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ABSTRACT

In this thesis the nonlinear effects and heating are studied in inductively cou-

pled plasma (ICP) in a regime of anomalous skin effect (nonlocal regime). In

this regime the thermal motion of plasma electrons plays an important role,

significantly influencing the processes associated with the penetration of elec-

tromagnetic field into plasma, such as the ponderomotive effect and heating of

plasma by the field. We have developed a linear kinetic theory that describes

the electron dynamics in ICP taking into account the electron thermal motion

and collisions of electrons. This theory yields relatively simple expressions for

the electron current in plasma, the ponderomotive force, and plasma heat-

ing. It describes correctly the thermal reduction of ponderomotive force in the

nonlocal regime, which has been previously observed experimentally. It also

describes the collisionless heating of plasma due to resonant interaction be-

tween the electromagnetic wave and plasma electrons. There is a good overall

agreement of the results of our theory with the experimental data on pon-

deromotive force and plasma heating. Using our theory, we predicted a new

effect of reduction of plasma heating compared to the purely collisional value,

occurring at low frequencies. This effect has not been previously reported.

The nonlinear effects of the electromagnetic field on the electron distribu-

tion function and on plasma heating, that are not accounted for in the linear

kinetic theory, have been studied using a quasilinear kinetic theory, also devel-

oped in this thesis. Within the quasilinear approximation we have formulated

the system of equations describing the slow response of plasma electrons to the

fast oscillating electromagnetic field. As an example, these equations have been

solved in the simplest case of cold plasma with collisions, and the nonlinear

perturbation of the electron distribution function and its effect on the plasma

heating have been found. It has been shown that the nonlinear modification

of plasma heating occurs mainly due to the nonlinear effect of the magnetic
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component of the electromagnetic field. It has also been shown that at high

frequencies the nonlinear effects vanish, and the heating is well described by

the linear theory.

To verify the predicted new effect of plasma heating reduction at low fre-

quencies, as well as to investigate the nonlinear effect of the magnetic field

on plasma heating for arbitrary amplitudes of electromagnetic field in plasma,

we have developed a 1d3v Particle-In-Cell (PIC) numerical simulation code

with collisions. The collisions were implemented into the PIC code using two

different techniques: the direct Monte-Carlo technique for the electron-atom

collisions, and the stochastic technique based on the Langevin equation for the

electron-electron collisions. The series of numerical simulations by this code

confirmed the results of our linear theory, particularly the effect of heating

reduction at low frequencies that we predicted theoretically. Also, the nonlin-

ear effects of electromagnetic field on plasma heating were studied using the

PIC code in the cases of weak and strong electromagnetic fields. It has been

shown that in the case of weak electromagnetic fields (corresponding to weak

nonlinearity) the nonlinear effects lead to some enhancement of heating (com-

pared to the linear theory) at low frequencies, followed by a small reduction of

heating at higher frequencies. This observed nonlinear perturbation of heating

in warm plasma with collisions is similar to that predicted by the quasilinear

theory for the case of cold plasma with collisions. In the case of strong elec-

tromagnetic fields (corresponding to strong nonlinearity) the nonlinear effects

lead to a further reduction of heating (compared to the linear theory) at low

frequencies, as shown by the simulation, thus adding to the effect of reduction

of heating predicted by the linear theory. The nonlinear effects are shown to

vanish at high frequencies, as expected.
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Chapter 1

Introduction

1.1 Inductively Coupled Plasma (ICP) Sources

In this thesis we study the phenomena occurring in low-pressure high den-

sity plasmas in the regime of anomalous skin effect. To introduce the object

of our study to the reader, we will start from the general definition of plasma.

There is a number of various definitions of plasma at various levels, the most

basic and the less informative of which is the definition “plasma is the fourth

state of matter”. A more informative definition is that plasma is an ionized gas

— a gas in which some or all atoms lost one or more electrons, thus becoming

charged (these charged atoms are called ions). As a result, the ionized gas

contains some number of charged particles — electrons and ions — that make

it conductive. The Coulomb interaction between the charged particles is long-

ranged, therefore the ionized gas may exhibit a collective behavior which is far

more complex than that of usual, neutral gases. However, not any ionized gas

is plasma. An important property of plasma is quasineutrality — an overall

electrical neutrality of the plasma media. This means that the total charge of

negatively charged particles should be approximately equal to the total charge

of positively charged particles within any selected volume of plasma (the vol-

ume of a size that is large compared to the characteristic distance between the
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plasma particles). A related important phenomenon, which is sometimes used

to define the plasma state, is the screening of electric fields within plasma at a

characteristic length called the Debye length. The Debye length is an impor-

tant characteristic of plasma that depends on plasma electron temperature Te

and density n, λD = (kBTe/4πne
2)
1/2
, where kB is the Boltzmann constant, e

is the elementary charge (here and hereafter we use the CGS system of units).

The derivation of the Debye length as the length of screening of electric field

in plasma can be found, for example, in [1].

The requirement for the plasma state to occur is that the kinetic energy

of electrons in the system significantly exceeds their potential energy. Math-

ematically this requirement can be expressed in terms of number of charged

particlesND within a sphere of radius equal to the Debye length λD (a so-called

Debye sphere), which should be large:

ND = n
4π

3
λ3D >> 1. (1.1)

Most of a matter in the Universe is in plasma state; examples are the sun

and stars, interstellar gas, Earth’s ionosphere and magnetosphere, visible part

of lightning bolts, etc. Plasma can also be created in laboratory by various

means, such as heating of a gas until the mean kinetic energy of the gas par-

ticles is comparable to the ionization potential of the gas atoms or molecules.

At very high temperatures, from about 50000K upwards, collisions between

gas particles cause cascading ionization of the gas. Another way of creating

plasma in laboratory is heating a gas by an applied electric field (fluorescent

lamps are an example), which accelerates charged particles that are already in

the gas until they gain the kinetic energy necessary to ionize the gas atoms.

This way of creating plasma does not require high temperature, and thus it

is more favorable for applications. The temperature of neutral component of

such gas plasma may remain quite low as the plasma particles are continually

colliding with walls of the gas container and between each other, causing cool-

ing and recombination (the process of recreating neutral atoms from ions and
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electrons; this process is opposite to the ionization). In such cases ionization

is only partial and requires a large energy input. In thermonuclear reactors an

enormous plasma temperature necessary to maintain the thermonuclear fusion

reactions is created by launching a strong heating electric current through the

plasma being confined away from the container walls by magnetic field.

The applications of plasmas range from material processing (deposition

of films onto substrate, etching, etc.) and manufacturing of microchips, to

generation of energy by thermonuclear fusion reactions. The number of plasma

applications is constantly and rapidly growing.

In this thesis we will be dealing with the low-temperature plasmas (Te <

10 eV), which are mostly used in semiconductor manufacturing, material pro-

cessing, and in lighting sources. Such plasmas are produced by different types

of the so-called glow discharges, apparently called so because of the glow com-

ing from the plasma created. Currently, there is a trend toward low-pressure

(< 10 mTorr) operation of these discharges to provide better plasma unifor-

mity over large area substrates. Low operating pressures require high plasma

densities to maintain productivity of industrial manufacturing and processing

devices. A number of different types of low pressure high-density plasma dis-

charges are being developed, among them inductively coupled plasma (ICP)

discharges, which are particularly attractive due to their relatively simple de-

sign.

In the ICP discharges, the plasma is created by ionizing of a working gas by

a time varying electric field E(t), which is induced by a time varying magnetic

field B(t) through Faraday’s law

∇×E(r,t) = −1
c

∂B(r,t)

∂t
. (1.2)

The magnetic field B(t) is created by a time varying electric current running

through an antenna coil located outside of a gas-containing chamber.

There are two principal configurations of the ICP discharges: a configura-

tion with a cylindrical coil and a configuration with a planar coil. The schemes
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Figure 1.1: Configuration of ICP discharge with cylindrical coil.

of both configurations along with the sketches of the electromagnetic fields in

plasma are shown in Fig. 1.1 (cylindrical coil configuration) and Fig. 1.2 (pla-

nar coil configuration).

In the cylindrical coil configuration, the radio frequency (RF) current coil

is wound around the cylindrical chamber containing the working gas, while

in the planar coil configuration the coil, resembling the stovetop heating coil,

is located on top of the cylindrical gas chamber. In both configurations the

coil is separated from the chamber by dielectric wall in order to allow the

electromagnetic fields to penetrate into the gas chamber volume. The plasma

is created in the region of the most intense electric fields through the ionization

process similar to the process described above for the fluorescent lamps.

From the electrodeless design of the ICP discharges follows one of their

advantages — absence of contamination of plasma by the electrode material.

Another advantageous feature of ICP discharges is the possibility to achieve

higher densities of ions at lower pressures. Also, the plasma created in ICP
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Figure 1.2: Configuration of ICP discharge with planar coil.

discharges has a high degree of uniformity, which is typically a requirement in

plasma processing and semiconductor manufacturing.

The typical parameters of ICP discharges are given in Table 1.1.

Pressure,

mTorr

Plasma

density,

cm−3

Driving

fre-

quency,

MHz

Electron

temper-

ature,

eV

Electron-

atom

collision

frequency,

s−1

Discharge

power, W

0.1-100 1010-1012 0.1-20 1-10 106-108 50-500

Table 1.1: Ranges of typical parameters of ICP discharges.

The ICP discharges have found many applications. Among them, there is

an application in plasma processing, which is a vital step in producing large-

scale integrated chips. Another application is in mass-spectrography, where the
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ICP discharges are used as plasma sources. Recently, the ICP has found an

application in the area of electrodeless fluorescent lamps, being manufactured

by OSRAM Sylvania and Phillips. Because these lamps are electrodeless, they

have significantly longer lifetime than conventional fluorescent lamps — up to

8 years compared to 3 years for the conventional fluorescent lamps.

Recently, there has been a trend towards lower driving frequencies used

in the ICP discharges. This reduces the cost of power supply for the plasma

discharge. Low driving frequencies, together with the low pressures and sig-

nificant electron temperature regimes, drive the plasma into a regime of the

so-called anomalous skin effect, also called a nonlocal regime [2, 3, 4, 5, 6].

This regime, its features and difference from the regime of classical skin effect

will be discussed in the next section of this chapter.

1.2 Penetration of Electromagnetic Wave into

Plasma: A Brief Review

At first, we will review briefly a process of penetration of electromagnetic

wave into plasma. A self-consistent system of equations describing the pene-

tration of electromagnetic field into plasma consists of Maxwell’s equations:

∇×E = −1
c

∂B

∂t
; (1.3)

∇×H =
4π

c
j+

1

c

∂E

∂t
; (1.4)

∇ ·E =4πρ ; (1.5)

∇ ·B =0 , (1.6)

where ρ is a charge density ρ =
P
α

eαnα and j is a current density j =
P
α

eαnαvα,

H =(µµ0)
−1B, µ0 is the magnetic permittivity of vacuum (µ0 = 1 in Gaussian

system of units), µ is the magnetic permittivity of media. Here the index α

corresponds to a fluid of particles of sort α, usually electrons (α = e) and ions
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(α = i). Correspondingly, eα is the charge of particles of the sort α, nα is the

density of these particles, and vα is the flow velocity of the fluid of sort α.

The charge and current densities should be expressed in terms of electric and

magnetic fields E and B, and plasma-related quantities, in order to make the

system of equations closed. The simplest way to close the system of equations

is to use the so-called hydrodynamic approximation. In this approximation,

the charge and current densities are expressed in terms of E and B using

hydrodynamic equation of motion:

∂vα
∂t

+ (vα ·∇)vα = eα
mα

µ
E+

1

c
vα ×B

¶
− ∇pα

mαnα
− ναvα , (1.7)

and equation of continuity of the conducting fluid of sort α without sources

and sinks:
∂nα
∂t

+∇ · (nαvα) = 0 . (1.8)

In the equation of motion (1.7) pα is the pressure of the fluid of sort α, να

is the effective frequency of collisions of particles of sort α with other particles,

c is the speed of light in vacuum. All terms in the right-hand side of (1.7)

correspond to forces acting on the element of fluid of sort α: the first term

corresponds to the forces exerted by the electromagnetic field on the conducting

fluid, the second term corresponds to the force due to pressure gradient in the

fluid (hydrostatic force), and the third term corresponds to the friction due to

interparticle collisions.

Our system (1.3-1.8) needs one more equation in order to be closed; this

is an equation of state, which relates the pressure pα and the fluid density nα

and temperature Tα. If we assume the adiabatic change of the state of plasma

components (fluids of sort α), the equation of state is

pα = γ0Tαnα = (γ0/2)mαv
2
Tαnα , (1.9)

where vTα = (2Tα/mα)
1/2 is an average thermal velocity of particles of sort α,

γ0 is the adiabatic index.
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The hydrodynamic approximation, however, has some limitations, for ex-

ample, it is invalid if the plasma particle mean free path (the length of par-

ticle’s path between collisions) vTe/νe, or the distance that a particle travels

during a period of field oscillations vTe/ω, exceeds a characteristic length of

plasma or field inhomogeneity. In such cases a more rigorous and general, yet

more complicated, kinetic treatment is needed. It is based on the concept of

a distribution function fα(t, r,v) of particles of sort α. The distribution func-

tion is a statistical description of ensemble of plasma particles. The quantity

fα(t, r,v) dr dv is a probability to locate a particle of sort α, which has velocity

in the range [v,v+dv], in position with coordinates in the range [r, r+dr], at

the time instant t. The equation governing the behavior of the distribution

function is the Boltzmann equation:

∂fα
∂t

+ v·∂fα
∂r
+
1

mα
Fα · ∂fα

∂v
= Ŝ (fα) , (1.10)

where Fα is the total force acting on a particle of sort α, Ŝ (fα) is the colli-

sional operator which describes the evolution of the distribution function due

to collisions of all kinds between a particle of the sort α and all other particles.

In our consideration of electromagnetic wave penetration into plasma the total

force Fα is

Fα = eα

µ
E+

1

c
v×B

¶
. (1.11)

Note that this is the force acting on a particle, while in the hydrodynamic

equation of motion (1.7) the forces act on a fluid element.

The charge density ρ and the current density j are expressed in terms of

the distribution function fα in the following fashion:

ρ =
X
α

eα

Z
v

fα dv , (1.12)

j =
X
α

eα

Z
v

v fα dv. (1.13)

Here the integration is performed over the whole velocity space. The distribu-

tion function fα is expressed in terms of the fields E and B through (1.10).
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Figure 1.3: The idealized model of ICP of length L. The coordinate system
and typical RF field variation. The RF coil is to the left of x = 0.

Now that we have the system of equations describing the electromagnetic

field in plasma in either hydrodynamic or kinetic approximation, let us consider

the idealized model of either planar coil or cylindrical coil ICP, which is a model

of plasma slab [7] sketched on Fig. 1.3. In the case of planar coil configuration,

x corresponds to the axial coordinate of the cylindrical ICP, and z corresponds

to the radial coordinate, whereas in the case of cylindrical coil configuration, x

corresponds to the radial coordinate of the cylindrical ICP, and z corresponds

to the axial coordinate. In both cases, y represents the azimuthal coordinate

(azimuthal is the direction of the electric field in either configuration). The

electromagnetic field in the system can be represented as the field of a linearly

polarized electromagnetic wave with the field components Ey, Bz (TE-wave),

incident on plasma from the region x < 0 (where the antenna coil is located)

at a direct (90◦) angle. The electromagnetic field spatially decays with a

characteristic decay length δ, in the x-direction away from the position of the

antenna coil.

The idealization of this model is in assuming of strictly azimuthal symme-

try of the fields, while this is not exactly so in the real ICPs. Nevertheless,
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this idealized discharge model is applicable to describing real discharges if the

azimuthal asymmetry is not too large. Although the real discharge is cylin-

drical, we can use the idealized model of a planar plasma slab if the cylinder

radius is not small, i.e. R > δ. Typically, R is of the order of 10 cm, while

δ is of the order of 1 cm, therefore the idealized model is well applicable for

describing cylindrical plasma discharge.

The incident wave will partially reflect from plasma, and partially will

penetrate into plasma; the amplitudes of the reflected and penetrated waves

are determined from the boundary conditions for the electric and magnetic

fields, which should be satisfied at any point of the plasma boundary at any

moment of time. Therefore, if the dependence of fields of the incident wave

on time t is defined by exp (−iωt), the same time dependence should hold for
the fields of both reflected and penetrated waves, in linear theory and if the

plasma is stationary.

Let us derive an equation for the electric field of the wave in plasma and

in vacuum. Taking the curl of the first Maxwell’s equation (1.3) we get:

∇×∇×E = −1
c

∂

∂t
∇×B , (1.14)

and, using the second Maxwell’s equation (1.4), we have

∇×∇×E = −4π
c2

∂j

∂t
− 1

c2
∂2E

∂t2
. (1.15)

Using identity ∇×∇×E =∇ (∇ ·E)−∇2E and the third Maxwell’s equation
(1.5), we get for the left hand side ∇ ×∇ × E =∇ (4πρ) − ∇2E. Since the
electromagnetic wave is transverse, and the electric field Ey is directed along

the plasma boundary, there is no charge separation in plasma due to this field,

and therefore∇ (4πρ) = 0. Finally, taking into account the time dependence of
the fields exp (−iωt) and replacing ∂/∂t with −iω, we obtain a wave equation
for the electric field in plasma:

∇2E+ω2

c2
E = −4πiω

c2
j, (1.16)
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and in vacuum:

∇2E+ω2

c2
E = 0. (1.17)

The magnetic fields in plasma and in vacuum are defined from the electric

field using (1.3).

Now it is easy to write down the fields of the incident and reflected waves

in vacuum, using (1.17). For the incident wave Ey i = E0 exp (i (ω/c)x), Bz i =

Ey i, and for the reflected wave Ey r = RE0 exp (−i (ω/c)x), Bz r = −Ey r,

where E0 is the amplitude of the incident wave, R is the reflection coefficient

(here we dropped the common multiplier exp (−iωt)). The fields of the pene-
trated wave in plasma are defined by the Eq. (1.16). The reflection coefficient

R and the amplitude of the penetrated wave in plasma E(0), B(0) are deter-

mined by the condition of continuity of tangential components of electric and

magnetic fields at the plasma boundary x = 0:

Ai(0) +Ar(0) = A(0); A = Ey or Bz. (1.18)

Here Ai, Ar are the amplitudes of incident and reflected wave, respectively,

and A(0) is the amplitude of the fields in plasma (penetrated wave). Equation

(1.16) needs to be closed by an equation that relates the current density j

with the electric field E in plasma (Ohm’s law). This relation between j

and E depends on plasma properties, and it defines how the electromagnetic

field penetrates into plasma. Below we will review briefly the penetration of

electromagnetic wave into cold plasma (classical skin effect) and into warm

plasma (anomalous skin effect).

1.2.1 Skin Effect

Classical Skin Effect

First let us consider penetration of the electromagnetic wave into cold

plasma consisting of two sorts of charged particles, electrons and ions, and

neutral gas atoms. “Cold” means that both the electron mean free path vTe/νe
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(here vTe is the electron mean thermal velocity, and νe is the frequency of col-

lisions of the electron with all other particles) and the distance that a thermal

electron travels during the period of fields oscillations vTe/ω is small compared

to the characteristic length δ of fields inhomogeneity in plasma, vTe/δ << ω, νe.

The ions are assumed to be cold and immobile. The case of cold plasma can

be treated within the hydrodynamic approximation (1.7-1.8). Since the ions

are immobile, the only meaningful fluid equations are the equations of motion

and of continuity for the cold electron component of the plasma:

∂ve
∂t

+ (ve ·∇)ve = − e

me

µ
E+

1

c
ve ×B

¶
− νeve , (1.19)

∂ne
∂t

+∇ · (neve) = 0 . (1.20)

Let us consider weak fields; the electron fluid velocity and density can then

be represented as ve = v0e + ṽe and ne = n0e + ñe respectively, where v0e and

n0e are the equilibrium values, and ṽe and ñe are the small perturbed values

due to the weak fields, ṽe << v0e, ñe << n0e. This separation allows us to

simplify the problem by linearizing the Eq. (1.19), yielding

∂ṽe
∂t

= − e

me

µ
E+

1

c
v0e ×B

¶
− νeṽe . (1.21)

As the plasma is stationary, the time dependence of ṽe is the same as that

of E ∼ exp (−iωt). Replacing the time derivative with −iω, we get for the
electron fluid velocity perturbation due to the electric field:

ṽe = − e

me

i

ω + iνe
E. (1.22)

The electric current density is j ≡−eneve. Neglecting the term proportional
to E3, which is small, we get for the current density

j =− en0eṽe =
e2n0e
me

i

ω + iνe
E, (1.23)

which represents the Ohm’s law for cold plasma, j =σE, where σ = (i/4π) ×
×ω2pe/(ω+iνe) is the conductivity of the cold plasma, and ωpe =

p
4πe2n0e/me
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is the electron plasma frequency. Using (1.23), the equation (1.16) for the

electric field Ey(x, t) in plasma becomes

∂2Ey

∂x2
+
ω2

c2
Ey = −

ω2pe
c2

ω

ω + iνe
Ey. (1.24)

From (1.24) it is now possible to write down the fields in plasma as Ey(x) =

Ey(0) exp (ikx), Bz(x) = (ck/ω)Ey(x), where the wavenumber k is defined as

k2 =
ω2

c2
+

ω2pe
c2

ω

ω + iνe
. (1.25)

If k is an imaginary or complex number, then the fields in plasma exponen-

tially decay away from the plasma boundary, Ey(x) = Ey(0) exp(− Im(k)x +
iRe(k)x) (note that, in order to rule out the exponentially growing solution,

we take Im(k) > 0 for k defined from (1.25) in semi-infinite plasma). This

fast spatial decay of the electromagnetic field in plasma is called a skin ef-

fect. In the case of high frequencies ω the collisions can be neglected, and

for νe << ω < ωpe we have a collisionless skin effect (k is purely imaginary).

For the case ω > ωpe >> νe the electromagnetic wave propagates in plasma

without decaying (k is real), i.e. there is no skin effect. In a general case, k is

a complex number.

We can introduce the characteristic depth of penetration of the electro-

magnetic wave into plasma, δ = (Im(k))−1, which is also called a skin depth.

This is the depth at which the amplitude of the decaying fields of the wave is

reduced by a factor of e = 2.71... The skin depth is defined from (1.25) as

δ =
c

ωpe

µ
1 +

ν2e
ω2

¶1/4
1

cos (φ/2)
, (1.26)

where φ = arctan (νe/ω) [2] (the term ω2/c2, corresponding to the displace-

ment current (1/c) ∂E/∂t, has been neglected in derivation of (1.26). This can

be done for relatively low frequencies, such as RF). In the case of high frequen-

cies νe << ω < ωpe the skin depth does not depend on the wave frequency,

δ = c/ωpe (collisionless limit). In a low frequency limit or in a highly collisional

plasma, νe >> ω, ω2pe >> νeω, the skin depth is δ = c/ωpe (2νe/ω)
1/2.
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The skin effect in cold plasma considered here is called the classical skin

effect, and (1.26) defines the classical skin depth. The regime of classical skin

effect is also called the local regime [3]. This name comes from the form of

the Ohm’s law in cold plasma (1.23): the relation between the electric field

and current in plasma is “local”, i.e. the current at some location in plasma

depends only on the electric field at the very same location. However, this is

true only in a cold plasma, when vTe/δ << ω, νe; if the electrons are not cold,

the Ohm’s law does not have the simple local form (1.23) anymore, and the

skin effect is much more complex than the classical skin effect.

Anomalous Skin Effect

Let us now consider the penetration of the electromagnetic wave into

plasma with the electrons that are not cold anymore; the ions are still as-

sumed to be cold and immobile. With the electrons being “warm” the condi-

tion for the classical skin effect is violated, so that ω, νe . vTe/δ. With the

characteristic wavenumber of the electromagnetic wave k ∼ 1/δ this condition
implies that the electron mean thermal velocity is of the order of, or larger

than, the wave phase velocity, and the mean free path of an electron vTe/νe

is larger than the characteristic scale of the field inhomogeneity. The shape of

the electromagnetic field in plasma, as well as the characteristic depth of its

penetration into plasma, depends critically on the form of Ohm’s law, which

does not have the simple form (1.23) for warm electrons ω, νe . vTe/δ. As an

electron travels a significant distance between collisions, it is affected by the

electromagnetic field along its whole path (the electron “samples” the field),

before a next collision randomizes its velocity. Therefore, the velocity of a ther-

mal electron depends not only on the electromagnetic field at the electron’s

current location, as in the case of cold electrons, but also on the field along

the whole path of the electron. The relation between the electron current and
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the electric field has a “nonlocal” form:

j (x) =

Z
σ (x, x0)E (x0) dx0, (1.27)

where σ (x, x0) is the “nonlocal conductivity”, and the integration is generally

performed over the entire volume of plasma. The derivation of (1.27) requires

the kinetic approach; this will be discussed in more details in Chapter 2.

Substituting j (x) into (1.16) we get the integro-differential equation for the

electric field Ey in plasma:

∂2Ey

∂x2
+
ω2

c2
Ey = −4πiω

c2

Z
σ (x, x0)Ey (x

0) dx0. (1.28)

The solution of this equation will be discussed in Chapter 2; however, it is

almost evident now that the solution for the electric field in plasma does not

have the simple exponential shape, as in the case of classical skin effect. As

we will see in Chapter 2, the spatial profile of the electromagnetic field in

plasma in the case of warm electrons is rather complicated and nonmonotonic.

However, it is possible to derive a qualitatively correct expression for the skin

depth in the case of warm electrons, using the expression for the classical skin

depth. The qualitative scheme of doing this is as follows. Since the electron

mean free path is of the order of, or larger than, the characteristic scale of the

field inhomogeneity, i.e. the skin depth, the collisions are rare within the region

where the electromagnetic field is significant (the skin region), i.e. the plasma

is in nearly collisionless regime. The collisions that become important are the

reflections of electrons in the skin region (of the width δ) from the plasma

boundary; the effective frequency of such collisions is vTe/δ. Replacing νe with

vTe/δ [5, 8] in the expression for the classical skin depth δ = c/ωpe (2νe/ω)
1/2,

we obtain the equation

δ =
c

ωpe

µ
2vTe
ωδ

¶1/2
, (1.29)

which yields a qualitatively correct expression for the skin depth δa in nearly

collisionless plasma with warm electrons:

δa =

µ
2c2vTe
ω2peω

¶1/3
. (1.30)
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Comparing δa to the classical skin depth δ = c/ωpe (2νe/ω)
1/2, we see, first

of all, that the dependence on the wave frequency is quite different. This

“anomalous” frequency dependence, together with other “abnormalities” of

the skin effect in a warm plasma, gave the skin effect in plasma with warm

electrons a name — anomalous skin effect. The index a in (1.30) implies that

δa is the anomalous skin depth. A regime of the anomalous skin effect takes

place for ω, νe . vTe/δa, and it is also called a nonlocal regime [2, 3, 4, 5, 6],

due to the nonlocal form of the Ohm’s law (1.27).

1.2.2 Wave Power Absorption/Plasma Heating

Acceleration of plasma electrons by the field of electromagnetic wave leads

to the transfer of energy from the wave to plasma electrons. The electron ve-

locities are randomized due to intraspecies (electron-electron) and interspecies

(electron-other particles) collisions, and collisions of electrons with the walls

confining the plasma. As a result, the mean kinetic energy of the electrons is in-

creased, causing the heating of plasma electrons by the electromagnetic wave.

This is the process that sustains plasma, as the heated electrons ionize gas

atoms when colliding with them. As the electron temperature increases, the

process of electron heating is compensated by the process of electron cooling

due to their inelastic collisions with other particles (ionization), and therefore

the equilibrium state of plasma with certain degree of ionization is established.

To find the power transferred from the electromagnetic wave to plasma

electrons, we calculate the work performed by the electromagnetic field on one

plasma electron: dA1 = −eE · dr, where dr is the displacement of the electron
(note that the magnetic field does not perform work). Therefore the power

transferred from the electromagnetic field to the electron is w1 = dA1/dt =

−eE · v, where v is the electron velocity. Averaging over all electrons, we find
the density of power transferred from the electromagnetic wave to the plasma

as w = −enE · hvi= E · j, where j is the electron current density in plasma.
To better understand the process of wave power transfer to plasma, let us
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consider two different types of power absorption (plasma heating). First type

is the absorption due to collisions of electrons with other particles, called a

collisional absorption, or collisional heating. Let us consider the wave power

absorption in cold collisional plasma in hydrodynamic approximation. The

Ohm’s law is local and is given by (1.23). The time averaged power transferred

from the wave field to plasma electrons, also called the absorbed power, w =

hE · ji=1/2Re (E · j∗), where j∗ is a complex conjugate of j, is

w =
ω2pe
8π
|E|2 νe

ν2e + ω2
. (1.31)

It is seen that the collisional absorption (1.31) diminishes when collision fre-

quency is reduced. In a case of no collisions the current density in cold plasma

becomes j =ω2pe/ (8πω) iE, i.e. the current and the electric field are out of phase

by π/2, and therefore there is no power transfer from the field to plasma. If

collisions are present, the phase difference between the current and the electric

field is different from π/2, causing the power transfer from the wave to plasma

(1.31).

However, if plasma is not cold, i.e. electron thermal velocity is comparable

to the wave phase velocity, then another type of heating, a collisionless, or

resonant heating, occurs. This type of heating does not require collisions.

The effect was first recognized by Landau in his seminal work [9] where he

considered the initial value problem, yielding the temporal damping of an

infinite (in space) longitudinal (Langmuir) wave, which is usually referred to

as Landau damping. He also considered the boundary value problem, yielding

a spatial decay of the longitudinal wave launched from the plasma boundary.

The spatial decay of the transverse (electromagnetic wave) due to the wave-

particle interaction (the anomalous skin effect) was studied later [2, 10, 11, 12,

13, 14].

The mechanism of collisionless heating by the electromagnetic wave is the

resonant interaction of the wave with plasma electrons. This effect requires

kinetic description; this will be done in detail in Chapter 3, while here we
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will give a qualitative description of collisionless heating. With a Maxwellian

distribution function (typical for warm plasma) there are electrons in plasma

moving both faster and slower than the wave phase velocity ω/k. Electrons

having a velocity close to ω/k along the direction of wave propagation are

in resonance with the wave, meaning that they interact with the wave field

most efficiently. These electrons, called resonant electrons, experience almost

static field, being effectively accelerated by it, unlike all other electrons which

experience time-varying field which provides much reduced acceleration. As

a result, only the resonant electrons are being heated by the electromagnetic

wave in collisionless plasma. Note that the plasma has to be warm in order to

have a significant number of electrons in resonance with the wave. Since the

ICP discharge typically operate in the regime where the electrons are warm,

the resonant heating is expected to be important there. However, the electron

collisions are also expected to be of importance. One of the expected effects

of collisions on collisionless heating is the detuning of the resonance between

the wave and electrons. In Chapter 3, using kinetic approach, we will discuss

quantitatively the evidence of collisionless (resonant) heating in ICP, as well

as the cooperative effect of electron thermal motion and collisions on plasma

heating by the electromagnetic wave.

1.2.3 Ponderomotive Force

When considering the penetration of electromagnetic wave into plasma,

beside the heating, we also have to consider the force exerted by the wave on

plasma. This force is important because it affects the plasma density profile

[7, 15, 16, 17] and the electron energy distribution function [7, 15, 18].

The electromagnetic wave incident on plasma carries momentum p =

E2/ (4πc)n, where n is the direction of the wave propagation. The wave

partially reflects from and partially penetrates into plasma. The penetrated

wave loses its momentum to plasma as the wave amplitude decays inside the

plasma. Both wave reflection from plasma and wave decay in plasma lead to
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the momentum transfer to the plasma, i.e. a force is exerted on plasma. This

force is called a ponderomotive force. Historically, the ponderomotive force

referred to a force exerted by constant electrostatic field on dielectric, how-

ever, this term has been adopted to also refer to an average force due to high

frequency electromagnetic field.

The ponderomotive force can also be viewed as a nonlinear force caused by

nonuniformity of energy density of electromagnetic field in media. This force

pushes electrons away from regions of strong field towards regions of weaker

field. For the introduction purposes, let us derive the classical expression for

the ponderomotive force exerted by electromagnetic field on cold collisional

plasma [1, 19].

The momentum equation for a single electron in electromagnetic field reads

me
dv

dt
= −e

µ
E+

1

c
v×B

¶
−meνev, (1.32)

where E and B are evaluated at the instantaneous position of the electron,

therefore both terms are nonlinear. In the equivalent fluid formulation, E and

B are evaluated in laboratory frame, and the convective derivative has to be

added so that dv/dt = ∂v/∂t+(v ·∇)v, and we also have two nonlinear terms
(v ·∇)v and v×B.
Following Johnston [19] and Schmidt [20], we solve (1.32) by orders. In

first order, let the local RF electric field be E(1) = Es exp (−iωt) + c.c., where

Es (which is generally a complex number) denotes spatial part of the field,

and c.c. denotes complex conjugate. Neglecting nonlinear terms in (1.32), we

obtain for the electron velocity v(1) and excursion dr(1):

v(1) = − e

me

Es

iω

1− iνe/ω

1 + ν2e/ω
2
exp (−iωt) + c.c., (1.33)

dr(1) = − e

me

Es

ω2
1− iνe/ω

1 + ν2e/ω
2
exp (−iωt) + c.c..

Faraday’s law gives for the magnetic field B(1):

B(1) = −ic
ω
∇×Es exp (−iωt) + c.c. (1.34)
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In second order, the term v(1)×B(1) should be retained in (1.32), and E
must be evaluated at the position r0 + dr(1). The second-order equation for

v(2) is

me
dv(2)

dt
= −e

·¡
dr(1) ·∇¢E(1) + 1

c
v(1) ×B(1)

¸
−meνev

(2). (1.35)

Substituting the first order terms from (1.33), and averaging over the field

period 2π/ω, we obtain [19]:

d
­
v(2)

®
dt

+ νe
­
v(2)

®
= − e2

2m2
eω

2

¡
1 + ν2e/ω

2
¢−1 ×

×{Re [(Es ·∇)E∗s +Es ×∇×E∗s] + (1.36)

+
νe
ω
Im [(Es ·∇)E∗s +Es ×∇×E∗s]

o
Using the vector identity Es ×∇×E∗s = Es · (∇E∗s)− (Es ·∇)E∗s, we get

(Es ·∇)E∗s +Es ×∇×E∗s = Es · (∇E∗s) = Esj

∂E∗sj
∂xi

êi. (1.37)

Here a summation on repeated indices is assumed, êi are unit basis vectors.

Multiplying the dc part of the force in the right-hand side of (1.36) by men we

get the dc part of ponderomotive force per unit volume:

Fdc
p = −

ω2pe
8πω2

¡
1 + ν2e/ω

2
¢−1 n

ReEs · (∇E∗s) +
νe
ω
ImEs · (∇E∗s)

o
. (1.38)

Now, ReEs · (∇E∗s) = 1/2 (Es · (∇E∗s) +E∗s · (∇Es)) = 1/2∇ (Es ·E∗s) =
1/2∇ |Es|2 . If we put Es = |Esj| exp

¡
iφj
¢
êj, where |Esj| is the projection of

Es onto êj, and φj is the spatial phase of Esj, then we get

ImEs · (∇E∗s) = −EsjE
∗
sj

∂φj
∂xi

êi, (1.39)

and finally for Fdc
p we get [19]:

Fdc
p = −

ω2pe
8πω2

¡
1 + ν2e/ω

2
¢−1 ·1

2
∇ |Es|2 − νe

ω
EsjE

∗
sj

∂φj
∂xi

êi

¸
. (1.40)
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Generally, the ponderomotive force, besides the dc term (1.40), also has

second and higher harmonic terms, investigated by Godyak et al. [4, 21]. How-

ever, in this thesis we will be interested in a dc ponderomotive force exerted

by a plane electromagnetic wave.

The first term in (1.40) is what is known as the gradient field term, and

shows that there is a time-averaged acceleration of particles towards regions

of electric field strength minima. This term is also referred to as Miller force

[22], thus we will call it FM :

FM = − ω2pe
8πω2

1

1 + ν2e/ω
2
∇ ­E2® , (1.41)

where h...i denotes time-averaging over the wave period (note that for an os-
cillating field hE2i = 1/2∇ |Es|2).
The second term in (1.40) only exists for a propagating wave since ∂φj/∂xi =

0 for a standing wave (except at nodes where Esj = 0). Physically this term

describes the wave momentum deposition into plasma due to collisions of elec-

trons, i.e. due to “viscous drag” of the wave by electrons. This is essentially a

radiation pressure on an absorber.

As it is seen from (1.40), in ICP with the electromagnetic wave propagating

and decaying inward the plasma, the ponderomotive force is directed inward

the plasma, thus pushing plasma away from the boundary [7].

This derivation of the ponderomotive force used an assumption of cold

electrons in plasma. The case of warm or hot electrons (the case of anomalous

skin effect) requires a different approach, which is based on kinetic equation

(1.10). This is done in Chapter 3.

1.3 Objective and Thesis Outline

The major objective of this thesis is to study the plasma heating and

ponderomotive force at the conditions of anomalous skin effect (in nonlocal

regime). Our goal is to develop a theory which provides a good insight on the
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basic physics of plasma heating and ponderomotive effect in nonlocal regime,

and is capable of describing the main features of the experimental data. As it

will be discussed below, to large extent the need for a new theoretical model

was highlighted by the observed discrepancies between the experimental data

and previously available theoretical predictions for the ponderomotive force.

This major objective can be divided into the following sub-objectives, out-

lining the structure of this thesis:

In Chapter 2 we review the theory of the anomalous skin effect. We also

present the typical results of experimental measurements of electromagnetic

field and electric current in plasma at conditions of anomalous skin effect, and

compare them with the theoretical results for anomalous skin effect. Also,

we present experimental results for plasma heating and ponderomotive effect

at conditions of anomalous skin effect, and compare them with the results of

classical theory. Then we review some theories of heating and ponderomotive

force that account for electron thermal motion, and on the basis of this review

the motivation for our theoretical work is given.

In Chapter 3 we develop our linear kinetic theory that allows to calculate

both plasma heating and ponderomotive force, taking into account both elec-

tron thermal motion and collisions. Under some simplifying assumptions, we

derive simple, ready-to-use expressions for plasma heating and ponderomotive

force, and compare the results of our theory with typical experimental results,

as well as with results of some other theories. In particular, we confirm theo-

retically the effect of thermal reduction of ponderomotive force in anomalous

regime, that was observed experimentally. Also, from our theory, we predict a

novel and rather interesting effect — the effect of reduction of total heating in

anomalous regime compared to purely collisional heating, that occurs at low

driving frequencies.

In Chapter 4 we develop a quasilinear theory of plasma heating in nonlocal

regime, in order to study the weakly-nonlinear influence of the induced RF

magnetic field on plasma heating. We show that taking into account of the
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weak electromagnetic field leads to a nonlinear deviation of heating at low

frequencies from the prediction of the linear theory. This nonlinear deviation

occurs mainly due to the nonlinear effect of the RF magnetic field, as shown

in Chapter 4.

Chapter 5 discusses Particle-In-Cell (PIC) simulation of ICP in nonlocal

regime with collisions. We introduce the basic principles of PIC method, and

present our 1d3v (1 spatial and 3 velocity components) PIC model with colli-

sions, designed for simulations of plasma heating in planar ICP by externally

applied electromagnetic field. The primary objectives for developing this PIC

code were: a) verification of our theory in general, and, in particular, of the

novel effect of reduction of heating at low frequencies, and b) investigation of

nonlinear effects, such as the RF magnetic field, on plasma heating. Using the

numerical code, we demonstrate the existence of collisionless heating, compare

the results on heating with the predictions of our linear theory, and discuss

deviations of the simulation results from the linear theory due to nonlinear

effects at low driving frequencies.

Finally, in Chapter 6 we list the major conclusions of this study, and present

suggestions for future research.
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Chapter 2

Inductively Coupled Plasma in

Nonlocal Regime

2.1 Anomalous Skin Effect

In the Introduction we gave a qualitative description of the anomalous skin

effect. Now we will give its quantitative description, based on the theoretical

models developed by different authors [2, 23, 24].

In 1967 Weibel [2] developed a theory of anomalous skin effect in plasma,

which is similar to theories of anomalous skin effect in metals developed earlier

[11, 25, 26, 27, 28]. Later, Kondratenko [23] and Shaing [24] developed virtually

the same theory for the penetration of TE electromagnetic waves into plasma

with warm electrons. Here we will give a brief overview of the theory of

anomalous skin effect for electromagnetic waves, based on [2, 23, 24].

Let us consider the penetration of weak electromagnetic field into isotropic

(no constant magnetic field) semi-infinite plasma occupying a region 0 < x <∞ .
The plasma boundary at x = 0 is assumed to be sharp, which is a good approxi-

mation if the width of the sheath (of the order of several Debye lengths) is much

smaller than the characteristic length of plasma inhomogeneity. The plasma

electrons are assumed to be warm, i.e. ω, νe . vTe/δ, which is the condition
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of anomalous skin effect, as we discussed in the Introduction. In this situation

we have to use the kinetic approach based on Boltzmann equation (1.10) for

electrons (the ions are assumed to be immobile). We can linearize the kinetic

equation (1.10) for the electron distribution function fe = f0e(v) + f̃e(v, r, t),

where f0e is the electron distribution function without the field (equilibrium

distribution), and f̃e is a small perturbation of the electron distribution func-

tion due to the field,
¯̄̄
f̃e

¯̄̄
¿ f0e. Neglecting the terms quadratic in small

quantities, and using the Bhatnagar-Gross-Krook (BGK) [29] collision term

Ŝ (fe) = −νef̃e, we obtain the linearized equation for f̃e:
∂f̃e
∂t
+ v · ∂f̃e

∂r
− e

me

µ
E+

1

c
v×B

¶
· ∂f0e
∂v

= −νef̃e. (2.1)

Assuming f0e to be isotropic, f0e = f0e(|v|), we get (v×B) ·∂f0e/∂v = 0, and
finally

∂f̃e
∂t
+ v · ∂f̃e

∂r
− e

me
E · ∂f0e

∂v
= −νef̃e. (2.2)

The electric field E of the incident wave has the form Ey(x) exp(−iωt)ŷ (for
simplicity we are considering the wave incident perpendicularly onto plasma).

Here ŷ is a unit vector along y, and y corresponds to the azimuthal direction

in cylindrical geometry (see Fig. 1.3). Then the equation (2.2) reduces to

−iωf̃e + vx
∂f̃e
∂x
− e

me
Ey(x)

∂f0e
∂vy

= −νef̃e. (2.3)

The general solution of this equation has the form [24]:

f̃e =

Z x

∞
dx0

D

vx
exp

ÃZ x0

x

νe − iω

vx
dx00
!
+ g exp

µ
−
Z x νe − iω

vx
dx0
¶
, (2.4)

where ∂g/∂x = 0, i.e. the arbitrary function g depends only on v, and D =

e/meE· (∂f0e/∂v) . The function g(v) has to be determined from boundary

conditions.

We need two boundary conditions to determine f̃e; the first condition states

that the electrons moving towards the plasma boundary (with vx < 0) from

x = ∞ are not under influence of the field E, i.e. f̃e(x = ∞) = 0 for vx < 0.
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This condition allows us to find the distribution function of electrons moving

towards the plasma boundary, f̃e(vx < 0):

f̃e(vx < 0) =

Z x

∞
dx

D

vx
exp

ÃZ x0

x

νe − iω

vx
dx0
!
. (2.5)

The second boundary condition is the condition of electron reflection from

the sheath potential at the plasma boundary, f̃e(xt, vx > 0) = p f̃e(xt, vx < 0),

where xt is the turning point for electrons (at this point the electrons are

turned by the sheath potential on the plasma edge, i.e. vx = 0), and p is

the relative number of electrons reflecting specularly from the sheath potential

at the plasma boundary. Neglecting the sheath spatial structure, we can say

that the electrons simply bounce off the plasma boundary at x = 0. Also,

if we assume that all electrons reflect specularly from the plasma boundary,

i.e. p = 1, we get for the second boundary condition: f̃e(x = 0, vx > 0) =

f̃e(x = 0, vx < 0). This gives the distribution function of electrons moving

away from the plasma boundary, f̃e(vx > 0) [24]:

f̃e(vx > 0) =

Z x

∞
dx0

D

vx
exp

ÃZ x0

x

νe − iω

vx
dx00
!
+ exp

µ
−
Z x

0

νe − iω

vx
dx0
¶
×

×
(Z 0

∞
dx0
"µ

D

vx

¶
ζ=−1

exp

ÃZ x0

0

µ
νe − iω

vx

¶
ζ=−1

dx00
!
−

−
µ
D

vx

¶
ζ=+1

exp

ÃZ x0

0

µ
νe − iω

vx

¶
ζ=+1

dx00
!#)

, (2.6)

where ζ = vx/ |vx|. The subscript ζ indicates the proper sign of vx that should
be taken inside the parentheses.

With the electric field having the form Ey(x) exp(−iωt)ŷ, we get for D in

f̃e:

D = −2evyEy

mev2Te
f0e. (2.7)

With this D the expressions for f̃e simplify to

f̃e(vx < 0) = − 2evy
mev2Te |vx|

f0e

Z ∞

x

dx0Ey(x
0) exp

µ
−νe − iω

|vx| (x− x0)
¶
, (2.8)
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f̃e(vx > 0) = − 2evy
mev2Te |vx|

f0e

½
exp

µ
−νe − iω

|vx| x

¶·Z ∞

0

dx0Ey(x
0)×

× exp
µ
−νe − iω

|vx| x0
¶
+

Z x

0

dx0Ey(x
0) exp

µ
νe − iω

|vx| x0
¶¸¾

.(2.9)

Now we can define the current density in plasma as jy = −e
R
vy f̃e d

3v.

To simplify the calculation of the current density and self-consistent electric

field, we extend the solution from 0 < x < ∞ to −∞ < x < ∞ so that

Ey(x) = Ey(−x). Note that although Ey defined in such a way is continuous

at x = 0, the derivative dEy/dx is not continuous because of the existence of

the coil current at x = 0. The current density is [24]

jy =
2√
π

n0e
2

mev2Te

Z ∞

−∞
dx0Ey(x

0)Σa(|x− x0|), (2.10)

where Σa(|x− x0|) is the nonlocal plasma conductivity,

Σa(|x− x0|) =
Z ∞

0

dt t3 exp(−t2)
Z π/2

0

dΘ
sin3Θ

cosΘ
exp

³
− a

t cosΘ
|x− x0|

´
,

(2.11)

and a = (νe − iω) /vTe.

As we see, the current density (2.10) has the form of nonlocal Ohm’s law

(ref. Eq. 1.27).

The spatial profile of the electric field Ey(x) is still unknown. To define it

self-consistently, we use the equation (1.16), which in our case has the following

form:
∂2Ey

∂x2
+

ω2

c2
Ey = −iα

Z ∞

−∞
dx0Σa(|x− x0|)Ey(x

0), (2.12)

where α = 8
√
πn0e

2ω/ (mevTec
2) = 2

¡
ω2pe/c

2
¢
(ω/
√
πvTe) .

Equation (2.12) can be solved by Fourier transformation. When doing

Fourier transform, we should keep in mind that dEy/dx is not continuous at

x = 0. The Fourier transformed equation (2.12) is [24]:µ
k2 − ω2

c2
− iασa(k)

¶
Ek = −2µ, (2.13)

where µ = dEy/dx|x=0+ = − dEy/dx|x=0− , Ek = 2
R∞
0

dxEy(x) cos (kx) is

the Fourier image of Ey(x), and σa(k) =
R∞
−∞ dxΣa(|x− x0|) exp (−ikx) is the
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Fourier image of nonlocal plasma conductivity Σa(|x− x0|). From (2.13) we

get for Ek:

Ek = − 2µ

k2 − (ω2/c2)− iασa(k)
. (2.14)

Finally, the self-consistent electric field in plasma at conditions of anoma-

lous skin effect is

Ey(x) = −2µ
π

Z ∞

0

dk
cos(kx)

k2 − (ω2/c2)− iασa(k)
. (2.15)

For low frequency oscillations, such as radio frequencies, the term (ω2/c2)

is small and can be neglected in (2.14-2.15).

The self-consistent electric current in plasma can be restored from its

Fourier image jk = σa(k)Ek.

An important characteristic of plasma, in terms of penetration of TE

electromagnetic wave into it, is the surface impedance, defined as ZH =

Ey(0)/Bz(0). Following Shaing [24] (or Kondratenko [23]), we get for the

surface impedance at low frequencies

ZH =
iω

c

2

π

Z ∞

0

dk

k2 − iασa(k)
. (2.16)

The surface impedance defines the reflection and transition coefficients of the

wave, R = (ZH − 1) / (ZH + 1) (for the perpendicularly incident wave) and

W = 1 − |R|2 accordingly, which in turn define what part of the wave power
gets reflected from plasma, and what part penetrates into plasma and gets

absorbed. Also, the characteristic depth of penetration of the electromagnetic

wave into plasma (skin depth) also depends on the surface impedance. If we

define the characteristic depth of penetration of magnetic field of the electro-

magnetic wave into plasma as λH = B−1z (0)
R∞
0

Bz(x)dx, then in terms of the

surface impedance ZH it becomes

λH = i
c

ω
ZH . (2.17)

We can also define the characteristic depth of penetration of electric field into

plasma as λE = E−1y (0)
R∞
0

Ey(x)dx. In terms of ZH it becomes [23]

λE =
iω

ck1ZH
, (2.18)
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where k1 is a wavenumber of the electromagnetic wave in plasma. In hydro-

dynamic limit λE and λH are the same, but in general they are different [23].

In the highly collisional limit νe À ω in cold plasma (kvTe/νe ¿ 1) we have

a ≈ νe/vTe, k/a ¿ 1, and the Fourier image of plasma conductivity reduces

to σa(k) ≈ (1/a)√π/2. The surface impedance (2.16) reduces to [24]:

ZH =
ω

c

1 + i√
2

³νe
ω

´1/2 c

ωpe
, (2.19)

and the collisional skin depth δc = c/ω |iZH | is

δc =
c

ωpe

r
2νe
ω

, (2.20)

which coincides with the classical skin depth (1.26) in the highly collisional

limit, as expected.

In the opposite collisionless limit, νe ¿ ω and kvTe/νe À 1, we have

σa(k) ≈ π/2k, and the surface impedance is [23, 24]:

ZH ≈ ω

c

2

3
(απ/2)−1/3

µ
1√
3
+ i

¶
, (2.21)

and the corresponding anomalous skin depth is

δa =

µ
vTe√
π

c2

ω2peω

¶1/3
. (2.22)

As we see, the anomalous skin depth in the collisionless limit coincides with

the expression (1.30) for δa derived using the qualitative analysis (see the

Introduction, Eq. 1.30).

Thus the self-consistent theory of anomalous skin effect [2, 23, 24] provides

the correct expressions for the skin depth in the limiting cases of collisional and

collisionless plasma. In the intermediate regimes one has to use the complete

expression for the surface impedance (2.16) to estimate the skin depth.

The equation (2.12) can also be cast in the following form [2, 3]:

d2Ey

dx2
= iΛ

Z ∞

−∞
Σa (ς |x− x0|)Ey(x

0)dx0, (2.23)
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where the parameters Λ and ς are defined as

Λ =
³ωpevTe

c

´2 ω

(ω2 + ν2e)
3/2

, (2.24)

ς = i exp (−iφ) , φ = arctan (νe/ω). The parameter Λ is a fundamental

measure of nonlocality of electromagnetic phenomena in plasmas [3]. It is

proportional to the square of a ratio of the effective mean free path λeff =

vTe/
p
ω2 + ν2e to the classical (local) skin depth, Λ = (λeff/δ)

2. Therefore,

the nonlocal effects are pronounced for Λ > 1, when the electron mean free

path exceeds the skin depth, and they are small otherwise. It is interesting to

note that Λ < 1 for both high and low driving frequencies, i.e. the skin effect

is classical both at low (ω < νe (cνe/ωpevTe)
2) and high frequencies. However,

this observation is valid only in planar geometry.

We see from the expression (2.15) for the electric field in plasma in nonlocal

regime (the regime of anomalous skin effect) that the field profile in plasma

does not have the simple exponentially decaying form as in the local regime

(classical skin effect). In the nonlocal regime the field profile is strongly affected

by the thermal motion of electrons. Electrons that have acquired momentum

from the electric field in the skin layer carry this momentum into bulk plasma

due to their thermal motion, generating the high-frequency electric current

deeper inside the plasma. Because of this, the decay of both the current and

electric field in plasma are governed by two characteristic scales of different

order of magnitude — δ and λ (electron mean free path) [3]. The typical

profiles of electric field in plasma at conditions of anomalous skin effect for

different Λ (different degrees of nonlocality of electromagnetic phenomena,

corresponding to different driving frequencies), are shown in Fig. 2.1. As we

see, the fields in plasma exhibit complex nonmonotonic behavior; however, we

should note that near the plasma boundary, where the field amplitude is the

largest, and where the most plasma heating and ponderomotive effect should

be expected, the spatial profile of the electromagnetic field is very close to

the exponentially decaying profile, with the appropriate anomalous skin depth,
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Figure 2.1: Spatial profiles of electric field amplitude for different values of
the nonlocality parameter Λ, corresponding to different driving frequencies.
The plasma electron temperature is 10 eV, electron-atom collision frequency
νen ∼ νe = 0.15 · 107 s−1. Parameters for lines 1-6: line 1: ω/2π = 50 MHz
(Λ ≈ 0.03), line 2: ω/2π = 5 MHz (Λ ≈ 2.8), line 3: ω/2π = 1 MHz (Λ ≈ 65),
line 4: ω/2π = 0.4 MHz (Λ ≈ 280), line 5: ω/2π = 0.1 MHz (Λ ≈ 400), line 6:
ω/2π = 0.03 MHz (Λ ≈ 152).
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which is generally greater than the classical skin depth at the same parameters.

This observation is quite important and will be used for simplifying our theory

of plasma heating and ponderomotive force in nonlocal regime, which we will

develop in Chapter 3.

Note from Fig. 2.1 how the characteristic depth of electromagnetic field

penetration increases with the decrease of ω, in accordance with the quali-

tative expression for the anomalous skin depth (1.30). Also we see that the

nonmonotonic behavior of the field profile is most pronounced for large values

of nonlocality parameter Λ, while for Λ < 1, when plasma is in local regime,

the field profile is exponential (line 1 on Fig. 2.1). Note the previously men-

tioned transition to local regime at low frequencies as well (line 6 in Fig. 2.1

is close to the exponential profile).

Now that we reviewed the self-consistent theory of anomalous skin effect,

and calculated the field and current profiles in plasma, let us consider the

experimental measurements of electromagnetic field and electric current in

ICP in nonlocal regime, as well as the measurements of plasma heating and

ponderomotive effect in nonlocal regime of ICP.

2.2 Experimental Measurements

Recently, Godyak et al. [4, 30, 31, 32] conducted a series of experimental

measurements of electromagnetic field and current structure in ICP operating

in nonlocal regime (regime of anomalous skin effect), as well as measurements

of plasma heating and ponderomotive effects in this regime. Here we will

review briefly the experimental setup, discharge parameters used, and typical

results.

In their experiment Godyak et al. used a planar coil configuration (Fig. 1.2)

of argon ICP. They used the cylindrical stainless steel discharge chamber with

a Pyrex glass bottom. The chamber inside diameter was 19.8 cm, its length L

was 10.5 cm, and the glass thickness was 1.27 cm. A five turn planar induction
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coil was mounted 1.9 cm below the bottom surface of the discharge chamber.

To achieve a high degree of azimuthal symmetry, each turn of the induction

coil was made concentric about the center of the discharge chamber with a

radial conducting bridge between them.

A two dimensional magnetic probe was used for simultaneous measurement

of the radial and axial components of the RF magnetic field magnitude and

phase along the discharge axis x (corresponding to the direction of propaga-

tion of the electromagnetic wave in plasma) at a fixed radius of 4 cm, which

corresponds approximately to maximum of the electromagnetic field in the

cylindrical discharge (the radial dependence of electromagnetic field in a cylin-

drical discharge is J1(µ1r/R), where J1 is the cylindrical Bessel function of the

first order, µ1 ≈ 3.83 is the first root of J1, R is the cylinder inner radius. The
maximum of J1(µ1r/R) with R = 9.9 cm corresponds to r ≈ 4.75 cm). The
measured magnetic field components were used to find the azimuthal electric

field and current in plasma using Maxwell’s equations in the following form:

Eθ(x) = −iω
R
Br dx and jθ(x) = c/(4π) (dBr/dx− dBx/dr) with the bound-

ary condition E = 0 at the metal wall (x = 10.5 cm).

Also a Langmuir probe was used for measurement of plasma density n,

plasma potential V and electron energy distribution function (EEDF). The

collision frequency νe was determined from the measured EEDF using argon

cross sections according to [32, 33, 34].

The measurements were made in ICP discharge operating at driving fre-

quencies ω/2π = 0.45, 3.39, 6.78 and 13.56 MHz with the discharge powers

Ppl = 25, 50, 100 and 200 W. The discharge power Ppl was determined as the

difference between the power transmitted to the induction coil (forward mi-

nus reflected power) and the losses in the coil and impedance matching circuit

determined a priori (before the experiment) as a function of coil current and

temperature. In what follows, the discharge power refers to the total power

dissipated in the plasma. The gas pressures in the discharge chamber ranged

from 0.3 to 100 mTorr, and the electron temperature in plasma was of the
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order of few eV.

2.2.1 Structure of Electromagnetic field and Current

The typical results for axial distribution of electric field |E| and current
density in plasma |j| (rms — root mean square, phA ·Ai), and axial distribu-
tion of phases of the electric field and the current, relative to the phase of the

electric field in vacuum, are shown on Figs. 2.2, 2.3.

Figure 2.2: The RF electric field distribution (rms value and relative phase)
for p = 1 mTorr (left), and p = 10 mTorr (right), by Godyak et al. [30].
The tangent line shows the slope of the phase equal to −ω/vTe. The numbers
in parenthesis are the induction coil current values. The discharge driving
frequency ω/2π = 6.78 MHz.

As seen on Fig. 2.2, within the skin layer near the glass window, where the

RF field is largest, the field amplitude decays exponentially and the field phase
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decreases linearly as is found from the classical skin effect theory (see Chapter

1). However, deeper into plasma, the RF field profile becomes nonmonotonic,

just as we have seen on theoretical plots of field profiles in anomalous skin

effect regime in Fig. 2.1. The phase velocity of the electromagnetic wave

vph = −ω (dφ/dx)−1 (φ is the relative field phase) becomes equal to the electron
thermal velocity at some point within the skin layer, which suggests that the

resonant heating of electrons by the electromagnetic wave is important.

Figure 2.3: The RF current density distribution (rms value and relative phase)
for p = 1 mTorr (left) and p = 10 mTorr (right), by Godyak et al. [30]. The
discharge driving frequency ω/2π = 6.78 MHz.

The RF current density and its phase distribution (Fig. 2.3) demonstrate

the effect of RF current transport out of the skin layer, leading to formation of

a second current layer (with current that is opposite in direction to that in the

skin layer) near the right (metal) wall of the chamber [30]. The peak current
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density in the second current layer for p = 1 mTorr at x ≈ 9 cm is just ten

times less than that in the first (skin) layer at x ≈ 1 cm, while the RF electric
field at these points differs by a factor of 50. The phase difference of the RF

current at these points agrees well with the estimate for the phase of the cur-

rent transferred by thermal electrons, ∆φ ∼ ω∆x/vTe ≈ 240◦. This suggests
that the current is being transported from the skin layer into bulk plasma by

thermal electrons. A similar pattern is seen for p = 10 mTorr, however, as the

pressure increases, the second current layer becomes less pronounced, since the

electron mean free path becomes significantly reduced, and thus the current

thermal transport in plasma is reduced.

These results demonstrate the nonlocal properties of typical ICP discharges.

They also demonstrate the agreement with the theory of anomalous skin effect,

at least in what concerns the complicated, nonmonotonic shape of the elec-

tromagnetic field and electric current in plasma. We also observe in Fig. 2.2

that, just as in Fig. 2.1, the electric field and current density near the plasma

boundary decay almost exponentially, as in the case of classical skin effect. We

will use this observation later.

2.2.2 Plasma Heating

Since the electrons in ICP plasma are warm and the electromagnetic wave

phase velocity becomes equal to vTe (as we have seen from Fig. 2.2), the reso-

nant (collisionless) heating of electrons by the wave should be important, and

this has been well recognized [35]. However, until recently, there was no di-

rect experimental evidence of collisionless heating. In 1998, Godyak et al. [32]

measured the plasma heating in ICP (using the experimental setup described

above) and compared it to the purely collisional heating. The density of ab-

sorbed power (plasma heating) was calculated from the measured current den-

sity and electric field in plasma as

w(x) = E(x) j(x) cos
£
φE(x)− φj(x)

¤
, (2.25)
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where E(x) and j(x) are the rms magnitudes of azimuthal field and current

density, φE(x) and φj(x) are the field and current phases, respectively. The to-

tal power absorption by the plasma can be characterized by the total absorbed

power flux into plasma

S(x) =

Z x

0

w(x0)dx0. (2.26)

Evidence of Collisionless Heating in Nonlocal Regime

The absorbed power flux is shown in Fig. 2.4 for 1.0 and 0.3 mTorr. For

both pressures, the driving frequency was 6.78 MHz, and the discharge power

was 100 W. For comparison, the purely collisional absorbed power flux, calcu-

lated from a cold plasma theory (using Eqs. 1.31 and 2.26) is also shown in

Fig. 2.4. It is seen that the measured absorbed power flux significantly exceeds

the purely collisional one. This implies that the collisionless heating is quite

important and should be taken into account to correctly evaluate the heating

of typical ICP. Thus the experimental evidence of collisionless heating in ICP

in nonlocal regime has been provided by Godyak et al.

It should be noted that in calculating the purely collisional part of the

absorbed power flux (2.26) with (1.31) in Fig. 2.4, the same collision frequency

νe should be used in (1.31) as that measured in the warm ICP discharge.

More detailed comments on how to calculate the purely collisional part of

power absorption can be found in [32].

A plasma pressure dependence of the ratio of the measured absorbed power

flux to the purely collisional value is shown in Fig. 2.5, for the driving fre-

quencies of 3.39, 6.78 and 13.56 MHz. It is seen that at low gas pressures

p < 10 mTorr the measured power absorption significantly exceeds the purely

collisional one, while at higher pressures from 10 to 100 mTorr the measured

power absorption almost coincides with the purely collisional value, implying

that the collisional heating dominates over the collisionless (resonant) heat-

ing at high pressures, when the collisions of electrons with gas atoms become

frequent, νe > vTe/δ.
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Figure 2.4: Absorbed power flux (2.26) for p = 0.3 and 1.0 mTorr, by
Godyak et al. [32]. The purely collisional power flux is shown by squares.

Figure 2.5: The ratio of the total measured to purely collisional absorbed
power flux as a function of argon pressure, by Godyak et al. [32].
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Negative Power Absorption in Nonlocal Regime

The spatial profiles of the measured absorbed power density (2.25) for dif-

ferent driving frequencies [31] are shown on Fig. 2.6. These profiles reveal

another interesting feature of bounded plasma in nonlocal regime — the exis-

tence of regions of negative power absorption in plasma (denoted by the “-”

sign on Fig. 2.6). In these regions the power is transferred from plasma elec-

trons back to the electromagnetic wave. As it is seen from Fig. 2.6, the number

Figure 2.6: Experimental power absorption profiles for different driving fre-
quencies, by Godyak et.al. [31]. Signs denote regions of positive (+) and
negative (-) power absorption.

of regions with negative power absorption depends on the driving frequency,

and there is no negative power absorption for ω/2π = 3.39 MHz. The distance

between the maximum in the RF current density and first zero crossing point

in the absorbed power density profile is inversely proportional to the driving

frequency. This suggests that the reason for these regions of negative power
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absorption is the thermal diffusion of current from the skin layer deeper into

plasma, as we have discussed above. Indeed, the absorbed power density is

proportional to cos
£
φE(x)− φj(x)

¤
(ref. Eq. 2.25), therefore, if the phase

difference between the current and the field increases by 180◦, then the power

absorption becomes negative. The current is formed mainly in the skin layer,

where the electric field is large, and is transferred by thermal electrons deeper

into plasma with mean velocity vTe, preserving its phase. While the current

is transferred, the electric field changes its phase (due to its time oscillations),

and after a time period π/ω its phase inverts, making the phase difference be-

tween the field and the current change by 180◦. During this time of inversion

of the phase of the electric field, the current gets transferred into plasma to

a distance of the order of vTeπ/ω. Therefore, the power absorption should

inverse its sign (become negative) at the distance vTeπ/ω from the skin layer.

For ω = 2π · 13.56 MHz, vTe = 1.06 · 108 cm/s (the value in the experiment
of Godyak et al.) our qualitative analysis gives the position of the region of

negative power absorption at approximately 3.9 cm from the plasma boundary,

which agrees very well with the actual position of negative power absorption

region (see Fig. 2.6).

As we have seen from the theory of anomalous skin effect, the degree of

nonlocality of plasma is described by a fundamental parameter of nonlocality

[3, 12]:

Λ =

µ
λeff
δ

¶2
=
³ωpevTe

c

´2 ω

(ω2 + ν2e)
3/2

. (2.27)

This expression for Λ is valid for planar plasma. Here λeff is the electron

effective mean free path, δ is the classical skin depth. For Λ > 1 plasma is in

nonlocal regime (anomalous skin effect), for Λ < 1 plasma is in local regime

(classical skin effect). In this experiment, Λ ≈ 1, therefore, both collisions and
electron thermal motion are important.

As the negative power absorption is caused by the electron thermal motion,

it is a purely nonlocal effect, and it is expected to be more pronounced at lower
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frequencies, when Λ is large. However, as we see from Fig. 2.6, at 3.39 MHz

there is no negative power absorption. While the nonlocal effects are more

important at 3.39 MHz than at 6.78 and 13.56 MHz, the position of the first

region of negative power absorption vTeπ/ω, being inversely proportional to

the driving frequency, simply is not within the discharge chamber (the estimate

vTeπ/ω gives the position of negative absorption at ≈ 15 cm from the plasma

boundary, while the length of discharge chamber is only 10.5 cm), and thus

the negative power absorption is not seen at 3.39 MHz.

In Chapter 3 we will develop a kinetic model of ICP in nonlocal regime

which, besides all, predicts the negative power absorption very similar to that

observed experimentally by Godyak et al.

2.2.3 Ponderomotive Effect

In modern ICP sources there is a trend towards lower driving frequencies.

At low frequencies, the RF Lorentz force FL = −e/c (v×B) becomes sig-
nificant, therefore a significant ponderomotive effect is expected. The pon-

deromotive force in cold collisional plasma is given by the Miller formula

(1.41), which has the form of a potential force FM = −∇UM with the poten-

tial UM = ε = me hvi2 /2, where ε is the average electron oscillatory energy,
hvi = e/(

√
2me)Eθ/

p
ω2 + ν2e. A noticeable ponderomotive effect on plasma

density profile is expected when the ponderomotive force is comparable to, or

larger than the competing pressure gradient force in plasma [17]:

∇ ¡me hvi2 /2
¢
& eTe

∇n
n

, or ε/Te & δ/2d, (2.28)

where Te is the electron temperature in eV, n is the plasma density, δ is

the electromagnetic field skin depth, and d is the characteristic length of the

plasma density variation. Attempts over the last 30 years to observe the pon-

deromotive effect in collisional weakly ionized gas discharge plasma have failed

because in such plasmas the ratio ε/Te is small, and the ponderomotive effect

is too weak to be observed.
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Recently, Godyak et al. were the first to measure the ponderomotive effect

in ICP. This was made possible due to the extremely low gas pressures at which

the modern ICP sources are maintained, which makes the electron average

oscillatory energy comparable to the electron temperature. However, under

such low pressures (few mTorr) and high electron temperatures (few eV) the

plasma is in nonlocal regime, and the Miller formula for the ponderomotive

force, as well as the condition (2.28), may no longer be valid.

Godyak et al. measured the basic plasma parameters (plasma density n,

electron temperature Te, dc plasma potential V ) along the axial direction x

with a Langmuir probe moved along the discharge axis. As in the experiments

on defining the structure of electromagnetic field and current in plasma, the

measurements were performed at two radial positions: r = 4 cm (position of

maximum electromagnetic field amplitude), and r = 0 (position where there is

no electromagnetic field). The axial profiles of plasma density and dc potential

at these two radial positions for the driving frequencies of 0.45 and 6.78 MHz

are shown on Fig. 2.7. At 6.78 MHz, at both radial positions, the measured

n(x) and V (x) are rather symmetrical about the discharge mid-plane and have

a Boltzmann distribution n(x)/nmax = exp (−eV (x)/Te) [17]. This distribu-
tion of plasma density is typical for discharges where the ponderomotive effect

is insignificant. However, at 0.45 MHz we see a significant asymmetry in the

measured profiles of n(x) and V (x). Moreover, at r = 4 cm there is a clear

shift between the maximum of n(x) and a minimum of V (x), while at r = 0 the

maximum of n(x) coincides with the minimum of V (x). This shift, occurring

at the position of the strongest electromagnetic field, and not occurring at the

position of zero electromagnetic field, and the asymmetry in n(x) and V (x),

are signatures of the ponderomotive effect which causes both the shift and

the asymmetry. To calculate the ponderomotive potential from the measured

spatial profiles of plasma density and potential, we write down the equation

of plasma equilibrium, following Godyak et al. [17]:

Te∇n+ n∇V + n∇U = 0, (2.29)
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Figure 2.7: Measured plasma density and potential distribution at driving
frequencies 6.78 MHz (left) and 0.45 MHz (right), by Godyak et al. [17].

with three forces canceling each other: the force due to pressure gradient

eTen
−1∇n, the force due to ambipolar potential gradient e∇V , and the pon-

deromotive force e∇U , where U is the ponderomotive potential that we need to
find. The solution of (2.29) has the following form: n/n0 = exp (− (V + U) /Te).

This can be rewritten as Tp ≡ V + U = Te ln (n0/n). Having measured n, V

and Te, we can plot the plasma thermal potential Tp = V + U together with

V (see the plot in Fig. 2.8), and define U from their difference. As we see in

Fig. 2.8, at r = 0 there is no difference between Tp and V , i.e. U = 0 in the

discharge center, where there is no electromagnetic field. At r = 4 there is

a significant difference between Tp and V , due to a significant ponderomotive

potential U . Now we can define the ponderomotive potential U from Fig. 2.8.
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Figure 2.8: Plasma thermal Tp and electrical V potential distributions at 0.45
MHz, by Godyak et al. [17].
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Figure 2.9: Measured ponderomotive potential Uexp spatial profile, together
with the Miller potential UM , by Godyak et al. [17].

Discrepancy with Prediction of Classical Theory

The experimentally defined ponderomotive potential Uexp, found in the way

described in the previous paragraph, is plotted in Fig. 2.9 together with the

Miller potential UM for comparison (UM is defined from the Miller force FM

(1.41) as UM(x) = −
R x
∞ FM(x

0)dx0). We see that there is a significant discrep-

ancy between the measured ponderomotive potential and that predicted by the

classical theory of ponderomotive effect in cold collisional plasma. Namely, we

see that the measured ponderomotive potential is almost 10 times less than

that predicted by the Miller formula (1.41). In this experiment plasma was in

the regime of strongly anomalous skin effect (strongly nonlocal regime) at the

driving frequency 0.45 MHz [17]. Thus, the Miller formula for ponderomotive

force is proven to be inadequate for describing the ponderomotive force in ICP

in the nonlocal regime.
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2.3 Motivation for Theoretical Work

As we review the results of experimental measurements of plasma heating

and ponderomotive effect in modern ICP operating in the regime of anomalous

skin effect, we continuously encounter discrepancies with the predictions of

classical theory of heating and ponderomotive force in cold collisional plasma.

Even the skin effect itself is quite different from the classical skin effect. We

have many strong clues that the major factor that should be responsible for

all these discrepancies is the electron thermal motion, which is not taken into

account in classical theory. Thermal motion appears to be quite important in

the typical experimental regimes of modern ICP discharges. Therefore in order

to correctly describe the plasma heating and ponderomotive force in nonlocal

regime, we need a theory that accounts for electron thermal motion, as well as

for collisions. This theory should be developed on a basis of kinetic equation

(1.10), as the hydrodynamic equation (1.7) is not applicable for plasmas with

ω, νe < vTe/δ.

As for the theories of plasma heating in nonlocal regime, there exist two

different approaches. One is based on the calculation of the surface impedance

of plasma in nonlocal regime (2.16) and using it for finding the absorbed power

of the wave as [24] ¿Z
dV j ·E

À
=
1

2

Z
dS (ReZH)B

2
z , (2.30)

where h...i denote a time average, V is the plasma volume, S is the plasma

surface area, and Bz is the magnetic field driven by the antenna coil. This

approach can be referred to as the surface impedance method. The major

advantage of this method is that it uses the self-consistent electromagnetic

field in plasma to calculate the surface impedance, and thus to find the power

absorption. However, this advantage turns into a disadvantage when we realize

that the electromagnetic field and the surface impedance can only be calculated

numerically, and the expressions for plasma heating derived by this approach,

yet being rigorous, are not very insightful.
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Another approach to calculating the power absorption in nonlocal regime is

usually referred to as the stochastic method [35, 36]. It is based on calculation

of the gain of energy by a single particle (electron) traveling through the skin

region in the prescribed electromagnetic field. This method, while being much

less rigorous than the surface impedance method, is more physically intuitive.

It adopts a few assumptions that greatly simplify the analysis, among which

is an assumption of exponentially decaying profile of the electromagnetic field

in plasma. This assumption is based on the observation that we made earlier

from the theoretical and experimental profiles of the electromagnetic field in

plasma in nonlocal regime: within the skin layer the field profile is quite close to

exponential. Another assumption made in this approach is that the magnetic

field is weak and does not influence the electron trajectory in the skin layer. As

we will see later, this assumption is invalid at low driving frequencies. With this

assumption, the model is linear. Vahedi et al. [36] consider an electron moving

through the skin layer and being bounced back from the plasma boundary.

The idea is that, “if the electron transit time through the power absorption

region is shorter than the RF period, τ = δ/vx < 2π/ω, then the electron is

nonadiabatically heated, i.e., the electron acquires a net velocity change in the

direction transverse to x.” [36] (we should note, however, that if the magnetic

field is not neglected, the direction of electron’s velocity change is along x for

any magnetic field [7, 15]). In the absence of collisions, the magnitude of this

velocity change is found as [36]

∆ue y = − e

me

Z t2

t1

Eydt, (2.31)

where t1, t2 is the interval of time during which the electron experiences the

electric field Ey. Assume the electric field in the exponentially decaying form

Ey(x, t) = E0 exp (−x/δ) sinωt (in cylindrical geometry there is also a radial
dependence of the azimuthal electric field as J1(µ1r/R), µ1 ≈ 3.83, R is the

cylinder radius; therefore, to make the result of this planar calculation applica-

ble to cylindrical geometry, one has to multiply the electric field by J1(µ1r/R)).
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Therefore the skin depth enters the model as a given parameter. If the elec-

tron initial position is x0, then we can find t1 = −x0/vx, t2 = x0/vx. With the

exponentially decaying electric field we can set x0 =∞, and finally we get for
the electron velocity change after the full round trip through the skin region

[36]:

∆ue y = − e

me
E0

Z ∞

−∞
exp (− |t| /τ) sin (ωt+ φ0) dt, (2.32)

where τ = δ/vx, and φ0 is the phase of the incoming electron relative to the

electric field. Performing the integration, we obtain

∆ue y = − e

me
E0
2τ sinφ0
1 + (τω)2

. (2.33)

Averaging over all possible phases φ0 we calculate the average energy gained

per single electron over the round trip through the skin region as [36]

h∆εsti = e2E2
0

me

τ 2£
1 + (τω)2

¤2 . (2.34)

In order to find the total power deposited into all plasma electrons, we

have to average the energy gain per single electron over all electrons in plasma.

Assuming that nearly all electrons are reflected by the sheath, we get for the

power per unit area

Sst =

Z ∞

0

dvx h∆εsti vx fe0(vx), (2.35)

where fe0 is the electron velocity distribution function. Taking fe0 to be

Maxwellian, we finally get for the collisionless power absorption per unit area

[36]

Sst =
e2E2

0 δ

4me

4δ

v̄e
= (β)n0, (2.36)

where v̄e =
p
8Te/πme,

= (β) = 1

π

Z ∞

0

dx
x exp(−x)
(x+ β)2

=
1

π

£
eβ (1 + β) Ei(1, β)− 1¤ , (2.37)

with β =
¡
4δ2ω2

¢
/ (πv̄2e), and Ei(1, β) =

R∞
β

dy exp(−y)/y.
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Expression (2.36) is a simple practical expression for the collisionless heat-

ing of plasma. It is an approximate expression, valid as long as the assumptions

made in its derivation are valid. It reduces to the well known results for colli-

sionless heating in strongly nonlocal and in local regimes (see [36] for details).

However, as in typical discharges the electron collision frequency is of the

same order of magnitude as the wave driving frequency, νe ∼ ω . vTe/δ, the

collisions can play an important role in plasma heating. But if the collisions

are included into the stochastic model of Vahedi et al., then we do not get such

simple expression for the power absorption as the expression for collisionless

power absorption (2.36). The analysis analogous to the previous collisionless

analysis, only with collisions included, yields for the energy gained per one

electron [36]:

h∆ε1ei =
e2E2

0

4me

·µ
νe + 1/τ

(νe + 1/τ)
2 + ω2

+
νe − 1/τ

(νe − 1/τ)2 + ω2

¶
τ+ (2.38)

+

µ
νe + 1/τ

(νe + 1/τ)
2 + ω2

− νe − 1/τ
(νe − 1/τ)2 + ω2

¶
2 (νe + 1/τ)

(νe + 1/τ)
2 + ω2

−

−
µ

1

(νe + 1/τ)
2 + ω2

− 1

(νe − 1/τ)2 + ω2

¶
2ω2

(νe + 1/τ)
2 + ω2

¸
.

The power per unit area is again

Se =
e2E2

0 δ

4me

=
δ
n0, (2.39)

where = is now the integral of Eq. (2.38) over the electron velocity distribution.
The final expression for the total absorbed power with account for collisions

is not given in the paper of Vahedi et al. [36]. It is also unknown how well it

describes the heating in nonlocal regime with collisions, as the authors did not

compare their theoretical model with experimental data.

One of our objectives was to develop a theoretical model that would yield

relatively simple, easy to calculate expressions for the power absorption in non-

local regime with collisions. We will develop such a model in Chapter 3, com-

bining, in a sense, the two methods (surface impedance method and stochastic

method) — we will use the Boltzmann equation to describe the electrons and
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the technique of its solution, as in the surface impedance method, and the

simplifying assumption of the exponentially decaying electric field profile, as

in the stochastic method.

As for the theory of ponderomotive force in nonlocal regime, there is even

more diversity in approaches comparing to the two principal approaches in the-

ories of plasma heating. There are almost as many different ways of treating

the ponderomotive force as there are authors on the subject (see [37]). Here we

will review briefly the theory of ponderomotive force exerted by high frequency

electromagnetic wave onto plasma in nonlocal regime, which accounts for reso-

nant interaction between the wave and plasma electrons (Landau interaction).

This theory was developed by Akama and Nambu [38]. They considered the

force per unit volume exerted by electromagnetic waves on plasma as (the

Fourier component of the force):

F(k)=
1

4
[ρ∗(k, ω)E+c.c.] +

1

4
[j∗(k, ω)×B+c.c.] , (2.40)

where ρ(k, ω) and j(k, ω) are the induced charge and current densities, the

asterisk implies the operation of complex conjugate, c.c. stands for complex

conjugate of the first term in the brackets, and E and B are the amplitudes

of the electric and magnetic fields cast in the formE(r, t) = E exp [i (k · r−ωt)],
B(r, t) = B exp [i (k · r−ωt)]. For the electromagnetic waves the induced charge
density is zero, ρ(k, ω) = 0, and the force exerted on plasma by the electro-

magnetic wave (ponderomotive force) is just

F(k)=
1

4
[j∗(k, ω)×B+c.c.] , (2.41)

and, after introducing the vector potential as A(r, t) = A exp [i (k · r−ωt)]
and defining the plasma conductivity Fourier image σ(k, ω) from j(k, ω) =

σ(k, ω)E, they got for the α-th component of the force:

Fα(k) =
1

4

£
A∗βP

∗(k, ω)Aβ + c.c.
¤
, (2.42)

where P ∗(k, ω) = kαωσ
∗(k, ω), and the summation over the repeated indices

is assumed. The plasma conductivity is defined from the linearized kinetic
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equation as [38]

σ(k, ω) =
ine2

me

Z
f0(v)

ω − k · v + iνe
dv, (2.43)

therefore taking into account the resonant interaction of electrons (having ve-

locities close to the wave phase velocity ω/k) with the wave. Defining the

transverse dielectric function as K(k, ω) = 1 + 4πiσ(k, ω)/ω, we can reduce

P ∗(k, ω) to

P ∗(k, ω) = (i/4π) kαω2 [K∗(k, ω)− 1] . (2.44)

Changing to the amplitudes of the wave weakly depending on r and t,

A = A(r, t) exp [i (k · r−ωt)], Akama and Nambu replace P ∗(k, ω) in (2.42)

with P ∗ (k−i∇, ω − i∂t). Expanding P ∗ into Taylor series and neglecting

higher order terms (i.e. retaining only the effects of weak spatial inhomo-

geneity and temporal dependence of field amplitude), they finally derive the

expression for the Fourier image of α-th component of the ponderomotive force

exerted by electromagnetic wave on plasma in nonlocal regime as

Fα(k) =
1

8π
kα Im(K(k, ω)) |E|2 + 1

16π
(Re(K(k, ω))− 1) ∂

∂xα
|E|2 +

+
1

16π
kα

∂Re(K(k, ω))

∂kβ

∂

∂xβ
|E|2 + ∂gα

∂t
, (2.45)

where

gα =
1

16π
kα
1

ω2
∂

∂ω

£
ω2 (Re(K(k, ω))− 1)¤ |E|2 . (2.46)

The physical meaning of the terms in the expression for the force (2.45) is

as follows [38]. The first term on the right-hand side of (2.45) represents the

density of force exerted on resonant particles when they absorb the wave, i.e.

the force due to Landau damping. The second term is the usual ponderomotive

force (similar to the Miller force), it does not have an explicit dependence on

k. The third term contains the effects of high temperature (spatial dispersion).

The fourth term is the time rate of change of momentum of the nonresonant

particles.

While the expression for the ponderomotive force derived by Akama and

Nambu (2.45) accounts for thermal effects, it is derived for the case of weakly
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inhomogeneous field amplitude. Therefore our case of strongly inhomogeneous

fields in ICP cannot be adequately described by the model of Akama and

Nambu [38] or other similar models (see [39, 40, 41, 42, 43] and the extensive

list of references in [37]). We were able to develop an adequate description

of ponderomotive force based on the linear kinetic model of plasma electron

dynamics, which will be presented in Chapter 3. As we will see, this model pre-

dicts the thermal reduction of the ponderomotive force similar to that observed

in the experiment (see Fig. 2.9). Another advantage of our model, as we will

see later, is a relative simplicity of its final expressions for the ponderomotive

force and plasma heating.
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Chapter 3

Linear Kinetic Theory of

Heating and Ponderomotive

Force in Nonlocal Regime

3.1 Preliminary Discussion. Formulation of

the Problem

As we have seen, the experimental results on measuring plasma heating

and ponderomotive force in typical ICP discharge prove the classical theory of

heating and ponderomotive force (Miller force) to be inadequate in nonlocal

regime, when the electron thermal motion is significant. Our task here is to

develop a theoretical model that explains the discrepancy between the observed

experimental value of the ponderomotive potential and the existing theoretical

results, as well as describes other features of nonlocal ICP, e.g. negative power

absorption and collisionless plasma heating.

This model should account for electron thermal motion and collisions,

therefore we will be using the kinetic approach based on the Boltzmann equa-

tion (1.10) for the electron distribution function (ions are assumed to be cold

and immobile). Once we know the electron distribution function which de-
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fines the electron response to the electromagnetic field of the driving wave, we

can calculate the heating rate of electrons (plasma heating) and ponderomo-

tive force exerted on plasma (i.e. on plasma electrons) by the electromagnetic

wave.

However, in order to make the problem solvable, we have to make some

simplifying assumptions. First of all, we will be considering the idealized

model of planar ICP (ref. Fig. 1.3), representing the cylindrical discharge with

planar coil configuration, just as Shaing [24] or Vahedi et al. [36] did. Let

us consider a TE electromagnetic wave with the electric field having the only

component along y (corresponds to azimuthal field in cylindrical discharge) and

the magnetic field along z (corresponds to radial field in cylindrical discharge)

incident on our semi-infinite plasma. Plasma is in nonlocal regime (anomalous

skin effect regime), therefore the spatial profile of the electromagnetic field in

plasma is nonmonotonic (see Figs. 2.1, 2.2). However, as we noted in the

previous chapter, in the skin layer where the field is the largest the spatial

profile is very close to the exponentially decaying profile. We will use this

observation to make an important assumption of exponentially decaying fields

in nonlocal regime, which will greatly simplify our model, as we will not have

to solve for the self-consistent field, like in surface impedance method. This

assumption has also been made in [36]. As it was shown by Haas [44], this

assumption works quite well in description of plasma heating (and therefore

the ponderomotive force) in nonlocal regime. Thus the electric field in plasma

is assumed to be of the form Ey(x, t) = E0 exp(−γx) exp(−iωt), where γ =
1/δ − i κ is a complex wave vector, δ is the skin depth in the nonlocal regime

(δ enters the theory as an input parameter), and κ defines the absorbed power

(Poynting flux).

Other assumptions that we use in our theoretical model are:

• All quantities are assumed to be independent on y. In real cylindrical

discharge this assumption corresponds to the assumption that the plasma

and therefore all quantities are azimuthally symmetric, i.e. ∂/∂θ = 0.
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• The plasma boundary is assumed to be sharp. This is a good assumption
if the sheath width in plasma, which is of the order of few Debye lengths

λDe, is much smaller than the typical length scale of plasma density

gradient and of the field gradient (skin depth).

• The bulk plasma is assumed to be quasineutral in the absence of fields
(in equilibrium), and homogeneous, i.e. ni = ne = n0.

• Ions are assumed to be cold and immobile.

• The density of neutral atoms is assumed to be uniform in space, therefore
the electron-neutral collision frequency is the same at any position.

3.2 Linearized Kinetic Equation

The electron distribution function can be separated into two parts: fe =

f0e(v)+f̃(v, r, t), where f0e is the equilibrium distribution function of electrons

(in the absence of fields), and f̃ describes the response of electrons to the field.

We will be considering weak fields, when
¯̄̄
f̃
¯̄̄
¿ f0e. The linearized Boltzmann

equation for electrons is

∂f̃

∂t
+ vx

∂f̃

∂x
=

e

me

µ
E+

1

c
v×B

¶
· ∂f0e
∂v

+ Ŝ(f̃). (3.1)

We approximate the collision term as Ŝ(f̃) = −νef̃ (BGK collision term [29]).
Since plasma in ICP discharges is weakly ionized, the primary collisions in such

plasma are the collisions between electrons and neutral gas atoms, νe ' νen. If

the equilibrium distribution function f0e = f0e(ε), where ε is electron kinetic

energy, then (v×B) · ∂f0e/∂v = 0. Assuming that f̃ has the same time

dependence as Ey, we reduce the equation for f̃ to obtain

∂f̃

∂x
− iαf̃ − e

vx
v ·E ∂f0

∂ε
= 0 . (3.2)
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Here α = ω̃/vx , ω̃ = ω + iνen. The general solution of equation (3.2) is

f̃ =

·
C(v) +

e

vx

Z x

0

v ·E ∂f0/∂ε exp(−iαx0) dx0
¸
exp(iαx) . (3.3)

Here C(v) depends only on electron velocity, not on coordinate. It is conve-

nient to write the distribution function f̃ as a sum of two distribution func-

tions, f̃ = f (+)(vx, x) + f (−)(−vx, x) , vx > 0 , where f (+) is the distribution
function of electrons moving away from the boundary x = 0, and f (−) is the

distribution function of electrons moving towards the boundary. After this

separation, we can easily specify the boundary conditions for f̃ to determine

C(v), similar to the boundary conditions in the theory of anomalous skin ef-

fect [23, 24]. The first boundary condition is for specular reflection of electrons

from the boundary by the sheath (we ignore the spatial structure of the sheath

potential):

f (+)(vx, x) = f (−)(−vx, x) at x = 0 . (3.4)

The second boundary condition states that f (−) should vanish at infinity

(since the electrons coming from infinity towards the boundary are not influ-

enced by the field):

f (−)(−vx, x) = 0 at x =∞ . (3.5)

Using (3.4) and (3.5), and assuming that the equilibrium electron distribu-

tion is Maxwellian, we obtain for f (+) and f (−) :

f (+) =
2evy
mev2Te

E0fM exp(−iωt)
·
exp(−γx)
iω̃ + γvx

− 2exp(iω̃x/vx) γvx
(γvx)2 + ω̃2

¸
, (3.6)

f (−) =
2evy
mev2Te

E0fM exp(−iωt)exp(−γx)
iω̃ − γvx

, vx > 0. (3.7)

Here fM = n0 exp(−v2/v2Te)/v3Teπ3/2 is the Maxwellian distribution function,
v2Te = 2Te/me . By assuming f0e = fM we automatically made an assumption

of a uniform plasma in the absence of fields, with the density n0.
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3.3 Nonlocal Electric Current in Plasma. Non-

locality Parameter

The density of current in plasma induced by the electric field is then jy =

−e R vy ¡f (+) + f (−)
¢
d3v, and after integration it becomes

jy =
e2n0
me

1

γvTe
E0 exp(−iωt) (G(x)− exp(−γx)Z(−is)) , (3.8)

where Z(p) = 1/
√
π
R∞
−∞ dt exp(−t2)/ (t−p) is the plasma dispersion function,

s = ω̃/γvTe and G(x) is a complex function of x,

G(x) =
2√
π

Z ∞

0

t exp(iγs x / t − t2)

t2 + s2
dt . (3.9)

Note that jy is a nonlocal function of Ey ∼ exp(−γx).
The parameter s = (ω + iνen) /γvTe describes the degree of nonlocality of

the plasma. The condition | s | = 1 separates local (| s | > 1) and nonlocal

(| s | < 1) regimes of the ICP. The absolute value of s is an analog of plane-

geometry parameter of nonlocality Λ (see Eq. 2.24 and [2, 3, 12]). In the plane

geometry case | s | = 1/
√
Λ, and | s | becomes large (i.e. plasma is in local

regime) both for low and high driving frequencies. In the cylindrical geometry

the situation is different. In the latter case, the complex wave vector γcyl is

defined by [45]

γ2cyl =
³µ1
R

´2
+ γ2plane , (3.10)

where γplane ≈ 1/δ, µ1 ≈ 3.83, and R is the cylindrical gas chamber radius.

Then one gets for | s | in the cylindrical case:

| s | =
p
ν2en + ω2

vTe

(³µ1
R

´4
+

ω2pe
c2

µ
1 +

ν2en
ω2

¶−1 ·
2
³µ1
R

´2
+

ω2pe
c2

¸)−1/4
.

(3.11)

At high frequencies (ω À νen) | s | is proportional to ω and thus the plasma
is in local regime similar to the plane geometry case. The difference between

cylindrical and plane cases appears at low frequencies (ω ¿ νen), when (3.11)
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becomes | s | = (R/µ1) / (vTe/νen), which is small if Rνen/vTe < 1, and thus

in cylindrical geometry plasma with warm electrons can remain in nonlocal

regime even at very low frequencies contrary to the plane geometry case in

which plasma returns into local regime for low ω.

3.4 Power Absorption (Heating)

Now that we know the electric current density in plasma, we can calcu-

late the power absorption spatial profile w(x) = 1/2Re(jyE
∗
y), where E

∗
y is a

complex conjugate of Ey. Thus we obtain for w(x) [45]

w(x) =
e2n0
2me

E2
0 Re

·
1

γvTe

µ
G(x) exp(−γ∗x)− exp(−2x

δ
)Z(−is)

¶¸
. (3.12)

Total power flux of absorption of wave by discharge plasma in nonlocal

regime is

Stot =

Z ∞

0

w(x) dx ,

and after integration

Stot =
e2n0
2me

E2
0 Re

·
1

γvTe

µ
2√
π

Z ∞

0

t2 exp(−t2)
t2 + s2

1

γ∗t− iγs
dt − δ

2
Z(−is)

¶¸
.

(3.13)

The general expressions (3.12) and (3.13) describe spatial profile of ab-

sorbed power density and total absorbed power of the electromagnetic wave

taking into account both collisional and nonlocal effects due to electron thermal

motion. These expressions are relatively simple to calculate.

In the limit of cold collisional plasma (local regime) the dependence between

jy and Ey becomes local:

jy (x) = i
e2n0
meω̃

Ey(x) , (3.14)

and the total power absorption in (3.13) reduces to the well-known expression

for the purely collisional heating (ref. Eq. 1.31),

Scoll =
e2n0
2me

δ

2
E2
0

νen
ω2 + ν2en

. (3.15)
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Here we neglected κ¿ 1/δ.

In the case of nonlocal collisionless regime, when νen = 0 and electron

thermal motion is significant, the total power absorption (3.13) reduces to

Stot =
e2n0
me

E2
0δ

δ

v̄e
=(β) , (3.16)

where β = 4δ2ω2/(πv̄2e), v̄
2
e = 8Te/πme, and

=(β) = 1

π

Z ∞

0

dx
x exp(−x)
(x+ β)2

=
1

π
[exp(β) (1 + β) Ei(1, β)− 1] . (3.17)

This result corresponds to that obtained by Vahedi et al. [36] for collisionless

power absorption in nonlocal regime (Eq. 2.36) using the stochastic method.

Since the skin depth δ and the imaginary part κ of the wave vector γ =

1/δ − i κ enter our model as input parameters, a few words should be said

about what δ and κ one should use when calculating the power absorption

(3.12, 3.13). One way to estimate δ and κ is to calculate ZH from (2.16) and

then use δ−1 = (ω/c) Im
¡
Z−1H

¢
, κ = ω/cRe

¡
Z−1H

¢
. However, in this way we

come across the calculational challenges associated with numerical evaluation

of ZH . Another, faster way to estimate the skin depth in nonlocal regime was

suggested by Vahedi et al. [36]. We define the effective collision frequency

νeff for electrons by equating the total heating in nonlocal regime (3.13) to an

ansatz of purely collisional heating (3.15) with νen = νeff . Then we get

Re

·
1

γvTe

µ
2√
π

Z ∞

0

t2 exp(−t2)
t2 + s2

1

γ∗t− iγs
dt − δ

2
Z(−is)

¶¸
=

δ

2

νeff
ω2 + ν2eff

,

(3.18)

The skin depth δ in (3.18) is now obtained from the classical formula (1.26)

with νe = νeff

δ =
c

ωpe

µ
1 +

ν2eff
ω2

¶1/4
1

cos (φ/2)
, (3.19)

with φ = arctan (νeff/ω). Equations (3.18-3.19) can be solved simultaneously

(by iterative method, for example) to define νeff and δ. The anomalous skin

depth δ, defined in such a way, is in very good agreement with experimentally



60

observed skin depth in nonlocal regime and with the skin depth calculated

from the surface impedance (2.16), while the calculation itself is much simpler

and faster than that of the surface impedance ZH . It is interesting to note

that the resulting δ found from Eqs. (3.18-3.19) is not very sensitive on the

value of κ used in Eq. (3.18): the result varies only by approximately 25% of

its value when κ is changed from 0 to δ−1. Therefore, for simplicity, we can

put κ = 0 (really κ¿ δ−1, see Appendix A) when calculating the anomalous

skin depth δ from Eqs. (3.18-3.19). This weak sensitivity on κ is also observed

for the heating rate (3.13).

3.4.1 Resonant Absorption. Influence of Collisions

Let us write down the absorbed power density w = hjyEyi = 1/2Re
¡
jyE

∗
y

¢
as

w =
1

2
Re

ZZ
dkdk0 exp [i (k − k0)x] jk E∗k0 , (3.20)

where jk and Ek0 are the Fourier images of the electric current and electric

field in plasma, respectively. Averaging w over all phases and using jk =

−e R vy f̃ kd
3v, we get

w̄ = −e
2

Z
dkRe

·
E∗k

Z
vy f̃ kd

3v

¸
, (3.21)

where

f̃ k =
e

me

1

νe − i (ω − kvx)
Ek

∂f0e
∂vy

. (3.22)

Thus we get for the absorbed power spectral density:

wk = − e2

2me
|Ek|2

Z
d3v

νe

ν2e + (ω − kvx)
2vy

∂f0e
∂vy

. (3.23)

In the collisionless limit, when νe → 0, we get νe/
¡
ν2e + (ω − kvx)

2¢ →
πδ (ω − kvx), where δ (ω − kvx) is the Dirac delta function, and then

wk|νe→0 = −
e2

2me
|Ek|2 π

k

µZZ
dvydvzvy

∂f0e
∂vy

¶
vx=ω/k

, (3.24)
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which implies that in the absence of collisions only the electrons whose veloci-

ties are in resonance with the wave, vx = ω/k, are heated by the wave. Indeed,

these electrons, moving in phase with the wave, experience an electric field of

constant phase, i.e. a constant electric field, and therefore are being effectively

accelerated by this field. This is the resonant (collisionless) heating.

The collisions between the electrons and other species “detune” this res-

onance, making the Dirac delta function to “spread”. This is illustrated in

Figure 3.1: The kernel νe/
¡
ν2e + (ω − kvx)

2¢ of the integral in (3.23) as a
function of electron velocity vx along the direction of the wave propagation,
for different νe. Here νe1 < νe2 < νe3; the transition to δ (ω − kvx) for νe → 0
is seen.

Fig. 3.1, where the kernel of the integral in (3.23) νe/
¡
ν2e + (ω − kvx)

2¢ is
plotted for different values of νe. It is seen that as the collision frequency

increases, more electrons in wider velocity range contribute to the integral in

(3.23), while the contribution of the resonant electrons (with vx = ω/k) di-

minishes. Therefore in warm plasma with collisions more electrons are being

heated “resonantly” by the wave than in the collisionless case, but they are

also “detuned” from the resonance by collisions.
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Generally, if νe > 0, the value of the integral in (3.23) is smaller than the

value of the integral in (3.24). This implies that collisions, detuning resonance

of electrons with the wave, reduce the heating compared to the heating in

collisionless plasma.

3.4.2 Negative Power Absorption due to Electron Ther-

mal Motion

Let us now compare the theoretical profiles of absorbed power density

(3.12) plotted in Fig. 3.2 with the experimentally measured profiles plotted

in Fig. 2.6 on page 39. The spatial profiles of power absorption in Fig. 3.2

Figure 3.2: Theoretical power absorption profiles (3.12) for different driv-
ing frequencies. Signs denote regions of positive (+) and negative (-) power
absorption.

are calculated from (3.12) for different wave frequencies and for plasma den-

sity of n0 = 1 × 1011 cm−3 (note that in our theoretical model we assume a



63

uniform plasma density profile) and electron temperature of Te = 3.6 eV — the

same parameters at which the experimental profiles on Fig. 2.6 were mea-

sured. The skin depth δ at each frequency was calculated according to the

technique presented on page 59. We see from comparing the theoretical and

experimental profiles of absorbed power that they agree rather well. Particu-

larly, we see that our theory yields the negative power absorption at approxi-

mately the same positions as observed in the experiment. This suggests that

the negative power absorption is not a consequence of nonmonotonic behavior

of the electromagnetic field in plasma, as our theory assumes the exponen-

tial, monotonic field profiles. Thus the only possible reason for the nega-

tive power absorption is the thermal transfer of electric current from the skin

layer into bulk plasma, as was discussed in Chapter 2. The phase difference

φj(x)−φE(x) between the electric current (3.8) and the electric field in plasma
(φj(x) = arctan [Im jy(x)/Re jy(x)], φE(x) = κx − ωt) is changed by π/2 at

the approximate distances of vTeπN/ω (N = 1, 2, ...) from the plasma bound-

ary, i.e. the power absorption which is proportional to cos
£
φj(x)− φE(x)

¤
becomes negative at these distances. At ω/2π = 3.39 MHz, when the nonlocal

effects are most pronounced compared to the two other frequencies of 6.78 and

13.56 MHz, there is no negative absorption seen simply because the first region

of negative absorption is beyond 10.5 cm — the size of the discharge.

3.4.3 Effect of Electron Thermal Motion on Plasma Heat-

ing

As we have already seen, the electron thermal motion has a significant effect

on plasma heating. In order to investigate how the electron thermal motion

influences the heating, let us compare the total heating Stot (3.13) with the

purely collisional heating Scoll (3.15) using the parameter η = Stot/Scoll, as it

was done by Godyak et al. in their experimental work [32]. When calculating

η, we have to use the same electron collision frequency νen in (3.15) as that
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used in (3.13). In other words, the parameter η compares the actual heating in

nonlocal regime to the heating that would have occurred if only the collisional

mechanism of power absorption was active, with all other conditions being the

same.

Enhancement of Heating by Resonant Absorption

It is interesting to investigate the dependence of η = Stot/Scoll on the

driving frequency, η(ω). One can expect that the resonant power absorption is

most pronounced at ω ∼ vTe/δ (without collisions), when the electromagnetic

wave is in resonance with a significant number of electrons.

In Fig. 3.3 we plot η(ω) for two values of electron-atom collision frequency

νen = 0.15×107 s−1 and νen = 0.46×107 s−1, corresponding to the experimental
discharges at the neutral gas pressures of 0.3 and 1.0 mTorr, and compare it to

the experimental results from Godyak et al. [32]. We see that indeed there is a

significant enhancement of heating, with the maximum heating at |s| = 1, i.e.
when

p
ω2 + ν2en = vTe/δ. If we now set νen = 0, then we get the resonance

at ω ∼ vTe/δ, as we expected for collisionless case.

As the driving frequency increases, plasma gradually transfers into local

regime (|s| becomes large), and η(ω) gradually goes to unity (see Fig. 3.3), as

expected. Quite unexpectedly though, we see that as frequency becomes low,

ω < νen, the ratio η(ω) becomes less than unity, i.e. the total heating becomes

less than the purely collisional value. This interesting effect will be discussed

in detail shortly.

There is a reasonable agreement between the theoretical results for η(ω) and

experimental results for the same parameters (shown in Fig. 3.3 by diamonds

and circles, respectively). The remaining discrepancy between theory and

experiment could be associated with the approximate nature of our theoretical

model, however, as we will see later, our model gives results that are in very

good agreement with the results of the self-consistent theory [23, 24], and both

models have the same discrepancy with the experimental data. Thus most
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Figure 3.3: Ratio of the total heating in nonlocal regime (3.13) to the purely
collisional heating (3.15). Lines represent the theory, symbols represent the
experiment. Line 1 and diamonds are for νen = 0.15 × 107 s−1, line 2 and
circles are for νen = 0.46× 107 s−1.

probably this discrepancy is due to the use of the energy independent collision

frequency νen in the theoretical model, as well as due to the assumption of a

uniform plasma density.

Reduction of Heating at Low Frequencies due to Electron Thermal

Motion

As we have just seen from Fig. 3.3, at low frequencies the total heating

in nonlocal regime can become smaller than the purely collisional heating for

the same parameters (including same νen). In other words, the heating due to

both collisional and collisionless mechanisms, acting simultaneously, becomes

smaller than it would have been if only the collisional mechanism was active.

This is a quite surprising effect. Let us investigate it more closely.

First of all, let us do a qualitative analysis of a possibility of such effect.
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Let us again consider the spectral density of the absorbed power (3.23)

wk = − e2

2me
|Ek|2

Z
d3v

νe

ν2e + (ω − kvx)
2

∂f0e
∂vy

. (3.25)

As the wave field decays with the skin depth δ, the characteristic value of k in

(3.25) is k ' 1/δ. One can see that for low frequency, ω < νen, ω < vTe/δ , the

absorbed power spectral density wk ∼ νen/(ν
2
en + vTe

2/δ2) is indeed reduced

by the effect of the thermal motion compared to the cold plasma expression

wk collisional ∼ νen/(ν
2
en+ω

2). On the other hand, for relatively high frequencies

approaching the resonant condition ω ' vTe/δ, the heating is enhanced due

to the wave-particle interaction, as we have already seen. For even larger fre-

quencies, in the local regime when ω > vTe/δ, thermal effects can be neglected.

This analysis is also applicable to the case of ω = 0. Note that the expression

for Re(σ) implicitly assumes a finite spatial localization of the electric field

with a characteristic inhomogeneity scale δ, so that the thermal modification

of a dc (ω = 0) electric conductivity can be detected only in a situation with

strongly inhomogeneous electric field, δ < vTe/νen.

Now that we have a qualitative reasoning for the effective reduction of

heating compared to the purely collisional value (we will further call this effect

simply as effective reduction of heating), let us do a quantitative analysis of

this effect.

Let us calculate the ratio η = Stot/Scoll (recall that Stot is the total heating

in nonlocal regime (3.13), Scoll is the purely collisional heating for the same

parameters (3.15)) at low driving frequencies ω < νen. Since typically κ¿ δ−1

(see Appendix A), we can simplify the calculation by neglecting κ, which makes

the nonlocality parameter s purely imaginary, s = iδνen/vTe. After some

algebra, we get for η [46]

η =
2√
π
|s|
³
−1 +√π |s|+ ¡1− |s|2¢ ©π erfi (|s|) + Re £Ei(1,− |s|2)¤ª e−|s|2´ .

(3.26)

Here erfi (|s|) = −i erf(i |s|) is the imaginary error function, erf(x) is the error
function erf(x) = 2/

√
π
R x
0
exp(−t2)dt, Ei(n, x) = R∞

1
dt exp(−xt)/tn is the
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Figure 3.4: Dependence of η = Stot/Scoll on the nonlocality parameter |s| at
low frequencies ω < νen, from (3.26).

exponential integral.

The dependence of η on |s| is shown on Fig. 3.4. As it is seen, for low
frequencies η is always smaller than unity for arbitrary values of |s|. For higher
collisionality, |s| ≥ 1, the parameter η approaches unity, which corresponds to
the transition into the collisional regime.

Finally, let us extend the plots in Fig. 3.3 to low frequencies. Also, let us

compare our approximate theory with the more rigorous self-consistent theory

[2, 23, 24] by plotting the relative heating calculated from both theories on the

same Fig. 3.5. As we see from Fig. 3.5, both theories agree quite well on heat-

ing, thus we have shown that the assumption of exponentially decaying fields

in nonlocal regime works quite well, and the theory that uses this assumption

(our theory) is a simple, relatively clear and accurate tool for description of

plasma heating. Also we see that both of them yield the effective reduction of

heating at low frequencies. At moderate frequencies the total heating can sig-

nificantly (almost an order of magnitude) exceed the purely collisional heating,

just as it was observed experimentally (ref. Figs. 2.4, 2.5). As the frequency

is further increased, the ratio η of total to collisional heating tends to unity as

plasma gradually transfers into local regime ω > vTe/δ.

The qualitative and quantitative analyses given here both show existence
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Figure 3.5: Ratio of the total heating in nonlocal regime to the purely col-
lisional heating. Lines represent our theory (3.13) (solid line is for νen =
0.15× 107 s−1, dashed line is for νen = 0.46× 107 s−1), symbols represent the
self-consistent theory [24] (circles are for νen = 0.15× 107 s−1, squares are for
νen = 0.46× 107 s−1).
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of the effective reduction of heating. There is no experimental evidence avail-

able in support of this effect, therefore we will conduct an idealized numerical

experiment by means of Particle-In-Cell simulations to support this effect in

particular and our theoretical model in general. This numerical experiment

will be discussed in Chapter 5.

3.5 Ponderomotive Force

As we have discussed before, the experiments on measuring the ponderomo-

tive effect in nonlocal regime of ICP revealed a significant discrepancy between

the actually measured ponderomotive effect and the one predicted by classi-

cal theory (see Fig. 2.9). The reason for such a discrepancy is the electron

thermal motion, which should be accounted for in theoretical model of pon-

deromotive force in nonlocal regime. Our kinetic model of electron dynamics

described above accounts for both electron thermal motion and electron colli-

sions, therefore being capable to adequately describe the ponderomotive effect

in the nonlocal regime. Below we derive the expression for the ponderomotive

force in nonlocal regime of ICP, using our kinetic model.

In planar plasma the ponderomotive force consists of two terms — the non-

linear term me (v ·∇)v (which is a part of the convective derivative dv/dt in
the fluid equation of motion of electrons), and the nonlinear term 1/c (j×B),
which is the Lorentz force acting on plasma in magnetic field. In the planar

geometry the term (v ·∇)v vanishes, and the time-averaged ponderomotive
force is simply Fp = 1/c hj×Bi (here h...i denotes time averaging over the pe-
riod of field oscillations 2π/ω). As j =jyŷ, B =Bzẑ, the ponderomotive force

is directed along x inwards the plasma:

Fp =
1

c
hj×Bi = 1

2c
Re (jyB

∗
z) . (3.27)

Using the expression for the nonlocal current jy (3.8), we get for the pon-
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deromotive force in nonlocal regime [47]:

Fp =
ω2pe
8πω

E2
0 exp(−

2x

δ
) Re

·
i
γ∗

γvTe
(Z(−is)− exp(γx)G(x))

¸
. (3.28)

Here we use the same notations as in (3.8).

In the limit of cold collisional plasma, when |s| is large, G(x) is small,
Z(−is) ' 1/is, and Eq. (3.28) reduces to

Fp cold =
ω2pe
8πω

E2
0

δ
exp(−2x/δ)

·
ω

ω2 + ν2en
+

νenκδ

ω2 + ν2en

¸
. (3.29)

This expression corresponds to the classical expression for ponderomotive force

in cold collisional plasma (1.40). The first term of Fp cold is the Miller force

(1.41), and it appears due to the momentum transfer from the reflected part of

the wave. The second term in (3.29) describes the wave momentum deposition

in plasma due to a finite κ (momentum of the decaying penetrated wave)

[19, 48, 49]. Thus our expression for the ponderomotive force in nonlocal

regime (3.28) is validated by its cold plasma limit (1.40).

3.5.1 Reduction of the Ponderomotive Force by Elec-

tron Thermal Motion

Let us now evaluate the ponderomotive force in a strongly nonlocal regime,

when |s| ¿ 1. For simplicity we will evaluate the ponderomotive force at

the plasma boundary x = 0 (where it is maximal). First we evaluate the

ponderomotive force in collisionless nonlocal regime, assuming νen → 0. Then

we obtain

Fp(x = 0) = − ω2pe
8πω

E2
0√
π
Re

·
i
γ∗

γvTe

¡
Ei(1, s2) exp(s2) + iπ erfc(s)

¢¸
' ω2pe

8πω2
E2
0

√
πω

vTe

µ
erfc(s) +

2κδ

π
Ei(1, s2) exp(s2)

¶
, (3.30)

where erfc(s) is the complementary error function erfc(s) = 1 − erf(s), and
Ei(1, s2) is the exponential integral. Similar to the force in local regime (3.29),
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the net ponderomotive force (3.30) consists of two physically different parts.

The first part represents the pressure of the reflected electromagnetic field,

while the second part, proportional to κδ, is due to the resonant absorption of

the penetrated wave momentum by the plasma. In the local regime, the wave

momentum absorption is collisional [see Eq. (3.29)], while in the nonlocal

regime it is due to the Landau wave damping.

In the strongly nonlocal regime |s| ¿ 1, expression (3.30) can be simplified

leading to

Fp '
ω2pe
8πω2

E2
0

√
πω

vTe

µ
1 +

2κδ

π

£−c− ln(s2)− ¡−c− ln(s2)− 1¢ s2¤¶ , (3.31)

where c ' 0.916 is a Catalan constant. We retain the second order terms in s2
in combination with diverging ln s2. Expansion (3.31) works reasonably well

for |s| ≤ 0.5. For typical ICP, the wave damping is weak, κδ < 1 (see Appendix
A), so that the second term in (3.31) can be neglected giving

Fp =
ω2pe
8πω2

E2
0

√
πω

vTe
. (3.32)

This is the expression for the ponderomotive force in the strongly nonlocal

collisionless regime.

It is interesting to note that the expression for the ponderomotive force in

the nonlocal regime can be cast in a form similar to that of the local case, i.e.

Fp ' ω2pe/(8πω
2)E2

0/δ, where the characteristic gradient length of the electric

field (skin depth) δ is replaced with the characteristic length of the electron

excursion over the wave period, δ → vth/ω. This gives a reasoning for the

thermal reduction of the ponderomotive force observed experimentally [17].

Indeed, the electron thermal velocity vTe in the denominator in (3.32) makes

the force to diminish as the electron temperature is increased. In other words,

thermal electrons “smooth” the effect of steep gradients of electromagnetic

field energy, thus reducing the ponderomotive force due to these gradients.

The ponderomotive force spatial profiles (3.28) at different electron tem-

peratures are shown in Fig. 3.6. We clearly see the thermal reduction of the

ponderomotive force from Fig. 3.6.
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Figure 3.6: The normalized ponderomotive force Fp/Fp(x = 0) as a function
of normalized distance x/δ, for different electron temperatures: line 1 is for
Te = 0 (local regime), line 2 is for Te = 0.1 eV, line 3 is for Te = 1 eV, line 4 is
for Te = 7 eV, line 5 is for Te = 20 eV. Other parameters are taken from the
experiment [17]: ω/2π = 0.45 MHz, νen = 4 · 106 s−1, δ = 2.24 cm, κδ = 0.1.

3.5.2 Comparison with Experimental Data

The expression for the ponderomotive force in nonlocal regime (3.28) is rela-

tively simple to calculate and compare with the experimental data. As we have

the experimental results for the ponderomotive potential Up(x) (see Fig. 2.9),

we will compare theoretical ponderomotive potential calculated from (3.28)

as Up(x) = −
R x
∞ Fp(x

0)dx0. The comparison of the theoretical ponderomotive

potential in nonlocal regime with the experimentally measured ponderomotive

potential for the same plasma parameters is shown in Fig. 3.7. For a refer-

ence, we also plotted the ponderomotive potential calculated from the Miller

force (1.41) in cold plasma. We see that there is a reasonable (within an er-

ror of measurement of the ponderomotive potential itself) agreement between

the theoretical values for the ponderomotive potential in nonlocal regime and

the experimental data. The reason for the small overestimate of the pon-

deromotive effect in our theory, seen in Fig. 3.7, comes from assuming the
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Figure 3.7: Absolute value of the ponderomotive potential Up(x) = −
R x
∞ Fpdx

0

calculated from (3.28) as a function of normalized distance x/δ, in nonlocal
(Te = 7 eV) and local (Te = 0) regimes. The experimentally measured [17]
ponderomotive potential in plasma with Te = 7 eV is shown by circles. Other
parameters are νen = 4 · 106 s−1, δ = 2.24 cm, κδ = 0.1, E0 = 1.87 V/cm.



74

homogeneous plasma, while in the real discharges the plasma density is rather

inhomogeneous and depleted near the boundary (see, for example, Fig. 2.7),

thus reducing the actual ponderomotive force acting on plasma.

3.6 Summary

In this chapter we have developed the linear kinetic theory describing the

plasma heating and ponderomotive force in nonlocal regime for any degree of

plasma collisionality. The theory assumes the exponentially decaying electro-

magnetic field profile; this assumption greatly simplifies the analysis and allows

to obtain the relatively simple expressions for the absorbed power density pro-

file, the total power absorption (plasma heating) and the ponderomotive force

in nonlocal regime. These expressions are in rather good agreement with the

experimental results and with the results of more rigorous and more compli-

cated theory that uses the self-consistent field profiles. In local regime the

expressions for plasma heating and ponderomotive force reduce to the cor-

responding “classical” expressions for cold plasma. Also, the expression for

the ponderomotive force in strongly nonlocal regime provides a clear evidence

for the thermal reduction of ponderomotive force observed experimentally by

Godyak et al. [17]. In the case of collisionless plasma in nonlocal regime our

expression for plasma heating reduces to the result by Vahedi et al. [36], while

in the case of plasma in nonlocal regime with collisions our expression is much

simpler than the corresponding expression that one would obtain from the

stochastic model of Vahedi et al. (this expression has not been obtained in

[36]).

We have also discussed the evidence of resonant (collisionless, or Landau)

heating of plasma electrons by the electromagnetic wave, and discussed how

collisions affect this process.

The detailed comparison of the results of our theory with the experimental

data has shown that our theory explains and predicts the following effects (in
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order of their importance and novelty).

1. Thermal reduction of ponderomotive force in nonlocal regime

as compared to the classical Miller expression in cold plasma.

Our theory gives the same order of magnitude for the reduction of pon-

deromotive force as that observed in the experiment.

2. Effective reduction of heating at low driving frequencies, i.e. the

reduction of total plasma heating as compared to the purely collisional

heating for the same parameters. This surprising effect basically means

that at low driving frequencies the plasma heating due to both collisional

and collisionless mechanisms becomes smaller than it would have been if

only the collisional mechanism was in effect, i.e. the two mechanisms of

plasma heating do not simply add up. The qualitative and quantitative

reasoning for this resonant enhancement is given. Also a comparison

with the self-consistent model [23, 24] is given, showing a good agree-

ment between our simple model and the self-consistent, relatively more

complicated model. Both theories yield the effective reduction of heating

at low frequencies.

3. Resonant enhancement of the total plasma heating as compared

to the purely collisional heating (see Fig. 3.3). The same effect has

been observed experimentally (see Figs. 2.4, 2.5 and experimental points

in Fig. 3.3). The qualitative and quantitative reasoning for this resonant

enhancement is given.

4. Negative power absorption. We have shown that this effect is a con-

sequence of thermal transfer of electric current in plasma rather than of

the nonmonotonic behavior of electromagnetic field in plasma. The the-

oretical positions of negative power absorption regions match quite well

with the actual positions observed in the experiment (compare Fig. 2.6

and Fig. 3.2).
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The overall agreement between the theory and experiment is quite good;

the reasons for the remaining discrepancies between the theory and experiment

are discussed.
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Chapter 4

Quasilinear Kinetic Theory of

Heating in Nonlocal Regime.

Effect of Induced RF Magnetic

Field

In the linear kinetic theory developed in the previous chapter, the effect of

the induced RF magnetic field B = − ic/ω∇ × E disappears for an isotropic
electron distribution function f0e = f0e(ε) (ε is electron kinetic energy), since

for such distribution function the term (v×B)·∂f0e/∂v in the kinetic equation
(3.1) vanishes: (v×B) · ∂f0e/∂v = 0. Thus in the linear theory the magnetic
field does not affect plasma heating. The assumption of the isotropic electron

distribution function is equivalent to assuming the “straight” trajectories of

electrons in the electromagnetic field of the wave, when there is no acceleration

in x-direction due to the Lorentz force. Other theoretical models [2, 23, 24] also

neglect the effect of RF magnetic field, making the same assumption. However,

at low frequencies that are of interest here, the Lorentz force can become

significant, leading to anisotropization of the electron distribution function in

the skin layer. In this case the electron dynamics and therefore the plasma
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heating is affected by the RF magnetic field, as the term (v×B) · ∂f0e/∂v
does not vanish anymore from the Eq. (3.1). In this chapter we develop a

quasilinear kinetic theory allowing us to calculate a nonlinear perturbation

of the electron distribution function due to weak electromagnetic field, and

calculate a nonlinear correction to the plasma heating. We show how the RF

magnetic field affects plasma heating by comparing the nonlinear correction to

plasma heating calculated with and without the RF magnetic field.

4.1 Separation of Timescales of Electron Dy-

namics. Hierarchy of Kinetic Equations

Suppose the electromagnetic field has the form {E,B} =1/2{E(r),B(r)}e−iωt+
c.c., where c.c. stands for complex conjugate. We can separate the timescales

of electron dynamics in this oscillating electromagnetic field by expanding the

electron distribution function (EDF) fe with respect to the harmonics of the

fundamental wave [39] as

fe(r, t) = f0e(r, tslow) +
∞X
n=1

fn(r, tslow)e
−inωt + c.c., (4.1)

where f0e is now the EDF averaged over field oscillation, f0e = hfei, also
called the “slow” electron distribution function since it describes the electron

dynamics on a timescale large compared to the field oscillation period. This

“slow” EDF, as well as the amplitudes of the “fast” EDFs fn, can have weak

dependence on time, which is implied by the subscript “slow” in the time

dependencies of f0e and fn in (4.1). However, we will neglect this slow time

dependence in further consideration, assuming it to be weak. The expansion

of the EDF with respect to the fundamental frequency ω allows us to build a

hierarchy of kinetic equations for the EDFs at each timescale from the general
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kinetic equation (1.10) for electrons:

v · ∂f0e
∂r
− Ŝ(f0e) =

e

me

*µ
E(r, t) +

1

c
v×B(r, t)

¶
· ∂f̃1(r, t)

∂v

+
, (4.2)

−inωfn + v · ∂fn
∂r
− Ŝ(fn) =

e

me

·µ
E(r) +

1

c
v×B(r)

¶
· ∂fn−1

∂v
+ (4.3)

+

µ
E(r) +

1

c
v×B(r)

¶∗
· ∂fn+1

∂v

¸
. (n > 1)

Here h...i means the time averaging over the period of fundamental wave 2π/ω,
asterisk denotes complex conjugate, f̃1(r, t) = f1(r)e

−iωt, and the collisional

term Ŝ(f) describes the evolution of electron distribution function f due to

collisions. This infinite hierarchy of kinetic equations is equivalent to the gen-

eral kinetic equation (1.10). Note that the equations (4.2-4.3) are all coupled:

an equation for fn contains both fn−1 and fn+1. There is no analytic solu-

tion for the EDF fe for arbitrary electromagnetic field magnitude. However,

the observation that fn ∼ O(En), which follows from (4.2-4.3), allows us to

truncate this hierarchy of equations for weak fields.

4.2 Quasilinear Kinetic Equation for the “Slow”

Electron Distribution Function

Neglecting higher order terms with respect to the field amplitude E in

(4.3), we get the linearized equation for f̃1 = f1e
−iωt (in our one-dimensional

case) as

−iωf̃1 + vx
∂f̃1
∂x
− e

me

µ
E(r) +

1

c
v×B(r)

¶
· ∂f0e
∂v

= Ŝ(f̃1), (4.4)

and the “slow” EDF f0e is defined from the Eq. (4.2) cast in the following

form:

vx
∂f0e
∂x

= Ŝql(f0e) + Ŝ(f0e), where (4.5)

Ŝql(f0e) =
e

me

*µ
E(r, t) +

1

c
v×B(r, t)

¶
· ∂f̃1(r, t)

∂v

+
. (4.6)
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The term Ŝql(f0e) describes the interaction of plasma electrons with the elec-

tromagnetic wave. This term is sometimes called the quasilinear collisional

integral. The equation (4.5) describes the slow-time evolution of plasma elec-

trons in response to the fast-oscillating weak electromagnetic field.

It is interesting to write the quasilinear operator Ŝql(f0e) in (4.5) in the

form which follows from Eqs. (4.4-4.5):

Ŝql(f0e) =
∂

∂vi
hDiji ∂f0e

∂vj
, (4.7)

where

Dij =
e2

m2
e

µ
E(r, t) +

1

c
v×B(r, t)

¶
i

Z ∞

−∞
dk eikx

µ
E(k) +

1

c
v×B(k)

¶
j

∆,

(4.8)

with ∆ = 1/ (νe + i (kvx − ω)) (here we used the BGK-type collision operator

in Eq. (4.4), Ŝ(f̃1) = −νef̃1 [29]), and a summation on repeated indices i, j is
implied). With this form of the quasilinear operator the equation (4.5) for f0e

has the form of a diffusion equation in velocity space, with the diffusion tensor

Dij. In other words, the evolution of f0e in velocity space is governed both by

diffusion in velocity space and collisions,

vx
∂f0e
∂x

=
∂

∂vi
hDiji ∂f0e

∂vj
+ Ŝ(f0e). (4.9)

Here the collisional term Ŝ(f0e) consists of three parts: Ŝee(f0e) for electron-

electron collisions, Ŝei(f0e) for electron-ion collisions, and Ŝen(f0e) for electron-

atom collisions.

The system of equations (4.4-4.5), or the equivalent equation of diffusion

in velocity space (4.9), describes the nonlinear response of plasma to a weak

electromagnetic field, and can be solved analytically in some cases. This re-

duction of the system of equations (4.2-4.3) to the truncated system (4.4-4.5)

for weak fields is called the quasilinear approximation [39, 50, 51, 52].



81

4.3 Nonlinear Perturbation of the “Slow” Elec-

tron Distribution Function

The equation for the “slow” distribution function (4.9) is much simpler

than the original kinetic equation (1.10), however, it is still too complicated

to be solved analytically. It can be further simplified by linearizing it about

a homogeneous, isotropic, quasineutral background state F0 by casting the

electron distribution function in the form f0e = F0 + δF , δF ¿ F0.

The problem of calculating the electron distribution function from (4.9)

has been widely discussed, and in some cases analytical or numerical solutions

were obtained (see [51, 52, 53, 54, 55] and the extensive references in these

papers). The solution of (4.9) depends on the relative importance of all terms

in the right-hand side. In case of weak electromagnetic field the collision term

dominates over the quasilinear term, and therefore we can neglect Ŝql(f0e)

in the equation for the background state, which then becomes (noting that

δF ¿ F0):

0 = Ŝee(F0) + Ŝei(F0) + Ŝen(F0), (4.10)

where the term vx∂F0/∂x is also neglected assuming the homogeneous back-

ground state F0 (the only reason for inhomogeneity of F0 here is the quasi-

linear term, which is neglected). We will be assuming that elastic collisions

in (4.10) are dominant, neglecting the inelastic processes such as ionization

and recombination. Let us consider the terms Ŝei(F0) and Ŝen(F0) in (4.10)

in the approximation of infinitely heavy ions and atoms (compared to elec-

trons), me/mi = me/mn = 0, where mi, mn are the masses of ions and neutral

atoms, respectively. Since F0 is isotropic in velocity phase space, F0 = F0(v),

it is not changed by the elastic collisions of electrons with infinitely heavy ions

and atoms, as these collisions simply change direction of electron velocities

without changing electron energies. Therefore the terms Ŝei(F0) and Ŝen(F0)

vanish from (4.10). We finally get, in the approximation of the weak heating
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field, the equation for F0 as

0 = Ŝee(F0). (4.11)

The solution of this equation is the Maxwellian distribution fM with unde-

fined electron temperature. Physically the electron temperature is defined by

the balance of heating, which was neglected here (the term Ŝql(f0e)), and en-

ergy losses. Here we simply assume that the electron temperature is given

externally, i.e. from the experimental measurements.

Generally, in the RF plasma discharges, especially those where the heating

field is not weak, the background distribution F0 is not Maxwellian [51, 52, 53,

54, 55, 56], although it is often quite close to it. For the sake of simplicity of the

further analysis, in what follows we will be assuming F0 to be homogeneous

Maxwellian, noting the discussion above. However, our further analysis can

be generalized for more realistic distributions F0, if necessary.

Thus, with f0e = F0 + δF , δF ¿ F0, F0 satisfying the equation (4.11),

the quasilinear equation (4.9) reduces to the equation for the small nonlinear

perturbation δF of the “slow” distribution function:

vx
∂δF

∂x
= Ŝql(F0) + Ŝ(δF ), (4.12)

with Ŝql(F0) =
∂

∂vi
hDiji ∂F0

∂vj
,

and Dij defined by (4.8).

The perturbation δF of the “slow” distribution function, occurring due

to the heating field, generally consists of two parts: an isotropic (in velocity

phase space) part δF , and an anisotropic part cδF . In (4.12) we will only be
considering electron-atom collisions, which are the primary collisions in ICP

discharges, again assuming the mass ratio of electron and atom to be zero,

me/mn = 0; in this approximation the electron-atom collisions do not change

the isotropic part δF of the distribution perturbation, and thus the collisional

operator Ŝ(δF ) in (4.12), acting on the anisotropic part cδF only, can be cast

in the BGK form Ŝ(δF ) = −νen(v)
¡
δF − δF

¢
= −νen(v)cδF , where νen(v) is

the transport frequency of electron-atom collisions.
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Now we can write down the isotropic and anisotropic parts of (4.12):

vx
∂cδF
∂x

= Ŝql(F0) (isotropic), (4.13)

vx
∂δF

∂x
+

Ã
vx
∂cδF
∂x
− vx

∂cδF
∂x

!
= Ŝ a

ql(F0)− νen(v)cδF (anisotropic). (4.14)

Here A denotes averaging over all directions in velocity phase space, defined

as A(v) ≡ 1/4π R 2π
0

dϕ
R π
0
dθ sin θ A(v, θ, ϕ), and Ŝ a

ql(F0) ≡ Ŝql(F0)− Ŝql(F0) is

the anisotropic part of Ŝql(F0) (Ŝ a
ql(F0) = 0).

Equations (4.13-4.14) define the small nonlinear perturbation δF ≡ δF +cδF = O (E2)¿ F0 in case of weak field. This perturbation can be easily found

in the approximation of cold collisional plasma, νen > vTe/δ. Neglecting in

(4.14) the combination
³
vx∂cδF/∂x− vx∂cδF/∂x´ compared to the collisional

term νen(v)cδF , we have for the anisotropic part of the perturbation:
cδF = 1

νen(v)
Ŝ a
ql(F0)−

vx
νen(v)

∂δF

∂x
. (4.15)

Then the equation for the isotropic part of the perturbation (4.13) becomes

− v2

3νen(v)

∂2δF

∂x2
= Ŝql(F0)− 1

νen(v)

∂

∂x
vxŜ a

ql(F0). (4.16)

For the Maxwellian background distribution F0 = fM the isotropic and

anisotropic parts of the quasilinear operator Ŝql(F0) can be easily found using

(4.4) in the cold plasma approximation as

Ŝql(F0) = − e2

m2
e

µ
1− 2

3

v2

v2Te

¶
fM
v2Te

|Ey|2 νen(v)

ν2en(v) + ω2
, (4.17)

Ŝ a
ql(F0) =

e2

m2
e

·
vx

νen(v)δ
− 2

v2Te

µ
v2

3
− v2y

¶¸
fM
v2Te

|Ey|2 νen(v)

ν2en(v) + ω2
. (4.18)

Using these expressions, we can solve (4.16) and (4.15), finding the isotropic

and anisotropic parts of the nonlinear perturbation of the “slow” electron

distribution function as

δF =
e2

m2
e

3νen(v)

v2
fM
v2Te

δ2

4
|Ey|2 νen(v)

ν2en(v) + ω2

·
1− 2

3

µ
v2

v2Te
+

v2

δ2ν2en(v)

¶¸
, (4.19)
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cδF =
e2

m2
e

fM
v2Te

|Ey|2 1

ν2en(v) + ω2

½
vx

νen(v)δ
− 2

v2Te

µ
v2

3
− v2y

¶
− (4.20)

− 3
2

δνen(v)

v

vx
v

·
2

3

µ
v2

v2Te
+

v2

δ2ν2en(v)

¶
− 1
¸¾

.

The criterion of validity of our solution for the isotropic and anisotropic

parts of the nonlinear perturbation δF follows from the assumption we made:

δF ¿ F0, i.e. the perturbation of the distribution function is small compared

to the background distribution. From δF ¿ F0 and cδF ¿ F0, using (4.19-

4.20), we get roughly:

vE
vTe

¿ vTe
νenδ

, and (4.21)

v2E ¿ vTeνenδ, (4.22)

where vE = e/meE0 (ν
2
en + ω2)

−1/2
is a characteristic velocity of electron os-

cillations in the heating field (oscillatory velocity). Since in cold collisional

plasma νenδ > vTe, (4.21-4.22) are replaced by

vE ¿ vTe. (4.23)

4.4 Nonlinear Modification of Plasma Heat-

ing. Effect of RF Magnetic Field

The plasma heating can be calculated by taking a moment of the form

me/2
R
v2...d3v of Eq. (4.5). The resulting equation is an equation of energy

balance, with the energy source, or heating, on the right-hand side:

Q =
me

2

Z
v2Ŝql(f0e)d

3v, (4.24)

with Ŝql(f0e) defined in (4.6). One can easily show that
R
v2 (v×B)·∂f/∂v d3v =

0 for any f which vanishes for large v, therefore the equation for heating is

reduced to

Q =
e

2

Z
v2

*
E · ∂f̃1

∂v

+
d3v. (4.25)
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For f0e = F0 we get a “linear” heating from (4.25), QL ∼ E2
0 , which was

calculated in Chapter 3. To find a nonlinear modification of plasma heating

δQ ∼ E4
0 using (4.25), we calculate f̃1 = f1e

−iωt from (4.3) with f0e = F0+ δF

(where δF ∼ E2
0), keeping the terms of the orders up to E3

0 . The resulting

equation for f1 is [ref. Eq. (4.3)]

−iωf1 + vx
∂f1
∂x

+ νenf1 =
e

me

µ
E(x) +

1

c
v×B(x)

¶
· ∂ (F0 + δF )

∂v

+
e

me

µ
E(x) +

1

c
v×B(x)

¶∗
· ∂f2
∂v

, (4.26)

where f2 is defined from (4.3) with terms of the orders higher than E2
0 ne-

glected:

−2iωf2 + vx
∂f2
∂x

+ νenf2 =
e

me

µ
E(x) +

1

c
v×B(x)

¶
· ∂f

(0)
1

∂v
∼ E2

0 . (4.27)

In (4.27) f
(0)
1 is defined from Eq. (4.4) with f0e = F0.

Finding f1 from (4.26-4.27) up to the order of E
3
0 , we calculate the heating

in the form Q = QL (E
2
0) + δQ (E4

0) from (4.25). We will restrict ourselves to

calculating the nonlinear heating in case of cold collisional plasma, for which

it can be done relatively easy. We will also demonstrate how the RF magnetic

field affects the nonlinear heating by comparing δQ calculated with account

for both electric and magnetic components of the heating field, with δQB=0

calculated assuming zero magnetic field.

In the approximation of cold collisional plasma we can neglect the terms

vx∂/∂x in (4.26-4.27). Then, using (4.19-4.20), we obtain simple solutions for

f2 and hence for f1 (we are not showing them here). Substituting f1 into

(4.25), we get for the total heating:

Q = QL + δQδF + δQ
cδF + δQf2 , (4.28)

where

QL =
e2

4me
|Ey|2

Z
v2

νen(v)

ν2en(v) + ω2
∂2fM
∂v2y

d3v (4.29)
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is the linear heating (Ohmic heating, see Chapter 3),

δQδF =
e2

4me
|Ey|2

Z
v2

νen(v)

ν2en(v) + ω2
∂2δF

∂v2y
d3v (4.30)

with δF from (4.19),

δQ
cδF = e2

4me
|Ey|2

Z
v2

∂

∂vy

"
− vyδ

−1

ν2en(v) + ω2
∂cδF
∂vx

+
νen(v) + vxδ

−1

ν2en(v) + ω2
∂cδF
∂vy

#
d3v

(4.31)

with cδF from (4.20), and

δQf2 =
e2

4me

Z
v2

∂

∂vy
(R1 +R2) d

3v, (4.32)

where

R1 =
e2

m2
e

|Ey|2 |Bz|2
v2y
c2

νen (ν
2
en − 5ω2)

(ν2en + ω2)2 (ν2en + 4ω
2)

µ
∂3fM
∂v2x∂vy

− 1

vy

∂2fM
∂v2y

¶
+
e2

m2
e

|Ey|2 vy
c

∂3fM
∂vx∂v2y

Re

"
iBz

¡
E∗y − vx/cB

∗
z

¢
(ω − iνen)

2 (2ω − iνen)

#
, (4.33)

R2 =
e2

m2
ec
|Ey|2Re

·
iB∗z (Ey − vx/cBz)

(ω − iνen)
2 (2ω − iνen)

¸µ
∂2fM
∂vx∂vy

+ vy
∂3fM
∂vx∂v2y

¶
+
e2

m2
e

|Ey|2
¯̄̄
Ey − vx

c
Bz

¯̄̄2 ∂3fM
∂v3y

νen (ν
2
en − 5ω2)

(ν2en + ω2)2 (ν2en + 4ω
2)
. (4.34)

We see that the RF magnetic field Bz enters all three terms of nonlinear

correction to plasma heating (4.30-4.32). In order to see how the magnetic field

affects the nonlinear heating, we will compare the nonlinear heating, calculated

with account for both electric and magnetic components of the electromagnetic

field, with the nonlinear heating calculated neglecting the RF magnetic field.

For the case of zero magnetic field we get for the isotropic and anisotropic parts

of the nonlinear perturbation of the electron distribution function δFB=0:

δFB=0 =
e2

m2
e

3νen(v)

v2
fM
v2Te

δ2

4
|Ey|2 νen(v)

ν2en(v) + ω2

·
1− 2

3

v2

v2Te

¸
, (4.35)
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cδFB=0 =
e2

m2
e

fM
v2Te

|Ey|2 1

ν2en(v) + ω2

½
− 2

v2Te

µ
v2

3
− v2y

¶
− (4.36)

− 3
2

δνen(v)

v

vx
v

·
2

3

v2

v2Te
− 1
¸¾

.

Accordingly, the total heating in the case of zero magnetic field is QB=0 =

QL + δQδF
B=0 + δQ

cδF
B=0 + δQf2

B=0, where QL is the same as in Eq. (4.29), and

δQδF
B=0 =

e2

4me
|Ey|2

Z
v2

νen(v)

ν2en(v) + ω2
∂2δFB=0

∂v2y
d3v, (4.37)

δQ
cδF
B=0 =

e2

4me
|Ey|2

Z
v2

νen(v)

ν2en(v) + ω2
∂2cδFB=0

∂v2y
d3v, (4.38)

and

δQf2
B=0 =

e2

4me

Z
v2

∂

∂vy

¡
RB=0
1 +RB=0

2

¢
d3v, (4.39)

where

RB=0
1 = 0 (4.40)

RB=0
2 =

e2

m2
e

|Ey|4 ∂
3fM
∂v3y

νen (ν
2
en − 5ω2)

(ν2en + ω2)2 (ν2en + 4ω
2)
. (4.41)

In order to investigate the importance of the nonlinear correction to the

plasma heating, as well as to see the effect of the RF magnetic field on the non-

linear heating, let us define the parameters ξ ≡ Q/QL and ξB=0 ≡ QB=0/QL,

that measure the ratio of total (nonlinear) heating Q = QL + δQ to the linear

heating QL in the cases of non-zero and zero RF magnetic field, respectively.

In cold collisional plasma the expressions for ξ and ξB=0 are, respectively,

ξ = 1 +
e2

4m2
e

E2
0

ω2δ2v4Te

¡
ν4en + 5ω

2ν2en + 4ω
4
¢−1 ¡

2ω2ν4enδ
4− (4.42)

−ω2ν2enδ2v2Te + 6ν2env4Te + 8ω4ν2enδ4 − 4ω4δ2v2Te − 30ω2v4Te
¢
,

ξB=0 = 1 +
e2

2m2
e

E2
0

ν2enδ
2

v4Te (ν
2
en + ω2)

. (4.43)

Note that in calculating these expressions, we assumed νen to be independent

of velocity when performing velocity integrations in (4.29-4.32) and (4.37-4.39),

for simplicity. In general case one has to retain the velocity dependence νen(v)

in calculating ξ and ξB=0.
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Figure 4.1: The parameters ξ ≡ Q/QL (4.42) and ξB=0 ≡ QB=0/QL (4.43) as
functions of the driving frequency, approximation of cold collisional plasma.
Here E0 = 0.05 V/cm, νen = 0.15 · 107 s−1.

The nonlinear effects become small when ξ, ξB=0 → 1, i.e. when the non-

linear modification of heating vanishes. This happens at large frequencies,

ω À e

me
E0

νenδ

v2Te
, (4.44)

as one can easily see from (4.42-4.43). At smaller frequencies the nonlinear

effects become important.

A typical dependence of ξ and ξB=0 on the driving frequency is shown in

Fig. 4.1 for cold collisional plasma. First of all, we see that in both cases

of B 6= 0 and B = 0 the nonlinear effects lead to the significant deviation of

plasma heating from the prediction of the linear theory (Chapter 3). This de-

viation is most pronounced at low frequencies, and vanishes at high frequencies

ω À e/meE0νenδ/v
2
Te (this corresponds to ω/2π & 0.5 MHz for the parame-

ters used in plotting Fig. 4.1). We also see that the nonlinear modification

of plasma heating calculated considering both RF electric and magnetic fields

(ξ), significantly exceeds the nonlinear modification of plasma heating calcu-
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lated without considering the RF magnetic field (ξB=0). Moreover, besides

the quantitative difference, there is also a qualitative difference between the

cases of zero and non-zero magnetic field, as seen from Fig. 4.1: while the

modification of heating in the case of zero magnetic field is positive and mono-

tonically decreasing at increasing frequencies, the modification of heating in the

case of non-zero magnetic field is nonmonotonic, starting from positive values

at frequencies below 0.1 MHz, and becoming negative at higher frequencies.

Therefore, we see that the nonlinear modification of plasma heating occurs

mainly due to the nonlinear effect of the RF magnetic field. We should note,

however, that this is true only if νen . ω; in highly collisional plasma, when

νen À ω, the collisions render the electron distribution isotropic, and thus the

nonlinear effect of the magnetic field vanishes, leaving only the nonlinear effect

of the RF electric field. This can be easily seen from (4.42-4.43): ξ and ξB=0

become the same in highly collisional plasma, ξ = ξB=0 = e2/2m2
eE

2
0δ
2/v4Te for

νen À ω.

The magnitude of the field used in Fig. 4.1 (E0 = 0.05 V/cm) is smaller

than the real experimental fields, and is dictated by the criterion of validity of

the quasilinear approach (4.23).

We have calculated the nonlinear modification of heating for the case of

cold collisional plasma. The case of warm plasma with collisions is more com-

plicated, as it requires solving the Eqs. (4.13-4.14), (4.26-4.27) with all terms

retained, to calculate the nonlinear heating from (4.25). However, as we will see

in Chapter 5 by means of numerical experiment, the nonlinear modification of

heating in warm plasma in case of weak heating field is similar (qualitatively)

to that shown in Fig. 4.1 for the case of cold collisional plasma. We will also

see in Chapter 5 how the nonlinear effects change plasma heating in case of

strong heating field, when plasma is in strongly nonlinear regime for which the

quasilinear approach developed here is invalid.
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4.5 Summary

In this chapter we developed a quasilinear kinetic theory that accounts for

the nonlinear effect of weak electromagnetic field on electron distribution func-

tion and, consequently, on plasma heating. The equations for the nonlinear

perturbation of the electron distribution function and for the nonlinear modi-

fication of heating have been derived, and have been solved for the case of cold

collisional plasma. The effect of the RF magnetic field has been highlighted

by comparing the nonlinear modification of plasma heating calculated with

and without the RF magnetic field. This comparison shows that the nonlinear

modification of plasma heating occurs mainly due to the nonlinear effect of the

RF magnetic field.

It has been shown that the nonlinear effect of weak electromagnetic field at

low frequencies lead to some enhancement of heating compared to the linear

heating. This suggests that at low driving frequencies the effective reduction of

heating, predicted by our linear theory in Chapter 3, can be partially counter-

part by this nonlinear enhancement of heating, in case of weak fields. At higher

frequencies, the combined nonlinear effects of the electric and magnetic fields

lead to some reduction of heating compared to the linear value. We will later

confirm both enhancement of heating at low frequencies and reduction of heat-

ing at higher frequencies by means of numerical experiment (see Chapter 5). At

high frequencies the nonlinear effects become weak, and the nonlinear modifi-

cation of heating vanishes. This suggests that plasma heating is well described

by the linear theory (Chapter 3) at high frequencies ω À e/meE0νenδ/v
2
Te.

It should be noted that the description of nonlinear heating by strong fields

at low frequencies is beyond the scope of this quasilinear model; it requires

either a fully nonlinear treatment or a numerical experiment. The numerical

experiment that we conducted to simulate plasma heating and its results are

described in the next chapter.
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Chapter 5

Particle-In-Cell Simulation of

Heating in Nonlocal Regime

Our theoretical model described in Chapter 3 predicts a novel phenomenon

of effective heating reduction at low frequencies. This phenomenon has not

been mentioned in previous theoretical works on plasma heating in nonlocal

regime, and it has not been observed experimentally, probably because of

difficulties in measurement of plasma heating at low frequencies when this

phenomenon occurs.

In order to justify our theoretical model in general, and to verify the effec-

tive reduction of heating in particular, as well as to investigate the nonlinear

effect of the induced RF magnetic field on plasma heating, we undertake a

numerical experiment. Recall that our linear theory does not account for the

RF magnetic field, assuming the equilibrium electron velocity distribution to

be isotropic and considering weak fields, and our quasilinear theory only ac-

counts for the nonlinear effect of weak electromagnetic field. A general case

of arbitrary electromagnetic field amplitude requires either a nonlinear treat-

ment (which is a complex theoretical and computational task), or a numerical

experiment.

For numerical simulation of plasma experiments, different types of simu-
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lation codes could be used. For example, one could use fast hydrodynamic

simulation codes to efficiently describe the long timescale evolution of plasma

systems. These codes basically solve numerically the coupled system of hydro-

dynamic and Maxwell equations, and these codes are capable of accounting

for complex geometry of plasma systems, and for sink and source terms in

the hydrodynamic equations. However, hydrodynamic simulation codes have

inherent limitation imposed by the limitation of the hydrodynamic approach

itself in describing plasma systems. They are not suitable for simulating plas-

mas where electron mean free path is comparable or greater than typical length

scales of gradients of plasma properties (density, temperature, etc.).

As our plasma with warm electrons requires a kinetic description, we should

be using one of kinetic simulation codes. There are two types of kinetic sim-

ulation codes that are widely used: the Fokker-Planck (FP) simulation codes

[57, 58], and the Particle-In-Cell (PIC) simulation codes [59]. In this work we

use the PIC simulation code with collisions. We do not try to conduct realis-

tic numerical experiment, but rather conduct an idealized numerical modeling

of the ICP discharge to justify the predictions of our linear and quasilinear

models for plasma heating in nonlocal regime.

Below we will describe the simulation and its main results in relation to

our problem of plasma heating in nonlocal regime of ICP discharge. We will

start from the basic principle of Particle-In-Cell simulation.

5.1 The Simulation Principle and Scheme

5.1.1 Particle-In-Cell Principle

The general philosophy of simulating plasma with particles is to follow

the motion of all plasma particles in their self-consistent electromagnetic field.

The most straightforward approach would be to simulate the motion and mu-

tual reactions of all physical particles in plasma (electrons, ions, neutrals) in
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their self-consistent field; however, this task is practically unsolvable because

of extremely large number of physical particles for any type of plasma, ranging

from laboratory plasmas (with densities 1010 − 1012 cm−3) to inertial confine-
ment fusion plasmas (with densities up to 1027 cm−3). In simulations, a much

smaller number of particles is used, typically about 106 particles in total. Each

simulation particle represents a large number of physical particles, thus being

sometimes called a “superparticle”.

In standard electrostatic PIC (for a review see [59, 60]) the self-consistent

electrostatic field of the ensemble of superparticles is defined from the Poisson

equation (1.5), where the charge density ρ is defined from positions of parti-

cles. A force acting on i-th particle from all other particles is the sum of the

contributions to the electric field from all the other particles,

Fi = qi
X
j,i 6=j

Eij (5.1)

where qi is the charge of the i-th particle, Eij is the electric field of particle

j acting on the i-th particle. This scheme of force calculation scales with the

number of superparticles N as N2, which is still too time consuming for typical

numbers of simulation particles N ∼ 106 necessary for simulating warm plas-

mas. Therefore a technique which further reduces the computational effort,

while retaining important plasma phenomena, is required. This is achieved by

interpolating the particle properties, such as charge density, current, kinetic

energy, onto a ‘coarse’ grid, shown in Fig. 5.1. This grid should be fine enough

to resolve the length scales of gradients of plasma quantities, but on the other

hand each grid cell should contain a relatively large number of superparticles,

in order to reduce the noise imposed by interpolation of particle quantities on

the grid. The grid quantities (charge density, current) are used in the Maxwell

equations (1.4, 1.5) which are therefore solved on the grid to determine fields

at the grid points. The force acting on each superparticle is then obtained

from the fields on the grid by an interpolation process inverse to that used in

calculating the particle quantities on the grid. This scheme scales with the
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Figure 5.1: A grid is laid over the plasma region. Plasma density, current,
temperature etc. are measured on the grid to obtain the electric field on the
grid. Charge and velocity of a charged particle q are typically distributed
among the nearby grid points (0, 0), (1, 0), (0, 1), (1, 1). The force on q is
obtained from the fields at the same points.

number of particles N and the number of gridpoints Ng as N · Ng ¿ N2,

which makes it practical in simulations. This process of interpolating the par-

ticle quantities on the grid and inverse interpolating the fields on the particles

afterwards gave the name to the method — Particle-In-Cell. The interpolation

of particle quantities on the grid and grid quantities on the particles is also

called weighting.

The usage of the grid smooths all phenomena in plasma over the length

scale of the grid cell size, therefore we are not resolving microscopic fields in

PIC method. The interaction of particles within the same grid cell is not

resolved, and thus is effectively suppressed. This implies that the frequency of

interparticle collisions, that mainly happen between closely located particles,

is substantially reduced, and the typical PIC simulation is collisionless. If we

want to have collisions, we should take a special care for them and implement

them into our PIC code separately.

The time evolution of particle quantities and fields is tracked using the
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temporal grid with a finite period ∆t. In our code, we use the so-called leap-

frog (time centered) scheme of time integration of equations (see [59] for more

details). In this scheme, the particle quantities and the fields are obtained at

time moments t, t+∆t, t+ 2∆t, ..., while the particle velocities are obtained

at time moments t − ∆t/2, t + ∆t/2, t + 3/2∆t, ..., i.e. two temporal grids,

shifted by ∆t/2, are used. This scheme proves to be quite accurate [59].

Obviously, by using the spatial and temporal grids we introduce some in-

evitable inaccuracies into the simulation. Also the effects of grid may give rise

to nonphysical phenomena, such as numerical heating etc. (more on these in

[59]). However, generally these nonphysical effects can be avoided; inaccuracies

due to the grid usage will always be there and simply must be made small.

5.1.2 Collisions

As we have pointed out, the PIC simulation is inherently collisionless. In

order to simulate collisional plasmas with PIC code, we must implement colli-

sions ‘by hand’ into our code. As we want to simulate the ICP discharge and

the plasma heating in nonlocal regime when both electron thermal motion and

collisions are important, we have to implement two types of collisions:

1) collisions of electrons with neutral gas atoms (e−n), that are the primary
collisions in low temperature weakly ionized plasmas. These collisions

also enter our theoretical kinetic model;

2) electron-electron collisions (e − e), that are needed as the mechanism

of “maxwellization” of electron distribution function. In the absence of

fields and external forces the e − e collisions drive the electron distri-

bution function towards the Maxwellian distribution. In our simulation

there are two mechanisms that drive the electron distribution away from

Maxwellian: the electromagnetic field, which may make the electron dis-

tribution anisotropic, and the electron-atom collisions, that deplete the

high-energy tail of the electron distribution. However, in real discharges



96

the distribution function is very close to Maxwellian [56], due to e−e col-
lisions. Thus to have a mechanism that would compete towards keeping

the distribution function isotropic and close to Maxwellian, we introduce

the e− e collisions into our PIC code.

Electron-atom collisions

To implement the e−n collisions, we use a well known Monte-Carlo method
(see, for example, [61]). This method was developed during WWII for analysis

of neutron moderation and transport. Here we will describe the principles of

this method. The method relies on knowledge of the probability distribution

function for a phenomenon of interest, to randomly select occurrences of events

of this phenomenon, whose ensemble average represents the known (given)

probability distribution [62]. Let us consider the method in more detail.

Suppose that some physical event has a known probability distribution

function p(x) which defines the probability for the event to occur at the position

x. The knowledge that the event should occur somewhere gives
R∞
0

p(x)dx = 1.

Let us define a cumulative probability distribution function P (x), which defines

the probability of the event to occur prior to x, P (x) =
R x
0
p(x0)dx0. Obviously,

P (0) = 0, P (∞) = 1. Since p(x) > 0, there is a one-to-one mapping of the

interval r = [0, 1] onto [P (x = 0) , P (x =∞)]. If we randomly select r (with
a uniform probability distribution p(r) = 1 for 0 6 r 6 1, p(r) = 0 otherwise)
and solve the equation r = P (x), we get the randomly selected position of

the event occurrence, x = P−1(r). Continuing this process we will have an

ensemble of random positions x of the events which, when averaged, represent

the given p(x).

For example, given the distribution of probability of an electron to collide at

time moment ∆t after a previous collision as p (∆t) = νen exp (−νe∆t), where

νen is the e−n collision frequency, we calculate the distribution of probability

for an electron to collide before∆t, i.e. for a next collision to occur within time

∆t: P (∆t) =
R ∆t

0
p (∆t0) d (∆t0) = 1− exp (−νen∆t). We have P (∆t = 0) = 0,
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and P (∆t =∞) = 1. By randomly choosing P (∆t) = r in the range [0, 1], we

get for the randomly selected time to a next collision:

∆t = − 1

νen
ln (1− r) . (5.2)

Averaging ∆t over an ensemble as

h∆ti = − 1

νen

Z 1

0

ln (1− r) p(r) dr, (5.3)

where p(r) is the probability distribution for r (p(r) = 1 for 0 6 r 6 1, p(r) = 0
otherwise), we get h∆ti = 1/νen, as expected.
Note that in most practical problems the calculation of the cumulative

probability distribution and its inversion cannot be performed analytically and

should be done numerically.

Now that we can define the random time intervals between collisions, let

us consider the e−n collision itself. Suppose an electron with energy ε collides
with an atom with a differential cross section σ (ε, θ, ϕ), where θ, ϕ are the

scattering angles defining the center of a solid angle in which the electron

scatters. Typically the scattering is uniform on ϕ, i.e. σ = σ (ε, θ). The

dependence σ (ε, θ) for real gas atoms can be very complicated [63]; however, in

our simulation we use the simplest assumption of isotropic scattering, σ (θ) =

σ0. With this assumption we can easily calculate the cumulative probability

distribution P (θ) which defines the likelihood of electron scattering within the

polar angles [0, θ]:

P (θ) =
1

2σ0

Z θ

0

σ0 sin θ
0 dθ0, (5.4)

and then we get for randomly selected scattering angle θ:

θ = arccos (2r − 1) , (5.5)

where r is a random number uniformly distributed in the range [0, 1]. Similarly,

we find for the azimuthal scattering angle ϕ = 2πr. Of course the random

numbers r should be different when defining ∆t, θ and ϕ. We will further
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denote these random numbers as rt, rθ, rϕ respectively. Having determined

the random scattering angles θ, ϕ and assuming elastic scattering of electrons

on atoms, we can define an outcome of the collision as [62]

vfinal = |vfinal|·


cos β cosα sin θ cosϕ+ cosβ sinα cos θ − sinβ sin θ sinϕ
sinβ cosα sin θ cosϕ+ sinβ sinα cos θ − cosβ sin θ sinϕ

− sinα sin θ cosϕ+ cosα cos θ

 ,

(5.6)

where |vfinal|2 = |vinitial|2−2∆ε/me, ∆ε is the change of electron’s energy due

to the elastic collision with atom

∆ε = εinitial

·
1− 2me

Matom
(1− cos θ)

¸
,

and α = arccos (vz/v)initial , β = arctan (vy/vx)initial are the Eulerian angles of

vinitial in the laboratory frame.

Thus for description of e− n collisions we need three random numbers: rt,

rθ, rϕ. Note that in if we wanted to implement more realistic atom collision

cross-sections, we should have calculated P (θ, ε) numerically for each ε, and

also invert it numerically to obtain the random scattering angles θ.

Electron-electron collisions

The most straightforward way to implement e − e collisions would be to

use the Monte-Carlo technique, just as for e − n collisions described above.

However, the principal difference between e − e and e − n collisions is that

the e− e collisions occur already at long ranges, since the forces of interaction

between electrons (Coulomb forces) are long-ranged. Any long-range collision

is in fact a succession of many small-angle scatterings, and in order to represent

such collisions correctly with Monte-Carlo technique, we would need to use

very small timesteps. Moreover, at any given time an electron is scattering on

more than one electrons, also due to long-range nature of Coulomb force. All

this makes the simulation of e− e collisions using the Monte-Carlo technique

impractical, or at least rather computationally expensive.
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An alternative approach to describe the e− e collisions is to represent the

Coulomb e− e scattering through a Fokker-Planck equation [64, 65, 66]. How-

ever, there is no obvious way of combining a direct solution of the Fokker-

Planck equation with the PIC method. Yet it is possible to construct a

Langevin equation which is entirely equivalent to the Fokker-Planck equation

[67], and which is easily implemented into the PIC scheme. The intraspecies

collisions (electron-electron) can be effectively represented by a force Fee acting

on electrons, of the form [68]:

Fee/me = −νe (ve − hvei) +A, (5.7)

where h...i is averaging over distribution function of (...), A is a random,

isotropic vector (hAi = 0) which provides thermalization of electrons, and

νe defines the dynamic friction acting on electrons. This form of the force

conserves momentum, at least in a statistical sense, since obviously hFeei = 0.
Momentum conservation means that hvei does not change, therefore we can
transform into a fluid frame moving with velocity hvei and apply the analysis
of Chandrasekhar [69] for the Langevin equation. Letting v = ve − hvei and
integrating the equation of motion of electrons under the force Fee, we get [68]

∆v = −νev∆t+A∗, (5.8)

where A∗ =
R t+∆t

t
A(t0)dt0. Here the assumption is that the rate of velocity

change (due to collisions) associated with the random vectorA∗ greatly exceeds

the rate of velocity change associated with the dynamic friction νe, i.e. the

electrons experience many small-angle scatterings. Chandrasekhar showed [69]

that the Langevin equation (5.8) is equivalent to the Fokker-Planck kinetic

equation describing the evolution of electron distribution function due to e− e

collisions. If the electron velocity is advanced according to Eq. (5.8), the

electron velocity distribution approaches a Maxwellian for a proper choice of
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random vector A∗, that is if the probability distribution of A∗ is

p(A∗) =
µ

me

4πνeTe∆t

¶3/2
exp

µ
−meA

∗ ·A∗
4νeTe∆t

¶
, (5.9)

then

lim
t→∞

fe (v, t) =

µ
me

2πTe

¶3/2
exp

µ
−mev

2

2Te

¶
. (5.10)

Here Te is the final electron temperature.

The Langevin equation (5.8) can be easily implemented into PIC code by

simply adding an e − e collisional step which advances velocities of electrons

according to (5.8), which is equivalent to adding the force (5.7) to the forces

acting on electrons. Note that this additional force representing e−e collisions
is a grid quantity, as it depends on the grid quantities ne, νe and Te.

Using the time-centered scheme, we obtain a finite-difference equation for

electron velocities from (5.8) [68]:

vn+1 = vn − νe∆t

2
(vn+1 + vn) +A

∗. (5.11)

The Langevin equation (5.8) and its finite-difference analog (5.11) conserve

average momentum of particle ensemble automatically, since hA∗i = 0. A

conservation of average energy is ensured for any timestep∆t, if the magnitude

of the vector A∗ is appropriately chosen according to (5.9), so that

hA∗ ·A∗i ≡
Z
(A∗ ·A∗) p(A∗) dA∗ = 6νe∆t Te/me. (5.12)

Indeed, one can show using Eqs. (5.12), (5.11) that

me

2

­
v2n+1

®
=

me

2

­
v2n
®
=
3

2
Te, (5.13)

i.e. that if the random vector A∗ in (5.11) is appropriately chosen according

to (5.9), the energy of the ensemble of particles, being “collided” according to

(5.11), is conserved for any timestep ∆t. This makes the Langevin equation

much more advantageous compared to the Monte-Carlo technique in simulating

the e − e collisions, since one can use timesteps that are large compared to
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characteristic time between e − e collisions, still having the average energy

conservation in the collision process.

According to Jones et al. [68] the dynamic friction νe is defined from the

electron density ne and electron temperature Te (which are the grid quantities)

as

νe =
4
√
π

3

nee
4 lnΛee

m2
e (Te/me)

3/2
, (5.14)

where lnΛee is a Coulomb logarithm.

The random vector A∗ is defined as follows. The distribution function

for A∗ is given by Eq. (5.9). Let us define a vector Y as Y =χ−1A∗, where

χ=
p
2νe∆t Te/me. Then distribution function for the vectorY is defined from

the equation

|p (A∗) dA∗| = |p (Y) dY| , (5.15)

which gives a Gaussian distribution

p (Y) =
1

(2π)3/2
exp

µ
−Y ·Y

2

¶
, (5.16)

or for components of Y

p (Yi) =
1

(2π)1/2
exp

¡−Y 2
i /2

¢
. (5.17)

A most straightforward way to define random components of the vector Y

and therefore of the vector A∗ = χY is to define the cumulative distribution

P (Yi) ≡
R Yi
−∞ p (Y 0

i ) dY
0
i = 1/2

¡
1 + erf

¡
Yi/
√
2
¢¢
and find Yi numerically from

equation

1/2
³
1 + erf

³
Yi/
√
2
´´
= ri, (5.18)

where ri is a random number distributed uniformly between 0 and 1. Note that

ri is different for each Yi, thus we need 3 random numbers to describe the e−e
collision, just as one would expect. Note also that we do not define the time

between successive e−e collisions randomly, as for e−n collisions. Instead we

“collide” electrons through Langevin equation (5.11) each timestep, which can

be large enough since the momentum and energy are conserved automatically.
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However, solving Eq. (5.18) numerically for every electron at every timestep

during the simulation is computationally expensive. Instead, we use a fast

Box-Muller algorithm [70] that allows to select Yi according to the Gaussian

distribution (5.17) without solving Eq. (5.18), using only random numbers

Xi distributed uniformly between 0 and 1 (see [70] for more details). Indeed,

let us define the transformation between two uniformly distributed random

numbers X1, X2 and the quantities Y1, Y2 as

Y1 =
p
−2 lnX1 cos 2πX2, (5.19)

Y2 =
p
−2 lnX1 sin 2πX2. (5.20)

Then equivalently we can write

X1 = exp

·
−1
2

¡
Y 2
1 + Y 2

2

¢¸
, (5.21)

X2 =
1

2π
arctan

Y2
Y1
. (5.22)

The Jacobian of this transformation is

∂ (X1, X2)

∂ (Y1, Y2)
= −

·
1√
2π
exp

¡−Y 2
1 /2

¢¸ · 1√
2π
exp

¡−Y 2
2 /2

¢¸
. (5.23)

As we see, the Jacobian of this transformation is a product of a function of

Y1 alone and a function of Y2 alone, therefore each of Y1 and Y2 (5.19, 5.20)

are independently distributed according to the Gaussian distribution (5.17).

Having all three components of the vector Y, we find the vector A∗ = χY.

Apparently, this way of defining the vector A∗ is much faster than that involv-

ing numerical solving of Eq. (5.18), as essentially we only need to evaluate

Eqs. (5.19), (5.20) instead of solving Eq. (5.18). Of course, again we need 3

different random numbers to define the vector A∗.

Now that we can select the random vector A∗ and can calculate the e− e

collision frequency using Eq. (5.14), we can use the Langevin equation (5.11)

to model the e− e collisions.
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Figure 5.2: Schematic diagram of one timestep of PIC simulation with
collisions.

5.1.3 Simulation Scheme

The schematic diagram of one timestep of a PIC simulation with collisions is

shown on Fig. 5.2. The simulation starts at t = 0 with some initial conditions

such as initial particle density and velocity distribution, and initial fields in

the system. The simulation runs for a number of timesteps. At each timestep

the simulation program performs the following operations:

• Weighting of quantities from particles to grid: from the current positions
and velocities of particles (x,v)i the program calculates particle density,

charge density, current, temperature, etc. at the gridpoints (n, ρ, j, T )j

(hereafter the index i refers to particle quantities, and the index j refers
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to grid quantities). For example, to calculate the charge density on the

grid, the charge of each particle is distributed among the nearby grid-

points (see Fig. 5.1) according to the weighting scheme. There are

different weighting schemes that could be used; the simplest is the zero-

order weighting, when the charge density at the j-th gridpoint is the to-

tal charge of all particles located within the m-dimensional ‘hypercube’

(m = 1, 2, 3 for one-dimensional, two-dimensional and three-dimensional

geometries respectively) with the center at the j-th gridpoint and a side

of ∆x (∆x is the period of the grid), divided by the volume of this

hypercube ∆xm (in the one-dimensional case it is the total charge of

all particles within the distance ∆x/2 divided by the grid period ∆x).

Using the zero-order weighting scheme is equivalent to having the finite-

size particles of rectangular shape [59]. The physics observed in such

simulation will be that of such particles rather than that of point parti-

cles. Because close encounters between the physical particles in plasma

are rare, this new physics arising from the finite size of particles does

not significantly alter the effects observed in the simulation compared

to the effects observed in real plasmas. However, the particle quanti-

ties collected on the grid using the zero-order weighting are rather noisy.

The cause of this noise is that the grid quantities jump up and down as

particles enter or leave the ‘hypercube’ containing the given gridpoint.

Therefore the use of higher-order weighting schemes is desired to sup-

press the effects of the grid such as noise. For example, the usage of

first-order weighting is equivalent to having triangular-shaped particles

[59] rather than rectangular-shaped particles for zero-order weighting.

This smooths the grid quantities and eliminates the jumps associated

with particle passages through the boundaries of the grid cells. In this

scheme the charge assigned to the j-th gridpoint (in one-dimensional
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case) is calculated from the charge of the particle qp as

qj = qp
∆x− (xi −Xj)

∆x
= qp

Xj+1 − xi
∆x

, (5.24)

and the charge assigned to the (j + 1)-th gridpoint is calculated as

qj+1 = qp
xi −Xj

∆x
, (5.25)

where xi is the particle position, Xj and Xj+1 are the positions of j-

th and (j + 1)-th gridpoints respectively, and ∆x = Xj+1 − Xj. One

could also use higher-order weighting schemes to further smooth the grid

effects, however this would also increase the computational cost. In our

simulation we use the first-order weighting scheme for collecting the grid

quantities from particles.

• Integration of field equations on grid: using the grid quantities (ρ, j)j,
the electromagnetic field is calculated at the gridpoints (E,B)j from the

Maxwell’s equations. This is done by a special solver, either electrostatic

(which solves the Poisson equation (1.5) to find the electrostatic field

and potential) or electromagnetic (which solves the Maxwell’s equations

(1.3-1.4) for the electromagnetic field). The detailed description of these

solvers can be found, for example, in [59].

• Weighting of forces from grid to particles: from the calculated fields on

the grid (E,B)j we calculate the force exerted by these fields on the

particles. This calculation is analogous to weighting of quantities from

particles to grid. For example, in one-dimensional case the electric field

acting on i-th particle can be calculated using the first-order weighting

scheme as

E(xi) =
Xj+1 − xi

∆x
Ej +

xi −Xj

∆x
Ej+1, (5.26)

where Ej and Ej+1 are the values of the electric field at the j-th and

(j + 1)-th gridpoints, respectively. The force on the i-th particle due to

this electric field is simply qpE(xi).
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• Acceleration of particles by EM field: given the forces acting on particles,

we advance particle velocities in time according to equation of motion

mp
dvi
dt
= qp

µ
E(xi)+

1

c
vi ×B(xi)

¶
. (5.27)

The optimal time-centered energy-conserving scheme for advancing par-

ticle velocities according to this equation of motion is given in [59].

• Collisions: calculate the change of particle velocities due to e − n and

e− e collisions, as discussed above (see Collisions, p. 95).

• Moving particles: advance particle positions according to the total par-
ticle velocity change due to acceleration by EM field and collisions:

∆xi = (∆vi +∆ve-ni +∆ve-ei )∆t. (5.28)

5.1.4 Diagnostics

At each timestep of our simulation, we need to output diagnostic data to

monitor the plasma system being simulated. In PIC simulations the acces-

sible physical quantities are the positions and velocities of all superparticles,

so the most straightforward way to save the information about the state of

plasma during the simulation would be to save the positions of all particles in

coordinate-velocity phase space. However, this is not an option for systems

of many particles being simulated over many timesteps, not only because it

requires huge storage capacities, but also because this “raw” information does

not provide any physical insight. Therefore we need to extract some mean-

ingful physical quantities out of the information about particle positions and

velocities. The evolution of most plasma systems is described by macro quanti-

ties such as mass and charge density, flow, current, temperature, kinetic energy

of particles, electrostatic and electromagnetic field and energy. Therefore in

the diagnostic part of the simulation program we output these grid quantities

(n, ρ, j, T ) and the fields at the gridpoints at each timestep. It is also useful



107

to know a velocity distribution function of particles f(x,v, t). Basically all in-

formation about plasma is confined in f(x,v, t): the appropriate macroscopic

quantities can be calculated as corresponding moments of f(x,v, t) as

n(x, t) =

Z
f(x,v, t)d3v,

j(x, t) =

Z
qpv f(x,v, t)d

3v,

and so on...

The velocity distribution is determined by counting particles within bins on a

3-dimensional velocity grid.

To monitor the heating of plasma by the electromagnetic wave we also

calculate and output at each timestep the total kinetic energy of all particles

as

KE = 1/2

NpX
i=1

mi |vi|2 , (5.29)

where Np is the number of superparticles in the simulation.

5.2 Simulation Setup

Our simulation code is designed for modeling plasma heating in ICP dis-

charge in nonlocal regime, to verify the results of our theoretical model (see

Chapter 3). Therefore we use the idealized one-dimensional planar plasma

model (see Fig. 1.3) in our simulation, with three particle velocity compo-

nents (1d3v).

The simulation setup is the following: the plasma, consisting of immobile

cold ions and mobile warm electrons, occupies the region 0 < x < L and is

confined by two walls. The electrons are reflected specularly off these walls.

The simulation is started with uniform density of electrons; the initial velocity

distribution of electrons is Maxwellian. The electromagnetic field enters the

system from x < 0, i.e. from the left.
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To simplify the simulation, we use the same assumption of exponentially

decaying electromagnetic field as we used in our theory (ref. Chapter 3). With

this assumption, we do not have to solve for the self-consistent electromagnetic

field in our simulation (ref. Fig. 5.2). Just as for our theory, the appropriate

skin depth δ and the imaginary part κ of the wave vector γ = 1/δ − iκ enter

the simulation as input parameters. They can be calculated in one of the

ways discussed in Chapter 3 (see p. 59). The skin depth that we use in our

simulation is calculated by solving Eqs. (3.18-3.19) simultaneously (this is

done separately from the simulation process), and κ is taken to be equal to

zero (see Appendix A). We should note that even if non-zero κ is used in the

simulation, the heating varies less than by approximately 25% of its value when

κ is changed from 0 to ∼ δ−1, i.e. the heating is rather insensitive on κ.

Our theoretical model considers semi-infinite plasma, therefore, in order to

setup our simulation so that it is as close to our theoretical model as possible

(to be able to compare the results of the simulation and the theory), and to

eliminate the effects of the second (right) wall, we set the length of the plasma

LÀ δ. In our simulation we use L = 100 cm.

The electrostatic field (directed along x) is calculated from the charge den-

sity on the grid using the Poisson’s equation (1.5); however, to compare the

results with our theoretical model which does not account for the electrostatic

field, we toggle the electrostatic solver off.

The electrons are accelerated by the electromagnetic field, and therefore

are heated. By toggling the e − n collisions off and on we can observe the

collisionless heating and study the influence of collisions on heating in nonlocal

regime. Also, by toggling the magnetic field on and off in the equation of

motion of electrons (5.27) we can study the influence of the electromagnetic

field on plasma heating (note that in most theoretical approaches to plasma

heating the influence of the RF magnetic field is not accounted for).

Below we consider the typical simulation results on plasma heating in non-

local regime. We consider two cases: heating due to RF electric field only (no
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magnetic field), and heating due to full electromagnetic field.

5.3 Simulation: Heating due to RF Electric

Field only

Let us first simulate the electron heating in ICP in nonlocal regime due to

the prescribed RF electric field Ey = E0 exp(−x/δ) cosωt only (no RF mag-
netic field). As we have seen from our theory (Chapter 3), the heating in

nonlocal regime is a result of two heating mechanisms: collisional and colli-

sionless. In our simulation we can toggle the e−n collisions on and off, in order
to observe the purely collisionless heating and to compare the total heating

due to both collisional and collisionless heating mechanisms with the purely

collisional heating, as we did theoretically in Chapter 3 (see Fig. 3.5).

5.3.1 Evidence of Collisionless Heating

Since the resonant heating of plasma electrons by electromagnetic wave is

proportional to (∂f0e/∂vy)vx=ω/k (see Eq. 3.24), it should occur in plasma with

warm electrons (as in such plasma there is a substantial number of resonant

electrons with velocities close to the wave phase velocity), and should not occur

in cold plasma. To see the evidence of collisionless heating in PIC simulation of

plasma with warm electrons, we plot the time evolution of total kinetic energy

of plasma electrons in the electric field Ey = E0 exp(−x/δ) cosωt for different
electron temperatures, in the absence of collisions (Fig. 5.3). It is seen that

in cold collisionless plasma (Fig. 5.3 (a)) the average total kinetic energy of

electrons does not change over time, and thus electrons are not heated by the

wave field, as expected. In warm collisionless plasma (Fig. 5.3 (b)) we see

that the total kinetic energy grows in time, i.e. electrons are indeed heated

collisionlessly. The estimated total absorbed power for the collisionless heating

is calculated as (KEfinal −KEinitial) /t, where KEinitial and KEfinal are the



110

Figure 5.3: Time evolution of total kinetic energy of electrons in collisionless
plasma with (a) cold electrons and with (b) warm electrons (Te = 10 eV).

initial (t = 0) and final total kinetic energy of electrons, and t is the time of the

simulation. For the case plotted in Fig. 5.3 (b) (Te = 10 eV, n0 = 10
10 cm−3,

ω/2π = 10 MHz, νe = 0, E0 = 2 V/cm, δ ≈ 5.6 cm) the total absorbed power
measured in the simulation is approximately 190 W, while our theory predicts

170 W (from Eq. 3.13) for the same parameters. We see that the discrepancy

between our theory and the simulation is rather small (relative error is about

10%). Thus the results of the PIC simulation of collisionless heating confirm

our theoretical model.

5.3.2 Comparison of Simulation Results with Linear The-

ory. Evidence of Heating Reduction at Low Fre-

quencies

In Chapter 3 we studied the influence of electron thermal motion on plasma

heating in nonlocal regime (see Fig. 3.5). To do this, we introduced the param-

eter η = Stot/Scoll which is the ratio of the total power absorption in nonlocal

regime (3.13) to the purely collisional power absorption (3.15). This parame-

ter compares the actual heating in nonlocal regime to the heating that would

have occurred if only the collisional mechanism of power absorption was active,

with all other conditions being the same. Studying the dependence of η on the
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driving frequency we have shown theoretically (Fig. 3.5) that the heating in

nonlocal regime is enhanced significantly (compared to the purely collisional

heating) at frequencies near a resonance (when |s| = 1, orpω2 + ν2en = vTe/δ),

and is reduced significantly at low frequencies ω < νe (effective reduction of

heating).

Now that we have the tool for PIC simulation of plasma heating in nonlocal

regime, let us study the same dependence of η = Stot/Scoll on the wave driving

frequency, and compare it to the theoretical curve (Fig. 3.5). Particularly we

will be looking at the enhancement of heating at resonant frequencies, and at

the effective reduction of heating at low frequencies.

We conducted a series of numerical experiments using our PIC code with

collisions described above, with the prescribed exponentially decaying electric

field Ey = E0 exp(−x/δ) cosωt that heats the plasma. In these simulation runs
we measured the total heating of electrons Stot from an increase of the total

kinetic energy of electrons, and compared it to the purely collisional heating

calculated from (3.15). The purely collisional heating was calculated using the

same mean collision frequency νen as that used in the simulation. In our setup,

this collision frequency entered the simulation as an input parameter, and its

value was taken from the experiment [32].

The parameters for which the simulations were carried out were chosen

to match the experimental parameters [32] and were the following: plasma

density n0 = 2.7 · 1010 cm−3, e − n collision frequency νen = 1.5 · 106 s−1,
electron temperature Te = 10 eV, the driving frequency ranged from 10

−2 MHz

to 102 MHz, which corresponds to a transition from strongly nonlocal regime

to local regime of electromagnetic phenomena in plasma. The dependence of

the ratio η = Stot/Scoll, measured in the numerical experiments on the driving

frequency, is compared to the according theoretical dependence for the same

parameters in Fig. 5.4. We see from Fig. 5.4 that there is a very good

match between the results of PIC simulation without RF magnetic field and

our linear theory. Namely, the simulation justifies the novel phenomenon of the
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Figure 5.4: Ratio η = Stot/Scoll, measured in PIC simulation (no RF mag-
netic field), for different driving frequencies. Results of the simulation are
represented by circles. The theoretical (linear) result for the same parameters
(solid line) is plotted for comparison.

effective reduction of heating at low frequencies; it also confirms the resonant

enhancement of heating at moderate frequencies, when |ω + iνen| ≈ vTe/δ.

This match between the simulation results and our linear theory is not

very surprising as these simulations are performed at conditions that are very

close to the assumptions made in our theoretical model. Most importantly,

we have switched the RF magnetic field off in these simulations. Taking the

RF magnetic field into account might change the heating, especially at low

frequencies, when the nonlinearity due to the Lorentz force is significant. In

Chapter 4 we developed the quasilinear theory which accounts for the effect

of weak electromagnetic (mainly RF magnetic field) on electron heating. This

theory predicts a small nonlinear enhancement of electron heating at low fre-

quencies, followed by a reduction at higher frequencies, in case of weak heating

field. However, it is interesting to study the effect of RF magnetic field on elec-

tron heating for arbitrary field strength. This can be done by means of the

numerical experiment.
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5.4 Simulation: Nonlinear Effect of RF Mag-

netic Field on Heating

To study the effect of the induced RF magnetic field on plasma heating by

means of numerical experiment, we calculate the RF magnetic field Bz from

the electric field Ey = E0 exp(−x/δ) cosωt using (1.3), and move particles
(electrons) taking into account both the electric field force−eE and the Lorentz
force −e/c [v×B]. The Lorentz force imposes nonlinearity into the problem,
as the electron trajectories are not “straight” anymore. The kinetic equation

for the electron distribution function generally becomes nonlinear, and the

heating may deviate significantly from predictions of the linear or even the

quasilinear theory.

When simulating plasma heating with an account for the RF magnetic

field, we will study two cases. First is a case of weak nonlinearity, when the

electromagnetic field is weak; by simulating this case we will be able to justify

our quasilinear theory that predicts (for the cold collisional plasma) a nonlin-

ear enhancement of heating at low frequencies compared to the linear heating,

followed by a nonlinear reduction of heating at higher frequencies, vanishing

as the frequency grows (see Fig. 4.1, Chapter 4). Second is a case of strong

nonlinearity, when the magnetic field is strong enough to significantly alter

electron trajectories. This case is described by a nonlinear kinetic equation,

which generally can not be solved analytically. Therefore the usage of numer-

ical simulations for studying the case of strong nonlinearity is very attractive.

We will start with the case of weak nonlinearity.

5.4.1 Weak Nonlinearity

Here we consider the case of plasma heating by weak field, when the electron

oscillatory velocity in the electric field Ey is small compared to their thermal
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Figure 5.5: Ratio η = Stot/Scoll, measured in PIC simulation (weakly non-
linear case), for different driving frequencies. Results of the simulation are
represented by circles. The theoretical (linear) result for the same parameters
(solid line) is plotted for comparison. The parameters are E0 = 0.05 V/cm,
Te = 10 eV.

velocity,
e

me

E0p
ω2 + ν2en

= vE ¿ vTe. (5.30)

This condition is the same as (4.23), which implies that the nonlinear pertur-

bation of the electron distribution function from the background Maxwellian

distribution is small, δF ¿ fM (see Chapter 4). Hence this is the case of

weak nonlinearity, and it is described by our quasilinear model, developed in

Chapter 4. Thus one might expect to see a similar picture as was predicted in

Chapter 4 for the case of cold collisional plasma. This picture, however, can

be modified by the electron thermal motion, as now we have a warm plasma

with collisions.

The effect of weak nonlinearity on plasma heating in case of warm plasma

with collisions is well seen in Fig. 5.5. Here again we plot the parameter

η = Stot/Scoll against the wave driving frequency, taking into account the

magnetic field in the case of weak fields, and compare it to the linear case,
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without the magnetic field. As we see from Fig. 5.5, there is a nonlinear

deviation of the simulation results for heating from the prediction of our linear

model at low frequencies, as expected. Moreover, this deviation is in qualitative

agreement with the predictions of our quasilinear theory for the case of cold

collisional plasma. Namely, we see a slight enhancement of heating (compared

to the linear value) at low frequencies, followed by a slight reduction of heating

at higher frequencies, vanishing as the frequency goes up, just as in Fig. 4.1

(Chapter 4). This qualitative agreement of the results of numerical experiment

for warm plasma with collisions with the prediction of our quasilinear theory

for cold collisional plasma suggests that the electron thermal motion does not

significantly alter the nonlinear modification of heating.

Note that the value of the electric field E0 = 0.05 V/cm used in this

case is rather small; it is smaller than typical values of the electric field in

real discharges. However, we used such a field to illustrate the effect of weak

nonlinearity on plasma heating, which leads to a somewhat enhancement of

heating at low frequencies compared to the linear case.

Next we will consider the case of strong nonlinearity with field values that

are close to the typical experimental values.

5.4.2 Strong Nonlinearity

Let us now consider the case of plasma heating with strong fields, when

the electron oscillatory velocity is of the order of the electron thermal velocity,

vE ' vTe. (5.31)

For such fields the electron distribution function can deviate significantly from

isotropic (Maxwellian), and therefore a significant deviation of heating from

the predictions of both our linear and quasilinear theories is expected. In-

deed, we see such deviation at low frequencies from Fig. 5.6, where the ratio

η = Stot/Scoll is calculated from the results of PIC simulation in the case of

strong fields, and compared to the result of the linear theory. The electric
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Figure 5.6: Ratio η = Stot/Scoll, measured in PIC simulation (strongly non-
linear case), for different driving frequencies. Results of the simulation are
represented by circles. The theoretical (linear) result for the same parameters
(solid line) is plotted for comparison. The parameters are E0 = 0.5 V/cm,
Te = 10 eV.

field amplitude in the simulation of this case is 0.5 V/cm, which is close to the

actual experimental values at low frequencies. We see from Fig. 5.6 that at

low frequencies, when the ratio of electron cyclotron frequency in the RF mag-

netic field to the wave frequency, which characterizes the nonlinear influence

of magnetic field, is large, ωc/ω > 1, there is a significant deviation of heating

from the prediction of the linear model. Namely, we see even greater reduction

of heating compared to the purely collisional value (in linear case) than that

predicted from our linear theory. This additional reduction of heating could be

related to several nonlinear effects that have been previously discussed theoret-

ically in literature. One of the effects responsible for this additional reduction

is the depletion of plasma density in the skin region due to strong ponderomo-

tive effect at low frequencies predicted by Cohen and Rognlien [7, 15]. Indeed,

the ponderomotive force is greatly enhanced at low frequencies (see Eqs. 3.28,

3.32), and it shifts the plasma away from the skin region, thus reducing the
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plasma density in the skin region. As a consequence, the plasma current in-

duced by the electromagnetic field is reduced, and therefore the plasma heating

is also reduced compared to the case without magnetic field (linear case). This

is a nonlinear effect that requires strong fields, which is the case here. Another

effect that can possibly cause the nonlinear deviation of heating from heating

in the linear case is the nonlinear trapping of electrons by the electromagnetic

field in the skin region [71].

As in the case of weak nonlinearity (see Fig. 5.5), the nonlinear deviation

of heating from the linear case in the case of strong nonlinearity diminishes as

the wave frequency increases, i.e. as the nonlinearity parameter ωc/ω becomes

small (see Fig. 5.6).

It should be noted that in the simulations of both weakly and strongly

nonlinear cases we did not account for the electrostatic field, as we designed

our numerical experiment to have as close setup with our theoretical model as

possible, and our theoretical model does not account for the ambipolar electric

field. However, one might expect that in the case of strong nonlinearity the

ponderomotive depletion of plasma density in the skin region would create a

significant electrostatic field which would keep the plasma quasineutral. This

field might also influence the heating. However, as it was discussed by Cohen

and Rognlien [15], this field does not lead to any significant change of heating,

moreover, the heating rate calculated with account of this field is slightly

lower than the heating rate without the electrostatic field. It is difficult to

verify this statement using our PIC code which uses a Poisson equation to

calculate the electrostatic field, as for this we would need a timestep small

enough to resolve the plasma frequency. With typical plasma densities of the

order of 1010 − 1012 cm−3 the problem of simulating plasma heating at low

frequencies (below 0.1 MHz) with account for the electrostatic field requires

from hundreds to thousands of hours of computational time per each point on

the plot of η = Stot/Scoll versus frequency ω. A remedy for this could be a

usage of a different technique for calculating the self-consistent electrostatic
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field based on plasma quasineutrality [72] (page 66), [73], [74]. This technique

allows to not resolve the plasma frequency, therefore being more adequate

in simulations of slow-timescale phenomena (compared to period of plasma

oscillations), such as plasma heating. Also this technique is characterized

by much lower noise than that using the Poisson solver. Implementing this

technique and simulation of plasma heating in nonlinear case with account for

the electrostatic field could be one of the directions of the future work.
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Chapter 6

Conclusions and Suggestions for

Future Research

The modern ICP discharges typically operate in the regime of the anoma-

lous skin effect, when the thermal motion of plasma electrons is essential, i.e.

plasma is warm, vTe > ωδ. This regime, also called a nonlocal regime, is char-

acterized by such features as nonlocal Ohm’s law, nonmonotonic profile of the

electromagnetic field in plasma, and increased depth of the electromagnetic

field penetration into plasma compared to the case of cold plasma (regime of

classical skin effect).

The experimental measurements of ponderomotive effect and plasma heat-

ing in ICP at conditions of the anomalous skin effect, conducted by Godyak et al.

[17, 31, 32], demonstrated some interesting features. Namely, it was shown that

the actual ponderomotive effect in the nonlocal regime is significantly smaller

than that predicted by the classical Miller theory of ponderomotive effect in

cold plasma [22]. Also, the measurements of plasma heating in nonlocal regime

demonstrated an importance of resonant wave-electron interaction, leading to

significant collisionless heating of plasma, as well as an importance of thermal

diffusion of the electron current in plasma, leading to negative absorption of

the electromagnetic wave power by plasma electrons.
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The discrepancy between the measured ponderomotive force and the pre-

diction of the Miller theory, occurring due to the thermal effects, has not been

previously explained. Moreover, the whole notion of thermal modification of

the ponderomotive force has not been discussed theoretically. Most previous

investigations implicitly or explicitly dealt with situations of weak nonlocal-

ity and weak time dependence of field amplitude. These works treated the

problem of calculating the ponderomotive force perturbatively, by using small

parameters 1/τ ¿ ω (here τ is a characteristic timescale of weak time depen-

dence of field amplitude, ω is the frequency of field oscillations), and kvTe ¿ ω

(here k is the characteristic wave vector of the field). Under these assumptions

the thermal effects result only in small correction to the standard cold plasma

formula for the ponderomotive force.

The case of ICP in nonlocal regime is opposite: kvTe > ω, therefore it

can not be treated by the perturbative technique typically used in other the-

oretical works on ponderomotive effect. This motivated us into development

of the linear kinetic model of electron dynamics in ICP in nonlocal regime,

which accounts for electron thermal motion and collisions in non-perturbative

manner. This model describes both ponderomotive force and plasma heating,

showing a good agreement with the experimental data of Godyak et al. In

particular, it predicts the reduction of ponderomotive force compared to the

Miller expression as it was observed experimentally in [17], which is one of our

main results. Our model also describes correctly the resonant absorption of

the electromagnetic field in plasma [32]. It also yields the negative absorption

of the heating wave power by plasma electrons, in good agreement with the

experimental picture and earlier theoretical work [31]. Another important ac-

complishment of our model is the prediction of the reduction of total plasma

heating compared to the purely collisional heating at low driving frequencies,

which has not been previously reported. In other words, this effect means that,

at low driving frequencies, the total plasma heating due to both collisional and

collisionless (resonant) mechanisms becomes smaller than it would have been
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if only the collisional mechanism was active. This is contrary to the general

belief that the resonant absorption always increases the total plasma heating

as compared to heating due to collisional mechanism alone.

Our linear theoretical model, developed in Chapter 3, does not account

for nonlinear modification of the electron distribution function and subsequent

modification of plasma heating. To account for the nonlinear effect of the weak

electromagnetic field, we developed the quasilinear kinetic theory. Within this

theory, equations for the nonlinear perturbation of the electron distribution

function and for the subsequent nonlinear modification of plasma heating were

derived, and they were solved analytically in the approximation of cold colli-

sional plasma. It was shown that the nonlinear effect of the electromagnetic

field on plasma heating is mainly due to the RF magnetic field, and occurs

at moderate collisionality of plasma electrons, νen . ω. For highly collisional

plasma, when νen À ω, the electron distribution function is highly isotropic,

and the nonlinear effect of the RF magnetic field vanishes, leaving only the

nonlinear effect of the RF electric field. In the moderately collisional regime

νen . ω the magnetic component of the RF electromagnetic field leads to a

nonlinear enhancement of heating at low frequencies, followed by a nonlin-

ear reduction of heating at higher frequencies; this nonlinear modification of

plasma heating, however, does not eliminate the effect of heating reduction at

low frequencies predicted by our linear theory. The nonlinear effects vanish

at high frequencies of the electromagnetic wave, ω À e/meE0νenδ/v
2
Te, and

the plasma heating at these frequencies is well described by the linear kinetic

theory developed in Chapter 3.

In order to verify the effect of reduction of plasma heating at low frequen-

cies, as well as to investigate the nonlinear effects of the RF magnetic field

on plasma heating for arbitrary field amplitude, we developed the 1d3v PIC

code with electron-atom and electron-electron collisions as a tool for numer-

ical simulations of ICP discharge in nonlocal regime. This code is not fully

self-consistent, as it uses the prescribed electromagnetic field profile, instead
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of calculating it self-consistently from the Maxwell’s equations with the charge

and current density measured during the simulation. The electron-atom col-

lisions, that are the primary collisions in ICP discharges, were implemented

into the code using the direct Monte-Carlo technique, and the electron-electron

collisions, that drive the electron distribution towards Maxwellian, were imple-

mented using the stochastic Langevin equation (see Chapter 5, p. 99 for more

details). The simulation results confirmed the results of our linear theory. In

particular, the effect of relative reduction of plasma heating compared to the

purely collisional value at low frequencies has been confirmed. The nonlinear

effect of the RF magnetic field on plasma heating was investigated using the

PIC code for the cases of weak and strong nonlinearity, that correspond to

the weak and strong electromagnetic field, respectively. It was shown that in

the case of weak nonlinearity the effect of the RF magnetic field on heating of

warm plasma qualitatively agrees with the prediction of the quasilinear theory

for cold collisional plasma, suggesting that the electron thermal motion does

not have a significant impact on the nonlinear effect in case of weak fields. In

the case of strong nonlinearity, which is beyond the scope of the quasilinear

model, the nonlinear effects lead to a further (compared to the linear model)

reduction of plasma heating at low frequency, thus enhancing the effect of

relative heating reduction at low frequencies predicted by the linear theory.

One of the directions of the future research is the modification of the linear

theoretical model to account for the nonhomogeneity of plasma density, making

the ICP model more realistic. Also it would be desirable to account for the ion

motion in the PIC simulation code when studying the low frequency modes of

discharge operations, since the dynamics of ions, especially at low frequencies,

may play a significant role on plasma heating and ponderomotive force.

The further development of the PIC simulation code should include imple-

mentation of the Maxwell’s equations solver for the electromagnetic field in

order to make the field profile self-consistent. A more sophisticated procedure

for electron-atom collisions could also be included, using the realistic atom
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cross-sections for various gases. To reduce the noise, inevitably occurring in

electrostatic plasma potential due to using of the Poisson solver, as well as

to reduce the computational time for high plasma densities of the order of

1010−1012 cm−3, a different technique for calculation of the electrostatic field,
based on the plasma quasineutrality, should be implemented (see, for example,

[72] (page 66), [73], [74] for more details).

Correct value of the ponderomotive force in warm inductive plasmas is

of practical importance for operation and modeling of ICP discharges. As

it was shown, for typical parameters the ponderomotive potential in ICP in

nonlocal regime is of the order of plasma electron temperature, therefore it can

significantly modify ambipolar potential. Note that the classical cold plasma

expression predicts the ponderomotive potential of the order of 80 V, which

would have a major impact on the plasma density profile. Therefore, in order

to have a correct plasma density profile, the effect of the thermal reduction

described by our theory should be included in models of ICP discharges in

nonlocal regime. Also, the newly predicted effect of reduction of total heating

compared to the purely collisional heating at low frequencies in nonlocal regime

should be kept in mind when designing the low-frequency discharges with

strong electric field inhomogeneity.

Another result of our work is analysis of importance of the nonlinear ef-

fect of the RF magnetic field on plasma heating, which is usually neglected

in theoretical descriptions. We have shown that the plasma heating is well

described by the linear theory at high frequencies ω À e/meE0νenδ/v
2
Te, while

at lower frequencies the nonlinear effects become significant and should be ac-

counted for. Our results indicate that further analytical and numerical studies

of strongly nonlinear regimes are warranted.

An important result of this work is also the development of the 1d3v PIC

code with collisions, which is a powerful tool for conducting numerical experi-

ments. This PIC code can be applied for other problems where the simulation

of one-dimensional warm plasmas with collisions is required. It can also be fur-
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ther developed to perform simulations of two-dimensional plasma discharges

with realistic conditions.
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Appendix A

Parameters of the

Electromagnetic Field Profile in

Plasma

In our theoretical model (Chapter 3) we have assumed an exponentially

decaying profile of the electromagnetic field E,B ∼ exp (−x/δ + iκx) with

free parameters δ and κ that should be given ”externally”. The ratio κ/δ−1

is defined by the surface impedance ZH = Ey(0)/Bz(0), namely κ/δ−1 =

Re (ZH) / Im (ZH). In the case of collisionless skin effect the ratio κ/δ−1 =

1/
√
3 ≈ 0.58 (see Eq. (2.21)), i.e. κ and δ−1 are of the same magnitude in

collisionless nonlocal regime. However, if the collisions are taken into account,

the ratio κ/δ−1 becomes significantly smaller for ω . νe < vth/δ (this condition

is typically satisfied in ICP discharges in nonlocal regime), as follows from the

surface impedance calculated self-consistently [2, 23, 24]. This is consistent

with the estimate of κ/δ−1 from the experimental data described below.

To estimate the actual ratio κ/δ−1 in the experiment we calculate κ from

the discharge absorbed power, and compare it to δ−1, where δ should be taken

from the experimental data (typically a few cm). The relation between κ and

the discharge power can be obtained from consideration of the Poynting flux of
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the wave in plasma S = c/4π hEyBzi = (c/8π) (κ/ω) |Ey|2, which is absorbed
by the plasma. The discharge absorbed power is P = S ·A, where A = πR2 is

the surface area of the discharge (R is the chamber radius). Then we get

κ =
8πω

c2E2
0

P

A
,

where E0 is the electric field amplitude. For example, taking the discharge

power P = 100 W, the driving frequency ω = 6.78 MHz, the amplitude value

of electric field E0 = 1.87 V/cm, the chamber radius R = 10 cm, we get κ ∼
0.1 cm−1, while δ ∼ 2.44 cm (experimental value), and thus κ/δ−1 = 0.25 (note
that in this experiment the collisions are not negligible, νen ∼ 4 · 106 s−1 ∼ ω).

With a typical discharge power of 50-100 W, magnitude of electric field of

1 V/cm, chamber radius of 10 cm, driving frequency of few MHz and δ of a

few cm, the ratio κ/δ−1 is a small number, in the range 0.1-0.3.


