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Abstract

This thesis has detailed the extensive analysis of the XAS and RIXS spectra of

LiFePO4 and FePO4, with the primary focus on LiFePO4. One of the primary

motivations for this study was to understand the electronic structure of the two

compounds and, in particular, shed some light on the nature of electron correlation

within the samples. Two classes of band structure calculations have come to light.

One solution uses the Hubbard U parameter, and this solution exhibits a band gap of

about 4 eV. Other solutions that use standard DFT electron correlation functionals

yield band gaps between 0 and 1.0 eV.

The RIXS spectra of LiFePO4 and FePO4 were analyzed using Voigt function

fitting, an uncommon practice for RIXS spectra. Each of the spectra was fit to

a series of Voigt functions in an attempt to localize the peaks within the spectra.

These peaks were determined to be RIXS events, and the energetic centers of these

peaks were compared to a small band gap band structure calculation. The results

of the RIXS analysis strongly indicate that the small gap solution is correct. This

was a surprising result, given that LiFePO4 is an ionic, insulating transition metal

oxide, showing all of the usual traits of a Mott-type insulator.

This contradiction was explained in terms of polaron formation. Polarons can

severely distort the lattice, which changes the local charge density. This changes the

local DOS such that the DOS probed by XAS or RIXS experiments is not necessarily

in the ground state. In particular, polaron formation can reduce the band gap. Thus,

the agreement between the small gap solution and experiment is false, in the sense

that the physical assumptions that formed the basis of the small gap calculations

do not reflect reality. Polaronic distortion was also tentatively put forward as an

explanation for the discrepancy between partial fluorescence yield, total fluorescence

yield, and total electron yield measurements of the XAS spectra of LiFePO4 and

FePO4.
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Chapter 1

Motivation

The overarching goal of material science, simply stated, is to understand the

physics underlying the structural and electronic environments that give rise to macro-

scopic properties such as electrical and thermal conductivity, structural strength, and

magnetic susceptibility, among many others. If researchers can realize this goal, it

may eventually be possible to custom synthesize materials that have been purpose-

fully designed to meet a certain need. Historically, the process of discovering new

materials has relied heavily on trial and error. However, in recent years, researchers

in physics and chemistry have begun to put forward new materials that are designed

to have certain properties. As the fundamental interactions in condensed matter

are understood, this knowledge fuels ever more accurate simulations of crystalline

systems. One such system is LiFePO4.

LiFePO4 is one of several candidate materials that was proposed as an electrode

material for use in Li-ion batteries [1, 2]. In particular, LiFePO4 would serve as the

cathode in a Li-ion cell. When the cell is charged, Li+ ions are removed from the

cathode material and stored in the anode, which is often made of carbon. Ideally, the

cathode has a deficiency in Li+ ions that is equal to the surplus in the anode, which

means that the cathode is partially FePO4. During discharge, the Li+ ions leave

the anode and return to the LiFePO4 crystal, and the electrons, which required to

change the oxidation state of the Fe ions from 3+ to 2+, flow through an externally

connected circuit. It is called delithiation when the Li+ ions are removed from

LiFePO4. When the Li+ ions are reintroduced to FePO4 to form LiFePO4, this is

called intercalation.
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Figure 1.1: Crystal structure of LiFePO4. The O and Li sites are
represented by the red and blue spheres, respectively. The blue octahe-
dra surround the Fe ions. O3-symmetry sites sit at the four equatorial
corners, with one O1 site and one O2 site occupying the two other po-
sitions, respectively. The green tetrahedra surround the P atoms; the
P atoms and the surrounding tetrahedra of oxygen form tightly bound,
covalently bonded polyatomic anions. The unit cell axes are labeled
with the letters a, b, and c. This image was adapted from Ref. 3.

LiFePO4 has received much attention because it has several advantageous prop-

erties. Firstly, it is chemically stable, which is a necessary property if one does not

want the electrode to degrade within the cell. Secondly, the volume that a LiFePO4

electrode occupies changes very little upon delithiation. The crystal structure of

LiFePO4, shown in Figure 1.1, closely resembles the olivine type structure. Natu-

rally occurring FePO4 and FePO4 that is produced by delithiating LiFePO4 have

very different crystal structures, however the latter has a crystal structure identical

to that of LiFePO4, only it has a slightly reduced volume. This property is desirable

because it reduces the amount of mechanical stress that the cell must endure dur-

ing normal operation. Thirdly, LiFePO4 has a high intercalation voltage of 3.5 V

relative to lithium metal, and fourthly, it has a high theoretical discharge capacity

(≈170 mA h g−1). These two properties taken together mean that LiFePO4 has a
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Table 1.1: Pertinent information presented by other authors

Author Correlation? Band gap

Xu et al. [3, 16] No 0 eV

Tang and Holzwarth [17] No 0 eV

Shi et al. [18] No 1.0 eV

Zhou et al. [19] No 0.5 eV

Zhou et al. [19] Yes, U = 4.3 eV 3.8 eV

great amount of energy stored within it. LiFePO4 is therefore a strong candidate

for use as a cathode in Li-ion cells [4–9]. In addition, LiFePO4 is a naturally occur-

ring mineral [10], and is relatively benign to the environment, at least compared to

some of the typical Li-ion cell electrodes. However, this material in its pure form is

highly resistive to electrical current, and as such the compound has limited practi-

cal applicability. Processes that introduce carbon coatings can appreciably improve

the conductivity and discharge capacity of the pure sample while maintaining cost-

effectiveness [11, 12]. An alternate way to significantly increase the conductivity of

LiFePO4 is to introduce either Li- or Fe-site dopants [13–15]; Li-site doping in par-

ticular has been reported by Chung et al. to increase the conductivity of doped

LiFePO4 by a factor of 108 [13].

This observed phenomenon in doped LiFePO4 has prompted a flurry of theoret-

ical treatments of the band structure of pure LiFePO4 to understand the electronic

structure of the system more completely [3,16–19]. Although each paper cites results

that are unique, the most notable controversy concerns the treatment of electron cor-

relation. Five different authors approach the problem using various band structure

theories, although all are based upon density functional theory (DFT). Their results

show band gaps between 0 and 1 eV. In addition to a typical DFT simulation of

LiFePO4 and FePO4, Zhou et al. also conduct a study using the more complex

DFT + U approach [19]. These calculations predict a band gap of 3.8 eV. Table 1.1

summarizes the relevant results from each of the five authors.

The resolution of this dispute requires experimentation that probes the electronic
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structure of LiFePO4 and FePO4. However, there has been little effort expended on

this goal until now. This thesis presents x-ray absorption spectroscopy (XAS) and

resonant inelastic x-ray scattering (RIXS) spectra taken from LiFePO4 and FePO4,

measured using synchrotron radiation. The highly tunable nature of synchrotron

radiation allows for an element-specific, site- and momentum-selective probe of the

local partial density of states (PDOS) of each atom. This sheds new light on the

near-Fermi edge density of states and other properties of the electronic structure of

LiFePO4.

The thesis is structured as follows. Chapter 2 will detail the physics behind syn-

chrotron radiation. In particular, the storage ring, insertion device, and beamline

components will be discussed. Chapter 3 will discuss the experimentation tech-

niques that were used to acquire spectra, notably the three methods commonly used

to measure XAS spectra. The technique behind measuring RIXS spectra will also be

covered. Chapter 4 will discuss the basics of density functional theory, because DFT

calculations were used extensively for the analysis of the spectra from LiFePO4 and

FePO4. Chapter 4 will also discuss the specifics of the orthogonalized linear combi-

nation of atomic orbitals (OLCAO) methodology, as OLCAO was used to calculate

the DOS of the two crystals under study. Chapter 5 shows the experimental results.

Within Chapter 5 one will also find the analysis whereby the experimental spec-

tra were interpreted and understood within the framework of the simulated DOS.

Chapter 6 addresses the issue of which electron correlation functional best describes

LiFePO4 and FePO4. Finally, the summary and conclusions are in Chapter 7.
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Chapter 2

Synchrotron Sources

The word synchrotron is used today to describe a particular type of laboratory

which utilizes relativistically moving bunches of electrons to produce radiation at

a wide variety of wavelengths. This is accomplished using the well-known result

that electrons lose energy by emitting photons when they are decelerated; likewise,

absorbing photons will cause the electrons to accelerate. Magnetic fields do not alter

the speed of an electron, but do cause a change in the direction component of the

velocity, which is sufficient to force the electron to emit a photon.

The discovery of synchrotron radiation was accidental. A synchrotron was built

by GE in 1947 to test for phase stability in particle accelerators, and was not meant

for explicit use as a radiation source. The capacity of a synchrotron for generating

radiation was only discovered when someone looked in an observation window and

realized the circling electron beam was glowing [20]. First generation synchrotrons

were particle accelerators used for other experiments that were later coupled with

apparati that used the radiation emitted by the electrons that caused them to lose

energy. However, this has changed markedly in the intervening years, as synchrotron

technology has been developed explicitly to provide ever brighter sources of tunable

radiation. Modern synchrotrons have diverged much in function from more typical

particle accelerators.

Synchrotrons can be divided into two main components. The first component

is the storage ring and the magnets therein that accelerate the electrons and thus

produce the radiation. There are two general configurations of magnets that are

common at modern synchrotrons: bending magnets and insertion devices. An undu-

lator, a class of insertion device, was used to measure the spectra that will later be
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presented in Chapters 6 and 7. Therefore, this thesis will be concerned exclusively

with insertion devices. The second component is called the beamline. After the radi-

ation is produced by the magnetic apparatus in the storage ring, the beamline directs

the radiation to the sample under study and records the effects of the radiation on

the sample.

2.1 Insertion Devices

Insertion devices are used to produce semi-coherent radiation by accelerating the

electron beam. Insertion devices have a periodic lattice of alternating, antiparallel

magnetic fields. This allows the electrons to be directed back and forth, accelerating

them through many small loops. This is different from a bending magnet, which

applies the electrons to one field only. Bending magnets are typically used in modern

synchrotrons only when it is necessary to direct the electron beam around a corner.

Bending magnets are analogous to the magnetic containment structures used in first

generation synchrotrons to hold the electron beam on path. Figure 2.1 shows the

differences between bending magnets and insertion devices.

(a) Insertion device (b) Bending magnet

Figure 2.1: The structure of bending magnets and insertion devices.
The material was adapted from Ref. 21.

Insertion devices come in two different varieties: undulators and wigglers. In

form they are quite similar in that both have periodic magnetic structures that

oscillate the electron beam, however this is where the similarities end. Undulators

are characterized by low-strength magnetic fields with a large number of periods,
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whereas wigglers have fewer periods and stronger fields. Undulators produce highly

coherent light which is tightly confined, both spatially and energetically. Undulator

radiation is characterized by bright, sharp peaks at discrete energy levels. Wiggler

radiation, however, forms a continuum at high energies. Wigglers produce very

intense radiation at energies that undulators typically cannot reach.

2.1.1 Undulators

Undulators produces radiation which has very high spectral brightness in comparison

to light that is produced with either bending magnets or wigglers. Spectral brightness

is defined as the photon flux per unit area per unit solid angle, within a given spectral

bandwidth ∆λ/λ or equivalently ∆ω/ω, where λ and ω represent wavelength and

frequency respectively. Undulators are so bright because the light produced during

each oscillation adds constructively. The wavelength of radiation emitted from an

undulator is controlled by the undulator equation, shown here in Equation 2.1:

λn =
λu

2γ2n

(
1 +

K2

2
+ γ2θ2

)
(2.1)

where λu is the ‘wavelength’ of the periodic magnetic structure of the undulator, and

θ is the angle, measured from the axis of propagation, at which the observer detects

the emitted radiation. The n in the equation, both the subscript and the value in

the denominator, refer to the order of the light, which will be discussed later in this

section. The quantity K is the dimensionless magnetic strength parameter defined

by:

K =
eB0λu

2πmc
(2.2)

Finally, the γ in Equation 2.1 is the Lorentz factor, and it is defined by:

γ =

√
1− v2

c2
(2.3)

The magnetic field strength parameter K gives a rough line of demarcation be-

tween undulators and wigglers. Undulators typically operate in the region around

K = 1, whereas wigglers often have K � 1. This is not a hard rule, as what truly
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differentiates undulators and wigglers is their radiation profiles. K is only one factor

that determines how the insertion device radiates, albeit an important factor.

(a) Dipole radiation in the rest frame of the electron. The direc-
tion of acceleration is normal to the central axis of the lobes.

(b) Dipole radiation in the laboratory frame. The lobes have
been elongated in the direction of propagation along the positive
z-axis.

Figure 2.2: Spatial profiles of dipole radiation in the (a) rest frame
and (b) laboratory frame.

The third term in Equation 2.1 deals with the wavelength that an off-axis observer

sees. This term varies very strongly with angle; even for a small angular divergence,

the wavelength increases considerably, owing to the fact that γ for highly relativistic

electrons is several thousand. This third term shows the “searchlight” effect of syn-

chrotron radiation. If one approximates the electron as an electric dipole accelerating
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in a plane perpendicular to the axis of propagation, then the classical double lobes

of dipole radiation as seen in the rest frame of the electron are elongated into the

searchlight effect as seen in the laboratory frame. This is shown by the transforma-

tion of the lobe labeled ‘1st harmonic’ from the rest frame to the laboratory frame

in Figure 2.2. The lobe labeled ‘2nd harmonic’ in Figure 2.2 arises from an on-axis

acceleration component, the origin of which will be discussed in greater detail later

in the section. The searchlight effect is due to the relativistic speed of the electrons,

and so all magnetic configurations cause the electrons to radiate in a similar cone-

shaped structure. The details of the magnetic structure simply effect the width of

the cone, and in the case of undulators, the cone is very tightly confined.

The second term in Equation 2.1 involves the dimensionless magnetic field strength

parameter K. This term accounts for the fact that the magnetic fields reduce the

electrons’ effective propagation velocity because the electrons are forced to take a

longer path as they oscillate through the insertion device. This is a necessary correc-

tion because the γ in the denominator, as well as in the third term of the numerator

in Equation 2.1, assume that propagation velocity is constant everywhere in the

storage ring, including through the undulator itself.

This second term is the reason for one the most vaunted characteristics of a

synchrotron: tunability. Synchrotrons differ from other radiation sources because

they produce high intensity radiation over a wide energy range. Given the form of

the undulator equation, there are two variable quantities that one could use to adjust

the energy of the photons produced by the undulator: K and γ. Adjusting γ would

involve changing the energy of the electrons in the entire storage ring, which would

affect all beamlines, and of course would be difficult to accomplish. Changing K

involves only a local adjustment, and does not (in principle) affect other beamlines.

K is usually adjusted by changing the gap between the magnetic plates on either

side of the beam, called the undulator gap. Although Equation 2.2 is not explicitly a

function of the undulator gap, the quantity B0 is nevertheless dependant upon this

quantity. A larger gap will decrease the strength of the magnetic field.
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(a) The sinusoidal path of an electron as it propa-

gates through the undulator. All acceleration vec-

tors are perpendicular to the axis of propagation

(z-axis), thus ensuring that the radiated photons

are parallel to the z-axis.

(b) The simplified path of an electron as it passes

through the undulator. The acceleration vectors

are perpendicular to the path of the electron, giv-

ing an acceleration component parallel to the axis

of propagation.

Figure 2.3: Propagation paths of an electron as it passes through

an undulator. In each figure, the different colors of the colored boxes

represent antiparallel magnetic fields. The left figure shows the ideal-

ized version, whereas the right figure shows a simplified view of what

would actually happen to an electron passing through zones of uniform,

antiparallel magnetic fields.

The undulator equation describes the wavelength of the radiation produced by

an undulator with great accuracy, but it is fundamentally flawed. This flaw is in

the assumption that the velocity of the electron in the plane perpendicular to the

direction of propagation is a sinusoidal waveform. This assumption visualizes the

electron as a simple harmonic oscillator which is oscillating back and forth across the

axis of propagation, thus tracing out a sinusoidal pattern as the electron propagates

through space. Although mathematically convenient, this assumption is incorrect.

An electron traveling at a constant speed does not follow a sinusoidal path in a

uniform magnetic field, it follows a circular path. Figure 2.3 shows the how the

paths differ between the two possibilities.
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The important difference is the behavior of the acceleration vectors. As seen in

Figure 2.3(b), there is a component of the centripetal acceleration that lies parallel

to the direction of propagation. This means that the z-component of the velocity

of the electrons is not constant, and produces radiation perpendicular to the z-axis.

Figure 2.2 shows the symmetric lobes of radiation labeled as ‘2nd harmonic’ in the

rest frame of the electrons. These lobes transform into the laboratory frame to

produce off-axis radiation fields.

In general, all of the even-order harmonics are off-axis, with all odd orders being

on-axis. The frequencies of these harmonics are integer multiples of the fundamental

frequency. This is the reason for the n in the undulator equation. Higher orders have

smaller wavelengths, and thus higher energies. The higher orders also have narrower

bandwidths. The central radiation cone, wherein half of the power is concentrated,

is defined in Equation 2.4 as follows:

θcen =

√
1 + K2

2

γ
√
nN

(2.4)

where n is the harmonic and N is the number of magnetic periods within the undu-

lator. This is what is known as the undulator condition. Within this central cone,

the spectral width of the radiation is calculated as follows:

(
∆λ

λ

)
n

=
1

nN
(2.5)

Equations 2.4 and 2.5 reflect the fact that the higher orders effectively “see”

more periods within the undulator. The greater number of periods allow for greater

coherence of the light, because the photons produced at each period will interfere

with the photons produced at every other period. This will do more to reinforce the

on-axis radiation and eliminate the off-axis radiation, tightening the radiation cone

spatially and spectrally.

Higher harmonics seem to be a useful part of synchrotron radiation, as they have

narrower spectral width. However, higher harmonics suffer from reduced intensity.

In principle, all even-ordered harmonics should have zero intensity at the sample,

12



given that they are off-axis and thus cannot pass the aperture stop at the entrance

to the beamline. The analytical equation for the on-axis intensity of an odd-order

harmonic is given in the following formula [22]:

I = αN2γ2 ∆ω

ω

Ib
e
Fn(K) (2.6)

where Ib is the beam current, e is the charge on an electron, and α is a structure

factor. The Fn(K) term is necessary because it describes how the intensity of the

fundamental changes as the magnetic field becomes stronger. It is given by the

following equation.

Fn(K) =
K2n2(

1 + K2

2

)2

{
Jn−1

2

[
nK2

4
(
1 + K2

2

)]
− Jn+1

2

[
nK2

4
(
1 + K2

2

)]}2

(2.7)

Figure 2.4 shows the behavior of Fn(K) as a function of order n and magnetic

strength K.

Figure 2.4: Behavior of Fn(K) as a function of n and K. This graph
was adapted from Ref. 22

For K values typical of undulators, the radiated photon intensity of the funda-

mental (n = 1) harmonic is clearly superior to all other orders. The higher odd

harmonics do have superior spectral width, however using them to excite a sample is

simply not feasible because the flux is insufficient. At higher values of K, Figure 2.4
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shows that the higher orders approach and then surpass the fundamental harmonic

in intensity. This trend will become important later in the discussion of wigglers.

Up until this point, it has been implicitly assumed that the electron beam has

been ideal, with no spatial or angular divergences to affect the results. In reality,

random motions will cause the electrons to move at an angle α with respect to the

z-axis. This results in a longer path length for these electrons that do not remain

near to the z-axis, and the photons radiated by these off-axis electrons are Doppler

shifted to lower energies. This shift is given by:

∆E

E
= γ∗2α2 (2.8)

where α is the beam divergence angle. In order for the radiation profile to maintain

its analytical undulator sharpness, then α2 � θ2
cen, where θcen is defined as the angle

containing the central cone region, as before. In a real synchrotron facility, the beam

divergence can be on the order of the central cone, and so this must be taken into

account. If one assumes that the electron divergence profile to be Gaussian in shape,

then one can add in quadrature the width of the ideal cone and the beam divergence.

This gives the total angular radiation cone width as follows:

θTx =
√
θ2

cen + σ′2x (2.9)

θTy =
√
θ2

cen + σ′2y (2.10)

where σ′2y and σ′2x are the divergences in the yz-plane and the xz-plane, respectively.

Real synchrotrons are characterized by two parameters, the phase space volume

of the electron beam, or emittance ε, and β, a parameter which characterizes the

magnetic lattice which contains the beam. The emittance in particular is very im-

portant, because it cannot be adjusted during normal operation. Many factors that

effect the emittance are tied to critical components, such as those that produce and

accelerate the electrons for the storage ring, which cannot be changed without sig-

nificantly retooling the facility. The parameters ε and β are important because they

determine the spatial and angular distributions of the electron beam. These dis-
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tributions are represented by σx,y, which describes the spatial deviation, and σ′x,y,

which describes the angular deviation. The formulae for σx,y and σ′x,y as functions

of ε and β are shown below:

σx,y =
√
εx,yβx,y, (2.11)

σ′x,y =

√
εx,y

βx,y

(2.12)

As can be seen from these formulae, it is not possible to have a perfectly diver-

genceless electron beam. The spatial and angular deviations are interrelated, so the

characteristics of the electron beam must be optimized for the type of experiment

being conducted. This is because the phase space volume of the emitted photons is

dependant upon the emittance of the electron beam.

2.1.2 Wigglers

As stated earlier, the main differences between wigglers and undulators is the dimen-

sionless magnetic strength parameter K. This value is typically in the vicinity of 1

for undulators, while for wigglers K � 1. Wigglers also have fewer periods in their

magnetic structures than undulators, and the electrons travel farther afield. It would

seem at first glance that wigglers and undulators are simply the same device with

different parameters, and that the equations from the previous section should apply

only with high values of K to represent the stronger magnetic fields characteristic of

wigglers. However, many of the assumptions used in deriving those equations do not

hold in the strong-field limit. Consequently, wiggler and undulator radiation pro-

files look nothing alike. Figure 2.5 below displays a qualitative look at the different

spatial and angular profiles from the two insertion devices.

The analytical formulas derived for undulators do not hold for wigglers, because

the radiation that is produced is no longer coherent. The photons radiated at each

period do not interfere with each other, either constructively or destructively. The

intensities, not the radiation fields, produced by the accelerating electrons add to-

gether. Mathematically, this means that one calculates a sum of squares, rather than
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(a) Undulator (b) Wiggler

Figure 2.5: Typical spatial profiles of the radiation fields emitted from
undulators and wigglers. This figure was adapted from the material
found in Ref. 21.

the square of a sum. It is not surprising then that the photon flux of a wiggler, as a

function of energy, looks strikingly similar to that of a bending magnet of similar K.

The spectrum of the wiggler, however, is shifted to higher energies. The spectrum

produced by a wiggler also benefits from a 2N increase in intensity, owing to 2N

more bends that the wiggler has compared to the bending magnet.

The undulator equations may not hold explicitly, but they nevertheless give an

idea of what to expect from a wiggler. Based on these formulae, one can make the

following statements about the radiation pattern emitted from a wiggler:

1. The photon beam has a broader sweep zone because the electrons travel farther

from the axis of propagation in the stronger magnetic field. The sweep zone is

the area that the photon beam covers as it moves back and forth, a result of

the searchlight effect of synchrotron radiation. The broader sweep of a wiggler

allows more off-axis photons, including even-order harmonics, to be seen by

the observer (beamline).

2. The angular and spatial confinement of the electron beam is lessened with

wigglers. Equation 2.4 shows that high values of K and a small number of

magnetic periods N both work to increase the physical size of the radiation

field. This lessened confinement of the beam ultimately results in poorer energy

resolution of the photon beam. Random, off-axis motions of the electrons serve

to spread the energy of a given harmonic.
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3. In accordance with Equation 2.4, large values of K significantly reduce the

amount of power radiated though the fundamental harmonic. This power is

then divided among the higher harmonics.

The third point in particular is of special importance, because this property allows

wigglers to radiate significant photon flux at energies far above those that can be

reached by undulators. This is because the higher harmonics radiate at frequencies

that are integer multiples of the fundamental frequency, which corresponds to an

integer multiple of the energy of the fundamental harmonic.

An important value to consider is that of the critical harmonic, nc. The critical

harmonic divides the intensity in two; all the harmonics below this value radiate half

of the total power emitted by the wiggler, and the harmonics above it radiate the

other half. The critical harmonic is calculated as follows:

nc =
3K

4

(
1 +

K2

2

)
(2.13)

For undulators, the value of nc is very small. An undulator with K = 1, for

example, has an nc of 9/8. This confirms the anticipated result that the fundamental

harmonic carries most of the intensity. However, with the 19 period, 2.13 Tesla

wiggler at the ALS, nc ≈ 12000. Half of the intensity of this wiggler is radiated

by harmonics over 12000, which of course means that half of the radiation intensity

is emitted by photons with over 12000 times more energy than the fundamental

harmonic.

Wigglers and undulators are very different from one another, but one is not

superior to the other. One insertion device will simply be superior to another for

a given application. Undulators certainly are preferable for energy resolution and

flux, which is important for the soft x-ray regime that undulators can easily reach.

However, if one wants to generate very hard x-rays, then one must use a wiggler.

An undulator simply cannot generate enough flux at the necessary, very high photon

energies.

The information in this section on insertion devices is based primarily on the

material presented in Attwood’s book [23].
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2.2 The Beamline

The term beamline is used to describe the collective instrumentation that makes

use of the radiation produced by the insertion device or bending magnet within the

storage ring. The beamline has two separate sections. The first section is called the

monochromator. The purpose of the monochromator is to filter the fan of radiation

produced in the storage ring so that only the desired energy band passes through to

the sample. The second component is called the endstation. The endstation consists

of all of the instrumentation used to sense how the sample reacts to the light passed

by the monochromator. There are many other optical elements in a beamline that

can affect the energy bandwidth and size of the photon beam, such as the mirrors

necessary for proper alignment. However, these components will not be discussed in

this thesis.

There are many different designs that are possible for a beamline, depending on

what kind of experiment that will be conducted. There are many different parame-

ters that characterize the performance of a beamline, not the least of which being flux

throughput (efficiency), energy resolution, spatial and angular resolution, and the

achievable energy range. Not surprisingly, optimizing all of these parameters inde-

pendently is not possible, and design compromises are inevitable. Given the myriad

possibilities for successful beamline design, this thesis will focus on discussing the

particulars of Beamline 8.0.1 at the Advanced Light Source in Berkeley, CA. This

beamline was used nearly exclusively to measure the data presented in Chapters 6

and 7. A diagram of this beamline is shown in Figure 2.6. Beamline 8.0.1 actually

has two endstations, namely the SXF (soft x-ray fluorescence) and EMA (ellipsoidal

mirror electron energy analyzer) endstations. The spectra presented in this thesis

were measured with the SXF endstation.
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Figure 2.6: Conceptual schematic of Beamline 8.0.1 at the Advanced

Light Source. This facility is part of the Lawrence Berkeley National

Laboratory operated by the University of California, Berkeley in Berke-

ley, CA. Beamline 8.0.1 has a 5 cm period undulator. Depending on

the harmonic and the energy to which the undulator is tuned, the un-

dulator gap is typically between 10 and 25 µm. This schematic was

adapted from the material presented in Ref. 24.

2.2.1 The Monochromator

The monochromator at Beamline 8.0.1 consists of three optical components: the

entrance slit, the grating, and the exit slit. Together, these components act as a

narrow band pass filter that reduces the spot size and energy bandwidth of the

photon beam. Note that this is equivalent to reducing the phase space volume of

the photon beam. As stated earlier, the phase space volume of the photon beam

is dependant upon the emittance of the electron beam. The latter is a constant

value because the storage ring is designed to be a near-lossless system. The phase

space volume of the photon beam can therefore be reduced by introducing losses in

the beamline, i.e. throwing away flux. Thus, the monochromator increases energy

resolution and reduces spot size at the cost of flux. Modern synchrotrons, however,

produce many more photons than is strictly necessary for common experimentation
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techniques, such as the ones that will be discussed later in the Experimentation

Techniques section. The loss of flux is therefore not detrimental. In addition to

the tunability of synchrotron radiation, the high photon flux rate is a second unique

property of synchrotrons that sets them apart from, and often above, other photon-

based experimentation facilities for studying condensed matter.

One of the main functions of the monochromator is to demagnify the source.

Demagnification of the beam, which allows for a small spot size on the sample, is

an important attribute for any beamline. The degree by which the source need

be demagnified depends upon the nature of the experiment. Spectromicroscopy

experiments, for example, measure photon absorption and/or emission as a function

of the beam’s spatial coordinates on the sample. This type of experiment obviously

requires excellent spatial resolution of the beam. Other experiments also benefit

from a small spot size, as it may become necessary to measure spectra from a tiny

single crystal that can not be spread out to an arbitrary size like powdered samples.

The entrance slit is necessary for two major functions. Firstly, it demagnifies

the source. Secondly, the entrance slit improves energy resolution by acting as an

aperture stop. Beamline 8.0.1 uses an undulator, and as shown in the Undulators

section above, the wavelength of the emitted light strongly depends upon the off-axis

observation angle. The entrance slit stops much of the off-axis radiation from getting

to the sample; a smaller slit means a tighter energy bandwidth. On the other hand,

closing the slits will also limit the flux.

The on-axis radiation that passes through the slit will exhibit a typical single-slit

Fraunhofer diffraction pattern. The off-axis radiation that passes through the slit

will also experience diffraction, but the effect of the more complicated geometry on

the diffraction pattern is beyond the scope of this thesis. A Fraunhofer diffraction

pattern from a single slit is displayed below in Figure 2.7.

A Fraunhofer diffraction pattern for the on-axis radiation is described by (sin β/β)2,

where β = πDx/λR. The definitions for x and R are displayed in Figure 2.7, and

D is the width of the slit. As R is increased, β is decreased, which means that at

a fixed point x below the axis, the radiated power increases with distance from the

20



Figure 2.7: The Fraunhofer diffraction pattern expected for the on-
axis radiation. On the right of the figure is the undulator radiation
cone impinging upon the slit. Most of the radiation will not be passed
by the slit. Any off-axis radiation that makes it through the slit will
also be diffracted, but the resulting pattern is not shown in this figure.

slit. The diffraction pattern will therefore spread out the farther one measures the

diffracted spectrum from the slit.

The next item is the grating. The grating can come in a variety of shapes, in-

cluding planar, toroidal, and special cases of toroidal geometry, such as spherical

and cylindrical. They each have their benefits and detriments, however the spher-

ical shape is a popular choice because it is accurately manufactured and provides

good resolution. Spherical gratings cannot perform sagittal focusing (unlike toroidal

gratings), and they cannot demagnify the source (unlike planar gratings). Other

optical elements, such as mirrors and slits, are necessary to fulfill these requirements

if one wishes to use a spherical grating. The monochromator at Beamline 8.0.1 uses

a grating with spherical geometry.

The grating is the part of the monochromator that is most directly responsible for

narrowing the bandwidth of the radiation. The optical path function for a spherical

grating, which is partially given in Equation 2.14, describes how light is focused

when it interacts with the grating. The function is based on Fermat’s principle,

which states that the path taken by a ray of light is minimized. In general, the
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optical path function is an expansion with many terms that describe how effectively

the grating focuses the light. Each of the terms describes a different element of the

focused image. As an example, sagittal focus (focus in the plane parallel to the

surface of the grating) and meridional focus (focus in the plane on which the optical

components lay) are described by two separate terms in the optical path function,

namely the F020 and F200 terms. All of the terms in the optical path function must

equal zero for the image to be perfectly focused. If any term is not zero, the generated

image has an aberration that is unique for that particular term. Equation 2.14 has

six different terms; Equation 2.14a is the grating equation, Equation 2.14b is the

sagittal focus, Equation 2.14c is the meridional focus, Equation 2.14d is the primary

coma, Equation 2.14e is the spherical abberation, and lastly Equation 2.14f is the

astigmatic coma. These terms are given below:

F100 = Nkλ− (sin i+ sin i′) (2.14a)

F020 =
1

r
+

1

r′
− 1

R
(cos i+ cos i′) (2.14b)

F200 =

(
cos2 i

r
− cos i

R

)
+

(
cos2 i′

r′
− cos i′

R

)
(2.14c)

F300 =

(
cos2 i

r
− cos i

R

)
sin i

r
+

(
cos2 i′

r′
− cos i′

R

)
sin i′

r′
(2.14d)

F400 =
4

r2

(
cos2 i

r
− cos i

R

)
sin2 i− 1

r

(
cos2 i

r
− cos i

R

)2

(2.14e)

+
4

r′2

(
cos2 i′

r′
− cos i′

R

)
sin2 i′ − 1

r′

(
cos2 i′

r′
− cos i′

R

)2

− 1

R3
(cos i+ cos i′) +

1

R2

(
1

r
+

1

r′

)
F120 =

(
1

r
− cos i

R

)
sin i

r
+

(
1

r′
− cos i′

R

)
sin i′

r′
(2.14f)

where i and i′ are the angles of incidence and diffraction, respectively. The value r

is the distance from the source to the grating, and r′ is the distance from the grating

to the observer. In the case of the monochromator design utilized at Beamline 8.0.1,

the ‘source’ is the entrance slit, and the ‘observer’ is the exit slit. The quantity R

is the radius of curvature for a spherical grating. The list is arranged such that the
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Figure 2.8: Diffraction from a grating, adapted from Ref. 25.

order of the terms increases as one reads down the list. Higher order terms have less

impact, thus the most important term is F100 (Equation 2.14a). This is the so-called

grating equation. In the grating equation, N is the groove density, k is the order,

and λ is the wavelength of light. This term must be set to zero, as must all terms in

the optical path function expansion for the grating to focus the light properly.

The grating equation resembles the Bragg equation for diffraction from planes

within a crystal because the Bragg equation and the grating equation work on the

same principle. Light reflected from a plane within a crystal, or alternatively light

reflected from a groove on the surface of a grating, interferes with light reflected from

other similar planes/grooves. This leads to maximal intensity zones where the light

constructively interferes, separated by intensity minima. The angular separation

between these maxima is determined by the number of scattering sites, which in

the case of gratings, is represented by the number of grooves per unit distance N

along the grating. Figure 2.8 gives an example of diffraction from a grating for one

wavelength.

Figure 2.8 shows diffraction from a grating for one wavelength only, and each

of the rays representing diffracted light represents a different value of the order k.

Note that this is the diffraction order, and should not be confused with the orders
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of harmonics discussed earlier with respect to insertion devices. The diffraction

angle i′ depends upon wavelength as well as order, so that for a particular order

the radiation incident upon the grating is split into a wide angular fan according to

wavelength. If one aligns the optics according to a particular diffraction angle, the

unwanted wavelengths of light will focus off-axis. The exit slit, which functions in

much the same fashion as the entrance slit, absorbs the off-axis radiation and allows

only the desired bandwidth to pass. As with the entrance slit, a smaller slit width

will eliminate a larger section of the radiation fan that is diffracted from the grating.

In doing so, however, the flux impinging on the sample is limited. Note that the

fan effect only applies to the first order and higher. In the case of the zeroth order,

the first term in the grating equation is 0 for all wavelengths. This is simply light

reflected off the plane of the grating with no angular dependance on wavelength.

The differing angles of diffraction for wavelengths scattered from the grating in-

troduces an interesting problem into beamline design. The dependance of diffraction

angle on wavelength means that the focal length is also dependant on wavelength.

With this problem in mind, the exit slit for the monochromator at Beamline 8.0.1

was built to move along the optical path, thus changing its separation distance from

the grating to coincide with new focal lengths. Without this function, the exit slit

may be too close or too far from the grating, depending on the desired photon energy.

In addition to the movable exit slit, the grating can be rotated. These functions in-

crease the energy range that the monochromator can reach and still have it bring a

respectable flux rate to bear upon the sample. Although this design increases the

energy window that the beamline can access, it nevertheless can in principle skew

energy calibration if the exit slit of the monochromator is not placed in precisely

the correct spot to allow through photons with the desired energy. This problem is

correctable, provided that the energy calibration error does not change noticeably

over an excitation threshold. If the energy calibration error is constant, then the

spectrum can simply be shifted to the appropriate energy. This shift is calculated

by comparing the spectrum of a commonly measured standard sample to its ac-

cepted spectrum presented in literature. Of course, the spectrum of this standard
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sample must be measured with the same set of parameters as the sample(s) under

investigation, and its spectrum must be within the same energy range.

Figure 2.8 shows a wide angular separation between the orders of radiation that

are diffracted from the grating. This is done to make the figure readable and in-

structive, but it is misleading because such large angles with respect to the surface

of the grating are not possible in soft x-ray optics. All soft x-ray optical systems

require the optics to aligned using grazing angles of incidence. This constraint is

necessary simply because soft x-rays interact very strongly with matter, so grazing

incidence is required to maximize the reflected portion of the radiation. This high

level of interaction with matter is also the reason why soft x-ray beamlines require

the optical path to be in ultra high vacuum (UHV).

2.2.2 The Endstation

The endstation is the term used to describe the systems necessary to hold the sam-

ple and keep it in UHV, as well as all of the instrumentation that is necessary to

document how the sample reacts to the radiation that has been focused upon it.

This part of a beamline is by far the most variable component, as there are several

different ways that matter can react to radiation, and for each of these radiation-

matter interactions there can be many experiments that can record the event, each

in a different way. Thus, the configuration of, and the instrumentation used with,

an endstation can vary substantially among beamlines, even beamlines that operate

within the same energy range. As with the discussion of monochromators above,

the topic of endstations will be concerned largely with Beamline 8.0.1; specifically,

the Soft X-ray Fluorescence (SXF) endstation. However, the SXF endstation is not

entirely unique, and variations of the instruments found therein can be found on

other endstations.

There are many components to the endstation, such as the mechanisms that allow

one to transfer samples into the measurement chamber. The present discussion will

be limited to those components necessary to measure XAS and RIXS spectra. These

components are a highly transparent gold mesh, the sample plate, the spectrometer,
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and a Channeltron detector. The first three will be discussed later in this section

on endstation design. The function and application of the Channeltron, however, is

discussed in detail in the Total Fluorescence Yield section of Chapter 3. Suffice is to

say here that the Channeltron is used to measure a large portion of the total number

of photons that are emitted from a sample when it is excited at a particular energy.

The second component to be discussed, the gold mesh, comes before the sample,

in the sense that the beam passes the mesh before reaching the sample. It does not

measure how the sample reacts to the incoming radiation per se, but it is neverthe-

less necessary for a proper analysis of any measured XAS spectrum. The purpose

of the gold mesh is to measure the intensity of the incoming beam before it hits

the sample. The gold mesh is connected to ground through a picoammeter. The

picoammeter measures the amount of current that is flowing into the mesh from

ground as electrons are removed because of interaction with the radiation beam.

The physics that dictate how the electrons are removed from the mesh is discussed

in the Total Electron Yield section in Chapter 3. The current that is flowing into

the mesh increases with the intensity of the beam, simply because more electrons

are removed. Thus, the mesh current shows the intensity of the radiation that the

sample is receiving at that energy and bandwidth, relative to other energies. Ideally,

the mesh itself is a material that has a constant probability to absorb the photons

across the energy range of interest, so that the experimentalist knows the intensity

of radiation explicitly without needing to be concerned with the details of how the

mesh is interacting with the radiation.

Gold is a popular choice for mesh materials because it does not react strongly

with any other element, including oxygen. Thus, a pure gold mesh stays relatively

pure, making it highly effective because there are only the various gold resonant

absorption edges to cause concern. Over time, elements such as carbon will build up

on the gold mesh despite the relative chemical inertness of gold. This problem can be

overcome by evaporating more gold onto the mesh, covering the contaminants. This

can be done in situ, which minimizes contamination because the beamline does not

have to be vented to replace the mesh. Also, gold is a good conductor, facilitating
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the replacement of electrons that have been removed.

The mesh current is important information when performing a measurement

that requires scanning across an energy range. At each photon energy, the flux

that is reaching the sample is measured, and a spectrum is recorded of the mesh

current as a function of photon energy. This is necessary to record because the

beamline itself interacts with the beam, absorbing more photons at certain energies if

they happen to correspond to the energies of resonant absorption edges of materials

found within the beamline. These materials may be put there deliberately, such

as the SiO2 that is commonly used to make mirrors. However, the beamline may

also have some contamination. This contamination may be from gases in the non-

ideal vacuum in the beamline, but contaminant solids may also have reacted with

the reflective/diffactive surfaces within the beamline. Regardless of the source, the

effects of the contaminants must be removed because they superimpose structure on

the spectrum that is measured from the sample.

If there is a material in the beamline that absorbs photons preferentially at a

certain energy, then a drop in the mesh current will be observed at that energy.

This structure is removed simply by dividing the spectrum of the sample by the

mesh current, called normalization. The normalized spectrum will therefore display

only the spectral structure of the sample over the energy range in question, with

no contribution from the beamline. Normalizing the absorption spectrum to the

mesh current also removes any fluctuations in the intensity due to the storage ring.

To summarize, normalizing the absorption spectrum to the mesh current makes the

spectrum independent of the spectral curves of all materials preceding the sample.

The next component is the sample holder. Other than performing the necessary

and obvious job of holding the sample in the path of the beam, the sample holder is

also grounded through a picoammeter. This allows one to measure the rate at which

electrons are being replaced in the sample. This is much the same as the system set

up to measure the mesh current. The details of this experimentation technique are

discussed in the Total Electron Yield section of Chapter 3.

The last component to be discussed on the endstation of Beamline 8.0.1 is the
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spectrometer. When radiation interacts with matter, that radiation may transfer

energy to the matter. The substance may then de-excite by releasing a photon to

carry away the excess stored energy. This is called a photon-in photon-out process,

and the purpose of the spectrometer is to detect and analyze the outgoing photons.

The Channeltron does this as well, however the Channeltron measures the photon

count rate as a function of excitation energy, whereas the spectrometer measures

the emitted photons as a function of emission energy. The spectrometer consists of

three components: an entrance slit, a grating, and a photon detector. As before

in the monochromator design, narrowing the slit will increase energy resolution but

will decrease the flux illuminating the grating and ultimately the photon detector.

The photons that are emitted from the sample and pass through the entrance slit

shine on the grating, which splits the different wavelengths. It functions in this

way much like the monochromator, however the spectrometer has a much different

purpose. The various wavelengths of light emitted by the sample, separated by

the grating, are then focussed onto an area sensitive photon counter, such as a

charge coupled device (CCD) or a multi-channel plate (MCP). The spectrometer on

Beamline 8.0.1 uses an MCP. The photon detector must be area sensitive because the

wavelengths of light will focus onto different parts of the sensor. The range of energies

which the sensor may detect, called the energy window, is therefore determined

largely by the size of the detector and the angular separation between different

wavelengths produced by the grating. As a rule, however, photons with longer

wavelengths (smaller energy) have greater angular separation than photons with

shorter wavelengths (higher energy). Thus, the window for low energy photons is

smaller, but in exchange the resolution is better for low energy photons because it

is easier to spatially differentiate between wavelengths.

The spectrometer on the SXF endstation of Beamline 8.0.1 is designed according

to Rowland circle geometry. Rowland circle geometry is the result of a theoretical

analysis performed by H. A. Rowland before the optical path function had been

derived from Fermat’s principle. His goal was to minimize the aberrations incurred

when using a spherical grating [26]. The grouping of the terms in Equation 2.14
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allows one to easily see that there are parts common to Equations 2.14c, 2.14d, and

2.14e. The terms common to all three equations are as follows:(
cos2 i

r
− cos i

R

)
and

(
cos2 i′

r′
− cos i′

R

)
(2.15)

If one sets these two terms to zero and solves for r and r′, then the solution is:

r = R cos i and r′ = R cos i′ (2.16)

These are called the Rowland conditions. The conditions require that the source

and target (the entrance slit and MCP, respectively) lie upon a circle of radius R,

called the Rowland circle. In addition, the spherical grating must have a radius of

curvature of 2R. If these conditions are met, then the first five terms of the optical

path function reduce to the following equations:

F100 = Nkλ− (sin i+ sin i′) (2.17a)

F020 =
1

r
+

1

r′
− 1

R
(cos i+ cos i′) (2.17b)

F200 = 0 (2.17c)

F300 = 0 (2.17d)

F400 = − 1

R3
(cos i+ cos i′) +

1

R2

(
1

r
+

1

r′

)
(2.17e)

Thus, simply by keeping the source, grating, and sensor on the Rowland circle,

the F200 and F300 terms are made identically 0, and the fifth term, F400, is signifi-

cantly reduced. Provided that one can design a spectrometer with Rowland circle

geometry that can also accommodate grazing angles of incidence, then the product is

a spectrometer that is affected little by the most influential aberrations. Care must

still be taken to properly focus the image in the sagittal plane, which is the focal

element controlled by Equation 2.17b. Figure 2.9 below gives a visual representation

of a spectrometer that is built using Rowland circle geometry.

The high brilliance of synchrotron sources is of paramount importance when

using a spectrometer to record photon-in photon-out processes. Before the photon

beam even reaches the sample, it must pass over two or more mirrors, as well as
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Figure 2.9: A spectrometer design that adheres to Rowland circle
geometry. The entrance slit and photon sensor must remain on the
circle, although they are free to move anywhere along it.

pass through two slits and at least one grating. Each of these components, the slits

especially, throw away photons. When it hits the sample, the flux of the photon beam

is a small fraction of what the insertion device produced. The sample, now excited,

must have its excited atoms decay and produce photons. As will be discussed later,

however, the probability that the sample will shed energy by radiative decay is quite

low in the soft x-ray regime. To make matters worse, the photons produced by the

sample radiate in all directions equally, so that only a very small solid angle of the

emitted photons strike the entrance slit of the spectrometer. Once the photons are

past the entrance slit, they must pass over a grating which further cuts the intensity

as it absorbs photons. Taken all together, even an expertly designed beamline is

highly inefficient. Thus, nothing less than the very brightest sources can deliver a

sufficiently high signal-to-noise ratio for photon-in photon-out experiments.

Much of the information concerning the optical components of a beamline, namely

the slits and gratings that are found within spectrometers and monochromators, was

presented in the work of W. B. Peatman [27].
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Chapter 3

Experimentation Techniques

3.1 X-ray Absorption Spectroscopy

X-ray absorption is the process during which an incoming photon is absorbed by an

atomic site within the crystal; x-ray absorption spectroscopy (XAS) measures this

process. The energy is absorbed primarily by the electron cloud, where it is used to

promote electrons from their ground state into unoccupied states. If the absorbed

photon energy and the binding energy of the electron are nearly equal, then the

electron will be promoted to previously unoccupied bound states within the crystal,

such as the conduction band. These bound states may be localized to the atomic

site from which the electron was promoted, or they may be delocalized, allowing

the electron to move somewhat freely within the crystal. However, if the excitation

energy is much greater than the binding energy of the electron, then the electron

may be promoted to unbound states. The electron becomes a free particle.

It is possible to promote any electron, provided that the absorbed photon had

energy greater than the energy required to complete the transition. There are many

possible transitions, but not all will have equal probabilities of occurring. Selec-

tion rules determine which type of radiative absorption process will dominate for

a given excitation path; the possible processes are electric dipole-allowed, electric

quadrupole-allowed, or magnetic dipole-allowed transitions. The transition proba-

bility for an electric dipole transition is generally at least three orders of magnitude

greater than electric quadrupole- or magnetic dipole-allowed transitions. The selec-

tion rules for an electric dipole transition are listed in Table 3.1.

The selection rules in Table 3.1 apply in the case of Russells-Saunders coupling,
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Table 3.1: Electric Dipole (E1) Selection Rules

∆S = 0

∆L = 0,±1

∆J = 0,±1

∆Mj = 0,±1

also called LS coupling. The S, L, and J letters in Table 3.1 refer to the spin,

orbital angular momentum, and total angular momentum quantum numbers that

describe the state of the atom. When LS coupling holds, the spins of the electrons

are well-defined, as are the orbital quantum states. One can think of the selection

rules for spin and orbital angular momentum as a consequence of the requirement for

conservation of momentum. A photon has quantized spin, and the quantum number

that describes the spin is 1. When an atom absorbs a photon, the quantum of spin

of the photon must be accounted for, so the orbital angular momentum state of the

atom must change by 1. However, the total spin cannot change. The total angular

momentum selection rule is a consequence of the weak coupling of electron spin and

orbital angular momentum.

The energy of the exciting photon is also a crucial factor in determining which

of the possible transitions are most likely to occur. If the energy of the photon is

equal or close to the energy of a transition, this excitation process will be prefer-

entially populated over all other possible excitation paths. This is called resonant

excitation. This property gives XAS site-selective, symmetry-selective, and element-

specific properties because the binding energies for the core electron shells of a given

element are unique to that element alone. During an XAS experiment, one can ex-

cite one element in a compound at its core electron threshold without fear that the

spectra will become contaminated with spectral weight from the other elements.

X-ray absorption spectroscopy probes the unoccupied states of the atomic site

that one is exciting. This is due to the so-called final-state rule, which states that the

probability that a certain transition will occur, and the energy at which it occurs,

is dominated by the final state configuration of the atom. The final state of an
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atom after absorbing a photon has a hole in a core shell and, in the case of resonant

excitation, an extra electron in the previously unoccupied states. Because of the

final-state rule, XAS probes the unoccupied states of the atom.

There are different ways to measure an XAS spectrum, and three of these methods

will be discussed here. The first technique is total electron yield (TEY). The other

two techniques of note are total fluorescence yield (TFY) and partial fluorescence

yield (PFY). All three techniques are unique in that they use different detection

methods to probe how efficiently the sample is absorbing the incident photons.

3.1.1 Total Electron Yield

The total electron yield (TEY) technique measures the rate at which electrons are

replenished within the sample. This technique takes advantage of Auger decay pro-

cesses, which strongly compete with radiative decay processes in the soft x-ray energy

range. Simply stated, during an Auger relaxation event, the energy released when the

core hole is refilled is transferred to another electron with the same principle quan-

tum number. This energy is sufficient to ionize the atom and create a free electron.

The possible relaxation paths that may be populated are shown in Figure 3.1.

Figure 3.1: Possible Auger relaxation paths
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Figure 3.1 shows three possible ways that an atom may produce an Auger elec-

tron. Firstly, the core electron may be excited to a bound state. If this electron,

called the participator, refills its own core hole, then it may transfer the energy to a

valence band electron and remove it from the atom. This is the process shown on

the right. Alternatively, one of the other electrons in the atom may refill the core

hole, which will typically be a valence band electron for light elements. These other

electrons are referred to as spectators. This process is shown by the middle of Fig-

ure 3.1. Lastly, the participator electron may be removed from the atom, giving it

an extra positive charge. In this case, shown on the left of the figure, only spectator

electrons may refill the core hole. This Auger decay process leaves the atom doubly

ionized.

Infused with energy approximately equal to the binding energy of a core electron,

the free Auger electron can easily overcome the work function for the material. Before

breaching the surface, the electron may scatter off other valence electrons. Each

Auger electrons has energy much greater than the work function, so each one can

scatter off several other valence electrons and impart each with sufficient energy to

also escape. This causes a cascade of electrons, which includes the original Auger

electron and any valence electrons from which it has scattered and given a significant

amount of energy. This cascade escapes the sample into the vacuum surrounding

the sample, which leaves a positive charge within the sample. This positive charge

attracts electrons through a ground wire attached to the sample plate. This ground

wire is the only external electrical connection that the sample plate is allowed, and

the current that flows through it is measured using a picoammeter. A simplified

setup is shown in Figure 3.2. This measurement of ground-to-sample current as a

function of excitation energy constitutes a TEY spectrum.

It is implicitly assumed that the probability of an Auger relaxation occurring is

constant over the energy range of the excitation threshold that is being probed. Of

course, there are no Auger processes below threshold, as there is no core hole to fill.

This is a very good approximation, and as such TEY is an accurate representation

of the true XAS spectrum. However, this method can have some problems. TEY
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Figure 3.2: Simplified setup for a TEY experiment

measures the rate at which valence holes are replenished within the sample, which

depends upon the conductivity of the sample. Conductivity can be assumed to be

constant over the whole threshold, but poor conductivity, when measuring highly

insulating materials, can lead to poor count rates and possibly to sample charging.

Sample charging occurs when the electrons that are ejected into space cannot be

replenished quickly enough by an external source. The sample builds a positive

charge, which increases the amount of energy that electrons require to break free

of the sample. In short, the work function is not constant across the scanned en-

ergy range. Sample charging is easily recognized by a noticeable, often steep drop

in the measured ground-to-sample current. This drop is due to the inability of the

Auger electrons to break free of the increasingly steep positive potential well, which

leads to lower count rates. The positive charge on the sample is sufficient to inhibit

photoelectrons from leaving the surface, but it is not enough to increase the current

because the potential is not great enough to cause dielectric breakdown. Dielec-

tric breakdown would of course be undesirable, as it would significantly distort the

electronic structure of the sample.

TEY is also highly sensitive to surface effects. The electrons that are produced

by the Auger process have a short mean free path length, on the order of a few

Angstroms, which means that the electrons cannot travel far within the crystal

without interacting with the lattice. Electrons produced by deep-lying atoms are
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recaptured by the crystal before escaping into space. Thus, electrons that exist

in surface states tend to dominate a given TEY spectrum. This is problematic for

metastable or highly reactive systems, such as the pure transition metals that oxidize

very quickly upon exposure to atmosphere.

3.1.2 Total Fluorescence Yield

The problems inherent to TEY can be overcome to a certain extent by using the total

fluorescence yield (TFY) technique. The TFY technique differs from TEY in that it

measures the photons that are emitted from the sample when the atoms radiatively

de-excite. This is very different from TEY, which depends upon the Auger process

in which the energy of the excited state is carried away by an electron. A TFY

experiment typically uses a Channeltron, a device that records the electron cascade

that occurs when a photon interacts with the detector. Since electrons that strike

the detector can cause a similar electron cascade, the Channeltron has a bias voltage

that repels any electrons that are emitted from the sample. The spectrum produced

by an absorption experiment measured in TFY mode is simply the number of counts

that the Channeltron recorded as a function of excitation energy.

The TFY experimentation technique records the photons emitted from the sam-

ple, which has both its advantages and its disadvantages. The upside of TFY is

that it has better penetration depth, because photons penetrate more deeply than

electrons. This removes the problem of surface effects dominating the measured ab-

sorption spectrum. Also, TFY is the technique of choice when dealing with highly

resistive materials, as sample charging is not a relevant problem. The downside of

TFY is that it senses emitted photons. In the soft X-ray energy range, Auger and

radiative processes compete to refill the core hole, and the Auger decay channel

strongly dominates, especially with the lighter elements. Thus, TFY can have a pro-

hibitively poor signal-to-noise ratio simply because the probability of a photon being

produced is so small, relatively speaking. There is also the problem of self-absorption.

Self-absorption is difficult to take into account because it is not uniform across the

entire threshold; the more intensely photons are radiated at a certain energy, the
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more strongly those photons are absorbed by other atomic sites in the crystal as the

photons attempt to escape the crystal. Thus, TFY spectra inherently have skewed

intensity profiles, as the most intense peaks seen in the spectrum should be even

larger if self-absorption was not present. When using a Channeltron to record TFY

spectra, problems may arise because of the bias voltage of the Channeltron. The

bias voltage is necessary to keep the Auger electrons away from the detector, but if

the voltage is set too high, it may distort the electronic states of the crystal. Despite

these limitations, however, the TFY technique can produce excellent spectra that

are much more representative of the bulk states than a TEY experiment.

TFY and TEY share a common property in that any spectrum that is recorded

using one of these two methods is not simply an absorption spectrum of the core

threshold this one is resonantly exciting, but rather a spectrum of all thresholds

accessible at that excitation energy. For example, consider an iron oxide compound.

The L2,3 edge of Fe requires photons of approximately 705 eV to begin resonantly

exciting the 2p electrons. At this energy, however, it is in principle possible to excite

the 1s electrons of the O ions that share the crystal, given that the K edge on

O only requires ≈510 eV. Of course, photons with energies around 705 eV will not

resonantly excite the K edge of oxygen; the probability of producing a 1s core hole on

O is minuscule compared to the probability of created a 2p hole on Fe. Nevertheless,

it can still happen. The Channeltron detects any photon that fits within its energy

detection window, even if it was not produced though decay of the core hole that

is being resonantly created. As a result, TFY spectra, and similarly TEY spectra,

sit upon a substrate of signal produced by the decay of lower energy core holes that

were produced non-resonantly as the incident radiation strikes ligand states.

This appears easy to correct. It seems logical to assume that the cross-section

for the O K edge, in this example, will remain unchanged as one encounters the Fe

L2,3 edge. After all, the Fe L2,3 edge is nearly 200 eV above the O K edge, which is

well beyond any possible multiplet effects due to the O site. However, this is not the

case. Experiments that probe the photoemission yields at a higher lying threshold

on one element while exciting a deeper core level on another element within the

37



same crystal clearly show that the number of photons produced though decay of

higher-lying core holes is dramatically curtailed as a deeper core level is resonantly

probed [28]. Thus, TFY and TEY spectra are in principle highly complicated spectra,

with components from higher-lying core thresholds varying just as much as the signal

from the threshold under scrutiny. However, most of the time the background signal

is negligible, and the signal from the decay of the resonantly created core holes far

outweighs all other components.

3.1.3 Partial Fluorescence Yield

Partial fluorescence yield (PFY) is a third technique that can be used to measure

XAS. Like TFY, the PFY technique measures the photons that are produced by the

sample. PFY has all the aforementioned advantages and disadvantages of the TFY

technique. Unlike TFY, however, the photons are detected using a spectrometer. It

is unnecessary for a spectrometer to have a bias voltage to repel emitted electrons,

so there is no danger that the spectrometer will affect the electronic states of the

sample.

When measuring a TFY spectrum, the Channeltron simply counts the number

photons that strike the sensor. However, the spectrometer has its own transmission

efficiency because the fluorescence photons must pass an entrance slit and a grating,

and as such a lot of flux is lost in the process of producing a PFY spectrum. This

generally means that PFY spectra have the poorest signal-to-noise ratio of all three

techniques discussed thus far. The problem of low emitted photon flux can be mit-

igated somewhat by increasing the incident photon flux. However, this invariably

reduces the resolution of the resultant spectrum.

Although the spectrometer does significantly decrease the signal-to-noise ratio,

the energy detection window of the spectrometer is very much smaller than those

of the Channeltron or the picomammeter. This gives the PFY technique a property

that sets it distinctly apart from TEY and TFY: a PFY spectrum does not measure

extraneous signal produced by the decay of holes other than the ones resonantly

created. The detection window can be tuned to a particular transition energy range.
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This allows the experimentalist to know explicitly what it is that he is measuring,

even if the spectrum that is being measured takes an exceedingly long time to acquire.

3.2 X-ray Emission Spectroscopy

X-ray emission spectroscopy (XES) measures the photons that are emitted from the

sample using a spectrometer. Just as for XAS, the final-state rule applies to XES as

well, except that in the final state of all XES events, there is no core hole and one

hole in the valence band. XES techniques therefore probe the occupied states, as the

multiplet effects from the new hole in the occupied states gives an XES spectrum its

shape. The physical mechanism that produces the photons, however, can be quite

different depending on how close the energy of the exciting radiation is to a core

hole excitation threshold. Excitation energies that are relatively far above threshold

produce non-resonant XES spectra, whereas at excitation energies that are near-

or on-threshold, the dominant process is resonant inelastic x-ray scattering (RIXS).

Both of these mechanisms are photon in-photon out process, and are displayed in

Figure 3.3.

Simple XES can, in principle, happen at all excitation energies. XES is a two-step

process; the first step is the creation of a core hole. The photons measured in XES are

produced when the core hole is refilled by either the participator electron or another

spectator electron. The relevant spectator electrons are the valence electrons. In

principle, any electron can refill the core hole, provided that the necessary transition

satisfies the dipole selection rules, but the emitted photons are too low in energy to

be seen within the detector window of the spectrometer. The left panel in Figure 3.3

shows the total process. Note that the figure shows that the electron is promoted

to the unoccupied states. While this is in general true, XES is most probable in the

non-resonant case at excitation energies far above threshold. In this case, the core

electron is removed from the atom, leaving the atom ionized.

RIXS is the photon-out process which is the more likely for on-threshold energies.

RIXS is a one-step scattering process, wherein the scattering transition is the net
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Figure 3.3: Photon-in photon-out processes. The left panel represents
simple fluorescence, or XES. The photon that is emitted has energy
equal to the decay of the core hole. The right panel shows the net
transition of a RIXS event. The photon that is emitted is the excitation
energy with the energy of the net transition subtracted from it.

result of virtual core hole creation and annihilation events [29]. The right panel

in Figure 3.3 displays a RIXS event; the dashed lines are the virtual transitions,

whereas the solid line is the transition that physically occurs. A RIXS event is

the result of two independent dipole-allowed events, and as such, the selection rules

for high-probability net transitions are slightly modified. The spin selection rule

remains the same (∆S = 0), but angular momentum selection is altered to become

∆L = 0,±2. This allows one to efficiently probe inner-shell transitions.

Although XES and RIXS events each have the same final state, i.e. an electron

in the conduction band and a hole in the valence band, the physical mechanism that

promoted the electron differs greatly between the two processes. In XES, the photon

that is detected by the spectrometer has energy equivalent to the energy separation

of the valence and core states, because the photon is created to carry away the energy

that is released when the core hole is annihilated. This energy separation does not
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change with excitation energy. This will have the effect that inelastic XES peaks

will maintain a constant energy, even though the elastic peak will track with the

excitation energy. This concept is displayed in Figure 3.4(a).

RIXS features, however, are quite different. The energy losses in RIXS typically

correspond to the transition in which valence electrons are scattered to unoccupied

states; the total energy necessary to complete the net transition is always the same

for a given scattering transition. This energy is subtracted from the energy of the

photon that is exciting the atom. The photon that is sensed by the spectrometer has

an energy that is the original excitation energy minus the energy required to complete

the transition. Thus, a feature that maintains the same energy separation from the

elastic peak, regardless of excitation energy, is an inelastic scattering peak. An

example of the evolution of an inelastic scattering feature is shown in Figure 3.4(b).

The probability that a RIXS event will occur is determined by the Kramers-

Heisenberg formula. The Kramers-Heisenberg formula was originally derived without

the use of quantum mechanics by H. A. Kramers and W. Heisenberg to describe the

scattering of a photon by an atomic electron, but was later derived using quantum

mechanics by Dirac [30, 31]. The Kramers-Heisenberg formula for the intensity of a

scattered photon at a particular emission energy Eout is shown below:

I(Ein, Eout) ∝
∑

f

∣∣∣∣∣∑
m

〈f | f · A |m〉 〈m| f · A |i〉
Em − Ei − Ein − iΓ

2

∣∣∣∣∣
2

δ(Ef + Eout − Ei − Ein) (3.1)

where the symbol E refers to energy, with the subscripts f , m, and i refer to the

final, intermediate, and initial states, respectively. The subscripts in and out refer

to the incident and scattered photons.

The Kramers-Heisenberg formula has two parts that require explanation. Firstly,

there is the numerator, which is the product of two matrix elements. One matrix

element represents the dipole-allowed transition from an initial state to an interme-

diate state, and the second matrix element is the dipole-allowed relaxation of that

intermediate state to a final state. The denominator is the second part of note,

and its function is to magnify the intensity of the inelastic process described by
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Figure 3.4: Examples of XES and RIXS peaks in experimental spec-
tra. These spectra are not real, but have been simulated to exemplify
the expected behavior of typical soft x-ray photon-out processes. Each
spectrum in each panel corresponds to a different excitation energy.

the numerator when the excitation energy, Ein, comes near to the energy difference

between the intermediate and initial states, Em − Ei. To prevent the denominator

from becoming undefined, an imaginary quantity Γ has been introduced, which is

the lifetime broadening of the intermediate state. The denominator describes the

resonance part in the term ‘resonant inelastic x-ray scattering’.

RIXS, in particular, is a very powerful technique for studying the density of states

of a system. Inelastic scattering features maintain a constant energy separation

from the elastic peak. This energy is characteristic of the net transition. This

gives information about the partial DOS, because each inelastic energy loss feature
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represents a transition between a local maximum in the occupied states and a local

maximum in the unoccupied states. Thus, one can get specific information about

the electronic structure.

Another benefit is that RIXS is element-specific. This is because a RIXS feature

is the net result of two virtual transitions, one of which is core hole creation, a process

that is characteristic of the element in question. This property allows one to probe

site-specific states without spectral weight from other elements contributing to the

measured spectrum. Optical absorption similar to RIXS, because both techniques

have the same net transition and thus probe the same states. Optical absorption

is superior for determining DOS fine structure that cannot be resolved using RIXS,

however, optical absorption probes the near-Fermi edge DOS of every atomic site

in the entire crystal. The element-specific RIXS technique allows one to probe the

local DOS of only the resonantly excited element, although that local DOS will have

some structure that results from inter-atomic interaction.
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Chapter 4

Electronic Structure of Solids

4.1 Band Structure Basics

The physics of condensed matter marks a strong departure from the physics of the

comparatively simpler atomic picture. The most obvious difference is that a given

atom in the solid is not in a spherically symmetric environment. Electrons from

neighboring atoms interact with each other, and charge clouds overlap to form bonds.

In addition, if one considers a crystalline sample, wherein the atoms have bonded

with long-range ordering, then the electronic structure shows periodic structure.

Theory pertaining only to the electronic structure of crystals will be considered in

this thesis, although in principle matter can condense in a completely unstructured

(amorphous) phase.

The periodicity of the structure within a crystal, both physical and electronic,

lends itself conveniently to Fourier analysis, as Fourier analysis involves expanding

a function in terms of periodic functions, most commonly sinusoids. As an example,

the electronic charge density n(r) can be expanded in the following Fourier series:

n(r) =
∑

G

nG exp(iG · r) (4.1)

In this expansion, G is the reciprocal lattice vector, defined by the relation G ·

T = 2πn, where n is an integer and T is the translation vector of the crystal

lattice. The reciprocal lattice is a powerful concept, as it represents the crystal

lattice transformed into crystal momentum space, or k-space as it is more commonly

called. One important property to note is that the length of k-space and real space
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vectors reciprocally scale with respect to one another. Thus, a large r-space vector

transforms into a short k-space vector, and vice versa.

The Bloch theorem states that solutions to the Schrödinger equation in a periodic

potential must also be periodic. These solutions have the form:

ψi,k(r) = ui,k(r) exp(ik · r) (4.2)

where k is a reciprocal lattice vector, and i gives the state that the wavefunction is

describing, including symmetry labels and quantum numbers. This formula shows

that for a certain wavevector k and state i, there is only one possible solution to

the Schrödinger equation, and thus one energy eigenvalue that can be observed.

Other states may exhibit this energy at the same wavevector, if they are degenerate.

However, each eigenvector can only have one eigenvalue for each k. Recalling the

periodicity of a crystal, each translationally invariant atom within the crystal will

provide electrons with the same state, but with different values of k. Because k-space

vectors and r-space vectors scale reciprocally, solutions to the Schrödinger equation

with index k are possible every 2π/N wavevectors, where N is the number of atoms

in the crystal. Therefore, as the number of atoms in the crystal increases, eigenvalues

εi,k are nearly continuous with k for state i.

Another way of looking at it is to consider what happens when identical atoms

are brought close enough such they may interact with one another, and are arranged

in a periodic fashion. As the valence electrons on each site begin to interact, the

problem arises that the electrons that occupy the same orbitals on different atoms

are no longer unique. The orbitals that these electrons occupy are exactly the same

within an integer number of lattice translations. This is not acceptable, as no two

electrons can occupy the same orbital at the same time. The solution is to modify

the wavefunctions of the valence electrons such that they are no longer orthogonal,

which allows the valence electrons to coexist. The result is valence electrons that

have the same electronic environment but have different energies, depending on their

momentum.

Either way that one looks at it, the result is the same. The interaction amongst
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electrons in an extended solid produces continuous band structure, with the energy

of the band varying as a function of k. Band structure calculations are powerful

analytical tools, as they predict the energies of the transitions that are possible

given a certain symmetry axis. However, one can also look at the electronic density

of states (DOS) as a meaningful representation of the electronic structure of a crystal.

The band structure and the density of states of a crystal are related simply through

the following formula:

D(E) =
V

(2π)3

∫
dSE

|∇kE(k)|
(4.3)

where SE is a surface area element on a constant energy surface of the three di-

mensional band structure, and ∇kE(k) is the gradient of the band structure with

respect to k. The important property to note here is that the density of states is

inversely proportional to the gradient of the band structure. A flat band produces

a sharp peak in a graph of the DOS at that energy, whereas a band with a lot of

structure will produce broad features in the DOS. Of course, a large gradient with

respect to k within a band suggests a large degree of electron cloud interaction as

per the discussion above. Thus, a graph of the density of states gives a visual and

intuitive look at the level of interaction that the band in question is experiencing.

Although the presence of band structure is a result of the periodicity of the crys-

tal, determining the shape of the band structure is a very complicated problem. As

stated above, the shape of the band, and therefore the density of states, is directly

dependant upon the symmetry and magnitude of the interactions amongst the elec-

tron clouds of the atoms, as well as the interactions between the electrons and the

fixed atomic nuclei. There have been many attempts to understand and simulate the

dynamics of a crystalline system. The orthogonalized linear combination of atomic

orbitals (OLCAO) method was used to simulate LiFePO4, a subject that will be dis-

cussed later in this chapter. This method is based upon the formalisms introduced

by the local density approximation (LDA) of density functional theory (DFT).
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4.2 Density Functional Theory

Density functional theory was formulated by Hohenberg and Kohn as an exact theory

for many-body interactions. The guiding principle behind DFT is a deceptively sim-

ple one: All properties in a solid, including (but not limited to) electronic excitations,

thermal and electrical conductivity, and magnetic susceptibility are all functionals

of the ground state electron charge density. If one knows the ground state electron

charge density, then one could in principle calculate all other macroscopic properties

of a solid with this information alone.

The following formula is the Hamiltonian proposed by Hohenberg and Kohn.

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i6=j

e2

|ri − rj|
(4.4)

The first term in this Hamiltonian is simply the kinetic energy operator. The second

term takes into account any external fields, including all fields that are not generated

by the electrons within the crystal. This term must account for the Coulomb electric

field produced by the fixed ionic lattice, but in principle this term may also include

fields generated outside of the crystal. The last term explicitly accounts for two-

electron Coulomb interactions. Depending on the wavefunctions upon which this

Hamiltonian operates, the interactions can be of the direct, exchange, or correlation

type.

According to the Hohenberg-Kohn theorems, the external potential is uniquely

determined by the ground state particle density, which will be stated here without

proof. The kinetic energy term and the electron-electron interaction term are by

definition unique to a particular electron density, and so the full Hohenberg-Kohn

Hamiltonian is uniquely determined for a particular electron density. The total

energy, which is simply the observable eigenvalue of the full Hamiltonian, is also

uniquely determined by a given electron density. The density that minimizes the

total energy is, by definition, the ground state particle density. The total energy is

given as follows:
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EHK [n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + EII (4.5)

The third term is the energy of the interaction between the electrons and the

fixed ionic lattice. The fourth term is simply the energy of the ions interacting with

one another, hence the II subscript. These are straightforward to calculate, if one

knows the density. The first term is the total kinetic energy, and the second term

is the so-called internal energy, which is the energy that is inherent in the electron-

electron interaction. The first and second terms are much more difficult to calculate

than the third and fourth terms, for different reasons. The main problem arises from

the kinetic energy term. At present, there is no known way to calculate the kinetic

energy directly from the electron charge density.

Despite its intractability, the Hohenberg-Kohn Hamiltonian is nevertheless exact.

The Hohenberg-Kohn Hamiltonian can be generalized to include time dependance.

Any state to which the system may be excited will have a different electron config-

uration, however the system must nevertheless start in the ground state, and thus

the excited electron density must be a functional of the ground state density. This is

in keeping with the Hohenberg-Kohn theorem. The exact Hamiltonian should also

have the capacity to accurately calculate Fermi surfaces, as well as the transition

between a conductor and a Mott insulator. Thus, density functional theory holds

great promise, if only it were possible to calculate the kinetic energy of the system.

Kohn and Sham were to find just such a solution with the celebrated Kohn-Sham

equations.

4.2.1 Kohn-Sham Equations

The Hohenberg-Kohn theorem, and its accompanying exact Hamiltonian, provided

a tantalizing goal. According to this hallmark theorem, it is possible to calculate all

macroscopic properties of a crystal, although it is technically impossible to do the

necessary calculations within the understanding of modern physics. This problem

was impossible to solve, so Kohn and Sham simply avoided the problem by replacing
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the exact many-body Hamiltonian with an auxiliary independent particle one. The

Kohn-Sham ansatz assumes that the ground state electron density is exactly the same

for the independent particle approximation as for the full many-body solution. The

power of this technique is that the electron charge density is understood in terms of

independent particle wavefunctions. It is known how to calculate the kinetic energy

from such wavefunctions, eliminating one of the chief restrictions to solving the

full Hohenberg-Kohn equations directly. The Kohn-Sham equations are as follows,

written in Hartree units.

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r), (4.6)

V σ
KS(r) = Vext(r) +

∫
dr′

n(r′)

|r− r′|
+ Vxc[n] (4.7)

where

Vxc[n] =
δExc

δn(r, σ)
(4.8)

The Kohn-Sham Hamiltonian, Equation 4.6, is the operator in a Schrödinger-like

equation, referred to specifically as the Kohn-Sham equation, or alternatively the

KS equation.

[
−1

2
∇2 + V σ

KS(r)

]
ψσ

i (r) = εσ
i ψ

σ
i (r) (4.9)

In these equations, the σ represents spin and r is the point of interest where

the Kohn-Sham equations are being solved. The Vext term in Equation 4.7 is the

potential exerted by the ionic lattice on the electrons. The second term calculates the

direct Coulomb interaction between the charge cloud located at the point of interest

r, and the charge cloud at some other field point r′. The last term in Equation 4.7,

Vxc, is the potential due to the exchange-correlation interaction. This term contains

all of the non-direct electron-electron interaction terms, namely the exchange and

the correlation effects. This potential depends upon the exchange-correlation energy,

given by Equation 4.8, which will be discussed in detail later.
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Rigourously speaking, the direct and exchange Coulomb interactions and the

correlation interaction are all consequences of the same two-electron, four-center

integral, given in Equation 4.10 [32]. As stated earlier, however, the direct Coulomb

interaction is the only one that can be tractably calculated explicitly, whereas the

other two interactions require some level of approximation. The direct Coulomb

interaction comes out of Equation 4.10 when µ = δ and γ = ν, and when I = L and

K = J , thus effectively reducing the formula to a two-electron, two-center integral.

〈µγ|νδ〉 =

∫ ∫
drdr′φ∗µ(r−RI)φ

∗
γ(r−RK)

1

|r− r′|
φν(r

′ −RJ)φ∗δ(r
′ −RL) (4.10)

The process to find the ground state electron charge density and potential that

minimizes the total energy is iterative, and it begins with an initial educated guess

as to what the ground state density may be. This guess may actually be in the

form of a charge distribution n(r), but much more commonly, the guess is a set of

one-electron wavefunctions. These wavefunctions are usually linear combinations of

some basis set, such as plane waves or atomic orbitals. The charge density may be

calculated from these wavefunctions as shown in Equation 4.11.

n(r) =
∑

σ

Nσ∑
i=1

fσ
i |ψσ

i (r)|2 (4.11)

where the subscript i denotes a quantum state of spin σ characterized by the wave-

function ψσ
i (r). The term fσ

i is called the density matrix. This corresponds to the

basis set representation of the one-body density operator n(r, r′). This density op-

erator is calculated from the expansion coefficients for the basis functions that add

together linearly to construct the wavefunctions ψσ
i (r) that describe the quantum

states of the crystal [32].

The electron charge density, and the independent particle wavefunctions that

gave rise to this density, are both necessary inputs to the total energy functional,

EKS, as well as the Kohn-Sham potential VKS given by Equation 4.7. As stated

earlier, the total energy must be at an absolute global minimum before one can

unambiguously state that the ground state electron charge density has been found.
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The total energy is calculated as follows:

Eσ
KS(r) = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] (4.12)

The second term is the energy contribution due to the interaction of the electrons

with the nuclei and any other applied external field. The third and fourth terms,

EHartree[n] and EII , are the direct electron-electron Coulomb interaction and nuclei-

nuclei interaction, respectively. As before, the Exc[n] is term that brings together

the exchange and correlation electron-electron interactions. The first term, Ts[n], is

the kinetic energy term calculated as follows.

Ts = −1

2

∑
σ

Nσ∑
i=1

∫
dr|∇ψσ

i (r)|2 (4.13)

Once the total energy is known, then one can calculate the energy eigenvalues for

each state ψσ
i (r).

εi =
dEtotal

dni

=

∫
dr
dEtotal

dn(r)

dn(r)

dni

(4.14)

The electron charge density n(r) has, at this point, been used to calculate the

Kohn-Sham potential and the energy eigenvalues that can be substituted into the

Kohn-Sham equation (Equation 4.9). The Kohn-Sham equation can then be solved,

through various means, to find eigenstates ψσ
i (r). Unless the initial guess for the

electron charge density is an exact solution of the Kohn-Sham equation, then the

calculated eigenstates will not be the same as the wavefunctions used as the input.

Once a solution to the Kohn-Sham Hamiltonian has been found, then one can use

the new wavefunctions to calculate the charge density. This again can be used as

input to the total energy functional, and the new total energy is compared to the

previous value. If the total energy is self-consistent, i.e. if the first and second total

energies differ within an acceptable margin, then the energy has been minimized

and the electron charge density is the ground state density. Otherwise, the density

is varied in some systematic manner, and the next educated guess as to the ground
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state density is used to calculate the next Kohn-Sham potential and eigenvalues.

Thus continues the iterative process until self-consistency is reached.

4.2.2 Exchange and Correlation

The Kohn-Sham equations provide a plausible way to calculate the electronic struc-

ture of a crystal. One of its advantages over the exact Hohenberg-Kohn method is

that the independent particle approximation allows for the calculation of the kinetic

energy of the electron cloud. However, it also has the advantage that it separates the

long-range kinetic and direct Coulomb interactions from the exchange and correlation

interactions. Exchange and correlation are the names given to the electron-electron

interactions that arise due to the overlap of electron wavefunctions, as opposed to

the direct Coulomb interaction, which is simply electrostatic repulsion. The ex-

change interaction is primarily concerned with the overlap of electron wavefunctions

with parallel spin. It naturally includes the Pauli exclusion principle, which doesn’t

allow electrons with parallel spin to occupy the same orbital due to the antisym-

metric nature of fermion wavefunctions. Correlation deals with the interaction of

electrons with antiparallel spin. The spin part of an electron wavefunction does not

prohibit opposite-spin electrons from being close to one another, however opposite

spin electrons do occupy orbitals wherein the spherical harmonics are orthogonal.

This prevents them from overlapping in a spherical potential. Both exchange and

correlation decrease the total energy, because these repulsive interactions decrease

the amount of energy that the direct Coulomb interaction requires to keep electrons

apart.

Correlation in particular has classically proven to be difficult to calculate, due

to the incredible amount of computing power required for an exact value of the

correlation energy to be obtained. However, the Kohn-Sham equations have the

exchange and correlation potentials as functionals of the local density only. This

makes the calculation of these energies tractable. One of the most popular forms of

the exchange-correlation functional is that of the local density approximation (LDA).

The energy of the exchange and correlation interactions is given by the following
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formula in the exact Kohn-Sham theory:

Exc[n] =

∫
drn(r)εxc([n], r) (4.15)

where εxc([n], r) is the exchange-correlation energy density per electron at point r

that depends only on the density n(r, σ) in some volume around r. This quantity

can be separated into the exchange and correlation parts, such that εxc = εx + εc.

In the LDA approach, the exchange-correlation energy density is assumed to be

identical to the energy density of the homogenous electron gas with the same density.

The agreement to theory therefore depends on how well the electron density in the

crystal is approximated by an electron gas. With metals, this concept provides a fair

approximation, but fails with highly inhomogeneous compounds. Even with metals,

however, this approach has its failings, as will be discussed later in this section.

Note that the Kohn-Sham equations make a local density approximation, in the

sense that the exchange-correlation functional is assumed to depend only upon the

local density. This is not to be confused with the LDA formalism, which represents

a family of exchange-correlation functionals that have a certain form and exhibits

certain properties. Although there are different forms of the exchange-correlation

functional available, such as the generalized gradient approximation, all of the them

are functionals of the local density only.

The approximation that the Kohn-Sham exchange-correlation functional depends

only upon the local density makes the Kohn-Sham equations calculable, but it does

make them inaccurate in certain circumstances. In particular, the Kohn-Sham equa-

tions struggle when one tries to calculate the electronic structure of metals and

insulators, albeit for very different reasons. The problem with metals arises because

the exchange-correlation functional depends on the local density only. Although the

local density will be reproduced, and the Kohn-Sham equations will correctly predict

the metallic nature of the crystal, the Fermi surface will not be accurate. This is

because the shape of the Fermi surface is a long-range effect that the local density

approximation for the exchange-correlation functional does not adequately model.

The same approximation is the reason for the failure of the Kohn-Sham equations to
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predict the conductor-Mott insulator transition in transition metal oxides. The local

density approximation does not predict the correlation energy to be strong enough.

The capability of the Kohn-Sham equations to model Mott insulators can be

improved substantially by incorporating some of the ideas put forward by Hubbard,

who designed a model for interacting electrons. The Hubbard Hamiltonian accounts

for electron correlation using the following interaction matrix:

U
∑

R

nR↑nR↓ (4.16)

The arrows denote the spins of the electrons. The quantity U, called the Hubbard-

U, is a special case of the general four-center integral that is shown as follows. The

Hubbard-U is calculated when R1 = R2 = R′
1 = R′

2.

VR1R2R′
1R′

2
=

1

2

∫
dr

∫
dr′φ∗(r−R1)φ

∗(r−R′
1)

1

|r− r′|
φ(r′−R′

2)φ(r′−R2) (4.17)

This formula gives the interaction strength of two electrons on the same site with

opposite spins. This is the definition of electron correlation. In terms of the physics,

the Hubbard correlation interaction applies an orbital-dependant potential on the

atomic sites.

The Hubbard Hamiltonian is instructive because it has been used successfully

to model the transition between a Mott insulator and conductor in some of the

highly correlated transition metal oxides. It does this through the competition of

the correlation interaction U and the hopping probability t. When 4t > U , the

hopping probability dominates and the electrons can move freely about the crystal.

The band structure is that of a metal. However, when U > 4t, the correlation

interaction dominates and the occupied and unoccupied states are split apart, causing

the electrical resistivity to increase dramatically. The energy difference between the

upper and lower Hubbard bands is U .

For the description of highly correlated systems, the Hubbard-U approach is

much better at describing the electronic structure than LDA treatments. However,

for weakly correlated systems, the Hubbard Hamiltonian fails. The splitting of the
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conduction and valence bands is determined by the competition of U and the hop-

ping probability t, and the competition of U and t is decided in large part by the

temperature. Thus, in the case of U > 4t, the conduction and valence bands are al-

ways split, which of course is not the case for many systems, including metals. Thus,

the LDA and Hubbard Hamiltonians each have their place in describing condensed

matter physics.

The Hubbard-U has been incorporated into the LDA Hamiltonian with the fol-

lowing formula:

ELDA+U [n] = ELDA −
1

2
U ·N(N − 1) +

1

2
U

∑
i6=j

ninj (4.18)

where ni is the orbital occupancy. The first term deletes the interaction energy of

the d − d interactions that the LDA Hamiltonian calculates, and the second term

replaces the first with the Hubbard correlation. Note that only the d−d interactions

are dealt with, because electron correlation is generally not an important concern

for s− or p−symmetry electrons.

The Kohn-Sham equations have difficulty calculating the correct electronic char-

acteristics of insulators. The valence band is a completely full shell in the case of a

classic insulator, so the conduction band is an empty band that is a different sym-

metry than the valence band. Calculating the size of the gap between the two bands

has proven to be difficult, due to the different natures of the valence and conduction

bands. Because the two bands have different symmetries, the character of the wave-

functions of the bands changes considerably. This leads to a discontinuous change

in the kinetic energies of the two bands, because the kinetic energy is dependant on

the independent particle wavefunctions of the bands. This discontinuity is expected

from quantum mechanics, and is not an artifact of improper modeling within DFT.

However, the exchange-correlation potentials that are commonly incorporated into

the Kohn-Sham equations, such as the LDA and GGA functionals, do not have this

discontinuity. Even in the exact Kohn-Sham theory, which assumes that the exact

form of the exchange-correlation functional is known, the nature and magnitude of

the discontinuity between bands is not understood.
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4.2.3 OLCAO Method

The Kohn-Sham equations provide a tractable method for calculating the electronic

structure of a crystal, as these equations recast the Hohenberg-Kohn equations in

terms of an independent particle picture that depends upon one-particle wavefunc-

tions. It therefore remains to find appropriate one-particle wavefunctions from which

one may start solving the self-consistent Kohn-Sham equations. A natural choice for

the basis functions of the one-particle wavefunctions are atomic orbitals, given that

crystals are simply atoms bonded to one another. The linear combination of atomic

orbitals (LCAO) method uses just such a basis of atomic-like orbitals. The orthog-

onalized linear combination of atomic orbitals method (OLCAO), derived originally

by Ching and Lin [33] and later expanded upon by others [34], is based upon the

older LCAO method. The two methods are very similar, except that the OLCAO

method treats core states differently.

The OLCAO method uses a basis of atomic orbitals to form the one-electron

wavefunctions that describe the electronic states within the crystal. Although the

final electron wavefunctions may be very atomic-like, they will not be purely atomic

because of the bonding between atoms and the non-spherical symmetry within a

crystal. The OLCAO method requires that one understand how orbitals centered on

neighboring atoms interact and overlap. In general, the Hamiltonian (Equation 4.19)

and overlap (Equation 4.20) matrix elements are expressed as follows. The equations

are expressed in Rydberg units.

Hiακ,jβκ′(k) =

∫
drχ∗i,κ,α(k, r)Ĥχj,κ′,β(k, r) (4.19)

Siκα,jκ′β(k) =

∫
drχ∗i,κ,α(k, r)χj,κ′,β(k, r) (4.20)

where χ∗i,κ,α(k, r) is a Bloch sum of the localized atomic state i centered on atomic

site α of element κ. The normalized dependance of the Bloch sum χi(r) on the state

i is given by the following equation:
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χi,κ,α(r) =
∑
T

eik·Tφi(r− [τj,κ + T]) (4.21)

Thus, the Hamiltonian and overlap integrals are defined with respect to a basis

consisting of atomic orbitals. The Hamiltonian and overlap integrals can be written

in terms of a secular equation, which is shown below in Equation 4.22. The solution

of this secular equation produces energy eigenvalues ε which are solutions to the

Schrödinger equation using the wavefunctions built from the Bloch basis functions

shown in Equations 4.19 and 4.20.

|Hiακ,jβκ′ − εSiακ,jβκ′| = 0 (4.22)

The Hamiltonian operator Ĥ is divided into kinetic and potential terms:

Ĥ =
1

2
∇2 +

∑
Tκj

V κ [|r− (τj,κ + T)|] (4.23)

where V κ is the potential on the atom centered at τj,κ in the primitive unit cell. T

is simply the vector between translationally invariant unit cells.

The use of atomic-like orbitals as the basis means that the basis functions have

distinct centers, which are the atoms from where the radial components of the wave-

functions radiate. Thus, the overlap matrix elements are defined as either one-center

or two-center integrals, depending on whether or not the χ∗ and χ functions in Equa-

tion 4.20 originate from the same atom. The Hamiltonian matrix elements are more

complicated, as there can be one-, two-, or three-center integrals, because there are

three parts of the equation that are functions of spatial coordinates: the χ∗ function,

the χ function, and the potential V κ. As stated earlier, the direct Coulomb electron-

electron interaction is one of the two-center integrals that needs to be calculated,

whereas the kinetic energy is a one-center integral.

The OLCAO method is fully ab initio, which means that a program that uses the

OLCAO formalism requires only the configuration of the crystal as input. There are

no other parameters for the user to adjust. The OLCAO method solves the full Kohn-

Sham equations. The OLCAO Hamiltonian therefore has an exchange-correlation

57



functional. Combining Equation 4.8, the Kohn-Sham exchange-correlation potential,

and Equation 4.15, one obtains a formula for the exchange-correlation potential as

a function of the exchange-correlation energy density.

Vxc =
d[n(r)εxc([n], r)]

dn(r)
(4.24)

where, as before, εxc = εx + εc. The specific form that it uses for the correlation part

is the Wigner interpolation formula, originally formulated by E. Wigner as a way to

bridge the gap between the correlation energies of the low and high density limits

of the free electron gas [35, 36]. His interpolation formula for the correlation energy

density is given below:

εc =
−0.88

rs

+ 7.8 (4.25)

where rs is defined as the radius of a sphere in which it is expected to find only

one electron, when the crystal is in the ground state. The exchange part of the

exchange-correlation energy density, εx, is determined by the Gáspár-Kohn-Sham

exchange potential:

VGKS(r) =
d[n(r)εx([n], r)]

dn(r)
= −2

[
3n(r)

π

]1/3

(4.26)

One may rewrite the exchange-correlation potential Vxc in the form of Equation 4.27,

in which the term β(rs) contains the correlation potential [37]:

Vxc = β(rs)VGKS(r) (4.27)

The Wigner interpolation formula is used for the correlation energy density in the

OLCAO Kohn-Sham Hamiltonian [38], so β(rs) is calculated as follows [37].

βW (rs) = 1 +
0.9604rs(rs + 5.85)

(rs + 7.8)2
(4.28)

where theW subscript identifies the correlation potential as the Wigner interpolation

formula.
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The density used to calculate rs in the Wigner correlation potential, and the

density that is used by the Gáspár-Kohn-Sham exchange potential, is the same den-

sity calculated by the Kohn-Sham equations. Although the Kohn-Sham equations

calculate an electron charge density for the crystal in question, both the exchange

and correlation potentials assume that charge density of the crystal has the same

properties as a free electron gas of the same density.

The Bloch wavefunctions that represent the quantum states of the crystal are

constructed of atomic-like wavefunctions. The separable radial parts of the atomic

wavefunctions, in turn, are represented as linear combinations of Gaussians multi-

plied by polynomials. The use of Gaussians to represent the radial wavefunctions

is motivated simply by the need for computational efficiency. Gaussians and poly-

nomials are highly analytical, in the sense that the product of two Gaussians is

simply another Gaussian, and the product of two polynomials is also another poly-

nomial. Because of this property, most integrals involving expansions of Gaussians

and/or polynomials can be handled analytically. This greatly reduces the computa-

tion power needed. Some of the benefit of using Gaussians is lost when calculating

the Hamiltonian matrix elements, however. The exchange-correlation functional in

particular is a non-linear functional of the density, and cannot be easily represented

as a finite sum of Gaussians. This is true even if the density itself is represented as a

sum of Gaussians. Nevertheless, the speed and power of using Gaussians to represent

the wavefunctions involved in the other integrals necessary to solve the Kohn-Sham

equations warrants their continued use.

Computation power is often a concern when performing simulations. The LCAO

method especially can be very computationally expensive because of the large num-

ber of atomic-like wavefunctions that are present in the unit cell of a crystal. With

the heavier elements, such as the transition metals, the number of states present on

these atoms can give the Hamiltonian and overlap matrices very large dimensions.

Each of these wavefunctions contributes to the band structure of the crystal, and

so they must all be included. However, the core states are not as important as the

valence states for describing the inter-atomic bonding within the crystal, and the
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temptation exists to simply exclude them. Such an action, while reducing the size of

the Hamiltonian and overlap matrices, can substantially and erroneously lower the

energies of all the states in the system.

The OLCAO method outlined in Ref. 33 addresses this problem by drawing a

clear line between core states and valence states that are principally involved in

bonding. A new set of Bloch sums are then defined, as shown in Equation 4.29.

These new Bloch sums are the basis sets for the crystal.

χ′niα(k, r) = χn
iα(k, r) +

∑
l,γ

aiα,jγχ
c
jγ(k, r) (4.29)

where the indices i and j denote orbitals on atoms α or γ, respectively. The subscript

κ has been removed, as all of the atoms in the unit cell have been assumed to be

identical, without loss of generality. The superscripts n and c refer to non-core and

core states, respectively. χ as before refers to a Bloch sum of the orbital i or j on

the atom α or γ, as denoted by the indices. The new basis functions χ′ are made

orthogonal to the core level Bloch sums.

〈χ′niα(k, r)|χc
jγ(k, r)〉 = 0 (4.30)

It now remains to find the find the expansion coefficients aiα,jγ. However, if one

assumes that the overlap between core states on neighboring atoms is negligible,

〈χc
iα(k, r)|χc

jγ(k, r)〉 = 0 (4.31)

where α 6= γ, then the expansion coefficients assume the form given below:

aiα,jγ = −〈χn
iα(k, r)|χc

jγ(k, r)〉 = 0 (4.32)

Thus, the expansion coefficients are simply the overlap of the non-core and core

states on neighboring atoms.

As long as the assumption holds that the overlap between core states on neighbor-

ing atoms is negligible, then this method greatly reduces the size of the Hamiltonian
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and overlap matrices. This is because the new non-core basis functions are iden-

tically orthogonal to the core states, and so they can be completely removed from

the matrices. Of course, the new primed basis functions χ′ produce Hamiltonian

matrix elements H ′
iα,jγ and overlap matrix elements S ′

iα,jγ. These are related to the

unprimed elements via Equation 4.29.

The OLCAO method provides a much more computationally efficient algorithm

than the LCAO method, although the physics behind both techniques remains very

similar. The efficiency boost with the OLCAO method comes with the type of cal-

culation required. The LCAO method requires a rigorous calculation involving all

atomic states; many of these calculations are integrals that require numerical so-

lutions, such as the exchange-correlation contribution to the Hamiltonian matrix

elements. The OLCAO method requires some matrix manipulation, but these calcu-

lations are simple because the basis functions in Equation 4.32 are linear combina-

tions of Gaussians and possibly polynomials. As stated before, any integration that

involves only Gaussians and polynomials can be done analytically. Such integrations

are quickly and easily accomplished. The advantage of using OLCAO over LCAO

is that the program must do more analytical overlap integrals in order to transform

the basis sets, but in exchange fewer numerical integrals must be done to calculate

the Hamiltonian matrix elements.

The fault with OLCAO comes with the necessary assumption that the core states

on neighboring atoms do not interact. If this assumption is invalid such that Equa-

tion 4.31 fails to hold true, then Equation 4.32 is incorrect. Thus, the success or

failure of an OLCAO method calculation depends upon whether or not the user has

correctly defined a state as ‘core’ or ‘non-core’. For the light elements, the difference

between core and non-core states is clear, but for heavy elements, distinguishing the

nature of the states that fall between the tightly bound core electrons (1s, 2sp) and

the valence shell can be difficult. If an atomic shell falls in this semi-core grey area,

then there are two solutions that one may implement. Firstly, the shell can be la-

beled as core-level. Of course with this case, Equation 4.31 does not hold and all of

the expansion coefficients aiα,jγ for the non-core states must be rigorously calculated
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by solving a system of linear equations. The second option is that the shell is simply

labeled as non-core. If this is the case, Equation 4.31 hold and the expansion coef-

ficients can be calculated using Equation 4.32. However, as more shells are added

to the non-core listing, the Hamiltonian and overlap matrices get larger, which de-

feats the purpose of implementing the OLCAO method. Either option will suffice to

complete the calculation, and the choice is made simply to optimize efficiency.

Unless otherwise stated, much of the information and many of the equations seen

in this chapter were adapted from the work of R. M. Martin [39].
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Part II

Experimentation Results and

Discussion

63



Chapter 5

Experimental Results and Analysis

The spectra for LiFePO4 and FePO4 were measured at Beamline 8.0.1 at the

Advanced Light Source, Lawrence Berkeley National Laboratory [40]. The experi-

mental geometry is such that the spectrometer is fixed at a 90◦ angle with respect to

the incoming radiation. The sample plate can be rotated to reach angles of incidence

within the range of almost 0◦ to nearly 90◦. This is very important for studies of

single crystals, as the energy required to excite an electron will depend upon which

symmetry axis is parallel to the momentum vector of the incident photon. However,

LiFePO4 and FePO4 are powders. Thus, the plate is simply rotated to optimize the

amount of flux entering the spectrometer.

The resolution of the incident x-rays is controlled by the monochromator slits;

they were set to have a resolving power E/∆E ≈ 4000 while measuring the XAS

spectra. However, the slits had to be opened for the RIXS experiment, such that

the resolution of the monochromator was reduced to E/∆E ≈ 700. This was done to

increase the flux impinging on the sample. As explained in Chapter 3, the probability

of a radiative decay occurring to refill the core hole is very small compared to that

of the competing Auger decay process. Therefore, more incident radiation flux must

be allowed to pass through the monochromator to produce many more core holes so

that one may see a sufficiently high signal-to-noise ratio from the emitted photons.

The resolution of the emitted x-rays is controlled by the spectrometer, which has a

resolving power E/∆E ≈ 500 for this experiment.

The Fe L2,3 XAS spectra for LiFePO4 and FePO4 are displayed on the top portions

of Figure 5.1(a) and Figure 5.1(b), respectively. They have been normalized to the

incident photon flux, I0, as described in the X-ray Absorption Spectroscopy section.
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The RIXS spectra for the samples, measured while exciting through the entire Fe

L2,3 threshold, are displayed on the larger bottom portions of the same figures. Each

RIXS spectrum is labeled with its excitation energy. Also, the positions of the

excitation energies are displayed as arrows in the top portions of the Figure where

the XAS spectra are displayed, so that one may see where the excitation energies fall

with respect to the L2,3 XAS spectra. The two figures also display non-resonant XES

spectra, which are the 731.9 eV and 728.4 eV spectra in the LiFePO4 and FePO4

panels, respectively. All XES and XAS spectra have been calibrated with respect to

characteristic emission and absorption energies of the metallic Fe reference sample

used in Ref. 41.

Figure 5.1: XAS and RIXS data measured from (a) LiFePO4 and (b)
FePO4 displayed on the emission energy axis. Each RIXS spectrum is
labeled with its excitation energy. The XAS spectrum for each com-
pound is accompanied by arrows; each indicates the excitation energy
for a RIXS spectrum.
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The emission spectra displayed in Figure 5.1 show the evolution of scattering

into regular fluorescence. As explained previously, the hallmark difference between

RIXS and XES spectra is that RIXS peaks track with the excitation energy, whereas

XES peaks remain at a constant energy. RIXS is the process which dominates for

excitation energies that are on-threshold. As can be easily seen in the LiFePO4 data,

the five spectra that have excitation energies near the L3 threshold, namely the 705.7

eV, 707.1 eV, 708.3 eV, 709.7 eV, and 711.5 eV spectra, are each characterized by

peaks that track with the excitation energy. However, the 715.6 eV spectrum, which

is the first spectrum to be measured off the L3 threshold, is also the first spectrum

to show the peak at about 705 eV. This feature remains a constant in all spectra

measured at higher energies. This peak represents the refilling of the 2p3/2 core hole

with an electron from the occupied 3d band through the non-resonant XES process.

There is a similar trend in the FePO4 spectra, however, the transition from scattering

to fluorescence can be first seen in the 711.1 eV spectrum. This transition is much

closer, energetically speaking, to the L3 edge for FePO4 than for LiFePO4.

5.1 Voigt Function Fitting

The purpose of this study of LiFePO4 and FePO4 is to understand the electronic

structures of the compounds and to determine which of the several theoretical mod-

els presented in the literature best describes each of them. The technique that

would best provide the desired information is resonant inelastic x-ray scattering.

Recall from the discussion in the Experimentation Techniques chapter that inelastic

scattering peaks give unique insight into the electronic structure of a compound be-

cause the characteristic energy loss of a given scattering peak represents the energy

separation of the maxima in the occupied and unoccupied states involved in the net

transition. With this understanding in mind, the structure in RIXS spectra can be

directly compared to theoretical density of states (DOS) calculations without simu-

lating the full RIXS lineshape. Another benefit of RIXS is that there is no core hole.

Although one excites the atomic site at a core threshold, RIXS is a one-step process
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that involves the valence and conduction bands. This property is a big advantage,

as it provides the desired chemical selectivity but with no overlap of the core and

valence states that is typical for core-level excitations involving the d-shell. Thus,

the ground state DOS remains a valid description of the Fe site throughout the RIXS

excitation event.

For transition metals, RIXS is a powerful technique for studying the electronic

structure of a compound, as it allows one to directly probe the structure of the valence

and conduction band DOS. However, gleaning specific information directly from

RIXS spectra can be difficult because of the low resolving power of spectrometers

such as the one found on Beamline 8.0.1. With a resolving power of E/∆E ≈ 500,

the spectrometer can only reliably resolve features that are greater than 1.3 eV

apart for photons in the energy range around 710 eV. This resolution is insufficient

to properly compare experimental spectra to the DOS presented in the literature,

as low intensity features will simply be subsumed by their more intense neighbors,

thereby eliminating the necessary level of detail.

This problem can be overcome to a certain extent by fitting Voigt functions to

the experimental spectra. This analysis technique has not been done previously with

RIXS spectra because of the inherently low flux typically associated with RIXS ex-

periments. The low signal-to-noise ratio typically makes finding an unambiguous,

reproducible fit difficult. During this type of analysis, a linear combination of Voigt

function is used to simulate the experimental spectrum; each Voigt function repre-

sents an inelastic scattering transition at a certain energy. Voigt peak fitting allows

for the identification of all constituent energy loss features that overlap to form the

measured RIXS spectrum. Voigt peaks were chosen because a Voigt function is the

convolution of a Gaussian peak and a Lorentzian peak. The mathematical form of

the normalized Voigt profile is described as follows:
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V (x;σ, γ) =

∫ ∞

−∞
G(x′;σ)L(x− x′; γ)dx′, (5.1)

where

G(x;σ) =
1

σ
√

2π
exp

(
−(x− x0)

2

2σ2

)
(5.2)

L(x; γ) =
γ

π [(x− x0)2 + γ2]
(5.3)

G(x;σ) is the Gaussian component with full width at half maximum (FWHM) =

2.354σ, and L(x; γ) is the Lorentzian component with FWHM = 2γ. The function is

centered at x0. The Gaussian part of the Voigt function represents any broadening

due to instrumental effects, while the Lorentzian part will simulate any broadening

due to lifetime effects inherent to the system under study. The spectra chosen for

the Voigt function fitting were excited near the L3 edge; these spectra were the 705.7

eV, 707.1 eV, 708.3 eV, 709.7 eV, and 711.5 eV for LiFePO4 and 707.1 eV, 708.3

eV, and 709.7 eV for FePO4. This edge is preferable for fluorescence experiments

because non-radiative decay processes, such as Coster-Kronig transitions, are not as

significant when exciting on the L3 edge as when exciting on the L2 edge [42]. Before

Voigt functions were fit to the RIXS spectra, all were smoothed using a second-order

Savitsky-Golay function to suppress noise. The experimental spectra are displayed

in Figure 5.2 before any manipulation, other than to subtract the excitation energy.

Figure 5.2(a) shows the LiFePO4 spectra, whereas Figure 5.2(b) shows those spectra

from FePO4.

The Savitsky-Golay method for suppressing noise involves fitting by least squares

regression of a small subset of data to a polynomial of order n. The Savitsky-Golay

method is implemented by running a ’window’ of 2m+1 points over the data, where

the point in the center of the window is found after fitting the polynomial to the data

within the window. In other words, after a polynomial is fit to the data using least

squares regression, the central data point is fit to the polynomial. In this sense, the

Savitsky-Golay method is no different from other polynomial regression algorithms,

however the Savitsky-Golay approach allows for much less laborious calculation by

the way that Savitsky and Golay ordered the data set [43]. This noise suppression
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method was chosen over others methods because it preserves peak information much

better than, for example, a moving average smoothing function. A moving average

smoothing method simply sets the central data point to the average calculated using

the points within the window. Such a method is superior to the Savitsky-Golay

smoothing method for noise suppression in low signal-to-noise ratio situations, but

inferior for preserving real peak information, such as peak height and width. This

difference in performance between a moving average noise filter and a Savitsky-Golay

filter becomes more apparent when the peaks within a spectrum are very sharp. In

the case of this analysis, it was more important to preserve spectral features than

suppress noise completely.

Figure 5.2: RIXS spectra on the energy loss scale for a) LiFePO4 and

b) FePO4. The solid line represents the excitation (elastic) energy. In

a), the dotted line labeled -9.1 eV is the approximate center of a broad

inelastic feature common to all LiFePO4 spectra.

69



The RIXS spectra displayed in Figure 5.2 are displayed on the energy loss scale.

The translation between the emission energy scale shown in Figure 5.1 and the energy

loss scale is accomplished by subtracting the excitation energy from the energy scale.

This will put the elastic peak at 0 eV, and and all inelastic features will be at negative

energies. The spectra were shifted to the energy loss scale because it allows one to

see those spectral features that remain at a fixed energy distance from the elastic

peak. Recall from the comparison of RIXS and XES in Chapter 3 that inelastic

scattering features are characterized by the energy of the net transition. This net

transition allows one to glean information about the valence and conduction bands.

The Voigt function fitting analysis was performed using the following hierarchy

of four criteria. Firstly, the fitted curve must reproduce the experimental curve as

closely as possible. This must be verified mathematically by minimizing the χ2-value,

which represents how much the experimental spectrum differs from the fit. However,

interpreting the minimized χ2-value is not a simple task, as this number takes into

account the number of degrees of freedom available during the fitting process. A fit

that utilizes only three Voigt functions as its basis set may have a lower χ2-value

than a fit that uses six Voigt functions, even though the second fit more accurately

reproduces the features of the experimental spectrum. Thus, the quality of a fit must

be verified visually. This is accomplished by inspecting the curves to see how well

the sum of Voigt functions reproduces the structure of the experimental spectrum.

Secondly, all Voigt functions used in the fit must maintain a reasonable FWHM

with respect to the other peaks in the fit and the experimental spectrum. This is

especially necessary for the Gaussian component of the Voigt functions, because the

Gaussian component represents instrumental broadening. Since the same instrument

was used to record all spectra, with no changes to the resolving power of either the

monochromator or the spectrometer, the instrumental broadening should in principle

be constant for all Voigt functions in the fit. This criterion is necessary to represent

the physics of the instrumentation, but it is also meant to prevent the addition of

extremely narrow or wide peaks that may be mathematically beneficial in reducing

the χ2-value of the fit, but are physically unreasonable.
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Thirdly, the fit must be reproducible within a certain error. Each time the fitting

program is given the same number of peaks with roughly the same centers and

FWHM values as inputs, the program should produce the same fit, regardless of the

quality of the fit. If this is not the case, there are too many degrees of freedom

available to the fitting program. In other words, the amount of information available

to the fitting routine is redundant, and the experimental spectrum is over-represented

by the number and/or position of Voigt peaks.

Lastly, there is the constraint that, if possible, the Gaussian peaks that constitute

a given fit should appear in the fits of adjacent spectra. This last criterion is based

in the idea that the Voigt functions represent real inelastic transitions. It stands to

reason that the same transition will appear in multiple spectra, although the peak

intensity will change depending on the proximity of the excitation energy to the

resonant energy of that excitation path. This rule is not set in stone, of course.

The LiFePO4 fits, for example, show an inelastic scattering event of -2.4 eV energy

loss in the 707.1 eV spectrum only. Whether one sees the same scattering event

in multiple spectra is strongly affected by many properties, including the lifetime

of the intermediate state. A small FWHM (long lifetime) of the intermediate state

means that there is a limited range of excitation energies over which the atom may

be efficiently excited through the transition in question. If one has to choose between

different fits to describe a given experimental spectrum, it is preferable to choose the

fit which has some similar peaks to those of its neighboring spectra.

The process to find the proper fit for a RIXS spectrum amounts to a delicate

balancing act between different priorities. The fitting process for LiFePO4 was rel-

atively simple because the spectra are not as complicated. However, FePO4 was

another matter entirely. The fits that were eventually chosen for the 707.1 eV, 708.3

eV, and the 709.7 eV spectra are not the only ones that can reproduce the exper-

imental spectra as accurately as is seen in Figure 5.3. However, the fits that are

displayed are the only fits that satisfy all criteria, especially the second and fourth

criteria, simultaneously. The Voigt function fits shown in Figure 5.3 are unique, in as

much as they are the only fits to reproduce the spectra and fulfill all of the criteria.
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Finding the perfect fit for a RIXS spectrum is not as simple as finding the optimal

χ2-value.

The results of the Voigt function fits are displayed in Figure 5.3 and Tables 5.1

and 5.2. Figure 5.3(a) and Table 5.1 pertain to LiFePO4, and Figure 5.3(b) and Ta-

ble 5.2 concern FePO4. In Figure 5.3, each frame in the figure displays the smoothed

experimental spectrum of interest (dotted line), the final fit (solid line), the indi-

vidual Voigt peaks that constitute the fit, and a difference line that quantifies the

difference between the smoothed experimental spectrum and the fit. The difference

line is the thicker, dark line displayed at the bottom of each frame. Tables 5.1 and

5.2 give more precise data for every peak in each fit for LiFePO4 and FePO4, respec-

tively. In the Tables, the center, the total area, and the Lorentzian, Gaussian, and

total FWHM are displayed for each peak in a given fit. The total FWHM is simply

the FWHM of the peak that is the superposition of the Lorentzian and Gaussian

components.
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Figure 5.3: Peak fitting analysis results for each of the seven selected
spectra from (a) LiFePO4 and (b) FePO4. In each of the panels, the
smoothed experimental spectrum is represented by the scatter plot,
shown by the dots. Each experimental spectrum is simulated by a sum
of Voigt functions; the sum is shown by the dark black line running
nearly through each of the dots. The Voigt functions that add together
to make the simulated line are the lighter curves beneath the experi-
mental spectra. Finally, the very dark line at the bottom of each panel
is a difference between the fitted and measured lines.
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Table 5.1: Peak data for LiFePO4

Peak data: 711.5 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -12.20 7.00 7.00 0.00 278

2 -10.24 5.64 5.64 0.00 315

3 -6.89 1.68 1.14 0.88 656

4 -5.92 1.78 1.01 1.18 1459

5 -3.61 1.93 1.24 1.11 2188

6 -2.52 1.87 1.22 1.04 2294

7 -0.88 1.40 0.82 0.90 806

8 0.00 1.20 1.20 0.00 213

9 7.45 7.67 7.67 0.00 483

Peak data: 709.7 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -9.62 6.16 3.67 3.87 3315

2 -5.47 1.98 1.77 0.38 2579

3 -3.68 2.31 1.85 0.79 3704

4 -3.07 2.13 1.59 0.90 4229

5 -2.03 1.96 1.63 0.57 3806

6 0.00 1.94 1.94 0.00 4312
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Peak data: 708.3 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -10.96 3.94 0.33 3.91 1916

2 -8.88 2.93 2.23 1.19 1401

3 -5.67 1.99 1.64 0.62 818

4 -3.69 1.78 1.16 1.00 4713

5 -2.61 1.90 1.46 0.74 5373

6 -0.99 1.75 1.37 0.64 6072

7 0.00 1.80 1.80 0.00 7090

Peak data: 707.1 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -8.64 4.91 2.37 3.70 3806

2 -2.71 1.95 1.70 0.44 8506

3 -1.23 2.26 1.59 1.10 6436

4 0.00 1.74 1.74 0.00 7650

Peak data: 705.7 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -10.35 2.84 0.00 2.84 195

2 -8.07 2.91 2.46 0.80 320

3 -3.02 1.76 1.46 0.54 112

4 -1.13 2.19 1.35 1.32 701

5 0.00 1.59 1.59 0.00 1046

6 6.56 7.34 7.34 0.00 278

7 14.19 8.00 8.00 0.00 584
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Table 5.2: Peak data for FePO4

Peak data: 709.7 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -12.89 6.71 6.71 0.00 684

2 -10.90 2.96 0.00 2.96 508

3 -9.47 2.25 0.00 2.25 682

4 -7.89 2.10 1.18 1.40 1590

5 -6.50 2.08 1.18 1.38 3587

6 -5.29 2.25 1.45 1.28 3737

7 -3.96 1.91 1.14 1.20 4126

8 -2.61 2.00 1.55 0.76 3370

9 -0.93 1.35 1.34 0.02 1366

10 0.00 1.49 1.49 0.00 2771

Peak data: 708.3 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -11.84 4.68 3.36 2.18 634

2 -9.90 2.90 2.38 0.90 770

3 -7.97 2.15 1.37 1.23 1064

4 -6.70 1.87 1.19 1.09 1799

5 -5.61 1.72 1.07 1.03 2490

6 -4.57 1.77 1.20 0.93 2438

7 -3.35 1.80 1.33 0.79 1814

8 -1.90 1.67 1.37 0.52 1954

9 -0.88 1.51 1.26 0.45 3150

10 0.00 1.32 1.32 0.00 1681
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Peak data: 707.1 eV spectrum

Peak Total Gaussian Lorentzian Integrated

Peak No. Center FWHM FWHM FWHM Area

1 -9.99 4.59 0.00 4.59 1004

2 -8.12 2.34 1.20 1.70 471

3 -6.50 1.63 1.16 0.79 572

4 -4.95 1.64 1.23 0.70 890

5 -3.69 1.64 1.17 0.77 1537

6 -2.83 1.76 1.19 0.93 1411

7 -1.60 1.66 1.24 0.71 1450

8 -0.76 1.30 1.01 0.50 2496

9 0.00 1.09 1.09 0.00 1077

Recall that one of the guiding criteria used in the creation of the displayed Voigt

function fits is that the Gaussian FWHM of each peak should be equal to all other

peaks within the fit. In the so-called central region, i.e. that region less than 7.0-

8.0 eV below the elastic peak for LiFePO4 and FePO4, this criterion was achieved.

Considering the 707.1 eV, 708.3 eV, and 709.7 eV spectra for LiFePO4, the central

region had an average Gaussian FWHM of 1.63 eV, with a standard deviation of

0.21 eV. For FePO4, the average was 1.25 eV with a standard deviation of 0.14 eV.

However, outside of the central region, the Voigt functions do not exhibit such well-

ordered behavior. These Voigt functions include those that are used to describe the

broad, high-energy loss features in LiFePO4 and FePO4. The Gaussian FWHM of

these features were inconsistently reported among fitting results, which is attributed

to the fact that the statistics in the region of -15.0 eV to -8.0 eV loss are too poor

for reproducible results to be achieved.

There are also peaks on the positive side of the elastic peak in the 711.5 eV and

705.7 eV LiFePO4 spectra. Information about these peaks is shown in Table 5.1

for completeness, but the peaks are not displayed in Figure 5.3(a) because they are
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not relevant to the discussion of the RIXS features in LiFePO4. These are not real

inelastic features due to light scattering from LiFePO4. It is likely that these features

are the result of a systematic, instrumentation effect, a problem that is eliminated

in the 707.1 eV, 708.3 eV and 709.7 eV spectra because they were measured at a

different time, and they were measured over a longer time interval. These three

spectra exhibit better statistics and do not show any sign of these positive side

peaks. The unknown contribution of this instrumentation effect is the reason why

the FWHM of the Voigt functions from the 711.5 eV and 705.7 eV spectra are not

included in the FWHM average for LiFePO4.

With the exception of the elastic peaks, the Lorentzian FWHM was not nearly

so consistent among the well-defined central region peaks for both materials. Not in-

cluding the elastic peaks, the Voigt functions for LiFePO4 showed a mean Lorentzian

width of 0.72 eV, with a standard deviation of 0.23 eV; for FePO4, the mean was

0.91 eV with a standard deviation of 0.39 eV. However, consistency of width for

the Lorentzian component for energy loss peaks is not nearly so strict a guideline

as for Gaussian broadening. Whereas Gaussian broadening defines the systematic

instrumental effects, which should be identical for all inelastic scattering events, the

Lorentzian component describes the lifetime broadening. This property may vary

considerably from peak to peak depending on the stability of the virtual intermediate

and final states that make up the net transition. In sharp contrast to the inelastic

features, the Lorentzian broadening of every elastic peak was non-existent for both

materials. This is to be expected; a large part of the elastic peaks is simply reflected

radiation, which has no lifetime broadening.

Experiment and theory are compared in Figure 5.4. Figure 5.4(a) and 5.4(b) dis-

play the calculated ferromagnetic Fe spin-polarized partial density of states (PDOS)

for LiFePO4 and FePO4. Spin-polarized DOS are displayed as a function of electron

spin; the DOS for spin-down electrons is displayed pointing down from the line at O

1/eV. The spin-down DOS, conversely, points up from the O 1/eV line. The Figure

displays several arrows; these represent 3d inner-shell electronic transitions. During

a transition, an electron is scattered from the states indicated by the left arrowhead
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to the states represented by the right arrowhead. The arrow lengths are the energy

values of the centers of the peaks that constitute the Voigt function simulations

shown in Figure 5.3.

Note that each arrow only denotes a possible transition with the corresponding

energy loss. In some cases, such as the 3.0 eV energy loss feature, there are four

possible combinations of initial and final states that can occur, and any or all of the

displayed transitions can contribute to the peak measured in the experimental RIXS

spectrum. Information concerning the relative weighting of the transitions with the

same energy loss cannot be obtained using this method.

The analysis clearly shows that the calculated density of states has accurately

predicted the relative energy positions of the occupied and unoccupied states. The

power of the Voigt function fitting technique is shown through the discovery of

the ≈-0.95 eV and ≈-1.2 eV features, which otherwise were not detectable. With a

resolving power of E/∆E ≈ 500, the spectrometer could only resolve peaks that were

separated by energies greater than about 1.3 eV, thus the -1.2 eV and -0.95 eV energy

loss features were not visually differentiable from neighboring peaks. However, the

inclusion of these peaks was necessary, for both a proper simulation of the spectral

lineshape and a reasonable Gaussian FWHM for the elastic peak.

Despite the limited resolving power of the spectrometer, it is nevertheless obvious

that the FePO4 RIXS spectra are broader than LiFePO4 spectra with the same ex-

citation energy, in the sense that the FePO4 RIXS spectra are spread over a greater

energy range. The greater broadness of the FePO4 RIXS spectra results from the

delocalization of the Fe valence electrons due to greater overlap and hybridization of

the Fe 3d states with neighboring O 2p states, as Tang et al. first predicted [17]. The

greater covalency is due to the inductive effect of the phosphorous sites as suggested

by Padhi et al. [1], an effect in which the Fe and P sites compete with one another for

the greater share of the bonding with their mutual oxygen neighbors. The stronger

covalent bonding and greater mixing leads to lessened degeneracy of the Fe valence

states, which separates the Fe 3d states. This creates more local maxima within

the Fe 3d occupied states, which allows for many possible scattering transitions in
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Figure 5.4: Fe 3d PDOS calculations and assignment of energy losses
found during Voigt peak fitting for (a) LiFePO4 and (b) FePO4. Note
that the DOS was broadened by 0.3 eV in both cases to make it easier
to see where lie the points of greatest density.
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the FePO4 RIXS spectra, as is displayed by the greater number of peaks uncovered

by Voigt function fitting. This rich structure, when measured with insufficient res-

olution, blends together to produce the broader lineshape that is characteristic of

FePO4.

The lessened degeneracy of the FePO4 Fe PDOS is most likely the reason why the

Voigt functions in the FePO4 fits have smaller FWHM than their LiFePO4 counter-

parts. Recall that the FePO4 spectra had an average Gaussian FWHM of 1.25 eV,

which is very close to the resolution of the spectrometer, but the LiFePO4 average

Gaussian FWHM was 1.63 eV. The greater energy separation of the states in the

FePO4 3d band means that every inelastic feature in the RIXS spectra represents

only one transition. However, in LiFePO4, the degeneracy is greater and the states

are more difficult to distinguish, meaning that each inelastic feature is the average

of several transitions that are separated by less than 0.1-0.2 eV. Peaks that are sep-

arated by such a small energy value cannot be differentiated in the Voigt function

fitting process, so the ‘average’ peak that describes the entire group has to be wider

to cover all transitions. Unfortunately, at present it is impossible to differentiate

these closely degenerate states from one another. A RIXS spectrometer that can

resolve features that are 200 meV apart would require a resolving power somewhere

between 3500 and 4000 on the Fe L2,3 absorption threshold. There are currently

no soft x-ray spectrometers that have this capability, although advances in grating

manufacturing techniques and better photon sensor technology will probably change

this in the near future. In particular, the spectrometer designed by Moewes and

coworkers promises to show unprecedented resolution [44].

There are other transitions predicted by the DOS that are not seen in any of the

RIXS spectra. This is especially noticeable for LiFePO4, as there are many obvious

combinations of peaks in the occupied and unoccupied DOS that could give rise to

new scattering events. Regardless, the displayed DOS calculations have proven to

be an accurate representation of LiFePO4 and FePO4, in the sense that while not

all predicted transitions are seen in the RIXS spectra, all experimental energy loss

features can be identified in the DOS. It is likely that these other inelastic scattering
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events do exist, but are not sufficiently probable to be a significant part of the

spectrum. At this point in the analysis of LiFePO4 and FePO4, the displayed RIXS

results support the idea that one does not have to explicitly account for the effects

of electron correlation when calculating the band structure of these materials.

5.2 Analysis

The Voigt function fitting analysis routine has given much information concerning

the transitions that lay unresolved within the LiFePO4 RIXS spectra. However, there

are areas that need to be explored further. Firstly, there is the problem of the broad,

flat feature seen at approximately -9.1 eV energy loss in all of the LiFePO4 spectra.

This feature was not conveniently explained by matching energy loss features to d-d

transitions in Figure 5.4, and thus this feature at -9.1 eV warrants further investi-

gation. Secondly, there is the problem of spin flipping. All of the unoccupied Fe

3d DOS is spin-down, whereas the vast majority of electrons in the occupied states

have spins of the opposite orientation. Inner-shell scattering of 3d electrons therefore

violates the spin selection rule, which states that ∆S = 0 in all dipole-allowed tran-

sitions that obey Russells-Saunders coupling. Both of these issues will be discussed

presently.

5.2.1 High Energy Loss Features

In the LiFePO4 experimental spectra, there is a broad feature centered at approxi-

mately -9.1 eV energy loss, as seen in Figure 5.2(a). The center of the feature does

not, in fact, remain at -9.1 eV in all of the five displayed RIXS spectra. In the 705.7

eV spectrum, this feature is jointly represented by the -10.4 eV and -8.1 eV Voigt

functions. This energy loss feature is modeled by the peak at -8.6 eV in the 707.1

eV spectrum, by the peaks at -11.0 eV and -8.9 eV in the 708.3 eV spectrum, by the

peak at -9.6 eV in the 709.7 eV spectrum, and finally by the peaks at -12.2 eV and

-10.2 eV in the 711.5 eV spectrum. Despite its wandering center, however, the broad

features at high energy loss in all of the RIXS spectra will be jointly referenced by the
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term ‘-9.1 eV feature’, so as to avoid confusion. It is obvious by inspection that the

feature is much wider than the other energy loss features shown in Figure 5.3(a) and

grows ever wider at higher excitation energies. At 709.7 eV, the Voigt function used

to model the energy loss feature has a total FWHM of 6.2 eV, which is approaching

threefold that of the other peaks. This width covers most of the Fe valence band.

Inner-shell scattering transitions have the highest probability of occurring during

on-threshold XES experiments in the soft x-ray energy range [29]. However, it is

highly improbable that this feature is due to one 3d inner-shell scattering transition,

because the character of this feature deviates so strongly from all the other scattering

transitions. As explained earlier, the Gaussian FWHM for all features measured at

the same time within the same spectrum must be reasonably close to identical, as

all of the peaks are being measured by the same equipment. The -9.1 eV feature

does not adhere to this constraint at all. Thus, this feature cannot simply be one

peak, however it can certainly be the superposition of many less intense transitions

that cannot be individually resolved. Even should all of the smaller peaks hold to

the Gaussian FWHM constraint, the peak that results from their superposition need

not adhere to the same constraint. At higher excitation energies, these transitions in

the LiFePO4 spectra become more numerous as the greater photon energy accesses

a greater number of transitions, thereby increasing the overall width of the feature.

It is highly unlikely that the broad -9.1 eV feature is due to a singular 3d-3d

inner-shell transition, but rather a group of tightly spaced transitions that cannot

be easily resolved. There are two possibilities that are the most obvious. Either the

feature is due to several 3d inner-shell transitions, or that the feature is due to some

kind of charge transfer mechanism. Figure 5.5 shows the PDOS for the Fe, P, and O

sites in LiFePO4. The DOS in the figure have not been differentiated according to

spin; the spin-up and spin-down DOS for all three sites have been added together to

lessen the complexity of Figure 5.5. The purpose of the Figure is to show which states

could possibly be involved in making the -9.1 eV feature. There are two different

colors; the green box highlights the near-Fermi region that is chiefly dominated by

the Fe 3d states. There are some contributions from O and P here, but they are
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insignificant in comparison. The red box, on the other hand, highlights unoccupied

bands that are mostly due to p and d states originating from the ligand sites. During

a transition, an electron may be scattered from the occupied states on the left of the

Fermi edge to the unoccupied states to the right of the Fermi edge (indicated by 0

eV), provided that the occupied and unoccupied states are highlighted by the same

color of box. So, for example, an electron may be promoted from a state in the green

box on the left to the green box on the right during a RIXS event.

The sizes of the boxes were difficult to approximate, as they had to encompass

the range of states that could reliably be expected to contribute to the feature. This

is a difficult prospect considering that the tightly-spaced peaks cannot be resolved

to provide information on where the centers of the peaks sit on the energy axis.

The sizes of the boxes were estimated as follows. Assuming that the many peaks

that constitute the -9.1 eV feature have similar Gaussian and Lorentzian FWHM to

the rest of the peaks in the LiFePO4 Voigt function fits, albeit with much smaller

intensities, then there should not be a peak within ≈1 eV of the ends of the feature.

The larger peaks within the fits do not go to zero until 2.5 - 3.0 eV away from the

center, depending on the height of the peak. This particular feature of the Voigt

peaks is a consequence of their Lorentzian component, which is characterized by a

very sharp peak and a very long tail. Thus, for a very small peak, it seems reasonable

that it would go to zero within 1 eV of the center. Judging where the -9.1 eV feature

goes to zero is difficult, but inspection suggests that the peak vanishes around 6

eV away from the center. According to the argument above, all peaks must reside

within a distance of 5 eV of -9.1 eV (within 1 eV of the edges), which would make

the outermost transitions around -14.1 eV and -4.1 eV energy loss.

Limits on how much energy a photon may lose completing a net RIXS transition

were then defined. With this information in hand, the boxes on the left side of the

Fermi level were drawn according to the following guidelines. Firstly, the occupied

DOS box must be centered at -9.1 eV with respect to the center of the unoccupied

DOS to which electrons are scattered. The center line of a box is shown by the thick

vertical line that is the same color as the box itself. Two lines of the same color must
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Figure 5.5: Phosphorous (top), iron (middle), and oxygen (bottom)
total PDOS for LiFePO4. The DOS were broadened with a Gaussian
profile with FWHM of 0.2 eV simply to show structure. Groups of
transitions are divided up according to color. The occupied states in
the left green slashed box may scatter to the green box in the occupied
states; likewise, the occupied states in the left red slashed box may
scatter to the unoccupied states in the right red slashed box.

be separated by 9.1 eV. Secondly, the energy separation between the low-energy (left)

side of the occupied (left) box and the high-energy (right) side of the unoccupied

(right) box represents the highest possible energy loss transition, and this must be

approximately 14 eV. Lastly, the energy separation between the high-energy (right)

side of the occupied (left) box and the low-energy (left) side of the unoccupied (right)

box represents the lowest possible energy loss transition. This is approximately 4

eV. Given that the unoccupied boxes are already defined, it is a simple matter to

draw the boxes over the occupied states.

Figure 5.5 shows the range of occupied states from which electrons may scatter

and the range of unoccupied states to which the electrons may scatter to make the

-9.1 eV feature. There are two possibilities that are immediately obvious. The first

is that the -9.1 eV feature consists of simple d-d inner-shell scattering, shown by

the green boxes. Although there are multiple peaks in the area highlighted by the
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left green box which could generate some spectral weight around -9.1 eV loss, there

is a major problem with assigning the -9.1 feature wholly to scattering from these

states. There is no reason to expect that the scattering processes highlighted by the

green box transitions should behave any differently than any other d-d transition

seen thus far, so one should expect to see structure commensurate with the lower

energy loss features. After all, the electrons in the occupied states highlighted by the

left green box are scattering to the same unoccupied states as every other electron

participating in a d-d scattering transition. However, the -9.1 eV feature is largely

featureless (with the exception of the 705.7 eV spectrum seen in Figure 5.3), in stark

contrast to the sharp features seen in the unoccupied states. It would seem that there

is another process occurring at -9.1 eV energy loss that must be understood. That

being said, however, there is undoubtedly some d-d scattering happening around -9.1

eV, they merely have such low intensity that they contribute no structure to the -9.1

eV feature.

The fact that the d-d transitions around -9.1 eV have such low intensity strength-

ens the earlier argument that the -5.6 eV, -5.9 eV, and -6.9 eV features are the result

of scattering from the small spin-down occupied DOS. The aforementioned three

RIXS transitions experience an increased probability to scatter because the electron

requires no spin-flip, thus eliminating the need to couple to a magnon. However, the

spin-up states in the vicinity of these spin-down occupied states, shown in Figure 5.3,

still take part in net RIXS transitions, just at a much reduced probability, and form

part of the low energy loss tail of the -9.1 eV feature. Therefore, d-d inner-shell

scattering may be part of the reason for the -9.1 eV feature, but more investigation

is necessary.

A commonly held practice is to assign the -9.1 eV feature as a charge transfer

peak, with an electron transferring between the Fe site and one of the surrounding

O sites. There are two possibilities. The first is that an electron transfers from the

negatively charged anion to the cation. In the case of LiFePO4, the cation is the

Fe site and the anion is one of the O ligands. Proving or disproving this particular

process is however beyond the scope of this thesis, as it involves a full simulation of
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the RIXS spectra using the Kramers-Heisenberg formula. Charge transfer cannot be

accurately understood with the DFT calculations displayed earlier, as charge transfer

is not a charge neutral excitation, in the sense that the charge density is changed

(in principle) in the vicinity of the transfer. This alters the ground state electron

charge density, upon which the DOS calculations and everything else in DFT theory

are based. That being said, Augustsson et al. simulated to a reasonable degree

of accuracy the XAS spectrum using the crystal field multiplet program of Thole,

and they did not need to include charge transfer effects [45]. Their RIXS simulations

were not as successful, suggested that the density of states calculated using an atomic

Hamiltonian, even if it includes crystal field effects, is nevertheless insufficient for

an accurate portrayal of the LiFePO4 crystal. XAS spectra for transition metals are

easier to calculate than RIXS spectra because the strong overlap of the core hole and

valence wavefunctions changes the local charge density environment to such a degree

that many subtle characteristics of the crystal are overpowered. This, of course, does

not happen in the less drastic one-step RIXS process that has no core hole. It should

be also noted that the experimental spectra of Augustsson et al. does not show the

-9.1 eV feature seen in all of the LiFePO4 spectra, and thus he did not present an

explanation for its presence.

Although proving or disproving that the -9.1 eV feature is due to charge transfer

is beyond the scope of this thesis, the argument is made here that charge transfer of

the type mentioned above is not possible, due to the very nature of resonant inelastic

x-ray scattering. Charge transfer satellites in RIXS spectra come about as the result

of mixing of two configurations, the ground state and the configuration wherein an

electron has transferred from a ligand to the metal ion. In the case of LiFePO4,

where the Fe site has a charge of 2+ in the ground state, the two configurations that

would mix are 3d6 and 3d7L, where L represents a ligand valence hole. Although this

charge transfer can happen spontaneously if the energies of the configurations are

within thermal energies, this is often not the case. The ground and charge transfer

configurations can differ by several eV. Therefore, the charge transfer can only occur

when an x-ray photon has created a core hole. Core hole-induced charge transfer is
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a well-documented phenomenon, especially in the rare earth oxides [46]. However,

in the case of Moewes et al., the charge transfer was observed in the non-resonant

fluorescence spectrum. The -9.1 eV spectrum is a RIXS event. As discussed earlier,

there is significant difference between RIXS and fluorescence, namely that resonantly

scattered photons describe the net transition between initial and final states, whereas

a fluorescence photon is simply the result of a valence electron refilling a core hole.

The probability that a RIXS event will occur is calculated using the Kramers-

Heisenberg formula. In this formula, the dipole matrix elements of the excitation

and relaxation paths are multiplied together, divided by a complex denominator

which is responsible for the resonance effect. When simulating RIXS spectra, the

matrix elements are calculated as two separate steps before they are combined in the

Kramers-Heisenberg formula. Although this is how a RIXS spectrum is simulated,

it can lead to some conceptual problems because it appears as if the RIXS event is

the result of two separate events. This is not the case. A RIXS event is a one-step

process, wherein the core hole is virtual and does not really exist for any purpose

other than simulating the RIXS cross-section. Thus, any charge transfer effects in

the intermediate state that require the presence of a core hole cannot occur.

Another possible charge transfer occurs when an electron skips from an Fe site

to an O site, as a result of orbital hybridization. In this case, the electron follows

the tendency to diffuse from highly localized to delocalized states, where the charge

is spread over a greater volume. This diffusion of electron charge among hybridized

orbitals is one of the ways that electrons conduct through covalently bonded mate-

rials. One of the reasons why highly correlated materials do not conduct well is that

correlated materials do not hybridize strongly due to strong localization effects, and

thus the isolated electrons may not move freely. This type of charge transfer requires

the electron to first be excited to the hybridized unoccupied states. For the purposes

of this thesis, the excitation mechanism is RIXS. Such a charge transfer mechanism

would be described by either the green or the red sets of boxes, because both colors

highlight O unoccupied PDOS, although there are few states under the right green

box. The problem is that there are no Fe 3d states to speak of in the range of 4.0 to
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Figure 5.6: LiFePO4 and FePO4 Fe 3d and 4s spin-polarized PDOS.
The dark lines are the 4s states, while the thinner lines are the 3d
states. The 3d PDOS have been divided by 10 so that the structure
of the 4s PDOS would be easier to see. There are two RIXS net tran-
sitions displayed, one for each of the spin-up and spin-down channels
in LiFePO4. In each case, electrons are scattered from the 3d occupied
to the 4s unoccupied states with the same spin orientation, such that
∆S = 0 in both cases.

10.0 eV highlighted by the right red box. There must be some Fe states hybridized

with O states where the electrons can initially scatter, or there can be no charge

transfer. According to the analysis shown in Figure 5.5, the near-Fermi occupied Fe

states highlighted by the left red box cannot participate in the Fe-O charge transfer.

However, there is another possibility. A RIXS event is the net transition resulting

from virtual core hole creation and annihilation processes, each of which is dipole-

allowed. Therefore, the momentum selection rules for RIXS state that ∆L = 0,±2.

This selection rule allows electrons from the 3d-shell to jump to the 4s-shell; for

Fe2+, this band is mostly empty. Figure 5.6 displays the Fe 3d and 4s PDOS. In this

figure, the spin-up and spin-down states are separated for the 4s and 3d bands.

Figure 5.6 shows the theorized 3d-4s scattering event in LiFePO4. As before

in Figure 5.5, boxes are drawn around the states that are participating in the net

scattering transition. As stated, the 3d and 4s PDOS in Figure 5.6 are separated
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according to spin orientation. The spin-up states will be discussed first. The left

blue box, which highlights the occupied states that are participating in the -9.1 eV

scattering event, was drawn first. It was drawn so that the most dense section of

the LiFePO4 Fe spin-up PDOS was included in the box, which seems logical as it is

in this energy range that electrons will most probably be found. With the left blue

box in the occupied states drawn, the limits of the right blue box must be found.

As before, the right edge of the right box highlighting the unoccupied states was

calculated to be 14.1 eV away from the left edge of the left box; this represents the

maximum possible loss of energy observed in the LiFePO4 RIXS spectra. The left

edge of the right box is 4.1 eV away from the right edge of the left box; this represents

the smallest possible energy loss feature that can be under the broad envelope of the

-9.1 eV feature. Therefore, for the spin-up states, the right blue box covers the entire

spin-up 4s unoccupied states, and the left blue box neatly highlights the densest part

of the spin-up 3d states.

Thus far, the proposed 3d-4s transition in the spin-up channel describes what was

seen in the experimental LiFePO4 RIXS spectra. It then remained to find the center

of the 3d-4s transition. To this end, the centers of gravity (or simply the centroids)

of the Fe 3d occupied PDOS and the Fe 4s unoccupied PDOS were calculated.

Since there are an equal number of states to either side of the centroid, the energy

separating the centroids should reflect the approximate center of the transition in

question as there will be an equal amount of spectral weight to either side of the

center. For the spin-up states, the centroids of the 3d occupied and 4s unoccupied

states highlighted by the blue boxes were calculated. These centroids are represented

by the thick vertical blue lines; the energy separation is shown by the horizontal blue

arrow. As it turns out, the centroids do not correspond to the geometrical centers

of their respective boxes, as both centroids are shifted to deeper energies. However,

the centroids are separated by -9.1 eV, exactly as shown by experiment.

A similar analysis was performed for the spin-down channel, but the results were

not as encouraging. The centroids for the entire 3d and 4s spin-down bands were

calculated, and they are displayed in Figure 5.6 as the magenta vertical lines. How-
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ever, boxes were not drawn to highlight the states involved because the 3d spin-down

band is so very asymmetrical. The states are divided between a sharp, very dense

peak right at the Fermi level and a very broad expanse at low energies; these two

areas are separated by a gulf of about 3.8 eV in which there are no states whatsoever.

This division would certainly be resolved by the spectrometer, so the -9.1 eV feature

would be divided into two features. Given that only one feature is seen, it would

seem that the spin-up channel dominates the 3d-4s scattering channel.

This analysis method deviates from that conducted earlier. When the boxes

were drawn in Figure 5.5, the center of the 3d-4s RIXS feature was assumed to

be the energy separation between the geometric centers of the boxes themselves.

This assumption is inaccurate, as it assumes the DOS under each of the boxes is

symmetrical about the geometrical center of the box. Although inaccurate, the

assumption was sufficient to discuss simply whether scattering among the states

highlighted by the boxes in Figure 5.5 could explain the -9.1 eV feature seen in

the experimental spectra. However, a more accurate description is necessary for the

proposed 3d-4s RIXS mechanism. As it turns out, the 3d-4s RIXS transition survives

the more rigorous analysis. This shows that scattering between the spin-up 3d and

4s states can easily contribute spectral weight to the -9.1 eV feature.

A scattering transition to the 4s states has two attractive qualities to it. Firstly,

it fulfills the RIXS requirement that the angular momentum quantum number change

by 2. Secondly, the 4s shell is a highly delocalized band that is thoroughly mixed

with the high-energy unoccupied O 2p states. This of course allows for a charge

transfer to O, in the sense that the electron is scattered to a band that has O

character as well as Fe character. In fact, this characteristic of the hybridized 4s-

2p unoccupied band is necessary in terms of the relative probability for excitation.

As will be discussed in more depth later, the number of states at a given energy

strongly affects the probability that the states at that energy will be involved in a

photoexcitation process. This is intuitive; the more densely packed the states are

at a given energy, the more likely an electron will be present at that energy. That

being said, the 4s band itself has insufficient density to produce scattering transitions
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that are measurable comparable to 3d inner shell scattering transitions seen at lower

energy loss. The 3d DOS displayed in Figure 5.6 had to be divided by 10 so that

the 4s DOS would be visible in the figure. However, hybridization with the O 2p

states to form an sp band would significantly increase the number of states at the

energies in question. This phenomenon, whereby hybridization of a transition metal

with ligand states increases the intensity of 3d-4s RIXS scattering transitions, has

been observed before by MacNaughton et al. in their study of metallic DNA [47].

A qualitative look at the RIXS spectra for FePO4 suggests that a high energy

loss feature lay within the spectra. However, as mentioned above, the FePO4 spectra

are much broader than that of LiFePO4. This innate broadness made impossible any

retrieval of useful and reproducible results from the Voigt function fits in the high

energy loss areas of the FePO4 spectra.

5.2.2 Magnon-Exciton Coupling

A closer look at the net transition assignments in Figure 5.4 reveals a problem

concerning the intensity of the -5.6 eV loss feature compared to the intensity of the

-3.0 eV loss feature in the LiFePO4 709.7 eV spectrum. In short, the -5.6 eV feature

appears to be too intense in the experimental spectrum. The -3.0 eV feature has

four possible transitions contributing to its strength; in each transition, electrons

are scattered from the densest part of the Fe 3d occupied spin-up PDOS. The -5.6

eV scattering event also has four possible transitions, but the occupied states are

more sparsely populated. The -3.0 eV transition has 360% more occupied states

from which electrons may be scattered, yet the measured -3.0 eV peak is only 64%

more intense than the -5.6 eV peak. Obviously, the RIXS transition probability

matrix elements for the two events are grossly unequal. This inequality is due to

the involvement of the spin-down occupied states that help give rise to the -5.6 eV

energy loss feature.

Strictly speaking, in pure Russells-Saunders coupling the selection rules for RIXS

state that ∆S = 0. Thus, during any scattering event that begins with the 3d

occupied spin-up states, the scattered electron must flip its spin before coming to rest
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Figure 5.7: Conceptual drawing of a magnon propagating through a
crystal. This figure was adapted from the material presented by Ref. 52.

in the spin-down unoccupied states. At finite temperatures, this can be accomplished

via magnon-exciton coupling [48–51]. This concept has been used extensively to

explain the presence of dipole-allowed peaks in optical absorption spectra. These

dipole-allowed peaks should not be present in optical spectra, because of the spin

selection rule ∆S = 0. Optical absorption and RIXS share the same 3d inner-shell

net transition, and like RIXS, dipole-allowed peaks in optical absorption spectra

must also obey the spin selection rule. Magnon-exciton coupling allows the electron

component of the exciton pair to couple with a magnon, thus flipping the spin of the

electron.

A magnon, which is also known as a spin wave, is a quantum of spin that prop-

agates through the crystal with of discrete spin of 1. The wavefront is represented

by the sinusoidal pattern of precession of electron spin about the z-axis within the

crystal. This concept is displayed in Figure 5.7. The figure shows how the electrons

are precessing about the z-axis. The magnon represents how the precession is prop-

agating through the crystal. It should be noted that the precession shows that the

electron is varying from a pure eigenstate of the spin Hamiltonian, but this is not

the case. The spin state of the electron, if it is sampled, will either be spin-up or

spin-down. The variation from straight up or down in the figure is a graphically

illuminating, if somewhat misleading, way to show that the spin state of the electron

is a linear combination of the pure 1/2 and -1/2 states.

At room temperature, the magnon can be a randomly generated event from heat-

induced fluctuations in the spin orientation of an electron. In antiferromagnetic

systems, however, the magnon can be deliberately produced through interaction of

the magnetic atom being excited by the incoming radiation and another magnetic
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atom on a neighboring anti-parallel magnetic plane. Either way, transitions that

require this mechanism to flip the spin of the excited electron, such as the -3.0

eV transition, rely upon the presence of another particle. Thus the probability

that the transition will happen suffers in comparison to a transition that does not

require an external mechanism to flip the spin of the electron, such as the -5.6 eV

transition. Therefore, magnon-exciton coupling provides the means by which the -3.0

eV transition may occur while simultaneously causing the rate-determining step that

limits the probability that the transition will occur. The fact that the -5.6 eV and

-3.0 eV features are of comparable size is further evidence that the DOS presented

in this thesis are accurate, as the DOS provides a physically reasonable explanation

why the -5.6 eV loss is so intense despite the hindrance of low density in the source

states.
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Chapter 6

Discussion

6.1 Comparison of Theoretical Models

The RIXS data of both LiFePO4 and FePO4 agree extremely well with the PDOS

calculated for these systems. However, the quality of agreement between theory and

experiment for LiFePO4 is surprising, for two reasons. Firstly, the Fe PDOS dis-

played in Figures 5.4 and 5.6 assumed LiFePO4 to be ferromagnetic, because the

ferromagnetic solution was energetically favorable. This contradicts the experimen-

tal evidence that the compound is antiferromagnetic in its ground state [53, 54].

Secondly, the theory that produced the DOS for LiFePO4 and FePO4 was the LDA-

based orthogonalized OLCAO approach, which does not explicitly take into account

electron correlation effects that cause the large band gaps and insulating behavior

demonstrated by many transition metal oxides. As stated in the introduction, there

is a debate in the literature as to how to correctly treat these materials, with the

argument centering on the question of electron correlation.

Both sides of the debate (correlated vs. uncorrelated functionals) have the sup-

port of experimental evidence. To support the uncorrelated DOS, there is the evi-

dence found within the RIXS spectra of the compounds, wherein the presented RIXS

spectra and DOS match extremely well. There is also the fact that Xu et al. mea-

sured an activation energy of 0.36 to 0.50 eV, which fits best with the small band

gap solutions [3]. Despite the low activation energy, LiFePO4 has extremely poor

conductivity, which is typically characteristic of a wide gap insulator. This supports

the solution that incorporates explicit electron correlation effects. Also, optical re-

flectance measurements presented in the same paper as the wide gap DOS show that
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the band gap is on the order of 3.8 to 4.0 eV, in accordance with their predicted

result. It should be noted, however, that the lowest energy that is displayed in the

optical reflectance spectrum is on the order of 2 eV. Although the spectrum shows

that the reflectance of LiFePO4 drops off sharply in the vicinity of 3.8-4.0 eV, all this

really shows is that crystal begins to absorb more photons at that energy. It does not

show that the compound does not begin absorbing photons at earlier energies. Thus,

the optical absorption spectrum shown by Xu et al does not rule out the possibility

that structure near 0.5 eV was simply missed because the energy range did not go

low enough.

In another paper by Zhou et al., they showed that LDA-based techniques pre-

dict that off-stoichiometric samples of LiFePO4, such as Li0.7FePO4, have a negative

enthalpy of formation [55]. A negative enthalpy of formation means that energy is

released when the crystal is formed. Exothermic reactions have an better chance of

spontaneously occurring than endothermic reactions, therefore it stands to reason

that one should observe off-stoichiometric samples spontaneously forming. This has

never been observed, at least at room temperature. At room temperature, an incom-

plete delithiation of LiFePO4 will result in a multi-phase compound with zones of

LiFePO4 and FePO4 spread throughout the sample. Zhou and coworkers used this

fact to conclude that the uncorrelated calculations were inaccurate. However, this

reasoning does not account for activation energy. An exothermic reaction, although

energetically favorable, may still not occur if there is insufficient energy in the sys-

tem to initiate the reaction. Off-stoichiometric compounds, wherein the Fe2+ and

Fe3+ valence states form a solid solution, do occur at higher temperatures, typically

within 40 K of 500 K [56]. This implies that the formation of off-stoichiometric solid

solutions required more energy than was available at room temperature. However,

it is not clear if the reaction was exothermic. Nevertheless, simply considering the

enthalpy of formation is insufficient for determining if a reaction will occur.

It would seem that two mutually exclusive scenarios are both accurate. In an

attempt to solve this conundrum, Zhou and coworkers suggested that the principle

conduction mechanism in LiFePO4 was polaronic in nature. The term polaron was
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coined to describe a quasiparticle that describes the coupling of an electron with

a phonon, or possibly with multiple phonons. A phonon, much like a magnon,

represents a quantum of disturbance that propagates through the crystal with a

discrete, quantized value for energy. The difference is that a phonon is a quantum of

elastic disturbance of the atoms within the crystal from their equilibrium positions.

In this way, phonons are the method by which vibrations move through the crystal.

The mathematical description of phonons and photons are closely related in that

they each are modeled using a quantum simple harmonic oscillator [57]. A polaron

is therefore a quasiparticle that forms when an electron that is propagating through

the crystal deforms the crystal lattice through electrodynamic interactions with the

ions; this deformation is represented by the coupling of the electron to phonons. The

number of phonons involved depends upon how strongly the electron interacts with

the lattice. A strong interaction results in a large but highly localized deformation of

the crystal, and so the superposition of many phonons is required to correctly describe

the distortion. This case is known as a small polaron. A large polaron conversely

results from weak electron-lattice interaction that causes a small-amplitude but long-

range effect [58].

Polarons require a strong electrodynamic interaction with the atoms on the lat-

tice sites, and so strong polaronic effects are usually seen in crystals in which the

bonding is mostly ionic in nature. Pure covalent bonding does not leave sufficient

charge on the atomic sites to interact with the electron in any meaningful way.

The distortion that arises from the interaction of the electron with the ionic lattice

changes the nature of the bonding within the area, because the charge density is

different. Although the electron has vanishingly small mass compared to the ions on

the lattice, nevertheless it has a full unit of charge which carries with it substantial

of force on the atomic scale. The lattice seeks a new energy minimum, which to a

zeroth approximation means that the positively charged ions will move closer to the

electron and the negatively charged ions will move away. This arrangement is en-

ergetically favorable given the change in the charge density of the region. However,

the distortion builds a potential well that traps the electron in place, because the
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new lattice arrangement is only energetically favorable with the electron present.

The bonds that the Fe sites in LiFePO4 have with their ligand neighbors have

a very low bond order [3]. The bond order is a measure of how many electrons are

involved in the covalent bond that two atoms share. A purely covalent single bond,

for example, has a bond order of one, whereas a purely covalent double bond has a

bond order of two [59]. When the bond is not purely covalent, which can often be the

case when there is a large electronegativity difference between the two atoms sharing

the bond, then the bond order is no longer a whole integer. A low bond order means

the bonding is more ionic than covalent. The LiFePO4 crystal, with its highly ionic,

low order bonds, therefore seems to be a suitable environment for polaron formation,

at least when the electron resides in the states that are most closely associated with

the Fe sites. The supposition of Zhou and coworkers has been supported by the

experimental findings of Ellis et al [56]. Ellis and coworkers performed Mössbauer

spectroscopy on pure LiFePO4 and FePO4 samples, as well as partially delithiated

samples. The details of how Mössbauer spectroscopy functions are beyond the scope

of this thesis, and will not be discussed here. Suffice is to say here that Mössbauer

spectroscopy uses gamma rays to excite nuclear transitions, much as XAS and RIXS

techniques use x-rays to excite electronic transitions [60]. However, the gamma rays

used to excite the nuclear transitions have hyperfine FWHM, and as such each of

the nuclear transitions is individually resolved. The resolution is so fine that the in-

teraction of the nucleus with the electronic environment can be detected. Dynamic

interaction of the lattice nuclei with conduction electrons is what brings about po-

laron formation, so Mössbauer is uniquely suited to the study of polarons. They

found that small polarons are an important conduction mechanism in LiFePO4.

Polaron formation has been shown to be the process with constitutes a large part

of electron conduction through the LiFePO4 crystal. Polarons do not necessarily

adhere to one-electron states calculated by DFT, because they also alter the local

density of states. Small polarons in particular, which Ellis et al. showed to be

the type of polaron present in LiFePO4, severely distort the lattice over a short

range. This would alter the local charge density distribution, which also changes
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the electronic structure according to density functional theory. The polaron idea

reconciles the RIXS results, which show that the small band gap solution is correct,

with the optical absorption measurements, which show that LiFePO4 has a large

band gap. The presence of a polaron reconciles these two mutually exclusive results

because the electron promoted to the conduction band changes the band structure

such that LiFePO4 has a smaller band gap. The optical absorption measurements

were simply probing the onset of a different gap, just not the smallest band gap that

could be measured.

A possible variation on this polaron idea may be applicable: a bound magnetic

polaron, or possibly a ferron, defines the conductivity. Originally used to account

for surprisingly high values of magnetic susceptance in antiferromagnetic samples,

bound magnetic polarons are capable of changing the local magnetic environment

from antiferromagnetic to ferromagnetic [61–65]. Ferrons have been suggested as

the mechanism that hinders conductivity in some antiferromagnetic semiconductors.

This idea is intriguing because the ferromagnetic ground state seems to be, in some

formalisms, energetically advantageous, although only slightly. This small differ-

ence between ferromagnetic and antiferromagnetic alignment may mean that it is

relatively easy for conduction electrons to realign the local environment.

This effect is not limited to low temperatures. Ferrons have been predicted to

exist at high temperatures even after random fluctuations have mostly destroyed

the magnetic ordering of the compound [64]. The bound magnetic polaron effect

suggested here and the simple polaron effect suggested by Zhou et al. are phenomena

that are catalyzed by the presence of impurities [66]. This suggests that LiFePO4

is extremely sensitive to impurity concentration, but this is not a new realization;

LiFePO4 has already been proven to be dopant-sensitive by previous efforts.

Whether the polaron is a simple one or something more exotic that alters the

local magnetic environment as well as the structural, the implication is the same:

The electronic structure that one probes when measuring RIXS spectra is not the

ground state electronic structure. Polarons alter the local structure in a way that is

completely beyond typical DFT calculations that have been performed for LiFePO4
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and FePO4. Unless a DFT calculation is set up to specifically see the effects of

altering the lattice positions of the ions, then a DFT calculation will assume the

energy of the ion-ion interactions to be a constant value as the electron charge

distribution is altered to bring the system to its ground state. Polarons, of course,

violate this idea of an unchanging lattice. The potential well that the polaron creates

as it changes the lattice means that it requires less energy to excite a polaron. In

effect, a polaron sees a smaller band gap than does a conduction electron that does

not alter the lattice configuration.

Thus, the presence of a polaron has a profound effect on what one measures. All of

the analysis performed thus far strongly suggests that the small band gap solutions in

general, and the solution presented by Xu et al [3,16] in particular, correctly simulate

the total DOS in LiFePO4. However, when the concept of polarons is incorporated

into the interpretation of any spectra measured from LiFePO4, it becomes clear that

the XAS and RIXS spectra probe only the density of states as seen by a polaron,

which does not correspond to the unperturbed one-electron DOS. The degree to

which the polaronic and the ground state electronic DOS disagree is not known. It

may be that they are very close, and the perturbation to the local crystallographic

and/or magnetic structure wrought by the polaron is relatively minor. Regardless

of what the band structure was in the ground state, it is clear at this point that the

distorted polaronic structure agrees well with the small band gap picture.

This idea, namely that the electronic structure probed by XAS and RIXS exper-

imentation was not the ground state structure, of course implies that the agreement

between experiment and theory shown in the previous chapters is entirely acciden-

tal. The band structure calculations performed by Xu et al. most certainly were

not sufficiently robust to account for polaron formation, nor indeed were any band

structure simulations performed by any other author. Thus we have entered an in-

teresting realm wherein the simulation is correct even though the physics behind the

simulation are incorrect.

Although this concept seems strange, this is not the first time that such a co-

nundrum has been encountered in physics, nor even within this thesis. Twice before
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discussion has arisen of concepts introduced that simulate spectra properly even

as the assumptions behind the simulations were wrong. The Kramers-Heisenberg

formula, as a first example, was originally derived without the use of quantum me-

chanics. Rather, it was derived using the correspondence principle, which was an

early attempt to reconcile the wave-particle duality of light. The Kramers-Heisenberg

formula was later derived again by Dirac using quantum mechanics and was found

to be accurate, despite the erroneous assumptions made at its inception. The second

example where accurate simulation can be based upon incorrect physics concerns the

-9.1 eV feature. It is clear from the analysis of MacNaughton et al, and from the

analysis presented here, that such a feature can be readily and easily explained with

the use of a 3d-4s net transition. However, a much more common interpretation is

that this feature results from ligand-to-metal electron transfer. It would seem that

these two interpretations are mutually exclusive, as both rely upon very different un-

derstandings of the Kramers-Heisenberg formula as well as resonant inelastic x-ray

scattering as a whole. However, both interpretations simulate the spectrum well.

6.2 Probing Electron Self-Trapping

The concept that the previously displayed XAS and RIXS spectra probed the po-

laronic structure, which differs in some unknown way from the theorized electronic

structure, is intriguing. However, it would seem at first glance that it is impossible to

show this conclusively. Any excitation which promotes an electron to the conduction

band, or even to continuum states, may provoke the formation of a polaron. Strictly

speaking, it is not knowable within the confines of a single x-ray absorption or emis-

sion spectrum whether or not one is probing the unperturbed electronic structure

without a polaron present. There is a possibility in soft x-ray absorption spectra,

because XAS spectra can be measured using multiple techniques. The three tech-

niques of concern here are total electron yield (TEY), total fluorescence yield (TFY),

and partial fluorescence yield (PFY). While each of these techniques is supposed to

yield the same information as its counterparts because each probes unoccupied local
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PDOS, in practice each has unique benefits and limitations that make them appli-

cable in different situations. Therefore, one or more of the three techniques may

yield some information about the presence of polarons in LiFePO4 and FePO4. XAS

is a great technique to use when searching for polarons, because XAS probes the

unoccupied density of states, precisely where polaron formation should occur.

The polaron search experiment was conducted at Beamline 8.0.1 at the Advanced

Light Source. The apparatus of Beamline 8.0.1 was described in depth earlier, and

so it will not be repeated here. Four samples were measured; these samples were Fe

metal (for calibration purposes), LiFePO4, FePO4, and Fe3P. Each of the samples

was excited across the entire Fe L2,3 threshold. Fe3P was measured as part of a

different experiment that concerned the effect of impurity concentrations in LiFePO4.

The impurity experiment did not yield results of any significance, however the Fe3P

spectra did help shed some light on the LiFePO4 and FePO4 results. The entrance

and exit slit widths on either side of the monochromator were set such that the

resolving power was set to E/∆E ≈ 3000. At the Fe L2,3 edge, this means that

one can resolve features that are more than 0.25 eV apart. This resolving power is

less than that reported for the XAS spectra shown at the top of Figure 5.1. For

that experiment, the resolving power was approximately 4000. The resolving power

had to be reduced for the polaron search experiment, because the increased flux

was necessary to get decent signal-to-noise ratios for the PFY spectra measured on

the three samples of importance. The results of the experiment are displayed in

Figure 6.1.

The three panels in Figure 6.1 show the TEY, TFY, and PFY spectra measured

from one of LiFePO4, FePO4, and Fe3P. Vertical dotted lines within each panel

line up features that are common to the three spectra. Simple visual inspection is

sufficient to note that the three spectra look very different. However, the dotted lines

draw attention to a very important point: The three spectra seem to have similar

structure, in the sense that local maxima that appear in the TEY also appear in the

PFY and TFY spectra. The difference is the relative intensities of the peaks. This is

true for LiFePO4, FePO4, and Fe3P, despite the fact that the TFY, PFY, and TEY
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Figure 6.1: XAS spectra of LiFePO4, FePO4, and Fe3P measured
using TEY, TFY, and PFY techniques. The heavy lines in each panel
are the TEY spectra. The lighter lines and the dotted lines are the
TFY and PFY spectra, respectively. The dotted lines in each panel
line up important features. In all spectra, the minimum point has been
set to 0 and the spectra have been all normalized to 1.
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of the first two compounds look so very different from one another.

Figure 6.1 shows that the TFY, PFY, and TEY spectra of LiFePO4 seem to

have very stark differences between them. The same can be said for the FePO4 XAS

spectra. Although this is highly interesting, the differences one should expect first

need to be understood. Although TFY, PFY, and TEY measure the same quan-

tity, namely the probability that an x-ray will be absorbed at a given energy, each

technique nevertheless measures this cross-section in a different manner. Therefore,

discrepancies are to be expected to a certain degree.

The Fe3P XAS spectra show the differences that one should expect to see among

the three techniques. The TEY spectrum differs quite strongly from the PFY and

TFY spectra, and the PFY and TFY spectra look very similar. This makes sense,

because recording PFY and TFY spectra entails counting photons that are emitted

from the sample. Therefore, any process which affects the cross-section of TFY will

affect PFY as well. One such process that affects the measurement of emitted pho-

tons is self-absorption. Whenever an atom within a crystal emits a photon through

radiative decay of an excited state, that photon could very well be resonantly ab-

sorbed by another atom within that same crystal. The more probable a radiative

decay is, the more probable it is that the photon will be absorbed by another atom

before it can escape the crystal. Self-absorption therefore tends to reduce the size of

prominent features while leaving smaller features alone. This generally makes any

quantitative analysis of relative peak heights within a photon-out spectrum more

difficult to conduct accurately.

Self-absorption would certainly seem to be an important effect in Fe3P, because

the most prominent features seen in the TEY spectrum are severely curtailed in

both the TFY and PFY spectra. Although reduced in intensity, the features are still

there. TEY does not suffer from self-absorption like photon-out spectra because the

electrons emitted by Auger decay cannot be resonantly absorbed in the way that

photons can. While it is true that electrons have a very short penetration depth into

a crystal, this is because the electron will scatter off valence electrons and steadily

lose energy. TFY and PFY are both more bulk sensitive than TEY, which allows
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photon-out spectra to probe the electronic structure of the bulk. This may grant

structure to TFY and PFY spectra that the TEY technique will not have, simply

because TEY cannot probe deeply enough.

In short, the TEY, TFY, and PFY spectra of Fe3P are different from one another,

but they differ in ways that are expected. The deeper penetration depth of soft x-rays

lends to photon-out processes bulk sensitivity and self-absorption, two effects that

will cause differences between photon-out spectra and TEY spectra measured from

the same sample. Even with this understanding in mind, however, the differences

seen among the three techniques when used on LiFePO4 and FePO4 are spectacular.

Of particular interest are the marked dips seen at 706.0 eV in LiFePO4 and at 707.9

eV in FePO4 in the TFY spectra. These dips do not seem possible, because they

dip below the pre-edge background threshold. This implies the sample produces

less photons when it being excited resonantly than when it is being excited non-

resonantly. This is completely counter-intuitive. It also seems remarkable that the

PFY spectra of LiFePO4 and FePO4 do not register the same dip. As explained

above, the PFY and TFY techniques have more in common with each other than

either does with TEY, because both techniques sense emitted photons. However,

the LiFePO4 panel in Figure 6.1 in particular shows that the PFY and TEY have

more in common than do the PFY and TFY spectra.

The dips in the TFY spectra of LiFePO4 and FePO4 can be understood if one

takes into account two important considerations. The first is the nature of the

TFY technique. The TFY technique counts the photons coming from the sample,

but it does not simply count the photons in the energy range of the edge that is

resonantly excited. The Channeltron counts all of the photons within its detection

limits. The Channeltron at Beamline 8.0.1 is designed to detect fluorescence photons

at all energies that the monochromator at Beamline 8.0.1 can reach. This covers the

span of photon energies from 65 to 1400 eV [24]. Note that the Channeltron may

be able to detect photons with energies lower than 65 eV, but the true limit to the

detection range of the Channeltron is not known. Whatever the lower limit may

be, the Channeltron can assuredly detect photons produced by the non-resonant

105



annihilation of core holes created at all excitation thresholds between 65 eV and the

Fe L2,3 edge. This includes the O K edge, the P L1,2,3 edges, and the Fe M1 edge.

Two other possibilities include the Li K edge and the Fe M2,3 edges, although these

lie at 55 and 53 eV respectively. Although the energy of the incident photons is far

off resonance for these other edges, core holes at these edges are still created, and

their annihilation produces a constant background signal.

Secondly, one must understand what happens to a photon when it impinges a

crystal wherein one of the atomic species is being resonantly excited. The resonantly

excited atomic species functions as a photon vacuum; the photons impinging the

sample preferentially interact with that atomic species. The other elements within

the crystal become starved for photons, and as such their non-resonant photoemission

flux rates fall as long as the element in question is being resonantly excited [28].

If the intensity drop in the TFY happens when the ligand states stop interacting

with the incident light, than the PFY spectrum should not have recorded the dip

because the detection window of the spectrometer is much smaller than that of the

Channeltron. All of the low energy photons produced by the lower lying thresholds

are not focused by the optical components of the spectrometer onto the MCP. The

dip is clearly not in either LiFePO4 or FePO4 PFY spectra, which would indicate

that the dip is caused by ligand photoemission suppression.

Although the ligan photoemission suppression scenario explains the data, the

problem still remains why it is that the Fe photoemission did not make up the dif-

ference. Although the other elements within the LiFePO4 crystal are not producing

photons as efficiently, the Fe site is being resonantly excited, and should overcom-

pensate for this drop in ligand photoemission intensity. The problem is made more

complex by the fact that this drop in measured intensity is not seen in the TEY

spectra of either sample. The PFY spectra do not have any dips, but as discussed

earlier, this is due to the method used to detect the photons. TFY and TEY spec-

tra, however, share the common trait that they measure photon emission (TFY) and

electron replenishment (TEY) as functions of excitation photon energy. It seems

obvious that the Auger decay channel is immune to the effect that is altering the
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radiative decay channel.

There would seem to be some process which is suppressing the radiative decay

channel while simultaneously leaving the Auger decay channel unaffected. It is pos-

sible that this effect is due to polaron formation, in particular a magnetic polaron.

When the polaron couples to the antiferromagnetic lattice and changes it to a fer-

romagnetic one, this may cause the spin of the polaron to flip, or possibly cause it

to cant sufficiently so that the spin selection rule for radiative decay is no longer

satisfied. The participator electron, promoted from the core 2p core state to the

unoccupied 3d band, changes the local crystallographic, electronic, and magnetic

environments sufficiently that radiative de-excitation from the altered conduction

band becomes much more improbable. In other words, the bound magnetic polaron

becomes a metastable state. Of course, the Auger decay process remains unaffected

because it does not have the stringent selection rules to which radiative decay must

abide [67]. The bound magnetic polaron is not a metastable state to the Auger de-

cay mechanism, and as such the participator electron may refill the core hole. Thus,

the TEY spectrum remains unaffected whereas the TFY spectrum is suppressed at

certain energies.

For both LiFePO4 and FePO4, the suppression is greatest at the very beginning

of the the L3 edge. The significance of these energies at which the radiative decay

suppression is strongest is not known. At the energies indicated, the highest energy

core electrons are promoted to the first bound states. These bound states are inter-

esting because they occur before the ionization threshold, although how this property

would play into self-trapping or magnetic polaron formation is not understood. The

only way to test the theory that the TFY spectra of LiFePO4 and FePO4 show signs

of radiative decay channel suppression through bound magnetic polaron formation

is to perform simulations which account for such phenomena. Such intensive sim-

ulations are certainly beyond the scope of this thesis, if such simulations are even

currently possible. It is clear that more work is required.
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Chapter 7

Summary and Conclusions

LiFePO4 and FePO4 were probed using XAS and RIXS techniques to gain greater

understanding of the electronic density of states of these two compounds. In particu-

lar, this study was motivated by the need to understand the electronic structure that

gives rise to the insulating resistivity of LiFePO4. The element-specific techniques

of XAS and RIXS, when measured with highly tunable, high resolution synchrotron

light, makes this study highly appropriate for understanding local electronic struc-

ture within LiFePO4. The electronic structure has been predicted to have an Fe

PDOS band gap as small as 0.0 eV, and up to 4.0 eV. The calculations that predict

a small gap are collectively called the small gap solutions, as there are several authors

that show a band gap of 0.0-1.0 eV. The opposing electronic structure calculations

are called the large gap solutions. The band gap varies according to the method with

which a particular author calculated the effects of electron correlation. The small

gap solutions use electron correlation functionals that are usually more applicable in

delocalized systems, whereas the large gaps solutions use the Hubbard U parameter

to account for electron correlation in the way preferred for transition metal oxides.

The purpose of this study is to see which solution is more accurate.

Voigt functions were fit to the LiFePO4 and FePO4 RIXS spectra. This was done

because the individual RIXS features overlapped with one another due to the limited

resolving power of the spectrometer, and Voigt function fitting would allow them to

be differentiated from one another. Voigt functions were chosen because they are

a convolution of Gaussian and Lorentzian profiles; the Gaussian part represents in-

strumental broadening caused by the sampling apparatus, and the Lorentzian part

represents lifetime broadening inherent to the system. Though Voigt peak fitting
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analysis, it was found that the energy loss features seen in the RIXS spectra cor-

respond very well to Fe 3d inner-shell valence-to-conduction band transitions, as

predicted by the presented DOS calculations. Evidence was also uncovered for 3d-4s

scattering, which may also lead to charge transfer between the Fe and O sites via

the highly hybridized 4s-2p band.

The success of the small gap solution contradicts expectation, as DFT+U calcu-

lations are historically the more accurate method when describing systems such as

LiFePO4 and FePO4. The explanation tentatively put forward in this thesis is that

our experimental spectra suffer from the effects of a bound magnetic polaron, which

would distort the local PDOS and cause a local ferromagnetic environment to form

around the excited conduction electron. The presence of polarons in LiFePO4 was

already proven in other work, so it is a small leap to believe that polaron formation

could influence the DOS probed by the XAS and RIXS techniques.

The polaron could drastically change the local density of states, which is of course

because the charge density and the lattice configuration in the local environment are

different. This has two very important ramifications. Firstly, the agreement between

experiment and the small gap calculation is false, in the sense that the physical

assumptions behind the calculation are false. This is referring to the fact that, in

the final state of either an XAS or a RIXS excitation, the atom is left in an excited

state wherein the local charge density is altered. Therefore, calculations performed

with the crystal in the ground state are not accurate. Secondly, any agreement

to the large gap solution will also be false. Optical absorption measurements have

apparently shown that the band gap is somewhere around 4 eV, but if one takes into

account the band structure altering properties of a polaron, it is unknown what that

experiment actually probed.

To conclude, a definitive statement as to which band structure calculation regime

(small gap vs. large gap) is the more accurate cannot be made. The answer can only

be found if one could account for the magnitude of the DOS distortion instigated

by the polaron. With this capability, it could then be determined what the ground

state DOS was before polaron-induced band structure distortion.
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