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ABSTRACT 

End pit lakes (EPLs) are a relatively new strategy proposed for reclaiming oil sands 

surface mines. An EPL is formed within a depleted mine pit, with fluid fine tailings (FFT) 

stored below a water cover. Fluid fine tailings are a by-product of the oil sands bitumen 

extraction process with high water contents, low bearing capacities, and elevated 

concentrations of various constituents. This thesis considers mass and heat transfer between 

the FFT and overlying water cover at the first EPL, Base Mine Lake (BML). The study 

objectives were: (1) characterize the FFT thermal properties and the thermal regime in BML; 

(2) assess FFT settlement rates and characteristics; and (3) evaluate a range of potential 

mechanisms for mass and heat movement, including diffusion or conduction, and mixing of 

the FFT due to unstable density profiles or fluid movement within the water cover. These 

objectives were achieved through a combination of field investigations, laboratory testing, 

and numerical modelling, and the results were published in three manuscripts comprising the 

main body of the thesis. Overall, FFT is the largest (Cl) mass source to the BML water cover. 

The dominant transport mechanism was advective mass transport or convective heat transport 

due to tailings settlement; however, tailings disturbance near the FFT-water interface may 

also contribute to mass release. The predicted pore water fluxes based on the advective or 

convective regimes were similar to previously estimated FFT settlement rates and decreased 

throughout the studied period from approximately 1.46 m/a in 2013 to 2014, to 0.73 m/a in 

2014 to 2015. Declining advection rates indicate that diffusive mass transport and conductive 

heat transfer will likely become more significant in the future. The results also confirmed that 

EPL design should consider the size of the water cover, volume and characteristics of the 

FFT, and operational controls, as these factors will likely influence EPL success as a 

sustainable reclamation landscape. 
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CHAPTER 1 – INTRODUCTION AND BACKGROUND 

Development of the Canadian oil sands has expanded rapidly over the past 15 years. As 

of September 2015, there were over 140 operating oil sands projects, 11 under construction, 

and 20 more approved for development (Government of Alberta, 2016). Approximately 10.5 

billion barrels of bitumen (1.7 x109 m3) had been extracted from the oil sands deposits by the 

end of 2014 (Alberta Energy Regulator, 2015). 

Some of the largest and longest running projects are the surface mining operations 

located in the Athabasca oil sands region (AOSR), north of Fort McMurray, Alberta. In 2014, 

surface mining accounted for 45 % of bitumen produced from the oil sands (Alberta Energy 

Regulator, 2015). Surface mining involves the removal of vegetation, organic soils, and 

overburden materials (formations overlying the ore) to access the oil sands ore, which is then 

transported to upgrading facilities for bitumen extraction. 

Fluid fine tailings (FFT) are a by-product of the bitumen extraction process. These 

tailings have high water contents, low settlement rates (Kasperski and Mikula, 2011), and 

contain elevated concentrations of salts, naphthenic acids, and residual bitumen and naphtha 

(Allen, 2008; Kavanagh et al., 2011). Rapid expansion in the AOSR has resulted in large 

stores of FFT, with more than 9.8 x108 m3 in tailings impoundments by 2013 (Government of 

Alberta, 2015).  

In 2015, the Government of Alberta developed the Tailings Management Framework 

(TMF) for improved tailings management and reclamation practices to reduce FFT volumes 

and limit the associated environmental risks (Government of Alberta, 2015). The TMF 

encouraged innovation focused on the treatment and reclamation of FFT (Government of 

Alberta, 2015). Numerous strategies are being actively pursued by industry and are slowly 

being integrated into operational practices. Many of these strategies aim to improve the FFT 

geotechnical properties for placement in conventional terrestrial reclamation landscapes, 

including flocculent and coagulant addition, large-scale centrifugation, thin-lift drying, and 

mechanical FFT filtration (COSIA, 2012a). 
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An alternative strategy is to place FFT in a mined out pit below a water cover in an End 

Pit Lake (EPL). This reclamation method does not require FFT treatment prior to placement 

so the initial costs are relatively low (CEMA, 2012). In addition to providing storage for FFT, 

EPLs are expected to regulate downstream flow, develop a sustainable ecosystem, generate 

water of acceptable quality for release to natural waterways, and support other functions like 

recreational use (CEMA, 2012). The first EPL, Base Mine Lake (BML), was commissioned at 

a surface mining project north of Fort McMurray in 2012. Approximately thirty more EPLs 

have been proposed in the AOSR (Prakash et al., 2011), 

1.1 Study Rationale 

In the future, EPLs are expected to be an integral part of the closure landscape. The 

ability for an EPL to achieve a water quality allowing for outflow to natural systems depends 

on the long-term geochemical and thermal regimes within the lake water. The influence of the 

underlying FFT on these regimes is not well understood. Thus, an evaluation of the water, 

heat, and mass transfers between the FFT and overlying water cover is required to assess the 

conditions of BML during its development and to predict its long-term performance. 

1.2 Background Information 

A preliminary understanding of end pit lakes, the geotechnical and geochemical 

characteristics of FFT, and the BML site were necessary for developing the main study 

objectives. This section highlights the current literature on and understanding of these topics, 

and reviews the applicable mass and heat transport theory. 

1.2.1 End Pit Lakes 

Land disturbed by surface oil sands mining must be returned to an ‘equivalent 

capability’, as required by the Alberta Energy Regulator (BGC Engineering Inc., 2010; 

Province of Alberta, 2014). End pit lakes are one reclamation strategy proposed for 

reclaiming disturbed land. These features will be a central part of the closure landscape as 

they are expected to function as retention ponds, providing flow management and treating 

mine-affected water so an acceptable quantity and quality is released to natural water systems 

(CEMA, 2012). Many EPLs are also expected to provide storage for by-products created by 

the oil sands mining process.  
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An oil sands EPL is similar to a conventional mine pit lake in that it involves the 

creation of a water body in a depleted mine pit (Gammons et al., 2009). The characteristics of 

conventional mine pit lakes vary substantially depending on mining operations and the 

surrounding geology and hydrogeology. The pit lake shape often depends on the ore body 

structure. For example, diamond mines, and their associated pit lakes, are typically deep and 

conical as they follow the shape of the kimberlite ore body in which diamonds are found 

(Gammons et al., 2009). Pit lakes at precious or base metal mines and high-sulfur coal mines 

are often highly acidic due to the presence of sulfide minerals in the ore, and have elevated 

concentrations of dissolved metals (Balistrieri et al., 2006; Peinerud, 2003; Castro and Moore, 

2000). Conversely, other types of open pit coal mines are associated with alkaline pit lakes 

when the surrounding groundwater and formation is calcium-rich and acts as a natural buffer 

(Denimal et al., 2005; Peinerud, 2003).  

The current understanding of oil sands EPLs, particularly their ability to sustain a 

productive aquatic ecosystem, is fairly limited as the first oil sands EPL was established in 

2012. Canada’s Oil Sands Innovation Alliance Inc. (COSIA) is currently planning a 

Demonstration Pit Lakes Project to address many of the existing knowledge gaps (COSIA, 

2012b). In general, conditions within an EPL are expected to depend on site-specific 

attributes (COSIA, 2012b), as observed for conventional pit lakes. Features influencing EPLs 

may include: (1) the lake surface area and depth; (2) ore characteristics; (3) the presence, 

volume and properties of tailings stored at the bottom of the pit; and (4) dominant water and 

mass sources to the water cover (Castendyk and Webster-Brown, 2007; Castro and Moore, 

2000; Mian and Yanful, 2007; Peacey et al., 2002; Peinerud, 2003; Samad and Yanful, 2005).  

1.2.2 Site Description 

Syncrude Canada Ltd. has surface-mined oil sands ore since 1978. Their original mine, 

Base Mine, was decommissioned in 1994 and the leftover pit was divided and used to store 

tailings. Overburden, the material overlying the oil sands ore, and lean oil sands, ore with a 

bitumen content below 7 % (w/w), were left at the bottom of the pit. The overburden consists 

of marine shales and siltstones of the Clearwater Formation with a mean vertical hydraulic 

conductivity of approximately 8 x10−10 m/s (Dallas Heisler, Syncrude Canada Ltd.). Lean oil 

sands are part of the McMurray Formation and have vertical hydraulic conductivity values 

ranging from 1 x10−13 to 1 x10−7 m/s (Dallas Heisler, Syncrude Canada Ltd.). 
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Fluid fine tailing were placed in the west portion of the Base Mine pit, called West In-

Pit, beginning in 1994 (Figure 1-1). The FFT was dredged and pumped from another tailings 

impoundment, Mildred Lake Settling Basin (MLSB), into the northeast corner of West In-Pit 

(Geoff Halferdahl, Syncrude Canada Ltd.). The tailings would have filled the east side of 

West In-Pit until they overflowed a central mine haul road running north-south down the pit 

centre (Figure 1-1). The FFT temperature during placement was 11 to 19 C. A 3 to 5 m 

OSPW water cap was present throughout the filling process, as West In-Pit provided water 

storage for the mine operations recycle water circuit. Tailings placement continued until 2012, 

when BML was commissioned as the first oil sands EPL. At this time, the maximum FFT 

depth was 45 m, corresponding to a total FFT volume of approximately 1.9 x108 m3 (Geoff 

Halferdahl, Syncrude Canada Ltd.).  

After BML was commissioned, fresh water was pumped from Beaver Creek Reservoir 

into the water cover to bring the surface elevation to 308.7 ± 0.5 metres above sea level 

(masl). This increased the water cover to an average depth of 8.5 m in 2013. Fresh water 

pumping from Beaver Creek Reservoir has continued during the ice-free months of 2013, 

2014, and 2015 with yearly volumes ranging from 6 x106 to 7 x106 m3 (Janna Lutz, O’Kane 

Consultants). Water was also removed from BML during these years for use in the bitumen 

extraction process and to maintain a consistent lake surface elevation. The average yearly 

volume of water pumped from BML was 6.5 x106 m3. The lake covers an area of 

approximately 8 km2 (Geoff Halferdahl, Syncrude Canada Ltd.). 
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Figure 1-1. Cross sections of the West In-Pit geology – now the BML geology – including the 

approximate elevations of the FFT and water cover (based on information provided by Geoff 

Halferdahl, Syncrude Canada Ltd.). 

 

1.2.3 Geotechnical Properties of FFT 

When FFT is first generated, it is a dense, warm fluid suspension comprised of 

dispersed mineral particles and OSPW. The initial solids content of FFT is generally 25 % to 

35 % (w/w) with a bulk density of approximately 1200 kg/m3. As with other soft tailings, FFT 

has very low bearing capacities and shear strengths due to its high water content (Dimitrova 

and Yanful, 2012; Sarsby, 2000). Thus, conventional terrestrial reclamation is not suitable for 

FFT unless the tailings undergo preliminary strengthening. These properties also indicate that 

FFT stored under a water cover may be susceptible to erosion and resuspension, for example, 

by wind-induced waves or lake turnover (Adu-Wusu et al., 2001; Catalan and Yanful, 2002; 

Kachhwal et al., 2011). Thus, fluid movement within the water cap could cause rapid loading 

of sediment and/or dissolved constituents into the overlying water cap.  
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The FFT solids composition varies with the properties of the original oil sands ore 

(Osacky et al., 2013a); however, the solids are generally composed of quartz and clay 

minerals (Kasperski and Mikula, 2011). Tailings samples from multiple oil sands operations 

exhibited a large range in the relative quantities of these minerals, with clay contributing 

between 20 % and 80 % (w/w) of the FFT solids (Mikula et al., 2009). Previous studies have 

found that the clay minerals are predominantly kaolinite and illite with small portions of 

chlorite and smectite (Kasperski and Mikula, 2011). 

Fluid fine tailings dewater gradually over time (Kasperski and Mikula, 2011), with the 

greatest settlement rates occurring within the first 3 to 4 years after deposition in a tailings 

impoundment (Siddique et al., 2011). Settlement occurs through self-weight consolidation. 

This form of consolidation occurs due to the internal weight of a soil (Been and Sills, 1981). 

Pore pressures with depth in an FFT deposit are initially equal to the total weight of the 

overlying fluid and solid suspension (Abu-Hejleh and Znidarčić, 1995) and consequently are 

greater than a hydrostatic pressure profile. The difference between the pore pressure through 

the FFT and the hydrostatic pressure profile is referred to as excess pore water pressure. The 

excess pore water pressure increases with depth in the FFT as the weight of the overlying 

solids suspension increases (Morgenstern and Nixon, 1971). Dewatering of the FFT is due to 

the dissipation of this excess pore pressure with a concomitant increase in effective stress 

(Abu-Hejleh and Znidarčić, 1995). Thus, dewatering predominantly occurs near the deposit 

bottom in early times. Consequently, the pore water flow generated by FFT dewatering was 

assumed to be relatively constant within the top portion of FFT as this region does not 

undergo significant settlement immediately following deposition.  

The FFT constitutive properties change over time as dewatering occurs. In particular, 

hydraulic conductivity and compressibility may change nonlinearly with time as void ratio 

decreases (Gibson et al., 1981; Schiffman, 1982). The FFT properties also vary with depth 

due to the differential settlement occurring as a result of the increased internal load 

experienced by the FFT with depth (Sridharan and Prakash, 2003). 

 The hydraulic conductivity of the FFT is expected to range from 1 x10-7 to 5 x10-5 m/s 

based on the typical FFT water contents (or void ratios) in BML and previous laboratory 

results (Suthaker and Scott, 1996; Wong et al., 2008). Water expressed from the FFT 

generally moves upward through the tailings column, as the hydraulic conductivity of the 
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underlying formation is relatively low compared to the FFT. Pore water pressures measured 

in the field confirm that there is minor drainage from the pit bottom. The pore water 

movement generated through the FFT column is expected to obey Darcy’s law as the water 

fluxes associated with tailings settlement produce Reynolds numbers substantially less than 1 

(<4 x 10-7). This finding is consistent with finite strain consolidation theory, which assumes 

that the associated pore water flow follows Darcy’s law (Schiffman and Pane, 1985). Thus, 

groundwater flow was assumed to be driven by FFT consolidation. 

A preliminary numerical model was developed to simulate FFT dewatering in BML 

(Carrier et al., 2007). According to this model, FFT settlement would decrease exponentially 

from 1 m/a to approximately 0.1 m/a, over 30 years. The modelled results match the general 

trends observed during long-term FFT settlement analysis in the laboratory (Jeeravipoolvarn 

et al., 2009). 

1.2.4 Geochemical Properties of FFT 

A preliminary study of the FFT geochemical properties was completed prior to the three 

manuscripts comprising this thesis (Dompierre et al., 2016). This study provided background 

information on the FFT mineralogy and pore water characteristics that were fundamental to 

assessing mass and heat transfer in BML.  

Fluid fine tailings pore water samples from BML were comparable to OSPW collected 

from other tailings impoundments (Allen, 2008; Stasik and Wendt-Potthoff, 2014). Electrical 

conductivity (EC) values within the FFT ranged from 3100 to 5400 S/cm. The major 

dissolved constituents contributing to these values were determined to be sodium (Na), 

chloride (Cl), calcium (Ca), magnesium (Mg), potassium (K), and ammonia (NH3). The pH 

was near-neutral and redox potential (Eh) indicated anoxic conditions throughout the FFT. 

The measured parameters exhibited variability with depth and by sampling location but 

provided insight on the potential biogeochemical reactions occurring in BML.  

Pore water pH was observed to decrease below the FFT-water interface, which was 

assumed to be due to the production of methane (CH4) and carbon dioxide (CO2) by 

methanogenesis (Siddique et al., 2006, 2007, 2011). Hydrocarbon degradation via 

methanogenesis was expected given the residual bitumen and naphtha present in FFT 

(Fedorak et al., 2003; Siddique et al., 2006, 2007, 2011; Stasik et al., 2014; Stasik and Wendt-

Potthoff, 2014). A reduction in pH likely promoted carbonate mineral dissolution as lower pH 
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values corresponded to increased concentrations of Ca and Mg. Dissolved Ca and Mg could 

be involved in exchange reactions with Na at the clay mineral surfaces. According to 

Siddique et al. (2014a) these exchanges would stimulate FFT settlement as Ca and Mg cause 

the electrical double layer associated with clay particles to decrease. 

Conditions within the FFT pore water also suggested that microbial iron (Fe) and 

sulfate (SO4) reduction were present near the FFT-water interface (Dompierre et al., 2016; 

Ramos-Padrón et al., 2011; Stasik et al., 2014; Stasik and Wendt-Potthoff, 2014). The 

subsequent formation of Fe2+ sulfides has been observed in FFT (Chen et al., 2013; Siddique 

et al., 2014b; Stasik et al., 2014), which Siddique et al. (2014b) suggested could mask the 

surface charge at clay mineral surfaces enhancing FFT settlement. Therefore, multiple 

biogeochemical reactions occurring within BML may contribute to FFT settlement and pore 

water release, affecting the movement of mass and heat. 

1.2.5 Mass Transport Through the FFT 

The governing equation for saturated, one-dimensional mass transport (after Bear, 

1972) is: 

( ∙ )
= −  (1.1) 

where  represents mass concentration of the solute (mass per unit volume),  is the medium 

porosity (volume of pores per total volume of the medium),  is the vertical mass flux (mass 

per unit area per unit time), and t and z represent time and depth, respectively. For 

conservative mass transport where the species does not react with other dissolved constituents 

or the solid matrix, the mass flux term includes advection, mechanical dispersion, and 

molecular diffusion.  

Advection is the movement of mass via fluid flow as described in following equation: 

= ∙   (1.2) 

where   is the vertical mass flux due to advection (mass per unit area per unit time), and 

 represents the vertical volumetric pore water flux (volume of pore water movement per 

unit area per unit time). In BML, FFT dewatering through self-weight consolidation generates 

vertical fluid flow. In addition to the pore water flux created by FFT dewatering, unstable 
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density profiles may also generate fluid movement that could contribute to advective mass 

transport. 

Molecular diffusion occurs when a concentration gradient is present, with mass moving 

from areas of high concentration to low concentration. As observed in BML (Dompierre et 

al., 2016), the concentration of many different species is greater in the FFT pore water than 

the overlying water cap, creating diffusive gradients towards the FFT-water interface. Fick’s 

First Law governs the diffusive mass flux, , according to:  

= − ∗ ∙ ∙   (1.3) 

where ∗ is the coefficient of molecular diffusion for a solute of interest within the saturated 

porous medium (Domenico and Schwartz, 1998; Fetter, 1999; Incropera and DeWitt, 2002). 

Mechanical dispersion represents mass spreading due to tortuous travel pathways and 

velocity distributions in the pores (Fetter, 1999). Mechanical dispersion acts in a similar 

manner to diffusion as it causes mass to spread during transport in proportion to concentration 

gradients. The coefficient of mechanical dispersion is assumed to be proportional to the pore 

velocity so it only occurs when flow is present; whereas diffusion is independent of flow.  

Mechanical dispersion and molecular diffusion are often combined to create a term 

called the coefficient of hydrodynamic dispersion (Domenico and Schwartz, 1998). 

Hydrodynamic dispersion, , in the direction of flow is defined as follows:  

= ∙ + ∗   (1.4) 

where  represents the longitudinal dispersivity (length) and  is the vertical pore velocity 

calculated by dividing the volumetric pore water flux ( ) by the porosity ( ). The first term 

in equation (1.4) represents mechanical dispersion. Hydrodynamic dispersion is substituted 

for ∗ in equation (1.3) when there is water flow through the medium.  

The total mass flux by advection, mechanical dispersion and molecular diffusion is: 

= [ ] ∙ − ∙ ∙  (1.5) 
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which can be substituted into equation (1.1) to produce the following governing equation for 

the transport of a conservative solute in a saturated porous medium:   

∙
=  [ ℎ ∙ ∙ ] −

∙
 (1.6) 

The medium properties (e.g. porosity, hydrodynamic dispersion) are depth and time 

dependent because of FFT self-weight consolidation. Although both advection-dispersion and 

diffusion processes are included in equation 1.6, it is important to note that these processes do 

not generally act simultaneously; typically, mass flow is controlled by either advection and 

mechanical dispersion, or diffusion.  

Methanogenesis within the FFT is known to generate CH4 and CO2 (Penner and Foght, 

2010; Siddique et al., 2006, 2007, 2011). As these dissolved gases are transported upwards, 

they experience a decrease in surrounding fluid pressure. Ebullition, the formation of gas 

bubbles, occurs when the surrounding fluid pressure decreases sufficiently (Fendinger et al., 

1992). The bubbles then migrate through the sediment column until they are released to the 

overlying water (Scandella et al., 2011). The movement of these gases over the FFT-water 

interface represents an additional form of mass transport present in BML; however, this study 

did not attempt to quantify gas production and release as a transport mechanism.  

Various conservative tracers have been used to track mass movement through 

groundwater systems.  Chloride has been used for many years to trace groundwater movement 

and seepage to lakes (Cox et al., 2007; Davis et al., 1980; Jacquet, 1976; Lee et al., 1980), and 

in mass transport studies, like the CFB Borden investigations on mechanical dispersion and 

the influence of scale (Sudicky and Illman, 2011). More recent studies have employed stable 

isotopes of water as a tracer for groundwater movement (Coplen et al., 2000) or mass 

transport (Barbour et al., 2012; McKay et al., 1993). A recent study conducted by Baer et al. 

(2016) catalogued the stable isotope of water signatures associated with natural and process 

water found in the AOSR.  

1.2.6 Energy Transfer Through FFT 

The general equation for one-dimensional heat transport is very similar to the one-

dimensional equation for mass transport (Incropera and DeWitt, 2002):  
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( ∙ )

= −
∅

   (1.7) 

where  represents temperature, and  is the volumetric heat capacity of the medium, which 

is the energy stored or released per unit volume for a one degree temperature change. The 

vertical heat flux, ∅ , is energy transferred upwards or downwards, per unit time, per unit 

area. Heat transfer through the FFT in BML can occur as either conduction or convective heat 

transport.  

Conduction is the transmission of heat from more energetic molecules to surrounding 

molecules with less energy (Rathore and Kapuno, 2011). Heat flux associated with one-

dimensional (vertical) conduction, ∅ , follows Fourier’s Law and can be determined by:  

∅ = − ∙   (1.8) 

where  is the thermal conductivity of the medium (energy per unit time, per unit length, per 

degree change in temperature; Domenico and Schwartz, 1998; Incropera and DeWitt, 2002). 

Convection is heat movement via fluid flow. Free convection is fluid movement due to 

temperature gradients. Free convection occurs in systems where the density difference arising 

from temperature differences are sufficient to cause fluid flow. Forced convection is heat 

movement as a result of flow produced by hydraulic (mechanical) gradients (Pop and Ingham, 

2001; Anderson, 2005). Forced convection may be present in BML due to FFT consolidation.  

The general equation for heat flux associated with convective heat transport in 

groundwater systems, ∅ , is: 

∅ = ∙ ∙    (1.9) 

where  is the vertical volumetric water flux associated with forced and free convection, and 

 is the volumetric heat capacity of the pore fluid. 

Given these two forms of heat flux, the one-dimensional equation for simultaneous heat 

and fluid flow through a saturated porous medium is:  

[ ∙ ]
= [ ∙ ] − ∙

∙
 (1.10) 



 

  12

Many of the variables in the one-dimensional heat transport equation will vary with 

depth and time in the BML context. The volumetric heat capacity and thermal conductivity 

will vary with depth and time due to changing FFT water contents with depth and time 

(Bristow, 1998; Cosenza et al., 2003; De Vries, 1963). The pore water flux is dependent on 

depth and time given the ongoing FFT self-weight consolidation, and may be affected by free 

convection if temperatures through the FFT cause significant density gradients. Temperature 

variation through the FFT is also expected, as a result of seasonal fluctuations in the 

temperature of the water cap. 

Mechanisms controlling mass and heat transport are comparable, as evident by the 

similarities between their one-dimensional governing equations. Advective mass transport 

and convective heat transfer both occur due to fluid flow. Consequently, heat has been used to 

trace groundwater movement (Anderson, 2005; Bredehoeft and Papadopulos, 1965; Saar, 

2011; Stallman, 1965). Conduction and hydrodynamic dispersion both occur due to variations 

in the characteristics of the solute (temperature or concentration). However, conductive heat 

transfer cannot be used as an indicator for diffusive mass transport as it is generally more 

effective in moving heat than diffusion is in moving mass.  

In addition to temperature-related density differences, density gradients may form 

within the FFT due to variation in pore water chemistry or suspended solids contents. For 

example, FFT pore water generally has greater total dissolved solids than the water cap 

resulting in density gradients at the FFT-water interface. Multiple forms of density gradients 

may cause pore water movement in the FFT, subsequently influencing heat and mass 

transport. Thus, the movement of heat and mass are inherently linked and must be considered 

together. 

There are several potential mechanisms contributing to heat and mass transport within 

the FFT of an EPL. These mechanisms are listed below. 

(1) Advective mass transport (and dispersion) or convective heat transport 

 Pore water release from FFT self-weight consolidation with potential for 

enhanced settlement via biogeochemical reactions. 

 Density-derived fluid flow (free convection) as a result of unstable density 

profiles within the FFT, where density may be affected by temperature and solids 

content. 
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(2) Diffusive mass transport 

 Mass gradient at the FFT-water interface. 

(3) Conductive heat transport 

 Temperature gradients through the FFT due to seasonal variation of lake 

temperatures. 

(4) FFT disturbance or resuspension 

 Erosion of the FFT-water interface due to fluid movement within the water cap. 

1.3 Research Objectives 

The overall objective of this thesis was to characterize mass and energy movement from 

stored FFT to the overlying water cover during the first few years of EPL operation. Given 

the current understanding of BML, FFT, pit lakes, and mass and heat transport, the following 

specific objectives were defined:  

(1) Determine the thermal properties of FFT using standard laboratory methods and a 

unique field-testing system developed for deployment at BML in order to consider 

the influence of water content, bitumen content, mineralogy, and gas bubbles on FFT 

thermal conductivity and volumetric heat capacity;  

(2) Examine the dominant thermal regime in BML by measuring FFT temperatures over 

multiple seasons and developing heat transport numerical models to evaluate the 

mechanisms contributing to energy movement through the FFT, including forced and 

free convection, and conduction;  

(3) Assess the rates and characteristics of FFT settlement to compare to predicted 

settlement rates and evaluate whether settlement is evenly distributed over the FFT 

surface, by measuring the movement of conservative tracers in the FFT pore water;  

(4) Evaluate the relative importance of other mass transport mechanisms, including 

molecular diffusion and FFT mixing due to unstable density profiles or disturbances 

caused by fluid movement within the water cover, given the movement of 

conservative tracers through the FFT pore water; and 

(5) Examine the overall mass loading from the FFT to the BML water cover using mass 

balance methods and numerical models for conservative mass transport.  
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These study objectives were addressed within three manuscripts, which have been 

combined to create the body of this thesis, according to guidelines provided by the College of 

Graduate Studies for a ‘dissertation by manuscript’ style thesis.  

1.4 Thesis Structure 

The three manuscripts are each presented as a single chapter following this introductory 

chapter. Each manuscript is presented in full as it was published, or in the case of the last 

manuscript, as it was submitted for publication, with minor modifications for editorial 

purposes only. The first manuscript, “Thermal properties of oil sands fluid fine tailings: 

Laboratory and field investigation”, was accepted for publication in the Canadian 

Geotechnical Journal (Dompierre and Barbour, 2016b). The study explores the influence of 

bitumen and water content, FFT mineralogy, and gas bubbles on the thermal properties of 

FFT. The thermal properties were measured both in the laboratory and an in-situ assessment 

of the FFT, which used a specially-designed field testing system. 

The second manuscript is entitled “Characterization of physical mass transport through 

oil sands fluid fine tailings in an end pit lake: A multi-tracer study” and has been published in 

the Journal of Contaminant Hydrology (Dompierre and Barbour, 2016a). This study 

investigated the movement of pore water, mass, and energy through the FFT in BML using 

stable isotopes of water and heat as tracers. Both field testing and numerical simulations 

contributed to the understanding reached in the study. 

The final manuscript, “Chemical mass transport between fluid fine tailings and the 

overlying water cover of an oil sands end pit lake”, has yet to be submitted for publication. 

This study evaluated the mass loading from the FFT using Cl as a conservative tracer to 

assess the mass balance of the water cover and to generate numerical models for simulating 

mass transport over the FFT-water interface. 

Chapter 5 summarizes the overall conclusions of the complete body of research, and 

success of addressing each of the established research objectives. This chapter also includes 

recommendations for future research at BML and general implications to EPL design. 

The appendices include supplemental informal on the numerical model design 

(Appendix A) and the pit capacity curve used for the mass balance calculations (Appendix B). 

Appendix C includes corrections or clarifications related to the published manuscripts, noted 

at the time of defence.
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CHAPTER 2 – THERMAL PROPERTIES OF OIL SANDS FLUID FINE TAILINGS: 

LABORATORY AND FIELD INVESTIGATION (DOMPIERRE AND BARBOUR, 

2016b) 

An understanding of the FFT thermal conductivity and volumetric heat capacity were 

required to assess energy movement through FFT and to use heat as a tracer for pore water 

flow. The importance of bitumen and water content were considered by evaluating the FFT 

thermal properties in the laboratory using a dual heat pulse probe. Previously established 

equations for the thermal properties of saturated soils were modified to include a bitumen 

term and were compared to the laboratory results. Finally, an in-situ testing system was 

developed to assess FFT thermal properties in the field and evaluate the effect of gas bubbles.  

I, Kathryn Dompierre, directed the field sampling program, measured the thermal 

properties of FFT in the laboratory, designed and installed the in-situ testing system, executed 

the field experiment, developed the numerical models (described in Appendix A), and 

completed data synthesis and analysis. I am the primary author of this manuscript. Matthew 

Lindsay and Jake Nesbitt (University of Saskatchewan) conducted the XRD mineralogy 

investigation including the phase identification. Preliminary advice on the University of 

Saskatchewan laboratory testing program was provided by Min Li and Bing Si (University of 

Saskatchewan). Geoff Halferdahl (Syncrude Canada Ltd.) coordinated the laboratory testing 

at the Syncrude Research Facility in Edmonton, which was completed by Jennifer McMillan 

and Amber Horan (Syncrude Canada Ltd.). I, Kathryn Dompierre (85%), carried out the 

majority of the contributions to the preparation of the manuscript with Lee Barbour (15%) 

assisting with the conceptualization of the in-situ test system, development of the numerical 

models, and providing comments during the review process. 

This article was accepted for publication in the Canadian Geotechnical Journal:  

Dompierre, K.A., and Barbour, S.L. 2016b. Thermal properties of oil sands fluid fine tailings: 

Laboratory and in-situ testing methods. Canadian Geotechnical Journal, In Press, DOI: 

10.1139/cgj-2016-0235.
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2.1 Introduction 

The bitumen extraction process associated with oil sands mining produces large 

volumes of fluid fine tailings (FFT). Fluid fine tailings are composed of dispersed, suspended 

mineral solids within a fluid matrix of oil sands process affected water and residual bitumen 

(Gosselin et al., 2010; Siddique et al., 2007). Oil sands operators are pursuing a range of 

strategies to incorporate FFT into reclaimed landscapes. One of these strategies is the creation 

of end pit lakes (EPLs), formed by placing FFT in depleted mine pits below a fresh water cap. 

There are currently thirty EPLs proposed for the Athabasca oil sands region, half of which 

will incorporate FFT (Prakash et al., 2011). Syncrude Canada Ltd. (Syncrude) has developed 

the first and only EPL to date, called Base Mine Lake (BML). 

The hydrology of an EPL, particularly related to the thermal and chemical regimes 

within the water cap, is currently being studied. An important consideration is the energy 

movement from the FFT to the overlying water cap. The FFT in BML exhibits warmer 

temperatures than the average annual air and groundwater temperatures in the region; this 

temperature gradient causes conductive heat transfer from the FFT to both the overlying lake 

and underlying geologic formations. Therefore, the FFT will act as a heat source to the 

surrounding systems. The energy released from the FFT may influence the hydrological 

performance of the lake, for example the annual evaporation rates and the period of ice cover, 

as well as the conditions for the development of biotic activity. 

In order to evaluate the thermal regime within the EPL, the thermal properties of FFT in 

BML must be quantified. Dompierre et al. (2014) and Li et al. (2015) conducted preliminary 

investigations on the thermal properties of FFT in the laboratory. These studies evaluated the 

relationship between water content and the thermal properties of tailings samples but did not 

consider other characteristics that may influence the thermal properties of FFT, such as the 

presence of organic matter (Abu-Hamdeh and Reeder, 2000).  

The laboratory portion of this study is a continuation of the work presented in 

Dompierre and Barbour (2015), and thoroughly examines the thermal properties of FFT by 

evaluating the characteristics of the individual tailings components (mineral solids and 

organic content or bitumen). In addition to the laboratory work, a unique field-testing method 

was developed to investigate the large-scale thermal properties of undisturbed FFT in BML. 

Results from the laboratory and field tests provide a comprehensive understanding of the 
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thermal conductivity and volumetric heat capacity of FFT in BML, and can be used in future 

studies on heat migration and storage in EPLs. 

2.2 Background Information 

2.2.1 Site Description 

Surficial mining of oil sands ore began in 1978 at Syncrude’s Mildred Lake Mine, 

approximately 40 km north of Fort McMurray, Alberta. The oil sands ore is from the 

McMurray Formation, and generally contains an average of 0.25 (m3/ m3) bitumen (long 

chain hydrocarbons), 0.06 to 0.11 (m3/ m3) water, and 0.65 to 0.69 (m3/ m3) solids, typically 

comprised of quartz sand and clay (Chalaturnyk et al., 2002). Bitumen is removed from the 

ore through the addition of hot water to decrease the bitumen viscosity and sodium hydroxide 

(NaOH), also referred to as ‘caustic’, to disperse the clay particles (Caughill et al., 1993; 

Masliyah et al., 2004). The bitumen is then separated for upgrading and the remaining sand-

clay slurry is pumped to tailings impoundments (e.g., Mildred Lake Settling Basin; Figure 

2-1) for storage. 

West In-Pit, a portion of the original mine pit, is one of the tailings impoundments at the 

Mildred Lake Mine site. Syncrude began filling West In-Pit in 1994 with FFT dredged from 

the Mildred Lake Settling Basin. The FFT was pumped into the northeast corner of the pit 

from 1994 to 2012. The FFT temperature during placement ranged from 11 °C to 19 °C. A 

water cap, comprised primarily of oil sands process water, was present throughout the entire 

filling period and ranged from 3 to 5 m in depth. The maximum FFT depth at the end of 

filling was approximately 45 m. 

West In-Pit was commissioned as an EPL, referred to as BML (Figure 2-1), at the end 

of 2012.  Since that time, freshwater has been pumped in from an adjacent freshwater 

reservoir (Beaver Creek Reservoir) to bring the lake up to a water surface elevation of 

approximately 308.5 metres above sea level (masl). The average lake water depth is 

approximately 8.5 m. Base Mine Lake covers an approximate area of 8 km2 with monitoring 

stations (labels starting with ‘S’ in Figure 2-1) spread over this whole area. There are also 

three large floating platforms on BML (Figure 2-1), which are used for research and 

monitoring purposes. 
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Figure 2-1. Aerial photo of the Mildred Lake Mine; inset (a) shows the BML monitoring 

stations. 

 

The FFT in BML was initially placed with a solids content of approximately 0.35 (mass 

of solids divided by the mass of FFT), which corresponds to a solids volume fraction of 

approximately 0.2 (m3/m3). The FFT undergoes rapid dewatering during the first few years 

after discharge (Siddique et al., 2011), reaching a solids content of 0.50 or a volume fraction 

of 0.3 after several years; however, high water contents persist, taking many years to 

significantly dewater and eventually consolidate (Kasperski and Mikula, 2011). The slow 

settlement rates are attributed to the addition of dispersants (NaOH) during bitumen 

extraction, and naturally occurring surfactants (asphaltic acids) present in the ore that are 
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released during heating (Chalaturnyk et al., 2002; Jeeravipoolvarn, 2009). The FFT solids 

content in BML generally increases with depth due to self-weight consolidation and the 

extended FFT deposition period.  

The FFT pore water has elevated concentrations of total dissolved solids representative 

of process-affected water (Allen, 2008) with electrical conductivity (EC) values of 

approximately 4000 μS/cm. The average FFT temperature in BML was determined to be 

12.9 °C (Dompierre et al., 2016), with seasonal temperature variations in the water cap 

affecting the top 5 m of FFT (Dompierre and Barbour, 2016a).  The average FFT temperature 

is greater than the average annual air temperature in the region (1 °C; Environment Canada, 

2015) and the average shallow groundwater temperatures of 3 to 4 °C (personal 

communications, Dallas Heisler, Syncrude Canada Ltd.). The FFT also contains residual 

bitumen remaining in the tailings stream after the bitumen extraction process. Methanogenic 

bacteria utilize this organic substrate to generate methane gas, which is dissolved in the FFT 

pore water but may also form gas bubbles (Dompierre et al., 2016). Although the bubble 

formation process is not well understood, it is believed that ebullition occurs as the dissolved 

methane is transported upwards within the FFT. Bubbles form when the surrounding fluid 

pressures decrease sufficiently. The bubbles then migrate through the FFT and are eventually 

released to the overlying lake water. 

2.2.2 Theoretical Relationships 

Transient heat transport through a medium is controlled by two properties: (1) thermal 

conductivity; and (2) volumetric heat capacity. Thermal conductivity is the property 

controlling conductive heat transport as a result of temperature gradients, based on Fourier’s 

Law. Volumetric heat capacity is the energy stored or released per unit volume of material 

during a temperature change, and is the product of the specific heat capacity and the density 

of a material.  

The theoretical relationship for thermal conductivity of a saturated soil, established by 

Cosenza et al. (2003), is: 

 = s fs ∙ w fw  (2.1) 

where  is the thermal conductivity of the soil (W/m/K), s is the thermal conductivity of the 

solid particles (W/m/K), and w is the thermal conductivity of the pore water (W/m/K). The 
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thermal conductivity of each component is raised to a power defined by the volume fraction 

of that particular phase within the soil, where fs is the solids volume fraction (m3/m3), and fw 

is the water volume fraction or the volumetric water content (m3/m3).  

The theoretical relationship for volumetric heat capacity was established by De Vries 

(1963) as the sum of the volumetric heat capacities of the individual components of a soil: 

Cv = cs ∙ ρs ∙ fs + cw ∙ ρw ∙ fw   (2.2) 

where Cv is the volumetric heat capacity of the soil (J/m3/K), cs is specific heat capacity of the 

solid particles (J/kg/K), and cw is specific heat capacity of the pore water (J/kg/K). The 

density of the solids is represented by ρs (kg/m3), and ρw is the density of the pore water 

(kg/m3). 

These general relationships for the thermal properties of soil were modified in this study 

to incorporate a third phase to account for the presence of bitumen, as Abu-Hamdeh and 

Reeder (2000) suggested that organic content influences the thermal properties of a soil. The 

modified theoretical relationship for thermal conductivity is:  

 = s fs ∙ w fw ∙ b fb    (2.3) 

where b is the thermal conductivity of bitumen (W/m/K), and fb is the volumetric bitumen 

content. The theoretical relationship for volumetric heat capacity becomes: 

Cv = cs ∙ ρs ∙ fs + cw ∙ ρw ∙ fw + cb ∙ ρb ∙ fb    (2.4) 

where cb is the specific heat capacity of bitumen (J/kg/K), and ρb is the density of bitumen 

(kg/m3). 

Abu-Hamdeh and Reeder (2000) also suggest that soil salinity may affect its thermal 

properties. The effects of salinity could be incorporated into equations (2.3) and (2.4) by 

altering the pore water thermal conductivity, specific heat capacity, and density to represent 

water with elevated dissolved solids. However, Caldwell (1974) found that there was a 

limited difference in the thermal conductivities of freshwater and seawater at 20 °C. In 

addition, Millero et al. (1973) determined that an EC value of 4000 μS/cm (which 

corresponds to the average EC of FFT pore water) produced a water density that was 0.2% 

greater, and a specific heat capacity only 0.3% less than that of distilled water at 20 °C. 
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Previous laboratory studies on the thermal conductivity and volumetric heat capacity of 

soils have employed the dual heat pulse method (Bristow et al., 1994; Liu and Si, 2011). This 

method is based on the analytical solution for an infinite wire or line-source heating element 

(Kluitenberg et al., 1993). When an infinite heating source is applied to a soil, the change in 

temperature, ΔT (K), measured at a specified distance from the heating wire, r (m), will 

change over time, t (s), according to: 

Δ ( , ) = ∙ ∙
∙

∙

∙ ∙
    0 < ≤

∙ ∙
∙

∙

∙ ∙( )
−

∙

∙ ∙
    >

   (2.5) 

where q is the heating rate (W/m),  is the time when heating stops (s), and Ei is the 

exponential integral. For the dual heat pulse method, the distance, r, in the above equation is 

the distance between the surface of the line source heating element and the thermistor. This 

distance is often referred to as the heating radius as heat moves radially from the line source 

heating element into the soil. Equation (2.5) was the theoretical basis for the initial research 

on the thermal properties of FFT by Li et al. (2015). 

2.3 Methodology 

Fluid fine tailings samples were analyzed in the laboratory to determine the general 

physical characteristics of FFT as well as the thermal conductivity and volumetric heat 

capacity of FFT and its individual components. Following the laboratory analysis, a field 

testing method was developed to determine the in-situ thermal properties of FFT in BML. 

Numerical modelling was also undertaken to interpret the in-situ testing results. These 

methods are described in the following sections. 

2.3.1 General FFT Properties Analysis 

Samples were collected vertically, every 1 to 3 m to the pit bottom at 6 locations 

(Platform 1, Platform 2, Platform 3, S04, S08, and S09; Figure 2-1) in July 2014. The samples 

were collected with a pneumatic piston sampling system operated by ConeTec Investigations 

Ltd. A sample chamber with a pneumatic piston was positioned at the desired depth, the 

cable-actuated ball-valve on the chamber was opened, and the pneumatic piston was slowly 

retracted to allow FFT to enter the chamber. The ball valve was closed when the chamber was 

full, the sample system was brought up to the surface, and the collected sample was 
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transferred to a high-density polyethylene bottle. Samples collected by the described method 

were considered disturbed, due to the fluid nature of FFT. The EC of each sample was 

measured with a YSI Pro30 conductivity probe (YSI Incorporated, Yellow Springs, Ohio, 

USA) immediately after the sample was collected. Each sample was divided into two parts so 

that samples could be sent to both Syncrude and the University of Saskatchewan for analysis.  

Syncrude conducted laboratory testing to determine the physical characteristics of the 

collected FFT at their research facility in Edmonton. The Dean and Stark extraction method 

was used to assess the bitumen, water and solids content of each sample (Dean and Stark, 

1920). Dry solids obtained from this process (separated from the bitumen and water) were 

analyzed with a Coulter LS 13 320 laser diffraction particle analyzer (Beckman Coulter 

Canada LP., Mississauga, ON, Canada) to determine the particle size distribution of each 

sample (after ASTM, 2015b; ASTM, 2014a). The dry solids from three FFT samples were 

also analyzed at the University of Saskatchewan to determine their specific gravity according 

to ASTM standard D854-14 (ASTM, 2014b). The density of the bitumen isolated by the Dean 

and Stark extraction method (and separated from the associated toluene with a rotary 

evaporator) was measured using a DMA 4500M density meter (Anton Paar Canada Inc., 

Montreal, QC, Canada) according to ASTM standards D5002-15 (ASTM, 2015c) and D4052-

15 (ASTM, 2015a). 

X-ray diffraction (XRD) was performed at the University of Saskatchewan on the dry 

solids from seven FFT samples with a Co Kα1 source (1.78901 Angstroms), and a Fe beta 

filter at 45 mA and 40 kV. A 3-80° 2θ step size and counting time of 50 minutes were used to 

collect the XRD patterns. Powder diffraction patterns were obtained for randomly-oriented 

bulk samples, prepared by grinding dry FFT solids (retrieved from the Dean and Stark 

extraction method) to a fine powder in an agate mortar and pestle, which were then mounted 

on a glass slide. Phase identification was performed with Match! (v. 2.3.3), using the 

Crystallography Open Database (Gražulis et al., 2009). 

2.3.2 Laboratory Evaluation of the Thermal Properties of FFT 

Seven FFT samples were selected to represent a range of bitumen contents while other 

characteristics (EC, water content and particle size distribution) were relatively consistent 

(Table 2-1). Syncrude determined the physical characteristics of the selected samples 

according to the methods described in the previous section. The seven FFT samples had 
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bitumen volume fractions ranging from 0.017 to 0.086. The volumetric water content of the 

selected samples ranged from 0.694 to 0.800, with EC values between 850 and 1020 μS/cm 

(Table 2-1). 

 

Table 2-1. Summary of FFT samples for thermal analysis. 

Sample Location Bitumen 
Content 

(m3/m3) 

Water  

Content 

(m3/m3) 

Electrolytic 
Conductivity 

(μS/cm) 

Platform 1 - 10.5 m 0.017 0.800 1020 

S08 - 10.5 m 0.027 0.791 850 

Platform 1 - 40.5 m 0.034 0.733 900 

Platform 3 - 34.5 m 0.041 0.694 860 

Platform 1 - 9.5 m 0.047 0.784 950 

Platform 1 - 12.5 m 0.058 0.732 990 

Platform 3 - 28.5 m 0.086 0.707 860 

 

The selected samples were all divided into four sub-samples before the thermal 

properties were analyzed. Each sub-sample was wetted with deionized water or dried to create 

a range of water contents. This was done to evaluate the effects of volumetric water content 

and volumetric bitumen content on the thermal conductivity and volumetric heat capacity of 

FFT.  

The thermal conductivity and volumetric heat capacity of the sub-samples were 

measured with the KD2 Pro thermal properties probe (Decagon Devices Inc., Pullman, WA, 

USA) using the dual heat pulse method as employed by Bristow et al. (1994), Kluitenberg et 

al. (1993), and Liu and Si (2011), in compliance with ASTM standards (ASTM, 2014c). The 

thermal properties of each sub-sample were measured 5 times and the average values were 

assumed to be representative. The probe calibration was checked every 100 readings with 

materials of known thermal properties (provided by Decagon Devices Inc.). The EC of each 

sub-sample was measured with a ThermoScientific Orion Star conductivity meter (Thermo 

Fisher Scientific, Waltham, MA, USA) to determine if salinity effects should be taken into 

consideration. The EC meter was cleaned regularly and calibrated with NIST traceable buffer 

solutions. Once the thermal properties and EC analysis was complete at the University of 
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Saskatchewan, sub-samples were sent to Syncrude to confirm the bitumen, water and solids 

contents using the Dean and Stark extraction method, as previously discussed. 

The thermal properties of the individual FFT components (solids and bitumen) were 

also analyzed. Seven dry FFT solids samples were assessed with the KD2 Pro thermal 

properties probe to determine the thermal conductivity and volumetric heat capacity of the 

solids alone. Syncrude measured the thermal properties of pure bitumen with the Hot Disk 

Thermal Constants Analyzer (HOT Disk Inc., Gothenburg, Sweden), using the methods 

outlined in ISO 22007-2 (ISO, 2015). 

2.3.3 In-Situ Thermal Properties Testing 

The field test design was similar to the laboratory heat pulse probe in that it produced a 

line-source heat pulse within the FFT, and was also comparable to the borehole thermal 

conductivity testing method developed by Raymond et al. (2010) for designing ground-

coupled heat pump systems. The heating wire was composed of an insulated copper wire, 

carrying the electrical current down through the lake water to the FFT, connected to a 3 m 

non-insulated nickel alloy wire to produce a vertical heat pulse within the tailings (Figure 

2-2). Preliminary testing of the non-insulated nickel alloy wire was conducted in the 

laboratory to assess the potential for current loss in the field. The non-insulated wire was 

placed in a saltwater bath (with and without a ground), and the wire was connected to a power 

source. A current loss of 0.5% or less was observed over a 3 m section of the non-insulated 

nickel alloy wire in the laboratory confirming that the wire would not exhibit a large current 

loss in the field. Thus, the non-insulated nickel alloy wire was considered a suitable material 

for in-situ heating of the FFT.  

A high-resolution thermistor string (±0.1 °C), purchased from RST Instruments Ltd. 

(Maple Ridge, BC, Canada), was placed beside the heating wire system in order to measure 

the temperature change within the FFT during in-situ testing. The distance between each 

thermistor and the heating wire was measured before the system was deployed; however, 

these distances were difficult to control, and varied from 0.0005 to 0.0021 m prior to 

installation. The thermistors were positioned every 0.1 m along the 3 m heating wire.  

The heating wire and thermistor string were hung from two small buoys that sat right at 

the FFT-water interface (Figure 2-2). Two 2.3 kg spherical weights with a diameter of 0.1 m 

were placed at the bottom of the heating wire and thermistor string to ensure the system 
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stayed vertical. A rope connected this system to a large buoy at the lake surface. The rope was 

left slack so that waves at the lake surface would not disturb the positioning of the heating 

system. The large buoy was designed to support the entire system if the two small buoys at 

the FFT-water interface were compromised. The insulated wire and thermistor line ran up to 

Platform 3 (Figure 2-1), where the thermistor string was connected to a flexDAQ data logger 

(RST Instruments Ltd.) on the platform.  

 

 

Figure 2-2. In-situ thermal properties testing system. 

 

During the heating test, the ends of the insulated wire were attached to a Circuit-Test 

Electronics (Burnaby, BC, Canada) Regulated DC Power Supply (0-30 VDC, 0-3 A) set up 

on Platform 3 to generate the desired energy input. Two ammeters measured the current going 

into and out of the heating wire to determine the current lost through the system. A voltmeter 

was also used to measure the voltage over the entire system. A preliminary heating test with a 
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30-minute heating period was completed to ensure the system was properly set up. The full 

heating test ran for 2 hours, with temperatures measured by the high-resolution thermistor 

string at 1-minute intervals during heating, and every 3 minutes afterwards while the FFT 

cooled. The heating test was repeated to verify the results. 

2.3.4 Development of the Numerical Model 

In order to evaluate the FFT thermal conductivity and volumetric heat capacity using 

the in-situ heating test described above, the heating and cooling trends measured in the field 

were simulated in GeoStudio© TEMP/W, a commercial numerical modelling software 

package (GEO-SLOPE International Ltd., Calgary, AB, Canada; GEO-SLOPE International 

Ltd., 2014). A three-dimensional axisymmetric domain with a radius of 0.5 m was created to 

represent the FFT surrounding the heating wire. The vertical extent of the domain was 5 m 

centered on the 3 m heating wire with 1 m regions above and below the heating wire to 

represent the overlying lake water and underlying FFT, respectively. The middle region of the 

model had continuously changing volumetric water content with depth to represent the 

observed increase in solids content with depth through the FFT in BML. The thermal 

conductivity and volumetric heat capacity were set as functions of the water content so they 

also changed continuously with depth in the model. The initial thermal conductivity and 

volumetric heat capacity values in the FFT were specified based on findings from the 

laboratory portion of this study.  

A thermal flux (W/m2) was applied to the portion of the domain that represented the 

heating wire. The flux was calculated from the current and voltage measurements taken in the 

field. The heating flux was applied for the same time as the in-situ experiment (2 hours), 

followed by a cooling period of 4 hours. Simulated temperatures were compared to the in-situ 

experiment results at each thermistor by calculating the Root Mean Square Error (RMSE). 

The properties of the FFT beside the heating wire were modified until the minimum average 

RMSE value was determined for all thermistors. 

2.4 Results and Discussion 

2.4.1 General FFT Properties 

The FFT samples collected throughout the entire FFT profile at the three sample 

locations had solids volume fractions between 0.117 and 0.631, bitumen volume fractions 
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between 0.001 and 0.088, and EC values ranging from 30 to 2403 μS/cm. Bitumen content 

does not exhibit a consistent trend with depth at any of the sample locations; however, the 

solids content of FFT in BML generally increases with depth (Figure 2-3). The variability in 

measured solids content between locations is likely due to differences in depositional history 

(e.g. time of FFT placement). For example, locations closer to the FFT discharge point have 

had greater time for dewatering to occur.  

 

 

Figure 2-3. Solids and bitumen volume fractions through the FFT with depth. 

 

The specific gravity of the dry FFT solids was determined in the laboratory to be 2.4 

(the average value of three samples). This specific gravity is slightly lower than the typical 

values for non-organic soils (2.65; Li et al., 2015; Ren et al., 2003). The particle size 

distribution of the FFT solids was quite consistent (Figure 2-4). At least 90% of the FFT 

solids are typically less than 44 µm in diameter and 30% are less than 2 µm in diameter. 

There were no consistent trends in the particle size distribution with depth through the FFT. 
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Figure 2-4. Particle size distribution of the 36 FFT sub-samples as box plots illustrating the 

interquartile range (box), median values (black lines), mean values (grey lines), 10th and 90th 

percentile values (whisker caps) and outliers (black circles). 

 

Powder XRD analysis showed that the mineralogy was generally similar for all FFT 

samples (Figure 2-5). Quartz and clay minerals including kaolinite, chlorite and illite were 

present in the FFT. Two lower-intensity peaks positioned at approximately 35° 2θ and 37° 2θ 

were attributed to calcite and siderite, respectively. Peaks corresponding to quartz, kaolinite, 

chlorite, illite, calcite and siderite were observed in all FFT samples; however, the peak 

intensities were not the same for all samples, suggesting that the relative abundance of each 

mineral varied slightly. In addition, a minor peak positioned at approximately 38° 2θ was 

identified as pyrite (as indicated in Figure 2-5) but this peak was not observed for every 

sample. In general, kaolinite was the dominant mineral phase present in all samples, followed 

by quartz and illite. Based on the assessed mineralogy, the specific gravity of the FFT solids 
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was expected to be higher than the value measured in the laboratory and closer to 2.65 

(Fredlund and Rahardjo, 1993; Spellman and Whiting, 2014). The XRD results generally 

agree with previous studies on the mineralogy of oil sands ore and FFT solids (Dompierre et 

al., 2016; Osacky et al., 2013a, 2013b). 

 

 

 

Figure 2-5. Powder XRD analysis results with an offset between the measured intensities of 

each sample for comparison purposes. 

 

2.4.2 Laboratory Analysis of Thermal Properties 

The volumetric water content, bitumen content, and EC varied between sub-samples 

due to the addition or removal of water during sub-sample preparation (Figure 2-6). The 

bitumen volume fraction of the sub-samples ranged from 0.010 to 0.077. These values were 

slightly lower than the original bitumen content range (Table 2-1) as some bitumen may have 

been lost during sub-sample preparation. For example, bitumen would coat the sides and lids 
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of the HDPE sample bottles so it was difficult to transfer all of the bitumen to the sub-sample 

containers. 

The EC values of the sub-samples measured at the University of Saskatchewan were 

also different than those determined by Syncrude for the original seven samples (Table 2-1) 

likely due to sample preparation. The EC of the sub-samples ranged from 1641 μS/cm to 2919 

μS/cm. These values were below 4000 μS/cm so the effect of dissolved solids on pore fluid 

density, heat capacity, and thermal conductivity was expected to be minimal (Caldwell, 1974; 

Millero et al., 1973). 

 

 

Figure 2-6. Bitumen volume fraction and EC of sub-samples as a function of water content. 

 

The thermal conductivity and volumetric heat capacity of the individual components of 

FFT (dry solids and bitumen) were generally similar to results from previous studies (Table 

2-2). The average thermal conductivity of the dry solids measured in the lab (3.1 W/m/K) had 

a standard deviation of 0.5 W/m/K and was within the expected thermal conductivity range 

for dry soil solids (Côté and Konrad, 2005; Farouki, 1981). This value was consistent with the 

thermal conductivities of the dominant minerals found in the FFT samples (Midttømme et al., 

1998). This result also confirmed that soil structure has a negligible influence on the FFT 
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thermal conductivity, as the ratio between the thermal conductivity of water (0.57 W/m/K) 

and the thermal conductivity of the dry solids was greater than 1:15 (Côté and Konrad, 2009). 

The average specific heat capacity of the dry solids (1087 J/kg/K) had a standard 

deviation of 68 J/kg/K and was higher than the results presented by Li et al. (2015).  One 

possible reason for this discrepancy could be the observed overestimation of specific heat 

values using the dual heat pulse probe method (Liu et al., 2012; Ren et al., 2003; Song et al., 

1998). The specific heat capacity value was multiplied by the density of the FFT solids (based 

on the specific gravity) to obtain a volumetric heat capacity of 2.61 x106 J/m3/K for the dry 

solids. When compared to the heat capacities of the dominant minerals present in the FFT 

(Bertoldi et al., 2007; Gailhanou et al., 2012; Richet et al., 1982; Robie and Hemingway, 

1991), this value was slightly above the expected range.  

 

Table 2-2. Thermal conductivity, specific heat capacity and density of the FFT components. 

Parameter Value 

 s 3.10 W/m/K 

 w 0.57 W/m/K* 

 b 0.17 W/m/K 

 cs 1087 J/kg/K 

 cw 4182 J/kg/K* 

 cb 1339 J/kg/K 

 ρs 2400 kg/m3 

 ρw 998 kg/m3 * 

 ρb 1030 kg/m3 

*Based on known values for water at 20°C 

 

The thermal conductivity and volumetric heat capacity of the bitumen in the FFT (0.168 

± 0.001 W/m/K and 1.379 ± 0.029 x106 J/m3/K) were similar to values determined for other 

long chain hydrocarbons, for example, heavy oils (Cerventes-Espinosa et al., 2012; Elam et 

al., 1989; Plantier et al., 2008; Wu et al., 2005). According to Gray (2015), the thermal 

conductivity of oil sands bitumen is 0.16 W/m/K, which corresponds to the laboratory results. 

The measured bitumen density (1030 kg/m3) was slightly higher than the values found by 

Gray (2015) for raw bitumen (1000 kg/m3) and Plantier et al. (2008) for heavy oils 

(approximately 1010 kg/m3). In-situ biogeochemical reactions observed within the Mildred 



 

  32

Lake Settling Basin (Penner and Foght, 2010), where the FFT was originally stored, and BML 

(Dompierre et al., 2016), typically consume the lighter hydrocarbons present in FFT 

(Siddique et al., 2006, 2007). Thus, the bitumen remaining in FFT will be denser than the raw 

bitumen studied by Gray (2015). The bitumen specific heat capacity was calculated from the 

density and volumetric heat capacity values.  

The measured thermal conductivities of the sub-samples ranged from 0.70 to 

1.02 W/m/K. The thermal conductivity of each sub-sample was plotted with a symbol size 

representative of its associated bitumen volume fraction (Figure 2-7). The standard deviation 

of the five thermal conductivity values measured for each sub-sample ranged from 0.0004 to 

0.0066 W/m/K with an average standard deviation of 0.0014 W/m/K. The thermal 

conductivity values of the individual components of FFT (Table 2-2) were used in equation 

(2.3) to create theoretical trend lines for the relationships between thermal conductivity and 

volumetric water content (Figure 2-7).  

 

 

Figure 2-7. Measured thermal conductivities (circular symbols) and theoretical trends (lines) 

for multiple bitumen volume fractions. 
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The theoretical curves indicate that thermal conductivity decreases as the bitumen 

volume fraction increases. The measured bitumen contents generally followed the theoretical 

trends, as sub-samples with lower bitumen contents fall along the theoretical trend line 

calculated for no bitumen or a bitumen volume fraction of 0.01, and sub-samples with greater 

bitumen contents are between the theoretical trend lines for bitumen volume fractions of 0.03 

and 0.09. There are a few sub-samples that appear somewhat anomalous; for example, the 

sample with the greatest bitumen content (0.077) appears to have a thermal conductivity that 

is too high for the associated water content. The thermal conductivity of this sample could 

have been abnormally high if a portion of the bitumen had coalesced. During laboratory 

testing, the measured thermal conductivity would have been greater (reflecting a lower 

bitumen content) if the portion of the sample with higher bitumen content was not near the 

probe. 

Theoretical thermal conductivity values were calculated for each sub-sample given its 

physical composition and equation (2.3). The measured thermal conductivities of the sub-

samples were plotted against the theoretically derived values (Figure 2-8). The data points 

follow the 1-1 line, confirming that the theoretical equation provided a reasonable fit for the 

measured values. The RMSE was calculated to determine the overall deviation of the 

measured thermal conductivities from the theoretical values. The RMSE associated with this 

data set was relatively low (0.06 W/m/K) confirming that the developed relationship 

(equation (2.3)) could be used to estimate the FFT thermal conductivity with known 

volumetric water and bitumen contents. 

The measured volumetric heat capacities of the sub-samples ranged from 3.09 to 

3.88 x106 J/m3/K (Figure 2-9). The standard deviation of the five volumetric heat capacities 

measured per sub-sample ranged from 0.08 to 1.19 x104 J/m3/K, with an average value of 

0.30 x104 J/m3/K. Theoretical trends for volumetric heat capacity were calculated for several 

bitumen volume fractions using the parameter values provided in Table 2-2 and equation 

(2.4). Similar to thermal conductivity, volumetric heat capacity decreases as bitumen content 

increases. However, the spread between the theoretical relationships (at a given water content) 

is less for volumetric heat capacity suggesting that bitumen has a greater effect on the thermal 

conductivity of FFT than on volumetric heat capacity.  
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Figure 2-8. Comparison of measured and theoretical thermal conductivity values. 

 

 

Figure 2-9. Measured volumetric heat capacities (circular symbols) and theoretical trends 

(lines) for multiple bitumen volume fractions. 
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The measured bitumen volume fractions generally followed the theoretical trends, as 

sub-samples with lower bitumen contents fall along the theoretical trend lines calculated for a 

bitumen volume fraction of 0.01, and sub-samples with greater bitumen contents have 

volumetric heat capacities below the theoretical trend lines for 0.06 bitumen. As with thermal 

conductivity, there are a few sub-samples that appear to be anomalous, such as the sample 

with a bitumen content of approximately 0.03, sitting above the theoretical trend for FFT with 

no bitumen, and the sample with the highest bitumen content that appears to have a 

volumetric heat capacity that is too low. These discrepancies could have been due to testing 

errors caused by sample heterogeneity, as described for the anomalous thermal conductivity 

values. 

The measured volumetric heat capacities were plotted against theoretically derived 

values (dark symbols; Figure 2-10). The RMSE between the measured and theoretical values 

for volumetric heat capacity was determined to be 0.16 x106 J/m3/K. The results indicate that 

the correlation is better at high values of volumetric heat capacity (i.e. high water contents) 

with greater deviation from the 1:1 line at lower water contents (and higher bitumen and 

solids contents). The observed offset between the measured and theoretical results could be 

caused by an underestimation of the laboratory measurements or an overestimation of the 

theoretical values. Previous studies found that the dual heat pulse probe method overestimates 

the heat capacity of soil (Liu et al., 2012; Ren et al., 2003; Song et al., 1998), so it is unlikely 

that the laboratory measurements underestimated the FFT heat capacity.   

A sensitivity analysis was conducted by independently varying the density and specific 

heat capacity of the FFT components (solids and bitumen) within a reasonable range based on 

previous literature values. These values were then used in the theoretical relationship for 

volumetric heat capacity (equation (2.4)) in place of the original values (Table 2-2). The 

RMSE was calculated to compare these new theoretical values for volumetric heat capacity to 

the measured data set. For example, the solids particle density was increased up to 

2650 kg/m3 to calculate volumetric heat capacity as this value corresponds to the typical 

densities of the dominant minerals present in FFT (Fredlund and Rahardjo, 1993; Li et al., 

2015; Ren et al., 2003; Spellman and Whiting, 2014). The bitumen density was also modified 

to 1000 kg/m3, as this was the value provided by Gray (2015) for raw Athabasca bitumen. 
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The specific heat capacity of the dry FFT solids was decreased to 700 J/kg/K to correspond to 

measurements presented by Li et al. (2015).  

 

 

Figure 2-10. Comparison of measured and theoretical volumetric heat capacities with the 

theoretical values based on the original parameters (dark circles) and values after the sensitivity 

analysis (light circles). 

 

The parameter with the greatest impact on the calculated volumetric heat capacity was 

the specific heat capacity of the dry FFT solids. When the value for the solids specific heat 

capacity was modified from 1087 to 700 J/kg/K, the measured and theoretical values fall 

along the 1-1 line with a RMSE of 0.07 x106 J/m3/K (light symbols; Figure 2-10). This value 

corresponds to the FFT specific heat capacity determined by modulated differential scanning 

calorimetry (Li et al., 2015). This method generally provides more accurate values for the 

specific heat of soils compared to the dual heat pulse probe method (DeLapp et al., 2004; Liu 

and Si, 2011).  

The laboratory results were used to estimate the approximate shifts in FFT thermal 

conductivity and volumetric heat capacity given the observed bitumen and water content 
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ranges (Table 2-3). Overall, water content was found to have a greater impact on the FFT 

thermal properties; however, the influence of bitumen cannot be disregarded. Bitumen content 

had a substantial impact on the FFT thermal conductivity and a small effect on the volumetric 

heat capacity. 

 

Table 2-3. Relative importance of water and bitumen contents on the thermal properties of 

FFT. 

Variable Measured Range 

(m3/m3) 

Effect on Properties  

(% change) 

Water Content 0.64 – 0.89 

 

:  - 35% 

Cv: + 15% 

Bitumen Content 0.01 – 0.08 

 

:  - 22% 

Cv:  - 6% 

 

The solids contents measured with depth through the FFT (Figure 2-3) were used to 

produce a solids content envelope, representing the minimum and maximum solids volume 

fractions expected through the FFT in BML (Figure 2-11). The solids content envelope was 

utilized to predict the range of expected FFT thermal conductivities and volumetric heat 

capacities with depth. The predicted range in thermal properties was calculated given: (1) a 

range of bitumen volume fractions (0 to 0.08) representative of the field results; (2) the 

corresponding volumetric water content; and (3) the theoretical relationships established for 

thermal conductivity and volumetric heat capacity. The parameter values listed in Table 2-2 

were used in the theoretical relationships, except for the heat capacity of the FFT solids, 

which was altered to 700 J/kg/K. Both the thermal conductivity and volumetric heat capacity 

ranges (shaded regions; Figure 2-11) exhibited a sharp shift near the FFT-water interface. 

Below 0.5 m, thermal conductivity and volumetric heat capacity changed gradually with 

depth. 
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Figure 2-11. Solids content envelope (blue lines) and predicted range of thermal conductivity 

and volumetric heat capacity values (shaded regions) within the top 3 m of FFT. 

 

2.4.3 In-situ Experiment Results and Numerical Analysis 

2.4.3.1 Field Measurements 

The current and voltage of the heating system remained fairly consistent throughout the 

in-situ thermal properties testing, with average values of 2.62 ± 0.02 A and 12.27 ± 0.10 V, 

respectively. The average current lost over the system during heating was 0.22%, and was 

assumed to be negligible. The heating rate for both of the in-situ tests was similar and was 

approximately 9.0 W/m.  

The FFT temperature increased when the heating wire was connected to the power 

supply and decreased when the power was shut off after 2 hours (Figure 2-12). The initial 

temperature corresponded to the temperature at depth in the FFT, which was generally 

warmer near the FFT-water interface. Each thermistor measured a distinct heating and cooling 

trend based on the initial FFT temperature, the thermistor’s distance from the heating wire 

(i.e., the heating radius), and the thermal properties of the FFT at that depth. The shape of the 

measured heating and cooling curves was consistent with the analytical solution for an infinite 

wire or line-source heating element (equation (2.5); Kluitenberg et al., 1993). 
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Figure 2-12. Heating and cooling curves measured in the FFT at all thermistors during an in-

situ thermal properties test. 

 

Although the heating wire produced temperature curves exhibiting the expected shape, 

the peak temperature change measured at each thermistor at the end of heating did not 

correspond to the peak temperature change calculated with equation (2.5). The expected peak 

temperature change was determined by inputting the measured heating radius at each 

thermistor and the expected thermal properties values, based on the laboratory results, into 

equation (2.5). The peak temperature change measured in the FFT at the end of heating was 

generally lower than the calculated peak temperatures. The presence of small vertical 

temperature gradients, due to the initial temperature profile and varying thermal properties 

with depth, could have contributed to the observed discrepancy between the in-situ 

measurements and the analytical solution, supporting the need for a numerical model to 

simulate the entire FFT profile. 
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2.4.3.2 Numerical Modelling 

The peak temperatures generated by the numerical model were also compared to the 

analytical solution for a line-source heating element (equation (2.5); Kluitenberg et al. 1993). 

A preliminary simulation was run with constant properties (initial temperature, thermal 

conductivity and volumetric heat capacity) with depth. The peak temperatures produced by 

this simulation and equation (2.5) were consistent, given the same heating rate, thermal 

properties, heating radius, and heating period (2 hours). This comparison verified that the 

numerical model follows the dual heat pulse probe theory (Bristow et al. 1994; Kluitenberg et 

al. 1993; Li et al. 2015; Liu and Si 2011). 

The numerical model was then run with a range of volumetric heat capacities (2.5 to 4.1 

MJ/m3/K), while the other variables remained constant (heating rate, heating radius, heating 

period, and thermal conductivity). These simulations were repeated for multiple thermal 

conductivity values, ranging from 0.6 to 1.0 W/m/K (Figure 2-13). 

 

 

Figure 2-13. Simulated range in temperature change 0.005 m from the heating wire given a 

range in volumetric heat capacities (2.5 to 4.1 MJ/m3/K) for each of the specified thermal 

conductivity values. 



 

  41

 

During the heating portion of the simulation, the range in temperature change generated 

by a given thermal conductivity (and range of volumetric heat capacities) overlapped with the 

results generated by lower and higher thermal conductivities. Therefore, different 

combinations of thermal conductivity and volumetric heat capacity could produce similar 

temperature curves during the heating portion of the simulation. Alternatively, there was 

minimal overlap between the temperature change results, for each thermal conductivity, 

during the cooling portion of the simulation even though a range of volumetric heat capacities 

was used. The simulated cooling trends indicated that volumetric heat capacity has a limited 

effect on the temperature change during this portion of the in-situ experiment. 

2.4.3.3 Model Calibration to Field Data 

The initial thermal properties used for calibrating the numerical model were based on 

the results from the laboratory portion of the study. The thermal conductivities and volumetric 

heat capacities inputted with depth corresponded to the median values of the thermal 

properties trends illustrated in Figure 2-11. The FFT temperature change was computed at a 

range of heating radii (0.002 m to 0.020 m), as the distance between the thermistor and 

heating wire of the in-situ testing system varied with depth (0.0005 to 0.021 m).  

The simulation results were compared to the heating and cooling curves measured in the 

field. As with the analytical solution, the peak temperature change measured in the field was 

generally lower than the simulated temperature at the end of the 2-hour heating period. 

However, the simulated temperatures during the cooling portion of the experiment were 

relatively similar to the in-situ measurements (Figure 2-12). Only the thermistors with a 

heating radius within the simulated range (0.002 to 0.020 m) were included in this 

comparison (Figure 2-14). 

Heating radius strongly influenced the simulated temperature change immediately after 

cooling began. Each radius (other than 0.002 and 0.004 m), exhibited a distinct temperature 

change with depth five minutes after cooling was initiated. As cooling continued, the 

difference in the temperature change generated by the various radii decreased. Fifty minutes 

after cooling started, the temperature change simulated at the smallest and largest radii 

differed by approximately 0.2 °C. The field measurements exhibited a similar trend. Five 

minutes after cooling began, the in-situ temperature change varied substantially with depth; 



 

  42

however, the measured range decreased as time progressed. Raymond et al. (2011) made the 

same observation when conducting thermal response tests for measuring borehole thermal 

properties associated with ground-coupled heat pump systems. 

 

 

Figure 2-14. Measured temperature change with depth (circles) compared to simulated 

temperature change at multiple heating radii (lines), both at 5 (darkest), 20, 50, and 120 

(lightest) minutes after cooling began. 

 

The numerical model demonstrated that heating radius had minimal impact on the 

simulated results twenty minutes after cooling began, as long as the radius was within a 

smaller range (e.g., 0.002 to 0.010 m). Consequently, the model was calibrated to the field 

measurements from thermistors with a heating radius in this range (0.002 to 0.010 m), 

20 minutes after cooling began. The thermal properties specified in the numerical model were 

incrementally changed, and the RMSE between the measured and simulated temperature 

change values was calculated to determine the thermal properties producing the optimal fit. 

The thermal property values were restricted so that they consistently changed with depth, as 
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predicted in the laboratory portion of this study (Figure 2-11). For example, the thermal 

conductivity only increased with depth, as opposed to decreasing and increasing to match the 

results from individual thermistors.  

When the volumetric heat capacity was modified with depth, the calculated RMSE 

remained relatively consistent. Thus, volumetric heat capacity had a limited influence on 

temperature change during the cooling portion of the in-situ heat experiment, as indicated by 

the original simulation results (Figure 2-13). The volumetric heat capacity values with depth 

were left as the median values in the predicted volumetric heat capacity range (Figure 2-11).  

Conversely, the simulated temperature change was sensitive to modification of the 

thermal conductivity values with depth. The thermal conductivity values producing the 

minimum RMSE (0.05 K) for all thermistors are plotted in Figure 2-15. The thermal 

conductivity trend with depth generated by calibrating the model to the field results generally 

followed the predicted trend established during the laboratory portion of this study (Figure 

2-15). The thermal conductivity values increased rapidly within the top portion of FFT, and 

increased slightly or stayed fairly constant below this depth. 

 

 

Figure 2-15. Predicted range of thermal conductivity values through the FFT from the 

laboratory experiment for no gas and with gas bubbles, compared to values determined by the 

in-situ experiment and corresponding numerical model. 
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2.4.3.4 Discussion of In-Situ Testing and Numerical Modelling Results 

The numerical model was only calibrated for the cooling portion of the in-situ 

experiment due to discrepancies between the field measurements and the temperature change 

determined by both the analytical solution and numerical model at the end of heating. A 

number of possible explanations for the discrepancies were evaluated, including: (1) the 

influence of the supporting rope running alongside the heating wire and thermistor string on 

the ‘radial’ heat transfer from the heating wire; (2) the potential for free convection to have 

occurred during heating of the FFT; (3) the influence of vertical heat dissipation; (4) the 

potential for the properties of the heating wire to change as its temperature increased; and (5) 

shifting of the thermistors or heating wire during installation. The first four explanations were 

ruled out after thorough consideration, including the development of supplemental numerical 

models. In the end, the most likely explanation for the discrepancy between the measured and 

predicted peak temperatures was that the location of the thermistors had shifted during 

installation.  

According to the heat pulse probe methods, the volumetric heat capacity of a soil cannot 

be determined without a well-defined heating radius (Bristow et al., 1994). However, thermal 

conductivity can be determined without a defined heating radius when the system reaches a 

quasi-steady state as described in ASTM D5334-14 (ASTM, 2014c). This quasi-steady state 

can occur during both the heating and cooling portions of the heat pulse experiment. This 

supports the findings in the previous section, as the FFT thermal conductivity was evaluated 

given the results from the cooling portion of the in-situ experiment after the quasi-steady state 

was reached, 20 minutes after cooling began. 

The best-fit thermal conductivities exhibited a larger range than the values calculated 

during the laboratory portion of the study. The numerical model captured the rapid transition 

in thermal conductivity values within the top portion of FFT; however, the transition zone 

interpreted from the heating test was larger than the transition zone predicted with the 

laboratory results and solids content envelope from the field (Figure 2-15). The thermal 

conductivities determined by the best-fit numerical model were reasonable within the top 

0.7 m of FFT. For example, the thermal conductivity simulated at the very top of the FFT 

profile corresponds to the thermal conductivity of water, or FFT with relatively high water 
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and bitumen contents. Below a depth of 0.7 m, the modelled thermal conductivities were 

higher than those estimated from the laboratory predictions (Figure 2-15). The laboratory 

analysis suggested that a thermal conductivity of 0.9 W/m/K is associated with a volumetric 

water content of less than 0.75. The characteristics of FFT measured in the field (Figure 2-3) 

suggest that the top 3 m of FFT in BML would likely have a higher volumetric water content.  

The in-situ experiment was also developed to evaluate the influence of gas bubbles on 

the FFT thermal properties in Base Mine Lake. Thus, the effect of in-situ gas bubbles on the 

FFT thermal conductivity was considered by modifying the theoretical relationship in 

equation (2.3) to: 

 = s [fs] ∙ w [fw] ∙ b [fb] ∙ g [fg] (2.6) 

where g represents the thermal conductivity of the gas bubbles (W/m/K), and fg is the 

volumetric gas content (m3/m3). The relationship for the thermal conductivity of saturated 

soils (Cosenza et al., 2003) still applies, as these gas bubbles would not be continuous. The 

gas bubbles would act as inclusions within the FFT of a different thermal conductivity 

(similar to the presence of bitumen). The gas present in the FFT is most likely methane, so the 

thermal conductivity of the bubbles was assumed to be 0.035 W/m/K (Assael et al., 1990). 

A gas volume fraction of 0.02 caused the predicted FFT thermal conductivity to 

decrease by approximately 5% (Figure 2-15). The modified thermal conductivity trend with 

depth matches the simulated thermal conductivity values within the top 0.3 m of FFT; 

however, the presence of gas does not provide an explanation for the high thermal 

conductivity values determined from the in-situ test below a depth of 0.7 m.  

A final hypothesis for the unexpected thermal conductivities determined by the in-situ 

experiment was that the system installation disturbed the FFT. The yield stress within the top 

0.5 m of FFT in BML is expected to increase rapidly with depth, by approximately 2 to 3 

orders of magnitude (Dompierre and Barbour, 2016a). Below this depth, the yield stress is 

expected to continue to increase but more gradually. The rope adjacent to the heating wire 

could have provided a preferential pathway for water to escape the FFT. The increasing yield 

stress of the FFT with depth and the presence of a preferential pathway could have resulted in 

the densification of the FFT near the heating wire, particularly at greater depths. Densification 
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would cause elevated solids contents along the heating wire, increasing the thermal 

conductivity of the surrounding FFT.  

The in-situ test results provide preliminary insight on the FFT thermal conductivity in 

BML; however, the testing system requires further development. Future designs must 

consider the potential for FFT disturbance via densification and movement of the thermistor 

string or heating wire during installation. For example, the rope should be replaced with a 

material that will not promote wicking and a small spacer with known thermal properties 

could be used to ensure the heating radius remains constant. 

2.5 Conclusions 

Laboratory testing demonstrated that the FFT thermal conductivity varied from 0.7 to 

1.2 W/m/K when the volumetric water and bitumen contents ranged from 0.64 to 0.89 and 

0.01 to 0.08, respectively. Given the same range in FFT composition, the measured 

volumetric heat capacities varied from 3.1 to 3.9 x106 J/m3/K. Water content had a greater 

influence on the FFT thermal properties; however, bitumen content was also significant, 

particularly for thermal conductivity. 

Laboratory testing also provided a well-defined relationship between the FFT 

composition and its thermal properties.  The measured volumetric heat capacities matched 

those calculated by equation (2.4) when the specific heat capacity of the dry FFT solids was 

decreased to 700 J/kg/K to correspond to the results presented by Li et al. (2015). Equations 

(2.3) and (2.4) were used to determine the expected thermal conductivity and volumetric heat 

capacity ranges within the top region of FFT. Thermal conductivity was expected to vary 

between 0.52 and 0.83 W/m/K, and volumetric heat capacity was predicted to range from 3.36 

to 4.18 MJ/m3/K within 3 m of the FFT-water interface. These relationships can also be 

employed to examine the effect of gas bubbles on the FFT thermal properties, as 

demonstrated in equation (2.6). 

The in-situ experiment and associated numerical model produced initial estimates of 

thermal conductivity with depth through the FFT, and demonstrated that in-situ testing of 

thermal properties is possible in soft sediments or tailings. The thermal conductivities 

estimated from the in-situ test ranged from 0.56 to 0.92 W/m/K. These values increased with 

depth, as was expected based on the laboratory results. However, the thermal conductivities at 

greater depths were higher than the predicted values, possibly due to densification of the FFT. 
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Future field methods will need to minimize the FFT disturbance during installation of the 

testing system.  

In-situ estimates of volumetric heat capacity were not possible in this study due to the 

inability to control the heating radii with depth during installation. In future testing, a spacer 

with known thermal properties should be installed between the heating wire and thermistor to 

insure the heating radii are constant with depth and over time. This spacer would also allow 

the thermistors to be placed at a greater distance from the heating wire (e.g., 0.05 m). Given 

this known heating radius, future in-situ tests could examine the effect of sample disturbance 

on the thermal properties of FFT and provide a better indication of the presence of bubbles.  

The laboratory and in-situ test results provide useful information on the thermal 

properties of FFT. Bitumen was observed to have a substantial effect on both the thermal 

conductivity and volumetric heat capacity; however, water content remained the most 

significant factor influencing the FFT thermal properties. These findings are applicable to 

future studies assessing the movement of energy through FFT, and supply important 

information for determining the energy balance in the water cap of BML and other EPLs. 
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CHAPTER 3 – CHARACTERIZATION OF PHYISCAL MASS TRANSPORT 

THROUGH OIL SANDS FINE TAILINGS IN AN END PIT LAKE: A MULTI-

TRACER STUDY (DOMPIERRE AND BARBOUR, 2016a) 

This chapter summarizes the use of heat and stable isotopes of water to assess mass 

transport through the FFT in BML. A combination of methods was employed, including long 

term in-situ FFT temperature measurement, FFT field sampling, and laboratory analysis to 

determine the FFT pore water isotope signatures. Numerical models for heat transport through 

the FFT were established based on the long term temperature measurements and the thermal 

properties of the FFT. Numerical models for mass transport were developed with the isotope 

signatures of the FFT pore water. In addition to assessing the main mechanisms contributing 

to mass transport through the FFT, this study also provided insight on pore water flux rates 

associated with FFT settlement, energy movement through the FFT, and the potential for free 

convection and other forms of mixing to occur within the tailings. 

I, Kathryn Dompierre, led the design and management of the field sampling program, 

provided oversight for the installation of the temperature measurement systems, processed 

and analyzed all isotope samples in the laboratory, developed the numerical models 

(described in detail in Appendix A), completed all data synthesis and analysis, and served as 

lead author of the manuscript. Morris Flynn (University of Alberta) led the experimentation 

program on the dynamic viscosity and yield stress of FFT from BML, Chris Surma 

(undergraduate summer student, University of Alberta) conducted the associated laboratory 

work and Barry Bara (Syncrude Canada Ltd.) assisted with data interpretation of the 

laboratory results. Geoff Halferdahl (Syncrude Canada Ltd.) coordinated laboratory testing on 

the other physical properties of the FFT at the Syncrude Canada Ltd. Edmonton Research 

Facility. I, Kathryn Dompierre (85%), carried out the majority of the contributions to the 

preparation of the manuscript with Lee Barbour (15%) assisting with the development of the 

numerical models and providing comments during the review process.
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Hydrology, 189: 12 -26. DOI: 10.1016/j.jconhyd.2016.03.006.  

3.1 Introduction 

Soft tailings are a fluid-like by-product of the milling or extraction processes associated 

with mining. Conventional terrestrial reclamation of this mine waste requires stabilization of the 

soft tailings to increase their bearing capacity and shear strength before a soil cover is placed over 

the tailings. One alternative approach developed for the disposal of this material is to place the 

soft tailings within depleted mine pits and cover them with a water cap. Oil sands operators plan 

to employ this strategy as a means of reducing their inventory of soft tailings produced by the 

extraction of bitumen from oil sands ore, referred to as fluid fine tailings (FFT). Oil sands 

operators have proposed the development of thirty EPLs, half of which will incorporate 

unprocessed FFT below the lake water (Prakash et al., 2011).  

The development of EPLs would allow oil sands operators to decrease the volumes of FFT 

stored in tailings impoundments; however, the feasibility of isolating FFT from the overlying 

water and establishing a sustainable biological community in the lake have yet to be fully 

evaluated. The FFT pore water generally contains high concentrations of dissolved constituents, 

naphthenic acids, petroleum hydrocarbons, and unrecovered bitumen (Allen, 2008; Dompierre et 

al., 2016; Kavanagh et al., 2011).  These constituents may move from the FFT into the lake water 

via two key processes: (1) advective-diffusive mass transport with upward pore water flow 

caused by dewatering of the soft tailings; and (2) mixing created by wind events or unstable 

density profiles through the lake water and upper portion of the FFT. The long-term 

biogeochemical evolution of the FFT is being studied but is currently unknown; however, the 

mechanisms controlling the transport of heat and aqueous constituents will remain key 

foundational processes in the development of this understanding.  

This study presents a preliminary assessment of the movement of the stable isotopes of 

water (deuterium, 2H; oxygen-18, 18O) from the FFT to the water cap of the first EPL developed 

in the Athabasca oil sands region. These isotopes serve as conservative tracers for potential 
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chemical transport since they are components of the water molecule. The concentrations of these 

isotopes are generally represented in terms of differences in the isotopic ratios (i.e. 2H/1H or 
18O/16O) from known standards, according to the ‘del’ notation (δ). The isotopic composition of a 

water sample can be used to identify its source (Coplen et al., 2000). This method has been 

applied in many different fields, including: (1) hydrology, to measure evaporation and 

precipitation trends (Gammons et al., 2006; Gibson et al., 1996), and to determine the water 

balance of catchments and lakes (Gibson et al., 2005; Gibson and Edwards, 2002); (2) 

hydrogeology, to track the movement of water through aquitards (Hendry and Wassenaar, 2011), 

and assess groundwater recharge rates and residence times (Buttle, 1998; McGuire, et al., 2005; 

Taylor and Howard, 1996); and (3) contaminant transport to determine advection and diffusion of 

conservative species (Barbour et al., 2012; McKay et al., 1993). Stable isotopes of water have 

more recently been employed in the oil sands to characterize the isotopic signatures of various 

natural and mine affected waters (Baer, 2014), to trace the movement of process-affected waters 

(Gibson et al., 2011), and to evaluate recent recharge into overburden deposits (Huang et al., 

2015). Therefore, stable isotopes of water are an appropriate tracer to assess mass transport 

through the FFT in BML. 

Heat was also used as a tracer for evaluating the mechanisms controlling the movement of 

conservative aqueous constituents in the FFT. Heat has been employed to trace the movement of 

groundwater (Anderson, 2005; Bredehoeft and Papadopulos, 1965; Saar, 2011; Stallman, 1965), 

and can be used to evaluate interactions between surface and groundwater systems (Blasch et al., 

2007; Constantz, 2008; Stonestrom and Constantz, 2003; Suzuki, 1960). Heat transfer via 

convection is mainly driven by fluid flow; therefore, convective heat transfer can be used as a 

tracer for advective mass transport through the FFT. Convection may be either: (1) forced 

convection, in which the movement of heat is due to hydraulically driven water flow; or (2) free 

convection, in which fluid flow occurs as a result of temperature-derived density differences 

(Anderson, 2005; Pop and Ingham, 2001). In an EPL, forced convection would result from the 

upward movement of water associated with FFT densification. Free convection could occur 

within the FFT if substantial temperature-induced density differences form. 

Heat transfer between the water cap and underlying FFT in an EPL may also occur as a 

result of conduction. Conduction is the transmission of heat from more energetic molecules to 

those with less energy (Rathore and Kapuno, 2011). The lake temperature changes seasonally 
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with air temperature, causing conduction to occur over the FFT-water interface. Conduction is 

generally more effective in moving heat than diffusion is in moving mass, so heat cannot be used 

as a direct tracer for diffusive mass transport. However, if convection is shown to be an important 

mechanism for heat transport through the FFT, then advection will be integral to mass transport. 

Movement of the lake water itself may also play an important role in heat and mass 

transport through the FFT. Wind-induced waves or lake turnover may erode the FFT-water 

interface, as Adu-Wusu et al. (2001), Catalan and Yanful (2002), and Kachhwal et al. (2011) 

observed the erosion and resuspension of soft tailings stored under water caps. Thus, fluid 

movement in the lake could cause mixing within the tailings, which would create an additional 

form of fluid movement or advective mass transport. This mixing may only occur seasonally, for 

example, in the fall when the lake undergoes turnover, and would disturb the dominant form of 

mass transport occurring throughout the remainder of the year. 

This study will provide valuable insight on the performance of EPLs as an oil sands 

reclamation strategy by characterizing the dominant mechanisms for heat and mass transport 

across the FFT-water interface.  An understanding of these processes during the early stages of 

EPL development is essential for assessing the geochemical evolution of FFT, and the potential 

containment and isolation of FFT through the use of EPLs. When combined with biogeochemical 

analysis of the FFT pore water characteristics (e.g. Dompierre et al., 2016), findings from this 

study will assist in the development of monitoring and management plans for future EPLs. 

3.2 Site Description 

The first EPL was established at the Mildred Lake Mine approximately 35 km north of Fort 

McMurray, Alberta, Canada (Figure 3-1). The mine site is located in a sub-humid continental 

climate region with short summers and long cold winters (Carey, 2008). Minimum and maximum 

mean daily temperatures of -39.8 °C (January 18, 1996) and 26.3 °C (August 1, 2003), 

respectively, have been measured at the Mildred Lake weather station adjacent to the mine 

(Environment Canada, 2015). The mean annual temperature is 1.0 °C (Environment Canada, 

2015).  

Operations at the Mildred Lake Mine began in 1978 when Syncrude Canada Ltd. 

commenced surface mining of oil sands ore. The oil sands ore is from the McMurray Formation, 

and generally contains an average of 12 % (w/w) bitumen (long chain hydrocarbons), 3 to 6 % 
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(w/w) water, and 84 to 86 % (w/w) solids, comprised of quartz sand with a small clay fraction 

(Chalaturnyk et al., 2002). Bitumen is extracted from the ore by adding hot water to decrease the 

bitumen viscosity and caustic (NaOH) to disperse the clay particles (Caughill et al., 1993; 

Masliyah et al., 2004). The resulting bitumen froth is separated for upgrading and the remaining 

sand-clay slurry is pumped to tailings impoundments, for example the Mildred Lake Settling 

Basin, for storage. The current mine site and tailings impoundment locations are shown in Figure 

3-2. 

 

 

Figure 3-1. Location of the Mildred Lake Mine (star) and known oil sands deposits (in grey). 
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Figure 3-2. Satellite image of the Mildred Lake Mine with the tailings impoundments outlined in 

red; inset (a) shows a detailed image of the BML monitoring stations and water cap depth. 

 

West In-Pit, a portion of the original mine pit, is one of the tailings impoundments at the 

Mildred Lake Mine site. The foundation of West In-Pit is generally composed of marine shales 

and siltstones of the Clearwater Formation. This formation is considered overburden material as 
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it overlies the oil sands ore. The mean vertical hydraulic conductivity for the Clearwater 

Formation is approximately 8 x10-10 m/s (according to personal communications with Dallas 

Heisler, Syncrude Canada Ltd.). The base of West In-Pit also includes areas with lean oil sands 

material, which is oil sands ore with a bitumen content below 7 % (w/w). This material is a part 

of the McMurray Formation, which exhibits vertical hydraulic conductivities ranging from 

1 x10-13 to 1 x10-7 m/s (Dallas Heisler, Syncrude Canada Ltd.). The Devonian Waterways 

Formation (the main Upper Devonian unit present at the mine site) lies below the overburden and 

lean oil sands forming the bottom of West In-Pit. This formation is composed of limestone and 

siltstones with a mean vertical hydraulic conductivity of 6 x10-9 m/s (Dallas Heisler, Syncrude 

Canada Ltd.).  

Syncrude Canada Ltd. began filling West In-Pit in 1994 with FFT dredged from the 

Mildred Lake Settling Basin. The FFT was pumped into the northeast corner of the pit from 1994 

to 2012. The temperature of FFT during placement ranged from 11 °C to 19 °C. When filling was 

complete in 2012, the system was commissioned as an EPL called BML (shown in Figure 3-2). 

At this time, the maximum depth of FFT in BML was 45 m, corresponding to a total FFT volume 

of approximately 186 M m3. The water cap depth during FFT placement was between 3 and 5 m. 

Since this time, fresh water has been pumped from Beaver Creek Reservoir into the lake with 

yearly volumes ranging from 6 to 7 M m3. Water is removed from BML (for use in the bitumen 

extraction plant) to maintain a lake surface elevation of 308.7 ± 0.5 metres above sea level 

(masl). The average yearly volume of water pumped from BML is 6.5 M m3. The corresponding 

average water cap depth is 8.5 m. The lake covers an area of approximately 8 km2 and the 

estimated volume of the water cap is 65 M m3.  Freshwater input since BML was commissioned 

has resulted in the displacement of approximately 20 % of the standing lake volume to date.  

The BML water cap responds to seasonal temperature cycles in a similar manner as natural 

temperate, northern lakes (e.g. Oswald and Rouse, 2004; personal communications with Edmund 

Tedford, University of British Columbia). During the summer months, the lake is strongly 

stratified from the end of May to the beginning of September. The water temperature of the upper 

portion of the lake increases during the month of June to 20 °C and stays at this temperature until 

September, while the lower portion of the lake gradually warms over this entire period (June to 

September) to 15 °C. In the fall, the lake exhibits turnover from the beginning of September until 

the ice forms in November. During this time the lake cools to 2 °C. Over the winter season, the 
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lake water is weakly stratified below the ice cover. Temperatures remain relatively constant 

throughout this period with water near the ice at 0 °C and a temperature of approximately 4 °C 

near the FFT-water interface. The ice generally melts by the end of April, which is followed by a 

weaker and more irregular spring turnover, as compared to the fall turnover. 

The FFT below the water cap in BML is a dense, warm fluid suspension comprised of 

dispersed mineral particles and oil sands process-affected water. The bulk density of FFT in 

BML ranges from 1010 kg/m3 near the surface of the deposit, to 1600 kg/m3 near the base of the 

deposit with an average bulk density of 1360 kg/m3 through the main body of the tailings. The 

FFT pore water (oil sands process-affected water) generally contains high concentrations of 

dissolved constituents (e.g. sodium, chloride, bicarbonate), naphthenic acids, petroleum 

hydrocarbons, and unrecovered bitumen (Allen, 2008; Dompierre et al., 2016; Kavanagh et al., 

2011). The bitumen content of FFT in BML is typically between 1 and 6 % (w/w). The initial 

solids content of FFT is generally 25 to 35 % (w/w), and is predominantly made up of quartz and 

clay minerals including kaolinite, illite, chlorite, and illite-smectite (Dompierre et al., 2016; 

Osacky et al., 2013b). The hydraulic conductivity of the FFT is expected to range from 1 x10-7 to 

5 x10-5 m/s based on the typical water content values (or void ratios) of FFT in BML and the 

laboratory results presented by Suthaker and Scott (1996). Seasonal temperature fluctuations may 

also affect the hydraulic conductivity of FFT; however, based on the typical water content values 

of FFT in BML, changes in void ratio with depth likely have a greater impact on the variability of 

hydraulic conductivity through the FFT (Chapuis, 2012). 

Biogeochemical reactions observed in the FFT include fermentation, methanogenesis and 

sulfate reduction (Dompierre et al., 2016). These processes are typically exothermic and may 

generate heat within the FFT; however, acetoclastic methanogenesis is an endothermic reaction 

(Von Stockar et al., 2000) that may be occurring in the FFT in BML. Thus, the net impact of 

these microbial processes on the energy present within the FFT remains unknown. Conversely, 

FFT contained a substantial amount of energy at the time of deposition in BML as it was 

deposited at elevated temperatures. These temperatures were a result of the bitumen extraction 

process and the high specific heat capacity of the tailings (Dompierre et al., 2014). Therefore, the 

energy produced by microbial reactions is assumed to be negligible compared to the energy 

stored in the FFT at the time of deposition. 
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The FFT in BML exhibits slow rates of settlement due to the addition of dispersants 

(NaOH) during bitumen extraction, and naturally occurring surfactants (asphaltic acids) that are 

present in the ore and released during heating (Chalaturnyk et al., 2002; Jeeravipoolvarn, 2009). 

Primary dewatering of the FFT occurred during the first few years after deposition; however, 

high water contents are expected to persist for an extended time period (Kasperski and Mikula, 

2011). The FFT in BML is currently undergoing hindered settlement or self-weight 

consolidation.  

Self-weight consolidation occurs when the solid matrix does not support itself. This is 

typical of FFT at high water contents. Pore pressures developed during the deposition of FFT are 

equal to the total weight of the overlying fluid and solid suspension, and are consequently much 

higher than a hydrostatic pressure profile. This excess pressure results in an upward flow of water 

with the most rapid dissipation of pore pressure (and concomitant increase in effective stress) 

occurring at the base of the FFT. Thus, self-weight consolidation causes the bottom portion of the 

deposit to dewater first with the expressed water moving upward through the FFT column. 

Consequently, the pore water flow within the top portion of the FFT can be assumed to be 

constant with elevation as this region does not undergo significant dewatering during the early 

years of an EPL.  

Pore water movement through the FFT is expected to obey Darcy’s law as the water fluxes 

associated with tailings settlement produce Reynolds numbers substantially less than 1 

(<4 x10-7). A small portion of the expressed pore water may move downwards and into the 

formation underlying BML; however, leakage from the pit bottom is expected to be minor based 

on the relatively low hydraulic conductivity of the underlying formation. Pore water pressures 

measured in the field by Syncrude Canada Ltd. indicate that this downward flow is relatively 

small.  

Carrier et al. (2007) developed a preliminary model for Syncrude Canada Ltd. to simulate 

the dewatering of FFT in BML. According to this model, FFT in BML would exhibit settlement 

rates of approximately 1 m/year after deposition, and these rates would decrease exponentially 

over 30 years. After a 30-year period, the predicted pore water release levelled out to 

approximately 0.1 m/year (Carrier et al., 2007). 
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3.3 Methodology 

Base Mine Lake is the focus of a comprehensive research program to evaluate the controls 

on the long-term physical, hydrologic and biological evolution of the lake. A field investigation 

was conducted at BML in 2013 and 2014 to measure the in-situ temperatures through the FFT, as 

well as the isotopic signatures with depth across the FFT-water interface. Numerical models were 

developed to represent various forms of heat transport (conduction, free convection and forced 

convection), and physical mass transfer (diffusion, advection and dispersion). Model results were 

compared to field data to assess the mechanisms driving physical mass transport of conservative 

species through the FFT in BML at multiple locations. The findings were compared to an 

independent assessment of FFT settlement conducted by Syncrude Canada Ltd. at BML to verify 

the results.  

3.3.1 Preliminary Investigation of FFT Properties 

ConeTec Investigations Ltd. collected FFT samples at 6 locations (Platform 1, Platform 2, 

Platform 3, S04, S08 and S09; see Figure 3-2 for sample locations) using a pneumatic piston 

sampling system during the 2014 FFT monitoring program. A sample chamber with a pneumatic 

piston was positioned at the desired depth, the cable-actuated ball-valve on the chamber was 

opened, and the pneumatic piston was slowly retracted to allow FFT to enter the chamber. The 

ball valve was closed when the chamber was full, the sample system was brought up to the 

surface, and the collected sample was transferred to a high-density polyethylene bottle (HDPE). 

The samples were collected throughout the entire depth of FFT in BML, at 1 m to 3 m intervals.  

ConeTec Investigations Ltd. also conducted Fixed Interval Fluid SamplingTM to passively 

obtain closely spaced fluid samples over the FFT-water interface at the same 6 locations 

(Platform 1, Platform 2, Platform 3, S04, S08 and S09). This method involved a sample frame 

with 10 or 20 sample cylinders fixed at 0.1 m intervals. The sample cylinders each had an internal 

piston and were attached to a compressed gas source. The compressed gas was used to hold the 

piston at the opening of the sample chamber while the sample frame was slowly lowered to the 

desired depth range. Once the sampler reached this depth, the gas pressure was released. The 

piston was then pushed backward by the hydrostatic pressure of the fluid surrounding the sample 

cylinder, allowing FFT to enter the chamber. The sampler was brought up to the surface, and 

HDPE bottles were attached to each sample cylinder. The FFT was extruded into the bottles by 

re-applying the gas pressure and moving the piston back to its original position. 
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Both sets of samples were sent to the Syncrude Canada Ltd. research facility in Edmonton 

for laboratory analysis. The solids and water contents of each sample were determined using the 

Dean and Stark extraction method (Dean and Stark, 1920). The particle size distribution of the 

dry FFT solids from each sample was determined with a Coulter LS 13 320 laser diffraction 

particle analyzer (after ASTM, 2015b; ASTM, 2014a). Additional laboratory testing on select 

FFT samples was conducted to determine the dynamic viscosity and Bingham yield stress of low 

solids content FFT (Flynn et al., 2015) using a R/S Plus Brookfield Rheometer, and methods 

outlined by Steffe (1996).  

3.3.2 Isotope Sampling 

Sampling of BML water and surrounding water sources was conducted by Golder 

Associates between May 2013 and October 2014 to catalogue the stable isotopes of water. These 

samples were collected in 500 mL HDPE bottles at the lake inflow and outflow, and at several 

stations around the lake (Platform 1, Platform 2, Platform 3, S06, S07, S08, S09 and S10). 

Isotope sampling over the FFT-water interface was also conducted in July 2014. Samples of FFT 

and lake water were collected with the Fixed Interval Fluid SamplingTM method (ConeTec 

Investigations, Ltd.) at three of the monitoring locations (Platform 1, Platform 3, and S04). The 

sample frame was used to collect samples within the top 1.5 m of FFT and bottom 1.5 m of lake 

water. These samples were collected in 250 mL HDPE bottles, and were transported in coolers to 

minimize temperature fluctuations.  

3.3.3 In-situ Temperature Measurements 

A permanent temperature-measurement station was installed at BML in September 2013 at 

Platform 3 (location provided in Figure 3-2). The station consisted of 30 thermistors (±0.1°C) 

attached to a Kevlar cable at 1 to 2 m intervals, as illustrated in Figure 3-3. The Kevlar cable was 

fixed to the bottom of the FFT with a naval anchor, and the top was attached to a buoy to create 

tension in the cable. A data logger was placed on the platform and connected to the thermistors 

through a PVC conduit to minimize ice impact. Temperatures were measured once a day, from 

September 2013 to March 2014, to observe seasonal temperature variations (rather than diurnal 

fluctuations) through the FFT and lake water. Crews checked on the data logger twice during the 

winter months to ensure that the system was functioning. 
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Figure 3-3. Thermistor positions with depth. 

 

Another thermistor string was installed at Platform 3 in September and October 2014. This 

high-resolution thermistor string measured temperatures every 0.1 m through the top 2 m of FFT 

in BML. These temperatures were used to calculate the Rayleigh number for saturated porous 

media (Bear, 1972; Bennacer and Lakhal, 2005; Nield, 1968) at multiple intervals through the 

FFT, to assess the ability for free convection (density-derived fluid flow) to occur in the FFT 

pore water. In addition, a revised Rayleigh number (after Diersch and Kolditz, 2002) was used to 

assess free convection potential of the entire tailings matrix (solids and water), as the FFT in 

BML exhibits fluid-like characteristics. The revised Raleigh number used the dynamic viscosity 

of FFT (measured in the laboratory), and the density difference between vertical intervals to 

dictate mixing potential. The density of the FFT at a specific depth was based on: (1) the solids 

content measured during the preliminary FFT properties investigation; and (2) the density of the 

pore water, calculated with the temperatures recorded by the high-resolution thermistor string 

according to the methods described by McCutcheon et al. (1993). Thus, the density term 
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incorporated both solids content and temperature of the FFT at depth. The density term in the 

revised Rayleigh number equation would yield a negative value if density increased with depth.  

3.3.4 Laboratory Analysis 

All samples from the Fixed Interval Fluid SamplingTM that contained FFT were centrifuged 

immediately upon arrival at the laboratory. Extracted pore waters were stored in 15 mL HDPE 

bottles with zero headspace until isotopic analysis was performed. The samples collected above 

the FFT-water interface (lake water) were not processed before isotopic analysis was conducted. 

Isotopic analysis involved placing 10 mL of each water sample (either the extracted FFT 

pore water or unprocessed lake water) in a double-sealed Ziploc© freezer bag, filling the bag 

with dry air, and allowing the sample and the air to reach equilibrium (approximately 1 hour as 

recommended by Wassenaar et al., 2008). Water vapour from the sample bag was then inserted 

into a Picarro L-2120-i Cavity Ring Down Spectrometer to determine its stable isotopes of water 

signatures (for deuterium, δ2H, and oxygen-18, δ18O). The vapour equilibration technique used 

by Wassenaar et al. (2008) was employed to obtain the corresponding δ2H and δ18O signatures of 

the liquid water. Duplicate samples were run for 20% of the lake and pore water samples to check 

the accuracy of this method.  

3.3.5 Isotope Transport Model Development 

One-dimensional mass transport models for advective-dispersive and diffusive transport 

were developed using commercial finite element simulation software for ground water flow and 

transport (CTRAN/W, GEO-SLOPE International Ltd., 2012; SEEP/W, GEO-SLOPE 

International Ltd., 2013). The model domain was a 5 m column of FFT, divided into 5 discrete 

layers (of 1 m depth). The model domain was limited to the top portion of the FFT, as this is the 

region where the isotopic composition of the FFT was observed to transition from typical FFT 

signatures (determined by Baer, 2014) to lake water conditions.  

The volumetric water content of each layer was selected based on the solids content 

measured at Platform 3 during the preliminary investigation of FFT properties in BML. 

Volumetric water content, which is equivalent to porosity under saturated conditions, was used to 

calculate the changing void ratio of FFT with depth. Existing relationships between hydraulic 

conductivity and void ratio (Suthaker and Scott, 1996) were then used to estimate changes in 

hydraulic conductivity with depth. The coefficient of molecular diffusion within each layer was 
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specified based on the relationships between porosity and the coefficient of molecular diffusion 

established by Boudreau (1996), and measured diffusion values for water molecules containing 

δ2H and δ18O (Easteal et al., 1984; Mills, 1973). The diffusion coefficient values for each layer 

are provided in Table 3-1.  

The initial concentration applied to the FFT pore water was the average stable isotopes of 

water signature measured through the FFT by the Fixed Interval Sampler (–12.4 ‰ for δ18O;       

–112.2 ‰ for δ2H). This value was also used as the lower boundary condition as FFT pore water 

below the modelled domain was assumed to have a similar isotopic signature. The upper 

boundary condition was established using an 8.5 m column of water to represent the lake. An 

isotopic signature was applied to the top of the water column based on the isotopic signatures of 

water collected from BML (–13.8 ‰ for δ18O; –118.0 ‰ for δ2H). The diffusion coefficient of 

the water column was altered to create two different upper boundary conditions on the FFT 

profile: (1) a fully mixed water column generated by assigning a large diffusion coefficient to the 

lake; or (2) a water column with no mixing other than by diffusion. This was to represent the full 

range of possible conditions occurring in the lake water as BML has been observed to be 

stratified for portions of the year and fully-mixed during other times. 

 

Table 3-1. Properties of each model layer. 

 

Layer 

Water 

Content 

Diffusion 

Coefficient 

Thermal 

Conductivity 

Volumetric 

Heat Capacity 

 (% vol.) (m2/s) (W/m/K) (MJ/m3/K) 

1 86% 8.6 x10–10 0.75 3.74 

2 85% 8.2 x10–10 0.77 3.70 

3 84% 7.9 x10–10 0.78 3.67 

4 83% 7.7 x10–10 0.79 3.65 

5 82% 7.4 x10–10 0.80 3.63 

 

Diffusion-only mass transport was simulated for a one-year period. Advection was then 

added to the model by applying a specified upward water flux at the base of the model. 

Dewatering rates of FFT in BML were determined in 2013 and 2014 by tracking the elevation of 
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the FFT-water interface over time (completed by ConeTec Investigations Ltd.), and are 

associated with an approximate pore water flux of 0.003 m3/d/m2. Thus, the upward water fluxes 

applied to the advection models were chosen to range from 0.002 to 0.01 m3/d/m2.  

Longitudinal dispersivity was included in the models and was assumed to be 1/100th of the 

plume length (Van Der Kamp et al., 1994; Gelhar et al., 1992). The plume length in this study 

was selected based on the observed depth over which the isotope signatures in the FFT 

transitioned from typical FFT pore water values to lake water signatures (0.4 m). The linear pore 

water velocities, calculated by dividing the water flux applied to each model by the volumetric 

water content of the top FFT layer (porosity), were found to range from 0 to 1.4 x10-7 m/s. The 

assumed dispersivity value and the calculated pore water velocities produced a range in values 

for the coefficient of mechanical dispersion, from 0 to 4.6 x10-10 m2/s. 

An event was added to the model to simulate full mixing of the top portion of the FFT with 

lake water, as erosion and resuspension of soft tailings has been observed in other water-capped 

storage facilities (Adu-Wusu et al., 2001; Catalan and Yanful, 2002; Kachhwal et al., 2011). Two 

mixing depths, 0.5 m and 1 m, were imposed on the FFT column by changing the isotope 

signature of the FFT pore water in the mixed zone to the signature of the lake at the time of the 

mixing event. The date of the mixing event was set to October 15, 2013, as evidence of mixing in 

the top 1 m of FFT was observed during water quality monitoring in mid-October at BML. A 

Seabird 19plus sensor descended through the water column 1 m more than it had the day before, 

suggesting that the FFT-water interface at the same location changed over a very short period. 

This observation correlated with an increase in turbidity in the lake water. 

3.3.6 Heat Transport Model Development 

A commercial finite element code for heat transport (TEMP/W, GEO-SLOPE International 

Ltd., 2014) was used to simulate conduction and forced convection through the FFT. The model 

involved a simplified vertical profile to represent the top 5 m of FFT in BML. The same model 

domain as described for isotope transport, was used for heat transfer. A distinct water content, 

thermal conductivity, and volumetric heat capacity were assigned to the 5 discrete layers of the 

domain. The volumetric water contents assigned to each layer were the same as in the isotope 

transport model. The thermal conductivity and volumetric heat capacity of each layer were 

assigned based on relationships developed by Dompierre et al. (2014) for the thermal properties 

and volumetric water content. The assigned values are provided in Table 3-1. 
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Temperatures measured at the FFT-water interface from September 2013 to March 2014 at 

Platform 3 were applied as the upper thermal boundary condition for the top of the heat transport 

models. The average FFT profile temperature (10 °C) was used as the constant boundary 

condition at the bottom of the model domain. The temperature profile measured at Platform 3 on 

the first day of in-situ temperature readings (September 15, 2013) was used for the initial FFT 

temperatures in the model.  

Once the profile and boundary conditions were established, a conduction-only thermal 

regime was modelled for 170 days, corresponding to the time period that field measurements 

were collected. Forced convection was then added to the model. The upward water fluxes applied 

to the forced convection models were similar to those used in the advective mass transport 

models, ranging from 0.002 to 0.01 m3/d/m2. Finally, 0.5 m and 1 m mixing events were added to 

the heat transport models to determine the effects of FFT mixing on the temperature profiles. The 

mixing events were incorporated into the models by changing the FFT temperature in the mixed 

zone to the temperature of the lake on October 15, 2013. 

3.4 Results 

3.4.1 Preliminary FFT Properties Investigation 

The solids content of FFT in BML generally increases with depth (Figure 3-4). Pore water 

pressure in the FFT increases with depth due to the self-weight of the tailings. With restricted 

deep drainage, the FFT dewaters and densifies from the bottom first, pushing pore water upward 

through the FFT profile, and creating higher solids contents near the bottom of the profile, as 

observed in BML (Figure 3-4). The variability in measured solids content between locations is 

likely due to the different deposition times of FFT in each location as those closer to the FFT 

discharge point have had greater time for dewatering to occur and would exhibit higher solids 

contents with depth.  
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Figure 3-4. 2014 Solids content with depth. 

 

The particle size distributions of the FFT at all of the sample locations and depths were 

relatively similar (Figure 3-5). At least 95 % (w/w) of the FFT solids are less than 75 µm in 

diameter (silt-sized particles) and 30 % (w/w) are less than 2 µm in diameter (clay-sized). Thus, 

the FFT solids are generally made up of 65 % (w/w) silts, 30 % (w/w) clays and less than 5 % 

(w/w) are fine sands. There were no consistent trends in the particle size distribution with depth 

through the FFT. Thus, the void ratio or water content with depth likely has a greater effect on 

the hydraulic properties of FFT in BML (Suthaker and Scott, 1996). 

High-resolution solids content measurements near the FFT-water interface are provided in 

Figure 3-6, with a solids content envelope representing the minimum and maximum solids 

contents observed with depth. An estimated range for dynamic viscosities of the FFT near the 

FFT-water interface is also shown in Figure 3-6. These estimates are based on: (1) the solids 

content envelope; (2) the empirical relationship between water content and dynamic viscosity 

developed by Locat and Demers (1988) for sensitive clays; and (3) laboratory measurements of 

the dynamic viscosities of FFT at low solids contents (Flynn et al., 2015). The predicted range for 
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the dynamic viscosity of FFT near the FFT-water interface is relatively low, with values between 

1 to 18 times the viscosity of water. 

 

 

Figure 3-5. Particle size distribution of 85 FFT samples from BML as box plots of the interquartile 

range (25 to 75 percentile), median values (black lines), mean values (red lines), 10 and 90 

percentile values (whisker caps) and outliers (circles). 

 

The measured values for Bingham yield stress (Flynn et al., 2015), and a predicted range of 

yield stresses based on the solids content envelope, and work by McAnally et al. (2007) on fluid 

muds, are displayed in Figure 3-6. Fluid muds are fine-grained sediments found at the bottom of 

lakes or estuaries, with densities similar to FFT near the FFT-water interface (less than 1200 

kg/m3), and a similar mean particle size and clay fraction (McAnally et al., 2007). Within the top 

0.2 m of FFT in BML, the yield stress is likely quite low as the measured yield stress values were 

less than 1 Pa. The low viscosities and yield stresses within the top portion of FFT provide little 

resistance to shear forces at the FFT-water interface, which might develop as a result of lateral 

water movement. 
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Figure 3-6. Measured and assumed solids content, dynamic viscosity and yield stress values near 

the FFT-water interface. 

 

3.4.2 Stable Isotopes of Water Profiles 

The stable isotopes of water profiles obtained by the Fixed Interval Fluid SamplingTM are 

illustrated in Figure 3-7 and Figure 3-8. The three locations had relatively similar isotopic 

signatures through the FFT pore water. The average value of δ2H within the FFT at all locations 

was –112.84 ‰, with a standard deviation of 1.24 ‰. The average δ18O value in the FFT was     

–12.66 ‰, with a standard deviation of 0.29 ‰. The FFT pore water signatures were more 

enriched than the lake water signatures, corresponding to findings summarized by Baer (2014) 

suggesting that FFT pore water has enriched signatures due to the bitumen extraction process and 

evaporation from tailings ponds. 

Isotopic signatures in the lake water exhibited greater variability and shifted depending on 

the sample location. Platform 3 and S04 had slightly lower δ2H and δ18O values than Platform 1, 

likely due to a greater influence of fresh water at these locations. Fresh water is pumped into 

BML from the southwest corner, and runoff also enters the lake around the perimeter. Platform 3 

is nearest to the pump-in location, and S04 is closest to the edge of the lake (as shown in Figure 

3-2). A summary of the average lake water signatures at each sample location is provided in 
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Table 3-2. The average error calculated with the duplicate samples was 1.8 ‰ for δ2H and 0.3 ‰ 

for δ18O. 

 

 

Figure 3-7. δ2H measured over the FFT-water interface. 

 

 

Figure 3-8. δ18O measured over the FFT-water interface. 
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Table 3-2. Summary of lake water isotope signatures. 

Location δ2H (‰) δ18O (‰) 

 Average Standard 

Deviation 

Average Standard 

Deviation 

Platform 1 -114.9 1.6 -13.2 0.3 

Platform 3 -118.0 1.6 -13.6 0.4 

S04 -117.0 1.7 -13.6 0.3 

 

3.4.3 In-situ Temperature Measurements 

Temperature readings from September 2013 to March 2014 were compiled to examine 

trends through the FFT (Figure 3-9). The top 5 m of FFT is affected by seasonal temperature 

variations in the lake water, which was measured to range from 0 °C to 18 °C. When compared to 

the average annual air temperature at the mine site (1.0 °C), the lake water appears to be warm; 

however, the measured temperatures are consistent with the general thermal regime observed in 

the water cap (as previously described).  

 

 

Figure 3-9. Platform 3 in-situ FFT temperatures. 
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Changing lake water conditions create a cyclic oscillation of the FFT temperatures, referred 

to as the temperature envelope. Over the observed range in temperatures (5 to 15 °C), the 

hydraulic conductivity of the FFT could vary by a factor of 1.5 near the FFT-water interface 

(Chapuis, 2012). Temperatures in the FFT below this zone were consistent throughout the 

measurement period. The FFT generally has a temperature of 10 °C with a small increase 

between 275 and 285 masl. Temperatures through the bottom portion of the FFT decline with 

depth, and suggest heat loss to the underlying formation. 

High-resolution temperatures measured within the top 2 m of FFT showed that during the 

fall months when the lake cools, the FFT 1 m below the FFT-water interface is warmer than the 

overlying tailings. Temperature profiles exhibiting this trend were used to calculate the Rayleigh 

number at various depths to determine the potential for free convection of the FFT pore water. 

The Rayleigh numbers were found to be less than 1, which is substantially less than the critical 

Rayleigh number (40) determined experimentally by Elder (1967) for a homogeneous, isotropic 

medium. Thus, free convection of the FFT pore water is not likely.  

The revised Rayleigh number was also calculated at various depths using the solids content 

envelope and dynamic viscosities illustrated in Figure 3-6. The resulting values were all found to 

be less than zero, as the density of the FFT (based on both temperature and solids content) 

increased with depth. Therefore, the potential buoyancy of warm FFT 1 m below the FFT-water 

interface was not significant enough to overcome the increasing solids content with depth, so the 

soft tailings in BML will not be implicated in free convection. 

3.4.4 Isotope Transport Model 

The results from the mass transport models for δ18O are illustrated in Figure 3-10, with the 

field results from S04. The mass transport models with the fully mixed top boundary condition 

produced a greater shift in the isotopic signatures of the FFT, as mixing in the lake helped to 

carry mass away from the FFT-water interface. Diffusive mass transport through the FFT 

produced the greatest shift, and affected isotope signatures 0.5 m below the interface, while all of 

the advective mass transport models produced a disturbance of less than 0.1 m in the isotope 

profile. 
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Figure 3-10. Isotope model results for two boundary conditions: lake diffusion and mixing. 
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The profiles produced by the non-mixing lake model for diffusion-only produced the 

largest shift in isotope signatures, extending to a depth of 0.4 m below the FFT-water interface. 

The advective mass transport models with a non-mixing boundary condition produced only a 

small shift in the δ18O profile near the FFT-water interface, especially those with an upward 

water flux greater than 0.004 m3/d/m2. The isotope profile from the non-mixing lake model for 

diffusion provided the best fit for the field data based on the root mean square error (RMSE); 

however, neither the lake mixing nor lake diffusion model generated isotope profiles adequately 

matching the measured trend in isotope signatures at S04. The calculated RMSE values for each 

modelled scenario are provided in Table 3-3. 

When a 0.5 m mixing event was added to the models, the isotope profile from the diffusive 

mass transport models (both upper boundary conditions) shifted substantially. A 0.5 m FFT 

mixing event also caused the isotope profile from the 0.002 m3/d/m2 advective transport models 

to shift so that 0.2 m of the FFT pore water exhibited disturbed isotope signatures, as opposed to 

only 0.1 m from the original models. The advective transport model for 0.002 m3/d/m2 produced 

an isotope profile aligning with the measured isotope values, particularly for the model with the 

lake diffusion upper boundary condition (RMSE of 0.06 ‰).  

The simulated isotope profiles for advective mass transport with an upward water flux of 

0.004 to 0.01 m3/d/m2 did not exhibit a substantial change when the 0.5 m FFT mixing event was 

added to the models. The advective mass transport profiles demonstrate that even a small upward 

flux (e.g. 0.002 m3/d/m2) will re-establish the observed isotope profile by the summer months, if 

a 0.5 m FFT mixing event occurs in the fall. 

The isotope profiles created by the mass transport models with a 1 m FFT mixing event 

appeared to be quite similar, regardless of the upper boundary condition. Therefore, the greater 

the FFT mixing depth, the less dependent the isotope profile is on the upper boundary condition. 

The diffusion models both shifted substantially with a 1 m FFT mixing event, as did the 

0.002 m3/d/m2 advective mass transport models. A greater upward flux (e.g 0.004 m3/d/m2) was 

required to re-establish the isotope profile by the summer months given 1 m of FFT mixing in the 

fall. 

The best fit for the field data given 1 m of FFT mixing was advective mass transport with 

0.004 m3/d/m2 of upward flux (RMSE of 0.10 ‰). The model was run with slightly lower flow 

values until the simulated isotope profile matched the field data. The simulation providing the best 
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fit (RMSE of 0.05 ‰) when a 1 m mixing event occurred in the FFT was advective mass transport 

with an upward water flux of 0.0036 m3/d/m2 (Figure 3-11). Therefore, the mass transport models 

demonstrate that a mixing event in the FFT likely produced the isotope profiles measured in the 

field. Based on the simulation results, a FFT mixing depth between 0.5 m and 0.1 m corresponds 

to an advective mass transport regime of 0.002 to 0.0036 m3/d/m2 in the FFT. 

 

 

Figure 3-11. Advective mass transport models providing the best fit for 0.5 m FFT mixing event 

model (0.002 m3/d/m2) and 1 m FFT mixing event model (0.0036 m3/d/m2). 

 

The simulated δ2H profiles and trends were similar to the δ18O results discussed above. The 

mass transport models providing the best fit to the measured δ2H signatures were the same for 

each modelled scenario. The lowest RMSE values were produced by: (1) diffusive mass transport 

for the model with no mixing of the FFT (RMSE of 0.49 ‰); (2) advective mass transport with 

an upward flux of 0.002 m3/d/m2 for the simulation involving 0.5 m of FFT mixing (RMSE of 

0.37 to 0.39 ‰, depending on the top boundary condition); and (3) advective mass transport with 

an upward flux of 0.004 m3/d/m2 when 1 m of FFT mixing was incorporated into the model 

(RMSE of 0.57 to 0.59 ‰). The RMSE values for the δ2H results were higher than those 
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produced by the δ18O results due to the greater variability in the measured δ2H signatures with 

depth (Figure 3-7).  

 

Table 3-3. RMSE values for each modelled scenario, for both upper boundary conditions (lake 

diffusion and lake mixing) compared to field isotope profiles (‰). 

Advective  No FFT Mixing 0.5 m FFT Mixing 1 m FFT Mixing 

Flux Diffusion Mixing Diffusion Mixing Diffusion Mixing 

(m3/d/m2) δ18O δ2H δ18O δ2H δ18O δ2H δ18O δ2H δ18O δ2H δ18O δ2H 

0 0.14 0.49 0.31 1.11 0.72 3.10 0.72 3.10 1.15 4.50 1.15 4.50 

0.002 0.15 0.80 0.14 0.76 0.06 0.39 0.06 0.37 0.79 2.68 0.77 2.62 

0.004 0.16 0.83 0.15 0.82 0.15 0.82 0.15 0.82 0.10 0.57 0.10 0.59 

0.006 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 

0.008 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 

0.010 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 0.16 0.83 

 

3.4.5 Heat Transport Model Results 

The minimum and maximum temperatures simulated by the conduction and forced 

convection heat transport models are illustrated in Figure 3-12. The conduction model produced 

the broadest temperature envelope with a larger depth of FFT undergoing seasonal cycles in 

response to temperature changes in the lake water. The temperature envelope narrows as the 

upward water flux increases. When greater pore water fluxes were applied to the modelled 

domain (>0.01 m3/d/m2), the temperature envelope was significantly narrower than those 

illustrated in Figure 3-12. The simulation results illustrate that even small upward pore water flux 

rates can alter the vertical extent of the temperature envelope. The temperature envelope 

illustrated in Figure 3-12 is slightly asymmetric due to the time period simulated in the heat 

transport model (September to March). If the timeline was extended to an entire year, the results 

are expected to be more symmetric. 
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Figure 3-12. Temperature envelopes for field data (with error bars) and modelled scenarios. 

 

Results from the numerical simulations were compared with the observed temperature 

profiles to determine if a particular set of heat transport parameters provided a match for the 

observed field conditions (based on the RMSE determined for the maximum and/or minimum 

temperature profiles, Table 3-4). Maximum and minimum temperatures over the entire study 

period as measured in the field were plotted with depth (Figure 3-12). Maximum temperatures 

measured in the field fall along the temperature profile produced by the forced convection 

simulation with an upward pore water flux of 0.006 m3/d/m2 (RMSE of 0.10 °C).  

The measured minimum temperatures are lower than the simulated values produced by the 

heat transport models. The heat transport model that generated a temperature profile closest to the 

minimum values measured in the field was the conduction-only model (RMSE of 0.12 °C). 

Consequently, the maximum and minimum in-situ temperatures appear to indicate two different 

thermal regimes in the FFT when compared to the heat transport models; the maximum in-situ 



 

 

  75

temperatures suggest a forced convective heat transport regime while the minimum temperatures 

are closer to a conduction-only heat transport regime. 

The minimum temperature envelopes produced by the models with a fall mixing event 

through the top 0.5 m or 1 m of FFT are provided in Figure 3-13. These simulations provided a 

better fit for minimum temperatures measured in the field. When a 0.5 m mixing event was added 

to the models, the minimum field temperatures follow a conduction-dominant thermal regime 

(RMSE of 0.05 °C). When a 1 m mixing event was incorporated, the forced convection models 

with an upward flux of 0.006 m3/d/m2 provided the best fit for the field data (RMSE of 0.08 °C).  

The maximum temperature envelopes for the FFT mixing models were similar to the 

original non-mixing models, as mixing was assumed to occur after the warm season. Thus, the 

maximum temperature profile continued to indicate that the heat transport regime was forced 

convection with an upward water flux of 0.006 m3/d/m2. A 1 m mixing event in the FFT was 

required for the minimum temperature profile to match the forced convective thermal regime 

indicated by the maximum temperature profiles. 

 

 

Figure 3-13. Minimum temperature envelopes for field data (with error bars) and models with 

mixing events of: (a) 0.5 m; and (b) 1 m. 
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Table 3-4. RMSE of heat transfer models compared to minimum and/or maximum field 

temperatures (°C). 

Advective Flux No FFT Mixing 0.5 m FFT Mixing 1 m FFT Mixing 

(m3/d/m2) Min. Max. Both Min. Max. Both Min. Max. Both 

0 0.12 0.18 0.16 0.05 0.18 0.13 0.23 0.18 0.21 

0.002 0.16 0.14 0.15 0.07 0.14 0.11 0.17 0.14 0.16 

0.004 0.20 0.11 0.16 0.12 0.11 0.12 0.12 0.11 0.12 

0.006 0.24 0.10 0.18 0.17 0.10 0.14 0.08 0.10 0.09 

0.008 0.27 0.12 0.21 0.23 0.12 0.18 0.08 0.12 0.10 

0.010 0.31 0.15 0.25 0.28 0.15 0.22 0.10 0.15 0.13 

 

3.5 Discussion 

Both the heat and isotope transport models indicate that the dominant mass transport 

regime through the FFT in BML is advection. Both of the tracers also suggest that seasonal 

mixing of an upper portion of the FFT and lake water does occur in BML. Laboratory 

measurements of the Bingham yield stress for low solids content FFT produced relatively low 

yield stress values, and suggested that the top 1.5 m of FFT in BML would exhibit yield stresses 

below 10 Pa. Thus, the soft tailings near the FFT-water interface in BML would provide minimal 

resistance to any shear stresses imposed at the interface, confirming that mixing in the FFT is 

possible.  

The isotope transport models provide insight on the potential range of FFT mixing depths. 

Example mixing depths and corresponding advective flux that produce an isotope profile similar 

to the field observations are listed in Table 3-5. Thus, the isotope transport model provides an 

approximate FFT mixing depth associated with each advective mass transport regime.  

The heat transport models suggest that advection (with approximately 0.006 m3/d/m2 of 

upward pore water flux) was an important mechanism for heat transport within the FFT, coupled 

with a FFT mixing event of 1 m. The isotope transport models suggested that a mixing depth of 

1.1 m (closest to 1 m) was associated with an advective transport regime with an upward flux of 

0.004 m3/d/m2. When this mixing depth and advective flux were used in the heat transport model, 
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both the minimum and maximum simulated temperature profiles matched those measured in the 

field (Figure 3-14; RMSE of 0.08 °C).  

 

Table 3-5. Mixing depths and advective flux required to simulate the measured isotope profiles. 

Advective Flux FFT Mixing Depth 

(m3/d/m2) (m) 

0.001 0.2 

0.002 0.5 

0.003 0.7 

0.004 1.1 

0.005 1.4 

0.006 1.7 

 

Based on the observed isotope signatures and temperature profiles, the dominant mass 

transport regime through the FFT in BML was assessed to be 0.004 m3/d/m2 of advective 

transport. This value is similar to the FFT dewatering rates estimated independently by Syncrude 

Canada Ltd. based on field monitoring of the FFT surface at BML (approximately 0.003 m3/d/m2, 

based on the measured change in the elevation of the FFT-water interface by ConeTec 

Investigations Ltd.). The heat and isotope transport models also provided a preliminary estimate 

of the depth of mixing occurring in the FFT (1.1 m). As previously mentioned, a Seabird 19plus 

sensor was observed to drop 1 m below the elevation of the FFT-water interface measured on the 

previous day, during a field investigation in mid-October, 2013. Therefore, the estimated mixing 

depth is similar to this observed change in the FFT-water interface. 

The heat and isotope models only include one mixing event; however, it is possible that the 

FFT may undergo multiple mixing events during periods of instability in the lake (generally the 

fall). Further work is necessary to establish the number of potential mixing events occurring in 

BML. This number of mixing events can be incorporated into the developed heat and mass 

transport models to confirm the dominant mass transport regime and FFT mixing depth in BML. 
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Figure 3-14. Simulated profiles with an upward flux of 0.004 m3/d/m2 and a 1.1 m FFT mixing 

event. 

 

3.6 Conclusions 

The multi-faceted approach employed in this study allowed for a preliminary evaluation of 

the mechanisms controlling mass transport of a conservative species through FFT in the first oil 

sands EPL. These findings provide a starting point for future work on: (1) evaluating reactive 

mass transport through the FFT in BML; (2) determining a mass balance for BML’s water cap 

(and other EPLs) during the early stages of development; (3) assessing the ideal water cap depth 

in future EPLs to limit FFT disturbance; (4) estimating the long term mass loading mechanisms 

from FFT to the water cap in an EPL; and (5) conducting a risk assessment on the water quality 

and extended impacts of EPLs and their development. 

The use of multiple tracers provided a clear picture of the mechanisms controlling mass 

transport in BML. The combination of heat and stable isotopes of water allowed for the 

determination of both a flux associated with FFT dewatering (0.004 m3/d/m2) and an approximate 
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mixing depth (1.1 m) due to lake turnover events. Based on tailings settlement models for BML 

(Carrier et al., 2007), pore water release due to dewatering of the FFT declines gradually. 

Therefore, the results from this study suggest that mass loading from the FFT will decrease over 

time, with mass transport from the FFT to the water cap becoming increasingly dominated by 

diffusion. The results of this study also suggest that a greater water cap may be required in future 

EPLs to prevent mixing of the FFT and to ensure that these soft tailings are isolated from the 

overlying lake water. Not only do these mixing events produce a rapid mass loading to the water 

cap, the disturbance of FFT causes high turbidity in the lake water, which could be detrimental to 

the development and health of lake ecosystems. 

Other types of soft tailings possess similar characteristics as FFT, for example, high void 

ratios and low shear strength. Thus, the dominant mass transport mechanisms in these materials 

will likely be comparable to the findings from BML, with an advection dominant regime in early 

years due to tailings settlement and diffusion becoming more important in later years. In addition, 

the issues observed in this study (e.g. disturbance of the soft tailings) will likely be relevant for 

the reclamation of unprocessed soft tailings from other types of mining activities.
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CHAPTER 4 – CHEMICAL MASS TRANSPORT BETWEEN FLUID FINE TAILINGS 

AND THE OVERLYING WATER COVER OF AN OIL SANDS END PIT LAKE 

This paper summarizes efforts to estimate the mass loading of a conservative tracer (Cl) from 

the FFT into the BML water cover. The mass balance within the water cover was assessed given 

the monitored inflow, outflow, and water cover volumes, and Cl concentrations over time. Field 

sampling determined the FFT pore water Cl concentrations, which were used to develop numerical 

models similar to the previous multi-tracer study for Cl transport through the FFT. The mass 

balance and numerical results were compared to corroborate results from the multi-tracer study and 

to evaluate the mass released to the water cover from in the FFT over the study period.   

I, Kathryn Dompierre, assisted in conceptualizing the study, carried out data synthesis and 

analysis, developed the numerical transport models, completed the mass balance of the water cover, 

and authored the manuscript. Matthew Lindsay (University of Saskatchewan) led the field program 

for analyzing the geochemistry of the FFT pore water. Sean Carey, Gordon Drewitt, and Michael 

Treberg (McMaster University) measured the water outputs and inputs to BML over multiple years 

and evaluated the water balance of the BML water cover. Rebecca North (University of 

Saskatchewan) synthesized the water volume and chemistry data for determining the mass balance 

of the water cover. Contributions to the manuscript are as follows: Kathryn Dompierre (70%), was 

the main contributor to the manuscript, with Lee Barbour (10%), Rebecca North (5%), Sean Carey 

(5%) and Matthew Lindsay (10%) providing comments during the review process.

4.1 Introduction 

The Canadian oil sands are the third largest known oil reservoir in the world, estimated to 

contain 166 billion barrels of oil (Government of Alberta, 2016). Oil sands mining has disturbed 

more than 800 km2 of land (Government of Alberta, 2014); however, less than 1 % of this area 

has received regulator certification as reclaimed (Gosselin et al., 2010). In addition, bitumen 

extraction from oil sands ore generates large volumes of tailings. More than 9.8 x108 m3 of fluid 
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fine tailings (FFT) were stored in tailings impoundments by the end of 2013 (Government of 

Alberta, 2015).  

Management and reclamation of FFT pose substantial geotechnical and environmental 

challenges. Associated pore waters exhibit elevated concentrations of dissolved inorganic 

chemical constituents, and organic compounds such as naphthenic acids, petroleum 

hydrocarbons, and unrecovered bitumen (Allen, 2008; Dompierre et al., 2016; Kavanagh et al., 

2011). Fluid fine tailings also exhibit high water content that persists for decades due to low 

settlement rates (Kasperski and Mikula, 2011). At these high water contents, FFT behaves as a 

fluid and exhibits low shear strengths. A number of strategies are used to increase FFT strength, 

including flocculent and coagulant addition, large-scale centrifugation, thin-lift drying, and 

mechanical filtration (COSIA, 2012a). Treated FFT can be integrated into conventional terrestrial 

reclamation landscapes. However, these methods are expensive, time-consuming, and cannot 

accommodate daily FFT production.  

End pit lakes (EPLs) offer long-term FFT containment with relatively low initial costs 

(CEMA, 2012). These mine closure landscapes contain FFT deposits under a water cover within 

decommissioned mine pits. In the future, EPLs will be incorporated into the larger mine closure 

landscape, and are expected to achieve sufficient water quality for release to natural systems 

(CEMA, 2012). Thirty EPLs have been included in mine closure plans for the Athabasca oil 

sands region (AOSR) of Alberta, Canada. Half of these proposed EPLs will incorporate FFT 

below a water cover (Prakash et al., 2011).  

The release of chemical constituents from the FFT will influence the long-term 

geochemical and biological evolution of an EPL (Dompierre et al., 2016). Mass transport 

between the FFT and overlying water cover can occur via two key processes: (1) advection and 

hydrodynamic dispersion driven by FFT dewatering and elevated solute concentrations in FFT 

pore water (Dompierre et al., 2016); and (2) FFT disturbance due to fluid movement in the water 

cover (e.g., internal waves) causing a rapid, but intermittent, mass release to the water cover 

(Dompierre and Barbour, 2016a).   

This study investigated water movement and chemical mass transport in the first EPL 

established in the AOSR. Water and mass fluxes between the FFT and the water cover were 

assessed using a conservative tracer to evaluate the chemical mass balance of the EPL and to 

track mass transport within the FFT given field sampling and numerical modelling. Chloride (Cl) 
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was selected as the conservative tracer as it is typically isolated from geochemical reactions 

(Feth, 1981). Previous studies have used Cl to investigate groundwater flow and seepage to lakes 

(Cox et al., 2007; Davis et al., 1980; Jacquet, 1976; Lee et al., 1980), and to assess the mass 

balance of lakes (Rimmer et al., 2005; Sacks et al., 1998). 

This investigation provides valuable insight for assessing the geochemical evolution of the 

water cover and performance of EPLs as an oil sands reclamation strategy. Results will assist in 

the development of monitoring and management plans for future EPLs. This study also provides 

insight on the potential for the mass flux over the FFT-water interface to change over time, as it 

can be compared to previous work on mass movement through the FFT at the first EPL 

(Dompierre and Barbour, 2016a). 

4.2 Materials and methods 

4.2.1 Study site 

Base Mine Lake (BML), the first full-scale demonstration EPL in the AOSR, was 

established at the Mildred Lake Mine, which is approximately 40 km north of Fort McMurray, 

Alberta, Canada (Figure 4-1). This region is located in a sub-humid continental climate zone with 

long cold winters and short summers (Carey, 2008). The mean annual temperature is 1.0 °C and 

temperatures are below 0 °C for five to six months of the year (Environment Canada, 2015).  

Oil sands surface mining began at the Mildred Lake Mine in 1978. The oil sands ore is 

mined from the McMurray Formation, which contains on average 12 % (w/w) bitumen (long 

chain hydrocarbons), 3 to 6 % (w/w) water, and 84 to 86 % (w/w) solids (Chalaturnyk et al., 

2002). Bitumen is extracted by adding hot water to reduce viscosity, sodium hydroxide to 

disperse clay particles, and aeration to promote bitumen flotation (Caughill et al., 1993; Masliyah 

et al., 2004). The extracted bitumen is further upgraded to synthetic crude oil and the residual 

sand-clay slurry is hydrotransported to Mildred Lake Settling Basin (MLSB; Figure 4-1). 

Following deposition in this tailings pond, the sand-sized particles quickly settle from the tailings 

slurry leaving a dense, warm fluid suspension called fluid fine tailings (FFT). 
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Figure 4-1. Mildred Lake Mine location (starred) relative to known oil sands deposits (grey shaded 

areas) and aerial photo of the site; inset (a) shows the BML monitoring locations and water cover 

depth in June 2013. 

 

Fluid fine tailings pore water chemistry is dominated by oil sands process-affected water 

(OSPW), which contains significant concentrations of dissolved ions (e.g., sodium, chloride, 
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bicarbonate), naphthenic acids, petroleum hydrocarbons, and unrecovered bitumen (Allen, 2008; 

Kavanagh et al., 2011). The initial FFT solids content is 25 to 35 % (w/w), and is predominantly 

comprised of quartz and clay minerals including kaolinite, illite, chlorite, and illite-smectite 

(Dompierre et al., 2016; Osacky et al., 2013b). The residual bitumen content typically ranges 

from 1 to 6 % (w/w). The FFT hydraulic conductivity is expected to range from 5 x 10−8 to 

5 x 10−5 m s−1 based on typical FFT water content values and previous laboratory results 

(Suthaker and Scott, 1996). 

Base Mine Lake was constructed within a decommissioned mine pit referred to as West In-

Pit. Fluid fine tailings were dredged from MLSB and pumped into the northeast corner of West 

In-Pit from 1994 to 2012. Throughout this period, BML was part of the recycle water circuit 

(Han et al., 2009) so a 3 to 5 m water cover was maintained over the FFT to provide OSPW 

storage for various mine processes. This mine closure landscape was commissioned as an EPL in 

November of 2012. At this time, the maximum FFT depth in BML was 45 m, corresponding to a 

total FFT volume of approximately 1.9 x109 m3. The average FFT temperature is approximately 

13 °C (Dompierre et al., 2016). After commissioning, fresh water was pumped into BML from 

Beaver Creek Reservoir (BCR; Figure 4-1) during ice-free months. Water was concurrently 

pumped out of BML – for use in the bitumen extraction process – to maintain a lake surface 

elevation of 308.5 ± 0.5 metres above sea level (masl). The average water cover depth was 8.5 m 

at the beginning of 2013. In October 2015, near the end of the study period, the estimated water 

cover volume was 5.8 x107 m3 with a surface area of approximately 7.8 km2. 

The water cover responds to seasonal temperature cycles in a similar manner as natural 

temperate, northern lakes (e.g., Lawrence et al., 2016; Oswald and Rouse, 2004; Rouse et al., 

2003). During the summer months, the water cover is thermally stratified from the end of May to 

the beginning of September. The epilimnion (upper portion of the water cover) temperature 

increases throughout June to 20 °C and stays at this temperature until September. Concurrently, 

the hypolimnion (lower portion of the water cover) gradually warms to 15 °C. In the fall, the 

water cover is fully mixed from the beginning of September until ice forms in November. Over 

the winter season, the water column exhibits inverse stratification below the ice cover. 

Temperatures remain relatively constant throughout this period with water near the ice at 0 °C 

and a temperature of 4 °C near the FFT-water interface. The ice cover melts by the end of April, 
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which is followed by a weaker and more irregular spring turnover, as compared to the fall 

turnover (Lawrence et al., 2016). 

The FFT is currently undergoing hindered settlement or self-weight consolidation (COSIA, 

2012c), which means that the FFT near the pit bottom dewaters first, with the expressed pore 

water creating a vertical pore water flux through the FFT. Pore water movement is generally 

expected to be upward due to the relatively low hydraulic conductivity of the underlying 

formations. Clearwater Formation shales and siltstones form the BML pit and exhibit a mean 

vertical hydraulic conductivity of 8 x10−10 m s−1. Initial FFT settlement would have occurred 

during the first few years after deposition; however, high water contents are expected to persist 

for an extended time period (Kasperski and Mikula, 2011). These slow settlement rates are due to 

the addition of dispersants (sodium hydroxide) during bitumen extraction and naturally occurring 

surfactants (asphaltic acids) present in the ore that are released during heating (Chalaturnyk et al., 

2002; Jeeravipoolvarn, 2009).  

A preliminary FFT consolidation model, developed to evaluate the long-term settlement in 

BML, estimated settlement rates of approximately 1 m a−1 after deposition, decreasing 

exponentially over 30 years to approximately 0.1 m a−1. A field study by Dompierre and Barbour 

(2016a) found that the FFT settlement generated an upward pore water flux of 0.004 m3 m−2 d−1 

(1.5 m3 m−2 a−1) approximately one year after BML was commissioned. 

Two approaches were used to assess chemical mass flux from the FFT to the overlying 

water cover, both of which used Cl as a conservative tracer. The first evaluated the Cl mass 

balance within the water cover to determine the conservative mass flux from FFT. The chemical 

mass balance included an initial assessment of the water balance within the water cover, and a 

field sampling campaign to characterize the Cl concentrations of BML and all inflow and outflow 

waters. The second investigated the mechanisms controlling mass transport within the FFT, using 

pore-water Cl concentrations to develop numerical models for predicting mass movement across 

the FFT-water interface.   

4.2.2 Sample and data collection 

A field investigation evaluated the volumes and mass associated with the input and output 

waters at BML. Water and mass inputs included water pumped in from BCR, precipitation (snow 

and rain), runoff from the surrounding watershed, and pore water released from the underlying 

FFT. Outputs included water and mass pumped from the water cover for use in the processing 
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plant, and water loss due to evaporation. Groundwater interactions with the water cover were 

assumed negligible due to the relatively low hydraulic conductivity of the formation surrounding 

the pit. 

The water volume pumped into and out of BML each day was monitored with Rosemount 

magnetic flowmeters (accuracy of ±0.25 %, Emerson Process Management, Shakopee, MN, 

USA). The water cover surface elevation was measured using GPS, while sonar surveys, 

completed in October of each year, verified the FFT-water interface elevation.  

Rainfall volumes were monitored with three unobstructed CS700 tipping-bucket rainfall 

gauges (Campbell Scientific, Edmonton, AB, Canada) located at the adjacent Sandhill Fen 

Watershed (Figure 4-1). Snowfall was estimated using the mean value from three CS725 snow 

water equivalent sensors (Campbell Scientific, Edmonton, AB, Canada) corroborated with annual 

snow surveys at Sandhill Fen. These values were compared with snow water equivalent data 

reported by Environment Canada at the Mildred Lake weather station (Environment Canada, 

2015). The Sandhill Fen likely accumulates more snow as water equivalent than BML as it is 

more sheltered; however, both environments are subject to wind redistribution. Runoff volumes 

from the contributing watershed were measured at a weir on the south side of BML (GP2 weir; 

Figure 4-1). The observed runoff volumes were assumed to be representative of the entire 

terrestrial watershed, which covers a 6.6 km2 area or approximately 80 % of the water cover 

surface area. 

Evaporation from the water cover was measured using the eddy covariance (EC) technique 

(Aubinet et al., 2012). The EC system involved a LI-7200 enclosed path infrared gas analyzer 

(LI-COR, Lincoln, NE, USA) and R3-50 3D sonic anemometer (Gill Instruments Ltd., 

Lymington, UK), and was installed in the centre of BML at Platform 1 (Figure 4-1). Wind speed 

and water vapour concentrations were measured at 10 Hz and covariances were computed for 30-

minute intervals using EddyPro® LI-COR.  During short periods (< 2 hours) when the EC system 

was not working, evaporation was estimated using linear interpolation. For longer periods, a 

monthly logistic regression model was developed for evaporation as a function of net radiation, 

wind speed, and vapour pressure deficit measured at Platform 1 to provide continuous data.  

Samples of the BML water cover were frequently collected between May 2013 and October 

2015. The samples were collected bi-weekly during the open water season, and once under the 

ice in the winter. Water samples were collected at several stations around BML (Platforms 1, 2, 
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and 3; Figure 4-1). Inflow and outflow samples were also obtained during routine sampling when 

the pumps were in operation. Rainfall samples were collected from five locations around the 

BML perimeter in the fall of 2015, while snow samples were obtained at 10 locations over the 

frozen water cover surface in March 2015. Runoff at the GP2 weir was sampled during the spring 

melt period (March 18 to June 3, 2014; March 27 to April 15, 2015). All water samples were 

collected into HDPE bottles and sealed with no headspace. The samples were chilled until they 

were analyzed at a commercial laboratory. The Cl concentrations were quantified by ion 

chromatography (IC; EPA Method 300.0) on samples passed through 0.45 μm polyethersulfone 

(PES) membranes.  

Tailings samples were obtained at high spatial resolution across the FFT-water interface at 

Platforms 1, 2, and 3 (Figure 4-1) on August 4 and 5, 2015. These samples were collected using a 

custom-built fixed interval sampler (FIS) deployed using a boat-mounted overhead winch and 

pulley system. This sampler was comprised of 20 discrete sampling cylinders positioned at 0.1 m 

depth intervals. Each cylinder contained a pneumatically-controlled piston with a 250 mL total 

displacement volume. Compressed nitrogen gas (275 kPa) was used to maintain the pistons in the 

closed position while the FIS was slowly lowered to the FFT-water interface. Five cylinders were 

positioned above and fifteen below the FFT-water interface, which was first determined by active 

sonar (Dompierre et al., 2016). After a 10-minute settlement period, the compressed nitrogen was 

evacuated and the pistons retracted to the open position using a vacuum pump. After 

approximately 5 minutes, the FIS was retrieved to surface, one 250 mL HDPE bottle was 

threaded onto each cylinder, and the samples were extruded using compressed nitrogen to move 

the pistons back to the closed position. Pore water was extracted from FFT solids by 

centrifugation at 10,000 rpm for 30 minutes and passed through 0.45 μm polyethersulfone (PES) 

membranes. The pore water samples were stored in HDPE bottles with zero headspace and 

refrigerated until the Cl concentrations were quantified by ion chromatography (IC; EPA Method 

300.0). 

4.2.3 Mass balance calculations 

An annual water balance was completed for the entire BML system (FFT and water cover; 

Figure 4-2) from November 1, 2013 to October 31, 2014 (Period 1) and November 1, 2014 to 

October 31, 2015 (Period 2). The measured elevation change of the water surface was compared 

to the calculated net water flux over the water surface,  (m3 or mm), determined by: 
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= −  = + + − −  (4.1) 

where  is the total water volume (depth) contributed to BML from the inputs (pump-in water, 

; precipitation, ; and runoff, ) and  is the total volume (depth) removed by the 

outputs (pump-out water, ; and evaporation, ). Pore-water release from the FFT was not 

considered to be an input for the above water balance calculation as it does not affect the water 

surface elevation but instead causes the elevation of the water cover bottom (FFT-water interface) 

to drop over time. Water movement over the pit walls and base was assumed to be negligible.   

 

 

Figure 4-2. Inputs, outputs, and the domain (outlined by the thick dashed line) associated with the 

(a) water and (b) chemical mass balances. 

 

The change in Cl stored in the water cover was calculated for the same two periods as the 

annual water balances (November 1, 2013 to October 31, 2014; November 1, 2014 to October 31, 

2015) using the following equation: 

= − = + + + −   (4.2) 
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where  represents the change in Cl stored in the lake (g), , is the total mass of Cl associated 

with the inputs (FFT pore water, ; pump-in water, ; precipitation, ; and runoff, 

). The Cl removed from the lake due to outputs, , was the chemical mass associated with 

the pump-out water ( ). The product of the volume,  (m3), and Cl concentration,  (g m-3 or 

mg L-1), of each input or output (except for the FFT pore water) was used to determine its 

associated chemical mass. Pore water released by the FFT was not directly measured and 

represents an unknown in the above equation (and in Error! Reference source not found.). 

The Cl in the lake at the beginning and end of each period was calculated with the average 

concentration throughout the whole water cover, multiplied by the water cover volume at the 

specified time. Thus, the change in Cl stored in the lake, , was calculated by: 

= ∙ − ∙               (4.3) 

where  is the lake volume and  is the volume weighted average chloride concentration in the 

lake at the beginning (1) and end (2) of the mass balance period. The water cover volume was 

determined from the water surface elevation, FFT-water interface elevation data, and pit capacity 

curves describing the volume below a given elevation (provided in Appendix B).  

The mass released by the FFT, , was determined by rearranging Equation (4.2) to: 

= ( ∙ − ∙ ) − ∙ − ∙ − ∙ + ∙   (4.4)   

and the average Cl mass flux from the FFT (g m-2 s-1) was calculated by dividing the Cl released 

from the FFT ( ) by the area associated with the FFT-water interface and the total time 

(1 year). This area is expected to change as FFT settles due to the sloping pit walls in BML. 

A sensitivity analysis was conducted to evaluate which assumptions and inputs to the mass 

balance equation were most likely to influence the calculated FFT mass flux. The sensitivity 

analysis considered the water cover volume, which was affected by both the water surface and 

FFT-water interface elevation, the surface area of the FFT contributing to mass release, and the 

concentrations associated with the water cover, precipitation, runoff, pump-in, and pump-out 

waters. The baseline used for the sensitivity analysis was the original mass balance calculation. 

Each input was altered over a range of expected values while all other values remained the same 

as the baseline case. The range of values used for each input was based on the expected error 
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associated with its measurement. The maximum and minimum FFT mass fluxes calculated with 

each range were compared to the baseline FFT mass flux. 

4.2.4 Numerical modelling  

One-dimensional mass transport models for advection and hydrodynamic dispersion (or 

advection-dispersion) were developed using a commercial finite element simulation software for 

ground water flow and mass transport (CTRAN/W, GEO-SLOPE International Ltd., 2012; 

SEEP/W, GEO-SLOPE International Ltd., 2013). The model domain was a 5 m FFT column with 

continuously changing volumetric water content with depth, to represent the variation in solids 

content observed in the field (Dompierre and Barbour, 2016a). The model domain depth was 

sufficient to capture the observed transition of pore water concentrations from typical FFT 

signatures to that of the overlying water cover (Dompierre and Barbour, 2016a). This region is 

also expected to have a relatively consistent pore water flux rate as pore water flow is primarily 

generated from the bottom of the FFT deposit during preliminary self-weight consolidation. 

The initial and boundary conditions were set as normalized concentrations based on the Cl 

values measured in the field. The minimum Cl value observed in the water cover corresponded to 

a normalized concentration of 0.0, and the maximum Cl value, found within the FFT pore water, 

was associated with a normalized concentration of 1.0. Thus, the initial concentration in the FFT 

was set to a normalized value of 1.0, as was the lower boundary of the modelled domain. The 

upper boundary condition changed over time based on the results from the lake water chemistry 

sampling program. (Detailed information on the models is provided in Appendix A.) 

The model was set to begin in May 2013, when freshwater pumping began, and continued 

until October 2015. In each simulation, a mass transport regime (i.e. diffusion only or advection-

dispersion) was maintained throughout the modelled time period. The upward water fluxes 

applied to the advection models ranged from 0.0005 to 0.01 m3 d–1 m–2. These values were based 

on the 2013 and 2014 FFT dewatering rates determined by the FFT-water interface sonar surveys 

and previous tracer work at BML (Dompierre and Barbour, 2016a).  

The coefficient of molecular diffusion was estimated using the volumetric water content of 

the FFT with depth, and the relationship between porosity and the diffusion coefficient 

established by Boudreau (1996). The free water diffusion coefficient for Cl was taken from 

Cussler (1997) and was modified based on the average in-situ FFT temperature (10 °C) after Li 
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and Gregory (1974). The volumetric water content varied from 86 % to 82 %, and the associated 

diffusion coefficients ranged from 7.8 x 10−10 to 6.6 x 10−10 m2 s–1.  

Longitudinal dispersivity was included in the models and was assumed to be 0.01 times the 

plume length (Kamp et al., 1994; Gelhar et al., 1992). The plume length was observed to be 

0.4 m, corresponding to the depth over which the Cl concentrations transitioned from average 

FFT pore water values to average water cover values. The linear pore water velocities, calculated 

by dividing the water flux by the volumetric water content of the top FFT layer (porosity), were 

found to range from 0 to 1.4 x10−7 m s−1. The assumed dispersivity value and the calculated pore 

water velocities produced a range in values for the coefficient of mechanical dispersion from 0 to 

4.6 x10−10 m2 s−1. 

Additional model scenarios were developed to simulate a disturbance within the top portion 

of the FFT during the fall turnover. Two disturbance depths, 0.5 m and 1 m, were added to the 

model by changing the FFT pore water concentration in the disturbed zone to the water cover 

concentration immediately before the disturbance events (October 15, 2013 and October 15, 

2014). These model scenarios were developed to evaluate previous evidence of FFT disturbance 

provided by stable isotopes of water and temperature profiles measured in BML (Dompierre and 

Barbour, 2016a). 

The Cl concentration profiles generated by the numerical models were compared to those 

measured in the field on August 4 and 5, 2015. The Root Mean Square Error (RMSE) between 

each modelled scenario and the field results was calculated to provide a preliminary estimate for 

the model providing the best fit. The numerical models were also used to investigate mass flux 

rates over the FFT-water interface and cumulative mass released from the FFT given the 

simulated advection-dispersion transport regimes. 

4.3 Results 

4.3.1 Water and chemical balance 

Pumping from BCR represented the largest water input to BML during both sampling 

periods (Table 4-1). The pump was operated from May to October and contributed more than 

6 x106 m3 of water to BML each year. This volume is approximately 10 % of the total water 

cover volume and corresponds to a water depth greater than 780 mm when normalized to the 

BML surface area. Rainfall was the next largest water input, followed by snow and runoff. 



 

  

  92

 

Table 4-1. Water volume and mass of Cl associated with each input (+) and output (−) 

 Period 1a Period 2b  
Input / 
Output 

Depth  
(mm) 

Volume  
(x106 m3) 

Cl Mass 
(x106 g) 

Depth  
(mm) 

Volume  
(x106 m3) 

Cl Mass 
(x106 g) 

Rain 309 2.36 1.9 254 1.53 1.3 

Snow 55 0.42 0.1 50 0.39 0.2 

Runoff 29 0.23 2.5 21 0.16 1.4 

Pump In 852 6.56 22.4 780 6.01 16.4 

Pump Out −955 −7.35 −2895.7 −953 −7.34 −2609.4 

Evaporation −351 −2.70 - −351 −2.70 - 

NET −60 −0.40  −198 −1.96  
aPeriod 1: Nov. 1, 2013 to Oct. 31, 2014. 
bPeriod 2: Nov. 1, 2014 to Oct. 31, 2015. 

 

The largest water withdrawal was associated with pumping, which accounted for a larger 

water volume than pumping inputs from BCR. Evaporation from the lake surface was very 

similar over the two measurements periods, even though the monthly evaporation rates differed 

between Period 1 and Period 2. The evaporation rates measured in 2014 and 2015 were 

considerably less than calculated open-water potential evaporation (Penman, 1948) and were 

lower than values determined for natural lakes in the same region (Ferguson et al., 1970; Blanken 

et al., 2000).  

A net water loss was determined for both of the water balance periods (60 mm in Period 1 

and 198 mm in Period 2). The water loss generally corresponded to the measured surface 

elevation changes of 50 mm in Period 1 and 240 mm in Period 2. Temporal trends in calculated 

storage and measured water cover surface level were generally similar (Figure 4-3). Uncertainty 

associated with the water balance was due to sampling error (rain, snow, and runoff samples), 

instrumentation error (pump in and pump out flowmeters, evaporation EC system, and rain 

gauges), and sample representation (rain, snow, runoff, and evaporation samples). Pumped water 

represents the largest flow in and out of BML, and was assumed to be the largest contributor to 

water balance uncertainty. The pumps shut off when the associated flowmeter stopped working 

so uncertainty of the pumped water was only due to instrumentation error. Uncertainty of these 

measurements would be approximately ±0.016 x106 m3 for the pump in and ±0.018 x106 m3 for 

the pump out volumes, given the flowmeter accuracy (±0.25 %). 
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Figure 4-3. Cumulative annual water balance for Period 1 and Period 2 with the measured inputs 

and outputs (dashed lines), the calculated cumulative change in surface elevation (thick blue line) 

and measured cumulative change in water surface elevation (circles). 

 

The average runoff Cl concentration was 19.2 mg L−1 in Period 1 and 8.8 mg L−1 in Period 

2; while the average rain and snow Cl concentrations were 0.82 and 2.25 mg L−1, respectively, 

measured over both periods. Chloride inputs from precipitation and runoff were relatively small 

compared to the mass contributed from the pumps (Table 4-1), even though this water had 

relatively low average concentrations of 3.3 mg L−1 in Period 1 and 3.1 mg L−1 in Period 2. The 

pump out water had an average concentration of 449.2 mg L−1 in Period 1 and 410.4 mg L−1 in 

Period 2. The Cl mass associated with the pump out water was at least an order of magnitude 

greater than the combined contributions from precipitation, runoff, and the pump in water. 

The average Cl concentrations in the water cover decreased over time (Figure 4-4). The 

initial water cover Cl concentration was 640 mg L−1 in May 2013. This value was similar to Cl 
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concentrations in OSPW measured at the Mildred Lake mine site (Allen, 2008; Dompierre et al., 

2016). The initial water cover chemical composition was typical of OSPW because this system 

was part of the recycle water circuit up until being commissioned as an EPL. The average water 

cover Cl concentration decreased from greater than 600 mg L−1 to approximately 400 mg L−1 by 

the fall of 2015, primarily due to freshwater inputs from BCR. Small fluctuations in the water 

cover Cl concentration were observed over the monitored period, likely due to transient changes 

in evaporation rates or pumping, and possibly due to seasonal stratification of the water cover. 

The yearly mass balance method was chosen, as opposed to a monthly or daily mass balance, to 

limit the uncertainty associated with this seasonal variability. 

The water cover volume varied within Period 1 and 2 due to changes in the water surface 

elevation and the FFT-water interface. The water cover volume increased from 5.1 x107 m3 to 

5.6 x107 m3 during Period 1 and to 5.9 x107 m3 by the end of Period 2. A concomitant decrease in 

the FFT-water interface elevation also caused the FFT surface area contributing to pore water 

release to decrease due to a slight narrowing of the pit with depth. The cross-sectional area 

associated with the FFT-water interface was estimated to be approximately 6.5 x106 m2 in 

November 2013, 6.4 x106 m2 in November 2014, and 6.3 x106 m2 in November 2013. 

Based on the change in mass stored in the water cover and the mass inputs and outputs over 

the two measurement periods, the calculated mass contribution from the FFT was 1.9 x109 g in 

Period 1 and 1.8 x109 g in Period 2. Given the average FFT-water interface surface area during 

each period, the mass released from the FFT was 300 g m−2 in Period 1 and 280 g m−2 in Period 

2. These values are associated with estimated mass fluxes of 0.81 g m−2 d−1 (Period 1) and 

0.76 g m−2 d−1 (Period 2) from the FFT to the overlying water cover. This mass flux represented 

the largest chemical loading to the water cover each year, as it was approximately 99% of the 

total mass inputted to BML in both periods. 
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Figure 4-4. Average water cover Cl concentrations from the long-term chemistry sampling 

program (circles) and measured by the high-resolution fluid sampling (square); water cover 

concentration trends (solid and dashed lines) used for the upper boundary condition in the 

numerical models. 

 

The sensitivity analysis illustrated that the calculated mass flux from the FFT was not 

significantly affected by variability in the input and output water concentrations nor changes to 

the FFT surface area contributing to the mass loading (Table 4-2). The mass balance calculations 

were most sensitive to the mass stored in the water cover at the beginning and end of the mass 

balance periods. The variability associated with the water cover volume and concentration, both  

used to determine the stored mass, caused the largest shift in the calculated FFT mass input. The 

sensitivity analysis suggests that the potential mass flux from the FFT could vary from 0.5 to 1.1 

g m−2 d−1 in Period 1 and 0.5 to 1.0 g m−2 d−1 in Period 2. 
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Table 4-2. Sensitivity analysis ranges and associated percent change in calculated FFT mass input 

to the water cover 

Input Sensitivity Analysis  
Range 

Change in Calculated  
FFT Mass Inputd 

 Period 1 Period 2 Period 1 Period 2 

Water cover volume (m3) ± 657,000a ± 650,000a ± 32.9 ± 27.9 
FFT surface area (m2) ± 200,000a ± 200,000a ± 3.1 ± 3.1 
Lake concentration (mg L−1) ± 10a ± 10a ± 26.5 ± 31.6 
Input concentrations: 
     Rain (mg L−1) 

 
0.2 – 6.0b 

 
0.2 – 6.0b 

 
-0.6 – 0.1 

 
-0.4 – 0.1 

     Snow (mg L−1) 0.1 – 3.0c 0.1 – 3.0c ± 0.0 ±  1.0 
     Runoff (mg L−1) 5.8 – 53.4a 5.8 – 53.4a -0.3 – 0.1 -0.4 – 0.0 
     Pump in (mg L−1) ± 1a ± 1a ± 0.3 ± 0.3 
Pump out concentration (mg L−1) ± 10a ± 10a ±  3.3 ±  3.6 
aBased on the observed variability or uncertainty associated with the field measurements. 
bAccording to field measurements conducted at a nearby reclamation site (personal communications, 
Jonathan Price, University of Waterloo).  
cAfter snowpack Cl concentrations measured by Murray (1981). 
dExpressed as a percent of the originally calculated FFT mass input. 

 

4.4 Mass transport modelling 

High-resolution depth profiles of Cl concentrations across the FFT-water interface were 

similar among the three sampling locations (Figure 4-5). Concentrations at FFT-water interface 

were consistent with Cl values in the overlying water cover. However, Cl concentrations 

transition to a value representative of deeper FFT pore water within 0.5 m from the FFT-water 

interface. The transition zone depth was similar to that observed for the stable isotopes of water 

(Dompierre and Barbour, 2016a).   

The Cl concentrations in the water cover near the FFT-water interface were also consistent 

among the three sample locations (Platforms 1, 2, and 3; Figure 4-1) with an average value of 

440 mg L−1 and a standard deviation of 8.2 mg L−1. These values were slightly higher than the 

average Cl concentration measured by the long-term water cover chemistry sampling program in 

August 2015 (Figure 4-4). The values obtained were likely higher because the sample was 

collected from the region just above the FFT-water interface during summer stratification. This 

region would be affected by FFT pore water release during this stable period, whereas the top 

layer generally exhibits lower electrical conductivity. 
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Figure 4-5. Depth profiles of dissolved Cl concentrations for FFT samples collected in August 

2015. Depths are presented relative to the FFT-water interface, which is denoted by the solid 

horizontal line. 

 

The pore water concentrations greater than 0.5 m below the FFT-water interface varied 

between sample locations; 580 ± 12 mg L−1 at Platform 1, 600 ± 18 mg L−1 at Platform 2, and 

640 ± 19 mg L−1 at Platform 3. These values were consistent with water cover concentrations 

measured in May 2013, before substantial freshwater addition occurred (Figure 4-4). The pore 

water concentrations below 1.5 m were slightly lower than those between 0.5 and 1.5 m. This 

suggests that pore water Cl concentrations may have increased with time as FFT was placed in 

BML. A general enrichment of OSPW, which constitutes the FFT pore water, has been observed 

due to water reuse for the bitumen extraction process through the recycle water circuit (Baer, 

2014; Baer and Barbour, 2013).  

A continuously decreasing concentration was specified at the top of the modelled profile 

(Figure 4-4, top boundary 1) to reflect the water cover concentration trends measured by the 
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long-term sampling program. The numerical model with a diffusion-only mass transport regime 

and no FFT disturbance produced a 0.7 m transition depth; however, when an advective flux was 

added to the models, the transition zone depth decreased (Figure 4-6). This trend was similar for 

the simulations with FFT disturbance; however, the transition zone depth also increased with 

disturbance depth. Advection rates of 0.006 to 0.010 m3 m−2 d−1 produced very similar Cl profiles 

within the FFT for all modelled disturbance depths.  

The measured Cl profiles were normalized based on the average FFT pore water 

concentration at each location and the minimum concentration measured in the water cover 

(380 mg L−1). The normalized concentration profiles were compared to the simulation results 

(Figure 4-6; Table 4-3). The RMSE values determined for the simulations with advection rates of 

0.008 and 0.010 m3 m−2 d−1 were not included in Table 4-3 as they were similar to the values 

provided for 0.006 m3 m−2 d−1. 

 

Table 4-3. RMSE (%) for each modelled scenario compared to field concentrations at each 

platform (P) 

Advective 
Flux 

No FFT Mixing 0.5 m FFT Mixing 1 m FFT Mixing 

(m3 m−2 d−1) P1 P2 P3 P1 P2 P3 P1 P2 P3 

0 12.5 7.8a 8.8a 29.4 18.2 26.2 49.2 41.9 46.9 
0.0005 7.1a 13.9 9.7 19.0 9.3 15.0 42.7 34.0 40.9 
0.001 9.2 17.7 13.9 9.7a 8.9a 7.4a 35.4 25.2 33.2 
0.002 11.4 20.1 16.8 10.2 18.8 15.2 17.0 8.2a 13.4a 
0.004 12.1 20.8 17.6 12.1 20.8 17.6 11.8a 20.5 17.2 
0.006 12.2 20.8 17.7 12.2 20.8 17.7 12.2 20.8 17.7 

aThe lowest RMSE, indicating the calculated best-fit. 

 

The pore water flux providing the best fit to the field data was not the same for all 

platforms for a given disturbance depth. In general, the lowest RMSE for Platform 1 was 

associated with a greater pore water flux than the best-fit scenarios for Platforms 2 and 3. The 

FFT-water interface sonar surveys detected differential settlement around BML revealing that 

FFT pore water movement likely varies with location. For example, the FFT-water interface 

exhibited the greatest elevation change in the northeast corner of BML, where Platform 2 is 
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located (Figure 4-1). Thus, greater pore water flux was expected at Platform 2 when compared to 

the other sample locations.  

 

 

Figure 4-6. Normalized Cl concentrations from the field measurements and simulated advection-

dispersion transport regimes with top boundary 1 and three disturbance depths (0, 0.5 m and 1 m) 

generated for the final sampling date (Aug. 5, 2015). 

 

The FFT-water interface sonar surveys also indicated that a diffusion-only mass transport 

regime is unlikely given the measured FFT settlement. The modelled scenarios with a 0.5 m or 

1 m disturbance generally corresponded to these field observations. Evidence of FFT disturbance 

was observed in the field as the water cover turbidity exhibited a rapid increase during unstable 

periods in the lake when the water column was completely mixed (Lawrence et al., 2016). 

Disturbance within the FFT was also supported by the previous tracer study (Dompierre and 

Barbour, 2016a).  

The modelled scenarios were re-run with an alternate top boundary condition (top boundary 

2; Figure 4-4) to determine the sensitivity of the simulations to the water cover concentration. 

This boundary condition was generated in the models using an approximate spline function based 

on the long-term Cl field measurements. The Cl profiles generated by these modified models 
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were similar to the original results (Figure 4-6), and did not alter the modelled scenarios 

providing the best fit to the field data. 

Mass flux over the FFT-water interface was determined from the modelled scenarios with 

advection-dispersion mass transport regimes of 0.004 m3 m−2 d−1 or less (Figure 4-7). In the 

scenarios with no FFT disturbance, the mass flux was fairly constant with time. The mass fluxes 

generated by the scenarios with disturbances exhibited sharp increases on the days the 

disturbance was simulated (i.e., October 15, both years). Mass flux from the FFT rapidly 

decreased afterwards as the concentration within the disturbed depth was equal to the water cover 

concentration at this time. The mass flux then gradually increased to a rate slightly lower than 

before the disturbance occurred, due to the decreasing water cover concentration and 

subsequently lower diffusion rates (Figure 4-4). 

The cumulative mass released per square area of FFT between May 2013 and November 

2015, was determined based on the simulated mass flux over the FFT-water interface (Figure 

4-7). The general trends for cumulative mass release, produced by the models with and without a 

disturbance event, were fairly similar except for the shift accompanying the disturbance. The total 

mass released from the FFT with a diffusion-only mass transport regime and no disturbance was 

very different from the diffusion models with a disturbance; however, when the mass transport 

regime included a greater advective flux, the relative increase in the total mass released from the 

FFT was not as large when a disturbance was added to the model. 

The simulated Cl released during each mass balance period was determined for comparison 

purposes. The FFT mass release during Period 2 was substantially less than Period 1 when a 

disturbance was added to the model (Table 4-4). During Period 1, the simulated Cl release 

increased with the disturbance depth; however, the mass released during Period 2 did not follow 

this same trend. As the disturbance increased, the Cl released from the FFT generally decreased 

in Period 2 for all advection-dispersion transport regimes, likely due to the simulated disturbance 

dates. The modelled disturbances occurred on October 15, 2013 and October 15, 2014. 

Consequently, Period 1 included the second simulated disturbance while Period 2 had none.  
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Figure 4-7. Chloride flux rates over the FFT-water interface and cumulative mass released from 

the FFT starting in May 2013. 

 

The total mass released from the FFT, as determined by the two mass balances (296 g m−2 

in Period 1 and 277 g m−2 in Period 2), was comparable to the simulated mass release over the 

same periods (Table 4-4). The results from the mass balances correspond to an advection-

diffusion regime with a pore water flux between 0.001 and 0.002 m3 m−2 d−1. However, the mass 

balance sensitivity analysis indicated that the mass released from the FFT could potentially range 

from 200 to 395 g m−2 in Period 1, and 190 to 365 g m−2 in Period 2. The simulated pore water 

flux range associated with these mass flux values is 0.0005 to 0.004 m3 m−2 d−1 (Table 4-4). 
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Table 4-4. Simulated Cl released (g m−2) from the FFT during the two mass balance periods 

Advective Flux No Disturbance 0.5 m Disturbance 1 m Disturbance 
(m3 m−2 d−1) Period 1 Period 2 Totala Period 1 Period 2 Totala Period 1 Period 2 Totala 

0 20 18 38 47 6 53 87 6 93 
0.0005 130 120 250 160 88 240 200 86 280 
0.001 230 230 460 270 180 440 310 170 470 
0.002 460 450 900 490 380 870 530 340 870 
0.004 890 870 1760 930 810 1740 970 750 1720 

aThe mass of Cl released in both Period 1 and Period 2 for each numerical scenario. 

 

4.5 Discussion 

The results from both the mass balance calculations and the numerical models confirmed 

that FFT was the dominant Cl source to the water cover during the study period. The numerical 

models provided additional insight into the main mechanisms potentially driving this mass 

release. Comparison of the simulations with the mass balance calculations and field observations 

indicate that the FFT is likely exhibiting a transient advection-dispersion mass transport regime, 

due to FFT settlement and shifting concentrations in the water cover over time.  

Given an advective-dispersion mass transport regime, the results from the mass balances 

were also used to determine the FFT pore water flux associated with the calculated mass release. 

The pore water flux from the FFT,  (m3 m−2 a−1), was determined with: 

= ∙ + ∙ ∙   (4.5) 

given the calculated mass release from the FFT during each mass balance year,  

(300 g m−2 a−1 in Period 1 and 280 g m−2 a−1 in Period 2), the average FFT concentration at the 

FFT-water interface over the given period,  (480 g m−3 in Period 1 and 410 g m−3 in Period 2), 

the FFT porosity,  (0.86 m3 m−3), the hydrodynamic dispersion coefficient,  (0.03 m2 a−1), 

and the change in concentration with depth measured through the FFT,  (300 g m−4 in Period 1 

and 470 g m−4 in Period 2). The pore water fluxes determined from the above equation were 

0.6 m3 m−2 a−1 for Period 1 and 0.7 m3 m−2 a−1 for Period 2, which both correspond to an 

approximate daily pore water flux of 0.002 m3 m−2 d−1. The estimated pore water flux was greater 
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for Period 2 even though the calculated mass flux from the FFT was less than Period 1. This was 

likely due to the lower average concentration at the FFT-water interface during this period. 

The FFT-water interface sonar surveys revealed that settlement ranged from 0 to 2 m, 

between October 2013 and October 2015. The area-weighted average settlement was 1.49 m, or 

0.75 m3 m−2 a−1, assuming equal settlement in both years. This value is similar to the two pore 

water release rates calculated from the mass balances. Thus, the assumed advection-dispersion 

mass transport regime and mass balance method predicted a similar pore water release as 

observed in the field. 

In addition to chemical mass transport via advection-dispersion, the results from the 

numerical models suggested that some form of FFT disturbance might also affect the water cover 

concentration over time. The simulated Cl profiles indicated a possible advection range, as the 

best-fit mass flux scenario changed with the simulated disturbance depth and the exact depth of 

the disturbance remains unknown. 

The mass balance method and area-weighted average settlement suggest that the pore water 

movement through the FFT was approximately 0.002 m3 m−2 d−1 over the study period. The 

numerical models were re-run with this advective flux and varying disturbance depths between 

0.5 and 1 m, to evaluate the disturbance depth providing the best-fit to the measured chloride 

profiles (Table 4-5). At Platform 1, a 0.75 m disturbance provided the best fit, while 0.85 m and 

0.95 m disturbances produced the lowest RMSE values for the Cl profiles from Platforms 3 and 

2, respectively. Platforms 2 and 3 are closer to the shore, so these locations would likely 

experience greater impacts from waves, such as internal seiches, within the water cover. These 

results suggest that the influence of FFT disturbance on the movement of mass over the FFT-

water interface likely varies with location at BML. 

Overall, these findings are similar to the previous tracer investigation conducted at BML 

(Dompierre and Barbour, 2016a); however, this study demonstrates that multiple methods can be 

used to assess mass loading to an EPL from underlying FFT, and the mass transport mechanisms 

within the FFT are changing over time. The original study (Dompierre and Barbour, 2016a) 

found an advective mass transport regime of 0.004 m3 m−2 d−1 and a 1.1 m FFT disturbance, 

while this investigation observed lower values for both advection and disturbance depth. The 

current study covered a later time period, so the smaller advective flux could be explained by 
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decreasing FFT settlement rates over time. In addition, disturbance within the FFT will likely 

decrease as the FFT-water interface elevation declines and the depth of the water cover increases. 

 

 

Table 4-5. RMSE for simulated disturbance depth range and 0.002 m3 m−2 d−1 advection compared 

to normalized field concentrations (%) 

Disturbance Location 
(m) P1 P2 P3 

0.5 10.2 18.8 15.2 
0.55 9.6 18.1 14.5 
0.6 8.9 17.1 13.4 

0.65 8.1 15.9 12.1 
0.7 7.4 14.3 10.6 

0.75 7.3 12.6 9.1 
0.8 8.0 10.8 8.0 

0.85 9.5 9.1 7.7 
0.9 11.6 7.8 8.7 

0.95 14.2 7.4 10.7 
1.0 32.4 15.7 31.2 

 

4.6 Conclusions 

The FFT in BML is undergoing self-weight consolidation causing substantial pore water 

and chemical mass loading to the overlying water cover, as confirmed by both the mass balance 

and numerical methods used in this study. The estimated Cl mass release from the FFT (average 

of 287 g m−2 a−1) was substantially larger than other mass sources (Table 4-1). However, the 

advection-dispersion mass transport regime through the FFT will change over time, as FFT 

settlement by self-weight consolidation is anticipated to gradually decrease.  

The multiple methods employed in this study allowed for a comprehensive consideration of 

mass transport over the FFT-water interface. Together, the mass balances and numerical models 

confirmed an advection-dispersion mass transport regime through the FFT with a seasonal 

disturbance ranging from 0.8 to 0.95 m at the three sample locations. The numerical simulations 

also provided insight on the overall effect of these disturbances on the mass loading to the water 

cover. Although the disturbance caused a sharp increase in mass flux over the FFT-water 

interface, its overall influence on the predicted cumulative mass release was relatively small, 
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given an advection-dispersion mass transport regime. This study demonstrated the benefit of 

using multiple methods for assessing mass transport. 

The results from the chemical mass balance highlighted the importance of operational 

controls on the geochemical regime within an EPL. Pumping rates (in and out) were observed to 

largely control the water balance. These rates will determine the water cover volume, which 

based on the sensitivity analysis, was an important parameter in the mass balance calculations. 

Future anthropogenic changes may also affect BML. For example, the BML watershed is 

expected to increase as more surrounding land is reclaimed. The runoff water coming from this 

larger watershed may have a higher dissolved solids content than those observed in this study, 

causing runoff to be a more significant contributor to mass in the future. Thus, future EPL design 

must consider the movement of water and mass through the greater reclamation landscape.  

The results from this study provide an initial assessment of the geochemical regime in the 

BML cover, which can be used as a baseline for future studies and will assist in the development 

of monitoring plans at this study site. This investigation also highlights essential considerations 

for future EPL design, such as self-weight consolidation rates, field conditions, operational 

controls, and surrounding reclamation activities, as these will affect the water and chemical 

balances in the water cover over time. The FFT contributed substantial mass to the water cover 

over the monitored periods revealing the importance of studying the geochemical characteristics 

of any waste material placed in an EPL or similar reclamation feature. Finally, this study 

highlights the need for large-scale reclamation design considering water and mass movement 

throughout the entire reclaimed landscape, particularly in regions like the AOSR where large 

areas of land have been disturbed. 
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CHAPTER 5 – SUMMARY AND RECOMMENDATIONS  

As a whole, this thesis provides fundamental insight on the movement of heat (Chapters 2 

and 3) and mass (Chapters 3 and 4) through FFT in the first EPL. Each manuscript employed 

multiple methods to answer the associated research questions, allowing for greater confidence in 

the presented results. Together the three manuscripts fulfilled all proposed objectives and 

developed a better understanding of: (1) the thermal conductivity and volumetric heat capacity of 

FFT; (2) the dominant mechanisms for heat transport within the FFT; (3) the characteristics of 

FFT settlement in BML; (4) the importance of other mass transport mechanisms over the FFT-

water interface; and (5) the total mass contributed from the FFT to the BML water cover during 

its initial years as an EPL.

In addition to these original objectives, a better understanding of FFT properties was 

reached through the study program. For example, the typical range in FFT solids and bitumen 

contents and their general trends with depth in BML, and FFT dynamic viscosity and yield stress 

near the FFT-water interface, are now known. This study also led to the development of a new 

system for testing in-situ FFT properties. The system requires modification for future thermal 

properties analysis; however, its overall design can be used for other field experimentation or 

monitoring programs. Finally, the numerical models developed for heat and conservative mass 

transport can be used as a reference for further numerical analyses. A summary of the findings 

associated with this thesis and recommendations for future studies are provided below. 

5.1 Review of Mass Transport Mechanisms 

A conceptual model was developed to highlight the relative mass contributions to BML 

during the studied period (Figure 5-1). The FFT was the most significant Cl mass source to the 

water cover, confirming the need to assess mass transport mechanisms at the FFT-water interface.  

5.1.1 Advection via FFT Settlement 

The mass and heat transport via pore water flow observed at multiple locations around 

BML were comparable to FFT settlement measured by sonar surveys of the FFT-water interface, 
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and suggested that settlement is well distributed over the FFT surface. The release rate predicted 

by the second manuscript was 1.46 m/a, which was slightly higher than the amount of FFT 

settlement predicted by the BML consolidation model (Carrier et al., 2007). However, sonar 

surveys of the FFT-water interface over the modelled period (October 2013 and April 2014), 

found that the average FFT-water interface elevation dropped from 301.6 masl to 300.9 masl. 

These field measurements correspond to an average yearly pore water release rate of 1.6 m/a, 

suggesting that the original consolidation model underestimated FFT settlement rates during 

these initial years.  

The pore water flux rates estimated from the Cl profiles in the third manuscript were 

generally between 0.18 and 1.46 m/a. The chloride loading obtained from the lake mass balance 

resulted in pore water fluxes of 0.37 to 0.73 m/a assuming an advection-dispersion regime within 

the upper FFT; however, the sensitivity analyses suggested that the pore water flux could range 

from 0.18 to 1.46 m/a. This is a similar flux range as estimated by the Cl transport models, but is 

slightly lower than those estimated from the temperature and isotope profiles and models. The 

lower flux rates were expected, as the Cl profiles were evaluated more than a year after the stable 

isotope and temperature profiles, and self-weight consolidation decreases exponentially over 

time. Overall, these results confirmed that advection is an important mechanism for mass 

transport within BML; however, advection rates will change over time as FFT settlement 

declines.  

5.1.2 Enhanced Advection Mechanisms 

An episodic disturbance was necessary to replicate the observed tracer profiles with the 

transport models from both the second and third manuscripts. For example, the transition zone 

from the deep FFT pore water to the lake water concentrations was found to be approximately 

0.4 m for both stable isotopes of water and chloride samples. When the numerical models were 

compared to these field results, the advection-dominant regimes expected based on field 

settlement rates produced much smaller transition zones of less than 0.1 m for the isotope models 

and 0.3 m for the chloride models. The simulated transition zone increased when a disturbance 

was added to the model, providing a better fit to the field observations.  

The potential for FFT erosion was confirmed by yield stress laboratory analysis of low 

solids content FFT, which corresponded to the top 0.3 m of FFT. Previous studies found the 

critical shear stress of soft tailings to be approximately 0.2 Pa, which is less than the critical shear 
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stress of natural sediments (Mian and Yanful, 2007; Yanful and Catalan, 2002). This provides a 

potential explanation for why the measured yield stresses were more similar to the lower limit of 

estimated yield stress with depth, based on literature obtained values for fluid muds (after 

McAnally et al., 2007; Figure 2-6). Thus, the top 0.2 m of FFT is likely below the critical shear 

stress associated with other soft tailings (Mian and Yanful, 2007; Yanful and Catalan, 2002). 

This depth is not as large as the disturbance events included in the numerical models but does 

suggest that erosion of the FFT-water interface is possible. 

Lawrence et al. (2016) studied mixing mechanisms within the BML water cover and the 

potential for these mechanisms to cause FFT resuspension. They determined that the orbital 

velocities produced by typical wind speeds measured at the site would not generate velocities at 

the FFT-water interface large enough to disturb the FFT. However, they did list numerous other 

mixing mechanisms that could be present in BML. In particular, Lawrence et al. (2016) noted 

that currents or turbulence associated with internal seiches and smaller scale internal waves may 

cause erosion of the FFT-water interface.  

Lawrence et al. (2016) also proposed the presence of an intermediate, turbid layer that 

would remain at the bottom of the water cover during calm periods but would be easily disturbed 

by wind events. Characteristics of this intermediate layer are not well understood; however, its 

depth is expected to vary spatially around BML given variation in the FFT-water interface 

elevation, which ranges in elevation by up to 4 m. This intermediate layer could have been 

included in field measurements believed to be collected below the FFT-water interface. 

Therefore, this proposed intermediate layer could be the region of the disturbance that was 

observed within the FFT. 

Another form of enhanced advection potentially present within the BML system is 

ebullition. Bubble migration has been found to strip volatile pollutants from sediments (Yuan et 

al., 2007) through sorption of hydrophobic (organic) contaminants to bubble surfaces (McLinn 

and Stolzenburg, 2009). Therefore, the bubble migration through FFT in BML is likely 

associated with the release of organic constituents to the water cap. As the mass transport studies 

used conservative, non-organic tracers, these would not have been directly affected by ebullition 

within the FFT. However, methanogenesis, in addition to causing ebullition, may also lead to 

exchange reactions at the clay mineral surfaces, decreasing the electrical double layer and 

promoting settlement of the FFT (Dompierre et al., 2016). Thus, methanogenesis would increase 
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advective mass transport due to FFT settlement and affect the movement of chloride and stable 

isotopes of water. 

Ebullition may also carry suspended solids into the intermediate, turbid layer, increasing 

the potential for solids release to the water cap (Lawrence et al., 2016). This upward movement 

of gas and solids may also destabilize the FFT-water interface contributing to the potential for 

disturbance within the FFT (Lawrence et al., 2016). Thus, ebullition enhances both advection due 

to FFT settlement and disturbance due to tailings destabilization near the FFT-water interface. 

5.1.3 Diffusion 

The stable isotope of water, temperature, and chloride profiles within the upper FFT were 

typical of diffusive mass transport as they exhibited a smooth transition from the water cover 

concentration to that of the FFT pore water. Diffusion occurred as a result of this observed 

difference in water cover and FFT pore water characteristics. In the initial EPL stages, advective 

pore water movement limits the diffusion depth – also referred to as the transition zone – within 

the FFT. However, as predicted by self-weight consolidation theory, FFT settlement and the 

corresponding advective mass flux will decrease over time. As advection decreases, diffusive 

mass transfer will become increasingly important to the mass transport regime within the EPL. At 

this stage, mass released from the FFT will depend on the concentration of the water cover. If the 

water cover concentration changes substantially over time, diffusion will also vary. However, if 

the water cover concentration remains fairly consistent, diffusive mass transport may reach a 

steady-state, with relatively constant mass release from the FFT.  

The relative contribution of FFT to mass stored in the BML water cover will change with 

time given the declining advection rates and lower mass flux rates associated with diffusion. 

Though the other mass sources (precipitation, pump-in water, and runoff) were not significant for 

the water cover mass balance in the early years of EPL development, these inputs must be 

considered in the future (Figure 5-1).  

 



 

  

  110

 

Figure 5-1. Conceptual model of mass inputs and outputs for BML (a) during the studied years 

and (b) predicted in the future. Mechanisms and properties requiring further study are labeled with 

light text while confirmed mass sources are in black. 
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5.2 Review of Heat Transport Mechanisms 

The thermal regime within the FFT was driven by the same mechanisms as the mass 

transport regime. As with the conservative mass tracers, temperatures through the FFT suggested 

that forced convection was an important mechanism for heat transport within the FFT. 

Conductive heat transport was evident based on the seasonal temperature variation measured 

through the FFT, reaching a maximum depth of 5 m. As the pore water flux associated with 

settlement decreases over time, the maximum and minimum FFT temperatures will likely reach 

greater depths as illustrated by the greater size of the temperature envelope when the simulated 

convective heat transfer decreased. Free convection within the FFT was determined to be 

unlikely, as the density differences produced by the inverted temperature profiles were associated 

with low Rayleigh numbers (<1).  

Ebullition could affect the temperatures measured in BML. Bubbles moving through the 

FFT likely travel at faster rates that the pore water flux associated with tailings settlement, and 

they could carry energy associated with the deeper FFT upwards. Dompierre et al. (2016) found 

that methanogenesis is likely occurring within the top 10 m of FFT, based on the lower pH values 

observed in this region. As the field measurements illustrated, seasonal temperatures within the 

lake water affected temperatures within the top 5 m of FFT. Therefore, cooler temperatures 

during the fall and winter may lead to lower methanogenesis rates and less bubble release within 

the top 5 m of FFT.  

Ebullition could cause the temperature profiles to shift towards a greater apparent advective 

mass transport regime in the summer months. Meanwhile during the winter months, decreased 

ebullition rates would have a reduced effect on the temperatures measured through the FFT. This 

would cause the seasonal temperature envelope to appear asymmetric. The asymmetry observed 

in the FFT temperature profiles was assumed to be due to the length of the collection period, 

which only covered half of the year. However, ebullition may have contributed to the observed 

asymmetry. Also, fluctuating ebullition rates could have caused the discrepancy in the simulated 

best-fit heat transport regimes for the maximum and minimum temperature profiles when no 

disturbance was included in the models. Temperature measurements through the FFT should be 

collected for a complete year to confirm the effect of ebullition on seasonal FFT temperatures. 

Ultimately, energy movement through the FFT is controlled by the thermal properties 

associated with these tailings. Previous equations for the thermal properties of saturated porous 
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media (Cosenza et al., 2003; De Vries, 1963) were used as a theoretical basis for assessing the 

FFT thermal properties. Modification of these equations to include a bitumen term generated 

theoretical values that were similar to those measured in the laboratory. The thermal conductivity 

of the FFT in BML is expected to be approximately 0.57 W/m/K near the FFT-water interface, as 

this represents FFT with a high volumetric water content and bitumen present. Fluid fine tailings 

near the deposit bottom are expected to have a thermal conductivity of 0.93 W/m/K. Volumetric 

heat capacity is expected to decrease with depth from 4.2 x106 J/m3/K near the FFT-water 

interface to 3.2 x106 J/m3/K near the deposit bottom. These general trends correspond to the 

changing FFT solids content with depth; however, inconsistent bitumen contents with depth 

likely cause thermal conductivity to vary by approximately 0.1 W/m/K and volumetric heat 

capacity to vary by 0.4 x106 J/m3/K from these general trends. 

Unfortunately, in-situ thermal properties testing did not provide as much insight as 

expected due to issues with shifting radius during installation and potential densification of the 

FFT immediately surrounding the system. The initial estimates for the FFT thermal conductivity 

in BML appeared to be similar to the laboratory results; however, future testing is necessary to 

confirm these results and evaluate the FFT volumetric heat capacity. 

Given the average FFT temperature and the observed 2014 and 2015 pore water release 

rates, a simple calculation was completed to estimate the ratio of thermal energy released from 

the tailings to the energy stored within the BML water cover. The average temperature measured 

through the FFT (Figure 2-9) was approximately 10 C or 283.15 K, and pore water release rates 

between 0.35 to 0.85 m a-1 were predicted for these years, over an approximate area of 

6.4 x106 m2. The average energy stored in the water cover can be calculated with the average 

water cover temperature (10 C or 283.15 K) and volume (6.0 x107 m3). Given this information, 

the ratio of energy from the released FFT pore water to the thermal energy of the water cover was 

predicated to be between 5 % and 10 %. Therefore, heat transport from the FFT could potentially 

carry substantial energy into the water cap. Future consideration of FFT energy release and 

consequences to the thermal regime within the water cover is necessary. 

5.3 Recommendations 

The mass balance portion of this study highlighted the importance in assessing mass 

transport from the FFT, as it was the greatest mass source to BML over the two measured 
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periods. Further study will be necessary to determine decreasing FFT settlement rates and the 

associated change in advection. Sonar surveys of the FFT-water interface have been previously 

used to monitor settlement at regular intervals. The tracer studies confirmed that the mass 

transport mechanisms within the FFT were comparable to the measured settlement rates so 

continued sonar surveys would be an acceptable approach to evaluating future FFT settlement.  

All three tracers indicated that the top portion of FFT undergoes some form of disturbance; 

however, further study is required to fully characterize this disturbance. A field investigation of 

the horizontal fluid velocities above and below the FFT-water interface, particularly during 

spring and fall turnover, would provide critical information on the potential for waves within the 

water cover to affect FFT. Also, detailed tracer profiles collected over the FFT-water interface 

before and after unstable periods could verify the disturbance mechanism, assuming that the 

disturbance is episodic. These results can be compared to those discussed in the second and third 

manuscripts by using a stable isotope of water or Cl as the monitored tracer.  

The influence of an intermediate layer on the observed disturbance should also be 

investigated. Field sampling during very calm periods could be completed to capture and 

characterize the intermediate layer. The mass transport simulations could be modified to 

incorporate an intermediate layer by including a region at the top of the modelled domain with a 

greater water content and higher diffusion coefficient. This intermediate layer could undergo 

disturbance events similar to the original models by further increasing its diffusion coefficient 

during instable periods.  

Ebullition has been observed to promote FFT settlement and may potentially cause 

destabilization of the FFT-water interface. Ebullition may also influence the movement of energy 

through the FFT, as higher ebullition rates during warm months could augment heat transfer from 

the FFT to the water cover. Future evaluations of mass transport through the FFT should measure 

in-situ ebullition rates, estimate the remaining reactants available for methanogenesis, and predict 

long-term bubble production within the FFT in BML. 

The results presented in this thesis provide the dominant mass transport mechanisms for 

conservative species; however, there are many constituents of interest in the FFT that are not 

conservative, such as naphthenic acids. Thus, the logical next step is to expand the numerical 

models to include reactive mass transport. The preliminary FFT pore water characteristics 

presented by Dompierre et al. (2016), subsequent high-resolution sampling over the FFT-water 
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interface at BML, and the physical mass transport models described in this thesis provide a strong 

basis for reactive transport work.  

Given the issues encountered during in-situ thermal properties testing, further research is 

required to assess the effect of scale and gas bubbles on the FFT thermal conductivity and 

volumetric heat capacity. Future in-situ testing systems must be designed to limit the potential for 

FFT disturbance during installation. The rope supporting the system should be replaced with a 

material that will not allow wicking and FFT densification. Improvements to the in-situ testing 

system should also include spacers between the heating wire and thermistor string to ensure that 

the heating radius is known and remains constant throughout installation and testing. The thermal 

properties of the spacer material should be defined so that the numerical models can account for 

this addition. 

The FFT heat transport modelling was conducted over a relatively short time. This model 

can be expanded to cover a longer period, for example, to consider heat released from the FFT 

over an entire year or multiple years during the EPL development phase. Information on heat 

transport over the FFT-water interface can be used to assess the energy balance in the water 

cover. The thermal regime within the BML water cover will be critical to the development of 

biotic activity and the hydrological performance of the lake, as it influences evaporation rates and 

ice cover duration. Preliminary estimates illustrate the importance of heat transfer from the FFT 

on the energy stored in the BML water cover. 

5.4 Final Thoughts 

Studies at conventional pit lakes indicated that multiple factors influence their geochemical 

characteristics. The results presented above reveal that the most significant factor at BML is the 

presence, depth, and properties of FFT. The tailings were by far the largest Cl mass source to the 

water cover (99 %) in the first 3 years of operation. The tailings volume in BML is substantially 

larger than the water cover volume. When BML was commissioned, the water cover was only 

13 % of the total tailings volume. Based on these findings, future EPL design should consider the 

optimal water cover to tailings volume ratio that would result in the greatest water quality while 

providing storage for FFT. This ratio will also be important for the thermal regime within the 

water cover. 
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The BML water cover properties were not as important as the FFT characteristics and 

depth, but would have had an effect on FFT disturbance. The large water cover surface area, and 

resulting fetch lengths, allows greater fluid velocities to develop. The relatively small water cover 

depth would increase the probability of FFT disturbance given these fluid velocities. The water 

cover concentration is not as significant during these early years as it will be in the future when 

the dominant mass transport mechanism from the FFT is diffusion.  

Human-controlled factors – including pumping water into and out of BML – were also 

important to BML water quality. Water pumped from BML was the dominant means for 

removing mass from the system. Changes to pumping volumes would have a substantial effect on 

the water cover mass balance. Thus, human factors cannot be overlooked when considering the 

geochemical conditions within an EPL.  

These findings illustrate that initial EPL design is critical to the thermal and geochemical 

conditions present within the water cover. Oil sands operators are more likely to meet regulatory 

requirements by taking time to consider the shape and size of the EPL water cover, volume and 

characteristics of stored materials, and capacity to pump freshwater into and out of the pit. The 

presented manuscripts provide a foundation for future research at BML and the Demonstration 

Pit Lakes Project (COSIA, 2012b); however continued monitoring and study are necessary to 

fully characterize interactions between the FFT and water cover, particularly the major 

biogeochemical processes occurring within both of these domains. 
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APPENDIX A: NUMERICAL MODELLING DETAILS 

In-situ Thermal Properties Experiment (Chapter 2) 

GeoStudio© TEMP/W and SEEP/W were used to simulate the heating and cooling trends 

through the FFT. An axisymmetric domain was established with a central offset of 0.0005 m (the 

radius of the heating wire), which was necessary for applying a heating rate along the inside 

boundary. The domain was 5 m tall with the top 1 m representing the bottom of the lake water, 

and the rest of the domain was FFT (3 m of FFT were beside the heating wire and 1 m was below 

it). The domain radius was 3.5 m which was tested to ensure that this was a far-field boundary. 

The mesh was discretized to 0.004 m quadrilaterals. 

SEEP/W analyses were included in the model to generate continuously changing FFT 

properties with depth (constant over time). Pressure head boundary conditions were set 

throughout the domain to establish changing pore water pressures with depth: (1) –0.3 m at the 

top of the domain (y = 1 m); (2) –0.4 m at the top of the FFT (y = 0 m); and (3) –1 m at the 

bottom of the heating wire (y = –3 m). A volumetric water content function was inputted to 

establish the expected change in volumetric water content with depth given the pressure heads 

generated with these boundary conditions (Figure A-1). Functions were also created for thermal 

conductivity and volumetric heat capacity (versus volumetric water content) such that the 

simulated thermal properties continuously changed with depth. 

 

 

Figure A-1. (a) Volumetric water content function over the generated range of suctions, and (b) 

the associated water contents with depth along the simulated heating wire. 

(a) (b) 



 

  

  133

       

The initial temperatures throughout the domain were set using a spatial function, given the 

field measurements immediately before the heating test began. The first TEMP/W analysis ran 

for two hours with exponentially increasing time intervals (61 intervals with an initial increment 

size of 12 s). A heating flux of 2860 J/s/m2 was applied along the central boundary of the domain. 

This value was determined by dividing the measured heating rate (9 J/s/m) by the circumference 

the energy was applied to (given the wire radius of 0.0005 m). A subsequent 300-second 

TEMP/W analysis simulated the FFT cooling immediately after the heating wire was 

disconnected from the power source, using the final temperatures from the first TEMP/W 

analysis as the initial conditions. This analysis had 30 time intervals, exponentially increasing in 

size from an initial time increment of 5 s. Another TEMP/W analysis was added after this one to 

simulate FFT cooling for a total of 4 hours after heating stopped. The second cooling analysis 

had linear time intervals of 90 s. The flux boundary condition was removed for both of the 

cooling analyses.  

 

Isotope Transport Model (Chapter 3) 

 The isotope simulations were completed with the GeoStudio© SEEP/W and CTRAN/W 

products. The model domain included the top 5 m of FFT, separated into five regions (all 1 m 

deep), and the entire overlying water cover (8.5 m). The regions were discretized so as to 

generate a one-dimensional FFT/water column, by specifying the number of divisions as 1 for 

each of the horizontal lines. The vertical mesh element size was set to 0.01 m for the water cover 

and the top two FFT regions, while the bottom three FFT regions were discretized in 0.05 m 

intervals. 

 A steady-state SEEP/W analysis produced the constant flow conditions through the 

column. The pressure head at the top of the domain was set to 0 m. A constant flux (q) boundary 

condition was applied at the FFT bottom, ranging from 0.002 to 0.01 m/d. A saturated-only 

material model was used for the analysis. The hydraulic conductivity of FFT does change with 

void ratio (water content); however, a constant saturated hydraulic conductivity was applied 

throughout the entire FFT profile (1 m/day) as a constant flow was imposed in both analyses. The 

volumetric water content of each FFT region decreased with depth (Table 3-1) while the water 

content of the water cover was set as 1 m3/m3.  
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 The seepage results from the SEEP/W analysis were used by the subsequent transient 

advection-dispersion CTRAN/W analysis (except for the diffusion-only case which only included 

a CTRAN/W analysis similar to described below). Advection-dispersion was modelled over a 1-

year period, with time increments of 1 day. The coefficient of molecular diffusion for each FFT 

region was set based on the volumetric water content and average temperature through the FFT 

(Table 3-1). The diffusion coefficient in the water cover was either: (1) 0.000125 m2/d to 

represent stratification; or (2) 1 m2/d to represent fully mixed lake conditions. The longitudinal 

dispersivity was set as 0.003 m for all of the FFT regions, and 1 m for the water cover. Stable 

isotopes of water are considered a conservative species so adsorption was set to 0 g/g for all 

regions. 

 The initial conditions were set using the activation concentration option in the KeyIn 

Materials window. Normalized concentrations were used for the mass transport analysis, so the 

five FFT regions and the water cover had activation concentrations of 1 g/m3 and 0 g/m3, 

respectively. A mass flux boundary condition was applied at the bottom of the domain to 

correspond to the seepage rate (e.g., 0.002 m/d of seepage corresponded to a mass flux of 

0.002 g/m/d).  

 Mixing events in the FFT were simulated by modifying the original model. At the time of 

the mixing event (day 110), the simulated transition from the lake concentration to that of the 

FFT was less than the two mixing depths (less than 0.5 m from the interface). Thus, the 

CTRAN/W model was modified to start at the time of the mixing event. The analysis duration 

was changed to 255 days (with 1-day time intervals). The initial concentrations were 1 g/m3 in 

the unaffected FFT regions, and 0 g/m3 in the mixed FFT and the lake water.  

 

Seasonal Heat Transport Model (Chapter 3) 

 GeoStudio© SEEP/W and TEMP/W were used to simulate heat transport through the 

FFT. The model domain included the top 5 m of FFT, separated into five regions (all 1 m deep). 

Similar to the isotope transport model, the regions were discretized to generate one-dimensional 

heat and water flow by specifying the number of divisions as 1 for each horizontal line. The 

vertical mesh element size was set to 0.1 m. 

The materials were defined using the simplified thermal and saturated-only material 

models for the TEMP/W and SEEP/W analyses, respectively. The volumetric water content 
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specified for each region decreased with depth from 0.86 to 0.82 m3/m3 (Table 3-1). The thermal 

properties also changed with depth based on the volumetric water content (Table 3-1). The same 

value was entered for the frozen and unfrozen thermal properties as the tailings do not reach 

temperatures below 0 ⁰C. Similar to the isotope transport model, a constant saturated hydraulic 

conductivity was applied throughout the entire FFT profile (1x10-7 m/s). 

An initial steady-state TEMP/W analysis was used to generate the initial temperature 

profile through the FFT. These temperatures were set based on field measurements at the 

beginning of the simulated period (Figure A-2). An initial steady-state SEEP/W analysis was 

used to generate the constant flow conditions associated with convective heat flux for the 

subsequent TEMP/W analysis. A constant pressure head boundary condition was applied to the 

top of the domain (8 m) to represent the lake level. A constant water flux was specified at the 

FFT bottom (0.002 to 0.01 m/d), similar to the steady-state SEEP/W analysis in the isotope 

transport model. 

 

 

Figure A-2. Boundary conditions applied to the heat transport model: (a) the initial temperature 

conditions through the FFT; and (b) the temperature applied at the top of the domain over time. 

 

A coupled Convective Heat Transfer analysis (TEMP/W + SEEP/W) followed the steady-

state SEEP/W analysis. This transient analysis ran for 170 days, with linearly specified time 

intervals of half a day. A constant temperature boundary condition (10 °C) was applied at the 

bottom of the modelled domain. The top temperature boundary condition was specified as a 

(a) (b) 
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function given the measured lake temperatures over time (Figure A-2). The pore water flux 

applied at the bottom of the FFT column remained the same as in the steady-state SEEP/W 

analysis (0.002 to 0.01 m/d) and the same flux (but negative to represent water flowing out of the 

domain) was also applied at the top boundary. For the conduction-only heat transport regime, 

only TEMP/W analyses were used (as described above). 

In order to include a mixing event within the FFT, a secondary Convective Heat Transfer 

analysis was added to the model. A spatial temperature function was used to set the initial 

temperature conditions of this analysis. The temperature results from the original Convective 

Heat Transfer analysis at day 30 (corresponding to October 15, 2013) were used as the initial 

temperatures for the bottom portion of the FFT column (regions unaffected by mixing) and the 

temperature within the mixed zone (from y = 0 m to either y = –0.5 or –1 m) was set to the 

temperature in the lake on this day (12.8 °C). The second Convective Heat Transfer analysis ran 

for 140 days with half-day intervals. Otherwise, this analysis was the same as the original 

Convective Heat Transfer analysis. 

 

Chloride Transport Model (Chapter 4) 

 GeoStudio Preview (early release of GeoStudio 2017) was used to assess chloride 

transport through the FFT. Similar to the isotope and heat transport simulations, the top 5 m of 

the FFT was modelled with flow only in the vertical dimension. The model was set up as a true 

one-dimensional model (available only in GeoStudio Preview/2017). The material properties of 

the FFT were set to continuously change using the (negative) pressure profile to specify the 

saturated volumetric water content with depth through the domain. The FFT profile was turned 

upside-down in the model so that seepage could be incorporated (the seepage was included as an 

infiltration flux on the top of the profile).  

 An initial steady-state SEEP/W model was used to specify the pressures through the 

domain. A constant pressure head of –7 m was applied at the FFT-water interface (bottom of the 

modelled domain). The top boundary, representing FFT at 5 m depth, had a constant pressure 

head of –12 m. This generated a linearly changing pressure head profile, which was used to 

specify a continuously changing volumetric water content with depth by selecting the saturated-

unsaturated material model and specifying a volumetric water content function (Figure A-3). A 
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constant hydraulic conductivity of 0.1 m/s was specified for all pore water pressures (so it did not 

change with depth). 

 

  

Figure A-3. The volumetric water content and diffusion coefficient functions inputted to generate 

continuously changing FFT properties with depth. 

 

A second analysis was developed in CTRAN/W using both the solute and water transfer 

options (defined in the KeyIn Analyses window). This analysis ran for 885 days (from May 29, 

2013 to October 31, 2015) with linear time steps (12 minutes). The same saturated-unsaturated 

material model from the steady-state seepage model was used to define the hydraulic properties 

in the transient CTRAN/W analysis. The solute transport parameters were specified as: (1) 0.004 

m for longitudinal dispersivity; (2) 0 g/g adsorption; and (3) a diffusion coefficient function was 

defined over the modelled volumetric water content range such that the coefficient changed with 

depth (Figure A-3). 

The initial hydraulic conditions of the CTRAN/W analysis were obtained from the steady-

state seepage analysis, and the initial concentrations were set using a spatial function, with a 

normalized concentration of 1 g/m3 specified through the entire FFT column. A constant water 

flux was applied at the top boundary (between 0 and 0.01 m/d) while the original pressure head 

imposed at the domain bottom was maintained throughout the CTRAN/W analysis. A constant 

concentration boundary condition of 1 g/m3 was applied at the top of the model domain (FFT at 5 

m depth). Two functions were defined for normalized concentration over time at the FFT-water 

(a) (b) 
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interface (bottom of the domain) based on field measurements collected in the water cover 

(Figure A-4). 

 

  

Figure A-4. Spline boundary functions applied to the FFT-water interface: (a) gradually changing 

concentration over time (approximate spline with a 27% exact curve fit and 57% curved line 

segments); and (b) intermittently declining concentration (approximate spline with a 50% exact 

curve fit and 30% curved line segments).  

 

 Mixing events were added on October 15, 2013 (day 150) and October 15, 2014 (day 

515). The CTRAN/W model was broken up into three analyses: (1) before any mixing event, 

days 1 to 150; (2) after the first mixing event and before the second, days 151 to 515; and (3) 

after the second mixing event, days 516 to 885. The same boundary conditions and material 

models were applied to the domain. The initial conditions for the three analyses were set using 

spatial functions. The initial spatial function was the same as used by the original CTRAN/W 

model. The spatial functions used to reset the FFT pore water concentrations after a mixing event 

were calculated with the results from the previous analysis. The normalized FFT pore water 

concentration in the disturbed zone,  , after a mixing event was calculated by: 

 =
 ∙    ∙  ∙ 

   ∙ 
       (A.1) 

where  is the normalized concentration of the lake on the day of the mixing event (mg/L), 

 is the depth of the lake (8.5 m),   is the average normalized FFT pore water 

(a) (b) 
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concentration in the disturbed zone simulated the day before the mixing event (mg/L),  is 

the depth of the disturbed zone (either 0.5 or 1 m), and  is the porosity of the FFT in the 

disturbed zone (0.86). 
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APPENDIX B: BASE MINE LAKE PIT CAPACITY CURVE 

The pit capacity curve for BML was provided by Syncrude Canada Ltd. and can be found 

in the following report: 2015 Base Mine Lake: FFT Physical Assessment Report. June 2016. Barr 

Engineering Company, Calgary, AB. 

 

Figure B-1. Base Mine Lake mine pit capacity curve. 
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APPENDIX C: IN ERRATUM 

2.3.1, p. 21: The sample volume was 1000 mL. 

2.3.3, p. 24: No spacers were used in the deployed system. 

2.4.1, p. 26: The FFT samples were collected from six locations, not three. 

Figure 2-11, p. 38: The high-resolution FFT samples were collected according to the Fixed 

Interval Fluid SamplingTM methods described in 3.3.1. 

Figure 2-12, p. 39: The data presented in this figure are from all thermistors along the heating 

wire. The grey lines are not colour-coded in any way. 

2.4.3.2, p. 40: The models discussed in the second paragraph of the numerical modelling section 

(results presented in Figure 2-13) were homogeneous models that were run multiple times 

with varying properties. 

2.5, p. 46: The first sentence in the third paragraph should read: “The in-situ experiment and 

associated numerical model produced initial estimates of thermal conductivity with depth 

through the FFT, and demonstrated that in-situ testing of thermal conductivity is possible in 

soft sediments or tailings.” 

3.3.3, p. 58: The temperatures were monitored from September 16, 2013 to March 5, 2014. The 

system was installed with the intent to measure temperatures over a full year but ice 

damage of the thermistor string prevented this. 

3.3.5, p. 62: Only one mixing event, on Oct. 15, 2013, was included in each model. 

3.4.1, p. 63: The statement “Pore water pressure in the FFT increases with depth due to the self-

weight of the tailings” should include the following reference: Geoff Halferdahl, Syncrude 

Canada Ltd. 

Figure 3-12, p. 74: The maximum and minimum points are the maximum and minimum values 

measured in the field at each individual thermistor or simulated at each individual node by 

the numerical models. They do not necessarily correspond to the same time interval. 

 


