of Markov chains. 60
5.5 Overall error rates for real WGS data and error rates predicted by GemSIM, DRISEE, and

BEAR. 62
5.6 Substitution and indel error-quality models generated by BEAR compared to average quality

scores of erroneous nucleotides in real NGS data. 63
5.7 Substitution error quality models for three nucleotides in Illumina data compared to actual

quality scores. 64
5.8 Critical warning message produced by MIRA when assembling simulated genomic Ion Torrent

data generated by BEAR. 67
5.9 Results of classification for a simulated metagenomic dataset consisting of 1 million reads from

2,062 genomes. 70
5.10 Results of classification for a simulated metagenomic dataset consisting of 1 million reads from

2,062 genomes each being individually subjected to biased sampling. 70
5.11 Results of classification for a simulated metagenomic dataset consisting of 1 million reads from

122 concatenated genomes subjected to biased sampling. 71

vii

List of Abbreviations

BEAR Better Emulation for Artificial Reads
bp base pair
CAFIE Carry-Foward and Incomplete Extension
DNA deoxyribonucleic acid
dNTP deoxy ribonucleotide triphosphate
ddNTP dideoxynucleotide
ISFET ion-sensitive field transistor
NGS Next-generation sequencing
nt nucleotides
PPi pyrophosphate
RNA ribonucleic acid
SAM Sequence Alignment Map
SOI sequence of interest
SFF sequence flowgram file
SMRT Single molecule real time
WGS Whole-genome shotgun
ZMW zero-mode waveguide

viii

Chapter 1

Introduction

A common problem in metagenomic studies is that given real data (e.g., whole genome shotgun (WGS)

sequences generated by next-generation sequencing (NGS) technologies), it can be difficult to know if the

bioinformatics analyses are generating useful results. In order to evaluate the results, the user typically needs

to supply the bioinformatics programs (e.g., genome assembly software) with WGS sequencing data for which

complete results are known. As this is often not possible in the form of real sequencing data, it is instead

necessary to use artificial reads generated in silico.

More generally, in the field of metagenomics there are few real datasets with well-characterized, consistent

results. For example, recent metagenomic studies of the human microbiome have derived results that conflict

from previous studies in the same environments [82]. It is difficult to determine the usefulness of obtained

results when they conflict with previously published data. It may be the case that two sets of differing results

are both valid. However, it also may be the case that one set of results is invalid while the other is valid,

or both sets of results are invalid. Even for problems such as de novo genome assembly, a simpler problem

than metagenomic assembly, there is still debate as to which features make a “good” assembly due to signif-

icant variability in results between programs (e.g., high variability in average contig (contiguous assembled

sequence) length and N50 values between programs) [9]. While some problem areas in bioinformatics such as

multiple sequence alignment have resources like BAliBase for benchmarking [76], there are very few bench-

marking datasets for metagenomics [54]. Furthermore, the simulated datasets used in previous metagenomic

studies contain roughly 100 genomes, whereas actual metagenomic samples may have reads from thousands

of organisms [81].

It would be far more convenient and accurate to simulate in silico NGS reads with known properties

such that outcomes for analyses of data with these properties have been established. For example, if a

simulated-read dataset is generated based on completed genomes, then various assemblers can be evaluated by

determining which assembler generates contigs best matching the original genomes. Such a basis for evaluation

is preferable to traditional measures such as average contig length. For software pipelines, simulated data can

provide insight with respect to optimal parameter settings. Unfortunately, read simulation is not as simple

1

as selecting random subsequences from genomes. Read length, error rates, quality scores, and community

abundances (for metagenomics) can have significant variation between samples. Thus, it is important to have

a tool that can emulate all of these characteristics; the tool should generate artificial data that is as “messy”

as real data.

Generating in silico NGS reads is not without difficulties. Each NGS technology has its own error rates,

quality profiles, and read-length distributions (Illumina reads are generally uniform in length, reads from

other technologies can vary greatly in length). Furthermore, the technologies are constantly improving in

terms of generating longer, higher-quality reads. One can easily imagine developing software that mimics

a given sequencing platform, and by the time the software is complete and tested, the platform has been

significantly modified by its vendor. Another inconvenience of many modern sequencing simulator programs

is that the user must determine appropriate settings for numerous parameters to generate data similar to

real data. Exploring the parameter space can be a serious challenge, especially if documentation is sparse.

Furthermore, modern sequencing simulator programs often have fixed, internal models for characteristics such

as read length distributions and quality profiles. These models may not always reflect the characteristics

observed in real reads. As such, a program designed for one type of sequencer (e.g., pyrosequencer) may

not adequately simulate data from another (e.g. semiconductor sequencer). When sequencing simulator

programs use these fixed models, they are generally limited to simulating a specific NGS technology.

To address these shortcomings, this thesis implements, describes, and evaluates a software package called

BEAR (Better Emulation for Artificial Reads) [39, 38, 37]. BEAR has, as input, a multi-FASTQ file (a file

containing multiple sequences in FASTQ format) of WGS reads with the desired read length distribution

and quality profile, as well as a source database. For metagenomics applications an abundance profile can

be provided. BEAR generates simulated sequencing reads that are representative of genomes in the source

database. The resulting data have a read length distribution and quality profile similar to those of the sample

multi-FASTQ file. This approach allows for the emulation of read length distribution and quality profiles

from various sequencing platforms. Since the artificial reads produced have known characteristics in terms

of the source organisms and their established assemblies, the data can then be used to evaluate techniques

for analysis of NGS data (such as sequence assembly or community/diversity analysis in the case of WGS

metagenomic data).

Background information to the concepts presented is given in Chapter 2. The research goals of the thesis

are presented in Chapter 3. Descriptions of data, design, implementation, and evaluation of BEAR are given

in Chapter 4. In Chapter 5, we present the results from evaluating the data generated by BEAR and two

software tests for which BEAR can be used. Chapter 6 provides the analysis and interpretation of the results,

conclusions, and potential avenues for future work with BEAR.

2

The BEAR software was written and designed by the author of this thesis with two exceptions: the

sequence identity-based abundance profile generation scripts were written by Brett Trost at the University

of Saskatchewan and the majority of the modified open-source DRISEE software included with BEAR was

written by Keegan et al. [41]. The work comprising Chapter 5 with the exception of Sections 5.1.4 through

Section 5.4 has been accepted as a peer-reviewed paper at the RECOMB-Seq 2014 conference in Pittsburgh,

PA [39], the proceedings of which will be published in an upcoming special issue of BMC Bioinformatics. The

work comprising Section 5.1.4 has been presented in poster form at the HiTSeq 2014 conference in Boston,

MA [37].

3

Chapter 2

Background

This chapter covers the necessary background material for understanding the rest of this thesis. Section

2.1 provides a brief introduction to basic concepts in molecular biology. Section 2.2 introduces next-generation

sequencing, and outlines the differences between various sequencing technologies. Section 2.3 contains back-

ground information on metagenomics. Sections 2.4–2.6 introduce three important features of all data resulting

from sequencing experiments: sequencing errors, quality scores, and GC bias. Section 2.7 provides a brief

overview of Markov chains, and how they can be used to model data. Section 2.8 introduces the concept of

sequence-read simulation, with Section 2.9 concluding the chapter with an overview of previously-developed

sequencing simulator programs.

2.1 Foundation of molecular biology

Molecular biology is a branch of biology focused largely on understanding biological activity at the cellular

and molecular level, particularly the structures and functions of these molecules. At a high level, molecular

biology focuses largely on the activities of three types of biomolecules: DNA (deoxyribonucleic acid), RNA

(ribonucleic acid), and proteins [16]. These molecules are all polymers, with a given DNA or RNA molecule

being comprised of a sequence of nucleotides while proteins are comprised of a string of amino acids. There are

four nucleotides that compose a DNA sequence: adenine, thymine, guanine, and cytosine. These nucleotides

are commonly abbreviated by the letters A, T, G, and C, respectively [80]. RNA sequences are similar, but

contain the nucleotide uracil (U) instead of thymine [2]. DNA is a double-stranded polymer of nucleotides,

with each strand having a sequence of nucleotides complementary to each other in the opposite direction

(a “reverse-complement” sequence) [80]. The complement of Adenine is Thymine, and the complement of

Guanine is Cytosine. For example, if a strand of DNA has the sequence AATGC, then the reverse-complement

sequence would be GCATT.

Eukaryotic organisms contain long, coiled strands of DNA in the nucleus of their cells known as chromo-

somes [42]. Prokaryotic organisms often contain small, circular DNA sequences called plasmids in addition

to chromosomes [75]. Certain regions of a chromosome are copied into shorter RNA sequences by the en-

4

zyme RNA polymerase during the process of transcription. The short RNA sequences themselves are often

referred to as ‘transcripts’. Many of these RNA sequences, called “messenger RNA” or “mRNA” are then

translated into sequences of amino acids by ribosomes (a large complex of RNAs and proteins). This process

is known as translation, with the new amino acid sequence eventually becoming an active protein. This flow

of information, from DNA to RNA to protein, is commonly referred to as the central dogma of molecular

biology [16]. However, it is important to note that not all regions of DNA eventually become translated into a

protein sequence. Only certain regions of a DNA sequence “code” for a functional RNA or protein sequence,

and these regions are commonly referred to as “genes” [74]. The entire DNA sequence of all the chromosomes

(and plasmids) of an organism, then, is called the “genome” [44]. Similarly, the sum of all RNA transcript

sequences in an organism is called the “transcriptome”.

While the composition of DNA was identified in 1878 [18] and the structure identified in 1953 [80], it

was not until 1976 that the first genome sequence of an organism, the viral RNA genome of bacteriophage

MS2 was established [25]. In 1977, Fred Sanger completed the first DNA genome of the bacteriophage

ΦX174 by developing a sequencing method known by its technical name, dideoxynucleotide chain-termination

sequencing, and by its common name, Sanger sequencing [67]. The actual process of Sanger sequencing is

quite simple, requiring only five types of molecules:

• a DNA sequence of interest (SOI),

• DNA polymerase, the enzyme responsible for DNA replication,

• the four standard deoxynucleotides (dNTP), used for replicating the SOI,

• modified versions of the dNTPs known as di-deoxynucleotides (ddNTP), which terminate the replication

process upon incorporation,

• a DNA primer, a short strand of nucleic acid that acts as the starting point for DNA replication.

Four reactions take place, each containing just one ddNTP, but otherwise containing all of the above. The

four reactions are then subjected to gel electrophoresis, where they can be sorted by weight and the nucleotide

at a given position in the sequence can be identified by the electrophoresis lane it is in. A DNA fragment of

up to 800 nucleotides (nt) or basepairs (bp) can be sequenced at once using this method, with approximately

the first 600 bases being of high quality. An example of a short 6bp read resulting from Sanger sequencing

can be seen in Figure 2.1. Given that the actual nucleotide sequence of the SOI is determined by “reading”

the gel, the sequenced fragments resulting from a sequencing experiment are commonly referred to as reads.

The Sanger method is known for its accuracy, and was the most popular sequencing method for decades

after its inception. It is still in use today for some applications requiring long sequence reads, although it

5

A T G C

increasing
molecular
weight

Figure 2.1: Example of gel resulting from Sanger sequencing. The sequence associated with this 6bp
read would be TTGACA, a known bacterial promoter sequence.

has largely been replaced by the next-generation of sequencing technologies.

2.2 Next-generation sequencing

By the end of the 20th century, the first rough draft of the human genome was nearing completion. By this

time, the parallelization of Sanger sequencing had allowed for massive amounts of data to be generated in far

shorter amount of time. For comparison, in 2000 there was a total of 8 billion base pairs of genomic sequence

information in the the main databases for completed sequences. By 2010, with the adoption of these less-

expensive, high-throughput sequencing methods, this number had increased to 270 billion base pairs [22]. In

this section, we provide an overview of the three most popular next-generation sequencing (NGS) technologies:

pyrosequencing developed by Roche/454, reversible dye sequencing developed by Illumina, and semiconductor

sequencing developed by Ion Torrent. We conclude the section with a brief mention of promising emerging

sequencing technologies, such as single molecule real time (SMRT) sequencing by PacBio.

2.2.1 Pyrosequencing

Pyrosequencing (also called 454 sequencing) was developed in 1996 by Roche/454 to address the need for

robust, high-throughput alternatives to Sanger sequencing [64]. In contrast to the chain-termination method

6

used in Sanger sequencing, pyrosequencing adopts a “sequencing-by-incorporation” approach. That is, a

given strand of DNA can be sequenced merely by synthesizing the complementary strand and measuring

the intensity of some chemical byproduct during the nucleotide incorporation. Pyrosequencing requires the

same materials as Sanger sequencing, excluding the ddNTPs, in addition to three enzymes (ATP sulfurylase,

luciferase and apyrase) and two substrates (adenosine 5’ phosphate and luciferin).

The sequencing reaction begins by incubating the primer with a single-stranded DNA sequence. The

sequence is then subjected to a series of dNTP “flows”, where only one type of nucleotide is added to the

reaction and then “washed” away. For example, if the flow order for a given sequencing reaction was ATGC,

dATP would be added to the reaction, washed away, followed by dTTP, dGTP, dCTP, and then the cycle

would continue with dATP again.

When a nucleotide is added to the reaction and is incorporated into the sequence of interest during the

pyrosequencing process, a cascade of reactions occur. When DNA polymerase forms a phosphodiester bond

between the complementary nucleotide and a DNA sequence, a pyrophosphate (PPi) molecule is released.

When ATP sulfurylase is in the presence of adenosine 5’ phosphate, it converts PPi to ATP. This ATP allows

luciferase to convert luciferin to oxyluciferin, a process that generates light proportional to the amount of

ATP involved. The apyrase enzyme then degrades the remaining ATP and nucleotides, “washing away” the

extra molecules so that the next flow reaction can begin. The light generated by the successful incorporation

of a nucleotide is measured by a camera and stored in an SFF (sequence flowgram file) so that the data

can later be analyzed. An example of a sequence generated by pyrosequencing is provided in Figure 2.2.

Information regarding the SFF format is provided in Section 2.4.

Pyrosequencing was once a preferred technique as it is a faster, less-expensive alternative to Sanger

sequencing with long read lengths relative to other NGS platforms. Pyrosequencing could produce sequences

with and average read length of 700bp (ranging from 1-1200bp), generating roughly 1 million base pairs per

day at a cost of $10 [50]. However, it has since fallen out of favour to even faster, less-expensive techniques like

semiconductor and reversible dye sequencing. Roche, the major licensee of the pyrosequencing technology,

announced in 2013 that the platform would be discontinued by 2016 [26].

2.2.2 Ion semiconductor sequencing

Ion semiconductor sequencing was developed in 2010 by Ion Torrent Systems as a fast, inexpensive alternative

to pyrosequencing [66]. Much like pyrosequencing, ion semiconductor sequencing is also a “sequencing-

by-incorporation” technique, but relies on the detection of hydrogen ions (H+) upon successful nucleotide

incorporation rather than pyrophosphate molecules. These ions change the pH of the reaction solution, which

7

Figure 2.2: An example of a sequence generated from a pyrosequencing reaction. Peak signals
correspond to incorporated nucleotides. This flowgram would correspond to the sequence TCACAC-
GAGTGTCCGGCCGGTGTTC.

is detected by an ion-sensitive field transistor (ISFET). The current flowing through the ISFET changes with

the pH of the surrounding solution. The sequencer measures the ISFET current over the course of the

sequencing reaction, which is stored in an SFF file much like that used in Figure 2.2, only the y-axis would

be current intensity instead of light intensity.

Ion semiconductor sequencing has grown in popularity since its inception due to its speed, low cost, and

high throughput. Approximately 80 million reads can be generated in 2 hours for $1, although the sequences

have shorter read lengths (up to 400bp), and a per-base accuracy of approximately 98.5%. For comparison,

pyrosequencing and Illumina sequencing have per-base accuracies up to 99.9% [61].

2.2.3 Illumina/Reversible dye terminator sequencing

Reversible dye sequencing (also called Illumina sequencing, after the company who owns the technology) was

developed in the mid-1990s as a way to generate high-quality, short reads (per-base accuracy above 99.9%,

reads shorter than 100bp) with high throughput at low cost (up to 3 billion reads per run, at a cost of less

than $0.15 per million bp) [61, 8]. Unlike the two previously described methods, Illumina sequencing uses

a “sequencing-by-synthesis” approach. This approach directly determines the sequence of a DNA strand by

reading the dye group attached to a flourescently labelled nucleotide, rather than measuring the chemical

8

byproduct of nucleotide incorporation (e.g., hydrogen ions, light resulting from a separate enzyme reaction),

which requires the use of expensive enzymes.

There are two primary steps to most Illumina sequencing experiments:

1. Colony preparation/Bridge PCR: See Figure 2.3. The sequence of interest has two different adapter

sequences ligated to each end. This sequence is then hybridized to an array of bound primer sequences

that are complementary to each adapter. The sequence is then synthesized, so that there is now a copy

of the sequence bound to the array. The original read is then removed by the process of denaturation.

The new sequence then hybridizes to another primer on the array, and then undergoes another round of

synthesis and denaturation. At this point, there are now two sequences bound to the array at different

primer sequences, forming a small “colony” of identical sequences. This process can be repeated for

many rounds to amplify the amount of available data.

2. Sequencing: See Figure 2.4. After the clonal colonies have been sufficiently amplified, one of the

adapter sequences is cleaved (‘nicked’) and denatured. The DNA is then sequenced from the point

starting at this ‘nicked’ adapter. All four nucleotides are added at once, with each type labelled with

a distinct fluorescent marker and each competing to bind to the sequence of interest. The nucleotide

complementary to the current position of the sequence binds to the SOI, and the remaining nucleotides

are washed away. A laser then ‘reads’ the fluorophores, determining the exact nucleotide sequence.

The template hybridizes to the array again, and the process repeats starting from the opposite adapter.

This results in a pair of reads each sequence, commonly referred to as paired-end sequencing.

2.2.4 Prospective technologies

Current sequencing platforms require a large amount of sequence data in order to generate reliable results

due to short read lengths resulting from termination and measuring enzymatic activity [23]. Two emerging

technologies, single-molecule real-time (SMRT) sequencing and nanopore sequencing, address this problem

by sequencing an entire molecule of DNA.

SMRT sequencing has been in development by Pacific Biosciences since 2003, and requires only a zero-

mode waveguide (ZMW), DNA polymerase, and flourescently labelled nucleotides to fully sequence a DNA

molecule of up to 30,000bp. The ZMW can be thought of as a nano-chamber that is extremely sensitive

to light with a DNA template-polymerase complex bound to it. The labelled nucleotides are added to the

chamber and bind to the template-polymerase complex upon incorporation. Incorporation of a nucleotide

produces a small pulse of light, much like pyrosequencing. However, the small chamber volume provides

1000-fold improvement in the reduction of background noise relative to other NGS methods. [23]. This

9

(a) (b)

(c) (d)

Figure 2.3: Example of Illumina single clonal preparation. Dotted lines represent new sequences.
(a): SOI with adapter sequences is ligated to array of oligonucleotide primers and sequenced. (b):
The sequence is denatured, unbinding the original sequence from the array. : The new sequence binds
to another primer on the array and is synthesized again. (d): The array is denatured. Figure uses
information from Bentley et al. [8].

10

(a) (b)

(c) (d)

(e)

Figure 2.4: Example of Illumina paired-end sequencing following clonal preparation. (a) One adapter
is cleaved (denoted by gap). (b) DNA is denatured and sequence. Dyed nucleotides compete for
positions on the strand. (c) Sequence is hybridized to array again. (d) Sequence is copied, and the
opposite adapter is cleaved. (e) The DNA is then sequenced from the opposite end, resulting in a pair
of reads. Figure uses information from Bentley et al. [8].

11

method has successfully been used to generate reads with an average length of 8,500 bp, almost an order of

magnitude larger than other modern technologies [29]. Unfortunately, the throughput of this technology has

been known to be low (less than 100,000 reads per run) and expensive (up to $1 per million bp) relative to

other current technologies [61].

While SMRT sequencing shares many features with other modern technologies (e.g., using similar en-

zymes), the same is currently not true for nanopore sequencing. Nanopores are small holes, typically found

in transmembrane proteins. As a given DNA sequence is forced through the nanopore one base at a time, the

amount of current that can pass through the pore depends on the nucleotide occupying the pore [40]. This

approach is a paradigm shift in terms of how a sequencing experiment can be conducted, as there may be

no need for fluorescent nucleotides or sequence amplification. However, despite being in development since

1995 and promising preliminary experiments, nanopore sequencing is not commercially available as of 2014.

[40, 83].

2.3 Sequencing errors

None of the previously described sequencing technologies have been able to generate reads with 100% per-base

accuracy. In this section, we provide an overview of the different types of sequencing errors one encounters

with the three technologies described in Sections 2.2.1–2.2.4.

1. Substitution errors occur when a given nucleotide in a DNA strand is replaced with a different

nucleotide at the same position. Substitution errors can either be transitions (A ↔ G or C ↔ T)

or transversions (A ↔ C, A ↔ T, G ↔ C, or G ↔ T). Transition errors have been reported to be

more common in pyrosequencing and Illumina data, and equal to transversion errors in Ion Torrent

data [11, 30, 19, 10]. Additionally, substitution errors are the most common sequencing error type in

Illumina data [19]. An example of each type of substitution error can be seen in Figure 2.5(a).

2. Insertion and deletion (indel) errors. Insertion errors occur when a nucleotide is incorporated into

the sequence that is not part of the original strand, increasing the overall length of the sequence by at

least 1bp. Deletion errors are the opposite of insertion errors; they occur when a nucleotide is removed

from the sequenced strand, decreasing the overall length of the sequence by at least 1bp. Insertion and

deletion errors are commonly referred to as indels. Indel-type errors are the most common sequencing

errors in pyrosequencing and Ion Torrent data, but are rare in Illumina data [11, 19, 10]. Examples of

indel errors can be seen in Figure 2.5(b).

3. Homopolymer errors are interpretation errors that occur in both pyrosequencing and Ion Torrent

12

data [11, 10]. Many DNA sequences have regions where the same base occurs several times in a row

(e.g., AAAA, GGG, etc.), known as ‘homopolymeric regions’. Thus, these regions are sequenced in a

single ‘flow’ and result in a high intensity light or electrical signal. However, the intensity of signals

is not necessarily linear. For example, in Figure 2.2, there is a peak at the last thymine flow with

an intensity of 1.56. Thus, this light signal could either be interpreted as a homopolymer of length

two (TT) or length one (T) depending on the cutoff values used for the signal. Since Ion Torrent and

pyrosequencing depend on successful interpretation of signals to determine a given DNA sequence, these

technologies have difficulties sequencing even short homopolymeric regions. In one experiment, over

97% of the measured sequencing errors in an Ion Torrent dataset were found to be homopolymer-related

[10]. An example of a homopolymer sequencing error can be seen in Figure 2.5(c).

4. Carry-Foward and Incomplete Extension (CAFIE) errors are another type of indel error that

occurs in Ion Torrent and pyrosequencing. Carry-forward errors occur when sequencing wells are not

sufficiently ‘flushed’ and leftover nucleotides are present. Conversely, incomplete extension errors occur

when the amount of nucleotide within a flow is too low. Both of these errors can cause a read to get

‘out of sync’, resulting in homopolymer-like errors being incorporated into the final sequence that are

not related to the current nucleotide(s) in the reference sequence [5].

The effects of sequencing errors can be reduced by repeatedly sequencing a genome, achieving a higher

“depth” or “coverage”, referring to the average number of times each base pair in the genome is sampled.

Genome coverage can be estimated by the following formula:

Coverage =
(Avg. read length)(Number of reads)

Length of genome
(2.1)

Additionally, it has been noted that the error rate tends to increase towards the end of reads for modern

NGS technologies, although the degree to which the rate increases can depend on a number of variables

ranging from the exact sequencing preparation method used to the global GC content (see Section 2.5) of

the genome of interest [10, 68, 52].

2.3.1 Quality scores

Given that NGS technologies are error-prone, there needs to be some sort of confidence measure to indicate

when there has been an aberration in a sequencing experiment. Modern NGS technologies currently use

“Phred quality scores”, an integer value assigned to each nucleotide base call as a measure of predicted

accuracy [24]. A quality score is assigned to a given nucleotide by analyzing characteristics of the shape of

13

ATCGA G CGATCGACTGACT G ACGT

↓
ATCGA A CGATCGACTGACT T ACGT

(a)

ATCGA G CGATCGACTGACTGACGT

↓
ATCGACGATCGACTGACTGAC T GT

(b)

ATCGATATAATAAAAAGTCATGCATAGC

↓
ATCGATATAA A TAAAAA AAA GTCATGCATAGC

(c)

Figure 2.5: Examples of sequencing errors. (a) Substitution errors. The blue nucleotide signifies a
transition error, while the orange nucleotide signifies a transversion error. (b) Indel errors. The green
nucleotide has not been incorporated into the final sequence, and the red nucleotide has been inserted.
(c) Homopolymer errors. Grey nucleotides are the result of incorrect signal interpretation on behalf of
the sequencer and not actually incorporated into the molecule itself.

the flow signal (e.g., peak signal intensity, peak signal resolution) followed by searching through large lookup

tables for scores that match these characteristics. The values in the lookup tables themselves are derived

from sequences that are known a priori. The quality score of a given base call is logarithmically related to

the probability of an incorrect base call by the following formula:

Q = −10 log10 P (2.2)

Conversely, the probability of a base call being correct can be determined given a quality score:

P = 1− 10
−Q
10 (2.3)

For example, a quality score of 20 would indicate 99% accuracy and a score of 40 would indicate 99.99%

accuracy. Thus, in a set of 100bp Illumina reads with an average quality score of 20, one would expect, on

average, one error per read. Because of this, reads with average quality scores below 20 are often discarded.

However, quality scores are not perfect. Given that they are only assigned to sequences within a read, it

is not possible to determine whether an insertion or deletion error has occurred [10]. Additionally, quality

scores have been demonstrated to have a strong influence over the quality scores of adjacent nucleotides

14

>AB000263 |acc=AB000263|descr=Homo sapiens mRNA for prepro cortistatin like peptide

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC

CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG

TTTAATTACAGACCTGAA

Figure 2.6: An example of a sequence in FASTA format.

[55, 34] and sometimes overestimate or underestimate the true underlying error rates [51].

2.4 Common file formats for sequence analysis

In this section, we provide a brief overview of three ubiquitous file formats for storing sequence data: the

FASTA, FASTQ, SAM, and SFF formats.

2.4.1 FASTA

The FASTA format (short for “fast alignment’) is a simple text-based format for storing DNA, RNA, or

protein sequence data. When many sequences in FASTA format are concatenated in a file, this is commonly

referred to as a “multi-FASTA” file. Each sequence in FASTA format has two elements: a header, and a

sequence. The header is prefixed with the > (greater-than) symbol, and can contain known information about

the sequence. FASTA headers can only be one line of characters in the file for each sequence. The sequence

is simply the raw nucleotide or amino acid sequence, which can be any number of lines. An example of a

sequence in FASTA format can be seen in Figure 2.6.

2.4.2 FASTQ

The FASTQ format is a more modern version of FASTA. In addition to the header and sequence information,

FASTQ format provides a second line for descriptions (prefixed with the + (plus sign) character) and a string

of quality scores for each nucleotide. These are integers converted to characters in ASCII format according

to the ASCII encoding, so any quality score from 0 to 93 can be encoded and represented in FASTQ format

by converting to an ASCII character with a value from 33 to 126. More information on quality scores can be

found in Section 2.3.1. An example of a sequence in FASTQ format is provided in Figure 2.7.

15

@G4CQRNT01BG1K3

cagacgagtgcgtCCGGCCGGTGTTCATCCGACGCGAATTGGTGCGATTATAAGCGGCACGGTGGCACTGAACCTTACGCTATCCTGAT

+

FFFFFFFFFFDBB?10000...42229>><<<?BBDD8668??DBBBBBDF888<ADDDFFFCCDDFFFFFFFFFFFFFFFFFFDBBAA

Figure 2.7: An example of a sequence read in FASTQ format. The lower-case nucleotides at the
beginning of the sequence is the adapter sequence.

2.4.3 SAM

The sequence alignment map (SAM) format is a commonly used format for storing information regarding the

alignment of sequencing reads to genomes. It is a relatively compact format, and can be easily converted to

FASTA/FASTQ format. Each sequence in SAM format consists of twelve mandatory fields in tab-delimited

text format [45]:

1. The name of the read or read pair.

2. A bitwise flag that indicates various characteristics of the read (e.g., whether the read is first or second

in a pair, fails quality checks, unmapped, etc.).

3. The name of the aligned reference genome/sequence.

4. The first position of the genome to which the read aligns.

5. An overall “mapping quality” value, the value of which is depending on the specific alignment tool

used.

6. A string in CIGAR format (described in detail in Section 4.3.3), which indicates which positions of the

read are matches (e.g., not an indel error), insertions, or deletions.

7. The name of the aligned reference genome for the other read in the pair.

8. The first position of the genome to which the other read in the pair aligns.

9. Estimated insert (insertion) size.

10. The nucleotide sequence of the read.

11. The quality string associated with the read. The format of the string is identical to FASTQ quality

strings.

12. A field consisting of any number of optional fields. This often contains less important, aligner-specific

information.

16

2.4.4 SFF

Sequence flowgram format (SFF) files are generated by the sequencing machinery itself. These files are in

binary format, and thus require a proprietary program (provided with the sequencer) to view them. For each

sequence, an SFF file contains the flowgram (see Figure 2.2 for a graphical interpretation of a flowgram), the

predicted sequence, the quality scores, and the recommended parameters for quality and adaptor clipping.

2.5 GC bias

Genomes are frequently referred to by their GC content (the proportion of the genome made up of guanine

and cytosine). It would be expected that the GC content of a given organism would be approximately

50%, but genomes do not consist of uniformly-distributed nucleotides, and the nucleotides themselves are

not necessarily present in equal amounts. That is, it is not usually the case that a given genome has

%A = %T = %G = %C. Rather, organisms have been found to have global GC contents ranging from 16%

to 75% [48]. Even across the length of a given genome, there is often high variance in local GC content [35].

Sequencing these GC-rich and GC-poor genomes and genomic regions is a known issue for many sequencing

technologies, protocols, and preparatory stages of sequencing experiments [13]. In sequencing experiments,

there is a often a bias towards or against regions of high or low GC content high which leads to uneven

sequencing coverage, necessitating extremely high sequencing depths achieve a sufficient minimum depth to

avoid confounding downstream processing and analysis [1, 17]. This sequencing bias, or “GC bias” can be

introduced at any stage of the sequencing experiment (colony amplification, sequencing, processing) and

changes to protocols and sequencing kits can further introduce bias. Additionally, GC bias can vary between

laboratories, sequencing experiments, or even lanes on the same flowcell [1]. Variables involved in the ampli-

fication stage such as the specific type of DNA polymerase used, cycle temperature, are thought to be the

major contributors to GC bias, although the exact mechanisms are not yet well-understood [17].

2.6 Metagenomics

Metagenomics is commonly defined as the sequencing of genetic material obtained from environmental sam-

ples (e.g. lakes, soil, human gut) [81]. This is in contrast to traditional, singular genomic studies, which

usually require organisms to be cultured in a lab so that enough genetic material can be collected to sequence

the entire genome with high coverage (coverage is defined as the average number of reads that ‘overlap’ at a

given nucleotide position; see Equation 2.3). Additionally, growing the organism in culture allows sequence

data to be easily verified (i.e., when some region of DNA is sequenced, it must be known that this sequence

17

came from the organism of interest). Unfortunately, not all organisms can be grown in culture. In fact, it

has been conservatively estimated that the majority of microorganisms cannot be cultured [62]. Metage-

nomic studies allow for the characterization of entire microbial populations and environments (e.g., relative

species abundance profiling) as a function of their genomes, a feat that would be impossible with traditional

sequencing and culture methodologies.

The major challenges in metagenomics are intimately tied to current challenges in bioinformatics and

next-generation sequencing. Both metagenomic and bioinformatic studies face the difficulty of organizing

and analyzing huge amounts of data, a phenomenon commonly referred to as a biological “data explosion”

[69]. In these two fields, there are millions of DNA sequences being generated faster than the data can be fully

analyzed. Since much of bioinformatics is concerned with the analysis and collection of biological sequences,

adopting a bioinformatics approach (e.g., using bioinformatics tools) is necessary for most metagenomic

experiments.

Many problems in metagenomics analysis are also related to problems with the currently available se-

quencing technologies. For example, it is uncommon to obtain high sequencing depth of metagenomic samples

from even moderately diverse environments. There are steep time and space requirements to achieving high

sequencing depth in metagenomic studies due to the immense amount of genomic data in a given sample.

For example, if we conservatively assume that a sample has 1000 organisms in equal abundance with an

average genome size of 4.5 million base pairs and our NGS machine generates reads with a length of 100bp,

it would take 225 million high-quality reads just to achieve 5.0x coverage (i.e., on average, every nucleotide

in every sequence is present at least 5 times). Depending on the sequencing technology used, this could

take between hours and weeks. Although NGS techniques can generate many millions of reads, a significant

amount of these reads are low-quality artifacts generated by the sequencer and can be discarded [28]. Thus,

the immense computational resources and storage required to obtain a sufficient volume of high coverage,

high quality data may not always be cost-effective.

There are two main types of metagenomic sequencing experiments: whole-(meta)genome shotgun (WGS)

sequencing, and amplicon sequencing. In WGS experiments, the raw sequence data is fragmented into smaller

sequences, which are then subjected to some type of sequencing protocol. The resulting reads (which are

smaller than the fragment size) can then assembled into larger, contiguous sequences (contigs). This approach

is preferable when estimating abundance profiles (i.e., the relative abundances of species in a metagenomic

sample), or when determining the functional characteristics of organisms in the environment, as many whole

genomes are being sequenced at once [59]. Additionally, one could perform whole-(meta)transcriptome shot-

gun sequencing on the RNA present in the sample to determine which genes are actively being transcribed.

Amplicon sequencing in metagenomics generally involves the sequencing of a gene found to be highly

18

conserved within individual microbial species, usually the 16S ribosomal subunit RNA gene (16S rRNA)

[59]. This is in stark contrast to WGS experiments, in which potentially thousands of genes are sequenced.

Primers specific to the 16S rRNA gene are added to the sample, which is then subjected to amplification

via polymerase chain reaction (PCR) [7]. Amplification is necessary to increase the abundance of this gene

relative to other genes, and allow for more ‘sanitary’ data (e.g., reduce the effects of sequencing errors). The

end result of amplicon sequencing is a number of unique sequences that should, ideally, directly correspond

to the number of unique species present in the sample. However, since the data has been subjected to

amplification, there is no guarantee that the relative abundances of the organisms has been preserved or that

the sequences are not altered.

2.7 Community profiling

Community profiling is a common task performed on shotgun metagenomic data. Given that shotgun data

is often unamplified (unlike amplicon or genomic data), the abundances of organisms are preserved. This

allows for the diversity of the community to be measured. The diversity of a sample is a combination of the

number of species present in the sample (species “richness”) and the degree to which all abundances in the

sample are equal (species “evenness”) [78].

There are a number of tools available for community profiling of metagenomic data. Some tools, such as

MEGAN [33], infer community profiles based on the similarity of sequences in a sample to those of a sequence

database. Each sequence in the database has a taxonomic lineage associated with it, so if a sequence in the

sample has strong similarity to a sequence in the database it is likely to belong to the same taxonomic lineage.

MetaPhlAn uses a similar approach, but uses a strongly constrained database of clade-specific marker genes

[71]. This constrained search space allows for both unambiguous classifications (since each marker gene can

only belong to a given clade), and shorter execution times.

2.8 Sequence assembly

Sequence assembly is the process of combining overlapping sequence reads into larger contigs. Assembly is

a common process in metagenomic and genomic studies, as larger sequences allow for greater confidence in

further downstream analyses (e.g., inferring homology of a newly sequenced gene via a database search). The

assembly process is an essential part of single-genome studies. Abundance information is not relevant when

working with a single genome, so the generated reads can be amplified via PCR and higher sequencing depth

can be achieved. Higher sequencing depth greatly simplifies and enhances the assembly process as it reduces

19

the chance of misassembly and so-called ‘chimeric’ contigs.

Modern assembler programs are usually graph-based or string-based. String-based assemblers such as

SSAKE employ a greedy extension method, using structures such as prefix trees to extend contigs [79].

Despite the inherent simplicity in this method, string-based methods have not become as popular as the

graph-based methods. Graph-based assemblers generally employ either a De Bruijn graph (DBG) method

or overlap-layout consensus (OLC) method. De Bruijn graph assemblers, such as Velvet [84], use series

of overlapping k-mers as nodes. Edges connect nodes that can overlap with each other. Then, a genomic

sequence can be found by traversing the graph. OLC-based assemblers like MIRA [14], CAP [31], and Newbler

[12] use three steps: calculate overlaps among all reads, use the overlaps to determine the layout of reads, and

then determine a consensus sequence (e.g., assembled genomic sequence). A study by Li et al. [47] provides

an in-depth comparison of the two major graph-based methods.

2.9 Read simulation

In order to evaluate various types of metagenomics software and/or techniques, it is generally required to

supply these programs (e.g., assemblers) with sequencing data. It is generally not practical nor cost-effective

to generate real data for which the results of subsequent analysis are known to test these programs. Also,

if we generate ‘new’ data we have no idea how useful the results generated from a program will be. It is

far more convenient to simulate sequencing in silico. For example, if we perform a sequencing simulation

using previously sequenced genomes, then the most useful output generated by an assembler is that which

is closest to the original genomes. Thus, simulated data improves our ability to determine whether or not a

given metagenomics program or technique is well-suited to the tasks one would perform with ‘real’ data.

However, generating simulated read data is not as simple as just randomly selecting subsequences from

a reference genome and then supplying that as input to a program. Given that reads often have sequencing

errors, variable read lengths, and often nucleotide content biases, more sophisticated strategies are required

when a user wishes to obtain useful results from simulated data. Additionally, if one were to just sample read

lengths from a genome there would not only be a lack of sequencing errors but a lack of quality information

which many programs use to determine whether or not a given base is erroneous.

Additionally, while sets of reads are often subjected to quality filtering to remove reads that are too short,

too long, or too low quality, using realistic simulated data allows the user to test how exactly the quality

filtering steps can affect one’s results and which parameters would be most appropriate. For example, filtering

reads based on relative kmer abundance has been shown to negatively affect species composition in simulated

metagenomic data, but have less serious consequences on single-genome data where species composition is

20

irrelevant [36].

2.9.1 Current sequence-read simulator programs

There are currently a large number of sequencing simulator programs available to users, all of which take

different approaches to generating data. In this section, we highlight the published features of five of the more

popular simulators: 454sim, SimSeq, MetaSim, Grinder, and GemSim. An evaluation of the data generated

by these programs is provided in Section 4.4.1.

2.9.2 Common features

All read simulator programs generate simulated data by performing at least two tasks: read sampling,

and error model application. To sample reads from a given genome sequence G = g1 · · · gm of length m, the

simulator randomly selects subsequences of length l, 1 ≤ l ≤ m where l is some potential read length for a given

sequencing technology. Thus, a very basic simulated read would be the sequence gi . . . gi+l−1, 1 ≤ i ≤ m−l+1.

The simulator program’s error model E then has some associated error rate probability 0 ≤ ei ≤ 1 for all

positions i. If the simulator determines that an error occurs at position i, then nucleotide gi (or gi+1, for

insertion errors) will differ from the genome in some way. This depends on the particular error model used by

the simulator. The simulator in the following subsections all differ with respect to how they derive their error

models, and the technologies for which error models they support. All sequencing simulator programs provide

a command-line interface (CLI) for the user, while graphical-user interfaces (GUIs) are far less common.

2.9.3 454sim

454sim is a sequence simulator for three generations of 454/pyrosequencing technology. This program is

an extension of the sequencing simulator Flowsim [6], and requires two steps to generate output in order

to generate raw sequencing data in SFF format. First, a program called FragSim is supplied with a file

of reference genome(s), the number of desired reads, and the lengths of the reads. FragSim then outputs

uniform-length reads as a multi-FASTA file. Then 454sim is used to generate raw sequence data based on

the output from FragSim and outputs an SFF file containing the raw sequence data. 454sim uses a normal

distribution for modelling positive flows (i.e., one or more bases), and a log-normal distribution for modelling

negative flows (i.e., noise flows) [53]. Additionally, degeneration models and models for deriving flow-peak

values are included in 454sim [53]. The main advantages of 454sim are speed and multithreading capability.

By default, the program uses 16 cores to generate sequence data, and is capable of generating 10,100 reads

per second on an Intel Core i7 920 processor [53]. Thus, 1,000,000 reads can be generated in less than two

21

minutes.

2.9.4 SimSeq

The purpose of SimSeq was to develop an Illumina read simulator based on the capabilities of Illumina-

supplied software to model paired-end reads, with the developer’s own position and reference-base-specific

empirical error model trained on Illumina data. It was developed as part of Assemblathon 1, a competition

which allowed for benchmark testing of 41 assemblers [20].

SimSeq requires at least 11 user-supplied parameters as input [72] and produces a SAM file as output.

This output can easily be converted by the user into other formats such as FASTQ or FASTA, both of which

are broadly accepted by many bioinformatics tools. Since SimSeq does not support any sort of abundance

or diversity parameters, it is likely that this program was intended to simulate the sequencing of individual

genomic sequences.

There are a few documented limitations of SimSeq [20, 73]. One problem is that the reads are randomly

sequenced within chromosomes, but not randomly sequenced between chromosomes. This has the possibility

of being a source of bias during assembly [73]. The most obvious limitation of SimSeq is that it cannot simulate

Roche/454 data or any other non-Illumina platforms. It also does not appear to have an empirically derived

error model (i.e., based on actual generated Illumina reads), but an error model based on errors typically

introduced by paired-end sequencing. Another limitation of SimSeq is that the error rate is independent

of the error of the previous position. There is a position-specific model available, but each position is still

sampled independently of previous and subsequent positions. Additionally, there were plans to add in a

feature where adapter sequences show up at the ends of reads when the fragments are too short, but this

functionality is not present [73]. There have not been any updates to SimSeq posted online since 2012, so it

is possible that these limitations will not be addressed in the near future [72].

2.9.5 MetaSim

MetaSim is one of the oldest sequencing simulators, and the first metagenomics sequencing simulator [63].

Unlike SimSeq and 454sim, tasks involving MetaSim can be performed in a GUI, which is useful for organizing

multiple different simulations involving different reference genomes. MetaSim also has the ability to evolve

selected genomes using various mutation models, allowing for the simulation of many closely related microbe

strains in a population.

MetaSim requires a set of known reference genome sequences and an abundance profile as input. The

GUI supplies a default abundance profile in which all genomes are equally abundant, but this file can be

22

manually configured to support the simulation of sequencing more complex environments. The error profiles

for sequencing are all supplied by default, but these can also be manually configured and MetaSim supports

user-supplied error profiles as well. After sequencing, MetaSim provides a detailed log of the simulation, and

a compressed multi-FASTA file containing the reads from the simulation.

MetaSim can simulate Sanger, 454, and Illumina sequencing. It is also able to model paired-end sequencing

by extracting subsequences of a given length and standard deviation (with a normal distribution) from the

selected genomes. Each genome sequence is assigned a weight which is used to generate a frequency for

each genome. The ends of clones are then the basis for read or paired-end sampling. To simulate Sanger

sequencing, MetaSim uses a linearly-increasing error rate with fixed values for indels and substitutions. For

454 sequencing, a normal distribution is used for positive flows and a log-normal distribution for negative

flows (much like 454sim). Unlike SimSeq, MetaSim uses empirically-derived parameters for its error model

of Illumina sequencing.

2.9.6 Grinder

Grinder is a sequence simulator that can generate genomic, metagenomic, transcriptomic, and metatranscrip-

tomic sequence reads from reference genomes. Like other sequence simulators, it can simulate Sanger, 454,

and Illumina data with support for paired-end reads and variable insertion (insert) sizes. It is mentioned in

the original Grinder publication that there will be support for Ion Torrent sequencing when an error profile

becomes available [3]. Grinder has a number of parameters that can be specified. The only parameter that

is absolutely necessary is the reference genome file, but there are a significant number of optional parameters

[4].

When simulating Sanger sequencing, Grinder uses an error rate which increases along the length of each

read. For Illumina sequencing it uses a fourth-degree polynomial model, and for 454 sequencing it supports

multiple homopolymer error models, one of which is the model described by Balzer et al., the same model

used by Flowsim / 454sim [53, 6].

Grinder was the first published amplicon sequence simulator, and therefore can generate amplicons for

genes of interest by simulating the PCR process [3]. For Grinder to simulate read sequencing for amplicon

libraries, the program extracts full-length amplicons from the reference sequences based on user-supplied

primer sequences, rather than uniformly sampling reads across the entire genome sequence. This PCR

simulation also provides the opportunity to generate natural biases (e.g., due to variation in copy number)

and biological artifacts.

23

2.9.7 GemSIM

GemSIM (short for General Error-Model Simulator) is the most recently published program in this section,

and takes a unique approach to sequencing simulation. Rather than having built-in sequencing models for

specific technologies with tuneable parameters, GemSIM takes a sample of user-supplied reads as input that

have been aligned to some reference genome and uses the alignment information to build its error model [55].

That is, GemSIM can build error models with no knowledge of the specific technology used to generate the

actual reads. GemSIM stores the following information from the alignment file when building an error model

[55]:

1. the nucleotide type and position within the current read,

2. whether or not the current base is a mismatch or correct alignment,

3. whether or not there are indels following the current position,

4. the preceding three bases in the read,

5. the following base in the read,

6. the quality scores for the correctly matched, mismatched, and inserted bases.

That is, GemSIM uses ‘sequence-context words’ to determine the possible errors and quality scores to assign

to simulated nucleotides. For example, if the word ATTGC in the simulated reads aligns to the word ATCGC

in the genome, GemSIM would build a model where ATCGC is likely to have a substitution error at the

third position, whereas a word that aligns perfectly to a reference genome would not have any errors in the

simulated data.

24

Chapter 3

Research Goals

There are many bioinformatics tools for analyzing (meta)genomic sequence data. Evaluating these tools

with raw data can be difficult if there is not a known “answer” for the data. This is particularly true for

metagenomic studies, where experiments can involve sequencing thousands of novel organisms with little or

no significant sequence similarity to other organisms in current databases. With artificial data it is possible

to evaluate these bioinformatics tools against known or previously established results. However, a known

problem with artificial sequence data, especially in the realm of metagenomics, is that it is not as “messy”

as real data. Thus, this thesis has three goals. The first goal is to design and analyze a program, BEAR

(Better Emulation for Artificial Reads), that can be used to generate realistic, simulated data that approaches

the complexity or “messiness” of real data. The second goal is to analyze BEAR by comparing it to other

sequencing simulator programs and evaluate all of these programs by the degree to which they can model

real data. These goals are described in Section 3.1 and 3.2, respectively. The third goal of the thesis is to

demonstrate how BEAR can be used to evaluate various programs for sequence analysis, focusing on the

evaluation of assembly programs (Section 3.3.1) and metagenomic read classification tools (Section 3.3.2).

3.1 Creating BEAR

The purpose of BEAR is to allow a user to generate realistic simulated genomic and metagenomic data with

minimal parameter manipulation. For BEAR, we will adopt a machine learning approach in which as many

parameters as possible can be inferred from a sample of real sequencing data. While other programs exist for

generating simulated data, they either have a very large parameter space or require a high-quality alignment

to a reference genome. It is usually not feasible to have a reference genome for metagenomics experiments due

to the exceedingly large number of species in a sample, many of which may be completely novel organisms.

Thus, the creation of BEAR was motivated by attempting to provide an alternative sequencing simulator;

one in which the parameters can be inferred strictly from the data, free from external sources (e.g., reference

genomes). The parameters BEAR is largely concerned with are discussed in the previous chapter: read

length distributions (Section 2.2), quality score profiles (Section 2.3.1), GC bias (Section 2.4), and in the case

25

of metagenomics, relative species abundance (Section 2.5). Specific details describing how BEAR emulates

these characteristics are provided in Section 4.4. With these motivations in mind, we present the following

specific goals we wish to achieve with the creation of BEAR:

1. Implement machine learning approaches to “learn” the characteristics of a given sample of NGS reads.

This will include implementing and comparing different types of Markov chains for generating quality

scores.

2. Understand and evaluate how the various components of BEAR behave in order to determine how well

BEAR can emulate artificial data.

3. Implement BEAR as a series of discrete Perl and Python scripts. When large amounts of data are

processed and generated, there is always a possibility that a program can be interrupted. Breaking

BEAR into discrete stages, rather than being one large program, minimizes the risk and loss of resources

if a process were to be interrupted.

4. Introduce a reference genome-free approach to deriving error models. This may be accomplished by

using a clustering tool such as DRISEE [41]. This type of approach would allow BEAR to generate

models for datasets with reads from novel organisms (e.g., metagenomic reads), which is a problematic

situation for reference genome-dependent tools like GemSIM [55].

5. Develop two methods for generating abundance profiles: a parametric method and an empirical method.

The parametric method will be a faster, simpler approach where abundances are determined by power

functions corresponding to species evenness outlined in previous work [56]. However, microbial com-

munities can be complex and aren’t necessarily found in nature to have abundances that fit to some

smooth mathematical function. Thus, we will provide the user with the option of generating abundance

files by using database searches. That is, the reads in a metagenomic dataset are aligned to a microbial

protein database, and the organisms that match more often to the set of reads are assumed to be

more abundant in the community. This allows for complex, empirically-derived abundance files to be

generated, a feature absent from other metagenomic sequencing simulator programs.

6. Develop an algorithm for emulating the GC profile of a given sample of reads. This task may require

thorough pre-processing of genomic sequences, so it is a goal to develop a scalable approach so that,

for example, a computer with a large number of processors would be able to finish this task quickly.

We also present the following non-goals:

1. It is not currently a goal to have a graphical user interface (GUI) for BEAR. BEAR will be executed

using a command-line interface for the time being, with the development of a GUI left for future work.

26

2. It is not a goal of this thesis to provide a rigorous performance analysis (e.g., memory usage, execution

time) of BEAR and the other various sequencing simulator programs, although we will ensure that

BEAR’s computational performance is practical for a modern workstation-class computer. Rather,

the thesis will focus more on the quality and accuracy of data generated. Given that some of these

programs (e.g., BEAR and GemSIM) use machine learning approaches it is expected that they will

be slower than, for example, a program that uses pre-set models. This thesis will focus more on the

effectiveness of each program’s ability to generate realistic data.

3. There are no explicit performance or resource utilization goals for BEAR beyond scalability for GC

profile emulation.

4. Metagenomics experiments typically utilize biological replicates (i.e., the analysis of multiple samples

across multiple conditions) and technical replicates (i.e., the analysis of a single sample across multiple

conditions) to measure variation in the results of analyses [?]. However, some of the methods analyzed in

this thesis (namely the MIRA assembler and the MEGAN community profiling tool) can have runtimes

on the order of days to complete. Given the volume of data generated for each simulated data sample,

the number of sequence analysis tools we seek to evaluate, and time constraints, we will not generate

replicates (technical or biological) for the work in this thesis.

Furthermore, we present the following limitations of this research:

1. BEAR will only be evaluated on its ability to emulate Ion Torrent, Illumina, and pyrosequencing

sequence data. Data from emerging technologies such as SMRT sequencing will not be used.

2. BEAR will make the assumption that the error models and quality scores apply equally to all reads

in a sample (an assumption made by other programs as well). That is, there will only be one Markov

chain and one error model per sample and not, for example, an error model for “good reads” and an

error model for “bad reads”.

3. BEAR will be explicitly designed only to emulate shotgun reads and not other types of sequencing

experiments (e.g., amplicon sequencing).

3.2 Analyzing data from sequencing simulator programs

One fault with many existing sequencing simulator programs is that their associated publications lack com-

parisons to other existing programs [55, 53, 63]. When papers do feature comparisons of the programs, the

27

analysis often ends at a high-level qualitative comparison [3]. While comparisons of this nature can be use-

ful, they lack detail with respect to demonstrating how the simulated data actually compares to real data.

Thus, one goal of this thesis will be to evaluate the data generated by all of the simulator programs listed in

Section 2.9 based on their abilities to simulate characteristics of real sequencing data, and compare them to

BEAR. This includes generating simulated Ion Torrent, Illumina, and pyrosequencing data and comparing

the read length distributions, quality score profiles, and error rates of these programs.

3.3 Analyzing programs using simulated data

Although the purpose of generating simulated sequence data is to evaluate sequence analysis programs, some

papers introducing sequencing simulators fail to conduct such analyses [55, 53]. Although these papers

adequately describe the characteristics of data they were able to generate, it is imperative that subsequent

analyses using the simulated data are performed to verify that they work as intended. To this end, we will

compare various sequence analysis programs by using the simulated data from BEAR and other simulator

programs that were found to closely match the characteristics of real data. In particular, we will focus on

comparing two genome assembly programs and two metagenomics assembly programs.

3.3.1 Using simulated data to evaluate assembly programs

This particular goal is motivated by frequent observations from various sequencing simulator and genome

assembly programs. Genome assembly is a common task for many sequencing experiments. The assembly

of short reads into larger, contiguous sequences (contigs) can, for example, allow for the data to be classified

to a given organism or having a family of genes. Given how ubiquitous the task of assembly is, it is perhaps

surprising that few tests have been conducted to assess how useful simulated data is for evaluating assembly

programs. Of all the programs mentioned in Section 2.7, only SimSeq has any published assembly analyses

using simulated data[20]. Thus, one goal of this thesis will be to determine if an assembly of simulated data

is at all similar to an assembly of the real data, and how well sequencing simulator programs can predict

whether one assembler is better than the other. Furthermore, another goal of this analysis will be to measure

the effects of sequencing errors and GC profiles on genome assembly by using the methods designed in Section

3.1. In the interest of simplicity, this analysis comes with the caveat that only two sequence assemblers will

be compared (Velvet and MIRA), and only the top three sequencing simulator programs from Section 3.2

will be used to generate simulated data.

28

3.3.2 Using simulated data to evaluate metagenomics classification programs

A common task for metagenomics experiments is to attempt to classify reads to organisms or taxonomies

in order to characterize the environment. Some metagenomic sequencing simulators perform classification

experiments with their simulated data [63, 3], but these studies are generally proof-of-concept rather than

attempts to compare different classification tools. Thus, a goal of this thesis will be to compare the abilities

of the metagenomic sequence classification tools MEGAN and MetaPhlAn [33, 71] and measure the effects

of GC bias on metagenomic classification (a feature that, to our knowledge, has yet to be evaluated). Since

metagenomic classification can be a very time-consuming process (especially with tools that align millions of

reads to extremely large databases like the sequence identity-based approach included with BEAR), we will

only use simulated metagenomic data generated by BEAR to evaluate the two classification tools.

29

Chapter 4

Data and Methodology

This section describes the data and methodology used to achieve the three main goals of the thesis. The

real data used for training and evaluating BEAR are described in Sections 4.1. A high-level overview of the

design of BEAR is provided in Section 4.2, while details of the implementation are provided in Section 4.3.

The methodology for evaluating the data produced by various sequencing simulator programs is provided in

Section 4.4.1. Finally, the methodologies for evaluating assembly programs and metagenomic classification

tools are outlined in Sections 4.4.2 and 4.4.3.

4.1 Real data

Four sets of reads from commonly used sequencing platforms were used to evaluate BEAR and other sequenc-

ing simulator programs. DNA was extracted from sediment samples collected from Black Lake, Saskatchewan

at a depth of 0-2cm using the MoBio PowerLyzer PowerSoil DNA Isolation Kit. An Ion Torrent Personal

Genome Machine with an Ion 318 chip was then used to sequence a dataset consisting of 377,630 raw metage-

nomic reads. Three datasets consisting of non-metagenomic reads were also used: 689,365 reads from the E.

coli DH10B genome using a Personal Genome Machine with an Ion 318 chip; 122,737 reads from from the L.

rhamnosus ATCC 8530 genome using a Roche 454 Genome Sequence FLX platform and 100,000 transcrip-

tomic reads from the P. claussenii ATCC BAA-344 genome using an Illumina Genome Analyzer IIx. The

two Ion Torrent datasets were data made available to us from colleagues at the University of Saskatchewan,

while the latter two datasets were obtained from Pittet et al. [SRA: SRX216314] [57, 58]. The sequence

simulators were then evaluated by how closely they were able to emulate the characteristics of the training

datasets.

4.2 Design

An overview of the BEAR workflow can be found in Figure 4.1. At a high level, the purpose of BEAR is to

take in a set of sequencing reads in FASTQ format and a set of known genome sequences and output a new

30

set of simulated sequencing reads having the characteristics of a user-supplied dataset of sequencing reads.

As shown in Figure 4.1, BEAR accomplishes this over the course of four steps: abundance profile generation,

error model generation, uniform read generation, and read trimming and error incorporation.

4.2.1 Abundance profile generation

Abundance profile files are necessary input for existing metagenomic sequencing simulators. Despite it being

an input for most metagenomic simulators, BEAR can optionally create abundance profiles and therefore

is an output of this stage of the pipeline. A common format for such files is that used by Grinder and

GemSIM, which is tab-delimited text where the first column is a genome identifier, and the second column is

the relative abundance (a number between 0 and 1) of that genome in the simulated community. BEAR not

only accepts abundance profiles in this format, but also provides users with the resources to generate them

for any number of organisms. Of the other programs mentioned in Section 2.7, only MetaSim provides users

with the means to create abundance files. However, the abundance values and organisms have to be manually

selected or entered, which can be time consuming for simulating complex environments. While BEAR can

accept manually-curated abundance files as input, we also wanted to allow users to automatically generate

complex abundance files. Furthermore, BEAR is designed to support two methods for generating abundance

files:

• Power function-based abundance profile generation (fast, parametric): This module of BEAR

requires two parameters: a set of genome sequences for which to assign relative abundances, and

a type of community evenness. This abundance values for the entire simulated community are de-

rived from one of three user-specified power functions of the form abundance(x) = axb, where a is

a constant representing the highest abundance value in the entire community, x is the abundance

rank of a given organism (e.g., x = 1 for the most abundant organism, x = 2 for second-most abun-

dant organism, etc.), and b is a constant associated with the evenness of the community. BEAR

assumes that the order of genomes present in the user-supplied file is the rank-order for deriving abun-

dances, and that abundance(1) ≥ abundance(2) ≥ · · · abundance(n) over the range [0, 1] such that∑
1≤x≤n

abundance(x) = 1. BEAR has three defined power functions for communities with differing

degrees of evenness:

– Low evenness: abundance(x) = 31.4x−1.287

– Medium evenness: abundance(x) : 21.23x−1.287

– High evenness: abundance(x) : 2.01x−0.233

31

OR

DRISEE and DRISEE
analysis

Error rate and
quality models

Read trimming, error and
quality score simulation

Simulated reads
with realistic quality

scores and read
lengths (multi-

FASTQ)

Similarity-based
abundance profile
generation (slow)

Parametric abundance
profile generation (fast)

Species
abundance file

(tab-delimited .txt)

Microbial organism
database (multi-

FASTA)

Error model generation (optional) Read generation

Abundance profile generation

Read modeling and generation

Real NGS reads/
training data (multi-

FASTQ)

ORRead generator (uniform
length, random

sampling)

Simulated reads,
uniform length

(FASTA)

Read generator
(trimmed, following GC

profile)

Simulated reads,
empirical length

distribution
(FASTA)

Figure 4.1: BEAR workflow. There are four major stages of using BEAR: error model generation,
abundance profile generation, uniform read generation, and read modelling and generation. Blue
rounded rectangles represent data files, red rectangles represent processes. Incoming and outgoing
arrows represent input and output to and from processes, respectively.

32

A community with“low” represents an environment with few dominant species, while a community with

“high” evenness has no dominant species.

• Sequence identity-based abundance profile generation (slow, empirical): This method derives

abundance values by analyzing the similarity of sequences in a set of input reads to sequences in a

protein database where each sequence in the database has an established taxonomic lineage. When

the set of input reads are aligned to the protein sequences in the database, the protein sequences with

significant sequence identity are mapped to their associated taxonomic lineages, and a lowest-common-

ancestor algorithm is used to determine the level of classification (e.g., phylum, genus, species, etc.).

The resulting classifications (taxonomic lineages) are aggregated to determine the relative abundances

of each taxonomy in the input database. The abundances of each species-level classification are then

used to create the abundance profile. Preliminary studies indicated that RAPSearch2 offered the

best balance of running time and quality of database matches when compared to similar methods

[85, 77], so BEAR assumes that this is used as the database search tool. However, BEAR also provides

instructions for converting results from other sequence identity-based search tools to the same format

as the RAPSearch2 output.

The output of this stage is a tab-delimited abundance file where the first column is a genome identifier and

the second column is a relative abundance value between 0 and 1, such that the sum of all relative abundance

values equals 1. This format is accepted by other metagenomic sequencing simulators (GemSIM, Grinder),

so a user could use the output from this stage as input to a different simulator as well.

4.2.2 Error model generation

BEAR is designed to be sequencing platform-agnostic and not require alignments to reference genomes. Thus,

it is required to use methods that can be derived from the information contained in a multi-FASTQ file of

input reads. With these restrictions, we can allow BEAR to derive two types of error models:

• Quality-score based models (fast): With this type of simple error model, the error rate at a

given position within a read is derived directly from the quality score at that position. In this model,

substitution and indel errors are assumed to occur at equal rates and nucleotide-specific error rates

(e.g., transition/transversion rates) are assumed to be equal as well. In the case of an insertion, the

quality score of the inserted nucleotide is the same as the quality score that preceded it.

• DRISEE-derived error models (slow): A more complex error model derived from clustering all

duplicate reads in a sample of reads using DRISEE (Duplicate Read-Inferred Sequencing Error Estima-

33

tor) [41]. This method allows for complex, nucleotide-specific error-rate models to be derived without

the use of any reference genomes by clustering duplicate reads and calculating the error rate at each

read position for each type of error and nucleotide. BEAR can also use the DRISEE output to derive

models for quality scores associated with substitution and insertion errors.

4.2.3 Read generation

Default usage

In this stage, the abundance file generated in the first step and a set of genome sequences are provided

as input by the user. BEAR also requires three additional parameters: the total number of reads, a flag

indicating whether or not paired-end reads should be generated, the longest possible read (plus the insert

length, if generating paired-end reads), and the longest potential read in the dataset. BEAR then generates

a file in multi-FASTA format consisting of uniform-length reads and having the species composition specified

in the abundance profile.

Alternative: GC profile emulation

Optionally, the user may instead generate reads with GC bias derived from the set of input reads. The

parameters required from user are the same as those described for default read generation, with the addition

of a ‘minimum read length’ parameter (to improve performance, see Section 4.3.7) and the multi-FASTQ

sequence file. BEAR then performs a ‘biased sampling’ of the genome sequences, such that regions with

higher or lower GC content are sampled based on the frequency of reads with that GC content occurring in

the multi-FASTQ file. As indicated in Figure 4.2, preliminary examination of real data indicated that read

length can influence GC content of reads, so the reads generated in this stage are not of uniform length.

4.2.4 Read trimming and error incorporation

The final stage, BEAR takes as input the output from the previous stages in addition to a user-supplied set

of sequences. BEAR then builds a read-length distribution and quality score profile from the latter file. If the

reads are all of uniform length, they are trimmed based on the read-length distribution of the real data and

has quality scores generated for each nucleotide based on a combination of the quality profile, error models,

and error-quality models.

34

Figure 4.2: Plot of GC content and read length for Ion Torrent data. Shorter reads tend to have
more extreme GC content values while longer reads tend towards GC contents in the range of 20-75%
in this particular dataset.

35

4.3 Implementation

4.3.1 Abundance profile generation

Power function-based abundance profile generation

Abundance files were acquired from previous studies involving simulated metagenomic data [56, 54]. Both

of these studies used three datasets of varying species complexities (low, medium, and high). Low evenness

implies some dominant organisms in an environment, whereas high evenness implies no dominant organisms.

These relative abundance values were plotted and we manually adjusted them to fit power law functions

that would be representative of the species composition of an artificial metagenomic dataset. An example

of a dataset pre- and post-adjustment can be found in Figure 4.3. All three adjusted abundance values and

functions can be found in Figure 4.4. The result is three power functions of the form y = axb, where y is

the relative abundance of an organism, x is the abundance rank of the organism, and a, b are constants that

depend on the desired evenness of the community (low, medium, or high). The most dominant species is over

1000 times as present as the 118th most dominant organism in the low and medium evenness communities,

whereas the most dominant species in the high evenness community would only be three times as present.

Abundance files could then be generated by using Algorithm 1.

Sequence identity-based abundance profile generation

The methodology for RAPSearch2 [85] can be found in previous studies. BEAR makes the assumption that

the user has used RAPSearch2 to align a set of metagenomic reads to proteins in the RefSeq database [60].

The output from RAPSearch2 is then stripped of all but three columns leaving a tab delimited file with the

following data: the accession ID of the query sequence, the accession ID in the database, and the bit score

indicating the quality of the match. Each entry of the RefSeq database has a corresponding file in genpept

format, an example of which can be seen in Figure 4.5. In each genpept file are two key (for our purposes)

pieces of information. First, there is an accession ID on the line beginning with ACCESSION. Second, there

are a series of lines labelled SOURCE ORGANISM, indicating the species and associated taxonomy.

The first time this type of analysis is performed, BEAR processes the genpept sequences in the RefSeq

database to compile a list of accession number / taxonomic lineage pairs. This list can then be used in

subsequent executions of BEAR. BEAR then processes the RAPSearch2 search results and associates reads in

the user-supplied dataset with a taxonomic lineage. The level of taxonomy of a given query (read) is calculated

by compiling all the lineages for all search results that have a bit score within a certain neighbourhood of

the highest one, finding the lowest common ancestor (LCA) among all those lineages and abundances. This

36

Figure 4.3: Example of adjustment of abundance values to allow for power law model derivation. This
particular example represents a low-evenness model. Abundance values from previous work describing
simulated metagenomic communities (labeled “Pre-adjustment”) were adjusted to better fit power
functions for generating abundance values (labeled “Post-adjustment”).

Data: A list of genome sequence identifiers G, a type of community evenness C
Result: A tab delimited abundance file for a simulated community with any number of organisms
begin

switch C do
case low

(const, exp) = (31.4, -1.287);
case medium

(const, exp) = (21.2, -1.287);
case high

(const, exp) = (2.01, -0.233);
otherwise return error;

endsw
i = 1;
for g ∈ G do

abundancei = const ∗ iexp;
sum+ = abundancei;
i + +;

end
i = 1;
for g ∈ G do

abundancei = abundancei
sum ;

print g, abundancei;
i + +;

end

end

Algorithm 1: Algorithm for generating abundance files with the power function-based method.

37

Figure 4.4: Abundance profiles derived from power regression. BEAR can generate three types of
abundance profiles derived from power functions representing “low”, “medium”, or “high” evenness
communities. Low evenness implies some dominant organisms in an environment, whereas high even-
ness implies no dominant organisms. Genome sequences were sorted by their relative abundance in
descending order and then assigned IDs from 1 to n, where n is the number of genome sequences in
the environment.

38

approach is very similar to that of MEGAN [33]. The result of processing the RAPSearch2 output is a

tab-delimited file where the first column contains a taxonomic lineage and the second contains a relative

abundance. This file is then subjected to Algorithm 2. This algorithm allows for the complex abundances to

be mapped to any set of organisms the user prefers, without being restricted to the list of species-level hits

found by RAPSearch2. However, this approach has the limitation of only being able to generate abundance

values for a number of organisms up to the number of species-level classifications found by BEAR.

Data: A search summary file F (processed RapSearch2 output), a list of genome sequences G
Result: A tab delimited abundance file for a simulated community with any number of organisms up

to the number of species-level classifications in F .
begin

Initialize list objects S, T ;
for f ∈ F do

if f is classified to the species level then
S.append(abundancef);

end
for g ∈ G do

T .append(g.header);
end
for i ∈ range(1 . . . length(T)) do

sum+ = S(i)
end
for i ∈ range(1 . . . length(T)) do

abundance = S(i)
sum ;

print T (i), abundance;

end

end

Algorithm 2: Algorithm for generating abundance files using processing RAPSearch2 output.

4.3.2 Error rate emulation

DRISEE-based error models

In order to generate error rate models, BEAR uses a modified version of DRISEE which, at its core, uses

the uclust algorithm to cluster or ‘bin’ artifactual duplicate reads [41, 21]. The normal version of DRISEE

removes the files detailing the clusters after running, but the modified version used by BEAR saves the

cluster files and uses this information to derive more models in subsequent steps. BEAR and DRISEE

classify “artifactually duplicate clusters” as any cluster of reads with identical 50bp prefixes (long reads) or

30bp (short reads). After DRISEE clusters the reads in a dataset, it generates a consensus sequence (i.e.,

a sequence using the most frequently observed nucleotides at each position) for each cluster. The reads

in each cluster are compared to this consensus sequence to determine the mismatch/error rates. This is

39

LOCUS AAB94881 842 aa BCT 05-JAN-1998

DEFINITION DNA polymerase [Cenarchaeum symbiosum].

ACCESSION AAB94881

PID g2599106

VERSION AAB94881.1 GI:2599106

DBSOURCE locus AF028831 accession AF028831.1

KEYWORDS .

SOURCE Cenarchaeum symbiosum.

ORGANISM Cenarchaeum symbiosum

Archaea; Crenarchaeota; Cenarchaeum.

REFERENCE 1 (residues 1 to 842)

AUTHORS Schleper,C., Swanson,R.V., Mathur,E.J. and DeLong,E.F.

TITLE Characterization of a DNA polymerase from the uncultivated

psychrophilic archaeon Cenarchaeum symbiosum

JOURNAL J. Bacteriol. 179 (24), 7803-7811 (1997)

MEDLINE 98062213

REFERENCE 2 (residues 1 to 842)

AUTHORS Schleper,C.M., Swanson,R.V., Mathur,E.J. and DeLong,E.F.

TITLE Direct Submission

JOURNAL Submitted (06-OCT-1997) Monterey Bay Aquarium Research Institute,

PO Box 628, Moss Landing, CA 95039, USA

COMMENT Method: conceptual translation supplied by author.

FEATURES Location/Qualifiers

source 1..842

/organism="Cenarchaeum symbiosum"

/db_xref="taxon:46770"

Protein <1..842

/product="DNA polymerase"

/name="archaeal family B DNA polymerase"

CDS 1..842

/coded_by="AF028831.1:<1..2529"

/transl_table=11

ORIGIN

1 vqdaveipps llvsatydsq agavvlkfye pesqkivhwt dntghkpycy trqppselge

61 legredvlgt eqvmrhdlia dkdvpvtkit vadplaiggt nseksirnim dtwesdikyy

121 enylydkslv vgryysvsgg kviphdmpis devklalksl lwdkvvdegm adrkefrefi

181 agwadllnqp iprirrlsfd ievdseegri pdpkisdrrv tavgfaatdg lkqvfvlrsg

241 aeegengvtp gvevvfydke admirdalsv igsypfvlty ngddfdmpym lnrarrlgvs

301 dsdiplymmr dsatlrhgvh ldlyrtfsnr sfqlyafaak ytdyslnsvt kamlgegkvd

361 ygvklgdltl yqtanycyhd arltlelstf gneilmdllv vtsriarmpi ddmsrmgvsq

421 wirsllyyeh rqrnaliprr delegrsrev sndavikdkk frgglvvepe egihfdvtvm

481 dfaslypsii kvrnlsyetv rcvhaeckkn tipdtnhwvc tknngltsmi igslrdlrvn

541 yykslsksts iteeqrqqyt visqalkvvl nasygvmgae ifplyflpaa eattavgryi

601 imqtishceq mgvrvlygdt dslfikdpee rqiheiveha kkehgvelev dkeyryvvls

661 nrkknyfgvt ragkvdvkgl tgkkshtppf ikelfyslld ilsgvesede fesakmrisk

721 aiaacgkrle erqiplvdla fnvmiskaps eyvktvpqhi raarllenar evkkgdiisy

781 vkvmnktgvk pvemaragev dtskylefme stldqltssm gldfdeilgk pkqtgmeqff

841 fk

//

Figure 4.5: An example of a sequence in genpept format.

40

performed for all clusters, and the results are tabulated and summarized to produce a tab-delimited output

file. An abbreviation of this format can be seen in Figure 4.6. The five columns listing the estimated

error rates are then subjected to exponential regression by BEAR to construct error models of the form

y = aexb, where y is the error rate, a is the initial error rate, x is the current position in the read, and b

is a factor that determines how quickly the error rate increases with x. BEAR produces five error models

in total: a substitution error rate model for each nucleotide (A,T, G, and C), and a single indel rate model.

BEAR also processes the clusters generated by DRISEE to determine the ratio of insertion/deletion errors

at each position, nucleotide-specific insertion rates, and specific transition/transversion rates. The former is

appended to a DRISEE output file with insertion and deletion columns, while the latter two are displayed in

a matrix format. An example of this matrix format is provided in Figure 4.7

Quality score-based error models

This method calculates error rates for reads on-the-fly in the final step of the BEAR workflow. For a sequence-

read of nucleotides R = r1r2 . . . rn we can calculate the error rate ei for nucleotide ri, i ≤ n based on the

generated quality score qi. Given that the probability of an error is directly related to the quality score by

Equations 2.2 and 2.3, the total error rate at position i is ei = 10
−qi
10 . This model makes the assumption

that insertions, substitutions, and deletions are all equally likely. Additionally, for substitution errors, the

probability of a base ni being substituted by a base m ∈ B = {A, T,G,C} s.t. m 6= ni is equal for all values

of m 6= ni. For example, if ni = A, then P (A → T |substitution) = P (A → C|substitution) = P (A →

G|substitution) = 0.3. Similarly for insertion errors, if ni = A then P (A → AA|insertion) = P (A →

AT |insertion) = P (A→ AC|insertion) = P (A→ AG|insertion) = 0.25.

4.3.3 Error-quality modelling

DRISEE-based error-quality models

The stages of generating error-quality models are shown in Figure 4.10. The clusters generated by DRISEE/uclust

to create the error rate models with the original sequence data file are supplied as input to a script that pro-

cesses these clusters in order to find the quality scores associated with sequencing errors. As demonstrated in

Figure 4.8, the format used by uclust for displaying sequence cluster information does not provide any quality

score information. However, it does provide a sequence identifier. This identifier is used to map the cluster

to FASTQ sequences such that the quality scores can be retrieved. The 8th column of the uclust format is

called a CIGAR alignment string, consisting of integers and the characters M (match), I (insertion), and D

(deletion). The integers preceding a M, I, or D indicate the number of consecutive bases for which the charac-

41

A T C G X

...

150 0.012902 0.005161 0.038706 0.038706 0.049027

151 0.020828 0.015621 0.020828 0.018224 0.067691

152 0.007843 0.002614 0.023530 0.020916 0.060132

153 0.010522 0.015784 0.015784 0.042090 0.092071

154 0.050316 0.010593 0.015889 0.015889 0.050316

155 0.007980 0.015960 0.034581 0.066502 0.055861

...

Figure 4.6: Portion of a DRISEE output file. For formatting reasons, some descriptive text in the
file has been removed, in addition to columns irrelevant to the functionality of BEAR The first column
represents the position within the reads. The next four columns represent the substitution error rates
(as a percentage) of each nucleotide (i.e., the rate at which the nucleotide is substituted for any other
nucleotide). The final column is the combined indel rate.

#Insertion matrix

#format {A,T,G,C}x{A,T,G,C}

0.07 0.67 0.14 0.12

0.08 0.26 0.11 0.55

0.50 0.19 0.14 0.17

0.27 0.38 0.10 0.24

#Substitution matrix

#format {A,T,G,C}x{A,T,G,C}

0.00 0.24 0.35 0.40

0.21 0.00 0.45 0.34

0.29 0.36 0.00 0.35

0.31 0.33 0.35 0.00

Figure 4.7: Examples of insertion and substitution matrices generated by BEAR after processing
DRISEE/uclust output.

42

S 0 129 * * * * * M82KP:378:342 *

H 0 129 93.8 + 0 0 92MD24MD11M2I M82KP:419:2009 M82KP:378:342

H 0 129 93.8 + 0 0 115MI13MD M82KP:498:1100 M82KP:378:342

Figure 4.8: An example of a sequence cluster in Uclust format. Each cluster has exactly one seed
sequence (indicated by an S in column 1), and any number of hit sequences (indicated by an H. The
remaining columns describe the following characteristics: Column 2: Cluster number; Column 3:
Sequence length or cluster size; Column 4: Percent identity; Column 5: Strand; Column 6: Alignment
start of query sequence; Column 7: Alignment start of seed sequence; Column 8: Alignment (CIGAR)
string; Column 9: Identifier for query sequence; Column 10: Identifier for seed sequence. For formatting
reasons, some descriptive text in the file has been removed.

Query/hit sequence: -GTACGTACGT

||||| |||

Seed sequence: CGTAGG--CGT

Alignment string: DMMMMMIIMMM

Compressed alignment string: D5M2I3M

Figure 4.9: An example of alignment strings found in clusters in uclust format using the sequences
GTACGTACGT and CGTAGGCGT to generate the compressed alignment string D5M2I3M.

teristic is true. An example detailing this feature is provided in Figure 4.9. For example, the alignment string

D5M2I3M would indicate that a ‘hit’ sequence (denoted in uclust format with an H in column 1) aligns with a

‘seed’ sequence (denoted with an S) with a deletion error, followed by five aligning bases, 2 insertion errors,

and another 3 aligning bases. It is worth noting that an M does not indicate identity, it just means that two

bases have aligned. That is, a base denoted by M in the CIGAR string can be the result of a substitution error.

The algorithm for processing the uclust file is provided as Algorithm 3. An example of the output

from this stage is provided in Figure 4.11. This output is then subjected to second-degree polynomial

regression, generating five models of the form anx
2 + bnx + cn, where n ∈ A, T,G,C, I with A, T,G,C being

the substitution error-quality models for specific nucleotides and I representing the error-quality model for

insertion errors.

4.3.4 Generating uniform-length reads

Generating a file of uniform-length single-end reads only requires two or three parameters: an abundance

file A consisting of pairs of organisms and abundances A = (a1, o1), (a2, o2), . . . , (an, on), a list of genome

sequences G = g1, . . . , gn corresponding to the organisms in A, the total number of reads T , and the maximum

read length M . Generating paired-end reads requires two additional parameters: the mean insert length,

43

Cluster all duplicates in set of reads (modified
DRISEE)

Process DRISEE output to find avg. insertion and
substitution quality score for all bases at all read

positions

Perform 2nd degree polynomial regression on
quality scores

Error-quality
models

Real NGS reads/
training data(multi-

FASTQ)

Figure 4.10: Error quality pipeline.

44

Data: A list of clusters U in uclust format, a list of reads F in FASTQ format
Result: A tab-delimited file displaying the quality scores associated with sequencing errors.
begin

Initialize QualModel, SubMatrix, and InsMatrix;
for u ∈ U do

for hit ∈ u.hits do
h.pos = s.pos = 0;
if hit.identity 6= 100.0 then

for e ∈ h.align string do // e has two elements: a number (int) and type (M, I or D)

n = e.num;
t = e.type;
// track the current positions within the query (h) and seed (s) sequences

h.subseq = h.seq[h.pos : h.pos + n];
h.subqual = h.qual[h.pos : h.pos + n];
s.subseq = s.seq[s.pos : s.pos + n];
s.subqual = s.qual[s.pos : s.pos + n];
if t == M then

for i = 0; i < n; i + + do
if h.subseq[i] 6= s.subseq[i] then

// Add quality score of base to the list of other substitution error

quality scores at the current position

QualModel(h.subseq[i], i + s.pos).append(h.subqual);
// Increase substitution error counts for substitution error matrix

SubMatrix[h.subseq[i]][s.subseq[i]]+ = 1;

end

end
h.pos+ = n;
s.pos+ = n;

else if t == D then
// Deletion errors don’t have quality scores, nothing to store

s.pos+ = n;

else
prev = h.seq[h.pos− 1];
for i = 0; i < n; i + + do

// Add quality score of base to the list of other insertion error

quality scores at the current position

QualModel(′I ′, i + h.pos).append(h.subqual);
// Increase insertion error counts for insertion error matrix

InsMatrix[prev][h.subseq[i]]+ = 1;
prev = h.subseq[i];

end
h.pos+ = n;

end

end

end

end

end
Calculate average quality score at every position for each error in QualModel;
Convert values in InsMatrix and SubMatrix to percentages;

end

Algorithm 3: Algorithm for processing clusters in uclust format to generate the error-quality values,
insertion error matrix, and substitution error matrix.

45

A T G C X

150 19.93 17.35 20.92 17.55 21.50

151 17.15 23.05 16.44 16.88 16.17

152 20.29 17.45 21.44 16.09 15.60

153 17.12 22.00 20.79 19.82 22.57

154 19.59 19.70 23.40 21.30 21.40

155 18.50 21.60 15.20 20.86 19.75

Figure 4.11: Portion of the output file from Algorithm 3. For formatting reasons, some descriptive
text in the file has been removed. The first column represents the position within the reads. The next
four columns represent the average quality score associated with the substitution errors of a specific
nucleotide. The final column is the average quality score associated with an insertion error at that
position.

and the standard deviation of the insert length. The algorithm for generating reads with these parameters

is provided in Algorithm 4.

4.3.5 Read-length distribution emulation

To perform read distribution emulation, a file of uniform-length simulated reads (i.e., the output from the

program described in Section 4.3.4) S = s1, s2, . . . , sn and a file of real WGS reads R = r1, r2, . . . , rm are

supplied as input. BEAR calculates the length of all r ∈ R, and converts these to frequencies, resulting in

an empirically-determined read length distribution. Thus, the probability of a simulated read si, 1 ≤ i ≤ n

having a read length L,min ≤ L ≤ max can be found by sampling from the distribution P (L = l), which is

determined by the following formula in Iverson notation:

P (l) =

m∑
j=1

[length(rj) = l]

m
(4.1)

Sampling from this distribution results in a length li, 1 ≤ i ≤ n to which a simulated read si ∈ S can be

truncated (BEAR always truncates the rightmost nucleotides).

46

Data: An abundance file A, a list of genome sequences G, the total number of reads T , and a
maximum read length M . Paired-end reads require an insert length mean and stdev as well.

Result: A list of uniform-length sequence reads having the community profile specified in the
abundance file

begin
Let n be the number of organisms in the community;
for i ∈ range(1, n) do

NumReads = ai ∗ T ;
for j ∈ range(1, NumReads) do

if single-end reads then
start = randInt(1, length(gi)−M);
print gi[start : start + M];

else
insert = SampleNormDist(mean, stdev);
start = randInt(1, length(gi)− (2M + insert));
read1 = gi[start : start + M];
read2 = gi[start + insert : start + insert + M];
print read1;
print read2;

end

end

end

end

Algorithm 4: Algorithm for generating uniform-length single- or paired-end (meta)genomic reads in
BEAR.

4.3.6 Quality score profile emulation

Input WGS reads are used as training data to create a quality score model for correct base calls based on

position-dependent Markov chains. An example of using a Markov chain to model quality scores is provided

in Figure 4.12. BEAR uses the models for error rate, quality-error, read length distribution (see previous

subsections), and these Markov chains along with the uniform-length reads to generate the final variable-

length artificial reads. In this thesis, we evaluate three types of Markov chains for generating quality scores:

first order Markov chains, mean state first-order Markov chains, and second-order Markov chains. We define

a read of length p to be a string of characters S = s1...sp with an associated quality string Q = q1...qp. For

each read, BEAR uses the training data to generate quality values qi, 1 ≤ i ≤ p based on one of the following:

1. First-order Markov chain: The quality score at a given position within a read influences the quality

score at the next position. That is, qi is conditional on qi−1 and position i− 1 or P (qi|qi−1, i− 1). The

Markov chain is trained by simply counting the quality scores present in the input set of real reads at

each position of each read and then converting the counts to transition probabilities.

2. Mean state first-order Markov chain: The average quality score of five consecutive positions

influences the quality score at the next position. In this case, qi is conditional on the position i − 1,

47

17 25 25 22

27 25

16

14

18

14

19

20

30

…

1 2 n-4 n-3 n-2 n-1 n

Figure 4.12: Example of Markov chain-based approach to generating quality scores. Integers within
the nodes represent the quality score at a given position within the read. Each directed edge has an
associated probability derived from the training data.

and the mean mi−1 of the previous quality values qk, qk+1, . . . , qi−1 where k = max(1, i− 5). That is,

P (qi|mi−1, i− 1).

3. Second-order Markov chain: The quality score at a given position and the previous position influ-

ence the quality score at the next position. This model assumes that qi is conditional on qi−1, i − 1,

and qi−2, represented by the conditional probability P (qi|qi−1, qi−2, i− 1).

Thus, for a given position i within a quality string Q, we wish to find qi by sampling from the appropriate

conditional probability distribution for all values of i and in all simulated input reads.

These models are only for producing nucleotides that are correct base calls. If an erroneous nucleotide

is to be generated, the error model overrides the predicted quality value for qi. For example, in the case

that the error rate model predicts a substitution error at position i, the Markov chain is not sampled and

the quality-error model sets qi = asii
2 + bsii + csi , where asi , bsi , csi are the coefficients of the second-degree

polynomial regression for the nucleotide si.

4.3.7 GC profile emulation

BEAR is able to emulate the GC profile present in a given set of WGS reads (as opposed to uniformly

sampling reads from genomes) by extensively preprocessing the given genome to identify regions with certain

GC contents. Given that length can influence GC content (i.e., short reads are far more likely to have 0% or

48

100% GC content than long reads), BEAR also considers read length when sampling from a genome. There

are three discrete steps required for BEAR to emulate a GC profile: initiation, pre-processing, and sampling.

Initiation

When emulating a GC profile, BEAR considers all read lengths between a minimum length p and a maximum

length q. This allows for read lengths that would later be filtered or removed to be ignored (i.e., extremely

short or extremely long reads), saving time and computational resources. This user-specified constraint on

read lengths should be taken into consideration when subjecting these simulated reads to any sort of quality

control measures that consider read length to be a factor, as reads with lengths beyond these constraints

will not be present as they would be in the original sample of reads. In terms of granularity, BEAR is only

concerned with GC contents at the integer level. That is, the GC content of a read is rounded to the nearest

whole number (e.g., a region with a GC content of 67.5% would be rounded to 68%). For longer reads, there

will tend to be a large overlap in locations with a given length l and a GC content g. For example, the

regions of a genome with a fitting the constraints l = 301, g = 50 may not be different than those fitting

l = 302, g = 50. Thus, we can identify ‘redundant’ lengths between p and q to save time by only considering

these “effectively unique” values. The algorithm for doing this is provided in Algorithm 5.

Data: A minimum read length p and a maximum read length q.
Result: A list of effectively unique read lengths L, where |L| ≤ q − p.
begin

Initialize a list L;
Let x = 0.0;
for i ∈ range(p, q) do

x+ = 1/i;
if x ≥ 0.01 then

// 0.01 is used because we are only concerned with GC content values between

1 and 100

L.append(i);
x = 0.0;

end

end
Return L;

end

Algorithm 5: Algorithm for generating a list of effectively unique read lengths to use for pre-processing a
genome for GC profile emulation.

Pre-processing

With the resulting output from Algorithm 5, we know that there is at most |L| passes required to fully

pre-process a given genome by its length and GC content (GC content can be calculated on-the-fly, so there

49

is no need to do multiple passes for multiple GC content values). However, genome sequences are quite large

(approximately. 4.5 million characters) and when p − q is also large, processing a genome sequence can be

time consuming. To alleviate this, BEAR uses a map-reduce multiprocessing approach to parallelize this

task. This reduces the number of serial passes to approximately |L|
C , where C is the number of available

CPUs.

In the map stage, a pool of C processes are spawned for genome lengths q, q + 1, . . . , q + c. The length

qi, 1 ≤ i ≤ p−q associated with the process Ci is passed into Algorithm 6, where locations of all subsequences

with length qi and GC content gk, 0 ≤ k ≤ 100 are identified and stored in a dictionary of lists d. When this

is repeated p− q times, the result is a set of dictionaries d1, . . . , dp−q. For the reduce stage, these dictionaries

are then merged into one dictionary D. From D, it is now possible to sample reads based on their GC content

and length.

Data: A genome sequence s and a sequence length l
Result: A dictionary of lists dl containing the locations of all l-length subsequences with GC contents

gk, 0 ≤ k ≤ 100
begin

Initialize dictionary of empty lists dl;
for i ∈ range(0, length(s)− l) do

g = GCContent(s[i : i + l]);
dl[(l, g)].append(i);

end
Return dl;

end

Algorithm 6: Algorithm for preprocessing genome by length and GC content for a given length l.

Sampling

After processing the genome, reads can now be sampled by accessing D. Since D is indexed by keys of tuples

t = (l, g), q ≤ l ≤ p, 0 ≤ g ≤ 100, we can sample a tuple t′ from the original set of reads and then access a

random member of the list D[t′]. To prevent oversampling (e.g., a list D[(l, g)] where |D[(l, g)]| = 1 could

be sampled far more often than neighbouring list D[(l + 1, g)], BEAR iterates through neighbouring lists by

relaxing both parameters (length and GC content) by a value of 1 per iteration until a sufficient number of

candidate sequences H has been obtained. This process is demonstrated in Algorithm 7.

50

Data: Total number of reads R, a genome sequence g, a candidate sequence threshold H, dictionary
of lists D, a set T of length/GC tuples from a file of real WGS reads

Result: A list of sequences emulating the GC bias present in the file of real WGS reads
begin

for i ∈ range(1, R) do
Select random tuple t ∈ T ;
candidates = D[t];
while |candidates| ≤ H do

Set candidates to be an empty list;
k = 1;
for j ∈ range(−k, k + 1) do

for l ∈ range(−k, k + 1) do
t′ = (t.length + j, t.gc + l);
if t′ ∈ D then

candidates.append(D[t′]);
end

end

end
k+ = 1;

end
start = random(candidates);
print g[start : start + t.length];

end

end

Algorithm 7: Algorithm for generating reads with GC bias from a processed genome sequence.

4.4 Evaluation

4.4.1 Comparison of sequence simulator programs

We compared BEAR to five sequencing simulator programs based on their ability to emulate the characteris-

tics of actual sequence data obtained from Ion Torrent, 454, and Illumina sequencers. When determining the

input organism databases and abundance files, we used the specific genomes and relative abundance values

listed in previous work with simulated metagenomic data [56]. The programs that do not support abundance

files were supplied with just the database of genome sequences. For each of the tested programs, parameters

were chosen that would generate the read length and quality score distributions that most closely matched

those of the actual test data.

4.4.2 Evaluating assembly programs

To evaluate the effect of different artificial read generation programs on (downstream) assembler programs,

we generated four simulated genomic datasets containing simulated Ion Torrent data: two from BEAR (one

with GC bias, one without), one from Grinder, one from GemSIM and compared the results to an assembly

51

of real WGS data.

Each simulated Ion Torrent dataset contained reads sampled from the E. coli DH10B genome (reference

genome assembled with DNAStar’s SeqMan assembler) with the characteristics (read length distributions,

quality profiles, error rates, GC bias) of the real Ion Torrent data used to sequence the genome. Reads in

both real and simulated datasets were then subjected to quality control, by first removing all reads with

lengths not within one standard deviation of the mean length and then truncating the remaining reads to the

position where a sliding window detected an average quality score below 20. The simulated datasets were

each assembled by both the MIRA and Velvet assembly programs [14, 84]. The contigs of each assembly were

then aligned to the DH10B genome by using Bowtie2 [43]. The quality of each assembly was then measured

by the following characteristics:

1. Total number of contigs.

2. Total assembly size (i.e., the sum of all lengths of all assembled contigs).

3. N50, the length of the smallest contig C in the sorted list of all contigs such that the sum of all contig

lengths from the largest contig to C is at least 50% of the total assembly size.

4. Longest contig.

5. Average percent identity resulting from aligning the contigs to the original genome sequence. This is

effectively a normalized edit distance, (L − E)/L ∗ 100%, where E is the edit distance and L is the

length of the contig.

6. Total genome coverage of assembly.

It is worth noting that the goal of this analysis is not for the simulated data to result in a “better”

assembly. Rather, it is far more useful for a simulator program to generate data that results in a realistic

assembly. Thus, the “best” program would be one that results in an assembly with characteristics that most

closely match those of the real data.

4.4.3 Evaluating metagenomics classification tools

One of the goals of this thesis is to determine if BEAR can be used to evaluate metagenomics classification

tools. To this end, three simulated metagenomics datasets were generated using BEAR and the genomes in

the NCBI genomes database (http://www.ncbi.nlm.nih.gov/genome) to test classification tools:

• two low evenness datasets, one with GC bias and one without,

52

http://www.ncbi.nlm.nih.gov/genome

• one smaller dataset with uniform abundances, with GC bias.

The first two datasets used all 2,062 complete bacterial genome sequences present in the NCBI genomes

database. For the third dataset, the 120 genomes used to make simulated communities in previous studies [56,

54] were used by concatenating all genomes together and using this as a large, single ‘input genome’ to BEAR.

All 3 datasets each consisted of 1,000,000 simulated Illumina reads (67bp) using the Illumina data mentioned

in Section 4.1 as the sample input for training BEAR. These simulated datasets were used to analyze two

different metagenomic classification tools: the sequence identity-based abundance profile methodology used

by BEAR for generating complex abundance files and a similar classification tool, MetaPhlAn [71]. The

resulting output of each classifier tool was an abundance profile, and these abundance profiles were compared

to the original low-evenness power function used for generating the simulated data to determine the accuracy

of each tool. Additionally, this methodology allowed us to observe the effects that GC bias can have on

metagenomic classification.

53

Chapter 5

Results

This chapter presents the results and findings of this thesis. Section 5.1 provides an evaluation of sim-

ulated data generated by BEAR and a comparison of BEAR to other sequence-read simulator programs.

This includes an evaluation of the data generated from each program by their read length distributions (Sec-

tion 5.1.1) and quality score profiles (Section 5.1.2). The best-performing programs were then compared to

real data based on their error models (Section 5.1.3) and, in the specific case of BEAR, error-quality models

(Section 5.1.4). To determine the usefulness of BEAR in evaluating downstream sequence analysis, three

small case studies end the chapter. The first is a basic quality control analysis, where the data generated by

Grinder, GemSIM and BEAR were subjected to simple quality control methods and compared to real data

(Section 5.2). The second study subjected the filtered data to assembly by two different assembler programs,

where the assemblies were compared to real data to determine if the assembly of a simulated dataset was at

all reflective of the assembly of a real dataset (Section 5.3). The effects of GC bias and sequencing errors on

assembly are also presented (Section 5.3.1). The final study used three simulated metagenomic datasets (two

with GC bias, one without) and two metagenomic classification tools to determine the ability of each tool to

generate an accurate abundance profile of the simulated community, in addition to observing the effects of

GC bias on metagenomic classification (Section 5.4).

5.1 Evaluation of BEAR and comparison of BEAR to other se-

quencing simulators

Results of attempts to simulate NGS data with a suite of artificial read generator programs are provided

in this section. A summary of our findings for the read length distributions, errors, and quality profiles

for each of the tested sequencing programs are presented in Table 5.1. In general, most programs were

only able to generate reads with lengths following a degenerate distribution (454sim, SimSeq) or a normal

distribution (Grinder, MetaSim). With respect to generating realistic quality profiles and error models,

each program behaved differently. The parameters of 454sim were difficult to calibrate due to the lack of

54

Program Read length distribu-
tion

Quality profiles Errors

MetaSim Uniform and Normal Not generated User-defined, parametric
SimSeq Uniform High quality for first 80bp,

low quality after
User-defined, parametric

Grinder Uniform and Normal Binary; either “good” or
“bad”

User-defined, parametric

454sim Uniform Highly sensitive to parame-
ter settings

User-defined, parametric

GemSIM Empirical Empirical Inferred from alignment to
reference genome

BEAR Empirical Empirical for correct base
calls, second-degree polyno-
mial for errors

Inferred from perform-
ing regression analysis on
DRISEE data

Table 5.1: Summary of characteristics of read-length distributions and quality profiles for BEAR and
popular sequencing simulator programs.

documentation explaining how the parameters affect the generated data. SimSeq was able to generate profiles

with high quality scores for the first 80bp and low/variable quality for the last 20bp. SimSeq’s parameters

do not appear to be empirically determined, but it has been used successfully for evaluating assemblies of

Illumina data [9, 20]. Grinder was able to generate reads with error rates derived from uniform, linear,

and polynomial functions, but was only capable of generating two possible quality values per run (a “good”

quality value for correct bases and a “bad” quality value for errors), which is highly uncharacteristic of raw

reads. MetaSim provided number of options for user-specified error parameters. Unfortunately, it did not

support the generation of quality scores. GemSIM was able to generate reads from empirical read length and

quality score distributions. However, it was only derive error rates and quality scores by aligning reads to

a reference genome. That is, GemSIM required training on WGS reads from a single genome and therefore

was unable to directly generate data having the error, quality, and read length characteristics of a given

metagenomic sample.

While we had each program generate three different simulated metagenomic datasets (simLC, simMC,

simHC), the results for all three sets were indistinguishable in terms of the features (read length distribution,

quality profiles) that were used for evaluation. Consequently, only the low evenness simulated dataset is

shown in the figures unless otherwise specified.

GemSIM anomaly

While evaluating the sequencing simulator programs, we observed a strange behaviour with the number

of reads being generated by GemSIM. By running GemSIM with the identical parameters, we observed

that GemSIM would generate a different number of reads with each execution. For example, we specified

55

Figure 5.1: The linear relationship between real elapsed time and the number of simulated reads
generated in a given GemSIM ‘run’ with identical user-supplied parameters.

to GemSIM that we wanted to generate 1,187,109 simulated reads and instead we obtained FASTQ files

containing anywhere between 14,510 and 449,164 reads. Thus, we had to run GemSIM seven times with the

exact same parameters in order to yield enough simulated reads. To our knowledge, this behaviour has not

been documented anywhere. Figure 5.1 demonstrates the variance in the number of reads generated by a

given GemSIM ‘run’ and the real time taken for that run to execute. There does appear to be a strong linear

relationship between the number of reads generated and the time taken to generate those reads, but this

behaviour is inconvenient for any user who wishes to generate a given, substantial amount of simulated data.

5.1.1 Read-length distributions

The read-length distribution of the real WGS training data was compared to the distributions generated by

each sequencing simulator program, as demonstrated in Figure 5.2. From this figure, we observed that data

obtained from actual NGS experiments was not necessarily simple enough to be characterized, for example, by

supplying a mean and standard deviation of the read length distribution. GemSIM and BEAR were the only

programs that closely modelled the Ion Torrent distribution. While the normally-distributed read lengths

generated by Grinder and MetaSim model weren’t as accurate as the read lengths generated by BEAR and

GemSIM, they were far more accurate than those generated by 454sim and SimSeq. Over 80% of the reads

generated by 454sim were 165bp, and no read lengths exceeded 175bp. SimSeq only generated reads 100bp

in length. With respect to the 454 data, BEAR and Grinder matched the read length distribution far better

than the other programs.

56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 64 128 192 256 320

R
el

at
iv

e
Fr

eq
ue

nc
y

Read length in bp

BEAR
GemSIM

Grinder
MetaSim

Ion Torrent

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 172 344 516 688 860

R
el

at
iv

e
Fr

eq
ue

nc
y

Read length in bp

BEAR
GemSIM

Grinder
MetaSim

454sim
454 data

Figure 5.2: Comparison of read length distributions generated by metagenomics sequencing simulator
programs. Top: Ion Torrent. Bottom: 454 data. When attempting to emulate these distribution,
SimSeq only generated 100bp reads. Over 80% of the reads generated by 454sim were 165bp when
emulating the Ion Torrent distribution, thus it is excluded from the top plot. Note that both panels
BEAR closely matches the distributions of the real data. A panel for Illumina data is not shown since
all real and simulated Illumina reads were 67bp in length.

57

5.1.2 Quality score profiles

Comparisons of quality profiles for all sequencing programs and WGS data can be seen in Figure 5.3. Similar

to the read length distribution analysis, GemSIM and BEAR were the best of the tested simulator programs

for generating data with the quality profile that most closely matched the real data. Near the end of the

longer reads in the Ion Torrent and 454 data the base calls become quite noisy, leading to inconsistent quality

values. While reads exceeding this length comprise a very small percentage of the data, it is worth noting

that BEAR was able to generate noisy quality values after 250bp as well. Of SimSeq, Grinder, and 454sim,

only SimSeq consistently produced non-constant quality scores. Unfortunately, it can only generate very

short reads.

Comparison of different Markov chains for generating quality scores

Three different types of Markov chains were evaluated based on their abilities to generate quality profiles

matching those of real Ion Torrent data. The types of Markov chains were as follows: a first-order Markov

chain where the quality score of a given position was determined by the the average of the five previous

quality scores, a first-order Markov chain where the quality score was determined by the previous quality

score, and a second-order Markov chain where the quality score was determined by the previous two quality

scores. The resulting quality profiles can be seen in Figure 5.4. As seen in this figure, the first-order Markov

chain that used only the previous score appeared to better emulate the actual quality profile when compared

the other two methods. The other first-order Markov chain was somewhat able to emulate the distribution,

but the quality scores appeared to exhibit random behaviour at approximately the 280bp position rather than

the 320bp position observed in the real data. The second-order Markov chain performed poorly, generating

quality scores far lower than the real data for the first 250bp and higher than the real data for the last 130bp.

For example, the second-order Markov chain generated quality scores with a median score below 20 by the

160bp position, whereas the median quality score of the real data did not fall below 20 until approximately

the 210bp position.

5.1.3 Error rates

Overall error rates predicted by GemSIM, DRISEE, and BEAR when supplied with various types of WGS

data are compared in Figure 5.5. GemSIM failed to report error rates for every base pair position in the

Ion Torrent and 454 datasets, in particular predicting error rates of 0 for positions beyond 250 and 525,

respectively. In order to generate errors for all positions in long reads, BEAR automatically performs a

exponential regression on the predicted error rates. This frees the user from the need for parameter tuning.

58

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 64 128 192 256 320

M
ed

ia
n

qu
al

ity
 s

co
re

Position within read (bp)

BEAR
GemSIM

Grinder
SimSeq

Ion Torrent data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 172 344 516 688 860

M
ed

ia
n

qu
al

ity
 s

co
re

Position within read (bp)

BEAR
GemSIM

Grinder
SimSeq
454sim

454 data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 13 26 39 52 65

M
ed

ia
n

qu
al

ity
 s

co
re

Position within read (bp)

BEAR
GemSIM

Grinder
SimSeq

Illumina data

Figure 5.3: Comparison of quality score distributions for real and simulated WGS datasets. Top:
Ion Torrent. Middle: 454. Bottom: Illumina. 454sim and MetaSim are excluded from the Ion Torrent
and Illumina plots, as MetaSim does not generate quality scores and 454sim generated reads with a
median quality score of 40 for all positions. GemSIM, 454sim, and SimSeq are unable to match the
read length distribution of the 454 data, and as a result their quality score traces end prior to position
860.

59

Figure 5.4: Comparison of quality score profiles generated by different types of Markov chains.
Quality profiles are represented here in box plot format. From the top: First-order Markov chain
using an average of previous qualities; First-order Markov chain; Second-order Markov chain; Real Ion
Torrent metagenomic sequence data. Figures were generated using PRINSEQ [70].

60

This feature also allows BEAR to potentially generate substitution, insertion, and deletion errors at any

possible read position, a feature that may not always be possible in GemSIM. GemSIM overestimated error

rates at the beginning of all reads, and underestimated error rates at the ends of long reads (typically the

most error prone region). GemSIM also overestimated the error rate at every position in the Illumina data.

Conversely, BEAR predicted increases in error rates as read length increased for all datasets, with error

models that more closely matched the real error rates.

5.1.4 Error-quality models

Error-quality models were generated for the datasets trained on the genomic Ion Torrent, 454, and Illumina

datasets (each error-quality model consisting of four substitution error-quality models, and one indel error-

quality model). Since BEAR is the only sequencing simulator that explicitly uses error-quality models, it

is the only program featured in this section. Each model was evaluated by plotting the average quality

scores from the real data for a given nucleotide and error type and superimposing the respective model on

top of it. The R2 values were used to determine how well each model fits to the respective dataset. The

resulting models for the guanine nucleotide can be seen in Figure 5.6. The nucleotide-specific substitution

errors did not appear to be substantially different for the Ion Torrent and 454/Pyrosequencing data, but there

were significant differences in the nucleotide-specific substitution models for the Illumina data, as shown in

Figure 5.7.

While there is sparse literature on the exact relationship between sequencing errors and quality scores

for specific technologies, we did observe that our Ion Torrent error-quality model predicts that substitution

errors would not have quality scores above Q20, which agrees with previously published results [10].

5.2 Effects of simple quality control measures on real and simu-

lated reads

The effects of a simple quality control pipeline were measured on real and simulated Ion Torrent data, all

consisting of 1,187,109 reads and approximately 200 million base pairs. Quality control statistics for each

dataset are shown in Table 5.2. For each Ion Torrent dataset, all reads not within one standard deviation

of the mean sequence length were removed. This step removed nearly 300,000 reads and over 30 million

base pairs from the real dataset, with slightly less being removed from the GemSIM and BEAR datasets

and far more being removed from the Grinder dataset. Less than 26 million base pairs were removed from

the GemSIM and BEAR datasets, but nearly 65 million were removed from the Grinder dataset. The

61

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0" 50" 100" 150" 200" 250"

Er
ro
r$r
at
e$
(fr
eq

ue
nc
y)
$

Posi3on$within$read(bp)

GemSIM"

DRISEE"

BEAR"

Ion"Torrent"data"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 100" 200" 300" 400" 500"

Er
ro
r$r
at
e$
(fr
eq

ue
nc
y)
$

Posi3on$within$read(bp)

GemSIM"

DRISEE"

BEAR"

Real"454"data"

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0.035"

0.04"

0.045"

0" 10" 20" 30" 40" 50" 60"

Er
ro
r$r
at
e$
(fr
eq

ue
nc
y)
$

Posi3on$within$read(bp)

GemSIM"

DRISEE"

BEAR"

Real"Illumina"data"

Figure 5.5: Overall error rates for real WGS data and error rates predicted by GemSIM, DRISEE,
and BEAR. Top: Ion Torrent data; Middle: 454 data; Bottom: Illumina data. Real error rates were
inferred by aligning reads to their respective reference genomes using Bowtie2. Error rates are displayed
as relative frequencies.

62

Figure 5.6: Substitution (solid line) and indel error-quality models (dashed line) generated by BEAR
compared to average quality scores of erroneous nucleotides in real NGS data (red and blue points
for substitution and indel errors, respectively). Average quality scores for all nucleotides are included
for comparison (green points). Substitution error-quality models are generated for all 4 nucleotides by
performing second-degree polynomial regression on error-quality data produced by BEAR. This figure
shows the data from guanine substitution errors. Top: Ion Torrent; Centre: 454/Pyrosequencing;
Bottom: Illumina.

63

Figure 5.7: Substitution error quality models (black lines) for three nucleotides in Illumina data
compared to actual quality scores (blue points). Top: Adenine; Centre: Cytosine; Bottom: Thymine.
The model for guanine is part of Figure 5.6.

64

Real data GemSim data Grinder data BEAR data
reads (# bp), pre-
filtering

1,187,109
(199,694,957)

1,187,109
(205,286,714)

1,187,109
(199,609,471)

1,187,109
(201,422,315)

reads (# bp) after
length filtering

884,748
(169,063,370)

925,411
(180,214,916)

805,527
(134,783,929)

914,023
(175,584,857)

reads (#bp) after
quality filtering

884,748
(166,677,676)

925,411
(176,818,912)

805,527
(134,783,929)

914,023
(171,501,924)

% remaining reads (%
bp)

74.53%
(83.47%)

77.96%
(86.13%)

67.86%
(67.52%)

76.99%
(85.15%)

Alignment rate 99.29% 100.00% 100.00% 100.00%
Average edit distance 4.60 3.62 0.61 2.02
Average % identity 97.36% 98.17% 99.63% 98.94%
Genome coverage 99.81% 99.94% 99.98% 99.97%

Table 5.2: Quality control statistics for real and simulated Ion Torrent data. Alignment rate refers
to the total proportion of contigs that aligned to the reference genome. Average edit distance is the
average number of insertions, deletions, and substitutions present in the contig when compared to the
reference genome. The methodology for calculating average percent identity is described in Section
4.4.2. Genome coverage was calculated by aligning contigs to the reference genome and using the
mpileup program found in SAMtools [46].

length-filtered datasets were then subjected to quality trimming, where each read would be trimmed to the

first position where the average quality is below 20. This step did not remove any full reads from any of

the datasets, but did remove between 2.4 and 4.1 million bp from the GemSIM, BEAR, and real datasets.

No base pairs were removed from the Grinder dataset. All simulated datasets reported lower average edit

distances and higher average percent identities, genome coverage, and alignment rates than the real dataset.

In terms of the total amount of sequencing data removed as a result of quality control, the BEAR data most

closely matched the real data. However, in terms of average percent identity and genome coverage, GemSIM

most closely matched the real data.

5.3 Evaluation of assembly programs using real and simulated

data.

The Velvet and MIRA assemblers were used to assemble simulated genomic Ion Torrent datasets from Grinder,

GemSIM, and BEAR in addition to a real E. coli Ion Torrent dataset. Assembly statistics for Velvet and

MIRA are found in Tables 5.3 and 5.4, respectively. Compared to MIRA, the Velvet assemblies had all lower

N50 values, more contigs, and smaller assembly sizes. Furthermore, the Velvet assemblies all had higher

average percent identities than those generated by MIRA, suggesting that Velvet results in a more accurate

assembly. Additionally, the Velvet assembly of the BEAR data had an average percent identity closest to

that of the real data, whereas the Velvet assembly of the GemSIM data had a more realistic genome coverage.

65

Real data GemSim data Grinder data BEAR data
contigs 3,880 1,192 1,272 580
N50 1,507 6,581 6,621 15,356
Largest contig size 8,454 78,567 29,056 78,558
Assembly size 3,646,829 4,381,255 4,444,487 4,454,030
Avg. alignment rate 99.87% 99.92% 99.92% 99.83%
Avg. % identity 99.69% 99.88% 99.99% 99.79%
Genome coverage 81.54% 94.89% 95.45% 95.33%

Table 5.3: Results of Velvet assemblies for real and simulated genomic Ion Torrent data.

Real data GemSim data Grinder data BEAR data
contigs 3,410 276 258 144
N50 6034 83,355 85,841 83,313
Largest contig size 37,657 236,668 326,619 352,736
Assembly size 5,457,632 4,563,018 4,554,200 4,508,725
Avg. alignment rate 98.77% 99.28% 100% 95.00%
Avg. % identity 99.56% 99.82% 99.91% 94.90%
Genome coverage 95.30% 94.64% 96.50% 77.85%

Table 5.4: Results of MIRA assemblies for real and simulated genomic Ion Torrent data.

By comparison, the MIRA assemblies were all larger than the respective Velvet assemblies. The Grinder

dataset and real dataset had higher coverages when assembled by MIRA, whereas the BEAR and GemSIM

had lower coverages. We also observed that the MIRA assemblies all had lower average percent identities than

those generated by Velvet, particularly the BEAR dataset. Additionally, MIRA generated a strange warning

message when assembling the BEAR dataset, shown in Figure 5.8. This warning messages suggests that

MIRA had difficulty assembling the BEAR dataset, which is also supported by the relatively low alignment

rate, average percent identity, and genome coverage for the BEAR dataset when compare to the other

assemblies. Documentation for this error is sparse, but seems to indicate that it is caused by a currently

unaddressed software bug in MIRA [15]. These results suggest that Velvet would be a more reliable general

purpose assembler when compared to MIRA, particularly if the goal is to generate accurate contigs. If the

goal of assembling is to generate a more complete assembly to the potential detriment of accuracy, MIRA

may be the better assembler program. With respect to read simulators generating data that can produce

realistic results from analysis, it would appear that BEAR and GemSIM both generate realistic results in

certain criteria (average percent identity and genome coverage, respectively) when using Velvet, but results

are inconclusive for MIRA as it was unable to assemble all of the datasets to a satisfactory degree.

5.3.1 Effects of GC profile emulation and sequencing errors on assembly

Three additional simulated datasets were assembled by Velvet to determine the effects of sequencing errors

and GC profile emulation on assembly: one dataset resulting from biased sampling with no sequencing errors,

66

MIRA warncode: CONCOV_SUSPICIOUS_DISTRIBUTION

Title: Suspicious distribution of contig coverages

- 0 contig(s) with a total of 0 bases (= -nan\% of bases in all non-repetitive

large contigs) have an average coverage less than 75\% of the average coverage

of all non-repetitive large contigs.

- 0 contig(s) with a total of 0 bases (= -nan\% of bases in all non-repetitive

contigs) have an average coverage more than 125\% of the average coverage of

all non-repetitive large contigs.

- 0 contig(s) with a total of 0 bases (= -nan\% of bases in all non-repetitive

contigs) have an average coverage 25\% above or below the average coverage of

all non-repetitive large contigs.

Summary: found 3 indicator(s) for coverage problem(s).

If the DNA you are assembling is bacterial, this could indicate that you sampled

and sequenced DNA from exponential or late exponential phase of a bacterial

population. This leads to a coverage bias toward the origin of replication,

hence false positive detection of repeats, hence an assembly which is more

fragmented than it could be or may have misassemblies in regions located toward

the opposite of the origin of replication.

Only available countermeasure: for your next sequencing project, do not sample

in exponential phase but sample in stationary phase (if possible).

Figure 5.8: Critical warning message produced by MIRA when assembling simulated genomic Ion
Torrent data generated by BEAR.

67

Real
data

Bias, no er-
rors

No bias, no
errors

No bias, er-
rors

Bias, errors

contigs 3,880 311 219 580 1,891
N50 1507 40,263 78,894 15,356 3,935
Largest contig
size

8,454 225,820 326,338 78,558 16,748

Assembly size 3,646,829 4,393,893 4,483,477 4,454,030 3,919,070
Avg. alignment
rate

99.87% 99.68% 98.63% 99.83% 100.00%

Avg. % identity 99.69% 99.68% 99.92% 99.79% 99.71%
Genome cover-
age

81.54% 94.05% 92.87% 95.33% 85.54%

Table 5.5: Results of Velvet assemblies for biased real data, and both biased and unbiased simulated
data.

one with both biased sampling and sequencing errors, and one without biased sampling or sequencing errors.

The assembly statistics for these three datasets compared to the real data and an unbiased-with-errors dataset

(labelled ‘BEAR data’ in Table 5.3) can be found in Table 5.5. From these results, we can see that generating

data with either sequencing errors or biased sampling can affect assembly by reducing the accuracy of the

contigs, increasing the total number of contigs, and decreasing the maximum contig size and N50 value.

However, it appears that these effects are compounded when using a dataset with both sequencing errors and

biased sampling. Additionally, including both biased sampling and sequencing errors in a simulated dataset

can substantially reduce the total genome coverage of the contigs and the total assembly size. Furthermore,

we observe that, when considering all seven assembly statistics as a whole, the simulated dataset with both

biased sampling and sequencing errors more closely matches the assembly of the real data than any assembly

of simulated data in Tables 5.3 or 5.5. This suggests that GC profile emulation and sequencing errors both

may be necessary components of a given sequencing data simulation strategy. However, of all the programs

evaluated in this thesis, only BEAR is able to emulate both error rates and GC profile emulation.

5.4 Evaluation of metagenomics classification tools with BEAR

Three simulated metagenomics datasets generated by BEAR were used to compare the classification tools

MetaPhlAn and MEGAN. The first metagenomic dataset contained reads sampled from the 2,062 bacterial

genomes present in the NCBI Genomes database following a low-evenness abundance profile. The results of

the classification tools can be found in Figure 5.9. From this dataset, MetaPhlAn classified the reads to only

four species while MEGAN failed to classify any reads at the species level.

The second dataset had the same characteristics as the first, but each individual genome was subjected

to biased sampling based on the GC profile of real Ion Torrent metagenomic data made available to our

68

lab. The results from classifying these reads are shown in Figure 5.10. For this dataset, both tools classified

the reads with an abundance profiles that would be typical of low-evenness environments with MetaPhlAn

predicting a range of abundances on the order of 4 logs. However, MetaPhlAn greatly overestimated the

degree to which the most abundant species was present, with over two-thirds of the reads being classified to a

single species. Additionally, MetaPhlAn only predicted that 27 species were present in the sample. MEGAN

performed better on this dataset, predicting 1,879 species in the dataset. MEGAN exhibited the opposite

behaviour of MetaPhlAn by underestimating the dominance of the two most abundant species in the dataset.

The third dataset consisted of 122 genomes present in equal abundances. This dataset used the same GC

profile as the previous one, but with the sampling applied across all genomes at once so that the abundances

of each genome could be affected by the biased sampling. Both MEGAN and MetaPhlAn overestimated the

number of species in the dataset, classifying the reads to 1,036 and 277 species, respectively. MetaPhlAn

overestimated the abundances of the four most prominent organisms to a greater degree than MEGAN, but

MEGAN overestimated the abundances of the 45 subsequent organisms that MetaPhlAn had accurately

predicted.

Overall, both programs performed far better on the datasets that had incorporated biased sampling during

simulation. The dataset with unbiased sampling was classified very poorly by both programs (Figure 5.9).

This would be contrary to expectations, as it would be expected that an unbiased dataset would be ‘simpler’

and therefore easier to classify. Of the two datasets that used biased sampling, MEGAN appeared to predict

a more accurate abundance profile for the second dataset (Figure 5.10) while MetaPhlAn performed better

on the third dataset (Figure 5.11). Thus, it appears that the results of this analysis are inconclusive, as

neither of the two programs clearly outperformed the other. However, Figure 5.11 does provide support for

our methodology for performing biased sampling, as neither program predicted that all organisms are present

with equal abundances.

69

Figure 5.9: Results of classification for a simulated metagenomic dataset consisting of 1 million reads
from 2,062 genomes. This figure only shows results up to the first 122 genomes. Organisms were sorted
by their relative abundance and assigned a ranking based on this abundance.

Figure 5.10: Results of classification for a simulated metagenomic dataset consisting of 1 million
reads from 2,062 genomes each being individually subjected to biased sampling. This figure only
shows results up to the first 122 genomes. Organisms were sorted by their relative abundance and
assigned a ranking based on this abundance.

70

Figure 5.11: Results of classification for a simulated metagenomic dataset consisting of 1 million
reads from 122 concatenated genomes subjected to biased sampling. This figure only shows results up
to the first 122 genomes identified by the classifiers. MEGAN and MetaPhlAn classified the reads to
1,036 and 277 species, respectively. Organisms were sorted by their relative abundance and assigned
a ranking based on this abundance.

71

Chapter 6

Discussion, Conclusion, and Future Work

In this thesis, we presented a software suite called BEAR which provides improved emulation of (meta)genomic

sequence reads. BEAR was compared to other sequence-read simulators, and various analyses were performed

on real and simulated data to evaluate the programs’ simulation strategy. In Section 6.1, we discuss and

interpret the results presented in Chapter 5. In Section 6.2, we summarize the conclusions that can be drawn

from the results. The chapter ends with Section 6.3, in which we present a number of potential avenues and

possibilities for future work with BEAR.

6.1 Discussion

6.1.1 BEAR provides improved emulation of reads without aligning to a refer-

ence genome

The results in the previous chapter suggest that BEAR can be particularly useful for simulating raw genomic

reads from NGS technologies such as Ion Torrent, which exhibit characteristics that most current programs

are unable to emulate well. The results presented in Table 5.2 demonstrate the importance of properly em-

ulating the read length distribution of a set of reads. While GemSIM and BEAR almost perfectly modelled

the distribution (see Figure 5.2), Grinder could only generate reads following a normal distribution. By

subjecting the real and simulated reads to quality control measures, we were able to observe that filtering by

read length removed far too many reads from the Grinder dataset (nearly one-third of the reads removed)

while the GemSIM and BEAR datasets were quite close to the real data, in the range of 23% to 25.5% of the

total reads being removed. Additionally, this same table demonstrates the importance of emulating quality

scores correctly when subjecting simulated data to quality score-based filtering. The GemSIM, BEAR, and

real datasets all had between 2.4 and 4 million base pairs removed by quality filtering, but the simple qual-

ity score model used by Grinder failed to result in even a single nucleotide being removed by the quality filter.

72

6.1.2 Cases where BEAR outperforms GemSIM

Figure 5.3 suggests that the general decline in median quality across the length of the read in actual Ion

Torrent data is captured both by our position-dependent Markov chain-based approach, and the alignment-

based context-dependent method used by GemSIM. However, for the 454 and Illumina datasets where the

reads did not align as well to the reference genome, BEAR clearly emulated the read length and quality

distributions better than GemSIM. This may be because generating realistic reads in GemSIM is largely

dependent on a set of reads aligning accurately to a reference genome, and in the case of the 454 and

Illumina data, the reads were not as high-quality as the Ion Torrent reads. The dependence on a “good

alignment” allows us to propose two situations where BEAR could be used instead of GemSIM:

1. BEAR may be quite useful for emulating “questionable” sequence runs, in which the overall quality of

the reads may not be simple to ascertain. These low-quality reads are likely to align poorly (or not at all)

to a reference genome. Reads with poor (or no) alignment would not be included in the construction of

the GemSIM error model, excluding a large portion of reads and resulting in an unrealistic simulation.

BEAR may be more appropriate in this situation, as it does not rely on alignment to a reference genome

to construct its error model.

2. Direct emulation of characteristics of metagenomic sequencing runs. If one were to create an error

model using metagenomic data in GemSIM, it would be necessary to align the metagenomic reads to

all genomes in a database. This can be an extremely time-consuming operation if the number of reads

and number of genomes are sufficiently large. Additionally, if there are reads from novel organisms in

the sequence run which are not closely related to the organisms in the database, then there is a good

chance that they will not align properly to any genomes. This, much like the previous item, can lead

GemSIM to create an incorrect error model. Again, this problem may be avoided by BEAR provided

there is a sufficient number of duplicate reads in the dataset.

6.1.3 BEAR and GemSIM: a new family of sequencing simulators

BEAR (like GemSIM) is capable to adapting to changes in NGS technology. For example, if the technology

for a sequencing platform is modified to extend read length and quality characteristics, BEAR would be

able to generate simulated data with these new qualities with no modifications. We also demonstrated that

BEAR performs well with both genomic and metagenomic data, exhibiting versatility that is lacking in other

existing programs. Thus, we believe that BEAR belongs in a new category of sequencing simulator programs

without the need for external parameter calibration.

73

6.1.4 State-of-the-art sequence-read simulators still underperform compared to

real data

In Sections 5.2 and 5.3, we attempted to compare the results of quality control pipelines and sequence

assemblers using real and simulated data. While GemSIM and BEAR were able to achieve realistic results

from the quality control analysis, nearly all assemblies of simulated data were ‘better’ in all metrics than

the assemblies of the real data. This is a commonly observed phenomenon, and it is often argued that

simulated sequence data is too clean, and results from an analysis using simulated data are unrealistically

complete and accurate. Although subsequent generations of sequencing simulator programs use more robust,

sophisticated error models and use techniques that directly emulate other characteristics of a sample of reads

(e.g., GemSIM and BEAR), we still observe that even these new sequencing simulators can fail to generate

results closely resembling those of real data. We propose two reasons for why this may be:

1. It may be the case that simulated data allows for complete results to be derived from incomplete,

real data. Using genome assembly as an example, there are many regions of a genome that are ex-

tremely difficult to assemble due to being composed entirely of long, repetitive, low-complexity strings

of nucleotides. These repeat regions are extremely problematic for assembler programs and are often

ignored, as read lengths are often too short to extend beyond the repetitive region. This results in

many published genome assemblies having long stretches of nucleotides that are not fully sequenced

(usually denoted as an ’N’ placeholder nucleotide in FASTA format, if at all). Given that these low

complexity regions are not present in the genomes that sequence-read simulator programs sample reads

from, it would then be expected that a given analysis derived from this simulated data would be easier

for a program to perform, as there is only high-complexity, informative sequences from which to derive

results.

2. We observed that the best (i.e., most realistic) assembly of simulated data came from the BEAR reads

that incorporated both sequencing errors and a GC profile. Thus, it is likely the case that it is not

enough for a given sequence-read simulator program to simply randomly sample reads from genomes

and superimpose an error model on top of the read; sequencing biases must be taken into account as

well.

Furthermore, while surveying the literature that introduced the sequencing simulators used in this paper,

we observed that none of the papers included any sort of analysis in which the results using simulated data

74

were compared to real data. Rather, the level of analysis provided was similar to the results presented Section

5.1 of this thesis, where the characteristics of the raw simulated data were compared to the characteristics

of the real data. As observed in Section 5.2 and 5.3, this level of analysis is an insufficient demonstration of

the efficacy of a simulation strategy used by a given simulator program. Although simulated sequence-read

data generated by different programs can produce different results, the results of analyses using simulated

data from the best simulators tended to resemble those using data from ‘worse’ simulators rather than the

results one gets from using real data.

Another larger issue with sequencing simulation is that, while it is well-established the volume of bio-

logical sequence data is constantly increasing, the same can not currently be said for the quality of data.

Although manufacturers claim lower error rates with subsequent iterations of each sequencing technologies,

core problems (e.g., homopolymer errors for 454 and Ion Torrent sequencing, GC bias, sequencing artifacts,

low-complexity region sequencing) still remain and lack in-depth characterization. Even with improved er-

ror rates, pre-sequencing/preparatory processes such as PCR have been known to be a significant cause of

sequencing errors, particularly for amplicon and single-genome studies where amplification is a necessary

process to obtain sufficient sequencing depth. That is, it could also be argued that real biological sequence

data is still too noisy, and that results from analyses using this data failing to account for this “noise” risk

being incomplete.

6.2 Conclusion

This paper presented BEAR, a tool for generating simulated reads based on empirically-derived read length

distributions and quality scores. The approach used by BEAR for generating data eliminates the need for

parameter tuning, allowing for an easy-to-use interface; at minimum, the user need only provide a sample

of data that has the desired properties of the reads to be emulated, the number of reads to generate, and

the genome(s) from which to sample reads. We demonstrated that BEAR is superior to popular, existing

artificial read generation programs in terms of producing reads with realistic read length and quality score

distributions. While state-of-the-art programs such as GemSIM give comparable results in this regard, BEAR

has additional features that make it more suitable for metagenomics applications, such as automatically

producing community profiles and the lack of reliance on a reference genome. This also makes BEAR suitable

for emulating any type of WGS sequencing run where the reads do not align sufficiently well to a reference

genome. We have demonstrated that BEAR can be used for metagenomics research, and we believe that one

of the best uses for BEAR will be for simulating metagenomic reads from emerging and consistently-updated

technologies such as Ion Torrent, as there are few programs available that can capture their behaviour with

75

respect to read length and overall quality scores. Furthermore, the tools included with BEAR are not just

limited to metagenomics, as we have demonstrated that it may be useful for evaluating assembler programs,

which are usually used for genomic data. Additionally, we present an alignment-free algorithm that allows

for the GC profile of a given set of reads to be emulated, which can prove useful for evaluating the effects

that GC bias may have on the results of a given analysis.

6.3 Future work

In this section, we the following potential avenues and improvements that could be made to BEAR:

• BEAR could be expanded to directly emulate amplicon datasets. As mentioned in Section 2.6, amplicon

sequencing is commonly used to estimate the number of unique species in a given sample by sequencing

only the well-conserved genetic sequences unique to each organism (e.g., 16S rRNA gene has regions

that bind to ‘universal primers’ and have regions unique to each species) and then amplifying the

sequences. Grinder is currently the only sequencing simulator program that can simulate amplicon

sequencing, so identifying shortcomings in the Grinder approach (e.g., simplified error models, lack of

amplicon sequencing-specific biases) could be used to inform the design of this feature in BEAR.

• Previous work by Ross et al. demonstrated that sequences with extreme GC content values had higher

error rates than sequences with more moderate GC content values [65]. BEAR, then, could have two

error models: one for high/low GC content sequences with higher error rates, and an error model with

more moderate error rates for the sequences with more moderate GC contents.

• In this thesis, we only compared the simulated reads to real Ion Torrent, pyrosequencing, and Illumina

reads. As mentioned in Section 2.2.4, there are a number of emerging technologies that may soon be

commonplace. Thus, it may prove useful to evaluate the ability of these programs to simulate, for

example, reads generated by SMRT sequencing. The extremely long read lengths may provide new

challenges for this domain, and current approaches used by sequencing simulators (e.g., the alignment-

based approach used by GemSIM) may be too computationally demanding for this task.

• Current sequencing simulators operate under the assumption that errors are distributed uniformly

among all reads. That is, some arbitrary read r1 in a sample S would have the same error model

as another arbitrary read r2. However, previous work by Huse et al. demonstrated that this is not

necessarily the case [32]. The authors observed of their dataset: “82% [of the reads] had no errors, 93%

had no more than a single error, and 96% had no more than 2 errors. Conversely, a small number of

reads, fewer than 2%, contained a disproportionate number of errors that account for nearly 50% of

76

the miscalls for the entire dataset.” That is to say, a small proportion of the reads have most of the

sequencing errors while a majority of the reads have little or no errors. It may prove useful to develop

a method that could identify this small subset of error-prone reads in a sample (preferably without

aligning to a reference genome, for metagenomics experiments) so that BEAR could have separate

error models for these error-prone and not-error-prone reads. If the proportion of “bad” reads in a

dataset could be inferred, the simulated reads could be classified as “good” or “bad” and then have the

appropriate error model superimposed on each read.

• Similarly to the second point, it may be worth investigating to see if certain “classes” of quality strings

exist. In its current form, BEAR uses the same Markov chain to generate quality strings for all reads in

a sample. However it may be the case, for example, one class of reads exhibits a simple linear decrease

in quality while a second class exhibits a sharp drop-off in quality after a certain position, and a third

class of reads may just be “random noise” (i.e., no clear trend between the quality score and position

within the read). If this could be experimentally validated, BEAR could then have one Markov chain

per “class” of reads.

• Following up on the hypothesis proposed in Section 6.12, it may prove interesting to perform some

sort of complexity analysis to address the fact that simulated reads may be lacking in low-complexity

sequences due to the difficulty of assembling low-complexity sequence regions. This would require the

development of robust comparative metrics for DNA sequence complexity such that the complexity

of a published genome sequence (or simulated reads derived from the genome) could be compared to

the complexity of a set of unassembled real reads. If our analysis demonstrates that there is, in fact,

a difference between the complexity of real reads and the complexity of the genome, then would be

useful to determine what proportion of the real reads are composed of these low complexity regions and

develop methods that could increase the presence of low-complexity regions into the simulated data.

• BEAR currently uses a command-line interface, which can be cumbersome for many users. In the

future it would be useful to design a GUI to execute the programs used by BEAR. Additionally, it

would likely be convenient for many users if the GUI was implemented using the widely-used Galaxy

workflow environment [27].

77

References

[1] D Aird, MG Ross, WS Chen, M Danielsson, T Fennell, C Russ, DB Jaffe, C Nusbaum, and A Gnirke.
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biology,
12:R18, 2011.

[2] FW Allen. The Biochemistry of the Nucleic Acids, Purines, and Pyrimidines. Annual Review of Bio-
chemistry, 10:221–1146, 1941.

[3] FE Angly, D Willner, F Rohwer, P Hugenholtz, and GW Tyson. Grinder: a versatile amplicon and
shotgun sequence simulator. Nucl. Acids Res., 40(12):e94, 2012.

[4] FE Angly, D Willner, F Rohwer, P Hugenholtz, and GW Tyson. http://sourceforge.net/projects/
biogrinder/files/biogrinder/Grinder-0.4.7/, 2012. [Online, accessed May 25, 2014].

[5] S Balzer, K Malde, and I Jonassen. Systematic exploration of error sources in pyrosequencing flowgram
data. Bioinformatics, 27(13):i304–i309, 2011.

[6] S Balzer, K Malde, A Sharma, and I Jonassen. Characteristics of 454 pyrosequencing data–enabling
realistic simulation with flowsim. Bioinformatics, 26(18):i420–5, 2010.

[7] JMS Bartlett and D Stirling. A Short History of the Polymerase Chain Reaction. PCR Protocols,
226:3–6, 2003.

[8] DR Bentley, S Balasubramanian, HP Swerdlow, GP Smith, and J Milton et al. Accurate Whole Genome
Sequencing using Reversible Terminator Chemistry. Nature, 456(7218):53–59, 2008.

[9] KR Bradnam, JN Fass, A Alexandrov, P Baranay, M Bechner, I Birol, S Boisvert, JA Chapman,
G Chapuis, R Chikhi, H Chitsaz, WC Chou, J Corbeil, C Del Fabbro, TR Docking, R Durbin, D Earl,
S Emrich, P Fedotov, NA Fonseca, G Ganapathy, RA Gibbs, S Gnerre, E Godzaridis, S Goldstein,
M Haimel, G Hall, D Haussler, JB Hiatt, and IY Ho et al. Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. GigaScience, 2:10, 2013.

[10] LM Bragg, G Stone, MK Butler, P Hugenholtz, and GW Tyson. Shining a Light on Dark Sequencing:
Characterizing Errors in Ion Torrent PGM data. PLoS Comp. Biol., 9(4):e1003031, 2013.

[11] J Brodin, M Mild, C Hedskog, E Sherwood, T Leitner, B Andersson, and J Albert. PCR-Induced
Transitions Are the Major Source of Error in Cleaned Ultra-Deep Pyrosequencing Data. PLoS One,
8(7):e70388, 2013.

[12] MJ Chaisson and PA Pevzner. Short read fragment assembly of bacterial genomes. Genome Res.,
18:324–330, 2007.

[13] YC Chen, T Liu, CH Yu, TY Chaing, and CC Hwang. Effects of GC Bias in Next-Generation-Sequencing
Data on De Novo Genome Assembly. PLoS One, 8(4):e62856, 2013.

[14] B Chevreux. MIRA: An Automated Genome and EST Assembler. German Cancer Research Center,
Heidelberg, 2005.

[15] B Chevreux. http://sourceforge.net/p/mira-assembler/tickets/7/, 2014. [Online, accessed July
7, 2014].

78

http://sourceforge.net/projects/biogrinder/files/biogrinder/Grinder-0.4.7/
http://sourceforge.net/projects/biogrinder/files/biogrinder/Grinder-0.4.7/
http://sourceforge.net/p/mira-assembler/tickets/7/

[16] FH Crick. Central Dogma of Molecular Biology. Nature, 227:561–563, 1970.

[17] J Dabney and M Meyer. Length and GC-biases during sequencing library amplification: A comparison of
various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques,
52(2):87–94, 2012.

[18] R Dahm. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human
Genetics, 122(6):565–581, 2008.

[19] JC Dohm, C Lottaz, T Borodina, and H Himmelbauer. Substantial biases in ultra-short read data sets
from high-throughput dna sequencing. Nucl. Acids Res., 36(16):e105, 2008.

[20] D Earl, K Bradnam, J St John, A Darling, D Lin, J Fass, HO Yu, V Buffalo, DR Zerbino, M Diekhans,
N Nguyen, PN Ariyaratne, WK Sung, Z Ning, M Haimel, JT Simpson, NA Fonseca, I Birol, TR Docking,
IY Ho, DS Rokhsar, R Chikhi, D Lavenier, G Chapuis, D Naquin, N Maillet, MC Schatz, DR Kelley,
AM Phillippy, and S Koren et al. Assemblathon 1: A competitive assessment of short read assembly
methods. Genome Res., 21:2224–2241, 2011.

[21] RC Edgar. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19):2460–
2461, 2010.

[22] Editorial. The human genome at ten. Nature, 464:649–650, 2010.

[23] J Eid, A Fehr, J Gray, K Luong, J Lyle, G Otto, P Peluso, and D Rank et al. Real-Time DNA Sequencing
from Single Polymerase Molecules. Science, 323(5910):133–138, 2008.

[24] B Ewing, L Hillier, MC Wendl, and P Green. Base-calling of automated sequencer traces using phred.
I. Accuracy assessment. Genome Res., 8(3):175–185, 1998.

[25] W Fiers, R Contreras, F Duerinck, G Haegeman, D Iserentant, and J Merregaert et al. Complete
nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene.
Nature, 260(5551):500–507, 1976.

[26] C Gabriel, D Furst, I Fae, S Wenda, C Zollikofer, J Mytilineos, and GF Fischer. Hla typing by next-
generation sequencing getting closer to reality. Tissue Antigens, 83(2):65–75, 2014.

[27] J Goecks, A Nekrutenko, J Taylor, and T Galaxy Team. Galaxy: A comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life sciences. Genome
Biology, 11(8):R86, 2010.

[28] V Gomez-Alverez, TK Teal, and TM Schmidt. Systematic artifacts in metagenomes from complex
microbial communities. The ISME Journal, 3:1314–1317, 2009.

[29] MA Grohme, RF Soler, M Wink, and M Frohme. Microsatellite marker discovery using single
molecule real-time circular consensus sequencing on the Pacific Biosciences RS. BioTechniques,
55(5):doi:10.2144/000114104, 2013.

[30] Y Guo, C Li, J Long, DC Samuels, and Y Shyr. The effect of strand bias in illumina short-read sequencing
data. BMC Genomics, 13:666, 2012.

[31] X Huang and A Madan. CAP3: A DNA Sequence Assembly Program. Genome Res., 9(9):868–877,
1999.

[32] SM Huse, JA Huber, HG Morrison, ML Sogin, and DM Welch. Accuracy and quality of massively
parallel DNA pyrosequencing. Genome Biol, 8:R143, 2007.

[33] DH Huson, AF Auch, J Qi, and SC Schuster. MEGAN Analysis of Metagenomic Data. Genome Research,
17:377–386, 2007.

[34] L Janin, G Rosone, and AJ Cox. Adaptive reference-free compression of sequence quality scores. Bioin-
formatics, 30(1):24–30, 2014.

79

[35] LJ Jensen, C Friis, and DW Ussery. Three views of microbial genomes. Research in Microbiology,
150(9-10):773–777, 1999.

[36] S Johnson. Analysis and Comparison of Filtering Techniques for Metagenomic Data. Unpublished
technical report, Department of Computer Science, University of Saskatchewan.

[37] S Johnson, B Trost, and A Kusalik. Improved quality score generation for erroneous nucleotides in
simulated (meta)genomic data, 2014. Poster session presented at HiTSeq 2014; 2014 July 11-12; Boston,
MA.

[38] S Johnson, B Trost, JR Long, and A Kusalik. A better sequence-read generator program for metage-
nomics. journal.embnet.org, 19.A:49, 2013. Poster abstract from The Next NGS Challenge Conference;
2013 May 14-16; Valencia, Spain.

[39] S Johnson, B Trost, JR Long, V Pittet, and A Kusalik. A better sequence-read simulator program
for metagenomics. Proceedings from RECOMB-Seq: Fourth annual RECOMB satellite workshop on
massively parallel sequencing, pages 246–257, 2014.

[40] JJ Kasianowicz, E Brandin, D Branton, and DW Deamer. Characterization of individual polynucleotide
molecules using a membrane channel. Proc Natl Acad Sci U S A, 93(24):13770–13773, 1996.

[41] KP Keegan, WL Trimble, J Wilkening, A Wilke, T Harrison, M D’souza, and F Meyer. A platform-
independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS Comp. Biol.,
8:e1002541, 2012.

[42] E Kellenberger. Bacterial Chromosome. eLS, 2006. doi:10.1038/npg.els.0004342.

[43] B Langmead and S Salzberg. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9:357–359,
2012.

[44] J Lederberg. ‘Ome Sweet ‘Omics - A Genealogical Treasury of Words. The Scientist, 15:8, 2001.

[45] H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, and R Durbin.
The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[46] H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, and R Durbin.
The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[47] Z Li, Y Chen, and D Mu. Comparison of the two major classes of assembly algorithms: overlap-layout
consensus and de-bruijn-graph. Brief Funct Genomics, 11(1):25–37, 2011.

[48] J Lightfield, NR Fram, and B Ely. Across Bacterial Phyla, Distantly-Related Genomes with Similar
Genomic GC Content Have Similar Patterns of Amino Acid Usage. PLoS One, 6(3):e17677, 2011.

[49] MS Lindner and BY Renard. Metagenomic abundance estimation and diagnostic testing on species level.
Nucleic Acids Research, 41(1):e10, 2013.

[50] L Liu, Y Li, S Li, Y He, R Pong, D Lin, L Lu, and M Law. Comparison of Next-Generation Sequencing
Systems. Journal of Biomedicine and Biotechnology, 2012:1–11, 2012.

[51] NJ Loman, RV Misra, TJ Dallman, C Constantinidou, SE Gharbia, J Wain, and MJ Pallen. Performance
comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30:434–439, 2011.

[52] C Luo, D Tsementzi, N Kyrpides, T Read, and KT Konstantinidis. Direct Comparisons of Illumina
vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample. PLoS One,
7(3):10.1371/journal.pone.0030087, 2012.

[53] F Lysholm, B Andersson, and B Persson. An efficient simulator of 454 data using configurable statistical
models. BMC Research Notes, 4:449, 2011.

80

[54] K Mavromatis, N Ivanova, K Barry, H Shapiro, E Goltsman, EC McHardy, I Rigoutsos, A Salamov,
F Korzeniewski, M Land, A Lapidus, I Grigoriev, P Richardson, P Hugenholtz, and NC Kyrpides. Use
of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods,
4:495–500, 2007.

[55] KE McElroy, F Luciani, and T Thomas. GemSIM: general, error-model based simulator of next-
generation sequencing data. BMC Genomics, 13:74, 2012.

[56] M Pignatelli and A Moya. Evaluating the fidelity of de novo short read metagenomic assembly using
simulated data. PLoS One, 6(5):e19984, 2011.

[57] V Pittet, E Ewen, B.R Bushell, and B Ziola. Genome sequence of Lactobacillus rhamnosus ATCC 8530.
J. Bacteriol., 194(3):726, 2012.

[58] V Pittet, TG Phister, and B Ziola. Transcriptome Sequence and Plasmid Copy Number Analysis
of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer. PLoS One,
8(9):e73627, 2013.

[59] R Poretsky, LM Rodriguez-R, C Luo, T Despina, and KT Konstantinidis. Strengths and Limitations of
16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics. PLoS
One, 9(4):e93827, 2014.

[60] KD Pruitt, GR Brown, SM Hiatt, F Thibaud-Nissen, A Astashyn, O Ermolaeva, CM Farrell, J Hart,
MJ Landrum, KM McGarvey, MR Murphy, NA O’Leary, S Pujar, B Rajput, SH Rangwala, LD Riddick,
A Shkeda, H Sun, P Tamez, RE Tully, C Wallin, D Webb, J Weber, W Wu, M Dicuccio, P Kitts,
DR Maglott, TD Murphy, and JM Ostell. RefSeq: an update on mammalian reference sequences.
Nucleic Acids Res., [ePub], 2013.

[61] MA Quail, M Smith, P Coupland, TD Otto, SR Harris, TR Connor, A Bertoni, HP Swerdlow, and Y Gu.
A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and
Illumina MiSeq sequencers. BMC Genomics, 13(1):341, 2012.

[62] MS Rappe and SJ Giovannoni. The Uncultured Microbial Majority. Annual Review of Microbiology,
57:369–394, 2003.

[63] DC Richter, F Ott, AF Auch, R Schmid, and DH Huson. MetaSim - A sequencing simulator for genomics
and metagenomics. PLoS One, 3(10):e3373, 2008.

[64] M Ronaghi, M Uhlen, and P Nyren. A Sequencing Method Based on Real-Time Pyrophosphate. Science,
281(5375):363–365, 1998.

[65] MG Ross, C Russ, M Costello, A Hollinger, NJ Lennon, R Hegarty, C Nusbaum, and DB Jaffe. Char-
acterizing and measuring bias in sequencing data. Genome Biology, 14:R51, 2013.

[66] N Rusk. Torrents of sequence. Nature Methods, 8(44):doi:10.1038/nmeth.f.330, 2011.

[67] F Sanger, G Air, BG Barrell, NL Brown, AR Coulson, JD Fiddes, CA Hutchison, PM Slocombe, and
M Smith. Nucleotide sequence of bacteriophage Phi-X174 DNA. Nature, 265(5596):687–695, 1977.

[68] M Schirmer, L D’amore, N Hall, and C Quince. Error profiles for next generation sequencing technologies.
EMBnet.journal, 19:81–83, 2013.

[69] CW Schmidt. Data Explosion: Bringing Order to Chaos with Bioinformatics. Environ. Health Perspect.,
111:a340–a345, 2003.

[70] R Schmieder and R Edwards. Quality control and preprocessing of metagenomic datasets. Bioinformat-
ics, 27:863–864, 2011.

[71] N Segata, L Waldron, A Ballarini, V Narasimhan, O Jousson, and C Huttenhower. Metagenomic
microbial community profiling using clade-specific marker genes. Nature Methods, 8:811–814, 2012.

81

[72] J St. John. http://github.com/jstjohn/SimSeq/, 2012. [Online, accessed May 25, 2014].

[73] J St. John. http://github.com/jstjohn/SimSeq/issues/4, 2012. [Online, accessed May 25, 2014].

[74] M Susman. Genes: Definition and Structure. eLS, 2014. doi:10.1002/9780470015902.a0001494.pub3.

[75] CM Thomas and D Summers. Bacterial Plasmids. eLS, 2008. doi:10.1002/9780470015902.a0000468.pub2.

[76] J Thompson, F Plewniak, and O Poch. BAliBase: A benchmark alignments database for the evaluation
of multiple sequence alignment programs. Bioinformatics, 15:87–88, 1999.

[77] B Trost. Evaluation of database search methods for the functional and taxonomic analysis of wgs reads,
2013. Unpublished technical report, Department of Computer Science, University of Saskatchewan.

[78] H Tuomisto. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia,
4:853860, 2010.

[79] RL Waren, GG Sutton, SJ Jones, and RA Holt. Assembling millions of short DNA sequences using
SSAKE. Bioinformatics, 23(4):500–501, 2007.

[80] JD Watson and FH Crick. Molecular structure of nucleic acids. Nature, 171(4536):737–738, 1953.

[81] J Wooley, A Godzik, and I Friedberg. A Primer on Metagenomics. PLoS Comp. Biol., 6(2):e1000667,
2010.

[82] AZ Worden, J Janouskovec, D McRose, A Engman, and RM Welsh. Global distribution of a wild alga
revealed by targeted metagenomics. Current Biology, 22(17):R682–R683, 2012.

[83] M Xu, D Fujita, and N Hanagata. Perspectives and challenges of emerging single-molecule DNA se-
quencing technologies. Small., 5(23):2638–49, 2009.

[84] D R Zerbino and E Birney. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.
Genome Research, 18(5):821–829, 2008.

[85] Y Zhao, H Tang, and Y Ye. RAPSearch2: a fast and memory-efficient protein similarity search tool for
next-generation sequencing data. Bioinformatics, 28(1):125–6, 2012.

82

http://github.com/jstjohn/SimSeq/
http://github.com/jstjohn/SimSeq/issues/4

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Foundation of molecular biology
	Next-generation sequencing
	Pyrosequencing
	Ion semiconductor sequencing
	Illumina/Reversible dye terminator sequencing
	Prospective technologies

	Sequencing errors
	Quality scores

	Common file formats for sequence analysis
	FASTA
	FASTQ
	SAM
	SFF

	GC bias
	Metagenomics
	Community profiling
	Sequence assembly
	Read simulation
	Current sequence-read simulator programs
	Common features
	454sim
	SimSeq
	MetaSim
	Grinder
	GemSIM

	Research Goals
	Creating BEAR
	Analyzing data from sequencing simulator programs
	Analyzing programs using simulated data
	Using simulated data to evaluate assembly programs
	Using simulated data to evaluate metagenomics classification programs

	Data and Methodology
	Real data
	Design
	Abundance profile generation
	Error model generation
	Read generation
	Read trimming and error incorporation

	Implementation
	Abundance profile generation
	Error rate emulation
	Error-quality modelling
	Generating uniform-length reads
	Read-length distribution emulation
	Quality score profile emulation
	GC profile emulation

	Evaluation
	Comparison of sequence simulator programs
	Evaluating assembly programs
	Evaluating metagenomics classification tools

	Results
	Evaluation of BEAR and comparison of BEAR to other sequencing simulators
	Read-length distributions
	Quality score profiles
	Error rates
	Error-quality models

	Effects of simple quality control measures on real and simulated reads
	Evaluation of assembly programs using real and simulated data.
	Effects of GC profile emulation and sequencing errors on assembly

	Evaluation of metagenomics classification tools with BEAR

	Discussion, Conclusion, and Future Work
	Discussion
	BEAR provides improved emulation of reads without aligning to a reference genome
	Cases where BEAR outperforms GemSIM
	BEAR and GemSIM: a new family of sequencing simulators
	State-of-the-art sequence-read simulators still underperform compared to real data

	Conclusion
	Future work

	References

