

Assessing the efficacy of nitrification and urease inhibitors on reducing gaseous N

Jaskatene wann arkiana region

Nils Yannikos Dr. Fran Walley Dr. Rich Farrell

Forage seed production:

- Application of fertilizer into standing crop
- Different fertilizer requirements for both Bromegrass and Timothy (Fall vs. Spring)
- Fertilizer management focuses on seed yield rather than biomass

Introduction

Ammonia (NH₃) volatilization:

- Up to 50% of the applied N can be lost
- Within two weeks after application

Nitrification of NH_3/NH_4^+ to nitrate (NO_3^-) :

- Nitrate leaching
- Denitrification of NO₃⁻ to nitrous oxide (N₂O)

Urease inhibitor (Contained in Agrotain[®])

Nitrification inhibitor (Contained in Alzon[®])

Double inhibitor (Contained in SuperU[®])

Goal of the Study

Goal of the study

Assess how the type of stabilized fertilizer and time of application affect N losses through

- Ammonia volatilization
- Nitrous oxide emissions

Hypotheses

Hypotheses

We hypothesized that:

- Urease inhibitors reduce NH₃ emissions
- Nitrification inhibitors reduce N₂O emissions
- Double inhibitors reduce both NH₃ and N₂O emissions

Experimental design

Four test sites

- Four fertilizer types (90 lb N/ac)
- Fall vs. Spring application
- Gaseous N losses measured in Fall and Spring

Table 1: Properties of different inhibitor-containingurea fertilizers

Fertilizer	Inhibitor	Application to fertilizer
Urea	-	-
Agrotain®	Urease	Surface-coated
Alzon®	Nitrification	Incorporated
SuperU®	Urease + Nitrification	Incorporated

Gaseous nitrogen losses

Ammonia and nitrous oxide were measured using chamber methods

Results

Fall 2012 ammonia emissions

Spring 2013 ammonia emissions

Spring 2013 ammonia emissions

Fall 2013 ammonia emissions

Fall 2013 ammonia emissions

Results

Fall 2013 Nitrous oxide emission

Hypotheses

Conclusions

- Urease inhibitors reduce NH₃ emissions from surface applied urea fertilizers
- This effect was stronger
 - in the spring, compared to the fall
 - On the high-pH site
- Double inhibitors reduce both NH₃ and N₂O emissions

Acknowledgements

Acknowledgements

Funding:

Saskatchewan Forage Seed Development Commission

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Agricultural Development Fund