
Coordinating Resource Use in Open

Distributed Systems

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Xinghui Zhao

c©Xinghui Zhao, June 2012. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In an open distributed system, computational resources are peer-owned, and distributed

over time and space. The system is open to interactions with its environment, and the re-

sources can dynamically join or leave the system, or can be discovered at runtime. This

dynamicity leads to opportunities to carry out computations without statically owned re-

sources, harnessing the collective compute power of the resources connected by the Internet.

However, realizing this potential requires efficient and scalable resource discovery, coordina-

tion, and control, which present challenges in a dynamic, open environment.

In this thesis, I present an approach to address these challenges by separating the func-

tionality concerns of concurrent computations from those of coordinating their resource use,

with the purpose of reducing programming complexity, and aiding development of correct,

efficient, and resource-aware concurrent programs.

As a first step towards effectively coordinating distributed resources, I developed DREAM,

a Distributed Resource Estimation and Allocation Model, which enables computations to

reason about future availability of resources. I then developed a fine-grained resource coordi-

nation scheme for distributed computations. The coordination scheme integrates DREAM-

based resource reasoning into a distributed scheduler, for deciding and enforcing fine-grained

resource-use schedules for distributed computations. To control the overhead caused by the

coordination, a tuner is implemented which explicitly balances the overhead of the control

mechanisms against the extent of control exercised.

The effectiveness and performance of the resource coordination approach have been eval-

uated using three case studies. Experimental results show that the approach can effectively

schedule computations for supporting various types of coordination objectives, such as ensur-

ing Quality-of-Service, power-efficient execution, and dynamic load balancing. The overhead

caused by the coordination mechanism is relatively modest, and adjustable through the

tuner. In addition, the coordination mechanism does not add extra programming complexity

to computations.

ii

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor, Professor

Nadeem Jamali, for his valuable guidance, advice, and encouragement over the last nine

years. Professor Jamali offered tremendous help in my research, and this thesis would never

have been completed without his generous intellectual and moral support. More importantly,

I am grateful that Professor Jamali taught me how to think as an independent researcher and

encouraged me to pursue a career in academia. What I have learned from him will definitely

keep benefiting me throughout my academic career.

I would like to thank the members of my advisory committee, consisting of Professor

Michael Bradley (Department of Physics and Engineering Physics), Professor Christopher

Dutchyn, Professor Derek Eager, Professor Evangelos Milios (Dalshousie University), and

Professor Nathaniel Osgood, for their suggestions, comments, and insights from different

perspectives. Their expertise and generous advice are critical in improving the quality of my

work. I also would like to thank my external examiner, Professor Sathish Gopalakrishnan

(University of British Columbia), for his valuable feedback and constructive comments on

the work.

Special thanks go to Professor Gul Agha (University of Illinois at Urbana Champaign), for

hosting me as a visiting student at his Open Systems Laboratory. During my visit, Professor

Agha provided opportunities for me to interact with researchers and students within/outside

of the department, discover open problems, and explore interesting research topics in the

field of open distributed systems. He also gave valuable feedback on my research, and shared

his insightful ideas with me. The two-month visit at the early stage of my Ph.D study has

been such a rewarding experience.

Thanks to the College of Graduate Studies and Research, the Department of Computer

Science, at the University of Saskatchewan, as well as the Natural Sciences and Engineering

Research Council (NSERC), for the financial support they have provided, which allowed me

to concentrate on my research. I am also thankful to the Canadian Foundation for Innovation

(CFI) for the generous support on the cutting edge hardware facilities, on which I carried

out my experiments. Also I would like to thank College of Graduate Studies and Research,

iii

which provided travel grants for a number of my conference trips.

I would like to thank Professor Qigang Gao and Professor Evengelos Milios, for their

generous financial support (through NSERC and MITACS) during the time I spent at Dal-

housie University. I moved to Halifax because of a family relocation in 2009, and since then

their support has allowed me to continue my own research smoothly in Dalhousie, as well

as explore more interesting research projects. I enjoyed working with them, and thanks to

them for treating me like their own student. I am also thankful to Professor Peter Bodorik,

who offered help when I was new to the department.

I am especially grateful that besides my supervisor, a number of professors have offered

their generous advice to me in pursuing an academic career. Thanks to Professor Gul Agha,

Professor Evangelos Milios, and Professor Nathaniel Osgood, for their encouragement and

support throughout my application process. Thanks to Dr. Alex Brodsky, Professor Qigang

Gao and Professor Denis Riordan, for their generous support, valuable feedback on my talk,

and for sharing their own experiences. Special thanks to Professor Gordon McCalla, for his

encouragement and valuable advice.

I am thankful that both the Department of Computer Science at the University of

Saskatchewan and Faculty of Computer Science at Dalhousie University offer friendly en-

vironments and sufficient resources for their graduate students. Working in both wonderful

departments is the experience I will always treasure. I also would like to thank my colleagues

in both Agents Lab and MALNIS Lab, for all the meetings, discussions, presentations, and

especially for all the fun we had which made the journey of my Ph.D study very much

enjoyable.

I would like to express my gratitude to my parents. My father always encourages me

to make effort for achieving my goals, and he is not only a very thoughtful and supportive

father, but also a good friend of mine. My mother taught me to be an honest and faithful

person. I always feel her love and blessing, although she is no longer with us.

Last but not the least, I would like to thank my family. My husband, Dr. Jian Wu,

is always willing to offer his unconditional support to me. Our dearest son, Jerod, pro-

vides unexpected but also necessary distractions. Over the years, their love and unwavering

confidence in me have been the most reliable source of energy through ups and downs.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Approach . 2

1.2.1 Resource Coordination Mechanisms 2
1.2.2 Evaluation . 4

1.3 Contributions . 5
1.4 Organization . 6

2 Related Work 7
2.1 Actor Model . 7

2.1.1 Actor Model . 8
2.1.2 Implementation of Actor Semantics 9

2.2 Formal Approaches . 10
2.2.1 Multi-Agent Planning . 10
2.2.2 Formal Logic . 12

2.3 Resource Management Models . 13
2.4 Language-Based Approaches . 15
2.5 Distributed Scheduling . 17
2.6 Summary . 18

3 Resource Coordination 19
3.1 Distributed Resource Estimation and Allocation Model (DREAM) 19

3.1.1 Representing Resources . 19
3.1.2 Representing Computations . 23
3.1.3 Formal Definition of DREAM . 29

3.2 Resource Coordination Mechanisms . 36
3.2.1 Challenges . 37

v

3.2.2 Installing A Resource Control Mechanism 38
3.2.3 Implementation . 43

3.3 Summary . 47

4 Case Study: QoS Support 48
4.1 Related Work . 48
4.2 Approach . 51

4.2.1 Deadline Analysis . 52
4.2.2 QoS Policy . 53

4.3 Experimental Results . 55
4.3.1 Threadring Benchmark with Deadline Constraints 55
4.3.2 Live Video Conferencing . 57

4.4 Summary . 60

5 Case Study: Power-Efficient Multicores 61
5.1 Challenges . 62
5.2 Related Work . 63
5.3 Effect of Frequency Scaling on Energy Consumption 66

5.3.1 Per-Core Frequency . 68
5.3.2 Turbo Boost . 70

5.4 Reasoning about Multicore Energy Consumption 72
5.4.1 Representing Multicore Resources and Computations 72
5.4.2 DREAM-MCP . 73

5.5 Experimental Results . 75
5.6 Summary . 78

6 Case Study: Dynamic Load Balancing 80
6.1 Introduction . 81
6.2 Related Work . 82

6.2.1 Dynamic Load Balancing . 82
6.2.2 Benchmarks for Dynamic Load-Balancing 84

6.3 Unbalanced Cobwebbed Fruit Tree . 85
6.4 Resource-Coordination Framework for Load Balancing 87

6.4.1 Resources and Computations . 87
6.4.2 Resource-Coordination Policy for Dynamic Load-Balancing 88

6.5 Benchmark Implementation . 92
6.5.1 Tree Generation . 92
6.5.2 Traversal . 93

6.6 Experimental Results . 94
6.6.1 Experimental Design . 94
6.6.2 Baseline Approaches Implementation 95
6.6.3 Experimental Results . 97

6.7 Summary . 101

7 Conclusion and Future Work 103

vi

7.1 Conclusion . 103
7.1.1 Resource Coordination Approach . 103
7.1.2 Case Studies . 104

7.2 Future Directions . 106
7.2.1 Multi-Dimension Tuning . 106
7.2.2 Smart Space: Spatial-Temporal Coordination 106
7.2.3 Phone Grid . 108
7.2.4 Power-Efficient HPC Clusters . 108

7.3 Concluding Remarks . 109

References 110

A Raw Data from Case Study 1 121

B Raw Data from Case Study 2 123

C Raw Data from Case Study 3 124

vii

List of Tables

3.1 Possible Relations Between Two Time Intervals 21

5.1 GNBP: Execution Time at Maximum Frequency 77

A.1 Raw Data from the ThreadRing Experiments 121
A.2 Tuning Events Triggering from the AF D Experiment 121
A.3 Raw Data from the Live Video Conferencing 122
A.4 Tuning Events Triggering from the AF D Experiment 122

B.1 Raw Data from the N-Body Experiments . 123
B.2 Tuning Events Triggering from the N-Body Experiments 123

C.1 Raw Data from the UCFT Experiments (Performance Vs. Computation Size;
TreeSize=100, StdDev=50) . 124

C.2 Tuning Events Triggering from the UCFT Experiments 124
C.3 Raw Data from the UCFT Experiments (Performance Vs. Standard Deviation;

TreedSize = 100, AveCompSize = 500) . 125
C.4 Tuning Events Triggering from the UCFT Experiments 125
C.5 Raw Data from the UCFT Experiments (Performance Vs. Tree Size; Ave-

CompSize = 500, StdDev = 100) . 126
C.6 Tuning Events Triggering from the UCFT Experiments 126
C.7 Raw Data from the UCFT Experiments (Responding to Urgent Computations;

TreeSize = 100, AveCompSize = 500, StdDev = 100) 127

viii

List of Figures

2.1 Structure of an Actor . 8

3.1 DREAM Semantics . 35
3.2 ActorFoundry Scheduler . 39
3.3 Integrating DREAM Reasoning into ActorFoundry Scheduler 40
3.4 System Architecture (AF-D Node Instance) 43

4.1 Threadring Benchmark . 57
4.2 Multimedia Application: Video Conference 58
4.3 Audio/Video Stream Synchronization for Live Video Conferencing 60

5.1 Saved Energy on Non-uniform Per-Core Frequency Technology 70
5.2 Saved Energy on Turbo Boost Technology 71
5.3 GNBP: Execution Time at Maximum Frequency 77
5.4 GNBP: Energy Saving and Cost . 78

6.1 Unbalanced Cobwebbed Fruit Tree . 86
6.2 DREAM Reasoner . 89
6.3 Performance Vs. Computation Size (TreeSize=100, StdDev=50) 98
6.4 Performance Vs. Standard Deviation (TreedSize = 100, AveCompSize = 500) 99
6.5 Performance Vs. Tree Size (AveCompSize = 500, StdDev = 100) 100
6.6 Responding to Urgent Computations (TreeSize = 100, AveCompSize = 500,

StdDev = 100) . 101

7.1 Smart Space . 107

ix

List of Abbreviations

AF ActorFoundry
AF-D ActorFoundry with DREAM Reasoning
CCS Calculus of Communicating Systems
CPS Continuation Passing Style
CSP Constraint Satisfaction Problem
DCT Dynamic Concurrency Throttling
DREAM Distributed Resource Estimation and Allocation Model
DR DREAM Reasoner
DVFS Dynamic Voltage and Frequency Scaling
EDF Earliest Deadline First
FCFS First-Come First-Served
FIFO First-In First-Out
GNBP Gravitational N-Body Problem
HPC High Performance Computing
JVM Java Virtual Machine
LSC Local Synchronization Constrains
MCVR Multicore Voltage Regulator
QoS Quality of Service
RFP Resource Feasibility Problem
RMS Resource Management and Scheduling
UCFT Unbalanced Cobwebbed Fruit Tree
UTS Unbalanced Tree Search

x

Chapter 1

Introduction

With the growing ubiquity of networked computers, there is an ever increasing poten-

tial for executing computations by utilizing distributed peer-owned resources. As a result,

new computation paradigms – such as grid and cloud computing – have emerged, where

distributed applications can use resources over the Internet. However, accurately reasoning

about resource availability on a network of peer-owned resources – necessary for assurance of

resource delivery – remains a significant challenge. The challenge is even more pronounced

when these computations are executing in open distributed environments, because in such a

context, resources can dynamically join or leave the system at any time, or can be discovered

at runtime; the same is true for computations with needs for the resources. On the one

hand, there is uncertainty inherent in both the evolving requirements of computations and

the highly dynamic environment in which they would be executing; on the other hand, it has

long been recognized that matching computations against resources has a high computational

complexity [25, 67].

Meeting these challenges can be helped by computations’ ability to reason about future

availability of resources, and their ability to adapt to the dynamic execution environment as

well as their own evolving resource requirements. The mechanisms for this adaptation can be

both micro and macro. Micro mechanisms are those that a distributed computation can use

in order to adapt; macro mechanisms are those used by the wider system for supporting such

computations. Key among these mechanisms are methods for observing the changes to adapt

to. Micro mechanisms observe at a fine grain the changes with implications for an individual

computation. Macro mechanisms observe the state of the execution environment as a whole

at a higher level of abstraction; it is characterized by its aggregation of the observation

rather than the coarseness of the grain of observation. The goal of this work is to support

1

this observation and the decision processes it enables.

In this chapter, I first present the thesis statement in Section 1.1, and then describe the

approach in Section 1.2. The contributions of the research are presented in Section 1.3, and

finally, Section 1.4 outlines the organization of the thesis.

1.1 Thesis Statement

Fine-grained coordination and control for computational resources distributed over time and

space can be programmed elegantly and provided efficiently, leading to opportunities including

ensuring quality of service, and enhancing power efficiency and dynamic load balancing.

1.2 Approach

The ability to reason about future availability of resources is essential for computations to

adapt to the evolving environment. Reasoning about resource-bounded computations has

received a significant amount of attention recently [7, 8, 48, 55]; however, the emphasis has

been on adapting behaviors of computations as they try to adapt to resource bounds, rather

than empowering computations with the reasoning ability to better navigate in the space

of resource uncertainty in search of new resources – to seek out new frontiers, in a manner

of speaking. One of the objectives of the approach I present in this thesis is to enable

computations to have this ability.

1.2.1 Resource Coordination Mechanisms

As a first step towards coordinating resource use for distributed computations, I developed

a Distributed Resource Estimation and Allocation Model (DREAM), which can be used for

reasoning about feasibility of carrying out deadline-constrained distributed computations in

resource bounded open distributed systems. The following question is considered: “Can we

know at time T whether a distributed computation C can complete its execution by deadline

D?” By providing a reasoning scheme for accurately predicting resource availability in the

2

future, DREAM gives a solution to this question, in the form of a sequence of possibly parallel

paths of resource utilization that the computation can take to its completion.

DREAM focuses on computational resources – defined in a broader sense to also include

communication resources required by distributed computations – the consumption of which

enables computations to make progress. In DREAM, computational resources are defined

over time and space. Resources are represented using resource terms, which contain several

key attributes of the specified resources: type, density, time, and location of existence.

Because resources are the focus of this work, computations which seek to use resources

are represented in terms of the resources they require. In other words, we will be interested

in which resources, when and how much will computations consume, rather than what the

computations do while consuming them. Specifically, each computation is represented by

its resource requirements. The computation’s requirements for the near future are assumed

to be known, with evolving requirements potentially needing a reevaluation. Representing

computations in this manner together with the resource availability over time makes it possi-

ble to accurately reason about whether the deadline constraint of a distributed computation

can be assured. DREAM uses labeled transition rules to describe the process of resource

consumption.

Using DREAM as the underlying basis for resource reasoning, I then designed a resource

coordination mechanism, and installed it in the latest optimized version of ActorFoundry [77],

a Java library which attempts to faithfully implement the Actor model of concurrency [2].

ActorFoundry was a particularly attractive choice also because of its uniquely accessible

code. In addition, the careful analysis and comparison carried out by its developers of the

optimizations have shown that ActorFoundry is an efficient Java implementation of Actor

semantics [77]. In particular, Karmani et al. showed that with the optimizations, Actor-

Foundry exhibited performance comparable to that of other Java implementations which

were less faithful to Actor semantics, and came close to performance of Erlang [15], which is

a programming language supporting Actor semantics. The major challenge to integrate the

coordination mechanism into ActorFoundry is that its optimizations, which improve overall

performance, also make coordination of resources between sub-computations more difficult.

In other words, the efficiency comes at the expense of the ability to program a significant

3

class of computations requiring fine-grained coordination. Instead of arguing against these

limiting optimizations, I take the approach of working with them to support fine-grained co-

ordination. Particularly, the optimizing mechanisms are carefully examined for opportunities

for fine-grained control, which can be supported efficiently. Furthermore, another challenge

is the overhead caused by the coordination mechanism. Finer-grained control always comes

with higher overhead, and because of the dynamicity of the system, it is difficult to use

analytical approaches to decide the tradeoff in advance. To address this challenge, a tuner

is implemented to automatically or manually control the overhead induced by the resource

coordination mechanism at runtime. The automatic tuning happens periodically along with

computations.

1.2.2 Evaluation

The effectiveness, efficiency, and flexibility of the resource coordination approach have been

evaluated using three types of applications, with different requirements for resource coordi-

nation.

• QoS Support

The effectiveness of the resource coordination approach for supporting Quality-of-

Service (QoS) requirements has been evaluated using a live video conferencing ap-

plication. The QoS support is achieved by efficiently calculating fine-grained deadlines

for sub-computations, and meeting those deadlines by properly allocating resources and

enforcing the resource allocation schedules.

• Power-Efficient Multicores

The energy consumption of a processor is typically proportional to the cube of its

frequency. In the DREAM model, an important component in the resource representa-

tion is the rate, which for CPU resources, represents frequency. Therefore, the approach

can be easily extended for accommodating energy consumption of computations. Par-

ticularly, I adapted the fine-grained resource-coordination mechanism for supporting

multicore-processor resource management and energy-consumption analysis, and illus-

4

trated the effectiveness of the support using a scientific computing application executed

on multicores.

• Dynamic Load Balancing

Dynamic load balancing is critical in achieving high performance in parallel systems.

I adapted the resource coordination approach for supporting dynamic load balanc-

ing by reasoning about resource utilization, controlling resources at a fine grain, and

minimizing resources that are expiring. I used a customized high-performance comput-

ing benchmark application to illustrate that the proposed approach outperforms the

traditional dynamic load-balancing approaches, and also provides extra flexibility to

promptly respond to computations with high priorities.

Through the above case studies, I illustrate that the resource coordination approach can

provide effective support for different coordination purposes. In addition, because the re-

source coordination mechanisms are implemented separately from the computations, adapt-

ing the resource coordination mechanism does not add extra programming complexity to the

computations.

1.3 Contributions

Coordinating resource use in open distributed systems is a challenge, especially when com-

putations have timeliness constraints. The research presented in this thesis addresses this

challenge, and has the following contributions.

• First, the DREAM model reifies resources and resource requirements of distributed

computations in a novel way, and its use for reasoning about future resource availability

and accommodation of new computation is demonstrated.

• Second, the fine-grained resource coordination mechanism based on DREAM can pro-

vide effective support for resource coordination among distributed computations at a

relatively low and controllable overhead.

5

• Third, the approach is demonstrated to be adaptable for supporting different types of

resource coordination, without adding extra programming complexity to computations.

1.4 Organization

The organization of the thesis is as follows. Related work is reviewed in Chapter 2, includ-

ing resource coordination approaches in several relevant areas: formal approaches, resource

management models, language approaches, and distributed scheduling. Then in Chapter 3 I

present the resource coordination approach, including the DREAM model and the resource

coordination mechanism which integrates DREAM reasoning into ActorFoundry. Chapters 4,

5, and 6 are case studies for evaluating the resource coordination approach, in terms of QoS

support, power-efficiency support, and dynamic load-balancing support, respectively. Finally,

in Chapter 7, I conclude the thesis and present future directions of this research.

6

Chapter 2

Related Work

Limited resources have always been a major concern in concurrent systems [34]. Co-

ordinating use of the limited resources by distributed computations is a challenge. Over

the last few decades, significant work has been done on how to adapt computations to the

resource boundedness of the system, on both the theory and application levels. Existing

approaches include developing a resource-bounded reasoning mechanism or a formal logic

to investigate computations’ behaviors within a resource boundary, developing theoretical

models, programming languages or APIs to facilitate resource management, and designing

resource-aware scheduling schemes to schedule distributed computations on a network of com-

putational resources. In this chapter, I first review the Actor model of concurrency [2], which

is used in this research as the underlying model for distributed computations, in Section 2.1.

Then I review different types of approaches for resource coordination, in Sections 2.2, 2.3,

2.4 and 2.5. Finally, Section 2.6 summarizes the chapter.

2.1 Actor Model

There are a number of formal models for formalizing concurrent computations in open

systems. π�calculus [100] is a calculus for expressing processes with changing structures.

π�calculus was extended from the process algebra CCS (Calculus of Communicating Sys-

tems) [99]. The Actor model [2] is another model of concurrency for modelling concurrent

and asynchronous processes. The Actor model 1 is used in the approach presented in this

thesis for multiple reasons. First, the Actor model offers a natural programming framework

1In the thesis, I use “Actor” to refer to the model, and “actor” to refer to the computing entity in the
model.

7

for implementing object-oriented distributed systems. Second, the Actor model offers a con-

venient way for resource control, because its one-thread-per-actor feature makes it possible

to control resources for actors by carefully scheduling actor threads. More details about the

Actor model are reviewed in the following sections.

2.1.1 Actor Model

Hewitt first used the term “actor” in his early work for PLANNER [59], and he proposed

the concept of actors in [60] in 1977. Grief developed an abstract model [56] for actors, and

afterwards Clinger developed the semantics for actors [28]. Agha then extended actors to

both a programming language [2, 3] and a data abstraction [2] for concurrent open systems.

Actors are autonomous computational entities which communicate with each other using

buffered, asynchronous, point-to-point messages. An actor encapsulates a state, a number

of methods (which can change the state of the actor), and a thread of control. Actors are

distributed over time and space. Each actor has a globally unique mail address, and it

maintains a queue of unprocessed messages it has received. Figure 2.1 shows the structure

of an actor.

...

method

method

method

...

State

Thread

Messages

Figure 2.1: Structure of an Actor

The messages in an actor’s message queue are processed one by one according to the order

8

of arriving. While processing a message, three types of actor primitives may occur:

• Create finite number of new actors with some predefined behaviors. The creator actor

knows the addresses of the new actors.

• Send messages to other actors. An actor can send a message to another actor only if it

knows the name of the destination actor.

• Change the actor’s own state and be ready to process the next message.

In addition, the Actor model has the mobility property, i.e., an actor can migrate to

another location (machine) during its execution, and continue executing there. The Actor

model assumes a notion of fairness: the messages that are sent by actors are guaranteed to

arrive at the destination actors eventually, but there is no guarantee about the specific order

of arriving. Note that another notion of fairness for the Actor model is that no actor can

be permanently starved, i.e., the messages in an actor’s message queue will eventually be

processed.

2.1.2 Implementation of Actor Semantics

The growth of multicore computers has made it imperative for application programmers to

write concurrent programs. As a result, the actor-oriented programming receives increasing

attention. Some of the actor-based languages include Erlang [15], SALSA [128], E lan-

guage [126], Axum [98], and Ptolemy [66]. In addition to the novel languages based on

the Actor model, there are also actor frameworks/libraries which are developed using exist-

ing programming languages, such as C/C++ (Act++ [75], Broadway [123], Thal [79]), and

Java (Scala Actor Library [58], Kilim [121], Actor Foundry [16], Actor Architecture [74]).

Faithful implementations of the Actor model – such as Actor Foundry [16] and Actor Archi-

tecture [74] – implement all properties defined by actor semantics, including encapsulation,

fair scheduling, location transparency, and mobility. Unlike these faithful implementations,

many actor-oriented frameworks compromise one or more semantic properties of the standard

Actor model in order to achieve better performance, such as Scala [58], in which the only

actor property being implemented is fair scheduling.

9

The Actor model encapsulates objects along with threads of execution. Therefore, ear-

lier actor frameworks usually use one-thread-per-actor implementation of actors, such as

Scala [58] and Actor Architecture [74]. However, it turns out that in practice, one-thread-per-

actor implementation of actors is not particularly efficient, because of the overhead caused

by context-switching among actor threads. It is more efficient to have a pool of threads,

where each thread processes messages for multiple actors in some order. Karmani et al.

implemented this optimization strategy in the latest version of ActorFoundry [77], which has

been shown to deliver orders of magnitude better performance than its previous version. No-

tably, for a Threadring benchmark, in which 10 million messages are processed by 503 actors,

the optimization improves Actor Foundry’s performance from 695s to 10s, 17% faster than

Scala (12s), which achieves good performance by compromising several semantic properties

of the Actor model. In fact, the optimized ActorFoundry’s performance comes close to that

of Erlang (7s), a programming language which supports Actor semantics.

The optimized ActorFoundry is used in the work presented in this thesis as the underlying

framework for supporting distributed computations.

2.2 Formal Approaches

Resource coordination in distributed systems has attracted more and more interest. One class

of approaches is resource reasoning, which addresses the problem by providing a mechanism

for reasoning about resource capacity of a system, and generating plans for resource use.

Significant work has been done in this area, including multi-agent planning and formal logic.

2.2.1 Multi-Agent Planning

In the area of multi-agent planning, until the mid-1980s, reasoning systems were built with

the axiomatic basis defined by probability theory [29, 64, 112] and utility theory [107], under

the assumption that infinite resources were available. However, limited resources may make

a complete normative analysis impossible. Horvitz’s work [63] is the first to address the

concern about limitations of computational resources in the environment where reasoning

systems execute. In [63], inference-related cost is included in the reasoning as a negative

10

utility value which is against the expected utility, and meta-reasoning is used to compare the

values of alternative strategies. Since then, the boundedness of computational resources has

received significant amount of attention in reasoning about multi-agent behaviours [48].

A common way to connect reasoning and planning is to build plans using theorem provers,

with limited resources considered as bounds on the reasoning. ParcPlan [41] integrates tem-

poral reasoning with resource reasoning, and it aims to solve the resource feasibility problem

(RFP) for parallel actions executing in an environment of limited resources. In ParcPlan, re-

source feasibility is determined by checking the resource capacity constraint at starting points

of resource requests, when the number of resources in use increases. TRP [23] is another ap-

proach integrating temporal and resource reasoning, by formalizing resource constraints in

CSP (constraint satisfaction problem) terms. In TRP, resources are represented by resource

profiles, which addresses the temporal attribute of resources. Propagation techniques are

provided to synthesize new temporal constraints by reasoning on resource representation.

Unlike ParcPlan and TRP, where temporal and resource reasoning is performed after a plan

has been obtained, realPlan [122] separates resource reasoning (scheduling) from causal rea-

soning (planning), leading to improved planning performance. In realPlan, an abstract plan

is generated by causal planning without considering resource aspects. The abstract plan is

then post-processed for resource allocation to obtain a valid final plan.

Albore et al. proposed a different way to link reasoning and planning [5]. Instead of using

theorems to build plans, they show that the problem of reasoning under bounded resources

can be recast as a planning problem. In [5], a reasoning agent is modelled as a planning

domain where fluents correspond to the set of formulas held in the agent’s memory, and

actions correspond to applications of the agent’s inference rules. Different recasting styles

are proposed, as well as an approach to evaluate the minimal time and memory bounds for

solving the problem.

In most of the existing work in resource-bounded agent reasoning, the emphasis has

been on the behaviors of agents/computations constrained by fixed resource bounds, rather

than empowering computations with the reasoning ability to better navigate in a world of

resource uncertainty. The DREAM model presented in this thesis enables computations to

reason about resource availability in the future, so that the feasibility of a computation plan

11

(whether or not a specific computation can be completed by its deadline) can be determined

well in advance.

2.2.2 Formal Logic

Besides the multi-agent planning approaches, in the area of formal logic, step logic [38, 43,

42] is the first to represent resource/time in reasoning systems. In step logic, reasoning is

considered to be an on-going process. In other words, each step of the reasoning needs certain

amount of time to complete. This requires that the formalism be capable of dealing with time

as an object of reasoning. Although step logic eliminates logical omniscience, its semantics

have not been formalized. Nirkhe et al. then proposed a possible-worlds type semantics [108]

for step logic. However, logical omniscience was reintroduced in this approach.

Timed Reasoning Logics (TRL) [8], which is inspired by step logic, provides a complete

and decidable context-logic style formalism to reason about time-bounded reasoners. The

semantics of TRL uses syntactic notions but is grounded in the agents computation [134]

(e.g., the values of the agent’s internal variables or the set of facts in the agent’s working

memory). The limitation of this approach is that resources are simply represented by a

number, and only one type of resource is considered.

Bounded Memory and Communication Logic (BMCL) [7] is the first attempt to inte-

grate multiple resources in one reasoning system, such as time, memory, and communication

resources. BMCL can be used to model reasoning agents with bounds on multiple types

of resources. However, resources are not explicitly represented in BMCL. Instead, resource

bounds are expressed as axioms in the logic, so that during the course of reasoning, the

resource bounds can be verified. Therefore, BMCL is not capable of dynamically reasoning

about the resource availability in the system. OBA logic [6] is a logic for describing the

Observations, Beliefs, intentions and Actions of simple agents. OBA logic explicitly models

agent-environment systems, where there are limited resources. Properties of agents specified

in OBA can be verified using standard theorem-proving or model-checking techniques. How-

ever, the environment in OBA logic is closed and centralized, therefore it can not be used to

model open distributed systems.

Unlike the above approaches, the DREAM model presented in this thesis explicitly rep-

12

resents multiple types of resource in a uniform way using resource terms. In DREAM, the

availability of resources throughout the course of computation can be reasoned about.

2.3 Resource Management Models

A significant amount of work has been done in modelling distributed resources, and reifying

the control over the resources using a hierarchy of entities. In this section, I review two

models which are closely related to the approach presented in this thesis, Quantum [102] and

CyberOrgs [69].

Quantum is a theoretical model for resource management. It was first presented in [102],

and later extended in [103] in order to handle distributed and multi-type resources. In

Quantum, the resource that computations require for their executions is represented by en-

ergy. The basic resource control unit in Quantum is called a group. A group hosts a set of

computations, and it also serves as a tank of energy.

In the Quantum model, a group can create new groups, so a hierarchical structure is

generated. Each new group is assigned an amount of energy when it is created, and the

energy is used for sponsoring the computations in this group. Computations consume energy

from the sponsoring group, and if a computation needs more energy than what is available

in the group, an energy exhaustion primitive is invoked to signal that the current group

has run out of energy; if all the computations complete in one group which does not sponsor

any sub-groups, the event group termination is signalled, and all the remaining energy is

returned to the parent group.

Group creation, energy exhaustion, and group termination allow flow of energy between

a group and its sub-groups, but energy may also flow between groups independently of the

group hierarchy using another two primitives: pause and awake. Pause forces a group and

all its sub-groups to be exhausted, and all the energy in this whole hierarchy is transferred

to the group which called and sponsored the pause operation. Similarly, a group may also

transfer energy to an exhausted group in order to make it awake, the group which calls awake

sponsors the execution of the awake primitive.

CyberOrgs [69] is a model for hierarchical coordination of resource usage by multi-agent

13

applications in a network of peer-owned resources. Each cyberorg 2 encapsulates a set of

computations which are executed concurrently, and an amount of resource. A concurrent

computation consumes resource, which is allocated to it by its containing cyberorg. A cy-

berorg has a contractual relationship with its containing cyberorg, and it may purchase

resources from its containing cyberorg according to the signed contract. The currency that

flows among cyberorgs is called eCash.

CyberOrgs organizes resources and computations as a tree. Each cyberorg except the

root cyberorg is contained inside another cyberorg. A cyberorg hosted by another cyberorg

purchases resources it needs from the host cyberorg, according to a pre-negotiated contract.

This contract, which must be signed between two cyberorgs before one is hosted by the other,

stipulates the types and quantities of resources which will be available to the hosted cyberorg

as well as their costs. After satisfying its contractual obligations, a cyberorg distributes the

remaining resources available to it among the computations it is managing according to its

own local resource distribution strategy.

CyberOrgs distribute resources through several primitives.

• Isolate:

One cyberorg may create another cyberorg inside it using the isolate primitive. A

number of actors (computations), messages, and some eCash are encapsulated by the

new local client cyberorg. There is a contract between the new cyberorg and its host

cyberorg, which is used to determine the trade of resources.

• Assimilate:

A local cyberorg can assimilate inside its host cyberorg using the assimilate primitive.

All the contents of the assimilating cyberorg (actors, eCash, and messages) become

contents of the host cyberorg after the assimilation. Furthermore, the contract between

the assimilating cyberorg and its host ceases to exist.

• Migrate:

A cyberorg may realize that its resource requirement has exceeded what is offered by

2In the thesis, I use “CyberOrgs” to refer to the model, and “cyberorg” to refer to the entities in the
model.

14

its contract with the host cyberorg. This triggers its attempts to migrate. A cyberorg

may migrate from one host cyberorg to another. However, this must be preceded by

negotiation of the terms under which the client may be hosted.

It has been shown in [72] that the hierarchical control of CyberOrgs can be implemented

efficiently. The DREAM model presented in this thesis was inspired by CyberOrgs model.

However, the focus of CyberOrgs is to model resource ownership and control, but the focus

of DREAM is to model resources control at a fine grain.

2.4 Language-Based Approaches

Ether [83] was one of the earliest languages to address resource allocation among concurrent

components. In Ether, every process needs a sponsor that is assigned to it to support com-

putations. Later on, ACORE [95], a concurrent programming language based on the actor

model, incorporated the idea of Ether. There are sponsor actors in ACORE. The sponsor

actors can process requests, and ticks are required by the process. A similar idea was used

in Telescript [133], in which the computational resources are abstracted as teleclicks, and

processes need teleclicks to accomplish computations.

Java [53] is a language which supports distributed applications by addressing portability,

but Java does not provide adequate support for resource management. Many approaches

towards resource management try to address Java’s deficiency, such as JRes [32], JSeal2 [19],

and Java Resource Management API [31].

JRes [32] provides an interface for accounting and limiting access to different types of

resources, such as CPU time, network bandwidth, and main memory. JRes was implemented

using both Java bytecode editing and native code to account for resources without changing

the Java Virtual Machine [94]. The unit for resource control in JRes is the individual thread.

JSeal2 [19] also focuses on resource accounting like JRes, and the API of JSeal2 is similar

with JRes too. The developers of JSeal2 were influenced by research on resource bounded

actors [71], which was the early work of CyberOrgs [69]. In JSeal2, the basic unit of resource

management is a seal, instead of an individual thread. A seal may be either a mobile object

or a service component, and each seal executes in a protected domain and shares no state

15

with other seals. JSeal2 supports complete portability, because the bytecode transformation

technique is used for both CPU time and memory resource controlling, instead of modifying

Java run time systems. Before being loaded by the JVM, bytecode is modified in order to

account for resources. For the memory resource, before every memory allocation instruction,

code for accounting is inserted. CPU time accounting in JSeal2 is based on measuring the

number of executed bytecode instructions, so the code for CPU accounting is inserted to

every basic block of code.

Java Resource Management API [31] was proposed to be a widely-applicable resource

management interface for Java platform. It was recently developed in collaboration with

JSeal2’s developers, in order to extend resource management support in Java. The unit of

resource management in Java Resource Management API is an Isolate, which is an encap-

sulation of a Java program. Isolates do not share state with each other. Resources in the

RM API are represented by a set of resource attributes. A dispenser isolate is responsible

for monitoring available resources and it serves as the connection between the resource im-

plementation and the RM API. Resource consuming policies are encapsulated by resource

domains, which may specify the reservations of resources and actions that should be executed

upon certain events. Java RM API is an extension to Java, so the code is portable across

Java implementations. It is different from JSeal2 and JRes, which modify the Java VM.

Although language based approaches can facilitate resource management, the code of

computations and that of resource control often mix together, which increases complexity in

programming and debugging. The resource coordination approach presented in this thesis

clearly separates the concern of resource coordination from that of computations, and the

separation of concerns enhances code modularity, readability, and reusability. The current

implementation is Java library based, but it is also possible to be implemented as a program-

ming language, which provides syntax and semantics for programming both computations

and resource coordination.

16

2.5 Distributed Scheduling

Work on resource-aware scheduling for distributed computations can be classified into two

categories according to their resource sharing patterns: space sharing, in which processors are

allocated to different computations, with computations enjoying exclusive use of processors;

and time sharing, in which multiple computations may share the same processor through

time slices.

A commonly-used space-sharing scheduling is the traditional first-come first-served (FCFS)

approach, in which resources are allocated to jobs according to their arrival order. FCFS

scheduling is fair and predictable. However, the disadvantage of FCFS scheduling is that

large jobs often lead to segmentation of resources, resulting in inefficient resource utilization.

Studies show that system utilization is typically in the range of 50%-80% [45, 65, 87, 97] for

FCFS scheduling. To address this problem, Lifka et al. developed an EASY (the Extensible

Argonne Scheduling sYstem) scheduler [92] which uses an aggressive backfilling: small jobs

are allowed to move ahead to fill the idle resources, as long as they do not delay the first job

in the queue. EASY scheduler may result in unbounded queueing delays for other queued

jobs. This problem is solved in [132], in which backfilling is allowed only if no job in the

queue is delayed. It has been shown that this alternative approach has the same benefit as

the aggressive backfilling in EASY scheduler, with the extra advantage of predictable queue-

ing times. A variation of this approach – resource-usage aware backfilling [57] – is highly

relevant to the proposed work: resource usage is tracked using a reservation table to avoid

resource saturation. Specifically, instead of backfilling the first job that can be moved to the

run queue based on the job arrival time or job size, the local scheduler cooperates with the

local resource manager to look ahead to all queued jobs, in order to find out the allocation

that minimizes the job runtime penalty due to the saturation of the resource sharing.

In time-sharing approaches, a well known approach is gang scheduling [46], in which the

scheduling policy coordinates context switching across multiple processors, so that a number

of interacting threads can be scheduled simultaneously on their time slices. Comparing to

space sharing approaches, gang scheduling has been shown to be able to provide improved

overall system utilization and responsiveness [47]. Recent work has developed variations of

17

gang scheduling, which reduce memory contention [44], and adapt to multicore architec-

tures [135].

Most of the resource allocation problems, including job scheduling, fall into applicable

areas of stochastic discrete optimization. Different optimization techniques [118, 52, 141] can

be used to address these problems. However, the search for optimal solutions normally leads

to NP-hard problems. For example, the existing job scheduling approaches aim to improve

overall performance, i.e., minimize the total execution time (makespan), or shorten waiting

times for computations. The overhead caused by exploring alternatives could be high. The

focus of the work presented in this thesis is to adapt computations to a dynamic execution

environment, and achieve required control with acceptable overhead.

2.6 Summary

In this chapter, different types of research work related to resource coordination has been

reviewed, including formal approaches, resource management models, programming language

approaches, and distributed scheduling. In addition, I have also reviewed the Actor model, a

model of concurrency which is used in the approach presented in this thesis as the underlying

computation model, as well as various implementations of actor semantics.

18

Chapter 3

Resource Coordination

In this chapter, I first present DREAM in Section 3.1, which is a Distributed Resource

Estimation and Allocation Model for reasoning about feasibility of carrying out deadline-

constrained distributed computations in resource bounded open distributed systems. Then

I present a resource coordination approach in Section 3.2, which integrates DREAM reason-

ing into ActorFoundry, an optimized implementation of Actors, for providing fine-grained

resource control. Section 3.3 gives a summary of the chapter.

3.1 Distributed Resource Estimation and Allocation

Model (DREAM)

In DREAM, computational resources are defined over time and space, and represented using

resource terms, which specify key attributes of resources. Computations are represented in

terms of resources they require. Syntax and semantics of DREAM are described. Theorems

are derived to illustrate how the logic can be used to express resource properties of the system

in time and space, track resource utilization, and calculate future availability of resources.

Particularly, at any time, given a computation, it is possible to evaluate whether its deadline

constraint is assured by the available resources.

3.1.1 Representing Resources

Distributed computations execute in environments where computational and communication

resources are spread over time and space. In an approach inspired by the CyberOrgs model

for resource bounded concurrent systems [69], I define resources in time and space. Note that

19

only consumable resources are modelled by DREAM. For example, system resources, such as

CPU cycles and network bandwidth, are modelled; similarly, application resources, such as

user attention and time of effort, can be modelled. Cloneable resources, such as algorithms

and data/results, are not modelled. Memory resource is a special type of resource, because

it is usually required for maintaining a computation’s state. Although memory resources

over time and space, i.e., cacheing and paging, can be modelled by DREAM, a more detailed

analysis is left for future exploration. Therefore, in this work, we assume memory resources

are available as needed, and are not considered.

In DREAM, each computational resource is represented by a resource term: vrwτξ , where:
• r represents the rate of availability of the resource, in quantity/time

• τ is the time interval during which the resource exists 1

• ξ denotes the located type of the specified resource

The located type contains both the type of the resource and the location where the

resource is residing. For example, for “CPU resource on location l1,” the located type isxcpu, l1y. In comparison, the spatial information for a network resource has to identify both

the source and destination nodes of the resource. For example, the located type of a net-

work resource that can be used to send data from location l1 to l2 would be specified asxnetwork, l1 Ñ l2y. Note that for a multicore processor, the located type can be either

coarse-grained, i.e., only specifies the processor location, or fine-grained, i.e., specifies both

processor location and core id, according to the preferred granularity of control.

Because each resource term is associated with a time interval τ , relationships between

time intervals must be defined before we can discuss the operations on resource terms. In

DREAM, I use Interval Algebra [9] to formalize relations between two time intervals. As

shown in Table 3.1, the seven possible relations (or thirteen if we count the inverse relations)

are as follows.

• before (): τ1 τ2 means τ1 ends before τ2 starts

1The product r� τ gives the total quantity of the available resource over the course of time interval τ

20

• equal (�): τ1 � τ2 means τ1 and τ2 represent the same time period

• during (d): τ1 d τ2 means τ1 starts after τ2 starts, and ends before τ2 ends

• meets (m): τ1 m τ2 means τ2 starts immediately after τ1 ends

• overlaps (o) τ1 o τ2 means τ1 starts before τ2 starts, and ends before τ2 ends

• starts (s): τ1 s τ2 means τ1 and τ2 start at the same time point

• finishes (f): τ1 f τ2 means τ1 and τ2 end at the same time point

Table 3.1: Possible Relations Between Two Time Intervals

Relation
Inverse

Interpretation Illustration
relation

τ1 τ2 τ2 ¡ τ1 τ1 before τ2
τ1τ1τ1

τ2τ2τ2

τ1 m τ2 τ2 mi τ1 τ1 meets τ2
τ1τ1τ1

τ2τ2τ2

τ1 � τ2 τ2 � τ1 τ1 equal τ2
τ1τ1τ1

τ2τ2τ2

τ1 d τ2 τ2 di τ1 τ1 during τ2
τ1τ1τ1

τ2τ2τ2τ2τ2τ2

τ1 o τ2 τ2 oi τ1 τ1 overlaps τ2
τ1τ1τ1

τ2τ2τ2

τ1 s τ2 τ2 si τ1 τ1 starts τ2
τ1τ1τ1

τ2τ2τ2τ2τ2τ2

τ1 f τ2 τ2 fi τ1 τ1 finishes τ2
τ1τ1τ1

τ2τ2τ2τ2τ2τ2

Each time interval τ has a start time tstart, and an end time tend (tstart tend). I also useptstart, tendq as an alternative notation for time interval τ . Furthermore, binary operations on

21

sets, such as union (Y), intersection (X), relative complementation (\) are also available for

time intervals.

Resources in a distributed system can be represented by a set of resource terms, each

with its own located type. Resources joining or leaving the system can then be expressed by

union and relative complementation operations on resource sets, respectively.

If two resource terms in a resource set have the same located type and overlapping time

intervals, they can be combined by a process of simplification, where for any interval for

which they overlap, their rates are added, and for remaining intervals, they are represented

separately in the set:tvr1wτ1ξ u Y tvr2wτ2ξ u � tvr1wτ1\τ2ξ , vr1 � r2wτ1Xτ2
ξ , vr2wτ2\τ1ξ u

The simplification essentially aggregates resources available simultaneously which have

identical located type. Note that this simplification can lead to a larger number of terms.

Resource terms can reduce in number if two identical located type resources with identical

rates have time intervals that meet.

Note that if the time interval of a resource term is empty, the value of the resource term

is ∅, or null. In other words, resources are only defined during non-empty time intervals.

The notion of negative resource terms is not meaningful in this context, therefore resource

terms cannot be negative. I define an inequality operator to compare two resource terms,

from the perspective of a computation’s potential use of them. We say that a resource term

is greater than another if a computation that requires the latter, can instead use the former,

with some to spare. It can be specifically stated as follows: vr1wτ1ξ1 ¡ vr2wτ2ξ2 if and only if

ξ1 � ξ2, r1 ¡ r2, and one of the following is true: τ2 d τ1, τ2 s τ1, and τ2 f τ1. Note that

it is not necessarily enough for the total amount of resource available over the course of an

interval to be greater. Consider a computation that is able to utilize needed resources only

during interval τ2, if additional resources are available outside of τ2, but not enough during

τ2, it does not help satisfy the computation.

The relative complementation of two resource sets Θ1\Θ2 is defined only when for each

resource term vr2wτ2ξ in Θ2, there exists a resource term vr1wτ1ξ P Θ1, such that vr1wτ1ξ ¡ vr2wτ2ξ .
The relative complementation of two resource sets is defined as follows:

22

tΘ1, vr1wτ1ξ u\tΘ2, vr2wτ2ξ u � tvr1wτ1ξ � vr2wτ2ξ u YΘ1\Θ2

where tvr1wτ1ξ � vr2wτ2ξ u � tvr1wτ1\τ2ξ , vr1 � r2wτ2ξ u.
Following are some examples of calculations on resource sets.tv5wp0,3qxcpu,l1yu Y tv5wp0,5qxnetwork,l1Ñl2yu � tv5wp0,3qxcpu,l1y, v5wp0,5qxnetwork,l1Ñl2yutv5wp0,3qxcpu,l1yu Y tv5wp0,5qxcpu,l1yu � tv10wp0,3qxcpu,l1y, v5wp3,5qxcpu,l1yutv5wp0,3qxcpu,l1yu\tv3wp1,2qxcpu,l1yu � tv5wp0,1qxcpu,l1y, v2wp1,2qxcpu,l1y, v5wp2,3qxcpu,l1yu
Union and relative complementation operations on resource sets allow modelling of re-

sources that join or leave the system dynamically, as typically happens in open distributed

systems such as the Internet.

3.1.2 Representing Computations

A computation consumes resources at every step of its execution. I abstract away what a

distributed computation does and represent it by the resource requirements for each step of

its execution; this idea is inspired by the CyberOrgs model [69]. In general, a computation

can be divided into a number of segments, and each segment requires the same type(s)

of resource(s). The resource requirement of each segment can be represented by the total

amount(s) of the required resource(s). If the computation has performance requirements, i.e.,

timeliness constraints such as earliest start time and deadline, the resource requirements for

all segments must be satisfied within the specified time period. In the following sections, I use

actor computations as an example to illustrate in detail the representation of computation

in DREAM.

23

Actor Computations

We think of distributed computations as computations carried out by actors [2], which are

autonomous concurrently executing active objects which communicate with each other using

buffered, asynchronous, point-to-point messages. Actors have globally unique names, and

maintain queues of unprocessed messages they have received, which are processed in the order

of their arrival. Actors carry out the computations specified by their behaviors (i.e., methods)

in the course of processing messages. An actor may evaluate expressions, send messages to

other actors, create a finite number of new actors with some predefined behaviors, or change

its own state and become ready to process the next message. In addition, in a distributed

execution environment, an actor may use another primitive migrate in order to migrate to

another location, and continue executing there. In other words, an actor’s behavior is a

sequence of these five types of actions. An actor utilizes processor and network resources in

order to carry out these actions.

Consider a function Φ, which when provided as parameters an actor’s uniquely identifying

name, and the computation it is to perform, returns a set of resource amounts representing

the required resources for completing the computation.2 For example, resources required

for actor a1 – located at lpa1q3– to send a message m to actor a2 – located at lpa2q – is

Φpa1, sendpa2, mqq. The value of a required resource is represented by trqsξu, where q is

the quantity of resource required, and ξ is the located type. For our example, ξ would bexnetwork, lpa1q Ñ lpa2qy. Natural numbers can be used for representing the quantity q. If

actor a1 needs 4 units of network resource in order to send message m to actor a2, then we

say:

Φpa1, sendpa2, mqq � tr4sxnetwork,lpa1qÑlpa2qyu
Similarly, other actions of actor a1, can be converted to resource amounts as well, using

function Φ as follows:

2This device, although useful for simplifying our discussion, does not imply need for existence of such a
function. Any-time algorithms and approximate algorithms are examples of when it is meaningful to talk
about such a function. In general, at the cost of some inefficiency, estimates could be used and revised as
necessary.

3l is the location function; lpaq gives the location of actor a

24

Φpa1, evaluatepeqq � tr8sxcpu,lpa1qyu
Φpa1, createpbqq � tr5sxcpu,lpa1qyu
Φpa1, readypbqq � tr1sxcpu,lpa1qyu
Φpa1, migratepl2qq � tr3sxcpu,lpa1qy, r6sxnetwork,lpa1qÑl2y, r3sxcpu,l2yu
The quantities 4, 8, 5, 1, in the above equations are hypothetical amounts used for

illustration purposes. Note that a single actor action may require multiple types of resources.

For instance, the migrate operation needs both CPU and network resources, because in

order to be able to resume remotely in its current state, the migrating actor needs first to be

serialized, then sent to the destination node over the network, and finally unserialized at the

destination node to resume execution.

An alternative to the function Φ is to perform code analysis to find out the meaning of

the code and the resource needs. However, when if statements, loops, dynamic storage and

recursive data structures present, it is challenging to statically analyze the code. Simplifying

assumptions and approximate solutions are often used [88]. In the work presented in this

thesis, we assume that the function Φ is provided by the programmer/user, in the form of

a look-up table. This is achievable in scenarios such as the following. Programmers may

sometimes be able to provide resource requirements. Resource requirements of computations

may be obvious, as is the case for large classes of computations in scientific computing.

Programmers or the runtime system could begin with an initial estimate of the resource

requirements, and update the estimate as necessary.

If fine-grained resource coordination is needed, the programmer/user would provide the

resource requirement information of their computations. This is similar to proof-carrying

code [89], where programmers are required to provide proof of the safety of their code along

with the code, which can then be verified at the remote host.

In DREAM, a sequence of these resource requirements is used to refer to an actor. Specifi-

cally, the computation to be carried out by an actor a is represented by a sequence of resource

25

amounts, with each amount identifying resources required by a particular action.

Furthermore, an individual actor’s computation is sequential, which means that actions

must be taken in a specific order. Consequently, an action may not be available for execution

unless all previous actions have been completed.

Here, the notion of possible action is defined as follows.

Definition 1: Possible Action An actor action γ is a possible action at time t if and only

if one of the following is true:

• γ is the first action of the actor,

• at time t, all actions which precede γ in the sequence of the actor’s actions have already

been completed.

The necessary and sufficient condition for an actor action to be completed can now be

stated as follows:

Axiom 1: At time t, an action γ of actor a, can be carried out if and only if at time t it is

a possible action of a, and its required resources Φpa, γq are available.

This axiom serves as the foundation for the reasoning made possible by DREAM.

Resource Requirements of Distributed Computations

In DREAM, a distributed computation is represented by a triple pΛ, s, dq, where Λ is a

representation of the computation, s is the earliest start time of the computation, and d is

the deadline by which the computation must complete. Particularly, the computation does

not seek to begin before s and seeks to be completed before d. For this to happen, Λ requires

the resources for completing this computation – however distributed over the course of the

interval – during the interval.

If there are multiple (possibly concurrent) actor computations in Λ, I use Γ to denote

an actor computation, and use γ to denote a single action of the actor (possibly carried out

concurrently with other actors carrying out other actions).

The resource requirements of an actor’s action are represented as a simple resource require-

ment ρ defined as follows:

26

ρpγ, s, dq � rΦpa, γqsps,dq
This simple resource requirement specifies the total amount of resource required for actor

a’s action γ during the time interval ps, dq. For convenience, I define a function f , which

takes as parameters a resource set Θ and a simple resource requirement ρpγ, s, dq, and returns

a boolean value true or false, indicating whether or not the simple resource requirement can

be satisfied given the available resource set Θ:

fpΘ, ρpγ, s, dqq � �ξ,
i̧

pri � τiq ¥ Φξpa, γq
where Φξpa, γq is the requirement for resource ξ, and vriwτiξ is a resource term in Θ, such that

τi d ps, dq. 4

The following theorem states whether an actor action can be completed by its deadline.

Theorem 1: Single Action Accommodation A computation pγ, s, dq which only con-

tains a single actor action γ can be accommodated by a system, if and only if by time s,

γ is a possible action, and the system satisfies the simple resource requirement ρpγ, s, dq:
fpΘ, ρpγ, s, dqq � true, where Θ is the available resources of the system.

Proof. If fpΘ, ρpγ, s, dqq � true, the resources required for the computation Φpa, γq are
available during the time interval ps, dq. In addition, γ is a possible action because it is the

first action of actor a (the only action). Therefore, according to Axiom 1, the computation

can be completed during (s, d). This proves “if.”

If the computation pγ, s, dq can be completed, according to Axiom 1, there must be enough

resource for the execution of γ, meaning fpΘ, ρpγ, s, dqq � true. This proves “only if.” l
An actor’s resource requirements – represented by ρpΓ, s, dq – are for executing a sequence

of actions, which may require different types of resources. Critically, the resources needed

for completing an actor’s execution are required in a specific order. It is not sufficient to

simply have the correct total quantities of the resources during the entire interval; the right

resources are required at the right time.

4Note for a resource term which has a time interval overlapping with ps, dq, we need to break the term
into two, and only include the one with time interval during (s, d). Similarly, for a resource term with a time
interval which includes ps, dq, we break the term to three and only choose the one with interval ps, dq.

27

A complex resource requirement is defined in terms of simple resource requirements, to

represent the requirements of an actor computation Γ, as follows:

ρpΓ, s, dq ::� ρpΓ1, s, t1q Y ρpΓ2, t1, t2q Y ... Y ρpΓm, tm�1, dq
where s t1 t2 ... tm�1 d| ρpγ, s, dq

As shown in the above equation, function ρ breaks down the actor’s computation Γ into a

sequence of m subcomputations. As a result, the resource requirements of the actor pΓ, s, dq
amount to a sequence of simple resource requirements for the subcomputations. 5 Note that

a sequence of actions which require the same single type of resource need not be broken

down into multiple subcomputations, because this case is similar to a single actor action,

where having enough amount of resource during the interval will guarantee completion of the

computation.

Theorem 2 states whether a sequential actor computation can be completed by its deadline.

Theorem 2: Sequential Computation Accommodation A system with resources Θ

can accommodate a sequential computation pΓ, s, dq if and only if there exist time points

t1, t2, ..., tm�1 between s and d, which divide the time interval ps, dq into a sequence of m

subintervals, so that the system can satisfy the simple resource requirements for each subin-

terval.

Proof. Assume the computation pΓ, s, dq can be accommodated by the system. We can set up

break points b1, b2, ..., bm in the computation, each of which identifies the starting point of a

subcomputation. In the real-time execution of the computation, the time points when those

break points are encountered will be a set of time points: t1, t2, ..., tm�1. These time points

divide ps, dq into m subintervals, each of which satisfies the simple resource requirement for

the corresponding subcomputation according to Axiom 1. This proves “only if.”

Assume we already have a set of time points t1, t2, ..., tm�1, for which the sequence of

simple resource requirements are satisfied, according to the definition of complex resource

5The intermediate time points in a complex resource requirement, t1, t2, ..., tm�1, are not predetermined.
They are determined as a result of the reasoning. They are intended to be descriptive rather than prescriptive.

28

requirement ρpΓ, s, dq and Axiom 1, it is obvious that the computation can be accommodated

by executing each subcomputation during its corresponding time interval, during which the

required resources are available. This proves “if.” l
A concurrent computation involves multiple actors. Here, we limit ourselves to concurrent

computations involving independent actors. In other words, all actors participating in the

computation are deemed to be created en masse at the beginning of the computation and

actors never have to wait for messages from other actors.

Resource requirements of a concurrent computation pΛ, s, dq, can be satisfied by satisfying

the complex resource requirements (defined previously) of the individual actors, as follows:

ρpΛ, s, dq ::� ρpΓa1 , s, dq Y ρpΓa2 , s, dq Y ...Y ρpΓan , s, dq
where Γa1 ,Γa2 , ...,Γan represent computations carried out by actors a1, a2, ..., an respectively.

To simplify the model, we assume that actors do not migrate for acquiring resources. In

other words, they only migrate for functional reasons. Therefore, the located type of their

required resources can be easily determined.

As shown in the above definition, multiple complex resource requirements overlap on the

same time interval. In order to determine whether the computation can be accommodated

using available resources, we need to find an answer to the following question: “Can the

system accommodate one more actor computation pΓai , s, dq when it has already made com-

mitments to accommodate computations ρpΓa1 , s, dq, ρpΓa2 , s, dq, ..., ρpΓai�1
, s, dq?” If we can

answer this question, the problem can be solved step by step, by trying to accommodate one

more computation at a time. However, without a clear way of reasoning about resource con-

sumption in the system, it is not possible to answer the question. Next, I introduce DREAM,

which provides a framework for performing such reasoning.

3.1.3 Formal Definition of DREAM

With resource terms/sets, DREAM is capable of describing the evolution of a distributed sys-

tem by reasoning about computational resources. Furthermore, important resource-related

29

properties can be expressed using DREAM, and propositions about deadline assurance can

be verified. A formal definition of DREAM follows.

System Model

The DREAM system model can be represented by a 4-tuple, M � pA,R, C,Φq, A is a set of

actor names; R is a set of resource terms; C is a set of distributed computations, represented

by sequences of actions taken by actors; Φ is a function which maps computations carried

out by actors to the resources they require. I define S, the state of the system as follows:

S � pΘ, ρ, tq
where Θ is a set of resource terms, representing future available resources in the system,

starting from time t; ρ represents the resource requirements of the computations that are

accommodated by the system at time t; and t is the point in time when the system’s state is

S.

Progress of the system is triggered by the injection of resources. Resources specified

in resource terms expire if there is no computation which requires those resources during

the time intervals. This means the resources are only defined for a certain period of time,

specified by the time interval in their resource terms.

If the evolution of a DREAM system is denoted by a sequence of states pS1,S2, ...,Snq,
the progress of the system is regulated by a labeled transition rule:

Si
ξÑaÝÝÑ Si�1

where ξ is a resource located type, and a is the name of an actor. The transition rule specifies

that the utilization of resource ξ for actor a’s next action makes the system progress from

state Si to the next state Si�1. If we replace the states in the above transition rule with the

detailed pΘ, ρ, tq format, the transition rule can be written as:ptvrwpt,t1qξ ,Θu, trqspt,t2qξ , ρu, tq ξÑaÝÝÑ ptvrwpt�∆t,t1q
ξ ,Θu, trq� r�∆tspt�∆t,t2q

ξ , ρu, t�∆tq
where vrwpt,t1qξ is the available resource of located type ξ, rqspt,t2qξ is the simple resource re-

quirement of actor a’s action associated with resource ξ, and ∆t is the smallest time slice

30

the system can account. Every time a transition rule is applied to the system, the system

progresses one step further by time ∆t.6 Here, the transition rule states that during the time

interval pt, t �∆tq, the available resource ξ is used to fuel actor a’s action. As a result, by

time t�∆t, actor a’s requirement for ξ will be r�∆t less than it was at time t.

The above transition rule is the sequential transition rule, because only one actor in

the system obtains resource and makes progress.

The sequential transition rule represents the evolution of the system when a sequential

computation is carried out. However, the behaviour of a concurrent system is more inter-

esting. In such a system, there are multiple actors sharing resources. Each actor takes a

sequence of actions, which represents a sequential computation. Multiple types of resources

can be consumed at the same time. The progress of a concurrent DREAM system is given

by the concurrent transition rule:

Si
ξ1Ña1,...,ξnÑanÝÝÝÝÝÝÝÝÝÝÑ Si�1

which is,pt�n

i�1
vriwpt,t1iqξi

,Θu, t�n

i�1
rqispt,t2i qξi

, ρu, tq ξ1Ña1,...,ξnÑanÝÝÝÝÝÝÝÝÝÝÑpt�n

i�1
vriwpt�∆t,t1iq

ξi
,Θu, t�n

i�1
rqi � ri �∆tspt�∆t,t2i q

ξi
, ρu, t�∆tq

Similar to the sequential transition rule, vriwpt,t1qξi
is the available resource which has located

type ξi, rqspt,t2qξi
is the simple resource requirement by actor ai’s next action associated with

resource ξi, and ∆t is the smallest time slice that the system can account for.

The concurrent transition rule specifies that the system evolves by consuming multiple

types of resources during one time interval pt, t � ∆tq, and those resources are used to fuel

multiple actors’ computations.

Note that in the concurrent transition rule, each computation only consumes one type of

resource. This is a matter of granularity: considering resource consumption at a fine grain, a

computation usually only requires one type of resource at a time, i.e., it either requires CPU

resource for computing, or network resource for transferring data. Memory resources present a

6In practice, ∆t can be defined according to the desired control granularity.

31

challenge because they are required for maintaining a computation’s state. Although memory

required in parallel with processor resources is essentially a type of cache, which is defined in

time and space, and hence can be modelled by DREAM, a more detailed analysis is left for

future exploration. Therefore, in this work, we assume that memory resources (disk, main

memory, cache, etc.) are available as needed.

If certain resource becomes available, yet no computations require that type of resource,

the resource expires. The resource expiration rule is defined as follows:ptvrwpt,t1qξ ,Θu, ρ, tq ξÑÝÝÑ ptvrwpt�∆t,t1q
ξ ,Θu, ρ, t�∆tq

The resource expiration rule states that with time ∆t elapsing, resource ξ is expired, and

no computation makes any progress.

Similarly, a concurrent version of resource expiration rule is defined as follows:pt n¤
i�1

vriwpt,t1iqξi
,Θu, ρ, tq ξ1Ñ,...,ξnÑÝÝÝÝÝÝÝÑ pt n¤

i�1

vriwpt�∆t,t1iq
ξi

,Θu, ρ, t�∆tq
The concurrent resource expiration rule specifies the system evolution caused by the

expiring of multiple resources.

The transition and resource expiration rules specify extreme cases where either all of the

resources available at time t are consumed by actors or all of them expire. To represent

a more likely scenario, the two rules can be combined to form a general transition rule, in

which some resources are consumed, while others expire, as follows:pt�m

i�1
vriwpt,t1iqξi

,Θu, t�n

i�1
rqispt,t2i qξi

, ρu, tq ξ1Ña1,...,ξnÑanÝÝÝÝÝÝÝÝÝÝÑ
ξn�1Ñ,...ξmÑpt�m

i�1
vriwpt�∆t,t1iq

ξi
,Θu, t�n

i�1
rqi � ri �∆tspt�∆t,t2i q

ξi
, ρu, t�∆tq

Besides the above transitions rules which represent system evolution over time, DREAM

also has two sets of transition rules which can be applied at a time instant, representing

resource acquisition and computation accommodation/leaving.

In an open system, resources may join or leave the system at any time. The resource

acquisition is modeled by the following resource acquisition rule:

32

pΘ, ρ, tq ΘjoinÝÝÝÑ pΘYΘjoin, ρ, tq
where Θjoin is the resource set which joins the system at time t. Note that there is no such a

transition rule for resources leaving, because resources join only for a time interval, at the end

of which they are claimed to leave the system. If a resource is going to leave the system in

the future, the time of leaving must be explicitly specified at the time of joining the system.

Similar to the resources, computations in an open system may arrive or leave at any time.

The transition rule for computation accommodation is as follows:pΘ, ρ, tq �pΛ,s,dqÝÝÝÝÝÑ pΘ, ρY ρpΛ, s, dq, tq
where t d, which means that it is not possible to accommodate a computation if its deadline

has passed.

Similarly, DREAM has a computation leaving rule to represent a computation leaving

the system: pΘ, ρ, tq �pΛ,s,dqÝÝÝÝÝÑ pΘ, ρ\ρpΛ, s, dq, tq
where t s. That is to say, a computation which has already started in the system is not

allowed to leave. We make the assumption t s to simplify the model.

Syntax and Semantics

The well formed formulas ψ are defined as follows:

ψ ::� true | false | satisfypρpγ, s, dqq |
satisfypρpΓ, s, dqq | satisfypρpΛ, s, dqq | ψ

A DREAM well formed formula can be an atomic proposition, which may be the value

true, false, a “satisfy” function on a resource requirement ρ, 7 or a well formed formula with

a logic operator “ ” (not).

7The three variants of “satisfy” are for a single actor action, a sequential (single actor) computation, and
a concurrent (multi-actor computation), respectively.

33

The semantics of DREAM are defined by the satisfaction symbol |ù, on a computation

path, which is defined as follows.

Definition 2: Computation Path Let χ � S�S be a binary relation such that pSi,Sjq P χ
if there exists a transition rule Si

ξÑ�ÝÝÑ Sj, where ξ is a resource located type, and “*” can be

either an actor’s name, or empty. A computation path is one branch 8 of the tree frame that

relation χ on S produces.

Therefore, the tree structure that relation χ on S produces represents all the potential

evolutions of the system, and a computation path expresses one of the possible traces of the

computation.

As shown in Figure 3.1, the DREAM semantics is defined by the satisfaction symbol |ù on

a computation path σ at time t. I assume the system state that σ, t specifies is S � pΘ, ρ, tq,
and
�d

maxps,tqΘexpire gives the union of the resource sets which will expire during the time

interval pmaxps, tq, dq according to path σ.9 In other words, these are unwanted resources

which will expire unless new computations requiring them enter the system. This creates

opportunity for the system to accommodate new computations.

DREAM can be used to express resource related properties of a distributed system. For

example, we can answer a question such as: “Can computation Γ begin at time t and complete

by deadline d?” Theorem 3 deals with this situation.

Theorem 3: Meet Deadline Suppose the state of the system is S0 � pΘ,∅, tq, having Θ

resources but no computations to use them at time t, the computation Γ can be completed

by deadline d, if and only if there exists a computation path σ, denoted by pS 1
0,S1, ...,Snq,

where S 1
0
� pΘ, ρpΓ, t, dq, tq, such that Sn � pΘ1,∅, tnq, and tn ¤ d.

Proof. Assume we have such a computation path σ, at each of the time points when a

subcomputation Γi is completed, we divide the path. So at the end we get m sub-paths,

each of which represents a subcomputation of Γ, s, d. Apparently the time points we get,

t1, t2, ..., tn satisfy the complex resource requirement of pΓ, s, dq, according to Theorem 2, the

computation can be completed by time d. This proves “if.”

Assume the computation pΓ, s, dq can be completed by the system. Since the system tree

8A branch represents a possible system evolution, represented by a sequence of system states, starting from
the root (starting state) to a leaf node (ending state) of the tree.

9I use function max here because the computation’s earliest start time s may be already passed.

34

M, σ, t |ù true

M, σ, t �|ù false

M, σ, t |ù satisfypρpγ, s, dqq
iff fp�d

maxps,tqΘexpire, ρpγ, s, dqq � true

M, σ, t |ù satisfypρpΓ, s, dqq
iff Dt1, ..., tm�1, such that

s ¤ t1 ... tm�1 d,

ρpΓ, s, dq � ρpΓ1, t1, t2q Y ...Y ρpΓm, tm, dq,
and M, σ, t1 |ù satisfypρpΓ1, t1, t2qq,

M, σ, t2 |ù satisfypρpΓ2, t2, t3qq,
... ...

M, σ, tm |ù satisfypρpΓm, tm, dqq
M, σ, t |ù satisfypρpΛ, s, dqq where

ρpΛ, s, dq � ρpΓa1 , s, dq Y ...Y ρpΓan , s, dq
iff M, σ, t |ù satisfypρpΓa1, s, dqq
and Dσ1, such that

M, σ1, t |ù satisfypρpΓa2 , s, dq Y ...Y ρpΓan , s, dqq
where the state M, σ1, t specifies ispΘ, tρY ρpΓa1 , s, dqu, tq

M, σ, t |ù ψ iff M, σ, t �|ù ψ

Figure 3.1: DREAM Semantics

35

represents all possible evolutions of the system, there must be a path σ, in which all actions

in Γ are completed by time d. This proves “only if.” l
The next question is whether a system can accommodate a new computation at a certain

state, without affecting the existing computations in the system, as shown in Theorem 4,

which answers the question raised in Section 3.1.2.

Theorem 4: Accommodate Additional Computation A new computation pΓ, s, dq
can be accommodated, without affecting the current executing computations in the system,

if there exists a computation path σ, such that resources which are expiring on σ during the

time interval ps, dq, i.e., �d

s Θexpire, satisfies the complex resource requirement of computationpΓ, s, dq.
Proof. Because resources

�d

s Θexpire on path σ satisfies the complex resource requirement

of computation pΓ, s, dq, according to Theorem 3, we can build a path σΓ starting from

state p�d

s Θexpire, pΓ, s, dq, sq, which eventually reaches a state pΘ1,∅, tendq where tend d.

We then combine the two paths σ and σΓ, in the way that we combine the transition rules

of σΓ to the transition rules in σ, which has the same start and end time, to form new

concurrent transition rules. We call the new path generated by the combination σ1, which is a

path which accommodates computation pΓ, s, dq, without affecting the existing computations

which are already accommodated. According to Theorem 3, the computation pΓ, s, dq can be

accommodated by the system, without affecting other computations. l
3.2 Resource Coordination Mechanisms

DREAM reasoning has been implemented and integrated into an optimized implementation of

the Actor model, for providing fine-grained distributed resource coordination. In this section,

I first present the challenges of the integration and the approach I take in Section 3.2.1. A

detailed description of the integration, as well as the tuner which dynamically balances

overhead against the extent of control exercised are presented in Section 3.2.2. Section 3.2.3

describes the architecture of the prototype implementation.

36

3.2.1 Challenges

Coordinating delivery of resources to distributed computations with deadlines is a challenging

problem. Comparing to other distributed runtime systems, such as PVM [124], DARTS [54],

and Cilk [20], the Actor model is more suitable for implementing resource coordination,

because it offers a convenient way for coordinating resources among computations by encap-

sulating objects along with threads of execution. Particularly, processor resources delivered

to an actor can be controlled by appropriately scheduling the actor’s thread of execution [72],

and network bandwidth available to a communication can be controlled by reserving a part

of the bandwidth for it [70]. However, it turns out that in practice, one-thread-per-actor

implementations of actors are not particularly efficient; it is more efficient to have a pool of

threads, each of which processes messages for multiple actors. The control flow of an actor is

represented as a continuation [14]. This optimization strategy has recently been shown [77]

– for ActorFoundry, a Java library implementing Actor primitives – to deliver performance

that comes close to that of Erlang [15], an efficient direct implementation of Actor semantics.

ActorFoundry carries out internal continuation passing style (CPS) transforms using a byte-

code post-processor [120], which recognizes invocations of blocking methods and transforms

the code in the caller.

It turns out that the optimization which makes Actor systems efficient also makes coordi-

nation of resources between sub-computations more difficult. For instance, processor cycles

can no longer be distributed between actors by simply creating a schedule which a processor

scheduler can then enforce. The question we asked was: is this efficiency worth the lost ease

of coordination? In other words, can coordination mechanisms be installed in the optimized

ActorFoundry in a way that largely preserves the efficiency gains of the optimization? Par-

ticularly, I carefully examined the optimizing mechanisms for opportunities for control, and

then tried to exercise it efficiently.

In the following section, I present the efforts in this direction, which have shown that

not only is the thread-of-execution level allocation of resources better suited for globally

efficient fine-grained concurrency, but also its benefits can be largely preserved when sup-

porting control mechanisms. Critically, installing control mechanisms in an implementation

37

optimized for globally efficient fine-grained concurrency, although challenging to do so, comes

at a fraction of the cost of having a separate thread for every actor.

3.2.2 Installing A Resource Control Mechanism

To be precise about what we mean by distributed computations, we take them to be actor

computations which are spread over a distributed execution space. Actors are the de facto

model of concurrency underlying a number of languages, e.g., Scala [58], Erlang [15]. While

a number of these are Java library implementations, Erlang [15] is directly implemented.

Erlang, because of its efficiency, is of interest to us. Despite the advantages it has because

of its direct implementation, it establishes a sort of performance standard by which other

implementations can be compared. However, for multiple reasons, of even greater interest

is ActorFoundry. Most notably, ActorFoundry attempts to faithfully implement the Actor

model, which is well understood, and its code is uniquely accessible because of its modular

design. For these reasons, ActorFoundry was selected in this work for the prototyping.

Because delivery of processor resources is essentially through the scheduler, the focus

of my attention is ActorFoundry’s scheduling mechanism. As illustrated in Figure 3.2, Ac-

torFoundry’s scheduler schedules an initially-fixed number of native JVM threads10 called

workers, which in turn select from among the actors waiting in a waiting queue to get a

chance to execute. The waiting queue is shared by the worker threads. An actor waits in

this queue only when it has received a message in its own message queue; at all other times,

it is essentially dorminant, and does not need to execute. Whenever a worker becomes free,

it picks an actor from the waiting queue to execute. The waiting queue is a FIFO queue.

Actors are placed in the queue according to the order in which they received the first mes-

sages in their message queues. After dequeueing an actor from the waiting queue, a worker

calls the actor’s continuation. The worker continues to execute the dequeued actor until all

messages in its queue have been processed. After completing with one actor, the worker

dequeues another actor and starts to execute it. We can say that ActorFoundry’s sched-

10The number of worker threads is increased at run time when found to be insufficient for progress in the
computation. The number of workers represents the parallelism of the system. Specifically, in a multicore
system, the number of workers can be set to be equal to the number of cores to achieve the maximum
parallelism.

38

uler is message-driven in the sense that only actors which have received messages in their

queues get to be on the waiting queue; any other actors stay off of it. It is obvious from the

way that ActorFoundry schedules actors, that it cannot support timeliness requirements of

computations.

a1 a2 a3
FIFO Queue

worker1 worker2 worker3

a4

Actor Scheduler

a5 a6

processing

messages

Figure 3.2: ActorFoundry Scheduler

Because ActorFoundry itself does not support computations with timeliness constraints,

I introduce the notion of deadline to ActorFoundry. I identify the actions to which deadlines

apply, and then define the various deadlines as follows. The deadline for a (typically multi-

actor) computation is specified by the user/programmer, indicating the time by which the

computation is required to be completed. The deadline for an actor is the deadline by which

an actor should complete processing all pending messages in its message queue; this deadline

is essentially the same deadline as the one by which the computation containing the actor

should be completed. A more interesting type of the deadline and the key to supporting

fine-grained resource control is the last, the deadline for a message: this is the deadline by

which processing of the message should be completed by its destination actor. The deadline

for an actor to process one of its messages depends on the actor’s deadline and the remaining

messages which are to be processed. A more detailed discussion about how to calculate

per-message deadlines can be found in Section 4.2.1.

39

Extending ActorFoundry

I extended the ActorFoundry framework by integrating a DREAM reasoning component

into the scheduler, and adding a tuner facility to observe and adjust the ratio of resources

consumed by computations and the reasoning mechanism. Figure 3.3 shows the architecture

of the modified scheduler.

a1 a2 a3
EDF Queue

worker1 worker2 worker3

a4

Actor Scheduler

reasoner

DREAM

a5 a6

Tuner

(80%: 20%)

processing

messages

inserting

messages to

actor's queue

Figure 3.3: Integrating DREAM Reasoning into ActorFoundry Scheduler

First, I modify ActorFoundry’s essentially message-driven scheduler so that it becomes

a deadline-driven scheduler. In other words, I replace the FIFO queue with an Earliest

Deadline First (EDF) queue. Recall that we are interested in computations which have

predefined deadlines, by which they are expected to be completed. When there are multiple

actors executing as part of a computation, by default, each actor is thought to have the

same deadline as that of the entire computation. All actors that are waiting for execution

are placed in a priority queue according to these deadlines. In other words, the actors in

the system are scheduled on a Earliest Deadline First (EDF) basis, which has been shown

to be the optimal scheduling algorithm on preemptive uniprocessors [33], in the sense that

if a set of real-time jobs can be scheduled by any other scheduling algorithm, they can also

be scheduled by EDF. Furthermore, the message queue in each actor is changed to an EDF

queue as well. Therefore, the messages received by an actor are sorted according to their

deadlines. A more detailed discussion about how to calculate per-message deadlines can be

found in Section 4.2.1.

40

Second, I use a special meta-actor, DREAM Reasoner (DR), to carry out resource reason-

ing using the DREAM model. DR is responsible for carrying out the resource-related tasks,

including making decisions about resource allocation and enforce those decisions. DR is the

key component where resource coordination tasks are separated from computation tasks.

Note that different resource coordination policies can be employed by DR, for fulfilling dif-

ferent coordination requirements. Several example policies are discussed in the following

chapters (Chapter 4, 5 and 6) as case studies.

Third, a tuner facility is developed to perform meta-level resource control. Because the

reasoning mechanism itself consumes computational resources (amounting to the overhead),

this tuner offers a means to balance the division of resources consumed by the computational

actors and those consumed by the reasoner. This is possible to do trivially on a single

processor because of the way in which I have implemented the reasoner as a separately

scheduled meta-actor. The tuner can be fixed at a particular division of resources, it can

be set to automatically react to observed progress of the computation, or it can be made

available to a system operator in the form of a tuning knob. In a fixed setting, the ratio

between the processing power taken for the computation vs. that for the reasoning (e.g.

80%:20%) can be initialized at the beginning of the computation. The following section

discusses self-tuning, one way in which the tuner can set itself reactively.

Self-Tuning

If the user/system administrator would like the system to take over the high level resource

control, they can set the tuner facility to be self-tuning. In such cases, during the execu-

tion, the tuner automatically adjusts the division of resources consumed by actors carrying

out computations and the resource reasoning according to the following events it observes:

reasoning too fast, reasoning too slow, and reasoning too costly.

Reasoning too slow:

A reasoning-too-slow event is triggered when the workers run out of actors to execute, yet

the reasoner still has messages to release. In every scheduling cycle, the system checks if the

workers are making progress. Reasoning too slow event is triggered if some of the workers

are frequently idle, but the reasoner has more messages to be processed. It indicates that

41

the reasoner needs more resources than it currently occupies. In this case the tuner facility

will change the ratio to increase the resources assigned to the reasoner.

Reasoning too fast:

A reasoning-too-fast event is triggered if the reasoner completes processing of all requests,

yet it still owns some unused resources. This event indicates that the system has assigned

more resources to the reasoner than what it needs, which slows down the progress of com-

putations. In the runtime, whenever the reasoner runs out of messages to process, reasoning

too fast event will be triggered. In this case the tuner facility will adjust the ratio, so that

the resources left over by the reasoner are allocated to the actors carrying out computations.

Note that if there are more requests coming in, the tuner facility will not change the ratio

until a reasoning-too-slow event is triggered. This adjustment can help the computations

make more progress.

Reasoning too costly:

A reasoning-too-costly event is triggered when the resources consumed by the reasoner

have reached an upper limit, another parameter of the tuner facility that can be set manually.

Upon observing this event, the tuner facility has two choices. First, it can completely shut

down the reasoning component, and return its resources to actors carrying out computations,

because in this case, having the reasoner may not help to generate a better schedule, given

the resources that can be assigned to it. Instead, it only takes resources away from the

computations. Once the reasoning component is shut down, the system becomes the original

ActorFoundry, with Earliest Deadline First scheduling for actors, because the actor waiting

queue has already been constructed as a priority queue when the system is initialized. For

individual actor messages, since no deadlines are to be associated with them, they will be

processed according to the arrival order, like in ActorFoundry. Second, the tuner facility

can keep the ratio at the upper limit, and perform as much reasoning as possible, given the

resources available to it. In this case, a message filter will be constructed, which releases a

number of messages without reasoning, so actors can perform computations without delay.

Through the above adjustments, the tuner facility oversees the resource consumption

division of computations and the reasoner, and attempts to achieve a balanced value at the

end. Also an upper limit can be set for resources consumed by resource reasoning, in order

42

to prevent the reasoner from consuming too much resources which may eventually affect the

overall performance of the system.

3.2.3 Implementation

A prototype implementation has been developed by extending ActorFoundry. ActorFoundry

supports distributed computations by supporting actors at a number of nodes, and enabling

communication between actors across node boundaries as well as actor migration.11 The

architecture of one AF-D (ActorFoundry with DREAM reasoning) foundry node is shown in

Figure 3.4.

Scheduler

Actor
Manager

DREAM
Reasoner

Actor
Implementation

Actor
Implementation...

DREAM
Thread

Worker
Thread

Worker
Thread

...

Figure 3.4: System Architecture (AF-D Node Instance)

The Actor Manager, together with the newly added component, DREAM Reasoner (DR),

serve the core runtime functions of a foundry node. They are responsible for creating and

scheduling new actors, as well as handling messages between local actors, and moving mes-

sages between the local foundry node and other foundry nodes. When the first actor is

created as part of a computation – typically how a multi-actor computation is initiated –

11This is made possible by the fact that actors have globally unique names, with mapping between the
names and actual physical locations tracked using distributed name tables.

43

its deadline is set to be the computation’s deadline, as specified by the user. Any actor

subsequently created by an actor is assigned the same deadline as its creator’s.

Whether the resource reasoning is enabled or not can be decided at the time of initiating

the computation’s execution. If the resource reasoning is enabled, every actor message which

involves the local foundry node – specifically, an entirely local communication, a message

from a local actor intended for a remote actor, or a message for a local actor from a remote

actor – is examined by the DR as a reasoning request. Upon receiving a reasoning request,

the DR makes resource allocation decisions for the message, allocates local resources if the

message is to be processed locally, or dispatches it if its destination is a remote actor (for the

allocation to subsequently happen at the remote location).

Algorithm 1 shows how the system generates a resource allocation for processing of an

actor message at the location of a message’s recipient. These allocations are made for each of

the sequences of actions requiring no change in the type of resource required. These sequences

of actions are referred to as segments.12 The input parameters of the algorithm, therefore,

are: available resources in the form of resource terms; and the resource requirements for

processing each segment of the method corresponding to the message. The algorithm looks to

accommodate the message using available resources, 13 and returns a schedule for the message

in the form of resources being reserved for it, or null if a feasible schedule is not found. Note

that in this algorithm, when searching for available resources to accommodate computations,

the first fit heuristic is used, which is a standard heuristic used in grid computing.

The complexity of Algorithm 1 is Ops � t � rq, where s is the number of segments

of continuous resource use per message, t is the number of resource types each segment

requires,14 and r is the number of resource terms. In any real application, t is usually a small

constant; 15 s too is typically a small constant, but depends on the granularity of control

12Specifically, a sequence of actions, each requiring the same single type of resource, can be combined into
one segment; an action which requires multiple types of resources is considered as one segment, because these
types of requirements must be reasoned about separately from others to assure simultaneous availability of
multiple resources.

13When searching for available resources, the granularity of located type of the available resources must
match the granularity of resource used in specification of the computation’s requirements.

14Here we mean something specific by types: the same kind of resource (say, processor) at two different
nodes is considered two types. To be more precise, we use the term located type.

15In some contexts (such as choice of network links), t can be large because of conditionality and related
uncertainty. However, when only one segment is being considered at a time, t typically will not be large.

44

Algorithm 1 AccommodateMessage(terms, requirements)

1: schedule = null

2: start = end time of the previous message accommodated

3: end = start /* starting from earliest start time, try to find end time of the message */

4: s � number of message segments

5: for i � 1 to s do /* sequentially accommodate message segments */

6: t � number of resource types in requirementsris
7: for j � 1 to t do /* reason about multiple types of required resources separately */

8: reserved = null /* record reserved resources for the segment */

9: r � number of resource terms

10: for k � 1 to r do /* traverse resource terms */

11: select terms during (start, deadline), in resource type requirementsrisrjs /* pick

all resources of required type which exist before message’s deadline */

12: end for

13: look for time instant end1 such that portion of selected terms defined duringpstart, end1q � requirementsrisrjs /* try to allocate sufficient resources to complete

execution of segment */

14: if end1 does not exist then /* not enough resource (type j) available before deadline

*/

15: cancel reservation, return null

16: else /* enough resource is found */

17: reserve selected terms during (start, end’)

18: schedule += reserved /* add reserved resources to schedule */

19: if end1 ¡ end then

20: end � end1 /* update the end time of the segment */

21: end if

22: end if

23: end for

24: start = end /* set up earliest start time of the next segment */

25: end for

26: return schedule

45

desired. In other words, the complexity is typically Oprq.
The number of resource terms r during the course of reasoning depends on the fragmen-

tation of resources. There are a number of ways in which we can improve on this complexity.

Recall that resource terms are defined in time and space. This means that only a small subset

of the resource terms will be relevant to a computation which needs to be carried out during

a time interval (defined by the earliest start time and deadline). A way of filtering the set of

resource terms for an interval of time will significantly reduce the number of resource terms

to be considered. Also, the most fragmentation is likely to happen in the nearest future. This

can be good and bad. It is bad because computations which need to be accommodated in the

near future have to contend with reasoning involving a larger number of resource terms; it is

good because the resource terms in the near future will expire once their time of existence has

passed. In ongoing work, I am looking at ways to control this complexity by managing this

fragmentation. Most interestingly, I am looking at another tuning opportunity involving the

distance in the future to look into to accommodate a sufficiently permitting computation.

In other words, one way to balance the resources devoted to reasoning versus the actual

computation would be to decide how far in the future to look for the needed resources. I

envision a tuning knob for this type of meta-level control very similar to the one described

previously for balancing ratio of processing devoted to reasoning versus the computation.

Note that in the current implementation, DREAM Reasoner is not distributed. That is

to say, in a distributed system, there is a DREAM Reasoner installed on each individual

node, and it is only responsible for reasoning about resource availability on its own node.

Any messages that are sent to actors on other nodes will be delivered, and handled by the

DREAM Reasoner on the remote node where the destination actor resides. Reasoning about

the resources on remote nodes requires global knowledge of the resource availability, which

can be achieved by periodically communication among DREAM Reasoners about updates on

local resource availability [73].

ActorFoundry’s scheduler has been rewritten to accommodate DREAM Reasoner. A

dedicated thread is used for carrying out DREAM reasoning. The scheduler schedules the

DREAM thread and the collection of worker threads in turn according to the ratio set through

the tuner. ActorFoundry’s implementation of actors is essentially unchanged in my extension

46

except for the fact that there is a deadline associated with each actor’s completion.

All the modifications/extensions to ActorFoundry are made in the scheduling infrastruc-

ture, and separated from the functional code of actors. Therefore, they do not affect the

correctness of computations, or the way actors are programmed. However, since the resource

control happens dynamically at runtime, it presents challenges in testing and debugging the

resource control. Some of the measurable metrics for resource coordination include the maxi-

mum amount of resource (in percentage) taken by the resource coordination mechanism, and

the control outcomes depending on the purpose of the coordination. For example, for QoS

support, one of the measurable control outcomes is the inter-stream skew. In such a context,

the correctness of the resource coordination could be defined as follows: the overhead does

not exceed the predefined maximum resources that can be consumed by the coordination,

and the control outcome is within users’ acceptable range.

3.3 Summary

In this chapter, I present DREAM, a Distributed Resource Estimation and Allocation Model,

which enables computations to reason about future availability of resources. In DREAM,

computational resources are defined over time and space, and represented using resource

terms, which specify key attributes of resources. The syntax and semantics of DREAM are

described. Theorems are derived to illustrate how the model can be used to express resource

properties of the system in time and space, track resource utilization, and calculate future

availability of resources. Particularly, at any time, given a computation, it is possible to

evaluate whether its deadline constraint can be assured by the available resources.

Then I present the work on integrating DREAM resource reasoning mechanisms into

ActorFoundry, an optimized implementation of Actors. A DREAM Reasoner is added for

separating resource related decision making and reasoning from the computations. Addition-

ally, a tuner dynamically balances manually or automatically the overhead of the control

mechanisms against the extent of control exercised. Different policies for the decision mak-

ing can be employed by DR, for supporting different types of resource coordination. These

policies are discussed in detail as case studies in the following chapters.

47

Chapter 4

Case Study: QoS Support

The growing popularity of grid and cloud computing has led to a renewed interest in re-

source control and coordination. The openness and dynamicity of these computing paradigms

lead to uncertainty about continuous availability of the needed resources, therefore present

challenges for supporting applications which have timeliness constraints, including deadline

constraints, and QoS requirements.

I propose to address this challenge by using the resource coordination approach presented

in Chapter 3. Particularly, I apply this approach and develop a resource coordination policy

for providing QoS support for distributed computations. This is achieved by using deadline-

driven adaptive scheduling, which prioritizes individual message deliveries and method exe-

cutions involved in a distributed computation, based on the calculated fine-grained deadlines

by which each must be completed. These deadlines can be efficiently calculated at run-time

for an important class of computations which use pipeline interaction style.

In this chapter, related work in the area of supporting QoS control in open environment is

reviewed in Section 4.1, then the approach I take is described in Section 4.2. The experimental

results are presented in Section 4.3, and finally, Section 4.4 summarizes the chapter.

4.1 Related Work

Both computational grids and clouds require large-scale resource sharing: computational

grids offer opportunities for bringing together disparate computational resources to solve

relatively large problems; clouds allow users to lease resources/services – provided by service

providers in the cloud – on a pay-per-use basis. Both computing paradigms face an important

challenge: how to coordinate resource use by heterogeneous computations, especially when

48

those computations have QoS requirements.

The performance of a grid/cloud application depends on how well the tasks involved in

executing the application are matched against and coordinated on the available resources [18].

This is one of the main reasons for the growing interest in resource management and schedul-

ing (RMS) in computations grids/clouds.

Traditional resource scheduling algorithms focus on minimizing the makespan, i.e., the

total execution time of of all jobs, and it has been shown that mapping jobs onto heteroge-

neous resources while minimizing makespan is an NP-complete problem [67]. A variety of

heuristics [22] are therefore adopted to schedule jobs on grids. However, as the diversity of ap-

plications using computational grids and clouds grows, the resource requirements which need

to be satisfied are also becoming more complex. Minimizing makespan is no longer the only

requirement for a scheduling scheme. QoS requirements offer an instructive example, where

resources are required at a certain time, for a certain period, and often there is a need for

multiple types of resources to be available together. To satisfy such timeliness requirements,

more sophisticated and finer-grained resource coordination mechanisms are required.

Two commonly used architectures which provide QoS control over grids are GARA

(Globus Architecture for Reservation and Allocation) [50] and G-QoSM (Grid Quality of

Service Management) [4].

GARA [50] separates resource reservation from its allocation, in order to avoid increased

costs resulting from excessive over-provisioning, or degradation of service for critical traf-

fic. In GARA, a number of resource managers provide reservation, control, and monitoring

operations for different resources. An application can make reservations for a resource by

contacting the corresponding resource manager. Also, a resource discovery service provides

applications access to information about resource properties such as current and future avail-

ability. The subsequent work [51] of GARA combines resource reservation with application

adaptation to allow applications to adapt to resource conditions by responding to explicit or

implicit feedback.

In the context of Open Grid Service Architecture (OGSA), G-QoSM [4] is a service-

oriented framework for supporting QoS management in computational grids. Unlike GARA,

G-QoSM provides a generic QoS management service which is not coupled with a specific

49

resource type, or a generic reservation model. G-QoSM implements a usage policy service,

which enables resource owners to specify their domain-specific rules, such as who is authorized

to use the resources, and to what extent.

However, both GARA and G-QoSM are reservation-based frameworks, and they require

applications to explicitly provide the time when they need resources, based on which a

reservation is constructed. Unlike these approaches, my approach presented in this chapter

provides more flexibility because applications only need to specify their deadlines, and a

reasoning component is responsible for generating a feasible schedule which satisfies the

deadline constraints.

Another class of approaches for resource management on grids and clouds includes differ-

ent types of economic models, which are especially popular in cloud computing because of the

pay-per-use feature of clouds. In such an economic model, resources/services are organized in

a market, and users who require these resources/services must pay for them. Decision making

about resource allocation in these models is typically driven by common market mechanisms,

such as auctions [96] and negotiations [78].

In a highly dynamic environment, uncertainty creates difficulties for using economic ap-

proaches, because both resource demand and supply can change at any time. To address

this challenge, An et al. [12] proposed an automated negotiation mechanism for dynamic re-

source allocation in cloud computing. In this approach, consumers negotiate contracts with

providers for resource leases, and a successful negotiation results in a contract which binds a

set of resources to the consumer for a fixed time interval. The way of binding resources with

time is similar to DREAM, which associates resources with time and space. However, the

focus of DREAM is to coordinate resource use by multiple applications so that their deadline

constraints can be satisfied, while the automated negotiation mechanism proposed in [12]

aims to maximize the utility of resource providers by pricing their resources.

Market-based approaches are often criticized for their performance because of their high

overhead, which is often caused by failed negotiations/allocations, or low occupancy of re-

sources. Chard et al. [26] studied resource utilization strategies which aim to reduce allocation

failures, increase occupancy and hence increase the performance. Chang et al. [25] proposed

another approach to address the performance issue from a different perspective. Instead of

50

increasing occupancy, i.e., using as many available resources and as efficiently as possible, it

tries to use as few resources as possible to reduce cost and administration overhead for setting

up the resources. In the work presented in this thesis, I deal with overhead in a different way.

Instead of measuring the performance of the system as a whole, I measure the extra overhead

caused by the resource allocation mechanism itself, and set it as a parameter which can be

tuned by users. More specifically, the proposed approach also provides users the flexibility

to control the overhead, and different overhead settings result in different levels of optimality

of the schedule.

4.2 Approach

The resource coordination approach presented in Chapter 3 can be adapted for providing

QoS support, and the foundation of this adaption is an identification of finer-grained actions

to which deadlines apply. In other words, although a multi-actor distributed computation

may have a deadline by which it needs to be completed, that in itself is too coarse grained

an information to enable effective control. On the other hand, too exact a scheduling would

be too costly in terms of scheduling overhead. It turns out that there is a middle ground

where scheduling granularity is just fine enough that it offers sufficient control for a variety

of applications. This is what the evaluation seeks to illustrate. The granularity of control

we aim for is at the level of an actor’s processing of a message. In other words, an actor’s

method execution will not be pre-empted once it has begun.

The deadlines at different levels are defined as follows. The deadline for an entire (typically

multi-actor) computation is specified by the user/programmer, indicating the time by which

the computation ought to be completed. Individual actors participating in the computation

have deadlines by which they must finish processing all messages in their individual queues.1

The deadline for an actor participating in a computation defaults to the entire computation’s

deadline. A more interesting type of the deadline – the one which determines the granularity

1We make a simplifying assumption that an actor continuously participates in a single computation until
the computation is completed. To generalize, we would need to track messages by the computations they
belong to, and an actor would have deadlines associated with each computation it participates in, and then
have separate deadlines for completed processing of all messages associated with each computation.

51

of control offered by this approach – is the deadline for processing of individual actor messages.

The deadline for an actor to process one of its messages depends on the actor’s deadline

for completing all processing and the computation required for processing any remaining

messages. These deadlines can be calculated essentially by counting back from the entire

computation’s completion deadline, accounting for the time required for processing each

message (i.e., executing the method required for processing it). Although this is non-trivial

in the general case, it is possible to do efficiently for computations where one interleaving of

the computations can be decided, and processing cost of each non-communicating segment

of computation is either provided or can be estimated. This is discussed in greater detail in

Section 4.2.1.

Once the completion deadline for a message has been computed, it is tagged onto the

message by the runtime system, to be subsequently detached by the recipient actor’s runtime

(which may be the same as the sending actor’s runtime) and used in deciding when to schedule

delivery of the message to the recipient, and consequently, when to schedule execution of the

actor. Particularly, resource terms specifying available resources are matched against (multi-

actor) computations’ requirements – represented by the deadlines and the code to be executed

by those deadlines – to identify computations which can potentially be accommodated given

the available resources. The matching process, which uses DREAM [137], also generates a

(possibly distributed) resource allocation schedule for each computation. The enforcement of

this schedule is attempted by manipulating the order in which actor messages are processed.2

4.2.1 Deadline Analysis

Calculating deadlines for messages is critical for providing fine-grained QoS control for indi-

vidual actors.

In general, the deadline for any message can be calculated using a known deadline for

the recipient’s subsequent deadline and counting back by the amount of computation and

communication required to be carried out before that deadline must be met. This obviously is

non-trivial for a computation with sufficiently complex interaction between actors. However,

2Note that modifying the processing order of messages does not violate Actor semantics. As long as
messages are eventually delivered, the fairness requirement is satisfied.

52

for classes of computations – such as those which use the pipleline communication style –

this can be efficiently achieved. Examples of such computations include multimedia delivery,

as well as concurrent algorithms to solve a wide variety of programs using the pipeline style

of interaction. We count back from the entire computation’s deadline to determine message-

grained deadlines; this can be done in time linear in the total number of messages. In fact, as

is the case with the video-conference example discussed later in Section 4.3, often the pattern

is regular enough that it is a matter of tracking the order of messages, which eliminates the

need for computing down to the first message, allowing the deadline-computation to proceed

alongside the actual computation.

4.2.2 QoS Policy

If the resource reasoning is enabled in the system, every actor message which involves the

local foundry node, including local communication, outgoing and incoming messages, must

go through the DREAM Reasoner (DR) as a reasoning request.

For providing fine-grained deadline support, a resource coordination policy, QoS policy

is developed and employed by DR. Specifically, upon receiving a reasoning request, DR

calculates its deadline (as needed), allocates resource if the message is to be processed locally,

or dispatches it if its destination is a remote actor. The algorithm of the QoS policy is

shown in Algorithm 2. Here, the deadline for the entire computation is provided by the

programmer/user, and we assume that the resource requirement for processing each message

is known.3

In particular, DR processes different types of messages as follows:

• Local Messages:

For a local message, both sender and receiver are located on the current foundry node.

Upon receiving a reasoning request of a local message, DR does the following: First,

calculate the deadline for the message (as discussed in Section 4.2.1). Second, compare

the required resources of the message – specified by function Φ – to the available re-

3This information can be provided by a table which maps message name to the resources required for
processing that message.

53

Algorithm 2 QoS Policy

1: remove expired resources /* a resource expires if it is not used during its available time

interval */

2: while message queue is not empty do /* there are more requests to process */

3: dequeue the first message msg

4: if destination of msg is not local then

5: calculate deadline d and attach it to msg /* msg is sent to an actor on a remote

node */

6: dispatch msg

7: break

8: end if

9: if deadline is null then

10: calculate deadline d and attach it to msg

11: end if

12: if resources available before d ¡ msg’s required resources then /* msg can be accom-

modated, see Algorithm 1 */

13: allocate resources to msg

14: insert msg to destination actor’s queue /* which is an EDF queue */

15: else /* msg can not be accommodated using available resources */

16: raise a warning on msg

17: end if

18: end while

54

sources in the system (stored as resource terms). If there are enough resources available

by the deadline, put the message in the recipient actor’s mailbox, allocate resources to

the recipient actor. If there are not enough resources available to the message before

its deadline, a warning will be raised, indicating a deadline to be missed. Third, if

resources are allocated, update the available resources.

• Outgoing Remote Messages:

Outgoing remote messages are sent to actors on a remote foundry node by local actors.

Upon receiving a reasoning request of an outgoing message, DR only needs to calculate

its deadline, attach the deadline to the message, and then return the message to Actor

Manager, which will actually send the message to the remote foundry node through

the transport layer of the node.

• Incoming Remote Messages:

Incoming remote messages are sent to actors on the local foundry node by remote actors.

Upon receiving a reasoning request of an incoming message, DR compares the message’s

required resources to available resources on the local node. If enough resources are

available, DR puts the message to its destination actor’s mailbox, allocates resources

to the destination actor, and update resource availability in the system. If available

resources are not enough for processing the message, a warning will be raised.

4.3 Experimental Results

Two sets of experiments have been carried out to illustrate the effectiveness and efficiency

of the QoS resource coordination policy, including a benchmark example, Threadring with

deadline constraints, and a example of real-time application – video conference.

4.3.1 Threadring Benchmark with Deadline Constraints

Threadring is a benchmark developed by Karmani et al. [77] for analyzing performance of

actor implementations. In Threadring, a number of actors pass a token for a specified number

of times. Here in the experiments, I specify the number of actors to be 503, and the number

55

of token passes to be 2000. Specifically, when the application is initiated, an actor is created,

and a start-up message boot is sent to it. The boot message invokes 503 actor creation calls,

and the newly created actors form a thread ring, in the sense that each actor knows the

name of its subsequent actor (passed to it as a parameter in creation). Note the subsequent

actor of the last actor is set to be the first actor in the array. Then a passToken message is

sent to the first actor, upon receiving the message, the actor sends the same message to its

subsequent. The application terminates when the token has been passed for 2000 times.

In each computation 503 actors pass a token for 2000 times. For each computation with

numeric id i (1 ¤ i ¤ 10), I set its deadline to be i�t�∆i, where t is a close approximation of

the amount of smallest time in which the hardware can execute one instance of the Threadring

computation, and ∆i is an amount of time by which a deadline may be missed. In the

experiments, the value used for t was 280ms, and ∆i is randomly generated within range [0,

400ms].

This set of experiments aims to illustrate the effectiveness of actor scheduling of our

approach. The experiments are run on a MacBook Pro laptop with Intel Core Duo CPU @

2GHz, 2GB RAM and 2MB L2 cache. Specifically, I initiated 10 Threadring applications,

each of which is associated with its own deadline. I run the same experiment in ActorFoundry,

and the extended version of ActorFoundry with DREAM reasoning for providing deadline

support (shown as “AF-D” in the Figure). The results are shown in Figure 4.1. 4

The results show only one out of ten deadlines is missed in AF-D (which is very close

to be met though), but ActorFoundry missed 9 deadlines. Obviously, AF does not claim

to support deadlines; the comparison with AF here is simply to establish a baseline. The

additional overhead of using AF-D (i.e., the cost of supporting the deadlines) included a

startup overhead of approximately 60ms, followed by an average of 5ms for each Threadring

execution completed over the period of approximate 280ms. Discounting the setup cost, the

additional overhead of AF-D amounted to 2% above the cost of carrying out the computation

using AF.

4Note that the experiments were run for 15 times, and the results are similar. Here I only present results
from one instance of the runs.

56

Figure 4.1: Threadring Benchmark

4.3.2 Live Video Conferencing

Multimedia applications have been characterized by their strict requirements of Quality of

Service, and low fault-tolerance. Because in order to fulfill users’ expectations, these ap-

plications can only tolerate minor and very infrequent violations of their performance re-

quirements. Therefore, this type of applications present challenges to scheduling and usually

require significant size of buffer at the receiver side to smooth jitter, minimize the effects

of inter-stream skew, and handle other synchronization issues. Previous work [49, 129] has

been done to model multimedia systems and provide synchronization mechanisms using Actor

frameworks. However, neither of them has presented an analysis on the cost of the synchro-

nization, comparing to the original Actor framework, not to mention the control over the

synchronization cost.

I choose a real-time video conference application to illustrate the power of the approach,

because among all multimedia applications, real-time video conference is one of the most

demanding applications. In order to guarantee high quality of real-time interaction, it requires

very low End-to-End Delay (150ms), and low audio/video inter-stream skew (100ms).

57

Micro
phone

Camera

Audio
Player

Video
Player

Network

Audio

Packets

Audio

Packets

Video

Packets

Video

Packets

Speaker Audience

Figure 4.2: Multimedia Application: Video Conference

Figure 4.2 shows the implementation of a video conference session which simulates the

commonly used Real-time Transport Protocol (RTP) [116]. RTP is designed for end-to-end,

real-time transfer of stream data. As shown in Figure 4.2, a microphone actor samples sound

signal from the speaker side and encodes it into audio packets. A camera actor samples

images and encodes them into video packets. Both audio and video packets are transmitted

to the audience side through the network. At the audience side those packets are decoded

by audio player and video player actors respectively. When the packets are processed at the

receiver side, the video and audio streams should be synchronized, and played at the same

frequency as when they are sampled at the speaker side. The acceptable audio/video inter-

stream skew is �100ms. Note that the frequencies of audio and video packets are usually

8000Hz and 90000Hz respectively. For convenience, I use the ratio 1:10 in the experiments.

Algorithm 3 Sampling method in Camera Actor

1: for i � 0 to n do

2: wait(1{f) /* f is the frequency of video packets */

3: sample image and encode it into video packet vpk

4: send vpk to the remote video player actor /* which will decode and play the packet */

5: end for

Algorithm 3 shows the sampling method in the camera actor. The program code is

unchanged except for the fact that a coarse grained deadline is specified. In this example,

the deadline is set to be the time when the conference session is to end plus an acceptable

58

lag. AF-D automatically calculates the deadlines for delivery of each packet – inside separate

messages – and then synchronizes the delivery of those messages according to their deadlines.

Note that in the implementation, the contents of the video and audio packets are simulated,

because in this way the size of the computation can be easily controlled. The simulated data

is transmitted over a real network.

In the experiments, for source node (speaker side), I use a MacBook Pro laptop with Intel

Core Duo CPU @ 2GHz, 2GB RAM and 2MB L2 cache; for destination node (audience side),

I use a Dell XPS laptop with Intel Core Duo CPU @ 2GHz, 3GB RAM and 2MB L2 cache.

Figure 4.3 shows the results of running the example on both ActorFoundry and my ap-

proach, AF-D. 5 In ActorFoundry, because the video and audio packets are not synchronized,

packets captured at the same time do not arrive at the same time, and the arrival orders of

the packets in each stream are not determined either. Although ActorFoundry has a way to

define local synchronization constrains (LSC) [77], it can not specify real-time constraints.

The results show that one of the audio packets (ID: 0) is delayed for approximately 1s. If

we consider it as a missing packet, the maximum inter-stream skew is still 562ms. Moreover,

the playing order of the packets is not properly sequenced.

On the contrary, using AF-D leads to all video and audio streams being properly syn-

chronized, with adequate control of the playing order of packets from both audio and video

streams. The maximum audio/video inter-stream skew is 78ms, which is within acceptable

range. The extra overhead incurred is 53ms over the course of a computation requiring

1544ms of execution time, which is approximately 3.4%. Note that for these experiments,

the run-time system was set up to be self-tuning, so that the balance between the resources

consumed by computations and those consumed by resource reasoning was automatically

adjusted.

Results from these two sets of experiments illustrate that this approach, although con-

strained by the opportunities provided by relatively coarse-grained scheduling changes, nev-

ertheless offers a degree of control that is sufficient for applications with timeliness constraints

such as Quality of Service requirements. In addition, the approach does not add programming

5Note that the experiments were run for 15 times, and the results are similar. Here I only present results
from one instance of the runs.

59

Figure 4.3: Audio/Video Stream Synchronization for Live Video Conferencing

complexity to applications.

4.4 Summary

In this chapter, the resource coordination approach presented in Chapter 3 is adapted for

providing QoS support. The is achieved by calculating and enforcing fine-grained deadlines

for individual actor messages. A QoS policy is developed and employed by DR for supporting

fine-grained deadlines. Experimental results show that the coordination approach can provide

effective support for computations with deadline constraints, and QoS requirements. For a

class of computations which use pipeline interaction style, the QoS support can be provided

efficiently at a relatively modest overhead.

60

Chapter 5

Case Study: Power-Efficient Multicores

There is growing interest in the energy consumed by computer systems, for both individ-

ual (battery life) and environmental (global warming) reasons. Multicore architectures offer

a potential opportunity for energy conservation by allowing cores to operate at lower frequen-

cies. Most of the previous work on analyzing power consumption of multicores assumes that

all cores must run at the same frequency. However, new technologies, such as fast voltage

scaling and Turbo Boost, allow cores to operate at different frequencies.

In this chapter, I extend the resource coordination approach presented in Chapter 3 to

accommodate energy consumption of computations. This approach provides a flexible way

to analyze energy consumption of multicores operating at non-uniform frequencies. This

information can then be used to generate a energy-efficient schedule for execution of the

computations – as well as a schedule of frequency changes on a per-core basis – while satis-

fying performance requirements of computations. Experimental results show that the energy

savings achieved using this approach far outweigh the energy consumed in the reasoning

required for generating the schedules.

The organization of this chapter is as follows. I first present the challenges in Section 5.1,

then I review related work in Section 5.2. In Section 5.3, I take two frequency scaling

technologies as examples to illustrate the effect of these technologies on energy consump-

tion; Section 5.4 presents the effort on adapting the DREAM model for multicore resource

management and energy analysis; experimental results from an example computation are

presented in Section 5.5; finally, Section 5.6 summarizes the chapter.

61

5.1 Challenges

Climate change is one of the major challenges facing the current generation of humanity,

and the fact that computers are responsible for 2-3% of greenhouse gas emissions related to

human activities has raised interest in power conservation and efficient use of computational

resources. As a result, computer architects are shifting hardware design to multicore archi-

tectures, and using dynamic voltage and frequency scaling (DVFS) to trade processing speed

for power savings. This is motivated by the relationship between a processor’s speed and its

power requirement: the power consumed by a core is (typically) proportional to the cube

of its frequency. In particular, multiple cores running at a lower frequency can deliver the

same performance as can be achieved from a single core running at a higher frequency, while

consuming less power.

Existing analytical models for power consumption of multicores typically assume that

all cores operate at the same frequency [84, 91, 130]. This is a reasonable assumption for

current processors which use off-chip voltage regulators (i.e., a single regulator for all cores

on the same chip), which set all sibling cores to the same voltage level [106]. However,

recent studies [27, 61] based on Amdahl’s law [11] show that more flexible chip designs,

such as asymmetric multicore chips, and dynamic multicore chips, can potentially improve

both the speedup and energy efficiency. In addition, new hardware advances have emerged,

which enable similar flexibility in frequency scaling. First of all, for off-chip regulators, even

though cores on the same chip must operate at the same frequency, if there are multiple

chips in the system, cores on different chips may operate at different frequencies, i.e., per-

chip frequency [136]. Furthermore, even for cores that are required to execute on a uniform

frequency, there are ways to aggressively adjust the frequency for all cores. An example is

the Turbo Boost [127] technology, which provides flexibility of frequency control by boosting

all cores to a higher frequency to achieve better performance when necessary and possible.

Note that the frequency can be increased only when the processor is operating below rated

power, temperature, and current specification limits.

In addition, the most recent technology, on-chip switching regulators [81] enable cores

on the same chip to operate on different frequencies, providing greater flexibility for fre-

62

quency scaling. Studies have shown that per-core voltage control can provide significant

energy-saving opportunities compared to traditional off-chip regulators [82]. Furthermore,

it has been shown recently [80] that on-chip multicore voltage regulators (MCVR) can be

implemented in hardware. Essentially a DC-DC converter, the MCVR can take a 2.4V input

and scale it down to voltages ranging from 0.4 to 1.4V. To support efficient scaling, MCVR

uses fast voltage scaling to rapidly cut power according to CPU demands. Specifically, it can

increase or decrease the output by 1V in under 20 nanoseconds.

To fully exploit the potential of these technologies, a finer-grained model for power con-

sumption and management is required. Because the frequency of a core represents the avail-

able CPU resources in time (cycles/second), it can naturally be treated as a computational

resource, which makes it possible to address the problem of power consumption from the

perspective of resource management. In this case study, I illustrate that if per-core control

is available, the fine-grained resource coordination approach can be used to support power-

efficient execution of computations on multicore processors. For this, I adapt the DREAM

model for reasoning about energy consumed by concurrent computations executing on mul-

ticore processors, and develop mechanisms involved in creating schedules – of resource usage

as well as frequencies at which processor cores should execute – for completing computation

in an energy-efficient manner.

5.2 Related Work

Although Moore’s Law has long predicted the advance in processing speeds, the exponen-

tial increase in corresponding power requirements (sometimes referred to as the power wall)

presented significant challenges in delivering the processing power on a single processor. Mul-

ticore architectures emerged as a promising solution [1]. Since then, power management on

multicore architectures has received increasing attention [76], and power consumption has

become a major concern for both hardware and software design for multicore.

Li et al. [91] were among the first to propose an analytical model which brought together

efficiency, granularity of parallelism, and voltage/frequency scaling, and to establish a formal

relationship between the performance of parallel code running on multicore processors and

63

the power they would consume. They established that by choosing granularity and volt-

age/frequency levels judiciously, parallel computing can bring significant power savings while

meeting a given performance target.

Wang et al. [130] have analyzed the performance-energy trade-off. Specifically, they have

proposed different ways to deploy the computations on the processors, in order to achieve

various performance-energy objectives, such as energy or performance constraints. However,

their analysis is based on a particular application (matrix multiplication) running on a spe-

cific hardware (FPGA based mixed-mode chip multiprocessors). A more general quantitative

analysis has been proposed by Korthikanti et al. [84], which is not limited to any applica-

tion or hardware. They propose a methodology for evaluating energy scalability of parallel

algorithms while satisfying performance requirements. In particular, for a given problem

instance and a fixed performance requirement, the optimal number of cores along with their

frequencies can be calculated, which minimize energy consumption for the problem instance.

This methodology has then been used to analyze the energy-performance trade-off [86] and

reduce energy waste in executing applications [85].

These analytical studies make an assumption that all cores operate at the same frequency

because of the hardware limitation of traditional off-chip regulators – a limitation that is

about to be removed by recent hardware advances.

There are a number of scenarios where finer-grained control is possible. Even when off-chip

regulators are used, if there are multiple chips, cores on different chips can be operating at

different frequencies. For example, Zhang et al. have proposed a per-chip adaptive frequency

scaling, which partitions applications among multiple multicore chips by grouping applica-

tions with similar frequency-to-performance effects, and sets a chip-wide desirable frequency

level for each chip. It has been shown that for 12 SPECCPU2000 benchmarks [119] and two

server-style applications, per-chip frequency scaling can save approximately 20 watts of CPU

power while maintaining performance within a specified bound of the original system.

However, two recent advances in hardware design promise even greater opportunities. The

first of these is Turbo Boost [127], which can dynamically and quickly change the frequency

at which the cores on a chip are operating during execution. Specifically, depending on the

performance requirements of the applications, Turbo Boost automatically allows processor

64

cores to run faster than the base operating frequency if they are operating below power,

current, and temperature specification limits. Turbo Boost is already available on Intel’s new

processors (codename Nehalem). The second, and perhaps more important, is the emergence

of on-chip switching regulators [81]. Using these regulators, the different cores on the same

chip can operate at different frequencies. Studies [82] have shown that the energy savings

made possible by using on-chip regulators far outweigh the overhead of having these regulators

on the chip.

As for commercial hardware, the first generation of multicore processors which support

per-core frequency selection are the AMD family 10h processors [10], but the energy savings

on these processors are limited, because they still maintain the highest voltage level required

for all cores. Most recently, it has been shown that the on-chip multicore voltage regulator

together with the fast voltage scaling can be efficiently implemented in hardware [80], which

can rapidly cut power supply according to CPU demand, and perform voltage transition

within tens of nanoseconds.

These new technologies provide opportunities for energy savings on multicore architec-

tures. However, a flexible analytical model is required to analyze power consumption on

multicores with non-uniform frequency settings. Cho et al. addressed part of the problem

in [27] by proposing an analysis which can be used to derive optimal frequencies allocated to

the serial and parallel regions in an application, i.e., non-uniform frequency over time. Specif-

ically, for a given computation which involves a sequential portion and a parallel portion,

the optimal frequencies for the two portions can be derived, which can achieve minimum

power consumption while maintaining the same performance as running the computation

sequentially on a single core. However, this work is a coarse-grained analysis, and it does not

consider non-uniform frequencies for different cores.

Besides theoretical model and analysis, significant work has been done to optimize power

consumption at run-time through software-controlled mechanisms, or knobs. Approaches in-

clude dynamic concurrency throttling (DCT) [24], which adapts the level of concurrency at

runtime based on execution properties, dynamic voltage and frequency scaling (DVFS) [68],

or a combination of the two [30]. Among these [68] is particular interesting, because it con-

siders per-core frequency. Specifically, a global multicore power manager is employed which

65

incorporates per core frequency scaling. Several power management policies are proposed

to monitor and control per-core power and performance state of the chip at periodic inter-

vals, and set the operating power level of each core to enforce adherence to known chip level

power budgets. However, the focus of this work is on passively-monitoring power consump-

tion, rather than modelling power and resource consumption at a fine grain, and actively

deploying computations power-efficiently.

I address the problem from a different perspective: the resource management point of

view. The DREAM model presented in Chapter 3 models resources and computations at a

fine grain, and models the evolution of the system as the process of resource consumption. In

this chapter, I adapt the DREAM model to accommodate energy consumption as the cost/

consequence of a specific CPU resource allocation. The adapted model is energy-aware, and

can be used to generate an energy-efficient resource allocation plan for a given computation.

5.3 Effect of Frequency Scaling on Energy Consump-

tion

Consider a computation consisting of a sequential part s, followed by a parallel part p, 1

so that the sequential part must be executed on a single core, and the parallel part can be

(evenly or unevenly) distributed over multiple cores, 2 the analysis carried out in [27] shows

how to optimize processor frequency for the case when the parallel part can be evenly divided

between a number of cores, as follows.

In order to present the derivation in an intuitive way, we normalize the sequential execu-

tion time of the computation to be 1. Similarly, we normalize the amount of work to be 1,

i. e., s� p � 1. Suppose we want to achieve the same performance in the parallel execution

of the computation (the total execution time is 1, as in the sequential execution), and in the

parallel execution, the execution time for the sequential part s is t. The frequencies for the

sequential and parallel parts in the computation can be calculated as follows:

1s and p are amounts of work in the two portions of the computation, i.e., number of CPU cycles.
2Note that although we consider the case where all parallel computation happens in one stretch, this can

be easily generalized to a case where sequential and parallel parts of the computation take turn, by having
a sequence of sequential-parallel pairs.

66

fs � s

t
(5.1)

fp � 1� sp1� tq �N (5.2)

A well accepted formula for calculating energy consumption of a processor/core is as

follows [27] :

E 9 Tbusy � fα � λ� T (5.3)

where Tbusy is the time during which the computation is carried out; α is the exponential

factor of power consumption; 3 λ is a hardware constant which represents the ratio of the

static power consumption to the dynamic power consumption at the maximum processor

speed. The first term in the formula corresponds to energy consumed for carrying out the

computation (dynamic power), and the second term represents energy for the static power

consumption during the entire period of execution. Processor temperature is not considered;

therefore, energy for static power consumption is only related to λ and T .

For a given computation, s is fixed, and for a given architecture, N and λ are fixed. Hence,

according to Equation 5.1, 5.2, and 5.3, for the above computation, the energy consumption

can be expressed as a function of t, as follows:

Eptq 9 t � fα
s �N � p1� tq � fα

p �N � λ (5.4)

where the first term is the energy consumed by the sequential part of the computation, the

second term is the energy consumed by the parallel part of the computation, and the third

item represents the static power consumption.

According to Equation 5.1 and 5.2, Equation 5.4 can be rewritten as

Eptq 9 t � ps
t
qα �N � p1� tq � p 1� sp1� tq �N qα �N � λ (5.5)

3In other words, the power consumption of a core running at frequency f is proportional to fα. As
suggested by literature, α is a number between 2 and 3, typically 3.

67

Next, we obtain the derivative of Eptq with respect to t,

dEptq
dt

9 �pα � 1q � sα
tα

� pα � 1q � p1� sqαp1� tqα �N pα�1q (5.6)

Then, we compute the value of t which minimizes Eptq by setting dEptq{dt to 0, 4 and

obtain:

t

1� t � s

1� s �N pα�1q{α (5.7)

t� � s

s� p{N pα�1q{α (5.8)

Now we can compute the values of fs and fp which minimize Eptq using Equation 5.1,

5.2, and 5.8. Therefore, to achieve minimum energy consumption while maintaining a per-

formance identical to running the computation sequentially on a single core processor, the

optimal frequencies for executing the sequential and parallel parts (f�s and f�p , respectively)
are:

f�s � s

t� � s� p

N pα�1q{α (5.9)

f�p � 1� sp1� t�q �N � ps� p

N pα�1q{α q �N� 1

α � f�s
N

1

α

(5.10)

In the following sections, I illustrate the effects of non-uniform frequency scaling on mul-

ticore energy consumption. Particularly, I extend the analysis in [27] to consider two specific

technologies: per-core frequency, and Turbo Boost.

5.3.1 Per-Core Frequency

It turns out that when parallel workload cannot be evenly distributed among multiple cores,

per-core frequency scaling can be used to achieve energy savings. This has been enabled by the

latest technologies which support per-core frequency setting in multicore architectures [80].

I illustrate this for a simple case involving only 2 cores. Let us say that the ratio of the

workloads on the 2 cores is pq ¡ 1q. The performance requirement for the computation is 1,

4Note that the second derivative is positive.

68

i.e., the computation must be completed in time T � 1. If the two cores must run at the

same frequency, the optimal frequency is:

funiform � s� q

1� q � p
If the cores can operate at different frequencies, i.e., using non-uniform frequency scaling,

the optimal frequencies are:

f1 � s� q

1� q � p
f2 � f1{q

Obviously, the frequency at which the core executing the sequential part of the com-

putation executes, remains unchanged regardless of the whether uniform or non-uniform

frequencies are employed. I assume that the same core carries out the heavier of the two

uneven workloads to be carried out in parallel. Any energy savings to be achieved from

non-uniform frequency scaling are therefore on the other core operating at a lower frequency.

I first calculate the time period for the parallel part (let us call it Tp) of the computation,

which is the focus of our attention:

Tp � p� q{p1� qq
s� p� q{p1� qq

Recall that p is the normalized size of the parallel part of the computation (p � 1 � s),

and q ¡ 1 is the ratio of the two uneven workloads. Next, I calculate the energy savings

∆E: 5

∆E � Euniform � Enon�uniform9 Tp

q
� f 3

1 � Tp � f 3

29 Tp � p1
q
� 1

q3
q � f 3

1

(5.11)

For a given computation, the right hand side is a function of s and q. Figure 5.1 illustrates

the energy savings which result from using per-core frequency scaling for the two cores.

5We use Equation 5.3 to calculate energy consumption, and use the value of 3 for α, as is typical in the
literature.

69

Figure 5.1: Saved Energy on Non-uniform Per-Core Frequency Technology

5.3.2 Turbo Boost

When per-core frequency scaling is not available, turbo boost enables cores to vary their

frequency during a computation; the boost is only for a short duration for now to avoid

overheating. I now examine the opportunity for energy saving by using this facility. Consider

N cores. If all cores must execute at the same frequency over the coarse of a computation,

the frequency required for achieving the same performance can be computed as follows:

funiform � s� 1� s
N

The time required for completion of the parallel part of the computation would be:

Tp � p{N
s� p{N � p

s�N � p
Because static power consumption does not change (by definition), we only consider the

energy for dynamic power consumption of the two frequency scaling approaches. Energy

required for the computation using uniform frequency is:

Euniform 9 f 3

uniform � pN � 1q � Tp � f 3

uniform (5.12)

70

As derived in [27], the optimal energy consumption when using non-uniform frequency

scaling (using the optimal frequencies f�s and f�p shown in equation 5.9 and 5.10) is:

Enon�uniform 9 ps� 1� s
N2{3 q3 (5.13)

The energy saved by utilizing turbo boost technology is:

∆E � Euniform � Enon�uniform9 ps� 1� s
N

q3 � p1� pN � 1q � Tpq � ps� 1� s
N2{3 q3

(5.14)

The above formula is a function of s and N , as plotted in Figure 5.2. It shows that using

turbo boost can save energy comparing to using uniform frequency for all cores.

Figure 5.2: Saved Energy on Turbo Boost Technology

The analysis thus far has shown that energy savings can be achieved by using non-uniform

frequency technologies. However, the scenario in the analysis is simple: only one computation

is considered, and workload and structure of the computation is well known. Next I address

the problem of finding the optimal frequency schedule for a complex computation, with

frequencies varying multiple times over the course of the computation’s execution.

71

5.4 Reasoning about Multicore Energy Consumption

In Chapter 3, I have introduced DREAM [137] and related mechanisms [139] for reasoning

about scheduling of deadline constrained concurrent computations over parallel and dis-

tributed execution environments. Fundamental to this work is a fine grained accounting of

available resources, as well as the resources required by computations. Here, I connect the

use of resources by computations to the energy consumed in their use, leading to a specialized

model, called DREAM-MCP (DREAM for Multicore Power). DREAM-MCP defines multi-

core processor resources over time and space, and represents them using resource terms. A

resource term specifies values for attributes defining a resource: specifically, maximum avail-

able frequency, time interval during which the resource is available, and location of existence

for the resource (i.e., the core id). Computations are represented in terms of the resources

they require. System state at a specific instant of time is captured by the resources available

at the instant and the computations which are being accommodated. Labeled transition

rules are used to represent the progress in the system, and a utility function is associated

with each transition rule to indicate the energy required for carrying out the transition.

5.4.1 Representing Multicore Resources and Computations

In DREAM-MCP model, multicore processor resources are represented using resource terms

in the form of vrwτξ , where r represents the maximum available frequency of the specific core

(in cycles/time), τ is the time interval during which the resource is available (r � τ is the

number of CPU cycles over interval τ), and ξ specifies the location of the available resource,

which is the id of the specific core.

As in the original DREAM model, Interval Algebra [9] is used for representing relations

between time intervals. Each time interval τ has a start time tstart, and an end time tend.

Note that we also use ptstart, tendq as an alternative notation for time interval τ .

Resources in a multicore system can be represented by a set of resource terms. The com-

putations between two resource sets, including union, relative complement, and the inequality

operator, are defined as same as in the original DREAM model, presented in Chapter 3.

A computation consumes resources at every step of its execution. As in DREAM, I

72

abstract away what a distributed computation does and represent it by the sequence of its

resource requirements for each step of execution.

In this case study, as the first step towards reasoning about resource / energy consumption

of computations, I assume that computations only require CPU resources. I represent a

computation using a triple pΓ, s, dq, where Γ is a representation of the computation, s is the

earliest start time of the computation, and d is the deadline by which the computation must

complete. Particularly, the computation does not seek to begin before s and seeks to be

completed before d. I assume the resource requirement of a computation Γ can be calculated

by function ρ, as follows:

ρpΓ, s, dq � rqsps,dq
where q represents the CPU cycles the computation requires.

We say that the above resource requirement is a simple resource requirment, and it can

be satisfied if there exists a core ξ, such that for all ξ-related resource terms which are during

(s, d) vriwτiξ :
i̧

pri � τiq ¥ q

The above formula specifies the total available CPU cycles during (s, d) are more than

the resource requirement q, and it can be used to determine whether a computation pΓ, s, dq
can be accommodated using available resources in the system.

Note that for a computation which is composed of sequential and parallel portions, its

resource requirement can be represented by several simple resource requirements which should

be simultaneously satisfied.

5.4.2 DREAM-MCP

For a computation that can be accommodated, different scheduling schemes result in dif-

ferent levels of energy consumption. To model all possible system evolution paths and the

effects they have on overall energy consumption, DREAM-MCP models system evolution as

a sequence of states connected by labeled transition rules, which specify multicore resource

allocation, and represents energy consumption as a utility function associated with each

transition rule.

73

We define S, the state of the system as S � pΘ, ρ, tq, where Θ is a set of resource terms,

representing future available resources in the system, starting from time t; ρ represents the

resource requirements of the computations that are accommodated by the system at time t;

and t is the point in time when the system’s state is S.

The evolution of a multicore system is denoted by a sequence of states pS1,S2, ...,Snq,
and the progress of the system is regulated by a labeled transition rule:

Si
f,ξÑΓÝÝÝÝÑ Si�1

where ξ is a core id, f is the utilized frequency for ξ, and Γ is a computation. The transition

rule specifies that the utilization of CPU resource on core ξ – which is operating at frequency

f – for computation Γ makes the system progress from state Si to the next state Si�1. If we

replace the states in the above transition rule with the detailed pΘ, ρ, tq format, the transition

rule can be written as:ptvrwpt,t1qξ ,Θu, trqspt,t2q, ρu, tq f,ξÑΓÝÝÝÝÑ tvrwpt�∆t,t1q
ξ ,Θu, trq� f �∆tspt�∆t,t2q, ρu, t�∆tq

where vrwpt,t1qξ is the available resource of core ξ, rqspt,t2q is the resource requirement of Γ, and

∆t is the smallest time slice that the system can account for. Every time a transition rule

is applied to the system, the system progresses one step further by time ∆t (which can be

set for the desired control granularity). Here, the transition rule states that during the time

interval pt, t � ∆tq, the available resource ξ is used to fuel computation Γ. As a result, by

time t�∆t, the computation Γ’s resource requirement will be f �∆t less than it was at time

t.

Note that the actual frequency for core ξ, f , may be different from the maximum available

frequency r (f ¤ r). This enables cores to operate at lower frequencies for saving power.

The energy consumption associated with the above transition rule is represented by a

utility function u:

u � ∆t � f 3 � λ�∆t

where the first term represents energy for dynamic power consumption and the second rep-

resents energy for static power consumption, λ is a hardware constant.

74

Note that if certain resource becomes available, yet no computations require that type of

resource, the resource expires. The resource expiration rule is defined as follows:ptvrwpt,t1qξ ,Θu, ρ, tq ξÑÝÝÑ ptvrwpt�∆t,t1q
ξ ,Θu, ρ, t�∆tq

The energy consumption for an expired resource only includes static power: u � λ�∆t.

If there are multiple cores in the system, and during a time interval pt, t � ∆tq, some

resources are consumed, while others expire, we use a more general concurrent transition

rule to represent this scenario:pt�m

i�1
vriwpt,t1iqξi

,Θu, t�n

i�1
rqispt,t2i q, ρu, tq

f1,ξ1ÑΓ1,...,fn,ξnÑΓnÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
ξn�1Ñ,...ξmÑ pt�m

i�1
vriwpt�∆t,t1

i
q

ξi
,Θu, t�n

i�1
rqi�fi�∆tspt�∆t,t2i q, ρu, t�∆tq

The utility function for the above concurrent transition rule is:

u � ņ

i�1

p∆t� f 3

i q �m� λ�∆t

where the first term represents energy for dynamic power consumption, and the second

represents energy for static power consumption. Note that non-uniform frequency scaling

allows fi to have different values for different “i”, where uniform frequency requires them to

be the same.

DREAM-MCP represents all possible evolutions of the system as sequences of system

states connected by transition rules. Energy consumption of an evolution path can be cal-

culated using the utility functions associated with the transition rules on that path; con-

sumptions of these paths can then be compared to find the optimal schedule. In addition to

exploring heuristic options, our ongoing work is also aimed at explicitly balancing the cost

of reasoning against the quality of solution (see Section 5.6).

5.5 Experimental Results

A prototype of DREAM-MCP has been implemented for multicore processor resource man-

agement and energy consumption analysis. The prototype is implemented by extending

75

ActorFoundry [77]. A key component of DREAM-MCP is Reasoner, which takes as param-

eters the resource requirements of a computation and its deadline, and decides whether the

computation can be accommodated using available resources in the system. For computa-

tions that can be accommodated, the Reasoner generates a fine-grained schedule, as well as

a frequency schedule which instructs the system to perform corresponding frequency scaling.

To illustrate the prototype, I implement the Gravitational N-Body Problem (GNBP) as

an example. GNBP is a traditional physical problem which aims to predict the motion of

a group of celestial objects which exert a gravitational pull on each other. I choose GNBP

as an example in this case study, because it represents a large class of computations which

consist of a sequential portion and a parallel portion, which can be naturally distributed

on a number of cores. The way I implement GNBP is as follows. A manager actor sends

the information about all bodies to the actors corresponding to the bodies, which use the

information to calculate the forces, velocities, and new positions for their bodies, and then

send their updated information to the manager. In this computation, the sequential portion

is that the manager gathers all information about bodies, and sends it to all bodies, and the

parallel portion is that each individual body calculates its new position, and sends a reply

message to the manager.

To evaluate the computational overhead caused by DREAM-MCP, experiments were car-

ried out to assess the execution times of the computation on DREAM-MCP and Actor-

Foundry (AF) respectively. I measured the extra computation time (overhead) that is taken

by DREAM-MCP, comparing to AF. The hardware I use is an Xserve with 2�Quad-Core

Intel Xeon processors (8 cores)@ 2.8GHz, 8GB memory and 12MB L2 cache. For the same

GNBP application, the execution times for the two systems, DREAM-MCP and Actor-

Foundry (AF), are shown in Table 5.1, and Figure 5.3. 6 Note that the processors run at

maximum frequency.

As illustrated in Table 5.1, the extra overhead caused by the reasoning is 16ms, which

is approximately 11.5%. Because Reasoner is implemented as a single Java native thread

which is scheduled to execute exclusively, the overhead it causes is in the form of sequential

computation. We then normalize the GNBP execution time to 1, and we can calculate

6The results are average execution times from 15 runs. The detailed data is presented in Appendix B.

76

Table 5.1: GNBP: Execution Time at Maximum Frequency

System Sequential Parallel Overhead

portion (ms) portion (ms) (%)

DREAM-MCP 68 83 9.4%

AF 55 83 0

Figure 5.3: GNBP: Execution Time at Maximum Frequency

energy for dynamic power consumption of the two systems using Equation 5.12 and 5.13

in Section 5.3. We also calculated the extra energy consumption by reasoning itself. As

shown in Figure 5.4, by consuming extra 1.9% of the energy requirement of the computation,

DREAM-MCP can achieve approximately 21.6% of energy saving. The saving is calculated

using the computation schedule and per-core frequency schedule the reasoner generates, and

we assume that the hardware supports per-core frequency control. 7

Note that since the reasoning increases the total execution time of the computation, energy

for static power consumption also increases. From Equation 5.3 in Section 5.3 (assuming we

7I did not have access to the actual hardware, so the savings have been estimated analytically. Actual sav-
ings may be different if measurements were made on actual hardware because of factors such as temperature.

77

Figure 5.4: GNBP: Energy Saving and Cost

ignore processor temperature), it is only related to λ (hardware constant) and T (execution

time), i.e. Estatic9λ�T . Because the computational overhead of using DREAM-MCP is 9.4%,

extra energy for static power consumption is also 9.4% of the total static energy required by

the computation. Depending on the hardware constant λ, the total energy saving (or loss)

by using DREAM-MCP for executing GNBP problem can be calculated.

5.6 Summary

Power consumption of multicore architectures is becoming important in both hardware and

software design. Existing power analysis approaches have assumed that all cores on a chip

must execute at the same frequency. However, emerging hardware technologies, such as fast

voltage scaling and Turbo Boost, provide opportunities for energy conservation by selecting

different frequencies for individual cores on a chip at a finer grain. Deciding what these

frequencies should be – the next challenge – is non-trivial.

Here, after an analysis of the energy conservation opportunities presented by two impor-

tant recent hardware advances, I extended the DREAM model on fine-grained scheduling

of resource use, in order to support reasoning about energy consumption. This reasoning

78

enables creation of fine-grained schedules for the frequencies at which multiple cores should

operate for energy-efficient execution of concurrent computations, without compromising on

performance requirements. The experimental evaluation shows that the cost of the reasoning

is well worth it: it requires only a fraction of the energy it helps save.

In addition to exploring more efficient reasoning, I am working on explicitly rationaliz-

ing the cost of reasoning. Particularly, I hope to customize the tuner that was previously

developed – for balancing computational cost of creating fine-grained resource use schedules

versus cost of carrying out the actual computation – to enable similar choices in terms of

energy consumption.

79

Chapter 6

Case Study: Dynamic Load Balancing

Dynamic load balancing is critical in achieving high performance in parallel systems. Tra-

ditional approaches for dynamic load balancing often assume that the computations being

redistributed have the same size. These approaches do not scale when the computations have

non-uniform sizes. In this chapter, I adapt the resource coordination approach presented in

Chapter 3 for providing dynamic load balancing support. This is achieved by reasoning about

resource utilization, and controlling resources at a fine grain. The approach is implemented

using actors for providing clear separation of concerns, code modularity and reusability. In

addition, I propose a Unbalanced Cobwebbed Fruit Tree (UCFT) benchmark, which ad-

dresses the diversity of computations, in terms of size and priority. Experimental results

show that this approach can effectively balance the workload, while promptly responding to

computations with higher priority. When the computations’ sizes are highly variant, this

approach comes close and even outperforms the traditional work sharing and work stealing

approaches, which do not address separation of concerns, or the priority of computations.

The organization of this chapter is as follows. I first give an introduction and motivation

of the work in Section 6.1, then I review related work in Section 6.2; Section 6.3 presents

UCFT tree, the new benchmark application for evaluating the approach; Section 6.4 de-

scribes the coordination scheme which integrates DREAM into ActorFoundry, followed by a

detailed description of the implementation in Section 6.5; experimental results are discussed

in Section 6.6; and finally, Section 6.7 summarizes the chapter and proposes some future

directions of the research.

80

6.1 Introduction

Developments in computer hardware present opportunities for solving large problems in par-

allel in order to achieve high performance. In a parallel system, how the jobs are scheduled

on the processors is critical and has a significant impact on the overall performance. To max-

imize the overall performance, ideally the idle time of processors should be kept minimum.

However, the task of assigning work to processors is not trivial. For applications with con-

stant workload, static load-balancing can be used as a pre-processor of computations, which

attempts to evenly distribute workload to processors. On the contrary, for applications which

have unpredictable or continuously changing workload, substantial dynamic load-balancing

is required. For such applications, achieving load-balancing is even more challenging because

of the uncertainty. Traditional approaches for dynamic load-balancing completely focus on

partitioning the workload as computation proceeds, and they try to redistribute subcompu-

tations – which are often assumed to have the same size – among processors. However, on

the one hand, they are not suitable for computations which are non-uniform in terms of the

size; on the other hand, they do not consider the cases where certain computations require

prompt responses.

In this chapter, I propose a novel approach for dynamic load-balancing based on fine-

grained resource-reasoning. Instead of solving the problem from the perspective of parti-

tioning computations and assigning workload to processors, I view the problem from the

perspective of resource management and control, and achieve dynamic load-balancing by

matching available resources with computations efficiently, and minimizing the amount of

resources that are expiring.

A number of benchmark applications have been developed for evaluating dynamic load-

balancing approaches. The commonly-used one is the unbalanced tree search (UTS) bench-

mark [109], the task of which is to count the number of nodes in an unbalanced tree, starting

from the root node. Visiting a tree node instantly reveals its children nodes. The imbalance

of the tree demonstrates the need for balancing workload. UTS represents a class of ap-

plications with highly unpredictable workload requiring continuous dynamic load balancing.

However, unlike the UTS benchmark, where the size of the computation on each node is

81

identical, in reality, the sizes of computations are usually non-uniform. In addition, despite

the performance concern, some computations may require more prompt response comparing

to others, such as computations in a natural-disaster monitoring and detecting system [125].

Based on these observations, I have developed a new benchmark, Unbalanced Cobwebbed

Fruit Tree (UCFT), which is similar to UTS, but is adapted to address the above concerns.

I have evaluated our resource-reasoning based approach of dynamic load-balancing using the

new benchmark, and the experimental results show that this approach can achieve compara-

ble or even better performance comparing to the traditional work sharing and work stealing

approaches, while reserving the flexibility of taking into account the priorities of computa-

tions. Especially when the sizes of computations are highly variant, the resource-reasoning

based approach shows better scalability and even outperforms the traditional work stealing

approach. In addition, implementing the approach using actors can take advantage of the

programmability, modularity and reusability of actor systems.

6.2 Related Work

In this section, related work in dynamic load-balancing, as well as benchmark applications

for evaluating those approaches are reviewed.

6.2.1 Dynamic Load Balancing

Load balancing is the process of redistributing workload of computations among available

processors, and it is a key factor in improving the performance of parallel systems [13]. Load

balancing has recently received more and more interest, because of the emerging multicore

architectures which dramatically increase the scale of parallelism [62]. Generally, two differ-

ent load-balancing strategies can be utilized depending on the nature of the computations.

If the amount of computation is known or can be accurately estimated (e.g., based on av-

erage), static load-balancing can be used, which is usually implemented as a pre-processor

for computations and employs simple algorithms, such as Round Robin, and Randomized

algorithms [104]. Static load-balancing is easy to implement; however, its effectiveness re-

quires accurate estimates of the computations’ sizes. In reality, accurate estimates about

82

computations may not be possible. The uncertainty of computations poses challenges for

load balancing. If the amount of computation can not be determined or predicted before the

computation is actually carried out, redistribution of the workload is required throughout

the course of the computation. Dynamic load-balancing can be applied in this case, which is

the focus of this work.

Dynamic load-balancing takes into account the system status and redistributes the work-

load as the computation proceeds. It has been shown that even very simple dynamic-load-

balancing strategies which only collect small amounts of system state information can lead

to significant performance gains [40]. Two different strategies are commonly used: work

sharing [90, 93] and work stealing [21].

In the work sharing strategy, processors share a global FIFO queue, which is used to place

unassigned tasks. An under-utilized processor which requests workload is assigned the first

available task in the queue. Work sharing is a centralized approach which utilizes a shared

queue to facilitate load balancing. Therefore, it is believed to be suitable for shared memory

systems [37].

Unlike the work sharing strategy, the work stealing [21] strategy takes a distributed

approach. Each processor maintains a local task queue, and processes the tasks in the queue.

An under-utilized processor attempts to get workload from other processors’ queues. Work

stealing is a decentralized approach, and it is well suited for distributed systems. In addition,

because the burden of finding and migrating workload is on under-loaded processors, the

added overhead on the loaded processors which are making progress is minimized. Therefore,

the work stealing strategy is considered to be more stable comparing to work sharing. The

scalability of the approach has been investigated in [36], and it has been shown that work

stealing strategy can be implemented efficiently. Recently different variants of work stealing

algorithms are developed and utilized in large-scale distributed systems [36], grids [114], and

multi-core clusters [115].

More detailed comparisons of work sharing and work stealing strategies including perfor-

mance analysis can be found in [39], [105], and [131].

Most of the existing approaches on dynamic load-balancing focus on partitioning and

distributing uniform-sized workload to processors. In this chapter, I present a different

83

approach based on fine-grained resource coordination and control.

6.2.2 Benchmarks for Dynamic Load-Balancing

A number of benchmark applications have been proposed for evaluating the performance of

approaches for dynamic load-balancing. The NAS parallel benchmark [17] is a set of nu-

merical aerodynamic simulations, which are developed for performance evaluation of highly

parallel supercomputers. NAS consists of five parallel kernel benchmarks and three simulated

application benchmarks. These benchmarks simulate the computation and data movement

characteristics of large scale computational fluid dynamics applications. Biomolecular simu-

lations have also been used as load-balancing benchmarks because of their dynamicity and the

large scale of computations involved, such as NAMD [113] (nanoscale molecular dynamics),

and Mol3D [111]. Both of them are molecular dynamics programs that simulate biomolecu-

lar systems. LBTest [140] is a synthetic benchmark. In LBTest, a collection of objects are

created based on customizable parameters, and these objects communicate with each other,

obtain data and carry out computations.

A benchmark which is more relevant to the work presented here is the unbalanced tree

search (UTS) benchmark [109]. UTS provides a function to create an unbalanced tree using a

set of parameters, such as shape, depth, size, and imbalance (a measure of the variation in the

size of its subtrees). The benchmark problem is the parallel exploration of the created tree.

The performance of a load balancing scheme can be evaluated by measuring the computation

time of performing an exhaustive search on the tree. The tree is implicitly constructed,

that is, each node contains all information necessary to construct its children. However,

a parent node must be visited before its children nodes. Since the tree could be highly

unbalanced, there is a high variation in the sizes of the subtrees of a specific parent node.

The variation presents challenges in performing an efficient search, and requires continuously

dynamic load balancing. The UTS benchmark is a representation of applications that must

enumerate a large state space of unknown or unpredictable structure, such as many search and

optimization problems. The UTS benchmark has recently been widely used and implemented

using difference languages and architectures [37, 110].

In this chapter, for the purpose of simulating real world computations, I adapt the UTS

84

benchmark and develop a new benchmark application, unbalanced cobwebbed fruit tree

(UCFT), for evaluating dynamic load balancing approaches.

6.3 Unbalanced Cobwebbed Fruit Tree

UTS is an effective benchmark for evaluating dynamic load balancing approaches because it

nicely captures the uncertainty of the workload of an application: visiting a parent node may

reveal an unknown number of children nodes, each of which may connect to a subtree of un-

known size. However, UTS does not take into consideration two common characteristics that

real world computations usually have. First, the sizes of real world computations are usually

non-uniform. Second, besides performance, under some circumstances, the prompt response

is also critical for a computation. For example, in natural disaster monitoring and detection,

such as earthquake simulation [125] and distributed weather forecasting [72], a disaster may

be detected at anytime, and prompt responses are critical for the region where the disaster

is detected. When no disaster is detected, performance is the main concern. Based on these

observations, I have adapted UTS benchmark and developed a new benchmark, unbalanced

cobwebbed fruit tree (UCFT), to address these two characteristics for simulating the real

world workload.

An UCFT tree is an implicitly constructed unbalanced tree, as in the UTS benchmark.

An example UCFT tree is shown in Figure 6.1.

Each node in an UCFT tree contains a task, instead of a data structure, as was the case

in UTS. Each task has a pre-defined size, shown as the number in each node in Figure 6.1,

representing the computation time it requires to carry out the task. The tasks are the “cob-

webs” which slow down the traversal process. Note that the task on a tree node is indivisible

while performing load balancing. The size of the tasks follows a normal distribution, 1 with

predefined mean and standard deviation. These values are specified as parameters when the

tree is created. Besides the computation size, another newly added attribute is the priority

of tasks. Some nodes are defined as urgent nodes, shown in red in Figure 6.1, which repre-

sent tasks that require prompt response. The urgent nodes are the “fruit” on the tree. The

1This is a truncated normal distribution, so that it does not go negative.

85

5

10

25

3

7 12

11

15 9

Figure 6.1: Unbalanced Cobwebbed Fruit Tree

number of urgent nodes is defined as a parameter when the tree is created, in the form of

a percentage of the total number of nodes in the tree, i.e., size of the tree. Therefore, in

addition to the original parameters for creating a UTS tree, three new parameters are added:

mean and standard deviation of the computation sizes, as well as the percentage of urgent

nodes.

The benchmark problem is to traverse the UCFT tree, and carry out the task at each

node when the corresponding node is visited. As in the UTS benchmark, the nodes in the

tree can be traversed in parallel and in any order, as long as a parent node is visited before its

children nodes. 2 The goal is to complete all computations in the tree as fast as possible, and

in the meantime, process urgent computations as quickly as possible once they are identified.

The unbalanced cobwebbed fruit tree benchmark aims to simulate real world computa-

tions, where limited information about computations (i.e. size) is available while uncertainty

is also present. When a node is visited, the information of its computation size is known,

but visiting the node may reveal an unknown number of children nodes which may connect

to subtrees of highly variant sizes.

When a load-balancing approach is evaluated using the UCFT benchmark, besides the

2The child nodes can be enqueued before the computation associated with the parent node is complete.

86

overall performance of the traversal, how sensitive the approach is in terms of responding

urgent computations is another measurement.

6.4 Resource-Coordination Framework for Load Bal-

ancing

The ultimate goal of load balancing is to improve the overall system performance by utilizing

as much available resources as possible. Therefore, it can be viewed as a resource management

problem. Here I present an novel approach for dynamic load balancing based on fine-grained

resource coordination and control.

As presented in Chapter 3, the framework of ActorFoundry with DREAM reasoning

can provide deadline support and power-efficiency support for distributed computations by

matching available resources with computations’ requirements. The matching is carried out

by Dream Reasoner (DR), and the purpose of the matching is to meet computations’ dead-

lines, and to minimize energy consumption, respectively, instead of increasing the overall

performance. Here in this chapter, I modify the framework and develop a new resource co-

ordination policy, which aims to improve performance, as well as provide prompt response

for computations with high priorities.

6.4.1 Resources and Computations

I use resource terms for representation of resources, as in the DREAM framework. An

available resource is represented by its density (rate), associated with a time interval during

which the resource is available, and a located type, which specifies the type and location of

the resource.

Computations are represented by their resource requirements, as in the original frame-

work. However, since the deadline is not a concern in this case, I remove the time related

elements (earliest start time and deadline) from the computation requirements, and only

keep the quantities of required resources, and their located types. In addition, to model the

priority of computation, a new attribute, urgent, is added, which is a flag indicating whether

87

the computation requires prompt response.

When the available resources are matched against the computations’ requirements, one

objective is to utilize all the available resources at the full capacity, for achieving high perfor-

mance; another objective is to respond to urgent computations as quickly as possible, once

they are discovered.

6.4.2 Resource-Coordination Policy for Dynamic Load-Balancing

In Actor systems, computations are carried out by actors when they process their mes-

sages. Processing a message may result in new messages being sent to other actors, which

eventually trigger new computations. Therefore, scheduling the processing of actor mes-

sages is essential and has great impact on the overall performance. Because in the original

DREAM framework, every actor message must go through DREAM Reasoner (DR), which

attempts to allocate resources against the message’s resource requirements, DR is the key

component where we can reschedule actor messages by installing a dynamic-load-balancing

policy. Figure 6.2 shows the composition of modified DREAM Reasoner.

As shown in Figure 6.2, DREAM Reasoner is a meta-actor, in which the state repre-

sents available resources in the system (in the forms of resource terms), and the methods

are resource coordination policies, in this case dynamic-load-balancing policy (DLBPolicy).

As regular actors, DREAM Reasoner contains a thread which processes received messages

from the message queue (MsgQ), which is a FIFO queue. All actor messages in the sys-

tem are captured by DREAM Reasoner, and released after being processed according to the

DLBPolicy.

Under the circumstances where computations’ workload is unpredictable and dynamically

created, computations which create sub-computations are critical, because they may become

a bottleneck in achieving high overall performance. A common reason for processors being

under-utilized is that these bottleneck computations are not processed early enough to reveal

adequate workload for all processors.

In actor systems, an actor message which contains a send operation will eventually trigger

new computations at the destination actor of the message. Therefore, they are the potential

88

DLBPolicy()Available
Resources

PriorityQ

FIFOQ

Actor Messages
Processed

Actor Messages

MsgQ

Figure 6.2: DREAM Reasoner

bottleneck messages that need to be processed at higher priority comparing to regular mes-

sages which only contain pure computation. In DREAM Reasoner, I use a priority queue

(PriorityQ in Figure 6.2) to store these bottleneck messages which are to be released by

DR, and the messages are sorted according to their resource requirements – messages which

require less resources will be released earlier in order to expose more workload as quickly as

possible. Another FIFO queue (FIFOQ in Figure 6.2) is used to store regular computation

messages which do not result in more workload. When it is necessary to release messages,

messages from the PriorityQ are released first, and then messages in the FIFOQ are released

if necessary.

The algorithm of the DLBPolicy in DR is shown in Algorithm 4.

As shown in Algorithm 4, urgent messages, which represent computations requiring

prompt reply, are processed and released by DR immediately. Other messages will be placed

to one of the waiting queues. If processing the message results in creating more workload,

i.e., the message has a send operation, the message is placed in the priority queue, which

89

Algorithm 4 DLBPolicy in DR

1: while not all MsgQ, PriorityQ, FIFOQ are empty do

2: while MsgQ is not empty do /* there are unprocessed messages */

3: dequeue the first message from MsgQ msg

4: if msg is an urgent message then

5: release msg /* msg requires prompt response */

6: update available resources

7: else

8: if msg has send operation then /* processing msg creates new workload */

9: insert msg in PriorityQ

10: else

11: insert msg in FIFOQ

12: end if

13: end if

14: Release Messages /* as shown in Algorithm 5 */

15: end while

16: Release Messages /* as shown in Algorithm 5 */

17: if MsgQ is empty and there are no resources available in next scheduling cycle then

18: break

19: end if

20: end while

21: wake up actor computations /* terminate DR cycle */

90

is sorted according to the resource requirements of messages. 3 On the other hand, if the

message is a pure computation message which does not create new workload, it will be placed

in the FIFO queue. The non-urgent messages wait in the queues until they are released by

DR. The system schedules DR and worker threads (which are responsible for processing actor

messages) in a schedule cycle with predefined length, according to the ratio specified by the

tuner. DR only releases enough messages to keep the processors busy for the next scheduling

cycle. The algorithm of releasing messages is shown in Algorithm 5. Messages waiting in

the priority queue will be released before the messages in the FIFO queue, and messages are

released until all the available resources in the next scheduling cycle are allocated.

Algorithm 5 Release Messages

1: while there are resources available in next scheduling cycle do

2: if PriorityQ is not empty then

3: dequeue the first message priorityMsg

4: release priorityMsg

5: update available resources

6: else

7: if FIFOQ is not empty then

8: dequeue the first message regularMsg

9: release regularMsg

10: update available resources

11: else

12: break

13: end if

14: end if

15: end while

Holding messages at DR decreases the possibility of resources being under-utilized, be-

cause in this way the system can make decisions about which messages to release, in order

to generate enough workload to keep all worker threads busy. The bottleneck messages, i.e.,

3Messages which require less resources are processed earlier, in order to reveal more workload as quickly
as possible.

91

messages which create more workload, should be processed as early as possible, because pro-

cessing those messages results in more workload being created, which can be scheduled on

idle processors. Holding messages at DR can help minimize the uncertainty of the workload

when a decision has to be made. In addition, holding messages at DR does not affect the

overall performance, because enough messages have been released to keep the processors busy

until the next scheduling cycle when DR is scheduled again.

6.5 Benchmark Implementation

I have implemented the unbalanced cobwebbed fruit tree (UCFT) benchmark described in

Section 6.3, using actors.

6.5.1 Tree Generation

As described in Section 6.3, each node of a UCFT tree contains a computation of predefined

size. Since actors are essentially computations, a convenient way of implementing the UCFT

tree benchmark is to create a hierarchy of actors according to the parameters specified at

creation.

At the time of creating a UCFT tree, three types of parameters need to be specified: tree

parameters, computation parameters, and priority parameters. Tree parameters include size

of the tree, which specifies the number of nodes in the tree, and shape of the tree. Note that

there are several shapes of the tree, such as binomial trees, and geometric trees [109]. In

these experiments, I use binomial trees, in which each node may have either no children, or

m (a predefined number) children. Tree parameters specify the attributes of the tree. Com-

putation parameters include information about the distribution of the computations’ sizes.

In the implementation, I assume the sizes of computations follow a normal distribution, with

predefined mean and standard deviation parameters. Priority parameters specify how many

computations have higher priority and require prompt responses, i.e., urgent computations.

In the implementation, there is a single priority parameter, which is the percentage of urgent

computations in the tree.

The trees are generated in the following manner. First, the root actor is created, and its

92

computation size is generated by a number generator following a normal distribution with

predefined mean and standard deviation. Then a CreateTree message is sent to the root

actor, which triggers creation of the tree.

Algorithm 6 Create Tree

1: determine whether this actor has children /* based on the tree parameters */

2: if hasChildren then

3: determine number of children m /* based on the tree parameters */

4: for i � 1 to m do /* create children nodes */

5: determine size of the computation on node i/* based on the computation parameters

*/

6: determine whether node i is urgent /* based on priority parameters */

7: create actor i

8: record information of child node i

9: send CreateTree message to actor i /* tell child i to create more nodes */

10: end for

11: end if

The algorithm of the CreateTree message is shown in Algorithm 6. Upon receiving the

message, a node actor first determines whether it has children nodes; if it does, the node

actor tries to create children nodes based on the creation parameters. Then the actor records

the information about its children, and finally sends the CreateTree message to all its child

nodes. The creation process terminates when the tree reaches the predefined size.

6.5.2 Traversal

The benchmark application of the UCFT tree is to carry out all the tasks contained in tree

nodes while performing a traversal of the tree. The node tasks can be carried out in parallel.

However, a parent node must be visited before its children nodes.

To initiate the traversal, a Traverse message is sent to the root actor of the tree. The

algorithm of the Traverse message is shown in Algorithm 7. First, the computation with

predefined size is carried out, following which a Traversemessage is sent to each of the children

93

nodes, if there are any. Sending Traverse message to children nodes triggers computations

contained in the children nodes. The traversal completes when all the messages are processed.

Algorithm 7 Traverse

1: carry out the computation /* based on the computation size */

2: if hasChildren then

3: for i � 1 to m do

4: send Traverse message to child i /* traverse child i */

5: end for

6: end if

Note that in the current implementation, the size of the computation at each node is

specified in the form of the computational time it takes to complete the task, which is a

dummy function performing certain mathematical calculations.

6.6 Experimental Results

Experiments have been carried out to evaluate the dynamic-load-balancing approach based

on resource coordination, using the UCFT benchmark presented in Section 6.3.

6.6.1 Experimental Design

The approach for dynamic load-balancing is implemented by installing the dynamic-load-

balancing policy in the resource coordination approach presented in Chapter 3.

For evaluation, I compare the performance of four approaches, including the resource

coordination based approach AF-D, ActorFoundry, work sharing [93] and work stealing [21].

The former two are actor systems, and the latter two are traditional approaches for dynamic

load-balancing.

I evaluate the approach in two aspects: performance of carrying out the traversal com-

putation for UCFT trees with different creation parameters, and the ability of promptly

responding to tasks of high priority.

94

6.6.2 Baseline Approaches Implementation

Work sharing and work stealing are two existing and commonly-used approaches for dynamic

load-balancing. I choose them as baseline approaches for comparison purposes.

I implemented the UCFT tree benchmark in Java, without using actors. The parameters

are as same as in the actor tree described in Section 6.5, but each node of tree is a data

structure which contains the information about its own computation, as well as its children.

The work sharing and work stealing approaches are implemented using Java threads. In

both approaches, the threads (workers) get tree nodes, read the information, and carry out

the computations according to the information.

Work Sharing

In the work sharing approach, load balancing is achieved through a globally shared task

queue. The algorithm of a worker thread in work sharing approach is shown in Algorithm 8.

Algorithm 8 Worker Thread in Work Sharing

1: while true do

2: if taskQ is not empty then

3: dequeue the first node myTask from taskQ

4: if myTask has children then

5: enqueue all the children nodes

6: end if

7: carry out the computation /* according to computation size specified in myTask */

8: else /* taskQ is empty */

9: sleep for some time /* wait for other workers to generate more nodes */

10: end if

11: end while

Each worker thread tries to get a node from the task queue. Once a node is dequeued,

the worker thread enqueues the children nodes, if there are any, and then carries out the

computation specified in the node. Note that if the task queue is empty, the worker thread

95

will sleep for some time, and then check if other workers have generated more nodes in the

queue.

The benchmark computation is initiated by enqueuing the root node of a UCFT tree

to the task queue, and creating a predefined number of worker threads. The computation

terminates when the task queue is empty and all worker threads are sleeping.

Work Stealing

The worker stealing approach is different from work sharing. In the work stealing approach,

there is no global task queue shared by all workers. Instead, each worker has its own task

queue, and processes the tasks in the local queue until it is empty. Once completing all the

tasks in the local queue, a worker thread tries to steal some tasks from the queues of other

workers, and then process these tasks. The algorithm of a worker thread in the work stealing

approach is shown in Algorithm 9.

Algorithm 9 Worker Thread in Work Stealing

1: while true do

2: if myQ is not empty then

3: dequeue the first node myTask from myQ

4: if myTask has children then

5: enqueue all the children nodes to myQ

6: end if

7: carry out the computation /* according to the computation size specified in node

myTask */

8: else /* taskQ is empty */

9: keep checking other queues and try to steal a node

10: enqueue the stolen node to myQ

11: end if

12: end while

The benchmark computation is initiated by creating a predefined number of worker

threads and their local task queues, and enqueuing the root node of a UCFT tree to the

96

task queue of one of the workers. The computation terminates when all worker threads are

trying to steal tasks from others, and all the task queues are empty.

Discussion

Note that in both work sharing and work stealing approaches (shown in Algorithms 8 and

9), the code for the computations is mixed with the code for load balancing, which increases

the complexity of programming. However, the two are separated in the resource coordination

based approach: the code for computations is shown in Algorithm 7, and the code for load

balancing is shown in Algorithm 4. The fact that computation code is well separated from

that of load balancing simplifies the task of programmers, enhances modularity, and supports

reusability of the code.

6.6.3 Experimental Results

Experiments were carried out to evaluate the approach of dynamic load balancing using fine-

grained resource coordination. I evaluated the approach in two aspects: the effectiveness

of dynamic load-balancing, and the ability of promptly responding to computations which

require quick responses. I used the UCFT described in Section 6.3 as the benchmark ap-

plication for evaluation. I compared four approaches, including two actor systems (AF-D

and AF), and two traditional dynamic load-balancing approaches (work sharing and work

stealing). The experiments were carried out on an Xserve with 2 � Quad-Core Intel Xeon

processors (8 cores) @ 2.8GHz, 8GB memory and 12MB L2 cache. The number of worker

threads in all approaches were set to be 8. I created binomial trees with parameter m � 5;

that is to say, each node in the tree either has no children, or 5 children. All four approaches

were executed on the same set of UCFT trees for comparison.

The first set of experiments evaluated the performance of the four approaches with in-

creasing average computation size in the tree. In these experiments, the size of the tree is

set to be 100, and the standard deviation of computation sizes is 50. The results is shown

in Figure 6.3. The computation time for traversing a UCFT tree is linear with respect to

the average computation size in the tree, for all four approaches. Comparing to pure Java

implementation of the work sharing and work stealing approaches, actor systems have extra

97

overhead, which is caused by extra workload for supporting actors, such as maintaining the

actor platform, handling actor messages, and the scheduler service. However, the overhead

appears to be constant when the average computation size increased. In addition, AF-D

even outperforms ActorFoundry when the average computation size is larger than 600ms,

which shows the resource reasoning performed by AF-D helps balance the workload, and the

performance gain exceeds the extra overhead caused by the reasoning. AF-D shows better

scalability than ActorFoundry.

Figure 6.3: Performance Vs. Computation Size (TreeSize=100, StdDev=50)

The second set of experiments investigated the relationship between the overall perfor-

mance and the standard deviation of the computation sizes in the tree. In these experiments,

the size of the tree is set to be 100, and the average computation size in the tree is set to

be 500ms. The results are shown in Figure 6.4. The work sharing approach outperforms the

work stealing approach when the standard deviation of computation size exceeds 300ms. A

large standard deviation indicates that the size of computations in the tree is highly vari-

ant. Highly variant computation size presents challenge for load balancing. When bottleneck

presents, in the work sharing approach, the worker threads only need to check the global task

98

queue, while in the work stealing approach, each work threads needs to continuously check

all task queues and tries to steal tasks from other threads. Therefore, extra overhead may

be present in the work stealing approach.

Figure 6.4: Performance Vs. Standard Deviation (TreedSize = 100, AveCompSize =
500)

AF-D outperforms ActorFoundry when the standard deviation exceeds 180ms. More

interestingly, when the standard deviation exceeds 470ms, AF-D even outperforms the work

stealing approach, which does not provide support for actors, and does not consider urgent

computations. When the standard deviation increases, the performance of AF-D comes

close to the work sharing approach. Note the work sharing approach is believed to be best

suitable for shared memory parallel systems, which is the case in our experiments. These

results demonstrate the effectiveness of the resource coordination based approach in providing

support for dynamic load-balancing.

The third set of experiments investigated the scalability of the four approaches in terms of

the tree size. In these experiments, the average computation size is 500ms, and the standard

deviation is 100. The experimental results are shown in Figure 6.5. All four approaches

99

show similar scalability, and the computation time is linear to the size of the tree. As

expected, actor systems have extra insignificant overhead, and AF-D slightly outperforms

ActorFoundry for a computation tree whose size is larger than 700 nodes.

Figure 6.5: Performance Vs. Tree Size (AveCompSize = 500, StdDev = 100)

Besides performance, prompt response for computations with high priority is also critical

for certain applications. In the last set of experiments, I evaluated the ability of each system

to respond to urgent computations. In these experiments, the tree size is 100, the average

computation size is 500ms, with standard deviation of 100. I carried out the experiments for

all four approaches, and record the time when they complete the computation at each of the

tree node. The experimental results are shown in Figure 6.6. Note that in order to obtain a

readable figure, I only plotted the results for two actor approaches, AF-D and AF.

As shown in the figure, in AF-D, all urgent computations are completed earlier than

in the ActorFoundry. These experiments indicate that AF-D provides effective support for

promptly responding to computations with high priority, while still providing dynamic load

balancing.

100

Figure 6.6: Responding to Urgent Computations (TreeSize = 100, AveCompSize =
500, StdDev = 100)

6.7 Summary

Dynamic load-balancing is a key factor in achieving high performance in parallel systems.

Computations with unpredictable workload present challenges for dynamic load balancing.

Traditional approaches for dynamic load balancing assume that computations can be parti-

tioned into uniform-sized subcomputations, and try to redistributed these subcomputations

among processors. However, real world computations often are non-uniform in terms of size,

and even partition is rarely feasible. When the sizes of computations are highly variant, tra-

ditional approaches do not scale well. In addition, besides performance, responding time is

also critical for some types of applications which requires prompt responses. Based on these

observations, I develop a benchmark application, unbalanced cobwebbed fruit tree (UCFT),

which addresses these challenges. UCFT is developed by adapting the traditional unbalanced

tree search (UTS) benchmark, and it enclose substantial computation to each tree node, and

adds a priority attribute to the computations. The UCFT benchmark simulates real world

101

computations to a great extent, and can be used for evaluating dynamic load balancing

approaches.

I then present a novel approach for dynamic load balancing based on fine-grained resource

reasoning. In this approach, I view the problem from the perspective of resource control, keep

track of available resources in the system, and try to allocate the resources in a way that the

amount of resources that are expiring is minimized. This approach is implemented by ex-

tending ActorFoundry, a Java based framework for actors. Using actors clearly separates the

concerns of computations and dynamic load balancing, provides modularity and reusability

of the code, and greatly simplifies programmers’ tasks. I added a reasoner to ActorFoundry

to provide resource reasoning, and installed a dynamic load balancing policy to the reasoner.

In addition, I implemented a tuner to control the overhead caused by the reasoning sys-

tem by providing meta level resource control. I evaluated this approach using the UCFT

tree benchmark, and the results show that it can effectively provide dynamic load-balancing,

while reserving the flexibility of responding to urgent computations promptly. An interesting

observation is that when the size of computations is highly variant, this approach outper-

forms the work stealing approach, and comes close to the work sharing approach, which is

believed to be best suitable for shared memory systems, without providing support for code

modularity, reusability, and computation’s priorities.

Work is ongoing in a number of directions. First, I am exploring the effectiveness of the

approach in parallel systems with distributed memory, where communication presents more

challenges, as well as multicore HPC clusters where a mix of shared memory and distributed

memory present. Second, I will investigate the scalability of the approach when a larger

number of processors/cores are involved. Third, I will explore the possibility of dynamically

control the number of worker threads using the tuner, for conserving power. Since worker

threads which are not making progress consumes power, a greener solution is possible if the

number of workers is dynamically changed as needed, according to the available resources

and current workload of the system. I will build on the previous work of power efficient

multicores [138], and extend the work for supporting green dynamic load-balancing.

102

Chapter 7

Conclusion and Future Work

In this chapter, I present the conclusion of the thesis in Section 7.1, and future directions

of the research in Section 7.2.

7.1 Conclusion

In an open distributed system, computations can be carried out without statically-owned re-

sources, harnessing the collective compute power of the resources connected by the Internet.

However, realizing this potential requires efficient and scalable resource discovery, coordina-

tion and control, which present challenges in a dynamic, open environment. The three major

challenges are: uncertainty about resource availability, overhead of resource control, and pro-

gramming complexity of resource coordination. In this thesis, I addressed these challenges

using a resource-coordination approach.

7.1.1 Resource Coordination Approach

First, the uncertainty challenge is addressed by DREAM, a Distributed Resource Estima-

tion and Allocation Model, which is developed for reasoning about resource availability and

consumption, and making decisions of matching resources to computations. DREAM de-

fines resources in time and space, and represents distributed computations in terms of the

resources they require and the intervals during which they would like to use them. Given

the state of resource availability at a point in time, DREAM tells us whether a particular

deadline-constrained distributed computation can be accommodated by the system. 1 This

1I assume that the resource requirements of the computation are provided by the the programmer/user.

103

can be useful for computations choosing between various courses of action, allowing them to

avoid attempting infeasible pursuits.

Second, the challenge of high overhead of resource control is addressed using the resource

coordination scheme, which integrates DREAM reasoning into ActorFoundry, an optimized

implementation of the Actor model. The resource related decision making is carried out

by a reasoner alongside the actual computations, and the resource allocation decisions are

enforced by properly scheduling sub-computations. The overhead caused by the decision

making process is controlled by a meta-component, tuner, which dynamically adjusts the

resource devision between the reasoner and the computations.

Third, the programming complexity challenge is addressed by the way the resource coordi-

nation is implemented. In particular, DREAM abstracts away the functionality of computa-

tions, and represents computations by their resource requirements. This type of abstraction

enables resource coordination to be implemented separately from the computations. In this

approach, DREAM Reasoner is the resource coordination component, while computations

are carried out by regular actors. Separating resource coordination concern from that of

computations greatly simplifies the programming complexity of resource coordination, and

also enhances code readability, modularity, and reusability. This is also illustrated in the

case studies.

7.1.2 Case Studies

The effectiveness and efficiency of the resource coordination approach were evaluated using

three different types of applications, as the case studies presented in the thesis.

In the first case study, the resource coordination approach is used for providing QoS

support. This is achieved by prioritizing individual message deliveries and method executions

involved in a distributed computation, based on the calculated deadlines by which each must

be completed. Fundamental to this approach is an identification of the proper granularity

of control, efficient calculation of fine-grained deadlines, and effectively enforcement of those

deadlines. I identified that message-level deadlines are effective in providing QoS support.

Although the calculation of fine-grained deadlines for actor messages is non-trivial for a

computation with sufficiently complex interaction between actors, for classes of computations

104

which use the pipeline communication style, this can be efficiently achieved. Experimental

results from a live video conferencing application illustrated the effectiveness of this approach.

In the second case study, the resource coordination approach is adapted for supporting

power-efficient multicore execution of actor computations. The DREAM model is adapted

to be an energy-aware resource management model, DREAM-MCP, for providing a flexible

way to analyze energy consumption of multicores operating at non-uniform frequencies. This

information can then be used to generate a energy-efficient schedule for execution of the

computations – as well as a schedule of frequency changes on a per-core basis – while satisfying

performance requirements of computations. Since existing approaches for analyzing multicore

power consumption assume all cores must operate the the same frequency, our approach

is particular promising in fully exploiting the potential of the newly emerging hardware

technologies, which enable per-core frequencies.

In the third case study, the resource coordination approach is used for providing dynamic

load balancing support. This is achieved by reasoning about resource utilization, generating

computation schedules which can utilize CPU resources at their full capacity, and controlling

resources at a fine grain. This approach provides more flexibility than the existing dynamic

load balancing approaches because of two reasons. First, it does not assume computations

being redistributed have the same size, as the case in the existing approaches. Second, it

provides the flexibility of dealing computations of different priorities. A new benchmark ap-

plication, unbalanced cobwebbed fruit tree (UCFT), is developed to simulate real world com-

putations. This benchmark was used to evaluate our approach, and the experimental results

illustrated that the resource-coordination approach is effective and shows better scalability

when the size of the computation is highly variant. Besides, it offers better programming

complexity for coding the both the coordination and the computations.

These case studies also illustrated the flexibility of the resource coordination approach,

which can be adapted for providing support for different types of coordination. For exam-

ple, dynamic load balancing requires computations being executed as fast as possible, power

and energy concerns require computations being executed as slow as possible (as long as

the performance requirements are satisfied), and the QoS requires computations being exe-

cuted at an even speed, which demands precise resource delivery at the right time. It has

105

been shown in this thesis that although sometimes constrained by certain limitations, our

resource coordination approach can satisfactorily provide effective support for these differ-

ent types of coordination, and the overhead caused by the coordination is relatively modest

and adjustable. In addition, the adaptations of the resource coordination do not add extra

programming complexity to computations.

7.2 Future Directions

Work is ongoing in a number of directions, for enhancing and improving the approach, as well

as exploring more applications. Potential future work is presented in the following sections.

7.2.1 Multi-Dimension Tuning

The tuner provides meta level resource control by dynamically balancing the use of resources

between reasoning and carrying out the computations. In the current implementation, this

is achieved by adjusting the resource allocation ratio between the reasoning component and

the computations. I am exploring different dimensions along which the tuner might try to

balance the resource use.

One promising opportunity appears to lie in controlling how far in the future the reasoning

mechanism looks in search of needed resources. Since the complexity of matching resources

to computations is linearly related to the number of resource terms, the size of the time frame

in which resources are searched is a key factor. Tuning the size of the time frame can adjust

the overhead caused by the reasoning mechanism.

7.2.2 Smart Space: Spatial-Temporal Coordination

Besides temporal constraints such as deadlines, computations often have spatial constraints,

which can be represented as spatial relationships between computations. For example, it is

more efficient for a computation to be collocated with its data source at the stage of taking

input data, and collocated with collectors of results when it finishes the computation. A data

backup application should store the copy of data at a different location from its original.

106

To support separation of concerns [35], dealing with spatial constraints should not be

mixed with computations. In particular, programmers only need to program functionality

of the computations and specify their temporal and spatial constraints, and satisfying those

constraints is taken care of by a middleware.

Actors

Temporal

Constraints Spatial

Constraints

DREAM actors

Computation

Constraint

Coordination

Figure 7.1: Smart Space

I propose such a middleware, namely a smart space, as a layered approach for coordinating

both temporal and spatial constraints of computations. As shown in Figure 7.1, the lowest

layer is computation layer, which contains actors (computations). Both temporal and spatial

constraints of computations are specified at the second layer, constraint layer. The third layer,

coordination layer is responsible for scheduling the computations in a way that both temporal

and spatial constraints are satisfied. Coordination layer consists of a number of DREAM

reasoning actors, which attempt to satisfy those constrains by coordinating resource use.

Separating what the constraints are and how they should be satisfied from the computations

enhances modularity and reusability, simplifies the programers’ task, and supports a clear

design.

107

7.2.3 Phone Grid

The population of mobile device holders is growing rapidly. As shown in Global Mobile

Statistics [101], there are 5.3 billion mobile subscriptions as of the end of 2010. In addition,

mobile devices sales rose in 2010, while smartphone sales showed the strongest growth (74.4%

of annual sales growth). These mobile devices form a highly dynamic network of distributed

resources. Given the fact that usually mobile devices are not used all the time, they create

opportunities for computations making use of the idle resources. However, the dynamicity

of the network presents challenges.

Inspired by SETI@HOME [117], a scientific experiment that uses Internet-connected com-

puters in the Search for Extraterrestrial Intelligence, I propose a Phone Grid approach, which

can synthesize distributed resources of mobile devices to carry out computations. By sub-

scribing to Phone Grid, mobile device holders make their resources available on the network,

and receive rewards which entitle them to use resources on the grid later, or to free air time.

The DREAM-based resource coordination scheme can be installed to effectively schedule

computations on the grid.

7.2.4 Power-Efficient HPC Clusters

In Chapter 6, I adapted the coordination approach for providing dynamic load balancing

support. The work is implemented on a shared memory multicore system. I am extending

the work to a HPC cluster, which consists of a number of multicore computers connected by

a high speed network. Since an HPC cluster has a mix of shared memory and distributed

memory, communication presents challenges for load balancing.

Power consumption is a major concern in the current HPC clusters. I propose to address

this concern in two levels. First, on each processor, a fine-grained per-core frequency control

can be applied, for determining frequencies on a per-core basis, as described in Chapter 5.

Second, on the whole system, a coarse-grained processor control can turn off/on individual

processors according to the power consumption and performance needs. The tuner can be

used for balancing performance against power consumption by tuning the number of active

processors.

108

7.3 Concluding Remarks

In a resource constrained world, fine-grained control on resources is becoming necessary and

critical. In this thesis, I present a resource coordination approach, which enables fine-grained

resource control with manageable overhead. The approach is implemented in a way that

resource coordination concerns are separated from computational concerns, which enables

reusability of the approach. I have shown that the approach can be easily adapted for

supporting different types of coordination requirements, without adding extra programming

complexity to the computations. I am following up the work in both directions of enhancing

the approach and applying it to more applications.

109

References

[1] T. Agerwala and S. Chatterjee. Computer Architecture: Challenges and Opportunities
for the Next Decade. IEEE Micro, 25:58–69, 2005.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[3] G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 7:1–72, 1997.

[4] R. Al-Ali, K. Amin, G. von Laszewski, O. Rana, and D. Walker. An OGSA-Based
Quality of Service Framework. In M. Li, X.-H. Sun, Q. Deng, and J. Ni, editors, Grid
and Cooperative Computing, volume 3033 of Lecture Notes in Computer Science, pages
529–540. 2004.

[5] A. Albore, N. Alechina, P. Bertoli, C. Ghidini, and B. Logan. Bounded-Resource
Reasoning as (Strong or Classical) Planning. In M. Fisher, F. Sadri, and M. Thielscher,
editors, Computational Logic in Multi-Agent Systems, pages 77–96. 2009.

[6] N. Alechina and B. Logan. A Logic of Situated Resource-Bounded Agents. Journal of
Logic, Language and Information, 18:79–95, 2009.

[7] N. Alechina, B. Logan, N. H. Nga, and A. Rakib. Verifying Time, Memory and Com-
munication Bounds in Systems of Reasoning Agents. In Proceedings of the 7th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 736–743,
2008.

[8] N. Alechina, B. Logan, and M. Whitsey. A Complete and Decidable Logic for Resource-
Bounded Agents. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, pages 606–613, 2004.

[9] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11):832–843, 1983.

[10] AMD Corporation. AMD BIOS and Kernel Developers Guide (BKDG) for AMD Family
10h Processors, 2009. http://developer.amd.com/documentation/guides/.

[11] G. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Com-
puting Capabilities. In Proceedings of the American Federation of Information Pro-
cessing Societies Conference (AFIPS), pages 483–485, 1967.

110

http://developer.amd.com/documentation/guides/

[12] B. An, V. Lesser, D. Irwin, and M. Zink. Automated Negotiation with Decommitment
for Dynamic Resource Allocation in Cloud Computing. In Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 981–988,
2010.

[13] G. Andrews, D. Dobkin, and P. Downey. Distributed Allocation with Pools of Servers.
In Proceedings of the 1st ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pages 73–83, 1982.

[14] A. Appel and T. Jim. Continuation-Passing, Closure-Passing Style. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 293–302, 1989.

[15] J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[16] M. Ashley. The Actor Foundry: A Java-based Actor Programming Environment. Tech-
nical report, Open Systems Laboratory, University of Illinois at Urbana-Champaign,
1998.

[17] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weer-
atunga. The NAS Parallel Benchmarks Summary and Preliminary Results. In Proceed-
ings of the 1991 ACM/IEEE Conference on SuperComputing, pages 158 –165, 1991.

[18] D. Batista and N. da Fonseca. A Survey of Self-Adaptive Grids. IEEE Communications
Magazine, 48(7):94 –100, 2010.

[19] W. Binder, J. Hulaas, and A. Villazon. Portable Resource Control in Java: The J-
SEAL2 Approach. In Proceedings of the 2001 ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA 2001), 2001.

[20] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: an
Efficient Multithreaded Runtime System. In Proceedings of the 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 1995), pages
207–216, 1995.

[21] R. Blumofe and C. Leiserson. Scheduling Multithreaded Computations by Work Steal-
ing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[22] T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robert-
son, M. Theys, B. Yao, D. Hensgen, and R. Freund. A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems. Journal of Parallel and Distributed Computing, 61:810–837, 2001.

[23] A. Cesta and C. Stella. A Time and Resource Problem for Planning Architectures.
In Proceedings of the 4th European Conference on Planning: Recent Advances in AI
Planning, pages 117–129, 1997.

111

[24] K. Chakraborty. A Case for an Over-Provisioned Multicore System: Energy Efficient
Processing of Multithreaded Programs. Technical report, Department of Computer
Sciences, University of Wisconsin-Madison, 2007.

[25] F. Chang, J. Ren, and R. Viswanathan. Optimal Resource Allocation in Clouds. In
Proceedings of the 3rd IEEE International Conference on Cloud Computing (CLOUD
2010), pages 418–425, 2010.

[26] K. Chard, K. Bubendorfer, and P. Komisarczuk. High Occupancy Resource Allocation
for Grid and Cloud Systems, a Study with DRIVE. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pages 73–84,
2010.

[27] S. Cho and R. Melhem. Corollaries to Amdahl’s Law for Energy. Computer Architecture
Letters, 7(1):25–28, 2008.

[28] W. Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts Institute of
Technology, 1981.

[29] R. Cox. Probability, Frequency and Reasonable Expectation. In G. Shafer and J. Pearl,
editors, Readings in Uncertain Reasoning, pages 353–365. Morgan Kaufmann Publish-
ers Inc., 1990.

[30] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. de Supinski, and
M. Schulz. Prediction Models for Multi-Dimensional Power-Performance Optimiza-
tion on Many Cores. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT 2008), 2008.

[31] G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and C. Bryce. A Resource Management
API for Java Platform. Software: Practice and Experience, 35(2):123–157, 2005.

[32] G. Czajkowski and T. von Eichen. JRes: A Resource Accounting Interface for Java. In
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 1998), pages 21–35, 1998.

[33] M. Dertouzos. Control Robotics: The Procedural Control of Physical Processes. In
Proceedings of IFIP Congress, pages 807–813, 1974.

[34] E. Dijkstra. Cooperating Sequential Processes. Programming Languages, pages 43–112,
1968.

[35] E. Dijkstra. On the Role of Scientific Thought. In Selected Writings on Computing: A
Personal Perspective, pages 60–66. 1982.

[36] J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scalable
Work Stealing. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–11, 2009.

112

[37] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C.-W. Tseng. Dynamic
Load Balancing of Unbalanced Computations Using Message Passing. In IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS 2007), pages 1 –8,
2007.

[38] J. Drapkin and D. Perlis. A Preliminary Excursion into Step-Logics. In Proceedings of
the ACM SIGART International Symposium on Methodologies for Intelligent Systems,
pages 262–269, 1986.

[39] D. Eager, E. Lazowska, and J. Zahorjan. A Comparison of Receiver-Initiated and
Sender-Initiated Adaptive Load Sharing. In Proceedings of the 1985 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems, pages 1–3,
1985.

[40] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive Load sharing in Homogeneous Dis-
tributed Systems. IEEE Transactions on Software Engineering, 12(5):662–675, 1986.

[41] A. El-kholy and B. Richards. Temporal and Resource Reasoning in Planning: the
ParcPLAN Approach. In Proceedings of the 12th European Conference on Artificial
Intelligence (ECAI 1996), pages 614–618, 1996.

[42] J. Elgot-Drapkin, M. Miller, and D. Perlis. Memory, Reason and Time: the Step-Logic
Approach. Philosophy and AI: Essays at the Interface, pages 79–103, 1991.

[43] J. Elgot-Drapkin and D. Perlis. Reasoning Situated in Time i: Basic Concepts. Journal
of Experimental & Theoretical Artificial Intelligence, 2:75–98, 1990.

[44] B. Esbaugh and A. Sodan. Coarse-Grain Time Slicing with Resource-Share Control in
Parallel-Job Scheduling. In Proceedings of the 3rd International Conference on High
Performance Computing and Communications (HPCC 2007), pages 30–43, 2007.

[45] D. Feitelson and B. Nitzberg. Job Characteristics of a Production Parallel Scientific
Workload on the NASA Ames iPSC/860. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, volume 949 of Lecture Notes in Computer
Science, pages 337–360. 1995.

[46] D. Feitelson and L. Rudolph. Gang Scheduling Performance Benefits for Fine-Grain
Synchronization. Journal of Parallel and Distributed Computing, 16:306–318, 1992.

[47] D. G. Feitelson and M. A. Jette. Improved Utilization and Responsiveness with Gang
Scheduling. In Proceedings of the Job Scheduling Strategies for Parallel Processing,
pages 238–261, 1997.

[48] M. Fisher and C. Ghidini. Exploring the Future with Resource-Bounded Agents. Jour-
nal of Logic, Language and Information, 18(1):3–21, 2009.

[49] G. Fortino and L. Nigro. Modeling, Analysis and Implementation of Actor-Based
Multimedia Systems. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, (PDPTA 1999), pages 489–495,
1999.

113

[50] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A Dis-
tributed Resource Management Architecture that Supports Advance Reservations and
Co-allocation. In Proceedings of the 7th International Workshop on Quality of Service
(IWQoS 1999), pages 27–36, 1999.

[51] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture That Combines Re-
source Reservation and Application Adaptation. In Proceedings of the 8th International
Workshop on Quality of Service (IWQoS 2000), pages 181–188, 2000.

[52] S. Ghosh, R. R. Rajkumar, J. Hansen, and J. Lehoczky. Scalable Resource Alloca-
tion for Multi-Processor QoS Optimization. In Proceedings of the 23rd International
Conference on Distributed Computing Systems, pages 174–183, 2003.

[53] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java Series. Sun
Microsystems, 1996.

[54] M. Gothe, D. Wengelin, and L. Asplund. The Distributed ADA Run-time System
DARTS. Software - Practice and Experience, 21(11):1249–1263, 1991.

[55] J. Grant, S. Kraus, and D. Perlis. A Logic for Characterizing Multiple Bounded Agents.
Autonomous Agents and Multiagent Systems, 3(4):351–387, 2000.

[56] I. Greif. Semantics OF Communicating Parallel Processes. Technical report, Mas-
sachusetts Institute of Technology, 1975.

[57] F. Guim, I. Rodero, and J. Corbalán. The Resource Usage Aware Backfilling. In
E. Frachtenberg and U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel
Processing, pages 59–79. 2009.

[58] P. Haller and M. Odersky. Actors that Unify Threads and Events. In A. Murphy and
J. Vitek, editors, Coordination Models and Languages, volume 4467 of Lecture Notes
in Computer Science, pages 171–190. 2007.

[59] C. Hewitt. Description and Theoretical Analysis (Using Schemata) of PLANNER: A
Language for Proving Theorems and Manipulating Models in a Robot. PhD thesis,
Massachusetts Institute of Technology, 1971.

[60] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Journal of
Artificial Intelligence, 8(3):323–364, 1977.

[61] M. Hill and M. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer, 41(7):33–
38, 2008.

[62] S. Hofmeyr, C. Iancu, and F. Blagojević. Load Balancing on Speed. In Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP 2010), pages 147–158, 2010.

[63] E. Horvitz. Reasoning about Beliefs and Actions Under Computational Resource Con-
straints. International Journal of Approximate Reasoning, 2(3):337–338, 1988.

114

[64] E. Horvitz, D. Heckerman, and C. Langlotz. A Framework for Comparing Alternative
Formalisms for Plausible Reasoning. In Proceedings of the 5th National Conference on
Artificial Intelligence, pages 210–214, 1986.

[65] S. Hotovy. Workload Evolution on the Cornell Theory Center IBM SP2. In D. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 1162
of Lecture Notes in Computer Science, pages 27–40. 1996.

[66] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H. Zheng.
Overview of the Ptolemy Project. Technical report, University of California, Berkeley,
2003.

[67] O. Ibarra and C. Kim. Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM (JACM), 24:280–289, 1977.

[68] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An Analysis of
Efficient Multi-Core Global Power Management Policies: Maximizing Performance for
a Given Power Budget. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2006), pages 347–358, 2006.

[69] N. Jamali. CyberOrgs: A Model for Resource Bounded Complex Agents. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

[70] N. Jamali and C. Liu. Reifying Control of Multi-Owned Network Resources. In Proceed-
ings of the 12th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, pages 1–8, 2007.

[71] N. Jamali, P. Thati, and G. Agha. An Actor-based Architecture for Customizing and
Controlling Agent Ensembles. IEEE Intelligent Systems, 14(2):38–44, 1999.

[72] N. Jamali and X. Zhao. A Scalable Approach to Multi-Agent Resource Acquisition and
Control. In Proceedings of the 4th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 868–875, 2005.

[73] N. Jamali and X. Zhao. Self-Adapting Resource Bounded Distributed Computations.
In Proceedings of the 1st IEEE International Conference on Self-Adapting and Self-
Organizing Systems, pages 311–314, 2007.

[74] M.-W. Jang. The Actor Architecture Manual. Technical report, Open Systems Labo-
ratory, University of Illinois at Urbana-Champaign, 2004.

[75] D. Kafura. ACT++: Building a Concurrent C++ with Actors. Journal of Object-
Oriented Programming, 3:25–37, 1990.

[76] K. Kant. Toward a Science of Power Management. IEEE Computer, 42:99–101, 2009.

[77] R. K. Karmani, A. Shali, and G. Agha. Actor Frameworks for the JVM Platform:
A Comparative Analysis. In Proceedings of the 7th International Conference on the
Principles and Practice of Programming in Java (PPPJ 2009), 2009.

115

[78] G. E. Kersten, W. Michalowski, S. Szpakowicz, and Z. Koperczak. Restructurable
Representations of Negotiation. Management Science, 37(10):1269–1290, 1991.

[79] W. Kim. ThAL: An Actor System for Efficient and Scalable Concurrent Computing.
PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[80] W. Kim, D. Brooks, and G.-Y. Wei. A Fully-Integrated 3-Level DC/DC Converter
for Nanosecond-Scale DVS with Fast Shunt Regulation. In Proceedings of the IEEE
International Solid-State Circuits Conference (ISSCC 2011), 2011.

[81] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. Enabling OnChip Switching Regulators
for Multi-Core Processors Using Current Staggering. In Proceedings of the Workshop
on Architectural Support for Gigascale Integration, 2007.

[82] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System Level Analysis of Fast, Per-
Core DVFS Using On-Chip Switching Regulators. In Proceedings of the 14th IEEE
International Symposium on High Performance Computer Architecture (HPCA 2008),
pages 123–134, 2008.

[83] W. Kornfeld and C. Hewitt. The Scientific Community Metaphor. In A. Bond and
L. Gasser, editors, Readings in Distributed Artificial Intelligence, pages 311–320. 1988.

[84] V. Korthikanti and G. Agha. Analysis of Parallel Algorithms for Energy Conservation
in Scalable Multicore Architectures. In Proceedings of the 38th International Conference
on Parallel Processing (ICPP 2009), pages 212–219, 2009.

[85] V. Korthikanti and G. Agha. Avoiding Energy Wastage in Parallel Applications. In
Proceedings of the International Conference on Green Computing, pages 149–163, 2010.

[86] V. Korthikanti and G. Agha. Energy-Performance Trade-off Analysis of Parallel Algo-
rithms. In Proceedings of the USENIX Workshop on Hot Topics in Parallelism (HotPar
2010), 2010.

[87] P. Krueger, T. Lai, and V. Dixit-Radiya. Job Scheduling is More Important than
Processor Allocation for Hypercube Computers. IEEE Transactions on Parallel and
Distributed Systems, 5:488–497, 1994.

[88] W. Landi. Undecidability of Static Analysis. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(4):323–337, 1992.

[89] P. Lee and G. Necula. Research on Proof-Carrying Code for Mobile-Code Security. In
Proceedings of the Workshop on Foundations of Mobile Code Security, 1997.

[90] W. Leinberger, G. Karypis, V. Kumar, and R. Biswas. Load Balancing Across Near-
Homogeneous Multi-Resource Servers. In Proceedings of the 9th Heterogeneous Com-
puting Workshop (HCW 2000), pages 60–72, 2000.

[91] J. Li and J. F. Mart́ınez. Power-Performance Considerations of Parallel Computing
on Chip Multiprocessors. ACM Transactions on Architecture and Code Optimization,
2:397–422, 2005.

116

[92] D. Lifka. The ANL/IBM SP Scheduling System. In Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, pages 295–303, 1995.

[93] H.-C. Lin and C. Raghavendra. A Dynamic Load-Balancing Policy with a Central Job
Dispatcher (LBC). IEEE Transactions on Software Engineering, 18(2):148–158, 1992.

[94] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[95] C. Manning. ACORE: The Design of a Core Actor Language and Its Compiler. PhD
thesis, Massachusetts Institute of Technology, 1987.

[96] R. McAfee and J. McMillan. Auctions and Bidding. Journal of Economic Literature,
25:699–738, 1987.

[97] P. Messina. The Concurrent Supercomputing Consortium: Year 1. IEEE Parallel
Distributed Technology, 1:9–16, 1993.

[98] Microsoft Corporation. Axum Programming Language, 2008.

[99] R. Milner. Communication and Concurrency. Prentics Hall, 1989.

[100] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press, 1999.

[101] Global Mobile Statistics, 2011. http://mobithinking.com/.

[102] L. Moreau and C. Queinnec. Design and Semantics of Quantum: a Language to Con-
trol Resource Consumption in Distributed Computing. In Proceedings of the Usenix
Conference on Domain-Specific Languages (DSL 1997), pages 183–197, 1997.

[103] L. Moreau and C. Queinnec. Distributed and Multi-Type Resource Management. In
Proceedings of the ECOOP 2002 Workshop on Object-Oriented Technology, 2002.

[104] R. Motwani and P. Raghavan. Randomized Algorithms. ACM Computing Surveys,
28(1):33–37, 1996.

[105] R. Mukhopadhyay, D. Ghosh, and N. Mukherjee. A Study on the Application of
Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed
Systems. In Proceedings of the 9th International Conference on Software Engineering,
Parallel and Distributed Systems, pages 238–243, 2010.

[106] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K. Krishnan, and
A. Kumar. Power and Thermal Management in the Intel Core Duo Processor. Intel
Technology Journal, 10(2):109–122, 2006.

[107] J. Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, 1944.

117

http://mobithinking.com/

[108] M. Nirkhe, S. Kraus, and D. Perlis. Thinking Takes Time: a Modal Active-Logic for
Reasoning in Time. Technical report, University of Maryland at College Park, Report
No. UMIACS-TR-94-39, 1994.

[109] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng. UTS:
An Unbalanced Tree Search Benchmark. In G. Almsi, C. Cascaval, and P. Wu, editors,
Languages and Compilers for Parallel Computing, volume 4382 of Lecture Notes in
Computer Science, pages 235–250. 2007.

[110] S. Olivier and J. Prins. Scalable Dynamic Load Balancing Using UPC. In Proceedings of
the 37th International Conference on Parallel Processing (ICPP 2008), pages 123–131,
2008.

[111] D. Pattou and B. Maigret. MOL3D, A Modular and Interactive Program for Molecular
Modeling and Conformational Analysis: I – Basic Modules. J. Mol. Graph., 6(2):112–
121, 1988.

[112] J. Pearl. Fusion, Propagation, and Structuring in Belief Networks. Journal of Artificial
Intelligence, 29:241–288, 1986.

[113] J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. Skeel, L. Kalé, and K. Schulten. Scalable Molecular Dynamics with NAMD. Journal
of Computational Chemistry, 26:1781–1802, 2005.

[114] J.-N. Quintin and F. Wagner. Hierarchical Work-Stealing. In Proceedings of the 16th
International European Conference on Parallel and Distributed Computing (EuroPar
2010): Part I, pages 217–229, 2010.

[115] K. Ravichandran, S. Lee, and S. Pande. Work Stealing for Multi-Core HPC Clusters. In
Proceedings of the 17th International European Conference on Parallel and Distributed
Computing (EuroPar 2011): Part I, pages 205–217, 2011.

[116] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. Internet Engineering Task Force (IETF) RFC1889, 1996.

[117] SETI@HOME. http://setiathome.berkeley.edu/.

[118] L. Shi. A New Algorithm for Stochastic Discrete Resource Allocation Optimization.
Discrete Event Dynamic Systems, 10(3):271–294, 2000.

[119] SPEC CPU 2000 Benchmarks. http://www.spec.org/benchmarks.html.

[120] S. Srinivasan. A Thread of One’s Own. In Proceedings of the Workshop on New
Horizons in Compilers (NHC 2006), pages 1–11, 2006.

[121] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In Proceedings
of the 22nd European Conference on Object-Oriented Programming (ECOOP 2008),
pages 104–128, 2008.

118

http://setiathome.berkeley.edu/
http://www.spec.org/benchmarks.html

[122] B. Srivastava. Realplan: Decoupling Causal and Resource Reasoning in Planning.
In Proceedings of the 17th National Conference on Artificial Intelligence and the 12th
Conference on Innovative Applications of Artificial Intelligence, pages 812–818, 2000.

[123] D. Sturman and G. Agha. A Protocol Description Language for Customizing Failure
Semantics. In Proceedings of the 13th Symposium on Reliable Distributed Systems,
pages 148–157, 1994.

[124] V. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience, 2:315–339, 1990.

[125] I. Takeuchi. Towards an Integrated Earthquake Disaster Simulation System. In Pro-
ceedings of the 1st International Workshop on Synthetic Simulation and Robotics to
Mitigate Earthquake Disaster, 2003.

[126] The E Language, 2000. http://www.erights.org/elang.

[127] Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based Pro-
cessors. White paper, Intel, 2008. http://www.intel.com/technology/turboboost/.

[128] C. Varela and G. Agha. Programming Dynamically Reconfigurable Open Systems with
SALSA. ACM SIGPLAN Notices, 36:20–34, 2001.

[129] N. Venkatasubramanian and G. Agha. An Actor Based Framework for Managing Mul-
timedia QoS. In Proceedings of the 3rd International Workshop on Multimedia Infor-
mation Systems, pages 54–62, 1999.

[130] X. Wang and S. Ziavras. Performance-Energy Tradeoffs for Matrix Multiplication on
FPGA-Based Mixed-Mode Chip Multiprocessors. In Proceedings of the 8th Interna-
tional Symposium on Quality Electronic Design (ISQED 2007), pages 386–391, 2007.

[131] Y.-T. Wang and R. Morris. Load Sharing in Distributed Systems. IEEE Transactions
on Computers, C-34(3):204–217, 1985.

[132] A. Weil. Utilization and Predictability in Scheduling the IBM SP2 with Backfilling.
In Proceedings of the International Symposium on Parallel Processing, pages 542–546,
1998.

[133] J. White. Telescript Technology: The Foundation for the Electronic Marketplace.
Technical report, General Magic Inc., Mountainview, CA, 1994.

[134] M. Wooldridge. Computationally Grounded Theories of Agency. In Proceedings of
the 4th International Conference on MultiAgent Systems (ICMAS 2000), pages 13–20,
2000.

[135] X. Zeng and A. Sodan. Job Scheduling with Lookahead Group Matchmaking for
Time/Space Sharing on Multi-Core Parallel Machines. In Proceedings of the 14th Inter-
national Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2009),
pages 232–258, 2009.

119

http://www.erights.org/elang
http://www.intel.com/technology/turboboost/

[136] X. Zhang, K. Shen, S. Dwarkadas, and R. Zhong. An Evaluation of Per-Chip Nonuni-
form Frequency Scaling on Multicores. In Proceedings of the USENIX Annual Technical
Conference, pages 19–24, 2010.

[137] X. Zhao and N. Jamali. Temporal Reasoning about Resources for Deadline Assurance in
Distributed Systems. In Proceedings of ICDCS Workshop on Assurance in Distributed
Systems and Networks (ADSN 2010), 2010.

[138] X. Zhao and N. Jamali. Fine Grained Per-Core Frequency Scheduling for Power Effi-
cient Multicore Execution. In Proceedings of the 2nd IEEE International Green Com-
puting Conference (IGCC 2011) [Work-in-Progress Workshop], pages 1–8, 2011.

[139] X. Zhao and N. Jamali. Supporting Deadline Constrained Distributed Computations
on Grids. In Proceedings of the 12th IEEE/ACM International Conference on Grid
Computing (Grid 2011), pages 165–172, 2011.

[140] G. Zheng, E. Meneses, A. Bhatel, and L. Kal. Hierarchical Load Balancing for
Charm++ Applications on Large Supercomputers. In Proceedings of the 39th Inter-
national Conference on Parallel Processing Workshops (ICPPW 2010), pages 436–444,
2010.

[141] M. Zhu and S. Mart́ınez. On Distributed Optimization under Inequality Constraints
via Lagrangian Primal-Dual Methods. In Proceedings of the 2010 American Control
Conference, pages 2434–2439, 2010.

120

Appendix A

Raw Data from Case Study 1

Raw data from the experiments in case study 1, QoS support, is presented in this chapter.
Table A.1 shows the raw data from one set of the ThreadRing benchmark experiments.

These results have been shown in Figure 4.1.

Table A.1: Raw Data from the ThreadRing Experiments

Computation Completion Time (ms)
ID AF-D AF

1 397 2567
2 699 2340
3 942 2456
4 1210 1846
5 1456 2581
6 1715 2591
7 1961 2593
8 2213 2595
9 2459 2598
10 2698 2606

Table A.2 shows the number of tuning events triggered in the AF D experiment.

Table A.2: Tuning Events Triggering from the AF D Experiment

Events Reasoning too fast Reasoning too slow Reasoning too costly

Number 5 2 0

Table A.3 shows the raw data from one set of the live video conferencing experiments.
Note packet IDs starting with a “v” represent video packets, and those starting with an “a”
represent audio packets. These results have been shown in Figure 4.3.

Table A.4 shows the number of tuning events triggered in the AF D experiment.

121

Table A.3: Raw Data from the Live Video Conferencing

Packet Completion Time (ms)
ID AF-D AF

v0 70 47
a0 158 1014
v10 226 156
a1 273 515
v20 382 359
a2 397 265
v30 538 390
a3 522 640
v40 694 624
a4 772 390
v50 850 764
a5 897 889
v60 1066 936
a6 1021 1139
v70 1162 1170
a7 1146 1264
v80 1318 1326
a8 1271 764
v90 1472 1420
a9 1387 1398

Table A.4: Tuning Events Triggering from the AF D Experiment

Events Reasoning too fast Reasoning too slow Reasoning too costly

Number 3 1 0

122

Appendix B

Raw Data from Case Study 2

Raw data from the experiments in case study 2, power-efficiency support, is presented in
this chapter.

Table B.1 shows the raw data from the N-Body Experiments. These results have been
shown in Figure 5.3. The experiments are carried out for 15 times, and mean and standard
deviation are shown in Table B.1.

Table B.1: Raw Data from the N-Body Experiments

System Sequential portion (ms) Parallel portion (ms)
Mean StdDev Mean StdDev

DREAM-MCP 68 3.7 83 3.2
AF 55 2.5 83 4.1

Table B.2 shows the number of tuning events triggered in the DREAM MCP experiments.

Table B.2: Tuning Events Triggering from the N-Body Experiments

Events Reasoning too fast Reasoning too slow Reasoning too costly
Mean 1.3 0 0
StdDev 0.46 0 0

123

Appendix C

Raw Data from Case Study 3

Raw data from the experiments in case study 3, dynamic load balancing support, is
presented in this chapter.

Table C.1 shows the raw data from the UCFT Experiments, which investigated the per-
formance of the four dynamic load-balancing approaches vs. the computation size. For each
parameter setting, I ran the experiment for 15 times, for each of the approaches. The mean
and standard deviation are shown inTable C.1. These results have been shown in Figure 6.3.

Table C.1: Raw Data from the UCFT Experiments (Performance Vs. Computation
Size; TreeSize=100, StdDev=50)

Computation AF-D AF WSH WST
Size Mean StdDev Mean StdDev Mean StdDev Mean StdDev

100 1970 12.1 1814 10.9 1297 21.5 1274 44.2
300 4354 20.4 4211 19.1 3743 35.2 3700 36.2
500 6955 29.9 6763 30.1 6155 35.3 6151 40.2
700 9449 49.1 9570 39.1 8648 41.1 8533 52.1
1000 13200 49.3 14041 52.1 12199 67.1 12070 65.1

Table C.2 shows the number of tuning events triggered in the AF D experiments.

Table C.2: Tuning Events Triggering from the UCFT Experiments

Computation Reasoning too fast Reasoning too slow Reasoning too costly
Size Mean StdDev Mean StdDev Mean StdDev
100 15.9 4.9 7.8 4.3 0 0
300 17.9 3.5 5.2 3.9 0 0
500 28.3 8.1 11.8 6.3 0 0
700 44.9 11.4 27.8 9.3 0 0
1000 48.7 19.9 33.5 14.5 0 0

Table C.3 shows the raw data from the UCFT Experiments, which investigated the per-
formance of the four dynamic load-balancing approaches vs. the standard deviation of the
computation size. For each parameter setting, I ran the experiment for 15 times, for each
of the approaches. The mean and standard deviation are shown inTable C.3. These results
have been shown in Figure 6.4.

Table C.4 shows the number of tuning events triggered in the AF D experiments.

124

Table C.3: Raw Data from the UCFT Experiments (Performance Vs. Standard
Deviation; TreedSize = 100, AveCompSize = 500)

Standard AF-D AF WSH WST
Deviation Mean StdDev Mean StdDev Mean StdDev Mean StdDev

50 6955 29.9 6763 30.1 6155 35.3 6151 40.2
100 7031 34.5 6801 38.9 6322 51.3 6200 41.2
200 7413 38.1 7439 34.5 6467 43.4 6469 44.9
300 7603 29.9 7733 34.1 6883 44.3 6849 46.9
400 7803 43.5 7993 44.5 7231 45.0 7431 47.9
500 7954 39.0 8224 49.2 7710 52.4 8112 54.8

Table C.4: Tuning Events Triggering from the UCFT Experiments

Standard Reasoning too fast Reasoning too slow Reasoning too costly
Deviation Mean StdDev Mean StdDev Mean StdDev

50 28.3 8.1 11.8 6.3 0 0
100 27.8 6.5 11.2 6.6 0 0
200 28.4 9.2 14.5 5.9 0 0
300 34.9 12.4 27.8 9.3 0 0
400 38.7 15.3 23.5 9.5 0 0
500 35.6 18.5 20.4 10.5 0 0

125

Table C.5 shows the raw data from the UCFT Experiments, which investigated the per-
formance of the four dynamic load-balancing approaches vs. the size of the UCFT tree.
For each parameter setting, I ran the experiment for 5 times, for each of the approaches.
The mean and standard deviation are shown inTable C.5. These results have been shown in
Figure 6.5.

Table C.5: Raw Data from the UCFT Experiments (Performance Vs. Tree Size;
AveCompSize = 500, StdDev = 100)

Tree AF-D AF WSH WST
Size Mean StdDev Mean StdDev Mean StdDev Mean StdDev

100 7031 34.5 6801 38.9 6322 51.3 6200 41.2
300 20822 58.6 20211 80.1 18610 83.4 18478 89.0
500 34507 123.1 33500 178.4 31534 161.2 31579 189.1
700 48051 235.4 48645 277.1 43788 401.4 43733 479.3
1000 65899 427.4 66600 480.9 62340 598.6 62898 616.2

Table C.6 shows the number of tuning events triggered in the AF D experiments.

Table C.6: Tuning Events Triggering from the UCFT Experiments

Tree Reasoning too fast Reasoning too slow Reasoning too costly
Size Mean StdDev Mean StdDev Mean StdDev
100 27.8 6.5 11.2 6.6 0 0
300 17.9 3.5 15.2 5.5 0 0
500 25.3 8.1 17.8 8.3 0 0
700 39.9 16.4 27.8 9.3 0 0
1000 50.7 15.7 33.5 14.5 0 0

Table C.7 shows the raw data from one set of the UCFT Experiments, which investigated
the ability of responding to urgent nodes. These results have been shown in Figure 6.6.

126

Table C.7: Raw Data from the UCFT Experiments (Responding to Urgent Compu-
tations; TreeSize = 100, AveCompSize = 500, StdDev = 100)

Urgent Completion Time (ms)
Node ID AF-D AF WSH WST

10 728 1635 1081 750
15 1757 2116 1771 1812
22 2435 2547 2651 2618
45 3178 3641 3049 4349
48 3231 3587 3493 3964
74 5309 6245 5358 5345
79 5549 6663 5630 5819
83 6391 6712 6290 6136
90 5675 6697 6285 6185

127

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Thesis Statement
	Approach
	Resource Coordination Mechanisms
	Evaluation

	Contributions
	Organization

	Related Work
	Actor Model
	Actor Model
	Implementation of Actor Semantics

	Formal Approaches
	Multi-Agent Planning
	Formal Logic

	Resource Management Models
	Language-Based Approaches
	Distributed Scheduling
	Summary

	Resource Coordination
	Distributed Resource Estimation and Allocation Model (DREAM)
	Representing Resources
	Representing Computations
	Formal Definition of DREAM

	Resource Coordination Mechanisms
	Challenges
	Installing A Resource Control Mechanism
	Implementation

	Summary

	Case Study: QoS Support
	Related Work
	Approach
	Deadline Analysis
	QoS Policy

	Experimental Results
	Threadring Benchmark with Deadline Constraints
	Live Video Conferencing

	Summary

	Case Study: Power-Efficient Multicores
	Challenges
	Related Work
	Effect of Frequency Scaling on Energy Consumption
	Per-Core Frequency
	Turbo Boost

	Reasoning about Multicore Energy Consumption
	Representing Multicore Resources and Computations
	DREAM-MCP

	Experimental Results
	Summary

	Case Study: Dynamic Load Balancing
	Introduction
	Related Work
	Dynamic Load Balancing
	Benchmarks for Dynamic Load-Balancing

	Unbalanced Cobwebbed Fruit Tree
	Resource-Coordination Framework for Load Balancing
	Resources and Computations
	Resource-Coordination Policy for Dynamic Load-Balancing

	Benchmark Implementation
	Tree Generation
	Traversal

	Experimental Results
	Experimental Design
	Baseline Approaches Implementation
	Experimental Results

	Summary

	Conclusion and Future Work
	Conclusion
	Resource Coordination Approach
	Case Studies

	Future Directions
	Multi-Dimension Tuning
	Smart Space: Spatial-Temporal Coordination
	Phone Grid
	Power-Efficient HPC Clusters

	Concluding Remarks

	References
	Raw Data from Case Study 1
	Raw Data from Case Study 2
	Raw Data from Case Study 3

