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ABSTRACT 

 

Contamination of soil with Polycyclic Aromatic Hydrocarbons (PAHs) is a serious 

environmental issue because some PAHs are toxic, carcinogenic and mutagenic. 

Bioremediation is a promising option to completely remove PAHs from the environment or 

convert them to less harmful compounds. One of the main challenges in bioremediation of 

PAHs in a conventional roller bioreactor is the limitation on mass transfer due to the strong 

hydrophobicity and low water solubility of these compounds. To address this challenge, a 

novel bead mill bioreactor (BMB) was developed by Riess et al. (2005) which demonstrated 

a significant improvement in the rates of mass transfer and biodegradation of PAHs.  

In this study, to further improve mass transfer rates, baffles have been installed in 

both the conventional and bead mill bioreactors. Mass transfer rates of 1000 mg L-1 

suspended naphthalene, 2-methylnaphthalene and 1,5-dimethylnaphthalene, three model 

compounds of PAHs, have been investigated in four bioreactors: conventional (control), 

baffled, BMB and baffled bead mill bioreactors. The baffled bioreactor provided mass 

transfer coefficients (KLa) that were up to 7 times higher than those of the control bioreactor.  

Bioremediation of suspended naphthalene or 2-methylnaphthalene as a single 

substrate and their mixtures was studied using the bacterium Pseudomonas putida ATCC 

17484. Both baffled and bead mill bioreactors provided maximum bioremediation rates that 

were 2 times higher than the control bioreactor. The maximum bioremediation rates of 2-

methylnaphthalene were further increased in the presence of naphthalene by a factor of 1.5 to 

2 compared to the single substrate.  



 iii 

Another rate-limiting step for bioremediation of PAH-contaminated soil is the strong 

sorption between the contaminant and soil. To find out the effect of sorption on the 

bioavailability of naphthalene, the appropriate sorption isotherms for three types of soils 

(sand, silt and clay) have been determined. It was observed that the sorption capacity of soils 

for naphthalene was proportional to the organic carbon content of the soils. The mass transfer 

of soil-bound naphthalene from the artificially prepared contaminated soils with short 

contamination history to the aqueous phase was studied in both the control and bead mill 

bioreactors. It was observed that the mass transfer was unexpectedly fast due to the increased 

interfacial surface area of naphthalene particles and the weak sorption between naphthalene 

and soils. It was concluded that artificially, naphthalene contaminated soils would likely not 

be any more difficult to bioremediate than pure naphthalene particles. 
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CHAPTER 1   INTRODUCTION 

 

1.1 Research Background 

 

Worldwide industrial and agricultural developments have released a large number of 

natural and synthetic hazardous compounds into the environment due to careless waste 

disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in 

the world that require cleanup of soils and sludge. In the United States alone, it has been 

estimated that contaminated site treatment costs may approach 1.7 trillion dollars over the 

next 30 years (Mark et al., 1997). 

Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these 

contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds 

consisting of two or more aromatic rings with various structural configurations (Prabhu and 

Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In 

addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their 

low water solubility and strong hydrophobicity, and this results in greater persistency under 

natural conditions. This persistency coupled with their potential carcinogenicity makes PAHs 

problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are 

widely found in high concentrations at many industrial sites, particularly those associated 

with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993).  

Conventional techniques used for polluted soil remediation include digging up the 

contaminated soil and removing it to a secure landfill or simply to cap and contain the 
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contaminated areas of a site. These methods have some drawbacks. The first method simply 

moves the contamination elsewhere and may create significant risks in the excavation, 

handling and transport of hazardous material. Additionally, it is very difficult and 

increasingly expensive to find new landfill sites for the final disposal of the material. The cap 

and containment method is only an interim solution since the contamination remains on site, 

requiring monitoring and maintenance of the isolation barriers long into the future, with all 

the associated costs and potential liability.  

A better approach than these traditional methods is to completely destroy the 

pollutants, if possible, or at least transform them into harmless substances. Some 

technologies that have been used are high-temperature incineration and various types of 

chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). 

However, these methods have significant disadvantages, principally their technological 

complexity, the cost for small-scale application, and the lack of public acceptance. This is 

particularly true for incineration since it may increase the exposure to contaminants for both 

the workers at the site and nearby residents.  

Bioremediation is a promising option for the complete removal and destruction of 

contaminants. Bioremediation is the use of living organisms, primarily microorganisms, to 

degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water 

and cell biomass. As such, it uses relatively low-cost, low-technology techniques, which 

generally have a high public acceptance. PAHs are biodegradable (Da Silva et al., 2003; 

Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been 

extensively studied at both the laboratory and commercial levels, and has been implemented 

at a number of contaminated sites, including the well published cleanup of the Exxon Valdez 
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oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 

1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). 

Two different strategies, in situ bioremediation and ex situ bioremediation, are 

employed depending on the degree of contamination and ease of aeration of an area. In situ 

bioremediation is a technique that is applied to soil and groundwater at the site with minimal 

disturbance. It is a very slow process and cannot be controlled effectively. Uncertainty about 

the fate of the contaminant and the possible toxicity of the final product is the other down 

side of in situ bioremediation. Ex situ bioremediation of PAHs, on the other hand, is a 

technique applied to soil and groundwater which has been removed from the site via 

excavation (soil) or pumping (water). This technique converts these hazardous contaminants 

into harmless compounds in an efficient manner in controlled bioreactors. 

One of the main barriers in successful ex situ bioremediation of PAHs is the strong 

hydrophobicity and low solubility of these compounds in the aqueous phase, resulting in 

significant mass transfer limitations within the bioreactor (Volkering et al., 1992; Volkering, 

et al. 1993; Mulder et al., 1998). Stirred tank reactors offer an advantage in this case since the 

mass transfer can be increased with agitation. On the other hand, inherent to the design of 

stirred tank bioreactors, particles will always cling to the agitation system, baffles and walls. 

This, together with the lifting and separation of particles from the liquid phase by the sparged 

air required for the metabolism of the microbial cells, prevents the efficient biodegradation of 

PAHs. Although efficient solid to liquid mass transfer can be achieved in a stirred tank 

bioreactor (Purwaningsih, 2002), the extensive stripping loss of PAHs due to splashing and 

aeration make the use of the stirred tank bioreactor for biodegradation of PAHs impractical. 

These problems could be circumvented in a conventional roller bioreactor (Gray et al., 1994; 
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Brinkmann et al., 1998; Jauhari et al., 1999; Banerjee et al., 2002), but significant mass 

transfer limitation prevents the efficient biodegradation of PAHs. A novel Bead Mill 

Bioreactor (BMB) in which inert particles (glass beads) were used as a means to create 

turbulence and improve the extent of mass transfer and consequently increase biodegradation 

rates has been developed previously (Riess et al., 2004). Comprehensive studies have shown 

that the BMB not only enjoys a simple and practical design but demonstrates excellent 

performance with respect to mass transfer rate from the solid phase to the liquid phase and 

biodegradation of pure PAH particles (Riess et al., 2004). 

Frequently, PAH contamination in the environment is associated with sorption onto 

soil rather than as pure solid particles. It is known that the biodegradation rate of most PAHs 

sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with 

pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed 

that only that fraction of PAHs dissolved in the solution can be metabolized by bacteria in 

soil. The amount of contaminant that can be readily taken up and degraded by 

microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two 

phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 

2000). The first one is strong adsorption of the contaminants to the soil constituents which 

then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often 

well correlated with soil organic matter content (Means, 1980) and significantly reduces 

biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass 

transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic 

matter in the soil. The complex set of these physical, chemical and biological processes is 

schematically illustrated in Figure1.1. As shown in Figure 1.1, biodegradation processes are 
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taking place in the soil solution while diffusion processes occurs in the narrow pores in and 

between soil aggregates. Sorption and dissolution processes originate in solid phases such as 

the soil aggregates and NAPLS (non-aqueous phase liquids), respectively (Danielsson, 2000).  

Seemingly contradictory studies can be found in the literatures that indicate the rate 

and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than 

those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate 

that the bioavailability of organic contaminants sorbed onto soil is far from being well 

understood. 

 

 

 

 

 

 

 

 

 

 

Besides bioavailability, there are several other factors affecting the rate and extent of 

biodegradation of PAHs in soil including microbial population characteristics, physical and 

chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree 

of contamination). 

Figure 1.1: Schematic diagram showing possible rate-limiting processes during 
bioremediation of hydrophobic organic contaminants in a contaminated soil-water system 
(not to scale) (Danielsson, 2000). 
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Attempts to overcome the slow biodegradation of PAHs in soil include the use of 

surfactants and water-miscible solvents. However, introduction of synthetic surfactant results 

in the addition of a pollutant. Furthermore the solubilization effect of cosolvents is usually 

not significant for volume-fraction concentrations under 10% (Wang and Brusseau, 1993). 

Another approach is the use of a solubility enhancer to increase the water solubility of PAHs 

and therefore to enhance the biodegradation rate of PAHs in soil. Unfortunately, a previous 

study showed that the introduction of hydropropyl-β-cyclodextrin (HPCD), a well-known 

PAH solubility enhancer, did not improve the biodegradation rate of PAHs, even though the 

solubilization of PAHs was significantly increased in the system (Mulder et al., 1998). 

Enhancing the extent of PAHs mass transfer from the soil phase to the liquid phase by 

appropriately designed reactors might prove an efficient and environmentally low-risk 

alternative way of addressing the problem of slow biodegradation in soil. 

The major purpose of this study is to overcome the above-mentioned problems. First 

of all, mass transfer of PAHs from particle surfaces to the aqueous phase was studied in four 

different bioreactors, conventional roller, baffled, BMB and baffled bead mill bioreactors. 

The use of the latter three bioreactors improves the mixing of PAH particles into the liquid 

phase and also enhances the turbulence of the liquid, resulting in dramatically increased mass 

transfer rates. In this study, three PAHs: naphthalene, 2-methylnaphthalene and 1,5-

dimethylnaphthalene were used as the model PAH compounds. The volumetric mass transfer 

coefficients of these three PAHs in different bioreactors were determined by fitting 

experimental data to the mathematical model of mass transfer rates. Secondly, 

bioremediation of suspended PAH particles, naphthalene and 2-methylnaphthalene was 

investigated, using Pseudomonas putida ATCC 17484 as the candidate bacterium in the 
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conventional roller, baffled and bead mill bioreactors. The co-metabolism of mixtures of 

naphthalene and 2-methylnaphthalene was also studied in these three bioreactors. The 

maximum specific growth rate, µmax and yield coefficient, YX/S were finally determined by 

applying bioremediation models to the experimental data. In addition to these suspended 

PAH studies, the mass transfer and bioremediation of naphthalene-contaminated soils has 

been studied in the conventional roller and bead mill bioreactors. For the most coverage, 

three types of soils: sand, silt and clay, were selected. Prior to the mass transfer and 

bioremediation of PAH-contaminated soils, the sorption of naphthalene to each soil was 

studied and the appropriate sorption isotherms and their correlation coefficients have been 

determined. In order to find out the relationship between sorption capacity and organic 

carbon contents of soils, the total organic carbon content of three soils was also determined.  

 

1.2 Research Objectives 

 

The objectives of this research are: 

• To study mass transfer rate of suspended PAH particles in roller bioreactors. The 

experimental variables include the types of PAHs and the configuration of roller 

bioreactors. 

• To calculate the volumetric mass transfer coefficients by fitting experimental data to 

the mathematical model that can predict the mass transfer rate of suspended PAH 

particles in the bioreactors. 
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• To investigate bioremediation rate of pure PAHs in different bioreactor 

configurations.  

• To determine the maximum specific growth rate, µmax and yield coefficient, YX/S, of 

the candidate bacterium for the prediction of biodegradation of pure PAH particles. 

• To study the relationship between sorption capacity of three soils for naphthalene and 

organic carbon content of three soils.  

• To observe mass transfer behaviour of naphthalene-contaminated soils (three types) 

in the conventional roller and the bead mill bioreactors. 

• To study the bioremediation of naphthalene-contaminated soils (three types) in the 

conventional roller and the bead mill bioreactors. 

 

1.3 Thesis Outline 

 

This thesis consists of six chapters. Chapter 1, Introduction, describes the motivation, 

scope and objectives of this thesis. The Literature Review is organized in Chapter 2. This 

chapter reviews previous work and developments in the area of PAH bioremediation, 

including the type of microorganisms used to treat PAH-contaminated sites, the attempts to 

improve bioavailability of PAHs and the type of bioreactors commonly applied to deal with 

slurry systems. Chapter 3, Mathematical Models, presents the PAH mass transfer model, 

bioremediation kinetics and sorption isotherms for PAHs. Mass transfer and bioremediation 

models permit the prediction of dissolution and depletion rates under different environmental 

conditions. Sorption isotherms can predict the sorption capacity of different soils for PAHs. 

Chapter 4 focuses on Materials and Methods, which includes a description of the chemicals, 
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microorganisms, medium and soils used, the preparation of cell culture, the apparatus setup, 

the experimental procedures, the analytical methods and instruments used for sample 

quantification. Chapter 5, Results and Discussion, presents the experimental results, data 

analysis and discussion. Finally, the conclusions from this work and recommendations for 

future studies are summarized in Chapter 6, Conclusions and Recommendations.  
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CHAPTER 2   L ITERATURE REVIEW 

 

2.1 Polycyclic Aromatic Hydrocarbons (PAHs) and the Environment 

2.1.1 Structure and Properties of PAHs 

 

PAHs are a class of very stable organic molecules made up of two or more rings 

containing only carbon and hydrogen. These molecules are flat, with each carbon having 

three neighboring atoms much like graphite (Figure 2.1). PAHs generally exist as colorless, 

pale yellow or white solids (Mackay et al., 1992). Although hundreds of PAHs exist, two of 

the more common ones are benzo(a)pyrene and naphthalene. The physicochemical properties 

of selected PAHs are presented in Table 2.1 where it can be seen that they vary with 

molecular weight and structure. For instance, volatility and aqueous solubility decrease with 

increasing molecular weight (Wilson and Jones, 1993). The octanol-water coefficient is a 

measure of hydrophobicity of organic chemicals. PAH octanol-water coefficients are 

relatively high, indicating that they have a higher affinity for soil organic carbon than water.  
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Figure 2.1: Structure and numbering of selected PAHs (Weast, 1968). 
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Table 2.1: Physicochemical proper ties of selected PAHs (Neff, 1979; Weast, 1968) 

 

PAH Molecular  
Weight (g) 

Water  
Solubility at 
25°C (µg/L) 

Vapour 
Pressure at 

25°C (mmHg) 

Log 
Koctanol/water 

Naphthalene 128.2 
12500 to 
34000 

1.8x 10-2 3.37 

Acenaphthylene 152.2 3420 10 -3 - 10-4 4.07 (3.40) 

Acenaphthene 154.2  
 

3.98 (3.66) 

Fluorene 166.2 800 
 

4.18 (3.86) 

Anthracene 178.2 59 2.4x 10-4 4.5 (4.15) 

Phenanthrene 178.2 435 6.8x 10-4 4.46 (4.15) 

Fluoranthene 202.3 260 
 

4.90 (4.58) 

Pyrene 202.1 133 6.9x 10-7 4.88 (4.58) 

Chrysene 228.3 1.9 
 

5.63 (5.30) 

Cholanthrene 254.3 2.0 
 

6.28 

Perylene 252.3 2.4 
 

6.21 

Benzo[ghi]perylene 276.4 0.3 1.0x 10-10 6.78 (6.20) 

Coronene 300.3 0.14 1.5x 10-11 7.36 

 

2.1.2 Sources and Environmental Fate of PAHs 

There are two major sources of PAH emissions to the environment: natural sources 

and anthropogenic sources. In nature, PAHs are formed in two ways. One is high temperature 

pyrolysis of organic materials generally caused by fires. Forest fires, prairie fires, and 

agricultural burning contribute the largest volumes of PAHs from a natural source to the 
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atmosphere (CEPA, 1994). PAHs from fires tend to sorb to suspended particulates and 

eventually enter the terrestrial and aquatic environments as atmospheric fallout (Eisler, 

1987). The other natural way for PAHs to occur is the formation of fossil fuels, such as coal 

and crude oil deposits, as a result of diagenesis (that is, low temperature, 100-150 °C, heating 

of organic material over a significant span of time). This process contributes a relatively 

small volume of PAHs to the terrestrial ecosystem because most oil deposits are trapped deep 

beneath layers of rock and there is little chance for PAHs to emit to the surface environment 

(National Research Council of Canada, NRCC, 1983).  

The other source for release of PAHs into the environment is anthropogenic which is 

becoming more significant with the increasing worldwide industrialization. In fact, any 

industrial or domestic process in which organic carbon is subjected to high temperatures will 

result in the production of some PAHs. Industrial processes such as aluminum production, 

iron smelting, petroleum refining, coal coking, thermal power generation and tar paper 

production are all examples of major anthropogenic sources 

(http://www.atl.ec.gc.ca/epb/envfacts/pah.html). The contamination of the environment by 

PAHs is highly associated with industrial production, careless waste disposal and illegal 

waste dumping of PAH-containing materials. PAH-contaminated sites are also commonly 

associated with accidental spills, leaks from storage tanks as well as wood treatment 

activities involving the use of creosote and anthracene that are often used as wood treatment 

fungicides (Wilson and Jones, 1993). It is reported that the petroleum hydrocarbon spills 

cause 75 tonne/ year of PAH emissions into the environment and account for 88% of the total 

number of spills occurring on land (CEPA, 1994). 
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PAHs can remain in the air for extended periods of time adsorbed on particulate 

matter and can be transported over long distances before they enter soil or water by surface 

run-off. Since PAHs are characterized by low water solubility and strong hydrophobicity, 

their dissolved concentration in water is very low and most of the PAHs accumulate in 

sediments. Levels of PAHs in sediments vary, depending on the proximity of the sites to 

areas of human activity. PAHs in sediments are elevated near industrial and urban centres. In 

British Columbia, this trend was evident in the Greater Vancouver area. Dunn and Stich 

(1975) demonstrated the impact of municipal effluent on sediment PAH concentrations in 

samples collected near the Iona Island sewage treatment outfall when it was discharged onto 

Sturgeon Bank in shallow waters. Benzo(a)pyrene levels of 121 µg/g were detected at a 

distance of about 0.7 km from the sewage outfall. As the distance increased, however, the 

concentrations of benzo(a)pyrene dropped rapidly, registering a value of <1.0 µg/g past 5 

km. It is generally recognized that PAHs are more environmental persistent when they are 

bound to particulates with a high organic carbon content (CEPA, 1994).  

In addition to air and sediment, PAHs can also accumulate in biota. The level of 

anthracene in seaweed collected from Osaka Harbour, Japan, averaged 4 ng /g (dry weight). 

The average high molecular weight PAH concentrations in seaweed for this site ranged from 

2 ng/g (dry weight) for dibenzo[a,h]anthracene to 72 ng/g (dry weight) for benzo[a]pyrene 

(Obana et al., 1981).  In British Columbia, PAHs in shellfish were first reported by Dunn and 

Stich (1975). Levels up to 0.2 ng/g of benzo(a)pyrene were measured in mussels from the 

open west coast of Vancouver Island, 5 km from human activity; 42.8 ng/g of 

benzo(a)pyrene were found in mussels from a poorly flushed inlet (False Creek) with heavy 

boat and industrial use. At four out of five sites in the Vancouver Harbour, benzo(a)pyrene 
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uptake by mussels fluctuated seasonally. These seasonal fluctuations were attributed to 

variations in pollution pattern rather than physical differences such as temperature or 

physiological differences related to the breeding cycle of the organisms. 

2.1.3 Health and Environmental Concerns  

PAHs are potential carcinogens that can produce tumours in some organisms at even 

single doses. Other non-cancer-causing problems are not well understood, but may include 

adverse effects on reproduction, development, and immunity (ATSDR, 1993; Eisler, 1987b). 

PAH effects are wide-ranging within an organism and have been found in many types of 

organisms, including non-human mammals, birds, invertebrates, plants, amphibians, fish, and 

humans. Humans and non-human mammals can absorb PAHs by inhalation, dermal contact, 

or (more poorly) ingestion (Eisler, 1987b). The oral toxicity of PAHs ranges from very to 

moderately toxic (50 to 1000s mg/kg body weight) in rats. Plants absorb PAHs from soil, 

especially lower molecular weight PAHs, and readily translocate them to above-ground 

tissues. The concentrations in plants are substantially lower than in soil, and they are poorly 

correlated because of deposition and absorption of atmospheric PAHs. Eating of leaves 

(foliar herbivory) does not appear to be a significant route of exposure to soil PAHs. Fish 

exposed to PAH contamination exhibited fin erosion, liver abnormalities, cataracts, and 

immune system impairments leading to increased susceptibility to disease (Fabacherm, 1991; 

O'Conner and Huggett, 1988; Weeks. and Warinner, 1984; Weeks and Warinner, 1986). 

Some fish, however, increase their production of enzymes which break down PAHs, possibly 

reducing the chemicals' toxic effects. Organisms such as mussels and oysters lack the enzyme 
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systems which break down PAH compounds, and sometimes accumulate high concentrations 

of PAHs.  

The release of PAHs is regulated under various laws, regulations and agreements 

designed to protect the environment and human health. PAHs are assessed for environmental 

and human health effects under the Canadian Environmental Protection Act's (CEPA) 

Priority Substances Assessment Program. PAHs are included in ocean dumping provisions of 

CEPA, which regulate allowable levels of contaminants in materials disposed at sea. In 

addition, Environment Canada administers Section 36 of the Fisheries Act which prohibits 

depositing harmful substances, such as PAHs, in waters used by fish. Other federal 

legislation which deals with the regulation of PAHs includes the Pest Control Products Act, 

the Transportation of Dangerous Goods Act and the Food and Drug Act. Finally, 

Environment Canada has published technical guidelines for the safe design and operation of 

wood preservation facilities which use creosote-based pesticides 

(http://www.atl.ec.gc.ca/epb/envfacts/pah.html).  

2.2 Microorganisms 

2.2.1 The Central Dogma of Biology: DNA 

The primary tenet of molecular biology is the central dogma of life, which applies to 

all organisms. Almost all living systems have the same core approach to the storage, 

expression and utilization of genetic information. The information of all living cells is stored 

on a deoxyribonucleic acid (DNA) molecule. DNA serves as the template for its own 

replication as well as transcription to RNA. The information transcribed into the RNA can 
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then be translated into proteins using an RNA template. The proteins then perform an 

enzymatic role, mediating almost all the metabolic functions in the cell.  

2.2.2 Growth Patterns and Kinetics  

Growth of an organism can be defined as an orderly increase in all its chemical 

constituents (Bailey, 1977). When most single-celled organisms grow, they eventually 

divide. Consequently, growth of a population usually implies an increase in the number of 

cells as well as the mass of all cellular materials. When a liquid nutrient medium is 

inoculated with a seed culture, the organisms selectively take up dissolved nutrients from the 

medium and convert them into biomass. As a result of nutrient utilization, microbial mass 

increases with time and can be described simply by: 

       Substrates + Cells                      Extracellular Products +More Cells                     (2.1) 

A typical batch growth (culturing cells in a vessel with an initial charge of medium 

that is not altered by further nutrient addition or removal) curve includes the following 

phases: (1) lag phase, (2) logarithmic or exponential growth phase, (3) deceleration phase, (4) 

stationary phase, and (5) death phase.  

The lag phase occurs immediately after inoculation and is a period of adaptation of 

cells to a new environment. Microorganisms reorganize their molecular constituents when 

they are transferred to a new medium. Depending on the composition of nutrients, new 

enzymes are synthesized, the synthesis of some other enzymes is repressed, and the internal 

machinery of cells is adapted to the new environmental conditions. During this phase, cell 

mass may increase a little, without an increase in cell number density.  



 18 

The concentration of nutrients as well as the size and age of inoculum have a strong 

effect on the length of the lag phase. Low concentrations of some nutrients may cause a long 

lag phase. When the inoculum is small and has a low fraction of cells that are viable, there 

may be a pseudolag phase, which is a result not of adaptation but of the small inoculum size. 

The age of the inoculum culture also plays a significant role in controlling the length of the 

lag phase. Usually, the lag period increases with the age of the inoculum. To minimize the 

duration of the lag phase, cells should be adapted to the growth medium and conditions 

before inoculation and the cells should be young (preferably exponential phase cells) and 

active and the inoculum size should be large (5% to 10% by volume).   

After the lag phase, cells can multiply rapidly and enter the exponential growth phase. 

In this phase, cell mass and cell number density increase exponentially with time. This is a 

period of balanced growth, in which all components of a cell grow at the same rate.  The 

average composition of a single cell remains approximately constant during this phase of 

growth. During balanced growth, the net specific growth rate determined either from cell 

number or cell mass would be the same. A bacterial culture undergoing balanced growth 

mimics a first-order autocatalytic chemical reaction (Carberry, 1976; Levenspiel, 1972). 

Therefore, the rate of the biomass concentration increase at any particular time is 

proportional to the biomass concentration (X) present at that time: 

             
dX

dt
X= ×µ                                               (2.2) 

where µ is the specific growth rate (h-1) 

If µ is constant with time during the exponential growth period, Equation (2.2) can be 

integrated from time t0 to t, yielding: 
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                ln ( )
X

X
t t

0
0= × −µ                                        (2.3) 

As seen in Equation 2.3, the exponential growth is characterized by a straight line on a 

semilogarithm plot of ln X versus time.  

The specific growth rate need not be a constant and there are a number of different 

models to predict the specific growth rate.   

2.2.2.1 Substrate-L imited Growth 

Since there is usually a finite amount of substrate (S) available, growth is normally 

substrate limited (that is, an increase in S influences growth rate while changes in other 

nutrient concentrations have no effect). Under these circumstances, the relationship between 

the specific growth rate and substrate concentration is frequently modelled using the Monod 

equation (Bailey and Ollis, 1986; Blanch and Clark, 1997):  

        µ µ=
+max

S

K Ss

                                           (2.4) 

where µmax is the maximum specific growth rate (h
-1). The constant Ks is known as the 

saturation constant (mg L-1) and is equal to the substrate concentration when the specific 

growth rate is equal to half of maximum. That is, Ks=S when µ=µmax/2. The Monod equation 

is semiempirical and fits a wide range of data satisfactorily.  It is the most commonly applied 

model of substrate-limited microbial growth.  
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2.2.2.2 Models with Growth Inhibitors 

At high concentrations of substrate or product and in the presence of inhibitory 

substances in the medium, growth becomes inhibited and growth rate depends on inhibitor 

concentration.  The inhibition pattern of microbial growth is analogous to enzyme inhibition. 

Therefore, all the models that have been developed for enzyme inhibition can be applied to 

express cell growth inhibition. Some of the models are listed as follows:  

2.2.2.2.1 Substrate Inhibition  

At high substrate concentrations, the microbial growth rate is inhibited by the 

substrate. As in enzyme kinetics, substrate inhibition of growth may be competitive or 

noncompetitive. The major substrate-inhibition patterns and expressions are as follows 

(Shuler and Kargi, 2002):  

Noncompetitive substrate inhibition: 

µ µ=
+



 +






max

1 1
K

S

S

K
s

I

                                          (2.5) 

If K I>>Ks, then:  

                             µ µ=
+ +

maxS

K S S
Ks

I

2
                                            (2.6) 

which is also known as the Haldane substitute inhibition model.  

For competitive substrate inhibition:  
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   µ µ=
+





 +

maxS

K
S

K
Ss

I

1

                                            (2.7) 

where K I is the inhibition constant (mg L-1).  

2.2.2.2.2 Product Inhibition 

High concentrations of product can be inhibitory for microbial growth. Product 

inhibition may be competitive or noncompetitive. Ethanol fermentation from glucose by 

yeasts is a good example of noncompetitive product inhibition, and ethanol is the inhibitor at 

concentration above about 5%.   Important examples of the product inhibition rate expression 

are as follows (Lee, 1992; Shuler and Kargi, 2002): 

Noncompetitive product inhibition: 

                           µ µ
γ

=
+





 −




max

S

K S

P

Ps m

1                                (2.8) 

Competitive product inhibition: 

                               µ µ=
+





 +

maxS

K
P

K
Ss

P

1

                                      (2.9) 

where P is the product concentration (mg L-1), Pm is the maximum product concentration (mg 

L-1) above which cells cannot grow due to product inhibition, γ is a constant that needs to be 

empirically determined, and Kp is the product inhibition constant (mg L-1) 
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2.2.2.2.3 Inhibition by Toxic Compounds 

The following rate expressions are used for competitive, noncompetitive and 

uncompetitive growth inhibition by toxic compounds other than the substrate or product, in 

analogy to enzyme inhibition (Shuler and Kargi, 2002): 

Competitive inhibition:  

      µ µ=
+





 +

maxS

K
I

K
Ss

I

1

                                     (2.10) 

Noncompetitive inhibition:  

 µ µ=
+



 +






max

1 1
K

S

I

K
s

I

                                        (2.11) 

Uncompetitive inhibition: 

µ µ=

+
+


















+







maxS

S
K

I

K

I

K
s

I

I1

1

                               (2.12) 

where I is the toxic compound concentration (mg L-1) and K I is the inhibition constant.  

In some cases, death occurs in the growth phase of cells. The net specific rate 

expression in the presence of death has the following form: 

       µ µ=
+

−max 'S

K S
K

s

d                                           (2.13) 
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where K ’
d is the death-rate constant (h-1). 

The deceleration growth phase follows the exponential phase. In this phase, growth 

decelerates due to the depletion of one or more essential nutrients or the accumulation of 

toxic by-products of growth. For a typical culture, these changes occur over a very short 

period of time. The rapidly changing environment results in unbalanced growth during which 

cell composition and size will change. In this phase, the stresses induced by nutrient 

depletion or waste accumulation cause a restructuring of the cell to increase the prospects of 

cellular survival in a hostile environment.  

The stationary phase starts at the end of the deceleration phase, when the net growth 

rate is zero (no cell division) or when the growth rate is equal to the death rate. Even though 

the net growth rate is zero during the stationary phase, cells are still metabolically active and 

produce secondary metabolites (nongrowth-related metabolites). During this phase, one or 

more of the following phenomena may take place:  

1) Total cell mass concentration may stay constant, but the number of viable cells   

may decrease. 

2) Cell lysis may occur and viable cell mass may drop. A second growth phase may 

take place and cells may grow on the products of lysed cells (cryptic growth). 

3) Cells may not be growing but may have active metabolism to produce secondary 

metabolites.  

During the stationary phase, the cell catabolises cellular reserves for new building 

blocks and for energy-producing monomers. This is called endogenous metabolism. The 

appropriate equation to describe the conversion of cell mass into maintenance energy (energy 
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expenditure to maintain an energized membrane and transport of nutrients and for essential 

metabolic functions) or the loss of cell mass due to cell lysis during this phase is: 

         
dX

dt
K Xd= −                                               (2.14) 

where Kd is a first-order rate constant for endogenous metabolism. Because S is zero, µ is 

zero in the stationary phase. 

The death phase (or decline phase) follows the stationary phase. However, some cell 

death may start during the stationary phase, and a clear demarcation between these two 

phases is not always possible. Often, dead cell lyse and intracellular nutrients released into 

the medium are used by the living organism during stationary phase. At the end of the 

stationary phase, because of either nutrient depletion or toxic product accumulation, the dead 

phase begins. The rate of death usually follows first-order kinetics: 

           
dN

dt
K Nd= − '                                            (2.15) 

where N is the concentration of cells at the end of the stationary phase. 

To better describe growth kinetics, the stoichiometric relationship between the 

substrate utilization and biomass production is defined as (Shuler and Kargi, 2002): 

         
dX

dt
Y

dS

dtX S= − /                                           (2.16) 

where YX/S is the yield coefficient (mg dry weight of biomass/mg of substrate) and is defined 

as the ratio between the amount of biomass produced and the amount of substrate consumed.  

         Y
dX

dSX S/ = −                                                (2.17) 
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In a continuous system, yield coefficient (true growth yield) is constant for 

microorganisms. At the end of the batch growth, however, we have an apparent growth yield 

(or observed growth yield). Because culture conditions can alter patterns of substrate 

utilization, the apparent growth yield is not a true constant.  

2.2.3 PAH-Degrading Microorganisms 

Microorganisms can be isolated from almost any location and will adapt and grow 

over a broad range of conditions. Because of the adaptability of microbes and pervasiveness 

of PAHs in the environment, many different microorganisms have been used to remediate 

PAH-contaminated sites.    

Janikowski et al. (2002) reported the use of Sphingomonas aromaticivorans B0695 

for biodegradation of PAH compounds in a two-phase partitioning bioreactor (TPPB). 

Sphingomonas aromaticivorans B0695 was originally isolated from deep subsurface 

sediment of the Atlantic Coastal Plains and recently identified as possessing the ability to 

degrade up to seven low molecular weight (LMW) PAHs (Fredrickson et al., 1995; 

Fredrickson et al., 1999; Rockne and Strand, 1998). This bacterium is now available from the 

Subsurface Microbial Culture Collection (SMCC) as SMCC B0695 at Florida State 

University. In Janikowski et al.’s study, the capability of this bacterium to effectively 

degrade two LMW PAHs (naphthalene and phenanthrene) was firstly observed in the TPPB. 

It was found that the bacterium completely biodegradaed 4.5 g of both compounds in less 

than 75 h at a volumetric biodegradation rate of 40 mgL-1h-1. This biodegradation rate 

corresponded to an overall volumetric rate of 33 mg L-1 h-1 for naphthalene and 21 mgL-1h-1 

for phenanthrene. The yield coefficient, YX/S, for this fermentation was found to be 0.55 g 
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cells/ g substrate which was comparable to the value reported by Saner et al. (1996) for a 

mixed culture. Additionally, the effect of a co-solvent (dodecane/ethanol) on the 

biodegradation of four LMW PAHs (naphthalene, phenanthrene, anthracene and 

acenaphthene) was examined in the TPPB. The yield coefficient generated in this system was 

0.88 g cells / g PAHs which was higher than that achieved in the system without solvents 

present. The higher yield coefficient was attributed to the extra carbon sources for the 

bacterium from the solvents. Also, an initial lag phase of approximately 12 h for PAHs was 

observed in the presence of solvents, and it was believed that this lag phase occurred because 

the bacterium was using ethanol (one of the solvents) as the substrate before commencing to 

utilize the PAHs. The individual PAH degradation rates were determined to be 38 mg L-1h-1 

for both naphthalene and phenanthrene and 1.6 mg L-1h-1 for both anthracene and 

acenaphthene. It was suspected that the lower biodegradation rates for the latter two 

compounds were due to a nutrient deficiency in the medium, which was confirmed by the 

higher biodegradation rates (85 mg L-1h-1 for both naphthalene and phenanthrene, and 11 mg 

L-1 h-1 for both anthracene and acenaphthene) obtained in this study after increasing the 

concentration of yeast extract, tryptone and salts in the medium. They also pointed out that 

oxygen limitation occurred during all the biodegradation experiments in the TPPB. The true 

capability of the bacterium, S. aromaticivorans B0695 to degrade PAHs should be 

substantially improved if oxygen limitation can be avoided.  

Yeom and Ghosh (1998) discussed the use of Pseudomonas fluorescens DFC 50 and 

Acidovorax delafieldii in the bioremediation of artificially PAH-contaminated soils as well as 

the use of a mixed culture enriched from a mixture of manufactured gas plant (MGP) soil and 

a creosote-contaminated soil. These microorganisms, including the natural consortium 
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enriched from field, were reported to be able to use naphthalene and phenanthrene (rich in 

the MGP soil) as sole carbon and energy sources. In addition, the effect of contamination age 

(duration of time a soil is contact with PAHs) on the bioavailability of soil-bound PAHs was 

investigated using artificially contaminated soils with phenanthrene . It was concluded that in 

soils with recent contamination, mobilization of contaminants to the aqueous phase was not a 

major issue; therefore, surfactant-washing effects on such soils was not found. However, a 

significant retardation of biodegradation with an increase in contamination age was observed 

in the absence of surfactant and believed to be due to mass transfer limitations. Evidence of 

mass transfer limitations for soils with long contamination age were also reported earlier by 

other researchers (Hatzinger and Alexander, 1995; Yeom and Ghosh, 1993).  

Several bacterial strains were isolated following enrichment of pristine sand and 

organic soils, and from eight soils chronically contaminated with crude oils, diesel, bitumen, 

waste lubricating oil, gasoline or gas condensate by Smith et al. (1997). In their studies, 

naphthalene and phenanthrene degraders were enriched from all 10 soils examined and the 

fastest growing bacterium (a Gram-negative rod) was designated as PD2 which metabolised 

both PAHs. A 4-membered bacterial consortium (designated as DC1) with the ability to 

degrade pyrene was obtained from the diesel-contaminated soil. The results of studies with 

sand and organic soils showed that the inoculation with PD2 did not accelerate the rapid 

natural attenuation of naphthalene by indigenous microorganisms in both soils, suggesting 

that naphthalene was readily available to microorganisms. Additionally, it was demonstrated 

that inoculation with PD2 accelerated bioremediation of phenanthrene in both soils; however, 

biodegradation of phenanthrene ceased in DC1-inoculated soils after a period of time 

compared with PD2, indicating that the PD2 species might enhance bioavailability by 
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producing exoenzymes or surfactants. The observation of differential bioavailability of soil-

sorbed PAHs to different bacterial species was also reported by Guerin et al. (1992) and 

Providenti et al. (1995). In Smith et al.’s studies, inoculation of sand and organic soils with 

DC1 was also found to accelerate biodegradation of pyrene, but 40% and 60% of the pyrene 

was left undegraded in sand and organic soil, respectively. This was attributed to lower 

bioavailability of pyrene and its metabolites, particularly in organic soil where sorption 

capacity for pyrene was 47-fold greater than sand.    

Many other bacteria including pure bacterial strains and mixed cultures have been 

reported to remediate PAH-contaminated sites. Ye et al. (1996) addressed the successful 

degradation of more difficult degradable PAHs such as fluoranthene, pyrene, 

benz[a]anthracene, chrysene, benzo[a]pyrene and benzo[b]fluoranthene by Pseudomonas 

paucimobilis. Schneider et al. (1996) reported the use of Mycobacterium sp. in the 

remediation of pyrene, benz[a]anthracene and benzo[a]pyrene. Ghoshal and Luthy (1996; 

1998) and Ghoshal et al. (1996) presented kinetic data for naphthalene degradation, including 

the following Monod parameters for a mixed culture isolated from PAH-contaminated soil 

and grown on naphthalene over a long period of time in aerobic slurry systems: yield 

coefficient, YX/S, equal to 0.25±0.08 g dry biomass/ g naphthalene; maximum specific 

growth rate, µmax, 0.067 h-1 and saturation constant, Ks, 3.4 mg L-1.   

The use of Pseudomonas putida in the remediation of PAH-contaminated sites has 

been increasingly attractive. Guerin and Boyd (1992) reported that Pseudomonas putida 

ATCC 17484 had superior characteristics in both the rate and extent of naphthalene 

biodegradation. Marx and Aitken (2000) suggested that bacterial chemotaxis to a pollutant 

can overcome the mass transfer limitations that may govern biodegradation rates in 



 29 

contaminated environments. They showed that a motile wild strain of Pseudomonas putida 

exhibited better naphthalene degradation performance when compared to a nonmotile mutant 

or a mutant deficient in naphthalene chemotaxis.  

2.3 Bioremediation and Rate-L imiting Factors 

Bioremediation is the use of living microorganisms (bacteria, fungi of plant) to 

degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water 

and cell biomass. Bioremediation can take place under both aerobic and anaerobic 

conditions. In aerobic conditions, microorganisms use available atmospheric oxygen as an 

electron acceptor to function. Under anaerobic conditions, no oxygen is present and 

biological activity is supported by the presence of other electron acceptors. Sometimes, 

during the aerobic and anaerobic processes, intermediate products which are less, equal or 

more toxic than the original contaminants are formed.  

The control and optimization of bioremediation processes is a complex task and 

depends on many factors. These factors include (Vidali, 2001):  

• The existence of a microbial population capable of degrading the pollutants. 

• Environment factors such as temperature, pH, the presence of oxygen or other 

electron acceptors and nutrients to ensure the maximal growth and activity of 

microbes.  

• Toxic or inhibitory effects of the contaminants and their degradation products.  

• The bioavailability of contaminants for the microbial population. 
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It is not hard to enrich and/or isolate a microbial population which is capable to 

degrade the contaminants in the environment due to the adaptation. Environmental factors 

including the amount of oxygen and nutrients for the microbes, the temperature and pH in the 

system can often be regulated to the optimal values in ex situ bioremediation processes. 

Factors like toxicity and viability of microbes have been investigated in laboratory tests and 

were usually found not to be significant (Erickson et al. 1993). However, what does control 

the overall biodegradation rate in most cases is the bioavailability of substrate (the 

contaminant) to the microorganisms.  

Bioavailability controls biodegradation rate because microbial cells must expend 

energy to induce catabolic gene systems used in the biodegradation. If the available 

contaminant concentration to microbes is very low, the induction will not occur. Two factors 

have been suggested to cause the low bioavailability of PAHs sorbed to soils and therefore 

lower the biodegradation rate of PAH-contaminated soil (Ashok, 1995; Bosma et al., 1997; 

Danielsson, 2000; Maier, 2000). First, it is difficult to provide an adequate concentration of 

PAHs to the bacterium in an aqueous phase because of the low water solubility of PAHs. 

Second, contaminant PAHs in the environment are strongly sorbed to the soil due to their 

strong hydrophobicity. The higher the molecular weight, the stronger is the affinity of PAH 

particles for the soil.   

2.4 Dissolution of PAH Par ticles 

Studies have revealed that PAHs in the solid state are consumed by microorganisms 

only after these compounds are transferred to the aqueous phase by dissolution (Volkering et 

al., 1992; Volkering et al., 1993). The dissolution of solid particles in liquids is an interfacial 
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mass transfer phenomenon in which the molecules on the particle surface leave the surface 

continuously, thus reducing the mass of particles (Purwaningsih, 2002).  The simplest theory 

for interfacial mass transfer involves a thin film, also called an unstirred layer, and a 

concentration difference between the interface and the bulk. The determining factors for the 

diffusive transport of PAH particles across this film are the diffusion coefficient and the 

distance (or film thickness) over which the solute is transported (Cussler, 1997). The 

dissolution rate of particles can be predicted by determining the solid-liquid volumetric mass 

transfer coefficient which is a function of diffusion coefficient, film thickness and surface 

area of particles.  

The dissolution rate of PAH particles can be improved by the hydrodynamic 

conditions of the system in the bioreactor. Riess et al. (2004) have demonstrated that the 

volumetric mass transfer coefficient of PAH particles was significantly enhanced in a novel 

BMB. The use of glass beads increased the turbulence at the interfacial surface of solid 

particles, reducing the film thickness and enhancing the mass transfer coefficient. On the 

other hand, the grinding force acting on the PAH particles by the beads broke up the PAH 

particles, increasing the surface area of particles and improving the mass transfer coefficient. 

Many other researchers also observed the effect of hydrodynamics on the mass transfer rate 

of PAH particles. Hixson and Sidney (1941) and Mulder et al. (1998) reported that the use of 

impellers in the bioreactor increased the mass transfer coefficient of naphthalene. The 

decrease in film thickness for naphthalene mass transfer was observed in Mulder’s study as 

the impeller speed in the bioreactor increased. The increased agitation speed increases the 

turbulence of the system and therefore reduces the film thickness and enhances the mass 

transfer coefficient.    
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2.5 Sorption Mass Transfer  

Due to the complexity of soil structure and constituents, there are several different 

sorption processes and mass transfer phenomena that control the release of contaminants in 

the soil. To locate possible sorbent domains and understand possible mass transfer processes 

involved, it is important to know the construction and the composition of the soil.  

2.5.1 Soil Structure 

Soil structure consists of aggregates of mineral grains that are clustered together with 

natural organic matter. Silt and sand particles are known to be coated with clay-sized 

particles (<2 µm) that are cemented to each other and to the larger particle by organic matter, 

mineral oxides and carbonates. The coatings of clay-sized particles can shield the organic 

matter from equilibrium with the bulk, which makes the sorbent organic matter (SOM) 

domain (see Section 2.5.2) a strong sorption site for PAHs. The coating can be thick in some 

places, such as in and along fissures and pits associated with the primary particle.  

The void volume between the aggregates of soil is called macro pores (>50 nm). In 

the saturated zone, these pores will be filled with water and constitute the bulk solution. The 

soil aggregates also have internal pores that usually are divided into meso- (pore diameter 2-

50 nm) and micro- (pore diameter < 2 nm) pores (see Figure 2.2). The meso pores will fill 

with sorbate at vapour pressures approaching saturation due to capillary condensation. The 

micro pores will influence sorbate sorption by the proximity of two solid surfaces. 
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2.5.2 Conceptual Model of the Geosorbent and Sorbent Domains 

Various types of soils and sediments are commonly referred to as geosorbents or 

simply sorbents. The geosorbents consist of structurally and/or chemically different 

constituents that interact differently with PAHs in terms of binding energies and rates of 

associated sorption processes. The soil may also contain combustion residues (e.g. chars, soot 

and ashes) and non-aqueous phase liquids (NAPLs e.g. tars, oils and solvents) that are 

entrapped or adherent to the geosorbents. These types of substances can also function as 

sorbents for PAHs and therefore they should be included in the conceptual model of possible 

sorbent domains in a soil or sediment (see Figure 2.2).   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Soil structure and a conceptual model of different sorbent domains in a soil (not 

to scale). A: absorption into soft sorbent organic matter (SOM) or NAPLs; B: absorption into 
dense SOM or combustion residues; C: adsorption to water-wet nonpolar heterogeneous 

organic surfaces; D: adsorption onto exposed water-wet mineral surfaces; E: diffusion into 
hydrophobic microporous regions of minerals (Danielsson, 2000) 
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The conceptual model consists of three principal domains (Danielsson, 2000): the 

mineral domain, the sorbent organic matter (SOM) that can be divided into dense and soft 

SOM, and the adherent or entrapped NAPLs.  

The mineral domain consists of three types of sorption sites: (i) external surfaces of 

the mineral grains, (ii) interlayer surfaces of swelling clays and (iii) surfaces within the pores 

of inorganic mineral matrices. 

The SOM domain has been formed through degradation of biopolymers. During 

diagenesis and sedimentation these degraded biopolymers are cross-linked, forming residues 

(e.g. humic material) that further could be altered under metamorphic conditions. This 

process creates diversity in composition and structure of the SOM domain, with dense and 

soft carbon, and therefore different sorptive properties can be expected. 

Adherent or entrapped NAPLs constitute the third domain. This sorbent domain may 

function as the soft SOM domain, except for highly weathered material or interfacial films. 

Combustion residues like soot may act as dense SOM. 

2.5.3 Sorption Mechanisms 

Luthy et al. (1997) summarize the possible sorption processes for hydrophobic 

organic contaminants (HOCs) such as PAHs in a soil from the conclusions drawn from 

macroscopic observations. Sorption mechanisms are usually described with respect to their 

exchange kinetics and type of isotherm. Table 2.2 lists these types of macroscopic 

experimental observations. It gives an indication of the different sorption mechanisms and 

sorption domain for the sorption processes. 
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The different proposed sorption cases, marked by letters from A to E, in the left 

column of Table 2.2 refer to the same letters in Figure 2.2. It should be noted that it is 

difficult to distinguish between the cases B and E (see Table 2.2) since they may have similar 

macroscopic behaviours. What also complicates the interpretation of macroscopic data is that 

not only one sorption mechanism dominates the sorption processes in any particular case.  

 
Table 2.2: Possible sorption cases, regarding sorption of HOCs to soil (Cussler , 1997) 

Sorption cases Exchange kinetics Isotherm 

A: absorption into soft SOM or 

NAPLs 

Fast (<minutes) if particles 

are disaggregated 
Linear 

B: absorption into dense SOM or 

combustion residues 

Slow (>days); sorption-

desorption hysteresis 

Possible linear after very 

long equilibrium 

C: adsorption onto water-wet 

organic surfaces 
Fast (<minutes) Nonlinear 

D: adsorption onto exposed 

water-wet mineral surfaces (e.g. 

quartz) 

Fast (<minutes) 

Linear because only 

small energy differences 

among sites 

E: adsorption into microporous 

mineral (e.g. zeolites) 

Slow (>days); sorption-

desorption hysteresis 

Nonlinear if pore size is 

variable 

 

2.5.4 Sorption Rated Mass Transfer  

Mechanisms of mass transfer with the presence of soil can be characterized by soil 

pore size. Mass transfer in the macropores and in the bulk solution is dominated by advection 

and dispersion. In the meso- and micropores different types of diffusion describe the mass 

transfer, depending on sorption domain where the process takes place.  
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2.5.4.1 Advection 

If the macropores are big enough for the microorganisms to move in, they are often 

referred to as the bulk solution. In this region, the mass transfer is controlled by advection 

and dispersion, which are much faster processes than diffusion and therefore not considered 

as rate-limiting factors for the overall rate of mass transfer. Furthermore they do not control 

the bioavailability since the processes are fast and often take place in the bulk phase. 

2.5.4.2 Diffusion 

The release of a contaminant can undergo several diffusion processes but the 

diffusion in soil or sediment is most reasonably explained by two mechanisms. If the solute is 

absorbed to SOM (case A and B), it can be assumed that the sorbate is only associated with 

soil organic matter and the penetration of the organic matter itself is diffusion limited. This 

type of diffusion is called intra organic matter diffusion or solid phase diffusion and can lead 

to extremely slow desorption rates of some fractions of the sorbate. The second mechanism 

assumes that the solutes are retarded by very slow diffusion through the intra-aggregate pores 

of the mineral domain (release from domain E). This is usually called retarded intra particle 

diffusion or diffusion into microporous regions of minerals.  

2.5.4.2.1 Intra Organic Matter Diffusion 

The hypothesis of intra organic matter diffusion is based on the known behaviour of 

small organic molecules in synthetic organic polymers (Cussler, 1997). Values of diffusion 

coefficients (D) in polymers are orders of magnitude less than in liquid solution. It is not 

unusual that the polymers have an internal heterogeneity. Humic polymer, for example, is 



 37 

believed to be denser and more hydrophobic with distance from liquid-humic interface. This 

heterogeneity of the humic polymers causes a wide range of D values for the diffusing 

molecules. Intra organic matter diffusion of PAHs through a SOM-matrix is often modelled 

as solute transports through either a rubber polymer or a glassy polymer depending on if the 

diffusion is considered to occur in the soft or in the dense SOM domain. The glassy polymers 

are said to have a condensed and rigid structure with respect to the order and cohesive forces 

of the polymer chains, while the rubber polymers are more expanded and flexible. Reported 

D values, for PAHs estimated at room temperatures, range from 10-7 m2 h-1
 (in rubber 

polymers) to 10- 21
 m2 h-1 (in glassy polymers). This gives a hint about how much slower the 

diffusion of solutes is in the denser regions of SOM compared to the soft regions. 

2.5.4.2.2 Retarded Intra Particle Diffusion  

Rapid and reversible partitioning of sorbate between the pore walls and the pore fluid 

retards the diffusion through the pore fluids. The pore diffusivity, Dp, will be much less than 

the bulk aqueous diffusivity, Db, since tortuous pathways, dead-end pores, and variability in 

pore diameter reduce the diffusion rate of the solute. In addition, for very small pore 

diameters, pore constrictivity will also play an important role.  

Two major physical differences between intra organic matter diffusion and retarded 

intra particle diffusion are the sizes of the pores and the pore networks. The sizes of the 

“pores”  associated with organic matter are similar to the sizes of the sorbate molecules, 

whereas for porous particles the pores are much larger than the diffusing molecules, except in 

the case of extreme hindrance. The pore network for porous particles is fixed and is 
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comprised of rigid pores, while the “pore network”  associated with organic matrices is 

dynamic and the “pores”  are short-lived rather than fixed. 

2.5.4.2.3 Film Diffusion 

A much faster diffusion process, than the two mentioned above, is film diffusion, 

where the solute diffuses through a stagnant film between the particle and the bulk solution 

(release from domain C and D). The diffusion coefficient in the fluid film has much larger 

values than the diffusion coefficients in organic matter or in pores of the soil aggregates. 

Many researchers have shown that film diffusion resistance is generally insignificant in 

comparison to other mechanisms like intra organic matter diffusion and retarded intra particle 

diffusion regarding what is considered to be the rate-limiting step in the overall mass transfer 

(Weber and Miller, 1988).  

 
2.5.5 Factors Affecting the Release Rate of Sorbed PAHs   

2.5.5.1 Aging Processes 

 Sorption of PAHs to soils and sediments often involves an initially rapid and 

reversible process followed by a period of slow sorption occurring over weeks, months or 

even years. This slow sorption may lead to a chemical fraction that resists desorption (Ball et 

al., 1991). The processes by which organic compounds become increasingly desorption-

resistant in soils and sediments, sometimes called chemical aging, are poorly understood. 

However several mechanisms have been described for the aging of chemicals in soils and 

sediments. 
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One hypothesis for aging suggests that the contaminant slowly diffuses into the small 

pores of the soil aggregates and becomes entrapped. Diffusion from these micro pores will be 

retarded by the tortuousity of the pores and by the partitioning of the chemical between pore 

water and organic matter on pore walls (Steinberg, et al., 1987; Wu and Geschwend, 1986). It 

is also possible that the formation of strong bonds between organic compounds and soil or 

sediment constituents may account for their resistance. Luthy et al. (1994) showed that the 

rate of naphthalene mass transfer from tar to water decreased with aging of the tar in slurry 

reactor experiments.  

2.5.5.2 Pulver ization or  Acidification of Soil Aggregates 

Pulverization of the soil aggregates can promote the release of contaminants to the 

aqueous phase. Contaminants in inaccessible regions become available as these regions are 

exposed by pulverization. Another method to enhance the release rate of the sorbate is 

acidification. Acidification causes dissolution of Fe oxides and Al oxides, which are believed 

to act as cementing agents in the formation of soil aggregates. The dissolution leads to partial 

disaggregation of the particles, thereby exposing sorbate in more remote regions of the 

matrix to bulk solution. 

Pignatello (1990) believed that the slow release of HOCs was the result of diffusion 

limited desorption of molecules from remote regions in the soil matrix rather than breakage 

of specific, directed bonds between sorbate and soil components. In the experiments 

Pignatello pulverized contaminated soil, which greatly increased the release of residual 

contaminant to solution. Pignatello showed that it was difficult to rationalize this by bonding 

mechanisms since pulverization increased the surface area and exposed more sites for 
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interaction. Acidification experiments, to enhance the release of contaminants, on 

fractionated soil samples were also performed. The relative amount released by acid was 

highest for the fine sand fraction and lowest for the clay fraction. 

2.6 Cometabolism of PAHs 

Since most PAH contaminants are found to exist as mixtures in the environment, it is 

important to understand the growth behaviour of single microbial specie on mixtures of PAH 

compounds.  

The term of cometabolism was defined as transformation of a non-growth substrate 

by growing cells in the presence of a growth substrate, by resting cells in the absence of a 

growth substrate, or by resting cells in the presence of an energy substrate (Horvarth, 1972). 

A growth substrate refers to an electron donor that provides reducing power and energy for 

cell growth and maintenance. An energy substrate is defined as an electron donor that 

provides reducing power and energy, but does not by itself support growth.  

Walter et al. (1991) observed the cometabolism phenomenon in the bioremediation of 

PAHs. It was found that a pyrene-degrading Rhodococcus had the capability to 

cometabolically degrade naphthalene at a concentration of 250 mg L-1 but was unable to 

grow on naphthalene alone. Bouchez et al. (1995) isolated several bacterial strains from 

abandoned MGP sites which demonstrated cometabolism effects. A strain identified as 

Pseudomonas sp. exhibited cometabolism effect to fluoranthrene when phenanthrene was 

used as the main substrate. Another strain characterized as a pyrene-degrading Rhodococcus 

demonstrated cometabolism effect to fluorene after being exposed to phenanthrene and 

fluorene, although unable to use fluorene alone as carbon and energy sources.  
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2.7 Bioreactors 

To construct any process, an important decision is the configuration of the bioreactor 

system. The choice of bioreactor and operating strategy determines product concentration, 

degree of substrate conversion, yields, and whether sustainable, reliable performance can be 

achieved. Unlike many traditionally chemical processes, the bioreactor section represents a 

major component (usually >50%) of the total capital expenditures. Therefore, bioreactors 

should be designed to minimize the costs of the product while maintaining the desired 

process performance and product quality (Carberry, 1976).  

It has been known that the stirred tank bioreactor has its advantage to remediate PAH-

contaminated soil in a slurry system (Bosma, 1997; Tabak, 1998) based on the fact that the 

biodegradation of suspended PAHs may be limited by the slow dissolution rate. Stirred tank 

bioreactors offer an advantage in this case since the dissolution rate of PAH particles can be 

increased with agitation. The increased dissolution rate comes from two factors both of 

which directly enhance the volumetric mass transfer coefficient: one is the reduced film 

thickness due to the intense turbulence generated by the agitation inside the bioreactor; the 

other one is the increased interfacial surface area of the PAH particles as a result of collision 

between particles and particles and impeller, again due to agitation.  

 In the stirred tank bioreactor, PAH-contaminated soils or pure PAH particles are 

mixed with water to form a slurry. Water is an essential solvent and is needed for all 

biochemical reactions in living system (Carberry, 1976). The growth of microorganisms is 

strongly dependent on the availability of water, and the nutrients used for the synthesis of 

microbial cells are dissolved in water.   
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Figure 2.3: Schematic diagram of batch bioreactor 
 

The performance of bioreactors can be predicted by the mathematical models derived 

from a material balance for the reactants or products around the bioreactor as shown below:  

                     RAccumulation=RInput-ROutput+RProdution         (2.18)      

2.7.1 Batch Bioreactor   

Many biochemical processes involve batch growth of cell populations. Figure 2.3 

shows a schematic diagram of a batch bioreactor. After seeding a liquid medium with an 

inoculum of living cells, nothing (except possibly some gas) is added to the culture or 

removed from it as growth proceeds. Typically in such a bioreactor, the concentrations of 

nutrients, cells and products vary with time as growth proceeds.  

 

 

 

 

 

 

 

 

As discussed above, the performance equation of a batch bioreactor can be derived 

from the material balance for the substrate around the bioreactor as follows:  

         γ µs
X S

dS

dt

X

Y
= = −

/

                                    (2.19) 

where t is time and rs  is the rate of substrate consumption (mg L-1 h-1).  
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Figure 2.4: Schematic diagram of CFSTR 
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For a batch bioreactor, four distinct phases are present: lag phase, exponential growth 

phase, harvesting, and preparation for a new batch (e.g., cleaning, sterilizing and filling). 

2.7.2 Continuous Flow Stir red Tank Bioreactor  (CFST) 

Figure 2.4 shows a schematic diagram of a CFSTR. Such configurations for 

cultivation of cells are frequently called chemostats, where the concentrations of each 

component within the vessel are independent of time. As Figure 2.4 suggests, mixing is 

supplied by means of an impeller, rising gas bubbles, or both. It is assumed that the mixing in 

this type of system is so vigorous that each phase of the vessel contents is of uniform 

composition. The schematic indicates an important implication of this complete-mixing 

assumption: the liquid effluent has the same composition as the bioreactor contents.  

  

 

 

 

 

 

 

The performance equation of a single CFSTR can be obtained from the material 

balance for the substrate over the bioreactor as shown below: 

       
V

F

S SIn Out

s

= −
γ

                                           (2.20) 

X i 
Si 
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in which SIn= substrate concentration in the input stream (mg L-1) 

               SOut=substrate concentration in the output stream (mg L-1) 

               F=volumetric flow rate of fresh media, which is normally constant (L h-1); 

V=volume of the media in the bioreactor which is also constant at steady state (L) 

Because of the complete mixing in the CFSTR, the dissolved oxygen concentration is 

the same throughout the bulk liquid phase. This is of crucial importance in considering 

aerated CFSTRs because we can often decouple the aerator or agitator design from 

consideration of the reaction processes. Similar logic is also usually applied to the heat-

transfer problems which can accompany microbial growth. As long as the vessel is well 

stirred and is equipped with a satisfactory temperature controller, we can assume that it is 

isothermal at the desired temperature for the microbial growth.  

There are several disadvantages and advantages for the batch scheme compared to the 

CRSRT system (Carberry, 1976; Bailey and Ollis, 1986).  The first one is the operability and 

reliability: batch cultures can suffer great variability from one run to another. Variations in 

product quality and concentration create problems in downstream processing and are 

undesirable. However, long-term continuous culture can be problematic; pumps may break, 

controllers may fail, and so on. Maintenance of sterility (absence of detectable foreign 

organisms) can be very difficult to achieve for periods of months, and the consequences of a 

loss of sterility are more severe than with batch culture.  

Another primary reason for the choice of batch systems over chemostats is genetic 

instability. The biocatalyst in most bioprocesses has undergone extensive selection. These 

highly “bred”  organisms often grow less well than the parental strain. A chemostat imposes 
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strong selection pressure for the most rapidly growing cell. Back-mutation from the 

productive specialized strain to one similar to the less productive parental strain is always 

present. In the chemostat the less productive variant will become dominant, decreasing 

productivity. In the batch culture the number of generations available for the revertant cell to 

outgrow the more productive strain is limited.  

One other advantage for batch bioreactor is market economics. A continuous system 

is dedicated to a single product. Many fermentation products are required in small amounts 

which is a tough requirement for the CSTR. Batch systems provide much greater flexibility 

because the same bioreactor can be used for two months to make product A and then for the 

next three for product B and the rest of the year for product C.  

2.7.3 Fed-Batch Operation 

In fed-batch system, nutrients are continuously or semicontinuously fed, while 

effluent is removed discontinuously. A schematic diagram of fed-batch system is shown in 

Figure 2.5.  

Fed-batch culture is usually used to overcome substrate inhibition or catabolite 

repression by intermittent feeding of the substrate. If the substrate is inhibitory, intermittent 

addition of the substrate improves the productivity of the fermentation by maintaining the 

substrate concentration low. Fed-batch operation is also called the semicontinuous system or 

variable-volume continuous system.  

An example of fed-batch culture is its use in some antibiotic fermentations, where a 

glucose solution is intermittently added to the fermentation broth due to the repression of 

pathways for the production of secondary metabolites caused by high initial glucose 
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Figure 2.5: Schematic diagram of fed-batch system 
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concentrations. The fed-batch method can be applied to other secondary metabolite 

fermentations such as lactic acid and other plant cell and mammalian cell fermentations, 

where the rate of product formation is maximal at low nutrient concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.4 Roller  Bioreactor  

Although there are benefits of using mechanical stirring in a slurry bioreactor as 

discussed before, the negative effects of mechanical stirring on the system in the bioreactor 

are not negligible. The splash of PAH particles by the mechanical stirring may take most of 

the particles out of the solution. Additionally, due to the strong hydrophobicity of the PAH 



 47 

particles, they may stick to the various parts of the bioreactor and can not be brought back 

into the solution easily. Both of these two factors result in the limited presence of substrate in 

the solution, reducing the bioavailability of PAHs to microorganisms. The roller bioreactor, 

however, may offer an advantage in these cases because its rotation movement is very gentle, 

without splashing the particles out of the solution, and it may increase the residence time of 

the particles in the solution by continuously washing all the PAH particles as the vessel 

rotates around the fluid.  

The use of a roller drum bioreactor for the bioremediation of PAH-contaminated soil 

has been investigated by several researchers. Gray et al. (1994) employed it for the 

bioremediation of anthracene-contaminated soil, Brinkmann et al. (1998) for the 

bioremediation of diesel fuel-contaminated sludge, and Jauhari et al. (1999) for the solid state 

fermentation of Rhizobium leguminosarum. In all these studies, the roller drum bioreactor 

demonstrated the ability to remediate high solid content of contaminated soil and the water 

content was only < 40%. It was also revealed that the oxygen supply for the microbial cells 

was an important factor in these processes and the oxygen uptake was enhanced by 

increasing the rotational speed at a constant aeration rate. The available information on the 

bioremediation of low solid contents of slurry solutions using roller bioreactors has not yet 

been reported.  

Previous studies by Riess et al. (2004) showed that a novel roller BMB exhibited an 

excellent performance in terms of mass transfer and biodegradation of suspended PAH 

particles using a Pseudomonas putida as the degrader. In this roller bioreactor, the mass 

transfer rate of PAH particles was significantly enhanced in comparison to the conventional 

roller bioreactor and therefore the biodegradation rate was considerably increased. The 
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information on the bioremediation of PAH-contaminated soil slurry in this novel BMB was 

not available prior to the present study.   

2.7.5 Roller  Baffled Bioreactor  

The main barrier for the use of conventional roller bioreactor (empty bottle rolling on 

a roller apparatus) was the slow mass transfer of PAHs from solid phase to aqueous phase 

because the suspended PAH particles just sat on the top of the liquid phase due to their 

physical properties (Bosma et al., 1997; Ashok, 1995). The employment of the BMB has a 

significant benefit for this case as discussed above. However, the charge of beads in the 

bioreactor reduced the bioreactor capacity for the contaminated media or soils in one batch 

compared to the conventional roller bioreactor. In the treatment of a set volume (or mass) of 

PAH-contaminated water (or soil), more stops and starts will be conducted in a sequencing 

batch operation mode, which is not very practical at the industrial scale. This disadvantage 

could be overcome by a roller baffled bioreactor in which baffles with a negligible volume 

are installed without the expense of desired mass transfer and biodegradation rates.  

The application of different types of baffled bioreactors has been studied in the 

research area of biotechnology. Gaidhani et al. (2003; 2005) and Ni et al. (2004) reported the 

use of oscillatory baffled bioreactor (OBB) for the production of pullulan, a well-known 

extracellular polysaccharide produced by the aerobically growing yeast-like fungus 

Aureobasidium pullulans, or for the study of mass transfer in yeast, respectively. The first 

authors revealed that produced pullulan deposited on the outside of the fungal cells, and 

because of the low oxygen permeability of the pullulan, this layer acted as a barrier for the 

transfer of oxygen from the medium to the fungus, restricting the cultivation of the pullulan. 
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They also claimed that the conventional impeller-driven vessels exhibited a gradient in 

mixing capabilities, with high intensities at and near the impeller but low intensities in 

peripheral regions, inhibiting the process of pullulan generation in regions distant from the 

impeller and thus leading to reduced productivity. The oscillatory baffled bioreactor, 

however, offered enhanced and uniform mixing at very low shear rate compared with 

conventional mixing vessels, providing better control over the cultivation of pullulan. In their 

studies, they also reported that, at the optimal volumetric air flow rate of 1 vvm (volume of 

air per volume of liquid per min), the performance of the OBB was significantly better than 

the traditional stirred tank fermenter. The second authors investigated the performance of 

three different baffled geometries, a 50-mm-diameter column with the presence of a series of 

wall (orifice) baffles, the same column with central (disc) baffles, or with a mixture of both. 

They found that the orifice baffles gave the highest and sharpest increase in the oxygen 

transfer rate, and an 11% increase in the value of KLa in this bioreactor was observed 

compared to the stirred tank bioreactor.  

The application of a simple roller baffled bioreactor in the bioremediation of PAH-

contaminated water or soil has not yet been reported. Based on the capacity of holding up a 

full charge of contaminated water or soil and providing desirably uniform mixing of 

particles, this roller baffled bioreactor might be the optimum bioreactor strategy for the 

bioremediation of hydrophobic organic pollutants.  
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CHAPTER 3   MATHEMATICAL MODELS 

 

3.1 Mass Transfer  Model 

     The mathematical model used to calculate the dissolution rate of suspended PAH 

particles is developed according to film theory. The concentration gradient over the film is 

assumed to be established rapidly in relation to the change in concentration in the bulk 

solution, so the flux through the film is considered constant at any given moment (Mulder, et 

al., 1998). The flux of substance from the particle interface to the bulk liquid phase can be 

described based on a mass balance over a certain thickness of film:                                                               

                   )( Ls CC
D

N −=
δ

                                       (3.1) 

where N: flux (g m-2 h-1)  

     D: diffusion coefficient in liquid (m2 h-1) 

     δ: film thickness (m) 

     Cs: saturation concentration in liquid phase (g m-3) 

     CL: dissolved concentration in liquid phase (g m-3) 

By definition, the ratio of the diffusion coefficient to the film thickness can be 

expressed as:  

             

           LK
D =
δ

                                                    (3.2) 

where KL is the film mass transfer coefficient (m h-1). The flux causes the change in substrate 

concentration with time that is observed in the bulk liquid phase, giving:   
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               NA
dt

dC
V L =                                                 (3.3) 

in which V is the liquid phase volume (m-3), and A is surface area of the particle (m2). 

Equations (3.1), (3.2) and (3.3) are combined, forming: 

            )( LsL
L CC

V

A
K

dt

dC
−=                                    (3.4) 

Since it is difficult to determine the surface area of particles, another form of mass 

transfer coefficient is often used (Purwaningsih, 2002):                               

          slLL aK
V

A
K )(=                                          (3.5) 

where (KLa)sl is the solid - liquid volumetric mass transfer coefficient (h-1). If experiments are 

carried out at constant temperature and over a short time interval (initial rate experiments) 

then (KLa)sl remains constant. Equation (3.5) is substituted into Equation (3.4) and integration 

with respect to the appropriate boundary conditions (CL=0 at t=0) gives: 

  { }[ ]taKCC slLsL ×−−= )(exp1                          (3.6) 

In this work, the volumetric mass transfer coefficient and saturation concentration were 

determined by best fitting the values of (KLa)sl and Cs (least squares minimization) in 

Equation (3.6) to the experimental data using the Solver routine in Excel.  

3.2 Bioremediation Kinetics 

Although the growth of microorganisms is a complex phenomenon, it is a common 

practice to represent this growth by a relatively simple expression. One of the most widely 

employed expressions for the specific growth rate, µ, is the Monod equation which states that 

µ increases with the concentration of a single essential substrate (Bailey and Ollis, 1986), as 
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Figure 3.1: Dependence of the specific growth rate on the concentration of 
the growth-limiting nutrient (Schuler and Kargi, 2002) 
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summarized in Section 2.2.2 in Chapter 2. For convenience, the Monod equation is rewritten 

here: 

       µ µ=
+max

S

K Ss

                                          (2.4) 

As can been seen from Figure 3.1, for the Monod equation, further increases in the 

substrate concentration after µ reaches µmax does not affect the specific growth rate. 

However, it has been observed that the specific growth rate decreases as the substrate 

concentration increases beyond a certain level, which is the situation of substrate inhibition 

as described in Section 2.2.2. Under such circumstances, the Haldane inhibition model has 

been proposed to express the specific growth rate (Shuler and Kargi, 2002): 

 µ µ=
+ +

maxS

K S S
Ks

I

2
     (K I>>Ks)                               (2.6) 
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As cells grow they produce metabolic by-products which can accumulate in the 

medium. The growth of microorganisms is usually inhibited by these products, whose effect 

can be added to the Monod equation as (Blanch and Clark, 1997; Lee, 1992): 

  µ µ
γ

=
+





 −




max

S

K S

P

Ps m

1                               (2.8) 

 

In addition to the specific growth rate, the equations for the rate of biomass 

concentration increase and the stoichiometric relationship between the substrate utilization 

and biomass production, as described in Section 2.2.2 in Chapter 2, are also included in the 

bioremediation kinetics. For convenience, the latter two expressions are listed here: 

       
dX

dt
X= ×µ                                                (2.2) 

         
dX

dt
Y

dS

dtX S= − /                                            (2.16) 

 

To obtain the parameters, µmax, KS, K I and YX/S, involved in Equations (2.2) to (2.16), 

numerical solutions of these equations was performed using Excel to fit experimental data to 

the models proposed. The method for the numerical modelling involves integration using a 

fourth-order Runga Kutta numerical scheme and best-fitting (least squares minimization) 

using the Solver routine in Excel.    

3.3 Sorption Isotherms 

The relationship between the amount of contaminant sorbed to soil and the 

concentration in the liquid phase can be described by linear or non-linear isotherms. The 
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simple linear isotherm has been frequently used in the past even though its description of 

many sorption processes is doubtful. It assumes that there are an infinite number of 

equivalent sites, independent of each other, available for sorption. The model becomes: 

                 LKCq =                                                  (3.7) 

where q (mg kg-1) is the sorbed contaminant concentration to soil, K (L kg-1) is the soil-water 

partitioning coefficient, and CL (mg L-1) is the concentration of contaminant in the liquid 

phase. Examples of processes that usually show linear isotherms are absorption into soft soil 

organic matter (SOM) or unweathered non-aqueous phase liquids (NAPLs), while absorption 

into dense SOM and combustion residues may exhibit some combination of linear and 

nonlinear behaviour (Danielsson, 2000). 

Varying adsorption energies can lead to isothermal nonlinearity (Miller and Weber, 

1988; Weber and Miller, 1988) and thus adsorption cases may yield nonlinear isotherms. 

Adsorption onto water-wet organic surfaces should exhibit nonlinear isotherms. Another way 

to describe why nonlinearity occurs is the limitation in the number of available sites for 

sorption. The affinity for solute decreases progressively with increasing solute concentration 

as sites become filled. Several nonlinear isotherms have been developed, but the most 

common alternatives to the linear isotherm are the Langmuir and the Freundlich isotherms. 

At low concentrations, monolayer adsorption at a small percentage of the available 

adsorption sites can be expected. This monolayer adsorption can be described by the 

Langmuir isotherm (Jonker and Koelmans, 2002; Paul et al., 2004): 

                  
L

L

bC

bCQ
q

+
=

1
max

                                           (3.8) 
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where Qmax (mg kg-1) is the maximum adsorption capacity of the sorbent and b (L mg-1) is the 

sorption affinity.  

The Freundlich isotherm is expressed by Equation (3.9) (Amrith and Xing, 2003; 

Smith, 1997): 

              
N

LaCKq =                                              (3.9) 

in which Ka (mg kg-1) (mg L-1)-N is the constant indicating sorption capacity and N is a 

constant relating to strength of retention or sorption intensity. The value of N is often less 

than 1 for sorption of PAHs to soil and its organic fractions.  

To compare the sorption capacity of soils for naphthalene, the experimental data were 

fit to these three sorption isotherms using Statistical Analysis Software (SAS) version 8 (SAS 

Institute Inc, 1985).  This permitted the evaluation of the best-fit isotherm and its constants. 
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CHAPTER 4   MATERIALS AND METHODS 

Since mass transfer plays a significant role in bioremediation of suspended PAHs, 

this research began by investigating mass transfer rates of suspended PAHs from particle 

surfaces to the aqueous phase in four different bioreactors. Bioremediation of suspended 

particles of naphthalene, 2-methylnaphthalene and mixtures of naphthalene and 2-

methylnaphthalene was then investigated using Pseudomonas putida ATCC 17484 as the 

candidate bacterium. Finally, in addition to these suspended PAH studies, the sorption, mass 

transfer and bioremediation of naphthalene-contaminated soils (sand, silt and clay) was 

investigated. 

 

4.1 Chemicals, Microorganism, Medium and Soils 

The PAHs (naphthalene, 2-methylnaphthalene and 1, 5-dimethyl naphthalene) used in 

this study were purchased from Sigma-Aldrich (Oakville, Ontario, Canada). The 

characteristics of the used PAHs are given in Table 4.1. All of the PAH compounds were 

ground and sieved to produce a uniform particle size before they were used. The particle 

sizes were measured using the Malvern Mastersizer S Long Bench Particle Size Analyzer and 

the Sauter Mean Diameters were obtained from the analysis reports (particle size 

distributions are presented in Appendix B, data assumes particles were spherical). 

 

 

 



 57 

Table 4.1: Character istics of the used PAHs 

PAHs 
Molecular  
Formula 

Molecular  
Weight 

Water  
Solubility *at 
25°C (mg L -1) 

Sauter  Mean 
Diameter  

(µm) 

Naphthalene C10H8 128.19 31 98.62 

2-methyl naphthalene C11H10 142.2 24.6 383.02 

1,5-dimethyl 
naphthalene 

C10H6(CH3)2 156.23 3 1091.58 

* (Mackay et al., 1992) 
 

Glucose was used as a carbon source for the initial growth of the bacterial cultures 

and was purchased from BDH (Toronto, Ontario, Canada). HPLC grade acetonitrile was 

employed as an eluent for HPLC analysis and was obtained from Sigma-Aldrich, Canada. 

Pure ethanol was used in the extraction of PAH samples and the preparation of standard 

solutions.  

Other chemicals used included K2HPO4 and Fe(NH4)2SO4 purchased from Baker 

Chemical; (NH4)2SO4, CaCl2 and MgSO4 from BDH (Toronto, Ontario, Canada); and  

KH2PO4, NaCl, H3BO3, CoCl3, ZnSO4.7H2O, MnCl2, Na2MoO4, NiCl2 and CuCl2 from 

Fisher Scientific (Ottawa, Ontario, Canada). 

The microorganism used in this study was Pseudomonas putida (ATCC 17484), 

obtained from the American Type Culture Collection, Rockville, Maryland, USA. These 

aerobic bacteria are chemoheterotrophic with an optimum growth in the temperature range of 

25-30 °C and in a neutral pH environment. For short time storage, agar plates inoculated with 

actively growing bacterial cultures were kept at 4°C. For long term storage, 930 µL of a 

concentrated bacterial culture grown on glucose or naphthalene was mixed with 70 µL of di-
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methyl sulfoxide (DMSO) and transferred into a 1 mL sterilized plastic tube. The tube was 

kept at -80°C. 

Modified McKinney’s medium developed by Hill (1974) was used for the growth and 

maintenance of P. putida. The composition of the minerals in one litre of growth media is 

shown in Table 4.2 and the composition of trace elements is shown in Table 4.3. The medium 

was prepared by first mixing the appropriate inorganic chemicals with one litre of Reverse 

Osmosis (RO) water that resulted in a buffered medium with a pH of 6.5-6.7 and which was 

then sterilized at 121 °C. 

Table 4.2: Modified McKinney’s medium in 1 litre of RO distilled water  

Substance Mass or  Volume 

KH2PO4 420 mg 

K2HPO4 375 mg 

(NH4)2SO4 237 mg 

NaCl 30 mg 

CaCl2 30 mg 

MgSO4 30 mg 

Fe(NH4)2SO4 10 mg 

Trace element 1mL 

 

Table 4.3: Trace element composition in l litre of reverse osmosis water  

Substance Mass (mg) 

H3BO3 300 

CoCl3 200 

ZnSO4.7H2O 100 

MnCl2 30 

Na2MoO4 30 

NiCl2 20 

CuCl2 10 
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Three types of soils (soil composition was listed in Section 5.4) with no history of 

PAH contamination were obtained from the Department of Soil Science, College of 

Agriculture, University of Saskatchewan. Prior to use, the soils were sterilized by UV lamp 

overnight. Following sterilization, soil samples were kept in sterilized sealed containers at 

room temperature (22±1 oC). 

4.2 Cell Culture 

4.2.1 Shake Flask 

Liquid cultures were prepared by first transferring two loops of bacteria colonies from 

a previously cultivated plate to a 250 mL Erlenmeyer flask with 100-150 mL of sterilized 

medium containing 250 mg L-1 of suspended naphthalene as a substrate. The shake flask was 

then placed on a rotary shaker at 200 rpm and maintained at 25-30 °C until the bacteria 

reached their exponential growth phase (20-48 hours depending on the age of the stored 

bacteria). When the age of stored bacteria on agar plates was more than 4 weeks, the bacteria 

were first grown in a shake flask with sterilized medium containing 1000 mg L-1 of glucose 

for 12-24 hours to achieve maximum growth and 5% of inoculum was then transferred to 

another shake flask with sterilized medium containing 250 mg L-1 naphthalene. The resulting 

culture at the mid-exponential phase was used as the inoculum sources for all experimental 

runs with any other substrate, and was also used to propagate the bacteria on fresh agar 

plates. 
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4.2.2 Agar Plates 

The composition of agar used for the storage of bacteria is presented in Table 4.4. The 

ingredients were stirred while heating to almost boiling or until the solution became clear. 

The solution was then sterilized for 15-30 minutes (depending on the load) at 121 °C. Under 

the biofilter cabinet hood (Class IIA/ B3), the agar solution was poured into Petri dishes 

when it was still warm. To spread the bacteria on the fresh agar, several loops of broth 

solution from the shake flask (see Section 4.2.1) were aseptically transferred and streaked on 

the agar plates. The cultivated agar plates were then placed in the incubator for 24 hours at 30 

°C and then stored at 4 °C. These agar plates were renewed every 4 weeks to ensure a fresh 

source of bacteria.  

Table 4.4: Composition of agar  in 100 mL of RO distilled water  

Substance Mass (g) 

Tryptose phosphate broth 3.0 

Bacto-agar 3.0 

 

4.3 Exper imental Apparatus 

A number of roller bioreactors were employed for this study. The whole experimental 

setup included two parts: a Bellco Biotechnology roller apparatus (model 7622-S0003, New 

Jersey USA) and a glass bioreactor with various configurations. The roller apparatus is a two 

level, variable speed unit equipped with 6 roller bars and a heavy-duty DC motor. A pulley is 

mounted at one side of each roller bar and all of the pulleys are connected to each other with 

belts arranged so that once the motor starts, the rollers rotate simultaneously.  
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To enhance the rates of mass transfer and biodegradation, different types of bioreactor 

configurations, besides the conventional bioreactor (empty bottle), were employed such as 

baffled, BMB and baffled bead mill bioreactors. These bioreactors were 2.3 L (inside 

diameter of 12.8 cm, height of 26.0 cm), narrow mouthed jars and rotated on the roller 

apparatus at a speed of 50 rpm. The bioreactors were operated with 1 L of working volume 

(volume of beads plus aqueous phase) at 22±1 oC. Teflon caps, equipped with stainless steel 

tubing, allowed sampling and continuous injection of air into the bioreactors. The roller 

apparatus and bioreactor are sketched in Figure 4.1 and a picture of the roller bioreactor is 

shown in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The Bellco roller apparatus and glass bottle 
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Figure 4.2: Photograph of the experimental setup of baffled BMB 
 

Since the uptake of oxygen was limited during the biodegradation of suspended PAHs 

with intermittent injection of air, a continuous air flow system was devised to meet the 

oxygen demand and therefore improve the biodegradation of PAHs. The continuous addition 

of air was achieved through a line which was hooked up to the air supply available in the lab. 

The air was first filtered through glass wool and then passed through a valve where its flow 

rate was controlled. Before passing to the bioreactor, the rate of air flow was measured with a 

previously calibrated Aalborg mass flow meter. A long metal syringe needle, acting as the air 

supply tubing, was inserted through a 6 mm (outside diameter) stainless steel tubing mounted 

through the bioreactor cap. The other end of the syringe needle was linked to the air supply 

line. The filtered air was injected into the headspace of the bioreactor. A plastic vent tubing 

with an inside diameter of 2 mm was also inserted through the stainless steel tubing with one 

end inside the bioreactor and the other end outside. A plastic tube with an inside diameter of 

6 mm was connected to the stainless steel tubing at one end and  enveloped both the syringe 

needle and vent tubing to prevent the outflow of broth from the bioreactor during continuous 
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air flow. The flow meter was set to a desired air flow rate (0.025 L/min) and frequently 

checked during experiments to ensure a constant air flow. The lay out of this arrangement is 

schematically presented in Figure 4.3.  

 

Figure 4.3: Schematic setup with a continuous air supply to the bioreactor 

 

4.4 Exper imental Procedures 
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To determine the mass transfer rates of suspended PAH particles, experiments were 

carried out by inserting particles into sterilized RO water in roller bioreactors at room 

temperature (22±1 oC). The experimental variables tested included the bioreactor 

configuration and types of PAH compounds. Four configurations including conventional 

(control), baffled (baffles were 14 cm in length and 1.5 cm in width and were held securely to 

the inside circumference of the jar by four stiff stainless steel springs), BMB and baffled 

BMB were investigated for each of the three PAH compounds as listed in Table 4.1. 
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To assess the effect of glass beads and baffles on the extent of mass transfer, 5 mm 

sterilized glass beads at a volumetric loading of 50% (volume of beads/working volume) 

were added to the sterilized control and baffled bioreactors containing 500 mL of sterilized 

water and 500 mg of PAH particles (1000 mg L-1 of PAHs based on aqueous phase volume). 

The roller bioreactors were then operated at a rotational speed of 50 rpm and the 

concentration of dissolved PAHs was monitored as a function of time until the saturation 

level was reached. Riess et al. (2005) have shown that this bead size, bead loading and 

rotational rate were optimal for enhancing naphthalene mass transfer. In all cases, control 

experiments were carried out under similar operating conditions but without baffles or glass 

beads and with 1000 mL of sterilized RO water and 1000 mg of substrate.  Similarly, when 

mass transfer runs were performed with baffles but no beads, 1000 mL of sterilized RO water 

and 1000 mg of substrate were again used since the baffles took up negligible volume inside 

the bioreactors.   

4.4.2 Biodegradation of Suspended PAHs 

Biodegradation of 500 mg L-1 (based on aqueous media volume) of naphthalene, 2-

methylnaphthalene or a up to 750 mg /L of mixture of these two substrates (250 mg L-1 of 

naphthalene and 500 mg L-1 of 2-methyl naphthalene) was studied in the conventional, 

baffled and bead mill bioreactors. For runs with 50% loading (volume of beads/ working 

volume), the sterilized bioreactors were initially filled with 500 mL of sterilized double 

concentration of McKinney’s modified medium. The working volume of the bioreactors was 

then set to 1000 mL by adding 5mm sterilized glass beads through a sterilized funnel. 

Measured amounts of designated substrates were then aseptically added to the glass jars. The 
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bioreactors were inoculated with 25 to 30 mL of a fresh, actively growing culture of P. 

putida. All the procedures were carried out inside a biosafety cabinet (Class IIA/ B3). After 

inoculation, the bioreactors were placed on the roller apparatus and operated at 50 rpm. The 

air flow meter was set to the desired low flow rate, 0.025 L min-1, in which the air stripping 

loss of PAHs was negligible but the oxygen supply was enough for the biological reaction. 

Samples of 10 ml were taken at various time intervals by pouring the broth out of the well-

shaken BMB through the cap tubing until the total PAH concentration reached zero. 5 ml of 

each sample was used to measure the total PAH concentration and the rest for the 

measurement of biomass concentration. Samples were always collected and analyzed in 

duplicate.  

Control experiments were performed under similar procedures but without beads or 

baffles and with 1000 mL of sterilized media. Similarly, for runs with baffles, 1000 mL of 

sterilized media were used. Rinsing with ethanol was used for sterilization of the baffled 

bioreactors.  

4.4.3 Sorption of PAHs to Three Soils 

Sorption experiments of naphthalene were carried out using five or six concentrations 

of dissolved naphthalene in a system containing soil and mineral media according to a batch 

slurry technique (Amrith et al., 2003; Park et al., 2002; Xing et al., 1996). An aliquot of each 

sterilized soil and a certain volume of Mckinney’s modified medium containing naphthalene 

stock (in ethanol) were prepared in a series of screw-cap glass vials with Teflon-lined septa. 

The soil/solution ratios were carefully selected to achieve approximately equal masses of 

naphthalene in both aqueous and solid phases at equilibrium. The soil/solution ratios were 1 g 



 66 

/ 42 mL for sand, 1 g / 168 mL for silt and 1 g / 420 mL for clay. The initial naphthalene 

concentrations ranged from 0 to 25 mg L-1 (below the saturation concentration of 31.7 mg L-

1). The headspace of glass vials was kept less than 1 mL in volume to decrease the transfer of 

naphthalene from the aqueous phase to air inside the vials. Control vials without soil were 

also prepared for each concentration to verify the handling losses of naphthalene. Glass vials 

were tumbled at 150 rpm for 2 days in the dark at room temperature (22±1 oC, preliminary 

studies indicated that sorptive equilibrium was achieved after 48h). After shaking, each vial 

was centrifuged at 1200 rpm for 5 minutes to separate soil, the supernatant was then filtered 

through a stainless steel filter with a piece of 0.2 µm membrane using a glass syringe and 

then analysed by a high performance liquid chromatograph (HPLC). Sorbed naphthalene 

concentration was calculated by the difference between the initial and final concentrations of 

naphthalene in the aqueous phase. 

4.4.4 Mass Transfer  of Soil-Bound PAHs 

4.4.4.1 Preparation of Contaminated Soil 

For most coverage, three types of soils: sand, silt and clay were used. To effectively 

create a simulated contaminated soil, a certain amount of naphthalene was first dissolved in 

acetone, and the naphthalene solution was then poured onto a certain amount of air-dried soil, 

followed by tumbling for about 2 hours for uniform sorption of the contaminant. The 

contaminated soil was then placed in a flat pan and the solvent was allowed to evaporate 

inside a hood, leaving sorbed naphthalene on soil. Prior to use, the initial naphthalene 

concentration in soil was quantified by HPLC after extracting about 0.25 g of contaminated, 

dried soil with 37.5 mL of solution of 2:1 ratio of ethanol to water in a shaker overnight 



 67 

(preliminary studies showed that the naphthalene recovery rate through the extraction was 

over 91%). 

4.4.4.2 Exper imental Procedures 

The mass transfer runs of soil-bound naphthalene were carried out in both the 

conventional roller bioreactor and BMB. To assess the effect of glass beads on the extent of 

mass transfer of naphthalene from soil to water, 5 mm sterilized glass beads with 25% 

volumetric loading (volume of beads / working volume) were added to the sterilized control 

bioreactor containing 750 mL of sterilized RO water. 37.5 g of naphthalene-contaminated 

soil (5 g soil / 100 mL liquid) was then added to this BMB. The volume of contaminated soil 

was not included in the working volume since it took up a negligible volume. The bioreactor 

was then operated at a rotational speed of 50 rpm and the dissolved naphthalene 

concentration was monitored as a function of time using HPLC. To prepare the samples for 

analysis by HPLC, the well-mixed soil slurry was centrifuged and filtered similarly to the 

method used in sorption experiments. Mass transfer runs in the control bioreactor were 

conducted under similar operating conditions but in the absence of glass beads and with 1000 

mL of sterilized RO water and 50 g of contaminated soil.  

4.4.5 Biodegradation of PAH-Contaminated Soils 

Biodegradation of naphthalene-contaminated soils was studied in both control and 

bead mill  bioreactors. For the runs with 25% beads (volume of beads / working volume), the 

sterilized bioreactors were initially filled with 750 mL of sterilized, double concentration of 

nutrient media. The working volume of the bioreactors was then set to 1000 mL by adding 5 
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mm sterilized glass beads through a sterilized funnel. 37.5 g (5 g soil / 100 mL liquid) of 

naphthalene-contaminated soil was then inserted into the bioreactors through a sterilized 

funnel. The bioreactors were inoculated with 25-30 mL of a fresh, actively growing culture 

of P. putida. All the procedures were carried out inside the biosafety cabinet. The bioreactors 

were then placed on the roller apparatus and operated at 50 rpm. Filtered air with a flow rate 

of 0.025 L/min was injected every two hours for 20 minutes through the cap tubing during 

the daytime. In order to get representative samples, the bioreactor was vigorously shaken for 

30 seconds. About 10 mL of soil slurry was then quickly taken into a centrifuge tube by 

pouring the slurry out of the roller jar through the cap tubing. Sampling was continued until 

the total PAH concentration reached zero. 5 ml of this sample was transferred under vigorous 

mixing using a vortex mixer into another tube for the measurement of total naphthalene 

concentration by HPLC. The remaining sample was analyzed for cell concentration using the 

MPN method. Samples were always collected and analyzed in duplicate. The control 

experiment was carried out under similar conditions but without beads and with 1000 mL of 

mineral media and 50 g of contaminated soil.  

4.5 Analysis 

4.5.1 PAH Concentration Measurements 

4.5.1.1 Dissolved PAH Concentration Measurements 

To determine the dissolved PAH concentrations during mass transfer of suspended 

PAHs, after stopping bottle rotation and waiting 15 seconds, without removing the bioreactor 

from the roller apparatus, samples (four mL) were withdrawn from the bottom of the aqueous 

phase using a stainless steel needle and glass hypodermic syringe. Using a stainless steel 
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cartridge, the liquid was then filtered through a 0.22 µm nylon microfilter into a special 

quartz cuvette. The OD of the filtered sample was then measured using a Shimadzu UV 

spectrophotometer (model 1240, Kyoto, Japan) at the wavelength of 276 nm for naphthalene, 

220 nm for 2-methylnaphthalene and 224 nm for 1,5-dimethylnaphthalene due to their 

different absorbance properties. Finally, the PAH concentration was determined by relating 

the OD value to the previously determined calibration curves for each PAH compound.  

The establishment of the calibration curve involved the preparation of standard 

solutions. A certain amount of PAH particles was dissolved in a certain volume of ethanol 

(since water solubility of PAHs is very low) to get 5000 mg L-1 of PAH stock solution in 

ethanol. The stock was then diluted with RO water resulting in a series of PAH standard 

solutions with concentrations ranging from 0 to 30 mg L-1 for naphthalene, 0 to 5 mg L-1 for 

2-methylnaphthalene and 0 to 3 mg L-1 for 1,5-dimethylnaphthalene. The OD values of these 

series of solutions were then measured at room temperature and the measurement was 

repeated 3 or 4 times for each concentration. The calibration curve was then developed by 

plotting the PAH concentrations versus the recorded OD values.  

The measurements of 2-methylnaphthalene and 1,5-dimethylnaphthalene were 

slightly different from naphthalene due to the absorption properties of these compounds. The 

relationship between the OD values of the former two chemicals and their concentrations was 

linear only within a small range of concentrations. This concentration range was 0 to 5 mg L-

1 for 2-methylnaphthalene and 0 to 3 mg L-1 for 1,5-dimethylnaphthalene. Therefore, the 

filtered sample was first subjected to a series of dilutions to adjust the concentration to a 

desirable level. The concentration obtained by relating the measured OD to the calibration 

curve was then multiplied by the dilution factor to get the real dissolved PAH concentration. 
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The dissolved naphthalene concentration during sorption and mass transfer of soil-

bound naphthalene runs was quantified by HPLC (Hewlett Packard model 1100), with a 15 

cm C18 NovaPak column (Waters). After filtration, the supernatant was diluted in a 2:1 ratio 

of ethanol to liquid sample. The functions of ethanol were to make the conditions of the 

sample the same as standards and to suppress the bacterial activity. Ethanol in standards also 

acted as a PAH solvent. A 20 µl of filtered and diluted sample was then injected into the 

HPLC. The column temperature was set to 25 ºC. The mobile phase, a 50/50% (v/v) mixture 

of MiliQ-water (Millipore, USA) and a HPLC grade of acetonitrile, was pumped through the 

column at a flow rate of 2.1 ml/min and an average column pressure of 145 bars. A UV 

detector at 254 nm was used for the detection and analysis of samples. The HPLC reading 

was multiplied by 3 to obtain the naphthalene concentration before dilution.  

4.5.1.2 Total PAH Concentration Measurements 

To determine the total PAH concentration during bioremediation runs, the bioreactors 

were removed from the roller apparatus and vigorously shaken.  5 ml of well-mixed slurry 

sample was dissolved in 10 ml of ethanol. The functions of ethanol were to dissolve 

particulate PAHs, extract sorbed PAHs and to suppress bacteria. After being shaken on a 

vortex mixer for 1 minute, this slurry was then centrifuged and filtered as before to eliminate 

any particles including biomass or soil. 16 or 20 µl of filtered sample was then injected into 

the HPLC. The conditions and operation procedures of the HPLC were the same as those for 

the HPLC in Section 4.5.3.1.  
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4.5.2 Biomass Concentration Measurements 

The biomass concentration during biodegradation of suspended PAHs was measured 

using a Shimadzu UV spectrophotometer (model 1240, Kyoto, Japan). To exclude the effect 

of bubbles and naphthalene particles on the OD value of sample, the sample was filtered 

through coarse paper (Whatman Grade 41) into a cuvette. The absorbance of the supernatant 

was then measured at 620 nm. The absorbance was related to dry weight of the biomass using 

a previously determined calibration curve.   

 The calibration curve was developed by determining the biomass concentration using 

a dry-weight method. 200 ml of bacteria broth (1000 mg L-1 glucose as growth substrate) in a 

shake flask was grown to a maximum biomass concentration. 100 ml of this broth was then 

transferred to centrifuge tubes and centrifuged at 9900 rpm for 15 minutes to allow the 

biomass to precipitate to the bottom of the tubes. The supernatant was then decanted. A few 

drops of RO water was added into the tubes to rinse the tube wall, followed by mixing using 

a vortex mixer. The procedures of centrifuging, decanting and rinsing were repeated three 

times. Finally, this biomass suspension was transferred to pre-weighed aluminum boats and 

placed into a vacuum oven at 65°C and -22 in Hg for 24 hours. The control boat holding the 

same amount of RO water was prepared to remove the effect of ions in water on biomass 

weight. Before the boats were weighed, these samples were put in a dessicator for 1 hour to 

bring the boats to equilibrium with room temperature. The difference in weight between the 

dried boat with biomass and the original boat was used to calculate the original biomass 

concentration (mg L-1). The original broth was also subjected to a series of dilutions and 

analyzed for OD. These dilutions provided a range of known concentrations with measured 

OD and were used to plot the dry-weight calibration curve for Pseudomonas putida.   
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4.5.3 Soil Character istics       

The organic carbon contents of three soils were measured using a dichromate 

reduction method (HACH Company, 1994-2000). The construction of the calibration curve 

for total organic carbon content was started with the preparation of standard solutions. The 

glucose standard solution with a concentration of 3750 mg L-1 was prepared by mixing a 

certain amount of dry glucose particles with a certain volume of RO water. A series of 

standards with known concentration were then obtained by diluting the stock solution into 

different volumes of RO water. All of the standards were then completely mixed with 

chromate oxidant (containing Hg2+ as a catalyst and Ag+ as a remover of Cl- interference) and 

heated at 150 ºC for 2 hours in a HACH reactor. The range of oxidant concentration used 

depended on the organic carbon content of the standards. Finally, a colorimetric method was 

used to measure the Optical Density (OD) of the standards at the wavelength of 620 nm using 

a UV spectrophotometer (Pharmacia LKB NovaspecII).   

4.5.4 MPN Determination 

The cell concentration (cell number mL-1) during bioremediation of PAH-

contaminated soil was determined using the MPN method (Thomas HA, 1942). First, 20 ml 

of sterilized bacto-peptone was prepared as a growth media and placed in a sterilized boat 

and 90 µL of this sterilized growth media was aseptically added to each well in a 96 well 

microarray plate using an 8 channel multipipettor. Secondly, serial dilutions of original 

sample were made by transferring 1 mL of lower diluted sample to serial sterilized test tubes 

containing 9 mL of sterilized saline buffer (0.45% NaCl) using sterilized pipettes. Each 

dilution sample was vigorously mixed for 15 seconds using a vortex mixer before being 
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transferred to the higher dilution tube. Thirdly, the most dilute dilution was poured into a 

sterilized boat and 10 µL of this dilution (starting from the most dilute sample and the pipette 

tips and boat were flushed with sterilized saline water for each new sample) was transferred 

to a row of media in the microarray plate. One of the 12 rows in the microplate was left blank 

to check for contamination. Fourthly, once all wells were filled, the top of the microplate was 

sealed with a sterilized cover to prevent cross contamination. The microplate was then placed 

on a Jitterbug incubator-shaker (two plates on the shaker for the balance) and the plates were 

vigorously mixed for one to three days at 25 ºC. For the fifth step, the plates were removed 

from the Jitterbug into the Biotek Reader which was connected with a laptop computer for 

reading the OD at 630nm of all the 96 wells. “On-off”  data were measured, either growth 

occurred or it did not in each well. Success occurs if all growth occurs in concentrated rows 

(for example, all 8 wells in the row showed growth), followed by only some growth occurs in 

dilute rows, followed by no growth occurs in more dilute rows. Finally, the cell concentration 

in the original sample was computed using the Thomas’  formula (Thomas HA, 1942) 

5.0)(/ TNPmLMPN ×÷=                               (4.1) 

where P are the number of positive results between the lowest dilution row without all 

positive results and the highest dilution row with at least one positive result (these are the 

“selected rows”), T is the total mL of sample in the selected rows and N is the total mL of 

sample in the selected rows that did not show growth 

 

 

 

 



 74 

CHAPTER 5   RESULTS AND DISCUSSION 

5.1 Mass Transfer  of Suspended PAHs 

Since the bioavailability of PAH particles in the slurry solution is related to the 

dissolved concentration and the mass transfer rate, batch dissolution experiments were 

performed to quantify the volumetric mass transfer rates of suspended PAHs to the aqueous 

phase. PAH particles were suspended in water to simulate the most concentrated condition of 

a suspension of polluted hydrophobic chemicals in water. Experiments were performed at 

room temperature (22±1 oC) with a bioreactor rotational speed of 50 rpm and an initial PAH 

particle concentration of 1000 mg L-1. Purwaningsih et al. (2004) and Riess et al. (2005) have 

shown that this rotational speed and particle concentration were optimal for enhancing PAH 

mass transfer. In this investigation, the experimental variables included bioreactor 

configuration and the type of PAH compounds. 

The mass transfer runs of suspended PAH particles were initiated by investigating the 

effect of bioreactor configurations on the mass transfer rates of solid naphthalene particles. 

The typical mass transfer profiles for naphthalene in the control, baffled, BMB and baffled 

bead mill bioreactors are shown in Figure 5.1. The symbols are the experimental data. The 

lines represent the simulated data using the mass transfer model (Equation 3.6) and the best-

fit values for KLa and Cs. Two reproducibility runs were conducted in the control bioreactor 

and BMB, respectively, which resulted in a maximum scatter between data points of ± 1.0 

mg L-1, and error bars of that magnitude are shown for all runs in Figure 5.1. Figure 5.1 

demonstrates that the baffled bioreactor provided significant improvement in mass transfer of 

naphthalene particles both with and without beads, compared to the control bioreactor.  As 
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can be seen in Figure 5.1, the rate of mass transfer in the BMB was much faster than in the 

conventional roller bioreactor, which was also reported by Riess et al. (2005). The 

comparison of mass transfer profiles in the baffled bioreactor with that in the BMB indicated 

that the BMB provided a faster mass transfer rate than the baffled bioreactor. Additionally, 

the baffled BMB slightly increased the rate of mass transfer, compared to the BMB.  

 

 

 

 

 

 

 

 

 

Figure 5.1: Mass transfer of 1000 mg L-1 suspended naphthalene particles in control 
(×), baffled (▲), BMB (■) and baffled BMB (♦) bioreactors (bars indicate maximum 
scatter between data points). Lines represent the model prediction. Symbols represent 

experimental data. 
 

Values of the saturation concentration and the overall volumetric mass transfer 

coefficient (KLa) for each bioreactor are shown in Table 5.1. These values were determined 

by best-fitting the values of Cs and KLa (least squares error minimization) in the mass transfer 

model (Equation 3.6) to the experimental data using the Solver routine in Excel. The standard 

errors of these parameters, as shown in Table 5.1, were determined by Monte Carlo analyses 

based on a maximum fluctuation of data of ± 1 mg L-1 (see Section 5.3.1).  
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Table 5.1: Best fit values of Cs and KLa for  naphthalene in four  bioreactors**  

Bioreactor  

Parameter  

Control Baffled BMB Baffled BMB 

KLa (h-1) 1.37 ± 0.12 7.66 ± 0.37 23.0 ± 1.2 24.6 ± 2.1 

Cs (mg L-1) (29.3 ± 1.4)*  

*  Theoretical solubility of naphthalene in water: 31 mg L-1 at 25°C (Mackay D. et al. 1992). 

**Experimental temperature: 22±1 oC. 

 

As can be seen from Table 5.1, the addition of baffles to the roller bioreactor 

increased KLa by six times compared to the control bioreactor.  The function of baffles was to 

provide efficient mixing of the particles in the aqueous phase. To reach the bulk liquid phase, 

naphthalene molecules have to be transported from the solid surface through the solid-liquid 

film formed around each particle (Purwaningsih et al. 2004). Better mixing of the particles in 

the solution reduces the film thickness formed at the particle surface. According to Equation 

3.2, the film mass transfer coefficient is inversely proportional to the film thickness, thus the 

addition of baffles enhances the volumetric mass transfer coefficient. To date, no information 

regarding the mass transfer of PAH particles in a baffled roller bioreactor has been published 

in the literature. However, Ni et al. (2004) demonstrated a similar tendency when they 

investigated the effect of baffled bioreactors on the mass transfer of oxygen in yeast cultures. 

In their study, an 11% increase in the value of KLa was observed in the baffled bioreactor 

compared to the stirred tank bioreactor. 

Table 5.1 also indicates that the use of beads improved KLa by 16 times compared to 

the control bioreactor. The function of glass beads was to increase the turbulence in the PAH 

slurry, reducing the film thickness and enhancing the mass transfer coefficient. On the other 
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hand, the grinding action of the beads could break up the naphthalene particles, increasing 

the surface area of particles. According to Equation 3.5, the volumetric mass transfer 

coefficient is proportional to the surface area of particles. As a result, the crushing of 

naphthalene particles from the movement of beads enhances mass transfer.  

The enhanced rates of mass transfer of naphthalene in the baffled bioreactor and 

BMB (or baffled BMB), compared to the control bioreactor, can be explicitly illustrated by 

the physical phenomena shown in Figures 5.2-5.4. Clearly, all the naphthalene particles were 

floating on the surface of the liquid medium due to their strong hydrophobicity in the control 

bioreactor, as shown in Figure 5.2, while they were uniformly mixed into the solution by the 

baffles in the baffled bioreactor, as shown in Figure 5.3, and vigorously mixed and crushed 

by the glass beads in the BMB as shown in Figure 5.4.  

 

 

 

 

 

 

 

 
 

Figure 5.2: Naphthalene particles were sitting on the top of the aqueous phase in the control 
bioreactor (picture taken after 15 minutes from starting the roller apparatus). 
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Figure 5.3: Naphthalene particles were completely mixed into the solution in the baffled 
bioreactor (picture taken after 15 minutes). 

 
 

 

 

 

 

 

 

 

 

Figure 5.4: Mixing and crushing of naphthalene particles by the glass beads in the baffled 
BMB (picture taken after 15 minutes). 

 
 

When the overall performance was compared between the baffled bioreactor and the 

BMB, it was found that the baffles take up negligible volume inside the bioreactor and thus 

the vessel had an effective capacity of one litre of contaminated medium.  Although the 
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optimum bead loading (50% by volume determined by Riess et al., 2005) improved the 

overall mass transfer coefficient by 3 times compared to the baffled bioreactor, the beads 

reduced the effective capacity of the bioreactor by 50%.  Given the large mass transfer 

enhancement and the fact that a large working volume is available to maximize 

bioremediation productivity, it appears that the baffled bioreactor without beads provided the 

best overall volumetric mass transfer capacity.  

The addition of baffles to the BMB provided a slight improvement, 7%, in the mass 

transfer rate compared to beads alone. The slight but not dramatic improvement in mass 

transfer rate observed in the baffled BMB, compared to the BMB, could be due to the 

combined effects of the beads and baffles which enhanced the turbulence in the bioreactor. 

Once again, the liquid volume in the baffled BMB was reduced by 50% due to the presence 

of the beads. 

Similar trends were found for the mass transfer of 2-methyl and 1,5-

dimethylnaphthalene in these four bioreactors. Figures 5.5 and 5.6 show the mass transfer 

profiles for 2-methylnaphthalene and 1,5-dimethylnaphthalene in four bioreactors, 

respectively. Since the quantification of dissolved methylnaphthalenes involved dilution of 

the samples before measuring the OD, the certainty of the measurement method was 

determined by preparing 6 diluted samples and calculating the standard errors of the 

measured concentrations for each of a high concentration sample and a low concentration 

sample. The larger standard error (5%) was selected as the magnitude of the error bars as 

shown in Figures 5.5 and 5.6.  

As can be seen in Figures 5.5 and 5.6, the baffled bioreactor provided a significant 

improvement in mass transfer of both 2-methylnaphthalene and 1,5-dimethylnaphthalene 
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both with and without beads, compared to control bioreactor. These two Figures also 

demonstrate that the rates of mass transfer of 2-methylnaphthalene and 1,5-

dimethylnaphthalene were much faster in the BMB than in the conventional roller 

bioreactors. In addition, the BMB provided faster mass transfer rates than the baffled 

bioreactors for both of these two methyl naphthalenes. The comparison between the baffled 

BMB and the BMB showed that the former provided a slight enhancement in the rates of 

mass transfer for methylnaphthalenes.  

 

 

 

 

Figure 5.5: Mass transfer of 1000 mg L-1 suspended 2-methylnaphthalene 
particles in control (×), baffled (▲), BMB (■) and baffled BMB (♦) bioreactors 

(bars indicate standard error of measurement). Lines represent the model 
prediction (Equation 3.6). Symbols represent experimental data. 
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Figure 5.6: Mass transfer of 1000 mg L-1 suspended 1,5-dimethylnaphthalene in 
control (×), baffled (▲), BMB (■) and baffled BMB (♦) bioreactors (bars indicate 
standard error of measurement). Lines represent the model prediction (Equation 

3.6). Symbols represent experimental data. 
 

The values of the mass transfer coefficient and saturation concentration for both 2-

methylnaphthalene and 1,5-dimethylnaphthalene were determined by best-fitting the mass 

transfer model to the experimental data and shown together with those for naphthalene in 

Table 5.2. Table 5.2 shows that the baffled bioreactor increased KLa by 6 to 7 times 

compared to the control bioreactor. Table 5.2 also demonstrates that the use of beads 

improved KLa by 16 times compared to the conventional roller bioreactor for 2-

methylnaphthalene, and 12 times for 1,5-dimethylnaphthalene. The comparison of KLa 

between the BMB and the baffled bioreactor revealed that the BMB enhanced KLa by 2 

times. Again, given the fact that the beads reduced the effective capacity of the bioreactor by 

50% so that the baffled bioreactor had a larger effective working volume with a favourable 

mass transfer enhancement, it seems that the baffled bioreactor without beads was the best 
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choice for improving the mass transfer of PAH particles. The addition of baffles to the BMB 

slightly increased KLa compared to the BMB (35% increase for 2-methylnaphthalene and 5% 

for 1,5-dimethylnaphthalene). Once again, the baffled BMB reduced the effective capacity by 

50% compared to the baffled bioreactor.  

The comparison of KLa for the different chemicals in each of these four bioreactors 

indicated that the mass transfer of naphthalene particles from solid phase to the aqueous 

phase was fastest, followed by 2-methylnaphthalene and then 1,5-dimethylnaphthalene. This 

could be explained by the different structures of these PAH compounds which resulted in 

different degree of hydrophobicity. For instance, naphthalene with the most simple structure 

and therefore the lowest hydrophobicity had the fastest mass transfer rate, while 1,5-

dimethylnaphthalene with the most complicated structure and as a result the highest 

hydrophobicity had the slowest mass transfer, and 2-methylnaphthalene was in the middle in 

terms of both complexity of structure and mass transfer rate.  

Table 5.2: Best fit values of KLa and Cs for  methylnaphthalenes***  

Chemical: 
 
 
Parameter  

Naphthalene 2-
methylnaphthalene 

1,5-
dimethylnaphthalene 

KLa (h-1, control) 1.37 ± 0.12 0.40 ± 0.02 0.39 ± 0.02 

KLa (h-1, baffled) 7.66 ± 0.37 3.04 ± 0.14 2.25 ± 0.17 

KLa (h-1, BMB) 23.0 ± 1.2 6.39 ± 0.31 4.67 ± 0.23 

KLa (h-1, baffled BMB) 24.6 ± 2.1 8.64 ± 0.41 4.88 ± 0.31 

Cs (mg L-1) (29.3 ± 1.4) (23.3 ± 0.6)*  (5.17 ± 0.12)**  

*  Water solubility of 2-methylnaphthalene: 24.6 mg L-1 at 25 ˚C (Mackay D. et al. 1992)  

* *  Water solubility of 1,5-dimethylnaphthalene: 3 mg L-1 at 25 ˚C (Mackay D. et al. 1992). 

***Experimental temperature:  22±1 oC. 
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5.2 Bioremediation of Suspended PAH Par ticles 

In this study, the experimental variables were similar to the mass transfer 

investigation including bioreactor configuration and the type of PAH particles. 

Bioremediation experiments were conducted in the control, baffled and bead mill bioreactors, 

since the application of the baffled BMB did not lead to a significant improvement in mass 

transfer, compared to the BMB. PAHs used in bioremediation runs included naphthalene, 2-

methylnaphthalene and the mixtures of these two substrates since the preliminary studies 

indicated that P. putida could not metabolize 1,5-dimethylnaphthalene even when 

naphthalene was used as a cosubstrate. Dean-Raymond and Bartha (1975) also observed that 

six pure strains of marine Pseudomonads could not metabolize dimethylnaphthalenes.  

5.2.1 Bioremediation of Single Substrate 

The initial bioremediation runs were conducted to investigate the effect of bioreactor 

configurations on the biodegradation rates of naphthalene particles. Prior to the experimental 

runs with roller bioreactors, the cultures of P. putida 17484 were prepared in shake flasks 

(see Section 4.2). During the preparation of liquid cultures, it was observed that when 

naphthalene was the growth substrate, a yellowish-green translucent color was formed; when 

glucose was the sole carbon source, a white opaque solution was produced. Similar 

observation has been reported by Purwaningsih (2002). The experiments were started by 

inoculation of the bioreactor with pre-grown bacterial cultures with a biomass concentration 

of 9 to 10 mg dry weight L-1 . According to earlier experience (Hill, 1974), when the initial 

substrate concentration was above 350 mg L-1, the nutrient concentrations in the medium 

shown in Tables 4.2 and 4.3 were doubled. At higher substrate concentrations, bacteria need 



 84 

more mineral nutrients for metabolizing the extra organic substrate. During the experiments, 

the pH of the solution in the bioreactors was observed to decrease from an initial value of 6.7 

to a final pH of 6.5. No attempt was made to adjust the pH.  

Oxygen is an essential nutrient which is needed for the growth and activity of  aerobic 

bacteria. The oxygen serves as an electron acceptor during the biodegradation of the organic 

substrate (the electron donor). It was previously assumed that the intermittent supply of 

oxygen to the roller bioreactors was adequate for the bacteria to oxidize all of the 

naphthalene particles. However, the preliminary studies demonstrated that the rate of 

biodegradation of naphthalene in the control and baffled bioreactors was limited by the level 

of oxygen, especially during the night when there was no injection of air. This finding was in 

agreement with that of other researchers (Ahn et al., 1998; Janikowski et al., 2002), who 

reported that a good oxygen supply was strongly desired for the successful biodegradation of 

PAHs. In this investigation, a continuous air supply system (see Figure 4.3) with a  flow rate 

of 0.025 L min-1 (0.025 vvm) was employed in all bioreactors to prevent oxygen depletion 

during the growth of bacteria. Initial studies without microbes demonstrated negligible 

stripping losses at this air flow rate, with rates of stripping measured at 3.3 and 2.8 mg L-1 h-1 

for naphthalene and 2-methylnaphthalene, respectively.  

The results of biodegradation of 500 mg L-1 naphthalene in the control, baffled and 

BMB bioreactors are presented in Figure 5.7. The symbols stand for the experimental data. 

The lines represent the theoretical data generated using the bioremediation models (Equations 

2.4, 2.16, 5.1 and 5.2).  Section 5.3.1 describes the detailed procedures for solving these 

equations. Two identical bioremediation runs (same media, inoculum source and inoculum 

size) were undertaken in the control bioreactor at an initial naphthalene concentration of 500 
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mg L-1. A maximum spread of ± 5% for substrate concentration and ± 10% for biomass 

concentration were observed and these error bars are shown for all runs in Figures 5.7, 5.8 

and 5.9.  

The growth curves shown in Figure 5.7 indicate that the lag phase in microbial 

growth was insignificant. The transferred bacteria to the bioreactors were previously grown 

on naphthalene as their carbon source in the shake flask, so that there was no significant time 

needed for the adaptation of the cells to the fresh medium. Figure 5.7 also demonstrates that 

bioremediation was fastest in the BMB, followed by the baffled bioreactor and then the 

control bioreactor. The maximum rates of biodegradation (slopes of naphthalene 

concentration profiles) increased from 29 to 61 to 61.5 mg L-1 h-1 (based on working volume) 

for the control, baffled and BMB bioreactors, respectively. Bioremediation rates increased 

from two to three fold with baffles and from four to five fold with beads compared to the 

control, but since the effective capacity of the baffled bioreactor was two times higher than 

that of the BMB, the total bioremediation capacity was just as good using only baffles instead 

of beads. Figure 5.7 also indicates that a mass transfer controlled phenomenon was observed 

in the control and baffled bioreactors because the substrate depletion curves were linear with 

time after the short lag phase in these two bioreactors. On the other hand, in the BMB the 

bioremediation was controlled by the bacterial growth, since the growth was exponential and 

the utilization rate kept increasing with time with a maximum rate occurring at the end of the 

bioremediation when the biomass was highest. This observation confirmed the previous mass 

transfer results (see Section 5.1) that the BMB provided the highest mass transfer rate so that 

mass transfer is not a rate-limiting step in this bioreactor, compared to the control and baffled 

bioreactors.  
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Figure 5.7: Bioremediation of 500 mg L-1 suspended naphthalene in BMB (a), 
baffled bioreactor (b) and control bioreactor (c). (Bars indicate the maximum 

spread of data points). Lines are model curves. Symbols are experimental data. 
♦ biomass ■ total naphthalene 
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The bioremediation experiments for 2-methylnaphthalene were carried out under the 

same operational conditions as naphthalene and the results are presented in Figure 5.8. As 

can be seen similar to what was observed with naphthalene, the bioremediation of 2-

methylnaphthalene was fastest in the BMB, followed by the baffled bioreactor and then the 

control bioreactor. The maximum biodegradation rates were 10, 20 and 21.7 mg L-1 h-1 

(based on working volume) for the control, baffled and BMB bioreactors, respectively. 

Bioremediation rates increased two fold with baffles and from four to five fold with beads 

compared to the control, but once again since the effective capacity of the baffled bioreactor 

was two times higher than that of the BMB, the total bioremediation capacity was just as 

good using only baffles instead of beads. Similar to the bioremediation results of 

naphthalene, mass transfer was observed to be the rate-limiting step in the control and baffled 

bioreactors since the substrate depletion curves were straight lines, while the bacterial growth 

was found to play a more significant role than mass transfer in the BMB bioreactor, and the 

maximum removal rate of substrate took place at the end of experiment when the biomass 

concentration reached the highest.  
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Figure 5.8: Bioremediation of 300 mg L-1 suspended 2-methylnaphthalene in 
the BMB (a), baffled bioreactor (b) and control bioreactor (c). (Bars indicate 
the maximum spread of data points). Lines are model curves. Symbols are 

experimental data. ♦ biomass ■ total naphthalene 
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The maximum biodegradation rates for naphthalene and 2-methylnaphthalene 

obtained in three types of bioreactors are reported in Table 5.3. The naphthalene removal 

rates were similar to those reported earlier (Riess et al., 2005). It is clear that the 

bioremediation rates for 2-methylnaphthalene were much lower than for naphthalene in all 

cases. 2-methylnaphthalene was observed to be significantly more hydrophobic than 

naphthalene and assembled into large clumps that floated on the surface of the liquid in the 

control bioreactor and to a lesser extent in the baffled bioreactor, making measurement of 

total substrate concentration difficult in these two types of bioreactors. The higher 

hydrophobicity for 2-methylnaphthalene was quantified by calculation of the octanol-water 

partition coefficients resulting in a value 3.5 times higher compared to naphthalene (Meylan 

and Howard, 1995).  As shown in Figure 5.8(c), for the case of the control bioreactor, the 

concentration of 2-methylnaphthalene could not be measured since excessive clumping of 

particles made it impossible to obtain representative samples. 

 

Table 5.3: Batch bioremediation rates (mg L -1 h-1) of naphthalene and 2-
methylnaphthalene in sole substrate in three types of bioreactors*  

 
Bioreactor  

Substrate 
BMB Baffled Control 

naphthalene  62 61 29 

2-methylnaphthalene  22 20 10 

      *  Based on working volume 
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5.2.2 Bioremediation of Mixed Substrates 

 It has been reported that bioremediation of recalcitrant compounds can be facilitated 

by the use of cosubstrates. For instance, phenol and glucose were shown to enhance the 

bioremediation of 4-chlorophenol that could not be metabolized as a sole organic substrate by 

P. putida ATCC 17484 (Tarighian et al., 2003).  In this study, however, it was found that 

growth on naphthalene could not induce the bioremediation of 1,5-dimethylnaphthalene. But 

runs with mixtures of naphthalene (250 mg L-1) and 2-methylnaphthalene (500 mg L-1) 

demonstrated a significant improvement in bioremediation rates for 2-methylnaphthalene as 

shown in Figure 5.9 in all three bioreactors (compare to Figure 5.8).  The improved rates 

were due to the higher biomass loading generated by the growth on naphthalene that occurred 

prior to the consumption of 2-methylnaphthalene. As shown in Figure 5.9, 2-

methylnaphthalene was not consumed until naphthalene was used up. In the baffled 

bioreactor, representative slurry samples containing 2-methylnaphthalene could not be 

obtained, due to the severe clumping and sticking of this compound to the walls and the 

baffles as shown in Figure 5.10.  In the control bioreactor, both naphthalene and 2-

methylnaphthalene concentrations could not be measured, as shown in Figure 5.9(c), since 

both compounds agglomerated on the surface of the liquid medium. Accurate substrate 

measurements were only possible in the BMB where the crushing and mixing actions of the 

beads prevented substrate agglomeration, as shown in Figure 5.11.     
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Figure 5.9: Bioremediation of mixtures of 500 mg L-1 suspended 2-methylnaphthalene 

and 250 mg L-1 suspended naphthalene in the BMB (a), baffled bioreactor (b) and control 
bioreactor (c). (Bars indicate the maximum spread of data points). Lines are model 

curves. Symbols are experimental data. ♦ biomass ■ total naphthalene 
 

(a) 

(b) 

(c) 
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Figure 5.10: Mixed substrate particles clumped and stuck to the baffles in the 
baffled bioreactor (picture taken at 2 minutes after the start) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Mixed substrate particles were crushed and mixed into the solution 
in the BMB (picture taken at 2 minutes after the start) 
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Biodegradation rates of naphthalene and 2-methylnaphthalene in mixed substrate runs 

were obtained by taking the slopes of the substrate concentration profiles and summarized 

together with those obtained in sole substrate in Table 5.4. As shown in Table 5.4, the 2-

methylnaphthalene removal rates generally increased two fold in the mixed substrate 

compared to the sole substrate for all the bioreactors. The higher removal rates of 2-

methylnaphthalene was due to the higher biomass concentrations created by the growth on 

naphthalene. This resulted in increased demand for substrate which greatly increased 2-

methylnaphthalene uptake in the growth limited condition (the BMB bioreactor) but also 

resulted in increased mass transfer and therefore increased 2-methylnaphthalene uptake in 

mass transfer limited conditions (the control and baffled bioreactors). Table 5.4 also shows 

that the bioremediation of 2-methylnaphthalene was much slower than naphthalene, with the 

bioremediation rates generally about one third those of naphthalene in the sole substrate runs 

and one half in the mixed substrate runs. The lower biodegradation rates were due to the 

higher hydrophobicity of 2-methylnaphthalene compared to naphthalene. When the overall 

performance was compared among different bioreactors, the simple baffled bioreactor 

provided good bioremediation capacity and had the significant benefit for allowing a full 

charge of media to be held in the roller bioreactor.  In practical terms, this means that in a 

sequencing batch operation mode, fewer stops and starts would be necessary to treat a 

specific volume of hydrophobic polluted materials. 
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Table 5.4: Batch bioremediation rates (mg L -1 h-1) of naphthalene and 2-
methylnaphthalene in mixed substrates in three types of roller  bioreactors*  

Bioreactor  
Substrate 

BMB Baffled Control 

naphthalene (mixed substrate) 62 61 30 

2-methylnaphthalene (mixed substrate) 43 30 17 

naphthalene (sole substrate) 62 61 29 

2-methylnaphthalene (sole substrate) 22 20 10 

     *  Based on working volume 

5.3 Determination of Biokinetic Parameters  

Knowledge and information on the kinetics of bioremediation is very important 

because it allows the predictions of the levels of the organic pollutants as a function of time, 

and permits the design of effective bioremediation systems.  

 The batch growth kinetics on naphthalene and 2-methylnaphthalene were simulated 

using first order growth kinetics (Monod equation) assuming that PAHs were the limiting 

substrates (see Section 3.3). First order kinetics is a reasonable assumption for the growth of 

P. putida on naphthalene since it has been shown that the saturation constant, Ks, is 

considerably less than 1 mg L-1 (Park et al., 2001; Alshafie and Ghoshal, 2003).  Since mass 

transfer from the solid particles to the aqueous media was the rate-limiting step for almost all 

the cases, the maximum mass transfer rates of the particle substrates had to be considered 

when describing the rates of total substrate depletion. The mass balance equation for 

undissolved PAHs in the aqueous phase is (Purwaningsih, 2002):  

 



 95 

           ( )LsL
P SSaK

dt

dS
−×−=                                       (5.1) 

where SP is the substrate particle concentration (mg L-1) ; Ss is the saturation concentration of 

substrate (mg L-1) and SL is the dissolved concentration of substrate (mg L-1). Changes in the 

dissolved substrate concentration were due to particle dissolution adding to the naphthalene 

concentration in the water and utilization of substrate by the bacteria:  

    ( )
X/S

LsL
L

Y

Xµ
SSaK

dt

dS ×−−×=        (5.2) 

Another two equations are imported from Chapter 2 and rewritten here for convenience:  

              µ µ=
+max

S

K S
P

s P

                                            (2.4) 

              
dt

dS
Y

dt

dX P
SX ×−= /                                (2.16) 

The numerical solution of the bioremediation models proposed was performed using a 

fourth-order Runga Kutta numerical scheme and best fitting the parameters (least squares 

minimization) by varying µmax, YX/S and the initial substrate (S0) and biomass (X0) 

concentrations to minimize the sum of the squared errors using the Solver routine in Excel. A 

Monte Carlo analysis was applied to determine the sensitivity of the proposed mathematic 

models (see Section 5.3.1).  

The maximum specific growth rate (µmax) in the case of  sole substrate growth were 

found to be 0.33 ± 0.03 and 0.21 ± 0.02 h-1 for naphthalene and 2-methylnaphthalene, 

respectively, while YX/S was equal to 0.6 ± 0.06 for each of the two substrates. The solid lines 

in Figures 5.7 and 5.8 demonstrate that these solved differential equations fit the 

bioremediation data well.  
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For growth on the mixed substrates (shown in Figure 5.9), it was found that P. putida 

consumed naphthalene first, and utilization of 2-methylnaphthalene proceeded after the 

exhaustion of naphthalene (less than 1 mg L-1).  P. putida grew on each substrate at the same 

rate as for pure substrates, but slightly lower biomass yields were used for modelling growth 

on the mixed substrates. The model (solid lines in Figure 5.9) could still reasonably predict 

the measured data using yield coefficients of 0.5, values which were within the 95% 

confidence limits of yield coefficients determined from single substrate runs.   

The values of KLa listed in Table 5.2 had to be doubled for the control bioreactor 

simulations for both naphthalene and 2-methylnaphthalene in single substrate conditions in 

order to predict the growth of the cells accurately. Accurate prediction of concentration 

profiles during the mixed substrate runs required the values of KLa to be increased by a factor 

of two for naphthalene and four for 2-methylnaphthalene. Although not measured here, the 

increase in KLa values was likely due to natural biosurfactants excreted by P. putida growing 

on insoluble substrates. The chemical composition of biosurfactants from P. putida are 

composed of rhamnose connected to various fatty acids (Amezcua-Vega et al., 2004) and the 

enhancement of PAH biodegradation due to these natural biosurfactants has been extensively 

studied (Bonilla et al., 2005; Abalos et al., 2004; Prabhu and Phale, 2003). The increased 

numbers of cells during mixed substrate growth likely increased the biosurfactant 

concentration and resulted in a much faster removal of 2-methylnaphthalene in the control 

bioreactor than would have been possible had mass transfer occurred at a rate similar to that 

in the absence of cells.   
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5.3.1 Monte Car lo Analysis 

Monte Carlo simulation is used to analyze the sensitivity of the proposed mathematic 

models. The Monte Carlo method has been successfully applied to determine uncertainty 

parameter of non-linear model fitting (Feller and Blaich, 2001). This procedure involves 

generating a number of artificial data sets consistent with the experimentally measured data. 

These generated data are statistically analyzed to observe how well a model performs. The 

evaluation of the mathematical model using Monte Carlo method is conducted according to 

the following procedures (Purwaningsih, 2002): 

• Determining the mean and error estimate (equal to standard deviation) of 

experimental data based on the experimental replication. This mean remains the same 

throughout the procedures. 

• Generating data sets of synthetic experimental results using computer generated 

random numbers with a uniform distribution (Excel).  

• Performing the non-linear minimization procedure on 20 artificial data sets to obtain 

20 different sets of kinetic parameter values. 

• After carrying out the fitting procedures on each member of data sets, a distribution of 

kinetic parameter values is obtained whose deviation is the uncertainty range for the 

best-fit parameters. 

The Monte Carlo analysis in this study demonstrated that the confidence limits were 

small with errors in the range of <6%. These small values of standard errors indicate that the 

precision of the mathematical models is satisfactory.  
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5.4 Soil Composition 

Frequently, PAH contamination in the environment is highly associated with sorption 

to soil rather than as pure solid particles (Alexander and Scow, 1989). Sorption is often well 

correlated with soil organic carbon content (Means et al. 1980). As such, in this investigation, 

it was necessary to measure the organic carbon content of three types of soils prior to the 

mass transfer and bioremediation of soil-bound PAHs. The results for the organic carbon 

content of three soils are presented in Table 5.5.  

Table 5.5: Organic carbon content of three soils 

Organic carbon content (% by weight) 
Soil 

Run 1 Run 2 Mean 

Sand 0.42 - 0.42 

Silt 1.31 1.57 1.44 

Clay 4.27 4.23 4.25 

 

As can be seen in Table 5.5, clay had the highest organic carbon content among these 

three soils, followed by silt and then sand.  

5.5 Sorption of Naphthalene to Three Types of Soils 

The sorption data of naphthalene to sand, silt and clay were fit to Linear (Equation 

3.7), Langmuir (Equation 3.8) and Freundlich (Equation 3.9) isotherms, respectively. Three 

reproducibility runs were conducted for both a low and a high concentration of naphthalene 

for each of these three soils and a larger standard error was found in the case of high 

concentration for each soil. These larger standard errors, 11 mg kg-1 with a mean of 543 mg 



 99 

kg-1 for sand, 18mg kg-1 with a mean of 2185 mg kg-1 for silt and 159 mg kg-1 with a mean of 

5460 mg kg-1 for clay, are shown in Figure 5.12 (a), (b) and (c), respectively. As shown in 

Figure 5.12, according to the values of correlation coefficient, R2, the Freundlich isotherm 

was the best fit (R2=0.99) model for the sorption of naphthalene to sand, while both 

Freundlich and Langmuir isotherms (R2=0.99) fit the experimental data very well for the 

sorption of naphthalene to both silt and clay.  
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y=209.9x0.43 

R2=0.99 

y=206.98x/ (1+0.28x) 
R2=0.97 

y=48.95x+119.78 

R2=0.94 

 y=1193.56x/ (1+0.39x) 
R2=0.99 

 
y=917.0x0.48 
R2=0.99 

y=255.38x+650.63 
R2=0.88 

Figure 5.12: Sorption of naphthalene to sand (a), silt (b) and clay (c) at 22±1 °C. (Bars 
indicate the standard errors of experiments). Lines are model predictions. Symbols are 

experimental data.  

 

y=721.42x+893.66 
R2=0.98 

y=2006.89x/ (1+0.24x) 
R2=0.99 
 

y=1826.8x0.57 
R2=0.99 
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In order to compare the sorption capacity of various soils for naphthalene and find out 

the relationship between sorption capacity and organic carbon content of soils, the sorption 

isotherms were analysed using the Freundlich equation. Because the units of Ka depend on 

the N value for a given sample (Bowman, 1981; Chen et al., 1999), Ka values cannot be 

compared between different isotherms. However, the Ka values from different isotherms can 

be compared with each other after normalizing C by the super-cooled liquid state solubility 

(Sscl) of the sorbate. Sscl of naphthalene is equal to 106.6 mg L-1 (Carmo et al., 2000). This 

method of normalization generated the modified Freundlich parameter, K'a, which allowed 

comparison of Ka values from different isotherms. The normalized Freundlich parameter 

(Ka
’) and organic carbon content of three soils are summarized in Table 5.6. 

  

Table 5.6: Compar ison of sorption capacity and organic carbon content of three soils* 

Soil 
Ka 

(mg kg-1) (mg L -1)-N 
N Ka

’ 

(mg kg-1) 

Organic Carbon 

Content (%) 

Sand 209.90�26.71 0.43�0.073 1563 0.42 

Silt 917.00�98.91 0.48�0.071 8624 1.44 

Clay 1826.80�238.30 0.57�0.082 26152 4.25 

*Temperature: 22±1 oC 

 

As shown in Table 5.6, the sorption capacity of soils was proportional to the organic 

carbon content, which was consistent with previous research results (Manilal et al. 1991; 

Means et al. 1980). More specifically, clay with the highest organic carbon content had the 

highest sorption capacity for naphthalene, and silt was in the middle with respect to both 
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organic carbon content and sorption capacity, while sand with the lowest organic carbon 

content exhibited the lowest sorption capacity.  

5.6 Mass Transfer  of Soil-Bound Naphthalene  

Mass transfer experiments of soil-bound naphthalene were investigated in the control 

and BMB bioreactors. The experimental data (as shown in Figure 5.13) indicated that the 

mass transfer of soil-bound naphthalene was unexpectedly fast in both the control and BMB 

bioreactors. This could be explained by the fact that tiny naphthalene particles were 

immediately released from the soils once the prepared naphthalene-contaminated soils were 

transferred into the solution inside the bioreactors. This increased interfacial surface area of 

naphthalene particles significantly enhanced the mass transfer of naphthalene to the aqueous 

phase.  
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Figure 5.13: Mass transfer of sorbed naphthalene (~1% by weight) by sand (a), silt (b) and 
clay (c) (soil loading: 5% weight of soil (g) /volume of liquid (mL)) in control (▲) and BMB 

(■) bioreactors 

(a) 

(b) 

(c) 
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5.7 Bioremediation of Naphthalene-Contaminated Soils 

The bioremediation profiles for naphthalene-contaminated soils in the control and 

25% bead mill bioreactors are presented in Figure 5.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Bioremediation of naphthalene-contaminated sand (a), silt (b) and clay (c) in the 
control bioreactor (▲, ∆ and ◊) and bead mill bioreactor (■ and □). Naphthalene concentration in 
slurry phase in the control (▲) and bead mill (■) bioreactors, naphthalene concentration in soil 
phase in the control bioreactor (◊), cell density in the control (∆) and bead mill (□) bioreactors. 

(a) 

(c) 

(b) 
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As shown in Figure 5.14, contrary to our expectation, biodegradation rates obtained in 

BMBs (with 25% bead loading) was not higher than those achieved in the control bioreactors 

for all three soils. It has been reported that the contamination age (duration of time a soil is in 

contact with dissolved PAHs) affected the bioavailability and biodegradability of soil-bound 

PAHs (Hatzinger et al. 1995; Yeom et al. 1993 and Yeom et al. 1998). In soils which were in 

contact with contaminant for a short period, mass transfer of contaminants from soil phase to 

the aqueous phase was not a major issue (Yeom et al. 1998), which was consistent with the 

mass transfer results observed in this study (Section 5.6). As a result, the enhanced 

biodegradation rates in the BMB may not be warranted for the soils with short history of 

contamination, less than 2 days in this investigation. In addition, from Figure 5.13(b), it was 

shown that around 64% of total naphthalene in the control bioreactor was released from soil 

phase to the aqueous phase within 1 hour, confirming that mass transfer was not the rate-

limiting step for biodegradation of recently contaminated soil. The comparison of the average 

bioremediation rates among these three soils, 10.42 mg L-1 h-1 for sand, 14.58 mg L-1 h-1 for 

silt and 13.13 mg L-1 h-1 for clay, showed that there was no significant difference among 

these three soils with varying organic carbon contents. The observed pattern could be 

explained by the weak sorption of naphthalene on soils which resulted in the similar 

biodegradation rates. In order to study the effect of sorption and slow diffusion through soil 

pores on the bioremediation of PAH-contaminated soils and examine the performance of the 

BMB for the bioremediation of PAH-contaminated soils, it is strongly recommended in the 

future to use artificially PAH-contaminated soils with the coexistence of non-aqueous phase 

liquids (NAPLs), which help to build strong sorption between PAHs and soil particles, or to 

use industrially contaminated soils.  
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CHAPTER 6   CONCLUSIONS AND RECOMMENDATIONS 

 
6.1 Conclusions 

 
The following conclusions can be made within the limits of this investigation. 

Conclusions 1 to 7 are drawn from the experiments of suspended PAHs without soil. 

1. Mass transfer of suspended naphthalene, 2-methylnaphthalene and 1,5-

dimethylnaphthalene has been extensively investigated in the conventional, 

baffled, BMB and baffled bead mill bioreactors. The baffled bioreactor provided 

up to 7 times higher mass transfer coefficient for these three PAH particles 

compared to the control bioreactor.  The improved mass transfer was due to the 

excellent mixing of the PAH slurry by the baffles, which significantly decreased 

the mass transfer film and as a result increased the volumetric mass transfer 

coefficient. Volumetric mass transfer coefficients of these three PAH particles 

were also significantly enhanced by up to 16 times in the BMB, compared to the 

control bioreactor. The enhanced mass transfer was due to both the excellent 

mixing and the crushing of the PAH particles by the glass beads which 

significantly increased the interfacial surface area of PAH particle and therefore, 

increased the mass transfer coefficient.   

2. The mass transfer coefficients were observed to depend on the different 

structures of PAH compounds which result in different degrees of 

hydrophobicity. For instance, the mass transfer coefficient of naphthalene, 

which was the least hydrophobic, was highest in all the four bioreactors, 
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followed by 2-methylnaphthalene and then 1,5-dimethylnaphthalene which was 

the most hydrophobic among these three PAH compounds. 

3. 1,5-dimethylnaphthalene could not be metabolized by Pseudomonas putida 

ATCC 17484 as their carbon source. Even in the presence of naphthalene to 

support growth, 1,5-dimehtylnaphthalene was not utilized.  

4. Bioremediation of sole substrate, naphthalene and 2-methylnaphthalene, was 

studied in the control, baffled and BMB bioreactors. Both baffled and BMB 

bioreactors provided 2 times higher maximum bioremediation rates of 

naphthalene and 2-methylnaphthalene compared to the control roller bioreactor. 

These enhanced bioremediation rates were due to the improved mass transfer in 

these two modified bioreactors. 

5. Mass transfer was found to be the rate-limiting step for bioremediation of 

naphthalene and 2-methylnaphthalene in the control and baffled bioreactors, 

while bacterial growth was observed to be the rate-limiting step in the BMB.  

6. The maximum bioremediation rates of 2-methylnaphthalene were increased in 

the presence of naphthalene (mixed substrates) by 1.5 to 2 times in all the 

control, baffled and BMB bioreactors, compared to the single substrate. The 

increased bioremediation rates were due to the higher biomass concentrations 

generated by the growth on naphthalene prior to the consumption of 2-

methylnaphthalene.  

7. The bioremediation of 2-methylnaphthalene was much slower than naphthalene. 

The maximum bioremediation rates of 2-methylnaphthalene were generally 

about one third those of naphthalene in the sole substrate runs and one half in 
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the mixed substrate runs. The lower biodegradation rates were due to the higher 

hydrophobicity of 2-methylnaphthalene compared to naphthalene.  

The following conclusions are made from the experiments with soil.  

8. Sorption capacity of soils for naphthalene was proportional to the organic 

carbon content of soils. For instance, sand with the lowest organic carbon 

content had the lowest sorption capacity for naphthalene, silt was in the middle 

with respect to both the organic carbon content and the sorption capacity, and 

clay with the highest organic carbon content had the highest sorption capacity 

among these three soils 

9. The mass transfer of soil-bound naphthalene from the artificially prepared soils 

with short contamination history to the aqueous phase in both the control and 

BMB bioreactors was unexpectedly fast due to the increased interfacial surface 

area of naphthalene particles and the weak sorption between naphthalene and 

soils.   

10. In the bioremediation of naphthalene-contaminated soils, the BMB did not 

provide higher bioremediation rates compared to the control bioreactor. This 

was again due to the weak sorption between naphthalene and soils.  
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6.2 Recommendations 

The following recommendations are made which may be suitable for the extensions 

to this study.  

1. The mass transfer and bioremediation of suspended PAHs in the baffled and BMB 

bioreactors should be expanded by investigating a larger variety of PAH 

compounds.  

2. The mass transfer of soil-bound PAHs and the bioremediation of PAH-

contaminated soils in the baffled and BMB bioreactors should be further studied 

by observing desorption and bioremediation of strongly adsorbed PAHs by soils 

in the presence of NAPLs or using industrially PAH-contaminated soils.  

3. The effects of pH, temperature, mixtures of PAH and chemistry of soil on the 

mass transfer and bioremediation of PAH-contaminated water or soils in the 

baffled and BMB bioreactors should be investigated in order to be of more 

practical use.  

4. Operation in sequential batch mode needs to be studied in the baffled and BMB 

bioreactors to obtain the information on the overall productivity of these 

bioreactors.   
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APPENDIXES 
 
 

A1-Calibration Curve of Dissolved PAH Concentration 

The calibration curves of three dissolved PAHs are shown in Figure A1. Included in 

these figures are the relationships between PAH concentrations and absorbance (or ODs), as 

well as regression coefficients. 
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A2-Calibration Curve of Biomass Dry Weight 

The calibration curve of biomass concentration was established using the 

spectrophotometer at a wavelength of 620nm. The calibration curve is presented in Figure 

A2. 

 

 

 

 

 

 

 

Figure A1: Calibration curves for naphthalene (A), 2-
methylnaphthalene (B) and 1, 5-dimethylnaphthalene (C) 

(C) 

Figure A2: Calibration curve for biomass concentration 
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A3-Calibration Curve of Organic Carbon Mass 

The calibration curve for the total organic carbon content measurement is shown in 

Figure A3. The relationship between organic carbon mass and ODs was linear and a least 

square fit gave the equation: y=2.4003x-0.0103 with a R2=0.9994. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3: Calibration curve for organic carbon mass of soil 
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A4-Calibration Curve of Total PAH concentration 

The calibration curves of naphthalene and 2-methylnaphthalene concentrations used in 

the bioremediation experiments were developed using HPLC and are reported in Figure A4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure A4: Calibration curves for naphthalene (A) and 2-
methylnaphthalene (B) concentrations 
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A5-Mass Flow Meter  Calibration 

The Aalborg mass flow meter was used to measure the amount of air injected into the 

slurry solution in the roller bioreactors. It was calibrated against a volumetric displacement 

meter. The calibration curve is shown in Figure A5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5: Calibration curve for mass flow meter 
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B-Par ticle Size Distr ibution 

The particle size distributions of three PAH compounds were determined using a 

Malvern Long Bench Particle Size Analyzer (Allen, 1997; Rhodes, 1998). Before 

measurement for each new substance, the effect of mixing speed of the wet feeding unit on 

the particle size distribution was investigated using RO water as dispersant. Studies showed 

that 3000 rpm was the optimal mixing speed for the particles used in this study. For the wet 

feeder, another problem to consider was the presence of bubbles in the dispersant, which are 

typically recorded as 100µ m particles. Flushing of bubbles from the system was aided by 

pulsing the mixer from 0-3500 rpm a few times before setting the desired mixing speed. Due 

to different particle sizes, different lens ranges were selected for different compounds: 300 

mm for naphthalene, 1000 mm for 2-methylnaphthalene and 1,5-dimethylnaphthalene. 

The particle size distributions of these three PAH compounds are presented in Figure 

B1 

(A) 
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(C) 

Figure B1: Particle size distributions of naphthalene (A), 2-methylnaphthalene (B) 
and 1,5-dimethylnaphthalene (C) 
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C-Raw Data Tables 

1. Mass Transfer  of Suspended PAHs 

                   Table C1: Mass transfer  of 1000 mg L -1 naphthalene 
in control bioreactor  (22±1°C, 50 rpm) 

Concentration (mg L -1) Time (hour) 

Run 1 Run 2 
0 0 0 

0.067 0.97 1.22 

0.25 7.602 9.21 

0.35 11.50 - 
0.43 13.53 9.21 

0.50 15.16 12.44 

0.58 16.71 15.24 

0.67 18.43 17.48 

0.75 19.83 19.05 

0.83 20.48 20.77 

0.92 21.45 21.35 

1.00 21.63 22.57 

 
 
 
 
                    Table C2: Mass transfer  of 1000 mg L -1 naphthalene 

in baffled bioreactor  (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.067 9.04 
0.15 20.58 
0.22 24.77 
0.28 26.77 
0.33 27.56 
0.42 27.71 
0.50 28.55 
0.67 28.69 
1.00 28.72 
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                      Table C3: Mass transfer  of 1000 mg L -1 naphthalene 
in BMB (22±1 oC, 50 rpm) 

Time (hour) Concentration (mg L -1) 
0 0 

0.050 18.50 
0.10 28.40 
0.17 29.35 
0.23 29.03 
0.40 28.89 
0.45 28.89 
0.62 28.88 
1.00 30.28 

 
 
 
  
                    Table C4: Mass transfer  of 1000 mg L -1 naphthalene 

in baffled BMB (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.050 19.90 
0.10 28.26 
0.17 28.65 
0.23 28.70 
0.35 28.91 
0.45 29.03 
0.53 28.76 
0.62 28.81 

 
 
 
              Table C5: Mass transfer  of 1000 mg L -1 2-methylnaphthalene 

in control bioreactor  (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.50 3.10 
0.75 7.01 
1.00 8.40 
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             Table C6: Mass transfer  of 1000 mg L -1 2-methylnaphthalene 
in baffled bioreactor  (22±1 oC, 50 rpm) 

Time (hour) Concentration (mg L -1) 
0 0 

0.067 2.12 
0.15 7.59 
0.28 12.36 
0.42 18.27 
0.55 19.85 
0.68 21.58 
1.00 21.69 

 
 
             Table C7: Mass transfer  of 1000 mg L -1 2-methylnaphthalene 

in BMB (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.15 11.32 
0.23 20.04 
0.33 21.98 
0.42 22.52 
0.55 22.30 
0.68 22.40 
1.00 23.12 

 
 
            Table C8: Mass transfer  of 1000 mg L -1 2-methylnaphthalene 

in baffled BMB (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.05 4.15 
0.15 18.03 
0.23 21.95 
0.33 23.14 
0.42 23.61 
0.68 23.45 
1.00 23.24 

 
 

           Table C9: Mass transfer  of 1000 mg L -1 1,5-dimethylnaphthalene 
in control bioreactor  (22±1 oC, 50 rpm) 

Time (hour) Concentration (mg L -1) 
0 0 

0.5 0.29 
1 1.88 
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            Table C10: Mass transfer  of 1000 mg L -1 1,5-dimethylnaphthalene 
in baffled bioreactor  (22±1 oC, 50 rpm) 

Time (hour) Concentration (mg L -1) 
0 0 

0.25 1.45 
0.32 2.11 
0.50 3.61 
0.75 4.94 
1.00 5.15 

 
 
 
           Table C11: Mass transfer  of 1000 mg L -1 1,5-dimethylnaphthalene 

in BMB (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.067 0.30 
0.15 2.22 
0.23 3.65 
0.33 4.77 
0.42 4.72 
0.55 4.82 
0.75 4.86 

 
 
 
           Table C12: Mass transfer  of 1000 mg L -1 1,5-dimethylnaphthalene 

in baffled BMB (22±1 oC, 50 rpm) 
Time (hour) Concentration (mg L -1) 

0 0 
0.05 0.22 
0.16 2.29 
0.23 3.92 
0.33 4.67 
0.55 4.95 
0.75 5.15 
1.00 5.05 
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2. Bioremediation of Suspended PAHs 
 

          Table C13: Bioremediation of 500 mg L -1 naphthalene in three bioreactors 
(22±1 oC, 50 rpm) 

Control Baffled BMB Time 
(hour) A* B** A B A B 

0 500 0.17 500 0.17 500 0.17 
4 458.31 0.45 449.19 1.28 427.86 18.78 
6 447.03 13.95 409.35 28.38 385.77 41.81 

8.50 372.09 54.95 310.14 68.94 259.05 104.94 
10 289.05 77.18 221.97 139.86 146.04 197.53 
12 163.95 103.96 105.63 220.80 0 321.46 
15 113.52 140.07 0 287.41 - - 
18 17.37 211.99 - - - - 

22.50 0.60 272.66 - - - - 
27.83 0.49 280.14 - - - - 

   *A: Naphthalene concentration (mg L-1) 
   * *B: Biomass concentration (mg L-1) 
 
 
 

Table C14: Bioremediation of 300 mg L -1 2-methylnaphthalene in three bioreactors 
(22±1 oC, 50 rpm) 

Control Baffled BMB Time 
(hour) A* B** A B A B 

0 300 3.65 300 3.65 300 3.65 
4 - 3.16 - 7.965 273.09 26.02 
6 - 3.30 - 7.585 255.45 33.81 
8 - 6.78 277.83 14.085 232.17 49.53 
12 - 47.89 244.68 57.01 205.44 83.62 
15 - 62.54 117.06 77.53 98.67 103.41 

22.50 - 82.02 38.91 147.20 8.04 159.23 
30.67 - 90.61 21.33 169.98 0 210.92 

   *A: 2-methylnaphthalene concentration (mg L-1) 
   * *B: Biomass concentration (mg L-1) 
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Table C15: Bioremediation of Mixture of naphthalene (250 mg L -1) and 2-
methylnaphthalene (500 mg L -1) in control and baffled bioreactors (22±1 oC, 50 rpm) 

Control Baffled Time 
(hour) A* B** C* ** A B C 

0 250 500 4.83 250 500 3.65 
4 - - 9.53 170.37 481.71 12.52 
6 - - 8.52 46.35 - 19.86 
8 - - 30.29 3.24 - 37.49 
12 - - 124.42 1.38 - 149.04 
22 - - 206.82 5.37 - 263.93 

26.5 - - 223.23 3.66 - 288.31 
30.5 - - 231.17 - - 282.44 

   *A: Naphthalene concentration (mg L-1) 
   * *B: 2-methylnaphthalene concentration (mg L-1) 
   * **C: Biomass concentration (mg L-1) 
 
 

Table C16: Bioremediation of Mixture of naphthalene (250 mg L -1) and 
2-methylnaphthalene (500 mg L -1) in BMB (22±1 oC, 50 rpm) 

BMB Time 
(hour) A* B** C* ** 

0 250 500 3.65 
4 180.87 480.18 16.35 
6 54.9 487.74 34.36 
8 37.62 362.52 43.58 

13.5 0.025 28.71 180.97 
24 0 19.65 263.14 

            *A: Naphthalene concentration (mg L-1) 
            * *B: 2-methylnaphthalene concentration (mg L-1) 
            * **C: Biomass concentration (mg L-1) 
 
 
 
3. Sorption of Naphthalene to Three Types of Soils 
 

Table C17: Sorption of naphthalene to three soils (22±1 oC) 
Sand Silt Clay 

A* B** A B A B 
0.0042 55.39 0.36 498.16 0.092 731.99 
0.31 156.06 1.7 1044.69 1.00 1747.74 
2.05 261.78 2.36 1554.00 3.54 3760.66 
4.13 353.30 4.36 1948.38 5.00 4174.07 
8.14 543.09 6.79 2184.99 6.44 5459.98 

*A: Equilibrium naphthalene concentration in aqueous phase (mg L-1) 
* *B: Equilibrium sorbed naphthalene by soil (mg kg-1) 
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4. Mass Transfer  of Soil-Bound Naphthalene 
 

Table C18: Mass transfer  of sand-bound naphthalene in control and BMB bioreactors* 
Concentration (mg L -1) Time (hour) 

Control BMB 
0 0 0 

0.083 15.00 22.08 
0.17 15.24 22.5 
0.33 17.88 22.56 
0.50 18.69 22.62 
0.67 19.02 23.34 
1.00 19.41 25.29 

 
 
  Table C19: Mass transfer  of silt-bound naphthalene in control and BMB bioreactors* 

Concentration (mg L -1) 
Time (hour) 

Control BMB 
0 0 0 

0.05 18.69 12.27 
0.10 25.74 22.80 
0.18 24.66 23.64 
0.38 13.26 13.02 
0.52 21.3 22.02 
0.72 21.75 17.67 
1.00 14.91 9.27 

 
 
Table C20: Mass transfer  of clay-bound naphthalene in control and BMB bioreactors* 

Concentration (mg L -1) 
Time (hour) 

Control BMB 
0 0 0 

0.05 11.4 10.5 
0.10 23.4 23.91 
0.18 24.45 22.68 
0.38 23.49 20.82 
0.52 22.62 21.99 
0.72 20.4 - 
1.00 - 21.54 

  *Naphthalene: ~1% by weight; soil loading: 5% (soil mass, g)/ (liquid volume, mL); 
temperature: 22±1 oC; 50 rpm. 
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5. Bioremediation of Naphthalene-Contaminated Soils 
 

Table C21: Bioremediation of naphthalene-contaminated sand in control  
and BMB bioreactors* 

Naphthalene concentration (mg L -1) 
Time (hours) 

Control  BMB 
0 249.5 249.5 
4 174.76 245.17 
6 244.13 221.72 
8 166.86 209.67 
10 121.04 147.15 
24 14.14 1.33 

   
 

Table C22: Bioremediation of naphthalene-contaminated silt in control and  
BMB bioreactors* 

Control  
Time (hour) Soil phase 

(%) 
Slurry phase 

(mg L -1) 

BMB  
Slurry phase  

(mg L -1) 
0 0.7 350 350 
1 0.25 280.24 326.70 
4 0.20 272.59 325.20 
5 0.39 263.89 309.56 
7 0.21 261.86 293.29 
9 0.24 210.68 240.86 
24 0.011 8.44 1.58 

 
 
 

Table C23: Bioremediation of naphthalene-contaminated clay in control and BMB 
bioreactors* 

Control  BMB Time 
(hour) Naphthalene 

(mg L -1) 
MPN  

(×108 cells mL -1) 
Naphthalene 

(mg L -1) 
MPN  

(×108 cells mL -1) 
0 630 - 630 - 
1 624.41 0.39 618.79 1.02 
4 591.83 0.71 583.73 0.71 
6 570.49 0.78 567.45 0.71 

8.5 542.40 - 521.33 - 
24 289.54 3.13 201.75 7.07 

30.5 95.78 20.7 70.80 14.4 
48 0 28.9 3.863 13.4 
54 4.09 28.9 1.88 14.4 

*Temperature: 22±1 oC; 50 rpm 


