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ABSTRACT

Industrial applications increasingly require actuators that offer a combination of high force

output, large stroke and high accuracy. The ElectroHydraulic Actuator (EHA) was designed by Drs.

Habibi and Goldenberg originally as a high-performance actuator for use in robotics. However, it

was determined that the EHA had the potential to achieve high positional accuracy. Little research

has been performed in the area of high-accuracy hydraulic positioning systems. Therefore, the

objective of this study to achieve nano-scale positional accuracy with the EHA while maintaining

large stroke and high force output. It was planned to achieve this objective through modification of

the prototype EHA and the use of fuzzy control.

During this research project, both hardware and control system modifications to the EHA were

performed. A high-precision optical encoder position sensor with a 50 nm resolution was mounted

on the inertial load to directly measure the position of the load. A number of device drivers were

written to interface the MATLAB real-time control environment with the optical encoder and servo

motor amplifier. A Sugeno-inference fuzzy controller was designed and implemented in MAT-

LAB. For comparison purposes, a switched-gain controller and a proportional controller were also

implemented in the control environment.

The performance of the fuzzy controller was compared to the switched-gain controller and

the proportional controller in a number of tests. First, the regulatory and tracking performance

of the EHA with an inertial load of 20 kg was examined. It was determined in the regulatory

tests that the positional accuracy of the EHA with the fuzzy controller was excellent, achieving

a steady state error of 50± 25 nm or less for step inputs in the range 5 cm to 200 nm. The

positional accuracy during the tracking tests was found to be reduced compared to the regulatory

tests since the actuator did not have sufficient time to settle to final accuracy due to the time-

varying input signals. In all cases, it was found that the positional accuracy of the EHA with the

fuzzy controller was significantly greater than with the switched-gain and proportional controllers

for both regulatory and tracking signals. Testing with the inertial load eliminated or changed was
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not performed because the position sensor was mounted to the load, making it unfeasible to alter

the load during the time frame of this study.

The regulatory and tracking performance of the EHA with an inertial load of 20 kg plus external

resistive loads of 90 to 280 N were investigated. It was found that the positional accuracy of the

EHA decreased with the application of an external load to 3.10± 0.835µm for a 1 cm step input

(90 N load) and 8.45± 0.400µm for a 3 cm step input (280 N load). Again, the positional accuracy

of the EHA decreased during the tracking tests relative to the regulatory tests, for the reason stated

above. This implies that the positional accuracy of the EHA with a resistive load is in the micro-

scale, rather than the nano-scale as was put forth as the objective of this study. Nevertheless, the

positional accuracy of the EHA with the fuzzy controller was found to be significantly greater than

with the switched-gain and proportional controllers. It is postulated that the increase in positional

error observed during the external load tests was due to an increase in cross-port leakage, relative to

the inertial load tests, caused by the pressure differential induced across the actuator by the external

load. Methods of reducing the increase in positional error caused by external loads on the EHA

remains an area for future study.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many applications exist for an actuator that combines high force output, large stroke and high

accuracy. In this context, an actuator is any device which creates mechanical motion through the

conversion of various forms of energy into linear or rotary mechanical energy. Typical actuators

seen in everyday life include electric motors used to open garage doors, pneumatic cylinders used

to power small robots, and hydraulic motors used to power off-highway vehicles.

An important parameter which characterises the performance of an actuator is its force output.

The output force of an actuator is defined as the amount of force that a given actuator can exert on

an external body along or around its output axis. Hydraulic systems in general can generate a large

output force compared to electric or pneumatic systems due to the high pressure of operation and

the relative lack of compressibility of the working fluid.

Another parameter which characterises the performance of an actuator is its stroke. Stroke

is defined as the maximum amount of extension of a linear actuator or the maximum amount of

rotation of a rotary actuator. It is more commonly used to describe linear actuators than rotary

actuators because many of the latter can rotate indefinitely and therefore do not have a fixed stroke.

Finally, the most important performance characteristic of a high-accuracy actuator is its accu-

racy. Accuracy is a general term, and one must ensure that the circumstances under which it is

measured is included in the specification. For example, an actuator may claim a certain accuracy

without mentioning that the measurement is only valid when the actuator is unloaded. Addition-

ally, accuracy can be specified in both a static and dynamic sense. For example, static accuracy

could mean the steady-state error when the actuator is required to move a certain distance, while

dynamic accuracy could refer to the accuracy of an actuator when it is tracking a varying input sig-

nal. Even something as simple as static accuracy is complicated by concerns such as repeatability

and the possible dependence of the accuracy upon the type and magnitude of the demanded input
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signal, as well as loading and environmental conditions.

Several examples of applications which require a combination of high force output, large stroke

and high accuracy can be given. The first is positioning of test subjects for beam line applications.

One such beam line is the Canadian Light Source, which is a synchrotron located at the University

of Saskatchewan [1, 2]. Since the beam cannot be easily deflected, it is desirable to move the

subject that is being imaged. The subject may have a large mass, requiring an actuator with a high

force output in order to position the subject. Since the desired resolution of the image is high, the

subject must be positioned precisely so that the beam strikes the desired target in or on the subject.

Another application that requires these characteristics is the positioning of the mirror elements

of terrestrial multi-mirror telescopes [3, 4]. As these mirror elements are projected to become larger

and heavier as the desired resolution of proposed telescopes increases, the high force output capa-

bility of hydraulic actuators may become more valuable. A final type of application that demands

extreme accuracy and high force output is micro-machining and high-precision grinding [5, 6]. In

this application, the actuator is used to position a cutting or grinding tool against a rotating blank of

material. The accuracy of the final part will depend directly on the characteristics of the actuator,

causing this to be one of the most demanding applications of any actuator.

These applications demonstrate the need for an actuation system which can position large in-

ertial loads with high accuracy and is capable of significant actuator displacements. This need was

the motivation for the research presented in this thesis.

1.2 Literature review

Several solutions exist for high-accuracy actuation. These include piezoelectric actuators, electro-

magnetic linear motors, voice coil linear actuators, shape memory alloys actuators, leadscrew or

ballscrew driven actuators, friction-based ultrasonic piezoelectric actuators, multistage actuators,

electrostatic actuators, and magnetostriction actuators.

Each of these solutions has advantages and disadvantages. Piezoelectric actuators are the most

common type of high-accuracy actuators. They can be capable of sub-nanometer resolution and

high acceleration. However, their stroke is severely limited, often to less than 100µm. Also, the

maximum load of positioning stages such as the "high-load" Physik Instrument P-750 is 10 kg

and its maximum output force is 800N in the push direction and 100N in the pull direction. The

limited stroke of piezoelectric actuators can be improved by employing multiple positioning stages.
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For example, a coarse positioning stage such as a electromagnetic linear motor can be combined

in series with a fine positioning stage driven by a piezoelectric actuator. This solution tends to be

costly and complex as it requires multiple actuators and sensors being controlled simultaneously

in order to achieve the desired hybrid characteristics.

Alternately, electromechanical actuators such as electric-motor-driven leadscrews are becom-

ing more popular due to their low energy requirements and low noise creation compared to hy-

draulics and pneumatics. However, they cannot be used when spark generation is a concern, their

power-to-weight ratios are significantly lower than hydraulic actuators, and the control strategies

required to allow them to achieve high accuracy can be very complex.

In the field of hydraulics, little emphasis has been placed upon researching the limits of achiev-

able positional accuracy. Kanai et al. investigated the use of force-control rather than flow-control

of a hydraulic actuator for use in ultraprecision grinding machines [7]. In this application, high

resolution and stiffness is required. The authors achieved a feed resolution of 1 nm/step with a

200 kg load. However, the stroke of their actuator is low at only 20 mm, and the maximum ve-

locity is very low (though unspecified by the authors) due to the nature of the system’s operation.

Konishi et al. describe a system created by them that uses a single-rod cylinder with fluid deliv-

ered from a reciprocating pump powered by a piezoelectric actuator [8]. Experimental accuracies

of 10 µm unloaded and 50µm with a 60 N load are reported by the researchers. In their paper

"Nanometer positioning and its micro-dynamics" [9], Futami et al. reference an actuator created

by Shintaku [10]. They describe it as consisting of a single hydraulic cylinder, employing the flex-

ibility of an elastic rubber seal for fine positioning of the rod. The actuator is described as having

steady state accuracy of 1 nm, but a stroke and maximum velocity too small for practical use.

The ElectroHydraulic Actuator (EHA) system developed by Habibi and Goldenberg in 1995

has shown promise in achieving high positional accuracy at high strokes and loads. The EHA is

a closed hydraulic system, where flow returning from the actuator is fed directly into the inlet of

the pump rather than into a reservoir. Central to the design of this system is a unique symmetric

single rod actuator and the use of inner-loop velocity feedback around the motor, which eliminates

deadzone in the motor/pump subsystem. As a result of these design elements, the designers found

that the EHA showed great potential with respect to high-accuracy, high-load positioning. As a

result, the EHA became the focus of this research project. A detailed description of the operation

of the system is deferred to Section 2.2.

In summary, an extensive review of the literature has shown that there are a limited number

3



of published papers on the topic of high-accuracy hydraulic actuation systems. As such, it was

believed that this remains an area in which substantive research needs to be conducted.

1.3 Objectives

Given the limitations inherent in each of the described actuation technologies, there remains a niche

for an actuator that combines high accuracy, a large stroke and high force output. The ElectroHy-

draulic Actuator (EHA) designed by Habibi and Goldenberg was initially developed as a compact,

energy-efficient actuator with an accuracy in the micro-scale. It is true that other actuation methods

may be able to match or exceed the capabilities of the EHA in specific categories. However, the

configuration of the EHA creates a combination of attributes which make it unique in the field of

high-accuracy actuation.

The objective of this study is to modify the EHA so that it achieves nano-scale positional

accuracy while maintaining its desirable properties of high force output and large stroke. In order

to achieve this objective, it is anticipated that both hardware modification and controller redesign

is required. This thesis documents the process of completing some of these modifications, the

implementation of a fuzzy controller, and the resulting performance of the EHA with both an

inertial and a resistive load.

1.4 Thesis outline

This thesis is organized much like the progression of the research process. In Chapter 2, the back-

ground of the ElectroHydraulic Actuator (EHA) is given, including a basic review of hydraulic

systems, a linear model of the EHA, its parameters and nonlinearities. Chapter 3 discusses the

apparatus and the instrumentation used to control and measure the performance of the EHA. In

Chapter 4, control of the EHA using traditional methods is investigated. Next, Chapter 5 intro-

duces the topic of fuzzy control and its implementation in the EHA. Chapter 6 presents the com-

parative results of the experimental tests conducted on the EHA employing both traditional and

fuzzy controllers. Finally, Chapter 7 presents the conclusions of this thesis and forwards some

recommendations for possible future research.
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CHAPTER 2

BACKGROUND OFEHA

2.1 History

The ElectroHydraulic Actuator (EHA) was developed by Dr. A. Goldenberg and Dr. S. Habibi

in 1995 [11]. The EHA was intended to address some of the drawbacks of traditional hydraulic

systems including high energy use, bulkiness, and the use of expensive servo valves.

Consider Fig. 2.1, which illustrates a typical hydraulic system.

Figure 2.1: Example of a traditional hydraulic system

In order to understand the EHA system, it is useful to first discuss traditional hydraulic systems,

which consist of the following components:

• A control system

• A hydraulic power supply consisting of:

− A power source

− A pump

− A relief valve
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• A fluid reservoir

• Control valve(s)

• An actuator

The function of the hydraulic power supply is to provide hydraulic fluid at a specified pressure

and flow rate. The control valve(s) then modulates and distributes flow to the actuators. The

actuators use the energy transported by the fluid in order to produce rotary or linear motion. The

reservoir contains the fluid employed in the system and serves to cool and condition the fluid prior

to its distribution through the system.

In many traditional hydraulic systems, single-rod asymmetric actuators are used to provide

linear actuation. These actuators are asymmetric because the active pressure areas on each side of

the piston are unequal, as seen in Fig. 2.2. This causes multiple problems: first, the performance of

the actuator is different depending on the direction of motion and second, the use of a "hydrostatic"

hydraulic system is complicated by the unequal areas.

Figure 2.2: Schematic of asymmetric actuator

A hydrostatic hydraulic system is one where the fluid reservoir is eliminated, as shown in

Fig. 2.3. Typically each side of the pump is connected directly to the actuator, eliminating the

requirement for control valves. Instead, actuator motion is controlled by changing the displacement

(amount of fluid pumped per revolution) or shaft speed of the pump. Hydrostatic actuation is

desirable for three reasons. First, the removal of the fluid reservoir reduces the volume of space

occupied by the actuation system. Second, the energy efficiency of the system can be higher than

with traditional valve-controlled hydraulics [12]. This is due to the elimination of energy dissipated

as waste heat in the flow control valves. Finally, the removal of the control valves can decrease the

overall cost of the system.

It should be mentioned that the previous two points depend on the implementation of the hy-
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drostatic system, especially the use of "make-up" pumps. Because even closed hydraulic systems

have some fluid leakage, a small amount of additional fluid needs to be introduced into the system

to make up for the fluid lost. Typically a small pump known as a make-up pump delivers this small

flow, requiring energy from the power source and adding cost to the system. This has the potential

of limiting the advantages stated for a hydrostatic system above.

Figure 2.3: Example of a hydrostatic hydraulic system

Using a symmetric double-rod actuator as seen in Fig. 2.4 (or an inherently-symmetric hy-

draulic motor) is the conventional solution to enable the use of a hydrostatic system, as the active

pressure areas on each side of the piston are equal. However, this solution is undesirable in robot-

ics, as the unused second rod creates an area of "dead space" which reduces the workspace of the

robot.

Figure 2.4: Schematic of symmetric actuator

Motivated by this deficiency inherent in double-rod actuators and desiring to create a superior

actuator for use in robotics, a novel symmetrical linear actuator was designed by Goldenberg and

Habibi [13]. Fig. 2.5 shows the internal construction of the actuator. This new actuator is key to

the EHA as it has a single rod yet equal active pressure areas, facilitating its use in a hydrostatic
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hydraulic system. The ability to use the actuator in a hydrostatic system reduces the energy usage

and size of the system while eliminating the need for servo valves as control elements, as discussed

in Section 2.2. The implementation of the symmetrical linear actuator in a compact hydrostatic

hydraulic system is the essence of the EHA. The design and operation of the EHA concept is also

presented in Section 2.2.

Figure 2.5: Schematic of symmetric linear actuator

2.2 EHA system

Aside from the physical constraints imposed on symmetric actuators employed in robotic systems,

the EHA addresses several issues that exist with traditional hydraulic systems as described in Sec-

tion 2.1. First, the energy efficiency of traditional valve-controlled hydraulic systems is highly

dependent on the load, duty cycle and relief valve pressure. This is due to the use of valve-based

flow control rather than pump-based flow control.

Consider Fig. 2.1; this circuit consists of a fixed displacement pump, reservoir, relief valve,

flow modulating valve and an actuator. For the sake of discussion, assume that the actuator in this

system requires X l/m of flow at Y kPa, but the pump delivers 3X l/m of flow. The excess flow

must be diverted to the fluid reservoir through the relief valve. In addition, a pressure drop across

the flow modulating valve may exist because the pump pressure is at the relief valve setting, which

is often higher than the required load pressure. The energy contained in this unused flow going to

the reservoir through the relief valve and some of the energy in the flow through the modulating

valve is converted to heat. This reduces the efficiency of the system. In contrast, a pump-based
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flow control system such as a hydrostatic system delivers only the amount of fluid to the actuator

that is required. Also the pump operates at the same pressure as the load, neglecting the typically

minor pressure drop that occurs due to the piping between the pump and the load. Because the

pump delivers only the required amount of fluid at the required load pressure, the overall efficiency

of a hydrostatic system can be higher than with a traditional hydraulic system.

A second issue with traditional hydraulic systems is that the fluid reservoir occupies a signif-

icant volume and weight, as it is recommended that the volume of the reservoir be 2-3 times the

flow rate in the system. Third, the performance of a system using a traditional single-rod linear

actuator depends on the direction of motion. This is due to the unequal areas on each side of the

actuator piston, which causes rod velocity and output force to vary with direction of travel for a

fixed flow input and pressure differential. This can be corrected through the use of valve control or

a variable-speed pump, but as demonstrated by Habibi and Goldenberg [11], the damping ratio of

the system will still vary with direction of travel. This is detrimental to the operation of robotic sys-

tems, as the system will have to be tuned in order to remain stable in both cases, which artificially

limits its performance.

A final issue with traditional hydraulic systems arises when the load is "over-running" or "run-

away" rather than inertial or resistive. An over-running load is one where the external force on the

actuator acts in the same direction as the motion of the actuator. With traditional non-closed hy-

draulic systems, additional valves are required to prevent the load from accelerating uncontrollably

with an over-running load. In the case of hydrostatic systems, the pump/motor combination itself

acts as a brake. This occurs because the force acting to accelerate the load is translated into a shaft

torque by the pump, and the motor resists this torque.

Given the drawbacks of traditional hydraulic systems, consider the EHA which consists of the

following elements:

• A control System

• A hydraulic power supply consisting of:

− An electric Motor

− A bi-directional pump (gear pump in prototype)

− An accumulator or other make-up fluid system

− A crossover relief valve

• A Symmetrical linear actuator or rotary motor
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The schematic shown in Fig. 2.6 illustrates the construction of the EHA as designed by Habibi

and Goldenberg:

Figure 2.6: Schematic of the EHA, from Chinniah 2004

Significant in the EHA is the absence of a bulky fluid reservoir and expensive servo valve.

Instead, the flow of hydraulic fluid to the actuator is controlled by the rotation of the electric motor,

which drives the bi-directional gear pump directly. The gear pump has a "fixed displacement",

which is defined as volume of fluid pumped per rotation of the pump. Therefore the flow rate of

the fluid is directly proportional to the speed of the pump and hence speed of the electric motor.

Since the active pressure areas on each side of the actuator’s rod are equal, an equal amount of

fluid leaves the symmetrical actuator as enters it. This allows the output of the pump to be directly

connected to one chamber of the actuator while the input of the pump is connected to the other

chamber of the actuator. In addition, a small accumulator maintains a minimum system pressure to

prevent cavitation of the hydraulic fluid, and also makes up for fluid lost due to external leakage.

The end result is that controlling the rotational speed of the electric motor produces a proportional

actuator rod velocity. The direction of motion of the rod can be controlled by changing the direction

of rotation of the electric motor.

The construction of the symmetrical actuator is as shown in Fig. 2.7. Fluid enters the two active

chambersC1 andC2 via portsO1 andO2. The working area of the two chambers,A1 andA2, are

made equal in area. This is possible because the rod is hollow, creating chamberC1 with active
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areaA1 at the end of the rod. ChamberC2 is located between the outside of the rod and the inside

of the cylinder. Its active area isA2, a circular disc attached to the inside end of the rod that seals

against the cylinder wall. Also, a third working chamber,C3, can be pressurized using portO3 in

order to provide a bias force. This bias force can be used to counteract a constant external force

such as a gravity load. Fluid leakage paths are indicated by the arrows labeledL.

Figure 2.7: Cross-section of the actuator

2.3 Linear models

Habibi and Singh developed a linear model of the EHA to enable simulation of the system and to

facilitate the design of controllers for the EHA [14]. This linear model was expanded by the author

of this study to allow for the ability to simulate the effect of arbitrary force and flow disturbances

on the EHA [15] (for further details see Appendix D). The parameters and nomenclature described

in the following section are listed in Table 2.1.

In Fig. 2.8, a simplified block diagram of the EHA is shown. Visible are its constituent elements

including the outer-loop controller, the motor/pump subsystem including an inner-loop velocity

controller, the hydraulic pump, and the hydraulic subsystem including the hydrostatic circuit and

mechanical load. In this case, the load is considered to be primarily inertial, consisting of a fixed

mass that slides on horizontal rails. A viscous friction force is included in the model to account for

the friction caused by the load rails and actuator seals.
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The open-loop output of the EHA in response to a control voltageU is rod velocity, as men-

tioned in Section 2.2. In order to allow the EHA to function effectively as a positioning system,

feedback is required. By measuring the output position using a sensor it is possible to convert the

system into a closed-loop positioning system. To do this, the measured rod position is subtracted

from the desired position to obtain an error signal. This error signal then becomes the input to the

EHA motor controller.

Figure 2.8: Simplified EHA block diagram

Figure 2.9 shows the full block diagram of the EHA including the hydraulic transfer function

GH . Included in this diagram are two disturbance inputs, one for flow disturbancesQdis and one

for force disturbancesFdis. Flow disturbances are defined as any load flow that is not included in

the EHA model, such as leakage of fluid from the system. Similarly force disturbances are defined

as any external force applied to the load that is not included in the EHA model. Example of force

disturbances could be acceleration forces created by external vibration of the system or application

of external forces, such as gravity, to the load.
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Figure 2.9: EHA block diagram, from Sampson et al. 2004

Sampson et al. presented the closed-loop transfer function between the desired inputXd and

the outputX [15] (for further details see Appendix D):

X(s)
Xd(s)

=
Khω2

nhDpGV(s)GOL(s)
s(s2 +2ζhω2

nh)+Khω2
nhDpGV(s)GOL(s)

(2.1)

Also developed was the transfer function between a flow disturbanceQdis and the outputX:

X(s)
Qdis(s)

=
Khω2

nh

s(s2 +2ζhω2
nh)+Khω2

nhDpGV(s)GOL(s)
(2.2)

Finally, the transfer function between a force disturbanceFdis and the outputX was developed

and found to be as follows:

X(s)
Fdis(s)

=
1/M

s2 + B
M s+ Khω2

nh(As+DpGV(s)GOL(s))
s+(2ξ+L)βe/Vo

(2.3)

In all cases, the hydraulic gainKh, damping factorζh and the natural frequencyωnh are defined

to be:

Kh =
2A

2A2 +(2ξ+L)B
(2.4)

ζh =
B

2Mωnh
+

(2ξ+L)βe

2Voωnh
(2.5)

ωnh =

√
2βeA2 +(2ξ+L)βeB

MVo
(2.6)

It can be seen by examining the transfer function for the flow and force disturbances that the

open-loop controllerGol(s) affects the response of the system to these disturbances. As described
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by Sampson et al. [15], the steady state error due to a given flow disturbanceQdis(s) was found to

be:

Ess= lim
s→0

[
sQdis(s)

DpKvGol(s)

]
(2.7)

Similarly, the steady state error due to a force disturbanceFdis(s) was found to be:

Ess= lim
s→0

[
sFdis(s)(2ξ+L)
2ADpKvGol(s)

]
(2.8)

Using the preceding equations, the response of the EHA to arbitrary time-varying inputs and

disturbances can be simulated. Also, the steady state error in response to a given flow or force

disturbance can be calculated. This capability is valuable for the study of the response of the EHA

to both desired and undesired inputs, which is important information in the design of controllers

for the system.

2.4 Parameters

Many of the parameters of the EHA have been measured since its development approximately

ten years ago. However, certain parameters are very difficult to measure in a direct manner. To

obtain an accurate estimate of a number of these parameters, Chinniah used Extended Kalman

filtering [16, 17].

Kalman filtering is a predictor-corrector method traditionally used to estimate system states. It

does so by comparing the predicted output of a simulated system to the output of the real system

at a given time with the same input signal. The error between the two outputs is used to correct

the estimated states, hence the predictor-corrector label. This technique can be used to predict

system parameters by reformulating them as states. In the EHA, two particular parameters that

are important to the behaviour of the EHA but are very difficult to measure directly are the bulk

modulus and the viscous damping factor.

The bulk modulus of a hydraulic fluid is defined as the fractional change in volume of the fluid

for a given change in fluid pressure. Since the mechanical components that are under pressure in the

EHA are compressible, they also contribute to the effective bulk modulus of the system. However,

since the steel components and pipes used in the EHA are much stiffer than the hydraulic fluid, the

fluid dominates the effective bulk modulus. It should be noted that the presence of entrained air in

a fluid can reduce the bulk modulus of the fluid substantially. The amount of entrained air at any
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time is very operating-condition dependent. Thus it is very important to be able to estimate the

bulk modulus in an "online" manner. The technique proposed by Chinniah is able to do this.

The viscous friction factor defines the velocity-dependent force exerted on the actuator by its

internal friction and the load. Typically friction in a hydraulic system is modeled as the sum of

a direction-dependent static or Coulomb friction force and a velocity-dependent viscous friction

force. Using the Kalman filtering technique, Chinniah found that the relationship between actuator

velocity and frictional force was more complex, being a roughly parabolic relationship as shown

in Fig. 2.10 [16, 18]. In spite of this, an estimate for the viscous damping force was obtained.

Figure 2.10: Friction as a function of velocity, from Chinniah 2004

Table 2.1 presents the nomenclature and the known parameters of the EHA, obtained using

both direct measurement and indirect estimation using Kalman filtering. The latter are indicated

with a star beside the value of the parameter.

2.5 Nonlinearities

In order for a system to be classified as being linear, it must satisfy two conditions: homogeneity

and superposition. Given a systemG, gainα, and arbitrary inputsX and outputsY these conditions

are defined as follows:

• Homogeneity: GivenX
G−→Y thenαX

G−→ αY for all α
• Superposition: GivenX1

G−→Y1 andX2
G−→Y2 thenX1 +X2

G−→Y1 +Y2
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Table 2.1: Parameters and nomenclature

A1 = A2 = A Actuator pressure area 5.05x10−4m2

B Coefficient of friction at load *760 N/m/s

C1,C2,C3 Actuator chambers

Dp Pump volumetric displacement 1.6925x10−7m3/rad

E(s) Error signal V

Ess Steady-state positional error m

Fdis External force displacement N

GOL(s) Outer loop controller

GV(s) Motor/Pump subsystem transfer function

GH(s) Hydraulic transfer function

Kp,Ki Controller gains

L Leakage coefficient *2x10−15m3/s/Pa

M Load mass 20 kg

O1,O2,O3,O4,O5 Actuator ports

P1,P2 Actuator chamber pressure Pa

Q1,Q2 Actuator chamber flow m3/s

Qdis(s) Disturbance flow m3/s

Qp(s) Pump flow m3/s

U(s) Motor input voltage V

Vo Pipe plus mean actuator chamber volumes 6.1x10−5m3

X(s) Position of actuator m

Xd(s) Demanded position of actuator m

βe Effective bulk modulus of hydraulic oil *2.1x108Pa

Kh Hydraulic gain

Km Motor gain 40.55 rad/s/V

ωnh Hydraulic undamped natural frequency

ωp(s) Pump angular velocity rad/s

ξ Pump cross-port leakage coefficient *1.5x10−13m3/s/Pa

ζh Hydraulic damping ratio

* values obtained from Chinniah (2004)
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In practice, systems are said to be linear if they approach these theoretical ideals within an

acceptable tolerance.

The EHA cannot be classified as a linear system due to the dependence of the output on the

magnitude of the input [19, 20]. For example, the steady-state gain of the system varies with the

magnitude of the input voltage. Also, the frequency response of the system varies significantly

with the magnitude of the input voltage. These qualities can be observed in Fig. 2.11, which

was reproduced from Sampson et al. [20] (for further details see Appendix E). This figure shows

the experimental response of the system as a function of both frequency and input voltage. It

is observed that the high-frequency performance is highly dependent on the input voltage. This

demonstrates that the EHA is a nonlinear system that can only be approximated as a linear system

for a given operating condition.

Figure 2.11: Experimental Bode gain plot as function of input voltage, from Samp-

son et al. 2005

As a result of the nonlinearity of the EHA, the use of a traditional linear controller such as a

Proportional Integral Derivative (PID) controller will not result in nano-scale positional accuracy

over all operating ranges of the system. This is shown in Chapterr̃efchap:results. This has led

to the investigation of nonlinear controllers for the EHA, such as the switched-gain proportional

controller discussed in Chapter 4 and the fuzzy controller discussed in Chapter 5.
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CHAPTER 3

APPARATUS AND INSTRUMENTATION

3.1 Overview

Fig. 3.1 shows a picture of the EHA as it currently exists [21]. Visible are the major components of

the system such as the actuator, load, motor, pump, accumulator, and relief valve. Not shown are

the motor controller and the computer control system. The size of the apparatus can be determined

using the 10 cm scale superimposed on the picture.

Figure 3.1: Picture of EHA apparatus, modified from Chinniah

In the schematic of the EHA discussed in Chapter 2, the controller was shown as a "black

box" that received position and velocity feedback from the system, and calculated a control output

for the electric motor. The controller in the actual system is divided into two units, the computer

control system and the motor controller. This is shown in Fig. 3.2. The motor control system is an
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Infranor SMT-BD1 digital PWM (Pulse Width Modulation) servo amplifier, which provides speed

control for sinusoidal brushless AC (Alternating Current) motors. It has two demanded-velocity

inputs, an analog input of± 10 Volts and a digital RS232 serial input. It also has a motor velocity

feedback input, which is used by the amplifier to permit closed-loop motor velocity control. The

output of the amplifier is the PWM current required to drive the motor at the demanded velocity.

The AC servo motor is a Mavilor MA-30, which has a maximum speed of± 4000 rpm, a stall

torque of 16 Nm, and a time constant of 10 ms. It also incorporates a magnetic speed resolver,

which is used to provide motor velocity feedback to the amplifier.

Figure 3.2: Detailed schematic of EHA

The computer control system consists of a personal computer equipped with a digital optical

encoder input card, a 16-bit data acquisition system, and the MATLAB Simulink and Real-Time

Windows Target control development system operating at a sample rate of 1000 Hz. Fig. 3.3

shows how the real-time control environment appears to the end user. The desired position input

is specified in meters in the step input or signal generator blocks as seen in the leftmost part of

the control environment. The position of the load is measured by an optical encoder, which is

discussed in Section 3.2. The digital signal from the encoder is read by the encoder input card. The

block labelled "Gurley ISC3N encoder card" represents the driver which reads the position data

from the encoder input card and brings it into the control environment in real time. The position

signal is then subtracted from the desired position to create an error signal. This error signal then
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passes into the controller subsystem.

In the example shown in Fig. 3.3, the controller is a simple proportional gain ofKp=585. The

output of the controller subsystem is the desired motor velocity in Volts. This signal is sent to the

motor controller through one of two outputs, either analog or digital. The analog signal is passed

to the data acquisition system, which is connected by wires to the analog motor control input.

Alternatively, the desired motor velocity can be transmitted to the motor controller over a digital

(serial RS232) link.

This is the case in Fig. 3.3, where the block labelled "serial_cstm" translates the desired motor

velocity in Volts into the corresponding desired velocity in rpm and transmits the value to the motor

controller serially with a transmission rate of approximately 90 Hz. The resolution in terms of the

input velocity signal of the motor amplifier is 16 bits. Given a maximum motor velocity of± 4000

rpm, the resolution of the motor’s velocity is 0.122 rpm/bit. This is theoretically true regardless of

which transmission medium is used, but the noise present in the analog transmission of the velocity

signal, as discussed below, reduces the effective velocity resolution when using the analog input.

The digital output was implemented because it was found that the noise pickup caused by the

analog transmission of the desired motor velocity to the motor controller resulted in errors in the

load position. Due to the PWM speed control employed by the motor amplifier, large currents at

a high switching rate pass from the motor amplifier to the motor through the motor power cables.

This causes the cables, the amplifier and the motor itself to emit significant EMI (ElectroMagnetic

Interference) and RFI (Radio Frequency Interference). This interference is coupled into the cables

carrying the demanded velocity signal. The interference presents an undesired voltage to analog

amplifier inputs, appearing as noise in the demanded velocity signal. This noise causes motor

rotation, which leads to undesired load motion thus reducing the positional accuracy of the system.

Finally, Fig. 3.3 shows two analog inputs from the data acquisition system on the right side of

the control environment. These inputs represent the system differential pressure and motor velocity.

The signals are converted into physical units and then plotted and stored for later analysis.
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Figure 3.3: MATLAB real-time control environment

In order to use the optical encoder and serial output with the MATLAB real-time control envi-

ronment, custom device drivers were written in the C language. These drivers act as an interface

between the control environment and the computer hardware, reading data from the hardware and

then writing data to the hardware to change settings and send out commands. The driver code

used to interface with the optical encoder input card and the driver code used to interface with the

SMT-BD1 motor controller is reproduced in 7.2.

In order to prepare the motor controller to receive commands from the MATLAB control en-

vironment, a number of text files are first sent to the controller using a "terminal communication

program" such as HyperTerminal. These files are reproduced in 7.2. The motor controller under-

stands serial communications using the settings of 9600 bps, 8 data bits, (N)o parity, 1 stop bit, and

Xon/Xoff flow control.

With respect to Fig. 3.3, to prepare the motor controller to receive serial speed commands

from the control environment, the file "initiate.txt" must be transferred to the controller, followed

by the file "manual.txt". At this point the load can be moved by the actuator through setting

the motor speed by sending the "100rpm.txt","neg100rpm.txt", and "0rpm.txt" files to the motor

controller. When the load has been moved to the desired starting position for computer control
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using MATLAB, the demanded velocity signals can then be sent to the controller over the serial

link or the analog link. In order to use the analog input of the motor controller, the "automatic.txt"

file must first be sent. In either case, the motor can be stopped by sending the "stop.txt" file. To

prepare the motor controller for shutdown, the "disconnect.txt" file can be sent.

3.2 Position sensor

Since the primary goal of the EHA is high positional accuracy, the position of the load must be

measured to at least the desired accuracy of the system. In this case, the desired accuracy is in

the order of nanometers (nm), which is 10−9m. Traditional position measurement solutions such

as Linear Variable Differential Transformers (LVDT) and linear potentiometers are not capable of

this level of accuracy. The best LVDT linearity available is 0.1% of full scale travel. In the case of

the 120mm sensor length required by the EHA, the highest accuracy achievable by a LVDT would

be±120µm, which is greater than a tenth of a mm. Therefore, the load position is measured using

a linear incremental optical encoder.

Incremental optical encoders operate on the principle of interrupting the transmission of light

to a photodector by a masked glass slide. A simplified representation of a rotary optical encoder is

shown in Fig. 3.4. The glass slide has two sets of alternating clear and opaque rectangles arranged

linearly along the direction of travel of the read head. The "read head" has two sets of LEDs (Light

Emitting Diode) and photodetectors on opposite sides of the glass slide, one set for each band of

rectangles. The two bands of alternating rectangles are arranged 90◦ out of phase with each other,

which enables the use of quadrature encoding.

Quadrature encoding allows the processing circuitry to determine the direction of motion as

well as the incremental change in position of the read head. This is done using the phase difference

between the signals coming from the two photodetectors. The photodectors output a high signal

when they receive light transmitted through a clear section of the glass slide, and a low signal

when the light is block by an opaque section of the glass slide. Circuitry in the read head translates

the high/low signals from the photodetectors into a count signal that increments or decrements

depending on the direction of movement of the read head. This signal is transmitted in serial format

to the PCI (Peripheral Component Interconnect) encoder card connected to the control computer.
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Figure 3.4: Functional diagram of rotary optical encoder, with permission from D.

Alciatore and M. Histand

The optical encoder employed in the EHA has a resolution of 50 nm and a guaranteed accuracy

of ±3µm/m; the reason for the specification of both resolution and accuracy is discussed in the

following section. When the resolution of the encoder is specified as 50 nm, it means that the dark

and clear areas on the glass slide are each 50 nm long. This is currently the practical minimum

dimension achievable by the company that makes the encoder. It is important to note that for high-

resolution sensors such as this, the accuracy and the resolution of the sensor are not equal. The

resolution of the sensor is fixed by manufacturing tolerances, and will not change over time except

through destructive damage to the printing on the glass slide.

The accuracy of the encoder, however, is not a fixed quantity. It will depend on the strain

induced by the mounting of the encoder, the actual length of each individual nominally 50 nm

area on the slide, the temperature of the environment, the proper mounting of the read head, and

other factors. In addition, the accuracy of a given position measurement depends on the magnitude

of displacement. As stated above, the guaranteed accuracy of the encoder is given as±3µm/m.

This means that if the encoder was one meter long and the read head traversed the entire distance,

the maximum deviation from a National Institute of Standards and Technology (NIST) traceable

measurement standard is 3µm.

Since the travel of the encoder used in this study is 14 cm, and typical displacements of the load

range from centimeters to microns, the true accuracy of the measurements presented in this study

is more difficult to define. The absolute accuracy of the encoder over the displacements used in the

tests will, however, be significantly better than the worst-case accuracy stated by the manufacturer.
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Furthermore, the nature of a feedback system is such that if the positional error is within a certain

multiple of the resolution of the feedback sensor, the sensor can be replaced with one of equal

resolution and increased accuracy in order to achieve increased absolute positional accuracy while

achieving the same positional error in terms of resolution.

3.3 Position sensor calibration

Each encoder is tested by the manufacturer to ensure that it meets specifications before it is shipped

to the customer. To do so, it is mounted in a temperature-controlled environment and coupled to a

HP2258A laser interferometer position measuring system. This system has a resolution of 10 nm.

The read head is displaced over its full range of motion while the HP2258A records the position

of the read head, and the reading from the encoder itself is recorded. The error of the encoder

relative to the HP2258A is obtained by subtracting the position measured by the encoder from the

position measured by the HP2258A, which is treated as the reference. In this manner, an error

plot which shows the deviation of the position reported by the encoder relative to the reference is

produced. The local maximum deviations are compared to the standards of the manufacturer for

encoder absolute accuracy.

In this case the guaranteed absolute accuracy is set at±3µm/m. If the encoder error exceeds

this value, it is rejected. Fig. 3.5 shows an error plot for an optical encoder with a stated±3µm/m

absolute accuracy, provided by the manufacturer. The table on the left side of the error plot gives

the local maximum deviations inµm with respect to the reference and the displacement where they

occurred. It can be seen that in this example, the maximum absolute error is 0.6µm at 4 mm and

24 mm. This is significantly less than that guaranteed by the manufacturer, and shows that the

accuracy of these measurement devices is excellent. Finally, the encoder undergoes a series of

quality assurance tests before it is sent to the customer.
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Figure 3.5: Error plot of typical optical encoder
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CHAPTER 4

TRADITIONAL CONTROL

While the EHA itself may be physically capable of high-accuracy positioning, its controller

has a significant influence on the achieved accuracy. In Section 3.1, the computer control system

was introduced. The controller is the most important element of the control system. The controller

takes as its input the error signal, which is obtained by subtracting the measured load position from

the desired load position. The error signal then is processed by the control algorithm to develop

a control signal. The goal of the control signal is to reduce the error signal to as close to zero as

possible so that the desired and measured load positions are the same. This is the desired condition

for a positioning system such as the EHA. At the beginning of this study, the EHA employed a

proportional controller, which is discussed in the following section. The presentation of results of

the experimental tests employing this and other controllers is deferred to Chapter 6.

4.1 Proportional control

The traditional solution for controllers employed in a feedback system is a Proportional-Integral-

Derivative (PID) controller. In a PID controller, the control signalu(t)is calculated by summing

three terms; the error signale(t) times a proportional gainKP, the integral of the error signal

times an integral gainKI , and the differential of the error signal times a derivative gainKD. A

mathematical representation of the PID control algorithm is illustrated in Eq. 4.1. Each PID gain

serves a different purpose; increasing the proportional gain increases the speed of response of

the system. Introducing an integral gain tends to reduce the steady-state error of the system, but

increases overshoot and decreases stability. Derivative gain tends to reduce the overshoot of a

system by introducing additional damping, but also increases the settling time of the system.

u(t) = KP e(t)+KI ∫ e(t)dt+KD
de(t)

dt
(4.1)

In the case of the EHA, the designers wanted the system to have a no-overshoot (ζ = 1) re-
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sponse. This response implies that the controlled value does not overshoot the set point, in contrast

to an underdamped response where it does overshoot. It was desired to have this type response

so that the EHA would not overshoot the desired position when employed as an actuator in a ro-

botic system. In this usage, overshoot may cause the actuated robot linkage to strike the work

surface, which is undesired behaviour. Habibi and Goldenberg determined that a simple propor-

tional controller gave the desired response, without the need for integral or derivative gain. The

proportional gain was chosen by them to beKP=585, as shown in Fig. 3.3 in Section 3.1. A simu-

lated step response calculated using the transfer function Eq. 2.1 presented in Section 2.3 is shown

in Fig. 4.1 [15]. This demonstrates the desirable no-overshoot response for a step input with a

proportional controller of gainKP=585.

Figure 4.1: Simulated EHA response to 10 mm step input, from Sampson et al.

2004

4.2 Switched-gain control

Experimental tests performed on the EHA determined that the proportional controller was limiting

the positional accuracy of the system. In Sampson et al., it was shown that the use of a proportional

controller (PC) resulted in a positional accuracy of 2µm, which was greater than the 1µm sensor

resolution employed during the testing [15] (for further details see Appendix D). Experiments with

proportional-integral (PI) controllers found that adding the integral gain could reduce the positional

error to less than 1µm, but took an unacceptably long time to do so. Increasing the integral gain

only resulted in limit-cycle oscillation, in that the integral gain built up enough force to overcome
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the system static friction, only to overshoot the desired position and cause the cycle to repeat in the

opposite direction.

It was shown in Sampson et al. that a switched-gain proportional controller (SGC) could

improve the accuracy of the system to less than 1µm without affecting its desirable large-scale

response [15]. A SG controller is one where the parameters of the controller change depending on

the operating condition of the system. In the case of the EHA, it was desired to maintain the large-

scale response of the proportional controller withKP=585 while improving the positional accuracy

in the micro-scale. To do so, a switch was used in the computer control system to set the control

gainKP to be 585 when the positional error was greater than 5µm, and setKP=585+3000=3585

when the positional error was less than 5µm. Figure 4.2 shows a schematic of the SG controller

used in this study.

Figure 4.2: Switched-gain proportional controller, as used in Sampson et al. 2004

In Sampson et al. it was shown that a switched-gain controller improved the accuracy of the

system compared to a proportional controller; however, the true accuracy of the system could not

be measured until the position sensor was upgraded from 1µm resolution to 50 nm resolution.

Despite the upgraded sensor, the maximum measurable accuracy of 50 nm could not be achieved

using the switched-gain controller. This will be shown by experimental results presented in Chap-

ter 6. In order to achieve this level of accuracy, it was decided a different control strategy should be

investigated. Because of the nonlinear properties of the EHA at very small displacements, it was

believed that some type of adaptive or fuzzy controller should be considered. After some prelimi-

nary studies, it was decided that fuzzy control should be implemented and tested. This controller

is described in the following Chapter.
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CHAPTER 5

FUZZY CONTROL

5.1 Background

The field of fuzzy control developed out of Lotfi Zadeh’s dissatisfaction with the direction that

control theory began to head during the 1950s and 1960s. He believed that control theory was

becoming increasingly complex and mathematical, while neglecting the importance of practicality

and applicability to real-world control problems. He suggested that his idea of fuzzy set theory,

developed in 1965 [22], might be useful in addressing his concerns about conventional control

theory.

The central idea of fuzzy set theory is that elements can have partial membership in a given set.

In contrast, traditional set theory only allows elements to be either complete members of a set or

complete non-members of a set. Fuzzy sets therefore allow for the expression of vagueness with

respect to set membership, which reflects everyday experience better than traditional set theory.

For example, consider the classification of a person as "tall." If it is believed that a person who

is 6’2" is tall, where is the limit of being defined as tall? If it is agreed that a person taller than

6’ is tall, would it make sense to describe someone who is 5’11.5" as "not tall?" Conventional set

theory would say so, but fuzzy set theory would say that this person is "somewhat" or "partially"

tall, hence the concept of partial set membership.

Given the advantage of being able to model the vagueness of real world variables, researchers

began to investigate the use of fuzzy logic in control systems. The first practical investigations

of fuzzy control began with Mamdani et al. In 1975, they applied the first fuzzy logic controller

(FLC) to a steam engine [23]. Since that time, substantial research into fuzzy control systems has

been performed. As such, fuzzy control is now recognized as a standard, established method of

controlling feedback systems, especially those that are nonlinear, complex or ill-defined. In this

Chapter, FLCs will be discussed starting with their basis in conventional and fuzzy set theory, and

ending in Section 5.8 with a discussion of the FLC employed to control the EHA in this study.
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5.2 Conventional sets

In traditional set theory, a set is defined as a collection of "crisp", or discrete, values taken from

a universal set. For example, if a universal setX is defined as including all positive integers, or

X = {1,2,3. . .}, it is possible to define a setA = {1,3,6}. In a conventional set, each elementx of

X is either an element ofA or not an element ofA. This leads to the definition of a characteristic

functionχA(x) that expresses the membership of a given elementx in the setA. If x is a member

of A, then the characteristic function evaluated atx is exactly one; conversely, ifx is not a member

of A then the characteristic function evaluated atx is exactly zero. This is shown graphically in

Fig. 5.1. In mathematical terms, the characteristic function is expressed as:

χ(x) =

 1, if x∈ A

0, if x /∈ A
(5.1)

Figure 5.1: Conventional discrete set

5.3 Fuzzy sets

The fundamental difference between conventional set theory and fuzzy set theory is that instead of

defining the elementsx in the universal setX as being absolutely a member or not a member of set

A, fuzzy sets allow the elements to have a degree of membership in fuzzy setA. This is achieved

by replacing the characteristic functionχA(x) by a membership function, which is allowed to have
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values in the continuous range [0,1] inclusive. This membership function for a fuzzy setA is

symbolized byµA(x), so thatµA(x1) = 0 denotes thatx1 is completely not a member ofA, while

µA(x2) = 1 denotes thatx2 is completely a member ofA. The difference comes when it is expressed

thatµA(x3) = 0.57, which indicates thatx3 has partial membership in the fuzzy setA. This can be

represented mathematically as follows:

µ(x) =


1, if x∈ A

{0,1} if x has partial membership inA

0, if x /∈ A

(5.2)

Given the description of fuzzy sets provided above, one can define a membership function (as

used in fuzzy control) as being a fuzzy set that meets certain criteria. The first criterion is that the

set must be defined on the real numbers. Second, it must be "normal", so that its values are in the

range 0≥ µA(x)≤ 1. The final criterion is that the set must be convex (every segment that connects

points of the set lies entirely in the set). An example of a membership function is shown in Fig. 5.2.

It contains one element corresponding to total membership in the set, whereµA(x) = 1. The set

containing the value ofx at this point is known as a fuzzy singleton.

Figure 5.2: Example of a membership function

In order to simplify the implementation of fuzzy sets, the sets can be reduced into piecewise

linear functions. Examples include triangular and trapezoidal membership functions, such as those

shown in Fig. 5.3. These membership functions are described completely by the values labelled

A1, A2, A3 or A4 in the Figure. Note that the maximum value of the membership function is

exactly one atx=A2, which is the fuzzy singleton referred to earlier.
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Figure 5.3: Example of membership functions - trapezoidal and triangular

5.4 Fuzzy logic versus probability

Often when first encountering fuzzy logic it is difficult to separate the concepts of fuzzy logic from

that of probability. Indeed, the membership function shown in Fig. 5.2 looks similar to a Gaussian

distribution as used in probability. However, there is a fundamental difference between the two;

probability was developed to express randomness, while fuzzy logic was developed to express

vagueness. This is more than a semantic distinction.

Presenting situations typifying randomness and vagueness can highlight this difference. Con-

sider the concept of randomness. If one were to draw four cards from a deck, it is not known which

four will be picked. However, once drawn, there is no ambiguity in the result of which four cards

have been picked. In other words the outcome is random, but there is no vagueness of concept.

On the other hand, if at a restaurant the waiter is tipped three dollars, is this tip considered to be

low or high? In this case there is no aspect of randomness - the tip is an exact, known amount.

However, there is a large degree of vagueness in the concept of describing the tip as being low or

high. For example, it depends on the salary of the tipper, the type of restaurant, the biases of whom

is describing the tip, and a virtually infinite number of other factors.

5.5 Fuzzy controllers

The fuzzy sets described in Section 5.3 are essential to the operation of fuzzy controllers as imag-

ined by Zadeh [22] and implemented by Mamdani [23] and others. Though essential, fuzzy sets
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alone do not make a fuzzy controller. The controllers consist of four main elements: a fuzzifier,

an inference engine, a rule base, and a defuzzifier. These processes are illustrated in Fig. 5.4 and

described in the next few sections.

Throughout this section, the operation of fuzzy controllers will be described using an example

of an imaginary stadium floodlight controller. In this application, it is assumed that the ambient

light level is measured and is to be used to determine the proper power level for the stadium light-

ing. This is reflected in the specification of the input (fuzzification) and output (defuzzification)

elements of the fuzzy controller.

Figure 5.4: Overview of fuzzy controller

5.5.1 Fuzzification

Fuzzification is the process of translating crisp input values into fuzzy linguistic values through

the use of membership functions. In other words, determining how much each discrete input value

belongs to each input fuzzy set using the corresponding membership function. For example, as-

sume that the input to the stadium floodlight controller is the measured ambient light level. The

controller designer might then create the membership function consisting of five triangular mem-

bership functions as shown in Fig. 5.5. Each membership function is given a linguistic variable

to express its relationship to the state of the input which it describes, such as "dark," "normal," or
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"bright."

As seen in Fig. 5.5, a given ambient light level will have a corresponding membership value in

at least one set. For instance, a 60% light level has a membership of 0.4 in the Normal set and 0.5

in the Fairly Bright set.

Figure 5.5: Membership function for ambient light level

5.5.2 Fuzzy rule base

The fuzzy rule base is simply a database of the desired control rules for the system. It is most

equivalent to the controller of a traditional control system, and formalizes the designer’s "expert

knowledge" of what control output should result from a given combination of system states, ex-

pressed in a linguistic manner. It often takes the form of a truth table consisting of rules constructed

in the following form:

• IF <condition1 AND/OR condition2> THEN <consequence>

Using the light level example, we can formulate a rule base such that:

• IF ambient light level is Bright THEN turn the lights Off

• IF ambient light level is Fairly Bright OR Normal THEN turn the lights to Low Power

• IF ambient light level is Normal OR Fairly Dark THEN turn the lights to Medium Power

• IF ambient light level is Dark THEN turn the lights to High Power

In fuzzy logic terminology, the statement following the IF condition is known as the "premise,"

"antecedent," or "condition." The corresponding statement following THEN is known as the "con-

clusion" or "consequent." The actual calculation of the consequent using the premises calculated
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from the fuzzified inputs is reserved for the inference engine. This aspect of FLC is discussed in

the following section.

5.5.3 Inference engine

The inference engine is the heart of a FLC. It acts as the bridge between the fuzzification input stage

and defuzzification output stage of the controller, translating the designer’s desired control rules

from a linguistic representation to a numeric computation. The inference engine can be divided

into three elements: aggregation, composition, and accumulation.

The first step of the inference process is known as "aggregation." During this step the premise

(IF statement) of each rule in the rule base is calculated using the fuzzified controller inputs. During

fuzzification, each condition in the premise is assigned a degree of membership in the correspond-

ing input fuzzy set. In the aggregation process these conditions are aggregated according to the

logical statement connecting them, such as AND/OR. It should be noted that the traditional for-

mulation of logical statements such as AND/OR has been modified to accommodate the use of

membership functions. In particular, the result of an AND operation is often defined as either

the minimum (min) of the two fuzzy values compared, or the product (prod) of the two values.

Similarly, an OR operation is often defined as either the maximum (max) of the two fuzzy values

compared, or the probabilistic sum (sum). The probabilistic sum is defined as the sum of the two

values compared, minus their product. Any premise with a value greater than zero means that its

corresponding rule is active, or has "fired" in FL terminology.

The second step of the inference process is known as "composition" or "implication." In this

step the consequent (THEN statement) of each rule is created using the premises calculated in the

first step. The output of the composition step is not a single value for each rule in the rule base, but

rather one modified output fuzzy set for each rule. These modified output sets are known as "im-

plied" fuzzy sets. The modification is controlled by the premise calculated in the aggregation step.

There are two fundamental methods of creating the fuzzy sets that are the result of composition.

They are the same function described in the AND operation;min andprod. The min operation

truncates the output fuzzy set at the value of the premise while theprodoperation scales the output

fuzzy set according to the premise.

The third and final step of the inference process is known as "accumulation," "composition,"

or "results aggregation." In this step the implied fuzzy sets that are the output of the composition

process are combined into an accumulated fuzzy set, which is the input to the defuzzification
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process. The sets are combined by calculating the union of the implied membership functions. It

should be noted that there is an overlap in the terminology that different authors use to describe the

elements of the inference engine. This can lead to difficulties when comparing texts.

As an example of the inference process, consider the ambient light level membership function

introduced earlier. The 60% ambient light level has a membership of 0.4 in the Normal set, 0.5

in the Fairly Bright set, and 0 in all other sets. The aggregation process is applied to each rule in

the rule base. In this example, consider the fuzzy OR operation to be the maximum of the two

compared values. The premise for the "Low Power" set contains an OR connective, which means

that the value of the premise for that particular rule is equal to the maximum of 0.4 (Normal set)

and 0.5 (Fairly Bright set). Therefore, the premise for the Low Power set is 0.5. The premise for the

"Medium Power" set also contain an OR connective. In this case, the two degrees of membership

being compared are 0.4 (Normal set) and 0 (Fairly Dark set), as shown in Fig. 5.5. The maximum of

0.4 and 0 is 0.4, so this will be the value of the premise for the Medium Power set. This completes

the aggregation process, since the premise of all other rules is zero.

The second element of the inference engine is the "composition" process. In this step, the

output membership functions are modified by the AND operation. In the above example themin

operator has been chosen for the AND operation, so that the output membership functions are

truncated at the premise values calculated during the previous aggregation process. This can be

seen in Fig. 5.6.

Figure 5.6: Membership function for floodlight power level, truncated at premise

values
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The third and final element of the inference engine is the "accumulation" process. In the lit-

erature, this step is sometimes considered a part of the defuzzification process. The accumulation

process involves combining the implied membership functions that are the output of the composi-

tion process into a single output membership function that is suitable for defuzzification. This is

achieved by calculating the union of the implied membership functions, as is shown in Fig. 5.7.

Figure 5.7: Results aggregation of implied membership functions

5.5.4 Defuzzification

In general, the system to be controlled using a FLC requires a crisp or discrete input, rather than a

membership function such as is produced by the inference engine. Defuzzification is the process

of converting the fuzzy output set which is a result of the inference process into a discrete number

suitable for input to the plant.

There are many different methods of defuzzification described in the literature, with varying

levels of complexity. Two fundamental methods are known as the Mean of Maxima (MoM) method

and the Center of Gravity (CoG) method.

The MoM method can be interpreted as calculating the mean of the local maxima of the accu-

mulated fuzzy set. The MoM method can be described as follows:

• Sum the positionsx of the maxima of the fuzzy set.

• Divide the value from the first step by the number of maximam.

u = ∑{x|(µ(x) = max(µ(x)))}
m

(5.3)
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The CoG method, also known as the Center of Area (CoA) method, can be interpreted as

determining a weighted average of the elements in the set. The CoG method involves two steps:

• Multiply the membership degreeµ(xi) of each elementi by the singleton valuexi of the

membership function.

• Sum the values obtained in the first step and divide the total by the sum of the output mem-

bership degrees.

u = ∑i µ(xi)xi

∑i µ(xi)
(5.4)

Continuing with the aforementioned example, using the Center of Gravity defuzzification

method the centroid of the area can be calculated as shown in Fig. 5.7. The area is divided into

two parts to facilitate the calculation; the trapezoidA1 and the parallelogramA2. The centroids of

each of these areas are:y1 = 0.2083,x1 = 25%,y2 = 0.2, x2 = 57.5%. The areas ofA1 andA2 are

25 and 10 respectively. The centroid of the combined area can be determined from the following

formula:

x =
x1A1 +x2A2

A1 +A2
(5.5)

y =
y1A1 +y2A2

A1 +A2
(5.6)

Substituting the values into the equations, the centroid of the overall area is determined to be

x = 34.3% andy = 0.206%. This is shown in Fig. 5.8. Therefore the floodlight power level should

be set to 34% when the ambient light level is 60%. Similar calculations would give the power level

for any given ambient light level.
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Figure 5.8: Center of Gravity defuzzification

5.6 Sugeno fuzzy inference

The fuzzy controllers described so far in this chapter have been of the Mamdani-inference type.

However, there exists an alternate type of inference engine that is very well suited for interpolating

between a number of linear controllers. This type is known as a Sugeno-inference controller, after

its inventor [24].

In the EHA switched-gain controller, two discrete proportional gains were switched depending

on the magnitude of the positional error. For the fuzzy controller, it was desired to smoothly alter

the control gain between a number of discrete control gains depending on the magnitude of the

positional error. Therefore, a Sugeno-inference controller was implemented.

The Mamdani-type and Sugeno-type fuzzy controllers are similar in many respects. The first

two parts of the inference process are the same, the fuzzification of the input and the aggrega-

tion/composition process. However, for the Sugeno-inference controller, there is no accumulation

process, and the output membership functions are functions of the input premises, typically ei-

ther a linear function or a constant (fuzzy singleton). Therefore the defuzzification process may

be computationally simpler than with a Mamdani-inference controller, where defuzzification often

involves the calculation of centroids of areas with complex shapes as in Fig. 5.8.

In a Sugeno controller, the rule base has the form IF <input1 = x1 AND input1 = x2> THEN

<Outputu = ax1 +bx2 +c>. If the output membership functions are constant as employed in this

study, thena = b = 0. The defuzzification process consists simply of a weighted average of all the
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rule outputs, such that:

u = ∑i cixi

∑i ci
(5.7)

The application of Sugeno-inference can be illustrated using the floodlight power level ex-

ample previously developed. As mentioned above, the fuzzification, aggregation and composition

processes are the same as with the Mamdani-inference. However, the output membership functions

are replaced by fuzzy singletons instead of membership functions. These singletons are modified

during the composition process to create "implied" fuzzy sets by being truncated at the premise val-

ues calculated during the aggregation process, similar to the earlier Mamdani-inference example.

This is shown in Fig. 5.9.

Figure 5.9: Sugeno inference example

In order to calculate the crisp output from the implied output membership functions, Eq. 5.7 is

used. The resulting control output of 36% using the Sugeno-inference method is very close to the

34% obtained using the Mamdani-inference method.

u = ∑i cixi

∑i ci
=

0.50∗25%+0.40∗50%
0.50+0.40

= 36.1% (5.8)

It was decided to use a Sugeno-inference controller for the EHA due to its simplicity and its

suitability for interpolating between multiple linear controllers. The following section describes

the design of the Sugeno-inference fuzzy controller as applied to the EHA system.
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5.7 Design of the EHA fuzzy controller

The first step of fuzzy controller design is to select the number of controller inputs and corre-

sponding number of input membership functions required for the fuzzification process. In the case

of the EHA controller, it was believed that the positional error alone would be sufficient input to

the fuzzy controller, as the initial concept for the controller was to vary the proportional control

gain as a function of the positional error. Traditional fuzzy controller design suggests that 3-7 in-

put membership functions per input are sufficient [25]. It was thus decided to employ four input

membership functions.

It was known that the input to the controller would fall into three main categories: "large

error," "medium error," and "small error." The "large error" category was deemed to be any error

greater than one mm. The "small error" category was deemed to be any error less than roughly

150 µm. The "medium error" category would fall between the other two. Since there were four

input membership functions and three categories of error, it was decided to assign one membership

function to the "large error" category, one to the "medium error" category, and two to the "small

error" category.

Given the desired specifications described above, four input membership functions were cre-

ated. They were given the linguistic labels "large," "medium," "small," and "verysmall" according

to the magnitude of positional error that they represented. These input membership functions are

shown below in Fig. 5.10.

It was decided to use Gaussian membership functions rather than triangular or trapezoidal

membership functions in order to achieve the desired smooth interpolation of the output propor-

tional gainKP. Triangular and trapezoidal membership functions contain discontinuities in their

derivatives, which can result in abrupt changes in the output of the controller. This is undesirable

as it would cause the actuator to exert unnecessary, large, transient forces as it tried to accelerate to

match the abrupt changes in controller output.
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Figure 5.10: Input membership functions

The second step of the fuzzy controller design process was to define the output membership

functions. It was decided to use four membership functions. It was known that the output, which

is the controller proportional gain, should range fromKP = 585 when the positional error was

large to a maximum ofKP = 1250 when the error was very small. This maximum gain was less

than that employed with the switched-gain controller, since it was determined experimentally that

higher gains increased the amount of overshoot and increased the settling time of the system.

Since it was decided to use a Sugeno-inference fuzzy controller, the output membership functions

are singletons. This means that each output membership function consists of a single value, the

desired proportional gainKP. This can be observed in Fig. 5.11. The four output membership

functions are labelled "low," "average," "high," and "veryhigh," according to the proportional gain

that they represent. The respective proportional gain was chosen to beKP = 585, 750, 1000, and

1250. The magnitude of these gains was determined experimentally using step input tests to give

the desired response and positional accuracy.

Figure 5.11: Output membership functions

The third step of the fuzzy controller design was the specification of the rule base, which links

the fuzzifier and the defuzzifier. There are four rules, which correspond to the same number of input
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and output membership functions. These rules are implied by the desired output of the controller.

For example, the system performance is desired to be similar to the original proportional controller

in the large-scale. Therefore, the first rule is "If error is large, then gain is low." This means thatKP

will be approximately 585 when the positional error is greater than roughly one mm. Therefore,

the system with the FLC will behave similar to the system with the proportional controller when

the error is large, as is desired. On the other hand, it is desired that the proportional gain become

higher as the positional error decreases in order to reduce the error as much as possible. Therefore

the last rule is "If error is verysmall, then gain is veryhigh."

The following is the rule base that was used in the EHA fuzzy controller.

• IF error is large THEN gain is low

• IF error is medium THEN gain is average

• IF error is small THEN gain is high

• IF error is verysmall THEN gain is veryhigh

Once the input membership functions, the output membership functions, and the rule base have

been designed, all that remained was to select the operations used in the inference process and the

defuzzification method. It was decided to select the most widely-used operations for simplicity.

Therefore, themin operator was chosen for the AND operation , and themaxoperator was chosen

for the OR operation employed. The former is used to truncate the output fuzzy singletons at

the value of the premise corresponding to each of the four rules. The latter was not used in this

controller, as the rule base did not contain any OR conditions to be evaluated.

The final step of the controller design process was the selection of a defuzzification method.

Since a Sugeno inference engine with singleton output membership functions was employed, the

equation used to calculate the crisp output (proportional gainKP) is as presented in Eq. 5.7.

5.8 Implementation of the EHA fuzzy controller

The following section describes the implementation of the Sugeno fuzzy controller. It was de-

sired to maintain the large-scale response of the existing proportional controller, but increase the

positional accuracy of the system in the nano-scale. Fig. 5.12 shows the Matlab real-time control

environment used implement the various controllers, the results of which are presented in Chap-

ter 6. The fuzzy controller was developed using the Matlab Fuzzy Logic Toolbox, which contains

tools designed to aid in creating fuzzy controllers.
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The control environment was configured so that one of the three controllers (proportional,

switched-gain, and fuzzy) could be selected before beginning a given test. The input to each of the

controllers is the positional error of the EHA, while the output of the controllers is the proportional

gainKP. This gain is multiplied by the positional error to obtain the control signal which is output to

the EHA over the digital serial cable. It should be noted that the fuzzy controller includes a "motor-

speed threshold" function. It was found during preliminary experimental studies that the operation

of the system was improved by implementing a threshold when using the fuzzy controller, so that

any demanded motor speed below one rpm was set to be exactly one rpm. Motor speeds lower than

this resulted in actuator motion too slow to correct positional errors in an acceptable amount time.

Figure 5.12: Matlab control environment

The Matlab Fuzzy Logic Toolbox contains two tools intended to aid in the visualization of

the operation of the FLC. The first is the rule viewer. It allows the control designer to specify an

arbitrary input to the controller, as illustrated by the vertical line overlaid on the input membership
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functions on the left side of Fig. 5.13. The degree of activation of the input membership functions is

illustrated by the highlighted area under each input function. The corresponding controller output

is indicated by the short vertical line overlaid on the output membership functions on the right

side of the figure. The degree of activation of the output membership functions is illustrated by

the percentage of each output singleton that is highlighted. In the example, it is shown that for a

positional error of 57.4µm, the output proportional gain will beKP=1060.

Figure 5.13: FLC rule viewer

The second tool provided to visualize the operation of the FLC is the surface viewer, which is

shown in Fig. 5.14. This tool plots the output of the controller over the entire range of inputs. In

the EHA FLC, it can be seen that the output of the controller ranges fromKP=585 to 1250 when

the input error goes from≥1 mm to 0 mm. It should be noted that the gain varies quite smoothly

between the two extremes, as is desired.
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Figure 5.14: FLC surface viewer

The three different controllers (proportional, switched-gain, and fuzzy) presented in Chapters 4

and 5 will have a significant impact on the performance of the EHA. This impact is investigated

quantitatively and qualitatively in Chapter 6.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents experimental results which were obtained from tests performed on the

EHA using three different controllers. The proportional controller (PC) and switched-gain con-

troller (SGC) were described in Chapter 4. The fuzzy logic controller (FLC) was described in

Chapter 5.

In all cases presented in this Chapter, the communication between the MATLAB real-time

control environment and the motor amplifier took place over a digital serial format, as discussed in

Chapter 3. The advantage of digital communication compared to the previously-employed analog

communication was the significant reduction in noise, which resulted in unwanted movement of the

actuator. This is illustrated in Fig. 6.1, in which the displacement of the actuator under conditions

of zero input to the motor amplifier and no positional feedback is shown. Noise in the analog line

was interpreted by the motor amplifier as an input signal, resulting in an erratic movement of the

actuator about 1µm from the zero position (6.1, solid line). In contrast, when the digital line was

used, movement could not be detected within the 50 nm resolution of the transducer (dashed line).

Given that the desired positional accuracy of the EHA was 50 nm, digital communication was used

for all the tests presented in this chapter.
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Figure 6.1: Open loop output with zero input, analog (solid line) versus digital

(dashed line) amplifier communication

For all results presented in this chapter, the data is presented as the mean of the measured

quantity plus/minus one standard deviation. The standard deviation is a measure which quantifies

the variability of the measurement. It implies that there is a 68% likelihood that an individual

measurement will fall within the range specified by one standard deviation.

6.1 Inertial load

The objective of the first series of tests performed on the EHA was to characterize its performance

when employing the three different controllers (fuzzy, switched-gain, and proportional) with a

dominantly-inertial load consisting of a 20 kg mass mounted on horizontal linear rails. However, it

should be noted that these rails did contribute frictional forces to the system. The behaviour of the

friction characteristics of this actuator were established in an earlier study by Chinniah [16]. The

same inertial load was used in all experiments since the position sensor was mounted to the load,

making it unfeasible to alter the load during the time frame of this study.

The first test with the inertial load consisted of a desired one cm step input, delayed by one

second to ensure any initial transients had died down. This test was repeated 10 times with each

controller at the same operating and initial conditions. Because of the quantity of tests performed,

only a representative transient test is presented for each controller. A typical full-scale plot of the
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EHA’s response to the 1 cm step when using the FLC is shown in Fig. 6.2. The displacement of

the actuator is shown by the solid line. The proportional gain as a function of time is shown by the

dashed line.

The response of the EHA to this input appears identical regardless of the controller employed,

for the scale used on the displacement axis in Fig. 6.2. Therefore, only one response at this scale

is presented (it should be noted that as the resolution of the displacement scale increases, then

significant differences can be observed among the three controllers). What is notable for this step

response is that for all controllers, the settling time was approximately 0.7 seconds, and that the

response approaches critical damping as was desired.

Figure 6.2: Response to 1 cm step input with FLC, solid line = displacement,

dashed line = proportional gain

As mentioned, when the resolution of the displacement scale in Fig. 6.2 is enhanced, the differ-

ence between the various controllers in their positional accuracy as the system approached steady

state becomes significant. In the following Figures, only these enhanced "micro scale" responses

are shown.

Figures 6.3, 6.4, and 6.5 show the steady state response of the system when employing the

proportional, switched-gain, and fuzzy controllers respectively. It can be observed that there is

an overshoot of roughly 0.5µm with the FLC versus roughly 2µm with the SGC. The PC does

not exhibit any overshoot, but has an increased level of steady-state error relative to the other
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controllers.

Figure 6.3: Steady state response with PC, 1 cm step input

Figure 6.4: Steady state response with SGC, 1 cm step input
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Figure 6.5: Steady state response with FLC, 1 cm step input

A summary of the performance of the three controllers when the EHA was given a 1 cm step

input is tabulated in Table 6.1. Because the position sensor is digital, the calculated mean error is

quantized at 50 nm steps to obtain the discrete mean error. To calculate the discrete mean error,

any mean error that is less than 25 nm from the nearest increment of 50 nm is rounded up to that

increment. The FLC performs significantly better than the SGC and the PC in all respects. It has

a faster and more consistent settling time, which was defined as the time it took for the position

measurement to reach± 50 nm of its steady state value. The percent overshoot with the FLC is

also lower and more consistent than with the SGC. Finally, the discrete mean steady state error

with the FLC is 0 nm,± the 25 nm discretization increment of the encoder. This is much better

than the 150 nm steady state error with the SGC and 400 nm error with the PC.

Table 6.1: Comparison of controller performance, 1 cm step

Controller Mean settle time Mean overshoot Mean error Discrete mean error

seconds percent nm nm

Fuzzy 3.08± 0.275 0.00879± 0.00206 20.8± 25.7 0± 25

Switched 3.26± 0.760 0.0176± 0.00652 133± 53.7 150± 50

Proportional 3.40± 0.969 -0.00265± 0.00315 400± 418 400± 400
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The second test of the EHA with an inertial load was a 5 cm step response. Figures 6.6 to 6.8

show the steady state response of the system when employing the three controllers (again using the

enhanced scale). It can be seen that the FLC results in smaller overshoot of the desired position

than the SGC. Also, the poor steady-state positional error of the PC relative to the other controllers

can be observed. Table 6.2 summarizes the performance parameters of the EHA with the three

controllers. The superior response of the system with the FLC controller is again evident, with a

steady state error of only 50± 25 nm. To put this in context, this is equal to 0.0001% error.

Figure 6.6: Steady state response with PC, 5 cm step input
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Figure 6.7: Steady state response with SGC, 5 cm step input

Figure 6.8: Steady state response with FLC, 5 cm step input
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Table 6.2: Comparison of controller performance, 5 cm step

Controller Mean settle time Mean overshoot Mean error Discrete mean error

seconds percent nm nm

Fuzzy 3.26± 0.128 0.00203± 0.000153 50± 0 50± 25

Switched 4.07± 0.456 0.00330± 0.0004 216± 57.7 200± 50

Proportional 3.14± 0.393 -0.0005± 0.000608 367± 284 350± 300

Figure 6.9 to 6.11 show the steady state response of the system to a 100µm step input when

employing the three controllers. The initial position of the actuator was 0 cm, as in the previous

two tests. It is observed in Table6.3 that the settling time and percent overshoot of the FLC is

superior to the SGC. As well, the steady state error with the FLC is below the resolution of the

sensor, compared to the 100 nm and 1650 nm positional error with the SGC and PC respectively.

Figure 6.9: Steady state response with PC, 100µm step input
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Figure 6.10: Steady state response with SGC, 100µm step input

Figure 6.11: Steady state response with FLC, 100µm step input
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Table 6.3: Comparison of controller performance, 100µm step

Controller Mean settle time Mean overshoot Mean error Discrete mean error

seconds percent nm nm

Fuzzy 1.54± 0.0776 0.567± 0.126 0± 0 0± 25

Switched 2.68± 0.301 1.75± 0.361 83.3± 57.7 100± 50

Proportional 2.06± 0.169 -1.48± 0.318 1650± 436 1650± 450

Tests were also performed using the three controllers with step inputs of 10µm, 1µm, and 200

nm. Because the response plots for these tests are very similar to the plots presented in Figs.6.3

to 6.11, their presentation is deferred to Appendix C. Instead, a summary of the results of these

tests are given in Tables 6.4 to 6.6 respectively.

It can be seen that the positional error with the FLC controller is 50± 25 nm for step inputs in

the range of 5 cm to 200 nm with an inertial load of 20 kg. This demonstrates the very high level

of accuracy that the EHA system is capable of when employing a high-performance controller. In

contrast, for the same inputs the error with the SGC ranges from 200± 50 nm to 50± 25 nm while

the error with the PC ranges from 1650± 400 nm to 200± 25 nm.

Table 6.4: Comparison of controller performance, 10µm step

Controller Mean settle time Mean overshoot Mean error Discrete mean error

seconds percent nm nm

Fuzzy 1.92± 0.0413 9.17± 0.289 0± 0 0± 25

Switched 3.93± 0.0802 13.5± 0.50 50± 0 50± 25

Proportional 1.96± 0.0355 -11.0± 2.0 1167± 161 1150± 150
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Table 6.5: Comparison of controller performance, 1µm step

Controller Mean error Discrete mean error

nm nm

Fuzzy 50± 0 50± 25

Switched 217± 28.9 200± 50

Proportional 750± 0 750± 0

Table 6.6: Comparison of controller performance, 200 nm step

Controller Mean error Discrete mean error

nm nm

Fuzzy 0± 0 0± 25

Switched 83.3± 28.9 100± 50

Proportional 200± 0 200± 25

An additional set of tests was conducted to determine the ability of the EHA to track time-

varying input positions. To do so, a low frequency (0.2 Hz) sine wave with a 1 cm peak amplitude

was set as the demanded position. This test replicates tasks that the EHA might be applied to, such

as following a contour in a machining operation.

Because the full scale response of the EHA to the sinusoidal input was the same for all con-

trollers, only a typical response for the FLC is presented. Figure 6.12 shows the full scale response

of the EHA to the sine wave input with the FLC. The response is shown by the solid line, with

the varying proportional gain indicated by the dashed line. The operation of the FLC can be seen

in the smoothly-varying value of the proportional gain. As the system approaches its maximum

displacement and the positional error decreases, the proportional gain increases from the initial

value of 585 to the maximum value of nearly 1250. This reduces the steady state error when the

actuator’s velocity approaches zero at the peaks of the sine wave.
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Figure 6.12: Response to 1 cm 0.2 Hz sine wave input with FLC„ solid line =

displacement, dashed line = proportional gain

As was the case for the step inputs, as the scale of the position becomes enhanced, the differ-

ences between the three controllers becomes very evident. The steady state errors at the peaks of

the sine wave with the three controllers are shown in Figs. 6.13 to 6.15.

Figure 6.13: Steady state error with PC, 1 cm 0.2 Hz sine wave input
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Figure 6.14: Steady state error with SGC, 1 cm 0.2 Hz sine wave input

Figure 6.15: Steady state error with FLC, 1 cm 0.2 Hz sine wave input

Table 6.7 presents the mean steady state error and discretized mean error at the peaks of the 0.2

Hz 1 cm sine wave input with the three controllers. The FLC controller outperforms the SGC and

the PC by nearly a factor of three, with a mean steady state error of 34.8µm. This shows that the

EHA is capable of following contour inputs within 50µm steady state accuracy at this particular

amplitude and frequency.
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It is noted that the use of a time-varying signal such as the sine wave input described above

reduced the steady state positional accuracy significantly compared to the non time-varying set

point change represented by the step input tests. However, it should be kept in mind that in the

step input tests, there exists an approximately two second time period between when the actuator

reaches 95% of its steady state value and when it finally reaches steady state. Because the steady

state period at the peaks of the sine wave is roughly half a second, the actuator never reaches its

ultimate steady state accuracy when tracking the sine wave signal, leading to the reduced positional

accuracy demonstrated in Table 6.7.

Table 6.7: Comparison of controller performance, 1 cm 0.2 Hz sine wave (errors

evaluated at the sinusoidal peaks)

Controller Mean error Discrete mean error

µm µm

Fuzzy 34.8± 0.486 34.8± 0.486

Switched 96.0± 0.808 96.0± 0.808

Proportional 97.0± 0.50 97.0± 0.50

A series of tests were performed with a sine wave input of 0.2 Hz with a 100µm peak ampli-

tude. The objective of this test was to investigate the ability of the EHA to track low amplitude

time-varying signals. This was important because as the magnitude of a time-varying signal de-

creases, the required acceleration of the EHA decreases as well. This leads to the friction force

becoming dominant rather than the force required to accelerate the inertial load. To illustrate the

effect of friction on the response of the EHA, consider Fig. 6.16 in which the overall response of

the system to the sine wave when using the FLC is presented.

It should be noted that the effect of static friction can be seen clearly in this figure. When the

load is at a rest at the peaks of the sine wave, it takes more force to break it loose than to keep it in

motion. This is because the static friction coefficient is generally higher than the dynamic friction

coefficient. Therefore, the pressure in the actuator builds up to a level high enough to break the

load free, causing it to accelerate faster than the hydraulic flow can keep up with. The actuator then

slows for a small amount of time until the flow catches up and maintains the load at the desired

velocity.
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This situation can also occur with the step inputs presented earlier. However, the effect is

exacerbated by the time-varying nature of the sine wave. In the case of the step input, when the

actuator "unsticks," it overshoots the desired position so that the error signal becomes large enough

to tend to drive the system back. For the sine wave, when the system "unsticks," it tends to stop

again because the actuator arrives near the current position of the sine wave, which has changed

in value since the actuator was stuck. This means that the error is relatively small, so that it takes

some time for the error to become large enough to overcome the stiction.

Figure 6.16: Response to 100µm 0.2 Hz sine wave input with FLC, solid line =

displacement, dashed line = proportional gain

Figures 6.17 to 6.19 show the steady state error at the peaks of the sine wave with the three

controllers. It can be seen that the appearance of the error at the peaks varies significantly with the

type of controller used.
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Figure 6.17: Steady state error with PC, 100µm 0.2 Hz sine wave input

Figure 6.18: Steady state error with SGC, 100µm 0.2 Hz sine wave input
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Figure 6.19: Steady state error with FLC, 100µm 0.2 Hz sine wave input

Table 6.8 summarizes the mean steady state error at the peaks of the 100µm amplitude sine

wave for the various controllers. Again, the FLC controller performs significantly better than the

other two, its 0.350µm error being roughly three times better than that of the SGC and over six

times better than that of the PC. The actuator dwells at the zero-velocity peaks of the sine wave for

a longer period of time for the 100µm sine wave than the 1 cm sine wave. This results in increased

positional accuracy for the former compared to the latter, since the actuator has a greater amount

of time to settle towards its ultimate accuracy.

Table 6.8: Comparison of controller performance, 100µm 0.2 Hz sine wave

Controller Mean error Discrete mean error

µm µm

Fuzzy 0.350± 0.050 0.350± 0.050

Switched 1.02± 0.161 1.0± 0.150

Proportional 2.30± 0.180 2.30± 0.20

In summary, tests comparing the performance of the EHA with a dominantly-inertial load

using fuzzy, switched-gain and proportional controllers were presented. In all cases, the system

63



performed significantly better when using the fuzzy controller than the other two controllers. In

fact, the positional error of the system was 50± 25 nm or less for step inputs ranging from 5 cm

to 200 nm in magnitude. However, it was found that the EHA demonstrated significantly reduced

steady state positional accuracy at the peaks of a time-varying sine wave input. It is believed that

this is due to the fact that the actuator never reaches its ultimate steady state due to the sine wave

reversing its direction before the actuator completely settles.

In the following section, the performance of the EHA under the influence of an external load

acting on the actuator with the three controllers will be investigated.

6.2 Inertial and resistive external load

The tests performed on the EHA thus far have all used a dominantly-inertial load of 20 kg. In

order to determine the performance of the EHA under an external resistive load, a compressive coil

spring was anchored between the EHA’s frame and one face of the load mass. The steel spring had

a free length of 10 cm, a compressed length of 4 cm, a diameter of 4.3 cm, and a wire diameter of

0.47 mm.

It was desired to be able to calculate the force exerted by the spring for a given amount of

compression, so that the displacement of the actuator could be used to determine the force exerted

on the inertial load by the spring. In order to measure the force exerted by the spring throughout

its compression, a load-deflection test was performed using an Instron ATM. The spring was com-

pressed to a maximum compression of 5 cm, with the compressive force and spring compression

being measured at 542 points. The result of the load-deflection test is shown in Fig. 6.20. It can be

seen that the load-deflection curve is linear.

A linear regression line was fit to the data using the least-squares method. The coefficient of

determination, which represents the proportion of variation accounted for by the regression line,

wasR2 = .9996. This indicates that the fit of the regression line to the data was excellent, with one

being the best possible fit. The equation of the regression line wasForce= 9.88Xd−11.4 with the

displacementXd in mm and the force exerted inN. This equation was used to calculate the force

the spring exerts on the load given the displacement of the actuator.
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Figure 6.20: Load-deflection test of external load spring

The first test performed on the EHA with this resistive external load was a 1 cm step input.

The compression of the coil spring produced a maximum load of approximately 90 N at 1 cm of

displacement. Figure 6.21 shows the full scale response of the actuator to the 1 cm step input.

As in earlier results the full scale response of the EHA to this input looks identical regardless of

the controller used; hence only a representative step response with the FLC is shown. This figure

demonstrates that the presence of an external resistive load does not alter the full scale response of

the EHA to a step input appreciably.
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Figure 6.21: Response to 1cm step input under load with FLC, solid line = dis-

placement, dashed line = proportional gain

The steady state response of the system to the 1 cm step input with the three controllers is

shown at an enhanced scale in Figs. 6.22 to 6.24. It can be seen that there are significant differences

between these figures and the ones presented in the previous section, when the actuator was not

under the influence of an external load. First, the positional error has increased from 0± 0.025µm

to 3.1± 0.85µm. Second, the system does not achieve a true steady state; there are "dips" in the

position of the load of roughly 0.5µm.

It is postulated that both these changes are caused by pump and actuator cross-port fluid leak-

age. In order to maintain the actuator in a fixed position under the influence of an external force,

there must exist a force differential on the rod of the actuator. In turn, there must exist a pressure

differential across the piston of the actuator to cause this force. This pressure differential drives

fluid flow from one side of the actuator to the other, resulting in actuator cross-port fluid leakage.

The leakage acts as a disturbance input to the system as discussed Sampson et al., reducing the

positional accuracy [15] (for further details see Appendix D).

In order to maintain the actuator in a fixed position given cross-port leakage, the pump must

provide enough flow to compensate for the leakage. Because the system uses a gear pump, each

time a gear tooth opens to the pump output chamber to deliver a unit of fluid, the volume of the

fluid decreases as it is pressurized to equalize with the pressure in the chamber. This reduction in

66



fluid volume causes the position of the actuator to slip back a few microns each time a gear tooth

opens to the output chamber.

Figure 6.22: Steady state response under load with PC, 1cm step input

Figure 6.23: Steady state response under load with SGC, 1cm step input
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Figure 6.24: Steady state response under load with FLC, 1cm step input

Regardless of the increase in positional error as a result of the external load, the accuracy of

the EHA during this test is within 5µm. Table 6.9 presents the error of the EHA with the three

controllers with a 1 cm step while under the influence of a 90 N (maximum) external resistive load.

The FLC performs better than either other controller, achieving a mean 3.1µm error with the 90 N

(maximum) load.

Table 6.9: Comparison of controller performance under 90 N load, 1cm step

Controller Mean error Discrete mean error

µm µm

Fuzzy 3.10± 0.835 3.10± 0.850

Switched 4.68± 3.54 4.70± 3.55

Proportional 5.48± 1.01 5.50± 1.00

A similar test was performed with the three controllers, except that the magnitude of the step

input was increased to 3 cm. This resulted in a maximum external load of approximately 280 N

(maximum) being applied to the actuator. Figures 6.25 to 6.27 show the steady state response of the

system to the step input. It can be seen that both the steady state error and the frequency/magnitude

68



of the "dips" have increased. This is consistent with what would be expected due to the increased

fluid leakage resulting from the larger 280 N external load.

Figure 6.25: Steady state response under load with PC, 3cm step input

Figure 6.26: Steady state response under load with SGC, 3cm step input
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Figure 6.27: Steady state response under load with FLC, 3cm step input

Table 6.10 contains the mean steady state error of the EHA for a 3cm step input under a 280

N (maximum) external load. The positional error with the fuzzy controller is less than half the

magnitude of the error with the other two controllers, at 8.47± 0.375µm. However, this error is

an increase of 2.9 times the positional error of 3.1µm observed under a 90 N external load. This

suggests that the positional error when then actuator is under the influence of an external load may

be linearly related to the magnitude of the load.

Table 6.10:Comparison of controller performance under 280 N load, 3cm step

Controller Mean error Discrete mean error

µm µm

Fuzzy 8.47± 0.375 8.45± 0.400

Switched 18.23± 1.83 18.25± 1.85

Proportional 18.1± 1.50 18.1± 1.50

Tests were also performed using the three controllers with step inputs of 100µm and 10µm

under the influence of a 280 N external load resulting from a 3 cm positional bias. The plots of the

responses from these tests are presented in Appendix C. A summary of the results of these tests are
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given in Table 6.11 and 6.12 respectively.

It can be seen that the steady state positional error of 9.25± 1.15 µm for the 100µm step

input with the fuzzy controller is roughly half the error measured with the two other controllers.

Similarly, for the 10µm step input, the FLC had a 2.65± 0.750µm steady state error compared to

5.60± 3.55µm with the proportional controller.

Table 6.11:Comparison of controller performance under 280 N load, 100µm step

(3cm bias)

Controller Mean error Discrete mean error

µm µm

Fuzzy 9.25± 1.14 9.25± 1.15

Switched 18.2± 1.73 18.2± 1.725

Proportional 18.1± 1.20 18.1± 1.20

Table 6.12: Comparison of controller performance under 280 N load, 10µm step

(3cm bias)

Controller Mean relative error Discrete mean error

µm µm

Fuzzy 2.67± 0.725 2.65± 0.750

Switched 3.98± 3.09 4.00± 3.10

Proportional 5.58± 3.56 5.60± 3.55

The final two tests performed on the EHA system under the influence of an external load were

tracking a low-frequency sine wave. In each case, the sine wave input was biased so that it was

centered around 2cm of displacement. This corresponds to an external load of approximately 180

N.

The input of the first test was a 1 cm peak magnitude, 0.3 Hz sine wave biased by 2 cm. The

full scale response of the EHA to this input with the FLC is shown in Fig. 6.28 (as before, the

responses for all the controllers at full scale were non-distinguishable). The increased gain of the

FLC as the positional error approaches zero at the peaks of the sine wave can be observed.
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Figure 6.28: Response to 1cm 0.2 Hz sine wave input under load with FLC, 2cm

bias, solid line = displacement, dashed line = proportional gain

The steady state positional error plots for the three controllers are very similar to those shown

in the section without the external load and are presented in Appendix C for completeness. The

steady state positional mean errors are tabulated in Table 6.13. It is interesting to note that the

values of the errors presented in the table for the loaded system are very similar to the values

presented in Table 6.7 for the unloaded system. This is likely due to the fact that with a sine wave

input of this magnitude, the actuator does not dwell long enough at steady state for leakage due to

the external load to have a large effect on the positional accuracy.

Table 6.13: Comparison of controller performance under 180±90 N load, 1cm

sine wave (2cm bias)

Controller Mean error Discrete mean error

µm µm

Fuzzy 34.6± 1.39 34.6± 1.40

Switched 95.1± 5.06 95.1± 5.05

Proportional 94.1± 2.88 94.1± 2.90

The input of the second test was a 100µm peak magnitude, 0.3 Hz sine wave biased by 2 cm.
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The response of the EHA to this input with the FLC is shown in Fig. 6.29. The same "dips" that

were visible in the loaded step input plots can also be observed in this figure.

Figure 6.29: Response to 100um 0.2 Hz sine wave input under load with FLC,

2cm bias, solid line = displacement, dashed line = proportional gain

Table 6.14 presents the mean steady state positional error of the EHA in response to a 100µm

0.2 Hz sine under an external load of 180 N. Again the FLC outperforms the other two controllers,

giving a positional error of 19.1µm compared to roughly 30µm for the SGC and PC. This amount

of error is over an order of magnitude worse than the error measured with a similar input but no

external load in the previous section. This leads to the conclusion that the effect of cross-port

leakage due to external loads has a significant impact on the positional accuracy of the EHA when

the system remains at steady state for lengths of time greater than a few tenths of a second.
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Table 6.14: Comparison of controller performance under 180 N load, 100um sine

wave (2cm bias)

Controller Mean error Discrete mean error

µm µm

Fuzzy 19.1± 2.83 19.1± 2.85

Switched 29.2± 13.7 29.2± 13.7

Proportional 30.1± 3.34 30.1± 3.35

6.3 Summary and discussion

The tests performed in this chapter suggest that the influence of an external load on the EHA

system has a large impact on its steady state positional accuracy. This is a result of the pressure

differential across the actuator caused by the external force leading to cross-port fluid leakage.

This leakage acts as a disturbance input to the system, reducing its accuracy. The influence of

an external load on the accuracy of the EHA could be reduced in several ways. If the external

force is resistive (acting to retract the rod), then the third "bias" chamber of the actuator could be

pressurized to give a force equal to the external force but opposite in direction. This would greatly

reduce the pressure differential across the actuator working chambers, reducing the leakage that

leads to reduce accuracy. This was not verified experimentally at this point because the force in

the chamber would have to vary in an equal but opposite manner to that of the external spring.

Although such as system could be built using a pressure control valve, it was considered beyond

the scope of this initial study (see Recommendations).

Other alternatives include approaches such as reducing the leakage through physical modifica-

tions of the system including different seals, machining tolerances, or types of fluids. Finally, the

use of a zero flow-ripple pump such as a screw pump would reduce the "dips" seen in the actuator’s

position which are a result of the discrete nature of flow delivery of the gear pump currently used

in the EHA.

74



CHAPTER 7

CONCLUDING COMMENTS

7.1 Conclusions

As presented in Section 1.3, an objective of this study was the modification of the EHA so that the

system achieves nano-scale positional accuracy while maintaining its desirable properties of high

force output and large stroke. It was anticipated that both hardware modification and controller

redesign would be required in order to achieve this objective.

This objective was met for one type of load, in that the final EHA configuration using the

fuzzy logic controller described in Section 5.8 and a dominantly-inertial load of 20 kg achieved

a positional accuracy of 50± 25 nm for a range of step inputs from 5 cm to 200 nm. In fact,

the steady state positional error of the EHA for the majority of the step inputs in this range was

less than the 50 nm resolution of the position sensor. This level of accuracy was achieved without

altering the desired qualities of the EHA, such as a critically damped response with a 0.7 second

rise time, high force output, and 12 cm stroke. In comparison, for the same inputs the error with

the SGC ranged from 200± 50 nm to 50± 25 nm while the error with the PC ranged from 1650

± 400 nm to 200± 25 nm.

Additional tests were performed to determine the ability of the EHA to track time-varying

signals. These signals replicate those typical of some possible applications of the EHA, including

the contouring operations used in machining. A sine wave input of 1 cm peak magnitude and 0.2

Hz frequency was selected to test the large-scale tracking response of the EHA. The steady state

error at the peaks of the sine wave was found to be 34.8± 0.486µm when employing the fuzzy

controller. A second test was performed with a sine wave input of 100µm peak magnitude and 0.2

Hz frequency, to test the micro-scale tracking ability of the EHA. The steady state error was found

to be 0.350± 0.050µm when using the fuzzy controller. These tests demonstrate that the EHA is

able to track time-varying signals while maintaining accuracy in theµm scale, even though there is

an increase in the positional error compared to input set-point changes such as step inputs.
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In addition to the tests described above using a dominantly-inertial load of 20 kg, a series of

tests with an external resistive load was performed. These tests were designed to investigate the

change in performance of the EHA when exposed to external forces varying in magnitude from 90

to 280 N, in addition to the inertial load of 20 kg. The external load was applied using a coil spring

that was compressed between the frame of the EHA and the actuator. A spring load represents a

"worst case scenario," since the load changes with the displacement of the actuator. Nevertheless,

it does serve to demonstrate the effects of pressure differentials (as a result of frictional or other

forces) on leakage and hence accuracy. The test signals were selected to be as similar to the ones

used in the inertial load tests as possible, to permit direct comparison of the effect of an external

load on the positional accuracy of the EHA.

The first tests performed with the external loads involved step inputs of 1 cm and 3 cm with a

steady state load of roughly 90 N and 280 N respectively. The steady state positional error in each

case was 3.10± 0.835µm and 8.45± 0.400µm respectively when employing the fuzzy controller.

The error when using the switched-gain and proportional controllers was two to three times larger

than with the fuzzy controller. From these two tests, it appears that the steady state positional error

varies linearly with the external load, as the error tripled when the force increased by the same

amount. The second tests performed with the external loads were step inputs of 100µm and 10

µm, both with an external load of 280 N. In all cases the positional error was significantly less with

the fuzzy controller than the other two controllers, further demonstrating the superiority of the FLC

with respect to high-accuracy positioning.

Finally, tracking tests under the influence of an external load were performed. In this case,

the input was a sine wave with a bias of 2 cm, 0.2 Hz frequency and amplitudes of 1 cm and 100

µm peak. The 2 cm bias resulted in an external force of 180N being applied to the actuator. In

the case of the 1 cm magnitude sine wave, the steady state positional error was 34.6± 1.40µm

when employing the fuzzy controller, roughly a third of the 95µm error exhibited when using the

switched-gain and proportional controllers. For the 100µm magnitude sine wave, the error was

19.1± 2.85 µm with the fuzzy controller, significantly less than the error when employing the

other two controllers.

The conclusions reached by the study are as follows. First, the EHA as it existed at the end

of the study is able to position a dominantly-inertial load of 20 kg with a positional accuracy of

50 ± 25 nm over its 12 cm range of travel. This was due to the implementation of the fuzzy

controller presented in this study. Second, the system is able to track time-varying input signals,
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but with a reduced positional accuracy since the actuator did not have sufficient time to settle to

its final accuracy due to the varying input signal. Third, the accuracy of the EHA is degraded by

the application of a resistive external load, in this study by a factor of 50 with a 90 N (maximum)

load and a factor of 150 with a 280 N (maximum) load. The final conclusion drawn was that

performance of the EHA using the fuzzy controller was superior than the performance of the EHA

when using the switched-gain or proportional controllers for all cases investigated during this study.

7.2 Future work

Although the EHA achieved excellent positional accuracy with a dominantly-inertial load of 20

kg, it was determined that the accuracy decreased significantly when an external load of 90 to 280

N was added. For example, the positional error with the fuzzy controller when performing a step

displacement of 1 cm was 0± 25 nm with the inertial load compared to 3.10± 0.835µm with

the combined inertial load of 20 kg and resistive load of 90 N. While this level of accuracy is

still excellent, it is desirable to modify the EHA further so that the accuracy of the system is as

independent of the load as possible.

It is believed that the primary source of error when an external load is applied to the actuator

is due to cross-port leakage in the actuator and the pump. This leakage occurs because the pump

needs to create a pressure differential across the actuator to counteract the external force. The

pressure differential drives leakage flow across the actuator and pump chambers. This leakage

flow acts as a disturbance to the system, decreasing its positional accuracy. In addition, the gear

pump that is currently employed in the system leads to "dips" in the steady state position of the

actuator with an external load, as is seen in Section 6.2.

In order to decrease the positional error caused by leakage due to external loads, several areas

could be investigated. First, better seals and machining tolerances in the construction of the actuator

and pump could reduce the magnitude of the leakage. Second, the third chamber of the actuator

could be pressurized to reduce the pressure differential across the actuator working chambers,

which would reduce the actuator cross-port leakage. Third, the type of pump employed in the

system could be changed to reduce the magnitude of the "dips" in the steady state response, which

are caused by the discrete fluid chambers of the gear pump currently used in the system. Finally,

alternate control algorithms could be devised to reduce the error caused by external loads, possibly

using the signal measured by the differential pressure transducer to determine the magnitude of the
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external force and take measures to counteract it.
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APPENDIX A: COMPUTER CODE

This section contains the computer code written to enable the MATLAB real-time control envi-

ronment to read the displacement signal measured by the optical encoder and send a desired motor

velocity to the motor controller over a serial RS232 link. The code presented here was adapted

from example code provided by MATLAB in default installations. However, the modifications

were substantial and the bulk of the code presented here was written specifically for the purposes

of this study. It should be noted that the code was tested using MATLAB versions 5.3 and 6.1 only,

and that modifications to the code may be necessary when using other versions of MATLAB.

/* $Date: 06/11/2003 $
* $Revision: 1.0 $
* $Author: sampson $
*
* File: isc3n.c
*
* Abstract:
* S-Function device driver for the digital input section of
* the Gurley Precision Instrument ISC3N I/O board.
*
* Adapted from the Mathworks das16di driver, 1998/04/28 04:19:32
* Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
*/

#define S_FUNCTION_NAME isc3n
#define S_FUNCTION_LEVEL 2

#include <stdlib.h> /* malloc(), free(), strtoul() */
#include "simstruc.h" /* the simstruct access macros */
#include "stdio.h"

/*=========================================================================*
* Number of S-function Parameters and macros to access from the SimStruct *
*=========================================================================*/

#define NUM_PARAMS (7)
#define BASE_ADDRESS_PARAM (ssGetSFcnParam(S,0))
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#define CHANNEL_PARAM (ssGetSFcnParam(S,1))
#define SAMPLE_TIME_PARAM (ssGetSFcnParam(S,2))
#define CONV_FACTOR_PARAM (ssGetSFcnParam(S,3))
#define PRESET_PARAM (ssGetSFcnParam(S,4))
#define MODE_PARAM (ssGetSFcnParam(S,5))
#define ACCESS_HW_PARAM (ssGetSFcnParam(S,6))

/*==================================================*
* Macros to access the S-function parameter values *
*==================================================*/

#define CHANNEL ((uint_T) mxGetPr(CHANNEL_PARAM)[0])
#define SAMPLE_TIME ((real_T) mxGetPr(SAMPLE_TIME_PARAM)[0])
#define PRESET_RAW ((float) mxGetPr(PRESET_PARAM)[0])
#define PRESET PRESET_RAW*CONV_FACTOR
#define CONV_FACTOR ((float) mxGetPr(CONV_FACTOR_PARAM)[0])
#define MODE ((uint_T) mxGetPr(MODE_PARAM)[0])

/*========================================================*
* (Hardware Specific) Macros pertaining to the I/O board *
*========================================================*/

#include "isc3n.h"

#ifndef ACCESS_HW
# define ACCESS_HW (mxGetPr(ACCESS_HW_PARAM)[0] != 0.0)
#endif

/*======================*
* Miscellaneous macros *
*======================*/

#define BASE_ADDR_PARAM_STRLEN (128)

/*======================*
* S-function User Data *
*======================*/

typedef struct {
uint_T baseAddr;

} DIInfo;

/*====================*
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* S-function methods *
*====================*/

/* Function: mdlInitializeSizes ===============================================
*
*/

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams(S, NUM_PARAMS);

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

if (ssGetErrorStatus(S) != NULL) {
return; //Error reported in mdlCheckParameters

}
} else {

return; // Parameter mismatch will be reported by Simulink
}

/* None of this s-functions’s parameters are tunable during simulation */
{

int_T i;
for (i=0; i < NUM_PARAMS; i++) {

ssSetSFcnParamNotTunable(S, i);
}

}

ssSetNumSampleTimes( S, 1);
ssSetNumInputPorts( S, 0);
ssSetNumOutputPorts( S, 1);
ssSetOutputPortWidth(S, 0, 1);

}

/* Function: mdlInitializeSampleTimes =========================================
*
*/

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}

/*static void InitializeCard(uint_T CHANNEL)
{
diSelectChannel(CHANNEL);
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}*/

#define MDL_START
#if defined(MDL_START)
/* Function: mdlStart =========================================================
*
*/

static void mdlStart(SimStruct *S)
{

if (ACCESS_HW) {
DIInfo *diInfo = ssGetUserData(S);
char_T baseAddrStr[BASE_ADDR_PARAM_STRLEN];
uint_T baseAddr;

/* Initialize diInfo (pointer saved in the user data) */
mxGetString(BASE_ADDRESS_PARAM, baseAddrStr, BASE_ADDR_PARAM_STRLEN);
baseAddr = (uint_T) strtoul(baseAddrStr, NULL, 0);

/* Selects the channel (connector) to which the encoder is attached*/
diSelectChannel(CHANNEL);

/* Sets the Mode of operation - 0=continuous count, 1=reference initialization*/
diSetMode(baseAddr,MODE);

/* Resets the Trigger Latch so that the Reference bit can be read*/
diResetLatch(baseAddr);

/* Resets onboard counter to preset value before reading values from the encoder*/
diResetCounter(baseAddr,PRESET);

/*Troubleshooting code - prints contents of mode of operation registers in hex
printf("Offset 0x03 is:%x\n",ReadByteFromHwPort(baseAddr + 0x03));
printf("Offset 0x04 is:%x\n",ReadByteFromHwPort(baseAddr + 0x04));
*/

if (diInfo != NULL) {
free(diInfo);

}
if ((diInfo = malloc(sizeof(DIInfo))) == NULL) {

ssSetErrorStatus(S,"Memory Allocation Error\n");
return;

}
diInfo->baseAddr = baseAddr;
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ssSetUserData(S, (void*) diInfo);

printf("\nisc3n: Hardware Access Enabled\n");
} else if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {

printf("\nisc3n: Hardware Access Disabled\n");
}

}
#endif /* MDL_START */

/* Function: mdlOutputs =======================================================
*
*/

static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *y = ssGetOutputPortRealSignal(S,0);
uint_T i=0;

if (ACCESS_HW) {

DIInfo *diInfo = ssGetUserData(S);
uint_T baseAddr = diInfo->baseAddr;

/* Raw output of encoder is microns - this converts output to desired units
* Note that the conversion factor must be terminated with .0 */

y[i] = (diGetValue(baseAddr))/CONV_FACTOR;

}
else {

y[i] = 0.0;
}

}

/* Function: mdlTerminate =====================================================
*
*/

static void mdlTerminate(SimStruct *S)
{

DIInfo *diInfo = ssGetUserData(S);

free(diInfo);
ssSetUserData(S,NULL);

}
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#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

/* EOF: isc3n.c */

/* $Date: 06/11/2003 $
* $Revision: 1.0 $
* $Author: sampson $
*
* File: isc3n.h
*
* Abstract:
* S-Function device driver for the digital input section of
* the Gurley Precision Instrument ISC3N I/O board.
*
* Adapted from the Mathworks das16di driver, 1998/04/28 04:19:32
* Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
*/

#ifndef __ISC3N2__
#define __ISC3N2__

#include "tmwtypes.h"
#include "drt_comp.h"

int Port1,Port2;

/* $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
* $Accessing the Digital Input section of the I/O board$
* $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*/

/* Selects the Channel that the encoder is connected to*/
void diSelectChannel (uint_T Channel)
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{
if (Channel == 0)
{
printf("\nChannel=0\n");
Port1=0x59;
Port2=0x58;
}

else if (Channel == 1)
{
printf("\nChannel=1\n");
Port1=0x5B;
Port2=0x5A;
}

else if (Channel == 2)
{
printf("\nChannel=2\n");
Port1=0x5D;
Port2=0x5C;
}
}

/* Initializes offset 0x02 of the register with the relevent port data to select
* the user-defined channel that the encoder is connected to*/

#define diInitialize1(bA,Port1) WriteByteToHwPort(bA + 0x02, Port1)
#define diInitialize2(bA,Port2) WriteByteToHwPort(bA + 0x02, Port2)

#define diResetLatch(bA) WriteByteToHwPort(bA + 0x05, 0x00)

//#define diSetMode(bA,Mode) WriteByteToHwPort(bA + 0x04, Mode)

/* Splits the 32-bit preset into one of 4 bytes, i determines which byte is returned*/
#define ByteSplitter(i,v) ((v >> ((i-1)*8)) & 0xff)

/* Presets the bytes in the counter to the value supplied byt the user*/
#define diResetMSB1(bA,Byte1) WriteByteToHwPort(bA + 0x01, Byte1)
#define diResetLSB1(bA,Byte2) WriteByteToHwPort(bA, Byte2)
#define diResetMSB2(bA,Byte3) WriteByteToHwPort(bA + 0x01, Byte3)
#define diResetLSB2(bA,Byte4) WriteByteToHwPort(bA, Byte4)

/* Reads the 4 bytes that make up the 32-bit counter*/
#define diReadMSB1(bA) ReadByteFromHwPort(bA + 0x01)
#define diReadLSB1(bA) ReadByteFromHwPort(bA)
#define diReadMSB2(bA) ReadByteFromHwPort(bA + 0x01)
#define diReadLSB2(bA) ReadByteFromHwPort(bA)

/* Combines two bytes to make the Most Significant Word or MSW*/
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#define diReadMSW(bA) ((diReadLSB1(bA)) | (diReadMSB1(bA)<<8))

/* Combines two bytes to make the Least Significant Word or LSW*/
#define diReadLSW(bA) ((diReadLSB2(bA)) | (diReadMSB2(bA)<<8))

/* Combines the MSW and the LSW to get the 32-bit final counter value*/
#define diGetValue(bA) ((diGetLSW(bA)) | (diGetMSW(bA)<<16))

void diSetMode(uint_T bA, uint_T mode)
{
if (mode==0) {
WriteByteToHwPort(bA + 0x03, 0x00);
WriteByteToHwPort(bA + 0x04, 0x00);
}
else if (mode==1) {
WriteByteToHwPort(bA + 0x03, 0x10);
WriteByteToHwPort(bA + 0x04, 0x2A);
}

}

/* Calls the reset macros in the correct order to set counter to user preset*/
void diResetCounter(uint_T bA, int Preset)
{
char Byte1=0,Byte2=0,Byte3=0,Byte4=0;

/* Splits the 32-bit preset into 4 bytes*/
Byte1=ByteSplitter(4,Preset);
Byte2=ByteSplitter(3,Preset);
Byte3=ByteSplitter(2,Preset);
Byte4=ByteSplitter(1,Preset);

diInitialize1(bA,Port1);
diResetMSB1(bA,Byte1);
diResetLSB1(bA,Byte2);

diInitialize2(bA,Port2);
diResetMSB2(bA,Byte3);
diResetLSB2(bA,Byte4);
}

/* Initializes the register and reads the MSW*/
int32_T diGetMSW(uint_T bA)
{

diInitialize1(bA,Port1);
return diReadMSW(bA);
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}

/* Initializes the register and reads the LSW*/
int32_T diGetLSW(uint_T bA)
{
diInitialize2(bA,Port2);

return diReadLSW(bA);
}

#endif /* __ISC3N__ */

/* EOF: isc3n.h */

/* $Date: 01/11/2005 $
* $Revision: 1.0 $
* $Author: sampson $
*
* File: serial_cstm.c
*
* Abstract:
* S-Function device driver for serial communication with the
* Infranor SMT-BD1 servo amplifier.
*
* Adapted from the Mathworks das16di driver, 1998/04/28 04:19:32
* Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
*/

#define S_FUNCTION_NAME serial_cstm
#define S_FUNCTION_LEVEL 2

#include <stdlib.h> /* malloc(), free(), strtoul() */
#include "simstruc.h" /* the simstruct access macros */
#include "stdio.h"
#include <dos.h>
#include <stdio.h>
#include <conio.h>

/*=========================================================================*
* Number of S-function Parameters and macros to access from the SimStruct *
*=========================================================================*/

#define NUM_PARAMS (4)
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#define BASE_ADDRESS_PARAM (ssGetSFcnParam(S,0))
#define BAUD_RATE_PARAM (ssGetSFcnParam(S,1))
#define SAMPLE_TIME_PARAM (ssGetSFcnParam(S,2))
#define ACCESS_HW_PARAM (ssGetSFcnParam(S,3))

/*==================================================*
* Macros to access the S-function parameter values *
*==================================================*/

#define BAUD_RATE ((uint_T) mxGetPr(CHANNEL_PARAM)[0])
#define SAMPLE_TIME ((real_T) mxGetPr(SAMPLE_TIME_PARAM)[0])

/*========================================================*
* (Hardware Specific) Macros pertaining to the I/O board *
*========================================================*/

#include "serial_cstm.h"

#ifndef ACCESS_HW
# define ACCESS_HW (mxGetPr(ACCESS_HW_PARAM)[0] != 0.0)
#endif

/*======================*
* Miscellaneous macros *
*======================*/

#define BASE_ADDR_PARAM_STRLEN (128)

/*======================*
* S-function User Data *
*======================*/

typedef struct {
uint_T baseAddr;

} DIInfo;

/*====================*
* S-function methods *
*====================*/

/* Function: mdlInitializeSizes ===============================================
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*
*/

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams(S, NUM_PARAMS);

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

if (ssGetErrorStatus(S) != NULL) {
return; //Error reported in mdlCheckParameters

}
} else {

return; // Parameter mismatch will be reported by Simulink
}

/* None of this s-functions’s parameters are tunable during simulation */
{

int_T i;
for (i=0; i < NUM_PARAMS; i++) {

ssSetSFcnParamNotTunable(S, i);
}

}

ssSetNumSampleTimes( S, 1);
ssSetNumInputPorts( S, 1);
ssSetNumOutputPorts( S, 1);
ssSetInputPortWidth(S, 0, 1);
ssSetOutputPortWidth(S, 0, 1);
ssSetInputPortDirectFeedThrough(S, 0, 1);
ssSetInputPortRequiredContiguous(S,0,1);
ssSetNumRWork(S, 2);

}

/* Function: mdlInitializeSampleTimes =========================================
*
*/

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}

/*static void InitializeCard(uint_T CHANNEL)
{
diSelectChannel(CHANNEL);
}*/
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#define MDL_START
#if defined(MDL_START)
/* Function: mdlStart =========================================================
*
*/

static void mdlStart(SimStruct *S)
{

/*printf("Access Hardware is:?\n",ACCESS_HW);*/

DIInfo *diInfo = ssGetUserData(S);
char_T baseAddrStr[BASE_ADDR_PARAM_STRLEN];
uint_T baseAddr;

real_T *rwork = ssGetRWork(S);

rwork[0] = 0.0;
rwork[1] = 1.0;

/*Initialize diInfo (pointer saved in the user data) */
mxGetString(BASE_ADDRESS_PARAM, baseAddrStr, BASE_ADDR_PARAM_STRLEN);
baseAddr = (uint_T) strtoul(baseAddrStr, NULL, 0);

/* Initializes serial port */
InitializeComm(baseAddr);

if (diInfo != NULL) {
free(diInfo);

}
if ((diInfo = malloc(sizeof(DIInfo))) == NULL) {

ssSetErrorStatus(S,"Memory Allocation Error\n");
return;

}
diInfo->baseAddr = baseAddr;
ssSetUserData(S, (void*) diInfo);

printf("\nisc3n: Hardware Access Enabled\n");

}
#endif /* MDL_START */
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/* Function: mdlOutputs =======================================================
*
*/

static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *u = ssGetInputPortRealSignal(S,0);
real_T *y = ssGetOutputPortRealSignal(S,0);
uint_T i=0;
DIInfo *diInfo = ssGetUserData(S);

uint_T baseAddr = diInfo->baseAddr;
real_T *rwork = ssGetRWork(S);
real_T eps=0.0;
real_T delta=0.0;
real_T FlowCtrl;
real_T RTS = rwork[1];

if ((u[0] - rwork[0]) > 0.0) delta = (u[0] - rwork[0]);
else delta = -(u[0] - rwork[0]);

if (u[0] > 10.0) u[0] = 10.0;
if (u[0] < -10.0) u[0] = -10.0;

if (delta >= eps){

if (RTS == 1.0){

SendComm(u[0],baseAddr);

y[0] = 1.0; //limited by nothing
}
else y[0] = 2.0; //limited by transmission medium
}

else y[0] = 0; //limited by similarity to previous

printf("testing outputs");

FlowCtrl = GetComm(baseAddr);

rwork[1] = FlowCtrl;
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}

#define MDL_UPDATE
/* Function: mdlUpdate ========================================================
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{

real_T *u = ssGetInputPortRealSignal(S,0);
real_T *rwork = ssGetRWork(S);
int_T i=0;

rwork[0] = u[0];

}

/* Function: mdlTerminate =====================================================
*
*/

static void mdlTerminate(SimStruct *S)
{

DIInfo *diInfo = ssGetUserData(S);
uint_T baseAddr = diInfo->baseAddr;
SendComm(0,baseAddr);

free(diInfo);
ssSetUserData(S,NULL);

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

/* EOF: isc3n.c */

/* $Date: 01/11/2005 $
* $Revision: 1.0 $
* $Author: sampson $
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*
* File: serial_cstm.h
*
* Abstract:
* S-Function device driver for serial communication with the
* Infranor SMT-BD1 servo amplifier.
*
* Adapted from the Mathworks das16di driver, 1998/04/28 04:19:32
* Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
*/

#ifndef __SERIAL__
#define __SERIAL__

#include "tmwtypes.h"
#include "drt_comp.h"

void InitializeComm(uint_T bA)
{

WriteByteToHwPort(bA + 1 , 0); /* Turn off interrupts - bA */

/* PORT 1 - Communication Settings */

WriteByteToHwPort(bA + 3 , 0x80); /* SET DLAB ON */
WriteByteToHwPort(bA + 0 , 0x0C); /* Set Baud rate - Divisor Latch Low Byte */
/* Default 0x03 = 38,400 BPS */
/* 0x01 = 115,200 BPS */
/* 0x02 = 57,600 BPS */
/* 0x06 = 19,200 BPS */
/* 0x0C = 9,600 BPS */
/* 0x18 = 4,800 BPS */
/* 0x30 = 2,400 BPS */
WriteByteToHwPort(bA + 1 , 0x00); /* Set Baud rate - Divisor Latch High Byte */
WriteByteToHwPort(bA + 3 , 0x03); /* 8 Bits, No Parity, 1 Stop Bit */
WriteByteToHwPort(bA + 2 , 0xC7); /* FIFO Control Register */
WriteByteToHwPort(bA + 4 , 0x0B); /* Turn on DTR, RTS, and OUT2 */

printf("\nTest - comm port initialized\n");
}
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void SendComm(real_T In_Volts,uint_T bA)
{

float float_val;

int int_val;
int nib3;
int nib2;
int nib1;
int nib0;

float_val=In_Volts*400*32767/4000;

/*printf("The float value is %f\n", float_val);*/

if (float_val >= 0)
{
int_val= (int) (float_val +.5);
/*printf("The hex value is %x\n", int_val);*/
}
else
{
int_val = (int) (-float_val +.5);
int_val = ~int_val;
int_val = int_val & 0xffff;
/*printf("The hex value is %x\n", int_val);*/
}

nib3 = int_val & 0xf000;
nib3 = nib3 >> 12;
if (nib3 > 9) nib3 = nib3 + 55;
else nib3 = nib3 + 48;
/*y3[i] = nib3;
printf("The nib3 value is %i\n", nib3);*/

nib2 = int_val & 0x0f00;
nib2 = nib2 >> 8;
if (nib2 > 9) nib2 = nib2 + 55;
else nib2 = nib2 + 48;
/*y2[i] = nib2;
printf("The nib2 value is %i\n", nib2);*/

nib1 = int_val & 0x00f0;
nib1 = nib1 >> 4;
if (nib1 > 9) nib1 = nib1 + 55;
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else nib1 = nib1 + 48;
/*y1[i] = nib1;
printf("The nib1 value is %i\n", nib1);*/

nib0 = int_val & 0x000f;
if (nib0 > 9) nib0 = nib0 + 55;
else nib0 = nib0 + 48;
/*y0[i] = nib0;
printf("The nib0 value is %i\n", nib0);*/

WriteByteToHwPort(bA, 67);
WriteByteToHwPort(bA, 86);
WriteByteToHwPort(bA, nib3);
WriteByteToHwPort(bA, nib2);
WriteByteToHwPort(bA, nib1);
WriteByteToHwPort(bA, nib0);
WriteByteToHwPort(bA, 13);

printf("\nByte written\n");
}

real_T GetComm(uint_T bA)
{
real_T FlowCtrl=0;
real_T Flag=0;
uint_T Buffer=0;
uint_T i=1;

for (i; i<10; i++) {

Buffer = ReadByteFromHwPort(bA);

if (Buffer == 58) Flag = 1.0;
}

if (Flag == 1.0) FlowCtrl = 1.0;
else FlowCtrl = 0.0;

return (FlowCtrl);

}

#endif /* __serial_cstm__ */

/* EOF: serial_cstm.h */
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APPENDIX B: COMMUNICATION FILES

This section contains the text files necessary to initialize the motor controller using the serial

link, as discussed in Section 3.1.

initiate.txt (read columnwise starting at "AD0000" and ending at "SS")

AD0000 KV MS
AD IN SS
ID IM VL
ME TL TL
SS VL SS
NP RC IM
PM ZN IN
CL ZP RC
AF ZW SS
FC VE SS
BP HW ER
KP SS SS
KI MS AR
FI MA SS
KE MS1

manual.txt

SS
MS
DI
MA
SS

stop.txt

SS
AR
SS

automatic.txt

SS
MS
AN
MA
SS
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disconnect.txt

MS
SS
MS0

10rpm.txt

CV0052

100rpm.txt

CV0333

neg100rpm.txt

CVFEB1

0rpm.txt

CV0000
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APPENDIX C: ADDITIONAL RESULTS

This section contains figures detailing the response of the EHA with the proportional, switched-

gain and fuzzy controllers. The results of the tests are summarized in the tables presented in Chap-

ter 6, but examination of these response plots may lead to better understanding of the behaviour

of the EHA as a function of time as the magnitude and type of the input as well as the loading

conditions are changed.

Figure C.1: Steady state response with FLC, 10µm step input
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Figure C.2: Steady state response with SGC, 10µm step input

Figure C.3: Steady state response with PC, 10µm step input
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Figure C.4: Steady state response with FLC, 1µm step input

Figure C.5: Steady state response with SGC, 1µm step input
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Figure C.6: Steady state response with PC, 1µm step input

Figure C.7: Steady state response with FLC, 200 nm step input
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Figure C.8: Steady state response with SGC, 200 nm step input

Figure C.9: Steady state response with PC, 200 nm step input
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Figure C.10: Steady state response under load with FLC, 100µm step input (3cm
bias)

Figure C.11: Steady state response under load with SGC, 100µm step input (3cm
bias)
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Figure C.12: Steady state response under load with PC, 100µm step input (3cm
bias)

Figure C.13: Steady state response under load with FLC, 10µm step input (3cm
bias)
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Figure C.14: Steady state response under load with SGC, 10µm step input (3cm
bias)

Figure C.15: Steady state response under load with PC, 10µm step input (3cm
bias)
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Figure C.16: Steady state error under load with FLC, 1cm sine wave input

Figure C.17: Steady state error under load with SGC, 1cm sine wave input
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Figure C.18: Steady state error under load with PC, 1cm sine wave input

Figure C.19: Steady state error under load with FLC, 100um sine wave input
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Figure C.20: Steady state error under load with SGC, 100um sine wave input

Figure C.21: Steady state error under load with PC, 100um sine wave input
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APPENDIXD: INTERNATIONAL JOURNAL OF FLUID POWER

(IJFP)PAPER

This section includes the paper which was published by the International Journal of Fluid

Power in August, 2004. In the paper the linear model of the EHA previously developed by Habibi

and Singh is expanded to include the ability to simulate the effect of arbitrary time-varying force

and flow disturbances on the EHA. This paper is included with the express permission of the

journal’s publishers.
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Abstract 
 

This paper pertains to the nonlinear control of a high-precision hydrostatic actuation system 
known as the ElectroHydraulic Actuator (EHA). It describes the action of the controller in reducing the 
steady state error resulting from flow and force disturbances. The EHA uses inner-loop pump velocity 
feedback to achieve an unprecedented level of accuracy for a hydrostatic system. A published mathematical 
model of the EHA is reviewed and expanded to produce an equation that predicts the response of the EHA 
to both desired inputs as well as flow and force disturbances. This equation suggests that the use of a 
proportional outer-loop controller should result in steady-state error as a result of these disturbances, but 
that a PI outer-loop controller should eliminate the steady-state error. Experimental results from a prototype 
of the EHA demonstrate that due to the nonlinear friction present in the actuator, the use of a conventional 
proportional or PI controller is not sufficient to effectively deal with these disturbances. However, a 
nonlinear proportional outer-loop controller does result in a substantial performance improvement in 
regards to disturbance rejection for positional accuracy. Experiments conducted on the prototype using the 
nonlinear controller reveal that it is capable of a positional accuracy of 1 µm for a load of 20 kg.  
 
Keywords: actuator, electrohydraulic, hydrostatic, micro-precision, disturbance rejection 
 
  

1 Introduction 

Traditional hydraulic systems have 
several drawbacks with regards to their use in 
high-performance applications. These include: 

• High energy usage due to the pumps 
being driven continuously by constant-
speed motors even when the actuator is 
not moving, 

• requirement of a large central fluid 
distribution system including a 
reservoir, and 

• requirement of expensive servo valves 
for precision control. 
A novel hydraulic actuation system 

referred to as the ElectroHydraulic Actuator 
(EHA) has been developed to overcome these 
drawbacks while providing high positional 
accuracy, as presented by Habibi and 
Goldenberg (1999). The EHA uses a bi-
directional fixed-displacement pump powered by 
a variable-speed servomotor, Watton (1989), 

Arnautovic (1993), Desai and Bobrow (1989), 
Manring and Lueke (1989), Merrit (1967). The 
actuator is directly connected to the pump as 
shown in Fig. 1. The pump’s speed and direction 
determine the flow to and from the actuator and 
hence its displacement. An integral contributor to 
the high performance of the EHA is inner-loop 
velocity control of the pump velocity. This 
reduces the dead-band common in hydrostatic 
actuation systems that limit their performance 
and positional accuracy. A prototype of the EHA 
has demonstrated an excellent level of 
performance with a nonlinear control approach, 
being capable of moving a 20 kg load with an 
accuracy of 1 µm and a critically damped rise 
time of 0.3 s. 

In sections 1 to 6 of the paper, a method 
is developed to theoretically predict the steady-
state positional error of the EHA as a result of 
both flow and force disturbances. A flow 
disturbance can be defined as any load flow that 
is not included in the EHA model, such as 
changes in actuator seal performance causing 



additional external leakage. A force disturbance 
can similarly be defined as any external force 
applied to the load that is not included in the 
EHA model. Examples of force disturbances 
could be nonlinear friction between the rails and 
the load, or sudden application of an external 
force. 

The development of a way to model 
these disturbances is important because it allows 
one the opportunity to simulate the effects of 
arbitrary time-varying flow and force 
disturbances on the EHA system using a 
simulation package on a computer. For this 
paper, the purpose of developing an EHA model 
that includes these disturbances was to predict 
the steady-state error as a result of flow and force 
disturbances when using a proportional versus a 
proportional-integral (PI) controller. In section 7 
of the paper, experiments that were conducted to 
verify the accuracy of the predictions are 
presented; in addition a controller is developed to 
minimize the steady-state error of the EHA. 
 

2 EHA System 

The EHA system consists of the following 
components: 

Controller  • 
• 
• 
• 
• 
• 
• 
• 

Electric Motor  
Bi-Directional Gear Pump  
Accumulator 
Pressure, Position and Speed Sensors 
Crossover Relief Valve 
Symmetrical Actuator  
Load 

 A simplified schematic of the system is 
shown as Fig. 1. 

The three-phase brushless AC electric 
motor directly drives the pump, which controls 
the flow of hydraulic oil to the two active 
chambers of the actuator. Depending on the load, 
the resulting pressure differential between the 
actuator chambers then applies a net force on the 
external load. In this case, the load is a 20 kg 
steel block mounted on two linear rails which is 
displaced horizontally by the force exerted on it 
by the actuator. 

The symmetrical linear actuator used in 
the prototype has a single rod and has been 
designed expressly for the system, as described 
in Habibi and Goldenberg (1999). The actuator 
has two working chambers C1 and C2, illustrated 
in Fig. 2. The rod is hollow and has a circular 
disc at the end of the rod inside the actuator. 
Hydraulic fluid enters the two chambers of the 
actuator through ports O1and O2. 

The working areas of the chambers A1 
and A2 are made equal in area, which results in 
symmetrical flow if leakage is neglected. There 
also exists a third working chamber C3, which 
can be pressurized via port O5 to provide a bias 
to counteract a constant external force. Finally, 
ports O3 and O4 are provided to drain any 
actuator fluid leakage. 
 
 
 
 
 
 
 
 
 

 

Fig. 1: Schematic of EHA 
 



 
Fig. 2: Cross-Section of Actuator 

 
An accumulator is connected to the low-

pressure case drain of the gear pump. It prevents 
cavitation, and replaces fluid lost due to leakage. 
The accumulator sets the minimum system 
pressure and can be adjusted from 0.28-0.69 
MPa (40-100 psi). The upper limit is set by the 
pump seals, which would be damaged if the case 
drain pressure exceeds 0.69 MPa. 

The crossover relief valves increase the 
safety of the system by preventing excessive 
pressure build-up if the actuator reaches the end 
of its travel, or if a fault were to occur. Recently 
a new position sensor has been added to the 
system to measure the displacement of the load. 
The sensor, an optical linear encoder, has a 
resolution of 1 µm. This sensor has enabled more 

exact positional data to be obtained, increasing 
the accuracy of the system. 
 

3 EHA Model 

A mathematical model of the EHA 
system was developed in Habibi and Singh 
(2000). In this paper, an analysis of the effect of 
flow disturbances and force disturbances on the 
system is considered by using an expanded EHA 
model. Figure 3 shows a simplified block 
diagram for the system showing the outer-loop 
position controller GOL(s), the inner-loop pump 
velocity loop GV(s), and the hydraulic transfer 
function GH(s). 

The EHA system as described in Habibi 
and Singh (2000) used a proportional outer-loop 
controller such that: 
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The motor/pump subsystem consists of 

a bi-directional pump driven directly by an AC 
electrical motor controlled by a velocity 
controller. An identified model of the overall 
motor/pump subsystem transfer function was 
described in Habibi, Pastrakuljic and Goldenberg 
(2000). As such, the motor/pump subsystem with 
a PI inner-loop controller can be described by 
Eq. 2, an identified transfer function: 

 

 

Fig. 3: Simplified EHA block diagram 



 
Fig. 4: EHA block diagram showing hydraulic transfer function GH(s) 
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let κv = 40.55, the motor gain. 
 

Further to the hydraulic model of the 
EHA as described in Habibi and Singh (2000) 
and neglecting the pressure drop across the lines 
while introducing a disturbance flow Qdis, a 
simplified linear relationship is obtained as: 
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From Eq. 3, the resulting transfer 

function between the actuator pressure 
differential and the fluid flow is obtained as: 
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The EHA prototype has a load that 

consists of a mass M that slides on horizontal 
rails that contribute a viscous damping term B, 
and experiences a disturbance force Fdis. This 
results in the following load model: 
 
( ) xBxMFAPP +=+− dis21  or  (5) 
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Combining Eq. 1, 2, 4 and 6 results in the system 
block diagram shown in Fig. 4. Included in 

dashed lines in Fig. 4 is the hydraulic transfer 
function GH(s), which relates the output X(s) to 
the input flow )()( dispp sQsD +ω . 

 

4 Effect of Flow Disturbances 

 The inclusion of a term for flow 
disturbances, Qdis(s), in the EHA model allows 
for the investigation of external pump leakage 
and other sources of flow disturbance, including 
changes in actuator seal performance. It will now 
be shown that the EHA system using a 
proportional controller will theoretically exhibit 
a steady-state error if there is a constant flow 
disturbance Qdis(s).  
 In order to demonstrate this, it is 
desirable to obtain the transfer function between 
the flow disturbance Qdis(s) and the output X(s). 
To do so, the inputs Xd(s) and Fdis(s) shown in 
Fig. 4 are set to zero. Since Fdis(s) = 0, the 
hydraulic transfer function GH(s) shown in 
dashed lines in Fig. 4 can be expressed in the 
standard form as: 
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Rearranging Fig. 4 allows the 

relationship between the flow disturbance Qdis(s) 
and the output X(s) to be illustrated in a 
conventional manner, as shown in Fig. 5. 
 

 
Fig. 5: Block diagram for flow disturbances 

 
From Fig. 5, the transfer function between Qdis(s)  
and X(s) can be derived as: 
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To investigate the effect of flow 

disturbances on the position of the actuator, the 
final value theorem is used to determine the 
steady-state error Ess in the system output, given 
a step flow disturbance ss 7

dis 101)( −×=Q m3/s. 
This disturbance flow was selected because it is 
approximately 10% of the maximum pump flow 
that occurs when the system is moved 0.01 m in 
1 sec. 
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It should be noted that even though the 

model of the hydraulic system is Type 1 (as 
indicated by Eq. 7), the steady-state error is not 
alleviated in the presence of flow disturbances. 
This can be intuitively verified by considering 
the integral action of the hydraulic transfer 
function. Since the integral action is downstream 
of the error source, as shown in Fig. 4, the 
system will integrate the error causing the 
actuator to move. This will continue until the 

error becomes of the same magnitude as the flow 
disturbance but of opposite sign. When that 
occurs, the input of the integrator becomes zero 
since the integrated error signal and the flow 
disturbance will cancel each other out. The result 
is that the output position will then remain fixed 
at a non-zero steady-state error. 
 Since the steady-state error predicted by 
Eq. 10 includes the transfer function of the outer-
loop controller GOL(s), the response of the EHA 
to flow disturbances depends on the type of 
controller adopted. This is now considered.  
 
4.1 Proportional Controller 
 

The initial design of the EHA system as 
presented by Habibi and Singh (2000) employed 
a proportional outer-loop controller with GOL(s) 
= Kp = 585. Using this controller, Eq. 10 predicts 
the steady-state error as a result of a 1×10-7 m3/s 
step flow disturbance to be: 
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This analysis indicates that a step flow 

disturbance of 1×10-7m3/s would theoretically 
result in a steady-state position error of 25 µm. 
This implies that, when using a proportional 
controller with the EHA, significant actuator 
displacements may occur as a result of flow 
disturbances that are less than ten percent of the 
pump flow QP(s). 
 
4.2. Proportional-Integral Controller 
 

The steady-state error in response to a 
step flow disturbance is theoretically eliminated 
if an integrator is introduced upstream of the 
location where the disturbance enters the system 
model. This can be achieved if the outer-loop 
controller is changed from proportional to 
proportional-integral,where 
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This suggests that adding integral action 

to the outer-loop controller before the 
disturbance input theoretically eliminates the 



steady-state position error as a result of the flow 
disturbance. However, as will be shown in the 
experimental data, the practical aspect of using 
integral action to reduce steady state error at the 
micrometer level is not without its problems.  

Specifically, the presence of nonlinear 
friction in the actuator results in limit cycle 
oscillation. Due to the small magnitude of the 
error present near steady state, it takes a 
significant amount of time for the integrator to 
accumulate enough control action in order to 
overcome the static friction of the motionless 
actuator. When it does, the actuator will 
accelerate rapidly since the dynamic friction is 
smaller in magnitude than the static friction, 
resulting in an overshoot of the desired position. 
The instantaneous error then drives the error 
accumulated in the integrator towards zero thus 
holding the actuator at a position with non-zero 
steady-state error. The entire cycle will then 
repeat, resulting in the limit cycle oscillation 
seen in Fig. 12. 

 

5 Effect of Force Disturbances 

 The effect of force disturbances on the 
actuator may be modelled in a similar manner to 
the flow disturbances discussed above. If the 
inputs Xd(s) and Qdis(s) are set to zero, the 
relationship between X(s) and Fdis(s) may be 
illustrated by rearranging the system block 
diagram of Fig. 4 to produce Fig. 6. 

From Fig. 6 the transfer function 
between X(s)and Fdis(s) may be determined by 

simplifying the block diagram to obtain the 
following: 
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The final value theorem can be used as 
in Eq. 14 to determine the actuator system output 
when the input is a step force 
disturbance ssF 1000)(dis = N. This value of 
force disturbance was selected as it represents 
the force applied by gravity to a vertical actuator 
by a nominal human mass of 100 kg. This 
situation could occur if a person were to sit down 
on a positioning table controlled in the vertical 
axis by an EHA. 
 

0OLvp

dis

dis
dis0ss

)(2
)2)((      

)(
)()(lim

→

→











 +
=









=

s

s

sGAD
LssF

sF
sXssFE

κ
ξ

 (14) 

 
 Equation 14 implies that the response of 
the EHA to force disturbances depends on the 
type of outer-loop controller adopted, similar to 
the response of the EHA to flow disturbances. 
This dependency is now considered. 
 
 
 
 
 

 
 

Fig. 6: Block diagram for force disturbances 
 



5.1. Proportional Controller 
 

Using Eq. 14, the response to a 1000 N 
force disturbance can be predicted for the 
original proportional outer-loop controller GOL(s) 
= Kp = 585 as: 
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This analysis indicates that a force 

disturbance of 1000 N would theoretically result 
in a significant steady-state positional error of 74 
µm. 
 
5.2. Proportional-Integral Controller 
 

The steady-state error in response to a 
step force disturbance is theoretically eliminated 
if the outer-loop controller is changed from 
proportional to proportional-integral, where 
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6 Complete EHA Transfer Function 

From the block diagram in Fig. 4 and 
setting the disturbance inputs Qdis(s) and Fdis(s) 
to be zero, a transfer function may be determined 
between the actuator position X(s) and the 
desired position Xd(s): 
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 Substituting the relevant parameters 
with GOL(s) = Kp = 585 into Eq. 17 in 
MATLAB® Simulink produced the theoretical 
closed-loop response to a 10 mm step input 
shown in Fig. 7. 

 
Fig. 7: Theoretical response to 10 mm step input 

 
Using the principal of superposition for 

a linear system, Eq. 9, 13 and 17 can be 
combined to produce Eq. 18. This equation 
predicts the output X(s) of the EHA given any 
combination of the three time-varying inputs: 
desired position Xd(s), flow disturbance Qdis(s), 
and force disturbance Fdis(s). 
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 Equation 18 is useful because it allows 
the response of the system to arbitrary 
disturbances to be simulated that would be 
complicated using mathematical analysis. For 
instance, one could predict the system response if 
the load was travelling with constant velocity 
and the actuator experienced additional load 
resistance as a result of increased friction due to 
local damage to the load rails. This could be 
accomplished by setting the desired position 
input Xd(s) to be a linearly increasing function, 
and then adding a step friction force to the force 
disturbance input Fdis(s). Similarly, one could 
predict the effect of a change in external actuator 
leakage while the actuator is maintaining a 
constant position. This could be modelled by 
applying the desired position signal to the input 
Xd(s), and then adding a small negative flow to 
the flow disturbance input Qdis(s) after the 
actuator position has settled. 

In summary, the theoretical analysis 
presented here leads to an equation that can be 
used for predicting the response of the EHA with 
respect to the desired input as well as arbitrary 
time-varying flow and force disturbances. This 
equation demonstrates that constant flow and 
force disturbances will result in steady-state 
positional errors if a proportional outer-loop 
controller is used. However, a proportional-



integral controller theoretically eliminates 
steady-state error as a result of these 
disturbances. Experimental results however 
prove otherwise due to the nonlinear effects that 
are only dynamically significant when dealing 
with extreme positional accuracy in this system 
as discussed in the following section. 
 

7 Effect of Controller on Experimental 
Performance 

In sections 1 to 6, the steady-state error 
of the EHA as a result of “noise” due to flow and 
force disturbances was predicted. In the 
following section, these predictions are tested 
experimentally to verify their accuracy. 

Figure 8 shows the experimental system 
response to a 10 mm step input with the EHA 
connected to a 20 kg horizontally-sliding load. 
This response is obtained using the proportional 
controller GOL(s) = Kp = 585 as employed in 
Habibi and Singh (2000). From this graph the 0.3 
s rise time and the 0.6 s settling time of the 
system can be observed. Figure 9 shows a 
magnified version of Fig. 8, demonstrating the 
steady-state error of 2 µm as theoretically 
predicted in Habibi and Goldenberg (2000). The 
position sensor employed is an optical encoder 
with 0.17 m travel, 1 µm resolution and an 
accuracy of ±3 µm/m. The sampling time for all 
the experiments was 0.001 s. 

 

 
 

Fig. 8: Experimental response to 10 mm step input 
 

 
 

Fig. 9: Response to step input near steady state for 
proportional controller 

 
7.1 Gain Scheduling 
 
 Since the overall time response of the 
system with the original proportional controller 
was excellent, it was desirable to maintain this 
overall response while reducing the steady-state 
error of 2 µm. Gain scheduling is a method that 
can be used to provide two control strategies in 
order to achieve this goal. When the error signal 
is large, the original proportional controller is 
employed. However, when the error signal 
becomes small as the actuator approaches the 
steady-state position, an additional control 
element is added. Because the error signal is very 
small at the time that the additional controller is 
added, its gain can be very high without causing 
saturation of the system or excessive overshoot. 

Due to the fact that gain scheduling is 
employed for the nonlinear integral and 
nonlinear proportional controllers, the overall 
system response as shown in Fig. 8 will not 
change appreciably. However, the response near 
their steady-state accuracy level, as shown in 
Fig. 9 with the proportional controller, will vary. 
 
7.2 Nonlinear Integral Controller 
 
 As predicted by Eq. 12 and 16, an 
integral outer-loop controller would theoretically 
eliminate the steady-state error present in Fig. 9. 
However, experience and simulations indicated 
that adding simple integral action to the existing 
controller would increase the percentage 
overshoot significantly. This was not acceptable, 
as it was desired to maintain the overall system 
response as shown in Fig. 8. 

In order to add integral action to the 
controller without affecting the large-signal 
response, a nonlinear outer-loop integral 



controller as shown in Fig. 10 was employed. 
This sets the input of the integrator to zero when 
the error signal is more than ±5 µm, and switches 
on the integrator when the error is less than 5 
µm. This error threshold was chosen because it is 
slightly larger than the typical steady-state error 
of 2-3 µm. 
 

 
Fig. 10: Nonlinear outer-loop integral controller 

 
Step input tests with a magnitude of 10 

mm were performed using the nonlinear integral 
controller with Ki = 0, 500, 1000 and 1500. The 

results are shown below in Fig. 11, which has 
been magnified to show detail. Until 
approximately 3 seconds, the response of the 
system is similar regardless of the integral gain 
Ki. After this time, the response differs 
depending on the integral gain employed.  

It can be seen that with a low integral 
gain of Ki = 500, the steady-state error is reduced 
to less than 1 µm. However, the 3.5 seconds 
required to achieve this state is unacceptably 
long. Higher integral gains reduced the amount 
of time required for the system to overcome 
static friction, but resulted in limit cycle 
oscillation. This is due to the nonlinear friction 
present in the actuator, which causes the actuator 
to overshoot the desired position, stick and repeat 
as shown in Fig. 12. 

 

 

 
Fig. 11: Experimental step response with varying integral gains 



 
Fig. 12: Experimental step response 

 with integral gain Ki = 500 
 

For this reason, nonlinear integral 
control was found to be an ineffective method of 
reducing steady-state error in the EHA system. 
Nonlinear proportional control was the next 
approach to be examined. 
 
7.3 Nonlinear Proportional Controller 
 

A gain and phase margin analysis of the 
EHA model with a proportional controller was 
performed using MATLAB®. The original 
system with controller GOL(s) = Kp = 585 has 26 
dB of gain margin and 88 degrees of phase 
margin. It was found that Kp could be increased 
to 3585 while maintaining an acceptable 10 dB 
of gain margin and 76 degrees of phase margin, 
Ogata (2002). 

This gain level was chosen because it 
was experimentally determined to be effective in 
decreasing the steady-state error to less than the 
resolution of the position sensor. To avoid 
altering the original response of the system, the 
proportional gain was split up into two parts; a 
fixed gain of 585 and a switched gain of 3000 
that was added when the error signal was less 
than the ±5 µm error threshold that was 
discussed earlier. This nonlinear proportional 
controller can be seen in Fig. 13. 
 

 
Fig. 13: Nonlinear outer-loop proportional controller 
 

This nonlinear proportional control 
strategy of greatly increasing the stiffness of the 
controller when the position error becomes small 
was very effective with the EHA. Figure 14 
shows a magnified graph of the response of the 
system to a 10 mm step input. It can be seen that 
the error becomes less than the 1 µm resolution 
of the optical encoder in approximately 1.5 
seconds. 
 

 
Fig. 14: Experimental step response with nonlinear 

proportional controller 
 

The same control strategy also enables 
repeatable steps as small as 1 µm to be 
performed, as shown in Fig. 15 in response to a 1 
µm step input. The output of the position sensor 
is discrete with a 1 µm resolution ±0.5 quantum. 
Therefore, the response shown in the Fig. 15 
indicates only that the steady-state position is 
within ±0.5 µm of the desired position and does 
not show the details of the actuator’s movement.  
 

 
Fig. 15: Experimental 1 µm step response 

 
 Finally, a test was conducted to verify 
the nonlinear proportional controller’s ability to 
reject force disturbances while maintaining a 



constant position. The desired input Xd(s) was set 
to be zero, and the load was struck moderately 
with a hammer in the axial direction three times. 
The impulse generated by the hammer was 
calculated to be approximately 40 N from 
knowledge of the active area of the actuator and 
the differential pressure across it during the 
impulse. This test was intended to simulate 
impulsive force disturbances, such as a mass 
being dropped onto a positioning table controlled 
in the vertical axis by an EHA. 

Figure 16 shows the experimental 
response to the impulse force disturbances. It can 
be seen that the EHA returns to its original 
position, within 1 µm, in approximately 1 
second. This demonstrates that the nonlinear 
proportional controller is indeed capable of 
rejecting force disturbances while maintaining 
the desired transient response and providing 1 
µm positional accuracy. 
 

 
Fig. 16: Experimental force impulse rejection 

response 
 
8 Conclusions 
 

The ElectroHydraulic Actuator (EHA) 
model presented in Habibi and Singh (2000) has 
been expanded to include inputs for flow and 
force disturbances, producing a single equation 
that predicts the response of the EHA to both 
desired inputs and disturbance inputs.  An 
analysis using this equation suggests that using 
the proportional outer-loop controller will result 
in steady-state error with constant force and flow 
disturbances. It also suggests that a proportional-
integral outer-loop controller will eliminate the 
steady-state error as a result of the disturbances. 

Tests were conducted to verify these 
predictions. Nonlinear controllers were used in 
an effort to retain the desirable overall response 
of the proportional controller while reducing its 2 
µm steady-state error. The nonlinear integral 
controller was found to be ineffective, as low 

integral gains took too long to reduce the steady-
state error and higher integral gains resulted in 
limit cycle oscillation as a result of nonlinear 
load friction. In contrast, a nonlinear proportional 
outer-loop control strategy reduced the steady-
state error as a result of these disturbances to the 
limit of the optical encoder accuracy. 
Furthermore, this control strategy demonstrated 
the ability to reject force impulse disturbances, 
returning to the desired position within 1 µm 
while preserving the system’s transient response 
and positional accuracy. 

Using the nonlinear proportional 
controller, the EHA demonstrated a high level of 
performance. With a 20 kg load, the encoder 
positional accuracy of 1 µm was achieved while 
preserving critical damping and very satisfactory 
settling and rise times. Repeatable steps of 1 µm 
were exhibited despite the presence of nonlinear 
friction in the system. 

With this level of performance, the 
EHA has applications in areas requiring precise 
positioning unprecedented in conventional fluid 
power and geared electrical actuation systems. 
Furthermore, the EHA is compact, modular, 
energy efficient, and capable of a high force 
output. 

 

Nomenclature 

 
Table 1: Nomenclature and Values 

A
AA

=
=

   
21  Actuator pressure 

area 
5.05 10× -4 m2

B  Coefficient of 
friction at load 

*760 N/m/s 

3,2,1 CCC Actuator chambers  

pD  Pump volumetric 
displacement 

1.6925 10× -7 
m3/rad 

)(sE  Error signal V 

ssE  Steady-state 
positional error 

m 

)(dis sF  External force 
displacement 

N 

)(OL sG  Outer loop 
controller 

 

)(V sG  Motor/Pump 
subsystem transfer 
function 

 

)(H sG  Hydraulic transfer 
function 

 



ip , KK  Controller gains  

L  Leakage coefficient *2 10× -15 
m3/s/Pa 

M  Load mass 20 kg 

5,4
,3,2,1

OO
OOO

 

Actuator ports  

21, PP  Actuator chamber 
pressure 

Pa 

21,QQ  Actuator chamber 
flow 

m3/s 

)(dis sQ  Disturbance flow m3/s 

)(p sQ  Pump flow m3/s 

)(sU  Motor input 
voltage 

V 

oV  Pipe plus mean 
actuator chamber 
volumes 

6.1× 10-5 m3 

)(sX  Position of actuator m 

)(d sX  Demanded position 
of actuator 

m 

eβ  Effective bulk 
modulus of 
hydraulic oil 

*2.1× 108 Pa 

hκ  Hydraulic gain  

vκ  Motor gain 40.55 rad/s/V

nhω  Hydraulic 
undamped natural 
frequency 

 

)(p sω  Pump angular 
velocity 

rad/s 

ξ  Pump cross-port 
leakage coefficient 

*1.5× 10-13 
m3/s/Pa 

hζ  Hydraulic damping 
ratio 

 

* values obtained from Chinniah (2004) 
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APPENDIXE: BATH 2005 POWERTRANSMISSION ANDMO-
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This section includes the paper which will be presented at the 2005 Power Transmission and

Motion Control (PTMC) conference in Bath, England during September 2005. It has been accepted

for publication in the conference proceedings. It contains an experimental determination of the

transfer function of the EHA over a range of small-signal inputs from 0.10 to 1.0 Volts. This paper

is included with the express permission of the conference proceeding’s publishers.
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ABSTRACT 
 

A prototype of a high-precision hydrostatic actuation system, referred to as the 
ElectroHydraulic Actuator (EHA), has demonstrated an unprecedented level of accuracy for 
large load manipulation. This prototype has been able to move an inertial load of 20 Kg with 
an accuracy of 1 micron, and is currently being modified for sub-micron precision 
operation. The aim of this paper is to characterize the EHA using an empirical model for 
operation in the micron and sub-micron range. Previous experimental studies on the EHA 
have indicated that the system is nonlinear, but can be characterized as piecewise linear. The 
natural frequency and damping ratio of the EHA varies in a piecewise manner depending on 
its operating range, which is largely determined by the magnitude of the input signal. 
System characterization at input levels corresponding to micro-precision movements of the 
load has not been previously reported and is investigated in this paper. Piecewise linear 
empirical models are identified in view of implementing a nonlinear fuzzy control strategy. 
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NOMENCLATURE 
 

A
AA

=
=

   
21  Actuator 

pressure area 5.05x10-4 m2 

B  Coefficient of 
friction  *760 N/m/s 

3,2,1 CCC
 

Actuator 
chambers  

pD  
Pump 
volumetric 
displacement 

1.6925x10-7 
m3/rad 

)(sE  Error signal V 

ssE  
Steady-state 
positional 
error 

m 

)(dis sF  External force 
displacement N 

)(OL sG  Outer loop 
controller  

)(V sG  
Motor/Pump 
subsystem 
transfer 
function 

 

)(H sG  
Hydraulic 
transfer 
function 

 

ip , KK  Controller 
gains  

L  Leakage 
coefficient 

*2x10-15 
m3/s/Pa 

M  Load mass 20 kg 

5,4
,3,2,1

OO
OOO

 
Actuator ports  

21, PP  
Actuator 
chamber 
pressure 

Pa 

21,QQ  Actuator 
chamber flow m3/s 

)(dis sQ  Disturbance 
flow m3/s 

)(p sQ  Pump flow m3/s 

)(sU  Motor input 
voltage V 

oV  
Pipe plus 
mean actuator 
chamber 
volumes 

6.1x10-5 m3 

)(sX  Position of 
actuator m 

)(d sX  
Demanded 
position of 
actuator 

m 

eβ  
Effective bulk 
modulus of 
hydraulic oil 

*2.1x108 Pa 

hκ  Hydraulic 
gain  

vκ  Motor gain 40.55 rad/s/V 

nhω  
Hydraulic 
undamped 
natural freq. 

 

)(p sω  Pump angular 
velocity rad/s 

ξ  
Pump cross-
port leakage 
coefficient 

*1.5x10-13 
m3/s/Pa 

hζ  Hydraulic 
damping ratio  

* Values obtained from (1) 
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1.  INTRODUCTION 
 

A novel hydraulic actuation system referred to as the ElectroHydraulic Actuator (EHA) has 
been developed to overcome the drawbacks of conventional hydrostatic systems while 
providing high positional accuracy, as presented by Habibi and Goldenberg (2,3).  The EHA 
uses a bi-directional fixed-displacement pump powered by a variable-speed servomotor 
(4,5,6,7,8).  The actuator is directly connected to the pump as shown in Figure 1.  The 
pump’s speed and direction determine the fluid flow to and from the actuator and its 
resulting displacement.  A prototype of the EHA has demonstrated an excellent level of 
performance. Using a nonlinear control approach, it has proved capable of moving a 20 kg 
load with an accuracy of 1 micron and a critically damped rise time of 0.3 s.  Earlier work 
has demonstrated that the behavior of the EHA is both nonlinear and dependant on its input 
voltage.  In this paper the EHA system will be modeled for input voltages less than 1.0V, a 
region where nonlinearities dominate and where precision operational control is most 
influenced.  Previous work (9) has modeled the system for input voltages greater than 1.0V. 
 
 
2. EHA SYSTEM 
 
A brief introduction to the EHA system is beneficial at this point. The EHA system consists 
of the following components: Controller, Electric Motor, Bi-Directional Gear Pump, 
Accumulator, Sensors (Pressure, Position and Speed), Crossover Relief Valve, Symmetrical 
Actuator, and Load.  A simplified schematic of the system is shown in Figure 1. 
 

 
Figure 1:  Schematic of ElectroHydraulic Actuator system 

 
The three-phase brushless AC electric motor directly drives the pump.  The pump in turn 
controls the flow of hydraulic oil to the two active chambers of the actuator.  The pressure 
differential between the actuator chambers, which is a result of the resistance of the external 
load to motion, applies a net force on the load.  In this case, the load is a 20 kg steel block 
mounted on two linear rails which is displaced horizontally by the force exerted on it by the 
actuator. 
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The symmetrical linear actuator used in the prototype has a single rod and has been 
designed expressly for the system, as described in (2,3).  The actuator has two working 
chambers C and , illustrated in Figure 2.  Chamber C  is inside the hollow rod while 
chamber  is between the outside of the rod and the inside of the cylinder.  Hydraulic 
fluid enters the two chambers of the actuator through ports and O .  The working areas 
of the chambers

1
2C

2C

1

1

1O 2
A and 2A are made equal in area.  This results in symmetrical flow, if 

leakage  is neglected.  There also exists a third working chamber , which can be 
pressurized via port to provide a bias to counteract a constant external force.   Finally, 
ports and are provided to drain any actuator fluid leakage. 

L

3

3C
5O

O 4O

 
Figure 2:  Cross-section of the actuator 

 
An accumulator is connected to the low-pressure case drain of the gear pump.  It prevents 
cavitation, and replaces fluid lost due to external leakage.  The accumulator sets the 
minimum system pressure and can be adjusted from 2.76-6.9 Bar (40-100 psi). The 
crossover relief valve increases the safety of the system by preventing excessive pressure 
build-up if the actuator reaches the end of its travel, or if a fault were to occur.  Finally, a 
position sensor measures the displacement of the load.  The sensor, an optical linear 
encoder, has a resolution of 1 micron.   
 
 
3.  EHA MODEL 

 
A mathematical model of the EHA system was developed in (10). This model was expanded 
by the author (11) to include the ability to simulate the effects of arbitrary time-varying 
force disturbances and flow disturbances on the EHA system.  Figure 3 shows a simplified 
block diagram for the system showing the outer-loop position controller G , the inner-
loop electrical subsystem G , and the hydraulic subsystem . 

)(OL s
)(V s )(H sG
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Figure 3:  Simplified EHA block diagram 

 
In (9), the transfer function of the electrical subsystem, G , was identified using a 
constrained quadratic optimization technique. For a 5V sinusoidal input, the subsystem was 
found to be second-order with a zero: 
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The analytical transfer function of the hydraulic subsystem, G , presented in (10) is 
second-order Type 1: 
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Substituting known system parameters into this theoretical transfer function results in the 
following hydraulic transfer function: 
 

 
ssss

sX

p
423 10783.804.39

42.29
)(
)(

×++
=

ω
 (3) 

 
Combining Equations 1 and 3, the theoretical open-loop EHA transfer function for a 5V 
input is as follows, in pole-zero form: 
 

 
)108.783 + 39.04s + (s )101.73 + 183.6s + (s s

145.9)+(s 141400
)(
)(

4242 ××
=

sU
sX  (4) 
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4.  EXPERIMENT SPECIFICATION 
 
In order to obtain the dynamic characteristics of the system for inputs less than 1.0V, a PC 
running MATLAB® Simulink and containing a 12-bit DAQ system was employed.  The PC 
was used to both generate the input signal to the external controller and record the position 
of the load mass.  The sampling time of the system was 0.001s. 
 
The input signal was chosen to be a constant-magnitude discretely-swept sine wave.  The 
frequency content was 1Hz to 500Hz in steps of 1 Hz.  Each frequency was repeated for two 
full cycles to allow for settling time.  A total of 18 inputs with magnitudes of 1.0V RMS to 
0.1V RMS in steps of 0.05V were used as inputs for the open-loop system identification 
process. 
 
The position signal was measured using a digital-output optical encoder with 1 micron 
resolution.  Recorded signals from a typical test with a 0.45V RMS input signal and 
corresponding output position are shown in Figure 4.  To eliminate the drift present in the 
output position data, the recorded position was numerically differentiated to obtain the 
output velocity, as shown in Figure 5.  The output velocity was then used as the system 
output for the identification process. Due to the resolution of the position sensor and the 
sample time, the resolution of the velocity signal was 0.001m/s.  Identification for input 
voltages less than 0.1V was not feasible using the current position sensor, since the 
differentiated velocity signal began to approach the resolution of the sensor. 
 

 
Figure 4:   Output position and input voltage  
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Figure 5:   Output velocity and input voltage 

 
 
5.  INITIAL TESTS 

 
The open-loop DC gain of the EHA system was determined for the input range -1.0V to 
1.0V by setting the input to be a constant voltage, calculating the resulting load velocity and 
then determining the ratio of velocity/voltage.  It can be seen in Figure 6 that the gain 
remains fixed at 0.0136m/s/V for the majority of the range tested, only changing as the input 
approached 0V.  This demonstrates that the gain of the system was not significantly 
operating-point dependant over the range of interest. 

0.000

0.005

0.010

0.015

0.020

0.025

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Input, V

G
ai

n,
 m

/s
/V

 
Figure  6:   DC gain as a function of input voltage 

 
To obtain the impulse response from the velocity data, a 100th order Finite Impulse 
Response (FIR) model was estimated using the Auto-Regression (AR) model structure (12).  
This produced the impulse response shown in Figure 7: 
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Figure 7:  Computed velocity impulse response (from AR model) 

 
The first forty coefficients of the Auto-Regression (AR) model “B” polynomial were used to 
construct a 20x20 Hankel matrix of Markov parameters.  The singular values of the Markov 
parameters were then determined and plotted, as shown below in Figure 8.  From inspection 
of this figure, it appears that the system is predominantly second order due to the 
prominence of the first two singular values.  However, the system also appears to have some 
fourth order characteristics, as shown by the next two singular values being within a factor 
of 100 of the dominant singular values. 
 

 
Figure 8:  Hankel singular values of Markov parameters 

 
 
6.  DATA & PROCESSING 
 
Once the form of the input signals was chosen and the initial tests completed, the working 
and validation data was obtained from the system.  The working data was that used in the 
estimation process, while the validation data was reserved for verification of the 
performance of the models.  The input and output signals were recorded with the input 
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voltage ranging from 0.1V RMS to 1.0V RMS in steps of 0.05V.  The output velocity 
response was obtained by differentiating the recorded position data. 
 
Figure 10 shows the working data set in a frequency-domain form.  The transfer function 
magnitude as a function of frequency data was obtained using the Empirical Transfer 
Function Estimation (ETFE) technique at 512 points from 0-500Hz with a Hamming 
window of lag size 100 (12).  Figure 10 shows the resulting Bode gain plot as a function of 
input voltage.  Noticeable is the consistent underdamped response in the region 0.35V to 
1.0V, with a bandwidth of approximately 55 Hz.  Below this voltage, the system becomes 
overdamped and the bandwidth decreases significantly to approximately 8 Hz at 0.1V.  The 
gain of the system is consistent at -37 dB for the majority of the input range, decreasing to -
40 dB for the 0.1V input. 
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Figure 10:  Experimental Bode gain plot as function of input voltage 
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7. MODEL IDENTIFICATION 
 
The model identification process was performed using a frequency-domain identification 
methodology employing the working data shown in Figure 10.  Specifically, the MATLAB® 
FREQID toolbox developed by de Callafon (13) was used to fit a linear time-invariant 
model to the frequency data recorded for the input voltage range 0.1V to 1.0V.  This toolbox 
employs a least-squares curve fit attempting to minimize an arbitrarily weighted 2-norm 
between the data and the frequency response of the model.  The weighting function for each 
of the inputs was specified in the frequency domain using the GUI tools available in the 
toolbox. 
 
The model order was chosen to be fourth-order with one zero, to match the order of the 
theoretical system given in Eq. 4.  After a model was predicted for each voltage input, 
dynamically insignificant poles and zeroes were manually removed.  This gave the transfer 
functions shown in Table 1, listed in pole-zero form. 

 
Table 1:  Identified transfer functions 

 

Input Voltage Transfer Function
)(
)(

sU
sX  

1.0-0.35 
)109.532  70.04s  (s )103.815  192.2s  (s

262.3)187200(s
4242 ×++×++

+
 

0.30 
)103.364  117.6s  (s 51.77)(s

87.55)242.0(s
42 ×+++

+
 

0.25 )]105.815  136.5s  141.3)(s[(s93760 42 ×+++  

0.20 
)103.009  207.7s  (s 38.61)(s

55.22)240.1(s
42 ×+++

+
 

0.15 ]78.55)(s 177.4)(s[374)0.3948(s +++  

0.10 ]9.237)(s 37.91)(s[7)0.4064(s +++  
 
Figure 11 shows the computed Bode gain plot for the identified models over the range of 
interest.  In comparison with the experimental plot in Figure 10, it can be seen that the 
0.35V to 1.0V range is matched quite well.   Inspecting the experimental Bode plot shown 
in Figure 10, it appears that the system’s output decreases, or rolls off, at approximately 80 
dB/decade.  As the input voltage decreases below the 0.35V level, the ability of the 
identification method to match the roll off characteristic of the system becomes impaired. 
This is likely due to an increase in the noise content of the data associated with the lower 
input levels. 
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Figure 11:  Identified Bode gain plot as a function of input voltage 
 
 
8.  VALIDATION 
 
Once models were identified for each input voltage, the response of the model to the input 
data was simulated for validation purposes.  The validation data set mentioned in the Data & 
Processing section was plotted on the same graphs as the simulated response in order to 
visually verify the validity of the models.  Figures 12-15 show the simulated and 
experimental response to the discrete swept sine wave from 1-500Hz.  The 'envelope' of the 
simulated response is overlaid on the experimental response as a black line in order to 
facilitate comparison between the simulation and the experimental responses.  The 
agreement is generally very good up to a minimum of 10 Hz (in the 0.10V case) and to a 
maximum of 50 Hz (in the 0.60V case). It can be seen in all cases that the fit is not exact at 

 11



low frequencies. This is due to the optimization method employed in the FREQID toolbox, 
which gives an equal weight to each data point.  Alternatively, decreasing the weights 
logarithmically as the frequency increases would compensate for the increasing number of 
data points per decade, as is discussed in (12). Furthermore, the accuracy of the identified 
models decreases noticeably as the input voltage decreases towards 0.1V.  This may be due 
to the resolution of the velocity signal, which is obtained by differentiating the position 
signal.  For example, the peak magnitude of the velocity signal for the 0.1V input is 
approximately 0.002 m/s, which is comparable to the sensor resolution of 0.001 m/s. 
 

 
Figure 12:  Comparison of simulated and experimental response for 0.60V input (typical of 1.0V-

0.35V range) 
 

 
Figure 13:  Comparison of simulated and experimental response for 0.30V input 
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Figure 14:  Comparison of simulated and experimental response for 0.20V input 

 
Figure 15:  Comparison of simulated and experimental response for 0.10V input 

 
 
Finally, Figure 16 shows the closed-loop experimental and simulated response to a 0.01m 
step input.  The model simulated in this case was the one identified for the 0.35V to 1.0V 
range.  In both cases, a proportional controller G  585Kpol == as employed in (10) was 
used. Excellent agreement between the simulated and experimental response is 
demonstrated, neglecting the time delay of 0.04 seconds that was not included in the system 
models.   
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Figure 16:  Simulated and experimental closed-loop step response 

 
 

9. CONCLUDING STATEMENTS 
 

The ElectroHydraulic Actuator (EHA) is a high-performance positioning system that 
employs a novel symmetrical linear actuator.  As such, it has unique characteristics which 
were investigated in this paper for the input voltage range of 0.1V to 1.0V RMS.  It has been 
found that the system exhibits consistent performance in the 0.35V to 1.0V RMS input 
range, with an underdamped response having a bandwidth of 55 Hz and a gain of -37 dB.  
As the input voltage decreases, the bandwidth becomes significantly lower and system 
becomes overdamped.  At a 0.1V RMS input, the bandwidth has decreased to 8 Hz and the 
gain to -40dB.  As such, a linear controller will not be able to achieve optimal control over 
the tested range, since the performance characteristics vary appreciably with the input 
voltage. A control scheme which can reflect the nonlinear damping ratio, gain, and natural 
frequency in the region of less than 1V input and can allow a smooth transition between the 
identified regions is necessary for nanometer precision control. For this reason, nonlinear 
control of the EHA system using a Fuzzy controller and other nonlinear controllers are now 
being investigated. 
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