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ABSTRACT 

 

Although the middle Miocene Oficina Formation of the Orinoco Oil Belt represents most of 

Venezuela’s hydrocarbon resource, a comprehensive and detailed sedimentary facies model for 

the whole belt has never been put forward. Nine facies (FA-FI), grouped in five facies assemblages 

(FA1-5), have been identified in the Oficina Formation in the Orinoco Oil Belt. FA1 occurs in the 

lower member, encompassing fluvial braided channels (FB), floodplains (FG2), swamps (FH1) 

and paleosols (FG3). FA2 occurs in the middle member and consist of meandering estuarine-

channel deposits (FA, FC, FD, FE, and FI). FA3 occurs in the middle member, including tidal flats 

and tidal creeks (FC, FD, FE, FF, and FG2), swamps (FH1 and FH2), and paleosols (FG3) formed 

in tide-dominated estuarine systems. FA4 is present in the uppermost part of the middle members, 

including sandbars (FC, FD, FG1), paleosols (FG3), and swamps (FH2) formed in the outer part 

of estuaries. FA5 occurs in the upper member and consists of deltaic distributary channel (FC and 

FD), floodplain and interdistributary bay (FG2) and swamp (FH1) deposits of the lower delta plain 

of tide-dominated deltas. 

The sedimentary succession in the Oritupano Field represents the upper member of the 

Oficina Formation, therefore correlating with the deltaic deposits identified in the Orinoco Oil 

Belt. Eleven facies (FJ-FS), grouped in four facies assemblages (FA6-9), have been recognized in 

the Oritupano Field. FA6 is present in the lower part and consists of deltaic distributary-channel 

(FJ) and interdistributary-bay (FK) deposits of the delta plain of a wave-dominated delta. FA7 is 

present in the middle part and consists of sandy mouth-bar (FL), proximal delta-front (FM1), 

storm-dominated distal delta-front (FM2), and prodelta (FN) deposits formed in an area 

encompassing the delta front and the prodelta of a wave-dominated delta. FA8 is present in the 

upper part, including upper- to middle-shoreface (FO) and lower-shoreface (FP) deposits formed 

in a wave-dominated shoreface. FA9 is present in the upper part, including deposits of the upper 

offshore (FQ), lower offshore (FR) and shelf (FS) formed in an offshore-shelf complex. 

The Oficina Formation contains four softground ichnofacies (Scoyenia, depauperate 

Cruziana, Skolithos, and archetypal Cruziana) and two substrate-controlled ichnofacies 

(Teredolites and Glossifungites). The Oficina Formation in the Orinoco Oil Belt and Oritupano 

areas provides an ideal opportunity to study faunal distribution and ichnofacies because it 

comprises a wide range in depositional environments formed under variable salinity conditions 
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within a single stratigraphic unit. Freshwater conditions in the fluvial deposits, as well as in the 

inner portions of the estuary and delta plain, are further supported by the presence of Scoyenia 

Ichnofacies, whereas brackish-water segments of the estuarine and delta-plain deposits are 

characterized by the Skolithos and depauperate Cruziana Ichnofacies. Rapid ichnofaunal changes 

are distinctive of delta-front and prodelta deposits, where archetypal marine ichnofacies (i.e. 

Skolithos and Cruziana) alternate with stressed expressions of marine suites (i.e. depauperate 

Cruziana Ichnofacies), indicating rapid changes in salinity conditions due to times of freshwater 

discharge and return to fully marine conditions. Shoreface, offshore and shelf are characterized by 

the Skolithos and archetypal Cruziana Ichnofacies, indicating persistence of normal-marine 

salinity conditions. Salinity is a crucial factor in the development of benthic organisms and is 

independent of physical sedimentological processes. Therefore, understanding ichnofaunal 

distribution is very important for paleoenvironmental characterization of marginal-marine settings. 

In addition, the Glossifungites and Teredolites Ichnofacies indicate erosional exhumation of 

coastal-plain deposits, providing insights into sequence-stratigraphic interpretations.  

The Oficina Formation (15.97-12.7 Ma) in the Orinoco Oil Belt comprises a single 2nd-

order sequence, which is divided into two third-order depositional sequences (DS1-2). Third-order 

sequences provide a better understanding of reservoir distribution and are associated with sea-level 

changes. DS1 is bounded by sequence boundaries U-1 (15.97 Ma) and U-2 (13.82 Ma) and 

includes maximum flooding surface MFS-1 (14.91 Ma). It consists of thick lowstand systems tract 

(LST) and transgressive systems tract (TST) strata, and a thin highstand systems tract (HST) 

package. DS1 is associated with incised-valley systems formed during a relative sea-level fall. 

Fluvial valley-fill is recorded by FA1. The fluvial valleys were replaced by estuarine valleys during 

the Langhian relative sea-level transgressive episode. The estuarine valley-fill displays a 

retrogradational stacking pattern, comprising FA2, FA3 and FA4. Thin deltaic deposits also occur 

in the uppermost interval of DS1, forming a thin HST. DS2 is bounded by U-2 (13.82 Ma) and U-

3 (12.7 Ma) and includes MFS-2 (13.53 Ma). It consists of a thin TST and a thick HST formed 

during the Serravallian sea-level highstand. In DS2, transgressive deposits in the lower part form 

a thin TST interval reflecting delta abandonment, which rests directly on top of the underlying 

highstand systems tract (HST) deposits of DS1, therefore mantling a flooding surface/sequence 

boundary. The bulk of DS2 is represented by FA5, displaying a progradational stacking pattern. 
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The Oficina Formation of the Orinoco Oil Belt shows similarities in sedimentologic, 

ichnologic and sequence-stratigraphic aspects to other marginal-marine units worldwide (most 

notably the Cretaceous McMurray Formation of Alberta), representing a broad spectrum of 

latitudinal contexts. These similarities therefore stress the importance of tidal dominance and 

relative sea-level changes as main controls on deposition, regardless of latitudinal controls. 

However, latitude may have played some role in controlling the establishment of extensive coastal 

wetland systems, the abundance of tidal channels and the types of burrowing organisms.  
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Chapter 1 

1. Introduction 

 

1.1. Significance of the project 

 

This study is the first of its kind to comprehensively evaluate the sedimentary processes taking 

place in the Oficina Formation of the Orinoco Oil Belt through an integrated sedimentologic, 

ichnologic, and sequence-stratigraphic analysis. Integration of these multiple datasets is key to 

strengthen geological models in order to improve reservoirs characterization and performance. An 

appropriate understanding of the variability of sedimentary facies within fluvial, tide-dominated 

estuarine and deltaic environments is essential because it has major impact on exploration and field 

development. The relationship between organisms and substrates (as reflected by trace fossils) 

within a single stratigraphic unit has been scarcely documented and, in this regard, the Oficina 

Formation represents an excellent example to study such interactions because it contains diverse 

environments formed under variable salinity conditions along the depositional profile. Trace 

fossils are sensitive indicators of salinity fluctuations and, accordingly, ichnological studies have 

the potential to improve sedimentary facies characterization of fluvial, marginal-marine and open 

marine units. The paleoenvironmental and systems tract changes documented in the sedimentary 

succession of the Oficina Formation, as well as the regional recognition of sequence boundaries 

and maximum flooding surfaces, allow the identification of third-order depositional sequences, 

which are important to delineate the stratigraphic architecture at the reservoir scale in order to 

increase petroleum recovery through new drilling locations and improved secondary recovery 

schemes. On the other hand, these sequences at the exploration scale can predict the occurrence of 

reservoir, sources and seal facies. 

 

1.2. Research Objectives and Hypotheses 

 

As previously mentioned, a regional study with this scope has never been addressed in the Orinoco 

Oil Belt. Therefore, it is of great importance for both exploration strategies and reservoir 

characterization. It also will be useful for present and future geoscientists from both academia and 

hydrocarbon industry. The hypotheses to be tested in this thesis are the following. First, framing 
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sedimentologic observations within a sequence-stratigraphic perspective indicates that the whole 

Oficina Formation cannot be interpreted as recording sedimentation in a deltaic system as invoked 

in current models, but instead represents a more complex facies mosaic comprising not only deltaic 

deposits but also estuarine facies. The basic concepts necessary to assess this hypothesis are 

presented in this chapter and the hypothesis is tested in Chapter 2. Second, analysis of trace fossil 

distribution allows reconstructing salinity changes along the depositional profile in the Orinoco 

Oil Belt and the Oritupano Field. Third, substrate-controlled ichnofacies in the Oficina Formation 

delineate surfaces of sequence-stratigraphic significance. Whereas the fundamentals to assess 

these two hypotheses are presented in this chapter, these issues are discussed in detail in Chapter 

3. Fourth, third-order sequences based on biostratigraphy, sedimentology, allostratigraphic 

surfaces and systems tracts can be delineated within the Oficina Formation. The present chapter 

provides basic sequence-stratigraphic concepts and this hypothesis is tested in Chapter 4.  

Based on these hypotheses, the objectives of this research project are to: (1) interpret 

sedimentary facies and depositional environments represented in the Oficina Formation of the 

Orinoco Oil Belt, using sedimentologic and ichnologic information, (2) evaluate trace-fossil 

distribution and ichnofacies gradients along a depositional profile to calibrate salinity-related 

trace-fossil models not only in the Orinoco Oil Belt, but in the Oritupano area as well, and (3) 

propose a third-order sequence-stratigraphic framework for the Oficina Formation in the Orinoco 

Oil Belt based on the integration of sedimentologic, stratigraphic, ichnologic and biostratigraphic 

datasets using well logs and core. 

 

1.3. Materials and Methods 

 

Conventional cores were described from the Boyaca, Junín, Ayacucho, and Carabobo areas of the 

Orinoco Oil Belt, and the Oritupano area to the northeast of the belt. The study includes the 

following wells with cores: 3 cores from the Boyaca area (B1, B2, and B3), 9 cores from the Junín 

area (J1, J2, J3, J4, J5, J6, J7, J12, and J13), 9 cores from the Ayacucho area (A4, A7, A8, A1, A2, 

A9, A10, A11, and A12), 8 cores from the Carabobo area (C1, C2, C3, C6, C7, C8, C9, and C10), 

and 3 cores from the Oritupano Field (OR1, OR2, and OR3), which together encompass 3258 m 

of core. Sedimentologic data were collected by detailed bed-by-bed analyses, taking into account 

lithology, bed thickness, bed contacts, and physical and biogenic sedimentary structures. Trace-
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fossil data were collected and analyzed following a combined ichnofacies and ichnofabric 

approach, considering identification of ichnotaxa, ethologic groups, trophic types, population 

strategies, ichnodiversity, degree of bioturbation, and tiering structure. Degree of bioturbation was 

estimated based on the scheme of Taylor and Goldring (1993), who defined a bioturbation index 

(BI), ranging from 0 (no bioturbation) to 6 (complete bioturbation), after a previous scale by 

Reineck (1963). Additionally, 300 well logs were analyzed and correlated to evaluate changes in 

thickness and general facies relationships across the Orinoco Oil Belt. 

The chronostratigraphic framework for the Orinoco Oil Belt was built using calcareous 

nannoplankton, palynomorphs, and foraminifers from previous studies (Audemard et al., 1985; 

Solórzano et al., 2015; Solórzano and Farias, 2017). Approximately 3000 samples from 96 wells, 

mostly side wall core and core, were revised and reinterpreted. The age of the strata was assigned 

based on the interpretation and integration of the biozones following key references, such as 

Martini (1971) for nannoplankton, Muller et al. (1987) and Williams and Bujak (1985) for 

palynomorphs, and Blow (1969, 1979) for foraminifers. Integration of the biozones was calibrated 

with the time scale of Ogg et al. (2008). The bioevents were interpreted based on the First 

Appearance Datum [FAD] and Last Appearance Datum [LAD] of the species. The maximum 

flooding surfaces (MFS-1, MFS-2 and MFS-3) were interpreted based on the calcareous 

nannoplankton and the planktonic foraminifer zones and were correlated with the maximum 

flooding surfaces of Haq and Schutter (2008). The sequence boundaries (U-1, U-2, U-3, and U-4) 

were correlated with the sequence boundaries of Haq and Schutter (2008). 

 

1.4. Basic concepts 

 

1.4.1. Estuary 

An estuary is a transgressive coastal setting at the mouth of a river, receiving sediment from both 

river and sea, encompassing a wide spectrum of salinity levels (Pritchard, 1967; Dalrymple et al., 

1992, 2006, 2012). The estuary is considered to extend from the landward limit of tidal facies at 

its head to the seaward limit of coastal facies at its mouth. A tide-dominated estuary is formed 

when tidal current energy exceeds wave energy at the mouth of the estuary, displaying a typical 

funnel-shaped geometry. Tide-dominated estuaries consist of elongate sand bars and broad sand 



4 
 

flats that pass landward into a low-sinuosity (`straight´) single channel; net sand transport is 

headward in these areas (Dalrymple et al., 1992). 

 

1.4.2. Delta 

Galloway (1975) defined a delta as “a contiguous mass of sediment, partially subaerial, deposited 

around the point where a stream enters a standing body of water”, where the interaction between 

fluvial and marine processes may produce diverse kinds of deltas. A tide-dominated delta occurs 

if tidal currents are stronger than river discharge. These bidirectional currents can redistribute 

river-mouth sediments, producing sand-filled, funnel-shaped distributaries. The distributary mouth 

bar may be reworked into a series of linear tidal ridges, extending from within the channel mouth 

out onto the subaqueous delta-front (Boggs, 2006; Bhattacharya, 2010). A tide-dominated delta is 

a prograding coastal environment that receives clastic sediment from a river source, being mostly 

reworked by tidal currents (Hori et al., 2001; Coleman, 1981). 

 

1.4.3. Tide-dominated physical sedimentary structures 

Tidal currents affect both estuaries and deltas. Tidal action is revealed by the presence of physical 

sedimentary structures, such as heterolithic inclined stratification or IHS and mudstone drapes, 

which are the most common structures recorded in the Oficina Formation. The mudstone drapes 

are formed during a brief slack-water period in the tide-dominated point bars (Choi et al., 2004; 

Hovikoski et al., 2008; Rodriguez, 2015; Gingras et al., 2016). IHS represents tidally generated 

deposits due to lateral accretion of point bars in meandering channels (Thomas et al., 1987; 

Hovikoski et al., 2008; Gingras et al., 2016). Although more commonly recorded in estuarine 

settings, IHS may be produced in deltaic systems as well (Choi et al., 2004; Martinius et al., 2012; 

Rodríguez, 2015; Solórzano et al., 2017). 

 

1.4.4. Ichnofacies 

Ichnofacies are based on the recognition of distinctive characteristics shared by different 

ichnocoenoses of variable ages formed under similar paleoenvironmental conditions (Buatois and 

Mángano, 2011). The ichnofacies model was introduced and published in German by Seilacher 

(1954, 1955, 1958, 1963) and later published in English (Seilacher 1964, 1967). The Skolithos 

Ichnofacies was proposed by Seilacher (1963, 1967) and comprises vertical, cylindrical, simple or 
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U-shaped spreiten burrows. It is dominated by dwelling burrows of suspension feeders or 

predators, displaying low ichnodiversity and variable abundance (Buatois and Mángano, 2011). 

The Skolithos Ichnofacies illustrates marginal-marine to shoreface environments, having been 

recognized locally in deep-marine and continental settings (Buatois and Mángano, 2011) The 

Cruziana Ichnofacies was proposed by Seilacher (1954, 1955, 1958) for molasse deposits and later 

referred as the Cruziana facies (Seilacher 1963, 1964, 1967). It consists of horizontal, vertical and 

inclined burrows, including locomotion, feeding, resting, dwelling, and grazing burrows of detritus 

feeders, suspension feeders and predators, displaying high ichnodiversity and high abundance 

(Buatois and Mángano, 2011). The Cruziana Ichnofacies records marginal-marine to shelf 

environments (Pemberton et al., 1992; Buatois and Mángano, 2011). The Scoyenia Ichnofacies 

was introduced for nonmarine sediments by Seilacher (1963, 1967), including meniscate trace-

fossils produced by mobile deposit feeders, arthropod trackways and bilobed traces, typically 

associated with desiccation cracks and raindrop imprints. It displays low to moderate 

ichnodiversity and high abundance (Buatois and Mángano, 2011). The Scoyenia Ichnofacies 

records fluvial and lacustrine environments, but also may be present eolian subsettings as well 

(Buatois and Mángano, 2011; Krapovickas et al., 2016). The Scoyenia Ichnofacies is also present 

in the inner zone of the tide-dominated deltaic and estuarine systems (Buatois et al., 1997; Buatois 

and Mángano, 2011). The Teredolites and Glossifungites Ichnofacies have been used in sequence 

stratigraphy to identify and characterize discontinuity surfaces (i.e., transgressive surfaces of 

erosion) (MacEachern et al., 1992; Pemberton et al., 2004; Buatois and Mángano, 2011). These 

surfaces develop substrate-controlled ichnofacies because the exhumed surfaces originate within 

a marine or marginal marine environment, favoring colonization by organisms before deposition 

of the overlying sediment (MacEachern et al., 1992). The Glossifungites Ichnofacies was 

introduced by Seilacher (1967) and redefined by Frey and Seilacher (1980). It is manifested by 

sharp-walled, unlined, passively filled, dwelling traces of suspension-feeding organisms or passive 

predators. These burrows are robust, vertical to subvertical, simple and spreite U-shaped; this 

ichnofacies tend to display high abundance and low ichnodiversity (Buatois and Mángano, 2011). 

The Glossifungites Ichnofacies is developed in firm but unlithified substrates (MacEachern et al., 

1992; Pemberton et al., 2004; Buatois and Mángano, 2011) being preferentially associated to 

transgressive settings (Gingras et al., 2004). The Teredolites Ichnofacies was proposed by Bromley 

et al. (1984) and revised by Gingras et al. (2004). It consists of clavate boring (ichnogenus 
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Teredolites) produced by pholadid bivalves with very low ichnodiversity and high density of 

boring (Buatois and Mángano, 2011), but other trace fossils, including Thalassinoides, also may 

be present (Buatois et al., 2002; Gingras et al., 2004; Solórzano et al., 2017). The Teredolites 

Ichnofacies consists of borings emplaced in marginal-marine woodgrounds, normally swamps and 

bays and is formed in resistant xylic substrates that may be preserved as coal or lignite in the 

stratigraphic record (Pemberton et al., 2001). 

 

1.4.5. Sequence stratigraphy 

Sequence stratigraphy is the study of rock relationships within a time-stratigraphy framework of 

repetitive, genetically related strata limited by surfaces of erosion or nondeposition, or their 

correlative conformities (Posamentier et al., 1988; Van Wagoner, 1995). A sequence is a relatively 

conformable succession of genetically related strata bounded by unconformities or their correlative 

conformities (Mitchum, 1977). Whereas depositional systems represent three-dimensional 

assemblages of lithofacies, genetically associated by modern or ancient processes and 

environments (Fisher and McGowan, 1967; Van Wagoner, 1995), systems tracts comprise a 

connection of contemporaneous depositional units, which subdivide a sequence. They are also 

manifested by strata formed in the basin during a particular stage of shoreline shifts. Systems tract 

are interpreted based on stratal stacking pattern, position within the sequence, and types of 

bounding surfaces. The timing of systems tracts is inferred relative to a curve that describes the 

base-level fluctuations at the shoreline (Brown and Fisher, 1977). 

 

1.5. Thesis structure 

 

This is a paper-based thesis. Therefore, each of the three main chapters corresponds to a manuscript 

submitted for a publication venue. This thesis is organized into five chapters. 

Chapter 1 underscores the significance of this research, outlining the research hypotheses, 

objectives and methods in this thesis, as well as providing a brief review of the basic conceptual 

framework.  

Chapter 2 provides a comprehensive and detailed sedimentary facies model of the Oficina 

Formation and establishes comparisons with other marginal-marine units worldwide in order to 

emphasize the importance of tidal dominance and eustatic changes as main controls on 
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sedimentation, regardless of latitudinal controls. This manuscript will be submitted to Sedimentary 

Geology. 

Chapter 3 evaluates trace-fossil distribution and ichnofacies gradients along a depositional 

profile for the Oficina Formation from the Orinoco Oil Belt to the Oritupano Field. This manuscript 

was published in Palaeogeography, Palaeoclimatology, Palaeoecology, v.482, p. 30-47. 

Chapter 4 includes the third-order sequence-stratigraphic model, based on the integration 

of sedimentologic, stratigraphic, ichnologic, and biostratigraphic datasets. This manuscript is 

under review in AAPG Bulletin. 

Chapter 5 provides final remarks, and a summary of main findings and conclusions 

obtained during this research. 
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Transition 

 

The previous chapter (Chapter 1) underscores the significance of this research, outlining the 

research hypotheses, objectives and methods in this thesis, as well as providing a brief review of 

the basic conceptual framework. The aim of the next chapter (Chapter 2) is to provide a 

comprehensive and detailed sedimentary facies model of the Oficina Formation as well as to 

establish comparisons with other marginal-marine units worldwide in order to empahsize the 

importance of tidal dominance and eustatic changes as main controls on sedimentation, regardless 

of latitudinal controls. 

I have built a paleoenvironmental model for the Oficina Formation in the Orinoco Oil Belt 

using sedimentary facies and trace-fossil distribution. Therefore, nine facies (FA-FI) were 

identified and grouped into five facies associations (FA1-5), namely fluvial braided channels 

(FA1), meandering estuarine channels (FA2), tidal flats and creek complex (FA3), outer-estuarine 

sandbar complex (FA4), and lower delta plain of a tide-dominated delta (FA5). These facies 

assemblages allowed me to recognize fluvial, estuarine and deltaic deposits. I also compared the 

environments of the Oficina Formation with other marginal-marine units formed under a wide 

variety of latitudinal settings. Supervisors Luis A. Buatois and M. Gabriela Mángano checked 

facies descriptions and interpretations and edited the manuscript. Co-author Williams Rodríguez 

helped with core logging. 
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Chapter 2 

2. Sedimentary facies and depositional environments of a tide-dominated estuarine 

and deltaic complex: The middle Miocene Oficina Formation of the Orinoco Oil 

Belt, Venezuela 

 

Solórzano, E.J., Buatois, L.A., Rodríguez, W.J., Mángano, M.G., Sedimentary facies and 

depositional environments of a tide-dominated estuarine and deltaic complex: The middle Miocene 

Oficina Formation of the Orinoco Oil Belt, Venezuela. To be submitted to Sedimentary Geology. 

 

2.1. Abstract 

 

Although the middle Miocene Oficina Formation of the Orinoco Oil Belt represents most of 

Venezuela’s hydrocarbon resource, a comprehensive and detailed sedimentary facies model for 

the whole belt has never been put forward. Based on the analysis of cores and well logs, nine 

sedimentary facies (FA-I), forming five facies assemblages (FA1-5), have been characterized. 

Both sedimentologic and ichnologic datasets have been integrated in this study. FA1 consists of 

fluvial-braided channel (FB), floodplain (FG2), and swamp (FH1) deposits, as well as paleosols 

(FG3). This facies assemblage occurs in the lower member, representing the infill of lowstand 

fluvial valleys. FA2 consists of meandering estuarine-channel deposits (FA, FC, FD, FE, and FI). 

FA2 occurs in the middle member, representing the infill of tide-dominated estuarine valleys 

during the early stages of the Langhian transgression. FA3 consists of tidal-flat and tidal-creek 

(FC, FD, FE, FF, and FG2) and swamp (FH1 and FH2) deposits, together with paleosols (FG3). 

This facies assemblage is present in the middle member, revealing backstepping and retrogradation 

within the estuarine system during a continuing transgression. FA4 consists of outer-estuarine 

sandbar (FC, FD, FG1) and swamp (FH2) deposits, as well as paleosols (FG3). It occurs in the 

uppermost part of the middle members, representing a late stage of the Langhian transgression, 

culminating in a maximum flooding surface. FA5 consists of deltaic distributary channel (FC and 

FD), floodplain and interdistributary-bay (FG2), and swamp (FH1) deposits. FA5 occurs in the 

upper member, recording sedimentation in the lower delta plain of a tide-dominated delta during 

a highstand. Freshwater conditions in the fluvial system, as well as in the inner portions of the 
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estuary and the delta plain are further supported by the presence of the Scoyenia Ichnofacies, 

whereas brackish-water segments of the estuary are characterized by the Skolithos and depauperate 

Cruziana Ichnofacies. The substrate-controlled Teredolites, and Glossifungites Ichnofacies occur 

in connection to erosional exhumation during ravinement. The absence of fully marine ichnofaunas 

is consistent with the embayed nature of the Orinoco Oil Belt. Comparisons with other marginal-

marine units worldwide underscore the importance of tidal dominance and relative sea-level 

changes as main controls on deposition, regardless of latitudinal controls. However, latitude may 

have played some role in controlling the establishment of extensive coastal wetland systems and 

on the types of burrowing organisms.  

 

Keywords: fluvial braided channels, meandering estuarine channels, deltaic distributary channels, 

ichnofacies, marine-marginal 

 

 

2.2. Introduction 

 

The oil sandstone deposits of the Orinoco Oil Belt represent most of Venezuela’s hydrocarbon 

resource (Magna Reserva Project, 2012). The middle Miocene Oficina Formation in the Orinoco 

Oil Belt has been traditionally considered to record deposition within fluvio-deltaic systems 

(Latreille et al., 1983; Audemard et al., 1985; Toro et al., 2001, Martinius et al., 2012, 2013). 

However, recent work is suggesting a more nuanced depositional setting based on the fact that the 

deltaic interpretation is not consistent with the retrogradational stacking pattern recorded in its 

middle member (Rodríguez et al., 2018). In particular, deposition in fluvial to tide-dominated 

estuarine settings has been proposed for the lower and middle members, whereas deltaic deposition 

has been suggested to be restricted to the upper member based on detailed analysis in the Junín 

and Boyacá areas (Rodríguez et al., 2018). Unfortunately, despite its economic importance, a 

comprehensive and detailed sedimentary facies model for the Oficina Formation along the whole 

Orinoco Oil Belt has never been put forward. This is unfortunate because a proper understanding 

of the variability of sedimentary facies in these tide-dominated depositional environments is 

important for both exploration strategies and reservoir characterization. Characteristic sedimentary 

structures of tide-influenced environments, such as mudstone drapes and inclined heterolithic 
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stratification (IHS) (Hori et al., 2001; Choi et al., 2004; Crerar and Arnott, 2007; Rodríguez, 2015, 

2018; Gingras et al., 2016; Solórzano et al., 2017), commonly impact on reservoir heterogeneity. 

The purposes of this paper are to: (1) document the different sedimentary facies and depositional 

environments in the Oficina Formation in the Orinoco Oil Belt, (2) discuss changes in 

thickness/general facies relationship, (3) study the tidal signature and reconstruct paleosalinity 

conditions, using sedimentologic and ichnologic information, (4) place facies information within 

a sequence-stratigraphic framework, and (5) compare our observations with those in similar 

deposits elsewhere in order to discuss controlling factors on deposition. The widespread extension 

of the Oficina Formation in the subsurface allows us to delineate the regional architecture of these 

marginal-marine strata, further refining facies models of tide-influenced settings. 

 

2.3. Geologic setting 

 

The Orinoco Oil Belt (Fig. 2.1) covers an area of approximately 55,314 km2, being located in the 

southern part of the Eastern Venezuela Basin, sub-parallel to the Orinoco River. The Hato Viejo 

fault system subdivides the Orinoco Oil Belt into two provinces, the western and eastern provinces 

(Latreille et al., 1983; Audemard et al., 1985). The western province consists of the Boyaca and 

Junín areas where the Cenozoic succession overlies Cretaceous and Paleozoic strata. The eastern 

province includes the Carabobo and Ayacucho areas, where the Cenozoic succession rests on top 

of the Precambrian basement (Fig. 2.2). 

Based on an integrated study of foraminifers, calcareous nannoplankton and 

palynomorphs, the Oficina Formation is considered of middle Miocene age (Audemard et al., 

1985; Solórzano et al., 2015; in review). The Oficina Formation in the Orinoco Oil Belt was 

divided into three informal members: lower, middle and upper, representing fluvial, estuarine and 

deltaic deposits, respectively (Rodríguez, 2015; Solórzano et al., 2017; Rodríguez et al., 2018). 

This formation consists of one single second-order depositional sequence, encompassing lowstand 

(LST), transgressive (TST) and highstand (HST) systems tracts (Rodríguez et al., in press). The 

lower member consists of fining-upward, massive to planar or trough cross-stratified, pebbly, and 

very coarse- to medium-grained sandstone. It records fluvial channel-fills of a lowstand systems 

tract. The middle member is characterized by interbedded coarse- to very fine-grained sandstone 

and mudstone with IHS locally capped by coal. Flaser, wavy and lenticular bedding are common.  
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The bulk of this member records deposition in a tide-dominated estuarine system formed 

within a transgressive systems tract. 

 

 

Figure 2.1. Map of Venezuela outlining the location of the Orinoco Oil Belt. 

 

The upper member is represented by fining- and thinning-upward, planar and trough cross-

stratified medium- to fine-grained sandstone with mudstone drapes, as well as inclined heterolithic 

stratified coarse- to fine-grained sandstone units. Desiccation and syneresis cracks, siderite nodules 

and bands, and coal beds also are present. The upper member mostly represents highstand systems 

tract deltaic progradation. Whereas deposits of the Oficina Formation in the Orinoco Oil Belt 

represent sedimentation in a broad, tide-dominated, marginal-marine embayment, coeval strata 

formed further to the northeast in the Oritupano Oil Field characterize open marine environments 

affected by wave reworking (Solórzano et al., 2017). turn, the Oficina Formation is subdivided 
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into two third-order depositional sequences (DS1-2) which match the middle Miocene global 

eustatic curve of Haq and Schutter (2008) (Solórzano et al., 2017, in review). These third-order 

depositional sequences have been delineated based on the integration of biostratigraphy, 

sedimentology, allostratigraphic surfaces and systems tracts and provide a better understanding of 

reservoir distribution (Solórzano et al., 2017, in review). DS1 is bounded by sequence boundaries 

U-1 (15.97 Ma) and U-2 (13.82 Ma) and includes maximum flooding surface MFS-1 (14.91 Ma). 

It is associated with thick fluvial and estuarine valleys and thin deltaic deposits. DS2 is bounded 

by U-2 (13.82 Ma) and U-3 (12.7 Ma) and includes MFS-2 (13.53 Ma). It consists of thin 

transgressive deposits and thick lower delta plain deposits. 

 

 

Figure 2.2. West to east structural section showing Cenozoic stratigraphy across the Orinoco Oil Belt 

(modified from Audemard et al., 1985). 

 

2.4. Sedimentary facies and trace fossil content 

 

Twenty-eight cored wells from the Oficina Formation in the Orinoco Oil Belt were described (B1, 

B2, and B3 from the Boyacá area, J1, J2, J3, J4, J5, J6, J7, J12 and J13 from the Junín area, A4, 

A7, A8, A1, A2, A9, A10, A11, and A12 from the Ayacucho areas, and C1, C2, C3, C6, C7, C8, 

C9, and C10 from the Carabobo area), totalizing 3055 m. Core-based facies were characterized by 

identifying lithology, sedimentary structures, textural characteristics, bed and bedset thicknesses, 

bed contacts, bioturbation index, trace-fossil distribution, and ichnologic suites (Figs. 2.3-2.5). 

Additionally, 300 well logs (resistivity, density, neutron and gamma ray) were analyzed and 

correlated to evaluate changes in thickness and general facies relationships across the Orinoco Oil 
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Belt (Fig. 2.6). Table 2-1 summarizes the main characteristics of nine sedimentary facies (FA-FI) 

present in the Oficina Formation, forming five facies associations, labeled FA1 to FA5.  

 

 

Figure 2.3. Sedimentological and ichnological log for well A4. 
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Figure 2.4. Sedimentological and ichnological log for well J3. 
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Figure 2.5. Lithology, sedimentary structures and trace fossils legend for well J3 and A4. 

 

 

 

 

Figure 2.6. Map showing the wells used in this study. A) Map of Venezuela outlining the Orinoco Oil Belt. 

B) Map of the Orinoco Oil Belt showing the location of wells both with and without cores. 
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Table 2-1. Sedimentary Facies of the Oficina Formation in the Orinoco Oil Belt (modified from Rodríguez, 

2015). 
  

Facies Lithology 

and Texture 

Dominant 

physical 

sedimentary 

structures 

 

Ichnology Bed 

thickness 

(cm) 

Other 

characteristics 

Interpretation 

 

 

 

FA 

Intraclast breccia 

Mudstone 

breccia, 

medium- to 

fine-grained 

sandstone and 

mudstone, 

poorly sorted 

 

 

Microfaults and 

planar cross 

stratification 

No trace fossils 10-50   Lag deposits, cut 

bank margins of 

meandering 

estuarine channels 

 

 

 

 

 

 

 

FB 

Cross-Stratified 

very coarse-to 

medium- 

grained 

sandstone 

FB1 Massive to 

Planar cross-

stratified 

sandstone 

with 

granules 

 

 

 

 

Very coarse- 

to medium-

grained 

gravel-rich 

sandstone 

with 

dispersed 

granules, 

poorly sorted 

 

Massive to planar 

cross-stratification 

No trace fossils 10-50 Locally parallel- 

laminated 

mudstone, 

mudstone and 

coal clasts, 

generally oil 

impregnated, 

argillaceous 

Braided fluvial 

channels 

FB2 Massive to 

trough cross-

stratified 

sandstone 

with pebbles 

and 

mudstone 

clast 

 

Coarse- to 

medium- 

grained 

gravel- rich 

sandstone, 

poorly sorted 

Massive to trough 

cross-stratification 

No trace fossils 20-70 

FC 

Cross-stratified medium- to fine-grained 

sandstone with mudstone drapes  

 

 

Medium- to 

fine-grained 

fine 

sandstone, 

well sorted 

 

Trough and planar 

cross stratification 

No trace fossils 10-120 Mudstone drapes Tidal channels, 

tidal flat, and tidal 

sandbars 

FD 

Inclined heterolithic stratified coarse- to 

fine-grained sandstone and mudstone 

Coarse- to 

fine-grained 

sandstone 

Inclined 

heterolithic cross-

stratification 

Scarce Rosselia 

socialis, Teichichnus 

rectus, Ophiomorpha 

nodosa 

BI: 0-1 

Beaconites antarcticum 

(BI: 4-6) 

 

 

30-200 Mudstone 

intraclasts, 

mudstone drapes 

Estuarine and 

distributary 

channel pointbars, 

tidal flat, and tidal 

sandbars 

FE 

Convoluted fine- to very fine-grained 

sandstone and mudstone 

Fine- to very 

fine-grained 

sandstone, 

well sorted 

Convolute 

lamination 

Scarce Ophiomorpha 

nodosa 

BI: 0-1 

 

10-50   Estuarine channels 

and tidal flats 
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FF  

Interbedded 

mudstone and 

middle- to very 

fine-grained 

sandstone 

S
an

d
st

o
n
e 

d
o
m

in
at

ed
 

FF1 Parallel- 

laminated 

sandstone 

and 

mudstone 

Fine- to very 

fine-grained 

sandstone, 

well sorted, 

rounded 

clasts; 

mudstone 

Wavy lamination 

(rhythmic 

appearance) 

Planolites montanus, 

Teichichnus rectus, 

Rosselia socialis, 

Skolithos linearis, 

Diplocraterion 

habichii, escape trace 

fossils 

BI: 0-1 

 

1-200 Mudstone drapes 

and flaser 

bedding 

Tidal sand to mixed 

flats 

FF2 Muddy 

sandstone 

Fine- to very 

fine-grained 

sandstone 

mixed with 

mudstone 

Sandstone is 

interlaminated to 

interbedded with 

light to medium 

grey mudstone 

Ophiomorpha nodosa 

(BI:0-1), undeterminate 

bioturbation mottling 

(BI: 4-5) 

 

1-90   Tidal sand to mixed 

flats 

M
u
d
st

o
n
e 

d
o
m

in
at

ed
 

FF3 Parallel- 

laminated 

sandy 

mudstone 

and siltstone 

Mudstone 

with scarce 

very fine sand 

grains, well 

sorted 

Sand grains 

dispersed in 

mudstone- and 

siltstone-dominated 

intervals 

Bergaueria isp., 

Planolites montanus, 

Thalassinoides isp. 

BI: 2-3 

1-100   Tidal mud flats 

FF4 

Bioturbated 

siltstone and 

mudstone 

Silstone and 

mudstone 

Massive 

appearance 

Teichichnus rectus, 

Thalassinoides isp., 

indeterminate 

bioturbation mottling 

BI: 4-5 

 

1-180   Tidal mud flats 

FF5 

Calcareous 

massive 

mudstone 

with scarce 

limestone 

layers 

 

Massive 

calcareous 

mudstone 

with scarce 

limestone 

layers 

Massive 

appearance 

No trace fossils  10-30 Shell remains Tidal mud flats 

 

 

 

 

 

 

 

 

FG 

Carbonaceous, 

rooted silty 

mudstone and 

thinly 

laminated 

mudstone 

FG1 Mudstone Massive to parallel-

laminated, locally 

current ripples and 

flaser bedding 

Planolites montanus, 

Teichichnus rectus, 

Thalassinoides isp., 

root trace fossils 

BI: 3-4 

30-150 Syneresis cracks, 

abundant organic 

debris, and scarce 

mudstone clasts 

Outer -estuary 

margin 

FG2 Mudstone 

and silstone 

Massive to parallel-

laminated, white to 

light gray 

Beaconites 

antarcticum, Planolites 

montanus, Taenidium 

isp. 

BI: 4-6 

 

30-120 Siderite nodules 

and bands, 

desiccation 

cracks 

Floodplains, 

interdistributary 

bays and tidal flats 

FG3 Mudstone Massive to parallel-

laminated, white to 

light gray 

Firmground 

Thalassinoides isp., 

Planolites montanus, 

root trace fossils 

BI: 1-4 

 

 50-200 Siderite nodules 

and bands, 

desiccation 

cracks 

waterlogged 

paleosols  

 

 

 

 

FH 

Coal 

FH1 Coal   No trace fossils 1-60   Swamps in fluvial, 

estuarine and delta 

plain settings 

 

FH2 Bioturbated 

Coal 

  Woodground 

Thalassinoides isp. 

BI: 3-5 

 

10-50   Swamps in 

estuarine system 
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FI 

Cross-Stratified 

very coarse-to 

very fine- 

grained 

sandstone 

 

FI1 Very coarse- 

to medium-

grained 

sandstone, 

poorly sorted 

Massive sandstone  Ophiomorpha nodosa 

BI: 0-1 

50-100 Sandy deposits 

are limited in 

their top or base 

by mudstone 

deposits or 

heterolithic 

zones, containing 

benthic 

foraminifera and 

dinoflagellates 

 

Meandering tidal 

channels 

FI2 Very fine- to 

medium-

grained 

sandstone 

with shells 

Massive to planar 

cross-stratified 

No trace fossils 10-60 Meandering tidal 

channels 

FI3 Very coarse- 

to fine-

grained 

sandstone, 

poorly sorted 

Massive to planar 

cross-stratified 

No trace fossils 50-300 Meandering tidal 

channels 

 

 

 

2.4.1 Facies A: Intraclast breccia 

Description: Facies A consists of 10-50 cm thick, mudstone breccia, medium- to fine-grained 

sandstone and mudstone. The sandstone is poorly sorted (Fig. 2.7A). Beds are stacked forming 

facies intervals up to 1.2 m thick. This facies is barren of ichnofauna. Facies A is present in the 

middle member.  

Interpretation: Facies A delineates the base of meandering estuarine channels. It was 

formed from the collapse of the associated muddy cut-bank deposits (Musial et al., 2012; Gingras 

et al., 2017; Brekke et al., 2017). These breccias overlie the erosional bases of the estuarine 

channels and indicate the thalweg position of the channels.  

 

2.4.2 Facies B: Cross-stratified very coarse- to medium-grained sandstone 

Description: Facies B consists of trough and planar cross-bedded very coarse- to medium-grained 

sandstone, locally displaying a structureless aspect. Beds are stacked forming facies intervals up 

to 12 m thick. It has been subdivided into subfacies B1 and B2. Subfacies B1 consists of 10-50 cm 

thick, poorly sorted, massive to planar cross-stratified, very coarse- to medium-grained, gravel-

rich sandstone with dispersed granules (Fig. 2.7B). No trace fossils occur in this subfacies. 

Subfacies B1 occurs in the lower member. 

Subfacies B2 consists of 20-70 cm thick, poorly sorted, massive to trough cross-stratified, 

coarse- to medium-grained gravel- rich sandstone. Trace fossils have not been recorded in this 

subfacies. Subfacies B2 occurs in the lower member.  

Interpretation: Facies B represents the infill of braided-fluvial channels. The fluvial braided 
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channel-fills are represented by stacked sandstone successions of multiple depositional units or 

storeys. Grain size suggests high energy conditions. These channels are characterized by two and 

three-dimensional dunes that migrated along the bottoms of river channels (Miall, 2010; Brekke 

et al., 2017), representing subfacies B1 and B2, respectively.  

 

2.4.3 Facies C: Cross-stratified medium- to fine-grained sandstone with mudstone drapes 

Description: Facies C consists of 10-120 cm thick, well-sorted, trough and planar cross-stratified, 

medium- to fine-grained sandstone (Fig. 2.7C-D), forming facies intervals up to 15 m thick. 

Mudstone drapes mantling foresets are ubiquitous. These sandstone units do not present trace 

fossils. Facies C is present in the middle member. 

Interpretation: Facies C represents a wide variety of tidal-influenced deposits, such as 

meandering estuarine channels, tidal creeks, tidal sandbars and deltaic interdistributary channels. 

The former three record sedimentation in transgressive estuarine systems and the latter records 

deposition in the lower delta plain of a tide-dominated delta. The mudstone drapes suggest tidal 

influence and are formed during a brief slack-water period in the tide-dominated point bars (Choi 

et al., 2004; Hovikoski et al., 2008; Rodríguez, 2015; Gingras et al., 2016). The presence of the 

cross-stratal sets in the channel infills suggests migration of two and three-dimensional dunes 

during periods of high river discharge when the maximum tidal limit migrated seaward. FC is 

interpreted as a subordinate component within tidal creeks. FC also records sedimentation in outer 

estuarine sandbars, but facies units tend to be thinner than those representing the meandering 

estuarine channels. These bars are formed by the migration of two and three-dimensional dunes 

reflecting a high-energy setting. 

 

2.4.4 Facies D: Inclined heterolithic stratified coarse- to fine-grained sandstone and mudstone. 

Description: Facies D consists of 30-200 cm thick, coarse- to fine-grained sandstone with IHS 

(Fig. 2.8A-C), forming facies intervals up to 6 m thick. Trace fossils, such as Rosselia socialis, 

Ophiomorpha nodosa, Teichichnus rectus and Beaconites antarcticum, are present. Elements of 

the Scoyenia Ichnofacies (Beaconites antarcticum) may be overprinting elements of the 

depauperate Cruziana Ichnofacies (Teichichnus rectus). Facies D is present in the middle and 

upper members. 

Interpretation: Facies D represents deposits formed in estuarine channel point bars, tidal 
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creeks, tidal sandbars, and distributary channel point bars. The former three record sedimentation 

in tide-dominated estuarine systems and the latter records deposition in the lower delta plain of a 

tide-dominated delta. IHS represents tidally generated deposits due to lateral accretion of point 

bars in meandering channels (Thomas et al., 1987; Hovikoski et al., 2008; Gingras et al., 2016). 

Although more commonly recorded in estuarine settings, IHS may be produced in deltaic systems 

as well (Choi et al., 2004; Martinius et al., 2012; Rodríguez, 2015; Solórzano et al., 2017). Trace 

fossil cross-cutting relationships occur in the fluvial-tidal transition area, evidencing channel 

abandonment and a freshwater-terrestrial infauna overprinting elements of the brackish-water suite 

(Diez-Canseco et al., 2015). 
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Figure 2.7. Sedimentary facies A, B and C. A: Facies A (mudstone breccias indicating the base of 

meandering estuarine channel deposits and formed from the collapse of the associated muddy cut-bank 

deposits). Well C2 (Carabobo area), depth 982.37 m. B: Facies B (braided fluvial channel deposits 

consisting of cross-stratified pebbly, very coarse- to medium-grained sandstone and recording migration of 

two and three-dimensional dunes). Well A8 (Ayacucho area), depth 514 m. C: Facies C (meandering 

estuarine channel deposits consisting of cross-stratified medium- to fine-grained sandstone and 

characterized by migration of two and three-dimensional dunes). Wells J1 (Junín area) A9 (Ayacucho area), 

depths 569.06 m and 372 m. D: Facies C (meandering estuarine channel deposits with mudstone drapes, 

which are formed during a brief slack-water period, and provide evidence of tide-dominated estuarine 

settings). Well A9 (Ayacucho area), depth 372 m. 

 

 

FD is interpreted as a subordinate component within the tidal creeks. The absence of 

bioturbation in distributary-channel deposits is probably due to a combination of salinity 

conditions and hydrodynamic energy, namely severe brackish-water conditions and rapid 

migration of two and three-dimensional dunes. In contrast, the presence of trace fossils in 

meandering estuarine-channel deposits with IHS reflects pauses in sedimentation or slower rates 

of sedimentation during times of reduced energy conditions. 

 

2.4.5 Facies E: Convoluted fine- to very fine-grained sandstone and mudstone 

Description: Facies E consists of 10-50 cm thick, well-sorted, fine- to very fine-grained sandstone 

and mudstone with convolute lamination (Fig. 2.8D-E), forming facies intervals up to 1.5 m thick. 

Ophiomorpha nodosa is locally present, forming monospecific trace-fossil suites suggestive of the 

Skolithos Ichnofacies. Facies E is present in the middle member. 

Interpretation: Facies E mostly represents meandering-channel deposits within tide-

dominated estuarine systems and, to a lesser extent, tidal-flat deposits. Convolute lamination may 

have been formed as result of loading, rapid sedimentation or slumping (Bridge et al., 2000; Plink-

Bjorklund, 2005; Hubbard et al., 2011) or may be interpreted as seismically induced (seismites) 

(Toro and Pratt, 2015a, b). 

 

2.4.6 Facies F: Interbedded mudstone and medium- to very fine-grained sandstone 

Description: Facies F consists of mudstone intervals or alternations of mudstone and medium- to 

very fine-grained sandstone. Facies F forms intervals up to 12 m thick. It has been subdivided into 

subfacies F1, F2, F3, F4, and F5. Subfacies F1 (Fig. 2.8F-I) consists of 1-200 cm thick, fine- to 

very fine-grained sandstone and mudstone. Mudstone drapes and flaser, wavy and lenticular 

bedding are present. In places, wave-ripple cross-lamination and low-angle cross-lamination are 
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present. Ripple foresets are commonly mantled by mudstone drapes. This subfacies contains 

Planolites montanus, Skolithos linearis (Fig. 2.8F), Rosselia socialis (Fig. 2.8H), Teichichnus 

rectus (Fig. 2.8I), Diplocraterion habichii, and escape trace fossils (FIG. 2.8G), reflecting the 

presence of both the Skolithos and the depauperate Cruziana Ichnofacies. Subfacies F1 is present 

in the middle member. 

Subfacies F2 (Fig. 2.9A-D) consists of 1-90 cm thick, interlaminated to interbedded fine- 

to very fine-grained sandstone with mudstone. This subfacies contains Ophiomorpha nodosa (Fig. 

2.9C) and indeterminate bioturbation mottling, indicative of the Skolithos Ichnofacies. Subfacies 

F2 is present in the middle member. 

Subfacies F3 (Fig. 2.9E-H) consists of 1-100 cm thick, mudstone with dispersed, scarce 

very fine sand grains. This subfacies contains Bergaueria isp., Planolites montanus (Fig. 2.9G), 

and Thalassinoides isp. (Fig. 2.9G), reflecting the presence of the depauperate Cruziana 

Ichnofacies. Subfacies F3 is present in the middle member. 

Subfacies F4 (Fig. 2.9I-M) consists of 1-180 cm thick, massive siltstone and mudstone. 

This subfacies contains Teichichnus rectus, Thalassinoides isp. (Fig. 2.9J and L), and 

indeterminate bioturbation mottling, suggestive of the depauperate Cruziana Ichnofacies. 

Subfacies F4 is present in the middle member. 

Subfacies F5 (Fig. 2.10A-E) consists of 10-30 cm thick, massive calcareous mudstone (Fig. 

2.10C) with scarce limestone layers (Fig. 2.10D-E) and shell remains (Fig. 2.10AB). This 

subfacies is barren in ichnofauna. Subfacies F5 is present in the middle member. 

Interpretation: Overall, facies F represents deposition in estuarine tidal flats locally 

dissected by tidal creeks. In particular, subfacies F1 and F2 record deposition in tidal sand to mixed 

flats and subfacies F3, F4, and F5 record sedimentation in tidal mud flats. Flaser, wavy and 

lenticular bedding are common in, although not exclusive of, tidal-flats environments (Weimer et 

al., 1981; Reineck and Wunderlich, 1968; Hovikoski et al., 2008; Sisulak and Dashtgard, 2012; 

Gingras et al., 2016, 2017). Siderite nodules and bands, such as those present in the Oficina 

Formation, are particularly abundant in environments affected by fluctuating salinity (Plummer 

and Gostin, 1981; Postma, 1982; MacEachern et al., 2005; Hovikoski et al., 2008; Buatois et al., 

2012; Martinius et al., 2012). A wide variety of mechanisms has been proposed for the generation 

of syneresis cracks (Fig. 2.9H), including sediment compaction and expulsion of water (White, 

1961; Burst, 1965), microbial-mat stabilization (see Seilacher, 1999; Seilacher et al., 2005; 
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Harazim et al., 2013), clay contraction and expansion due to fluctuating salinity (Plummer and 

Gostin, 1981; Hovikoski et al., 2008; Martinius et al., 2012). 
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Figure 2.8. Sedimentary facies D and E and sedimentary subfacies F1. A, B and C: Facies D (meandering 

estuarine channel deposits with inclined heterolithic stratification formed by lateral accretion of point bars, 

mostly reflecting the influence of tidal currents). Wells A9, A8 (Ayacucho area), and C2 (Carabobo area), 

depths 374 m, 347.77 m and 890 m. D and E: Facies E (tidal flat and meandering estuarine channel deposits 

with convolute lamination). Wells A10 and J1 (Junín area), depths 410 m and 538 m. F, G, H, and I: 

Subfacies F1 (tidal flat deposits consisting of interbedded sandstone and mudstone). Wells J12 (Junín area), 

A12 (Ayacucho area), C1 (Carabobo area), and J1 (Junín area), depths 506 m, 891 m, 614 m, and 426 m. 

G shows escape trace fossil (Et) displaying the classic cone-in-cone morphology, representing rapid 

changes in sedimentation and H shows Rosselia socialis (Ro). The trace-fossil assemblage illustrates the 

depauperate Cruziana Ichnofacies, which implies formation in the estuarine valley under brackish-water 

conditions. Sandstone is impregnated with hydrocarbon resulting in dark color, while mudstone is light 

color. 

 

 

Syneresis cracks also are interpreted as seismically induced (seismites), and in this context 

they are referred to as small dikes (Pratt, 1998, Toro and Pratt, 2015a, b; 2016). Limestone and 

shells indicate marine influence. Thalassinoides isp. forms tubular tidalites, further supporting 

tidal influence in these deposits (Fig. 2.9L). Tubular tidalites of inclined laminae occur only in 

open framework burrows, such as Thalassinoides (Gingras et al., 2012, 2015; Wetzel et al., 2014). 

Tubular tidalites have been observed in subtidal point-bar, intertidal-flat, or tidal-channel-thalweg 

(Gingras et al., 2015). Thalassinoides isp. forming tubular tidalites could be misinterpreted as 

Teichichnus rectus. However, Teichichnus rectus displays concave-up laminae, representing 

spreite. A distinct horizontal, circular to sub-circular, burrow is always present at the upper or 

lower end of the laminae (Pemberton et al., 1992, 2001). In addition, Teichichnus rectus tends to 

be smaller than Thalassinoides isp.. The presence of the Skolithos and depauperate Cruziana 

Ichnofacies suggest that these deposits were formed under brackish-water conditions (Solórzano 

et al., 2017). 

 

2.4.7 Facies G: Carbonaceous, rooted silty mudstone and thinly laminated mudstone 

Description: Facies G consists of massive mudstone and parallel- to ripple cross-laminated 

siltstone. Facies intervals are up to 4 m thick. It has been subdivided into subfacies G1, G2, and 

G3. Subfacies G1 (Fig. 2.10F-G) consist of 30-150 cm thick, massive to parallel-laminated 

mudstone, siltstone and sandstone, locally with current ripples, flaser bedding and syneresis 

cracks. This subfacies contains Planolites montanus, Teichichnus rectus, Thalassinoides isp., and 

root trace fossils, illustrative of the depauperate Cruziana Ichnofacies. Subfacies G1 is present in 

the middle member. 
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Subfacies G2 (Fig. 2.10I-O) consists of 30-120 cm thick, massive to parallel-laminated 

mudstone and siltstone with siderite nodules and bands (Fig. 2.10I-J), and desiccation cracks. This 

subfacies contains Beaconites antarcticum (Fig. 2.10L-M), Planolites montanus, and Taenidium 

isp. (Fig. 2.10N and O), indicative of the Scoyenia Ichnofacies. Subfacies G2 is present in the 

lower, middle and upper members. 

Subfacies G3 (Fig. 2.11A-B) consists of 50-200 cm thick, massive to parallel-laminated 

mudstone with siderite nodules and bands, syneresis cracks. This subfacies contains firmground 

Thalassinoides isp. (Fig. 2.11A-B) overprinted to a fabric dominated by Planolites montanus and 

root trace fossils. The former reflects the presence of the Glossifungites Ichnofacies. Subfacies G3 

is present in the lower and middle members. 

Interpretation: Overall facies G represents a wide variety of coastal-plain subenvironments 

such as floodplains, interdistributary bays, tidal flats, and soils formed either along the margins of 

the estuary or in the innermost areas of the estuarine and deltaic complex.  

Subfacies G1 represents low-energy deposits formed along the margins of the outer 

estuarine area. This subfacies displays ichnologic and sedimentologic evidence of tidal influence 

(e.g. flaser bedding) and salinity fluctuations. In particular, the depauperate Cruziana Ichnofacies 

suggests that these deposits were formed under brackish-water conditions (Solórzano et al., 2017). 

The presence of root trace fossils suggests waterlogged paleosols. 

Subfacies G2 represents various environments, including floodplains in the fluvial systems,  

tidal flats in the fluvial-tidal transition zone of estuaries, and floodplains and interdistributary bays 

in the tide-dominated deltaic systems. The presence of the Scoyenia Ichnofacies indicates that the 

bulk of these deposits were formed under freshwater conditions. Although this ichnofacies is 

common in continental settings, it also is present in freshwater settings located between the 

maximum salinity and the maximum tidal limit, such as the inner estuarine and deltaic 

environments (Buatois et al., 1997; Mángano and Buatois, 2004; Diez-Canseco et al., 2015, 2016; 

Rodriguez, 2015; Solórzano et al., 2017). The local presence of desiccation cracks indicates that 

periodic subaerial exposure took place occasionally. The occurrence of siderite bands is consistent 

with freshwater environments that present low chloride concentrations as well as no dissolved 

sulfide and high ferrous iron content. However, siderite is not exclusive of freshwater 

environments, but may be present in minor proportions in brackish or fully marine settings because 

the presence of iron remains results in complete sulfate reduction (Postma, 1982). 
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Figure 2.9. Sedimentary subfacies F2, F3, and F4. A, B, C, and D: Subfacies F2 (tidal flat deposits 

consisting of interbedded sandstone and mudstone, suggestive of alternating traction and suspension 

fallout). Wells A11 (Ayacucho area), J1 (Junín area), C8, and A8 (Ayacucho area), depths 1323 m, 506 m, 

438 m, and 335 m. Ophiomorpha nodosa (Op) and Thalassinoides isp. (Th) are present in the figures C and 

D. The former illustrates the Skolithos Ichnofacies, whereas the latter indicates the presence of the 

depauperate Cruziana Ichnofacies, both ichnofacies occur under brackish-water conditions. E, F, H, and G: 

Subfacies F3 (tidal flat deposits consisting of mudstone-dominated heterolithics). Wells A2 (Ayacucho 

area), J12 and J13 (Junín area), depths 737 m, 735 m, 434 m, and 352 m. Syneresis crack (Sy) is present in 

the figure H and Thalassinoides isp. (Th) is present in figure G indicating the presence of the depauperate 

Cruziana Ichnofacies. I, J, K, L, and M: Subfacies F4 (tidal flat deposits consisting of massive silstone and 

mudstone). Wells A9 (Ayacucho area), C9 (Carabobo area), J1 (Junín area), C9, J12 (Junín area), depths 

449 m, 980 m, 510 m, 988m and 518 m. Thalassinoides isp. (Th) is present in the figures J and L, the latter 

with rhythmic tidal infill, and Asterosoma isp. (AS) is present in the figure M, reflecting the presence of 

the depauperate Cruziana Ichnofacies. Sandstone is impregnated with hydrocarbon resulting in dark color, 

while mudstone is light color. 
 
 

Subfacies G3 represents waterlogged paleosols within fluvial and estuarine systems. In 

places, paleosols display the Glossifungites Ichnofacies, which represents transgressive surfaces 

of erosion (Solórzano et al., 2017). This suggests that these soils were emplaced in areas of the 

coastal plain that were subjected to significant wave erosion during ravinement. 

 

2.4.8 Facies H: Coal 

Description: Facies H represents coal layers, forming intervals up to 2 m thick. This facies has 

been subdivided into subfacies H1 and H2. Subfacies H1 consists of 1-60 cm thick, coal layers 

without trace fossils. Subfacies H1 is present in the lower, middle and upper members.  

Subfacies H2 (Fig. 2.11D and E) consists of 10-50 cm thick, bioturbated coal layers that 

are penetrated by Thalassinoides isp., representing the Teredolites Ichnofacies. Subfacies H2 is 

present in the middle member. 

Interpretation: Overall facies H records swamp deposits. The presence of coal layers 

indicates a high-water table. Subfacies H1 represents swamps formed in a wide variety of settings, 

such as fluvial, estuarine and deltaic. In contrast, subfacies H2 records swamps restricted to 

estuarine systems in direct association with a relative sea-level rise. In these settings, the presence 

of crustacean galleries attributed to the Teredolites Ichnofacies delineates transgressive surfaces 

of erosion (Solórzano et al., 2017). Following erosional exhumation of the swamp deposits during 

ravinement, decapod crustaceans were able to penetrate the underlying coal layer. 
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Figure 2.10. Sedimentary subfacies F5, G1, and G2. A, B, C, D, and E: Subfacies F5 (tidal flat deposits 

consisting of calcareous mudstone with shells and thin limestone beds). Wells A11 (Ayacucho area), A1 

(Ayacucho area), and C1 (Carabobo area), depths 793 m, 794 m, 623 m, 555 m, and 549 m. A, B and C 

represent calcareous mudstone with shell remains, suggesting marine influence. C displays limestone 

layers, indicating marine influence. G and H: Subfacies G1 (outer-estuarine margin deposits consisting of 

massive to parallel-laminated mudstone). Wells A4, A4 and A12 (Ayacucho area), depths 807 m, 763 m 

and 831 m. I, J and K: Subfacies G2 (tidal flat deposits consisting of massive to parallel-laminated mudstone 

with siderite nodules and bands, supporting fluctuating salinity). Wells A10 (Ayacucho area), J1 (Junín 
area) and A10 (Ayacucho area), depths 401 m, 523 m and 410 m. L and M: Subfacies G2 (tidal flat deposits 

consisting of bioturbated mudstone with Beaconites antarcticum, indicating the presence of the Scoyenia 

Ichnofacies developed in a setting located beteween the maximum salinity limit and the maximum tidal 

limit). Well J12, depth 518 m. N and O: Subfacies G2 (floodplain deposits consisting of bioturbated 

mudstone with Taenidium isp., reflecting the presence of the depauperate Scoyenia Ichnofacies and further 

supporting freshwater conditions in the fluvial systems). 

 

 

2.4.9 Facies I: Cross-stratified very coarse- to very fine-grained sandstone 

Description: Facies I comprises massive to cross-stratified very coarse- to very fine-grained 

sandstone. This facies forms intervals up to 12 m thick and is restricted to the middle member.  

It has been subdivided into subfacies I1, I2 and I3. Subfacies I1 (Fig. 2.11F and G) consists of 50-

100 cm thick, poorly sorted, massive, very coarse- to medium-grained sandstone with 

Ophiomorpha nodosa, representing the Skolithos Ichnofacies.  

Subfacies I2 (Fig. 2.11I and J) consists of 10-60 cm thick, unbioturbated, poorly sorted, 

massive to planar cross-stratified, very fine- to medium-grained sandstone with shells.  

Subfacies I3 consists of 50-300 cm thick, unbioturbated, poorly sorted, massive to planar 

cross-stratified, very coarse- to fine-grained sandstone. Subfacies I1, I2, and I3 are intercalated 

within mudstone deposits that contain foraminifers, calcareous nannoplankton and dinoflagellates.  

Interpretation: Overall, facies I represents meandering channels within estuarine systems. 

Facies I is distinguished from similar deposits formed in the fluvial segment of the Oficina 

Formation based on paleontologic evidence. In Subfacies I1, the presence of Ophiomorpha nodosa 

at the top of channel fill units indicates that these channels were marine influenced during their 

abandonment, most likely as a result of a relative sea-level rise. In Subfacies I2, marine influence 

is evidenced by the occurrence of remains of shells associated to transgressive events. These 

channels were characterized by the migration of two-dimensional dunes during periods of high 

river discharge when the maximum tidal limit migrated seaward. In subfacies I3, the key evidence 

to detect marine influence is the presence of a marine microfauna and plankton in interbedded 

mudstone deposits. As in the case of subfacies I2, migration of two-dimensional dunes is apparent.  
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Figure 2.11. Sedimentary subfacies G3, H1, H2, I1, and I2. A and B: Subfacies G3 (firmground 

Thalassinoides isp. (Th) penetrating into paleosol and tidal flat deposits, respectively, from an overlying 

transgressive surface). Wells A4 (Ayacucho area) and C9 (Carabobo area), depths 862 m and 979 m. D and 

E: Subfacies H2 (woodground Thalassinoides isp. (Th) penetrating from an overlying transgressive surface 

into a coal layer of swamp origin). Well A8 (Ayacucho area), depths 326.44 m and 301 m. F and G: 

Subfacies I1 (meandering estuarine channels with Ophiomorpha nodosa (Op) indicating marine influence). 

Wells A9 (Ayacucho area) and C-10 (Carabobo area), depths 376.73 m and 908 m. I and J: Subfacies I2 

(meandering estuarine channel deposits with calcareous sandstone and shells, further supporting marine 

influence in the estuarine systems). Well A2 (Ayacucho area), depths 698.60 m and 706 m. Sandstone (A, 

B, and G) is impregnated with hydrocarbon resulting in dark color, mudstone (A, B, and E) is light color, 

and coal (D and E) is from gray to brown color. 

 

 

2.5. Facies Associations, Depositional Environments and Relative Sea-level Changes 

 

The sedimentary facies (FA-I) of the Oficina Formation along the Orinoco Oil Belt allow 

recognition of five facies associations, labeled FA1 to FA5. These are stacked forming a single 

second-order depositional sequence. 

 

2.5.1. FA1: Fluvial braided channels 

FA1 (Fig. 2.12 and 2.13A) consists of fluvial braided channels (FB), floodplains (FG2), swamps 

(FH1), and paleosols (FG3), and is present in the lower member. The fluvial braided channel-fills 

are represented by high-energy stacked sandstone successions of multiple depositional units. 

Scarce mudstone and siltstone layers record limited development of floodplain settings, indicating 

fluvial channels of low sinuosity. The lack of lateral accretion beds and the coarse grain size of the 

channel fills also suggest that the rivers were of relatively low sinuosity (Bridge et al., 2000; Plink-

Bjorklund, 2005). Pebbly mid-channel bars and channel bifurcation may have been dominant in 

these fluvial systems, most likely resulting from a local decrease in flow velocity or a change of 

slope (Rodríguez et al., 2018). Channel bars are represented by thick accumulations of cross-

stratified sands formed mostly by frontal accretion due to unidirectional currents. Amalgamation 

of sandstone indicates multy-storey channels. Root trace fossils and waterlogged paleosols suggest 

that the areas between the channels may have been characterized by some ponded and vegetated 

areas (Plink-Bjorklund, 2005). The presence of swamp deposits is also consistent with a high water 

table in the alluvial plain. In these fluvial deposits, the Scoyenia Ichnofacies occurs in floodplains 

located above fluvial braided-channels, further supporting freshwater conditions. These floodplain 

deposits are strongly bioturbated, reflecting long colonization windows in overbank settings 
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(Buatois and Mángano, 2004). The presence of palynomorphs and the absence of foraminifers and 

calcareous nannoplankton is consistent with freshwater conditions. FA1 is restricted to 

paleotopographic lows where it represents the infill of incised fluvial valleys, recording the LST.  

 

 

Figure 2.12. Idealized sedimentary columns for each facies association. FA1: (fluvial systems). FA2, FA3 

and FA4: (estuarine deposits). FA5: (deltaic systems). 

 

2.5.2. FA2: Meandering estuarine channels 

FA2 (Fig. 2.12 and 2.13A) consists of meandering estuarine channels (FA, FC, FD, FE, and FI), 

and is present in the middle member. Estuarine channels from the Oficina Formation were mostly 
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formed by IHS resulting from lateral accretion of point bars (Thomas et al., 1987; Plink-Bjorklund, 

2005; Hovikoski et al., 2008; Gingras et al., 2016, 2017). Associated mudstone drapes and 

marine/brackish trace fossils suggest tidal influence (Buatois et al., 2002; Plink-Bjorklund, 2005; 

Lettley et al., 2009; Musial et al., 2011; Hovikoski et al., 2008; Hubbard et al., 2011; Gingras et 

al., 2016; Solórzano et al., 2017; Rodríguez et al., 2018). Soft-sediment deformation was locally 

important. In places, the bases of these channels are mantled by breccias, which represent lag 

deposits. Amalgamation of sandstone indicates multiple stacked channels. Channel deposits with 

IHS emplaced in the inner zone of the estuarine valleys display continental meniscate backfilled 

structures overprinting a brackish-water trace fossil. Also, estuarine-channel deposits are 

commonly intercalated with mudstone layers containing a marine fauna, which provides further 

evidence of a basinwide sea-level rise. The stratigraphic position of FA2 resting on top of FA1 

indicates a retrogradational stacking pattern, signaling marine flooding of fluvial valleys and their 

transitioning into transgressive estuarine systems. Therefore, channelized-estuarine deposits 

represent the early TST. Biostratigraphic evidence indicates that these estuarine channels were 

formed during the Langhian transgression (Solórzano et al., in review).  

 

2.5.3. FA3: Tidal flat and creek complex 

FA3 (Fig. 2.12 and 2.13A) represents tidal flats and tidal creeks (FC, FD, FE, FF, and FG2), 

swamps (FH1 and FH2), and paleosols (FG3), and is present in the middle member. The tidal flats 

are widely developed along the length of the estuarine system and are dissected by tidal creeks. 

The local presence of IHS in the tidal-creek deposits indicates minor participation of lateral 

accretion and limited formation of point bars (Thomas et al., 1987). The fact that IHS is relatively 

rare in these deposits indicates stable tidal creeks, which in turn allowed the preservation of 

horizontally bedded, associated tidal-flat deposits (Dashtgard et al., 2014; Rodríguez et al., 2018). 

Tidal-flat deposits are characteristic of modern tide-dominated macrotidal estuaries (Hamilton, 

1979; Lambiase, 1980; Dalrymple et al., 1990; Dalrymple, 1992). The local presence of symmetric 

ripples in sand-dominated heterolithic facies suggests that intertidal areas were characterized by 

wave-dominated tidal flats similar to those that occur along the Korean coast (Yang et al., 2005, 

2006, 2008). These deposits also display the Skolithos and depauperate Cruziana Ichnofacies, 

which indicate brackish-water conditions, mostly reflecting the influence of tidal currents in 

marginal-marine, restricted settings (Solórzano et al., 2017). In addition, high sedimentation rates 
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and water turbidity, indirectly controlled by the tides, may have limited the diversity of infauna in 

these tidal flats (Dashtgard et al., 2014). In places, the Glossifungites and Teredolites Ichnofacies 

are present in tidal flat and swamp deposits, respectively, indicating erosional exhumation during 

ravinement. Dinoflagellates, foraminifers, calcareous nannoplankton, and bivalve shells provide 

further evidence of marine influence. FA3 represents part of the late TST. The tidal-flat deposits 

were formed during a late phase of the Langhian transgression (Solórzano et al., in review).  

 

2.5.4. FA4: Outer-estuarine sandbar complex 

FA4 (Fig. 2.12 and 2.13A) consists of outer estuarine sandbars (FC, FD, FG1), paleosols (FG3), 

and swamps (FH2), and is present in the uppermost interval of the middle member. The occurrence 

of thinner IHS strata suggests that laterally accreted, free-standing tidal bars may have been 

dominant in the outer zone of the Oficina valley (Rodríguez et al., 2018). Sandbars were emplaced 

in the estuary mouth close to the zone of maximum turbidity as indicated by the abundance of 

mudstone units (Jouanneau and Latouche, 1981; Dalrymple et al., 1990; Allen, 1991; Dalrymple, 

1992). Estuarine sandbars were flanked by swamps and waterlogged soils. In places, these deposits 

display Thalassinoides in both firmgrounds and woodgrounds, evidencing erosional exhumation 

of the substrate during wave ravinement. Although at the seaward end of the estuary, these deposits 

record brackish-water conditions as revealed by a low diversity of trace fossils; this is consistent 

with the overall embayed nature of the Oficina Formation in the Orinoco Belt (Solórzano et al., 

2017). FA4 represents part of the late TST. Establishment of the estuarine sandbar complex took 

place during the latest stage of the Langhian transgression (Solórzano et al., 2017, in review).  

 

2.5.5. FA5: Lower delta plain of a tide-dominated delta 

FA5 (Fig. 2.12 and 2.13B) consists of distributary channels (FC and FD), floodplains and 

interdistributary bays (FG2), and swamps (FH1), and is present in the upper member. The lower 

delta-plain deposits display tidal influence as indicated by the presence of IHS and mudstone 

drapes in the distributary channels. These channels are sparse, thin, rarely amalgamated, and are 

separated by widespread floodplains and interdistributary bays, suggesting extensive wetland 

development in the lower delta plain. As in the case of the estuarine deposits, FA5 also is affected 

by fluctuating salinity and periodic subaerial exposure. The presence of meniscate trace-fossils of 

the Scoyenia Ichnofacies within floodplain deposits indicates the establishment of a continental 



36 
 

invertebrate fauna in the lower delta-plain deposits (Rodríguez, 2015; Solórzano et al., 2017; 

Rodríguez et al., 2018). The Orinoco Oil Belt delta complex was emplaced within a brackish-water 

embayment rather than in the open sea. Coeval open-marine deposits of the Oficina Formation 

occur in the Oritupano field, outside the Orinoco Oil Belt (Solórzano et al., 2017). The stratigraphic 

occurrence of FA5 resting on top of FA4 indicates a progradational stacking pattern. FA5 

represents the HST. 

 

Figure 2.13. Schematic reconstruction of paleoenvironments for the Oficina Formation in the Orinoco Oil 

Belt. A: (fluvial and transgressive estuarine deposits). B: (highstand deltaic deposits). 

 

2.6. Discussion 

 

2.6.1. Regional changes in stratal architecture 

Sea-level changes and regional tectonics played a significant role on sedimentation in the Orinoco 

Belt because they controlled erosion and infilling of the incised-valleys, as well as the history of 

changes in accommodation potential in the basin. Additional evidence for the tectonic control is 

the wedge-shaped geometry and facies architecture of sediments (Obi and Okogbue, 2004). The 
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Orinoco Oil Belt comprises a prism of Cenozoic sediment wedging toward the south (Latreille et 

al., 1983; Audemard et al., 1985; Isea et al., 1987; Parnaud et al., 1995). The Oficina Formation 

was deposited during the oblique collision phase between the Caribbean and South American 

plates (Parnaud et al., 1995), with the area being subjected to strong tectonic events that controlled 

sedimentation (Audemard et al., 1985; Martinius et al., 2012). 

West to east stratigraphic cross-sections along the Orinoco Oil Belt show that the fluvial 

units extend from the Junín to Carabobo areas, being thinner toward the Ayacucho and Carabobo 

areas. Based on north to south stratigraphic cross-sections, the thicknesses of the fluvial deposits 

range from 0 to 167 m increasing towards the north and decreasing towards the south (Figs. 2.14, 

2.15). In the Junín area, from north to south, the fluvial deposits decrease in thickness (41-167 m), 

resting on top of Cretaceous or Pre-Cretaceous strata (Fig. 2.14). In the Ayacucho and Carabobo 

areas, the fluvial deposits overlie the metamorphic-igneous basement, which could have controlled 

sedimentation in these fluvial systems by reducing accommodation potential. In fact, fluvial 

deposits are directly absent in some zones of the Carabobo area (e.g. C8 and C9). Therefore, the 

estuarine systems in these wells directly overlie the metamorphic-igneous basement. In areas of 

reduced accommodation space, not all the units are preserved (Hein et al, 2013). Fluvial units thin 

southward, eventually disappearing altogether (e.g. B4, A13) (Audemard et al., 1985). In the 

Ayacucho (24-68 m) and Carabobo (0-46 m) areas, the fluvial units decrease in thickness from 

north to south (Fig. 2.15). Fluvial deposits reach their maximum thicknesses westward in the Junín 

and Boyacá areas, because of increased subsidence caused by the compaction of the Pre-

Cretaceous sediments, particularly north of these two areas (Audemard et al., 1985). The lower 

part of the Oficina Formation was mainly controlled by compressional tectonic activity (Martinius 

et al., 2012), and is generally restricted to paleotopographic lows on the Cretaceous or Pre-

Cretaceous unconformity. The influx of sediments could have come from the nearby Guayana 

Shield in the south. On a regional scale, the lower member shows south-southwest to north-

northeast trending fluvial channels (Solórzano et al., in review). The fluvial units represent the 

infill of incised-valley systems, which were formed during a relative sea-level fall. 

West to east stratigraphic cross-sections along the Orinoco Oil Belt indicate that the 

estuarine units extend from the Junín to Carabobo areas, being thinner in the latter. Based on north 

to south stratigraphic cross-sections, the thicknesses of the estuarine deposits range from 39 to 288 

m, increasing towards the north (Figs 2.14, 2.15). The thickness of the estuarine interval is greater  
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Figure 2.14. North to south stratigraphic correlation panel showing the paleoenvironmental and sequence-

stratigraphic interpretation in the western part of the Orinoco Oil Belt (Junín area). Geophysical data shown 

in the gamma-ray log, from 0 to 200 API units. 

 

than that of the fluvial systems in the Ayacucho and Carabobo areas, probably due to the space 

available to accommodate sediments, while in the Junín area the thickness of the fluvial and 

estuarine units is very similar. Estuarine facies are thicker in the Ayacucho (151-288 m) and Junín 

(54-155 m) areas than in the Carabobo (39-143 m) area. The middle member displays estuarine 

channels that are oriented similar to the underlying fluvial channels and that display increased 

marine influence towards the north-northeast (Solórzano et al., in review). 

West to east stratigraphic cross-sections through the Orinoco Oil Belt demonstrate that the 

deltaic units extend from the Junín to Carabobo areas, being thicker towards the latter. Based on 

north to south stratigraphic cross-sections, the thickness of the deltaic deposits ranges from 40 m 

to 475 m, increasing towards the north (Figs. 2.14, 2.15). Deltaic strata are thicker in the Carabobo 

area (384-475 m) than in the Junín (40-134 m) and Ayacucho (140-220 m) areas, probably due to 

the space available to accommodate sediments. On a regional scale, the upper member shows 
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distributary channels that open seaward towards the north-northeast (Solórzano et al., in review). 

The adjacent Oritupano Oil Field, located northeast of the Orinoco Oil Belt, hosts deposits formed 

in strandplain environments and in deltaic systems that prograded into the open sea rather than a 

restricted embayment (Solórzano et al., 2017). 

 

2.6.2. Comparison with other tide-dominated marginal-marine environments 

The fluvio-estuarine and deltaic systems of the Oficina Formation compare favorably with other 

tide-dominated, ancient marginal-marine strata and modern settings which display similar 

sedimentologic, stratigraphic and ichnologic characteristics. These include deposits of various 

ages formed under a wide variety of latitudinal and tectonic settings. 

 

2.6.2.1 Carboniferous of the United States Midcontinent 

Carboniferous tidal-influenced and tide-dominated marginal-marine deposits formed in Equatorial 

settings are widespread in the United States Midcontinent (Lanier, 1993; Lanier et al., 1993; 

Gibling et al., 1993; Archer et al., 1994; Kvale and Barnhill, 1994; Feldman et al., 1995; Buatois 

et al., 1997, 1998; Mángano and Buatois, 2004). Tidal clastics are separated by laterally persistent 

transgressive marine limestone units, forming classic late Paleozoic cyclothems (Heckel, 1977). 

In particular, exposures in Kansas and Missouri typically form northeast-southwest trending 

narrow outcrop belts. One of these units is the Douglas Group, which encompasses two estuarine 

valleys, namely the Tongaxonie and Ireland paleovalleys (Archer et al. 1994; Feldman et al., 

1995). The Tonganoxie valley was incised during the latest Missourian sea level fall and filled 

during the earliest Virgilian transgression (Lanier, 1993; Lanier et al., 1993; Gibling et al., 1993; 

Archer et al., 1994; Feldman et al., 1995; Buatois et al., 1997, 1998; Mángano and Buatois, 2004). 

This valley is about 41 m deep, 11 km wide, and 240 km long (Feldman et al., 1995), recording 

southwesterly flowing rivers and ebb dominated tidal dunes, which reverted to a flood dominated 

tidal system during the subsequent transgression (Gibling et al., 1993). The Ireland paleovalley 

has not been documented with the same degree of detail, but it is thought to be similar to the 

Tonganoxie paleovalley (Archer et al., 1994). Tidal flat deposits are ubiquitous in these 

paleovalleys. As is the case of proximal deposits in the Oficina Formation, those tidal flats located 

close or at the fluvio-estuarine transition are characterized by an ichnofauna recording a mixed 

terrestrial-freshwater biota (Buatois et al., 1997, 1998; Mángano et al., 1997; Mángano and 
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Buatois, 2004). However, and in contrast to those from the Oficina Formation, these Carboniferous 

ichnofaunas consist of very shallow-tier trace fossils, dominantly arthropod trackways and grazing 

trails, rather than meniscate trace fossils (Diez-Canseco et al., 2015). Heterolithics representing 

deposition in the intertidal to subtidal zones of the middle estuary are characterized by a 

depauperate ichnofauna, which is regarded as typical of brackish-water settings (Archer et al., 

1994; Mángano and Buatois, 2004). A similar trace-fossil assemblage is widespread in estuarine 

deposits of the Oficina Formation. The outer region of these paleovalleys is characterized by 

tabular, parallel-laminated sandstone representing deposition in upper-flow regime sand flats 

similar to those recorded in the Bay of Fundy of Canada (Archer et al., 1994). Whereas these high-

energy deposits are unbioturbated, those corresponding to lower-energy tidal flats emplaced 

outside of the estuarine embayment contain abundant marine fauna and a highly diverse 

ichnofauna (Archer et al., 1994; Mángano and Buatois, 2004).  

 

 

Figure 2.15. North to south stratigraphic correlation panel showing the paleoenvironmental and sequence-

stratigraphic interpretation in the eastern part of the Orinoco Oil Belt (Ayacucho area). Geophysical data 

shown in the gamma-ray log, from 0 to 200 API units. 
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 Finally, outer-estuarine deposits similar to those present in the Oficina Formation have 

been recorded in the Bandera Shale Formation of Kansas. These deposits comprise flaser- and 

wavy-bedded sandstone and shale and large-scale cross-stratified sandstone. Mudstone rip-up 

clasts and flat-topped ripples are locally present. Sinuous crested dunes are preserved at the top of 

large-scale cross-stratified sandstone, whereas current ripples are locally preserved on the slip face 

of duneforms (Brownfield et al., 1998). The Bandera Shale Formation records deposition in both 

tidal-flat and subtidal sandbar settings in a similar fashion to outer-estuarine deposits of the Oficina 

Formation. Sand was transported to the basin by rivers incised during a sea level fall and reworked 

by marine processes during the subsequent transgression. 

 

2.6.2.2. Cretaceous McMurray Formation of northern Alberta, Canada 

The Oficina Formation (heavy and extra heavy oil) and the Cretaceous McMurray Formation 

(bitumen) of northern Alberta, Canada represent two of the most important oil accumulations in 

the world. The two units display similarities not only from a sedimentary facies perspective, but 

also with respect to trace-fossil distribution and stratal stacking pattern. As with the Oficina 

Formation, the McMurray Formation contains lowstand fluvial deposits in the lower member, 

transgressive estuarine deposits in the middle member, and highstand open-bay delta and offshore 

deposits in the upper member (Crerar and Arnott, 2007; Musial et al., 2012; Harris et al., 2016; 

Gingras et al., 2016). The fluvial deposits consist of cross-stratified pebble- to very coarse-grained 

sandstone formed in braided channels, hosting a freshwater ichnofauna similar to that of the 

Oficina Formation (Musial et al., 2012). The estuarine systems comprise estuarine channels with 

point bars having IHS formed by lateral accretion (Musial et al., 2012; Gingras et al., 2016; 

Solórzano et al., 2017). The tidal-flat deposits consist of horizontal, wavy- to lenticular-bedded 

heterolithic facies (Gingras et al., 2016). Channel and tidal-flat deposits show variable intensities 

of bioturbation and display low to moderate ichnodiversity, representing the activity of an 

impoverished marine fauna (Gingras et al., 2016; Solórzano et al., 2017) as is the case of the 

Oficina Formation (Rodríguez 2015; Solórzano et al., 2017; Rodríguez et al., 2018). 

Dinoflagellates are present in the middle members of the McMurray and Oficina formations, albeit 

occurring in lower abundance than terrestrially derived palynomorphs (Gingras et al., 2016; 

Solórzano et al., 2017). The upper member of the McMurray Formation comprises a wide variety 

of environments, such as open bay deltas, including wave- and storm-dominated prodelta to delta 
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front settings, and marine offshore (Gingras et al., 2016; Solórzano et al., 2017). Although the 

Oficina Formation in the Orinoco Oil Belt records deposition in lower delta plain settings, a wider 

variety of environments have been identified in the nearby Oritupano Oil Field (Solórzano et al., 

2017), further underscoring similarities with the McMurray Formation. 

 

2.6.2.3. The Eocene Ameki Group of south-eastern Nigeria  

The Eocene Ameki Group of south-eastern Nigeria records deposition in a tide-dominated 

estuarine system covering an area of about 780 km2. Similar to the Oficina Formation in the 

Orinoco Oil Belt, the Ameki Group consists of lowstand fluvial deposits in the basal part, 

transgressive estuarine deposits in the middle part and highstand estuarine embayment in the upper 

part (Ekwenye et al., 2017). The fluvial deposits are characterized by cross-bedded, pebbly, very 

coarse- to medium-grained sandstone forming fluvial channel-fills. These deposits are barren in 

ichnofauna (Ekwenye et al., 2017). Tidally-influenced fluvial channels with IHS in sandstone-

dominated units indicate estuarine deposits. Mudstone breccias, mudstone drapes, herringbone, 

wavy lamination, flaser and lenticular bedding are present. The tide-dominated estuarine systems 

display tidal channels with point bars having IHS formed by lateral accretion (Ekwenye et al., 

2017). Tidally-influenced fluvial-channel and tidal-channel deposits are remarkably similar to 

those of the Oficina Formation (Rodríguez 2015; Solórzano et al., 2017; Rodríguez et al., 2018). 

Tidal-flat and tidal-creek deposits consist of parallel-laminated mudstone and bioturbated, ripple 

cross-laminated and cross-bedded, fine-grained sandstone. Sandbar deposits were divided into 

inner and outer (Ekwenye et al., 2017). Outer-estuarine tidal-sandbar deposits consist of cross-

bedded, very coarse- to medium-grained sandstone. Mudstone drapes and flaser and wavy bedding 

are present. Inner-estuarine tidal-sandbar deposits consist of bioturbated and ferruginized 

sandstone overlying pebbly units. Overall, these estuarine deposits record a low-diversity brackish-

water ichnofauna that illustrates the Skolithos and depauperate Cruziana Ichnofacies (Ekwenye et 

al., 2017), further underscoring similarities with the Oficina Formation (Rodríguez, 2015; 

Solórzano et al., 2017; Rodríguez et al., 2018). Similar to the Orinoco Oil Belt, an estuarine 

embayment or open estuarine has been interpreted in the upper part of Ameki Group. These 

deposits consist of mudstone, shale, coal, and siltstone with ostracods, gastropods, and 

foraminifers (Arua 1981, 1988; Ekwenye et al., 2017). Woodground Teredolites isp. is present in 

these marginal-marine deposits (Arua 1991; Ekwenye, et al. 2016, 2017).  
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2.6.2.4. The Eocene Aspelintoppen Formation, Arctic Norway 

The Aspelintoppen Formation in the Eocene Central Basin of Spitsbergen, Norwegian Arctic 

consist of fluvial and tide-dominated estuarine deposits (Plink-Bjorklund, 2005), which closely 

resemble those of the Oficina Formation. Fluvial deposits comprise planar and trough cross-

stratified coarse-grained sandstone and conglomerate, representing fluvial channels, which are 

formed by two and three-dimensional dunes. These channels display low sinuosity due to the 

coarse grain size, the low abundance of overbank deposits and relatively low paleocurrent 

variability. Root and wood fragments and coal layers are present as well. Ripple and parallel-

laminated sandstone and mudstone record sedimentation in floodplains or suggest abandonment 

of channels. In contrast to the Oficina formation, fluvial channels are unbioturbated (Plink-

Bjorklund, 2005). Tidally influenced fluvial deposits consist of medium- to fine-grained sandstone 

displaying multiple erosion surfaces and coal layer at the top of the channels. Sigmoidal cross-

strata or mudstone drapes are rare. Tidal influence is signaled by landward-oriented paleocurrent 

direction (Plink-Bjorklund, 2005). The tidal channel fills commonly consist of fine- to very fine-

grained sandstone with IHS. Root trace fossils, mudstone drapes and soft-sediment deformation 

structures are common. As in the case of the Orinoco Oil Belt, a brackish-water ichnofauna (e.g., 

Planolites isp., Skolithos isp. and Teichichnus isp.) has been identified (Plink-Bjorklund, 2005). 

Tidal sandbars comprise inclined heterolithic strata and trough-cross-stratified medium- to coarse-

grained sandstone with bimodal paleocurrent directions and sigmoidal cross-strata. Sand-flat 

deposits interbedded with those of subtidal sandbars consist of fine- to medium-grained sandstone 

containing upper-flow-regime parallel lamination trough-cross stratification, and sigmoidal 

stratification, whereas mixed- to mud-flat and marsh deposits consist of heterolithics units of 

ripple-cross-laminated fine- to very fine-grained sandstone with mudstone drapes, carbonaceous 

mudstone and coal layer with root trace fossils. Flaser, wavy and lenticular bedding and a low 

diversity ichnofauna (e.g. Planolites isp., Skolithos isp., Teichichnus isp.) are present. As in the 

case of the Oficina Formation, these tidal-flat deposits are dissected by tidal creeks. In short, tidal-

flat deposits of the Aspelintoppen Formation are similar to those of the Oficina Formation from 

both sedimentologic and ichnologic perspectives. 

 

2.6.2.5. The Late Quaternary Gironde Estuary, France 

The Late Quaternary Gironde Estuary, on the Bay of Biscay in southwestern France, is formed at 
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the confluence of the Dordogne and Garonne rivers and displays a maximum width of 18 km near 

its mouth and 3 km in its head and 80 km in length, covering an area around of 635 km² (Allen 

and Posamentier, 1993). It is affected by both waves and tides and comprises meandering estuarine 

channels with point bars (toward its head), tidal sandbars and estuarine mudstone (middle part), 

and sandy tidal-delta shoal in its mouth (Allen and Posamentier, 1993). An inner area that is both 

tidal influence and freshwater at the same time is present. Gravel and coarse-grained sand overlie 

the thalweg of the incised valley. The Gironde estuary comprises estuarine channels and tidal sand 

bars with IHS as well as estuarine mud with isolated sand lenses and ripple laminae. The latter 

represents tidal flats and marshes (Allen and Posamentier, 1993). Gironde estuarine mud of the 

middle member is overlain by a transgressive thick tidal-inlet deposit (Allen and Posamentier, 

1993). The most relevant structures within the Gironde estuary are mudstone breccias, thick layers 

of clay and IHS. The main similarities between the Oficina Formation and the Gironde estuary are 

with respect to the inner part of the system, where fluvial and tidal meandering channels are 

dominant. However, the central and outer part of the Gironde estuary show marked wave influence, 

representing a departure with respect to the Orinoco Oil Belt.  

 

2.6.2.6. Bay of Fundy estuarine complex, Canada 

A probable modern analog of the tide-dominated estuarine deposits of the Oficina Formation is 

the Bay of Fundy estuarine complex, eastern Canada, which displays a width of 80 km at its head 

and 270 km in length (Desplanque and Mossman, 2001). It was formed by Cenozoic fluvial 

processes or Pleistocene glacial erosion, which excavated the unconsolidated underlying Triassic 

strata (Swift and Lyall, 1968; Roland, 1982; Dalrymple et al., 1990). The estuary consists of outer 

tidal sandbars dissected by channels, sand flats with shallow braided channels and a single-channel 

in the tidal-fluvial transition zone (Dalrymple et al., 1990). The tidally influenced sandbar deposits 

are constituted by cross-bedded, medium- to coarse-grained sands. These bars form bar chains 

attached to the shoreline at their eastern end and are separated by channels, which consists of 

planar to tabular or trough cross-stratified, gravel, very coarse-to medium-grained sand with IHS. 

Main-channel point-bar deposits display a brackish-water, low diversity and opportunistic 

ichnofauna, comprising incipient Arenicolites isp., Diplocraterion isp, Siphonichnus isp., 

Skolithos isp., and Polykladichnus isp. Trace makers include Heteromastus filiformis, Corophium 

volutator, Macoma balthica, Nereis virens, and Cerebratulus lacteus (Pearson and Gingras, 2006). 



45 
 

The sand flats within shallow braided channels consist of finer-grained sediments with parallel 

lamination, cross-bedding, mud drapes, and high abundance of marine biogenic structures, but 

restricted to local zones (Dalrymple et al., 1990). Overall, tidal-creek deposits are rarely to 

intensely bioturbated by Mya arenaria, Corophium volutator, Macoma balthica, and Nereis sp., 

which produce incipient Skolithos isp., Lockeia isp., Arenicolites isp., Diplocraterion isp., 

Palaeophycus isp., and Thalassinoides isp. (Dashtgard and Gringas, 2005). As such, modern 

examples of the Skolithos and Cruziana Ichnofacies are present in these deposits. Mixed flats, 

mudflats and salt marshes are present in the intertidal zone, being dissected by tidal creeks with 

minor proportion IHS (Dalrymple et al., 1990). The sand-dominated mixed flats present flaser and 

cross-lamination. Mud-dominated flats record mudstone layers, lenticular and wavy tidal bedding, 

soft-sediment deformation, and desiccation cracks. These deposits display a moderately diverse 

and abundant infauna. However, the diversity of benthic organisms decreases headward parallel 

to a decrease in salinity (Dalrymple et al., 1990). The Skolithos Ichnofacies is present in the 

intertidal zone as illustrated by vertical burrows of Chiridotea coeca (Dalrymple et al., 1990; 

Hauck et al., 2008). The muddy tidal-flat deposits record Mya arenaria, Corophium volutator, 

Macoma balthica, Heteromastus filiformis and minor proportion of Nereis virens and Nereis 

diversicolor (Hicklin et al. 1980; Pearson and Gingras, 2006; Dashtgard et al., 2014). These 

organisms produce a low-diversity and high-density trace assemblage comprising incipient 

diminutive Arenicolites isp., Diplocraterion isp. and Siphonichnus isp., and moderately large 

Palaeophycus isp., Polykladichnus isp. and Teichichnus isp. (Pearson and Gingras, 2006; 

Dashtgard et al., 2014). These deposits are considered characteristic of cold-temperate and possible 

sub-arctic mud flats (Dashtgard et al., 2014). Salt-marsh deposits comprise carbonaceous mud with 

desiccation cracks and root traces. These deposits record the presence of the Glossifungites 

Ichnofacies signalling the base of the tidal creeks. This ichnofacies is manifested by moderate to 

local intense bioturbation, represented by Mya arenaria and Corophium volutator, which produce 

incipient Skolithos isp., Arenicolites isp. and Diplocraterion isp. (Dashtgard and Gringas, 2005). 

The single-channel in the tidal-fluvial transition area comprises finer-grained sand with parallel 

lamination, cross-bedding, and mud drapes, as well as marine biogenic structures in large numbers, 

but in restricted zones (Dalrymple et al., 1990). Overall, this estuary displays strong tidal currents 

and low river discharge, which promote a well-mixed water column affecting parameters, such as 

salinity, water temperature and suspended-sediment concentration (Dalrymple, 1977; Knight, 
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1977, 1980; Amos and Long, 1980; Dalrymple et al., 1990).  

 

2.6.2.7. The importance of eustatic changes, depositional processes, latitude and secular changes 

in bioturbation in tide-dominated marginal-marine settings  

Ongoing research is emphasizing that climate may have been overlooked in the generation of facies 

models (Martini, 2014; Martinius et al., 2014). The brief review presented above indicates that the 

Oficina Formation in the Orinoco Oil Belt shows marked similarities with various marginal-marine 

units of different ages in terms of sedimentologic, ichnologic and sequence-stratigraphic features. 

The fact that these units have been formed under a wide variety of latitudinal settings prompts us 

to evaluate the role of climate on deposition in marginal-marine tide-dominated settings. Although 

some marginal-marine subenvironments are specific to certain latitudinal regions (e.g. mangroves 

in tropical areas), others are ubiquitous with respect to latitude (e.g. sandy beaches, barriers, 

lagoons). Differences are associated with the variable efficiency and intensity of the same physical 

azonal processes and locally dominant zonal processes, such as the effects of sea-ice cover in the 

Arctic and carbonate reef building in the tropics (Martini, 2014). Zonal features are associated with 

latitude, but azonal features are not. The tropical and humid character of the Oficina depositional 

systems is manifested in the extensive development of wetland areas in both estuaries and deltas, 

with formation of swamps and embayed areas, typically displaying evidence of waterlogged 

paleosols with pervasive root trace fossils. Overall, these characteristics resemble those of the 

modern Orinoco Delta, despite the differences in the degree of tidal influence in both cases, tidal 

dominance in the Oficina Formation and tidal influence restricted to embayed areas in the Orinoco 

Delta (Méndez, 2000; Buatois et al., 2012). The formation and overall physiography of coastal 

environments depend on bedrock, glacial advance and retreat, relative sea-level changes, and 

sediment redistribution by fluvial, coastal and marine processes (Hein et al., 2014). Physical 

processes, such as tides, waves and winds, as well as biological and chemical factors, play a 

significant role across climatic belts (Kelletat et al., 2013). Tidal currents are the main 

hydrodynamic agent in the systems analyzed in this paper, spanning lower- and higher-latitude 

settings. However, tidal forces tend to be weaker in higher latitudes because Coriolis effects are 

stronger there (Martinius et al., 2014). In any case, tidal action is revealed in all the reviewed cases 

by the overwhelming presence of physical sedimentary structures, such as IHS, mudstone drapes 

and bidirectionally oriented cross-stratification. Also, the abundance of well-defined tidal channels 
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crossing tidal flats, such as those recorded in the Oficina Formation, is more typical of low 

latitudes, being relatively rate in arctic to subarctic settings (Martini, 2014). 

Transgressive conditions are usually associated with estuaries, whereas deltas are 

associated with regressions (Dalrymple et al., 2003, 2007, 2012). A tide-dominated estuary is a 

transgressive coastal setting at mouth of a river, receiving sediment from both river and sea, 

encompassing a wide spectrum of salinity levels (Pritchard, 1967; Dalrymple et al., 1992, 2006, 

2012). A tide-dominated delta is a prograding coastal environment that receives clastic sediment 

from a river source, being mostly reworked by tidal currents (Hori et al., 2001; Coleman, 1981). 

Therefore, it is unsurprising that sea-level changes have played a key role on sedimentation of the 

Oficina Formation and in the other units discussed regardless of latitudinal setting. The Oficina 

Formation records the typical succession of fluvial incision during sea-level fall, transition from 

fluvial to estuarine valleys during the subsequent transgression and deltaic progradation during 

highstand. Notably, although tectonics were a significant factor at the time of deposition, evolution 

of the Oficina Formation shows a close match with the global sea-level curve of Haq and Schutter 

(2008; see discussion in Solórzano et al., in review). Similar depositional histories in response to 

relative sea-level changes are shared by other units elsewhere. In the Aspelintoppen Formation of 

Arctic Norway, coastal-plain aggradation took place mostly during transgressions (Plink-

Bjorklund, 2005). In the Bay of Fundy, the preservation of coastal sediments is strongly influenced 

by transgression resulting from rapid sea-level rise over the past 6000 years (Amos et al. 1991; 

Shaw and Courtney 2002; Dashtgard and Gingras, 2005). Quaternary climatic and sea-level 

changes have controlled coastal zonality at different spatial and temporal scales (Solomon et al., 

2007; Kelletat et al., 2013). Also, a common characteristic between the Oficina Formation and the 

other units analyzed is the presence of a depauperate marine ichnofauna reflecting brackish-water 

conditions in central and outer regions of the estuary and a freshwater ichnofauna in the fluvial 

system and the most proximal areas of the estuarine and deltaic systems. Regardless of the overall 

ichnologic similarities across a broad spectrum of latitudinal settings, it has been noted that the 

distribution of shallow-marine ichnofaunas may be controlled by climate and that three climatic 

zones may be recognized, namely (1) tropical and subtropical with Ophiomorpha, echinoid 

burrows as well as other ichnotaxa, (2) temperate with echinoid burrows and Thalassinoides and 

(3) arctic with only molluscan and worm structures (Goldring et al., 2004). Subsequent work 

extended the dominance of mollusk and worm burrows to the temperate zone (Gingras et al., 2006). 
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The brief comparison presented above provides some information that allows partial evaluation of 

this model. Incipient Ophiomorpha along the eastern coast of the Americas does not extend further 

into high latitudes, reaching as far as 34ºN and 27ºS, whereas modern examples of Thalassinoides 

may extend up to 70ºN and 50ºS (Goldring et al., 2004; Martini, 2014). Both ichnogenera are 

particularly common in marginal-marine deposits of the Oficina Formation. In general, crustacean 

burrows tend to display higher diversity in tropical shallow-marine environments of northern 

South America (e.g. Quiroz et al., in review). However, Ophiomorpha has been mentioned in the 

tidal sandbars of the high-latitude Eocene Aspelintoppen Formation of Arctic Norway (Plink-

Bjorklund, 2005). This high-latitude occurrence of Ophiomorpha may simply reflect the warmer 

conditions of the Eocene. In contrast, arctic tidal flats display a clear dominance of worm burrows 

(e.g. Nereis divesiscolor and Arenicola marina) with some participation of mollusk-generated 

structures, such as Macoma balthica (Aitken et al. 1988; Weslawski and Szymelfenig, 1999; 

Martini, 2014). In general, arctic and subarctic infaunal associations show remarkable similarities 

with cold temperate tidal flats of the Bay of Fundy, except for the absence of Corophium volutator 

(Martini, 2014). Benthic activity in higher latitudes is controlled by temperature and insolation, as 

well as short runoff seasons and strong fluvial discharge seasonality, which impart specific stress 

factors on the benthos (Martinius et al., 2014). As a result, ichnodiversity levels are affected 

negatively by a number of factors, such as ice cover, erosion by ice pushing and lifting of sediment 

(Martini, 2014). Finally, secular changes in bioturbation by the continental and marginal-marine 

infauna have significantly impacted on sediment mixing (Buatois et al., 2005; Diez-Canseco et al., 

2015). Although brackish-water ichnofaunas, which reflect the activity of highly conservative 

biotas, tend to be quite persistent through the Phanerozoic, subtle increases in ichnodiversity and 

intensity of bioturbation are apparent through geologic time in marginal-marine environments. In 

this regard, the Miocene illustrates the appearance of the modern brackish-water benthos (Buatois 

et al., 2005) and the marginal-marine ichnofaunas of the Oficina Formation favour direct 

comparison with modern analogues, particularly in tropical settings. In comparison, changes in the 

composition of freshwater ichnofaunas through the Phanerozoic have been more remarkable. This 

is particularly evident if the fluvio-estuarine transition of the Oficina Formation is compared with 

similar environments in the Paleozoic from an ichnologic perspective. The Carboniferous 

freshwater to terrestrial ichnofaunas from the North American mid-continent discussed above are 

characterized by superficial trackways and trails of the Mermia and Scoyenia Ichnofacies (Buatois 
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et al., 1997, 1998; Mángano and Buatois, 2004). In contrast, post-Paleozoic freshwater to terrestrial 

ichnofaunas display a remarkable increase in burrowing depth in fluvio-tidal transitions, as is 

illustrated by deposits of the Oficina Formation, which are typically intensely bioturbated by 

meniscate burrows of the Scoyenia Ichnofacies (Solórzano et al., 2017). Accordingly, secular 

increases in extent and depth of bioturbations have resulted in higher disturbance of the primary 

sedimentary fabrics. In addition, the ability of the infauna to penetrate deeper into the sediment 

have led to common overprint of trace-fossil suites, as illustrated in the Oficina Formation by the 

common occurrence of freshwater to terrestrial trace fossils cross-cutting previously emplaced 

brackish-water trace fossils. 

 

2.7. Conclusions 

 

Based on the recognition of nine sedimentary facies (FA-I) and five facies associations (FA1-5), 

the Oficina Formation is interpreted as recording lowstand fluvial deposits (lower member), 

passing upward into transgressive estuarine deposits (middle member), and highstand lower delta-

plain deposits (upper member). The abundance of mudstone drapes and IHS through all the middle 

and upper members suggests tidal dominance. Ichnologic evidence suggests freshwater conditions 

in the fluvial systems, the inner part of the estuary and the delta plain, whereas brackish-water 

conditions dominated in the rest of the estuarine valley, including its outer region, which is 

consistent with the embayed physiography of the paleocoastline in the Orinoco Oil Belt. Fluvial 

and estuarine strata extend across the whole belt, becoming thinner toward the Ayacucho and 

Carabobo areas, showing south-southwest to north-northeast trending channels. Estuarine valleys 

display increased marine influence towards the north-northeast. Deltaic strata show a basinwide 

distribution, becoming thicker towards the Carabobo area and showing distributary channels that 

open seaward towards the north-northeast. Comparisons with other marginal-marine units under a 

broad spectrum of latitudinal settings stress the importance of tidal dominance and relative sea-

level changes as main controls on sedimentation. However, the establishment of extensive 

marginal-marine wetland systems and the types of burrowing infauna that characterize the Oficina 

Formation may reflect the tropical nature of these coastal ecosystems. 
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Transition 

 

The previous chapter 2 provides a sedimentary facies model of the Oficina Formation and 

comparisons with other marginal-marine units worldwide. Chapter 3 evaluates trace-fossil 

distribution and ichnofacies gradients along a depositional profile for the Oficina Formation from 

the Orinoco Oil Belt to the Oritupano Field. 

I built an ichnologic model for the Oficina Formation from the Orinoco Oil Belt to the 

Oritupano Oil Field. For the Orinoco Oil Belt, I interpreted nine facies (FA-FI), grouped in five 

facies assemblages (FA1-5), three softground ichnofacies (Scoyenia, Skolithos and depauperate 

Cruziana) and two substrate-controlled ichnofacies (Glossifungites and Teredolites). For the 

Oritupano field, I interpreted eleven facies (FJ-FS), grouped in four facies assemblages (FA6-9), 

three softground ichnofacies (Skolithos, depauperate Cruziana and archetypal Cruziana) and two 

substrate-controlled ichnofacies (Glossifungites and Teredolites). The presence of softground 

ichnofacies allowed me to calibrate salinity-related trace-fossil models and to improve 

paleoenvironmental interpretations. The presence of substrate-controlled allowed me to identify 

transgressive surfaces of erosion. I also compared the Oficina Formation with the McMurray 

Formation of western Canada. Supervisors Luis A. Buatois and M. Gabriela Mángano checked 

trace-fossil determinations and interpretations in terms of behavior and paleoenvironmental 

significance and edited the manuscript. Co-author Williams Rodriguez helped with core logging. 
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Chapter 3 

3. From freshwater to fully marine: Exploring animal-substrate interactions along a 

salinity gradient (Miocene Oficina Formation of Venezuela) 

 

Solórzano, E.J., Buatois, L.A., Rodríguez, W.J., Mángano, M.G., From freshwater to fully marine: 

Exploring animal-substrate interactions along a salinity gradient (Miocene Oficina Formation of 

Venezuela): Palaeogeography, Palaeoclimatology, Palaeoecology, v.482, p. 30-47. 

 

3.1. Abstract 

 

Venezuela has the largest hydrocarbon reserves in the world and most of these are within the 

Orinoco Oil Belt. The Oficina Formation of the Orinoco Oil Belt and the Oritupano Field 

comprises a wide range of environments formed under variable salinity conditions. These include 

freshwater fluvial and fluvio-tidal transition zones, brackish-water estuarine and delta-plain 

segments, alternating brackish-water and near-normal marine delta-front and prodelta settings, and 

normal-marine wave-dominated shoreface and offshore-shelf environments. The Oficina 

Formation thus provides an ideal opportunity to evaluate trace-fossil distribution and ichnofacies 

gradients along a depositional profile and to calibrate salinity-related trace-fossil models. The 

Oficina Formation contains four softground ichnofacies (Scoyenia, depauperate Cruziana, 

Skolithos, and archetypal Cruziana) and two substrate-controlled ichnofacies (Teredolites and 

Glossifungites). Fluvial deposits in freshwater portions of tide-influenced, estuarine channels and 

distributary channels of tide-dominated deltas are locally intensely bioturbated, displaying low-

diversity occurrences of the Scoyenia Ichnofacies. Brackish-water delta-plain and estuarine 

deposits display lower degrees of bioturbation and low ichnodiversity, as revealed by depauperate 

Cruziana Ichnofacies and the Skolithos Ichnofacies. Wave-dominated deltaic deposits display the 

Skolithos and the depauperate Cruziana Ichnofacies, but the presence of some ichnotaxa (e.g., 

Chondrites) suggests periods of lower salinity stress, probably during times of reduced freshwater 

discharge. Open-marine deposits are characterized by intense bioturbation and very high diversity, 

as shown by the archetypal Cruziana Ichnofacies in low-energy distal settings, whereas high-

energy proximal settings are characterized by the Skolithos Ichnofacies. Faunal distribution is 



52 
 

strongly controlled by salinity, which makes trace-fossil evidence particularly useful for 

paleoenvironmental characterization of marginal-marine systems. In addition, the Glossifungites 

and Teredolites Ichnofacies indicate erosional exhumation of marginal-marine deposits, outlining 

transgressive surfaces of erosion. The Oficina Formation shows remarkable similarities in 

sedimentary facies and both trace-fossil and micropaleontological content with the Cretaceous 

McMurray Formation of western Canada. 

 

Keywords: Orinoco Oil Belt, Scoyenia, Skolithos, Cruziana, Glossifungites, Teredolites 

 

3.2. Introduction 

 

Marginal-marine depositional systems, such as estuaries and deltas, have been subjected to 

increased scrutiny from an ichnologic perspective during the last three decades (e.g., Pemberton 

et al., 1982; Pemberton and Wightman, 1992; MacEachern and Pemberton, 1994; Buatois et al., 

1997a, 2008, 2011, 2012; Mángano and Buatois, 2004; MacEachern et al., 2005; MacEachern and 

Gingras, 2007; Gingras et al., 2012, 2016; Dasgupta et al., 2016). In fact, trace fossils have become 

valuable tools to identify marginal-marine deposits and to delineate their subenvironments within 

a robust depositional and sequence-stratigraphic framework (e.g., MacEachern and Pemberton, 

1994). Marginal-marine environments are typified by rapid salinity changes, increased sediment 

discharge, high water turbidity and extreme clay flocculation, among many other controlling 

factors (see Buatois and Mángano, 2011, and references therein). This characteristically results in 

stressful environmental conditions that play a major role in controlling the response by the benthos 

and their interactions with the substrate, imparting detectable signals in the trace-fossil record. 

However, there are still few studies that document animal-substrate interactions within a single 

stratigraphic unit along extensive salinity gradients, from freshwater to brackish water and normal-

marine salinity conditions (e.g., Mángano and Buatois, 2004). Such studies are essential to 

calibrate stressed trace-fossil suites against those of fully marine conditions (Buatois et al., 2005). 

The Miocene Oficina Formation of the Orinoco Oil Belt and the Oritupano Field in 

Venezuela (Fig. 3.1A-C) comprises a wide range of depositional environments formed under 

variable salinity conditions. These include freshwater fluvial and fluvio-tidal transition zones, 

brackish water estuarine and delta-plain settings alternating brackish-water and near-normal 
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marine in delta-front and prodelta settings, and normal-marine shoreface and offshore-shelf 

environments. Therefore, this unit provides an ideal opportunity to evaluate trace-fossil 

distribution and ichnofacies gradients along a depositional profile. In the specific case of the 

Oficina Formation, refinement of paleoenvironmental reconstructions is essential because this unit 

hosts one of the largest hydrocarbon reservoirs in the world. The aims of this paper are to: (1) 

document animal-substrate interactions in different subenvironments of the Oficina Formation, (2) 

discuss how the pattern emerging from the analysis of this unit compares with the currently 

accepted models of marginal-marine depositional systems, and (3) compare our observations with 

those in similar deposits of the Cretaceous McMurray Formation of western Canada, whose 

interpretation have been subject to debate recently.  

 

 

Figure 3.1. Location Map of the study areas. A) Map of Venezuela showing the location of the Eastern 

Venezuela Basin, outlining the Orinoco Oil Belt, and the Oritupano Field. B) Map of the Oritupano Field. 

C) Map of the Orinoco Oil Belt and the main associated structural features. 
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3.3. Geologic setting 

 

The Eastern Venezuela Foreland Basin formed during the Neogene on the passive margin 

of the South American Craton and is composed of several petroleum fields; two of these are the 

Orinoco Oil Belt and the Oritupano area (Fig. 3.1A). This foreland basin is subdivided by the 

Anaco-Altamira fault system into the Maturin and Guárico sub-basins (Fig. 3.1C). The Orinoco 

Oil Belt spans an area of 55,315 km2 in the southern margin of the Eastern Venezuela Basin, sub-

parallel to the Orinoco River (Fig. 3.1C). The Hato Viejo fault system subdivides the Orinoco Oil 

Belt into two provinces, the western and eastern provinces (Latreille et al., 1983; Audemard et al., 

1985). The western province is located west of the Hato Viejo fault system and consists of the 

Boyaca and Junín areas where the Cenozoic succession unconformably overlies Cretaceous and 

Paleozoic strata. The eastern province is located east of the Hato Viejo fault system, and includes 

the Carabobo and Ayacucho areas, where the Cenozoic succession rests on top of the Precambrian 

basement. The Oritupano Field is located northeast of the Orinoco Oil Belt in the Maturin sub-

basin (Fig. 3.1B and 3.1C). Based on an integrated analysis of foraminifers, calcareous 

nannoplankton and palynomorphs, the Oficina Formation is considered of middle Miocene age 

(Audemard et al., 1985; Solórzano et al., 2015) and spans the Langhian Stage, and the Serravallian 

Stage (Fig. 3.2). Three third-order depositional sequences and three maximum flooding surfaces 

were identified in the Oficina Formation. These maximum flooding surfaces can be correlated 

throughout the Eastern Venezuela Basin (Campos et al., 1985; Giffuni et al., 2000; Flores et al., 

2001) and the Orinoco Oil Belt (Latreille et al., 1983; Audemard et al., 1985; Solórzano and Farias, 

2016). The main reservoir of the Orinoco Oil Belt and the Oritupano Field is in the Oficina 

Formation, which is characterized by alternating sandstone and mudstone with interbedded shale 

and coal (Rodriguez, 1981a, b; Isea, 1981; Solórzano et al., 2016; Suarez et al., 2014 a, b; Rangel 

et al., 2013). Most oil production is from unconsolidated sand. Previous interpretations concluded 

that the Oficina Formation records deposition in a fluvio-deltaic environment (Audemard et al., 

1985; Latreille et al., 1983, Toro et al., 2001, Martinius et al., 2012). However, in addition to 

deltaic deposits, tide-dominated estuarine deposits have been identified in subsequent studies 

(Rodriguez, 2015), and fully marine deposits are present north of the Orinoco Oil Belt in the 

Oritupano Field. 
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Figure 3.2. Chronostratigraphic framework for the Oficina Formation in the Orinoco Oil Belt. Modified 

from Solórzano et al. (2015). 

 

 

The Oficina Formation was divided into three informal members: lower, middle and upper, 

representing fluvial, estuarine and deltaic deposits, respectively (Rodriguez, 2015). The lower 

member consists of massive to high-angle planar cross-stratified fine- to very coarse-grained 

sandstone and conglomerate. It has been interpreted as fluvial channel-fills of a lowstand systems 

tract. The middle member is characterized by interbedded coarse- to very fine-grained sandstone 

and mudstone with inclined heterolithic stratification (IHS) locally capped by coal. It has been 

interpreted as a tide-dominated estuarine system formed within a transgressive systems tract. The 

upper member is represented by fining- and thinning-upward, planar and trough cross-stratified 

medium- to fine-grained sandstone with mudstone drapes, as well as inclined heterolithic stratified 

coarse- to fine-grained sandstone units. Desiccation and syneresis cracks, siderite nodules and 

bands, and coal beds are also present. Coal beds tend to mark the top of the unit. The upper member 

has been interpreted to record highstand system tract deltaic progradation. The Oficina clastic 
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wedges were sourced from the cratonic shield located further south and fluvial systems show 

drainage towards the north-northeast. Further to the northeast and outside the Orinoco Oil Belt, in 

the Oritupano Field, brackish-water and open marine deposits are present, and the Oficina 

Formation consists of calcareous, fine- to very fine-grained sandstone and calcareous mudstone. 

 

3.4. Materials and Methods 

 

Conventional cores were described from the Boyaca, Junín, Ayacucho, and Carabobo areas of the 

Orinoco Oil Belt, and the Oritupano area to the northeast of the belt. The study includes the 

following wells with cores: 3 cores from the Boyaca area (B1, B2, and B3), 7 cores from the Junín 

area (J1, J2, J3, J4, J5, J6, and J7), 9 cores from the Ayacucho area (A4, A7, A8, A1, A2, A9, A10, 

A11, and A12), 8 cores from the Carabobo area (C1, C2, C6, C7, C8, C9, C3, and C10), and 3 

cores from the Oritupano Field (OR1, OR2, and OR3), which together encompass 2947 m of core 

(Fig. 3.1C and 3.1B). Sedimentologic data were collected by detailed bed-by-bed analyses, taking 

into account lithology, bed thickness, bed contacts, and physical and biologic sedimentary 

structures. Trace-fossil data were collected and analyzed following a combined ichnofacies and 

ichnofabric approach, taking into account identification of ichnotaxa, ethologic groups, trophic 

types, population strategies, ichnodiversity, degree of bioturbation, and tiering structure. Degree 

of bioturbation was estimated based on the scheme of Taylor and Goldring (1993), who defined a 

bioturbation index (BI), ranging from 0 (no bioturbation) to 6 (complete bioturbation), after a 

previous scale by Reineck (1963). 

 

3.5. The Oficina Formation ichnofauna 

 

Sixteen ichnotaxa have been recognized in the Oficina Formation. They are described briefly 

below, in alphabetical order. 

Asterosoma isp. is a star-shaped burrow system consisting of radial bulbous arms tapering 

inward towards an elevated center. In core, it typically is seen as concentric laminae of silt and 

clay surrounding a sand-filled inner core. Asterosoma has been interpreted as a specialized feeding 

structure of a worm-like organism linked with fully marine environments (Pemberton et al., 1992, 

2001; Seilacher, 2007). 
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 Beaconites antarcticum comprises simple, walled, meniscate, backfilled structures. It is 

interpreted as a feeding trace (fodinichnion) (Keighley and Pickerill, 1994). Paleozoic examples 

have been attributed to myriapods, particularly arthropleurids (Morrissey and Braddy, 2004; 

Fayers et al., 2010). Producers in post-Paleozoic occurrences include other arthropods or 

vermiform organisms. Beaconites typically occurs in nonmarine deposits (e.g., Buatois and 

Mángano, 2004). 

Bergaueria isp. consists of simple plug-shaped burrows with smooth walls. It represents 

either a permanent or semi-permanent dwelling burrow (domichnion) or a resting trace 

(cubichnion) probably produced by sea anemones (Prantl, 1945; Pemberton et al., 1988; 

Pemberton and Magwood, 1990). Bergaueria is common in fully marine conditions in either wave- 

or tide-dominated settings, although it also may occur in brackish-water environments, albeit with 

generally small size (Pemberton et al., 2001). 

Chondrites isp. is a complex burrow system consisting of regularly branching feeding 

tunnels of uniform diameter. In core, Chondrites commonly appears as an array of thin elliptical 

dots where the vertical slice through the core truncates numerous branching tunnels. It has been 

suggested that Chondrites represents burrows produced by deposit-feeding sipunculids or 

chemosymbiontic organisms (Fu, 1991). Chondrites is typical, although not exclusive, of offshore, 

shelf, slope and basin-plain deposits (Buatois and Mángano, 2011) 

Diplocraterion habichii is characterized by vertical, U-shaped spreiten burrows; spreiten 

may be retrusive, protrusive, or a combination of both. It is interpreted as dwelling burrow of 

suspension-feeding organisms (Fürsich, 1974), possibly polychaetes, other worm-like organisms, 

or amphipod crustaceans (Fürsich, 1974). Diprocraterion is common in sandy tidal flats, subtidal 

sand bodies, estuarine channels and shoreface environments (Cornish, 1986; Mángano and 

Buatois, 2004). 

Ophiomorpha nodosa consists of branching burrow systems distinctly lined with 

agglutinated, pelleted sediment. The burrow lining is near-smooth on the interior and densely to 

strongly nodular on the exterior (Frey et al., 1978; Carmona et al., 2004). Although branching is 

only rarely seen in core, the pelletoidal wall is easy to distinguish. This ichnotaxon is a dwelling 

trace of selective detritus-feeding decapods, such as callianassids (Dworschak, 2000; Dworschak 

et al., 2012). Unequivocal occurrences of Ophiomorpha only have been reported from marine 

deposits (Buatois et al., 2016a). Although Ophiomorpha is a facies-crossing ichnotaxon, 
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Ophiomorpha nodosa tends to occur in shallow-marine sandstones, typically shoreface, delta-front 

and estuarine channel and bar deposits, as well as offshore tempestites, among other settings (Frey 

et al., 1978; Pemberton et al., 2001; Carmona and Buatois, 2003; Ezeh et al., 2016). 

Palaeophycus tubularis consists of unbranched, distinctly lined, cylindrical, and horizontal 

to inclined burrows. It has been interpreted as the dwelling structures of active predators or 

suspension-feeding organisms, such as polychaetes (Pemberton and Frey, 1982; Gingras et al., 

1999). Semiaquatic insects (orthopterans and hemipterans) and non-aquatic beetles are possible 

producers in continental settings (Krapovickas et al., 2009). Palaeophycus tubularis has been 

recorded in fully marine, marginal-marine and continental settings (Pemberton and Frey, 1982; 

Buatois and Mángano, 2004). 

Palaeophycus heberti refers to sub-cylindrical, vertical, gently to strongly curved burrows 

with circular to elliptical cross-sections. It is interpreted as the dwelling burrow of a suspension-

feeding organism similar to sabelliarid polychaetes (Pemberton et al., 1992). Structures commonly 

identified in core as Terebellina should be included in P. heberti (Miller, 1995). This ichnospecies 

is commonly found in fully marine environments (Pemberton et al., 1992, 2001). 

Planolites montanus is characterized by unlined, simple, and straight to tortuous burrows 

with circular to elliptical cross sections. This ichnotaxon is regarded as a feeding structure 

(fodinichnion) of deposit feeders, probably produced by infaunal polychaetes or other worm-like 

organisms (Pemberton and Frey, 1982; Fillion and Pickerill, 1990; Uchman 1995; Sisulak and 

Dashtgaard, 2012). Planolites is a facies-crossing ichnotaxon that may occur in continental 

through deep-marine environments (Pemberton and Frey, 1982). 

Phycosiphon incertum is a complex spreite structure, surrounded by a thin mantle of pale 

sediment; the core consists of backfilled dark material, and the spreite is made of the same pale 

material as the mantle. When mantle and spreite are difficult to differentiate, the transverse or 

longitudinal section of the lobes permits a conclusive identification of Phycosiphon incertum 

(Bromley 1996; Rodriguez-Tovar et al., 2014). However, spreite typically are not visible in core, 

and this ichnotaxon is identified by its dark core and pale mantle. Phycosiphon incertum is 

interpreted as the feeding structure of vermiform organisms, probably polychaetes (Goldring et al., 

1991). It is present in shallow marine to bathyal environments and perhaps even at abyssal depths 

(Goldring et al., 1991; Fu 1991; Wetzel and Bromley 1994; Mángano et al., 2002; Wetzel, 2010; 

Buatois et al., 2012). 
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Rhizocorallium isp. is characterized by straight to sinuous, U-shaped spreiten burrows. In 

cores it is identified by two circular burrows joined by a horizontal band (spreite). Rhizocorallium 

is interpreted as a feeding structure produced by deposit feeders, either crustaceans or worms 

(Fürsich, 1974b; Rodriguez-Tovar et al., 2012; Knaust, 2013). It is a common element in shoreface 

and offshore environments (Pemberton et al., 1992, 2001). 

Rosselia socialis consists of funnel-shaped, concentrically-fill, vertical to inclined, burrows 

with a narrow cylindrical shaft at the central portion. It is interpreted as a dwelling burrow 

produced by detritus feeders, such as terebellid polychaetes (Nara, 1995; Gingras et al., 1999). 

Rosselia is typical of shallow-marine settings, in both brackish-water and fully marine 

environments (Dias da Silva et al., 2014; Buatois et al., 2016b).  

Skolithos linearis refers to simple, vertical to inclined, straight to curved burrows. It is 

interpreted as a dwelling burrow (domichnion) of suspension feeders or predators, such as 

phoronids or polychaetes (Alpert, 1974; Schlirf and Uchman, 2005; Sisulak and Dashtgaard, 

2012). Insects or spiders can produce sculptured terminations in vertical burrows in terrestrial 

environments (Ahlbrandt et al., 1978; Ratcliffe and Fagerstrom, 1980; Genise, 2016). Skolithos is 

a facies-crossing ichnotaxon that may occur from continental to deep-marine environments, but is 

most common in high-energy shallow-marine settings (Mángano et al., 2002). 

Taenidium isp. comprises unwalled, simple, horizontal, meniscate trace fosssils. It is a 

feeding structure (fodinichnion) produced by worm-like organisms and insects (Gregory et al., 

2004; Smith et al., 2008; Krapovickas et al., 2009; Diez-Canseco et al,. 2016; Genise, 2016). This 

ichnotaxon is particularly common in continental environments, but is also present in marine 

(Buatois et al., 2001) and marginal marine settings (Diez-Canseco et al., 2015; Gingras et al., 

2016). 

Teichichnus rectus consists of horizontal burrows having a vertical retrusive spreite 

(Seilacher, 1955). In cores, it is seen as vertical tabular structures formed by tightly packed 

concave-up or concave-down crescentic laminae (Pemberton et al., 1992, 2001). It is interpreted 

as a feeding trace (fodinichnion) of a deposit feeder and may be produced by different organisms, 

including annelids and arthropods (Häntzschel, 1975; Fillion and Pickerill, 1990 Seilacher, 2007). 

Although it is a facies-crossing ichnotaxon ranging from marginal-marine to deep-sea settings, 

Teichichnus is absent in continental environments, and is therefore a good indicator of marine 

influence (Mángano et al., 2002). 
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Thalassinoides isp. consists of relatively large burrow systems comprising smooth walled, 

essentially cylindrical components. Branching, however, is only very rarely seen in core. It is 

regarded as a feeding burrow of decapod crustaceans, such as thalassinid shrimp. Thalassinoides 

may occur in a wide variety of environments, typically marginal and fully marine (Carmona et al., 

2004; Buatois et al., 2016c). 

 

3.6. Sedimentary Facies and Trace-Fossil Distribution 

 

3.6.1. Sedimentary Facies of the Orinoco Oil Belt 

Nine facies (FA-FI), grouped in five facies assemblages (FA1-5), have been identified in the 

Orinoco Oil Belt (Tables 3.1 and 3.2). 

 

Table 3.1. Sedimentary Facies of the Oficina Formation in the Orinoco Oil Belt. Modified from 

Rodriguez, 2015. 

 

Facies Lithology 

and Texture 

Dominant 

physical 

sedimentary 

structures 

 

Ichnology Bed 

thickness 

(cm) 

Other 

characteristics 

Interpretation 

 

 

 

FA 

Intraclast breccia 

Mudstone 

breccia, 

medium- to 

fine-grained 

sandstone and 

mudstone, 

poorly sorted 

 

 

Microfaults and 

planar cross 

stratification 

No trace fossils 10-50   Lag deposits, cut 

bank margins of 

meandering 

estuarine channels 

 

 

 

 

 

 

 

FB 

Cross-Stratified 

very coarse-to 

medium- 

grained 

sandstone 

FB1 Massive to 

Planar cross-

stratified 

sandstone 

with 

granules 

 

 

 

 

Very coarse- 

to medium-

grained 

gravel-rich 

sandstone 

with 

dispersed 

granules, 

poorly sorted 

 

Massive to planar 

cross-stratification 

No trace fossils 10-50 Locally parallel- 

laminated 

mudstone, 

mudstone and 

coal clasts, 

generally oil 

impregnated, 

argillaceous 

Braided fluvial 

channels 

FB2 Massive to 

trough cross-

stratified 

sandstone 

with pebbles 

and 

mudstone 

clast 

 

Coarse- to 

medium- 

grained 

gravel- rich 

sandstone, 

poorly sorted 

Massive to trough 

cross-stratification 

No trace fossils 20-70 
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FC 

Cross-stratified medium- to fine-grained 

sandstone with mudstone drapes  

 

 

Medium- to 

fine-grained 

fine 

sandstone, 

well sorted 

 

Trough and planar 

cross stratification 

No trace fossils 10-120 Mudstone drapes Tidal channels, 

tidal flat, and tidal 

sandbars 

FD 

Inclined heterolithic stratified coarse- to 

fine-grained sandstone and mudstone 

Coarse- to 

fine-grained 

sandstone 

Inclined 

heterolithic cross-

stratification 

Scarce Rosselia 

socialis, Teichichnus 

rectus, Ophiomorpha 

nodosa 

BI: 0-1 

Beaconites antarcticum 

(BI: 4-6) 

 

 

30-200 Mudstone 

intraclasts, 

mudstone drapes 

Estuarine and 

distributary 

channel pointbars, 

tidal flat, and tidal 

sandbars 

FE 

Convoluted fine- to very fine-grained 

sandstone and mudstone 

Fine- to very 

fine-grained 

sandstone, 

well sorted 

Convolute 

lamination 

Scarce Ophiomorpha 

nodosa 

BI: 0-1 

 

 

10-50   Estuarine channels 

and tidal flats 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FF  

Interbedded 

mudstone and 

middle- to very 

fine-grained 

sandstone 

S
an

d
st

o
n
e 

d
o
m

in
at

ed
 

FF1 Parallel- 

laminated 

sandstone 

and 

mudstone 

Fine- to very 

fine-grained 

sandstone, 

well sorted, 

rounded 

clasts; 

mudstone 

Wavy lamination 

(rhythmic 

appearance) 

Planolites montanus, 

Teichichnus rectus, 

Rosselia socialis, 

Skolithos linearis, 

Diplocraterion 

habichii, escape trace 

fossils 

BI: 0-1 

 

 

1-200 Mudstone drapes 

and flaser 

bedding 

Tidal sand to mixed 

flats 

FF2 Muddy 

sandstone 

Fine- to very 

fine-grained 

sandstone 

mixed with 

mudstone 

Sandstone is 

interlaminated to 

interbedded with 

light to medium 

grey mudstone 

Ophiomorpha nodosa 

(BI:0-1), undeterminate 

bioturbation mottling 

(BI: 4-5) 

 

1-90   Tidal sand to mixed 

flats 

M
u
d
st

o
n
e 

d
o
m

in
at

ed
 

FF3 Parallel- 

laminated 

sandy 

mudstone 

and siltstone 

Mudstone 

with scarce 

very fine sand 

grains, well 

sorted 

Sand grains 

dispersed in 

mudstone- and 

siltstone-dominated 

intervals 

Bergaueria isp., 

Planolites montanus, 

Thalassinoides isp. 

BI: 2-3 

1-100   Tidal mud flats 

FF4 

Bioturbated 

siltstone and 

mudstone 

Silstone and 

mudstone 

Massive 

appearance 

Teichichnus rectus, 

Thalassinoides isp., 

indeterminate 

bioturbation mottling 

BI: 4-5 

 

1-180   Tidal mud flats 

FF5 

Calcareous 

massive 

mudstone 

with scarce 

limestone 

layers 

 

Massive 

calcareous 

mudstone 

with scarce 

limestone 

layers 

Massive 

appearance 

No trace fossils  10-30 Shell remains Tidal mud flats 

 

 

 

 

 

 

FG1 Mudstone Massive to parallel-

laminated, locally 

current ripples and 

flaser bedding 

Planolites montanus, 

Teichichnus rectus, 

Thalassinoides isp., 

root trace fossils 

BI: 3-4 

30-150 Syneresis cracks, 

abundant organic 

debris, and scarce 

mudstone clasts 

Outer -estuary 

margin 
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FG 

Carbonaceous, 

rooted silty 

mudstone and 

thinly 

laminated 

mudstone 

FG2 Mudstone 

and silstone 

Massive to parallel-

laminated, white to 

light gray 

Beaconites 

antarcticum, Planolites 

montanus, Taenidium 

isp. 

BI: 4-6 

 

30-120 Siderite nodules 

and bands, 

desiccation 

cracks 

Floodplains, 

interdistributary 

bays and tidal flats 

FG3 Mudstone Massive to parallel-

laminated, white to 

light gray 

Firmground 

Thalassinoides isp., 

Planolites montanus, 

root trace fossils 

BI: 1-4 

 

 50-200 Siderite nodules 

and bands, 

desiccation 

cracks 

waterlogged 

paleosols  

 

 

 

 

FH 

Coal 

FH1 Coal   No trace fossils 1-60   Swamps in fluvial, 

estuarine and delta 

plain settings 

 

FH2 Bioturbated 

Coal 

  Woodground 

Thalassinoides isp. 

BI: 3-5 

 

10-50   Swamps in 

estuarine system 

 

 

 

 

FI 

Cross-Stratified 

very coarse-to 

very fine- 

grained 

sandstone 

 

FI1 Very coarse- 

to medium-

grained 

sandstone, 

poorly sorted 

Massive sandstone  Ophiomorpha nodosa 

BI: 0-1 

50-100 Sandy deposits 

are limited in 

their top or base 

by mudstone 

deposits or 

heterolithic 

zones, containing 

benthic 

foraminifera and 

dinoflagellates 

 

Meandering tidal 

channels 

FI2 Very fine- to 

medium-

grained 

sandstone 

with shells 

Massive to planar 

cross-stratified 

No trace fossils 10-60 Meandering tidal 

channels 

FI3 Very coarse- 

to fine-

grained 

sandstone, 

poorly sorted 

Massive to planar 

cross-stratified 

No trace fossils 50-300 Meandering tidal 

channels 

 

3.6.1.1. FA1: Fluvial braided channels 

Facies FB1, FB2, FG2, and FH1 constitute FA1. FA1 is present in the lower part of the sedimentary 

succession of the Boyaca, Junín, Ayacucho, and Carabobo areas, comprising the lower member of 

the Oficina Formation and recording deposition within a low-sinuosity, braided fluvial system. 

FB1 and FB2 consist of fining-upward, massive to planar or trough cross-stratified, pebbly, very 

coarse- to medium-grained sandstone, locally capped by massive mudstone. These sandstone units 

form amalgamated packages that indicate the establishment of multi-storey, fluvial braided 

channels, whereas the few mudstone intervals record deposition in overbank settings. FG2 consists 

of massive to parallel-laminated mudstone and silstone units, and records deposition in 

floodplains. FH1 consists of coal layers and, records sedimentation in swamps. For the most part, 

FA1 lacks bioturbation. However, monospecific suites of Taenidium isp. occur in overbank 

bioturbated mudstone units that are immediately located above fluvial braided-channel deposits 

(Fig. 3.3A-B). 
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3.6.1.2. FA2: Meandering tidal channels 

Facies FA, FC, FD, FE, FI1, FI2, and FI3 constitute FA2. FA2 is present in the middle part of the 

sedimentary succession in the Boyaca, Junín, Ayacucho, and Carabobo areas, representing the 

middle member of the Oficina Formation. This facies association is separated from the underlying 

FA1 by a transgressive surface and is interpreted as recording deposition within estuarine 

meandering channels. FA consists of mudstone intraclast breccia. FC and FD consist of coarse- to 

fine-grained sandstone and mudstone with IHS and trough and planar cross-bedded, medium-to 

fine-grained sandstone with mudstone drapes and are interpreted as recording deposition within 

estuarine meandering channels. A low-diversity assemblage of Rosselia socialis and Teichichnus 

rectus is present in sparsely bioturbated (BI 0-1), inclined heterolithic stratified, coarse- to fine-

grained sandstone and mudstone. FE consists of sparsely bioturbated (BI 0-1), fine- to very fine-

grained sandstone locally having convolute lamination and Ophiomorpha nodosa (Fig. 3.4A-C). 

In this context, both ichnofaunas indicate brackish-water conditions. Additionally, Beaconites 

antarcticum occurs in intensely bioturbated (BI 4-6), thinly interbedded, fine- to very fine-grained 

sandstone and siltstone units displaying IHS and current ripple cross-lamination with mudstone 

drapes. These deposits were formed in meandering, tide-dominated estuarine channels with point 

bars formed due to lateral accretion in the freshwater portion of the inner estuarine zone (Buatois, 

2005; Buatois and Mángano, 2011; Martinius et al., 2012; Diez-Canseco et al., 2015). FI1-FI3 are 

sandstone-dominate, but intercalated within mudstone intervals containing foraminifers and 

dinoflagellates. FI1 consists of sparsely bioturbated (BI 0-1), massive, very coarse- to medium-

grained sandstone with Ophiomorpha nodosa. FI2 consists of massive to planar cross-stratified, 

very fine- to medium-grained sandstone with shells. FI3 consists of massive to planar cross-

stratified, very coarse- to fine-grained sandstone. FI1-FI3 record deposition within meandering 

tidal channels. 
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Figure 3.3. Trace-fossil distribution in freshwater deposits from the Oficina Formation in the Orinoco Oil 

Belt. (A) Taenidium isp. (Ta) from the lower member in the Junín area (Junín 3), in highly bioturbated 

mudstone located above fluvial braided channel units. Facies FA1, well J1, depth 723.59 m. (B) Taenidium 

isp. (Ta) from the middle member in the Junín area (Petrocedeño), in highly bioturbated mud-flat deposits. 

Facies FA3, well J6, depth 471.52 m. (C) Beaconites antarcticum (Be) from the upper member in the Junín 

area (Junín 3), in highly bioturbated floodplain mudstone. Facies FA5, well J3, depth 576.37 m. 

 

 

3.6.1.3. FA3: Tidal flats and tidal creeks 

Facies FC, FD, FE, FF1, FF2, FF3, FF4, FF5, FG2, FG3, FH1, and FH2 constitute FA3. FA3 

occurs in the middle part of the sedimentary succession of the Boyaca, Junín, Ayacucho, and 

Carabobo areas, representing the middle member of the Oficina Formation. It consists mostly of 

interbedded mudstone and medium- to very fine-grained sandstone, displaying low to intense 

bioturbation (BI 0-6) and recording deposition in tidal flats and tidal creeks. FE and FF1-FF4 

consist of interbedded very fine- to fine-grained sandstone and mudstone, displaying variable 

intensities of bioturbation (BI 0-5) and recording deposition in lower sand, middle mixed, and 
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upper mud tidal flat settings. Mudstone drapes, convolute lamination, and flaser, wavy and 

lenticular bedding are present. Sandstone-dominated intervals, representing sand flats, contain 

Ophiomorpha nodosa, Skolithos linearis (Fig. 3.4E), Diplocraterion habichii (Fig. 3D), Planolites 

montanus, Teichichnus rectus, and Rosselia socialis (Fig. 3.5B). In contrast, mudstone-dominated 

or heterolithic intervals are characterized by, Teichichnus rectus, Bergaueria isp., Planolites 

montanus, Thalassinoides isp., and indistinct bioturbation mottling recording deposition in mud 

flats (Fig. 3.5A, C, D, E, F, G). These tidal flats were formed in estuarine settings characterized 

by brackish-water conditions. In contrast, FG2 consists of intensely bioturbated (BI 4-6), massive 

to parallel-laminated mudstone and siltstone with Taenidium isp. (Fig. 3.3C-D), recording 

deposition in mud flats formed landward of the maximum salinity limit. These deposits contain 

desiccation cracks and siderite nodules and bands. FC, FD, FF5, FG3, FH1, and FH2 are 

subordinate components of FA3. FC and FD consist of planar and trough cross-stratified, sparsely 

bioturbated (BI 0-1), medium- to fine-grained sandstone with mudstone drapes and IHS, recording 

deposition in tidal creeks. These deposits contain Rosselia socialis, Teichichnus rectus and 

Ophiomorpha nodosa. FF5 consists of massive calcareous mudstone with scarce limestone layers 

and shell remains, representing transgressive deposits in the tidal flats. FG3 consists of moderately 

bioturbated (BI 1-4), massive to parallel-laminated mudstone with desiccation cracks and siderite 

nodules and bands. These deposits represent poorly developed paleosols. Firmground 

Thalassinoides isp., penetrating into the paleosols and tidal mud flats from overlying transgressive 

surfaces is recognized in these deposits. FH1 and FH2 consist of coal, recording deposition in 

swamps adjacent to tidal flats. Whereas FH1 is unburrowed, FH2 is highly bioturbated (BI 3-5), 

containing Thalassinoides isp. 

 

3.6.1.4. FA4: Outer-estuarine sandbars 

Facies FC, FD, FG1, FG3, and FH2 constitute FA4. FA4 occurs in the middle part of the 

sedimentary succession in the Boyaca, Junín, Ayacucho, and Carabobo areas, representing the 

uppermost part of the middle member of the Oficina Formation. FA4 represents deposition in an 

outer-estuarine sandbar complex. FC and FD consist of medium- to fine-grained sandstone and 

mudstone with IHS, recording deposition in outer estuarine sandbars. These deposits are thinner 

than those of FA2 and are unbioturbated to sparsely bioturbated (BI 0-1), containing Rosselia 

socialis, Ophiomorpha nodosa, and Teichichnus rectus. 
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Figure 3.4. Trace-fossil distribution in marginal- to open-marine deposits of the Oficina Formation in the 

Orinoco Oil Belt and the Oritupano Field. (A, B, and C) Ophiomorpha nodosa (Op) in sparsely bioturbated, 

abandoned estuarine channel fills of the Orinoco Oil Belt. Facies FA2, wells C8, C9, and A2, depths 420.01 

m, 960.42 m, and 686.10 m, respectively. (D) Diplocraterion habichii (Di) in sparsely bioturbated tidal 

sand- to mixed-flat deposits of the Orinoco Oil Belt (Ayacucho area). Facies FF1, well A2, depth 733.34 

m. (E) Skolithos linearis (Sk) in bioturbated tidal sand- to mixed-flat deposits of the Orinoco Oil Belt (Junín 

area). Facies FF1, well J1, depth 440.13 m. (F) Ophiomorpha nodosa (Op) in sparsely bioturbated deltaic 

distributary channel fills within wave-dominated deltaic systems of the Oritupano Field. Facies FJ, well 

OR1, depth 1828.19 m. (G) Large, vertical Ophiomorpha nodosa (Op) in wave-dominated upper- to 

middle-shoreface deposits of the Oritupano Field, indicating normal-marine conditions. Facies FO, well 

OR2, depth 1706.88 m. Sandstone is impregnated with hydrocarbon resulting in dark color, while mudstone 

is light color. 
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FG1 consists of moderately bioturbated (BI 3-4), massive to parallel-laminated 

carbonaceous mudstone and localized current ripples and flaser bedding, recording deposition in 

the outer-estuary margin. These deposits contain a low-diversity assemblage of Teichichnus rectus, 

Thalassinoides isp., and Planolites montanus. FH2 consists of highly bioturbated (BI 3-5) coal, 

recording deposition in swamps. Thalassinoides isp. is present in these deposits. FG3 consists of 

moderately bioturbated (BI 1-4), massive to parallel-laminated mudstone, recording immature, 

waterlogged paleosols. Desiccation cracks, and siderite nodules and bands are present locally. 

Firmground Thalassinoides isp. is recognized in swamps and paleosols, penetrating from 

overlying transgressive surfaces. 

 

3.6.1.5. FA5: Lower delta plain of a tide-dominated delta 

Facies FC, FD, FG2, and FH1 constitute FA5. FA5 is present in the upper part of the sedimentary 

succession in the Boyaca and Junín areas, representing the upper member of the Oficina 

Formation. FA5 is interpreted as recording sedimentation in a lower delta plain, reflecting 

progradation of a tide-dominated delta in a broad embayment. FA5 is separated from the 

underlying fluvio-estuarine facies assemblages by a maximum flooding surface (Solórzano et al., 

2015). Sandstone units in FA5 are thinner than those in FA2 and are separated by mudstone and 

siltstone. The absence of FA5 in the Ayacucho and Carabobo areas is due to the fact that cores 

were taken only in the lower and middle parts of the sedimentary succession. FC and FD consist 

of fining- and thinning-upward, planar and trough cross-stratified, medium- to fine-grained 

sandstone with mudstone drapes, as well as inclined heterolithic stratified, coarse- to fine-grained 

sandstone, recording deposition in tide-influenced distributary channels. FG2 consists of massive 

to parallel-laminated mudstone and silstone with desiccation cracks, siderite nodules and bands, 

recording sedimentation in floodplains and interdistributary bays. Intensely bioturbated (BI 4-6) 

floodplain mudstone is characterized by the presence of Beaconites antarcticum (Fig. 3.3E-F). 

FH1 consists of coal beds, recording deposition in swamps. 



68 
 

 

Figure 3.5. Trace-fossil distribution in marginal-marine deposits from the middle member of the Oficina 

Formation in the Orinoco Oil Belt. (A) Bergaueria isp. (Be) in sparsely bioturbated tidal mud-flat deposits 

in the area de Carabobo. Facies FF3, well C9, depth 984.50 m. (B) Rosselia socialis (Ro) in sparsely 

bioturbated tidal sand- to mixed-flat deposits in the Junín area. Facies FF1, well J1, depth 434 m. (C) 

Planolites montanus (Pl) in bioturbated tidal mud-flat deposits in the area de Carabobo. Facies FF3, well 

C9, depth 1034.18 m. (D) Thalassinoides isp. (Th) with rhythmic tidal infill (i.e. tubular tidalite) in tidal 

mud-flat deposits in the Carabobo area. Facies FF4, well C9, depth 988.16 m. (E) Thalassinoides isp. (Th) 

in tidal mud-flat deposits in the Ayacucho area. Facies FF3, well A12, depth 880.56 m. (F) Planolites 

montanus (Pl) and Thalassinoides isp. (Th) in tidal mud-flat deposits in the Ayacucho area. Facies FF3, 

well A9, depth 366.36 m. (G) Teichichnus rectus (Te) in tidal mud-flat deposits (Facies FF4, depth 1031.78 

m) and Thalassinoides isp. (Th) in coal layers (Facies FH2, depth 1031.44 m). Both trace fossils from well 

C9 in the Carabobo area. Note that sandstone in C, E, F, and upper part of G is impregnated with 

hydrocarbon resulting in dark color, while mudstone is light color. 
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3.6.2 Sedimentary Facies of the Oritupano Field 

 

Eleven facies (FJ-FS), grouped in four facies assemblages (FA6-9), have been recognized in the 

Oritupano Field (Tables 3.2 and 3.3). The sedimentary succession in the Oritupano Field represents 

the upper member of the Oficina Formation, which reflects highstand progradation. This interval 

correlates with the highstand deltaic deposits (FA5) identified in the Orinoco Oil Belt. 

 

Table 3.2. Facies associations and interpretation in the study area. 

 

Stratigraphic 

unit Field Facies association Facies 

O
fi

ci
n
a 

F
o
rm

at
io

n
 

O
ri

tu
p
an

o
 

FA9 Offshore-shelf complex FQ, FR, and FS 

FA8 Wave-dominated shoreface FO and FP 

FA7 
Delta front and Prodelta of a wave-

dominated delta 
FL, FM1, FM2, and FN 

FA6 
Lower delta plain of a wave-

dominated delta 
FJ and FK 

O
ri

n
o
co

 O
il

 B
el

t 

FA5 
Lower delta plain of a tide-dominated 

delta 
FC, FD, FG2, and FH1 

FA4 Outer estuarine sandbars  FC, FD, FG1, FG3, and FH2 

FA3 Tidal flats and tidal creeks  
FF1, FF2, FF3, FF4, FF5, FC, FD, 

FE, FG2, FG3, FH1, and FH2 

FA2 Estuarine meandering channels FA, FC, FD, FE, FI1, FI2, and FI3 

FA1 Fluvial braided channels FB1, FB2, FG2, and FH1 
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Table 3.3. Sedimentary Facies of the Oficina Formation in the Oritupano Field. 

  

Facies Lithology and 

Texture 

Dominant 

physical 

sedimentary 

structures 

Ichnology Thickness 

(m) 

Other 

characteristics 

Interpretation 

FJ 

Cross-stratified coarse- to medium-grained 

sandstone 

Coarse- to 

medium-grained 

sandstone, poorly 

sorted 

Massive to 

planar cross-

stratification 

Ophiomorpha 

nodosa 
BI: 0-1 

1.5 to 4.6 Fining-upward, 

erosive bases, 

generally oil 

impregnated  

Distributary 

channel in wave-

dominated delta 

FK 
Laminated mudstone and coal 

Mudstone and 
coal 

Massive to 
parallel-

lamination 

Planolites 
montanus, 

Teichichnus 
rectus, 

Palaeophycus 
tubularis, 

Thalassinoides 
isp, 

Palaeophycus 
heberti 

BI: 0-1 

0.3 to 1.8 
 

Interdistributary 
bay in wave-

dominated delta 

FL 

Cross-stratified coarse-to medium-grained 
sandstone 

Coarse- to 

medium-grained 
sandstone, poorly 

sorted 

Parallel to 

trough planar 
cross-

stratification 

Ophiomorpha 

nodosa 
BI: 0-1 

0.61 to 4.6 Typically 

coarsening-
upward, 

generally oil 
impregnated  

Sandy mouth bar 

FM 

Cross-
stratified 

fine- to very 
fine-grained 

sandstone 

FM1 Trough and 

planar cross-
stratification 

sandstone 

Fine -to very 

fine-grained 
sandstone 

Trough and 

planar cross-
stratification 

Asterosoma isp., 

Rosselia socialis, 
Ophiomorpha 

nodosa 
BI: 0-1 

0.91 to 3.35 
 

Proximal delta-

front 

FM2 Parallel to wave 

lamination and 
hummocky 

cross 
stratification 

sandstone 

Fine- to very 

fine-grained 
sandstone 

Parallel to wave 

ripple cross-
lamination and 

hummocky 
cross-

stratification 

Planolites 

montanus, 
Thalassinoides 

isp., Teichichnus 
rectus, 

Palaeophycus 
tubularis 

Asterosoma isp., 
Skolithos linearis 

BI: 0-1 

0.91 to 3.05 
 

Storm-dominated 

distal delta-front 

FN 

Laminated calcareous mudstone with shell 
remains 

Mudstone Parallel 

lamination 

Planolites 

montanus, 
Palaeophycus 

heberti, 
Rhizocorallium 

isp., 
Thalassinoides 

isp., Chondrites 
isp. 

BI: 0-1 

0.30 to 3.05 Syneresis cracks 

and sand levels 

Prodelta 

FO 
Massive fine-grained sandstone 

Fine-grained 
sandstone 

Massive 
appearance 

Ophiomorpha 
nodosa 

BI: 0-1 

0.91 to 4.6 
 

Upper to middle 
shoreface 

FP 

Massive fine-grained calcareous sandstone 

Fine-grained 

sandstone 

Massive 

appearance 

Asterosoma isp., 

Teichichnus 
rectus, Planolites 

montanus, 

Palaeophycus 

tubularis, 
Thalassinoides 

isp., 
Palaeophycus 

heberti, 
Ophiomorpha 

nodosa 
BI: 2-3 

0.30 to 0.61 
 

Lower shoreface 
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FQ 
Bioturbated calcareous mudstone 

Highly 
bioturbated 
calcareous 

mudstone  

Massive 
appearance 

Asterosoma isp., 
Planolites 
montanus, 

Palaeophycus 
tubularis, 

Palaeophycus 
heberti, 

Thalassinoides 
isp. 

BI: 2-5 

1.82 Asterosoma isp. 
is the dominant 
ichnotaxon 

Upper Offshore 

FR 

Bioturbated calcareous mudstone 

Highly 

bioturbated 
calcareous 

mudstone  

Massive 

appearance 

Asterosoma isp., 

Planolites 
montanus, 

Palaeophycus 
tubularis, 

Phycosiphon 
incertum, 

Teichichnus 
rectus, 

Palaeophycus 
heberti, 

Rhizocorallium 
isp., Rosselia 

socialis 
BI: 3-6 

0.3 Phycosiphon 

incertum is the 
dominant 

ichnotaxon 

Lower offshore  

FS 
Massive calcareous mudstone with abundant 

remains of shells 

Calcareous 
mudstone 

Massive 
appearance 

Asterosoma isp., 
Chondrites isp., 

Planolites 
montanus, 

Teichichnus 
rectus 

BI: 0-4 

2.1 to 4.88 
 

Shelf 

 

 

3.6.2.1. FA6: Delta plain of a wave-dominated delta 

Facies FJ and FK constitute FA6. FA6 is present in the lower part of the sedimentary succession 

of the Oritupano Field and records deposition in the delta plain of a wave-dominated delta. FJ 

consists of fining-upward, massive to planar cross-stratified, erosively based, sparsely bioturbated 

(BI 0-1), coarse- to medium-grained sandstone, recording deposition within deltaic distributary 

channels. These deposits display scarce occurrences of Ophiomorpha nodosa (Fig. 3.4F). Facies 

FK consists of sparsely bioturbated (BI 0-1), massive to parallel-laminated mudstone and coal, 

recording deposition in interdistributary bays. Low-diversity suites of Planolites montanus, 

Teichichnus rectus, Palaeophycus tubularis, and Palaeophycus heberti occur in this facies. 

Firmground and woodground Thalassinoides isp. penetrates from overlying transgressive surfaces. 

 

3.6.2.2. FA7: Delta-front and prodelta of a wave-dominated delta 

Facies FL, FM1, FM2 and FN constitute FA7. FA7 is present in the middle part of the sedimentary 

succession of the Oritupano Field, and records deposition in an area encompassing the delta front 

(Fig. 3.6A-C) and the prodelta (Fig. 3.6B) of a wave-dominated delta. FL consists of coarsening-

upward, parallel to trough and planar cross-stratified, sparsely bioturbated (BI 0-1), coarse- to 
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medium-grained sandstone, representing deposition in sandy mouth bars. These deposits contain 

isolated specimens of Ophiomorpha nodosa. FM1 consists of trough and planar cross-stratified, 

sparsely bioturbated (BI 0-1), fine- to very fine-grained sandstone, representing deposition in a 

proximal delta front. FM1 hosts Asterosoma isp., Rosselia socialis, and Ophiomorpha nodosa (Fig. 

3.6C). FM2 consists of parallel, wave ripple cross-laminated and hummocky cross-stratified, 

sparsely bioturbated (BI 0-1), fine- to very fine-grained sandstone, recording sedimentation in a 

storm-dominated distal delta-front. These deposits are characterized by the presence of Planolites 

montanus, Thalassinoides isp., Palaeophycus tubularis, Teichichnus rectus, Skolithos linearis, 

Asterosoma isp., and escape trace fossils (Fig. 3.6A). FN consists of massive to parallel-laminated, 

sparsely bioturbated (BI 0-1), calcareous mudstone with shell remains and syneresis cracks, 

interbedded with thin very fine-grained sandstone. This facies represents deposition in a prodelta. 

These deposits contain Chondrites isp., Planolites montanus, Palaeophycus heberti, 

Rhizocorallium isp., and Thalassinoides isp..(Fig. 3.6B). 

 

3.6.2.3. FA8: Wave-dominated shoreface 

Facies FO and FP constitute FA8. FA8 is present in the upper part of the sedimentary succession 

of the Oritupano Field and records deposition in a wave-dominated shoreface. FO consists of 

sparsely bioturbated (BI 0-1), massive, fine-grained sandstone, recording deposition in the upper 

to middle shoreface. Monospecific occurrences of Ophiomorpha nodosa are characteristic of these 

deposits (Fig. 3.4G). FP consists of moderately bioturbated (BI 2-3), massive, fine-grained 

calcareous sandstone, representing deposition in the lower shoreface. A diverse ichnofauna, 

comprising Asterosoma isp., Teichichnus rectus, Planolites montanus, Thalassinoides isp., 

Ophiomorpha nodosa, Palaeophycus tubularis, and Palaeophycus heberti, is present. 

 

3.6.2.4. FA9: Offshore-shelf complex 

Facies FQ, FR and FS constitute FA9. FA9 is present in the upper part of the sedimentary 

succession of the Oritupano Field and records deposition in the offshore-shelf complex (i.e., below 

storm wave base) (Fig. 3.7A-D). FQ consists of highly bioturbated (BI 2-5), massive, calcareous 

mudstone with sporadic sand beds recording deposition in the upper offshore. Asterosoma isp. is 

the dominant ichnotaxon, whereas Planolites montanus, Palaeophycus tubularis, Palaeophycus 

heberti, and Thalassinoides isp. are common (Fig. 3.7B). FR consists of highly bioturbated (BI 3-
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6), massive, calcareous mudstone, recording deposition on the lower offshore. This facies contains 

a diverse ichnofauna, comprising Asterosoma isp., Planolites montanus, Phycosiphon incertum, 

Teichichnus rectus, Palaeophycus tubularis, Palaeophycus heberti, Rhizocorallium isp., and 

Rosselia socialis. Phycosiphon incertum is the dominant ichnotaxon (Fig. 3.7A- C). FS consists of 

massive, calcareous mudstone with shell remains, displaying low to moderate bioturbation (BI 0-

4) and representing deposition on the shelf (i.e., below storm wave base). Asterosoma isp., 

Chondrites isp., Planolites montanus, and Teichichnus rectus occur in these deposits (Fig. 3.7D). 

 

3.6.3. Summary 

In summary, FA1 represents the infill of an incised fluvial valley, whereas FA2, FA3, and FA4 

record deposition within an incised estuarine valley and FA5 records progradation of tide-

dominated deltas in restricted embayed shorelines that may have promoted tidal action. All these 

facies assemblages are widespread in the Orinoco Oil Belt. In contrast, more marine conditions 

are represented in the Oritupano Oil Field. In this area, FA6 and FA7 represent deposition in wave-

dominated deltas adjacent to strandplains and prograding into the open sea, where wave reworking 

was significant. FA8 and FA9 record sedimentation in wave-dominated shorefaces and offshore-

shelf complexes, respectively. 

 

3.7. Discussion 

 

3.7.1. Softground ichnofacies along the salinity gradient 

Salinity is a crucial factor in the development of benthic organisms (Hauton, 2016; Smyth and 

Elliott, 2016). Maximum diversity of species occurs in fully marine conditions and secondarily in 

freshwater settings, while the lowest diversity of organisms is recorded in brackish-water 

environments (Remane and Schlieper, 1971; Pemberton and Wightman, 1992; Buatois et al., 

1997b; Hauck et al., 2009; Buatois and Mángano, 2011; Diez-Canseco et al., 2015) (Fig. 3.8). 

Salinity is independent of physical processes and therefore its signal is difficult to detect in 

standard facies analysis. In contrast, faunal distribution is strongly controlled by salinity (Remane 

and Schlieper, 1971; MacEachern and Pemberton, 1994; Buatois et al., 1997b; Diez-Canseco et 

al., 2015; Ezeh et al., 2016), which makes trace-fossil evidence particularly remarkable in 

paleoenvironmental characterization of marginal-marine depositional systems (e.g., MacEachern 
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and Pemberton, 1994; Buatois et al., 1997b). Biogenic structures provide key information to 

reconstruct salinity conditions at the time of colonization (e.g., Dashtgard et al., 2012; Diez-

Canseco et al., 2015). 

 

Figure 3.6. Trace-fossil distribution in delta-front and prodelta deposits (FA7) of a wave-dominated delta 

of the Oritupano Field. (A) Asterosoma isp. (As), Thalassinoides isp. (Th), and Teichichnus rectus (Te) in 

storm-dominated distal delta-front deposits. Facies FM2, well OR3, depth 1845.56 m. (B) Paleophycus 

heberti (Pah), Chondrites isp. (Ch), Planolites montanus (Pl), Thalassinoides isp. (Th), and escape trace 

(Et) in prodelta deposits. Facies FN, well OR1, depth 1832.45 m. (C) Asterosoma isp. (As) and 

Ophiomorpha nodosa (Op) in proximal delta-front deposits. Facies FM1, well OR1, depth 1823.31 m. 

Sandstone is impregnated with hydrocarbon resulting in dark color, while mudstone is light color. 
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Four softground ichnofacies have been recognized in the Oficina Formation, namely 

Scoyenia, depauperate Cruziana, Skolithos, and archetypal Cruziana. In the Orinoco Oil Belt, the 

Scoyenia Ichnofacies occurs in both continental and marginal-marine contexts, being present in 

the fluvial deposits of the lower member, the estuarine deposits of the middle member (Fig. 3.9), 

and the deltaic deposits of the upper member. In these environments, deposits containing the 

Scoyenia Ichnofacies display high bioturbation intensity and low diversity. The Scoyenia 

Ichnofacies is characterized by an association of low diversity, mostly monospecific occurrences 

of meniscate trace fossils (e.g., Scoyenia, Beaconites, and Taenidium) and arthropod trackways 

(Frey et al., 1984; Buatois and Mángano, 2004; Krapovickas et al., 2009; Diez-Canseco et al., 

2015, 2016). This ichnofacies is typical of continental environments, in places being associated 

with intensely bioturbated deposits (Frey et al., 1984; Frey and Pemberton, 1984; 1987; Buatois 

and Mángano, 1995, 2002, 2004; Krapovickas et al., 2009). However, it is also present in the 

freshwater portion of inner estuarine and deltaic areas (Buatois et al., 1997b; Mángano and 

Buatois, 2004; Diez-Canseco et al., 2015, 2016; Rodriguez, 2015). Presence of the Scoyenia 

Ichnofacies in the Oficina Formation supports its widespread occurrences in freshwater deposits 

formed in a wide variety of depositional settings. 

In addition to its typical occurrence in abandoned channel-fills and overbank fines in a 

fluvial context, the Scoyenia Ichnofacies also is present in marginal-marine deposits of deltaic and 

estuarine environments in the Orinoco Oil Belt. In marginal-marine contexts, this ichnofacies 

indicates a fluvial-tidal transition zone located in the inner part of the deltaic and estuarine 

environments, which represent a setting placed between the maximum salinity limit and the 

maximum tidal limit (Buatois et al., 1997b, 1998; Dalrymple and Choi, 2007; Buatois and 

Mángano, 2011; Rodriguez, 2015; Diez-Canseco et al., 2015, 2016; Shchepetkina et al., 2016). 

Ichnofaunas from the fluvial-tidal transition zone may be represented by an impoverished marine 

and freshwater ichnofacies. The fluvial-tidal transition zone of the deltaic and estuarine settings 

displays salinity fluctuations from brackish-water to freshwater conditions (Diez-Canseco et al., 

2015; Gingras et al., 2016). Ichnodiversity along the tidal-fluvial transition decreases with 

decreasing saltwater intrusion, indicating that this ichnologic parameter can be used to predict 

salinity conditions during colonization (Buatois et al., 1997b; Dashtgard et al., 2012). The fluvio-

tidal transition is dominated by freshwater to oligohaline (0–2 ppt) and the fluvial reach is 

freshwater (0 ppt) (Shchepetkina et al., 2016). Also, the fluvio-tidal transition zone has been 
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reported with values of salinity from 0 to 0.5 ppm (Remane and Schlieper, 1971; Buatois and 

Mángano, 2011, Diez-Canseco et al., 2015). In the inner part of the deltaic and estuarine systems 

of the Orinoco Oil Belt, freshwater conditions coexisted with tidal influence. As a result, typical 

freshwater trace-fossil suites are present in deposits showing evidence of tidal deposition, 

representing what has been referred to as “the paradox of continental ichnofaunas in tidal 

rhythmites” (Buatois et al., 1997b). Because of this, it has been advocated that freshwater 

ichnofacies should be incorporated as fundamental elements of estuarine and deltaic ichnofacies 

models (Buatois and Mángano, 2011; Diez-Canseco et al., 2015). 
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Figure 3.7. Trace-fossil distribution in offshore-shelf deposits (FA9) from the Oficina Formation in the 

Oritupano Field. (A) Phycosiphon incertum (Ph) and Asterosoma isp. (As) in lower-offshore deposits. 

Facies FR, well OR2, depth 1696.82 m. (B) Asterosoma isp. (AS), Palaeophycus tubularis (Pat), and 

Palaeophycus heberti (Pah) in upper-offshore deposits. Facies FQ, well OR2, depth 1701.39 m. (C) 

Rhizocorallium isp. (Rh) and Phycosiphon incertum (Ph) in lower-offshore deposits. Facies FR, well 

OR2, depth 1702.30 m. (D) Rhizocorallium isp. (Rh), Chondrites isp. (Ch), Thalassinoides isp. (Th), 

Asterosoma isp. (As), and Planolites montanus (Pl) in shelf deposits. Facies FS, well OR1, depth 1821.18 

m. 

 

 

 

Figure 3.8. Relationships among salinity, ichnodiversity, and ichnofacies. After Buatois and Mángano 

(2011; modified from Remane and Schlieper, 1971; Pemberton and Wightman, 1992). 

 

In the Oficina Formation inner estuarine zones, freshwater to terrestrial trace-fossil suites 

are overprinted on brackish-water suites. This results in the superimposition of elements of the 

Scoyenia Ichnofacies cross-cutting elements of the depauperate Cruziana Ichnofacies and 

probably reflects colonization during subsequent freshwater conditions or directly during subaerial 

exposure. This example is interpreted as the record of temporal fluctuations between brackish-

water and freshwater to terrestrial conditions (Buatois and Mángano, 2011; Diez-Canseco et al., 
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2015). Whereas some elements of the marine infauna can adapt to brackish-water environments, 

the freshwater benthos do not survive under brackish-water and, therefore, their trace fossil 

assemblages do not intergrade with brackish-water suites (Pemberton and Wightman, 1992; 

Buatois et al., 1997b; Mángano and Buatois, 2004). Freshwater organisms disappear rapidly with 

a slight increase in the salinity, whereas the marine benthos experience a more gradual decrease in 

number under brackish-water conditions (Remane and Schlieper, 1971; Pemberton and Wightman 

1992; Buatois and Mángano, 2011; Diez-Canseco et al., 2015; Gingras et al., 2016). 

The depauperate Cruziana and Skolithos Ichnofacies also are present in the transgressive 

tide-dominated estuarine deposits of the middle member in the Orinoco Oil Belt formed under 

brackish-water conditions (Fig. 3.9). Extensive ichnologic evidence supports the notion that low 

diversity occurrences of the depauperate Cruziana Ichnofacies are linked with brackish-water 

conditions in the marginal-marine depositional systems (Pemberton et al., 1982; Wightman et al., 

1987, Buatois and Mángano, 2011; Gingras et al., 2016) with values of salinity from 0.5‰ to 

30‰) (Remane and Schlieper, 1971; Buatois and Mángano, 2011; Diez-Canseco et al., 2015). 

These settings encompass a wide variety of subenvironments, including intertidal zones of 

restricted coasts, shallow lagoons, estuaries, bays and delta plains. All these areas are characterized 

by steep salinity gradients that are accompanied by rapid and extreme changes in others factors, 

such as temperature, subaerial exposure, turbulence, oxygen content, and water turbidity. These 

fluctuations result in physiologically stressful conditions for numerous organisms, resulting in low 

ichnodiversity, small body sizes, high mortality rates, rapid reproduction capacity, short life cycles, 

and early sexual maturity (Remane and Schlieper, 1971; Pemberton and Wightman, 1992; Buatois 

and Mángano, 2011; Sisulak and Dashtgard, 2012; Gingras et al., 2016). Brackish-water portions 

of estuarine systems are characterized by lower degrees of bioturbation (as well as less uniform 

distribution of bioturbation) and lower ichnodiversity than their fully marine counterparts. 

The reduced diversity in these brackish-water ecosystems could be associated with 

seasonal cyclicity and tidal currents. In estuarine systems, marine polychaetes are typically 

passively transported by tides from adjacent marine and marginal-marine sites because their larvae 

do not swim (Gingras et al., 2016). The abundance of worm-generated structures in the estuarine 

deposits of the Oficina Formation seems to support this scenario. In addition, inclined heterolithic 

stratified successions (i.e., interbedded sandstone and mudstone beds), which are abundant 

throughout the estuarine succession in the Orinoco Oil Belt, have been regarded as indicators of 
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seasonal cyclicity (Hubbard et al., 2011, Sisulak and Dashtgard, 2012). According to this 

interpretation, the saltwater wedge is introduced upstream during periods of low river discharge, 

resulting in stratified flow and the establishment of brackish-water conditions (i.e., oligohaline to 

mesohaline).  

 

Figure 3.9. Schematic reconstruction of trace-fossil distribution under lowstand and transgressive 

conditions in fluvio-estuarine deposits of the embayment in the Orinoco Oil Belt. (A) Fluvial channel 

deposits are rarely bioturbated, displaying Taenidium isp. (Ta). (B) Estuarine-channel deposits are sparsely 

bioturbated by Ophiomorpha nodosa (Op), Teichichnus rectus (Te), and Rosselia socialis (Ro). Beaconites 

antarcticum (Be) in highly bioturbated estuarine-channel deposits with IHS represent the freshwater portion 

of the inner-estuarine zone. (C) Tidal-flat and tidal creek deposits displaying variable intensities of 

bioturbation and low diversity are indicated by Skolithos linearis (Sk), Ophiomorpha nodosa (Op), 

Diplocraterion habichii (Di), Rosselia socialis (Ro), Teichichnus rectus (Te) Bergaueria isp. (Be), and 

Planolites montanus (Pl). (D) Outer-estuarine sandbar deposits displaying variable intensities of 

bioturbation and low diversity contain Rosselia socialis (Ro), Teichichnus rectus (Te), Planolites montanus 

(Pl), Ophiomorpha nodosa (Op), and Thalassinoides isp. (Th). 
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These conditions promote the establishment of impoverished marine trace-fossil suites 

typical of salinity-stressed environments (Hubbard et al., 2011; Sisulak and Dashtgard, 2012; 

Gingras et al., 2016). Estuarine areas typically experience tidal influence as indicated by the 

abundance of sigmoidal bedding, draped foresets, reactivation surfaces, and bidirectionally 

oriented cross-stratification, whereas the presence of dinoflagellates indicates marine influence 

(Gingras et al., 2016). The brackish-water ichnofauna of the Oficina estuarine systems in the 

Orinoco Oil Belt is associated with dinoflagellates and tidally generated physical structures. 

Dinoflagellates (e.g., Selenopemphix quanta, Sumatrodinium hispidum, Cribroperidinium 

tenuitabulatum, Heteraulacysta campanula and Selenopemphix nephroides) have been reported in 

the middle and upper members of the Oficina Formation in the Orinoco Oil Belt (Solórzano et al., 

2015). Evidence of tidal action includes extensive IHS, mudstone drapes, bidirectionally oriented 

cross-lamination, and tubular tidalites. 

The tide-influenced deltaic deposits (upper member) that overlie the tide-dominated 

estuarine interval in the Orinoco Oil Belt represent highstand progradation (Fig. 3.10). In addition 

to their occurrence in fluvial and estuarine deposits, the Scoyenia Ichnofacies also is present in 

floodplain mudstone of deltaic deposits, as indicated by the presence of monospecific suites of 

Beaconites antarcticum in deposits displaying intense bioturbation. Therefore, the Scoyenia 

Ichnofacies records deposition in the inner part of the deltaic systems between the maximum 

salinity and the maximum tidal limit (Buatois et al., 1997b, 1998; Dalrymple and Choi, 2007; 

Buatois and Mángano, 2011; Rodriguez, 2015; Diez-Canseco et al., 2015, 2016). Freshwater 

species display high abundance in areas where salinity in less than 5 ppm (Remane and Schlieper, 

1971; Buatois and Mángano, 2011; Diez-Canseco et al., 2015). Mudstone drapes and IHS, which 

are characteristic of tide-dominated settings (Pemberton et al., 1982; Thomas et al., 1987; Ranger 

and Pemberton, 1992; Lettley et al., 2009; Gingras et al., 2016), are present in some distributary-

channel deposits recording the presence of tidal currents. These deltaic distributary-channel 

deposits are barren of ichnofauna. The lack of bioturbation may be due to (1) rapid migration of 

2D and 3 dunes; (2) low sand/mud ratio, and (3) extreme brackish-water conditions. Interbedded 

fine-grained interdistributary-bay deposits are also unbioturbated. The absence of bioturbation 

may have resulted from extreme brackish-water conditions, which is expected for deltas that are 

thought to have prograded into a brackish-water embayment rather than the open sea.  
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Figure 3.10. Schematic reconstruction of trace-fossil distribution under regressive conditions in a tide-

dominated delta formed in an embayment (Orinoco Oil Belt), and wave-dominated delta and shoreface-

offshore complex facing the open sea (Oritupano Oil Field). (A) Lower delta-plain deposits contain 

Beaconites antarcticum (Be) in highly bioturbated floodplain mudstone located in the freshwater portion 

of the inner deltaic zone. (B) Deltaic distributary-channel deposits are sparsely bioturbated by 

Ophiomorpha nodosa (Op). (C) Interdistributary-bay deposits display low-diversity suites and low 

bioturbation of Planolites montanus (Pl), Teichichnus rectus (Te), Thalassinoides isp. (Th), Palaeophycus 

tubularis (Pat), and Palaeophycus heberti (Pah). (D) Sandy distributary mouth-bar deposits record isolated 

specimens of Ophiomorpha nodosa (Op). (E) Sparsely bioturbated storm-dominated delta-front deposits 

contain Ophiomorpha nodosa (Op), Teichichnus rectus (Te), Thalassinoides isp. (Th), Asterosoma (As), 

Rosselia socialis (Ro), Planolites montanus (Pl), Palaeophycus tubularis (Pat), and Skolithos linearis (Sk). 

(F) Sparsely bioturbated storm-dominated prodelta deposits contain Planolites montanus (Pl), 

Palaeophycus heberti (Pah), Rhizocorallium isp. (Rh), Thalassinoides isp. (Th), and Chondrites isp. (Ch). 

(G) Strandplain (shoreface-offshore complex) deposits contain high-diversity suites and variable intensities 

of bioturbation, including Ophiomorpha nodosa (Op), Teichichnus rectus (Te), Thalassinoides isp. (Th), 

Asterosoma isp. (As), Rosselia socialis (Ro), Planolites montanus (Pl), Palaeophycus tubularis (Pat), 

Palaeophycus heberti (Pah), Phycosiphon incertum (Ph), Rhizocorallium isp. (Rh), and Chondrites isp. 

(Ch). 
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Rapid salinity fluctuations also are supported by the presence of syneresis crack and 

siderite nodules and bands, all of which are common in brackish-water settings (Plumber and 

Gostin, 1981; MacEachern and Pemberton, 1994; Buatois et al., 2012). Additionally, the 

occurrence of dinoflagellates provides further evidence of marine influence (Solórzano et al., 

2015). In addition to their presence in the estuarine deposits, the depauperate Cruziana Ichnofacies 

and the Skolithos Ichnofacies are present in the wave-dominated deltaic deposits of the Oritupano 

Field, which reflect highstand progradation (Fig. 3.10). The interdistributary bay deposits host 

low-diversity trace-fossil suites, with low intensities of bioturbation, indicative of lower-energy 

conditions in protected bays (Buatois and Mángano, 2011). The scarce occurrences of 

Ophiomorpha nodosa in deltaic distributary channels, exemplifying the Skolithos Ichnofacies, 

indicate pauses in sedimentation or channel abandonment (Buatois and Mángano, 2011). 

Ophiomorpha nodosa in these distributary-channel deposits allows distinction from freshwater 

fluvial channels (Buatois et al., 2008). 

The regressive, wave-dominated deltaic environment of the Oritupano Field also display 

stressed expressions of marine suites (i.e., depauperate Cruziana Ichnofacies) typically associated 

with periods of increased fluvial discharge. These suites tend to alternate with assemblages having 

ichnotaxa (e.g., Chondrites isp.) that are suggestive of times of reduced salinity stress and near-

normal marine salinity conditions, particularly in delta-front and prodelta environments 

(Pemberton et al., 2001; MacEachern et al., 2005; Buatois and Mángano, 2011; Buatois et al., 

2012). The presence of brackish-water ichnofauna is due to increased fluvial discharge from 

distributary deltaic channels; periodic salinity fluctuations due to river freshets play a major role 

in trace-fossil distribution (MacEachern et al., 2005; Buatois et al., 2008). In addition to changes 

in the composition of the ichnofauna, alternation of normal-marine salinity with times of dilution 

of marine salinity are evidenced by the intercalation of highly bioturbated beds with high 

ichnodiversity and sparsely bioturbated intervals with low ichnodiversity. The sparse bioturbation 

may suggest rapid sedimentation, elevated freshwater discharge or sporadic dysaerobic conditions 

(Buatois et al., 2012). Intensely bioturbated deposits with more typical marine ichnotaxa only are 

present in the Oritupano Field, reflecting a highstand progradation. The deltaic system identified 

in the Orinoco Oil Belt also prograded, but into a brackish-water embayment that never attained 

normal-marine conditions.  

In addition, the wave-dominated regressive deposits of the upper member in the Oritupano 
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Field display the presence of the archetypal Cruziana Ichnofacies and the Skolithos Ichnofacies in 

shoreface to offshore and shelf deposits formed along adjacent strandplains (Fig. 3.10). Therefore, 

the Oritupano Field illustrates open-marine facies that are not represented in the Orinoco Oil Belt, 

helping to calibrate the ichnodiversity levels associated with fully marine conditions. It has been 

noted that the maximum diversity of species occurs in fully marine conditions due to the activity 

of a euryhaline fauna under mean seawater salinity (30-40‰) (Remane and Schlieper, 1971; 

Pemberton and Wightman, 1992; Buatois and Mángano, 2011; Diez-Canseco et al., 2015). The 

archetypal Cruziana Ichnofacies occurs in wave-dominated lower shoreface and offshore-shelf 

complexes, whereas the Skolithos Ichnofacies is restricted to the upper through lower shoreface. 

The presence of larger and more vertical Ophiomorpha nodosa in upper- and middle-shoreface 

deposits suggests that the sediments were deposited by relatively slow aggradation under 

moderately high hydraulic conditions. The low diversity of burrows may indicate a stressful 

environment, probably due to the high-energy conditions and migration of dunes and longshore 

bars (Buatois and Mángano, 2011). Moderately bioturbated lower-shoreface deposits are attributed 

to the sporadic emplacement of sand beds during storms. These storm beds were rapidly colonized 

by opportunistic, suspension-feeding organisms prior to their re-colonization and thorough 

reworking by the resident fair-weather infauna. Overall, the absence or scarcity of mudstone 

partings or layers in the upper- to middle-shoreface deposits supports high energy due to waves 

and currents in proximal nearshore settings and indicates deposition above fair-weather wave base 

and continuous water agitation (Sømme et al., 2008; Buatois et al., 2012). In contrast, the faunal 

assemblage present in the lower-shoreface deposits is interpreted to reflect low to moderate energy 

conditions. 

The archetypal Cruziana Ichnofacies is present in offshore-shelf complexes where 

mudstone commonly displays total bioturbation. These deposits represent suspended sediment 

fall-out in low-energy settings and record deposition below fair-weather wave base (offshore) and 

below storm wave base (shelf) (MacEachern and Pemberton, 1992; Sømme et al., 2008; Buatois 

et al., 2012; Ezeh et al., 2016). The Oficina upper-offshore deposits consist of highly bioturbated 

calcareous mudstone units with very rare sandstone beds. The upper-offshore received significant 

amounts of sand from the adjacent lower shoreface, resulting in deposition of sandy muds and 

silts. The high degree of bioturbation and high diversity of the trace fossil assemblage that 

constitute the archetypal Cruziana Ichnofacies in the offshore deposits, as well as the presence of 
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intercalated mudstone and sandstone layers, suggest environments with long periods of reduced 

sedimentation, located between storm and below fair-weather wave base (MacEachern and 

Pemberton, 1992; Buatois and Mángano, 2011). The Oficina lower-offshore deposits grade 

basinward into the shelf. These deposits receive more silt than sand with clay, producing silty 

mudstone facies and are not affected by storms. The shelf zone records sedimentation below the 

limit of storm wave action and displays very low energy and sand-starved conditions (Buatois and 

Mángano, 2011). Ichnodiversity and trace-fossil abundance are higher in the lower offshore than 

in the shelf.  

 

3.7.2. Ichnofacies and Sequence Stratigraphy 

The Teredolites and Glossifungites Ichnofacies have been recorded in both the Orinoco Oil Belt 

and the Oritupano Field. These ichnofacies are useful to delineate discontinuities of sequence-

stratigraphic significance, such as transgressive surfaces of erosion (TSE), regressive surfaces of 

marine erosion (RSME) and co-planar surfaces (flooding surface/sequence boundary) 

(MacEachern et al., 1992; Pemberton et al., 2004; Buatois and Mángano, 2011). Some of the most 

common occurrences of these substrate-controlled ichnofacies are at transgressive surfaces of 

erosion, also known as ravinement surfaces, formed by tides and waves during the landward shift 

of the shoreline (MacEachern et al., 1992; Cattaneo and Steel, 2003; Catuneanu, 2006; Buatois et 

al., 2008; Buatois and Mángano, 2011). Tidal-ravinement surfaces are common in estuarine 

deposits (Allen and Posamentier, 1993; Catuneanu, 2006; Yang et al., 2009). Also, substrate-

controlled ichnofacies may be formed in connection to autogenic processes, such as erosion along 

the base of estuarine, distributary and tidal channels, and cut-bank margins of tidal channels and 

creeks (see Buatois and Mángano, 2011 and MacEachern et al., 2012 for a discussion of examples). 

In particular, autogenic tidal scouring is common in various subenvironments within tide-

dominated systems (Willis, 2005). Differentiating allogenic (i.e. due to relative changes in sea 

level) and autogenic surfaces delineated by substrate-controlled ichnofacies can be complicated. 

In the present case, the combination of stratal stacking pattern reflecting changes in water depth 

and regional mapping of the surfaces strongly suggests an allogenic origin.  

The Glossifungites and Teredolites Ichnofacies are present in the transgressive tide-

dominated estuarine deposits of the Orinoco Oil Belt and in the regressive wave-dominated deltaic 

deposits of the Oritupano Field, in both situations delineating transgressive surfaces of erosion. 
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These surfaces develop substrate-controlled ichnofacies because the exhumed surfaces originate 

within a marine or marginal marine environment, favoring colonization by organisms before 

deposition of the overlying sediment (MacEachern et al., 1992). The middle member estuarine 

deposits of the Orinoco Oil Belt comprise a transgressive system tract displaying a retrogradational 

stratal stacking pattern (Rodriguez, 2015). In these deposits, the Glossifungites Ichnofacies (Fig. 

3.11A-C) is manifested by low to intense bioturbation and low diversity, represented by dwelling 

traces of suspension-feeding organisms (i.e., firmground Thalassinoides isp.) that penetrate into 

the paleosols (Fig. 3.11A-B) and tidal flat muds (Fig. 3.11C) from overlying transgressive 

surfaces. Overlying transgressive strata are typically characterized by abundant shell debris 

(transgressive lags) (Fig. 3.11B) delineating the base of meandering estuarine-channel deposits 

with IHS (Fig. 3.11C). The Glossifungites Ichnofacies is developed in firm but unlithified 

substrates (MacEachern et al., 1992; Pemberton et al., 2004; Buatois and Mángano, 2011). 

Although it may be present in a wide variety of sequence-stratigraphic contexts, the Glossifungites 

Ichnofacies develops preferentially in transgressive settings (Gingras et al., 2004). In this context, 

the shell beds and the Glossifungites Ichnofacies may reflect high-frequency sea-level dynamics 

(from fourth to sixth order), representing TSE of different orders formed within a transgressive 

complex (Rodriguez-Tovar et al., 2007).  

In contrast, in the upper member of the Oficina Formation in the Oritupano Field, the 

Glossifungites Ichnofacies is present in wave-dominated deltaic deposits forming progradational 

stacking patterns, delineating transgressive surfaces of erosion but within a highstand systems 

tract. These surfaces indicate parasequence boundaries, formed under high-energy conditions 

during short-term transgressions that punctuated an overall normal regressive scenario. Therefore, 

they do not indicate systems tract boundaries (Catuneanu, 2006). In these deposits, the 

Glossifungites Ichnofacies is indicated by firmground Thalassinoides isp. that penetrate into highly 

bioturbated interdistributary-bay deposits (Fig. 3.11D); firmground burrows are filled with coarse-

grained sand and shell remains from the overlying transgressive deposits.  

The Teredolites Ichnofacies consists of borings emplaced in marginal-marine 

woodgrounds, typically associated with swamps and bays. The ichnogenus Teredolites is the 

archetypal ichnotaxon in fossil woodgrounds, but other trace fossils including Thalassinoides also 

may be present (Buatois et al., 2002; Gingras et al., 2004). Biogenic structures are passively filled 

with sediments with the overlying sediment.  
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Figure 3.11. Glossifungites Ichnofacies in cores from the Oficina Formation in the Orinoco Oil Belt and the 

Oritupano Field delineating transgressive surfaces of erosion. (A) Thalassinoides isp. (Th) penetrating into 

a paleosol from an overlying transgressive surface that delineates the base of meandering estuarine channel 

deposits. Facies FG3, well A4, depth 779.67 m, middle member, Ayacucho area. (B) Thalassinoides isp. 

(Th) penetrating into the paleosol (FG3) deposits from an overlying transgressive surface. Facies FF3, well 

A8, depth 376.73 m, middle member, Ayacucho area. (C) Thalassinoides isp. (Th) penetrating into the tidal 

mud-flat deposits from an overlying transgressive surface that marks the base of meandering estuarine-

channel deposits with IHS. Facies FF3, well A8, depth 347.77 m, middle member, Ayacucho area. (D) 

Thalassinoides isp. (Th) penetrating into the interdistributary-bay deposits from an overlying transgressive 

surface. Facies FK, well OR3, depth 1839.16 m, upper member, Oritupano Field. Note that in A, C, and D 

sandstone is impregnated with hydrocarbon resulting in dark color, while mudstone is light color. 
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The Teredolites Ichnofacies occurs in resistant xylic substrates that may be preserved as 

coal or lignite in the stratigraphic record (Pemberton et al., 2001). This ichnofacies is associated 

with omission surfaces formed in a wide variety of paralic settings, such as bays, estuaries, 

lagoons, and deltas (Bromley et al., 1984; Pemberton et al., 1992; MacEachern et al., 2007). The 

Teredolites Ichnofacies occurs in brackish-water to fully marine environments, and the involved 

tracemakers apparently cannot tolerate freshwater (Buatois and Mángano, 2011). The Teredolites 

Ichnofacies is delineated by very high density of woodground Thalassinoides isp. penetrating coal 

layers in both the estuarine deposits of the middle member in the Orinoco Belt and the deltaic 

deposits of the upper member in the Oritupano Field (Fig. 3.12A-C). The burrows are filled with 

coarse-grained sands and shell remains from overlying transgressive lags. In the estuarine deposits 

of the Orinoco Belt, the Teredolites Ichnofacies occurs in swamp deposits (Fig. 3.12A-B), whereas 

in the Oritupano Field, it developed in interdistributary bay facies (Fig. 3.12C). 
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Figure 3.12. Teredolites Ichnofacies in cores from the Oficina Formation in the Orinoco Oil Belt and the 

Oritupano Field delineating transgressive surfaces of erosion. (A) Thalassinoides isp. (Th) penetrating 

into a coal layer of swamp deposits (FH2) from an overlying transgressive surface. Facies FA4, well A10, 

depth 415.74 m, middle member, Ayacucho area. (B) Thalassinoides isp. (Th) penetrating into coal layers 

in the swamp deposits (FH2) from an overlying transgressive surface. Facies FA4, well A8, depth 326.44 

m, middle member, Ayacucho area. (C) Thalassinoides isp. (Th) penetrating into coal layers in the 

interdistributary-bay deposits from an overlying transgressive surface in the Oritupano field. Facies FK, 

well OR3, depth 1838.24 m, upper member, Oritupano Field. 

 

 

3.7.3. Comparison of the Miocene Oficina Formation with the Cretaceous McMurray Formation 

of western Canada 

The Miocene Oficina Formation and the Cretaceous McMurray Formation of northern Alberta, 

Canada represent two of the most important oil accumulations in the world. These two units are 

remarkably similar with respect to sedimentology, stratigraphy, ichnology and palynology (Table 

3.4). Recently, the origin of the middle member of the McMurray Formation has been subject to 

intense debate (cf. Blum, 2017; Gingras and Leckie, 2017). 

Similar to the Oficina Formation, the McMurray Formation has been subdivided into three 

members. The lower member is dominated by lowstand fluvial deposits, the middle member is 

characterized by transgressive estuarine point-bar deposits, and the upper member consists of 

highstand coastal marine deposits (Crerar and Arnott, 2007; Musial et al., 2012). The fluvial 

deposits of the McMurray Formation consist of cross-stratified pebbly to very coarse-grained 

sandstone formed in braided channels. These channel-fill deposits are locally interbedded with 

overbank mudstone or siltstone units that contain continental ichnofossils (Musial et al., 2012). A 

freshwater ichnofauna has been recognized recently, consisting of Taenidium bowni 

(Naktodemasis bowni in original study, but see Krapovickas et al., 2009, Diez-Canseco et al., 2016 

and Buatois et al., 2016a for a discussion on the ichnotaxonomic status of Naktodemasis), 

Planolites isp., and Taenidium isp. (Musial et al., 2012). Fluvial deposits of the Oficina Formation 

are characterized by cross-stratified, pebbly, very coarse- to medium-grained sandstone 

representing braided channels (Rodriguez, 2015). In these fluvial deposits, bioturbation is 

normally absent, but Taenidium isp. occurs in overbank mudstone units above channel-fill 

deposits. 
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Table 3.4. Comparison between the Oficina and McMurray formations. No micropaleontological 

information is available for the Oritupano Field. Information on the McMurray Formation based 

on Gingras et al. (2016). 

 

Unit Setting Characteristic Oficina Formation 

(Miocene, Venezuela) 

McMurray Formation 

(Cretaceous, Canada) 

L
o
w

er
 

F
lu

v
ia

l 

Sedimentology Massive to planar trough cross-

stratified pebble to medium-grained 

fluvial braided channels. 

Cross-stratified pebble to very coarse-grained 

fluvial braided channels. 

Ichnology Terrestrial bioturbation is normally 

absent. However, Taenidium isp. 

present in overbank setting. 

Continental bioturbation is normally absent. 

However, Taenidium bowni and Planolites 

isp. occur in IHS-bearing units. 

Palynology Terrestrial palynomorphs: 

Bombacacidites baculatus, 

Psilatricolporites pachydermatus, 

Bombacacidites Zuatensis, 

Bombacacidites brevis, 

Spirosyncolpites spiralis, Grimsdalea 

magnaclavata, Crassoretitriletes 

vanraadshooveni. 

Not applicable 

M
id

d
le

 

T
id

e-
d
o
m

in
at

ed
 e

st
u
ar

in
e
 

E
st

u
ar

in
e 

ch
an

n
el

s 
an

d
 s

an
d
b
ar

s 

Sedimentology Estuarine channels and sandbars 

characterized by trough and planar 

cross-stratified sandstone with 

mudstone drapes. Estuarine channel-

fills with IHS and convolute 

lamination.  

Estuarine channels and in-channel bar 

deposits characterized by trough and planar 

cross-stratified and current rippled sandstone. 

Estuarine channels with IHS in sandstone- 

and mudstone-dominated units.  

Ichnology Estuarine channels in the brackish-

water portion: depauperate Cruziana 

Ichnofacies (Rosselia socialis, 

Teichichnus rectus) and Skolithos 

Ichnofacies (Ophiomorpha nodosa), 

BI: 0-1, firmground of Thalassinoides 

isp.. 

Estuarine channels in the freshwater 

portion: Beaconites antarcticum, BI 4-

6, recording deposition between the 

maximum salinity limit and the 

maximum tidal limit. 

Estuary channels and in-channel bar deposits: 

Planolites isp., Cylindrichnus isp., 

Palaeophycus isp., Skolithos isp., 

Arenicolites isp., fugichnia, Conichnus isp.. 

BI 0–2. 

Estuarine channels with IHS in sandstone-

dominated units: Palaeophycus isp.,  

Rosselia isp., Arenicolites isp., Bergaueria 

isp., Thalassinoides isp., Lockeia isp., 

Ophiomorpha isp., Planolites isp., 

Cylindrichnus isp., Gyrolithes isp., fugichnia, 

BI 0–5. 

Estuarine channels with IHS in mudstone-

dominated units: Rosselia isp., 

Rhizocorallium isp., Chondrites isp.. BI 0–3. 

Firmground of Thalassinoides isp., Skolithos 

isp., and Palaeophycus isp..  

Palynology Not applicable Dinocysts: Nyktericysta spp., Vesperopsis 

spp. 
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T
id

al
-f

la
t 

Sedimentology Tidal flats-tidal creek deposits consist 

of interbedded mudstone and 

sandstone. 

Tidal flat deposits consist of horizontal, wavy 

to lenticular bedded heterolithic facies.  

Ichnology Tidal flats-tidal creeks: Cruziana 

Ichnofacies (Planolites montanus, 

Teichichnus rectus, Rosselia socialis, 

Bergaueria isp.) and Skolithos 

Ichnofacies (Skolithos linearis, 

Diplocraterion habichii, Ophiomorpha 

nodosa), BI 0-1. Firmground of 

Thalassinoides isp.  

Tidal flats: Planolites isp., Teichichnus isp., 

Cylindrichnus isp., Palaeophycus isp., 

Skolithos isp., Lockeia isp., Arenicolites isp., 

Conichnus isp., Ophiomorpha isp., 

Schaubcylindrichnus freyi, fugichnia. 

Moderate diversity and impoverished. BI 3–

5.  

Palynology Dinoflagellates: Selenopemphix 

quanta, Sumatrodinium hispidum, 

Cribroperidinium tenuitabulatum, 

Heteraulacysta campanula, 

Selenopemphix nephroides. 

 

Terrestrial palynomorphs: 

Bombacacidites baculatus, 

Bombacacidites brevis, 

Psilatricolporites pachydermatus, 

Bombacacidites Zuatensis, 

Spirosyncolpites spiralis, Grimsdalea 

magnaclavata, Crassoretitriletes 

vanraadshooveni. 

 

Not applicable 

Foraminifers Benthic foraminifers: Miliammina sp., 

Ammobaculites salsus, Elphidium 

poeyanum, Boliminella elegantissima, 

Bolivinids, Uvigerina isidroensis, 

Dorothia nutalli, Arenoparrela sp., 

Hanzawaia carstensi, Cibicidoides sp., 

Ammonia beccarii, Amphistegina 

lessonii, and Pseudononion 

pizarrensis. 

 

Planktonic foraminifers: Globorotalia 

foshi peripheroacuta, Globorotalia 

foshi peripheroronda 

Not applicable 

U
p

p
er

 

T
id

e-
d
o
m

in
at

ed
 d

el
ta

 

Sedimentology Lower delta plain: characterized by 

mudstone and planar and trough cross-

stratified sandstone with mudstone 

drapes and IHS. 

Not applicable 

Ichnology Lower delta plain: Scoyenia 

Ichnofacies (Beaconites antarcticum), 

BI: 4-6. 

 Not applicable 
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Palynology Dinoflagellates: Selenopemphix 

quanta, Sumatrodinium hispidum, 

Cribroperidinium tenuitabulatum, 

Heteraulacysta campanula, 

Selenopemphix nephroides. 

 

Terrestrial palynomorphs: 

Bombacacidites baculatus, 

Bombacacidites brevis, 

Psilatricolporites pachydermatus, 

Bombacacidites Zuatensis, 

Spirosyncolpites spiralis, Grimsdalea 

magnaclavata, Crassoretitriletes 

vanraadshooveni. 

Not applicable 

Foraminifers Benthic foraminifers: Miliammina sp., 

Ammobaculites salsus, Elphidium 

poeyanum, Boliminella elegantissima, 

Bolivinids, Uvigerina isidroensis, 

Dorothia nutalli, Arenoparrela sp., 

Hanzawaia carstensi, Cibicidoides sp., 

Ammonia beccarii, Amphistegina 

lessonii, and Pseudononion 

pizarrensis. 

 

Planktonic foraminifers: Globorotalia 

foshi peripheroacuta, Globorotalia 

foshi lobata 

Not applicable 

W
av

e-
d
o
m

in
at

ed
 d

el
ta

 

c
h

an
n
e
l,

 b
a
y

 a
n
d

 s
a
n
d

y
 m

o
u
th

 b
ar

 

Sedimentology Wave- dominated delta. Distributary 

channels: massive to planar cross-

stratified sandstone. Interdistributary 

bays: laminated mudstone and coal. 

Sandy mouth bars: parallel stratified 

and trough and planar cross-stratified 

sandstone. 

Not applicable 

Ichnology Distributary channels: Skolithos 

Ichnofacies (Ophiomorpha nodosa), BI 

0-1. 

Interdistributary bays: Cruziana 

Ichnofacies (Planolites montanus, 

Teichichnus rectus, Palaeophycus 

tubularis, Thalassinoides isp., and 

Palaeophycus heberti), BI 0-1. Sandy 

mouth bars: Ophiomorpha nodosa, BI 

0-1. 

Not applicable 
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D
el

ta
-f

ro
n
t 

to
 P

ro
d
el

ta
 

Sedimentology Delta front: hummocky, trough and 

planar cross-stratified sandstone. 

Prodelta: Parallel-laminated calcareous 

mudstone with shell remains.  

Open bay delta: wave- and storm-dominated 

prodelta to delta front. Heterolithic 

successions of HCS and oscillation rippled 

sandstone and parallel-laminated dark 

mudstone. 

Ichnology Delta front: Skolithos and Cruziana 

Ichnofacies (Asterosoma isp., Rosselia 

socialis, Planolites montanus, 

Thalassinoides isp., Teichichnus 

rectus, Palaeophycus tubularis, 

Palaeophycus heberti, Ophiomorpha 

nodosa, Skolithos linearis), BI: 0-1. 

Prodelta: depauperate Cruziana 

Ichnofacies (Planolites montanus, 

Paleophycus heberti, Rhizocorallium 

isp., Thalassinoides isp., Chondrites 

isp.), BI: 0-1.  

Prodelta to delta front: Planolites isp., 

Palaeophycus isp., Skolithos isp., 

Cylindrichnus isp., Teichichnus isp., 

fugichnia, Chondrites isp., Gyrolithes isp., 

Arenicolites isp., Rhizocorallium isp., 

Asterosoma isp., Conichnus isp., and 

Bergaueria isp.. BI 2–4.  

W
av

e-
d
o
m

in
at

ed
 s

h
o
re

fa
ce

 

Sedimentology Wave-dominated shoreface. Middle 

and upper shoreface deposits consist of 

scarcely bioturbated massive 

sandstone. Lower shoreface deposits 

consist of moderately bioturbated 

massive sandstone. 

Not applicable 

Ichnology Upper and middle shoreface: Skolithos 

Ichnofacies (robust Ophiomorpha 

nodosa), BI: 0-1. Lower shoreface: 

Archetypal Cruziana Ichnofacies 

(Asterosoma isp., Teichichnus rectus, 

Planolites montanus, Palaeophycus 

tubularis, Thalassinoides isp., 

Palaeophycus heberti, Ophiomorpha 

nodosa), high ichnodiversity. BI 2-3. 

Not applicable 

O
ff

sh
o
re

-s
h
el

f 
co

m
p
le

x
 

Sedimentology Offshore-shelf complex: bioturbated 

calcareous mudstone.  

Marine offshore: bioturbated silty and sandy 

mudstone. 

Ichnology Offshore: archetypal Cruziana 

Ichnofacies (Asterosoma, Planolites 

montanus, Palaeophycus tubularis, 

Phycosiphon incertum, Teichichnus 

rectus, Palaeophycus heberti, 

Rhizocorallium isp., Thalassinoides 

isp., Rosselia socialis), high 

ichnodiversity, BI 2-6. 

Shelf: Archetypal Cruziana 

(Asterosoma isp., Chondrites isp., 

Planolites montanus, Teichichnus 

rectus), BI: 0-4. 

Marine offshore: Archetypal Cruziana 

Ichnofacies (Planolites isp., Chondrites isp., 

and Teichichnus isp., Palaeophycus isp., 

Skolithos isp., Phycosiphon isp., 

Rhizocorallium isp.), BI 4–5. 
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Taenidium bowni, Taenidium isp., Cylindrichnus, and Siphonichnus have been recorded in 

channel-fills with IHS of the lower member of the McMurray Formation displaying both brackish-

water and freshwater ichnofacies (Harris et al., 2016). Similar example has been documented 

herein for the Oficina Formation with Beaconites antarcticum overprint Teichichnus rectus in 

channel-fill intervals (Buatois and Mángano, 2011; Diez-Canseco et al., 2015). In both formations, 

the Scoyenia and Cruziana Ichnofacies delineate the fluvial-tidal transition area located in inner 

estuarine zones, between the maximum salinity limit and the maximum tidal limit (Buatois et al., 

1997b, 1998; Dalrymple and Choi, 2007; Buatois and Mángano, 2011; Rodriguez, 2015; Diez-

Canseco et al., 2015, 2016). 

The middle members of both the Oficina and McMurray formations have been interpreted 

to represent tide-dominated estuarine systems. Both formations record estuarine channels with 

point bars having IHS formed by lateral accretion. In the Oficina Formation, these channel-fill 

deposits record a depauperate marine ichnofauna with low ichnodiversity and degree of 

bioturbation. In the McMurray Formation, channel deposits show an impoverished marine fauna 

displaying variable intensities of bioturbation and recording low to moderate ichnodiversity. The 

tidal-flat deposits of the Oficina Formation display similar low ichnodiversity and an impoverished 

marine ichnofauna. Although moderate diversity levels are attained in the tidal-flat deposits of the 

McMurray Formation, ichnofaunas therein can be regarded as examples of the depauperate 

Cruziana Ichnofacies, as is the case of the Oficina Formation. Dinoflagellates also are common in 

the middle members of both the McMurray and Oficina formations, albeit occurring in lower 

abundance than terrestrially derived palynomorphs. Additionally, the Oficina Formation contains 

foraminifers (I.G.I.S and BioSTRAT, 2006; Suarez et al., 2014b; Solórzano et al., 2015). 

Dinocysts also have been reported in the middle member of the McMurray Formations (Gingras 

et al., 2016). The diversity of the dinoflagellates in the Oficina Formation is greater than in the 

McMurray Formation. Overall, the low diversity of trace fossils and marine plankton is consistent 

with brackish-water conditions (Hubbard et al., 2011; Sisulak and Dashtgard, 2012; Gingras et al., 

2016). A saltwater wedge introduced upstream during periods of low river discharge resulted in 

stratified flow and the establishment of brackish water conditions (Hubbard et al., 2011, Sisulak 

and Dashtgard, 2012). Abundance of continental palynomorphs may dilute the presence of 

dinoflagellates in marginal-marine settings (Czarnecki et al., 2014; Gingras et al., 2016). High 

river discharge facilitates the movement of the saltwater wedge downstream, allowing for greater 
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concentrations of terrestrially derived pollen and spores (Hubbard et al., 2011, Sisulak and 

Dashtgard, 2012). In any case, palynologic and ichnologic information provides incontrovertible 

evidence of marine influence. The upper member of the Oficina Formation is more complex than 

the upper member of the McMurray Formation because the former comprises a wide range of 

depositional environments, encompassing delta-plain to delta-front, prodelta, shoreface and 

offshore-shelf deposits. However, the deltaic intervals in both units are similar with regard to 

sedimentology and ichnology. The upper member of the McMurray Formation records deposition 

in an open bay delta, including wave- and storm-dominated prodelta to delta front environments. 

The archetypal Cruziana Ichnofacies is present in these deposits with high ichnodiversity and 

bioturbation, displaying normal marine conditions. Similar prodelta to delta-front deposits also are 

present in the Oficina Formation, as represented by wave-dominated deltaic systems. Brackish-

water and near-normal marine salinity conditions alternate in the delta-front and prodelta 

environments. The presence of complex feeding traces indicative of fully marine conditions in 

these deposits indicates the recurrent return to near-normal marine salinity conditions (Pemberton 

et al., 2001; MacEachern et al., 2005; Buatois and Mángano, 2011; Buatois et al., 2012). Shoreface 

and offshore-shelf environments are present in the upper member of the Oficina Formation. The 

archetypal Cruziana Ichnofacies occurs in these deposits, displaying high ichnodiversity and 

intensity of bioturbation, indicating normal-marine salinity conditions. Offshore deposits also are 

recorded in the McMurray Formation as indicated by the presence of high-diversity suites of the 

archetypal Cruziana Ichnofacies. It has been suggested that the middle member of the McMurray 

Formation, traditionally interpreted as brackish-water and estuarine (e.g., Pemberton et al., 1982; 

Ranger and Pemberton, 1992; Gingras et al., 2016; Gingras and Leckie, 2017), may represent 

deposition in freshwater fluvial environments (Fustic et al., 2012; Blum et al., 2016; Blum, 2017). 

Our current study yields insights into this current controversy by showing that the brackish-water 

estuarine deposits in the Oficina Formation display an ichnofauna that is strikingly similar to that 

of the middle interval of the McMurray Formation. In addition, the middle member of these two 

units contain marine dinoflagellates, further reinforcing the brackish-water interpretation. 

 

3.8. Conclusions 

 

The Miocene Oficina Formation provides an ideal opportunity to evaluate trace-fossil distribution 
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and ichnofacies because it comprises a wide range of depositional environments formed under 

variable salinity conditions. These include freshwater fluvial and fluvio-tidal transition zones, 

brackish-water estuarine and delta-plain segments, alternating brackish-water and near-normal 

marine delta-front and prodelta settings, and normal-marine salinity shoreface, offshore and shelf 

settings. Six ichnofacies have been recognized in the Oficina Formation; Scoyenia, depauperate 

Cruziana, Skolithos, archetypal Cruziana, Teredolites, and Glossifungites. The former four are 

softground ichnofacies that occur along a salinity gradient, whereas the latter two represent 

substrate-controlled ichnofacies that occur at discontinuity surfaces. The faunal distribution in the 

Oficina Formation is strongly controlled by salinity and physical sedimentological processes. 

Therefore, biogenic structures provide key information to reconstruct salinity conditions. The 

Orinoco Oil Belt contains freshwater and brackish-water ichnofauna. Fluvial freshwater deposits 

of tide-influenced estuarine, distributary channel-fills and tide-dominated delta settings are locally 

intensely bioturbated and are reflected by very low-diversity occurrences of the Scoyenia 

Ichnofacies. Tidal currents and brackish-water conditions within estuarine environments allowed 

the establishment of opportunistic and impoverished marine ichnofacies (i.e., Skolithos and 

depauperate Cruziana Ichnofacies) characterized by low bioturbation and ichnodiversity. The 

Oritupano Field illustrates open-marine facies that are not represented in the Orinoco Oil Belt, 

therefore helping to calibrate the ichnodiversity levels associated with fully marine conditions. 

Deltaic distributary channels and interdistributary bays record brackish-water conditions with the 

presence of Skolithos and depauperate Cruziana Ichnofacies, displaying low bioturbation and 

ichnodiversity. Delta-front and prodelta deposits contain ichnotaxa more typical of normal marine 

environments (e.g., Chondrites) in intervals that alternate with beds containing stressed marine 

trace-fossil suites (i.e., depauperate Cruziana Ichnofacies). Shoreface, offshore and shelf deposits 

are characterized by intense bioturbation and overall very high diversity, and are represented by 

the Skolithos and archetypal Cruziana Ichnofacies, further supporting normal-marine salinity 

conditions in this part of the basin. The Glossifungites and Teredolites Ichnofacies are 

characterized by firmground and woodground Thalassinoides isp., respectively, and represent 

transgressive surfaces of erosion (parasequence boundaries), in the tide-dominated estuarine and 

wave-dominated deltaic environments. 
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Transition 

 

Chapter 3 provides a detailed documentation of the trace-fossil distribution and ichnofacies 

gradients along a depositional profile for the whole Oficina Formation. The next chapter (Chapter 

4) includes the third-order sequence-stratigraphic model, based on the integration of 

sedimentologic, stratigraphic, ichnologic, and biostratigraphic datasets. 

I built a third-order sequence-stratigraphic model for the Oficina Formation in the Orinoco 

Oil Belt, based on the integration of sedimentologic, stratigraphic, ichnologic, and biostratigraphic 

information. Therefore, I interpreted the palynomorphs, planktonic foraminifers and calcareous 

nannoplankton biozones, the maximum flooding surfaces (MFS-1, MFS-2 and MFS-3), the 

sequence boundaries (U-1, U-2, U-3, and U-4), the depositional environments (fluvial, estuary and 

delta) and the systems tract (LST, TST and HST). Subsequently, I integrated these datasets, which 

allowed me to define two third-order depositional sequences (DS1-2). DS1 is bounded by U-1 and 

U-2 and includes MFS-1. DS1 consists of lowstand fluvial valleys, transgressive estuarine valleys 

and thin highstand deltaic deposits. DS2 is bounded by U-2 and U-3 and includes MFS-2. DS2 

comprises thin transgressive deposits and thick highstand deltaic deposits. Supervisors Luis A. 

Buatois and M. Gabriela Mángano checked sequence-stratigraphic interpretations and edited the 

manuscript. Co-author Williams Rodriguez helped with core logging. Co-author A. Farias assisted 

with identification of microfossils. 
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Chapter 4 

4. Sequence stratigraphic framework of the Miocene Oficina Formation, Orinoco 

Oil Belt of Venezuela: Integrating multiple datasets for the recognition of third-

order depositional sequences 

 

Solórzano, E.J., Buatois, L.A., Farias, A., Rodríguez, W.J., Mángano M.G., Sequence stratigraphic 

framework of the Miocene Oficina Formation, Orinoco Oil Belt of Venezuela: Integrating multiple 

datasets for the recognition of third-order depositional sequences, AAPG Bulletin. In review. 

 

4.1. Abstract 

 

The middle Miocene Oficina Formation (15.97-12.7 Ma) in the Orinoco Oil Belt comprises a 

single 2nd-order sequence, which is divided into two third-order sequences (DS1-2), based on the 

integration of sedimentologic, stratigraphic, ichnologic and biostratigraphic datasets using well 

logs and core. DS1 is bounded by sequence boundaries U-1 (15.97 Ma) and U-2 (13.82 Ma) and 

includes maximum flooding surface MFS-1 (14.91 Ma). It consists of thick lowstand systems tract 

(LST) and transgressive systems tract (TST) strata, and a thin highstand systems tract (HST) 

package. DS1 is associated with incised-valley systems formed during a relative sea-level fall. 

These valleys consist of fluvial braided channels, swamps, paleosols, floodplains and the Scoyenia 

Ichnofacies. The fluvial valleys were replaced by estuaries during the Langhian transgression. The 

estuarine valley-fill displays a retrogradational stacking pattern, comprising meandering estuarine 

channels, tidal flats, estuarine sandbars, paleosols, and swamps. The Glossifungites, Teredolites, 

Scoyenia, Skolithos, and depauperate Cruziana Ichnofacies have been identified. Based on 

regional mapping of the Glossifungites Ichnofacies, DS1 was subdivided into three fourth-order 

sequences. DS2 is bounded by U-2 (13.82 Ma) and U-3 (12.7 Ma) and includes MFS-2 (13.53 

Ma). It consists of a thin TST and a thick HST. It was essentially developed during the Serravallian 

sea-level highstand, and is constituted by lower delta plain deposits, displaying a progradational 

stacking pattern. These deposits consist of distributary channels, interdistributary bays, 

floodplains, and the Scoyenia Ichnofacies. Third-order sequences closely match with the middle 

Miocene third-order global eustatic curve and define the facies architecture at reservoir scale. 
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4.2. Introduction 

 

During the last decade, the extensive heavy and extra heavy oil sand deposits of the middle 

Miocene Oficina Formation in the Orinoco Oil Belt (Fig. 4.1) became an increasingly important 

target for the oil industry. Venezuela has the world's largest oil reserve in place, with the oil sands 

in the Orinoco Oil Belt hosting 1,020 MMM barrels of which 218 MMM of barrels of in-place oil 

can be produced with the current technology (Magna Reserva Project, 2012).  

A detailed biostratigraphic analysis allowed setting up a chronostratigraphic framework for 

the Oficina Formation. Calcareous nannoplankton, planktonic foraminifers, and palynomorphs 

have become important tools for establishing a paleoenvironmental and sequence-stratigraphic 

framework (Solórzano et al., 2015). In addition, recent work has allowed definition of second-

order depositional sequences (Martinius et al., 2012; Rodriguez, 2015; Solórzano et al., 2017; 

Rodríguez et al., 2018). Third-order sequences also have been recognized in the Oficina Formation 

for the Petrocedeño area (Martinius et al., 2012), which provide a better understanding of reservoir 

distribution and are associated with relative sea-level changes, systems tract and sedimentary 

environments. The middle Miocene eustatic changes (Haq and Schutter, 2008) played an essential 

role in the definition of third-order cycles for the Oficina Formation. The Oficina Formation was 

deposited during the oblique collision phase between the Caribbean and South American plates 

(Parnaud et al., 1995), with the area being subjected to strong tectonic events that controlled 

sedimentation (Audemard et al., 1985; Martinius et al., 2012).  

The Oficina Formation comprises a wide range of depositional environments, from fluvial 

to tide-dominated estuarine and delta plain settings, which are represented in the lower, middle, 

and upper members, respectively (Rodriguez, 2015; Solórzano et al., 2017; Rodríguez et al., 2018). 

Proper understanding of the variability of sedimentary facies in these depositional environments 

is important for both exploration strategies and reservoir characterization. For example, channel 

migration played an important role in the distribution of sand bodies, resulting in complex facies 

and stratigraphic architecture. The main goal of this paper is to propose a third-order sequence-

stratigraphic framework for the Oficina Formation in the Orinoco Oil Belt by the integration of 

sedimentologic, stratigraphic, ichnologic and biostratigraphic datasets using well logs and core. 
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Figure 4.1. Map of the Orinoco Oil Belt and the main associated structural features. 

 

4.3. Geologic setting 

 

Deposition within the Eastern Venezuela Basin can be divided into four main phases: (1) a 

Paleozoic pre-rift phase, (2) a rift-and-drift phase during Jurassic and earliest Cretaceous time, (3) 

a Cretaceous-Paleogene passive margin period, and (4) a Paleogene-Quaternary oblique collision 

phase (transpression) between the Caribbean and South American plates, during which the 

foreland basin and the Serranía del Interior were formed (Eva et al., 1989; Parnaud et al., 1995; 

Talwani, 2002) (Fig. 4.2). The first phase is represented by Cambrian sand and shale deposition, 

as shown by the Hato Viejo and Carrizal formations, respectively (Fig. 4.2). During the second 

phase, red sediments, affected by basaltic sills (La Quinta Formation) accumulated in the Espino 

graben during the Jurassic. The passive margin phase consists of three major transgressive 

episodes (Fig. 4.2). The first of these transgressive episodes took place during the Cretaceous and 

is represented by the Barremian Barranquin Formation, the Albian-Aptian El Cantil and Canoa 

formations, the Cenomanian-Campanian Querecual, San Antonio, and Tigre formations, and the 
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Maastrichtian San Juan Formation. The main hydrocarbon source rocks were deposited during this 

phase. The second transgressive episode is represented by the Paleocene Vidoño Formation and 

the Eocene Caratas Formation. The third transgressive episode of the passive margin phase took 

place during the early Oligocene with the accumulation of the lower interval of the Merecure 

Formation. Finally, the collision phase was diachronic, spanning the early-middle Eocene in the 

west to the late Oligocene-middle Miocene in the east, and continues to present day. This phase is 

represented by the upper interval of the Merecure Formation (late Oligocene), early-middle 

Miocene Oficina Formation, early-middle Miocene Carapita Formation, late-middle Miocene 

Freites Formation, late Miocene La Pica Formation, and Plio-Pleistocene Mesa and Las Piedras 

formations.  

 

 

Figure 4.2. North to south stratigraphic correlation chart along the Eastern Venezuela Basin showing 

general chronostratigraphy and tectonic phases (modified from Parnaud et al., 1995). 
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The Eastern Venezuela Foreland Basin formed on the passive margin of the South American 

Craton during the Neogene. This basin comprises a prism of Cenozoic sediment wedging toward 

the south (Parnaud et al., 1995; Di Croce et al., 1999) indicating that tectonic control played a 

significant role on sedimentation and the history of changes in accommodation potential in the 

basin (Fig 4.3). 

 

 

Figure 4.3. North to south schematic cross-section of the Eastern Venezuela Basin displaying Cenozoic 

sediments wedging toward the Orinoco Oil Belt, which indicates tectonic control due to the wedge-

shaped geometry of sediments (modified from Parnaud et al., 1995). 

 

The Eastern Venezuela Basin is composed of several petroleum provinces, and one of them 

is represented by the oil fields of the Orinoco Oil Belt (Parnaud et al., 1995), which spans an area 

of 55,315 km2 in the southern margin of the Eastern Venezuela Basin, sub-parallel to the Orinoco 

River (Fig. 4.1). The Hato Viejo fault system subdivides the Orinoco Oil Belt into two provinces, 

the western and eastern provinces (Latreille et al., 1983; Audemard et al., 1985) (Fig. 4.4). The 

western province is located west of the Hato Viejo fault system and consists of the Boyacá and 

Junín areas. In the Junín area, the Oficina Formation overlies the Tigre and Canoa formations (late 

Maastrichtian), the Carrizal and Hato Viejo formations (Cambrian), and the igneous-metamorphic 

basement. In the Boyacá area, the Oficina Formation (Miocene) overlies the Roblecito Formation 

(Oligocene), the La Pascua Formation (Oligocene), the Tigre-Canoa formations (Cretaceous), the 

La Quinta Formation (Jurassic), and the igneous-metamorphic basement (Fig. 4.4). The eastern 

province is located east of the Hato Viejo fault system, and includes the Carabobo and Ayacucho 

areas, where the Oficina Formation rests on top of the Precambrian basement (Fig. 4.4). 
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Additionally, the eastern province was divided into central and eastern domains by the Magna 

Reserva Project (2012). The central domain includes the southeastern part of the Junín area and 

the northwestern part of the Ayacucho area. The eastern domain comprises the southeastern part 

of the Ayacucho area and the entire Carabobo area. In this study, the Pre-Cretaceous top consists 

of Paleozoic and basement rocks. The Paleozoic unconformity is truncated southeast of the Junín 

area onto basement in Junín 10 and Junín 6 blocks (Solórzano et al., 2009). The Cretaceous 

unconformity (a combination of nondeposition and erosion) is truncated towards the south of the 

Junín area onto Paleozoic unconformity and is well developed in the northern area (Solórzano et 

al., 2009).  

The Orinoco Oil Belt hosts the middle Miocene Oficina Formation (Audemard et al., 1983; 

Solórzano et al., 2015, 2017). This unit is divided into (a) a lower member, overlying Cretaceous 

or Pre-Cretaceous rocks (basement or Paleozoic) and of fluvial origin, (b) a middle member 

characterized by tide-dominated brackish-water estuarine deposits formed within a transgressive 

systems tract resting directly on top of the lower Oficina and (c) an upper member recording tide-

dominated deltaic sedimentation representing a highstand progradation into a brackish-water 

embayment (Rodriguez, 2015; Solórzano et al., 2017;  Rodríguez et al., 2018). 

 

 

Figure 4.4. West to east structural section showing Cenozoic stratigraphy across the Orinoco Oil Belt 

(modified from Audemard et al., 1985). 
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4.4. Materials and Methods 

 

The chronostratigraphic framework for the Orinoco Oil Belt was developed using calcareous 

nannoplankton, palynomorphs, and foraminifers from previous studies (Audemard et al., 1985; 

Solórzano et al., 2015; Solórzano and Farias, 2017). Approximately 3000 samples from 96 wells, 

mostly side wall core and core, have been revised and reinterpreted. The ages of the strata were 

assigned based on the interpretation and integration of the biozones following key references, such 

as Martini (1971) for nannoplankton, Muller et al. (1987) and Williams and Bujak (1985) for 

palynomorphs, and Blow (1969, 1979) for foraminifers. The stratigraphic ranges were updated 

following more recent references (see Solórzano et al., 2015; Solórzano and Farias, 2017). 

Integration of the biozones was calibrated with the time scale of Ogg et al. (2008). The bioevents 

were interpreted based on the First Appearance Datum [FAD] and Last Appearance Datum [LAD] 

of the species. Twenty seven cored wells from the Oficina Formation in the Orinoco Oil Belt were 

described (B1, B2, B3 Boyacá area, J1, J2, J3, J4, J5, J6, J7 Junín area A4, A7, A8, A1, A2, A9, 

A10, A11, A12 Ayacucho areas, C1, C2, C3, C6, C7, C8, C9, C10 Carabobo area), totalizing 2744 

m of core. Core-based facies were characterized identifying lithology, textural characteristics, bed 

and bedset thickness, stratification, physical sedimentary structures, bed boundaries, bioturbation 

index, trace-fossil distribution, and ichnological suites (Fig. 4.5-4.6). In addition, logs (resistivity, 

density, neutron and gamma ray) from a total of 300 wells were analyzed and correlated (Fig. 4.7).  

 

 

Figure 4.5. Lithology, sedimentary structures and trace fossil legend for well J1. 
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Figure 4.6. Sedimentological and ichnological log for well J1. 
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Figure 4.7. Map of the Orinoco Oil Belt showing the location of wells and biostratigraphic information. 

 

4.5. Paleoenvironmental framework: Integration of sedimentologic and ichnologic datasets 

 

The paleoenvironmental framework for Oficina Formation in the Orinoco Oil Belt is based on the 

integration of sedimentologic, ichnologic and biostratigraphic datasets using well logs and core. 

Sedimentologic observations have been integrated with detailed ichnologic information which has 

been presented and discussed elsewhere (Solórzano et al., 2017). 

 

4.5.1. Fluvial systems 

The Oficina fluvial systems along the Orinoco Oil Belt are represented by braided-fluvial channels, 

floodplains, swamps, and paleosols, which are grouped in FA1 (Figs. 4.6, 4.8A, B and 4.13A, 

Table 4.1). These deposits occur in the lower member, where they form the lower package of DS1, 

representing the lowstand systems tract (LST). The fluvial braided channel-fills are represented by 

stacked sandstone successions of multiple depositional units or storeys. Scarce mudstone and 

siltstone layers record sedimentation in floodplain settings, indicating fluvial channels of low 

sinuosity. These channels are characterized by two and three-dimensional dunes that migrated 

along the bottoms of river channels (Miall, 2010; Brekke et al., 2017). Grain size suggests high 

energy conditions. These channels have been previously described in the lower Oficina Formation 
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in the Orinoco Oil Belt (e.g., Audemard et al., 1983; Isea et al., 1987; Toro et al., 2002; Solórzano 

et al., 2009; Martinius et al., 2012; Rodriguez, 2015; Solórzano et al., 2017). Similar channels have 

been documented in the lower McMurray Formation (e.g., Crerar et al., 2007; Hubbard et al., 2011; 

Musial et al., 2012; Hein et al., 2013; Gingras et al., 2016; Brekke et al., 2017). The coal layers in 

the lower member are associated with sedimentation in swamps. The drying-upward coal layers 

are interpreted as swamps and are associated to variations in the groundwater table in regressive 

systems, delineating the base or the top of parasequences (Wadsworth et al., 2003, 2010). The 

Scoyenia Ichnofacies is present in overbank deposits overlying the channel-fills, indicating 

freshwater conditions (Solórzano et al., 2017). Generally, the lower member is restricted to 

paleotopographical lows, representing the infill of incised fluvial valleys. 

 

 

Figure 4.8. Fluvial deposits in the Oficina Formation of the Orinoco Oil Belt. (A) Fluvial braided channel 

deposits with interbedded paleosols and floodplain deposits containing Taenidium isp. (Ta), reflecting the 

presence of the Scoyenia Ichnofacies, which indicates freshwater conditions. Well J1, depth 723.59-731.52 

m. (B) and (C) Pebbly, very coarse- to medium-grained sandstone formed in fluvial braided channels; grain 

size suggests high energy conditions. Well A8, depths 502-505.3 m and 512.97-515.42 m Sandstone is 

impregnated with hydrocarbon resulting in dark color, whereas paleosols are lighter-colored and floodplain 

deposits are brown. 
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4.5.2. Estuarine systems 

The Oficina estuarine systems across the Orinoco Oil Belt are represented by deposits formed in 

meandering channels, tidal flats, tidal creeks, outer estuarine sandbars, and swamps, as well as 

paleosols. These deposits (Table 4.1) are grouped in FA2 (Figs 4.6, 4.9, 4.13B), FA3 (Figs 4.6, 

4.10A-I, 4.13C), and FA4 (Fig. 4.6, 4.11, 4.13D). Estuarine deposits are restricted to the middle 

member where they occur mostly in DS1. The presence of the cross-stratal sets in the channel 

infills suggests that the flow energy within estuarine channels was characterized by the migration 

of two and three-dimensional dunes during periods of high river discharge when the maximum 

tidal limit migrated seaward. In many instances, the bases of these channels are mantled by 

breccias displaying subrounded to angular mudstone clasts within an oil saturated medium- to fine-

grained sandstone matrix. These breccias have been documented in laterally accreting tidal point 

bars of tidal settings elsewhere (Gingras et al., 2017; Brekke et al., 2017). 

 

Table 4.1. Sedimentary facies, facies association, trace-fossil distribution and their relationship with the 

third-order sequences. Sedimentologic observations have been integrated with detailed ichnologic 

information which has been presented and discussed elsewhere (Solórzano et al., 2017). 

 

3er-order 

sequences 

Member Environments Sedimentary Facies Facies Association Trace-fossil distribution and 

Ichnofacies 

 

DS2 upper Lower delta 

plains of tide-

dominated 

deltas and thin 

transgressive 

deposits 

reflecting delta 

abandonment 

Coarse- to fine-grained 

sandstone, silstone, mudstone, 

coal, IHS, mudstone drapes, 

planar and trough cross-

stratification, siderite, and 

syneresis cracks (FC, FD, FG2, 

and FH1). 

 

FA5 (Lower delta 

plain): floodplains, 

distributary channels, 

interdistributary bays, 

and swamps 

Beaconites antarcticum and 

Planolites montanus (Scoyenia 

Ichnofacies)  

DS1 lower and 

middle 

Fluvial to tide-

dominated 

estuaries and 

subordinate 

deltaic deposits 

Estuaries/deltas: 

Mudstone breccia, 

coarse- to very fine-grained 

sandstone 

planar and trough cross-

stratification, mudstone drapes, 

IHS, convolute lamination, 

interbedded sandstone and 

mudstone, flaser, wavy and 

lenticular bedding, limestone 

and calcareous mudstone, 

siderite, syneresis cracks, and 

shell remains (FA, FC, FD, FE, 

FI, FF, FG, and FH) 

 

Estuaries/Deltas:  

 

FA4 (Outer estuarine 

sandbars): Sandbar, 

swamps, and 

paleosols. 

 

FA3 (tidal flats, tidal 

creeks): tidal flats, 

swamps, and 

paleosols. 

 

FA2 (estuarine 

meandering 

channels): 

Estuaries/Deltas: 

Ophiomorpha nodosa, 

Skolithos linearis, Diplocraterion 

habichii (Skolithos Ichnofacies), 

Rosselia socialis, Planolites 

montanus, Teichichnus rectus, 

Thalassinoides isp (depauperate 

Cruziana Ichnofacies), Beaconites 

antarcticum (Scoyenia Ichnofacies), 

firmground Thalassinoides isp. 

(Glossifungites Ichnofacies), and 

woodground Thalassinoides isp 

(Teredolites Ichnofacies), 

and escape trace fossils 
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Fluvial: 

Pebbly, very coarse- to 

medium-grained sandstone, 

coal, mudstone, silstone, 

massive to planar or trough 

cross-stratification (FB1, FB2, 

FG2, and FH1) 

Estuarine channels. 

 

Fluvial: 

FA1(Braided fluvial 

channels): 

fluvial channels, 

floodplains, swamps, 

and paleosols 

Fluvial: 

Taenidium isp. (Scoyenia Ichnofacies) 

 

 

 

The presence of Ophiomorpha nodosa in some channel fills indicate that these channels 

were filled, at least in part, during a relative sea-level rise (Fig. 4.9), which is consistent with the 

occurrence of shell-bearing marine mudstone overlying channel fills (Solórzano et al., 2017). The 

presence of inclined heterolithic stratification at the base or top of the estuarine channels indicates 

point-bar deposits (Fig. 4.9). The bulk of the channel fills is formed by inclined heterolithic 

stratification (IHS) resulting from lateral accretion of point bars in meandering channels (Thomas 

et al., 1987; Hovikoski et al., 2008; Gingras et al., 2016). IHS is common in tide-dominated 

estuarine systems (Crerar et al., 2007; Hovikoski et al., 2008; Buatois and Mángano, 2011; Choi 

et al., 2013; Rodriguez, 2015; Gingras et al., 2016, 2017; Solórzano et al., 2017). IHS consists of 

inclined and interbedded sandstone and mudstone layers. Sandstone beds are associated with 

periods of high river discharge and mudstone intervals with low discharge and flood currents. 

These deposits contain a low diversity of brackish-water trace fossils (Solórzano et al., 2017; 

Rodríguez et al., 2018). Bioturbated IHS has been documented in many estuarine point-bar 

deposits (e.g. Stewart and MacCallum, 1978; Pemberton et al., 1982; Smith, 1988; Smith, 1989; 

Ranger and Pemberton, 1997; Wightman and Pemberton, 1997; Musial et al., 2012; Choi et al., 

2013; Diez-Canseco et al., 2015, 2016; Gingras et al., 2016, 2017). IHS is considered a good 

indicator of seasonal cyclicity (Hovikoski et. al., 2008; Hubbard et al., 2011; Sisulak and 

Dashtgard, 2012; Choi et al., 2013; Gingras et al., 2002) and tidal currents (Choi et al., 2004; 

Hovikoski et. al., 2008; Gingras et al., 2016, 2017). The Oficina estuarine channel fills also display 

mudstone drapes and convolute lamination. The mudstone drapes are formed during a brief slack-

water period on the tide-dominated point bars (Choi et al., 2004; Hovikoski et al., 2008; Rodriguez, 

2015; Gingras et al., 2016). The convolute lamination formed as result of loading, rapid 

sedimentation or slumping (Hubbard et al., 2011). 

Some estuarine channels overlie paleosols, which consist of light-colored mudstone with 

scarce root trace fossils. These paleosols are in places bioturbated (Thalassinoides isp.), indicating 



109 
 

the presence of the Glossifungites Ichnofacies and revealing erosional truncation during 

transgressions (Solórzano et al., 2017). Also, these channels are intercalated with coal layers that 

are interpreted as swamps. These swamp deposits also contain Thalassinoides isp., but within the 

context of the Teredolites Ichnofacies (Solórzano et al., 2017). 

 

 

Figure 4.9. Estuarine deposits in the Oficina Formation of the Orinoco Oil Belt displaying meandering 

estuarine channels with inclined heterolithic stratification (IHS) and Ophiomorpha nodosa (Op), which 

indicates that these channels were marine influenced during their abandonment. IHS represents tide-

dominated estuarine channels formed by lateral accretion of point bars deposits. Well A8, depth (313.02-

346.25 m). Sandstone is impregnated with hydrocarbon resulting in dark color, whereas mudstone is light 

color. 

 

The Oficina tidal-flat deposits (Fig. 4.10A-I) consist of bioturbated interbedded mudstone 

and sandstone. Flaser, wavy and lenticular bedding are common in, although not exclusive of, 

tidal-flats environments (Weimer et al., 1981; Reineck and Wunderlich, 1968; Hovikoski et al., 

2008; Sisulak and Dashtgard, 2012; Gingras et al., 2016, 2017). Siderite nodules and bands, such 

as those present in the Oficina Formation, are particularly abundant in environments affected by 
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fluctuating salinity (Plummer and Gostin, 1981; MacEachern et al., 2005; Hovikoski et al., 2008; 

Buatois et al., 2012, Martinius et al., 2012). The wetting-upward coal layers are interpreted as 

formed in swamps and also are associated to variations in the groundwater table in transgressive 

systems, typically forming either the base or the top of parasequences (Wadsworth et al., 2003, 

2010). Thalassinoides isp. forming tubular tidalites displaying infill with inclined laminae are also 

present in Oficina Formation, further supporting tidal influence (Gingras et al., 2012, 2015; Wetzel 

et al., 2014; Solórzano et al., 2017). Burrows are large and display an open aperture that facilities 

the entrance of sediment by tides. Tubular tidalites have been observed in a variety of marginal 

marine deposits, such as subtidal point-bar, intertidal-flat, or tidal-channel-thalweg (Gingras et al., 

2015). 

Outer estuarine sandbars (Fig. 4.11) also consist of thinner IHS strata and sandstone with 

mudstone drapes, also representing tidally generated deposits within Oficina estuarine valleys. 

These bars are formed by the migration of two and three-dimensional dunes reflecting high energy 

environments (Brekke et al., 2017). Low energy sedimentation is indicated by suspension fallout 

that alternates with bed-load transport and deposition. These bars were deposited in the estuary 

mouth close to the zone of maximum turbidity as indicated by the abundance of mudstone units. 

Overall, the maximum turbidity zone is near the saltwater wedge, but the elevated turbidity zone 

and high suspended-sediment concentration are present from the fluvial-tidal transition zone to 

beyond the mouth of the estuary (Uncles et al., 2006; Dalrymple et al., 2012). Syneresis cracks are 

present in estuarine sandbar systems of the Oficina Formation as well, strongly suggesting that 

these settings were affected by fluctuating salinity (Plummer and Gostin, 1981; Hovikoski et al., 

2008; Buatois et al., 2012, Martinius et al., 2012). Estuarine sandbars were flanked by swamps and 

waterlogged soils. Swamp deposits and paleosols are bioturbated, as indicated by Thalassinoides 

isp., representing the Teredolites and Glossifungites Ichnofacies, respectively (Solórzano et al., 

2017). The outer estuarine sandbars were formed during a transgression, forming the uppermost 

part of the middle member of the Oficina Formation. The Teredolites and Glossifungites 

Ichnofacies delineate transgressive surfaces of erosion within these estuarine systems (Solórzano 

et al., 2017). In the inner zone of the Oficina estuarine settings, the presence of the Scoyenia 

Ichnofacies records deposition between the maximum salinity limit and the maximum tidal limit 

(Buatois et al., 1997b, 1998; Dalrymple and Choi, 2007; Buatois and Mángano, 2011; Rodriguez, 

2015; Diez-Canseco et al., 2015, 2016; Shchepetkina et al., 2016; Solórzano et al., 2017) that 
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indicate a fluvial-tidal transition area. This area displays salinity fluctuations from brackish-water 

to freshwater conditions (Diez-Canseco et al., 2015; Gingras et al., 2016; Solórzano et al., 2017). 

Therefore, the Scoyenia Ichnofacies may be overprinting the trace-fossil suite representative of the 

depauperate Cruziana Ichnofacies. The Skolithos and depauperate Cruziana Ichnofacies also are 

present in the Oficina transgressive estuarine valley deposits formed under brackish-water 

conditions (Solórzano et al., 2017). These deposits display low to moderate bioturbation intensity 

and low diversity. The latter one could be linked with seasonal cyclicity and tidal currents present 

in these brackish-water environments. Seasonality promotes the development of brackish-water 

conditions and an impoverished ichnofauna because the saltwater wedge pushes landward during 

periods of low river discharge creating a stratified flow (Hubbard et al., 2011; Sisulak and 

Dashtgard, 2012; Gingras et al., 2016; Solórzano et al., 2017).  

In summary, the estuarine deposits preserved in the middle member of the Oficina 

Formation are formed within transgressive systems tracts (TST) displaying a retrogradational 

stacking pattern. In DS1, the estuarine interval is separated from the underlying fluvial interval by 

a transgressive surface (TS) that is mantled by abundant shells and pebbles or is indicated by the 

occurrence of marine ichnofacies, foraminifers, nanofossils and dinoflagellates. The presence of 

limestone and calcareous mudstone layers and shell remains (Fig. 4.10H, I) are more common in 

the Ayacucho and Carabobo areas than in the Boyacá and Junín areas, further indicating marine 

influence and the transition to more marine settings towards the northeast. The Oficina estuarine 

facies record deposition within an incised estuarine valley. 

The sandstone units of the middle Oficina in the Orinoco Oil Belt have been traditionally 

considered to record deposition in a fluvio-deltaic environment (Audemard et al., 1985; Latreille 

et al., 1983, Toro et al., 2001, Martinius et al., 2012). However, this interpretation is not consistent 

with the retrogradational stacking pattern recorded in the middle member, which indicates the 

transgressive nature of these deposits (Rodriguez, 2015; Solórzano et al., 2017; Rodríguez et al., 

2018). Transgressive conditions are usually associated with estuaries, whereas deltas are 

associated with regressions (Dalrymple et al., 2003, 2007).  
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Figure 4.10. Tidal flat and tidal creek deposits. (A) Mud flat deposits with siderite bands suggesting 

environments affected by fluctuating salinity. Well J1, depth 519.37 m. (B) Interbedded mudstone and 

sandstone in tidal sand- to mixed-flat deposits from tide-dominated estuarine settings. Well A11, depth 

786.68 m. (C) Waterlogged paleosols in mud flat deposits, reflecting the development of wetland zones in 

estuarine environments. Well J1, depth 381.30 m. (D) Planolites montanus (Pl) and Thalassinoides isp. 

(Th) in mud-flat deposits, reflecting the presence of the depauperate Cruziana Ichnofacies, which indicates 

brackish-water conditions, associated with tidal currents. Well A9, depth 365.76 m. (E) Indistinct 

bioturbation mottling in mud-flat deposits. Well A9, depth 448.36 m. (F) Limestone layers providing 

evidence of marine influence. Well C1, depth 556.56 m. (G) Thalassinoides isp. (Th) in coal layer (swamp 

deposits), reflecting the presence of the Teredolites Ichnofacies, which indicates erosional exhumation 

during ravinement. Well A10, depth 416 m. (H) and (I) massive calcareous mudstone with shell remains 

providing further evidence of marine influence. Well C9, depth 925.07 m. Sandstone is impregnated with 

hydrocarbon resulting in dark color, whereas mudstone is light color. 
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Figure 4.11. Outer-estuarine sandbar deposits within the estuarine embayment. Well A12, depth 828.14-

832.41 m. 

 

4.5.3. Deltaic systems 

In the Orinoco Oil Belt, the lower delta plain of the tide-influenced deltaic systems is represented 

by floodplains, distributary channels, interdistributary bays, and swamp deposits, which are 

grouped in FA5 (Figs 4.6, 4.12, Table 4.1). These deposits record highstand progradation, 

essentially evidenced in the upper member of the Oficina Formation where they form the bulk of 

DS2. However, thin deltaic deposits also occur in the uppermost interval of DS1, forming a thin 

HST.  

In DS2, transgressive deposits form a thin TST interval reflecting delta abandonment, 

which rest directly on top of the underlying highstand systems tract (HST) deposits, therefore 

mantling a FS/SB. The Oficina deltas of the Orinoco Oil Belt prograded in a brackish-water 

embayment rather than in the open sea, as is the case of coeval deltaic deposits in the Oritupano 
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Field, located further to the northeast, which display a significant wave influence (Solórzano et al., 

2017). Deltaic distributary channel fills are sparse, thin and are separated by floodplain and 

interdistributary bay deposits (Fig. 4.13D). These channels record migration of 2D and 3D dunes 

and were separated by extensive floodplains. The deltaic systems of the upper member are strongly 

controlled by tides displaying inclined heterolithic stratification and mudstone drapes. As 

previously discussed, these structures are characteristics of tide-dominated environments 

(Pemberton et al., 1982; Thomas et al., 1987; Ranger and Pemberton, 1992; Lettley et al., 2009; 

Gingras et al., 2016). Although more commonly recorded in estuarine settings, IHS may be 

produced in deltaic systems as well (Choi et al., 2004; Martinius et al., 2012; Rodriguez, 2015; 

Solórzano et al., 2017). As in the case of the estuarine deposits, syneresis cracks and siderite 

nodules and bands, indicate environments affected by fluctuating salinity and periodic subaerial 

exposure (Plummer and Gostin, 1981; Hovikoski et al., 2008; Buatois et al., 2012, Martinius et al., 

2012). The coal layers in the upper member are associated with sedimentation in swamps, being 

linked with high water tables. In places, the floodplain deposits record the presence of the Scoyenia 

Ichnofacies, as indicated by Beaconites antarcticum, which indicate the establishment of a 

continental invertebrate fauna in these environments (Solórzano et al., 2017). This ichnofacies 

records deposition between the maximum salinity limit and the maximum tidal limit (Buatois et 

al., 1997, 1998; Dalrymple and Choi, 2007; Buatois and Mángano, 2011; Rodriguez, 2015; Diez-

Canseco et al., 2015, 2016; Shchepetkina et al., 2016; Solórzano et al., 2017). 
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Figure 4.12. Lower delta plain deposits of tide-dominated deltas representing distributary channels with 

floodplains and swamps. Well J1, depth 337.71 m. 

 

4.6 Biostratigraphy 

 

Calcareous nannoplankton, palynomorphs, and planktonic foraminifers were used to develop the 

chronostratigraphic framework for the Oficina Formation in the Orinoco Oil Belt. The detailed 

biostratigraphic information and the chronostratigraphic correlations have been presented and 

discussed elsewhere (Audemard et al., 1985; Solórzano et al., 2015; Solórzano and Farias, 2017). 

 

4.6.1. Interpretation of age 

Terrestrial palynomorphs and dinoflagellates are the most diverse and abundant in the study area 

(Fig. 4.14, Table 4.2). A middle Miocene age is suggested for the Oficina Formation due to the 

presence of palynoevents of the Crassoretitriletes vanraadshooveni Zone of Muller et al. (1987) 

(Zone 28), as indicated by the first occurrences of Grimsdalea magnaclavata, Crassoretitriletes 

vanraadshooveni, Bombacacidites baculatus and the dinoflagellate Selenopemphix quanta. The 

former two also have been recorded in Petrocedeño Field in the Junín area (Martinius et al., 2012, 

2013). Middle Miocene elements, namely Grimsdalea magnaclavata, Crassoretitriletes 

vanraadshooveni and Selenopemphix quanta, occur in the overlying Freites Formation. However, 

the Freites Formation also records the first occurrences of several late Miocene elements, such as 

Bombacacidites ciriloensis, Echitricolporites spinosus, Fenestrites spinosus, Fenestrites 

longispinosus, Psilatricolporites caribbiensis, and Cyatheacidites annulatus (late Miocene). 

Accordingly, a middle to late Miocene age is estimated for the Freites Formation. 

Calcareous nannoplankton (Fig. 4.8, Table 4.2) defines three zones, NN6, NN5, and NN4, 

all indicative of a middle Miocene age. NN6 is marked by the LAD of Cyclicargolithus floridanus 

(11.9 Ma). NN5 is signaled by the LAD of Sphenolithus heteromorphus (13.53 Ma). NN4 records 

the LAD of the zonal marker Helicosphaera ampliaperta (14.91 Ma) and the FAD of 

Helicosphaera walbersdorfensis (15.97 Ma). 

The planktonic foraminifers (Fig. 4.14, Table 4.2), such as Globorotalia foshi 

peripheroacuta and Globorotalia foshi lobata, suggest the presence of the foraminifer zone N12, 

whereas the Globorotalia foshi peripheroronda bioevent indicates the presence of the foraminifer 

zone N9. In addition, Audemard et al. (1985) reported the presence of Globorotalia foshi foshi 
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(N10) and Gs. ruber (N12). In short, planktonic foraminifers also suggest a middle Miocene age. 

Integration of this dataset with the Time Scale of Ogg et al. (2008) allows distinguishing the two 

middle Miocene stages; Langhian and Serravallian stages (Fig. 4.15). The Langhian Stage is 

defined by the calcareous nannoplankton zones NN4 and NN5, and the foraminifer zones N9 and 

N10, whereas the Serravallian Stage is indicated by the calcareous nannoplankton zone NN6 and 

the foraminifer zone N12. In summary, the Oficina Formation is of middle Miocene age, spanning 

from 15.97 to 12.7 Ma.  

 

 

 

Figure 4.13. Facies model of the Oficina Formation. (A) Fluvial braided channels and floodplains in the 

lower member. (B) Meandering estuarine channels, tidal flats, and point bars in the middle member. (C) 

Outer estuarine sandbars at the mouth of the estuary in the middle member. (D) Lower delta plain deposits 

with distributary channels and floodplains in the upper member. 

 

4.6.2. Sequence stratigraphic analysis 

Two maximum flooding surfaces (MFS-1 and MFS-2) were recognized in the Oficina Formation 

and one maximum flooding surface (MFS-3) was identified in the lower part of the Freites 

Formation (Fig. 4.16). These surfaces show good matching with those proposed globally by Haq 
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and Schutter (2008).  

The tops of NN4, NN5 and NN6 were regarded as maximum flooding surfaces MFS-1, 

MFS-2 and MFS-3, respectively (Figs 4.15, 4.16). The top of NN4 (MFS-1), determined by the 

nannofossil Helicosphaera ampliaperta, is correlated with the maximum flooding surface below 

Ser1 (Figs 4.15, 4.16). MFS-1 also has been reported outside the Orinoco Oil Belt, in the Anaco 

area of the Eastern Venezuela basin by Campos et al. (1985) and Flores et al. (2001) based on the 

presence of Praorbulina glomerosa (Fig. 4.16). The top of NN5 (MFS-2), characterized by the 

presence of the nannofossil Sphenolithus heteromorphus and the foraminifer Globorotalia foshi 

peripheroronda and Globorotalia foshi foshi, is correlated with the maximum flooding surface 

that separates Ser 1 and Ser 2 (Figs 4.15, 4.16). MFS-2 also has been reported in the Anaco area 

of the Eastern Venezuela basin by Campos et al. (1985), based on the presence of Globorotalia 

foshi foshi (Fig. 4.16). MFS-2 also has been reported in the Maturin sub-basin of the Eastern 

Venezuela basin by Di Croce et al. (1999). The top of NN6 (MFS-3), determined by the presence 

of the nannofossil Cyclicargolithus floridanus and the foraminifers Globorotalia foshi 

peripheroacuta, Globorotalia foshi lobata, and Gs. ruber, is correlated with the maximum 

flooding surface located between Tor1 and Ser3 (Figs 4.15, 4.16). 

According to well log information, four sequence boundaries were interpreted, and these 

are U-1, U-2, U-3, and U-4. U-1 is linked with the lower part of the Langhian stage (15.97 Ma) 

(Fig. 4.15). U-2 can be associated with Ser 1 and U-3 with Ser 3, which indicates the top of the 

Oficina Formation (Fig. 4.15). U-4 could be correlated with Tor 1 and occurs within the Freites 

Formation (Fig. 4.15).  

Therefore, two third-order sequences have been interpreted for the Oficina Formation and 

these are depositional sequences 1-2 (DS1-2) and one depositional sequence 3 (DS3) was 

identified for the Freites Formation. DS1 is defined by sequence boundaries U-1 (15.97 Ma) and 

U-2 (13.82 Ma) and includes the maximum flooding surface MFS-1 (14.91 Ma) (Fig. 4.15). DS2 

is bounded by sequence boundaries U-2 and U-3 (12.7 Ma), including maximum flooding surface 

MFS-2 (13.53 Ma) (Fig. 4.15). DS2 also has been reported in the Maturin sub-basin of the Eastern 

Venezuela basin by Di Croce et al. (1999). DS 3 is defined between sequence boundaries U-3 and 

U-4 (11.8 Ma) and includes the maximum flooding surface MFS-3 (11.9 Ma) (Fig. 4.15). In 

summary, these sequences (DS1-3) match with the middle Miocene third-order global eustatic 

curve of Haq and Schutter (2008).  
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Figure 4.14. Stratigraphic range of the main palynomorphs, foraminifers and calcareous nannoplankton 

identified in the Oficina and Freites formations. PF (planktonic foraminifer zones), CN (Calcareous 

nannoplankton) and P (palynomorphs zones). 

 

  

Table 4.2. Zones and bioevents for the Oficina and Freites formations. 

 

Zones Age Calcareous 

nannoplankton 

Planktonic 

foraminifers 

Palynomorphs Formation Setting Member 3er-order 

sequences 

Above NN6  

 

middle-

late 

Miocene 

Not applicable Not applicable Fenestrites 

spinosus, 

Echitricolporites 

spinosus, 

Bombacacidites 

ciriloensis, 

Fenestrites 

longispinosus, 

Psilatricolporites 

caribbiensis, and 

Cyatheacidites 

annulatus (first 

occurrence). 

Grimsdalea 

magnaclavata, 

Crassoretitriletes 

vanraadshooveni, 

and 

Selenopemphix 

Freites Not 

applicable 

Not 

applicable 

DS3 
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quanta are not 

restricted to the 

middle Miocene, 

but that extend into 

late Miocene 

 

Zone NN6 middle 

Miocene 

Cyclicargolithus 

floridanus (NN6) 

last occurrence 

Globorotalia 

foshi 

peripheroacuta 

(N12), 

Globorotalia 

foshi lobata 

(N12) and Gs. 

ruber (N12) last 

occurrence 

Not applicable Freites Not 

applicable 

Not 

applicable 

DS3 

Between the 

calcareous 

nannoplankton 

zones NN6 and 

NN5 

 

middle 

Miocene 

Cyclicargolithus 

floridanus (NN6) 

first appearances 

Globorotalia 

foshi 

peripheroacuta 

(N12), 

Globorotalia 

foshi lobata 

(N12) and Gs. 

ruber (N12) 

first 

appearances 

Grimsdalea 

magnaclavata, 

Crassoretitriletes 

vanraadshooveni, 

Selenopemphix 

quanta and 

Bombacacidites 

baculatus (first 

occurrence at the 

base of the middle 

Miocene) 

Oficina Tide-

dominated 

delta 

upper DS2 

Between the 

calcareous 

nannoplankton 

zones NN5 and 

NN4 

 

middle 

Miocene 

Sphenolithus 

heteromorphus 

(NN5) 

Globorotalia 

foshi 

peripheroronda 

(N9 and 

Globorotalia 

foshi foshi 

(N10)) 

Selenopemphix 

quanta, 

Crassoretitriletes 

vanraadshooveni, 

Grimsdalea 

magnaclavata and 

Bombacacidites 

baculatus (first 

appearance in the 

middle Miocene) 

Oficina Tide-

dominated 

delta 

upper DS2 

Between the 

calcareous 

nannoplankton 

zone NN4 and 

the basement 

 

middle 

Miocene 

Helicosphaera 

ampliaperta 

(NN4) and 

Helicosphaera 

walbersdorfensis 

(NN4). 

 

calcareous 

nannoplankton are 

restricted to the 

estuarine zone 

Not applicable Selenopemphix 

quanta, 

Bombacacidites 

baculatus, 

Crassoretitriletes 

vanraadshooveni, 

Grimsdalea 

magnaclavata and 

Sumatrodinium 

hispidum (first 

appearance at the 

base of the middle 

Miocene). 

Cribroperidinium 

tenuitabulatum, 

Heteraulacysta 

campanula, 

Bombacacidites 

zuatensis, 

Spirosyncolpites 

spiralis, and 

Psilatricolporites 

pachydermatus, 

which have their 

last occurrence in 

the middle 

Oficina Fluvial to 

tide-

dominated 

estuary and 

delta  

Lower to 

middle 

DS1 
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Miocene, are also 

present. 

 

Dinoflagellates are 

restricted to the 

estuarine zone 

 

 

 

Figure 4.15. Chart with bioevents and sequences interpreted. PF (planktonic foraminifer zones), CN 

(Calcareous nannoplankton zones) and P (palynomorphs zones). 

 

4.7. Discussion 

 

4.7.1. The third-order sequence-stratigraphic model 

The third-order sequence-stratigraphic framework (Fig. 4.15) of the middle Miocene Oficina 

Formation in the Orinoco Oil Belt is based on biostratigraphy (bioevents), sedimentology 

(sedimentary facies), allostratigraphic surfaces (sequence boundaries, transgressive surfaces, 

maximum flooding surfaces) and systems tracts (LST, TST and HST). Two third-order 

depositional sequences were identified (DS1-2). The unconformities that bound the third-order 
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sequences, as well as the maximum flooding surfaces, can be correlated with the third-order global 

eustatic curve for the middle Miocene (Haq and Schutter, 2008), which comprise mostly sea-level 

lowstand to transgression during the Langhian and a sea-level highstand during the Serravallian 

stage. This pattern is remarkably consistent with stratal stacking pattern and associated 

depositional environments interpreted for the Oficina Formation. Third-order sequences identified 

in the Oficina Formation have a duration of 2.15 and 1.12 Ma, which is consistent with the standard 

estimated ranges of 0.5-3.0 Ma for sequences of this order (Haq et al., 1987; Vail et al., 1991). 

 

 

Figure 4.16. Integration of the three third-order sequences and maximum flooding surfaces of this study 

with maximum flooding surfaces of previous studies for the Oficina Formation in the Orinoco Oil Belt (a: 

Audemard et al., 1985; b: Campos et al., 1985 and c: Flores et al., 2000). 

 

DS1 comprises a thick LST included in the lower member, a thick TST included in the 

middle member, and a thin (HST) at the top of the middle member. DS1 is associated with incised-

valley systems, which were formed during a sea-level fall, forming fluvial valleys dominated by 

braided-channel deposits (FA1). They consist of pebbly, very coarse- to medium-grained 

sandstone, coal, mudstone and siltstone. The latter two are associated with floodplains and 

paleosols. These overbank deposits display the Scoyenia Ichnofacies. The middle interval of DS1 

records a relative sea-level transgressive that took place during the Langhian stage of the middle 

Miocene. The shoreline and the tide limit migrated landward. Therefore, the fluvial valley systems 
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within the Orinoco Oil Belt were flooded by and became filled with tide-dominated transgressive 

sediments evolving into estuarine valleys that are constituted by meandering estuarine channels 

(FA2), tidal flats and tidal creeks (FA3), and outer estuarine sandbars (FA4). Overall, these facies 

associations comprise mudstone breccia, interbedded sandstone and mudstone, sandstone with 

mudstone drapes, inclined heterolithic stratification, and convolute lamination. Flaser, wavy and 

lenticular bedding, limestone and calcareous mudstone layers, syneresis cracks, and shell remains 

are present as well. The Glossifungites, Teredolites, Scoyenia, Skolithos, and depauperate 

Cruziana Ichnofacies have been recorded in the estuarine valley deposits (Solórzano et al., 2017). 

DS2 comprises a thin TST and a thick HST. DS2 was developed during a sea-level 

highstand that took place during the Serravallian Stage of the middle Miocene. The shoreline 

migrated towards the sea, allowing the establishment of the highstand systems tract in the upper 

member of the Oficina Formation all across the Orinoco Oil Belt. It is constituted by lower delta 

plain deposits (FA5), which display a progradational stacking pattern. Overall, this facies 

association consists of sandstone with mudstone drapes and inclined heterolithic stratification 

representing distributary channels and silstone and mudstone formed in distributary bays and 

floodplains. The latter one displays the presence of Scoyenia Ichnofacies. 

In the Orinoco Oil Belt, allogenic processes control the larger-scale depositional systems 

within the basin, as well as the third-order sequences. These factors include climate, tectonics, and 

sea-level changes, which are related with energy flux, sediment supply, and accommodation. 

However, autogenic processes may have also operated at the scale of depositional environments 

and subenvironments. Probably, these processes could explain the differences between the number 

of third-order sequences between this study and those identified in the Petrocedeño Field of the 

Junín area, where eleven third-order sequences have been recognized (Martinius et al., 2012, 

2013). Discrepancies between our study and that in the Junín area may also reflect the fact that 

sequences in the latter have been identified based on a different set of criteria. Whereas subaerial 

unconformities (SU) or maximum regression surfaces were chosen as sequence boundaries for 

sequences 1-5, maximum flooding surfaces (MFS) were chosen as sequence boundaries for 

sequences 6-10 because SU or correlative key stratigraphic surfaces could not be identified in well 

logs and core and/or mapped on seismic data. Some of the sequences identified in Petrocedeño are 

here re- interpreted as 4th order sequences. Within this framework, sequences 1-8 are considered 

4th-order sequences within DS1, and sequences 9-11 within DS3. The resolution of any sequence 
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stratigraphic study can be adjusted according to the study area, from small-scale depositional 

environments and subenvironments to the scale of whole sedimentary basin fills, therefore 

providing a template that allows framing smaller-scale stacking stratal patterns within larger-scale 

models (Catuneanu, 2006). 

 

4.7.2. Fourth-order sequence-stratigraphic model 

Third-order DS1 consists of fluvial to estuarine deposits. The latter can be subdivided into at least 

three 4th order sequences using the Glossifungites Ichnofacies (Fig. 4.19), which represent 

transgressive surfaces of erosion that can be correlated in the Ayacucho area using well logs. 

Fourth-order sequences 1 and 2 have been interpreted by the presence of Glossifungites 

Ichnofacies within paleosols that delimit the base of the meandering estuarine channels (e.g. A4, 

A8). These sequences can be traced to other wells. In one well, the paleosols are replaced by a coal 

layer (e.g. A7).  

Fourth-order sequence 3 has been interpreted by the presence of Glossifungites Ichnofacies 

within tidal flat deposits, delineating the base of the meandering estuarine channels (e.g. A8). This 

sequence can be traced into the Ayacucho area. Recognition of fourth-order sequences within the 

fluvial interval is complicated by the fact that no marker beds are available and that discrimination 

of allogenic and autogenic successions is not possible in most instances.  

 

4.7.3. Incised-valley systems 

Zaitlin et al. (1994) subdivided the fill of incised valleys into three segments. Segment 1 comprises 

outer incised valley, being located from the most seaward extent of valley incision to the beginning 

of highstand progradation. Segment 2 represents the middle-incised valley, being located from the 

beginning of highstand progradation at segment 1 to the estuarine limit landward during the time 

of maximum inundation. Segment 3 corresponds to the inner incised valley, being located 

landward of the transgressive marine-estuarine limit, and still linked with relative sea level change. 

In this context, the sedimentary succession of the Oficina Formation, in the whole Orinoco Belt 

represent the fill of segment 2, which is characterized by lowstand fluvial to transgressive estuarine 

deposits overlain by highstand deltaic deposits, as well as two maximum flooding surfaces within 

estuarine systems. However, further to the northeast and outside the Orinoco Oil Belt, in the 

Oritupano Field, the Oficina Formation consists of highstand shoreface to offshore and shelf 
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deposits (Solórzano et al., 2017). Therefore, these marine facies suggest the presence of segment 

1. 

 

4.7.4. Implications for petroleum exploration and reservoir characterization 

Third-order sequences are very important to delineate the stratigraphic architecture at the reservoir 

scale. DS1 extends from Boyacá to Carabobo (Fig. 4.17), being thinner toward the Carabobo area 

and thicker in the Junín and Ayacucho areas. Based on north to south stratigraphic cross-sections 

(Figs 4.18-4.20), the thicknesses of DS1 increases towards the north and decreases towards the 

south. DS1 is thinner in the Carabobo (111-190 m) area than in the Junín (106-322 m) Ayacucho 

(194-467 m) areas. In the Ayacucho and Carabobo areas, DS1 overlie the metamorphic-igneous 

basement. 

In the Junín area, DS1 rests on top of Cretaceous or Pre-Cretaceous strata. DS1 hosts the 

braided fluvial channels (Figs 4.6, 4.8, 4.13A, 4.21) of the fluvial systems and the tidally 

influenced meandering channels (Figs 4.6, 4.9, 4.13B, 4.21) of the estuarine systems, which form 

the main reservoirs within the Orinoco Oil Belt. The braided fluvial channel deposits of the lower 

member consist of fining-upward, massive to planar or trough cross-stratified, pebbly, and very 

coarse- to medium-grained sandstone, representing multiple depositional units or storeys of 

amalgamated sandstone that infilled the paleotopographical lows along the Cretaceous or Pre-

Cretaceous unconformity (Figs 4.8, 4.21). These channel fills are 3-12 m thick. Contrary to the 

lower delta plain deposits of DS2, the tectonic setting and the deposition in a low-gradient foreland 

basin promoted an increase in grain size and amount of sand supplied to the fluvial system, 

producing sandstone-rich deposits because the low river gradient in the foreland basin leads to 

rapid deposition of the coarser fractions. Conglomerate and very coarse-grained sandstone record 

sedimentation close to the source of origin (Dalrymple et al., 2003). The sediment source for the 

Oficina fluvial systems comes from the Guayana shield. With the filling of the paleotopographical 

lows along the Cretaceous or Pre-Cretaceous unconformity, the estuarine channels became 

unconfined and the channel fills were formed by IHS (0.3-15 m thick) resulting from lateral 

accretion of point bars in meandering channels. These channel deposits consist of massive to 

trough or planar cross-stratified, very coarse- to very fine-grained sandstone, representing multiple 

depositional units or storeys of amalgamated sandstone (Figs 4.9, 4.21). 

DS2 extends from Boyacá to Carabobo (Fig. 4.17). It is thicker toward the Carabobo area 
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than in the Junín and Ayacucho areas. Based on north to south stratigraphic cross-sections (Figs 

4.18-4.20), the thicknesses of DS2 increases towards the north and decreases toward the south. 

DS2 is thicker in the Carabobo area (256-476 m) than in the Junín (29-134 m) and Ayacucho (140-

273 m) areas. DS2 comprises tide-dominated distributary channels of the lower delta plain (Figs 

4.12, 4.13D, 4.21). This type of channels tends to be the widest and deepest (Reynolds, 1999; 

Dalrymple et al., 2003). However, in the Oficina Formation, these planar and trough cross-

stratified medium- to fine-grained sandstone channels are thin, scarce, rarely amalgamated, 

running on vast floodplains and prograded within a large brackish-water embayment rather than 

in the open sea (Fig. 4.21). The Oficina distributary channels are 0.2-4 m thick. The tectonic 

setting, labile source rocks and the deposition in a low-gradient foreland basin limit the size and 

amount of sand supplied to the delta, producing mudstone-rich deposits (Dalrymple et al., 2003). 

The hydrocarbon reservoir potential of these deposits is poor due to the abundance and lateral 

continuity of the mudstone levels. 

 

 

Figure 4.17. West to east regional stratigraphic cross-section displaying the third-order depositional 

sequences (DS1-2), the maximum flooding surfaces (MFS1-2) of the Oficina Formation, and MFS-3 

(Freites Formation), which rest on the Cretaceous and basement unconformities along the Orinoco Oil Belt. 

Geophysical data shown in the gamma-ray log, from 0 to 200 API units. 
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Figure 4.18. North to south regional stratigraphic cross-section of the Junín area displaying the third-order 

depositional sequences (DS1-2) and their associated depositional environments. Geophysical data shown 

in the gamma-ray log, from 0 to 200 API units. 

 

 

The geometry and reservoirs connectivity are controlled by depositional processes, 

variations of sea-level change, tectonic setting, nature of the source area, nature of the basin, 

sediment grain size and climate, which produce problems for the subsurface reservoir 

characterization. In the Oficina Formation, amalgamated fluvial and estuarine channels represent 

multiple depositional units. The superposition of individual packages implies the existence of flow 

barriers, which may be caused by sandstone bodies switching or sea-level rises. Therefore, it is 

important to introduce process-related sedimentological bodies into the reservoir modelling 

workflow, which provide a realistic distribution of the channel fills, improve local vertical 

connectivity between individual sequences, and seals and baffles can be simulated (Labourdette et 

al., 2008). The development-drilling suggests that the reservoirs are much more complex and, 
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although interconnected, are more compartmentalized (Kopper et al., 2001). However, drilling 

horizontal wells indicate that the reservoirs are laterally discontinuous and are not always predicted 

from the surface seismic data (Rodriguez., et al., 2017) A detailed study about reservoir 

connectivity and barriers is important because it will have a significant impact on recovery factors 

in the Orinoco Oil Belt, where reservoirs comprise heavy and extra heavy oils with a downhole 

viscosity of 400-7000 cps and a specific gravity of 4°-14°API. 

 

 

Figure 4.19. North to south regional stratigraphic cross-section of the Ayacucho area displaying 

the third-order depositional sequences (DS1-2) and their associated depositional environments and 

4th order sequences in the estuarine deposits of DS1. Geophysical data shown in the gamma-ray log, 

from 0 to 200 API units. 

 

 

Magna Reserva Project (2012) subdivided the Boyacá and Junín areas into three units, 

which rest on Cretaceous and Pre-Cretaceous rocks and are partially coincident with the two third-

order sequences defined in this study. DS1, in the fluvial part, displays porosities between 38% 
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and 28%, API ranges 13-4, temperatures between 95° F and 150° F and viscosity values from 400 

to 2800 cps. The best thicknesses of net oil sand are in the area of Boyacá, but the best physical 

and chemical properties are in the Junín area (API 8 and 12). DS1, in the estuarine level, displays 

porosities between 36% and 28%, API ranges 13-14, temperatures between 90° F and 140° F, and 

viscosity values from 1000 to 7000 cps. The best thicknesses of net oil sand are in the Junín area. 

There is no available information for DS2. 

 

 

Figure 4.20. North to south regional stratigraphic cross-section of the Carabobo area displaying third-order 

depositional sequences (DS1-2) with their associated depositional environments. Geophysical data shown 

in the gamma-ray log, from 0 to 200 API units. 

 

 

The Ayacucho and Carabobo areas are divided into several units, which rest on the basement. The 

western Ayacucho area is divided into three units and the eastern Ayacucho area and the Carabobo 

area into two units (Magna Reserva, 2012). These units are coincident with DS1 and DS2. DS1 
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displays porosities between 37% and 24%, API ranges 12-8, temperatures between 100° F and 

170° F and viscosity values from 1000 to 4000 cps. The best thicknesses of net oil sand are in the 

Petromonagas, Cerro Negro, Petroindependencia, and Petrosinovensa areas. There is no available 

information for DS2. 

 

 

Figure 4.21. Geometry and distribution of fluvial, estuarine, and distributary channels within the 

sedimentary succession of the Oficina Formation. 

 

4.8. Conclusions 

 

The Oficina Formation in the Orinoco Oil Belt is of middle Miocene age (15.97-12.7 Ma), 

encompassing the Langhian and Serravallian stages, and is interpreted as a single second-order 

depositional sequence further divided into two third-order depositional sequences (DS1-2). DS1 is 

limited by sequence boundaries U-1 (15.97 Ma) to U-2 (13.82 Ma) and includes MFS-1 (14.91 

Ma). This sequence consists of thick LST and TST, and a thin HST. It records fluvial valleys 

created during a relative sea-level fall, and the LST consists of fluvial braided channels, swamps, 

paleosols, and floodplains. This interpretation is reinforced by the presence of the Scoyenia 

Ichnofacies. These valleys became drowned and transformed into estuarine systems (TST) during 

the Langhian transgression. The retrogradational stratal stacking pattern of estuarine valleys is  
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part progradational lower delta plain strata, consisting of distributary channel, interdistributary bay 

and floodplain deposits. The presence of the freshwater Scoyenia Ichnofacies indicates 

progradation. Third-order sequences provide a better understanding of reservoir distribution in the 

Oficina Formation and show a good match with the middle Miocene third-order global eustatic 

curve of Haq and Schutter (2008). Based on the model of Zaitlin et al. (1994), the sedimentary 

succession of the Oficina Formation in the Orinoco Oil Belt is regarded as representing segment 

2.  
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Transition 

 

Chapter 4 includes the third-order sequence-stratigraphic model, based on the integration of 

sedimentologic, stratigraphic, ichnologic, and biostratigraphic datasets. The next chapter (Chapter 

5) provides final remarks, and a summary of main findings and conclusions obtained during this 

research. 
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Chapter 5 

5. Conclusions 

 

An integrated sedimentologic, ichnologic and sequence-stratigraphic analysis allows providing a 

better characterization of the middle Miocene Oficina Formation in terms of paleoenvironmental 

characterization and stratigraphic architecture. This is of fundamental importance because this unit 

represents one of the largest hydrocarbon reserves in the world. This more comprehensive model 

will allow better reservoir characterization and sound predictions for future exploration. 

The Oficina Formation in the Orinoco Oil Belt consists of nine facies (FA-FI), grouped in 

five facies assemblages (FA1-5), whereas the Oficina Formation in the Oritupano field comprises 

eleven facies (FJ-FS), grouped in four facies assemblages (FA6-9). The Oficina Formation in the 

Orinoco Oil Belt is interpreted as recording lowstand fluvial deposits in the lower member, passing 

upward into transgressive tide-dominated estuarine deposits in the middle member, and highstand 

lower delta-plain deposits of a tide-dominated delta in the upper member. The sedimentary 

succession in the Oritupano Field represents the upper member of the Oficina Formation, which 

reflect highstand progradation, thus correlating with the highstand deltaic deposits identified in the 

Orinoco Oil Belt. Whereas the deltaic system in the Orinoco Oil Belt prograded into a brackish-

water embayment, deposits in the Oritupano Field records more marine conditions, namely wave-

dominated deltaic deposits in the lower part, passing upward into shoreface to offshore and shelf 

deposits formed along adjacent strandplains.  

The Oficina Formation illustrates both softground and substrate-controlled ichnofacies. 

The former is key for paleoenvironmental characterization of continental, marginal-marine and 

open-marine settings. Deposits from fluvial environments and the freshwater portions of tide-

dominated estuarine and distributary channel environments are locally intensely bioturbated, 

displaying very low-diversity occurrences of the Scoyenia Ichnofacies. Brackish-water delta-plain 

and estuarine deposits display lesser degrees of bioturbation and low ichnodiversity, illustrating 

the depauperate Cruziana and Skolithos Ichnofacies. Delta-front and prodelta deposits display the 

presence of the Skolithos and archetypal Cruziana Ichnofacies, which alternated with the 

depauperate Cruziana Ichnofacies, indicating fluctuations between brackish-water and near-
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normal marine conditions. Shoreface, offshore and shelf deposits are characterized by intense 

bioturbation and overall high diversity, illustrating the Skolithos and archetypal Cruziana 

Ichnofacies, further supporting normal-marine conditions. Sedimentary facies distribution in 

marginal-marine environments is mainly salinity-independent, but the distribution of benthos is 

not. Therefore, biogenic structures provide key information to reconstruct salinity conditions. 

Tidal currents and brackish-water conditions within estuarine environments allowed the 

establishment of an opportunistic and impoverished marine benthic community. 

The whole Oficina Formation in the Orinoco Oil Belt comprises one second-order 

depositional sequence, which has been subdivided into two third-order depositional sequences, 

namely DS1 and DS2. The sequence boundaries (U-1, U-2 and U-3) and maximum flooding 

surfaces (MFS-1 and MFS-2) are associated with the global eustatic curves previously identified. 

These maximum flooding surfaces were interpreted based on the planktonic foraminifers and 

calcareous nannoplankton zones. DS1 is bounded by U-1 (15.97 Ma) and U-2 (13.82 Ma) and 

includes MFS-1 (14.91 Ma). DS1 consists of lowstand fluvial valleys formed during a relative sea-

level fall, which were replaced by transgressive estuarine valleys during a relative sea-level rise at 

Langhian stage. Thin highstand deltaic deposits also occur in the uppermost interval of DS1. DS2 

is bounded by U-2 (13.82 Ma) and U-3 (12.7 Ma) and includes MFS-2 (13.53 Ma). DS2 comprises 

thin transgressive deposits (lower part) and thick highstand deltaic deposits (upper part) formed 

during a relative sea-level fall at Serravallian stage. 

The fluvio-estuarine and deltaic systems of the Oficina Formation display similarities in 

sedimentologic, stratigraphic and ichnologic characteristics with other tide-dominated, ancient 

marginal-marine strata and modern settings. These deposits were formed under a wide variety of 

latitudinal and tectonic settings. Sea-level changes and tidal currents played a key role on 

sedimentation of these units. Regardless of the overall ichnologic similarities across a broad 

spectrum of latitudinal settings, it has been noted that the distribution of shallow-marine 

ichnofaunas may be controlled by climate. 
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