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CHAPTER 1

Motivation

Despite the fact that each cell in an organism has the same genetic infor-

mation, it is possible that cells fundamentally differ in their function. The

molecular basis for the functional diversity of cells is governed by biochem-

ical processes that regulate the expression of genes. Key to this regulatory

process are proteins called transcription factors that recognize and bind spe-

cific DNA sequences of a few nucleotides. These transcription factor binding

sites (TFBS), or cis-regulatory elements, are located in the vicinity of genes.

Once a binding site is occupied by its factor, the transcription of the nearby

gene is either up or down regulated through a variety of different molecular

mechanisms [cf. e.g. Latchman, 1997, Ptashne and Gann, 1997].

Understanding the regulatory network might therefore reveal much of

how cells function. Hence, the identification of transcription factors and

their binding sites has become a major research area in recent years. How-

ever, the prediction of binding preferences from the structure of transcription

factors is still an unsolved problem. For that reason, binding sites are com-

monly identified by searching for overrepresented sites in a given collection

of nucleotide sequences. Such sequences might be known regulatory regions

of genes that are assumed to be coregulated, or they are obtained through

so-called ChIP-seq experiments that identify approximately the sites that

were bound by a given transcription factor. In both cases, the provided nu-

cleotide sequences are much longer than the actual binding sites and com-

putational tools are required to uncover the actual binding preferences of a

factor. Aggravated by the fact that transcription factors recognize not only

a single nucleotide sequence, the search for overrepresented patterns in a

given collection of sequences has proven to be a challenging problem.

The first computational methods merely relied on the given set of se-

quences, but quickly it was recognized that additional information is re-

quired in order to make reliable predictions. This information is obtained

from related species where the same transcription factor is known to be

present. The set of nucleotide sequences is augmented by their orthologs,

i.e. sequences from other species that have evolved from a common ancestor.

By constructing multiple sequence alignments of the orthologous sequences

it is possible to identify functional regions that are under selective pressure
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2 1. MOTIVATION

and therefore appear more conserved than others. The processing of the ad-

ditional information exerted by ortholog sequences relies on a phylogenetic

tree equipped with a nucleotide substitution model that not only carries

information about the ancestry, but also about the expected similarity of

functional sites.

During the last two decades, a myriad of software tools have been de-

veloped to tackle the problem of identifying binding sites [Wasserman and

Sandelin, 2004, Tompa et al., 2005]. One of the most complex and probably

the closest approach to the one presented here is PhyloGIBBS, a software

package developed by Siddharthan et al. [2005]. It is based on a statisti-

cal model for enriched patterns in the set of multiple sequence alignments.

The analysis requires a phylogenetic tree to identify functional regions. The

interpretation of the edge lengths of the tree crucially depends on the sub-

stitution model. However, there exists a significant discrepancy between

the commonly used models for inferring phylogenetic trees from sequence

alignments and the models for the identification of binding sites. The model

mismatch can be partly corrected by rescaling the tree to an appropriate

size, which is equivalent to adjusting the substitution rate. Nevertheless,

the question remains how a phylogenetic tree can be obtained that allows a

consistent analysis of the data.

To circumvent model mismatches as well as having a clear interpretation

of the model parameters, the phylogenetic tree should be estimated using

the correct substitution model. Some estimation methods proceed by max-

imizing a posterior distribution or a likelihood function, and are amenable

to an exact reconstruction of the optimal tree, but Bayesian phylogenetic

analyses generally produce posterior distributions that are best explored by

generating posterior samples. While a large enough posterior sample offers

a faithful representation of the posterior knowledge, it is of little scientific

interest unless summarized by some statistics [Robert, 2001]. A summary

can balance contributions from the different tree topologies occurring in the

sample, resulting in a legit phylogenetic tree, or combine them within a phy-

logenetic network. Here the focus is on the former, showing how to build a

phylogenetic tree that faithfully represents the sample in its entirety, despite

competing topologies occur [Benner et al., 2014].

Building upon the work published by Billera et al. [2001], who deci-

phered the geometric structure of the space of phylogenetic trees and first

proposed a construction of the tree space (sometimes also called BHV tree

space, where BHV is an acronym of Billera, Holmes, and Vogtmann), it is

shown how the computation of the posterior mean of a sample of phylo-

genetic trees can be achieved by simply reaching out for the appropriate
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geometry. The BHV space is obtained by gluing together the positive or-

thants of the linear space associated to each topology, so that a point in this

space identifies both a tree topology and the lengths of the corresponding

edges. The adjacency structure between any two orthants reflects the edges

shared by the two corresponding topologies, and permits the definition of

paths visiting several orthants. Any two trees are connected by at least

one path and the one with minimal length is called a geodesic. Therefore,

the length of a geodesic qualifies as a distance function between phyloge-

netic trees, and offers a theoretically and practically appealing alternative

to existing distances (e.g NNI or the Robinson-Foulds distance). Further-

more, using implicit characterizations of the posterior mean and median as

minimizers of appropriate loss functions [Benner et al., 2014, Holmes, 2005],

algorithms developed by Bačák [2014a,b], Miller et al. [2012], Sturm [2003]

compute an approximation of these statistics by walking along geodesics.

Here, the determination of the geodesics is done in polynomial time thanks

to an algorithm due to Owen and Provan [2011].

While it seems natural to estimate the phylogenetic tree with the re-

quired substitution model, it was so far hindered by the lack of appropriate

algorithms. The substitution model for the identification of binding sites is

heavily parameterized. Each position in an alignment is equipped with its

own stationary distribution that can be thought to represent the prevalences

for the observed nucleotides, which reflects the selective pressure acting on

that site. This parameterization leads to a slow convergence rate of the

Markov chain Monte Carlo (MCMC) algorithm that is used to explore the

posterior distribution. Hence, an analytical integration over the stationary

distributions is inevitable, for which an algorithm is presented.

As a result, a Bayesian method for the identification of TFBS is pre-

sented, which allows a clear interpretation of all model parameters. In par-

ticular, the binding preferences of the transcription factor can be identified

as the stationary distributions at the binding sites. A clear interpretation

of the model parameters also significantly eases the analysis of experimental

data and leads to more reliable posterior estimates.

This thesis is structured as follows. In chapter 2 the geometry of the

BHV tree space is studied in detail [published in a similar but less detailed

version in Benner and Bačák, 2013, Bačák, 2014b]. Furthermore, all required

methods for computing a proper summary of a set of phylogenetic trees are

explained in detail. The definition of the statistical model depends on the

substitution model that is used in combination with the phylogenetic tree.

In section 3.1 the basic theory of substitution models as continuous-time

Markov processes is discussed. In addition, important model assumptions

and prior settings are explained. The algorithm for integrating analytically
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over the stationary distributions is developed in the sequel. The methods for

computing proper summaries of a set of phylogenetic trees are very recent.

To show that the resulting estimates are indeed more plausible, we compare

them in chapter 4 to existing methods [published as Benner et al., 2014]. In

section 5.1 the model for identifying binding sites is outlined. The posterior

distribution of this model is inaccessible, even to MCMC methods. A novel

approach motivated by variational Bayesian methods is used to obtain an

approximate posterior distribution that can be efficiently explored. The

full framework presented here is then demonstrated on a data set by Zinzen

et al. [2009]. Throughout this thesis, it is assumed that the reader is familiar

with the philosophical and technical aspects of Bayesian inference as well as

the foundations of probability theory. A brief summary of the topic can be

found in Appendix A.



CHAPTER 2

The space of phylogenetic trees

Phylogenetic trees are central to the study of evolution, so much that

the sketch of a tree of species by Sir Charles Darwin has become the icon of

this theory. Phylogenetic trees relating units of selection (be it functional

domains, genes, or species) are structures of primary interest for systema-

tists, but also instrumental to a wealth of other studies where evolutionary

correlations need to be accounted for (see for instance McCue et al. [2001]).

Various statistical models pertaining to diverse types of observables can be

found in the literature, as well as methods for estimating their parame-

ters and reconstructing a phylogenetic tree [Gascuel, 2005]. The estimation

of phylogenetic trees requires a more abstract perspective, where a tree is

merely seen as parameter of the statistical model. This raises the question

of what the parameter space of the statistical model is and how a summary

of the posterior distribution can be computed. To answer this question we

begin the discussion in section 2.1 with a formal description of phylogenetic

trees.1 Crucial is the observation that a tree consists of a set of edges that

are assigned a length. Hence, a tree can be represented as a point in a

continuous space and the basic structure of this space is explained in sec-

tion 2.2. To summarize a distribution in this space, it is necessary to take a

closer look at the geometry, which we do in section 2.4 after reviewing some

essential theoretical aspects in section 2.3. In the sequel, we turn to more

technical aspects of how means and medians of a set of phylogenetic trees

can be computed. The discussion is mostly self-contained and is intended

for readers who are not experts in analysis or metric spaces.

2.1. Phylogenetic trees

A phylogenetic n-tree, with n ∈ N and n ≥ 3, is a connected graph

with no circuits that has n+ 1 terminal vertices, labeled from 0 to n, which

we call leaves. Vertices that are not leaves are called interior vertices, or

sometimes simply branching points. For the following discussion we do not

assign labels to the interior vertices, the tree is therefore called semi-labeled.

1A similar discussion can be found in Benner and Bačák [2013] and Bačák [2014b],

which relies on the basic definition of phylogenetic trees as split systems [see e.g. Semple

and Steel, 2003, Dress et al., 2012].

5



6 2. THE SPACE OF PHYLOGENETIC TREES

It is important that the phylogenetic tree is not required to have only binary

branching points, i.e. the degree of an interior vertex is greater or equal to

two. The leaves represent the species that are considered in a phylogenetic

analysis, which are those that are usually still present today. The vertex

connected to leaf 0 is sometimes called the root of the tree, in which case

it is thought to represent the common ancestor of species 1, . . . , n, whereas

leaf 0 is called the outgroup. However, the root plays no distinguished role

in our discussion and the tree should rather be seen as an unrooted tree,

because in practice the causal direction of evolution is not identifiable, as

discussed in chapter 3.

The combinatorial structure or topology of the tree is defined through its

set of edges. An edge that is incident to a leaf is called a leaf edge, while all

remaining edges are interior edges. For the later discussion of the geometry

of the tree space, it is necessary to uniquely identify edges across topologies.

Therefore, we define an edge e as a bipartition (A | B) of the set of leaves

L = {0, . . . , n}, i.e. L = A ∪ B, which is also called a split. Intuitively

speaking, if an edge is removed from a tree, we obtain two trees with leaf

sets that are defined by the split of the edge. Every edge e of a tree t is also

assigned a length |e|t ≥ 0. An example is given in Figure 1. For instance,

0

1 2 3

4

5 6

e1
e2

e3

Figure 1. An example of a 6-tree with three interior edges.

the edge e1 is defined as the split (0, 4, 5, 6 | 1, 2, 3). For a fixed n the

number of possible splits is equal to the number of bipartitions of L. The

Stirling number of the second kind S(n, k) gives the number of partitions

of L into k non-empty subsets, which in the case of bipartitions reduces to

S(n, 2) = 2n − 1. In a phylogenetic tree, the leaf edges are always present,

which means that the topology of the tree is defined solely by the set of

interior edges. A phylogenetic tree has at most n − 2 interior edges, which

have to be pairwise compatible. Two edges e1 and e2 with splits A1|B1 and

A2|B2 are compatible if and only if one of the sets

A1 ∩A2, A1 ∩B2, A2 ∩B1, B1 ∩B2
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is empty [Buneman, 1971]. Otherwise, we call them incompatible. For fur-

ther details, see for instance Semple and Steel [2003], Dress et al. [2012].

This leads us to the following definition of a phylogenetic tree.

Definition 2.1.1 (Phylogenetic tree). A phylogenetic tree is a con-

nected graph with no circuits, which has n + 1 leaves and at most n − 2

pairwise compatible interior edges.

2.2. Basic tree space structure

In this section, we discuss the basic structure of the phylogenetic tree

space introduced by Billera, Holmes, and Vogtmann [2001], in order to gain

an intuitive understanding of the space. Further details, especially about

the geometry of the space, is outlined in section 2.4.

The space of all phylogenetic trees with n + 1 leaves is denoted Tn.

As already discussed, regardless of the topology the same n + 1 leaf edges

are always present and might only have assigned different lengths, so that

they can be identified as a point in Euclidean space of dimension n + 1.

Therefore, we will focus our attention to the structure of the space limited

to the interior edges, which is much more complicated. The full tree space

Tn is simply the product of the space of leaf edges and that of the interior

edges.

(1,3/4)

0

1 2
3 4

(1,0)

0

1 2 3 4 (0,0)

(0,3/4)

0

1 2 3
4

0

1 2
3

4
e1

e2
|e1| → 0

|e2| → 0

|e1|

|e2|

Figure 2. An orthant of T4.

Consider a fixed phylogenetic tree t ∈ Tn with r ≤ n − 2 interior edges

I = (e1, . . . , er) of positive lengths l1, . . . , lr. The r-tuple l = (l1, . . . , lr) is

an element of the the open orthant (0,∞)r of dimension r. Therefore, we

may associate with each point l′ ∈ (0,∞)r a tree s with the same topology
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as t but with interior edge lengths defined by l′. That is, t and s have the

same set of interior edges as well as the same leaf edge lengths, but different

interior edge lengths. The boundary ∂(0,∞)r of (0,∞)r is defined to consist

of those trees which only have a subset of the edges of t. Equivalently, one

may say that the lengths of some edges of a tree s ∈ Tn were shrinked to

zero. For instance, given a fixed binary tree which has r = n − 2 interior

edges, the faces of the corresponding orthant represent non-binary trees.

An example is given in Figure 2 for trees with 5 leaves. In this example, e1

represents the edge (1,2 | 0,3,4) and e2 the edge (1,2,3 | 0,4). A point on the

vertical boundary is reached by shrinking the length of edge e1 to zero. On

the other hand, the horizontal boundary ray is reached by shrinking e2.

0

1 2
3

0

1
23

0

1
2

3

t1

t2

t3

Figure 3. Treespace T3, which consists of three rays glued

together at the origin.

We may therefore associate with each set I of n− 2 pairwise compatible

edges an orthant O(I) of the form [0,∞)n−2. Each point l ∈ O(I) defines

a tree of topology given by the set of edges associated with this orthant

and interior edge lengths l. The BHV tree space Tn consists of (2n− 3)!! =

(2n − 3)(2n − 5) · · · · · 5 · 3 orthants, one for each pairwise compatible set

of edges, which are glued together at common lower-dimensional faces that

correspond to non-binary trees. An exact definition of how orthants are

glued together will be given in later sections. The simplest space is T3,

which comprises of only three distinct topologies identified by the single

internal edge. As depicted in Figure 3, it consists of three rays [0,∞), one

for each of the edges (0 | 1, 2), (0, 1 | 2), and (0, 2 | 1). The rays are glued

together at a single common point, the origin 0. In contrast, the space T4

is already much more complicated. Figure 4 shows five out of 15 orthant of

T4. There is no isometric embedding of T4 into three-dimensional Euclidean

space, which is why only part of it can be shown. The figure suggests

that there exists not only a well-defined intrinsic distance between any two
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0

1 2
3

4

0

1
2 3

4

0

1

2 3
4

0

1
2

3 4

0

1 2 3 4

Figure 4. Five out of 15 orthants of T4.

trees, but also a geodesic, i.e. a (unique) shortest path. If the two trees

are within the same orthant, the geodesic simply becomes a Euclidean line

segment between the two trees. Otherwise, we have to shrink edge lengths

to zero and possibly expand other edges along the geodesic. An algorithm

for computing geodesics was developed by Owen and Provan [2011].

The BHV tree space Tn is therefore equipped with the induced length

metric d : Tn × Tn → [0,∞), which makes it a geodesic metric space. A

precise definition is given in section 2.3. Billera et al. [2001] proved that the

tree space is a Hadamard space, which is a complete geodesic metric space

and has nonpositive curvature (in the sense of Alexandrov). Intuitively, in

such spaces triangles appear “slimmer” than a triangle in Euclidean space

with the same edge lengths, see Figure 5. Already in Figure 4 one may ob-

p

r

q

(a)

p̄

r̄

q̄

(b)

Figure 5. (a) Triangle in a space of nonpositive curvature.

(b) Comparison triangle in Euclidean space.

serve that triangles might be slimmer than in Euclidean space if the vertices

lie in different orthants. In a general Hadamard space many operations that
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we know from Euclidean space are not defined. For instance, adding two

points t, s ∈ Tn is not defined, however, the convex combination

tτ = (1− τ)s+ τt,

for τ ∈ [0, 1] is a possible operation, which represents a unique tree tτ ∈ Tn
lying on the geodesic from s to t satisfying d (s, tτ ) = τd (s, t) . Convex

combinations are important for computing medians and means, as will be

outlined later. The BHV tree space however has much more structure than

a general Hadamard space. The space is piecewise Euclidean and allows for

instance to scale a point by a positive real constant, which is not defined in

a Hadamard space, and we also have a well-defined origin. To gain a better

understanding of the geometry of the space we first need to take a look at

general metric spaces of nonpositive curvature.

2.3. Nonpositively curved spaces

In this section we summarize some basic definitions and properties of

nonpositively curved metric spaces, which can also be found in Bačák [2014b],

Jost [1997], Bridson and Haefliger [1999], Davis [1994]. Many important re-

sults were also established by Jost [1997]. However, before discussing more

abstract metric spaces, we have to develop some basic understanding of

curvature (see also the discussion in Lee [1997]).

Given a curve γ : I → R2, I ⊂ R, in the Euclidean plane, the curvature

at a point p on γ is a measure of how much γ locally deviates from a straight

line. We assume that γ has unit speed parametrization, i.e. the arc length

of γ from γ(0) to γ(t) is t. Formally, the curvature of γ is then defined as

κ∗(t) =

∥∥∥∥ d2

dt2
γ(t)

∥∥∥∥ .
If γ is a straight line, the curvature is zero because the velocity is assumed

to be constant. Otherwise, the velocity vector changes along γ, leading to a

strictly positive curvature. Many applications require an extended definition

of curvature, which takes both positive an negative values indicating to

which side the curve is turning. We refer to this definition as the signed

curvature κ(t), so that κ∗(t) = |κ(t)|.
A more intuitive approach to understanding curvature is to consider

tangent circles at a point p = γ(t). The curve touches the circle at a point

where the velocity vector on the circle coincides with d/dt γ(t) (assuming

unit velocity on the circle as well). The radius r of the circle is chosen such

that the acceleration vector at p equals the acceleration on γ, see Figure 6,

so that κ∗(t) = r−1.
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γr

p

γ′(t)

Figure 6. Osculating circle at a point p = γ(t).

u

p

M

Figure 7. A plane M that contains a point p on the sphere

as well as the normal vector u at p.

The curvature of a surface S at a point p can in principle be obtained

from the set of curves on S that go through p. However, we have to restrict

the set of curves to those that are as straight as possible. Let u be the normal

vector at p and M a plane that contains both p and u, see Figure 7. The set

of curves that we consider are the intersections of all such planes M with the

surface S. We then compute the signed curvature for each curve and take

only the minimum and maximum, which we call the principal curvatures κ1

and κ2 at p. This leads to the definition of the Gauss curvature

κg = κ1κ2 .

It is easy to see that the curvature of a 2-sphere must be 1/r2. Negative cur-

vature is obtained if the surface bends opposite in the principal directions.

When studying more abstract metric spaces where curves are not differen-

tiable, a notion of curvature is obtained by looking at the shape of triangles.

As shown in Figure 8, triangles in negatively curved spaces appear slimmer

than in Euclidean space. On the other hand, in positively curved spaces,

the sides of triangles bend outwards (see also Toponogov’s theorem).

A metric space (X, d) is a set of points X equipped with a metric (dis-

tance function) d : X × X → [0,∞). A path in this space is a continuous

mapping γ : [0, 1] → X that connects two points a, b ∈ X, i.e. γ(0) = a

and γ(1) = b. A geodesic γ : [0, 1] → X is the shortest path between two
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points such that d(γ(s), γ(t)) = |s− t|d(a, b), for every s, t ∈ [0, 1].2 We may

sometimes also use the shorthand notation [a, b] : τ 7→ (1− τ)a+ τb to refer

to a geodesic from a to b. A metric space is called geodesic if every two

points are the endpoints of a geodesic.

(a) (b)

Figure 8. Triangles in curved surfaces. (A) Hyperbolic sad-

dle with negative curvature. (B) Sphere with positive curva-

ture.

Geodesic metric spaces are studied by comparing them to a model space

Mn
κ , i.e. a smooth Riemannian manifold of dimension n with constant sec-

tional curvature κ ∈ R, i.e. the generalization of Gauss curvature to n-

dimensional manifolds. We have to distinguish between the following three

cases (see Figure 8):

κ < 0: Mn
κ is the hyperbolic n-space,

κ = 0: Mn
κ is the n-dimensional Euclidean space, and

κ > 0: Mn
κ is the n-dimensional sphere with radius 1/

√
κ.

Let (X, d) be a geodesic metric space and ∆(p, q, r) a geodesic triangle in

this space. The comparison triangle ∆(p̄, q̄, r̄) is defined as a triangle in the

model space M2
κ such that its edge lengths are equal to the edge lengths

of ∆(p, q, r). The CAT(κ) inequality, named after Élie Cartan, Aleksandr

Aleksandrov and Victor Toponogov, states that a triangle in X is “slimmer”

than the comparison triangle in M2
κ . That is, for any vertex of ∆(p, q, r),

say p, and any point xτ = (1− τ)q + τr on the opposite edge we have

(1) d(p, xτ ) ≤ d∗(p̄, x̄τ ) ,

where x̄τ is the corresponding point on ∆(p̄, q̄, r̄) and d∗ the metric on M2
κ .

Definition 2.3.1 (CAT(κ) space). Let (X, d) be a geodesic metric space.

X is said to be CAT(κ) if Equation 1 holds for any triangle.

Note also that in a CAT(κ) space X the curvature is bounded from

above, which is why for any κ′ > κ the space X is also a CAT(κ′) space.

2In this definition of the geodesic, the speed is given by the distance d(γ(0), γ(1)).
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The above definition leads us to a bound on the curvature of a space.

We say that a metric space has curvature ≤ κ if the CAT(κ) inequality is

satisfied locally. For smooth Riemannian manifolds it is known that this

definition coincides with the sectional curvature, i.e. a smooth Riemannian

manifold has curvature ≤ κ if and only of it has sectional curvature ≤ κ.

Our interest here is mostly restricted to CAT(0) spaces where the model

space is the n-dimensional Euclidean space. The CAT(0) inequality can be

written as

d(p, xτ )2 ≤ (1− τ)d(p, q)2 + τd(p, r)2 − τ(1− τ)d(q, r)2 .

From the CAT(0) inequality it can also be concluded that the distance func-

tion d is convex, i.e. for any two geodesics σ1, σ2 : [0, 1]→ X we have

d(σ1(τ), σ2(τ)) ≤ (1− τ)d(σ1(0), σ2(0)) + τd(σ1(1), σ2(1)) .

As a consequence, CAT(0) spaces are also uniquely geodesic, meaning that

any two points in X are connected by a unique geodesic. We also restrict

our attention to complete spaces where every Cauchy sequence converges to

some point in the space.

Definition 2.3.2 (Hadamard space). A Hadamard space is a complete

CAT(0) space.

At first, Hadamard spaces seem very abstract and one may not expect

to find instances in real applications. There is however a class of spaces with

curvature bounded from above, which is constructed by “gluing” together

pieces of Euclidean space. We will discuss this class in the context of simpli-

cial complexes, but first we need to understand what is meant by the term

“gluing” and how a metric is obtained on such spaces.

2.3.1. Gluing together metric spaces. For the following discussion,

consider a family of metric spaces (Bλ, dλ)λ with λ ∈ Λ and let

B̄ =
∐
λ∈Λ

Bλ

denote the disjoint union with metric

d̄((x, λ), (y, λ′)) =

{
dλ(x, y) if λ = λ′ ,

∞ otherwise .

Furthermore, for some equivalence relation ∼ let B = B̄/∼ denote the set

of equivalence classes. The quotient pseudometric d on B is defined as

d(x, y) = inf
S

n∑
i=1

d̄(x̄i, ȳi)



14 2. THE SPACE OF PHYLOGENETIC TREES

where S = (x̄1, ȳ1, . . . , x̄n, ȳn) is a sequence of points such that x̄1 ∈ x,

ȳn ∈ y and ȳi∼ x̄i+1.

To define an equivalence relation we consider a simple way to combine

metric spaces. Let iλ : A → Aλ ⊂ Bλ be an isometry for all λ ∈ Λ. The

equivalence relation ∼ is defined through iλ by

iλ(a)∼ iλ′(a) for all a ∈ A, λ, λ′ ∈ Λ ,

and the resulting quotient space B is called a gluing. A simple example

is illustrated in Figure 9, where B1 and B2 show two pieces of Euclidean

space glued together along isometric subspaces. For a gluing B the quotient

A

B1

B2

a

(b, 1) (b, 2)

A1
A2

Figure 9. Two pieces of Euclidean space B1 and B2 glued

together at a common face through an isometry on A.

pseudometric for some x ∈ Bλ and y ∈ Bλ′ is given by

d(x, y) =

dλ(x, y) if λ = λ′

inf
a∈A
{dλ(x, iλ(a)) + dλ′(iλ′(a), y)} otherwise ,

which is a metric on B. When parts of Euclidean spaces are glued together,

we may call d also the induced length metric of B.

2.3.2. Cubical and simplicial complexes. The BHV tree space can

be understood as a collection of orthants glued together at isometric faces.

To study the global curvature of this space, we first reduce it to a cubi-

cal complex. The global geometric properties of such a space are captured

by the so called link of the origin, which is a simplicial complex and con-

sists of all points at a fixed distance to the origin. This complex is then

instrumentalized to show that the BHV tree space is CAT(0).

Let us first introduce some basic notions. A simplex S ⊂Mn
κ is defined

as the convex hull of a set V of n + 1 points that are not contained in any



2.3. NONPOSITIVELY CURVED SPACES 15

(n − 1)-dimensional hyperplane (affinely independent). The elements of V

are called the vertices of S and T ⊆ S is called a face of S if it is the convex

hull of a non-empty subset of V . A collection K of simplices is called an Mκ

simplicial complex if it satisfies two conditions: A face of any simplex S ∈ K
is in K, and furthermore, every two simplices of K are allowed to intersect

only at their faces (they are glued together at isometric faces). Note that

the simplices of an Mκ simplicial complex are not required to be of the

same dimension. A cubical complex C is a collection of cubes I = [0, 1]nI ,

nI ∈ N+, where any two cubes may be glued together at isometric faces. The

vertices of a cubical complex are the corners of the cubes in the collection. In

the following we assume that both cubical and simplicial complexes consist

of finitely many cubes or simplices respectively.

While curvature is a local characterization of a space, global statements,

i.e. whether the space is CAT(κ), are obtained using the Cartan-Hadamard

theorem. This requires further assumptions, such as simple connectedness.

Intuitively speaking, for global statements we need to assume that the space

has no holes. An important tool for the study of global curvature of a cubical

complex C is the link of a vertex v in C.

Definition 2.3.3 (Geometric link). Let I be a cube [0, 1]nI . The geo-

metric link (or simply link) Lkε(v, I) of a vertex v in I is defined as the set

of points

{i ∈ I | d(v, i) = ε} ,

for some ε ∈ (0, 1]. Let C be cubical complex and Cv the collection of cubes

that share a given vertex v due to the gluing. The link complex of a vertex

v is defined as

Lkε(v, C) =
∐
I∈Cv

Lkε(v, I) .

Take for instance the cube I = [0, 1]3 and let v denote one of the ver-

tices. The link of v in this cube is a subset of the sphere with radius ε (see

Figure 10a). On the other hand, take a cubical complex C that consists of

three cubes [0, 1]2 glued together as shown in Figure 10b. The link complex

of the vertex v consists of three quarters of a circle.

In general, the link complex Kv = Lkε(v, C) at a vertex v of a cubical

complex C is an M1 simplicial complex. A cubical complex C satisfies the

link condition if the link complex Kv is a CAT(1) space for every vertex v

of C. An important result by Gromov [1987, p. 120] states the relation of

link complexes to the global curvature of cubical complexes.

Theorem 2.3.4. A simply connected cubical complex is a CAT(0) space

if and only if it satisfies the link condition.
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v

Lkε(v, I)

(a)

v

Lkε(v, C)

(b)

Figure 10. (A) Geometric link of a vertex in a three-

dimensional cube. (B) Link complex of a vertex in a complex

of three two-dimensional cubes.

a

b c

Figure 11. Triange ∆(a, b, c) in a cubical complex, which

is not simply connected.

In fact, the theorem is much more general than presented here and ap-

plies to polyhedral complexes. A space that is not simply connected contains

“holes” and it is easy to verify that a triangle around such a hole does not

satisfy the CAT(0) inequality (see Figure 11).

For instance, take again the cube I = [0, 1]3. Since the link of any vertex

is a subset of the unit sphere, we know that the link complex is CAT(1) and

therefore the cube is a CAT(0) space. However, this is not true anymore if

we only consider the surface of a cube. The link of a vertex is then isometric

to a circle with circumference 3/2π and radius 3/4 meaning that it is a

CAT(16/9) space and therefore the surface of a cube is not CAT(0) space.
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The link condition provides us with a powerful tool to check whether a

space is CAT(0). What remains to be shown is that the link complex is a

CAT(1) space. W.l.o.g. we will in the following assume that ε = 1 for any

link complex and use the shorthand notation Lk(v, C) = Lk1(v, C) instead.

Definition 2.3.5 (All-right simplicial complex). An M1 simplicial com-

plex is called all-right if every edge has length π/2.

It is easy to verify that for instance the link complex of any cubical

complex is an all-right simplicial complex. We have already observed that

a cube is a CAT(0) space, however the surface of a cube is not. This is

the basic observation that leads to the definition of a flag complex, which

Gromov called the no (empty) triangles condition.

Definition 2.3.6 (Flag complex). Let K be a simplicial complex. We

call a set of vertices fully connected if the vertices are pairwise joined by an

edge. K is called a flag complex if every fully connected set of vertices is

also a simplex in K.

Hence, if for instance all the edges of a triangle are a simplex in K, then

so is the full triangle. The same holds for tetrahedrons and so on. This

leads us to the following theorem due to Gromov [1987].

Theorem 2.3.7. An all-right simplicial complex is CAT(1) if and only

if it is a flag complex.

This theorem is the most important result of this section, which we will

use later to show that the BHV tree space is indeed a Hadamard space.

2.4. Combinatorics and geometry of the tree space

We have reviewed all basic facts that are required to gain a deeper

understanding of the construction and geometry of the BHV tree space. As

already discussed, the tree space Tn consists of pieces of Euclidean space

[0,∞)n−2, which we call orthants, glued together at isometric faces. We

also saw, that for such a gluing an intrinsic length metric d exists. As was

shown by Billera et al. [2001], an easy combinatorial argument exists which

shows that the BHV tree space has nonpositive curvature.

To understand the curvature of the space we need to consider the link

complex of every vertex. We restrict our attention to the link of the origin,

which is the most important complex to study. The link is shown for a piece

of T4 in Figure 12, which consists of subsets of the unit circle. The figure

shows that {e1, e4}, {e2, e4}, and {e3, e4} are pairwise compatible edge sets.

The link is an M1 simplicial complex where each edge has length π/2 and

therefore the complex is all-right. One also observes that for instance e1 and
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0

1 2
3 4

0

1 2 3 4
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1 2
3

4

e1

e4

e2

e3

Figure 12. A piece of T4 with the link of the origin.

e2 are not compatible and the space has no corresponding orthant. This also

indicates that the link is a flag complex.

The following important theorem from Billera et al. [2001] states that

the tree space has globally nonpositive curvature.

Theorem 2.4.1. The space Tn is a Hadamard space.

Proof. The tree space is a gluing of orthants where the link of the origin

is an all-right simplicial complex. To show that the space has nonpositive

curvature we therefore only need to show that the link complex is a flag

complex. A phylogenetic tree with n + 1 leaves consists of at most n − 2

pairwise compatible edges. Therefore, any set of pairwise compatible edges

is represented by an orthant of the space, which proves the theorem. �

We have established that the space has nonpositive curvature without

an actual understanding of how to compute geodesics. Two trees lie in the

same face of a simplex in tree space if they share the same topology. In this

case, the geodesic is trivial to compute. Otherwise, computing geodesics

turns out to be more difficult. A first glimpse is gained by understanding

which orthants are glued together. A tree within an orthant has all n − 2

interior edges. Computing a path to a neighboring orthant would mean to
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shrink one of the interior edge lengths to zero and extending one of the two

other possible edges. In biology, a similar operation exists and is known as

the nearest neighbor interchange (NNI), which is illustrated in Figure 13.

0

1 2
3

0 0

1
23 1

2
3

e e′ e∗

Figure 13. Nearest neighbor interchange (NNI). The edge e

can be replaced by either e′ or e∗. The leaves might represent

more complex subtrees.

2.5. Computing means and medians in tree space

Given a set of trees t̄ = (t1, . . . , tK) that are elements of the space Tn, we

would like to summarize this set with only one tree. A common approach

is to compute for instance the mean or median. The tree space requires

more general definitions of the mean and median that do not rely on any

Euclidean properties. One commonly used possibility is given by the Fréchet

mean

Ψ(t̄) = arg min
s∈Tn

Ψ(t̄; s) = arg min
s∈Tn

1

K

∑
t∈t̄

d(s, t)2

and the geometric median

Ξ(t̄) = arg min
s∈Tn

Ξ(t̄; s) = arg min
s∈Tn

1

K

∑
t∈t̄

d(s, t) .

It is easy to see that the Fréchet mean in Euclidean space is equivalent to the

standard definition of the mean. Unlike the usual definition of the median,

we do not require that the geometric median itself is an element of the set

t̄.

The most eminent question is how the minimizers of Ψ(t̄) and Ξ(t̄) can

actually be computed. Take for instance three points p, q, r ∈ Tn. The

mean is the barycenter of the corresponding triangle ∆(p, q, r). In analogy

to Euclidean space, we might be tempted to compute it as

µ1 =
2

3

(
1

2
p+

1

2
q

)
+

1

3
r .

However, we could also compute the mean as

µ2 =
2

3

(
1

2
p+

1

2
r

)
+

1

3
q ,
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and it is easy to verify that in general µ1 6= µ2. An example is given in

Figure 14.

p

q

r

η2

η1

µ1

µ2

Figure 14. Triangle ∆(p, q, r) in tree space, with η1 = 1
2p+

1
2q, µ1 = 2

3η1 + 1
3r, η2 = 1

2p+ 1
2r, and µ2 = 2

3η2 + 1
3q.

Both the mean and the median are convex functions and since tree space

has much more structure than a general Hadamard space, we may use the

gradient within orthants to find a minimizer. This approach seems much

more promising but there are several practical difficulties. Both the Fréchet

mean and geometric median in tree space have a property which is called

stickiness [see e.g. Miller et al., 2012]. We will discuss this property in

more detail later. As a result, the respective minimizers will often lie at

the boundaries of orthants, where many directions of possible descent might

exist. As an example take the space T3 with three trees t̄ = (t1, t2, t3) one on

each orthant at an equal distance to the origin. To verify that the origin is

the Fréchet mean we may formalize the conditions simply as the directional

derivative

dtΨ(t̄;0) = lim
τ↘0

Ψ(t̄; (1− τ)0 + τt)−Ψ(t̄;0)

τ

and check that it is nonnegative for each t ∈ t̄. It should also be noted

that the directional derivative is discontinuous at the origin. In this simple

example we only have to check three conditions. It was pointed out by Miller

et al. [2012] that in general we have to check all neighboring orthants for

possible directions of descent, which in higher dimensions can easily become

impractical. For the geometric median also the non-differentiability of the

function Ξ(t̄, ·) at locations t ∈ t̄ can cause numerical issues if t̄ contains

many closely located trees.
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2.5.1. The proximal point algorithm in Hadamard spaces. We

utilize a modified version of the proximal point algorithm (PPA) to solve this

type of minimization problem. Assume for the moment that f : Rn → R is a

convex differentiable function. Finding a minimizer of f can be interpreted

as solving the differential equation

d

dt
x(τ) = −∇f(x(τ)) ,

for x : R+ → Rn, which is called the gradient flow of f . A numerical solution

may be found by using the backward Euler method to discretize the equation

so that
xi+1 − xi

λ
= −∇f(xi+1) ,

where λ > 0 is a step-size parameter. By rewriting the equation we obtain

∇f(xi+1) +
1

λ
(xi+1 − xi) = 0 ,

which can be expressed as

xi+1 = arg min
y∈Rn

(
f(y) +

1

2λ
‖y − xi‖22

)
.

The second term ensures that xi+1 will be close to the previous solution

xi. It is similar to Tikhonov regularization, a widely used method in convex

optimization [Boyd and Vandenberghe, 2004]. We call

Jλ(f ;x) = arg min
y∈Rn

(
f(y) +

1

2λ
‖y − x‖22

)
the resolvent of f at x, which was introduced by Jost [1995, 1998] under the

name of Moreau-Yosida regularization. Iterating the equation

xi+1 = Jλi(f ;xi)

with step size λi is known as the PPA [Martinet, 1970, Rockafellar, 1976].

For the algorithm to properly converge it is required that λi > 0 and
∑
λi =

∞, which ensures that a minimum at a point arbitrarily far away from

the starting point can be reached. The relation to the backward Euler

discretization of the gradient flow is well known and for instance described

in Parikh and Boyd [2013]. An important modification of the PPA was

introduced by Bertsekas [2011]. Assume that f is of the form

f(x) =
K∑
k=1

fk(x) ,

where fk : Rn → R, k = 1, . . . ,K, are convex functions. Instead of applying

the resolvent to f , it is possible to apply it to each component separately,
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leading to the proximal iteration

xi+1 = Jλi(fki ;xi) ,

where ki = (i mod K) + 1. It is assumed that λi is constant within each

cycle, i.e. λi = λi+1 = · · · = λi+K−1 for all i with ki = 1. We will refer to this

algorithm in the following as the cyclic incremental proximal point algorithm

(cyclic IPPA). The advantage of this method is that the resolvent of a single

component fk is often much easier to compute and in tree space it is possible

to derive a closed form solution. Since in each iteration i the resolvent is

applied to only one component fki of f , it is necessary to introduce a further

constraint on the step size λi that assures a global convergence of the cyclic

IPPA. As will be discussed later, we will require λi to decrease with i such

that
∑
λ2
i converges and therefore λi converges to zero.

In a stochastic version of the algorithm, ki is chosen at random from

a uniform distribution. The convergence can be shown using the super-

martingale convergence theorem [Bertsekas and Tsitsiklis, 1995]. Indeed,

this algorithm is in its essence very similar to a variant of stochastic gradient

descent, where at each iteration the gradient of a function f is approximated

by the gradient of a randomly chosen component fk [cf. e.g. Bottou, 1998].

Although in practice the stochastic variant often converges faster, in this

discussion, we will focus our attention to the sequential version, since the

convergence can be established with a less technical proof.

It is straightforward to generalize the resolvent to Hadamard spaces.

Let (H, d) be a Hadamard space and f : H → R a convex function. The

resolvent of f with parameter λ > 0 is defined as

Jλ(f ;x) = arg min
y∈H

(
f(y) +

1

2λ
d(x, y)2

)
.

The convergence of the respective PPA on locally compact Hadamard spaces

was established in Bačák [2013] and the IPPA version in Bačák [2014a]. Ob-

viously, the tree space Tn is locally compact since it is composed of finitely

many pieces of Euclidean space and we can therefore use the IPPA to com-

pute medians and means.

We now state the formal definition of the cyclic and stochastic IPPA in

locally compact Hadamard spaces.

Definition 2.5.1 (cyclic IPPA). Let (H, d) be a locally compact Hada-

mard space and let f : H → R with f =
∑K

k=1 fk be composed of K convex

functions fk. Given a starting point x0 ∈ H, in each iteration i a point

xi+1 = Jλi(fki ;xi)
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is computed, where ki = (i mod K) + 1 and the step-size parameters λi are

nonnegative reals such that
∞∑
i=1

λi =∞ , and

∞∑
i=1

λ2
i <∞ .

Furthermore, we require a constant step-size within each cycle, i.e. λi =

λi+1 = · · · = λi+K−1 for all i with ki = (i mod K) + 1 = 1.

Definition 2.5.2 (stochastic IPPA). Let (H, d) be a locally compact

Hadamard space and let f : H → R with f =
∑K

k=1 fk be composed of K

convex functions fk. Given a starting point x0 ∈ H, in each iteration i a

point

xi+1 = Jλi(fki ;xi)

is computed, where ki is drawn from a uniform distribution over {1, . . . ,K}.
The step-size parameters λi are nonnegative reals such that

∞∑
i=1

λi =∞ , and
∞∑
i=1

λ2
i <∞ .

The following theorem due to Bačák [2014a] establishes the convergence

of the cyclic IPPA. The preliminaries of the proof will be explained in detail

afterwards.

Theorem 2.5.3 (cyclic IPPA convergence). Let (H, d) be a locally com-

pact Hadamard space and fk : H → R, k = 1, . . . ,K, convex functions.

Let f =
∑K

k=1 fk and assume that (xi) is generated by the cyclic IPPA (see

Definition 2.5.1). If min(f) 6= ∅ and there exists an L such that

fk(xjK)− fk(xjK+k) ≤ Ld(xjK , xjK+k)(2)

fk(xjK+k−1)− fk(xjK+k) ≤ Ld(xjK+k−1, xjK+k)(3)

for every j ∈ N and k = 1, . . . ,K, then the sequence (xi) converges to a

minimizer of f .

Proof. Let y be a minimizer of f . By Proposition 2.5.6 we have

d(xjK+K , y)2 ≤ d(xjK , y)2 − 2λi [f(xi)− f(y)] + 2λ2
iL

2K(K + 1) ,

for any j ∈ N. According to Lemma 2.5.7 we know that the sequence

(d(xjK , y)) converges as j → ∞. Furthermore, also by Lemma 2.5.7 the

series
∞∑
j=0

λjK [f(xjK)− f(y)]

converges. By Lemma 2.5.8 and because
∑
λi = ∞ we know that there

exists a subsequence (xjlK) of (xjK) for which f(xjlK) converges to f(y) as
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l→∞. Since y might not be a unique minimizer of f , we may exploit that

the space is locally compact and find that because (xjlK) is bounded, it has

a subsequence that converges to a minimizer ŷ of f . Although Lemma 2.5.5

states that successive points of the sequence (xi) get arbitrarily close as

i → ∞, it cannot be directly concluded that the whole sequence is Cauchy

(see e.g. Figure 15). We have already established that (d(xjK , ŷ)) converges

as j →∞ and since a subsequence of (xjK) converges to ŷ, we can conclude

that

d(xjK , ŷ)→ 0 .

In addition, again by virtue of Lemma 2.5.5 we know that the distance

between successive points of (xi) converges to zero and therefore we can

conclude that

lim
j→∞

xjK+k = ŷ

for every k = 1, . . . ,K, from which it follows that the whole sequence (xi)

converges to ŷ as i→∞. �

Conditions 2 and 3 are satisfied for instance if the functions fk are Lip-

schitz continuous. While this is true for the distance function, it does not

hold for the squared distance. When considering the mean of a set of trees

t̄ = {t1, . . . , tK}, we know that the minimizer has to be contained in the

convex hull spanned by t̄. The sequence (xi) is fully contained in the closed

convex hull of t̄∪ {x0}, which is a bounded subset of H. Within this region

the squared distance is indeed also Lipschitz and therefore the conditions

are met. In particular, the conditions are satisfied for functions of the form

f(y) =
1

K

K∑
k=1

d(tk, y)p , where p ∈ [1,∞).

The convergence of the cyclic IPPA relies on the following properties of the

resolvent.

Lemma 2.5.4. Let f : H → R be a convex function and xi+1 = Jλi(f ;xi).

For any y ∈ H

d(xi+1, y)2 − d(xi, y)2 ≤ 2λi [f(y)− f(xi+1)] .

Proof. By the definition of the resolvent we have

xi+1 = Jλi(f ;xi) = arg min
y∈H

(
f(y) +

1

2λi
d(xi, y)2

)
and therefore

f(xi+1) +
1

2λi
d(xi, xi+1)2 ≤ f(yp) +

1

2λi
d(xi, yp)

2
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for any yp ∈ H, which we rewrite as

d(xi, xi+1)2 − d(xi, yp)
2 ≤ 2λi [f(yp)− f(xi+1)] .

For some y ∈ H and yτ = (1− τ)y+ τxi+1, τ ∈ [0, 1), we apply the CAT(0)

inequality

d(xi, yτ )2 ≤ (1− τ)d(xi, y)2 + τd(xi, xi+1)2 − τ(1− τ)d(xi+1, y)2

and obtain

(1− τ)d(xi, xi+1)2 − (1− τ)d(xi, y)2 + τ(1− τ)d(xi+1, y)2

≤ 2λi [f(yτ )− f(xi+1)] .

Since f is convex, we have

f(yτ )− f(xi+1) ≤ (1− τ)f(y)− f(xi+1)

and therefore

d(xi, xi+1)2 − d(xi, y)2 + τd(xi+1, y)2 ≤ 2λi [f(y)− f(xi+1)] .

Setting τ = 1 and dropping d(xi, xi+1)2 finishes the proof. �

a1
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a9

a10
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a12
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ai

i

Figure 15. An example of a real sequence (ai), which is

not Cauchy but where |ai − ai+1| → 0. The subsequences

a1, a4, a11, . . . and a2, a7, a16, . . . are constant and therefore

converge to different limits.

The following result is important since it establishes that the distance of

successive elements of (xi) converges to zero if λi → 0. However, this does

not imply that the sequence is Cauchy (see e.g. Figure 15).

Lemma 2.5.5. Let f : H → R be a convex function and xi+1 = Jλi(f ;xi).

If there exists an L such that

f(xi)− f(xi+1) ≤ Ld(xi, xi+1)
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then

d(xi, xi+1) ≤ 2λiL .

Proof. By the definition of the algorithm or by applying Lemma 2.5.4

with y = xi we get

d(xi, xi+1)2 ≤ 2λi [f(xi)− f(xi+1)]

which can be written as

d(xi, xi+1) ≤ 2λi
f(xi)− f(xi+1)

d(xi, xi+1)

and it follows that

d(xi, xi+1) ≤ 2λiL .

�

Proposition 2.5.6. Let fk : H → R, k = 1, . . . ,K, be convex functions

and let f =
∑K

k=1 fk. Assume that (xi) is generated by the cyclic IPPA (see

Definition 2.5.1). If there exists an L such that

fk(xjK)− fk(xjK+k) ≤ Ld(xjK , xjK+k)(4)

fk(xjK+k−1)− fk(xjK+k) ≤ Ld(xjK+k−1, xjK+k)(5)

for every j ∈ N and k = 1, . . . ,K, then

d(xjK+K , y)2 ≤ d(xjK , y)2 − 2λi [f(xjK)− f(y)] + 2λ2
jKL

2K(K + 1) .

Proof. For some j ∈ N let i = jK. We have

xi+k = Jλi(fk;xi+k−1)

and by applying Lemma 2.5.4 we obtain

d(xi+k, y)2 ≤ d(xi+k−1, y)2 − 2λi [fk(xi+k)− fk(y)] .

By adding 2λi[fk(xi)−fk(xi)] to the right side, the inequality can be written

as

d(xi+k, y)2 ≤ d(xi+k−1, y)2 − 2λi [fk(xi)− fk(y)]

+ 2λi [fk(xi)− fk(xi+k)] .

By assumption 4 we know that

fk(xi)− fk(xi+k) ≤ Ld(xi, xi+k) .

Utilizing assumption 5 with Lemma 2.5.5 results in

Ld(xi, xi+k) ≤ L [d(xi, xi+1) + · · ·+ d(xi+k−1, xi+k)] ≤ 2λiL
2k

and it follows that

d(xi+k, y)2 ≤ d(xi+k−1, y)2 − 2λi [fk(xi)− fk(y)] + 4λ2
iL

2k .
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Summing on both sides over k leads to

K∑
k=1

d(xi+k, y)2 ≤
K∑
k=1

d(xi+k−1, y)2 − 2λi [f(xi)− f(y)] + 2λ2
iL

2K(K + 1) ,

which is equivalent to

d(xi+K , y)2 ≤ d(xi, y)2 − 2λi [f(xi)− f(y)] + 2λ2
iL

2K(K + 1) .

�

The proof of convergence for the IPPA relies on the following lemma

from Bertsekas and Tsitsiklis [1995].

Lemma 2.5.7. Let (ai), (bi), and (ci) be sequences of nonnegative real

numbers. If

ai+1 ≤ ai − bi + ci

for all i ∈ N and
∞∑
i=1

ci <∞ ,

then the sequence (ai) converges and
∑∞

i=1 bi <∞.

Proof. Summing the equations

ai+1 ≤ ai − bi + ci

ai+2 ≤ ai+1 − bi+1 + ci+1

...

al+1 ≤ al − bn + cl

for some l > i leads to

al+1 ≤ ai −
l∑
j=i

bj +
l∑
j=i

cj

and taking the lim supl→∞ results in

lim sup
l→∞

ai+1 ≤ ai + lim sup
l→∞

− l∑
j=i

bj +
l∑
j=i

cj


≤ ai + lim sup

l→∞

− l∑
j=i

bj

+

∞∑
j=i

cj

≤ ai +
∞∑
j=i

cj
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because the sequence (ci) converges. Taking the lim infi→∞ shows that (ai)

converges, i.e.

lim sup
n→∞

ai+1 ≤ lim inf
i→∞

ai .

Since
l∑

j=1

bj ≤ a1 − al+1 +

l∑
j=1

cj

for any l ∈ N, the sequence (bi) also converges. �

The following lemma is very simple, but we include it for the readers

convenience.

Lemma 2.5.8. Let (λi) and (ai) be two nonnegative real sequences. As-

sume that
∑

i λi =∞ and let sl =
∑l

i=1 λiai. If

lim
l→∞

sl <∞

then there exists a subsequence (aij ) of (ai) that converges to zero.

Proof. Assume that lim inf ai = a ≥ 0, then ai ≥ a for all sufficiently

large i. The series
∑

i λia diverges if a > 0. �

It is important to see that only a subsequence of (ai) converges to zero.

For instance, assume that λi = 1/i and

ai =

{
1 if i is a perfect square ,

0 otherwise .

Hence,
∑

i λiai =
∑

i 1/i2 <∞, but (ai) does not converge to zero.

Remark 2.5.1. For the sake of simplicity, we have only considered con-

vex functions with codomain R. It should be noted that the convergence

results of the PPA and IPPA also hold for convex lower semicontinuous

functions with codomain (−∞,∞].

2.5.2. Computing means and median in tree space. So far we

have determined that the cyclic IPPA is an appropriate algorithm for com-

puting means and medians in tree space. We have also shown that the

algorithm converges to a minimizer in locally compact Hadamard spaces.

For the actual computation, the explicit form of the resolvent in each step

has to be determined. In each step of the cyclic IPPA a new point

xi+1 = Jλi(fki ;xi)

is determined. Let t̄ = (t1, . . . , tK) denote a set of trees in Tn. For the mean

we get

xi+1 = arg min
s∈Tn

[
d(tki , s)

2 +
1

2λi
d(xi, s)

2

]
.
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The new point xi+1 has to lie somewhere on the geodesic between the old

point xi and tki . Therefore, we may assume that

xi+1 = (1− τi)xi + τitki ,

so that the parameter τi has to be determined. Computing the derivative

at s in the direction of tki gives the condition

0 = −2d(tki , s) +
1

λi
d(xi, s)

= −2d(tki , xi)(1− τi) +
1

λi
d(xi, tki)τi

= −2(1− τi) +
1

λi
τi ,

from which it follows that

τi =
2λi

1 + 2λi
.

An illustration of the resulting cyclic IPPA is shown in Figure 16.

t1

t2

t3

t4

x0

x1 x2

x3

x4

Figure 16. Illustration of the cyclic IPPA for computing

the mean of a set of trees t̄ = (t1, t2, t3, t4).

Similarly, for the median we have

xi+1 = arg min
s∈Tn

[
d(tki , s) +

1

2λi
d(xi, s)

2

]
,

and therefore

τi = min

{
1,

λi
d(xi, tki)

}
.

To evaluate the mean and the median require to compute the geodesic be-

tween pairs of trees in each iteration. An algorithm for doing so will be

discussed in the following.
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2.6. Computing geodesics in tree space

The problem of computing geodesics was first addressed by Billera et al.

[2001], but an algorithm was not found until much later by Owen and Provan

[2011]. This algorithm is essential for the computation of means and medians

of a set of points in BHV tree space.

Let us first recall some basic properties of geodesics in tree space that

were already observed by Billera et al. [2001]. We know that the BHV tree

space is CAT(0) and therefore a unique geodesic exists between any two

points. For the actual computation, we have to distinguish between several

cases.

The first case we need to consider is when two trees t, s ∈ Tn contain the

same edge e. Both trees might however assign a different length to that edge.

The geodesic in this dimension would then simply be the Euclidean line

segment while the remaining parts of the trees can be treated independently.

In fact, we may cut the trees somewhere at the edge e in half and obtain a

set of trees {t1, t2} from t and {s1, s2} from s. The geodesic between t and s

is given by the combination of geodesics [t1, s1] and [t2, s2]. In the following

discussion, we will therefore restrict our attention to the case where the two

trees do not share a common edge. We call such trees disjoint.

An extreme case is given when no edge of a tree t is compatible with any

of the edges of a tree s. Assume for instance that t, s ∈ T4 and t has edges

e5 : (0, 1 | 2, 3, 4) , e6 : (0, 1, 2 | 3, 4) ,

whereas s contains a single edge e3 : (0, 4 | 1, 2, 3). As can be easily checked,

e3 is not compatible with any of the two edges of t. In this case it is easy to

see that the geodesic between t and s consists of first shrinking the interior

edges of t to length zero and afterwards extending the single interior edge

of s (see also Figure 4). We will call a path that goes through the origin a

cone path.

The last and most important case is when two trees t, s ∈ Tn are disjoint,

but when there exist edges e of t and f of s which are compatible. In this

case, the geodesic might not be a cone path and would go through an orthant

of a tree that contains both e and f .

Example 2.6.1. Let t, t′ ∈ T4 have edges e3 : (0, 4 | 1, 2, 3) and e4 :

(0, 1, 4 | 2, 3), and let s, s′ ∈ T4 have edges e5 : (0, 1 | 2, 3, 4), and e6 :

(0, 1, 2 | 3, 4). The locations of the four trees in T4 are depicted in Figure 17.

The two trees t and s are located such that the geodesic [t, s] goes through

the origin, i.e. it is a cone path. However, the geodesic [t′, s′] is not a cone

path and goes through the interior of the orthant O({e3, e5}).
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Figure 17. A piece of T4 with two geodesics [t, s] and [t′, s′].

The upper left quadrant is not accessible since e4 and e6 are

not compatible.

Figure 17 also suggests that an easy criterion exists for whether the cone

path is a geodesic. For some t ∈ Tn let tLk denote the projection of t onto the

link of the origin Lk(0, Tn). Since every tree lies on a unique ray from the

origin, the projection is simple and well-defined. The angle ∠(t, s) between

two trees t, s ∈ Tn is given as

∠(t, s) = dLk(tLk, sLk) ,

where dLk(·, ·) is the spherical metric on Lk(0, Tn). In Example 2.6.1 the

geodesic between t and s is the cone path, because ∠(t, s) ≥ π. To compute

the angle, we identify the orthants O(t) and O(s) respectively as the totally

negative and totally positive orthants of the 2-dimensional Euclidean space.

Furthermore, let ∠E(·, ·) denote the Euclidean angle between two vectors.

The cone path between trees t and s is not a geodesic if

∠(t, s) = ∠E((|e5|s, |e6|s), (1, 0)) + ∠E((−|e4|t,−|e3|t), (1, 0)) < π .

Using basic geometry, this condition may be rewritten to obtain the simple

criterion
|e4|t
|e5|s

<
|e3|t
|e6|s

.

The intuitive interpretation is that if this condition is met, then on the

geodesic from t to s we would first replace the edge e4 by e5 and afterwards

e3 by e6.

Billera et al. [2001, Proposition 4.3] generalized this condition to higher

dimensions. For some t ∈ Tn let A be a subset of the edges of t. We denote
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by

‖A‖t =

√∑
e∈A
|e|2t

the Euclidean norm of the edge set A.

Proposition 2.6.1. Let t, s ∈ Tn be two disjoint trees and assume that

A = {A1, A2} and B = {B1, B2} respectively are bipartitions of the edge sets

of t and s such that B1 ∪ A2 is a compatible set of edges. The cone path is

not a geodesic if
‖A1‖t
‖B1‖s

<
‖A2‖t
‖B2‖s

.

Let t(A) denote the tree t with all edges removed except for those in

A. If the condition of Proposition 2.6.1 is satisfied for two trees t, s ∈ Tn,

then the angle ∠(t(A2), s(B1)) is less than π. Informally, this proposition

provides a condition for when a path through an orthant O(B1 ∪ A2) is

shorter than the cone path. Also in this case, on the geodesic from t to s we

would first replace all edges in A1 by those in B1 and afterwards the edges

A2 by B2. If one considers again Example 2.6.1 it can be easily verified that

this condition is satisfied for the trees t′ and s′.

Billera et al. [2001, Proposition 4.1] also showed the following important

result:

Proposition 2.6.2. Let t, s ∈ Tn be two disjoint trees. If the cone path

between t and s is not a geodesic, then there exist non-trivial partitions of

the edge sets of t and s, respectively denoted A = (A1, . . . , Ak) and B =

(B1, . . . , Bk), such that

• Ci(A,B) = B1 ∪ · · · ∪ Bi ∪ Ai+1 ∪ · · · ∪ Ak is a compatible set of

edges for all i < k, and

• the geodesic [t, s] traverses each orthant O(Ci(A,B)) sequentially

for i = 1, . . . , k.

A geodesic [t, s] is therefore fully contained in the union of orthants⋃k
i=1O(Ci(A,B)) ⊂ Tn. The proposition however merely states the exis-

tence of such a sequence of orthants, but does not provide a way to find

it. Owen [2011] developed further necessary and sufficient conditions that

such a sequence must satisfy, which lead to the development of an efficient

iterative algorithm [cf. Owen and Provan, 2011]. We summarize the results

in the following theorem.

Theorem 2.6.3. Let t, s ∈ Tn be two disjoint trees. Let A = (A1, . . . , Ak)

respectively B = (B1, . . . , Bk) be nontrivial partitions of the edge sets of t

and s such that
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(1) Ci(A,B) = B1 ∪ · · · ∪ Bi ∪ Ai+1 ∪ · · · ∪ Ak is a compatible set of

edges for all i < k,

(2) the partitions satisfy

‖A1‖t
‖B1‖s

<
‖A2‖t
‖B2‖s

< · · · <
‖Ak‖t
‖Bk‖s

, and

(3) for every i ∈ 1, . . . , k there exists no nontrivial bipartition C1 ∪ C2

of Ai and D1 ∪D2 of Bi such that D1 ∪ C2 is a compatible set of

edges and

‖C1‖t
‖D1‖s

<
‖C2‖t
‖D2‖s

.

The geodesic γ = [t, s] traverses each orthant O(Ci(A,B)) for i = 1, . . . , k

in the given order. The pair (A,B) is called the support of γ.

Informally, this theorem provides us with a sequential order of how edges

are replaced on the geodesic from t to s and there exists a simple condition

for when the union of orthants O(Ci(A,B)) in fact contains the geodesic.

The theorem can be easily turned into an iterative algorithm. We begin

with the cone path, therefore the partitions A and B both consist of one set,

which is the edge sets of t and s. In each iteration, we refine the partitions

A and B by searching for bipartitions that match condition (iii) until no

such bipartitions can be found. The geodesic is then given as follows:

Lemma 2.6.4. For a geodesic γ = [t, s] let the partitions A = (A1, . . . ,

Ak) and B = (B1, . . . , Bk) satisfy the conditions of Theorem 2.6.3. The

geodesic γ is given by a sequence of legs (γi), i = 0, . . . , k, such that

γ(τ) = γi(τ) if
‖Ai‖t
‖Bi‖s

<
τ

1− τ
≤
‖Ai+1‖t
‖Bi+1‖s

,

where γi is associated with a tree t′ ∈ O(Ci(A,B)). The interior edge lengths

of t′ are given by

|e|t′ =


(1− τ) ‖Aj‖t − τ ‖Bj‖s

‖Aj‖t
if e ∈ Aj and j > i ,

τ ‖Bj‖s − (1− τ) ‖Aj‖t
‖Bj‖t

if e ∈ Bj and j ≤ i .

The length of γ is given by

length(γ) =

√√√√ k∑
i=1

(‖Ai‖t + ‖Bi‖s)
2 .
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2.6.1. Computing bipartitions. We now turn our attention to the

problem of finding partitions of the edge sets that satisfy all three conditions

of Theorem 2.6.3. This problem can be mapped to finding a minimum

weighted vertex cover of a bipartite graph, for which efficient algorithms

already exist.

Assume that A = (A1, . . . , Ak) and B = (B1, . . . , Bk) are partitions that

satisfy conditions (i) and (ii) of Theorem 2.6.3 and describe the current path

from t to s. For each i ∈ {1, . . . , k} we try to find a nontrivial bipartition

C1 ∪C2 of Ai and D1 ∪D2 of Bi, such that D1 ∪C2 are pairwise compatible

and

(6)
‖C1‖t
‖D1‖s

<
‖C2‖t
‖D2‖s

.

To find a compatible set of edges D1 ∪ C2 we construct an incompatibility

graph G(Ai, Bi) as follows: For each edge in Ai and Bi there is a vertex

in the graph. If e ∈ Ai and f ∈ Bi are incompatible, then the respective

vertices in G(Ai, Bi) are joined by an edge. It is easy to see that the resulting

graph is bipartite (see e.g. Figure 18). A vertex cover is a set of vertices

V such that every edge in G(Ai, Bi) is incident to at least one vertex in V .

The minimum vertex cover is a vertex set V with minimal cardinality. The

complement of a minimum vertex cover forms an independent set of vertices

in the graph and therefore is a set of pairwise compatible edges.

e3

e4

e6

e5

Figure 18. Incompatibility graph G({e3, e4}, {e5, e6}) for

Example 2.6.1. The minimum vertex cover is given by

{e4, e6} and its complement is a set of pairwise compatible

edges.

The problem is not to find any independent set, but one that also satisfies

Equation 6. W.l.o.g. we may assume that ‖Ai‖t = ‖Bi‖s = 1, such that

‖C1‖t
‖D1‖s

<
‖C2‖t
‖D2‖s

⇔
1− ‖C2‖2t
‖D1‖2s

<
‖C2‖2t

1− ‖D1‖2s
,

which may also be written as

‖C2‖2t + ‖D1‖2s =
∑
e∈C2

|e|2t +
∑
f∈D1

|f |2s > 1 .
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Therefore, each edge length might be interpreted as a weight for the corre-

sponding vertex inG(Ai, Bi) and our objective is to find a minimum weighted

vertex cover V = C1 ∪D2 that satisfies

‖C1‖2t + ‖D2‖2s < 1 .

If such a cover is found, the complement is used to refine the partitions Ai
and Bi. Thereby, the current path from t to s will be shortened by also

visiting the orthant O(C2 ∪D1).

For general graphs the problem of finding a minimum vertex cover is

known to be NP-hard. However, since the incompatibility graph is bipartite,

a solution can be found in polynomial time. A common approach to solve

the problem is to transform it into a flow network. Utilizing the max-flow

min-cut theorem [Lawler, 1976], we observe that a solution to the maximum

flow problem indeed solves the vertex cover problem. As suggested by Owen

and Provan [2011], the problem can therefore be solved with the push relabel

algorithm due to Goldberg and Tarjan [1988]. A description of a slightly

more general version of the algorithm with cubic complexity can be found

in Ahuja et al. [1993, Section 7.7].

The problem can also be stated as an integer linear program (ILP). For

each vertex v of the graph let xv denote a variable that takes values in {0, 1}
and indicates whether v is part of the vertex cover. The ILP is given by

minimize
∑
e∈Ai

xe|e|t +
∑
f∈Bi

xf |f |s

subject to xe + xf ≥ 1 if e and f are incompatible .

2.7. Phylogenetic networks

A special type of phylogenetic network, also called split network, arises

when splits are added to a phylogenetic tree that are incompatible with

the already present splits [cf. e.g. Semple and Steel, 2003, Dress et al.,

2012]. As an example, take a tree from T3 with topology defined by the

split s1 : (0, 1 | 2, 3). By adding the incompatible split s2 : (0, 2 | 1, 3)

we obtain the network shown in Figure 19a. The two incompatible splits

are visualized by a two-dimensional cube, which shows that the splits of a

phylogenetic network may not be identified with a single edge. In general,

a set of k pairwise incompatible splits results in a hypercube of dimension

k. Hence, by adding the split s3 : (0, 3 | 1, 2) to the network, we get the

network shown in Figure 19b. In this example, not every vertex of the

hypercube is incident to a leaf edge.

In the literature, two basic definitions of incompatible split sets can be

found.
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s1s2

(a)

0

1 2 3

(b)

Figure 19. Phylogenetic networks. (A) Two incompatible

splits s1 = (0, 1 | 2, 3) and s2 = (0, 2 | 1, 3). (B) All three

incompatible splits of T3.

Definition 2.7.1 (cf. Bandelt and Dress [1992]). A set of splits Σ is

weakly compatible if for any three splits s1 = (A1 | B1), s2 = (A2 | B2), and

s3 = (A3 | B3) in Σ one of the intersections

A1 ∩A2 ∩A3 , B1 ∩B2 ∩A3 , B1 ∩A2 ∩B3 , A1 ∩B2 ∩B3 ,

is empty.

Definition 2.7.2 (cf. Dress et al. [2012]). A set of splits Σ is k-

compatible, if the largest subset σ ⊆ Σ of pairwise incompatible splits has

cardinality |σ| = k.

Any 2-compatible set of splits is also weakly compatible, however, the two

conditions are not equivalent. For our purposes, k-compatible split systems

are more natural and allow a simple geometric interpretation when lengths

are assigned to the splits. For instance, consider the tree space T3 which

consists of three rays, one for each interior edge, glued together at the origin

0. The space can be visualized by mapping the space to the 1-dimensional

faces of R3
+ (see Figure 20). Phylogenetic networks with 2-compatible split

sets are identified as points in one of the 2-dimensional faces of R3
+. Points in

the interior of R3
+ correspond to 3-compatible networks. It can be easily seen

that the space of 2-compatible networks is not CAT(0), see subsection 2.3.2,

and the methods for computing means and medians do not apply here.

Key to the formal construction of phylogenetic networks from a set of

splits is the identification of interior vertices. For instance, consider the

network in Figure 21a with splits

s1 = (A1 | B1) = (0, 1 | 2, 3, 4) ,

s2 = (A2 | B2) = (0, 3, 4 | 1, 2) ,

s3 = (A3 | B3) = (0, 1, 2 | 3, 4) .

Each split s = (A | B) defines two subgraphs obtained by removing the

edges associated with s. Equivalently, the subgraph with leaf set A contains
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Figure 20. Space of phylogenetic networks with four leaves

mapped into R3
+. The coordinate axes show the length |si|,

i = 1, 2, 3, of each nontrivial split. T3 appears as the 1-

dimensional faces of R3
+.

all shortest paths between every pair of leaves (a1, a2), where a1, a2 ∈ A.

An interior vertex may be uniquely identified by the intersection of a col-

lection of subgraphs, one from each split. For instance, the vertex v1 (see

Figure 21b) is defined by the intersection of subgraphs associated with A1,

A2, and A3, whereas v2 is identified by B1, A2, and A3. Clearly, the inter-

section of subgraphs is non-empty if and only if every pair of leaf sets in the

collection has a non-empty intersection.

0

1
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s1s2 3

4
s3

(a)

0
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v1

v2

(b)

Figure 21. Phylogenetic network with three splits s1 =

(0, 1 | 2, 3, 4), s2 = (0, 3, 4 | 1, 2), and s3 = (0, 1, 2 | 3, 4).

(A) Subgraphs defined by the splits. (B) Two interior ver-

tices of the network.

Given the set of vertices, it is easy to obtain the edge set. Intuitively,

any two vertices are incident to an edge if and only if they are separated by

a single split. More formally, let v1 and v2 be two vertices of the network.
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If for any split s = (A | B) either A or B is an element of both v1 and v2,

we say that s agrees with v1 and v2, otherwise they disagree. Vertices that

agree with a split appear on the same subgraph induced by the split. If two

vertices disagree with only a single split, they are joined by an edge.

Definition 2.7.3 (Buneman graph, cf. Barthelemy [1989], Semple and

Steel [2003]). A Buneman graph G = (V,E) with vertices V and edges

E is constructed from a set of splits Σ as follows: A vertex v ∈ V is a

collection of sets with pairwise non-empty intersection, such that for every

split s = (A | B) ∈ Σ either A ∈ v or B ∈ v. An edge is a pair of vertices

that disagree with a single split in Σ.

2.8. Converting tree representations

The computation of geodesics in tree space, as well as the computations

of means and medians require the trees to be represented as sets of splits.

Other applications, such as the computation of probabilistic models, are

much more convenient when a native tree representation is used. Therefore,

it is often necessary to convert a tree between representations. While ex-

tracting splits from a native tree is simple, the opposite direction is more

difficult to implement.

Meacham [1981] proposed the tree popping algorithm for converting a

set of splits into a native tree [see also Meacham, 1983, Bandelt and Dress,

1986]. The algorithm is initialized with a star-tree where all leaves are

directly connected to the root. In each iteration, a split s is picked from Σ.

An edge is added to a vertex v of the tree if s further partitions the set of

leaves that are directly connected to v. The algorithm stops after iterating

once through Σ.

While this algorithm is easy to describe, it is nevertheless somewhat

involved to implement. Therefore we use a different approach. First, a leaf

a is selected which will be connected to the root node. For all splits s = A|B
we use the convention that the leaf a is always an element of A, i.e. the first

set of the bipartition. A tree with splits as its vertices is constructed using

the partial ordering

s1 � s2 if B1 * A2 ∧B1 * B2

for any two splits s1 = A1|B1 and s2 = A2|B2 whenever s1 is an ancestor of

s2. This tree of splits can then be easily converted to a phylogenetic tree.

Example 2.8.1. Consider the set of splits

s1 = (0,3,4,5 | 1,2) , s2 = (0,4,5 | 1,2,3) ,

s3 = (0,1,2,3 | 4,5)
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where s2 � s1. The tree of splits and the phylogenetic tree are shown in

Figure 22.

s1

s2
s3

0

1 2
3 4 5

Figure 22. Tree of splits and the corresponding phyloge-

netic tree.





CHAPTER 3

Substitution processes

3.1. Substitution models on phylogenetic trees

Substitution models (sometimes also called mutation models or evolu-

tionary models) are used to describe the process of substitutions in DNA,

RNA, and amino acid sequences over time. In their pioneering studies,

Zuckerkandl and Pauling [1962, 1965] observed that the genetic distance of

ortholog DNA sequences that code for the same protein increases linearly

with divergence time [cf. e.g. Salemi and Vandamme, 2003]. This funda-

mental observation lead to the hypothesis that the number of mutations are

governed by a Poisson process. Zuckerkandl and Pauling [1965] interpreted

this process as a molecular clock progressing at random points in time with a

certain rate, and where a tick corresponds to a single substitution event [cf.

e.g. Gillespie, 1991]. The molecular clock hypothesis agrees with the neu-

tral theory of evolution developed by Kimura et al. [1968] [see also Kimura,

1985]. In fact, we will always assume that mutations are neutral so that the

substitution process is time reversible and stationary. There exists a large

variety of different models, which cannot all be covered in this discussion.

For a more in depth introduction see for instance Gascuel [2005] or Isaev

[2006].

Substitution models rely on a fixed phylogenetic tree and their interpre-

tation requires a given direction of evolution. The trees that were considered

so far are unrooted (or can at least be interpreted as such) and therefore

have no intrinsic direction of evolution. In the following, we consider trees

where leaf 0 and the edge incident to it are removed. The inner vertex that

was incident to this edge is called the root of the tree, which is interpreted

as the common ancestor of the remaining vertices (see Figure 1). Such trees

will be called rooted phylogenetic trees. It should be noted that this is not the

only possible definition of a rooted tree. For instance, one may simply select

one of the leaf vertices to represent the common ancestor of the remaining

species. Once a rooted tree is obtained, we define the causal direction of

evolution from the root down to the leaf vertices. In combination with the

substitution process, the resulting model can be seen as a Bayesian network.

We will see that the time reversibility of the substitution models causes the

41
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resulting probability assignments to be independent of the position of the

root.

0

1 2 3

4
5 6

e1
e2

e3

(a)

1 2 3

4
5 6

e1
e2

e3

root

(b)

X1 X2 X3 X4 X7

X8 X9

X5 X6

X10

(c)

Figure 1. A phylogenetic tree with three inner edges (A),

from which leaf 0 and the edge incident to it are removed

(B). Combined with a mutation model, the phylogenetic tree

can be interpreted as a Bayesian network (C), where each

vertex i is assigned a random variable Xi.

For the sake of simplicity, we focus on trees with binary branching points

and the n − 1 internal vertices of the tree (including the root) are labeled

from n + 1 to 2n − 1. Non-binary trees can be expressed by allowing edge

lengths to be zero. Each of the 2n−1 vertices of the tree are associated with

random variables X(i), i = 1, . . . , 2n−1 that take values in a finite alphabet

A. The alphabet describes the set of possible observations. For instance, it

may represent nucleotides or amino acids. Substitutions occur at the edges

of phylogenetic trees and the tree structure is assumed to fully determine

the dependency structure between random variables. In particular, we have

the conditional independence

X(i) ⊥⊥ X(j) |X(k) ,

for any vertex k with children i and j (assuming that the parameters of

the substitution process are known and fixed). Hence, the phylogenetic tree

in combination with the substitution process is a Bayesian network (see
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Figure 1). A good review on Bayesian networks can be found in Wainwright

and Jordan [2008].

The substitution process is assumed to be the same for each edge of the

tree and it is merely parameterized by the edge lengths. Therefore, we may

first have a more general look at the process itself. Let the family of random

variables {X(τ) | τ ≥ 0} describe the substitution process along an edge of a

phylogenetic tree. For instance, if we look at the process between vertices k

and i, where vertex i is a child of vertex k, we have X(0) = Xk and X(τ∗) =

Xi for some τ∗ ≥ 0. The value of τ∗ depends on the edge length between

vertices k and i and the exact relation will be explained later. The process is

assumed to be a continuous-time finite Markov process, where the state space

is given by the alphabet A. A stochastic process is usually specified through

the joint distributions of every finite family {X(τi) | τi ∈ [0,∞)} of random

variables. The Kolmogorov extension theorem guarantees the existence of a

process under certain conditions on the joint distributions [see e.g. Karlin

and Taylor, 1975]. Markov processes are commonly specified in a different

form, namely by their conditional distributions. First of all, we will restrict

our attention to stationary processes (also called time homogeneous) that

satisfy

(X(τ1 + ν), . . . , X(τn + ν))
d
= (X(τ1), . . . , X(τn))

for all ν ≥ 0 and any choice of 0 < τ1 < · · · < τn <∞. For Markov processes

of this kind, the time evolution may be specified through its transition matrix

P (τ) = (pτ (x, y))x,y∈A, where {pτ (x, y) | τ ≥ 0} is a family of transition

functions, such that

prX(τ0+τ) |X(τ0)(y |x) = pτ (x, y)

for all τ0, τ ≥ 0 and x, y ∈ A.

Definition 3.1.1 (Markov transition function). The transition func-

tions pτ : A × A → [0, 1], τ ≥ 0, of a continuous-time Markov process

{X(τ)} are differentiable and satisfy∑
y∈A

pτ (x, y) = 1 , lim
τ↘0

pτ (x, x) = p0(x, x) = 1 ,

as well as the Chapman-Kolmogorov equation

pν+τ (x, y) =
∑
z∈A

pν(x, z)pτ (z, y) ,

for all x, y ∈ A.

Using matrix notation, the Chapman-Kolmogorov equation can also be

stated as

P (ν + τ) = P (ν)P (τ) ,
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which is also called the semi-group property. The Markov process {X(τ)}
is uniquely determined by the transition matrix and an initial probability

distribution φ = (φx)x∈A over the alphabet A with X(0) ∼ φ. In many

applications it is preferred to specify the process through its rates of state

transitions for an infinitesimally small time step. We define

q(x, y) =
d

dτ
pτ (x, y)

∣∣∣∣
τ=0

and call Q = (q(x, y))x,y∈A the Q-matrix of the Markov process. This ma-

trix is also referred to as the instantaneous rate matrix. It follows that

q(x, y) ≥ 0 for x 6= y and
∑

y∈A q(x, y) = 0. By differentiating the Chapman-

Kolmogorov equation with respect to ν and setting ν = 0, i.e.

d

dν
pν+τ (x, y)

∣∣∣∣
ν=0

=
d

dν

∑
z∈A

pν(x, z)pτ (z, y)

∣∣∣∣∣
ν=0

,

we obtain the equation

d

dτ
pτ (x, y) =

∑
z∈A

q(x, z)pτ (z, y) ,

which in matrix notation can be written as

d

dτ
P (τ) = QP (τ) .

The last equation is called the Kolmogorov backward equation and the solu-

tion is given by

P (τ) = exp(Qτ) = L−1
ν

[
1

νI −Q

]
(τ) ,

where L−1
ν denotes the inverse Laplace transform and (νI − Q)−1 is called

the resolvent of Q. Similarly, if the Chapman-Kolmogorov equation is differ-

entiated with respect to τ , the resulting equation is called the Kolmogorov

forward equation.

There exists a tight connection between the Markov process {X(τ)} and

Poisson processes, which we explore in the following. Let R = (r(x, y))x,y∈A
be a real matrix such that the Q-matrix of the Markov process {X(τ)} takes

the form Q = (R− I)α, where α > 0. Using the solution of the Kolmogorov

backward equation, the transition matrix of the Markov process may be

written as

P (τ) = e−ατeRατ = e−ατ
∞∑
m=0

Rm
(ατ)m

m!
=
∞∑
m=0

Rm
(ατ)me−ατ

m!

=

∞∑
m=0

Rmpατ (k) ,
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where pατ (k) = (ατ)me−ατ/m! is the probability function of the Poisson

distribution with parameter ατ . The matrix element r(x, y) can be inter-

preted as the probability of a transition from x to y whenever there is a

mutation, so that Rm contains all m-step transition probabilities. Hence, a

process {Y (τ)} that counts the number of transitions of {X(τ)} in the time

interval [0, τ ] is a Poisson process with rate parameter α.

An important concept of Markov processes is the equilibrium distribu-

tion, which describes the probability of each state when τ →∞. It is defined

as

ϑ = lim
τ→∞

φP (τ) ,

if the limit exists, and where φ is some initial probability distribution. The

equilibrium distribution is invariant under the application of P (τ), which

leads to the concept of a stationary distribution of a Markov process.

Definition 3.1.2 (Stationary distribution). A distribution ϑ = (ϑx)x∈A
on A is called stationary for a Markov process {X(τ)} if it satisfies

(7) ϑy =
∑
x∈A

ϑxpτ (x, y)

for all τ ≥ 0 and y ∈ A.

Obviously, a distribution is stationary, if and only if
∑

x∈A q(x, y)ϑx
equals zero for all y ∈ A. A related concept is the reversibility of a Markov

process. The Markov process reversed in time has transition matrix P ∗(τ) =

(p∗τ (x, y))x,y∈A with

p∗τ (y, x) =
φxpτ (x, y)∑
z∈A φzpτ (z, y)

.

Assuming that φ is the stationary distribution ϑ and that ϑx > 0 for all

x ∈ A, then

p∗τ (y, x) =
ϑx
ϑy
pτ (x, y) .

By putting P ∗ = P we obtain the definition of a reversible Markov process.

Definition 3.1.3 (Reversible Markov process). Let M = {X(τ)} be a

Markov process with transition function pτ and stationary distribution ϑ.

M is called reversible, if it satisfies the detailed balance condition

ϑypτ (y, x) = ϑxpτ (x, y)

for all τ ≥ 0 and y ∈ A.

We have seen so far that the Markov process can be specified through

its Q-matrix and in simple cases, the solution of the Kolmogorov backward
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equation provides us with a method to compute the corresponding transi-

tion probabilities P (τ). We will now focus on particular choices of substi-

tution processes. Further details on continuous-time Markov processes can

be found in Liggett [2010] or Karlin and Taylor [1975].

Among the earliest models is the Jukes-Cantor model, which was in-

troduced in Jukes and Cantor [1969]. A generalization of the model was

published by Felsenstein [1981].

Definition 3.1.4. The Felsenstein F81 model is defined through its

Q-matrix Q = (qxy)x,y∈A with

qxy =

{
−α(1− ϑy) if x = y ,

αϑy if x 6= y ,

for some substitution rate α > 0 and a parameter vector ϑ = (ϑx)x∈A that

satisfies ϑx ≥ 0 for all x ∈ A and
∑

x∈A ϑx = 1.

Solving the backward equation shows that the corresponding transition

matrix P (τ) = (pτ (x, y))x,y∈A is given by

pτ (x, y) =

{
(1− exp(−ατ))ϑy + exp(−ατ) if x = y ,

(1− exp(−ατ))ϑy if x 6= y .

It is easy to verify that the parameter vector ϑ coincides with the stationary

distribution of the model, by computing

ϑy =
∑
x∈A

pτ (x, y)ϑx

= (1− exp(−ατ))ϑy + exp(−ατ)ϑy .

It is also easy to show that the process is reversible. The model is not widely

used nowadays, since it does not consider different substitution rates for

transitions and transversions. There exist various models that generalize the

F81 model. The most commonly used one is the generalized time reversible

(GTR) model introduced by Tavaré [1986], although it is not without dispute

[cf. e.g. Sumner et al., 2012a,b]. The transition matrix for this model can

be computed by diagonalizing the Q-matrix [cf. e.g. Bryant et al., 2005].

However, we do not consider the GTR model, because for our applications

we need to analytically integrate over the model parameters. How this can

be achieved for the F81 model is explained in section 3.3.

3.2. The likelihood of an alignment

The substitution model is used to describe the process of substitutions

in DNA, RNA or amino acid sequences. In the context of a statistical

analysis, it serves to define the likelihood, which assigns probabilities to
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observations. In our case, those observations are alignments of n ortholog

DNA sequences. A multiple alignment has a fixed length L and because

of its matrix form, we say that it has n rows and L columns1. For each

ι = 1, . . . , L, the n observations at column ι are assumed to have evolved

from the site of a common ancestor according to the given phylogenetic

tree and the substitution model. Hence, each column in the alignment is

assumed to be independent but not necessarily identically distributed, since

the model parameters might be chosen differently for each column.

There are a number of consequences that follow from the choice of the

substitution model and we also need to decide on a precise interpretation

of the model parameters. For simplicity we consider the Felsenstein F81

model, although most of the following discussion also applies to other mod-

els. Consider again a vertex k which has vertex i as a child and within

a specific column of the alignment let X(k) and X(i) denote the random

variables associated with these vertices. The variable X(i) is conditionally

independent of the remaining vertices given the event {X(k) = x} at the

parent vertex. The conditional distribution of X(i) is defined as a mixture

of a categorical distribution and a delta peak at x, i.e.

X(i) |X(k) = x ∼ Mi Categorical(ϑ) + M̄iδx

where Mi denotes the probability of a mutation from vertex k to i. Mi

depends on the time τi that separates the two vertices as well as the mutation

rate αi, i.e. Mi = 1− exp(−αiτi). Furthermore, M̄i denotes the probability

of no mutation, given as M̄i = 1−Mi. In its most general form, the mutation

rate is defined as

αi = c(ϑ)γρi ,

where we call c(ϑ) the rate normalization constant, γ the rate scaling factor,

and ρi the branch rate factor for the process between vertices k and i. All

three factors will be explained in the following.

If the branch rate factor ρi is equal for all branches in the phylogenetic

tree, the model is said to have a strict molecular clock. This assumption

would constrain the phylogenetic tree to a very limited subset of the BHV

tree space [cf. e.g. Gavruskin and Drummond, 2014]. It is known that a

strict molecular clock is in general too unrealistic [cf. e.g. Gascuel, 2005, p.

83], therefore we will not assume it for our applications. However, since the

model depends on the product of time τi and the branch rate factor ρi, it

is not possible to infer both separately. Instead, we will define the branch

length li between vertices k and i as li = ρiτi, which can be thought of as the

1In the literature, it is common to refer to a column simply as a site. This terminology

seems quite confusing and we will not make use of it, but rather say that a column of the

alignment consists of n ortholog sites that evolved from a site of the common ancestor.
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expected number of mutations between the two vertices, and infer li directly.

The branch lengths of the phylogenetic tree therefore do not represent time

but the tree can be interpreted as a similarity measure, or simply distance,

between ortholog sites.

If one considers genetic coding regions, it is well known that the level of

conservation within a codon is highly heterogeneous due to the structure of

the genetic code [Li et al., 1985, Yang, 1996]. When learning phylogenetic

trees from such regions, it is common to introduce a column specific factor

γ that scales the length of every branch in the tree. This parameter signifi-

cantly hampers the inferential task, which is why it is usually restricted to a

discrete set of values, called rate categories in the literature [Yang, 1993]. We

do not introduce such a parameter in the model, although it would certainly

be reasonable to also consider heterogeneous levels of conservation.

Whenever there is a mutation between two vertices, a new nucleotide

is generated. In the standard substitution models, there is no mechanism

that prevents generating the same nucleotide as already present at the par-

ent vertex. Such spurious mutations are often seen as a mere mathematical

convenience and the mutation rate is corrected to represent the rate of ac-

tual mutations [e.g. Bryant et al., 2005]. The probability of non-spurious

mutations is

1−
∑
x∈A

ϑxr(x, x) = −
∑
x∈A

ϑxq(x, x)/αi ,

hence, we would expect

−τ
∑
x∈A

ϑxq(x, x)

such events in the time interval [0, τ ]. The mutation rate is normalized such

that the expected number of non-spurious mutations in a unit time interval

equals γρi. For the F81 model, we obtain

c(ϑ) =

[∑
x∈A

ϑx(1− ϑx)

]−1

.

Most models assume that the stationary distribution is the same for all

columns in the alignment, although there are a few exceptions [e.g. Lartillot

and Philippe, 2004]. In our model, each column of the alignment has its own

stationary distribution. We will also not use the normalization constant c(ϑ)

as described above, but simply set it to one, since we want to make explicit

use of spurious mutations. The stationary distribution ϑ therefore plays a

crucial role. If ϑ has low entropy, i.e. only one character of the alphabet

A has high probability, then this character is repeatedly drawn whenever

there is a mutation and the column of the alignment will most likely be

highly conserved. On the other hand, a high entropic stationary distribution
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causes a column to be poorly conserved with high probability (assuming the

distance from the root to the leaves is large enough). In this model, the

stationary distribution can be interpreted as the selective pressure that acts

on a column of the alignment (see also section 4.3). It was used in this way

already by Siddharthan et al. [2005] to analyze motifs of transcription factor

binding sites.

The reversibility of the substitution model causes the likelihood to be

indiscriminative to the position of the root. Take for instance a tree with

two leaves that are represented by the random variables X(1) and X(2) and

which are connected to the root X(3). Furthermore, let {X(1) = x1, X
(2) =

x2, X
(3) = x3} be the observations. By the reversibility of the Markov

process we have

ϑx3prX(1) |X(3)(x1 |x3)prX(2) |X(3)(x2 |x3) =

ϑx2prX(1) |X(3)(x1 |x3)prX(3) |X(2)(x3 |x2) ,

where the time at the edge between the root and the second vertex is re-

versed. Hence, the root can be neglected when computing the likelihood of

the observations {X(1) = x1, X
(2) = x2} and we may directly connect the

leaves by joining the two branches (see Figure 2). Therefore, when learning

a phylogenetic tree from data, we cannot reconstruct the position of the root

and inference is hence restricted to unrooted trees.

X(1) X(2)

X(3)

X(1) X(2)

X(3)

X(1) X(2)

Figure 2. Time reversibility causes the likelihood function

to be indiscriminative to the position on the root. The tree

on the left has two leaves connected to the root of the tree.

The arrows of the branches show the direction of time. By

reversing time on the right branch, the tree in the middle is

obtained. The root can then be removed by joining the two

branches, which leads to the tree on the right.

3.3. Computing the likelihood

Let X̄ = {X(1), . . . , X(n)} be the set of random variables associated

with the leaves of a phylogenetic tree and X(n+1), . . . , X(2n−1) the random

variables assigned to the internal vertices. The values of the internal ran-

dom variables are usually unobserved. Hence, evaluating the likelihood
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prX(x) requires to sum over all possible states of the random variables

X(n+1), . . . , X(2n−1). The tree pruning algorithm proposed by Felsenstein

[1981], which is an instance of the sum-product algorithm [Pearl, 1982], al-

lows an efficient numerical evaluation of the likelihood if the parameters

of the substitution model are given. However, we consider the stationary

distribution as unknown and need to integrate it out. A numerical approxi-

mation is computationally too expensive, since in our model each column of

the alignment is assigned its own stationary distribution. Therefore, we need

to analytically integrate it out, which requires a symbolic representation of

the likelihood. Expanding all terms of the likelihood results in a polynomial

of the form

prX̄(x̄) =
∑
i

νi
∏
y∈A

ϑci(y)
y

with coefficients νi and exponents ci(y), which both depend on the observa-

tions {X̄ = x̄} and the phylogenetic tree. For large phylogenetic trees, the

polynomial computed with the tree pruning algorithm has many terms and

it is necessary to simplify the polynomial while expanding the likelihood.

For demonstration purposes, consider a rooted binary tree with only two

leaves and let {X̄ = x̄} = {X(1) = a,X(2) = c}. The likelihood is given by

prX̄(x̄) =
∑
y∈A

ϑyprX̄ |X(3)(x̄ | y)

=
∑
y∈A

ϑy
[
M1M2ϑaϑc + δy,aM̄1M2ϑc + δy,cM1M̄2ϑa

]
,

which simplifies to

= (1− M̄1M̄2)ϑaϑc ,

where δ is the Kronecker delta function. An algorithm that computes a sym-

bolic expansion of the likelihood should identify terms that do not depend

on the nucleotides at parent vertices and take advantage of the fact that

the stationary distribution sums up to one. This means that for the above

example the sum ∑
y∈A

ϑyM1M2ϑaϑc

should not be fully expanded to

ϑaM1M2ϑaϑc + ϑcM1M2ϑaϑc + ϑgM1M2ϑaϑc + ϑtM1M2ϑaϑc ,

but rather be evaluated as M1M2ϑaϑc. As it turns out, it is possible to com-

pute such a simplified polynomial for an arbitrary tree in a simple recursive

way.



3.4. LIKELIHOOD DECOMPOSITION 51

3.4. Likelihood decomposition

The objective of the following discussion is to develop a recursive method

that allows to compute the polynomial of the likelihood. The common defi-

nition of a phylogenetic tree in terms of splits is not well suited for the de-

scription of such a method. A more convenient description should consider

the recursive structure of rooted phylogenetic trees. For instance, consider

a tree t with internal vertex k that has two children i and k. We may refer

to the subtree below vertex k as tk. In the same way, the subtrees below

vertices i and j may be denoted ti and tj respectively. To express that ver-

tex k is the parent of i and j we simply write tk = (ti, tj). Note that ti and

tj may refer to leaves or subtrees.

For the discussion, it is instructive to first look at the likelihood of

star-trees with an arbitrary number of leaves. We will then show that the

likelihood of trees of any topology can be expressed in terms of simple star-

trees, which was also observed by Siddharthan et al. [2005].

3.4.1. Star-trees. To analyze the likelihood we first consider the case

of star-trees, i.e. trees with no internal edges and an arbitrary number of

leaves that are directly connected to the root vertex. Consider the tree

t3 = (t1, t2), where t1 and t2 are leaves. The likelihood for an observation

{X(1) = x1, X
(2) = x2} is given by

prX(1),X(2)(x1, x2) = (1− M̄1M̄2)ϑx1ϑx2 + M̄1M̄2 ϑx1δx1,x2 ,

where δ is the Kronecker delta function. This example shows two important

aspects. First, X(3) is marginalized out and does not appear in the final

likelihood. Second, the likelihood consists of two cases. Either there is a

mutation at any of the two edges or there is no mutation at both. The first

case shows that x1 and x2 are generated independently. For instance, x1

could be generated at the root which is then inherited by leaf 1, in which

case there is a mutation between the root and leaf 2 that generates x2. In

the second case the nucleotide is generated at the root and then inherited

by both leafs. Of course, this case occurs only if the same nucleotide is

observed at both leaves.

Let tn+1 = (t1, . . . , tn) be a star-tree with n leaves and observations

{X̄ = x̄} = {X(1) = x1, . . . , X
(n) = xn}. To compute the likelihood

prX̄(x̄) =
∑
y∈A

ϑy

n∏
i=1

prX(i) |X(n+1)(xi | y),

we introduce the following recursive

Definition 3.4.1. Consider a star-tree tn+1 = (t1, . . . , tn) with observa-

tions {X̄ = x̄} = {X(1) = x1, . . . , X
(n) = xn}. For a positive integer i ≤ n
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let t1:i denote the reduced tree with i leaves. Define

ϕ(t1:i) = σ(t1:i) +
∑
y∈A

ϑyϕy(t1:i)

with

σ(t1:i) =
i∏

j=1

Mjϑxj

ϕy(t1:i) = δxi,yM̄i(σ(t1:i−1) + ϕy(t1:i−1)) + Miϑxiϕy(t1:i−1) ,

where

ϕy(t1:1) =

{
M̄1 if x1 = y ,

0 otherwise .

To understand the rational behind this definition consider the following

more intuitive description:

σ(t1:i): The tree t1:i is independent of the observation at the root and

therefore all observations at the leaves need to be generated.

ϕy(t1:i): The tree t1:i depends on the observation y at the root, but there are

two possible cases depending on whether or not there is a mutation

at the edge between vertex i and the root. If there is a mutation,

xi is generated and the remaining tree t1:i−1 has to depend on y.

However, φy vanishes if y is not observed in the remaining tree. If

there is no mutation, which is possible only if xi = y, then leaf i

inherits the observation y from the root. However, the remaining

tree t1:i−1 might be fully independent of the root or it could depend

on y as well.

The conditional likelihood can be expressed as

prX̄ |X(n+1)(x̄ | y) = σ(tn+1) + ϕy(tn+1)

=
(
Miϑxi + δxi,yM̄i

)
(σ(t1:i−1) + ϕy(t1:i−1)) ,

and therefore the likelihood becomes

prX̄(x̄) = ϕ(tn+1) = σ(tn+1) +
∑
y∈A

ϑyϕy(tn+1) ,

which allows to compute a symbolic representation in a recursive way with

a minimal number of terms. Here we have exploited the simple fact that σ

does not depend on the nucleotide at the root of the tree and therefore∑
y∈A

ϑyσ(tn+1) = σ(tn+1) ,

and ϕy(t1:i) vanishes if no nucleotide y is observed in the tree t1:i.



3.4. LIKELIHOOD DECOMPOSITION 53

3.4.2. Tree reduction. To extend the given results to trees of arbi-

trary topology consider first the example of two star-trees connected by a

common ancestor, i.e.

tn+3

tn+1

t1 . . . ti

tn+2

ti+1 . . . tn

That is, let tn+1 = (t1, . . . , ti) and tn+2 = (ti+1, . . . , tn) be star-trees with

observations {X̄ = x̄} = {X(1:i) = x1:i, X
(i+1:n) = xi+1:n} and let tn+3 =

(tn+1, tn+2). The likelihood of the left subtree, i.e. of observations {X(1:i) =

x1:i}, conditional on the root vertex is given by

prX(1:i) |X(n+3)(x1:i |x) =
∑
y∈A

prX(n+1) |X(n+3)(y |x) [σ(t1:i) + ϕy(t1:i)]

= Mn+1ϕ(t1:i) + M̄n+1 [σ(t1:i) + ϕx(t1:i)] ,

where X(n+1) is marginalized out. Also in this case, the expression is inde-

pendent of the observation {X(n+3) = x} at the root vertex if a mutation

occurs at the edge between tn+1 and tn+3. If there is no mutation, the term

partly depends on {X(n+3) = x}. Given this result, it is easy to obtain the

likelihood of the full set of observations

pX̄(x̄) = [1− M̄n+1M̄n+2]ϕ(t1:i)ϕ(ti+1:n) + M̄n+1M̄n+2ϕ(t1:i ∪ ti+1:n) ,

where

ϕ(t1:i ∪ ti+1:n) =
∑
y

ϑy [σ(t1:i) + ϕy(t1:i)] [σ(ti+1:n) + ϕy(ti+1:n)]

can be interpreted as the likelihood of a star-tree that joins all n leaves. It

is easy to see that in this fashion the likelihood of trees of any topology can

be expressed in terms of star-trees, which was also observed by Siddharthan

et al. [2005]. The likelihood takes the form

prX̄(x̄) =
∑
π∈Π

νπ
∏
s∈π

ϕ(ts) ,

for some coefficients νπ ∈ R and a set of partitions of the leaves Π. However,

the cardinality of Π grows too quickly with the size of the tree, which makes

this approach inappropriate for larger trees. For instance, if we assume only

trees of the form
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t2n−1

. . .

tn+1

t1 t2

tn

with n leaves, then |Π| = 2n−1, although trees of this topology constitute the

worst-case scenario. It may therefore be worthwhile to expand the likelihood

directly when traversing the tree.

3.4.3. General likelihood decomposition. There exists a likelihood

decomposition for general binary trees, as observed by Bourguignon [2012].

We will now formalize this observation and proof the result by extending

Definition 3.4.1. The form of the decomposition can be obtained from our

previous results by computing the conditional likelihood and sorting the

terms by their dependence on parent vertices, which leads to

Definition 3.4.2. For a binary tree tk = (ti, tj) of the form

tk

ti

. . . . . .

tj

. . . . . .

let

ϕ(tk) = σ(tk) +
∑
y∈A

ϑyϕy(tk) ,

with

ϕy(tk) = M̄iϕy(ti)(M̄jσ(tj) + Mjϕ(tj)) + M̄jϕy(tj)(M̄iσ(ti) + Miϕ(ti))

+ M̄iM̄jϕy(ti)ϕy(tj) ,

σ(tk) = (M̄iσ(ti) + Miϕ(ti))(M̄jσ(tj) + Mjϕ(tj)) .

If for instance vertex i is a leaf, then σ(ti) = 0 and ϕy(ti) = δxi,y.

Lemma 3.4.3. The conditional likelihood is given by

prX̄ |X(k)(x̄ | y) = σ(tk) + ϕy(tk) ,

so that

prX̄(x̄) = ϕ(tk) = σ(tk) +
∑
y∈A

ϑyϕy(tk) .

Proof. We have already shown that the likelihood of a star-tree with

two leaves is decomposable in the above sense. For the general case, assume
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the above tree and let {X(i) = xi} denote the observations of subtree ti and

{X(j) = xj} the observations of tj . From Lemma 3.4.3 we know that

prX(i) |X(i)(xi | y) = σ(ti) + ϕy(ti) ,

prX(j) |X(j)(xj | y) = σ(tj) + ϕy(tj) .

By computing

prX̄ |X(k)(x̄ | y) = prX(i) |X(k)(xi | y)prX(j) |X(k)(xj | y)

we obtain the equations of Definition 3.4.2 which proofs the result. �

The last lemma shows how to efficiently obtain a symbolic representation

of the likelihood. The same intuitive interpretation of the functions σ and

ϕy also applies to the case of general phylogenetic trees.
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Figure 3. Comparison of the number of terms generated by

Felsenstein’s pruning algorithm and the likelihood decompo-

sition algorithm.

To test the performance of the algorithm we compare it to Felsenstein’s

pruning algorithm by considering again trees of the form

t2n−1

. . .

tn+1

t1 t2

tn

with 2n − 1 vertices. The number of terms in the resulting polynomial de-

pends not only on the tree structure, but also on the observations at the

leaves. Therefore, we approximate the expected number of terms by ran-

domly drawing observations from a uniform distribution. The results are
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depicted in Figure 3, which shows that both algorithms generate polynomi-

als with an exponential growth in the number of terms. However, for the

decomposition algorithm the growth rate is much slower and our applica-

tions do not require trees of more than 40 vertices.

3.5. Detecting conserved sites

Zi−1 Zi Zi+1 Zi+2

Θi−1 Θi Θi+1 Θi+2

X̄i−1 X̄i X̄i+1 X̄i+2

Figure 4. Illustration of an HMM for detecting conserved

sites. The illustration shows a segment of four states. Ob-

servations are depicted as X̄i and hidden states as Zi. The

Θi are the direct emissions of the HMM.

In this section, we show a simple application of the alignment model

that we introduced earlier. Siepel and Haussler [2004, 2005] developed a

method for the detection of conserved sites, where a hidden variable Zi at

position i of the alignment indicates whether the column is conserved or

not. Depending on the state Zi, a respective rate scaling factor is used to

model the alignment column (see section 3.2). In our model, we did not

introduce a rate scaling factor, but instead control the level of conservation

with a column specific stationary distribution. If a Dirichlet prior is used for

the stationary distribution, different levels of conservation can be modeled

by either putting mass on the boundary or the center of the probability

simplex.

We assume a discrete-time hidden Markov model (HMM) with states Zi
for i = 1, . . . , n that take values in some discrete space Z (see Figure 4).

The emissions X̄i are the columns of the alignment. We obtain the marginal

likelihood

prX̄i |Zi(x̄i | zi) =

∫
Θi

prX̄i |Θi(x̄i |ϑ)fΘi |Zi(ϑ | zi)dϑ
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where fΘi |Zi(ϑ | zi) is the Dirichlet density with pseudocounts depending on

{Zi = zi}. The prior for the HMM is given by

prZ0:n
(z0:n) = prZ0

(z0)
n∏
i=1

K(zi−1, zi) ,

where prZ0
is the distribution of the initial state Z0 and

K(zi−1, zi) = prZi |Zi−1
(zi | zi−1)

the transition probability function, which controls the inertia of the process.

We are interested in obtaining the marginal posterior distribution prZi | X̄1:n

for each hidden state Zi, which can be computed in a forward-backward

manner [Cappé et al., 2005]. In the following, we drop the subscripts of

the distribution functions for better readability. The forward computation

corresponds to a recursive Bayesian estimate where we compute

pr(zi | x̄1:i) =
pr(x̄i | zi)pr(zi | x̄1:i−1)

pr(xi | x̄1:i−1)
,

with

pr(zi | x̄1:i−1) ∝
∑

zi−1∈Z

K(zi−1, zi)pr(x̄i−1 | zi−1)pr(zi−1 | x̄1:i−2) ,

and

pr(z0:i | x̄1:i) = pr(z0:i−1 | x̄1:i−1)
pr(x̄i | zi)K(zi−1, zi)

pr(x̄i | x̄1:i−1)
.

The backward probabilities are computed according to

pr(x̄i:n | zi) = pr(xi | zi)
∑

zi+1∈Z

K(zi, zi+1)pr(x̄i+1:n | zi+1) ,

so that we obtain the marginal posterior probabilities

pr(zi | x̄1:n) ∝ pr(zi | x̄1:i)pr(x̄i+1:n | zi) .

A simple demonstration is shown in Figure 5. The hidden Markov chain

has two states, one for conserved sites with Dirichlet pseudocounts set to 0.1

and one for unconserved sites with pseudocounts set to 10 for all characters

in the alphabet. The transition kernel is defined as

K(x, y) =

{
0.95 if x = y ,

0.05 otherwise ,

which controls the inertia (or smoothness) of the resulting estimate. For

applications it is important that the prior parameters are chosen carefully

to match your a priori expectations. Since the level of conservation not

only depends on the Dirichlet pseudocounts, but also on the phylogenetic

tree, it is crucial to have a properly estimated tree for this application. The

estimation of trees is discussed in detail in chapter 4.
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0.00

0.25

0.50

0.75

1.00

prZi(1)

0: AGCAAGTGGCACAAAACGCGAAGTGGCAATCGAGAATGTGAATC

1: TGCAAGTGGCACAATACGCGAAGTGGCAACCGCGAATGTGAATC

2: GATAAGTGGTACATAAGGTCAAGTGGCATCTGCGAATGTGATAG

3: GATAAGTGGTACAAAACGTCAAGTGGTATCTGCGAATGTGATAG

4: GGTAAGTGGGTCAAAACGTAAAGTGGCAACTGCGAATGTGAGTG

Figure 5. HMM for detecting conserved regions in multiple

sequence alignments. The upper plot shows the marginal

probability prZi(1) for the Markov chain to be in state one,

which represents conserved sites.



CHAPTER 4

Point estimates in phylogenetic reconstructions

Given a generative model and a prior distribution over its parameter

space, a Bayesian analysis of observations carried across species related by

evolution produces a posterior distribution over the space of all possible

phylogenetic trees for this set of species [Gascuel, 2005, Robert and Casella,

1999]. The size of this space grows super-exponentially with the number of

species, and it is often intractable to compute the normalization constant of

this distribution. In such cases, sampling methods offer a way to explore the

posterior distribution via an arbitrarily large sample drawn from it without

requiring any further knowledge. However, although a posterior sample

offers a representation of the full posterior distribution, it is of little scientific

interest in absence of a method to summarize it, and especially to derive a

point estimate of the (random) posterior tree. Building upon previous works

by Billera et al. [2001], Owen and Provan [2011], Miller et al. [2012] and

Bačák [2014a], we propose here to define and compute posterior means in a

sound manner, an approach so far hindered by the poor geometrical insights

into the space of phylogenetic trees [Benner et al., 2014, Holmes, 2005].

Provided a unique topology with n edges occurs in the sample, each

tree including its edge lengths can be identified by a point in the positive

orthant of the Euclidean space Rn. Computing an mean of the sample in

this linear representation is a straightforward operation, which produces a

legit posterior mean tree. If more than one tree topology occurs, the trees

are no longer mapped all to the same linear space, and the posterior mean is

ill-defined. Selecting the a posteriori most probable tree topology may seem

a sound alternative, however, with the unpleasant consequence of neglecting

all the sampled trees of different topology, and therefore would not provide a

satisfactory representation of the posterior. The construction of a consensus

tree, using an absolute majority-rule1 [Margush and McMorris, 1981] to de-

cide which one among competing edges should be retained, has been widely

adopted by the interested community as the method of choice to summarize

1The majority-rule consensus tree is constructed by including only those edges which

appear in more than 50% of the samples.

59
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posterior samples of phylogenetic trees. On the theoretical side, decision-

theoretic justifications of this construction have been proposed [Holder et al.,

2003, Huggins et al., 2011]. However they are built upon loss functions that

neglect edge lengths, focusing only on the tree topology. Besides, from the

authors’ point of view, it is also a rather conservative approach, as the ab-

sence of an absolute majority among edges results in the inclusion of none

of them, thereby producing unresolved branching points. The extended

majority-rule consensus method (also known as greedy consensus method)

has been introduced to remedy this drawback by adding edges with less

than 50% support [Bryant, 2003]. Despite this improvement, the consensus

methods neglect much of the available information in a sample by ignoring

the context in which an edge occurs (i.e. the remaining topology of the

tree as well as all other edge lengths). Reporting a posterior mean that

balances the contributions from each topology including edge lengths rather

than isolated edges would therefore be of utmost interest.

Let us now exploit the geometric properties of the BHV tree space, as

described in chapter 2, to summarize a sample of phylogenetic trees by a

single point. Following the rationale of decision theory [e.g. Robert, 2001],

the construction begins with the definition of a loss function, which measures

how faithful a representation of the sample would be achieved by a given

point in the tree space (see also section A.8). A loss function is defined as

the cost L(t, t′) of choosing a phylogenetic tree t′ instead of some other t, and

the decision theory literature advocates strongly to summarize a posterior

distribution by choosing t̂ as the minimizer of the expected loss function

(8) t̂ = arg min
t′∈Tn

∫
Tn
L(t, t′)dµ(t) ,

where µ denotes the posterior distribution over phylogenetic trees given the

data X [cf. Holmes, 2005]. Approximating the latter via a posterior sample

of phylogenetic trees t1, . . . , tK , the above formula becomes

t̂ = arg min
t′∈Tn

1

K

K∑
i=1

L(ti, t
′) .

Two very typical choices for the loss function are the distance and the

squared distance. When the parameters to be estimated lie in a Euclidean

space, it is well-known that the resulting estimates coincide respectively with

the median and mean of the posterior distribution. Although the tree space

is not Euclidean, distances between pairs of trees are well-defined, and a

minimizer of Equation 8 can be sought, respectively yielding the so-called

geometric median and Fréchet mean (see also section A.3).
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In contrast to other approaches that provide a decision-theoretic ar-

gument for point estimates of phylogenetic trees [e.g. Holder et al., 2003,

Huggins et al., 2011], the loss function considered here derives the intrinsic

metric of the underlying space. In particular, the loss function considers

both the topology and the branch lengths of phylogenetic trees, as opposed

to those supporting the consensus method, and thereby considers all avail-

able information in a sample. Unfortunately, in tree space, a simple gradient

search is not a practical method to solve such optimization problems [see

Miller et al., 2012]. See section 2.5 for a discussion of the algorithms.

A side benefit of the method presented here is the sound definition of

the sample variance, also called the Fréchet variance, which is simply given

as the value of the minimization problem with the squared distance. In

complement to the point estimate, this quantity provides the modeler with

insight onto the reliability of the point estimate. It is noteworthy that

existing phylogenetic reconstruction methods are not tied to a notion of

variance, and often retort to bootstrapping methods for reporting a similar

information.

4.1. Consensus vs. posterior mean

The majority-rule consensus method is a reference method to summarize

samples from a posterior distribution. There, the consensus tree consists of

those splits that occur in more than 50% of the samples. The mean length of

a retained edge is computed using the subsample where the corresponding

split does occur, thereby neglecting a fraction of the posterior mass, but

also the context in which the split occurs. In contrast, the edge lengths

of the Fréchet mean and geometric median account for the full posterior,

and are expected to provide a more meaningful summary. However, both

estimates have a property called stickiness [see e.g. Miller et al., 2012]: if

there is high posterior uncertainty about the topology, this property will

cause the Fréchet mean and geometric median to result in non-binary trees,

a behavior that parallels the multiple branching points reconstructed by the

consensus tree when no absolute majority occurs.

Take for instance the space T3 that consists of three orthants [0,∞) glued

together at 0 and place a tree on each orthant. If all three trees are equally

far apart, say at a distance r to the origin, then obviously the Fréchet mean

lies at the origin. The term stickiness refers to the fact that the mean stays

at the origin if one of the trees is moved further away. In fact, one tree may

be located at a distance anywhere between r and 2r away from the origin

without affecting the mean. Instead of moving one tree further away from

the origin, one may similarly add another tree somewhere between the three

trees, and the Fréchet mean would again stay at the origin.
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A probabilistic counterpart of this phenomenon can be observed in the

same setting. Equip T3 with a distribution whose trace in each orthant is

a normalized Gaussian distribution, centered at identical distance from the

origin, and truncated at 0. By symmetry the Fréchet mean is at the origin,

and one can ask how far the location parameter m of one component can be

perturbed without affecting the mean. In T3, m is just a scalar, and one can

study the distance of the Fréchet mean t̂ to the origin 0 as a function of m.

An analytic but complicated solution of the distance d(0, t̂) exists, however,

a fairly good answer is provided by the following approximation:

d(0, t̂) ≈ max

{
0,
m−

√
2/(eπ)− 2Φ(1)

1 + 2Φ(1)

}
, m ≥ 1

where Φ is the standard normal cumulative distribution function. The

Fréchet mean stays at the origin until m reaches approximately 2.16, which

approximately matches the case of only three trees. Also in this case one

may similarly increase the probability mass on one orthant and the Fréchet

mean would stay at the origin until a certain threshold is reached.

4.2. Star-tree problem

Suzuki et al. [2002] observed that posterior edge probabilities in Bayesian

phylogenetic analysis might be excessively high. In this context, an interest-

ing problem was discussed by Lewis et al. [2005], Yang and Rannala [2005],

Yang [2007] who called it the star-tree problem. We do not attempt to pro-

vide a solution to the problem, but discuss the issue in light of the Fréchet

mean and geometric median in tree space. The problem is often outlined in

analogy to the following coin tossing example.

Consider a coin which is tossed n times and we are interested in whether

the coin is biased towards heads or tails. The usual Bayesian model is given

by

Θ ∼ Beta(α1, α2)

X |Θ = θ ∼ Binomial(θ, n)

where θ is the rate parameter of observing heads and (α1, α1) the pseudo-

counts of the Beta distribution. Given the observation {X = x} the posterior

is again a beta distribution with pseudocounts (x+α, n− x+α) and it can

be shown that the posterior expectation converges to 1/2 as n → ∞ if the

coin is fair. Estimating the parameter Θ can be seen to be similar to the

inference of phylogenetic trees. Say that H1 is the hypothesis that the coin
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is biased towards heads. Its probability is given by

pr(H1 |x) =

∫ 1/2

0
fΘ |X(θ |x)dθ ,

where fΘ |X denotes the density function of Θ |X (the notation is intro-

duced in section A.1).For a fixed n one may look at the distribution of Y ∼
pr(H1 |x) by repeatedly drawing observations {X = x} from a Binomial(1/2, n).

For α1 = α2 it can be shown that in the limit n → ∞ the distribution of

Y is uniform, which lead to the conclusion that the posterior probability

is not decisive in this case. The uniform distribution of Y is explained by

the small variance of the posterior distribution for large n, which causes a

strong peak typically either below or above 1/2. However, at the same time,

the model is consistent since the mode of the posterior distribution moves

closer to 1/2 as n increases (see section A.8 for a definition of consistency).

Edge probabilities are similar to the probability of the coin being head

or tail biased. Lewis et al. [2005] observed that if a large amount of data is

generated using a star-tree, then the posterior probability might peak at one

orthant of tree space, which leads to a high edge probability, although the

edge is not present in the generating tree. This observation lead Lewis et al.

[2005] to develop a model that puts additional mass on non-binary topolo-

gies. The tree space however has an important difference to the parameter

space of the coin tossing example, namely that the boundary of an orthant

is common to multiple other orthants. This fact causes the stickiness of the

mean and median as discussed in section 4.1. As a result, an edge is only

present in the estimated tree if there is sufficient posterior evidence, which

might be interpreted as an inherent Occam’s razor (which in a similar way

holds for the majority-rule consensus tree). This shows that, at least for

moderate data set sizes, additional prior mass on non-binary trees might

not be required.

4.3. Statistical model

The statistical model used here consists of the alignment model intro-

duced in section 3.2 and a prior on phylogenetic trees as well as the station-

ary distributions assigned to each column. The model is simple enough so

that the marginal likelihood of an alignment given a phylogenetic tree can

be computed analytically. In particular, it permits Bayesian model selec-

tion, or to gain some insights on how well an estimate generalizes to new

data, and therefore qualifies perfectly for the purpose of comparing different

downstream methods for summarizing the posterior samples.

Before discussing the details of the model, we should take a brief look at

the data for which the model is intended. Several recent studies have shown
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that phylogenetic trees learned on single genes (gene trees) show topologi-

cal inconsistencies if compared to the corresponding species tree [Hess and

Goldman, 2011, Song et al., 2012, Salichos and Rokas, 2013, Zhong et al.,

2013]. Possible causes may include wrong assumptions in the substitution

model [Kumar et al., 2011], or biological factors such as horizontal gene

transfer, hybridization, misalignment, or incomplete lineage sorting [cf. e.g.

Avise et al., 1983, Slowinski and Page, 1999, Sanderson and Shaffer, 2002,

Maddison and Knowles, 2006]. It is common practice to pool data from

many genes in order to fully resolve the topology of the tree. However, the

proper model for this data would then be a mixture of trees. As shown by

Mossel and Vigoda [2005], the resulting estimate will be highly misleading

if only a single tree is assumed by the model. We will therefore restrict our-

selves to the inference of single gene trees. The high posterior uncertainty

due to the small data set will be addressed by computing a proper posterior

estimate.2

We proceed by discussing the prior for the stationary distributions first,

which is specific to each column of the alignment. The distribution will be

integrated out in the full model, since we are only interested in the inference

of phylogenetic trees. We introduce a random variable Θ that represents the

stationary distribution and obtain the conditional probability

prX |Θ(x |ϑ) = ϑx = ϑ(x) ,

of generating nucleotide x ∈ A. We assume that Θ is a priori Dirichlet

distributed with pseudocounts α = (αx)x∈A. The probability of observing

{X̄ = x̄} becomes

prX̄(x̄) =

∫
∆

prX̄ |Θ(x̄ |ϑ)dprΘ(ϑ) ,

where the integral is defined on the (|A| − 1)-dimensional probability simplex

∆ and can be solved analytically by first expanding the polynomial of the

distribution prX |Θ.

It is important to select an appropriate set of parameters α for the

Dirichlet distribution, as they control the expected entropy

Eh(Θ) =

∫
∆
h(ϑ)dprΘ(ϑ) = ψ

(
1 +

∑
x∈A

αx

)
−
∑
x∈A

αx∑
y∈A αy

ψ(1 + αx)

of {Θ = ϑ}, where h(ϑ) = −
∑

x∈A ϑx log ϑx and ψ denotes the digamma

function (see Figure 1) [cf. e.g. Archer et al., 2013, Nemenman et al., 2001,

2In fact, a species tree could be estimated as the mean or median of a set of gene

trees.
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Figure 1. Expected entropy of the stationary distribution

controlled by α =
∑

x∈A αx for alphabets A of cardinality

four (A) and five (B).

Wolpert and Wolf, 1995]. Phylogenetic trees are commonly learned on multi-

ple sequence alignments of genes. Such genomic regions are highly conserved,

which means that selective pressure causes nucleotides in a column of the

alignment to be the same with high probability. To reflect this knowledge

in our prior assumption, it is important that the expected entropy is low,

i.e. that only the probability of one or two nucleotides is high. This can

be achieved by choosing αx < 1, which puts mass close to the faces of the

probability simplex. The choice of α has a strong influence on inferred edge

lengths. If we increase α, we observe that inferred branch lengths shorten to

compensate for the increase in entropy of the stationary distribution. The

choice of pseudocounts α therefore reflects our a priori assumption of how

conserved we expect a genomic region to be. It is well known that within

codons a heterogeneous selective pressure exists [Li et al., 1985, Yang, 1996],

which can be modeled by introducing specific pseudocounts. For instance,

consider the alignment of two codons in Figure 2. The first one shows strong

variation at the third codon position, hence, the stationary distribution at

this column has high entropy. The reason is that all of the observed codons

ACA, ACC, and ACT code for the same amino acid (serine), which leads

to a low selective pressure at that position. The second codon alignment

in Figure 2 shows a fully conserved third position. In this case, we would

still a priori assume a stationary distribution with high entropy, as depicted

in the figure. Yet, there were probably not enough mutations so that we

observe a poorly conserved column.
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Figure 2. Alignments of two codons with low and high con-

servation. At each position, a possible estimate for the sta-

tionary distribution is shown. There is usually less selective

pressure on the third codon position, which is why we expect

a stationary distribution with high entropy.

Remark 4.3.1. The pseudocounts control the expected entropy of sam-

ples from a Dirichlet distribution. However, by fixing the expected entropy,

we have no control of the spread of entropy values. A possible workaround

is to specify a prior distribution for the pseudocounts, but this would only

allow to increase the spread. A more graceful but computationally much

more demanding solution is to define a distribution directly on entropy val-

ues. Let H ∈ [0, log |A|] be a random variable on entropy values. An event

{H = η} corresponds to multiple distributions ϑ in the probability simplex,

because the entropy function is not invertible. Nevertheless, for statistical

applications we have to be able to integrate over the stationary distribution

Θ defined on the probability simplex. For that, the probability assigned to

an entropy region dη has to be uniformly distributed across all stationary

distributions with entropy in dη. Let h again denote the entropy function.

Formally, for a density function g on the entropy space [0, log |A|] we would

like to have a weight function w : [0, log |A|]→ [0,∞) such that

prH(h(A)) =

∫
h(A)

g(η)dη =

∫
A
gh(ϑ)(w ◦ h)(ϑ)dϑ

for all measurable sets A in the probability simplex ∆|A|−1, where gh =

(g ◦ h). A possible solution for the weight function is given by

w(η) = lim
ε→0

ε∫
Aε(η) dϑ

, where Aε(η) = {ϑ | h(ϑ) ∈ [η, η + ε]} .

For the one-dimensional simplex (i.e. |A| = 2), the weight function w

can be computed analytically. Since the preimage of each entropy value

has only two elements, we may compute the weight by using the change of

variables theorem and correcting by 1/2. Hence,

dη = (w ◦ h)(ϑ)dϑ =
1

2

∣∣∣∣ d

dϑ
h(ϑ)

∣∣∣∣ dϑ =
1

2
|log(1− ϑ)− log(ϑ)|dϑ .
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In general, there exists no analytical form of the weight function, but we may

use a numerical approximation instead (see Figure 3). Once an approxima-
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Figure 3. Numerical approximation (up to a constant) of

the weight function w for different alphabet sizes. Ver-

tical lines show maximal entropy values for cardinalities

k = 2, . . . , 5.

tion is given, we may define a distribution on the entropy space [0, log |A|]
and map this distribution to the probability simplex. Possible choices are

for instance the logitnormal or beta distribution rescaled to [0, log |A|]. For

the following demonstration we assume the latter so that

g(η) ∝
(

η

log |A|

)β1−1(
1− η

log |A|

)β2−1

with pseudocounts β1 and β2. The resulting density on the probability

simplex is shown in Figure 4 for |A| = 3 and two different parameter values.

The next step is to formulate a prior distribution on the edge lengths

given a fixed topology. By this we obtain the posterior µi for a single orthant
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β1 = 100, β2 = 20

θ1

θ2

β1 = 50, β2 = 50

θ1

θ2

Figure 4. Two distributions on entropy values mapped onto

the probability simplex.

Oi. The same phylogenetic tree is assumed for all columns in the alignment.

In fact, columns in the alignment are conditionally independent given a

fixed phylogenetic tree. Since we now want to let the tree vary within one

orthant of tree space, it is necessary to consider the full alignment. Let X̄n

denote the random variables for the n-th column of the alignment, where

n = 1, . . . , N . We also use the shorthand notation X = (X̄1, . . . , X̄N ) for

the full alignment. Let L = (Lk) denote the random variables for the edge

lengths of a tree t in orthant Oi. Each Lk is a priori gamma distributed

with shape parameter b and scale parameter λ. The likelihood of the full

alignment is given by

prX |L,Oi(x | l) =
N∏
n=1

prX̄n |L,Oi(x̄n | l) ,

where the stationary distribution is integrated out, and we obtain the pos-

terior distribution µi restricted to orthant Oi with density function

fL |X,Oi(l |x) =
1

prX | Oi(x)
prX |L,Oi(x | l)fL(l) .

The full posterior distribution on Tn is given by

µ =

(2n−3)!!∑
i=1

wiµi ,

where

wi =
prX | Oi(x)∑
j prX | Oj (x)

is the weight of the i-th component. We will denote the density function of

µ simply as f . The weight wi depends on the normalized partition function

of µi, which involves computing an intractable integral. Another difficulty
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is that the number of orthants grows super-exponentially with the number

of leaves. It is therefore necessary to approximate µ with a Dirac mixture

of posterior samples, which does not require to compute any partition func-

tions.

To obtain samples from the posterior distribution, a Metropolis-coupled

MCMC algorithm is discussed in the following section. In the sequel, these

samples will serve as input to the reconstruction of the posterior median,

mean, and consensus trees.

4.4. Approximation of the posterior distribution

The structure of the posterior distribution on the tree space Tn is too

complicated for an analytic treatment. Point estimates can nevertheless be

computed from a set of posterior samples, which are obtained from Markov

chain Monte Carlo (MCMC) simulations [Yang and Rannala, 1997, Li et al.,

2000, Huelsenbeck and Ronquist, 2001, Drummond and Rambaut, 2007,

Lartillot et al., 2009] (see also section A.4). The main difference to existing

methods is that we have an analytic treatment of the stationary distribution

(see section 3.3). The method discussed here should converge much faster

than existing methods, since there is a strong coupling between the entropy

of the stationary distribution and the branch lengths of the phylogenetic

tree (see the discussion in section 4.3).

To summarize the posterior µ, we would like to compute a point estimate

t̂ = arg min
s∈Tn

∫
Tn
L(s, t)dµ(t) ,

for an appropriate loss function L. Unfortunately, the expected loss is diffi-

cult to compute and we therefore rely on an approximation by replacing µ

with the Dirac mixture

π =
1

K

K∑
k=1

δtk

of K samples from µ. By the ergodic theorem, we have the convergence∫
Tn
L(s, t)dπ(t) =

1

K

K∑
k=1

L(s, tk)→
∫
Tn
L(s, t)dµ(t) ,

almost surely for every s ∈ Tn as K → ∞ [Robert and Casella, 1999]. A

set of posterior samples can be obtained with the Metropolis-Hastings algo-

rithm [Metropolis et al., 1953, Hastings, 1970] without having to evaluate

the weights wi of the single components of µ. The algorithm constructs

a Markov chain with µ as the stationary distribution. Let tk be a sample

from µ with edge set E . A new sample tk+1 is generated by the Markov

chain conditional on the current sample tk. The algorithm uses a proposal
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distribution with density function q(· | tk), which selects an edge e ∈ E and

replaces it by another edge. We thereby obtain a new tree s that we accept

as the next sample tk+1 with probability

ρ(tk, s) = min

{
1,
f(s)q(tk | s)
f(tk)q(s | tk)

}
,

and otherwise tk+1 = tk, where f still denotes the density function of µ. Note

that the normalization constant of µ cancels in the ratio. The proposed tree

s lies in the same orthant as tk with probability τ . In this case, a new edge

length is proposed, which is a draw from a normal distribution centered at

|e|. However, with probability 1 − τ the proposed tree lies within one of

the neighboring orthants (NNI move), by replacing the edge e by one of two

other possible edges of the same length (see chapter 2).

It is well known that the posterior distribution µ often shows multiple

modes that are distributed in tree space. The Metropolis-Hastings algorithm

might not converge well if the modes are separated by regions of low proba-

bility. In this case, it was proposed by Geyer [1991], Geyer and Thompson

[1995] to augment the sampler by several heated chains that can jump more

easily between modes. A heated chain uses the regular Metropolis-Hastings

acceptance probability, but the density of the posterior distribution f is

replaced by

gτ (t) = [f(t)]−τ ,

where τ ≥ 1 is the temperature of the chain. Increasing the temperature

above one flattens the posterior distribution and allows the sampler to easily

switch between modes.

The Metropolis-coupled Markov chain Monte Carlo (MC3) method pro-

posed by Geyer [1991] uses one cold chain (τ = 1) and several heated

chains with different temperatures. By swapping states between the cold

and heated chains, we improve the mixing behavior of the cold chain. Let

τi and τj be the temperatures of chains i and j. A swap of states between

the chains is accepted with probability

min

{
1,
gτi(tj)gτj (ti)

gτi(ti)gτj (tj)

}
,

where ti and tj are the states of chain i and j. Asymptotically, the chains are

independent with the respective stationary distributions [cf. Geyer, 1991].

4.5. MCMC with Hamiltonian dynamics

For the proposal distribution of the Metropolis-Hastings algorithm we

have selected a normal distribution with the same variance for all branch

lengths. This choice leads in most cases to good results. However, in certain
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cases it is more difficult to obtain good proposals, for instance, if the align-

ment contains missing data, which is heterogeneously distributed among

species.3 By augmenting the Metropolis-Hastings algorithm with Hamilton-

ian dynamics the actual shape of the posterior distribution can be taken

into account [Duane et al., 1987, Neal, 1995, 1996, 2011]. However, the dis-

advantage of Hamiltonian Monte Carlo (HMC) is its computational cost,

which is mostly caused by the computation of gradients.

For the following discussion we restrict our attention to one orthant Oi
of Tn. Let l = (l1, . . . , lm) ∈ Rn represent the edge lengths of phylogenetic

trees in Oi and let f be the posterior density restricted to this orthant. We

write the posterior density as f(l) =
∫
g(l, p)dp, where g : Rm × Rm → R is

defined as

g(l, p) ∝ exp {−U(l)−K(p)} .

The density g can be understood as an extension of f to the product space

Rm × Rm with two independent components. Inspired by Hamiltonian dy-

namics, l could be interpreted as the position of a particle and p as its

momentum (mass times velocity). The Hamilton function is

H(l, p) = U(l) +K(p) ,

where U is the potential energy and K the kinetic energy of the particle.

Furthermore, we define the dynamics

d

dx
lj(x) =

∂

∂pj
K(p) ,

d

dx
pj(x) = − ∂

∂lj
U(l) ,

for j = 1, . . . ,m, which is reversible and volume preserving. The variable x

may be interpreted as time.

The basic idea behind Hamiltonian Monte Carlo is as follows. Since

the position and momentum variables are independent, we may select a

simple distribution for the momentum so that samples can be drawn easily.

For instance, the momentum is Gaussian distributed with mean zero and

variance one if K(p) = p2/2. Let l(k) be the current position and p∗ the

newly drawn sample for the momentum. A new proposal (l′, p′) for both

variables is computed by simulating the Hamiltonian dynamics for a given

time period using (l(k), p∗) as initial condition. The momentum variable is

negated at the end of the trajectory.4 The proposal is accepted as the new

3The reason for this effect is the time-reversibility of the mutation model. The less

data is observed in a given species, the higher the uncertainty about the actual position

of the respective branch in the tree.
4For typical choices of K we have K(p) = K(−p) and therefore the momentum need

not be negated in practice.
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sample (l(k+1), p(k+1)) with probability

min
{

1, exp
(
−U(l′) + U(l(k))−K(p′) +K(p(k))

)}
.

The acceptance probability will always be close to one, since the value of the

Hamiltonian function H is preserved by the dynamics (except for numerical

errors).

In principle any type of reversible dynamics could be used. The ad-

vantage of Hamiltonian dynamics is that it is volume preserving, which

significantly simplifies the computation of the acceptance probability. Oth-

erwise, changes in volume must be accounted for. The same argument holds

for the numerical integration method, which is why the leapfrog method is

commonly used for HMC. Additionally, it is crucial that the dynamics of

the discretized system are reversible as well. This is indeed the case for

Hamiltonian dynamics integrated with the leapfrog method.

In practice it is often beneficial to only partially resample the momentum

variables. Assume that the kinetic energy has the form K(p) = p>Σ−1p/2

where Σ is the covariance matrix. We update the current momentum p by

p∗ = αp+ (1− α2)1/2p̄ ,

where α ∈ [−1, 1] and p̄ is a random vector from a Gaussian distribution

with mean zero and covariance Σ. For α close to one, new values will be

very similar to the old momentum p.

HMC is easy to implement for sampling phylogenetic trees. The gradient

of the log likelihood function can be computed from the recursive solution

derived in section 3.3. An example is shown in Figure 5 for a synthetic

alignment.

4.6. Estimation results

Using a multiple sequence alignment from a study by Karol et al. [2001],

which was slightly modified by Yang and Rannala [2005], the phylogeny of

the small subunit rRNA gene (SSU rRNA) from the nuclear genome of 8

land plants and 6 charales (see Figure 6) has been reconstructed. It appears

that the edge that separates Psilotum nudum and Dicksonia antarctica from

the remaining tree has a very short length of approximately 0.0027. Figure 7

shows the marginal posterior distribution of this edge (e1) and a competing

one (e2) that groups Psilotum nudum with Taxus baccata and Arabidop-

sis thaliana. There remains a high posterior uncertainty about the exact

topology of the tree at this very branching. The posterior mass on e1 is

however sufficient for the majority-rule consensus tree to include this edge.

However, there, it has a much longer length than in the posterior mean tree

(by approximately 0.011), since this length is obtained by averaging only the
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0: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...AAAAAAAAAAA

1: TTTTTTTTTTTTAAAAAAAAAAAAAAAAAAAAA...AAAAAAAAAAA

2: GGGGGGGGGGGGCCCCCCCCCCCCCCCCCCCCC...CCCCCCCCCCC

3: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC...CCCCCCCCCCC

4: ACGTACGTACGTNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNN
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Figure 5. Demonstration of the Hamiltonian Monte Carlo

method. (A) Data set of length 100. The character “N”

is interpreted as missing data. (B) and (C) show samples

generated by the HMC method for different parameters. (B)

10 leapfrog steps between samples with step size 0.01 and

α = 0. (B) 10 leapfrog steps betwen samples with step size

0.001 and α = 0.95.

lengths of this edge when it occurs in the sample, neglecting the contribu-

tions of the alternative edges. Clearly, the shorter edge length born by the

posterior mean tree better accounts for the uncertainty, and the consensus

tree appears, in contrast, to have overestimated branch lengths.

The assessment of reconstruction methods for phylogenetic trees is no-

toriously hindered by the ignorance of the true evolutionary history to be

uncovered, as the latter is never observed. Instead, the estimated tree of Fig-

ure 6 has been used to generate 50 alignments of lengthm = 50, 100, 250, and

500. For each generated data set, 210, 000 posterior samples were obtained

using one cold Markov chain and three heated chains.The Fréchet mean,

geometric median and consensus tree of the last 200, 000 samples were com-

puted. In the whole study, tree topologies are uniformly distributed a priori,

while branch lengths are distributed according to a Gamma(1, 0.4).
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Lychnothamnus barbatus
Nitellopsis obtusa
Chara connivens

Lamprothamnium macropogon
Taxus baccata

Arabidopsis thaliana
Psilotum nudum

Dicksonia antarctica
Huperzia lucidula

Anthoceros formosae
Sphagnum palustre

Marchantia polymorpha
Nitella opaca

Tolypella int prolifera

Figure 6. Fréchet mean estimated from the small subunit

rRNA gene (SSU rRNA) from the nuclear genome of 8 land

plants and 6 charales. Edge lengths are plotted in horizontal

direction only.
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Figure 7. Marginal posterior density estimate of two edges

e1 and e2. The edge e1 groups Psilotum nudum with Dickso-

nia antarctica, while e2 groups Psilotum nudum with Taxus

baccata and Arabidopsis thaliana. The Fréchet mean is

shown as a vertical line.

Figure 8 shows the distances of the computed estimates to the generat-

ing tree. For alignments of the lengths considered, the Fréchet mean and

geometric median are generally closer to the generating tree. A trend ap-

pears, from the greatest discrepancy observed for the shortest alignments,

to an almost systematic agreement for the longest alignments. It should be

noted that even shorter alignments generally result in so broadly distributed

a posterior distribution that all three estimates coincide with the star tree.

At the opposite extreme, large datasets support a clear decision about the
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topology of the tree, placing most of the mass of the posterior distribution

in a single orthant, and resulting in mostly agreeing estimates. One also

observes that the geometric median is in most cases closer to the generating

tree than the Fréchet mean. This comes at no surprise given the skewness

of the gamma prior on the branch lengths.

This model permits an analytical computation of the marginal likelihood

of an alignment given a phylogenetic tree, thereby offering an evaluation of

how the estimated model generalizes to novel observations. Using a leave-

one-out approach, the average (unnormalized) posterior value achieved by

the estimators were computed on the remaining 49 data sets of the same

length (see Table 1). For all alignment lengths, the Fréchet mean and geo-

metric median show a slightly higher average posterior value compared to

the majority-rule consensus tree. But the difference is too minor to make

any definite statements, as also shown by the variance of the estimates. A

much clearer picture is gained by considering how often the mean and me-

dian have a higher posterior value than the consensus (see Table 1). The

results show that the consensus tree clearly performs worse.

Another quantity of interest is the Fréchet variance of the posterior

distribution, which provides us with a measure of uncertainty. The mean

variance is shown in Figure 9 separately for all four data set lengths. Similar

to the case of normal distributed i.i.d. random variables, the variance de-

creases approximately with 1/m. Another, maybe more intuitive statistic,

is to compute a credibility region around the Fréchet mean t̂ that contains a

given proportion c of the posterior mass. More precisely, consider the set of

trees B =
{
t ∈ Tn | d(t̂, t) ≤ d∗

}
for some d∗ such that

∫
B dµ(t) = c. The

bound d∗ may be called the credibility radius. Figure 9 shows the results

for c = 0.68.

(a) posterior (b) performance

m

50

100

250

500

mean median consensus

-201.94 (10.99) -201.24 (10.84) -203.22 (10.10)

-407.13 ( 4.67) -407.03 ( 4.84) -409.39 ( 3.66)

-1035.66 ( 5.12) -1035.62 ( 5.32) -1036.72 ( 5.02)

-2074.11 ( 3.75) -2074.01 ( 3.75) -2074.96 ( 3.99)

mean median

0.78 0.80

0.86 0.82

0.90 0.90

0.78 0.80

Table 1. (a) Mean posterior values for the Fréchet mean,

geometric median, and consensus tree. The variance is shown

in brackets. (b) Percentage of times the mean and median

show a higher posterior value on the remaining (joined) 49

data sets. Both statistics were evaluated separately on data

sets of length m = 50, 100, 250, and 500.



76 4. POINT ESTIMATES IN PHYLOGENETIC RECONSTRUCTIONS

0.4 0.5 0.6

0.
3

0.
4

0.
5

(a)
d
(t
,t̂

1
),
d
(t
,t̂

2
)

t̂1
t̂2

0.20 0.25 0.30 0.35 0.40

0
.2

0
.3

0
.4

(b)

t̂1
t̂2

0.10 0.15 0.20

0.
10

0.
15

0.
20

(c)

d(t, t̂3)

d
(t
,t̂

1
),
d
(t
,t̂

2
)

t̂1
t̂2

0.06 0.08 0.10 0.12

0.
06

0.
08

0.
10

0.
12

(d)

d(t, t̂3)

t̂1
t̂2

Figure 8. Distances d(·, ·) of the Fréchet mean t̂1, geometric

median t̂2, and consensus tree t̂3 to the generating tree t for

alignments of length 50 (a), 100 (b), 250 (c), and 500 (d).

The straight line shows the main diagonal.
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Figure 9. Average Fréchet variance (a) and credibility ra-

dius d∗ (b) for datasets of length 50, 100, 250, and 500. The

error bars show one standard deviation.



CHAPTER 5

Prediction of transcription factor binding sites

To identify transcription factor binding sites, we usually have data from

either a collection of regulatory regions of genes that are assumed to be

coregulated, or experimental data from ChIP-seq experiments [Park, 2009].

In the latter, transcription factors that are bound to DNA fragments are

extracted using antibodies and the fragments are sequenced and mapped

to the genome. The major difficulty here is that the fragments are typi-

cally much longer than the TFBS, hence the need for a statistical analysis.

By the design of the experiment, we know that the data is enriched with

binding sites. However, a transcription factor might recognize several DNA

sequences and therefore we may not assume that binding sites are unique.

Searching for the correct pattern within nucleotide sequences that reflects

the binding preferences of a transcription factor is a very difficult problem,

which requires additional information. By augmenting each sequence by a

collection of orthologs1 from related species a set of multiple sequence align-

ments can be constructed that reveal information about whether or not a

given site is under selective pressure, a technique called phylogenetic foot-

printing [Wasserman and Sandelin, 2004]. Of course, the orthologs have to

be selected with great care and only species that are likely to show the same

regulatory mechanism are eligible. On the other hand, the orthologs must

show a certain level of variation in order to gain additional information.

Essential to the analysis is a phylogenetic tree that can be utilized to

model both functional and nonfunctional regions within the data. The model

for nonfunctional regions, which we refer to as the background model, is

important to identify columns in the alignments that are atypical in the

sense that they are more conserved than most other regions. In contrast,

the method developed by Siddharthan et al. [2005] uses the phylogenetic

information only for functional regions, all other sequences are treated as

mutually independent. Hence, the model considers regions as atypical that

show different summary statistics on the individual sequence level.

1Two sequences are orthologous if they descended from the same ancestral sequence.

77
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5.1. Statistical model

The data consists of a set of multiple sequence alignments, where each

alignment contains ortholog sequences from M related species. Sequences

in an alignment consists of characters from an alphabet A, which contains

a character for each nucleotide and one that codes for gaps. To simplify

notation we discuss the statistical model for only one multiple sequence

alignment. A crucial assumption is that transcription factor binding sites

are present and conserved in all M sequences of the alignment. The statis-

tical model consists of two layers. The first is the phylogenetic dimension,

represented by a tree, which models the dependencies between sites within

a column of the alignment. The second layer models the dependencies be-

tween different positions of the alignment and consists of two components.

The background component models regions of low conservation, whereas the

foreground component consists of a set of patterns, instances of which model

the highly conserved regions of the data. Due to the experimental procedure

of how the data is obtained, we assume that the pattern of the transcription

factor binding site has many instances in the data set. However, we do not

assume that this is the only pattern and we do not a priori fix the number

of patterns to be observed.

By defining a statistical model we assign a probability to every possible

observation. A model can be outlined in several ways. A most natural

possibility is to follow the causal direction, i.e. to describe the model from

a generative perspective.

The top most part of the model is a process that assigns each site to

either foreground or background. The foreground is assumed to consist

of blocks of a fixed length L. For each position t we introduce a random

variable Zt that indicates whether the block of length L starting at t is

assigned to the foreground. The distribution of Zt therefore depends on the

L − 1 preceding random variables. We assume that blocks cannot overlap

and if no foreground block starts at the L− 1 positions before t, then

Zt ∼ Bernoulli(λ)

where λ is foreground rate. A sequence alignment consists of

N =
T∑
t=1

Zt

foreground blocks. Blocks are grouped into clusters, which share a common

pattern. We assume that some patterns have many instances in the data

set, while most patterns occur only a few times. To model this, we introduce
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N random variables Yn with

Yn |Y1 = y1, . . . , Yn−1 = yn−1 ∼
Kn∑
k=1

cn(k)− d
a+ n− 1

δk +
a+Knd

a+ n− 1
δKn+1

where Kn = max{y1, . . . , yn−1} is the number of clusters at sampling step

n, cn(k) =
∑n−1

i=1 1(Yi = k) the number of instances in cluster k, and δk the

Dirac delta function at k.2 The process has two parameters, a is called the

concentration parameter and controls the expected number of clusters at a

finite sampling step, whereas d is called the discount parameter and controls

the tail behavior. For d = 0 the process is known as the Chinese restaurant

process introduced by Dubins and Pitman [cf. e.g. Aldous, 1985, Pitman,

1995]. The process is discussed in more detail in section 5.2.

For each position in the alignment we associate a random variable Θt,

which is Dirichlet distributed and gives the probability for observing each

of the nucleotides at this position. As we point out later, this is also the

stationary distribution of the nucleotide substitution model used for the

phylogenetic tree. If position t is associated with the background, then

Θt ∼ Dirichlet(β)

where β = (β1, . . . , β|A|) are the pseudocounts of the Dirichlet distribution.

The pseudocounts might be considered as unknown, in which case we use

a gamma prior distribution. Instead of a column specific stationary distri-

bution we may also assume that the stationary distribution at position t is

drawn from a mixture distribution of J components, i.e.

Θt |Θ∗1 = θ1, . . . ,Θ
∗
J = θJ ∼

J∑
j=1

wjδθj ,

where wj are the prior weights and Θ∗j ∼ Dirichlet(β).

The situation is more complicated for the foreground, since a pattern

is supposed to be shared among several blocks. For each of the K = KN

clusters we have a pattern Θ̃(k) of length L with distribution

Θ̃(k) = (Θ̃
(k)
1 , . . . , Θ̃

(k)
L ) ∼ (Dirichlet(α), . . . ,Dirichlet(α))

where α = (α1, . . . , α|A|) are the pseudocounts of the Dirichlet distributions.

The length L may vary across clusters and we assume a uniform prior dis-

tribution for all possible lengths. If positions {t, . . . , t+L−1} belong to the

foreground and are assigned to cluster k, then

(Θt, . . . ,Θt+L−1) = Θ̃(k) or rc(Θt+L−1, . . . ,Θt) = Θ̃(k) ,

2In contrast, Siddharthan et al. [2005] merely used an exponential prior on the number

of components.
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each with probability 1/2 and where rc denotes the reverse complement.

Columns in the alignment are assumed to be independent given the

stationary distributions (Θt). It is therefore sufficient to discuss the lower

part of the model for only one column. For each of the M ortholog sites in

the column we have a random variable X(i) that takes values in the alphabet

A. A phylogenetic tree with M leaves and M − 2 internal vertices is used

to model the dependence between sites. Each leaf is associated with one

of the sites in the column. The M − 2 internal vertices of the tree are

associated with random variables X(k), k = M + 1, . . . , 2M − 2, that also

take values in A. We now define the substitution model on the phylogenetic

tree tk = (X(k), ti, tj), where X(k) is the random variable associated with

vertex k and ti and tj the two children. First, we assume that

X(i) ⊥⊥ X(j) |X(k),Θt .

where X(i) and X(j) are the random variables associated with vertices i and

j. The substitution process is defined as

X(i) |X(k) = x,Θt = ϑ ∼ Mi Categorical(ϑ) + M̄iδx

which was introduced by Felsenstein [1981]. The probability of a mutation

from vertex k to vertex i is denoted Mi and depends on the length d of the

edge that connects the two vertices, i.e. Mi = 1 − exp(−d). Furthermore,

M̄i denotes the probability of no mutation, given as M̄i = 1−Mi. Whenever

there is a mutation between two vertices, a new nucleotide is drawn from

the categorical distribution. The stationary distribution Θt therefore plays

a crucial role. If {Θt = ϑ} has low entropy, i.e. only one character of the

alphabet A has high probability, then this character is repeatedly drawn

whenever there is a mutation and the column of the alignment will most

likely be highly conserved. On the other hand, a high entropic stationary

distribution causes a column to be poorly conserved with high probability.

This observation motivates the choice of pseudocounts α and β, i.e. for the

distribution of patterns we choose α < 1 to put mass close to the faces of

the probability simplex and for the background we would typically choose

β > 1. See also section 3.1 for a more elaborate discussion of the nucleotide

substitution process.

5.2. Process priors

Many applications require mixture models where the number of com-

ponents is a priori not fixed to some finite value. Such priors were first

discussed in the context of the species sampling problem [cf. e.g. Good,
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1953, Bunge and Fitzpatrick, 1993, Zabell, 2005]. From the theoretical per-

spective, such models can either assume an infinite number of components,

or a finite but unknown number.

Among the most commonly used priors for infinite mixtures is the Dirich-

let process. It was first described with the notion of tailfree measures [cf.

Fabius, 1964] by Freedman [1963] and later analyzed in detail by Fergu-

son [1973], Blackwell and MacQueen [1973]. Antoniak [1974] introduced

Dirichlet process mixtures that convolve the random measure with a con-

tinuous distribution since random measures drawn from a Dirichlet process

are discrete. Good summaries on the topic were written by Ferguson et al.

[1992] and Teh et al. [2006]. Closely related to the Dirichlet process is the

two-parameter extension discussed by Pitman [1995, 1996], Pitman and Yor

[1997]. Mixture models with finite but a priori unknown number of compo-

nents can be derived from this process [cf. Gnedin, 2010, Poppe, 2015].

Consider the simple model

Π ∼ Dirichlet(a/K, . . . , a/K)

Xn |Π = π ∼ Discrete(π) ,

where Π has cardinality K (i.e. Π is the K − 1-dimensional probability

simplex) and (Xn) is a sequence of N random variables. Furthermore, let

(Yn) be random variables that relabel the outcomes of (Xn) according to

their first occurrences. For instance, consider for n = 5 the observation

(X1, . . . , X5) = (4, 2, 4, 1, 2)

(Y1, . . . , Y5) = (1, 2, 1, 3, 2) .

Here, Y1 = Y3 = 1 because 4 is the first label that was observed. For K →∞
we call (Yn) the Chinese restaurant process. The name is due to a metaphor

by Dubins and Pitman [cf. Aldous, 1985, Pitman, 1995]. In Figure 1a a

sample from a Chinese restaurant process is shown. For a,N � 0 the

expected number of distinct labels (clusters) equals approximately

a log

(
1 +

N

a

)
,

which shows that in the limit n→∞ we would still observe infinitely many

clusters, but the number grows only logarithmically. Hence, some labels

appear much more frequent than others, as can be seen in Figure 1a.

In practice it is much more convenient to use the sequential construc-

tion of the Chinese restaurant process. Suppose that Yn is conditionally

distributed as

Yn |Y1 = y1, . . . , Yn−1 = yn−1 ∼
Kn∑
k=1

cn(k)

a+ n− 1
δk +

a

a+ n− 1
δKn+1
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Figure 1. (A) Samples from a Chinese restaurant process

with a = 10. (B) Samples from the Ewens-Pitman process

with a = 10 and d = 0.5.

where Kn = max{y1, . . . , yn−1} is the number of clusters at sampling step

n and cn(k) =
∑n−1

i=1 1(Yi = k) the number of instances in cluster k. The

process is parameterized by a > −d and d ∈ [0, 1] and usually referred to as

the Ewens-Pitman two-parameter family [Gnedin and Pitman, 2006]. For

d = 0 it coincides with the Chinese restaurant process. Interestingly, the

process converges to finitely many clusters if d < 0. In fact, the number of

clusters is determined by −α/d. A process with finite but unknown number

of clusters can be obtained by mixing over α with d = −1 fixed [Gnedin,

2010].

A sample of the process for d = 1/2 is shown in Figure 1b. Instead of the

logarithmic growth, the Ewens-Pitman process shows a power law behavior.

From the conditional distribution of Yn one can see that the weight of a

cluster increases with the number of instances cn, a property often called

rich get richer. For practical applications it is very important to be aware

of this property, since it introduces a strong prior assumption that has to

be justified.

In the context of mixture models, a realization of (Yn) is used to partition

a set of observations {Zn = zn} into clusters. Each cluster is associated with

one component of the mixture model. Usually, a component is a member of

a family {F (θ)} of distributions indexed by some parameter θ (for instance,

F could be a normal distribution and θn its location parameter), so that each

event {Yn = yn} is associated with a member of that family. By assigning a
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prior distribution G0 to the parameters of {F (θ)}, we obtain the model

Θ∗k ∼ G0

Zn |{Θ∗ = θ∗, Yn = yn} ∼ F (θ∗yn) ,

where {Θ∗ = θ∗} = {Θ∗1 = θ∗1,Θ
∗
2 = θ∗2, . . . } is a set of distinct parameters.

The combination of this model and the Chinese restaurant process results

in the Pólya urn scheme by Blackwell and MacQueen [1973]. In this form,

each Zn is associated with a random variable Θn, which is conditionally

distributed as

Θn |Θ1 = θ1, . . . ,Θn−1 = θn−1 ∼
n−1∑
i=1

1

a+ n− 1
δθi +

a

a+ n− 1
G0 ,

so that

Zn |{Θn = θn} ∼ F (θn) .

The closely related Dirichlet process can be derived as follows. Let G0

be again some distribution and consider the model

Π ∼ Dirichlet(a/K, . . . , a/K)

Θ∗k ∼ G0

G |{Π = π,Θ∗ = θ∗} =

K∑
k=1

πkδθ∗k ,

where {Θ∗ = θ∗} = {Θ∗1 = θ∗1, . . . ,Θ
∗
K = θ∗K}. For K → ∞ we call this

model the Dirichlet process and use the shorthand notation

G ∼ DP(a,G0) .

G is a distribution with discrete components and sampling from it is equiv-

alent to the Pólya urn scheme derived above. The corresponding model

is

Θn |G = g ∼ g
Zn |Θn = θn ∼ F (θn) .

Although the notation of the Dirichlet process might be convenient for infi-

nite mixture models, the Pólya urn scheme is much easier to interpret and

work with.

One reason why the Dirichlet process has received so much attention in

the past is that the distribution of {Θn} is exchangeable, i.e.

Θ1, . . . ,Θn
d
= Θσ(1), . . . ,Θσ(n)
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for any permutation σ. Despite the popularity, such nonparametric models

might suffer from inferential inconsistencies (see section A.8 for a defini-

tion). A first example of inconsistency was provided by Diaconis and Freed-

man [1986], which is however quite artificial. Miller and Harrison [2013]

discussed the problem of estimating the number of components K of a fi-

nite mixture model. They found that the posterior probability of the true

number of components goes to zero as the number of observations increases,

which is expected since the Dirichlet process assumes an infinite number of

components. On the other hand, posterior estimates of mixture densities

are consistent, as shown by Ghosal et al. [1999].

5.3. The label switching problem

Instead of predicting the locations of transcription factor binding sites,

one might think of inferring the patterns Θ̃(k) directly. This approach turns

out to be infeasible due to a technical difficulty. Consider a mixture distri-

bution with K components and density function

f(x;µ) =
K∑
k=1

wkgµk(x) ,

where wk is the weight of the kth component and {gµk} any family of density

functions. The parameters µ = (µ1, . . . , µK) are thought to correspond to

the patterns Θ̃(k). A point estimate of µ might be obtained by computing the

mean or median of a set of samples drawn from the posterior distribution.

However, the likelihood function f is invariant under permutations of the

labels k, i.e.

f(x;µ) =

K∑
k=1

wσ(k)gµσ(k)(x)

for any permutation σ, which shows that the posterior will usually have K!

distinct modes. Hence, when drawing samples from the posterior distribu-

tion any two components might switch their parameters. As a result, the

estimates of all parameters will approximately be identical (see Figure 2).

This problem is well known and often termed the label switching problem

[see e.g. Celeux et al., 2000, Jasra et al., 2005]. For one-dimensional pa-

rameters, i.e. µk ∈ R, the problem can be solved by a priori enforcing a

total ordering of the parameters. Obviously, this approach is not feasible in

higher dimensions.

Many other solutions were proposed in the past, such as artificial order-

ing constraints [e.g. Stephens, 2000] and relabeling algorithms [e.g. Celeux,

1998]. Both approaches might bias the resulting estimate in a way which is
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µ2
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µ̂ ·

Figure 2. Mixture distribution with three normal compo-

nents. The parameters µk specify the locations of the com-

ponents. µ̂ indicates the position of an estimate for the three

location parameters.

hard to quantify. Hence, it seems that the only adequate solution is to first

estimate a partition of the data3.

5.4. Predictions

The goal of the statistical analysis is to obtain a prediction of what

blocks share a common pattern. From this prediction it is then possible to

obtain an estimate of the set of patterns. In the following, we outline the

usual Bayesian methodology to obtain a posterior estimate although there

exist several technical difficulties that prevent the evaluation of most point

estimates on realistic data sets. The first obstacle is the convergence rate

of the sampler. Woodard et al. [2013] studied the convergence rate on a

model without phylogenetic information and showed that it decreases ex-

ponentially with the length of the data set. Although a clear phylogenetic

signal might boost the convergence of the sampler, it is likely that the result

also holds for the method described here. Another difficulty is the actual

computation of the median or mean from posterior samples. A sample par-

titions the data such that similar conserved sites are clustered together. As

explained later, the computation of the mean and median of a set of parti-

tions is NP-hard. Instead, we may pick the sample with minimum (squared)

3As discussed in section 5.2, the inference of the number of components of a finite

mixture model is inconsistent when a Dirichlet process prior is used. It is easy to see that

this result also holds for the estimation of partitions. However, this is not a concern for

the inference of transcription factor binding sites, since we assume that in principle we

could observe an infinite number of different patterns.
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distance to all other posterior samples and thereby obtain a crude approx-

imation of the (mean) median. Still, the computational complexity of this

estimate is quadratic in the number of posterior samples. Combining both,

the slow convergence of the sampler and the limitation to few samples so

that the median or mean can be computed, it is clear that this methodol-

ogy is restricted to very small data sets. Instead, we may take a similar

approach as Siddharthan et al. [2005] and search for a partition with high

posterior probability to obtain an approximation to the maximum a pos-

teriori (MAP) estimate. A simple hill climbing method gets easily stuck

in one of the modes of the posterior distribution. Hence, the search for

good local maxima should at least be partially stochastic. In the following,

we derive the MCMC method for drawing samples from the posterior dis-

tribution, which accounts for the stochastic part of the search algorithm.

The method consists of Gibbs updates of the hidden variables Zt and Yn as

well as Metropolis-Hastings steps to propose new positions of whole clus-

ters. The MCMC method can then be easily turned into a hill climbing

algorithm. For the Gibbs sampler we simply select the update that maxi-

mizes the marginal posterior distribution of the respective hidden variable.

The resulting algorithm is equivalent to a coordinate ascent method (see

also section A.4). Regarding the Metropolis-Hastings algorithm, a proposal

is accepted if it maximizes the posterior value. In this way, we may search

for the global maximum by alternating between MCMC sampling and hill

climbing optimization.

As pointed out earlier, the pattern of the transcription factor binding

site is assumed to have many instances in the data set and should therefore

be among the largest clusters. We are given a data set D = {Xt = xt | t =

1, . . . , T}, where an event

{Z1 = z1, . . . , ZT = zT , Y1 = y1, . . . , YN = yN}

defines a partition π of the data, which does not depend on the actual la-

beling of clusters. Our statistical model enables us to evaluate the posterior

probability pr of a partition π given the data D, i.e. pr(π |D). In statis-

tical decision theory [cf. Lindley, 1972], a point estimate π̂ is obtained by

minimizing the posterior expected loss

π̂ = arg min
π′

∑
π

L(π′, π)pr(π |D)

for an appropriate loss function L, where the sum is over all possible par-

titions of the data set. Here, L(π′, π) quantifies how much we would lose

by selecting π′ if π would be the better choice. Since it is computationally

expensive to evaluate all possible partitions of the data, a Markov chain

Monte Carlo (MCMC) method is used to draw samples from the posterior
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distribution of partitions. Let π̄ = {π1, . . . , πL} be a set of L samples from

the posterior distribution, we use the approximation

π̂ = arg min
π′

∑
π∈π̄
L(π′, π) ≈ arg min

π′

∑
π

L(π′, π)pr(π |D)

for a large enough L.

A typical choice for the loss function is

L(π1, π2) = d(π1, π2) , or L(π1, π2) = d(π1, π2)2 ,

where d(·, ·) is a metric, so that by minimizing the posterior expected loss we

obtain the median respectively mean of the posterior distribution on a given

metric space. Among the most common distance functions on the space

of partitions is the symmetric difference distance (ssd), for which a clear

axiomatic characterization exists [Mirkin and Chernyi, 1970]. A partition

π induces a unique equivalence relation, i.e. a reflexive, symmetric, and

transitive relation, denoted r(π). The ssd is defined as

d(π1, π2) = |r(π1)∆r(π2)| = |r(π1) ∪ r(π2)| − |r(π1) ∩ r(π2)|
= |r(π1)− r(π2)|+ |r(π2)− r(π1)| ,

where r(π1)∆r(π2) is the symmetric difference. Intuitively speaking, the

ssd is the number of pairs of elements on which the two partitions disagree.

Rand [1971] used a related form to measure the similarity of partitions.

The problem of finding a median partition was for instance considered by

Régnier [1983], but from the results of Křivánek and Morávek [1986] it can

be concluded that the problem is NP-hard [cf. Wakabayashi, 1998]. We

therefore compute the point estimate

π̂ = arg min
π′∈π̄

∑
π∈π̄
L(π′, π) ,

which is a good approximation unless the posterior distribution has multiple

modes that are far apart and there is little mass between them. Local

optimizations, such as removing elements from clusters, might then be used

to improve π̂. If the data set is very large, it might be necessary to use

a zero-one loss function. The corresponding estimate is the partition with

highest posterior probability, which is much easier to compute.

To obtain a set π̄ of posterior samples, a hybrid sampler is used, which

combines a Gibbs and Metropolis-Hastings sampler. For the following dis-

cussion, it is more convenient to introduce a different representation of the

event

{Z1 = z1, . . . , ZT = zT , Y1 = y1, . . . , YN = yN} .
For each position t of the alignment we introduce a random variable Vt. If

position t belongs to the background model, then Vt = 0. Otherwise, if t
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is the beginning of a block, i.e. Zt = 1, then Vt ∈ {1, . . . , N} is the cluster

to which the block is assigned. The Gibbs sampler sequentially draws new

values for Vt for all t = 1, . . . , T . Suppose a new value for Vt should be

drawn and there is no block starting at positions t to t + L − 1.4 A Gibbs

update is a draw from the distribution of Vt |V−t. The block is assigned to

the background with probability

(1− λ)pbg(xt, . . . , xt+L−1)

where pbg(xt, . . . , xt+L−1) is the joint probability of columns t to t + L − 1

under the background model. With probability

λ
c(k)− d
a+N

pk(xt, . . . , xt+L−1 |xk)

the block is assigned to the kth cluster of the foreground model. A block

can be assigned to a cluster either in its original form or as its reverse

complement, however, we will refrain from making this formal. With

pk(xt, . . . , xt+L−1 |xk)

we denote the predictive distribution of the kth cluster given the data

xk = {(xs, . . . , xs+L−1) | for all s with Vs = k}

of all blocks that are assigned to this cluster. N denotes the number of

blocks that are assigned to the foreground model and c(k) the number of

blocks in this particular cluster. The block may also be assigned to a new

cluster with probability

λ
a+ dK

a+N
pK+1(xt, . . . , xt+L−1)

where pK+1(xt, . . . , xt+L−1) is the predictive probability of an empty cluster.

A major difficulty is the computation of the predictive distribution

pk(xt, . . . , xt+L−1 |xk) =
pk(xt, . . . , xt+L−1,xk)

pk(xk)
,

which involves evaluating the joint marginal likelihood of a set of columns.

The likelihood of a single column depends on the phylogenetic tree and the

stationary distribution. In our model we assumed that the tree is the same

at each position of the alignment, hence we may use the simplified notation

prX|Θ(xs |ϑ) = pr
Xs | Θ̃(k)

i ,Π
(xs |ϑ, π) ,

which also indicates that the probability of a column is independent of the

partition π if the stationary distribution is given. A cluster contains a set

of blocks of length L. For simplicity, we discuss computing the predictive

4For simplicity, we assume that all clusters have length L.
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distribution only for the ith position, 1 ≤ i ≤ L, of all blocks in cluster k.

Let

Bk = {s+ i− 1 | for all s with Vs = k} ,

be the set of all such positions. To obtain the predictive distribution, it is

necessary to compute∫
∆

∏
s∈Bk

prX|Θ(xs |ϑ)f
Θ̃

(k)
i

(ϑ)dϑ ,

where evaluating the likelihood prX|Θ requires to sum over all internal ver-

tices of the phylogenetic tree. Solving the integral becomes increasingly

difficult the more blocks belong to a cluster and the larger the phylogenetic

tree. Instead, we use the approximation

qs(ϑ) ≈ prX|Θ(xs |ϑ) ,

where qs is a single categorical distribution, as discussed in section 5.5. A

similar approximation is also required in the algorithm developed by Sid-

dharthan et al. [2005], however, here it is derived from information theoretic

principles. Furthermore, the accuracy of the resulting posterior predictions

have been tested in several simulation studies.

A similar computational difficulty arises when the pseudocounts β of the

background model are considered as unknown. To avoid integration over β,

we draw samples for Vt from the joint posterior distribution V1, . . . , VT , β

given the data. After each sampling step, the posterior distribution is maxi-

mized with respect to β using the RPROP gradient ascent algorithm [Ried-

miller and Braun, 1993].

Once a cluster is established it is highly unlikely that the Gibbs sampler

will explore partitions where all blocks of the cluster have been moved a few

positions left or right [Lawrence et al., 1993, Liu, 1994]. To improve mixing

we augment the Gibbs sampler with Metropolis-Hastings (MH) [Metropolis

et al., 1953, Hastings, 1970] steps. An MH proposal is obtained by selecting

a cluster at random and moving all the elements either left or right. The

proposed partition is used as the new sample with the usual MH acceptance

probability.

5.5. Phylogenetic likelihood approximation

Let {X = x} = {X(1) = x(1), . . . , X(M) = x(M)} denote the observations

within a single column of the alignment and {Θ = ϑ} the stationary distribu-

tion specific to this column. Evaluating the likelihood function prX|Θ(x |ϑ)

requires to sum over all internal vertices of the phylogenetic tree. Expanding
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all terms of this sum results in a polynomial of the form

prX|Θ(x |ϑ) =
∑
i

νi
∏
y∈A

ϑni(y)
y

with coefficients νi and exponents ni(y), which both depend on the obser-

vations {X = x} and the phylogenetic tree, as discussed in section 3.3.

To approximate the likelihood function, we interpret it as part of a

mixture model with latent variable

C ∼ Categorical(ν)

where ν = (νi)i are the mixture weights that are assumed w.l.o.g. to sum

to one5. The variable C indicates from which mixture component an obser-

vation is drawn, so that

prX|Θ,C(x |ϑ, i) =
∏
y∈A

ϑni(y)
y .

Consider the joint posterior given by

fΘ,C |X(ϑ, i |x) ∝ prX |Θ,C(x |ϑ, i)fΘ(ϑ)νi ,

where fΘ is the density of a Dirichlet distribution with pseudocounts η =

(η1, . . . , η|A|). An approximation with a simpler density gi(ϑ) = g(ϑ)νi is

obtained by minimizing the Kullback-Leibler divergence

DKL(gi‖ fΘ,C |X) =

∫
∆

∑
i

gi(ϑ) log
gi(ϑ)

fΘ,C |X(ϑ, i |x)
dϑ ,

which is commonly used in variational Bayesian methods to obtain a lower

bound on the marginal likelihood. Using variational calculus we find that

g(ϑ) ∝ exp
∑
i

νi log fΘ,C |X(ϑ, i |x) ,

as discussed in section A.5. By assuming that g is a Dirichlet distribution

with pseudocounts ξ = (ξ1, . . . , ξ|A|) we obtain

ξy = ηy +
∑
i

νini(y) .

An approximation to the likelihood function prX |Θ is therefore given by

q(ϑ) =
∏
y∈A

ϑ
∑
i νini(y)

y .

5It is also possible to derive the approximation without the additional latent variable

C, however, to arrive at the same result we would need to apply Jensen’s inequality.
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5.6. Discovery of transcription factor binding sites in Drosophila

To demonstrate the proposed method, we consider data from an exper-

iment published by Zinzen et al. [2009]. In this study, the spatio-temporal

activity of five transcription factors during early mesoderm development

in Drosophila melanogaster were analyzed. The Twist (Twi) factor has a

global control over the regulatory network. It regulates the expression of

Tinman (Tin) and Myocyte enhancing factor 2 (Mef2). While Tin con-

trols the dorsal mesoderm specification, Mef2 is responsible for the muscle

differentiation. Tin also initiates the expression of Bagpipe (Bap), which

together with Biniou (Bin) regulates the development of the visceral muscle

[cf. Zinzen et al., 2009]. Both Bap and Bin have a very similar function and

binding preference, which is why we will not consider Bap here.

The first step is to learn the phylogenetic tree from multiple alignments

and the question arises as to what the tree should represent. The first

option is that it should reflect the average mutation pattern of the genome.

In this case, we would learn the gene trees of a sufficiently large set of coding

regions and use the average of those trees for the analysis of binding sites.

The second option is to infer the tree only from the region that codes for

the transcription factor. One might conjecture that the variation between

orthologs of the coding region is tightly connected to the variation within

ortholog binding sites.

A protein consists of one or more domains that have distinct functions

and therefore might be under different selective pressures. If we infer the

phylogenetic tree from the protein coding sequence (CDS) of the transcrip-

tion factor, we may use the entire sequence or select a subsequence that

corresponds to one of the protein domains. The CDS associated with the

binding domain of the transcription factor is the most natural choice, since

we know that it is under heavy selective pressure and can fix our prior as-

sumptions accordingly. In fact, a fundamental assumption of our model

is that the binding preference of the transcription factor is identical in all

species under consideration. The binding domains of the four transcription

factors are shown in Figure 3. All amino acid sequences are highly con-

served across the 12 drosophila species considered here. In fact, the binding

domains of Mef2 show no mutation. This indicates that also the binding

preferences of the four transcription factors are conserved.

We learn the phylogenetic tree from the coding regions of the binding

domains. Important for the forthcoming analysis of ChIP-seq data is a

well justified prior setting for the stationary distributions. We first fix our

prior expectations about the levels of conservation within codons and infer

the phylogenetic tree. Once the tree is estimated, we may choose prior
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parameters for the conservation levels of TFBS relative to the prior setting

of codons.

A prior setting for the stationary distributions can be obtained by quan-

tifying the codon degeneracy of the genetic code (see also section 4.3). For

instance, take the amino acid isoleucine (ile) which is coded by AUA, AUC,

and AUU. The first two positions are identical in all three codons, however,

the last position can be any of A, C, or U. Quantifying this uncertainty leads

to an entropy of zero for the first two positions and − log(1/3) for the third

codon position. For all amino acids we obtain average entropies of 0.095477,

0.031826, and 0.912870 (see Table 1) and we may fix our prior pseudocounts

so that the expected entropies match the empirical ones. Accounting for

some mutations in the amino acid sequences, we fix our prior pseudocounts

at 0.03, 0.01, and 0.6. The estimated median tree is shown in Figure 4a.

The posterior uncertainty about the topology is quite large, as can be seen

in Figure 4b.

In order to identify TFBS the experimental data from Drosophila me-

lanogaster is augmented by aligning ortholog sequences of the 11 related

Drosophila species. Afterwards, all columns of the alignment that contain

gaps in the sequence of Drosophila melanogaster are removed. Gaps in

the remaining sequences that are longer than six nucleotides are treated as

missing data.

For the statistical analysis we have to fix the parameters of the fore-

ground and background model. The transcription factor imposes a selective

pressure on the binding sites, which is expected to be slightly less than

the selective pressure on the first two codon positions. The background is

expected to evolve under less selective pressure than the foreground, but

nonetheless it is not expected to evolve fully unconstrained. The prior pseu-

docounts can be expected to be similar to the ones for the third codon

position. Therefore, we fix the foreground prior pseudocounts at αx = 0.08.

For the background model we assume that the Dirichlet pseudocounts β are

gamma distributed with shape 5.0 and scale 0.2. The remaining model pa-

rameters are λ = 0.001, a = 1, and d = 0. The length L of the foreground

clusters is allowed to range between 6 and 18.

To approximate the maximum a posteriori solution, 10 Markov chains

are used, each generating a set of 2000 samples. During the first 500 samples,

the chains are heated to increase the chance of reaching a good posterior

mode. During the remaining 1500 iterations, the state is optimized at ev-

ery 20 steps until a local optimum of the posterior distribution is reached.

Afterwards, the partition with highest posterior probability is selected as

the MAP estimate. The number of patterns and the (unnormalized) poste-

rior values of two chains on the Mef2 data set are shown in Figure 5. The
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increased temperature during the first 1000 samples eases the formation of

new clusters, as can be observed in the figure.

The results of the analysis are summarized in Figure 6. The motif of Tin

almost exactly coincides with the published results by Zinzen et al. [2009].

The analysis of the other data sets revealed several patterns that could be

assigned to the transcription factors. For Bin and Mef2 the two predicted

motifs are very similar and probably could be joined. The motifs of Twi

show much stronger levels of conservation than the published one. From a

biological point of view, it seems unlikely that a motif with very low levels

of conservation reflects the binding preferences of the transcription factor,

since the protein would recognize a large set of different sequences.
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AA codes first pos. second pos. third pos.

Met AUG (1, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0)

Trp UGG (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 0)

Tyr UAU, UAC (0, 0, 0, 1) (1, 0, 0, 0) (0, 1/2, 0, 1/2)

Phe UUU, UUC (0, 0, 0, 1) (0, 0, 0, 1) (0, 1/2, 0, 1/2)

Cys UGU, UGC (0, 0, 0, 1) (0, 0, 1, 0) (0, 1/2, 0, 1/2)

Asn AAU, AAC (1, 0, 0, 0) (1, 0, 0, 0) (0, 1/2, 0, 1/2)

Asp GAU, GAC (0, 0, 1, 0) (1, 0, 0, 0) (0, 1/2, 0, 1/2)

Gln CAA, CAG (0, 1, 0, 0) (1, 0, 0, 0) (1/2, 0, 1/2, 0)

Glu GAA, GAG (0, 0, 1, 0) (1, 0, 0, 0) (1/2, 0, 1/2, 0)

His CAU, CAC (0, 1, 0, 0) (1, 0, 0, 0) (0, 1/2, 0, 1/2)

Lys AAA, AAG (1, 0, 0, 0) (1, 0, 0, 0) (1/2, 0, 1/2, 0)

Ile AUU, AUC, AUA (1, 0, 0, 0) (0, 0, 0, 1) (1/3, 1/3, 0, 1/3)

Gly GGU, GGC, GGA, GGG (0, 0, 1, 0) (0, 0, 1, 0) (1/4, 1/4, 1/4, 1/4)

Ala GCU, GCC, GCA, GCG (0, 0, 1, 0) (0, 1, 0, 0) (1/4, 1/4, 1/4, 1/4)

Val GUU, GUC, GUA, GUG (0, 0, 1, 0) (0, 0, 0, 1) (1/4, 1/4, 1/4, 1/4)

Thr ACU, ACC, ACA, ACG (1, 0, 0, 0) (0, 1, 0, 0) (1/4, 1/4, 1/4, 1/4)

Pro CCU, CCC, CCA, CCG (0, 1, 0, 0) (0, 1, 0, 0) (1/4, 1/4, 1/4, 1/4)

Leu CUU, CUC, CUA, CUG, UUA, UUG (0, 2/3, 0, 1/3) (0, 0, 0, 1) (1/3, 1/6, 1/3, 1/6)

Ser UCU, UCC, UCA, UCG, AGU, AGC (1/3, 0, 0, 2/3) (0, 2/3, 1/3, 0) (1/6, 1/3, 1/6, 1/3)

Arg CGU, CGC, CGA, CGG, AGA, AGG (1/3, 2/3, 0, 0) (0, 0, 1, 0) (1/3, 1/6, 1/3, 1/6)

0.095477 0.031826 0.912870

Table 1. Empirical distributions of nucleotides in the ge-

netic code for the three positions in codons. The last row

shows the average entropy of the empirical distributions.
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|175 (Forkhead) |234

DroWil: KPALSYINMIGHAIKESPSGKLTLSEIYAYLMKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroGri: KPALSYINMIGHAIKESPSGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNFWTIDENSAHLFEDEGSLRRRPR

DroVir: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroMoj: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroPse: KPAMSYINMIGHAIKESPSGKLTLSEIYGYLQKSYEFFNGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroPer: KPAMSYINMIGHAIKESPSGKLTLSEIYGYLQKSYEFFNGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroAna: KPALSYINMIGHAIKESPSGKLTLSEIYAHLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroEre: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroYak: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroMel: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroSim: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

DroSec: KPALSYINMIGHAIKESPTGKLTLSEIYAYLQKSYEFFRGPYVGWKNSVRHNLSLNECFKKLPKGMGVGKPGKGNYWTIDENSAHLFEDEGSLRRRPR

* * ** * * *

(a) Bin

|3 (MADS box) |58 (MEF2 domain) |86

DroWil: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroVir: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroMoj: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroGri: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroPer: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroPse: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroAna: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroMel: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroEre: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroYak: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroSec: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

DroSim: RKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDRVLLKYTEYNEPHESLTNKNIIE

(b) Mef2

|301 (Homeobox) |360

DroWil: KRKPRVLFSQAQVLELECRFRHKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGS

DroPer: KRKPRVLFSQAQVLELECRFRLKKYLTGSEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroPse: KRKPRVLFSQAQVLELECRFRLKKYLTGSEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroAna: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroYak: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroEre: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroMel: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroSec: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroSim: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroMoj: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroGri: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

DroVir: KRKPRVLFSQAQVLELECRFRLKKYLTGAEREIIAQKLNLSATQVKIWFQNRRYKSKRGD

* * *

(c) Tin

|362 (bHLH) |413

DroWil: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroMoj: NQRVMANVRERQRTQSLNDAFKALQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroGri: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroVir: NQRVMANVRERQRTQSLNDAFKALQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroPer: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroPse: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroAna: NQRVMANVRERQRTQSLNDAFKALQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroYak: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroSim: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroSec: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroEre: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

DroMel: NQRVMANVRERQRTQSLNDAFKSLQQIIPTLPSDKLSKIQTLKLATRYIDFL

*

(d) Twi

Figure 3. Multiple sequence alignments of transcription

factor binding domains. Stars below the alignment mark

columns that contain mutations.
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Figure 4. (A) Phylogenetic tree estimated from the coding

regions of the binding domains of the four transcription fac-

tors Bin, Mef2, Tin, and Twi. (B) Relative frequencies of the

first 100 most abundant topologies in the posterior samples.
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Figure 5. Number of patterns (A) and (unnormalized) pos-

terior values from two out of ten MCMC samplers on the

Mef2 data set.



5.6. DISCOVERY OF TRANSCRIPTION FACTOR BINDING SITES IN DROSOPHILA97

Bin Mef2 Tin Twi

0.0

1.0

2.0

b
it
s

TTATACA
5

CAGAGCAG
10

G
A

0.0

1.0

2.0

b
it
s

G

C
TTAT

5

A

TTATATA
10

A
G
G

C
A

0.0

1.0

2.0

b
it
s

T

C

A

GG
CCA

5

CTTAGA
10

A

C
G

0.0

1.0

2.0

b
it
s

G

C

T

T

G

A

C

T

A

C

G
G

C
5

G

C
A
G

C
T
C

T

G
ATTG

10

A

G
T
A

G

C
T
T

A

C

G

0.0

1.0

2.0

bi
ts AG

AAC
T

5
AAC

A
T
A
CA

10
C
G
A

0.0

1.0

2.0

bi
ts AT

G
A
A
T
G
CT

5
C
AA

T
C
TTA

T
10
C
TG

A
A
G

0.0

1.0

2.0

bi
ts

T

G
CCAC

5

TC
T

T
G

G
A 0.0

1.0

2.0

bi
ts

T

CATA

G
5
G
TG

0.0

1.0

2.0

bi
ts

T
C
G
A

C
TA

5
AAT

CA 0.0

1.0

2.0
bi
ts TG

A
A
T
G
T

5

TATG
A

0.0

1.0

2.0

bi
ts TGC

AT
5
C
TCAC

T

0.0

1.0

2.0

bi
ts GG

CG
CC

5

ACAG
TC

G

10

TGTGT
Figure 6. Motif predictions for the four transcription fac-

tors Bin, Mef2, Tin, and Twi. The first row shows the pre-

dictions by Zinzen et al. [2009] who used RSAT, a method

developed by Thomas-Chollier et al. [2008]. The next three

rows show the predictions with our model. Multiple motifs

were found for Bin, Mef2, and Twi.





CHAPTER 6

Conclusion

A method for the identification of transcription factor binding sites

(TFBS) from enriched data sets was presented. The inferential step re-

lies on a clear and well justified statistical model, which consists of two

main components. First, incorporating data from related species requires

a model for the evolution of functional and non-functional sites. Based on

a phylogenetic tree, predictions for the selective pressures at each site can

be made. Second, the occurrences of repeated patterns (motifs) in the data

has to be modeled. By the experimental design, it is known that the data is

enriched with binding sites of the transcription factor. However, also other

motifs do appear, but are assumed to be less frequent. Because of their

rich-get-richer property, the Dirichlet and related processes seem to reflect

this prior knowledge well. Unfortunately, besides the subjective motivation

for these processes, there exist no empirical findings to justify this choice.

In Bayesian inference it is essential to form prior beliefs that are based

on a clear line of thought. Predictions might otherwise become arbitrary,

especially when the statistical model is complex. The phylogenetic tree is

one such parameter, its sound estimation as well as a consistent use of the

substitution model is therefore of high importance. Motivated by statistical

decision theory, Bayesian estimates are obtained as summaries of the pos-

terior distribution. Common choices include the mean or median, which in

Euclidean space are well defined and easy to compute. However, the space

of phylogenetic trees is not a simple linear space and its rich geometry com-

plicates the computation of posterior summaries. Nevertheless, the mean

and median can be defined as minimizers of appropriate loss functions and

recently developed methods allow their approximate computation. In a sim-

ulation study it was shown that the so obtained Bayesian estimates provide

a more faithful summary than the commonly used majority-rule consensus

tree. Unfortunately, little is known about the rate of convergence of the

approximation method used for computing summaries in tree space. The

results need therefore be treated with care and should be checked thoroughly.

For the identification of TFBS, a substitution model is used which signif-

icantly deviates from the ones commonly used to infer phylogenetic trees. In

99
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the model used here, each alignment column equipped with its own station-

ary distribution. This leads to a different interpretation of the stationary

distribution as the selective pressure acting on the respective position in the

alignment. Despite the complexity of the model, it was shown here how phy-

logenetic trees can be efficiently inferred using a combination of analytical

and numerical (MCMC) integration. The resulting estimate enables us to

quantify subjective expectations of functional and non-functional regions.

The statistical inference of TFBS is based on a model for data sets that

are enriched with an a priori unknown number of different motifs. Usually

one is interested in the binding sites of a certain protein, and it is assumed

that those sites are most abundant in the data. Obtaining posterior predic-

tions for the positions of binding sites is computationally very challenging.

To evaluate the (unnormalized) posterior distribution, an approximation of

the phylogenetic information was presented that is motivated by variational

Bayesian methods. Unfortunately, the dimensionality of the model’s pa-

rameter space is too high to compute summaries other than the maximum

a posteriori (MAP) estimate. Hence, predictions are computed by using

MCMC methods augmented with local optimizations to search the poste-

rior distribution for good local maxima.

The method was evaluated on a data set by Zinzen et al. [2009] and it

was demonstrated how the setting of prior parameters can be motivated.

For some transcription factors, the predictions were in line with previously

published results. However, for other transcription factors several highly

similar motifs were found, which might indicate that the binding prefer-

ences of the protein are best described by a mixture of several motifs. Such

mixture models might constitute a simple alternative to Markov models for

describing binding preferences [e.g. Benos et al., 2002, Barash et al., 2003,

Tomovic and Oakeley, 2007, Zhou and Liu, 2004].

Several extensions of the proposed method can be thought of. First,

the attribution of several motifs to a single transcription factor could be

made formal. This could be a powerful alternative to model dependencies

in the binding preferences of transcription factors. Second, eukaryotic genes

are often regulated by several transcription factors that have binding sites

organized in cis-regulatory modules (CRMs). Modeling the known structure

of regulatory modules can help to identify binding sites [Zhou and Wong,

2004, Siddharthan, 2008, Vandenbon et al., 2008, Lemnian et al., 2013]. So

far, this knowledge is not exploited in the present method. Third, a crucial

step of the analysis is the generation of multiple sequence alignments. Once

a phylogenetic tree is available, it can be used to generate the alignments (for

instance with PRANK, Löytynoja and Goldman [2005, 2008]). However, the

method relies on a different substitution model and a clear justification for
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the parameter settings is not available. Finally, an extensive quantitative

comparison to other existing methods should be made, which is inevitable

to show the advantages of the method presented here.
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Software

The methods presented here were implemented in a C++/Python soft-

ware package, which consists of almost 30000 lines of code. The software is

freely available under

https://github.com/pbenner/tfbayes .

The computation of means and medians of phylogenetic trees requires meth-

ods from linear programming, for which the GNU Linear Programming Kit1

is used. Parsing phylogenetic trees from file is best achieved with a context

free grammar using GNU Flex 2 and GNU Bison3. Multiple sequence align-

ments are parsed from Mef files with Biopython4. Motifs of transcription

factor binding sites are visualized with Weblogo5. Sampling of phylogenetic

trees and the identification of transcription factor binding sites rely on data

structures, special functions, and extensive threading methods provided by

the Boost library6, which is also used to build interfaces between C++ and

Python.

1http://www.gnu.org/software/glpk/
2http://flex.sourceforge.net/
3http://www.gnu.org/software/bison/
4http://www.biopython.org
5http://weblogo.berkeley.edu
6http://www.boost.org/

https://github.com/pbenner/tfbayes
http://www.gnu.org/software/glpk/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.biopython.org
http://weblogo.berkeley.edu
http://www.boost.org/


APPENDIX A

Introduction to probability and statistics

“Predictions [...] can only be probable. However solidly founded a pre-

diction may appear to us, we are never absolutely sure that experiment will

not prove it to be baseless if we set to work to verify it.” Poincaré [1905].

A.1. Essentials of probability theory

Statistics as the fundamental method for reaching scientific conclusions

and making predictions from experimental observations should be based on

a sound and well understood theory of probability. Here we introduce basic

notions of mathematical probability theory. There exists a vast literature

on the subject, see for instance Bauer [2001], Lieb and Loss [2001], and of

course Bourbaki and Berberian [2004a,b] for measure and integration theory.

Modern probability theory is nicely explained in Bauer [1996], Kallenberg

[2002], Klenke [2008], or Loève [1977, 1978].

Since the seminal work of Kolmogoroff [1933], probability theory is in-

extricably tied to measure theory. Assigning a length, area, or volume to a

piece of Euclidean space is essentially the same as the assignment of prob-

abilities. Both measures need to satisfy certain requirements or axioms

that prevent inconsistencies. The Banach-Tarski paradox has shown that

σ-additivity is an essential requirement for measures on Euclidean spaces of

dimension three or more. The adoption of this axiom however leads to other

inconsistencies, as proven by the Italian mathematician Giuseppe Vitali. His

argument is based on a family of sets that are nowadays known as Vitali

sets. It is due to Émile Borel and Henri Lebesgue that the modern definition

of a measure is restricted to a class of sets, the measurable sets, to avoid any

inconsistencies. A more in-depth treatise on the history of measure theory

can be found in Elstrodt [2004].

We begin the discussion by recalling some basic notions from topology.

Intuitively speaking, a topology can be thought of as a formal description

of the collection of neighborhoods of a space. This description is however

fully detached from any notions of distance.

Definition A.1.1 (Topology). Let Ω be a set and τ a collection of

subsets of Ω. τ is called a topology if:

103
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• ∅, Ω ∈ τ .

• Let {Ai |Ai ∈ τ}i∈I be a collection of sets from τ , then
⋃
i∈I Ai is

an element of τ (closed under unions).

• Let A,B ∈ τ , then A∩B is an element of τ (closed under countable

intersections).

The tuple (Ω, τ) is also called a topological space. The sets of a topology

τ are called the open sets of Ω and a set A ⊂ Ω is closed if the complement

Ac is open. However, a subset of Ω might be neither open nor closed. The

motivation behind this definition stems from the properties of open sets in

metric spaces. A subset N ⊂ Ω is called a neighborhood of a point x ∈ Ω

if there exists an open set A such that x ∈ A ⊂ N . Simple examples of

topologies for a set of points Ω = {1, . . . , n} are

• τ = {∅,Ω}, called the trivial topology of Ω, and

• τ = 2Ω, which is the discrete topology.

There is no concept of distance in topological spaces, since the space is not

necessarily equipped with a metric, but other related notions exist. For in-

stance, relative to a given topology concepts such as continuity of a function,

convergence of a sequence of points, or connectedness of the space, can be

defined. Let (Ω, τ) be a topological space, then Ω is connected if it is not

the union of two disjoint non-empty sets A1, A2 ∈ τ . Furthermore, a point

x ∈ Ω is called isolated if {x} is an open set. In particular, a topological

space is called discrete if every point in Ω is isolated. For practical reasons,

it is not feasible to specify the topology τ directly. The following definitions

provide us with the means to generate a topology from a smaller collection

of open sets.

Definition A.1.2 (Topological basis). Let (Ω, τ) be a topological space.

A collection B ⊂ τ is called a basis of the topology if every open set A ∈ τ
can be realized as the union of some collection B ⊂ B.

In particular, such a basis may consist of all open balls defined by a

given metric.

Definition A.1.3 (Metric). A metric on a set Ω is a function d : Ω×Ω→
[0,∞], which satisfies

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) for any x, y ∈ Ω (symmetry),

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

As a simple example take the Euclidean space Rn with metric d and let

Br(x) = {y ∈ Rn | d(x, y) < r} denote the open ball of radius r around x.
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The set of open balls

B = {Br(x) |x ∈ Rn, r > 0} ,

defines a basis of the standard topology on Euclidean space. For techni-

cal reasons, it is often required to have a countable basis. The standard

Euclidean topology is also defined through the basis

B = {Br(x) |x ∈ Qn, 0 < r ∈ Q} .

Any topological space with a countable basis is separable, i.e. it contains a

countable dense subset. The topology generated by a metric is also called

the metric topology. In general, there are many metrics that can be used

to generate a given topology. If we fix the topology, then any metric that

induces this topology is said to be compatible. In probability theory, it is

often not required to fix a certain metric, but rather to ensure that the space

allows to define a metric if needed.

Definition A.1.4 (Polish space). A topological space (Ω, τ) is called

Polish space if there exists

• a countable basis that generates τ , and

• a compatible metric d such that (Ω, d) is a complete metric space

(i.e. every Cauchy sequence converges to a point in Ω).

Definition A.1.5 (σ-algebra). Let Ω be a set and Σ a non-empty col-

lection of subsets of Ω. Σ is called a σ-algebra of Ω if it satisfies the following

conditions:

• If A ∈ Σ, then the complement Ac of A is also an element of Σ

(closed under complementation).

• If A1, A2, . . . is a countable family of sets with Ai ∈ Σ, then the

union
⋃∞
i=1Ai is also an element of Σ (closed under countable

unions).

The pair (Ω,Σ) is also called a measurable space. It follows from the

definition that Ω and ∅ are also elements of every σ-algebra Σ. Furthermore,

Σ is also closed under countable intersections. If Σ is only closed under finite

unions, then it is called an algebra of sets.

Definition A.1.6. Let Ω be a set and S be a family of subsets of Ω.

σ(S) is called the σ-algebra generated by S if it is the intersection of all

σ-algebras that contain S.

A σ-algebra generated by a set S is therefore the smallest algebra that

contains S. The most prominent example is the Borel σ-algebra B, which is

generated by the topology, i.e. the open subsets of Ω. In particular for the
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Euclidean space Rn the Borel σ-algebra is a strict subset of the powerset,

that can be measured without introducing any inconsistencies.

Definition A.1.7 (Measure space). Let (Ω,Σ) be a measurable space.

A function µ : Σ → [0,∞] is called a measure if µ(∅) = 0 and if it is

countable additive (σ-additive), i.e. for any sequence A1, A2, . . . of disjoint

sets in Σ

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai) .

The triple (Ω,Σ, µ) is called a measure space.

The requirement of countable additivity is a stronger requirement than

finite additivity, i.e. a measure which is countable additive is also finite

additive (we might choose Ai = ∅), but not vice versa. A simple example of

a measure for a discrete space is given by

µ(A) =

{
|A| if A is finite,

∞ otherwise,

which is called the counting measure. A measure µ is said to be finite

if µ(Ω) ∈ [0,∞). Furthermore, µ is σ-finite if there exists a sequence

A1, A2, . . . of sets in Σ, such that µ(Ai) is finite and

µ(Ω) =
∞∑
i=1

µ(Ai) .

For instance, take the Lebesgue measure µ([a, b]) = |b− a| on the real line.

It is easy to see that this measure is σ-finite but not finite.

Definition A.1.8 (Measureable function). Let (Ω,Σ) and (S,S) be two

measurable spaces. A function f : Ω → S is called measurable (or more

precisely Σ/S-measurable) if for every B ∈ S the preimage f−1(B) = {a ∈
Ω | f(a) ∈ B} is an element of Σ. We then also write f : (Ω,Σ)→ (S,S).

Every measurable function f : (Ω,Σ) → (S,S) induces a sub-σ-algebra

σ(f) ⊆ Σ on Ω, i.e.

σ(f) =
{
f−1(B) |B ∈ S

}
⊆ Σ .

A popular illustration of a non-measurable function is provided by

Example A.1.1. Assume that Ω represents the outcome of rolling a

die, i.e. Ω = {ω1, ω2, . . . , ω6} and we are only told whether the outcome

is an even or odd number, so that Σ = {∅, {ω1, ω3, ω5}, {ω2, ω4, ω6},Ω}. A

function that maps for instance ω1, ω2, and ω3 to −1 and all other outcomes

to 1 violates the structure of Σ and is not measurable.
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Let us now consider a measurable space (Ω,Σ) with two measures µ and

ν. The measure ν is said to be dominated by µ, denoted ν � µ, if for every

A ∈ Σ and µ(A) = 0 also ν(A) = 0.

Theorem A.1.9 (Radon-Nikodym). Let (Ω,Σ) be a measurable space

and µ, ν : Σ→ [0,∞] two σ-finite measures with ν � µ, then there exists a

function f : Ω→ [0,∞) such that

ν(A) =

∫
A
f(x)dµ(x) ,

for all A ∈ Σ.

The function f is also called the Radon-Nikodym derivative, denoted

by dν/dµ. In particular, for Euclidean spaces we may choose µ to be the

Lebesgue measure and thereby obtain a simple representation of most mea-

sures by selecting a suitable Radon-Nikodym derivative.

We will now turn our attention to the notion of a probability space, which

is a normed measure space (Ω,Σ, P ) such that P (Ω) = 1. In this context,

Ω is also called the sample space and each ω ∈ Ω is called an outcome.

Furthermore, the elements of Σ are referred to as events. We use P to

assign a probability to each event and by requiring that P is a measure we

ensure that this assignment is consistent.

Remark A.1.1. It follows from the definition of P that probabilities are

assumed to be σ-additive. In its original definition by Kolmogoroff [1933],

it was only required that the function P satisfies lim
i→∞

P (Ai) = 0 for any

countable sequence

A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . .

with Ai ∈ Σ and
∞⋂
i=1

Ai = ∅ .

However, since P is defined on a σ-algebra, it follows from this axiom that

P is also σ-additive.

The definition of probability measures on infinite spaces should always

be treated with caution. As Kolmogoroff [1933] pointed out: “Bei ei-

ner Beschreibung irgendwelcher wirklich beobachtbarer zufälliger Prozes-

se kann man nur endliche Wahrscheinlichkeitsfelder erhalten. Unendliche

Wahrscheinlichkeitsfelder erscheinen nur als idealisierte Schemata reeller

zufälliger Prozesse.” He also emphasizes that the axiom that leads to σ-

additivity is hard to justify from the empirical perspective but has been

proven to be practicable.
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Statistical inference is concerned with learning from experimental obser-

vations. In probability theory, an experiment is formalized as a collection of

events π, which partitions the sample space Ω. The outcome of an exper-

iment tells us which event of π occurred. This concept is implemented in

probability theory using the following

Definition A.1.10 (Random variable). Let (Ω,Σ, P ) be a probability

space and (X,X ) a measurable space. A function X : (Ω,Σ) → (X,X ) is

called a random variable.1

We will refer to the elements of X as the experimental outcomes. A

random variable is used to define the partition π of Ω. That is, for each

x ∈ X the preimage X−1(x) is an element of π. In modern terms we say

that X induces a sub-σ-algebra σ(X) of Σ. The granularity of σ(X) relates

to how much we can learn from the experiment modeled by X.

Example A.1.2. Let Ω = {ω1, . . . , ω6} represent the possible outcomes

of rolling a die. Assume that we do not observe the die directly, but that

some other person is rolling the die and afterwards tells us whether the

outcome was an even or odd number. This experiment could be modeled by

the random variable

X(ω) =

{
x1 if ω ∈ {ω1, ω3, ω5} ,
x2 otherwise .

Sometimes the notion of a random variable is restricted to measurable

functions with real codomain. Our applications require a more general def-

inition, where the codomain is given by a metric space with the induced

Borel σ-algebra. A random variable X induces a probability measure

prX(B) = P (X−1(B)) = P ({a ∈ Ω |X(a) ∈ B})

on its codomain (i.e. the push-forward of P by X), which is called the dis-

tribution of X. We will also use the notation X ∼ prX to express that X has

distribution prX . For applications it is common to define random variables

indirectly through their distributions on a given measurable space, whereby

the definition of a specific sample space becomes dispensable. Therefore,

we may impose necessary restrictions directly on the codomain of a random

variable, for instance, the requirement that the space is Polish. Continuous

distributions are often defined through a density function, which is usually

given as the Radon-Nikodym derivative of the distribution with respect to

the Lebesgue measure.

1Many authors [e.g. Kallenberg, 2002] use the term random variable only when X = R.

Otherwise, X is called a random vector if X = Rn or random element for more general

spaces. We will not make this distinction here.
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Several laws follow directly from the formal definition of probability

measures. To summarize some of them, let X be a random variable that

takes values on some measurable space (X,X ). Then

• prX(A) ≤ prX(B) for all A ⊆ B ∈ X (monotonicity),

• prX(A ∪ B) = prX(A) + prX(B) − prX(A ∩ B) for all A,B ∈ X
(addition law),

• prX(Ω\A) = 1− prX(A) for all A ∈ X (inclusion-exclusion princi-

ple).

Let (Ω,Σ, P ) be a probability space and {(Xi,Xi)}ni=1 a collection of

measurable spaces. We define n random variables X1, . . . , Xn such that

Xi : (Ω,Σ)→ (Xi,Xi) for i = 1, . . . , n, and let

X̄(ω) = (X1(ω), . . . , Xn(ω)) .

The distribution induced by X̄ is called the joint distribution of X1, . . . , Xn.

It takes a particularly simple form if the n random variables are independent,

in which case it holds that

prX̄(A1, . . . , An) =
n∏
i=1

prXi(Ai)

for any collection of sets {Ai ∈ Xi}ni=1.

A.2. Conditional probability distributions

For Bayesian statistics it is essential to update probabilities in light of

new information. Within the context of the probability framework, we would

like to know the probability of an outcome ω being an element of a set A,

given the information that ω is an element of some other set B. The concept

on which this update of probabilities rests is the conditional distribution.

Modern probability theory defines conditional distributions based on the

notion of conditioning on a random variable. As discussed earlier, random

variables are used to partition the sample space and thereby induce a sub-

σ-algebra. Conditioning on a random variable X is therefore equivalent to

conditioning on σ(X). Once the value of a random variable is observed, we

know to which element of the partition the outcome belongs, i.e. which event

occurred. Defining and showing the existence of a conditional distribution

on a discrete sample space is quite simple. However, it becomes much harder

for larger spaces when there is a nonnegligible set of events that must have

probability zero, as will be discussed in the following. Before introducing

the modern definition of conditional probability distributions, it is quite

instructive to establish the early definition by Kolmogoroff [1933] first.
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A näıve way of defining a conditional measure on a probability space

(Ω,Σ, P ) is given by

Q(A |B) =
P (A ∩B)

P (B)

for any A,B ∈ Σ such that P (B) > 0. Obviously, Q(A |B) = 0 if A∩B = ∅.
It is also easy to see that A 7→ Q(A |B) is a probability measure, since for

any B ∈ Σ

• Q(A |B) ≥ 0 for all A ∈ Σ,

• Q(Ω |B) = 1, and

• Q (
⋃∞
i=1Ai |B) = P (

⋃∞
i=1Ai ∩B)/P (B) =

∑∞
i=1Q(Ai |B),

where A1, A2, . . . is a countable collection of pairwise disjoint events.

For many applications this näıve definition is not eligible, as it is also

necessary to condition on sets of probability zero. A first step towards a

proper definition is to seek any measure Q : Σ× Σ→ [0, 1] such that

P (A ∩B) = Q(A |B)P (B)

for all A,B ∈ Σ. We observe that P (A ∩ B) is zero whenever P (B) equals

zero, i.e. B 7→ P (A ∩ B) is dominated by P . Furthermore, assume that P

is σ-finite. Hence, by the Radon-Nikodym theorem there exists a function

q : Σ× Ω→ [0,∞) such that

P (A ∩B) =

∫
B
q(A |ω)dP (ω)

for all B ∈ Σ. The function q is uniquely defined up to a P -null set and it

is easy to see that one possible solution is q(A |ω) = 1A(ω) for all A ∈ Σ.

The problem of conditioning on a single outcome ω ∈ Ω is therefore easily

solved.

Following this line of thought, we extend the above definition to condi-

tion on the values of a random variable Y : (Ω,Σ)→ (S,S). By fixing some

A ∈ Σ, we know that there exists a function q : Σ× S → [0,∞) such that

(9)

P (A ∩ Y −1(B)) =

∫
Y −1(B)

q(A |Y (ω))dP (ω)

=

∫
B
q(A | y)dprY (y)

for all B ∈ S. The function q might therefore be used to condition on any

(measurable) subset of Ω by selecting a suitable Y . However, it should be

emphasized that this definition is not constructive.

Example A.2.1. Let (Ω,Σ, P ) be a probability space with Ω = {a, b,
c, d, e, f}, Σ = 2Ω, and P the uniform measure on Ω. Furthermore, let
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Y : Ω→ N be a random variable defined as

Y =

(
a b c d e f

4 4 2 2 3 7

)
,

so that σ(Y ) = σ{{a, b}, {c, d}, {e}, {f}}. The conditional measure q has to

satisfy

P (A ∩ Y −1(B)) =
∑
y∈B

q(A | y)prY (y) ,

for all A ∈ Σ and B ∈ S. For instance, we have

P ({b, c} ∩ Y −1({4, 7})) = 1/2 · 1/3 + 0 · 1/6 .

While this approach allows an intuitive understanding of how a condi-

tional distribution can be obtained, a disadvantage is that for each A ∈ Σ

we might get a different q and therefore may not conclude that A 7→ q(A | y)

is a probability measure for every y ∈ S. Nevertheless, Kolmogoroff [1933]

was able to show the following

Theorem A.2.1. Any function q as defined in Equation 9 satisfies al-

most surely

0 ≤ q(A | y) ≤ 1 .

Furthermore, let A1, A2, . . . be a sequence of pairwise disjoint events such

that A =
⋃∞
i=1Ai, then almost surely

q(A | y) =

∞∑
i=1

q(Ai | y) .

The term almost surely means that for a given A ∈ Σ there exists a

B ∈ S such that prY (B) = 0 and the statements of the theorem hold if

y /∈ B. More recent results on conditional distributions rely on a concept

called disintegration of measures [Chang and Pollard, 1997]. Under stronger

assumptions on the probability space it is possible to show the existence of a

function q such that A 7→ q(A | y) is in fact a probability measure for almost

all y ∈ S. For our purposes it suffices to say that a conditional distribution

always exists and we may simply work with the following

Definition A.2.2 (Conditional probability distribution). Let (Ω,Σ, P )

be a probability space, (S1,S1) and (S2,S2) measurable spaces. Further-

more, let X : (Ω,Σ) → (S1,S1) and Y : (Ω,Σ) → (S2,S2) be random

variables. The conditional measure q : Σ× S2 → [0, 1] is any function such

that

• y 7→ q(A | y) is measurable for all A ∈ Σ,

• A 7→ q(A | y) is a probability measure for almost all y ∈ S2, and

• P (A ∩X−1(B)) =
∫
B q(A | y)dprY (y) for all A ∈ Σ and B ∈ S2.
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The conditional distribution prX |Y : S1×S2 → [0, 1] is defined as the push-

forward of q by X.

A distribution satisfying this definition is often called a regular condi-

tional distribution to distinguish it from the early approach by Kolmogoroff

[1933].

In statistics, we are often interested in the conditional density fX|Y as

a solution to the equation∫
A

∫
B
fX,Y (a, b)dadb =

∫
A

∫
B
fX|Y (a|b)fY (b)dadb

for all A ∈ S1 and B ∈ S2 and one should remember that

fX|Y (a|b) =
fX,Y (a, b)

fY (b)

is not the only possible solution (when fY (b) > 0 for all b ∈ Y).

A.3. Summarizing a distribution

Probability distributions can be very complex and in high dimensions

difficult to inspect and visualize. Summarizing a distribution therefore is

important, especially in statistics when a decision has to be reached. In Eu-

clidean space, many characteristics of a distribution can be defined, such as

the moments and cumulants. Only some of those characteristics generalize

to more abstract metric spaces and we will restrict the discussion to those.

Definition A.3.1 (Expectation and variance, cf. Sturm [2003]). Let

X be a random variable in a metric space (X, d) and let f : X → X be a

measurable function. The expectation of X with respect to f is defined as

E f(X) = arg inf
y∈X

∫
X
d(y, f(x))2dprX(x) .

Furthermore, the variance of X with respect to f is defined as

var f(X) = inf
y∈X

∫
X
d(y, f(x))2dprX(x) .

The expectation EX is also called the Fréchet mean or the barycenter

of the distribution prX . In particular in Hadamard spaces, which are metric

spaces of nonpositive curvature, d2 is strongly convex and therefore the

expectation exists and is unique. When considering the Euclidean space

Rn, the expectation and variance take a much simpler form. For instance,

the expectation simplifies to

E f(X) =

∫
X
f(x)dprX(x) ,
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whereas the variance can be written as

var(X) = E(X − EX)2 =

∫
X

(x− E f(X))2dprX(x) .

In Euclidean space, probability distributions can be characterized by their

moments. The p-th moment µp is defined as

µp(X) = EXp =

∫
X
xpdprX(x)

Given a sequence of reals c1, c2, . . . , the moment problem asks for the exis-

tence and uniqueness of a random variable X such that µ1(X) = c1, µ2(X) =

c2, . . . , which is a well-studied problem and necessary and sufficient condi-

tions have been found [cf. e.g. Shohat and Tamarkin, 1943].

In this form, the definition of moments does not permit a generalization

to metric spaces. Only the p-th absolute central moment |µ|p(X) = E |X −
EX|p may be written as

|µ|p(X) =

∫
X
d(EX,x)pdprX(x) .

However, by taking the absolute value, much information about the distri-

bution is lost. Instead, it seems more natural to generalize the expectation

and variance directly, which leads to

Definition A.3.2 (p-expectation and p-variance). For p ∈ [1,∞) and a

random variable X on a metric space the p-expectation Ep f(X) (or p-mean)

with respect to a function f : X→ X is defined as

Ep f(X) = arg inf
y∈X

∫
X
d(y, f(x))pdprX(x) .

Furthermore, the p-variance of X with respect to f is given by

varp f(X) = inf
y∈X

∫
X
d(y, f(x))pdprX(x) .

This definition is particularly important in Bayesian statistics and statis-

tical decision theory. While the p-variances can be seen to characterize the

widths of the distribution, the p-expectations measure the asymmetries. We

also call E1X the geometric median and E2X the Fréchet mean. As will be

discussed later, the median and mean are well defined in CAT(0) spaces since

the distance function in spaces of nonpositive curvature is convex. Whether

the sequence (E1X, var1X), (E2X, var2X), . . . uniquely characterizes the

distribution of X seems to be an open problem.

For instance, assume that X is a real random variable with normal

distribution. Due to the symmetry of the distribution, all p-expectations

are located at the mean of the distribution. If instead we consider a skewed

gamma distribution, see Figure 1, we observe that the p-expectations move
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Figure 1. Density function of two gamma distributions

with different shape k and scale θ parameters. The p-

expectations for even p are shown as vertical lines. (A) Shape

k = 2 and scale θ = 2. (B) Shape k = 10 and scale θ = 5.

with increasing p in the direction of the tail, while the distance between

successive expectations decreases very slowly.

A.4. Markov chain Monte Carlo methods

The actual computation of a summary of some distribution µ can in

practice be very difficult. For instance, assume that

µ(·) =
1

Z
π(·) ,

where Z =
∫

dπ is the normalization constant of µ. To evaluate µ, we

have to compute the normalization constant Z, which in most but very

simple cases is infeasible. A summary of µ can therefore only be obtained

by circumventing direct evaluations of µ.

Markov chain Monte Carlo (MCMC) methods can be used to construct

an ergodic Markov chain that has µ as its invariant distribution. Simulating

the Markov chain ad infinitum is therefore equivalent to sampling from µ.

Let X(0), . . . , X(t), . . . denote the random variables of the Markov chain,

where each X(t) takes values in X = dom(µ). For any initial value X(0) and

all integrable functions g : X→ R we have by the ergodic theorem that

lim
T→∞

1

T

T∑
t=0

g(X(t))→
∫

X
g(x)dµ(x) ,

converges almost surely (for suitable X).2 Intuitively speaking, µ is ap-

proximated by an infinite mixture of Dirac distributions located at {X(t) =

2The chain converges almost surely for every starting value if it is Harris recurrent

[cf. e.g. Robert and Casella, 1999]. However, one should not forget that any MCMC
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x(t)}∞t=1. This result is used by MCMC methods to approximate summaries

of µ. The following discussion provides a highly simplified review of MCMC

methods. Further details can be found in Robert and Casella [1999].

The distribution of a (time-homogeneous) Markov chain M = (X(t)) is

defined through its initial distribution µ0 = prX(0) and a transition kernel

κ(x, Y ) = prX(t+1) |X(t)(Y |x) ,

for all t ∈ N, x ∈ X, and Y ∈ B(X). A σ-finite measure µ is called an

invariant or stationary distribution of M if it satisfies

µ(Y ) =

∫
X
κ(x, Y )dµ(x) ,

for all Y ∈ B(X).

Example A.4.1. Let M be a time-homogeneous Markov chain on a

discrete space X and assume that M has a single stationary distribution µ.

Furthermore, let K = (κ(x, y)) denote the transition kernel matrix, so that

µt = µ0K
t is the probability of each state after t iterations of the chain.

The stationary distribution can be written as the limit

µ = lim
t→∞

µt

and can be computed as the normalized eigenvector of M that belongs to

the eigenvalue one.

To implement MCMC methods in order to draw samples from a given

distribution µ it is necessary to show that µ is the unique stationary distri-

bution of M . In practice it is often more convenient to show that detailed

balance (also called local balance), i.e.∫
X

∫
X
f(x1, x2)dµ(x1)dκ(x1, x2) =

∫
X

∫
X
f(x2, x1)dµ(x2)dκ(x2, x1)

holds for all bounded and measurable functions f [cf. e.g. Cappé et al.,

2005]. If M is in detailed balance, it is reversible and has µ as its invariant

distribution (the reverse does in general not hold).

There exist a variety of different MCMC methods and we will have to

restrict our attention to the most basic ones. We begin the discussion with

the Gibbs sampling method, which was developed by Geman and Geman

[1984], Gelfand and Smith [1990]. In the following, we assume that X is a

product space of N components, i.e. X = X1 × · · · × XN , so that X(t) =

(X
(t)
1 , . . . , X

(t)
N ). The distribution of

X(t+1)
n |X(t+1)

1 = y1, . . . , X
(t+1)
n−1 = yn−1, X

(t)
n+1 = xn+1, . . . , X

(t)
N = xN

implementation on a computer is discrete. The effects of this discretization were studied

by Roberts et al. [1998].
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is defined as

(10)

dνn(yn | y1, . . . , yn−1, xn+1 . . . , xN ) =
dµ(y1, . . . , yn, xn+1, . . . , xN )∫

Xn
dµ(y1, . . . , yn, xn+1, . . . , xN )

for n = 1, . . . , N , and t ∈ N. The Gibbs sampler can be understood as

a stochastic version of a coordinate ascent algorithm. In each iteration, a

coordinate n is fixed and a new value for Xn is drawn, based on the current

state (X1, . . . , Xn−1, Xn+1, . . . , XN ). The distribution νn is much easier to

compute than µ, since the normalization constant of µ drops due to the ratio

in Equation 10.

Theorem A.4.1 (Stationary distribution of the Gibbs sampler). Let M

be the Markov chain of the Gibbs sampler with transition kernel

(11) dκ(x, y) =

N∏
n=1

dνn(yn | y1, . . . , yn−1, yn+1, . . . , xN )

where x = (x1, . . . , xN ), and y = (y1, . . . , yN ). The Markov chain M is

reversible and µ is the unique stationary distribution of M .

The proof of the theorem can for instance be found in Robert and Casella

[1999] and we not be repeated here.

Although the Gibbs sampler seems to solve the problem of approximat-

ing summaries of a distribution, there still remains the technical difficulty

of computing the integral in Equation 10, which is why this approach is

mostly restricted to discrete spaces X. The Metropolis-Hastings algorithm

[Metropolis et al., 1953, Hastings, 1970] circumvents this problem, but in-

stead requires a family of distributions {qx}x∈X from which proposals can

be drawn. Let M = (X(t)) again denote a Markov chain on X and (P (t)) a

sequence of random variables with

P (t) |X(t) = x ∼ qx .

P (t) is used as a proposal for the state of the Markov chain at time t+ 1. If

the proposal {P (t) = p} is accepted, the Markov chain switches its state to

p. Otherwise, it stays in its old state, i.e. X(t+1) = X(t). The state at time

t+ 1 is distributed according to

X(t+1) |P (t) = p,X(t) = x ∼ ρ(x, p)δx + (1− ρ(x, p))δp ,

where

ρ(x, p) = min

{
dµ(p)dqp(x)

dµ(x)dqx(p)
, 1

}
.
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Theorem A.4.2 (Stationary distribution of the Metropolis-Hastings al-

gorithm). The transition measure of the Metropolis-Hastings algorithm is

given by

κ(x, Y ) = ρ(x, y)qx(Y ) + (1− r(x))δx(Y ) ,

where r(x) =
∫

X ρ(x, y)dqx(y). For suitable proposal distributions {qx} the

Markov chain satisfies the detailed balance condition and therefore has µ as

its invariant distribution [Robert and Casella, 1999].

The theorem holds for almost any family of proposal distributions, which

is why the method has become one of the most commonly used MCMC

algorithms.

A.5. Variational Bayes

Variational Bayes is another method to approximate a complicated (pos-

terior) distribution µ. Instead of drawing samples from µ and utilizing the

law of large numbers or the ergodic theorem, a class of simpler distribu-

tions Ξ is chosen from which we select the closest distribution to µ [cf. e.g.

Ghahramani and Beal, 2001, Beal, 2003, Wainwright and Jordan, 2008]. For

this approach to be useful, we need a class Ξ such that the most important

features of µ can be captured, but the distributions must also be simple

enough to allow the computation of important statistics.

First, we need to review some basic facts of variational calculus. Func-

tionals are the central object of variational calculus, which are mappings

from a set of functions to the real numbers. The objective of variational

calculus is to find functions that maximize or minimize a given functional.

As an example, take the set of all curves on some manifold that connect

two points a and b. The shortest path between a and b is the curve with

minimal length. It is important to notice that the space of all curves is

an infinite dimensional function space. To illustrate this, we may approxi-

mate any curve by a polygonal chain of n points (see Figure 2). However,

for an exact representation of the curve we would in general need n = ∞
points. Variational calculus was developed to deal with such infinite dimen-

sional function spaces. Excellent treatments of the subject can be found in

Kielhöfer [2010] and Jost and Li-Jost [1998].

In the following, C[a, b] denotes the set of continuous functions from

the compact interval [a, b] to the real numbers and Cp[a, b] the set of p

times continuously differentiable functions, i.e. every y ∈ Cp[a, b] has a

pth derivative y(p) ∈ C[a, b]. To study extremal points of a functional J :

C1[a, b]→ R we use the Gâteaux derivative

dJ(y, h) = lim
t→0

J(y + th)− J(y)

t
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a = x0

b = x3
x1

x2

γ

Figure 2. Approximation of a curve γ by a polygonal chain

(x0, x1, x2, x3).

at a point y in the direction of h. If the Gâteaux derivative at a point y is

linear in h, we write

dJ(y, h) = δJ(y)h =
d

dt
J(y + th)

∣∣∣∣
t=0

,

which is called the first variation of J .

Example A.5.1. Let f(x) = |x| which is non-differentiable at x = 0 and

therefore the Gâteaux derivative df(0, h) = |h| is nonlinear.

Variational calculus is mostly concerned with functionals J : C2[a, b]→
R of the form

J(y) =

∫ b

a
F (x, y(x), y′(x))dx =

∫ b

a
F (x, y, y′)dx

where F : [a, b]×R×R→ R is assumed to be twice continuously differentiable

and called the Lagrange function. It should be emphasized that F is not a

functional and to avoid any confusion we use the notation Fy and Fy′ for

the partial derivatives with respect to the second and third variable. The

Gâteaux derivative dJ(y, h) is linear in h and can be written as

δJ(y)h =

∫ b

a

[
hFy(x, y, y

′) + h′Fy′(x, y, y
′)
]

dx .

A necessary condition for a point y to be extremal is that the Gâteaux

derivative is zero. Using partial integration and the fundamental lemma

of variational calculus, a critical point y of J satisfies the Euler-Lagrange

equation

d

dx
Fy′(x, y, y

′) = Fy(x, y, y
′) .

Optimization problems in statistics often involve additional constraints

which restrict the set of feasible functions. For instance, a minimizer of a

functional might be required to be a probability distribution. Recall that

extrema of real valued functions subject to constraints are found by using

the method of Lagrange multipliers. Assume that we are seeking a solution
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to the optimization problem

minimize f(x)

subject to g(x) = c .

At a solution x0 the gradients of f and g satisfy ∇f(x0) = λ∇g(x0) for some

λ ∈ R (see Figure 3). Therefore, solutions of the constrained optimization

problem can be found by first identifying the critical points of the Lagrangian

Λ(x, λ) = f(x) + λ(g(x)− c) .

f

g(x) = c

∇f

∇g

g

x0

Figure 3. Two functions f, g : R2 → R where g(x) = c

is used as a constraint for finding critical points of f . At a

critical point x0 the gradients satisfy ∇f(x0) = λ∇g(x0) for

some λ ∈ R.

In a similar way the Euler-Lagrange equation can be extended to account

for the set of feasible functions. Assume we want to find a solution to the

optimization problem

minimize J(y) =

∫ b

a
F (x, y, y′)dx

subject to K(y) =

∫ b

a
G(x, y, y′)dx = c ,

where K is called an isoperimetric constraint. By including the constraint

in the Euler-Lagrange equation we find that for a solution y there exists a

λ ∈ R such that

d

dx

[
Fy′(x, y, y

′) + λGy′(x, y, y
′)
]

= Fy(x, y, y
′) + λGy(x, y, y

′) .
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We may now return to the problem at hand and illustrate the most

common use case of the variational Bayes approach. Assume that µ is a

distribution of a n-dimensional random variable Θ ∈ Rn. For a so-called

mean field approximation we select a class Ξ of distributions such that every

ξ ∈ Ξ has a density function

dξ(θ)/dθ =

n∏
i=1

ξi(θi) .

The distance between distributions is typically measured with the Kullback-

Leibler divergence, although it is not symmetric. Hence, we seek a solution

to the optimization problem

minimize
ξ∈Ξ

[
DKL(ξ||µ) =

∫
Θ

log

(
dξ(θ)

dµ(θ)

)
dξ(θ)

]
.

It is easy to verify that by minimizing the Kullback-Leibler divergence a

lower bound on the marginal likelihood is obtained. Let

µ = prΘ |X(· |x)

for some (discrete) observation {X = x}. The marginal likelihood prX can

be written as

log prX(x) = DKL(ξ||µ)−DKL(ξ||prX,Θ(x, ·)) .

Hence, by minimizing DKL(ξ||µ) we obtain the lower bound

log prX(x) ≥ −DKL(ξ||prX,Θ(x, ·)) .

It is common to not require that the elements of Ξ are normalized, so that

we may instead consider the equivalent constrained optimization problem

minimize
ξ∈Ξ

DKL(ξ||µ)

subject to

∫
Θ

dξ(θ) = 1 .

To stay within the class of feasible functions Ξ when solving for the optimum

we need to employ a small trick. Knowing that Ξ = Ξ1 × Ξ2 × · · · × Ξn
factorizes into n components, a solution can be obtained with an iterative

coordinate descent algorithm by optimizing one component at a time [cf.

e.g. Bertsekas, 1999]. At every iteration t we have a solution ξt. We pick

one of the components ξti , i = (t mod n) + 1, and find a solution ξt+1
i to
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the optimization problem

minimize
ξt+1
i ∈Ξi

∫
Θ

log

(
ξt+1
i (θi)ξ

t
−i(θ−i)

fµ(θ)

)
dξt(θ)

subject to

∫
Θi

ξi(θi)dθi = 1 ,

to yield dξt+1/dθ = ξt+1
i ξt−i, where ξt−i =

∏
j 6=i ξ

t
j is given and fµ = dµ/dθ

is the density function of µ. The algorithm is iterated until convergence.

Since the Kullback-Leibler divergence is convex, the solution ξt+1
i is fully

determined by the Euler-Lagrange equation

∂

∂ξt+1
i

ξt+1
i

∫
Θ−i

ξ−i(θ−i) log

(
ξt+1
i ξt−i(θ−i)

fµ(θ)

)
dθ−i + λ = 0 .

By solving for ξt+1
i we obtain the general solution

ξt+1
i (θi) =

1

Zt+1
i

exp

{∫
Θ−i

ξt−i(θ−i) log (fµ(θ)) dθ−i

}
,

where Zt+1
i is the normalization constant of the density. The solution al-

ready shows that this approach is especially fruitful if µ belongs to the ex-

ponential family. The computation can also be highly structured by taking

advantage of conditional independencies if the distribution µ is represented

as a graphical model, such as a Bayesian network or a factor graph [cf. e.g.

Winn and Bishop, 2005, Dauwels, 2007].

A.6. Probability in statistics

While mathematical probability theory is mostly concerned with a con-

sistent axiomatization of probability and the development of a sound calcu-

lus, in statistics we demand much more than that. Assigning probabilities

to events requires a clear interpretation of what probabilities mean as well

as having a persuasive justification for the axioms that constrain our assign-

ments [cf. e.g. Kadane, 2011, Lindley, 1972].

When we speak about an aleatory3 probability, we refer to some physical

process, which might be truly or just appear to be random. Closely tied to

this notion is the frequentist school of probability, where probabilities are

defined as the limiting frequencies of the events if the process is observed

indefinitely. Clearly, in many situations it is not possible to actually observe

an event several times. Therefore, we instead adopt the epistemic4 inter-

pretation of probability, as pioneered by Bayes [1763] and Laplace [1820],

3Alea is from the Latin and means die or game of die.
4Episteme is derived from the Greek and means knowledge.
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where probabilities describe the certainty of propositions. Many authors

have contributed to this interpretation of probability and developed it into

several distinct directions. For instance, statistics can be seen as an ex-

tension of inductive logic, as suggested by Keynes [1921], Cox [1961], and

Carnap [1962]. However, we will mostly use the subjective interpretation,

which describes a personal degree of belief. Important contributions to this

interpretation were made by Ramsey [1931], Koopman [1940], de Finetti

[1964], and Savage [1972].

Naturally the question arises as to why our personal beliefs should follow

the axioms of probability. Let Ω be a sample space with σ-algebra Σ. A

possible approach to motivate subjective probabilities is to define a relation

� on Σ such that the statement A � B reflects our belief that A is more

probable than B. Under suitable and compelling restrictions on � there

exists a probability measure p : Σ→ [0, 1] with

A � B iff p(A) > p(B)

for all A,B ∈ Σ [cf. e.g. de Finetti, 1964, Fishburn, 1986, Savage, 1972]. A

more intuitive approach was discussed by de Finetti [1964] [cf. also Lind-

ley, 1972]. Suppose you are betting on a set of pairwise disjoint events

A1, . . . , An ∈ Σ with ∪ni=1Ai = Ω offered by a bookie. In this gambling

game, the bookie fixes a set of odds for each Ai which represents his per-

sonal belief p(Ai) that Ai will occur. Afterwards, you decide on a stake

s(Ai), which you pay to the bookie for each i = 1, . . . , n. The peculiarity

of this game is that a stake s(Ai) may also be negative, in which case the

bookie pays you an amount of −s(Ai). If the event Ai occurs, you receive a

prize of s(Ai)/p(Ai) from the bookie so that your net gain is

gi =
s(Ai)

p(Ai)
−

n∑
j=1

s(Aj) .

We say that the personal beliefs of the bookie are coherent if you are not

able to fix stakes such that you will always win. Such a set of stakes in

combination with the proposed odds is also called a Dutch book. If we

consider the p(Ai) as unknowns, we obtain a system of linear equations

with determinant

det


1/p(A1)− 1 − 1 . . . − 1

− 1 1/p(A2)− 1 . . . − 1
...

...
...

− 1 − 1 . . . 1/p(An)− 1

 =
1−

∑n
i=1 p(Ai)∏n

i=1 p(Ai)
.

If the determinant is non-zero, i.e. the probabilities do not sum up to one,

you are able to fix stakes such that your gain will always be positive, no
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matter what event occurs. For finite probability spaces, it can be shown that

the personal beliefs have to satisfy the axioms of probability. For an infinite

probability space, it turns out that the σ-additivity axiom is hard to justify.

A comprehensive discussion on this matter was provided by Kadane et al.

[1999]. Nevertheless, Dutch book arguments were found, see for instance

Williamson [1999], Freedman [2003]. A notable extension of the results of

de Finetti [1964] was provided by Freedman and Purves [1969]. They showed

that in light of new information, a bookie should update his beliefs according

to Bayes’ rule.

A.7. Statistical inference

Predictive inference is the process of forming beliefs about future events

from our past observations. The problem of how this process can be justified

is nowadays mostly attributed to the philosopher David Hume and his highly

influencing book “A Treatise of Human Nature” [Zabell, 2005], where he

raised the question: Why should the future resemble the past? We will not

discuss the problem of induction in detail, but give a simple answer that

allows us to use our methodology for reaching scientific conclusions. To put

it simply, we will not only have to assume that future events will resemble

the past, but also how they do. In statistics our assumptions are most

elegantly expressed by symmetry assumptions on the probability function

of future and past events [Zabell, 2005].

Exchangeability is one of the most basic and notable symmetry assump-

tions on a random sequence. It was introduced by Haag [1924] and further

developed by de Finetti [1931, 1964]. Assume that X1, . . . , Xn, . . . are bi-

nary random variables for which

X̄n = X1, . . . , Xn
d
= Xπ(1), . . . , Xπ(n)

for all n ∈ N and all permutations π. The famous representation theorem

by de Finetti [1931] shows that for an exchangeable sequence there exists a

distribution µ such that the joint probability function takes the form

prX̄n(x̄) =

∫
[0,1]

θk(x̄)(1− θ)n−k(x̄)dµ(θ) ,

where x̄ = (x1, . . . , xn) ∈ {0, 1}n and k(x̄) =
∑n

i=1 xi. We may introduce a

random variable Θ so that

prX̄n |Θ(x̄ | θ) = θk(x̄)(1− θ)n−k(x̄)

can be interpreted as the likelihood function, which describes the parametric

model, and prΘ = µ as the prior distribution. Hence, the representation the-

orem, which is a result from pure probability theory, justifies the Bayesian
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approach to inductive inference [cf. e.g. Bernardo, 1996]. Using basic prob-

ability theory, we obtain the prediction

prXn+1 | X̄n(x | x̄) =
prXn+1,X̄n(x, x̄)

prX̄n(x̄)

for Xn+1 based on the observed events {X̄n = x̄}. Similarly, our prior belief

about Θ can be updated using Bayes’ rule

dprΘ | X̄n(θ | x̄) =
prX̄ |Θ(x̄ | θ)dprΘ(θ)

prX̄n(x̄)
.

The event {Θ = θ} can be interpreted as a hypothesis for the observed event

{X̄n = x̄}.
There exist several generalizations of the representation theorem by

de Finetti. For instance, random sequences of finite cardinality were dis-

cussed by Hewitt and Savage [1955]. Diaconis and Freedman [1980a,b] ana-

lyzed finite exchangeable sequences and showed a representation theorem for

Markov chains. However, in practice, the approach of obtaining the model

from symmetry assumptions is often too difficult. Hence, it is common to

define the model directly, which then induces certain symmetries of the joint

distribution.

A.8. Statistical decision theory

What is nowadays understood as statistical decision theory has been

developed over the past century from many different perspectives. The first

derivation of epistemic probability and utility from a system of preference

axioms can be traced back to Ramsey [1931]5. However, it was probably

Savage [1972] who first developed a complete and sound axiomatization of

decision making under uncertainty. His treatise relied partially on the work

of von Neumann and Morgenstern [1953] in the context of economic game

theory. Notable contributions were also made by Wald [1950], although from

a more frequentist perspective. He developed the idea of admissible decision

rules and thereby established a strong argument for the Bayesian paradigm.

Other important contributions were made by DeGroot [1962, 2004], who first

applied this theory to sequential experimentation. In the following, we will

give a brief introduction to decision theory, but without discussing personal

preferences to derive subjective probabilities [similar to the discussion of

Lindley, 1972, Young and Smith, 2005]. Good reviews on the approach by

Savage [1972] can be found in Fishburn [1982], and Kadane [2011]. An

5For an excellent discussion of the essay by Ramsey [1931] see Zabell [2005, Chapter

6].
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excellent summary of the most important milestones in the development of

decision theory was written by Fishburn [1989].

To motivate the following discussion, consider first a simple example

where you need to decide between two construction procedures for a bridge

[cf. Fishburn, 1970]. Procedure A costs 150 million, whereas procedure B

costs only 100 million. Engineers provide you with probabilities pA(t) and

pB(t) for each procedure for completing the bridge within t years, which

are based on their previous experience and observations. Assume that the

probabilities are given as

pA(t) =

{
0 if t ≤ 2
t−2

3 if 2 < t ≤ 5
, pB(t) =

{
0 if t ≤ 3
t−3

4 if 3 < t ≤ 7
.

In order to come to a decision, you have to specify your personal utility for

both procedures and the time of completion t. Assume your utilities are

u(A, t) = −(t− 2)2 − 5 , u(B, t) = −(t− 3)2 ,

so that we obtain the expected utilities

ū(A) =

∫ 5

2
u(A, t)pA(t)dt = −8 , ū(B) =

∫ 7

3
u(B, t)pB(t)dt = −10.33 .

Procedure A has a higher expected utility and therefore you should decide

for this option.

We may formalize the process of decision making by introducing an

action spaceA and a random variableA that takes values inA. Furthermore,

let Y be an observable random variable in Y and assume that we have

observations {X = x} in X from which we would like to predict Y . A

bounded function u : A× Y → R quantifies our subjective utility u(a, y) of

an action a ∈ A in case the event {Y = y} occurs. The expected utility is

defined as

ū(a) =

∫
Y
u(a, y)dprY |A,X(y | a, x) ,

and best action to choose is the one with maximal expected utility, i.e.

â = arg sup
a∈A

ū(a) .

Remark A.8.1. In this context, the theory by Savage [1972] can be

framed as follows. Let (Ω,Σ) and (S,S) be two measureable spaces and F a

space of random variables such that each F ∈ F is a mapping F : (Ω,Σ)→
(S,S). A total ordering � on F is used to implement personal (subjective)

preferences. If we adopt the original interpretation of random variables by

Kolmogoroff, the statement F � G means that we prefer the experiment F

over G since we might believe that F is more informative than G. Savage

[1972] developed axioms that guarantee the existence of a unique probability
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measure P and a utility function u, such that (Ω,Σ, P ) is a probability space

and

F � G iff Eu(F ) > Eu(G) ,

for all F,G ∈ F.6 In the theory by Savage, Ω contains the possible states

of nature and S is called the space of consequences. We may assume that

S = A × Y and thereby obtain an axiomatic justification of the decision

theory outlined earlier.

Example A.8.1 (Poppe, Benner, and Elze [2012]). Consider an experi-

ment where a psychometric function is measured with an adaptive method.

For each measurement one of L possible stimuli is presented and the sub-

ject can choose between K responses. Let An ∈ A denote the stimulus and

Xn ∈ X the response of the nth measurement. Based on the past observa-

tions

{Ān = ān, X̄n = x̄n} = {A1 = a1, X1 = X1, . . . , An = xn, Xn = yn}

a new stimulus {An+1 = an+1} is selected. The decision is based on the

expected utility

ū(a) =
∑
x∈X

u(a, x)prXn+1 | Ān,X̄n(x | ān, x̄n) ,

where u(a, x) quantifies our subjective utility of observing x in response to

a stimulus a. A good choice for the utility function is the certainty by which

the psychometric function can be predicted, which implicitly depends on the

past observations {Ān = ān, X̄n = x̄n}.

The objective of many applications is not to predict observations directly,

but to estimate an unobserved parameter Θ of the statistical model that

takes values in some parameter space Θ. The parameter Θ captures all

essential information in X about Y , so that

Y ⊥⊥ X |A,Θ .

The expected utility then becomes7

ū(a) =

∫
Y
u(a, y)dprY |A,X(y | a, x)

=

∫
Θ

∫
Y
u(a, y)dprY |A,Θ(y | a, θ)dprΘ |X(θ |x) ,

6In fact, Savage [1972, p. 43] agrees with de Finetti [1964] that probabilities should

not be σ-additive. Hence, an additional axiom is required to obtain a true probability

measure P [Villegas, 1964, Fishburn, 1986].
7In this context x is assumed to be fixed so that we may write ū(a) instead of ū(a, x).
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and by defining

u∗(a, θ) =

∫
Y
u(a, y)dprY |A,Θ(y | a, θ) ,

we may write the expected utility as

ū(a) =

∫
Θ
u∗(a, θ)dprΘ |X(θ |x) .

Definition A.8.1 (Point estimate). Assume that A = Θ and let u∗ :

A×Θ→ R be a bounded utility function. An estimate

θ̂ = arg sup
θ′∈Θ

ū(θ′) = arg sup
θ′∈Θ

∫
Θ
u∗(θ′, θ)dprΘ |X(θ |x)

is called a point estimate of Θ.

A different approach to decision theory was developed by Wald [1950].

We augment the setup so far by introducing a decision spaceD which consists

of functions δ : X → A, i.e. δ assigns an action to each observation x ∈ X.

Furthermore, the utility function is replaced by a loss function L : A×Θ→
[0,∞), where L(a, θ) quantifies the subjective loss of selecting action a for an

observation {X = x} when θ is the true parameter. Central to the decision

theory of Wald [1950] is the definition of the risk function

R(θ, δ) =

∫
X
L(δ(x), θ)dprX |Θ(x | θ) .

Example A.8.2. Assume that X = (X1, X2, . . . , Xn) are i.i.d. normal

random variables with mean parameter µ and variance σ2. Assume that

A = Θ and let L(µ, µ̂) = (µ− µ̂)2. We may consider the decision functions

δ1(x) =
1

n

n∑
i=1

(xi) , δ2(x) = x1 , δ3(x) =
1

2
,

for observations x = (x1, . . . , xn), so that we obtain the risks

R(µ, δ1) =
σ2

n
, R(µ, δ2) = σ2, R(µ, δ3) =

1

4
+ (µ− 1)µ .

The risk of δ1 goes to zero for n → ∞, whereas for δ2 it is constant. The

decision rule δ3 does not depend on the data x and has zero risk only if

µ = 1/2.

Definition A.8.2 (Dominated decision rule, Wald [1950]). Let Θ be a

parameter space. A decision rule δ is said to be dominated by a decision

rule δ∗ if

R(θ, δ) ≥ R(θ, δ∗)

for all θ ∈ Θ and

R(θ, δ) > R(θ, δ∗)
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for at least one θ ∈ Θ.

A decision function δ is hence dominated by a function δ∗ if the risk of

δ∗ is lower for at least one parameter and for no parameter it is higher.

Definition A.8.3 (Admissible decision rule, Wald [1950]). Let D be a

space of decision functions. A decision function δ ∈ D is admissible if there

exists no δ∗ ∈ D which dominates δ.

If we consider again Example A.8.2 and assume that D = {δ1, δ2, δ3}, we

see that δ2 is dominated by δ1 for n > 1. The set of admissible decision rules

is therefore given by {δ1, δ2}. This example already shows that in general

there are many admissible decision rules and we may therefore ask for a

criterion to select a single rule which is regarded as optimal. A possible

choice for such a criterion is the minimax decision rule

δ̂ = arg inf
δ∈D

sup
θ∈Θ

R(θ, δ) .

The solution δ̂ may not be unique and therefore also include decision rules

that are inadmissible. For instance, consider two decision rules δ1 and δ2

such that δ1 dominates δ2 and

sup
θ∈Θ

R(θ, δ1) = sup
θ∈Θ

R(θ, δ2) .

If δ1 is a minimax decision rule, then so is δ2, however, δ2 is inadmissible

because it is dominated by δ1 [cf. e.g. Young and Smith, 2005].

In game theory, minimax rules are frequently used in zero-sum games, cf.

von Neumann and Morgenstern [1953]. In this context, L(a, θ) represents

your loss when selecting action a and your opponent chooses θ. Since the

objective of your opponent is to win the game, it can be assumed that he

will select θ such that your loss is maximized. However, in statistics it seems

overly conservative to select decision rules according to their maximum risk.

In a Bayesian setting we would instead explicate our prior knowledge about

the parameter Θ by selecting an appropriate distribution and choose the

decision rule δ̂ that minimizes the average risk, i.e.

δ̂ = arg inf
δ∈D

∫
Θ
R(θ, δ)dprΘ(θ) .

By rewriting the minimum average risk, we obtain

inf
δ∈D

∫
Θ
R(θ, δ)dprΘ(θ) =

∫
X

dprX(x) inf
δ∈D

∫
Θ
L(δ(x), θ)dprΘ |X(θ |x) ,

where

prX(x) =

∫
Θ

prX |Θ(x | θ)dprΘ(θ) .
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With L(a, θ) = c − u(a, θ) for an appropriate constant c we see that the

minimum average risk is indeed very similar to the principle of maximum

expected utility, where we focus only on a particular observation {X = x}8.

Definition A.8.4 (Bayes estimator). The decision rule

δ̂(x) = arg inf
a∈A

∫
Θ
L(a, θ)dprΘ |X(θ |x)

minimizes the average risk and is called a Bayes estimator with respect to

the prior distribution prΘ.

Under mild assumptions on the prior distribution, it can be shown that

the Bayes estimator is admissible, cf. Wald [1950].

An important concept is also the consistency of a Bayesian estimator,

which refers indirectly to the convergence of the posterior distribution. We

say that an estimator is consistent if it converges to the “true” value of the

parameter. To make this notion more precise, consider the following

Definition A.8.5 (Consistency). Let {X1 = x1, . . . , Xn = xn} be a

sequence of observations and let {pθ}θ∈Θ be a family of distributions. Each

random variable Xi is distributed as pθ∗ , where θ∗ ∈ Θ. We call a Bayesian

estimator δ̂ consistent iff

δ̂(x1, . . . , xn)→ θ∗

almost surely for all θ∗ ∈ Θ.

It should be noted that this definition is much stronger than what is

required for the highly celebrated theorem by Doob [Theorem 10.10 Van der

Vaart, 2000, Doob, 1949]. Indeed, not every Bayesian estimator is consistent

in this sense and especially nonparametric models can suffer from inconsis-

tencies [Kleijn and van der Vaart, 2006, Ghosal et al., 2007, van der Vaart

and Van Zanten, 2008].

8The fact that we may express the loss function in this way depends on the assumption

that the utility function is bounded.
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M. Bačák. Computing Medians and Means in Hadamard Spaces. SIAM J.

Optim., 24(3):1542–1566, 2014a. ISSN 1052-6234.
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M. Röckner, and K.-T. Sturm, editors, New directions in Dirichlet forms,

pages 1–47. AMS and International Press, 1998.

J. Jost and X. Li-Jost. Calculus of variations, volume 64. Cambridge Uni-

versity Press, 1998.

T. H. Jukes and C. R. Cantor. Evolution of protein molecules. 1969.

J. B. Kadane. Principles of uncertainty. CRC Press, 2011.

J. B. Kadane, M. J. Schervish, and T. Seidenfeld. Statistical implications

of finitely additive probability. Rethinking the Foundations of Statistics,

page 211, 1999.

O. Kallenberg. Foundations of modern probability. Probability and its ap-

plications. Springer, 2 edition, 2002.

S. Karlin and H. Taylor. A First Course in Stochastic Processes. Elsevier

Science, 1975. ISBN 9780080570419.

K. G. Karol, R. M. McCourt, M. T. Cimino, and C. F. Delwiche. The closest

living relatives of land plants. Science, 294(5550):2351–2353, 2001.

http://sysbio.oxfordjournals.org/content/60/4/528.abstract
http://sysbio.oxfordjournals.org/content/60/4/528.abstract


Bibliography 137

J. M. Keynes. A treatise on probability. MacMillan, 1921.
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M. Loève. Probability Theory I, volume 45 of Graduate texts in mathematics.

Springer-Verlang New York Inc., 4th edition, 1977.
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