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ABSTRACT 

A problem of interest in the power industry is the mitigation of severe torsional 

oscillations induced in turbine-generator shaft systems due to Subsynchronous 

Resonance (SSR).  SSR occurs when a natural frequency of a series compensated 

transmission system coincides with the complement of one of the torsional modes of the 

turbine-generator shaft system.  Under such circumstances, the turbine-generator shaft 

system oscillates at a frequency corresponding to the torsional mode frequency and 

unless corrective action is taken, the torsional oscillations can grow and may result in 

shaft damage in a few seconds.  

This thesis reports the use of a supplementary controller along with the Voltage Source 

Converter (VSC) HVDC back-to-back active power controller to damp all SSR torsional 

oscillations.  In this context, investigations are conducted on a typical HVAC/DC system 

incorporating a large turbine-generator and a VSC HVDC back-to-back system.  The 

generator speed deviation is used as the stabilizing signal for the supplementary 

controller.   

The results of the investigations conducted in this thesis show that the achieved control 

design is effective in damping all the shaft torsional torques over a wide range of 

compensation levels.  The results and discussion presented in this thesis should provide 

valuable information to electric power utilities engaged in planning and operating series 

capacitor compensated transmission lines and VSC HVDC back-to-back systems. 
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1 INTRODUCTION 

Growth of electric power transmission facilities is restricted despite the fact that bulk 

power transfers and use of transmission systems by third parties are increasing. 

Transmission bottlenecks, non-uniform utilization of facilities and unwanted parallel-

path or loop flows are not uncommon.  Transmission system expansion is needed, but 

not easily accomplished.  Factors that contribute to this situation include a variety of 

environmental, land-use and regulatory requirements.  As a result, the utility industry is 

facing the challenge of the efficient utilization of the existing AC transmission lines. 

Flexible AC Transmission Systems (FACTS) technology is an important tool for 

permitting existing transmission facilities to be loaded, at least under contingency 

situations, up to their thermal limits without degrading system security [1-4].  The most 

striking feature is the ability to directly control transmission line flows by structurally 

changing parameters of the grid and to implement high-gain type controllers, based on 

fast switching. 

FACTS controllers are power electronic based controllers which can influence 

transmission system voltage, currents, impedances and/or phase angle rapidly.  Thus, 

such controllers can improve the security of a power system by enhancing its steady-

state and transient stability or by damping the subsynchronous resonance oscillations.  

FACTS application studies require an understanding of the individual FACTS 

controllers as well as openness to the application of novel approaches. 
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1.1 Flexible AC Transmission Systems 

FACTS and FACTS controller are defined by the IEEE as [5]: 

“Flexible AC Transmission System (FACTS): Alternating-current transmission 

systems incorporating power electronic-based and other static controllers to 

enhance controllability and increase power transfer capability.” 

“FACTS Controller: A power electronic-based system and other static equipment 

that provide control of one or more AC transmission system parameters.” 

The availability of the modern semiconductor devices such as the Gate Turn-Off 

thyristor (GTO), and the Insulated Gate Bipolar Transistor (IGBT) [6], has led to the 

development of a new generation of power electric converters.  These devices, unlike the 

conventional thyristors which have no intrinsic turn-off ability, are of the fully 

controlled type.  The most common converters, which employ the self commutating, 

high voltage, high current, and high switching frequency power electronic devices, are 

the Voltage Source Converters (VSCs).  

A number of FACTS controllers which use VSCs as their basic building block have 

been already in operation in various parts of the world.   The most popular controllers 

are: the Static Compensator (STATCOM) [7,8], the Static Synchronous Series 

Compensator (SSSC) [9,10], the Unified Power Flow Controller (UPFC) [11,12], and 

the Voltage Source Converter High-Voltage Direct-Current (VSC HVDC) [3,13,14]. 

1.1.1 The Voltage Source Converter 

Several VSC topologies are currently used in actual power system operations, such as 

the single-phase full bridge (H-bridge), the conventional three-phase, two-level 

converter, and the three-phase, three-level converter based on the neutral-point-clamped 

converter [2].  There are other VSC topologies that are based on combinations of the 

neutral-point-clamped and multilevel converters.  The common purposes of these 

topologies are: to minimize the operating frequency of the semiconductors inside the 

VSC and to produce a high-quality sinusoidal voltage waveform with minimum or no 

filtering requirements. 
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The topology of a conventional two-level VSC using IGBT switches is shown in Figure 

1.1.  It consists of six IGBTs, with two IGBTs placed on each leg.  Moreover, each 

IGBT is provided with a diode connected in an anti-parallel connection to allow 

bidirectional current flow.  Two equally sized capacitors are placed on the DC side to 

provide a source of reactive power. 

 

Figure 1.1  Topology of a three-phase, two-level VSC using IGBTs. 

The switching control module, not shown in the circuit of Figure 1.1, is an integral 

component of the VSC.  Its duty is to control the switching sequence of the various 

semiconductor devices in the VSC, aiming at producing an output voltage waveform, 

which is close to a sinusoidal waveform as near as possible, with high power 

controllability and minimum switching loss.  

The current VSC switching strategies aimed at utility application may be classified into 

two main categories [15]: 

1. Fundamental frequency switching: the switching of each semiconductor device has 

only one turn-on, turn-off per power cycle.  The output waveform is a quasi-square-

wave which often has an unacceptable high harmonic content.  It is current practice 

to use several six-pulse VSCs, arranged to form a multiple structure, to achieve 

better waveform quality and high power ratings [2]. 
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2. Pulse-Width-Modulation (PWM): the switches are forced to be turned on and off at a 

rate considerably higher than the fundamental frequency.  The output wave is 

chopped and the width of the resulting pulse is modulated.  Undesirable harmonics 

in the output waveform are shifted to the higher frequencies, and filtering 

requirements are much reduced.  The sinusoidal PWM scheme remains one of the 

most popular because of its simplicity and effectiveness [6].  

These switching techniques are, however, far from perfect.  The fundamental frequency 

switching technique requires complex transformer arrangements to achieve an 

acceptable level of waveform distortion.  The PWM technique incurs high switching 

loss, but it is expected that future semiconductor devices will reduce this by a significant 

margin, making PWM the perfect switching technique. 

1.1.2 Pulse-Width Modulation Control 

The basic PWM switching scheme can be explained using the simple one-leg switch-

mode inverter shown in Figure 1.2.   

 
Figure 1.2  One-leg switch-mode inverter. 

In order to produce a sinusoidal output voltage waveform at a desired frequency, a 

sinusoidal control signal at the desired frequency is compared with a triangle waveform, 

as shown in Figure 1.3 (a).  The frequency of the triangular waveform establishes the 

inverter switching frequency fs, and is generally kept constant along with its 
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amplitude triV
∧

.  The frequency fs is also called the carrier frequency. The control signal 

Vcontrol is used to modulate the switch duty ratio and has a frequency f1, which is the 

desired fundamental frequency of the inverter voltage output (f1 is also called the 

modulating frequency), recognizing that the inverter output voltage will not be a perfect 

sine wave and will contain voltage components at harmonic frequencies of f1.  The 

amplitude modulation ratio ma is defined as 

tri

control
a

V

Vm ∧

∧

=                (1.1) 

where  controlV
∧

 is the peak amplitude of the control signal. 

The frequency modulation ratio mf is defined as 

1f
f

m s
f =       (1.2) 

In the inverter of Figure 1.2, the switches Ta+ and Ta- are controlled based on the 

comparison of  Vcontrol and Vtri, and the following output voltage results, independent of 

the direction of the current io: 

Vcontrol > Vtri,  Ta+  is on,  
2
dc

ao
V

V =  

or  

Vcontrol < Vtri,  Ta-  is on,  
2
dc

ao
V

V −=               (1.3) 

Since the two switches are never off simultaneously, the output voltage Vao fluctuates 

between two values (
2
dcV

 and 
2
dcV

− ).  The voltage Vao and its fundamental frequency 

component (dashed curve) are shown in Figure 1.3 (b).  
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Figure 1.3  Operation of a pulse-width modulator: (a) comparison of a sinusoidal 

fundamental frequency with a high frequency triangular signal; (b) 
resulting train of square-waves.  
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With PWM, it is possible to create any phase angle or amplitude (up to a certain limit) 

by changing the PWM pattern, which can be done almost instantaneously.  Hereby, 

PWM offers the possibility to control both the active and the reactive power 

independently. 

This makes the PWM VSC close to an ideal component in the transmission network.  

From a system point of view, it acts as a motor or generator without a mass that can 

control the active and the reactive power almost instantaneously.  Furthermore, it does 

not contribute to the short circuit power as the ac current can be controlled [16]. 

1.1.3 Principle of Voltage Source Converter Operation 

Consider a VSC connected to an AC system through a lossless reactor as illustrated in 

Figure 1.4.  The converter produces an AC voltage with a fundamental frequency equal 

to that of the AC reference voltage.  The voltage at the supply bus is assumed to be 
00∠sV , and the AC voltage produced by the VSC is taken to be shshV δ∠ .  lX  is the 

reactance of the converter reactor. 

 

Figure 1.4  A VSC connected to an AC system. 

The active and the reactive power can be expressed respectively as 
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sh
l

ssh

X
VV

P δsin=                                                                     (1.4) 

l

sh
sh

l

ssh

X
V

X
VV

Q
2

cos −= δ                                                          (1.5) 

A complete derivation of Equations (1.4) and (1.5) is given in Appendix A.  With 

respect to these two Equations, the following observations are noticed: 

1. The active power flow between the AC source and the VSC is controlled by the 

phase angle δsh.  The active power flows into the AC source from the VSC for 

0>shδ , and flows out of the AC source from the VSC for 0<shδ , 

2. The reactive power flow is determined mainly by the amplitude of the AC source 

voltage, Vs, and the VSC output fundamental voltage, Vsh, as the angle δsh is 

generally small.  For ssh VV > , the VSC generates reactive power and while it 

consumes reactive power when ssh VV < . 

Because of its key steady-state operational characteristics and impact on system voltage 

and power flow control, the VSC is becoming the basic building block employed in the 

new generation of FACTS controllers. 

1.2 High-Voltage Direct-Current Transmission 

High-Voltage Direct-Current (HVDC) transmission has advantages over ac transmission 

in the following situations [17]: 

1. Underwater cables longer than about 30 km; AC transmission is impractical for such 

distances because of the high capacitance of the cable requiring intermediate 

compensation stations. 

2. Asynchronous link between two ac systems where ac ties would not be feasible 

because of system stability problems or a difference in nominal frequencies of the 

two systems. 
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3. Transmission of large amounts of power over long distance by overhead lines.  

HVDC transmission is a competitive alternate to ac transmission for distance in 

excess of about 600 km. 

HVDC systems have the ability to rapidly control the transmitted power.  Therefore, 

they have a significant impact on the stability of associated ac power systems. 

1.2.1 Voltage Source Converter-Based High-Voltage Direct-Current 

The VSC HVDC system is the most recent HVDC technology.  It consists of two VSCs, 

one of which operates as a rectifier and the other as an inverter.  The two converters are 

connected either back-to-back or joined by a DC cable, depending on the application.  

Its main function is to transmit a constant DC power from the rectifier station to the 

inverter station, with high controllability.  A schematic representation of a VSC HVDC 

back-to-back system is shown in Figure 1.5 [3].  In this figure, m and δ are, respectively, 

the amplitude modulation ratio and phase angle of the control signal of the station.  

These four parameters (two for each station) are the output control signals to the VSC 

HVDC system. 

  
Figure 1.5  A VSC HVDC back-to-back system. 

The VSC HVDC has several main advantages against the conventional HVDC based on 

thyristors [17].  They are [13]: 

1. Independent control of the active and reactive power output from each terminal. 

2. Reduced requirements for harmonic filters. 
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3. Improvements of the power quality and system stability.  

4. Elimination of the requirement for a local power generation. 

These features make the VSC HVDC attractive for connection of weak ac system, island 

networks, and renewable energy sources, which may be located in remote area, to a main 

grid.  The world’s first VSC HVDC installation was the Hällsjön project in central 

Sweden in March, 1997 [14]. 

1.3 Subsynchronous Resonance (SSR) 

A problem of interest in the power industry in which FACTS controllers could play a 

major role is the mitigation of Subsynchronous Resonance (SSR) oscillations.  SSR is a 

dynamic phenomenon in the power system which has certain special characteristics.  

The definitions of subsynchronous oscillation and SSR are given by the IEEE as [18,19]: 

“Subsynchronous oscillation is an electric power system condition where the 

electric network exchanges significant energy with a turbine-generator at one or 

more of the natural frequencies of the combined system below the synchronous 

frequency of the system following a disturbance from equilibrium. The above 

excludes the rigid body modes of the turbine-generator rotors.”  

“Subsynchronous Resonance (SSR) encompasses the oscillatory attributes of 

electrical and mechanical variables associated with turbine-generators when 

coupled to a series capacitor compensated transmission system where the 

oscillatory energy interchange is lightly damped, undamped, or even negatively 

damped and growing.” 

1.3.1 SSR: Basic Phenomenon 

Consider the simple power system shown in Figure 1.6.  It consists of a large turbine-

generator which is connected to an infinite bus system through a series capacitor 

compensated transmission line.  The generator is driven by a multi-stage turbine, where 

the various stages of the turbine (HP, IP and LP) and the generator rotor (GEN) are 

coupled by elastic shafts. 
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Figure 1.6  A series capacitor compensated power system. 

The natural resonance frequency for the electrical system is given by 
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where 0ω  is the system synchronous frequency ( 00 2 fπω = , f0 = 60 Hz), XC is the 
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In practice, fe is always below the synchronous frequency 0f  since the compensation 

levels of transmission line are usually less than 100%.  For this reason, fe is called the 

subsynchronous natural frequency of the electrical system. 

The shaft system of the turbine-generator has (N-1) natural torsional frequencies where 

N is the number of the rotating masses.  These torsional frequencies are functions of the 

inertia of the different masses and the stiffness of the connected shafts.  Due to the 

physical properties of the shaft materials and the mechanical design of the turbine-

generator shaft system, the torsional natural frequencies are also subsynchronous.  Thus, 

the basic interaction between the electrical and mechanical systems is due to the 

closeness of fe to the natural torsional frequencies of the turbine-generator shaft system. 

SSR can occur in the following three forms [19, 20]: 

1. Torsional Interaction: this is due to an interaction and exchange of energy between 

the series compensated electrical system and the turbine-generator mechanical system.  

This can lead to growing shaft torque oscillations at one of the natural torsional 

frequencies of the turbine-generator shaft system.  Torsional interaction can occur when 

the generator is connected to a series compensated electrical system that has one or more 

natural frequencies, which are the synchronous frequency complements of one or more 

of the spring-mass natural frequencies.  Generally, shaft torques due to torsional 

interaction can be expected to build up at a relatively slow rate such that damaging 

torque levels would not be reached in less than a minute or so. 

2. Induction Generator Effect: this is a pure electrical phenomenon that is due to the 

fact that, when subsynchronous currents flow in the armature circuit of a synchronous 

generator, the generator appears as a negative-resistance circuit at the prevailing 

subsynchronous frequencies.  If the apparent resistance is greater than the inherent 

positive resistance of the circuit at one of the natural frequencies of the electrical circuit, 

growing subsynchronous voltages and currents will be expected in the system and at the 

generator.  This could result in voltages and currents large enough to be damaging to the 

generator and power system equipment.  In addition, if the subsynchronous currents in 

the generator armature are at the frequency corresponding to one of the turbine-
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generator spring-mass modes, large oscillatory shaft torques may result.  As in the case 

of torsional interaction, a relatively slow oscillation growth rate would be expected. 

3. Torque Amplification: this phenomenon occurs when a fault on a series 

compensated power system, and its subsequent clearing, results in a high-energy storage 

in the series capacitor banks, which then discharge their energy through a generator in 

the form of a current having a frequency that corresponds to one of the natural torsional 

frequencies of the turbine-generator mechanical system.  Unlike torsional interaction and 

induction generator effect, the growth rate for torque amplification is high and 

oscillating shaft torques might be expected to reach a damaging level within 0.1 second.  

The ultimate hazard of SSR is a shaft fraction at full load and rated speed.  The damage 

of such an occurrence cannot be accurately predicted, but extensive equipment damage 

could occur with a safety hazard to personnel.  A more likely most-severe hazard would 

be crack initiation at the surface of one of the turbine-generator shafts, indicating fatigue 

and requiring shaft replacement, resulting in a unit outage of 90 days or more. 

1.4 Research Objectives and Scope of the Thesis  

A wide variety of methods are already employed by utilities for damping SSR 

oscillations.  These include the use of generator excitation control [21,22], power system 

stabilizer [23,24], static VAR compensator (SVC) [25-27] and static phase shifter [28]. 

In the recent reported studies on the mitigation of the SSR oscillations using FACTS 

devices, attention has been focused on the Thyristor Controlled Series Capacitor 

(TCSC), the STATCOM and the SSSC [29-32].  Relatively few studies, however, have 

been published on the application of VSC HVDC systems in damping SSR oscillations. 

The main objective of this research work is to investigate the possibility of using an 

existing VSC HVDC back-to-back link in a power system as a supplementary controller 

to damp SSR oscillations in a nearby turbine-generator.  In particular, attention is 

focused on the problem of the severe torsional torques induced in the turbine-generator 

shafts during large disturbances (torque amplification).  It is expected that this research 
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will help utilities make decisions in regard to optimum planning and operation of VSC 

HVDC systems.  The objectives of this research include:  

1. The use of the VSC HVDC back-to-back link active power controller and the 

generator speed deviation as a supplementary signal to damp all SSR torsional 

oscillations over the whole range of practical compensation levels. 

2. Investigate the performance of the designed controllers in damping SSR oscillations 

at the critical compensation levels using time-domain simulations. 

3. Study the effects of the compensation level, the controller structure and its 

parameters, as well as the system loading on the damping of SSR oscillations. 

There are five chapters in this thesis.  The main topics of each chapter are as follows: 

Chapter 1 introduces the fundamental concepts related to VSC FACTS controllers and 

the SSR phenomenon.  The scope and objectives of the research are also presented in 

this chapter. 

Chapter 2 presents the development of a complete small signal model of a single-

machine infinite bus system.  The eigenvalue technique is used to investigate the effect 

of the level of compensation of the transmission line on SSR oscillations.  The system 

used for such an investigation is described and the detailed dynamic models of its 

individual components are also presented in this chapter. 

Chapter 3 introduces a dynamic model of a power system incorporating a VSC HVDC 

back-to-back link.  A comprehensive approach for designing the time-domain simulation 

analysis program is established and a sample case study is presented. 

Chapter 4 demonstrates the effectiveness of the proposed VSC HVDC back-to-back link 

controllers in damping SSR oscillations through several cases of time-domain simulation 

studies. 

Chapter 5 summarizes the research described in this thesis and presents some 

conclusions. 
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2 SMALL-SIGNAL ANALYSIS OF SUBSYNCHRONOUS 

RESONANCE PHENOMENON 

2.1 Introduction 

The differential and algebraic equations which describe the dynamic performance of the 

synchronous machine and the transmission network are, in general, nonlinear.  For the 

purpose of stability analysis, these equations may be linearized by assuming that a 

disturbance is considered to be small. Small-signal analysis using linear techniques 

provides valuable information about the inherent dynamic characteristics of the power 

system and assists in its design. 

This chapter presents an analytical method useful in the study of small-signal analysis of 

subsynchronous resonance (SSR), establishes a linearized model for the power system, 

and performs the analysis of the SSR using the eigenvalue technique.  It is believed that 

by studying the small-signal stability of the power system, the engineer will be able to 

find countermeasures to damp all subsynchronous torsional oscillations. 

2.2 Eigenvalue Analysis 

Torsional interaction involves energy interchange between the turbine-generator and the 

electric network.  Therefore, the analysis of SSR requires the representation of both the 

electromechanical dynamics of the generating unit and the electromagnetic dynamics of 

the transmission network.  As a result, the dynamic system model used for SSR studies 

is of a higher order and greater stiffness than the models used for stability studies. 
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There are two main analytical methods for small-signal analysis, they are: frequency 

scanning technique [20,33] and eigenvalue analysis [34].  The former computes the 

equivalent impedance as seen from the internal buses of generators looking into the 

network, for the different values of frequency.  This method is particularly suited for 

preliminary analysis of SSR.  The latter is performed with the network and the generator 

modeled by a system of linear simultaneous differential equations.  The results provide 

both the natural frequencies of oscillation as well as the damping of each frequency.  

This technique, thus, will be used for conducting the small-signal analysis to provide a 

comprehensive understanding of the various aspects of the SSR phenomenon. 

The performance of a dynamic system, such as the power system, may be described by a 

set of n first-order nonlinear ordinary differential equations, which may be linearized in 

the following standard expression: 

UBXAX Δ+Δ=Δ
•

                                                          (2.1) 

where  

Δ --- prefix to denote a small deviation about the initial operating point   

XΔ --- the state vector 

UΔ --- the input vector 

A --- the state matrix 

B --- the control or input matrix 

The stability of the system is given by the eigenvalues of matrix A as follows: 

1. A real eigenvalue is associated with a non-oscillatory mode.  A negative real 

eigenvalue represents a decaying mode.  The larger its absolute value, the fast is the 

decay.  A positive real eigenvalue represents aperiodic instability. 

2. Complex eigenvalues always occur as conjugate pairs, and each pair corresponds to 

an oscillatory mode.  The real part of the eigenvalues represents the damping, and 

the imaginary part represents the frequency of oscillation.  A negative real 



 17

component represents a damped oscillation; on the other hand, a positive real 

component represents an oscillation with an increasing amplitude. 

Therefore, the negativeness of the real part of all eigenvalues assures the system 

stability.  The more negative the real part, the sooner the response of the associated 

mode dies. 

2.3 Small-Signal Analysis Study System 

The system used in the small-signal analysis of SSR in this thesis is the IEEE first 

benchmark model for computer simulation of subsynchronous resonance [35].  This 

system, shown in Figure 2.1, consists of a single series-capacitor compensated 

transmission line connecting a large turbine-generator to a large system.  The shaft 

system of the turbine-generator unit consists of a high-pressure turbine (HP), an 

intermediate-pressure turbine (IP), two low pressure turbines (LPA & LPB), the 

generator rotor (GEN), and its rotating exciter (EXC).  The system data and the initial 

operating conditions of the system are given in Appendix B.  

2.4 Power System Modeling 

The nonlinear differential equations of the system under study are derived by developing 

individually the mathematical models which represent the various components of the 

system, namely the synchronous machine, the turbine-generator mechanical system, the 

governor system, the excitation system, and the transmission line.  Knowing the mutual 

interaction among these models, the whole system differential equations can be formed. 

2.4.1 Modeling of the Synchronous Machine 

Figure 2.2 shows a schematic diagram of a conventional synchronous machine [34,36].  

The stator circuit consists of a three-phase winding produces a sinusoidally space 

distributed magnetomotive force.  The rotor of the machine carries the field (excitation) 

winding which is excited by a dc voltage.  The electrical damping due to the eddy 

currents in the solid rotor and, if present, the damper winding is represented by three 

equivalent damper circuits; one on the direct axis (d-axis) and the other two on the 
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quadrature axis (q-axis).  The performance of the synchronous machine can be described 

by the equations given below in the d-q reference frame [34].  In these equations, the 

convention adopted for the signs of the voltages and currents are that v is the impressed 

voltage at the terminals and that the direction of positive current i corresponds to 

generation.  The sign of the currents in the equivalent damper windings is taken positive 

when they flow in a direction similar to that of the positive field current.  

 

Figure 2.1  The IEEE first benchmark model for computer simulation of 
subsynchronous resonance. 
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a, b, c:   Stator three-phase winding 

fd:    Field (excitation) winding 

efd:         Field voltage  

1d:     d-axis damper winding 

1q:     The first q-axis damper winding 

2q:     The second q-axis damper winding 

θ (t):    Angle by which the d-axis leads the magnetic axis of phase a 

winding, electrical rad. 

Figure 2.2  Schematic diagram of a conventional synchronous machine. 

 

With time t expressed in seconds, the angular velocity ω  expressed in rad/s 

( sec)/3770 rad=ω  and the other quantities expressed in per unit, the stator equations 

become: 
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daq
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                                                 (2.3) 

The rotor equations: 
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dt
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                                                          (2.4) 
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d iR

dt
d

11
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1    0 +
Ψ

=
ω

                                                          (2.5) 
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q iR

dt
d

11
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1    0 +
Ψ

=
ω

                                                           (2.6) 

qq
q iR

dt
d

22
2
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1    0 +
Ψ

=
ω

                                                          (2.7) 

The stator flux linkage equations: 

dadfdadddd iLiLiL 1++−=Ψ                                                    (2.8) 

qaqqaqqqq iLiLiL 21 ++−=Ψ                                                     (2.9) 

The rotor flux linkage equations: 

daddadfdffdfd iLiLiL −+=Ψ 1                                                 (2.10) 

dadfddfdadd iLiLiL −+=Ψ 111                                                 (2.11) 

qaqqaqqqq iLiLiL −+=Ψ 21111                                                  (2.12) 

qaqqqqaqq iLiLiL −+=Ψ 22212                                                  (2.13) 

The air-gap torque equation: 

dqqde iiT Ψ−Ψ=                                                                   (2.14) 



 21

The overall differential equations which describe the transient performance of the 

synchronous machine are given by the following matrix equation: 

[ ][ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+=⎥
⎦

⎤
⎢
⎣

⎡

fd

tq

td

synsynsyn
syn

e
V
V

BtXAt
dt

dX
                               (2.15) 

where 

[ ] [ ]Tqdqfdqdsyn iiiiiiX 211=                                   

[ ] [ ] [ ]QtLAt syn
1−=                                                                 

[ ] [ ] [ ]RtLBtsyn
1−=                                                                 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=

qaqaq

dadaq

aqqaq

adffdad

aqaqq

adadd

LLL
LLL

LLL
LLL

LLL
LLL

L

22

11

11

000
000

000
000

000
000

                                 (2.16) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−−
−

=

q

d

q

fd

adadad

aqaqqa

R
R

R
R

LLRL
LLLR

Qt

20

10

10

0

0

0

00000
00000
00000
00000
00

00

ω
ω

ω
ω

ωωωω
ωωωω

                             

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000
000
000

00
00
00

0

0

0

ω
ω

ω

Rt                                                                                                 

here, the superscript T means matrix transpose. 
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Linearized and rearranged Equation (2.15) is written as 
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2.4.2 Modeling of the Transmission Line 

A series capacitor-compensated transmission line [22,37] may be represented by the 

RLC circuit shown in Figure 2.3.  In the voltage phasor diagram shown in Figure 2.4, the 

rotor angle δ  is the angle (in elec. Rad) by which the q-axis leads the reference voltage 

Vb.  The differential equations for the circuit elements, after applying Park’s 



 23

transformation [34], can be expressed in the d-q reference frame by the following matrix 

expressions. 

 

Figure 2.3  A series capacitor-compensated transmission line. 

 

Figure 2.4  Voltage phasor diagram. 
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The voltage across the resistance: 
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The voltage across the inductance: 
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The voltage across the capacitor: 
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The overall equations of the transmission line can be written as 
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The linearized form of Equation (2.22) is given by 
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2.4.3 Modeling of the Turbine-Generator Mechanical System 

The turbine-generator mechanical system [22,34], shown in Figure 2.5, consists of a 

high-pressure turbine (HP), an intermediate-pressure turbine (IP), two low-pressure 

turbines (LPA & LPB), the generator rotor (GEN) and the exciter (EXC). They together 

constitute a linear six-mass-spring system. 

 

Figure 2.5  Structure of a typical six-mass shaft system model. 

Assuming that M is the inertia constant in seconds, D is the damping coefficient in p.u. 

torque/p.u. speed for each rotating mass and K is a stiffness in p.u. torque/rad for each 

shaft section, the equations of the ith mass of an N-mass spring system shown in Figure 

2.6 are given by 
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Figure 2.6  The ith mass of an N-mass spring system. 

When Equations (2.26) to (2.28) are applied to the linear six-mass-spring system of 

Figure 2.5, the shaft system equations are written as: 
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The overall shaft equations are given by the following matrix equation 
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Here, the [Inxn] is an n by n identity matrix, 0mxn is an m by n matrix with all elements 

zero, and -16x1 is a 6 by 1 matrix with all elements -1. 

Linearzing and rearranging Equation (2.30) yields to 
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2.4.4 Governor and Turbine System 

The block diagram of the four-stage turbine and the associated electro-hydraulic 

governor [38] is shown in Figure 2.7.  The corresponding data are given in Appendix B.  
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Figure 2.7  Block diagram of the governor and the turbine. 

The corresponding state-space equation can be derived from the block diagram and is 

given by 

[ ][ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡

H

mggg
g PBtXAt

dt
dX

ω

ω

0

0

                      (2.34) 

where 

[ ] [ ]T
AIHVg PPPCX =                        

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

=

cocoI

A

rhrhH

I

chch

H

g

g

TTF
F
TTF

F
TT

F
T

At

100

010

001

0001

               (2.35) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

000
000
000

1

00 ωω g

g

gg

g

g

T
K

TT
K

Bt      

     



 32

The linearized form of Equation (2.34) is given by 
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2.4.5 Excitation System 

The block diagram representation of the excitation system used in this study [22,34] is 

shown in Figure 2.8, and the corresponding data are given in Appendix B.  

 
Figure 2.8  Block diagram of the excitation system. 
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Utilizing the relationship between the excitation system output voltage and the field 

voltage given by fd
fd

ad
fd e

R
L

E = , the state-space equation of the excitation system can be 

derived from its block diagram and is given by 
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Linearized Equation (2.38) is written as 
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2.5 Small Signal Model of A Single Machine Infinite Bus System 

The overall model of the system under study can be derived by performing the following 

mathematical manipulations for the interactions among the various components of the 

system [37]. 

The electrical parts of the system: combining Equations (2.17) and (2.24) to form the 

following equations 
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The mechanical parts of the system: combining Equations (2.32), (2.36), and (2.40) to 

form the following equations 
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There are, however, two non-state variables eTΔ  and tVΔ  that must be eliminated.  

The linearized form of the air-gap torque Equation (2.14) is given by 
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where 

[ ] [ ]aqdadqaqdadqadfddqddqq LiLiLiLiLiLLiLLiTedq 0000000
)()(0 −−+−−=            

(2.46) 

The linearized terminal voltage equation 222
tqtdt VVV +=  is given by 
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Combining Equations (2.43), (2.45), and (2.47) to form the following equation 
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The overall system equations derived by combining Equation (2.42), (2.44), and (2.48) 

are written by 
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The complete electrical and mechanical model of a one-machine, infinite-bus system for 

SSR study is a 27th order system. 

The detail manipulations for forming the overall system equations are shown in 

Appendix C. 
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2.6 Effect of Series Capacitor Compensation on SSR 

The six-mass model of the turbine-generator shaft system shown in Figure 2.5 has five 

torsional modes in addition to the rigid body mode (mode 0). Figure 2.9 shows the 

natural frequencies and mode shapes of such a system.  In this figure, the torsional 

modes are numbered sequentially according to mode frequency and number of phase 

reversals in the mode shape.  Mode 0, thus, signifies that the six masses oscillate in 

unison without a shaft twist and Mode N has the Nth lowest frequency and a mode shape 

with N phase reversals.  The total number of modes including Mode 0 is equal to the 

number of inertial elements in the spring-mass model. 

The negative damping (undamping) due to the torsional interaction for the turbine-

generator is evaluated using eigenvalue analysis by varying the degree of series 

compensation from to 0 to 100%.  The results of this variation in compensation are 

shown in Figure 2.10.  These results are obtained by calculating the eigenvalues for the 

coupled electrical and mechanical system (overall system model).  The electrical system 

is varied by “sweeping” the series compensation from 0 to 100% in 1% steps.  It is 

worth noting here that the percentage compensation is defined as 

100% ×=
L

C

X
X

oncompensati                  (2.51) 

The system eigenvalues for the critical compensation levels are given in Table 2.1.  
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Figure 2.9  Natural frequencies and mode shapes of the turbine-generator shaft system. 
 
 
 

Mode 0 
f0 = 0 Hz 

Mode 1 
f1 = 15.72 Hz

Mode 2 
f2 = 20.22 Hz

Mode 3 
f3 = 25.56 Hz

Mode 4 
f4 = 32.29 Hz

Mode 5 
f5 = 47.47 Hz



 38

 

 

Figure 2.10  The real part of SSR mode eigenvalues as a function of the percentage 
compensation ( p.u.392.090.0 jS −= ).  
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Table 2.1  Eigenvalues of SSR modes (Mode 1-5), rigid body mode (Mode 0), electrical 
mode and the other modes ( p.u.392.090.0 jS −= ). 

% Compensation Level Modes 
26.5% 41.1% 54.7% 68.4% 

Mode 5 -0.4955 ± j298.28 -0.4955 ± j298.28 -0.4955 ± j298.28 -0.4955 ± j298.28

Mode 4 1.0640 ± j202.95 -0.1012 ± j202.83 -0.1074 ± j202.90 -0.1090 ± j202.94

Mode 3 -0.4262 ± j160.75 0.8283 ± j160.58 -0.4323 ± j160.5 -0.4385 ± j160.58

Mode 2 -0.1430 ± j127.06 -0.1405 ± j127.09 0.5257 ± j127.05 -0.1411 ± j126.99

Mode 1 -0.2205 ±   j99.20 -0.2163 ±  j99.39 -0.1887 ± j99.91 4.3989 ± j98.93

Mode 0 -0.1146 ±     j8.31 -0.2508 ±    j9.18 -0.4189 ± j10.21 -0.6569 ± j11.55

Elec. -5.0370 ± j203.06 -4.3126 ± j160.53 -2.8155 ± j127.02 -5.5446 ± j98.78

Other 
modes 

-9970.3 

-6.0479 ±j550.85 

-95.494 

-32.669 

-31.074 

-10.316 

-5.4194 

-2.4406 

-1.3792 ± j0.86 

-1.6613 

-0.14205 

-9970.3 

-6.1458 ±j593.71 

-95.841 

-32.68 

-31.833 

-10.295 

-6.0133 

-2.4433 

-1.1202 ± j0.92 

-1.665 

-0.14216 

-9970.2 

-6.2129 ±j627.11 

-96.155 

-32.677 ± j0.59 

 

-10.273 

-6.7453 

-2.4508 

-0.87615 ± j0.91 

-1.6659 

-0.14225 

-9970.2 

-6.2668 ±j656.75 

-96.372 

-33.203 ± j1.0 

 

-10.247 

-7.7667 

-2.4604 

-0.63387 ± j0.83 

-1.6657 

-0.14232 
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Examining Figure 2.10 and Table 2.1 yields to the following observations: 

• There are four unstable torsional modes (Modes 1, 2, 3, and 4).  Each of these modes 

has its largest SSR interaction when the real part of its eigenvalue is a maximum. 

• Mode 1 exhibits the most severe undamping with a peak at 68.5% series 

compensation.  

• Mode 5 damping is seen to have a small constant negative value over the whole 

range of series compensation. 

• The frequency of the electrical mode (capacitor) decreases with the increase of the 

compensation level, which is below the synchronous frequency and, therefore, may 

excite the torsional oscillation modes. 

• The other eigenvalue modes listed in Table 2.1 are stable, like the generator 

windings, the excitation system, and the governor system and the turbine. 

2.7 Summary 

This chapter presented the investigations of the subsynchronous resonance phenomenon 

under small disturbances.  These investigations are conducted on the IEEE first 

benchmark model which consists of a large turbine-generator connecting to an infinite 

bus system through a series capacitor compensated transmission line. 

In order to develop the linear system model, the nonlinear differential equations of each 

component of the system are derived and then linearized.  These set of linearized 

equations were grouped and mathematically manipulated in order to obtain the overall 

system model in a state-space form.  The effect of the series capacitor compensation on 

SSR was investigated using eigenvalue analysis.  The results of these investigations have 

provided the critical compensation levels in the system under investigations. 
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3 DAMPING SUBSYNCHRONOUS RESONANCE 

OSCILLATIONS UNDER LARGE DISTURBANCES USING A 

VSC HVDC BACK-TO-BACK SYSTEM 

3.1 Introduction 

As it has been mentioned in Chapter 1, the new generation of FACTS controllers based 

on VSCs can play a major role in the mitigation of the subsynchronous resonance 

torsional oscillations induced in the turbine-generator shaft system.  SSR oscillations 

may be excited by small or large disturbances in the power system.  SSR oscillations 

resulting from small (minute) disturbances are usually small.  However, they can build 

up with time to large values causing shaft failure.  On the other hand, large power 

system disturbances, such as short circuits, induce large growing SSR torsional 

oscillations in the turbine-generator shaft system.  These oscillations may exceed the 

endurance limit of the turbine-generator shaft and, hence, cause a shaft fatigue in a 

period of a few seconds. 

The VSC HVDC back-to-back system is a several million dollars FACTS controller.  

Therefore, it is uneconomical to install such a controller in the power system primarily 

for the purpose of damping SSR.  An already existing VSC HVDC back-to-back system 

can be utilized, however, to damp SSR oscillations induced in a nearby turbine-

generator. 

This chapter presents the application of the VSC HVDC back-to-back system for 

damping subsynchronous resonance oscillations.  In this context, the active power 

controller of such a system is used along with the generator speed deviation, as a 

supplementary signal, to design an integrated controller capable of damping SSR 
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oscillations.  A digital time-domain simulation study case of the power system with the 

designed controllers during a three-phase fault is presented at the end of the chapter. 

3.2 System under Study 

The single line diagram of the HVAC/DC system under investigation in this thesis is 

shown in Figure 3.1.  It consists of a turbine-generator which is connected via a 

transformer to a large AC system (System I) through a series capacitor compensated 

transmission line (Line 1).  The VSC HVDC back-to-back system is located between the 

turbine-generator and another large AC system (System II).  The rectifier station of the 

VSC HVDC system is connected to the generator bus through a transmission line (Line 

2) while its inverter station is connected to System II through another transmission line 

(Line 3).  The data of the system of Figure 3.1, excluding the VSC HVDC system, are 

the same as those of the IEEE first benchmark model given in Appendix B.  

 

Figure 3.1  The HVAC/DC system under study. 

In order to develop the mathematical model for the HVAC/DC system, the differential 

equations of the turbine-generator, the turbine-generator mechanical system and the 

series capacitor compensated transmission line given in Chapter 2 are used here again.  

The two large AC systems are represented simply as constant amplitude sinusoidal 

 HP    IP   LPA LPB                EXC 

System I 

System II 

VSC HVDC BtB System 

C Line 1

Line 2 Line 3
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voltage at synchronous frequency.  The VSC HVDC back-to-back system and its 

controllers are modeled as described in the next two sections.  

3.3 Modeling of VSC HVDC  

There are three types of modeling of VSC HVDC.  The first model is the 

electromagnetic model for detailed equipment investigations [39].  The second model is 

the steady-state model for system steady-state operation evaluations [3,40].  The third 

model is the dynamic model which is used in power system stability and transient torque 

studies [12,41].  The first model is more suitable for studying electromagnetic transients 

in the range of milliseconds where the VSCs are represented using switches.  This type 

of modeling is not appropriate for power oscillation studies.  The steady-state model is 

developed to study the steady-state performance of the power system as well as for the 

calculation of the initial operating conditions of dynamic studies.  The dynamic model is 

developed by combining the dynamic equations of the power system with the VSC 

HVDC dynamic equations. 

3.3.1 VSC HVDC Back-to-Back System Steady-State Model 

From the principles of VSC operation outlined in Chapter 1, it may be argued that, for 

the purpose of fundamental frequency analysis, each converter station of the VSC 

HVDC back-to-back system may be adequately represented by a complex voltage source 

Vsh behind its transformer impedance Zsh.  These two synchronous voltage sources 

represent the fundamental Fourier-series component of the switched voltage waveforms 

at the AC converter terminals of the VSC HVDC back-to-back system.  A VSC HVDC 

back-to-back system installed between buses “E” and “B” can, therefore, be modeled at 

steady-state as shown in Figure 3.2.  The two shunt impedances are assumed to be 

purely inductive.  The total real power injected to the power system by two voltage 

sources is equal to zero at steady-state.  However, there is a real power exchange 

between the two sources. 

For power flow studies, the two-voltage source model of the VSC HVDC back-to-back 

system is converted into two power injections as shown in Figure 3.3.     
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Figure 3.2  A VSC HVDC equivalent circuit for power flow studies and steady-state 
analysis. 

 

Figure 3.3  The VSC HVDC back-to-back injected power model. 

The active and reactive components of the complex power injected at bus “E” can be 

expressed as: 
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( )EshEEshEshEEshEE BVVBVQ δθ −−−= cos2                               (3.3) 

where 

EshEsh jXZ =  

Esh
Esh X

B 1
−=                                                                            (3.4) 

and the superscript * denotes the complex conjugate. 

The complex power flowing into the rectifier and its components are described by the 

following equations: 

*

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=+=

Esh

EEsh
EshEshEshEsh Z

jQPS VVV                                 (3.5) 

( )EEshEshEEshEsh BVVP θδ −= sin                                                 (3.6) 

( )EEshEshEEshEshEshEsh BVVBVQ θδ −−−= cos2                           (3.7) 

The power equations for bus “B” and the inverter are obtained simply by replacing the 

subscripts “E” and “Esh” by “B” and “Bsh”, respectively. 

The losses associated with the VSC HVDC back-to-back system operation are typically 

neglected and, therefore, it neither absorbs nor injects real power with respect to the 

system during steady-state operation.  Physical interpretation of this statement is that the 

voltage of the dc link capacitor remains constant at the pre-specified value Vdc.   This 

constraint that must be satisfied by the VSC HVDC back-to-back system at steady-state 

is expressed mathematically as: 

{ } 0Re ** =+ IVIV BshBshEshEsh
                                                (3.8) 

With the help of Equations (3.1) to (3.7), the power constraint in Equation (3.8) can be 

represented as: 
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The Gauss-Seidel or Newton-Raphson techniques are used to solve the power system 

load flow. Equation (3.9) is used to modify the power flow program to update the value 

of δEsh during consecutive iterations in order to satisfy the power constraint of Equation 

(3.8). 

3.3.2 VSC HVDC  Back-to-Back System Dynamic Model 

Figure 3.4 shows a schematic diagram of a VSC HVDC back-to-back system connected 

to buses “E” and “B” through two shunt transformers.  The equivalent circuit per phase 

of this system is shown in Figure 3.5. 

 

Figure 3.4  A three-phase schematic diagram of a VSC HVDC back-to-back system. 

VSC-Rectifier
Station 

VSC-Inverter 
Station 
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Figure 3.5  A VSC HVDC back-to-back system equivalent circuit for dynamic analysis. 

Based on the principle of the VSC operation, regardless of the adopted sinusoidal PWM 

scheme, the voltage sources, VEsh and VBsh are defined as follows: 
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2

      (3.10)   
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dcB

Bsh
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V δ∠=
2

      (3.11) 

where the constant 
2
1  relates the ac and dc voltages. 

3.3.3 Differential Equations for the VSC HVDC  Back-to-Back System 

Adopting the time t in seconds, the angular ω  and 0ω  in rad/s and the other quantities in 

per unit, the dynamic equations for the rectifier station are expressed as: 
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Similarly, the dynamic equations for inverter station are given by: 
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After applying Park’s transformation to Equations (3.12) and (3.13), and performing 

some matrix operations, the differential equations for the two converters in the d-q 

reference frame can be written as: 
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The equation for DC link capacitor is given by 
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1
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                                   (3.16) 

Multiplying both sides of Equation (3.16) by Vdc gives: 

 BdcdcEdcdc
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     (3.17) 

The instantaneous powers at the ac and dc terminals of each converter are equal, giving 

power balance equation: 

EqEshqEdEshdEdcdc iViViV +=       (3.18) 

BqBshqBdBshdBdcdc iViViV +=       (3.19) 

Equation (3.17) can, therefore, be rewritten as: 
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The differential equations representing the dynamics of the VSC HVDC back-to-back 

system are given by Equations (3.14), (3.15), and (3.20). 

The VSC HVDC source voltages phasor diagram is shown in Figure 3.6.  With reference 

to this figure, the voltage sources in the d-q reference frame are given by 
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Figure 3.6  The VSC HVDC source voltages phasor diagram. 
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Substituting Equations (3.21) to (3.18) into Equations (3.14), (3.15) and (3.20), gives 
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Since in per unit system, EE LX =  and
dc

dc C
X 1

= , Equations (3.25), (3.26) and (3.27) 

can be written as 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Eq

Ed

E

E
dc

Esh
E

E

Esh
E

E

Eq

Ed

E

E

E

E

Eq

Ed

V
V

X

XVm
X

m
X

i
i

X
R

X
R

dt
di
dt

di

0

0

0

0

0

0

0

0

)cos(
2

)sin(
2

ω

ω

δδ
ω

δδ
ω

ωω

ωω

(3.28) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Bq

Bd

B

B
dc

Bsh
B

B

Bsh
B

B

Bq

Bd

B

B

B

B

Bq

Bd

V
V

X

XVm
X

m
X

i
i

X
R

X
R

dt
di
dt

di

0

0

0

0

0

0

0

0

)cos(
2

)sin(
2

ω

ω

δδ
ω

δδ
ω

ωω

ωω
 

(3.29) 

[ ]

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−−−

⎥
⎦

⎤
⎢
⎣

⎡
−−=

Bq

Bd
BshBshdcB

Eq

Ed
EshEshdcE

dc

i
i

Xm

i
i

Xm
dt

dV

)cos()sin(
2
1           

)cos()sin(
2
1

0

0

δδδδω

δδδδω

   (3.30) 



 51

The state-space equations of the VSC HVDC back-to-back system are then given by: 

[ ][ ] [ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+=⎥⎦

⎤
⎢⎣
⎡

Bq

Bd
DC

Eq

Ed
DCDCDC

DC

V
V

Bt
V
V

BtXAt
dt

dX
21   (3.31) 

where 

[ ] [ ]TdcBqBdEqEdDC ViiiiX =  

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−−

−−

=

0cossincossin

cos
2

00

sin
2

00

cos
2

00

sin
2

00

00

00

00

00

BsBBsBEsEEsE

Bs
B

BB
B

Bs
B

BB
B

Es
E

EE
E

Es
E

EE
E

DC

kkkk

m
XX

R

m
XX

R

m
XX

R

m
XX

R

At

δδδδ

δ
ωω

ω

δ
ω

ω
ω

δ
ωω

ω

δ
ω

ω
ω

 

BshBsEshEs δδδδδδ −=−=                 

dcBBdcEE XmkXmk 00 2
1          

2
1 ωω −==  

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
00

0

0

1
0

0

E

E

DC X

X

Bt
ω

ω

       (3.32) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

00

0

0
00
00

2 
0

0

B

BDC

X

XBt
ω

ω
 



 52

3.4 The VSC HVDC Back-to-Back Controllers 

Figure 3.7 shows a schematic diagram of the VSC HVDC back-to-back controllers that 

comprise two main controllers, namely the active power and the supplementary 

controllers.  

 

Figure 3.7  The VSC HVDC Back-to-Back controllers: (a) active power controller, (b) 
supplementary controller. 

3.4.1 The Active Power Controller 

The main function of this controller is to regulate the active power flow on both sides of 

the VSC HVDC back-to-back system. This is done through the two proportional type 

controllers shown in Figure 3.8.  Each of these controllers has one gain and two time 

constants. 

The state-space equations of the active power controller are derived from the transfer 

functions of Figure 3.8 and are given by the following equations: 
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Figure 3.8  The VSC HVDC back-to-back active power controller: (a) rectifier, (b) 
inverter. 
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3.4.2 The VSC HVDC Back-to-Back Supplementary Controller 

The VSC HVDC back-to-back system equipped with only an active power controller is 

not sufficient to damp all the torsional modes.  Thus, a need exists for an additional 

control signal along with the VSC-HVDC back-to-back active power controller.  The 

idea of applying such a supplementary stabilizing signal is to increase the damping in 

the power system. 

Figure 3.9 shows the transfer function of a PI supplementary controller whose output 

controls the phase angle δEsh of the injected voltage VEsh of the rectifier station.  Various 

input signals can be used for the supplementary controller design: the speed deviation 

Δω, the generator accelerating power ΔPa or the system frequency Δf.  As it is known 

that the generator speed contains components of all the torsional modes [27], it is 

selected as the stabilizing signal in the supplementary controller design.  

 

Figure 3.9  Structure of the VSC HVDC back-to-back supplementary controller. 

The state-space equations of the supplementary controller are derived from the transfer 

functions of Figure 3.9 and are given by the following equations:  
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3.5 Dynamic Model of the Overall System  

The overall equations of the system under study may be derived by performing some 

mathematical operations.  In doing this, however, the transmission line equations have to 

undergo some minor changes.   

With reference to Figure 3.1 and Equations (2.19) to (2.21), the equations for the series 

capacitor compensated transmission line of the system under study are given by 
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Equation (2.15) for the synchronous machine is partitioned such that 
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Without loss of generality, the sum of transmission line 2 reactance and the transformer 

leakage reactance on the rectifier station side of the VSC HVDC is designated as XE. 

Similarly, the sum of transmission line 3 reactance and the transformer leakage 

reactance on inverter station side is designated as XB.  The equations for the VSC HVDC 

back-to-back system combining the transmission lines may be given by Equation (3.31).  

In these equations, Vt replaces VE and VB is considered to be the voltage of System II. 

The electrical part of the system: By combining Equations (3.31), (3.37), (3.38), and 

(3.40), the following equations are obtained 
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The turbine-generator shaft and the excitation system: combining Equations (2.30), 

(2.34), and (2.38) forms the following equations 
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The air-gap torque Equation (2.14) is written as 
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[ ][ ]syne XTedqT =        (3.44) 

where 

[ ] [ ]daqqaddaqqaddqqd iLiLiLiLiLiLTedq −−−=    (3.45) 

The terminal voltage is given by 

)( 22
tqtdt VVV +=        (3.46) 

Combining Equations (3.41) to (3.46), (3.33), and (3.35), the overall equations of the 

system are given by 
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The complete nonlinear model of the system and its controllers is a 40th order system. 

The detailed mathematical operations for constructing the overall nonlinear differential 

equations are given in Appendix D. 

3.6 Numerical Solution 

The nonlinear differential equations of the system are solved using the fourth-order 

Runge-Kutta algorithm.  MATLAB provides two powerful functions for the numerical 

solution of differential equations employing the Runge-Kutta-Fehlberg methods.  They 

are ode23 and ode45 [42].  In the studies conducted in this thesis, the function ode45 is 

used to solve the system nonlinear equations. 
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To start the computation, the initial values of all the system variables are to be 

calculated.  The initial conditions of the system are shown in Figure 3.10, where all 

quantities are in per unit.  The transmission line compensation level is assumed to be 

50% corresponding to XC = 0.35 per unit, and the real power generated from the 

synchronous machine, PG, is assumed to be 0.90 per unit.  The VSC HVDC back-to-

back system is set to regulate the active power flowing from bus 2 to bus 3 and the 

reactive power flowing from bus 4 to bus 5 at 0.20 per unit and 0.05 per unit, 

respectively. The voltage magnitude at bus 3 is kept constant at 1.0 per unit.  

 
Figure 3.10  Initial conditions of the system for power flow analysis (Pdc = 0.20 p.u., XC 

= 0.35 p.u.). 

The bus voltages and the source voltages of the VSC HVDC back-to-back system are 

obtained using power flow analysis. Convergence is obtained in five iterations to a 

power mismatch tolerance of 1e-12 using Newton-Raphson algorithm, and in 55 

iterations to a voltage mismatch tolerance of 1e-7 using Gauss-Seidel technique 

respectively.  It is worth noting that, in these studies, the source voltages are assumed to 

have the following per unit limits 1.19.0 << shV and initial values of 000.1 ∠ per unit.  

The power flow results are shown in Figure 3.11 where the real power direction is 

indicated by →  and the reactive power direction is indicated bya .  Bus and source 

voltages are given in Table 3.1. 
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Figure 3.11  System power flow results (Pdc = 0.20 p.u., XC  = 0.35 p.u.). 

Table 3.1  System bus and VSC voltages (Pdc = 0.20 p.u., XC  = 0.35 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0257 1.0200 0.9814 1.0307

Phase angle (deg) 0 13.7804 12.7120 1.7989 0.7194 11.5466 2.8807

The relative angular displacements of the various sections of the turbine-generator 

mechanical system with respect to the generator angle (rotor angle) are given by 
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The initial values of the other variables are readily obtained.  For example, the 

synchronous machine and the transmission network variables are obtained through the 

voltage phasor diagrams of Figures 2.4 and 3.6. The initial conditions of the system 

controllers are computed by applying the steady-state input signals to the corresponding 

transfer functions.  

3.7 Simulation of SSR under Large Disturbances: A Study Case 

In order to demonstrate the dynamic performance of the study system under large 

disturbances, a three-cycle, three-phase fault at bus 2 is initiated at 2.0=t seconds.  The 

data of the VSC HVDC back-to-back controller parameters in this case study are given 

in Table 3.2.  The system transient time responses during and after clearing this 

disturbance are given in Figures 3.12 to 3.21. 

Table 3.2  Controller parameters (Pdc = 0.20 p.u., XC  = 0.35 p.u.). 

Active power controller   
KEd = 6.0 TEd = 0.1 sec. Tme = 0.2 sec. 
KBd = 6.0 TBd = 0.1 sec. Tmb = 0.2 sec. 
Supplementary controller  
Kω = 3.0  Tm = 0.01 sec. 
KP = 0.05   KI = 0.10  

Figures 3.12 to 3.17 show the time responses of the angle and angular speed of the 

individual masses of the turbine-generator as well as the shaft torsional torques.  The 

generator stator currents in the d-q reference frame and the field current are shown in 

Figure 3.18.  The generator terminal and field voltages and the voltage across the dc 

capacitor are also plotted in Figure 3.19.  The active power flows through the 

transmission line and the two stations of the VSC HVDC back-to-back system are 

shown in Figure 3.20 as well.  In addition to the above system variables, the control 

signals mE, mB and δEsh are also given in Figure 3.21.  Examination of these results 

reveals that, under this operating condition and compensation level, the VSC HVDC 

back-to-back active power and supplementary controllers effectively damp SSR 

oscillations at this compensation level.  For the critical compensation levels (i.e., 26.5%, 
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41.1%, 54.7%, and 68.4%), the dynamic performance of the system will be investigated 

in the next chapter. 
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Figure 3.12  Time responses of the generator (GEN) rotor angle, angular speed and 

electromagnetic torque of the system due to a 3-cycle, three-phase fault: 
the VSC HVDC back-to-back active power and supplementary controllers 
are employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.13  Time responses of the exciter (EXC) angle, angular speed and shaft torque 

between the generator (GEN) and the exciter (EXC) of the system due to a 
3-cycle, three-phase fault: the VSC HVDC back-to-back active power and 
supplementary controllers are employed simultaneously (Pdc = 0.20 p.u., 
XC = 0.35 p.u.). 
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Figure 3.14  Time responses of the low pressure stage (LPB) angle, angular speed, and 

shaft torque between the low pressure stage (LPB) and the generator 
(GEN) of the system due to a 3-cycle, three-phase fault: the VSC HVDC 
back-to-back active power and supplementary controllers are employed 
simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.).  
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Figure 3.15  Time responses of the low pressure stage (LPA) angle, angular speed, and 

shaft torque between the two low pressure stages (LPA & LPB) of the 
system due to a 3-cycle, three-phase fault: the VSC HVDC back-to-back 
active power and supplementary controllers are employed simultaneously 
(Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.16  Time responses of the intermediate pressure stage (IP) angle, angular 

speed, and shaft torque between the intermediate pressure stage (IP) and 
the low pressure stage (LPA) of the system due to a 3-cycle, three-phase 
fault: the VSC HVDC back-to-back active power and supplementary 
controllers are employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.17  Time responses of the high pressure stage (HP) angle, angular speed, and 

shaft torque between the high pressure stage (HP) and the intermediate 
pressure stage (IP) of the system due to a 3-cycle, three-phase fault: the 
VSC HVDC back-to-back active power and supplementary controllers are 
employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.18  Time responses of the generator stator currents in the d-q reference frame 

and the field current of the system due to a 3-cycle, three-phase fault: the 
VSC HVDC back-to-back active power and supplementary controllers are 
employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.19  Time responses of the generator terminal and field voltages, and the 

voltage across the dc capacitor of the system due to a 3-cycle, three-phase 
fault: the VSC HVDC back-to-back active power and supplementary 
controllers are employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.20  Time responses of the active power flows through the transmission line and 

the two stations of the VSCHVDC of the system due to a 3-cycle, three-
phase fault: the VSC HVDC back-to-back active power and supplementary 
controllers are employed simultaneously (Pdc = 0.20 p.u., XC = 0.35 p.u.). 
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Figure 3.21  Time responses of the control signals of the system due to a 3-cycle, three-

phase fault: the VSC HVDC back-to-back active power and 
supplementary controllers are employed simultaneously (Pdc = 0.20 p.u., 
XC = 0.35 p.u.). 
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3.8 Summary 

In this Chapter, a new concept for using the VSC HVDC back-to-back system with a 

designed supplementary controller for mitigation of SSR oscillations in a series 

capacitor compensated power system is proposed.  A comprehensive approach for 

developing a time-domain analysis program is established.  The dynamic performance of 

the system under a three-phase fault at the generator terminals is examined for a given 

compensation level.  The results of such a case study have shown the effectiveness of 

the proposed controller in damping all SSR torsional modes.  
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4 EFFECTIVENESS OF THE VSC HVDC BACK-TO-BACK 

CONTROLLERS IN DAMPING SUBSYNCHRONOUS 

RESONANCE OSCILLATIONS 

4.1 Introduction 

Small-signal analysis using eigenvalue computation provides valuable information about 

the inherent dynamic characteristics of the power system.  As it has been shown in 

Figure 2.10, torsional modes 1, 2, 3, and 4 become unstable at different compensation 

levels.  In this chapter, the effectiveness of VSC HVDC back-to-back controllers in 

damping SSR oscillations at the critical compensation levels will be investigated.  

Moreover, the effect of the system loading on SSR oscillations is also explored. 

4.2 Behaviour of the VSC HVDC Back-to-Back Controllers in Damping SSR 

Oscillations at the Critical Compensation Levels 

To demonstrate the effectiveness of VSC HVDC back-to-back controllers in mitigation 

of SSR oscillations under large disturbances at the critical compensation levels, several 

studies of a three-cycle, three-phase faults at the generator terminals are carried out on 

the system under investigations for the following two cases: 

Case I: The active power controller is in service and the supplementary controller is out 

of service. 

Case II: Both the active power and the supplementary controllers are in service. 
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4.2.1 Damping Subsynchronous Torsional Oscillations at a Compensation Level 
of 26.5% 

Figure 2.10 and Table 2.1 show that the real part of the eigenvalue corresponding to 

mode 4 reaches its maximum at a compensation level of  26.5% corresponding to XC = 

0.1855 per unit.  The power flow and voltages of the system in this case are given in 

Figure 4.1 and Table 4.1 respectively.  The corresponding data of the controllers are 

given in Table 4.2.  The effect of VSC HVDC back-to-back controllers on the dynamic 

performance of the system due to a 3-cycle, three-phase fault at the generator terminals 

are shown in Figures 4.2 to 4.4. 

 

Figure 4.1  System power flow results (Pdc = 0.20 p.u., XC = 0.1855 p.u.). 

Table 4.1  System bus and VSC voltages (Pdc = 0.20 p.u., XC = 0.1855 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0257 1.0200 0.9814 1.0307

Phase angle (deg) 0 20.5113 19.4429 1.7989 0.7194 18.2775 2.8807

VSC HVDC BtB Link 
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Table 4.2  Controller parameters (Pdc = 0.20 p.u., XC = 0.1855 p.u.). 

Active power controller   
KEd = 6.0 TEd = 0.1 sec. Tme = 0.2 sec. 
KBd = 6.0 TBd = 0.1 sec. Tmb = 0.2 sec. 
Supplementary controller  
Kω = 3.0  Tm = 0.01 sec. 
KP = 0.05   KI = 0.10  
 

The turbine-generator electromagnetic and shaft torsional torque responses due to a 3-

cycle, three-phase fault at the generator terminals are shown in Figure 4.2 for Cases I 

and II.  Figure 4.3 shows the generator rotor angle, angular speed and the terminal 

voltage of the system for the same two cases.  Moreover, the time responses of the 

output control signals are shown in Figure 4.4. 

As it can be seen from Figures 4.2, the turbine-generator torsional torques are, most 

often, not sinusoidal with a single frequency component, but contain contributions from 

all the torsional modes.  Moreover, it can be noticed that the shaft section between the 

generator and the low pressure stage is subjected to the highest stresses.  Figure 4.2 also 

shows that at this compensation level, the shaft torsional torques exhibit severe 

amplifications. 

Comparing Figure 4.2 (a) with Figure 4.2 (b) reveals that the VSC HVDC back-to-back 

system equipped only with the active power controller is not capable in damping the 

shaft torsional torques.  When the supplementary controller is employed in the system, 

Figure 4.2 (b) shows that both controllers effectively damp all the shaft torsional 

torques.  
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Figure 4.2  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.20 p.u., XC = 0.1855 p.u.). 

(a) 
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Figure 4.2 (continued) 

(b) 
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Figure 4.2 (continued) 

(a) 
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Figure 4.2 (continued) 
 

(b) 
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Figure 4.3  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II (Pdc 
= 0.20 p.u., XC = 0.1855 p.u.). 

 

(a) 
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Figure 4.3 (continued) 

(b) 
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Figure 4.4  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.1855 p.u.). 

 

(a) 



 83

0 1 2 3 4 5
0.7

0.8

0.9

1

1.1

Time,  seconds

m
E

0 1 2 3 4 5
0.7

0.8

0.9

1

1.1

Time,  seconds

m
B

0 1 2 3 4 5
5

10

15

20

25

30

Time, seconds

δ E
sh

,  
de

gr
ee

 
Figure 4.4 (continued) 
 

(b) 
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4.2.2 Damping Subsynchronous Torsional Oscillations at a Compensation Level 
of 41.1% 

As it can be seen from Figure 2.10, the real part of mode 3 eigenvalue reaches its 

maximum at a compensation level of 41.1% corresponding to XC = 0.2877 per unit.  The 

power flow and voltages of the system in this case study are given in Figure 4.5 and 

Table 4.3 respectively.   The corresponding data of the controllers are given in Table 4.4.  

As it can be seen from Tables 4.1 and 4.2, the phase angle of bus 2 in the case of a 

compensation level of 41.1% ( 03023.16 ) is less than that corresponding to a 

compensation level of 26.5% ( 05113.20 ).  This observation should be predicated since, 

increasing the compensation level results in an increase in the maximum power 

transferred from bus 2 to bus 1.  Consequently, for the same amount of power 

transferred (0.7 per unit), the relative phase angle between buses 2 and 1 

( 2
0

21221 0 θθθθθ =−=−= ) will be reduced.  The effect of VSC HVDC back-to-back 

controllers on the dynamic performance of the system due to a 3-cycle, three-phase fault 

at the generator terminals are shown in Figures 4.6 to 4.8. 

 

Figure 4.5  System power flow results (Pdc = 0.20 p.u., XC = 0.2877 p.u.). 
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Table 4.3  System bus and VSC voltages (Pdc = 0.20 p.u., XC = 0.2877 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0257 1.0200 0.9814 1.0307

Phase angle (deg) 0 16.3023 15.2339 1.7989 0.7194 14.0685 2.8807

Table 4.4  Controller parameters (Pdc = 0.20 p.u., XC = 0.2877 p.u.). 

Active power controller   
KEd = 6.0 TEd = 0.1 sec. Tme = 0.2 sec. 
KBd = 6.0 TBd = 0.1 sec. Tmb = 0.2 sec. 
Supplementary controller  
Kω = 3.0  Tm = 0.01 sec. 
KP = 0.05   KI = 0.10  

Examination of the time responses of the shaft torsional torques shown in Figure 4.6 

reveals that, although the VSC HVDC back-to-back active power controller only can 

damp all the shaft torsional torques, these oscillations are poorly damped.  The 

supplementary controller, however, provides better damping in corporation with the 

active power controller. 

4.2.3 Damping Subsynchronous Torsional Oscillations at a Compensation Level 
of 54.7% 

The real part of mode 2 eigenvalue reaches its maximum at a compensation level of 

54.7% corresponding to XC = 0.3829 per unit.  The power flow and voltages of the 

system in this case are given in Figure 4.9 and Table 4.5 respectively.  The 

corresponding data of the controllers are given in Table 4.6.  The effect of VSC HVDC 

back-to-back controllers on the dynamic performance of the system due to a 3-cycle, 

three-phase fault at the generator terminals are shown in Figures 4.10 to 4.12. 
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Figure 4.6  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.20 p.u., XC = 0.2877 p.u.). 

(a)
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Figure 4.6 (continued) 
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Figure 4.6 (continued) 
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Figure 4.7  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.1855 p.u.). 
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Figure 4.7 (continued) 
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Figure 4.8  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.2877 p.u.). 
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Figure 4.8 (continued) 
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Figure 4.9  System power flow results (Pdc = 0.20 p.u., XC = 0.3829 p.u.). 

Table 4.5  System bus and VSC voltages (Pdc = 0.20 p.u., XC = 0.3829 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0257 1.0200 0.9814 1.0307

Phase angle (deg) 0 12.4592 11.3908 1.7989 0.7194 10.2254 2.8807 

Table 4.6  Controller parameters (Pdc = 0.20 p.u., XC = 0.3829 p.u.). 

Active power controller   
KEd = 6.0 TEd = 0.1 sec. Tme = 0.2 sec. 
KBd = 6.0 TBd = 0.1 sec. Tmb = 0.2 sec. 
Supplementary controller  
Kω = 3.0  Tm = 0.01 sec. 
KP = 0.05   KI = 0.10  

Examination of the time responses of the shaft torsional torques shown in Figures 4.6 

and 4.10 reveals that the system dynamic behaviour at compensation levels of 41.1% 

and 54.7% are almost similar.  The VSC HVDC back-to-back active power controller 

only can damp all the shaft torsional torques.  The supplementary controller, however, 

provides better damping in corporation with the active power controller. 
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Figure 4.10  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.20 p.u., XC = 0.3829 p.u.). 
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Figure 4.10 (continued) 
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Figure 4.10 (continued) 
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Figure 4.11  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.3829 p.u.). 
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Figure 4.11 (continued) 
 

(b)



 101

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Time,  seconds

m
E

0 1 2 3 4 5
0.85

0.9

0.95

1

1.05

1.1

Time,  seconds

m
B

 
Figure 4.12  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.3829 p.u.). 
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Figure 4.12 (continued) 
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4.2.4 Damping Subsynchronous Torsional Oscillations at a Compensation Level 
of 68.4% 

It can be seen again from Figure 2.10 that the real part of mode 1 (15.7 Hz) eigenvalue 

reaches its the maximum at a compensation level of 68.4% corresponding to XC = 0.4788 

per unit.  The power flow and voltages of the system are given in Figure 4.13 and Table 

4.7 respectively.  The corresponding data of the controllers are given in Table 4.8.  The 

effect of VSC HVDC back-to-back controllers on the dynamic performance of the 

system due to a 3-cycle, three-phase fault at the generator terminals are shown in Figures 

4.14 to 4.16. 

 
 
Figure 4.13  System power flow results (Pdc = 0.20 p.u., XC = 0.4788 p.u.). 

Table 4.7  System bus and VSC voltages (Pdc = 0.20 p.u., XC = 0.4788 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0257 1.0200 0.9814 1.0307

 Phase angle (deg) 0 8.6394 7.5710 1.7989 0.7194 6.4056 2.8807
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Table 4.8  Controller parameters (Pdc = 0.20 p.u., XC = 0.4788 p.u.). 

Active power controller   
KEd = 1.0 TEd = 0.01 sec. Tme = 0.04 sec. 
KBd = 1.0 TBd = 0.01 sec. Tmb = 0.04 sec. 
Supplementary controller  
Kω = 1.0  Tm = 0.01 sec. 
KP = 0.05   KI = 0.10  

As it can be seen from Figure 4.14, in the absence of the supplementary controller, the 

turbine-generator shaft system exhibits severe torsional torque amplifications.  It can 

also be seen from Figure 4.15 that the generator terminal voltage is extremely unstable 

in this case.  Figure 4.14 to 4.16 show, however, the effectiveness of the supplementary 

controllers in damping these severe torsional torques when it is employed along with the 

active power controller. 

It is worth noting here that the limiters on the active power controllers shown in Figure 

3.8 keep the amplitude modulation ratios mE and mB within the range of 0.5 and 1.2.  The 

action of these limiters is clearly shown in Figure 4.16 (b) as the initial high values of mE 

and mB are clipped.  

4.3 Behaviour of VSC HVDC Back-to-Back Controllers in Damping SSR 

Oscillations at Different Loading Conditions 

In order to examine the robustness of the VSC HVDC back-to-back controllers, 

simulation studies with various power sharings between Line 1 and Line 2 were carried 

out without changing the generator output power or making any adjustment to the 

controller parameters.  Moreover, the compensation level was assumed to be 26.5%.  

Two power sharing conditions designated as PS1 and PS2 are reported in the next 

subsection and Appendix E respectively. 
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Figure 4.14  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.20 p.u., XC = 0.4788 p.u.). 
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Figure 4.14 (continued) 

(b) 
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Figure 4.14 (continued) 
 

(a) 
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Figure 4.15  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.4788 p.u.). 
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Figure 4.15  (continued) 
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Figure 4.16  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.20 p.u., XC = 0.4788 p.u.). 
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Figure 4.16 (continued) 
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4.3.1 PS1: System Dynamic Performance at Pdc = 0.40 p.u. 

The system pre-disturbance operating condition in this case is such that Line 2 carries a 

real power of 0.4 per unit.  The power flow and voltages of the system in this case are 

shown in Figure 4.17 and Table 4.9 respectively.  The controller parameters are shown 

in Table 4.2.   

 

Figure 4.17  System power flow results (Pdc = 0.40 p.u., XC = 0.1855 p.u.). 

Table 4.9  System bus and VSC voltages (Pdc = 0.40 p.u., XC = 0.1855 p.u.). 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0261 1.0200 0.9836 1.0317

Phase angle (deg) 0 14.5098 12.3159 3.5723 1.4006 9.9904 5.7329

The turbine-generator electromagnetic and shaft torsional torque responses due to a 3-

cycle, three-phase fault at the generator terminals are shown in Figure 4.18 for Cases I 

and II.  Figure 4.19 shows the generator rotor angle, angular speed and the terminal 

voltage of the system for the same two cases.  Moreover, the time responses of the 

output control signals are shown in Figure 4.20. 
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As it can be seen from Figure 4.18, the proposed controller effectively damps all the 

shaft torsional torques at this loading condition.  It is worth noting here that simulation 

results of PS2 (Figures E.2 to E.4, Appendix E) and other cases not reported in this 

thesis yield the same conclusion.  Therefore, it can be concluded that the proposed 

supplementary controller is robust. 

It is interesting to compare the output control signals of Figures 4.20(a) and 4.4(a).  

Theses figures show that increasing the power flow into the VSC HVDC system results 

in an increase in the amplitude of the active power controller output signals mE and mB.  

As it can be seen from Figure 4.20(a), the high values of mE and mB at Pdc = 0.4 per unit 

are clipped by the controller limiters.  On the other hand, Figure 4.4(a) shows that at Pdc 

= 0.2 per unit, mE and mB are with the limits. 

4.4 Summary 

In this chapter, the effectiveness of VSC HVDC back-to-back controllers in damping 

SSR oscillations under large disturbances has been investigated through several cases of 

time-domain simulation studies.  These investigations have revealed that the VSC 

HVDC back-to-back system equipped only with active power controller is not sufficient 

to damp all shaft torsional torques.  The active power and supplementary controllers 

operating together, however, are effective in damping all the shaft torsional torques.  

Moreover, the proposed VSC HVDC back-to-back controllers effectively damp all the 

shaft torsional torques over a wide range of loading conditions. 
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Figure 4.18  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.40 p.u., XC = 0.1855 p.u.). 

(a)
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Figure 4.18 (continued) 

(b)
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Figure 4.18 (continued) 

(a)
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Figure 4.18 (continued) 

(b)
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Figure 4.19  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.40 p.u., XC = 0.1855 p.u.). 

(a)
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Figure 4.19 (continued) 

(b)
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Figure 4.20  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.40 p.u., XC = 0.1855 p.u.). 

(a)
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Figure 4.20 (continued) 

 

(b)
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5  SUMMARY AND CONCLUSIONS 

5.1 Summary 

Transmission capability limitations and the ways to overcome them are challenging 

problems facing power system engineers.  The reasons for transmission limitations 

extend from steady state and thermal considerations to transient and dynamic stability of 

the power system.  It can be due to unfavorable power flow pattern in the transmission 

system where some of the transmission lines may be very close to their thermal limits 

while other lines may have unnecessarily large thermal margins.  Other reasons are 

transient and dynamic stability considerations, which impose limits on the power that 

can be transmitted while ensuring that the power system will be able to regain a new 

stable state following any expected disturbance.  Due to these limitations, transmission 

lines are often loaded to levels below of their thermal capability and, in order to increase 

the loadability limit, some measures must be adopted.  Series capacitive compensation is 

one of the most economical measures to increase transmission capability.  It decreases 

the effective reactance of the compensated line and, hence, it can improve the power 

flow pattern among parallel transmission paths.  At the same time, it increases the 

stability limit of the compensated line. 

However, introducing a series capacitor in a transmission system implies the existence 

of natural oscillations in the electrical system having frequencies below the power 

frequency.  Since the natural oscillations of the shaft system of most turbine-generators 

are also of frequencies below the power frequency, the possibility of the 

electromechanical Subsynchronous Resonance (SSR) exists if the frequencies of the 

electrical and mechanical oscillations are complements of the power frequency.  SSR 
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results in violent torsional oscillations within the turbine-generator shafts which can 

destroy them (in the worst case) in only a few seconds. 

As a result of the Flexible AC Transmission Systems (FACTS) initiative, considerable 

effort has been spent in the last fifteen years on the development of power electronic-

based power flow controllers.  These controllers usually employ self-commutated 

inverters as synchronous voltage sources to modify the prevailing transmission line 

voltage and thereby control the power flow.  The potential benefits of these FACTS 

controllers are now widely recognized by the power system engineering and the 

transmission and distribution communities.  Voltage sourced converter technology has 

been successfully applied in a number of installations world-wide for Static 

Synchronous Compensators (STATCOM), Unified Power Flow Controllers (UPFC), 

Static Synchronous Series Compensators (SSSC) and VSC HVDC back-to-back ties. 

The VSC HVDC back-to-back tie employing PWM may well represent the ultimate 

FACTS device.  Besides controlling the through power flow, it can supply reactive 

power and provide independent dynamic control at its two terminals. 

A brief review of the new generation of the FACTS controllers based on Voltage Source 

Converters (VSCs), which can improve the security of a power system by enhancing its 

steady-state and transient stability is presented in Chapter 1.  The nature of the SSR 

phenomenon and the various problems associated with it are also explained in this 

chapter.  The primary focus in this research work is the utilization a VSC HVDC back-

to-back link to damp all SSR torsional oscillations in a power system. 

In Chapter 2, a linearized mathematical model is developed for investigating the SSR 

phenomenon under small disturbances.  For this purpose, the IEEE first benchmark 

model which consists of a large turbine-generator connected to a large system through a 

series-capacitor compensated transmission line is used since it represents clearly the 

various features of the SSR phenomenon.  The shaft system of the turbine-generator 

represents a linear six-mass-spring system.  The detailed dynamic models of the 

individual system components are also presented in this chapter.  The procedure used to 

derive the complete linearized model from the IEEE first benchmark model is explained 
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in this chapter.  The studies conducted in the rest of the chapter are intended to 

investigate the effect of the compensation levels of the transmission line on SSR 

oscillations.  The results of these investigations have provided the critical compensation 

levels in the system under studies. 

In Chapter 3, a new concept for using the VSC HVDC back-to-back system with a 

designed supplementary controller for mitigation of SSR oscillations in a power system 

is proposed.  The complete dynamic model of a typical HVAC/DC system incorporating 

a large turbine-generator and a VSC HVDC back-to-back system is developed to study 

SSR torsional oscillations under larger disturbances.  The steady-state and dynamic 

models for the VSC-HVDC back-to-back system are also presented in this chapter.  For 

power flow studies, the VSC HVDC is modeled by a series reactance together with a set 

of active and reactive nodal power injections at each end of the series reactance for each 

converter station.  These powers are expressed as a function of the admittance, the nodal 

voltage and the source voltage at the bus.  The VSC HVDC injection model is 

implemented into a full Newton-Raphson power flow program by adding the VSC 

HVDC power injections and their derivatives with respect to the AC network state 

variables, i.e. nodal voltage magnitude and angles, at the appropriate locations of the 

mismatch vector and Jacobian matrix.  The original dimensions of the mismatch vector 

and Jacobian matrix are not altered.  The attraction of this formulation is that it can be 

implemented easily in existing power flow programs.  To formulate the overall dynamic 

system equations, the state equations of each dynamic device and the network developed 

in Chapter 2 are used in this chapter.  The overall state matrices are then formed by 

augmenting the dynamic device models.  To construct the state space model of each 

dynamic device, either its terminal voltage or its current injected into the network, 

whichever is more convenient, is assumed as the input, and the other as the output.  

Using this approach, the overall system model is developed to study SSR oscillations.  

The time-domain analysis technique is used for transient torque analysis.  MATLAB 

computer programs have been developed to simulate the dynamic performance of the 

system due to a three-phase fault at the generator terminals.  
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The active power and the supplementary controllers are presented in this chapter to 

improve the damping of the power system oscillations.  The main function of the active 

power controller is to regulate the active power flow on both sides of the VSC HVDC 

back-to-back system.  This is done through the two proportional type controllers.  The PI 

supplementary controller which uses the generator speed deviation as a stabilizing signal 

increases the damping in the power system.  The robustness of the proposed controller in 

damping all SSR torsional modes is examined for a given compensation level. 

In Chapter 4, detailed studies to investigate the effects of the compensation levels, the 

controller structure and its parameters, as well as the loading conditions on the damping 

of SSR oscillations are documented.  These studies are intended to show the 

effectiveness of the proposed VSC HVDC controller in mitigation of SSR oscillations at 

the critical compensation levels as well as over a wide range of loading conditions. 

5.2 General Conclusions 

The studies conducted in this thesis yield the following conclusions: 

1. The designed controllers for the VSC HVDC back-to-back system considered in this 

thesis are robust with respect to the critical compensation levels and a wide range of 

loading conditions. 

2. The designed active power controller of the VSC HVDC back-to-back system is 

capable of damping SSR oscillations when the compensation levels are 41.1% and 

54.7% corresponding to the unstable torsional Modes 3 and 2 respectively.  These 

oscillations, however, are poorly damped by the active power controller.  The 

supplementary controller provides better damping in corporation with the active 

power controller. 

3. The other two unstable torsional modes, namely Modes 4 and 1, exhibit the most 

severe undamping at the compensation levels of 26.5% and 68.4% respectively.  The 

active power controller is not capable of damping the shaft torsional torques in these 

two cases.  When the supplementary controller is employed in the system, both 

controllers are effective in damping all the shaft torsional torques. 
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4. When the compensation level reaches around 68.4%, the value of the controller 

parameters significantly affects the system dynamic performance.  Normally, the 

data of the controllers given in Table 4.8 results in a good system response.  At the 

other compensation levels, the two controllers (the active power and the 

supplementary controllers), however, can provide robust dynamic performance over 

wide variations in controller parameters.  

5. Increasing the active power flowing from the turbine-generator to the VSC HVDC 

back-to-back link does not significantly affect the effectiveness of the VSC HVDC 

back-to-back controllers on the dynamic performance of the system.  It only results 

in an increase in the amplitude of the active power controller output signals mE and 

mB.  The active power and the supplementary controllers can effectively damp all the 

shaft torsional torques over a wide rang of loading conditions. 
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APPENDICES 

A. COMPLEX POWER FLOW 

The equivalent circuit one line diagram of the system illustrated in Figure 1.4 is shown 

in Figure A.1.  The steady-state phasor diagram of the system is shown in Figure A.2. 

 
Figure A.1  The equivalent circuit of a VSC connected to an AC system through a 

lossless reactor. 
 

 
Figure A.2  Steady-state phasor diagram of a VSC connected to an AC system. 
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The active and reactive components of the complex power injected at the AC system can 

be expressed as: 

φcosVIP =        (A.1) 

φsinVIQ =        (A.2) 

According to phasor diagram shown in Figure A.2, The following equations can be 

derived: 

shshl VIX δφ sincos =       (A.3) 

sshshl VVIX −= δφ cossin      (A.4) 

Therefore, 

l

shsh

X
V
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δ

φ
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cos =       (A.5) 

l

sshsh

X
VV

I
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=
δ

φ
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sin      (A.6) 

Substituting Equations (A.5) and (A.6) into Equations (A.1) and (A.2), gives 

l

shssh
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B. SYSTEM DATA 

Table B.1  Generator data (in per unit on 892.4 MVA and 26 kV base). 

Ra = 1e-7 Rfd  = 0.0013 R1d = 0.0297 
R1q = 0.0124  R2q = 0.0182 
Xad = 1.66  Xaq = 1.58 
Xd  = 1.79 Xq = 1.71 Xffd = 1.7335 
X11d  = 1.7177 X11q = 1.6319 X22q = 1.9029 

Table B.2  Transmission line data (in per unit on 892.4 MVA and 500 kV base). 

Series capacitor compensated transmission line (Line 1)   
RL = 0.02  XL = 0.7 
Line 2  
RL2 = 0.005  XL2 = 0.1 
Line 3  
RL3 = 0.005   XL3 = 0.1 

Table B.3  VSC-HVDC back-to-back system data (in per unit on 892.4 MVA and 500 
kV base). 

VSC-HVDC rectifier station   
RE = 0.0  XE = 0.1 
VSC-HVDC inverter station  
RB = 0.0  XB = 0.1 
DC link   
Xdc = 0.5     

Active power controller   

Lim_max = 1.2  Lim_min = 0.5 
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Table B.4  Mechanical system data. 

Mass Shaft 
Inertia M 
(seconds) 

Damping D 
(p.u./p.u. speed) 

Spring constant K 
(p.u./rad) 

EXC  0.0684 0.017  
 GEN-EXC   2.822 
GEN  1.736 0.099  
 LPB-GEN   70.858 
LPB  1.768 0.100  
 LPA-LPB   52.038 
LPA  1.716 0.100  
 IP-LPA   34.929 
IP  0.311 0.025  
 HP-IP   19.303 
HP   0.1856 0.008  

Table B.5  Governor and turbine system data. 

Kg = 25   
Tg = 0.1sec.  Tch = 0.40 sec. 
Trh =7.0sec.  Tco= 0.60 sec. 
FA = 0.22  FB = 0.22 
FI = 0.26  FH = 0.30 
Cvopen = 4.0 p.u./sec. Cvclose = 4.0 p.u./sec. 

Table B.6  Excitation system data. 

KA  = 2  KE  = 1.0 
KF  = 0.03   
TA  = 0.04 sec.  TE  = 0.01sec. 
TF  = 1.0 sec.     
VRmax = 4.75 p.u.  VRmin = -4.75 p.u. 
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Table B.7  Initial operating conditions. 

Generator real power    PG = 0.90 p.u. 
Generator terminal voltage magnitude   |Vt| = 1.02 p.u. 
System I    VI 000.1 ∠=  
System II magnitude    |VII| = 1.02 p.u. 
VSC-HVDC rectifier station bus(Bus 3) voltage magnitude   |V3| = 1.0 p.u. 
Reactive power flows into System II from VSC-HVDC 
inverter station   Q4 = 0.05 p.u. 
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C. SMALL SIGNAL MODEL OF THE COMPLETE SYSTEM FOR THE IEEE 

FIRST BENCHMARK MODEL 

In order to form the overall system equations, the equations derived in Chapter 2 for the 

individual system components are rewritten here again. 

• 6th order state equation of synchronous machine (Equation 2.17). 
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dt
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• State equation of transmission line (Equation 2.24) 
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• 12th order state equation of mechanical system (Equation 2.32) 
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where
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• 4th order state equation of governor and turbine system (Equation 2.36) 
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• 3rd order state equation of excitation system (Equation 2.40)          
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where 

[ ] [ ]TSBRfdv EEeX ΔΔΔ=Δ  

• Equation of Air-gap (Equation2.45) 

[ ][ ]syne XTedqT Δ=Δ 0                   (C.6) 

• Equation of terminal voltage (Equation 2.47) 
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Electrical part of the system: Combining Equations (C.1) and (C.2) to form the 

following equations 
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where 

[ ] [ ]:) ,8:1(AmtCiAmt =                                                                  

[ ] [ ]:) ,8:1(BmtDiBmt =        

 [ ] [ ]:) ,10:9(AmtCiCi =        

   

[ ] [ ]:) ,10:9(BmtDiDi =                                                        (C.10) 
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Here, AmtCi(1:8, :) means all columns and 1 to 8 rows of AmtCi, Bsyn(:, 1:2) means all 

rows and 1 to 2 columns of Bsyn, Inxn is an n by n identity matrix, and 0mxn is an m by n 

matrix with all elements zero. 

Combining Equations (C.6), (C.7), and (C.9) to form the following equation 
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where 



 140

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡= Ci
V
V

V
V
Tedq

Cmt
t

tq

t

td

0

0

0

0

000
 

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡= Di
V
V

V
VDmt

t

tq

t

td

0

0

0

0

000
                                                               (C.12) 

Shaft and excitation system: Combining Equations (C.3), (C.4), and (C.5) to form the 

following equations 
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Combining Equations (C.11) and (C.13) to form the following equations 
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where  

   [ ] [ ][ ]CmtApCmtAp 22 =  

[ ] [ ][ ]DmtApDmtAp 22 =                                    (C.16) 

Entire system state equation: Combining Equations (C.8) and (C.15) to form the 27th 

order state equation of the complete system. 
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D. DYNAMIC MODEL OF THE COMPLETE SYSTEM FOR THE HVAC/DC 

SYSTEM INCORPORATING A LARGE TURBINE-GENERATOR AND A 

VSC HVDC BACK-TO-BACK SYSTEM  

In order to form the complete dynamic model of the system, the equations derived in 

Chapters 2 to 3 for the individual system components are rewritten here. 

• Nonlinear equations of synchronous machine (Equation 3.40) 
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• Nonlinear equations of transmission line (Equation 3.37 to 3.38) 
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where 
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[ ] [ ]TCqCdLqLdTL VViiX =  

• Nonlinear equations of VSC-HVSC back-to-back system (Equation 3.31) 
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where 
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• Nonlinear equations of mechanical system (Equation 2.30) 
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• Equations of governor and turbine system (Equation 2.34) 
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whree 

[ ] [ ]T
AIHVg PPPCX =                        

• Equations of excitation system (Equation 2.38) 
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where 

[ ] [ ]TSBRfdv EEeX =  

• Equation of air-gap (Equation 3.44) 

[ ][ ]syne XTedqT =        (D.8) 

• Equations of VSC HVDC back-to-back active power controller (Equation 3.33) 
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• Equations of VSC HVDC back-to-back supplementary controller (Equation 3.35) 
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Electrical part of the system: Combining Equations (D.1), (D.2) and (D.4) to form the 

following equations: 
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Combining Equations (D.1), (D.3) and (D.4) to form the following equations 
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Decomposing Equation (D.13) to obtain terminal voltage equations in the d-q reference 

frame: 
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where 

       [ ] [ ] :) ,15:14(AmtCiCi =  

[ ] [ ] :) ,15:14(BmtDiDi =                         (D.16) 

Shaft and excitation system: Combining Equation (D.5) to (D.8) to form the following 

equations 
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Combining Equations (D.11) to (D.17) to form 34th order nonlinear equations without 

VSC HVDC back-to-back controllers. 
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where 
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Entire system dynamic model: combining Equations (D.9) to (D.10) with (D.19) to 

form finally 40th order nonlinear equations of the system:  
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E. PS2: SYSTEM DYNAMIC PERFORMANCE AT Pdc = 0.6 p.u. 

The power flow and voltages of the system in this case are shown in Figure E.1 and 

Table E.1 respectively.  The corresponding data of the controllers are given in Table 4.2. 

The effect of VSC HVDC back-to-back controllers on the dynamic performance of the 

system due to a 3-cycle, three-phase fault at the generator terminals are shown in Figures 

E.2 to E.4.   

 

Figure E.1  System power flow results (Pdc = 0.60 p.u., XC = 0.1855 p.u.). 
 

Table E.1  System bus and VSC voltages (Pdc = 0.60 p.u., XC = 0.1855 p.u.). 

 

 System bus VSC voltage 

 1 2 3 4 5 Vsh1 Vsh2 

Magnitude (p.u.) 1.0000 1.0200 1.0000 1.0261 1.0200 0.9865 1.0327

Phase angle (deg) 0 8.6460 5.3275 5.3349 2.0727 1.8516 8.5706

 

VSC HVDC BtB Link 
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Figure E.2  Turbine-generator electromagnetic and shaft torsional torques during and 

after clearing a 3-cycle, three phase fault at the generator terminals: (a) 
Case I, (b) Case II (Pdc = 0.60 p.u., XC = 0.1855 p.u.). 

 
 

(a)
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Figure E.2  (continued) 

(b)
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Figure E.2  (continued) 

 

(a)
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Figure E.2  (continued) 

 

(b)
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Figure E.3  Generator rotor angle, angular speed, and terminal voltage responses to a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.60 p.u., XC = 0.1855 p.u.). 

 

(a)
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Figure E.3  (continued) 
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Figure E.4  Time responses of the output control signals during and after clearing a 3-

cycle, three-phase fault at the generator terminals: (a) Case I, (b) Case II 
(Pdc = 0.60 p.u., XC = 0.1855 p.u.). 

(a)
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Figure E.4  (continued) 

 

(b)
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