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A C K N O W L E D G E M E N T S

A large number of people and institutions supported or contributed
in some way to my doctoral research, which reflects both the increas-
ingly social nature of science and the characteristics of my own re-
search, permanently in need of specialists in different aspects of the
study of language. Naturally, here I restrict my acknowledgements
to the period 2012-2015 (otherwise the acknowledgement list would
be too long!)

First of all, the Max Planck Gesellschaft has given me unmatched
conditions of research, mobility and intellectual freedom that I have
never experienced before or after in any of the many universities and
research institutions I have visited. I spent my time as a student be-
tween four Max Planck Institutes (Mathematics in the Sciences, Evolu-
tionary Anthropology, Psycholinguistics and Science of Human His-
tory) and I have visited or taken courses in another two (Cognitive
Neuroscience and Complex Systems) and, in spite of necessary id-
iosyncratic differences among them, the climate of high-end research
and a preference for cutting-edge science is one and the same.

Naturally, the MPI for Mathematics in the Science takes promi-
nence over the others, if not only due to their bold decision of ac-
cepting me as a doctoral student even after I confessed that I wanted
to do research on language. Part of my puzzlement disappeared af-
ter I met Jürgen Jost. In the first conversation that we had he brought
to the discussion themes and research on neurosciences, linguistics,
computer sciences, human history, economy, physics and mathemat-
ics. This amplitude of interests, I learned, was also reflected in his
own scientific work: from genetics to geometry and the structure of
meaning, Jürgen has published about all the possible objects of scien-
tific inquiry. No surprise, then, that the accepted my plural interests
as a natural thing, as a given in other fellow scientists. Even more,
he always deposited his trust in my decisions, which varied between
enrolling a course in primatology, attending a school in cognitive lin-
guistics and taking a course on information geometry for biology.

Something similar I could say about Peter Stadler. I guess many
times we looked like Aristotle’s pupils, walking around Leipzig while
talking about how to set up a particularly tricky test or how to navi-
gate the complex world of scientific politics. There is an anecdote that
illustrates transparently his integrity very well. Within the first weeks
of my arrival, he told me there was certain algorithm that “needed to
be done”. I understood the allusion but I was not really thrilled about
the task. After a week of hesitations, I went to his office and told him
that I did not want to do it. He asked me “then what would you

3



do?”. Since then he has always been supportive of my interests and
my career choices. He has been ideal as a supervisor, hands down.

Apart from my other colleagues at the MPI MIS (specially, Felix,
Gerardo, Wiktor and Yuri) and my friends at Bioinf (in particular
Bruno, Tomas and Lorena) I also wanted to highlight how much I owe
to Antje Vandenberg, who helped so many times with the German
bureaucracy — it takes ages to make understand someone from South
America how important is to fill forms and keep track of papers!

The Department of Linguistics at the MPI for Evolutionary Anthro-
pology turned out to be my second (and for some periods, my first)
home in Leipzig. Bernard Comrie considered that my initial vague
interests in language were sufficient for letting me hang around in
the department — sometimes in the library, some other times in the
common area. It was Sören Wichmann, however, who took pity of
me and offered me a space in his office — and not only that: he
has cooked for me in more than one occasion. Many other people
at the EVA gave color to my days spent there. Susanne Michaelis
and Martin Haspelmath have been extremely nice and understand-
ing with my first steps into the study of creoles. Several conversations
with Paul Heggarty, Hans-Jörg Bibiko, Heriberto Avelino and Harald
Hammarström spiced up my interest on several aspects of language,
usually with a Weissbier at sight.

I received quite a lot of support from other scholars during the
early stages of my career, either by means of direct advise (promi-
nently from Morten Christiansen) or by being invited to give a talk
(by Gerhard Jaeger and Balthasar Bickel.) A very special spot is oc-
cupied by Michael Dunn, who hosted me for almost six months at
his group (“Evolutionary processes in language and culture”) at the
Max Planck Institute for Psycholinguistics. It was an unique chance
for me to scrutiny the daily schedule of a busy and intelligent scholar
- before (and during) that period I would work at odd hours (say,
from 9 pm to 6 am) and have an open-ended working schedule (what
paper/project got my attention today?). We never got to write anything
together, but I can’t underestimate how important were those months
for my first steps as a functional scientist. In Nijmegen I met lots of in-
teresting people, and some of them became quite rapidly my friends:
Jeremy, Hedvig, Caroline and Séan.

I spent a brief but quite productive period at the Centre for Lan-
guage Evolution hosted at the University of Edinburgh. My thanks
go primarily to Mónica Tamariz and Simon Kirby who made that
possible, and to the (large) Edinburgh crowd that interacted with me
those days. Interestingly, that visit produced in my brain the unlikely
association between haggis and language evolution experiments.

I finished my period as a PhD student writing this thesis at the Max
Planck Institute for the Science of Human History. This was possible
thanks to Russell Gray, who since then has been both a mentor and
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a friend to me (plus one of the few people from which you can learn
about fine cuisine and wines and the theory of evolution in the same
meeting.)

My non-native English was smoothed by the amazing R. Schikowski,
J. Mansfield and N. Uomini. All remaining mistakes are mine.

Stefany, who underwent the same process of exile out of South
America, has been the single most important person in my life in the
last seven years. We coped with the same issues and hoped for a
better future together.

To my friends and family in Argentina (who are way too many to
enumerate - my mom alone has 7 siblings!): gracias por el aguante.
Sorry for not being there at the many birthdays, parties, asados, trips,
sad moments, visits to the doctor, etc. that I missed because of this.

To Stefany and them: I owe you much more than this degree. I do
not write anymore because this is supposed to be a scholarly piece
that celebrates hard work and intellectual achievement and not yet
another instance where I surrender to my genes poisoned with tango
and melancholy.
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Part I

I N T R O D U C T I O N





1
L A N G U A G E S , D ATA , A N D L A N G U A G E D ATA

1.1 linguistic diversity (or not)

Current estimates of the number of languages spoken in the world
vary between 6000 to 8000, divided in over 300 groups that derive
from a common ancestor, in some cases going back as far as the end
of the Neolithic [102, 137]. Some languages are natively spoken by a
large number of people of radically different cultural and ethnic back-
grounds — like Portuguese, spoken from Brazil to Timor-Leste and
Goa — whereas others are restricted to a few individuals and seem
to face an unavoidable end in the near future — such as Kusunda, a
language isolate from Nepal that is spoken by a few dozen people.

Languages appear as diverse as the dimensions in which we choose
to classify and describe them. Most of them make an intensive use
of the sounds we can produce by passing air from our lungs through
the larynx, mouth and nose, whereas others extend this repertoire
to include vocalizations that originate from air trapped and released
rapidly in the mouth or even clicks of the tongue against the soft
palate [92]. Other languages do not make use of sounds at all, namely
the many signed languages that exploit the combinations generated
by hands, body and facial gestures (e.g. Stokoe [215]).

While languages serve (among other purposes) to communicate
about the most diverse events and situations, the linguistic expres-
sion of tense, aspect, mood and/or source of evidence (TAME) is
usually obligatory. Nevertheless, there exist exceptions (as in some
Austronesian languages [88]) where this is not the case, and the bur-
den of inferring the messages migrates from the actual linguistic sig-
nal to its context. In at least one extreme case, Indonesian Riau, not
only TAME markers but also number and other grammatical features
are underspecified, so a completelly grammatical sentence like Ayam
makam might mean anything from “the chicken eats”, to “someone is
eating with the chicken” or “where the chicken was eating” [88].

The order in which words need to be arranged in order to pro-
duce a grammatically valid phrase is usually restricted to one or a
few options, but then again there are exceptions — most notably
in the languages of Australia, e.g. Jiwarli [9] — where in principle
all arrangements are grammatical. Most of the times, languages de-
velop alternative ways of marking where the relevant information is
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located when word order is absent — the aforementioned Australian
languages, for instance, have a complex morphology that provides
sufficient information about the role of each word in the sentence
[58].

The management of old in relation to new information along dis-
course also shows interesting cross-linguistic variation. Most of the
languages posses some resource for linking related sentences, for in-
stance as a way of expanding or specifying the information about
a N(oun) P(hrase). In English, one possible way of doing this is to
attach a sentence after the NP that carries the relevant information
without the explicit reference to the relevant NP: so we have the man
who [. . . ] sold the world, the spy I loved [. . . ], the state I am in [. . . ],
where [. . . ] signals the position where the NP would have been in
a regular sentence. In Hebrew, in contrast, in all but the first case
speakers would have filled the gap with explicit pronouns, e.g. the
spy I loved him/her/it [43].

Examples like these abound. After carefully considering these fig-
ures, it would be reasonable to ask what do they mean for language.
Is the variation described above very radical or modest in comparison
to other human behaviours? Are the differences guided by external
pressures that do not have to do with language proper or are they
better understood as historical byproducts? Can we find a common
structural template underlying all languages?

Depending on the theoretical affiliation of a researcher (and the
swinging pendulum of intellectual history and its fashions), these
facts are used for radically opposed arguments.

On one side we have several versions of nativism, famously pro-
moted (and reformulated many times by) Noam Chomsky in a career
that spans over five decades since 1957. The core observation resides
in the way humans acquire language [21, 139]. Children are able to
pick up the language spoken in their environment in a effortless man-
ner. Notably, they generalize the bits of grammar they absorb but at
the same time they avoid certain structures that would follow from a
simple inductive rule of a frequent pattern in the language they hear
[133]. And all of this in spite of dramatic contrasts in the amount and
quality of input they receive: while children in several cultures are
engaged into conversations by their caregivers, the usual account of
language acquisition in Samoan is that they do not regard toddlers as
intentional subjects, and, in consequence, they are not spoken to di-
rectly [216]. Given this evidence, nativists proposed that humans are
equipped with an innate faculty for learning languages that requires
only a small amount of linguistic input to develop [139].

The argument continues. If all languages are learned by tapping
the same specialized biological resources, then it is expected to find
some commonalities in their inner structure. Nativists argue that this
is the case, although there is no consensus on how these common-
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1.1 linguistic diversity (or not)

alities should be described (or even what they are.) They empha-
sise that the universal aspects of language are not observable at its
surface. Instead, they are general computational principles that en-
able the construction of complex propositions out of words (or units
smaller than words) [40]. For instance, a cross-linguistically attested
way of generating questions is by means of wh-movement, which con-
sists of producing a sentence similar to the declarative but with a
change in the order in which the thing or circumstance being asked
about appears - in English, “Leonard bought mangoes” → “What
did Leonard buy?”. However, some types of phrases do not allow
this strategy, which lead to the postulation of syntactic islands [28].
These restrictions are believed to be universal and to reveal some of
the computational characteristics of the faculty of language.

In conclusion, in spite of the superficial variation of languages and
all the dimensions in which they might differ, they are all instantia-
tions of the same innate bias, the universal grammar.

Others disagree. Every aspect of grammar — from the widespread
existence of synonyms to alignment systems — seem to exhibit cer-
tain degree of adjustment to a particular set of functions of mostly
social and communicative nature. A classic example is that linguistic
forms change according to the use they receive: infrequent words or
verbal forms eventually die out, whereas common syntactic strategies
get fossilized into morphology or frequent words get shorter (and
thus more convenient for re-use).

Even language acquisition seems to be more naturally described
by data accumulation and statistical learning, in a fashion that does
not seem to require language-specific computation or inferential rules
[228]. Frequency of occurrence of most linguistic behaviour appears
— other things being equal— as the most reliable predictor of age of
acquisition [5]. Young children are demonstrably able to latch onto
different aspects of the input — from stress patterns to relative order
of elements [222] — to learn morphemes, words or word classes. The
way in which they utilize certain linguistic resources seems to follow
a developmental path from concrete to abstract: for instance, definite
and indefinite articles in English are used exclusively with the nouns
they appear for the first time, with more flexible combinations occur-
ring at a later age (Pine and Lieven [192], Pine et al. [193], but c.f.
Yang [242]).

Furthermore, many linguistic features (which were previously thought
to be human-specific) seem to have analogues in other species. There
is evidence of compositionality in non-human primate vocalizations
— combinations of individual vocalizations have a meaning distinct
to just the mere juxtaposition of the atomic meanings [246]. Some
species of avian vocal learners undergo a babbling stage that is (de-
velopmentally and functionally) parallel to that of humans [140]. This
lends support to the idea that, rather than a phylogenetic innovation,
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languages , data , and language data

language seems to be composed of a combination of precursor char-
acteristics [77], enriched and expanded in functionality due to the
overall increased cognitive skills of our species (and perhaps its drive
towards cooperative behavior [227]) .

Finally, close examination of the complex mosaic of grammatical
structures in the world raises the question of whether anything could
be said in general about the computational procedures that produce
them, given the apparent lack of observational universals [71]. If
there are no non-trivial universal properties defining what a language
is, then the +7000 figure is a testimony of the manifold solutions for
varying needs humans encountered in their historic development.

This was (and still is) the polarized scientific scenario when I started
my research in the field three years ago. The discussion is heavily
tainted by complex sociological and theoretical considerations that
have overshadowed, in many cases, the actual data: the languages.

The main goal of this thesis is to offer a third alternative: approach
the unity and diversity of the world’s languages with as little theoret-
ical commitment as possible, using state-of-art statistical modelling
techniques on large typological data.

1.2 a short biographical motivation

During the first months of my period as a PhD student I attempted
to translate some of these issues into the language of physics- and
biology-inspired models. Among other projects (that I do not dare to
remember) I attempted deriving the existence of non-arbitrary sound-
meaning associations through game theory, finding Zipf’s Law as a
maximum entropy distribution subject to convenient constraints, and
predicting dialect formation as a percolation problem. The attentive
reader should have noticed that none of these feature in the present
thesis.

At first I looked into textbooks searching for explicit, widely agreed
statements about (more or less) mechanistic connections between gen-
eral variables I could project into mathematically interesting objects.
This approach is not new, as there are plentiful examples of vary-
ing degrees of success, some of which provided relevant insights and
predictions. Just to give an extremely small sample of this work, sci-
entists have modelled the diffusion of linguistic variants with the full
glory of the Fokker-Planck equation [16], analyzed the monopolising
nature of prestige languages with dynamical systems that are equiv-
alent to those found in population dynamics [189] and interpreted
the process of language acquisition by appealing to random matrix
theory [181].

After some time, however, my approach was proven hopeless. In
contrast to the confidence and the far-reaching claims often found in
textbooks, my interactions with linguists — and very particularly, ty-
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1.2 a short biographical motivation

pologists — ended up in a similar way: for every statement or model
idea I could come up with, there were as many counter-examples as
corroborating cases1. Turning my attention to anthropologists and
cognitive scientists did not help me to escape the conundrum.

Naturally, there exists an amazing wealth of insightful and care-
ful scholar research on language. The situation is that most of that
research was conducted largely in a qualitative way, with only a min-
imal usage of quantitative arguments to defend or rebut competing
hypotheses. Qualitative analysis is a fundamental (and irreplaceable)
tool for the human sciences — the open-ended nature of human be-
haviour asks for a flexible coding of the information, and important
impressions obtained from data might be better reflected in a verbal
argument than in a list of normalized variables in a table.

However, qualitative arguments certainly have their limitations. First,
they are somewhat like the proverbial snow flakes: one of a kind. In
order to engage with them, one needs to become familiar not only
with the empirical facts involved, but also with the particular and id-
iosyncratic structure of the argument itself: how much weight does
the author allocate to each of the parts? How critical is the likelihood
of one assumption to the overall conclusion? In contrast, normalized
quantitative analyses accelerate this stage: if someone is performing
growth curve analysis or a deep learning classification, say, we know
immediately what to ask and where to look. This insistence on ex-
plicitness and standardization of reasoning helps to uncover usually
concealed biases.

The second limitation I observe has to do with the ability of hu-
man minds to manipulate large amounts of information. A hidden
assumption behind qualitative analyses is that one needs to be person-
ally acquainted with the data under evaluation: until very recently, if
a linguist wanted to write about the cross-linguistic preference for suf-
fixation or some other typological pattern, they had to go over gram-
mars and code the information themselves after a number of far from
trivial judgments and decisions. With over 7000 existing languages
— and perhaps half that number of detailed grammars — it appears
as highly unlikely that one could develop enough insight from any
comparable magnitude of languages as to deliver high-quality infer-
ences that are faithful to all of them. Given the case, one could either
opt for a science that is bound by what is achievable through quali-
tative means by individuals, or attempt to abstract the procedures or
decisions one takes in order to make them applicable in new cases —
potentially all cases.

Finally, the overlap on the questions qualitative and quantitative
methods can answer is not complete. I readily accepted that there

1 Although here I am being extremely generous with myself — my first intuitions
about language and languages were very often helplessly wrong. The fact that most
humans have at least one native language lends some mysterious confidence to the
speculations we are able to come up with in relation to language.
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are aspects of language research that cannot be made more clear or
even translated into quantitative grounds, but the mirror situation is
true as well: asking for the effect of a third-order interaction between
variables in a regression regarding the impact of social circumstances
in the choice of different varieties of a word, computing the confi-
dence of a multiple-sequence alignment with the purpose of unravel-
ing deep language history or characterizing the 95% credible interval
of the posterior distribution modelled upon a Bayesian word learning
experiment are all good questions relevant to language, but they have
nothing near a qualitative counterpart.

These considerations lead me to the niche I currently, and happily,
occupy. In a nutshell, my goal is to provide a faithful translation of
the discussions on linguistics about the diversity and unity of lan-
guages in the space of data science. This sometimes leads to an en-
richment of the original question as a result of the available statistical
technologies we possess, which unlock the possibility of posing new
questions that cannot be addressed without the proper technical ma-
chinery. A second (but not less important) aspect of the marriage
between diversity linguistics and data science is that we can harmo-
nize what we know about languages with data from other disciplines.
This part has become increasingly more important in my most recent
thinking about language.

Because of all these reasons, it is fair to say that the spinal cord of
this thesis is methodological in nature, in spite of the amounts of data
discussed and analyzed.

1.3 the rise of the science of data

Data science is a cover term for a complex methodological melange
that arises from the endeavours of two scientific communities: statis-
tics and computer science, in particular machine learning. A brief
account of their history would be warranted in order to establish pre-
cisely the source of novelty in this work.

Traditional statistics grew out of the need of making sense of pat-
terns present in developing disciplines without the mathematical mat-
uration of the natural sciences, like medicine or agriculture [214].
Early computational power was restricted to (error-prone) humans
equipped with pencil and paper, and this purely technical restriction
had an overwhelming impact on the way statisticians reasoned about
their discipline. Most of the tools produced in the dawn of statis-
tics were highly parametric, partially reflecting also the mathematical
drive of the early practitioners, who sometimes came from depart-
ments of pure mathematics and ended up working on very concrete
statistical problems.2 By and large, some of those tools proved to be

2 To take a case among many: George Barnard — well known as the proposer of the
likelihood principle — did graduate research work with Alonzo Church in Princeton
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1.3 the rise of the science of data

resistant to time and they are still part of any standard data analysis
toolbox. For instance, the famous t-test developed by Guiness’s em-
ployee William Gosset is still part of computationally intensive anal-
yses as in gene expression or fMRI voxel activation analyses. Other
aspects of traditional statistical theory, like the imposition of unbi-
asedness on estimators, have fallen out of favour.

Propelled by the dramatic increase in data availability (and produc-
tion) and computational resources that has taken place since the 60s,
computer engineers started to ask open-ended questions to the data
in hand (e.g. are there any interesting recurring patterns in this data?).
Exploring the geometry of data or detecting the presence of “inter-
esting” patterns became legitimate goals, even in the absence of clear
hypothesis that could canalize the analysis. What is perhaps more
relevant is that even when they faced problems telically equivalent to
the those of regression/classification, they turned their back to math-
ematical explicitness or tractability and went for practical yardsticks
to asses the quality of their solutions. Concerns about how well a
solution generalizes in the presence of noise, predictive coverage or
algorithmic complexity replaced the quest for good asymptotic prop-
erties or the suitability of a particular family of models [32].

One interesting (and highly relevant) twist of fate triggered by the
rise in computational power is the return of Bayesian inference as a
serious contender to the frequentist school. Beyond a few relatively
simple cases, the computation of posterior probabilities — the crux of
Bayesian inference — was a daunting task often avoided by assump-
tions as dramatic as those of the frequentists. In the 1980s [86] inau-
gurated a brave new world with the introduction of Gibbs’ sampling,
which was in its turn inspired by the Metropolis-Hasting algorithm
developed during the heyday of Manhattan Project [37]. With Gibbs’
sampling being a household technique nowadays, even standard lap-
tops can simulate relatively complex Bayesian models in a couple of
hours.

The insistence on the efficiency of a solution in contrast to how
well it could inform the (conjectured) model underlying the data goes
beyond computational considerations. As put by Leo Breiman [32],

With data gathered from uncontrolled observations on com-
plex systems involving unknown physical, chemical, or bi-
ological mechanisms, the a priori assumption that nature
would generate the data through a parametric model se-
lected by the statistician can result in questionable conclu-
sions that cannot be substantiated by appeal to goodness-
of-fit tests and residual analysis. Usually, simple paramet-
ric models imposed on data generated by complex sys-
tems, for example, medical data, financial data, result in a

on mathematical logic, but later worked on quality standards for condom production
[1].
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loss of accuracy and information as compared to algorith-
mic models

This original tension has been resolved in favour of a more har-
monic cohabitation of statistics and machine learning in the core of
the data sciences. Many standard methods for the analysis of data in-
clude elements of both sources. Take for instance any of the modern
versions of regression techniques that include explicit regularization
strategies, such as the elastic net [83]. The problem is casted as one
of traditional statistics based on ideas that go back to Tikhonov in
the 1960s [226]: penalize the wiggliness of a function or some of its
derivatives by means of an explicit term that depends on an ad hoc
parameter, which is formally a Lagrange multiplier. The gist is that,
instead of choosing the magnitude of the penalization (i.e. the value
of the Lagrange multiplier) by means of pre hoc considerations as
in classic statistics, these days one would choose the value that min-
imizes some empirical goodness-of-fit measure, like the prediction
error [83].

It is not exaggerated to say that we are experiencing a golden age
with respect to the development of intellectual and practical technol-
ogy to understand data. Cunning and/or efficient strategies are be-
ing published in journals regularly, and reasonably operative (and
fairly bug-free) packages are released in parallel with them, some-
times simultaneously. Statistical programming is becoming more
statistics than programming, in the sense that the user can focus on
the specifics of the analysis thanks to a wealth of efficient pre-defined
functions without the need of dealing (most of the times) with limit-
ing factors like memory allocation.

In the development of any technology, early adopters tend to be
skilled individuals with an above-average understanding of the mat-
ter, and then it spreads to the rest of the population. From the first
Daguerreotype users — versed in the chemistry of silver salts and
the timing of light and movement — to the crowds of compulsive
selfie-takers there is a clear cline of intellectual involvement with the
tool. Data science methods are no exception. There are armies of
graduate students applying the latest data science algorithms to what-
ever dataset could be found under the sun. The modus operandi is to
calque a successful case study by finding analogies in the datasets.
Even more, there are many wrappers that allow the massive appli-
cation of different methods by simply stipulating the nature of the
problem. For instance, if one needs to choose the subset of most ef-
ficient predictors for regression, it is possible to get with one line of
code the outcomes of no less than twenty independent methods rang-
ing from forward and backward elimination to model averaging and
lasso selection. Needless to say, the variety of available methods do
not correspond (only) to the vanity of the data scientists: they rest on
different structural assumptions.
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1.4 doing science with linguistic data

Now that the correlation between statistical expertise and capacity
to implement data science techniques is broken, two problems grow
at alarming speed. The first is that of the consensus fallacy: if a par-
ticular statistical claim is confirmed across methods then it is often
assumed to be genuinely true; on the contrary, if only a few meth-
ods sustain the claim, then it is taken to be genuinely false (e.g. as
in Roberts et al. [201]). While this makes sense in extreme situations
when there are no good guesses about the structure of the problem,
in my experience the most challenging cases require heterodox speci-
fications that might go against the intuitions that hold for other, more
typical, cases.

The second (and potentially more dangerous) issue is that of post-
hoc argumentation. It is technically possible (and practically simple)
to find a method that could yield a result in tune with a previously
held bias. Scientific journals do not always enforce a thorough discus-
sion of the context of choice of the statistical methods employed, and
the celebrity of a technique seems to trump suitability in many cases.

The remedy to these issues is, unsurprisingly, cross-pollination be-
tween data specialists and those who have expert knowledge of the
field.

1.4 doing science with linguistic data

The choice of the datasets used in this work — and, necessarily, the
issues investigated through them — was largely opportunistic. A
decade ago there was a single available dataset relevant to this the-
sis, the imperfect yet monumental World Atlas of Language Struc-
tures (WALS [103]). The creators of that resource, the Department of
Linguistics of the Max Planck Institute for Evolutionary Anthropol-
ogy, followed that direction and produced no less than a dozen other
databases during their 15-year tenure [2]. The creation of new, sta-
tistically useful and scientifically sound databases requires enormous
amounts of human and material resources. While the production of
published results largely dictates the dynamics of scientific practice,
it is my belief that all scientists should contribute to the extent of
their possibilities to the generation or curation of publicly available
datasets. In agreement with these principles, I am currently involved
in two large-scale projects by the Max Planck Institute for the Sci-
ence of Human History that aim to develop free, easily accessible
and high quality data relevant for the language sciences: Glottobank
[3], a large-scale inventory of genealogical, typological and lexical in-
formation of the languages of the world; and D-Place [128], a linked
database that groups linguistic, anthropological and environmental
data for interdisciplinary research. Also, and thanks to the generous
support from the Max Planck Institute for Evolutionary Anthropol-
ogy, I lead the development of a database on noun and verb preva-
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lence in the languages of the world (as yet unnamed), which consti-
tutes a personal landmark, since for the first time a research question
gives place to data collection and not vice-versa.

I explored almost every available dataset that could be useful in
the diversity versus unity debate — from data on affix borrowing to
color terms, numeral systems and subsistence mode of the languages’
populations of speakers. Not all of those results were included here.
Some will require more analysis well beyond the scope of this thesis
and will, hopefully, yield results in the near future. More critically,
during the development of these resources it was not always envi-
sioned the use they presently receive by practitioners of quantitative
methods. These shortcomings translate most of the time into lack of
statistical power, or non-overlap, or massive amounts of missing data.
While sometimes this can be spotted in a superficial analysis, in some
occasions this characteristic will show up only after a considerable
amount of work has been invested already. This is exactly the situa-
tion that justifies one of the important aspects of this thesis: how to
analyze contemporary linguistic data and, to some extent, how they
differ from other kinds of data.

However, this is just one of the two intended goals of the present
thesis. Beyond wrestling with partially technical problems, I hope
I have been able to show that data science is more than simply a
panoply of recipes and tools, an ancillary discipline that might assist
the language scientist when the necessary step of statistical argumen-
tation arrives. Under the risk of being hyperbolic, the data sciences
are technologies for thinking.

1.5 a parallel effort

While the extent of this thesis covers a large number of topics, the
absence of some issues and methods of prominence (for those with
a statistical eye for language) might come across as curious. The rea-
son can be inferred from the intention underlying this thesis: once
a method becomes established as the unmarked answer for a prob-
lem, then either turns one’s attention to fine-grained technical facets
or forgets about the method per se and centers on the concrete issue
being faced. The finesse and the argumentative nature of the papers
in which a method is introduced in a field is lost with its successive
improvements. In the best case, this might mean that the fundamen-
tal insight present during the conception of the method becomes a
shared and understood legacy, and effective progress is made.

There are active communities that customarily use statistical tools
for the study of language who succeed in establishing some com-
mon ground to their practices. With few marginal exceptions, no one
would think that using mixed effects models for analyzing data from
psycholinguistic experiments or Bayesian phylogenetics for the recon-
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struction of language histories is odd or unsuitable nowadays. It is
warranted to provide here a bird’s eye-view on some of these.

The last fifteen years have seen the coming of age of methods from
bioinformatics and evolution applied to the history of languages. No-
blesse oblige, the reconstruction of language history has been one of
the earliest fields to see a quantitative approach in linguistics [48].
The fundamental concept was that of glottochronology [220]: lan-
guages will tend to lose cognate words at a constant rate, which ef-
fectively translates the problem of inferring dates of divergence to
one of assessing the fraction of joint retentions across the vocabu-
lary. Unfortunately, the hypothesis was shown to be unsound early
on [19] and was mostly abandoned. These ideas were revamped
thanks to the methods of phylogenetic inference borrowed from biol-
ogy [136]. While maximum likelihood methods dominated the dawn
of this movement [179], Bayesian approaches have grown to become
the standard in the field, in great part thanks to the development of
powerful Markov Chain Monte Carlo techniques that paved the way
to relatively fast calculations of posterior distributions, as discussed
before [136].

Among the landmarks of this enterprise I could mention the anal-
ysis of the Pacific peopling by the Austronesian family [94], the sup-
port towards the Anatolian, agriculture-driven hypothesis of the In-
doeuropean homeland [93], as well as insights on the unfolding of
the Pama-Nyungan [30], Arawak [238] and Bantu [111] families in
Australia, South America and sub-Saharian Africa, respectively.

Furthermore, phylogenetic inference was not the only tool bor-
rowed from genetics that has proven extremely useful for the tasks
historical linguistics deal with: the analogy between phones and phonemes
and nucleic basis triggered the application of sequence alignment
methods to wordlists [8, 213]. By aligning wordforms from different
languages it is possible to learn what the usual phone or phoneme
substitutions are; strong regularities in the replacement patterns are
thus equated to hypotheses of regular sound change, namely the es-
sential ingredient for judgements of common ancestry in a group of
languages [119, 213].

The study of linguistic patterns of behavior has also reached a con-
siderable degree of methodological maturity. Psycholinguistics has
been dominated by the all-purpose statistical tool of psychology, the
venerable analysis of variance (ANOVA). Simplifying a lot, experi-
mental research in psychology aims to establish the general validity
of a perceptual, cognitive or motor phenomenon by running multi-
ple times a setup with different individuals, substantive items and
conditions. ANOVA was the natural response to the need of ac-
counting for this variability present in the design of the experiment
itself. While useful, it requires several tests to be performed in all
the different dimensions of variation. With better optimization tech-
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niques and computational power, ANOVA has been steadily replaced
by mixed effects models [10, 116]. The efficiency and relative parsi-
mony of mixed effects models have had a long lasting impact on other
language-related fields as well, in particular in the analysis of corpora
[224].

It is also worth mentioning the Bayesian school of inference, which
has produced some important work in the fields of language acqui-
sition and processing [38]. One of the most interesting aspects of
Bayesian statistical modelling is that it allows to explore what the suit-
able space of competing hypothesis might be, in contrast to uniquely
revealing what the specific computational or acquisition model effec-
tively is [80–82, 97] (c.f. Endress [69]).

Fortunately, there are more examples to add to this list, and hope-
fully the next years will see even more revolutions in the methods
and the standards of dealing with linguistic data.

1.6 two challenges of language data

1.6.1 On comparing language structures

Aggregating data on specific variables across languages presupposes
that those variables are commensurate up to a certain extent. While
folk intuition about language and languages would dictate that this
should not be problematic, the reality is that there is no single lin-
guistic category for which at least a paper exists denying its univer-
sal character, not even words [104]. Clearly this is not an issue that
I could do any justice here, but I consider that it is important (and
honest) to layout the basics of the discussion.

A lexical category or a grammatical feature — which are the lin-
guistic objects we will be comparing most of the time — could be
proposed on the basis of a structural diagnosis rule. One could say,
for instance, that an affix is a morpheme that is bound to appear with
a word (which is modified by it in some way), or that the passive con-
struction promotes the object to subject position while relegating the
subject to an oblique argument position (if expressed at all), thus ef-
fectively reducing the valency of the verb. While this approach is usu-
ally found in the context of definition of language-specific categories,
some authors have produced lists where various of those diagnoses
are compiled in the belief of having sufficient scope to accommodate
unseen instances (e.g. [59]).

In the end, these definitions cannot escape the need of some sort
of semantic and/or functional inspection. For instance, in the def-
inition of passive construction discussed before, we need to find a
verb whose valency is being reduced, but determining whether some-
thing is a verb requires access to the referent of the word. Tentatively,
it seems that basing linguistic concepts on semantic properties is a
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more reliable strategy since we expect to find the basic distinctions
at the heart of grammatical theory, like the notions of tense, person,
number and so on, to be readily available in all human languages. By
appealing to these commonalities we can build useful comparative
concepts that try to capture how different languages express those
meanings linguistically.

However, structural and semantic definitions are customarily con-
founded [200]. One example is the heaviness serialization principle pro-
posed by Hawkins [105], a hierarchy of linguistic categories in rela-
tion of how they order with respect to the noun: so for instance, rela-
tive clauses are “more or equal rightward positioning relative to the
head noun across languages” than adjectives. The problem is that,
while relative clauses are often detected by structural means, adjec-
tives are deemed so in virtue of their capacity to modify or expand
the information about a particular referent — a function that might
be perfectly executed by a relative clause (e.g. in English the car that
has flashy red paintings on it). So in the end, the heaviness serial-
ization principle might convey information about entities that are not
completely comparable to each other.

To sum up, I cannot guarantee that all the data used here have been
built on consistent principles. I could simply step away from this
conundrum and shift the weight of the responsibility to my fellow
linguists on this, but it is my opinion that — at least at the level
of analysis I conduct in this thesis — these issues are not critical.
The intuition is that a consistent phenomenon of enough magnitude
should be detectable even in the presence of some mis-specification.

1.6.2 On comparing languages

As discussed early in the introduction, for most of the languages of
the world there exists evidence of some kind linking to another lan-
guage or languages, which is often cued by similarities at different
levels of description. Methodologically, this becomes a concern when
considering the almost ubiquitous independent and identically dis-
tributed —or familiarly, IID— data requisite present in a large frac-
tion of the statistical arsenal. Languages are not independent from
each other, and we need to tap on history to estimate how strong or
likely their dependencies are. This problem has been acknowledged
very early in the statistical literature and it receives the name of “Gal-
ton’s problem”, after Galton [84].

The inference of languages’ (and peoples’) history is not a concern
of this thesis. However, a firm grasp of the history of languages is
critical for the success of the ideas presented here. Since my goal is
to detect regularities and explain divergences between languages as
systems of communication used by people, it is important as a first
step to separate the wheat from the chaff and remove the dimension
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of historical relatedness. In other words, if there are structures and
processes that are overwhelmingly represented across the world’s lan-
guages, it is crucial to detect whether that is due to a functional drive
instead of the presence of sweet potatoes, horses or canoes.

The Glottolog classification [102] — that keeps track of published
evidence about the common genealogy of languages — counts over
430 lineages regarded as independent for the time being. These lin-
eages range from simple isolates to intricate large families with many
subdivisions. The overall number of languages per lineage can be
decently approximated with a power-law distribution [240], and the
same holds for the number of languages that are monophyletic at
different scales within lineages [244].

These figures are not a reliable mirror of the past. Successful do-
mestication of animals and plants seems to lie at the heart of the
largest linguistic families’ dispersals [54]. While at the individual
level early agriculturalist and pastoralist practices did not necessarily
improve the quality and expected duration of life, they did boost the
carrying capacity of the populations, thus giving them an edge over
smaller hunter-gatherer groups. How much linguistic diversity has
been lost to the spread of massive families like Bantu or Arawakan
can only be estimated by the large genetic diversity observed in those
areas, that lies in sharp contrast to the relative homogeneity of the
languages spoken by the populations [17, 159].

A related question is how far back in time we have to go to find
truly independent language structures. While the issue of the (geo-
graphical and temporal) origin of human languages received far less
attention than the equivalent problem in human evolution (namely
the monogenetic or polygenetic beginnings of our species, e.g. Jobling
et al. [123]) it has been recently galvanized and more widely dis-
cussed. Atkinson [7] suggests that the complexity of phonological
repertoires — which is roughly a measure of the number of the phonemes
present in a language — seems to follow a cline from South Africa
all the way to South America, following the putative routes that our
ancestors followed in our exodus out of Africa. The mechanism pro-
posed by Atkinson is formally identical to the population bottleneck
phenomenon that predicts a decrease of genetic diversity in subpopu-
lations with respect to the populations where they derive from. While
the analogy is appealing and the idea is worth perusing, it is fair to
say that the question of whether all languages share a common origin
is still open.

This situation opens the possibility of some linguistic traits having
a present day dominant distribution thanks to being in place in the
inception of our verbal behaviour. The basic word order SOV has
been conjectured to be the most ancestral state in which languages
can order the participants of a transitive event in speech, based on
diverse arguments (reviewed in Chapter 2). Some sound-meaning
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associations that pop-up across unrelated languages are also believed
to be fossils of an ancient language (as I discuss in Chapter 3). In
particular, this argument was held about nursery words for mother
“mama” and father “papa” — they are learned so early in life and the
referents are so universally present that the words are not influenced
by the circumstances to which the rest of the vocabulary is exposed
[13] 3

Similarity between languages transcends the strictly vertical inher-
itance scenario. Multilingualism is widespread [137], and the sus-
tained employment of multiple languages leads, in some cases, to
different types of borrowing between them. While the processes and
conditions that lead to this are multifarious, there are regularities in
the material and the direction of change of borrowings [225]. There is
a gradient that goes from isolated lexical material (which is easy and
frequent even between languages with no active multilingual speak-
ers) to structural or syntactic patterns that require multilingual speak-
ers with high competence in the relevant languages.

Naturally, similarities due to borrowing are more likely between
languages spoken in spatial proximity. The varying degrees of inter-
action patterns between populations — dependent on characteristics
such as commercial ties, common cultural features and political dom-
ination — have yielded regions where borrowing shaped multiple
languages in a homogeneous manner, producing commonalities that
transcend genealogical affiliation. In some cases, the number of these
features is such that linguists talk about convergence areas [153].

One well-known case is that of Mainland South East Asia, con-
formed by languages from different families, some of which came
into coexistence due to the pressure of the Chinese Empire in the
north [152]. The common characteristics of these languages are sim-
ple syllable structure, fairly complex tonal and consonantal systems,
isolating morphology and the usage of numeral classifiers. Another
popular case is the development of a Balkan Sprachbund under the
domain of the Ottoman empire, which resulted in similar verbal and
case systems [229].

Dominance of local interactions notwithstanding, researchers have
put forward a number of areal phenomena of continent-wide scale.
Perhaps the most far-reaching of such hypotheses concerns the Pa-
cific Rim, which covers the Americas, Oceania and the territories and
islands closer to the Pacific coast of Asia. The fundamental idea is
that a few common features — like numeral classifiers, head marking
and the inclusive/exclusive distinction in pronouns, among others —
are regarded as the by-product of successive migration and contact

3 The classic (and still widely accepted) explanation for the similarity of these words
across languages is still Jakobson’s: the articulation of the stop and nasal consonants
are the simplest to produce, and as such the parents, in a rather egocentric way,
associate these first words to themselves [121].
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patterns that have taken place in the area at least since the Neolithic
[25].

This is a complex matter but, in a nutshell, I deal with non inde-
pendence either by specifying appropriate covariances according to
genealogical or areal groups (as in Chapter 5 by means of random
effects) or by weighting the evidence so that the results are represen-
tative of the languages of the world (for instance through resampling
techniques, Chapter 5).

Critically, linguistic genealogies and areas and their time depth and
composition are objects of debate, so there are several competing hy-
potheses about what the appropriate groupings are. In this thesis,
I will privilege consistently some of these classification over others:
specifically, I would use Glottolog [102], AUTOTYP [180] or eventu-
ally WALS [103] for genealogical information, at the expense of Eth-
nologue [137] or classifications that assumed macro-families as well-
established. Glottolog and AUTOTYP complement every genealog-
ical statement with published evidence, something that the Ethno-
logue fails to deliver [100]. I use WALS only in contexts in which that
classification is contrasted with some other (as in Chapter 3), or when
I make use of genealogical units of roughly comparable time depth
(like in Chapter 2), which WALS provides under the name of “gen-
era”. For areas, only AUTOTYP provides precise areal information
at a level smaller than continents; for those, I usually use the classi-
fication by Hammarström and Donohue [101] or that one by Dryer
[62]. Differences in how they group Australia, South-East Asia and
the Pacific notwithstanding, they coincide on the linguistic sound-
ness of North America, South America, Eurasia and Africa as areas
of ancient contact.

1.7 structure of the thesis

This thesis is naturally divided in two parts, both in terms of the
methodological approaches and the aspect of linguistic diversity be-
ing in focus. In what follows I present a summary of these sections
and their corresponding studies.

The first part concentrates on unraveling common patterns across
the languages of the world. While the choice of the data and the rele-
vant dimensions of observation are inspired by a wealth of linguistic
theorizing, the prevalent stance in these investigations is that of the
detection of regularities with a robust statistical underpinning.

• Robust sound-meaning associations. The arbitrary relation be-
tween sound and meaning is hailed as a design principle of
language, with exceptions regarded as marginal and anecdo-
tal. Using the largest lexical database to date, it is shown that
there exist consistent biases that make the presence of certain
segments more likely to appear in the words associated with
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certain concepts, and that this affects a considerable fraction
of the lexical concepts tested. This phenomenon cannot be ex-
plained away by appealing to areal or phylogenetic causes that
bind languages together, nor to other detectable confounding
factors. Further explorations on the areal and diachronic fea-
tures of these regularities are discussed.

• The internal structure of word order patterns. Historically and
conceptually, the study of the relative order in which words are
arranged to form sentences is key to our understanding of lin-
guistic diversity. There are languages that are almost specular
images of others in this sense — for instance, while in varieties
of Aymara (spoken mainly in the Andean portion of Bolivia)
the adjective, demonstrative, numeral and genitive classes all
precede the noun they refer to, in the Berber languages (which
belong to the Afroasiatic family and are found in the Sahara)
they all come after it. In spite of this, only a handful of combi-
nations are attested, which triggered an almost century-old dis-
cussion on what the latent causes of this asymmetry could be.
Cognitive, diachronic and communicative factors have been pro-
posed as explanations, but only a few produce predictions that
can be corroborated empirically. We found that the observed
word order patterns are compatible with some of these.

The second part of the thesis is focused on the evaluation of models
that could contribute to the understanding of linguistic diversity. The
latent philosophy is that potentially not all the variation is simply
due to unsystematic and contingent forces acting upon languages,
and that a careful scrutiny of the extra-linguistic factors influencing
languages might deliver a better understanding of the source and the
dimensions of plasticity.

• Creole as a typological group. Creole languages are special lan-
guages in that they underwent a peculiar process that contrasts
with the classic tree-thinking paradigm: they emerge from ex-
treme contact situations (i.e. circumstances of strong interaction
between speakers of different languages with no common lan-
guage among them, like in multinational commercial outposts).
Strikingly, creole languages have been observed to have similar
typological properties - they seem to prefer certain word order
configurations and they all have very regular nominal and ver-
bal patterns, just to name a few. This curious parallelism opens
up an interesting research question: can we infer typological
properties from the kind of history the languages have had, and
can we infer something about the genesis of a language just by
looking at the features of its grammar? I provide to this (heav-
ily polarized) debate a classification analysis that captures these
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questions. I show that sampling decisions have a dramatic ef-
fect on the results, but that in principle the common patterns
found so far can be readily explained by means of a common
European ancestry of many of these languages.

• Ecological pressures on speech. Human language is a (promi-
nent, complex, perhaps unique and unrivaled) animal commu-
nication system. While the unity of biological computations un-
derlying macaque calls, Passerine’s songs and human language
is a hotly debated topic, it is clear that the anatomical support
and the physical medium for vocalizations for speech in hu-
mans can be readily put in relation to that of other animals. In
contrast to other animal communication systems, however, most
of speech occurs at short distance, without major metabolic in-
vestments and in relatively noise-free environments — all fac-
tors that have been studied as shaping forces on the nature of
communicative signals from Anurans to insects. What happens
when humans communicate in adverse environments, when the
phonation becomes costly or diffuse or when they are bound
to communicate across long distances? I find that human lan-
guages can be shown to be sensitive to at least some of these
factors.

Due to the fact that this thesis is intended to be read by specialists
with potentially non-overlapping backgrounds, I sometimes provide
detailed discussions on facts or methods that are usually given only
a cursory treatment at this level. In general, I begin each chapter
with the the proper background on the issues at stake and a personal
appreciation of the situation, mostly in terms of language sciences.
A final point of divergence between this thesis and others is that,
instead of having individual sections with completely independent
discussion of the statistical or machine learning techniques to be fea-
tured, there is usually a two-way dialogue between the technical side
and the idiosyncrasy of the data being analyzed.

Most of the text in this thesis has been written exclusively for its
purpose. In some cases, excerpts from the relevant papers have been
included. For obvious reasons, I have not included any piece of text
written mainly by some of my co-authors.

1.8 scientific output associated with this thesis

1.8.1 Peer-reviewed journals

• D. E. Blasi, S. Michaelis and M. Haspelmath, Grammars are ro-
bustly transmitted even in extreme situations: the emergence of creole
languages, (to appear in Nature Human Behaviour).
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• D. E. Blasi, M. Christiansen, S. Wichmannm, H. Hammarström
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guages. Proceedings of the National Academy of Sciences (2016)

• D. E. Blasi and S. Roberts, Beyond binary dependencies in the struc-
ture of the world’s languages In N. Enfield (ed), Dependendencies in
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• C. Everett, D. E. Blasi and S. Roberts, Language evolution and
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lution (2016)
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(2016)
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and L. B. Preston (eds), Measuring Linguistic Complexity. Oxford
University Press (2014)

1.8.2 Peer-reviewed conference presentations

• D. E. Blasi, Do ecozones affect the development of phonological sys-
tems?, Phonetics and Phonology 9, University of Zürich, Switzer-
land (2013)

• D. E. Blasi, New methods for causal inference in the language sci-
ences, New Developments in the Quantitative Study of Lan-
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2
D E P E N D E N C I E S I N W O R D O R D E R PAT T E R N S

2.1 combinatorics with words

The way in which languages arrange words to conform grammatical
patterns has been, and still is, a prominent topic in the sciences of lan-
guage. The classic approach to typological word order studies begins
by endorsing certain lexical or phrasal categories (e.g. “adjective” or
“relative clause”) to then determining what their relative positions are
within a coherent unit. To illustrate this with a concrete example: the
demonstrative can appear before the noun it refers to1:

(1) má
this

ntamá
house

Fore, Trans-New Guinea

“this house”

or the other way around,

(2) mas̆uk
man

wak
this

kulak
tall

ti
be.3SG

Maba, Nilo-Saharan

“this man is tall”

or even both orders could be acceptable, maybe within different
constructions

(3) il-qaraar
the-decision

haadha
this

Gulf Arabic, Afroasiatic

“this decision”

(4) haadha il-qaraar
this the-decision

Gulf Arabic, Afroasiatic

“this decision”

and finally it is also possible for the noun to be flanked by two (not
necessarily identical) demonstratives

(5) yo miu yo
this boy this

Milang, Tibeto-Burman

“this boy”

1 All examples are taken from the WALS chapter “Order of Demonstrative and Noun”
by [63]; references to the glosses below can be found there.
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In contrast to other structural properties of language, some word or-
ders have the practical virtue of being relatively simple to elicit. Rela-
tively, because (unlike English) most languages allow more than one
particular way of arranging words in valid ways, and sometimes it be-
comes hard (or directly impossible) to determine a unique word order.
For instance, a common linguistic strategy consists in changing the
order of words to channel attention over a particular component of
the sentence, usually “fronting” the relevant material [35]. For those
reasons language descriptions usually report the canonical order of
words, which would correspond to the most frequent and/or the one
with the least number of pragmatic implications [209]. While I do not
claim that the notion of canonical word order is uncontroversial (see
e.g. [131]), I embrace the principle suggested in the introduction: if a
phenomenon is robust and recurrent, it should be able to be detected
in spite of noise or misspecification.

To the researcher unfamiliar with the field, word order might ap-
pear as a rather uninteresting feature — at least when compared with
the luxurious variation exhibited in other domains, some of which I
have discussed before. The importance of word order studies lies,
ultimately, in the puzzling observation that only a few of the many
configurations are enough to account for the large majority of attested
languages [96]. The question of why some word order arrangements
are so frequent (while others are vanishingly rare) and what is the
reason behind the coincidence of so many different word orders into
regular associations are a micro-cosmos of the intense theoretical and
methodological debates in the language sciences. Where some pro-
pose that the observations follow from deep cognitive or processing
pressures, others suggest that they derive from historical processes,
potentially unique and unrepeatable. In contrast to those defending
the idea that these patterns found their explanation within the do-
main of grammar, yet another group argues that we should look in-
stead to the brain, to the structure of the events as they unfold in the
world, or to the degree of political complexity attained by the popu-
lation of speakers. The far-reaching implications of these questions
justify, hence, the fundamental status of word order in the study of
language.

2.2 the place of the subject, the object and the verb

Joseph Greenberg, the father of the 20th century linguistic typology,
researched, wrote and speculated profusely on the order of the com-
ponents of simple transitive clauses: subject (S), object (O) and verb
(V) [96]. While there are as many word order patterns as combina-
tion of lexical classes and grammatical categories, understanding ba-
sic word order is a key to the main discussions and competing theories
in the field.
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Word order pattern Number of languages Sample fraction
SOV 565 0.41
SVO 488 0.35
VSO 95 0.07
VOS 25 0.02
OVS 11 0.007
OSV 4 0.002

No basic word order 189 0.13

Table 1: Basic word order counts based on Dryer [64]

As of today, different sampling and counting schemes converge to
the claim that three orders out of six (SVO, SOV and VSO) monop-
olize the large majority of the occurrences. On the other extreme,
earlier in the 20th century there were no attested cases of OVS and
OSV languages, but Amazonia (and to a lesser extent Australia and
Sub-Saharian Africa) delivered the missing data points — see Table
2.2

SOV is by and large regarded as the primitive basic word order
of one or multiple prehistoric languages [85, 155, 176]. Gell-Mann
and Ruhlen [85], backed by a large collection of historical word or-
der transition events (and linguistic genealogies) found that, with the
exception of diffusion processes, the large majority correspond to a
change from SOV2. Coming from a different angle, Maurits and Grif-
fiths [155] studied the ancestral states of basic word order of seven
large linguistic families with Bayesian phylogenetic methods, based
on trees reconstructed from cognacy judgements. Using uniform pri-
ors over the word order patterns, they found that four of the families
— Afro-Asiatic, Indo-European, Sino-Tibetan, and Trans-New Guinea
— have SOV as the order with the largest posterior probability at
10,000 ybp, whereas the other three — Austronesian, Nilo-Saharan
and Niger-Congo — have instead VSO, VSO/SOV and SVO respec-
tively. However, when all these families are rooted together, coales-
cence before about 50,000 ybp leads to SOV as the most likely ances-
tral state.

Far-reaching reconstructions of this kind are not unwarranted given
the relative stability of word order patterns through time and their re-
silience to be replaced by borrowing. In the classic scale by Thomason
and Kaufman [225], word order borrowing only appears in situations
of “intense or strong cultural contact” between populations. Need-

2 Their claim partially depends on the existence of controversial linguistic macro-
families. For instance, they mention that the Amazonian OVS and OSV languages
descend directly from SOV by assuming that they belong to the Amerind macro-
family, a large group with extensive coverage in the Americas ranging from Selkńam
in Tierra del Fuego to Blackfoot in the Northern plains of the US and Canada. The
evidence for these groupings and other macro-families — lookalikes in the pronoun
paradigms — is, in the best of the cases, weak.
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less to say, there are well attested cases in which they are induced by
contact, as for instance with Austronesian languages spoken on the
East coast of Papua New Guinea that switched from SVO to SOV (in
tune with the languages spoken in the island) [31].

Furthermore, SOV appears in experimental conditions where sub-
jects are forced to convey a message on a transitive event without
using speech. In what came to be a contemporary classic, Goldin-
Meadow and collaborators [90] asked speakers of languages with dif-
ferent basic word orders — English, Turkish, Spanish, and Chinese —
to either describe a picture with gestures or to stack a number of trans-
parencies (with objects or actions), all depicting basic transitive event
such as a man playing a guitar. Regardless of their language, indi-
viduals overwhelmingly preferred the agent-patient-action sequence
both in gestures and in the arrangement of the transparencies. Equat-
ing these semantic categories to S, O and V might not be straightfor-
ward, though, and others have provided similar evidence for gestural
preference for SVO [87].

Nevertheless, the development of a few recent sign languages sug-
gests that, rather than being only an experimental effect, languages
might latch to this SOV preference in some circumstances. The most
famed case comes from Al-Sayyid Bedouin Sign Language [203]. It
was documented across three generations of an endogamous popu-
lation that carries genetically recessive deafness in the Negev region
of Israel, and its signers converged into a regular (S)OV language.
While they interact regularly with (hearing and deaf) Hebrew and
Arabic speakers, the gist is that neither language could be the source
of its basic word order — Hebrew and the colloquial and classic vari-
eties of Arabic do not allow SOV, and Israeli Sign Language uses SOV
very rarely. More in general, it has been recently pointed out that in
all attested sign languages SOV is always grammatical [173].

SVO is, in contrast, the state to which any other word order is more
likely to transition, which on the long term implies an increase in the
overall number of SVO languages [85]. This observation sparked a
number of studies aiming to determine what could possibly be the
advantage of SVO over the other possible word arrangements.

In transitive scenarios, the symbol S usually represents an agent,
and O, a patient. It has therefore been suggested that SVO mimics the
unfolding of events through time: the Agent (S) performs an action
(V) that affects the state of the Patient (O) [233] 3.

3 Curiously the same kind of argument was used by XVIII philosopher de Condillac to
suggest that OVS — incidentally, the rarest basic word order — is the most natural
account of events:

[. . . ] first the noun indicating the object one was talking about, then
the verb indicating the operation one intended to carry out on that
object: for example, fruit want; the subject of the verb came at the end
of the whole series: for example, fruit want Peter.
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Dependency length minimization is a reasonable candidate for a
pressure that shapes grammars [75, 89]. Across the languages of the
world, agreement between the S and O arguments and V is consid-
erably more frequent than S and O agreement between them. This
produces a dependency between V, on the one hand, and S and O on
the other — somehow the language processor needs to access the verb
when determining the shape of O and S. The farther they are from
V in the speech stream, the more difficult the operation becomes. By
placing V between S and O the overall dependency distance would
be minimized, and as such it turns out to be the most efficient basic
word order in this respect [74].

Research on gestures and charades has also been used to argue for
the functional value of SVO. Gibson et al. [87] have shown a pref-
erence for the agent-action-patient order when the patient could po-
tentially serve as an agent as well (as in “Dante loves Beatrice” in
contrast to “Dante loves wine”). By separating the two arguments,
they argue, the patient and agent roles are harder to confound with
each other. However, further research has shown that individuals do
not seem to have any problems parsing expressions with two adja-
cent animate arguments, and they all seem to adjudicate agent role
to the first argument [99]. This agent-first bias has been shown to be
robust, popping out even in languages where the expectation would
be biased towards finding non-agents in the first position [26].

Animacy and agenthood are not the only reasons that have been
invoked to switch preference from SOV to SVO. Schouwstra and
de Swart [206] reviews previous experimental setups and conclude
that the verbs that occur on those are of the extensional kind, where a
change in the world is implied — someone moves/cuts/breaks/eats/
. . . something, typically. When similar pantomine experiments are
performed with intensional verbs (like think, regard or appreciate) sub-
jects show a strong tendency for SVO instead.

Some researchers deem SVO as more likely in the inception of lan-
guage than SOV. Bickerton argued that the fact that most creoles —
languages that emerge from extreme contact situations —exhibit SVO
reflects the default basic word order that would be in place before
other factors start to shape grammar (Bickerton [27]; see Chapter 2
for a thorough discussion).

Finally, while engaging with the terminological apparatus of for-
mal syntax is not warranted here, it is worth mentioning the very
influential theory by Kayne on the universal relative order Specifier-
Head-Complement (which most of the times would be analog to S-V-
O [127]). The fact that languages display other “surface” basic word
orders is due to ulterior transformations on this fundamental state.
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2.3 the system of word orders

Language is a system, thus it should not come as a surprise that the
word order of major constituents predicts very well (and is predicted
by) other linguistic features — specially other word orders. The un-
canny alignment of languages in only a few very frequent word order
combinations asks for a reconsideration of the scope of some of the
ideas presented before.

Some of the initial ideas on word order patterns suggested that they
might simply come into existence as an agglomerate of overlapping
functions or histories between pairs of lexical categories (as in Fig
1. (b)), possibly due to the cross-linguistic tendency of some lexical
categories to be marked or used in the same way as others [45, 126],
or because they grammaticalize from a particular category while pre-
serving the same relative position in the clause as their source [6].

1.

Figure 1: Theories of word order

Schematic representation of four classes of theories on word order
patterns. (a) they are lineage dependent with no universal cognitive
or functional value, (b) they are affected by each other in an unequal

manner and each could be the locus of independent forces (as
grammaticalization), (c) the adjacency between verb and object

explains the patterns (d) a unique external cause affects some or all
of them, as for the instance the preference for consistent head

ordering.
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Crucially, it should be noted that the discussion of the previous sec-
tion can be perfectly framed as an opposition between OV and VO
languages. The S-initial position is irrepressible — Table 2.2 shows
that the ratio between S-initial and non-S-initial is about 8:1. I have
mentioned that the reason behind this seems to be the widespread
preference for interpreting the first noun or NP in a clause as S. This
warped expectation is so strong that it might bend the interpretation
of passives (in which the usual relative order of S and O is inverted),
which leads young infants to interpret them as active sentences and
it might even trigger a whole language to develop an ergative align-
ment system. On top of that, S is regularly a dispensable element —
it can be omitted in many languages [134].

Following the discovery of the utility of the OV-VO opposition,
Lehmann [135] and Vennemann [235] proposed a number of gener-
alizations. While a few researchers have argued against the OV-VO
typology [177], the range of typological variables it bundles together
seems to outfox any available alternative [65].

Lehmann [135] suggests that the adjacency of O and V is the princi-
pal building block of the other word order patterns, what he calls the
Fundamental Principle of Placement. Thus, if a category that modifies
or complements V (like negation or adverbs) have to be allocated in
a OV language, they will come to the right of the verb, and to the left
in VO languages. Similarly, words or phrases that act upon O (like
genitives or adjectives) will show the reverse pattern. This stems from
the fact that, from a syntactic point of view, O and V are strongly and
symmetrically dependent on each other [106] to the point that some
languages directly forbid any intervening elements between the two
[230]. Thus, the OV-VO disctinction organizes the rest of the relations
(see panel (c) in Figure 1)

Vennemann [235] points out to structural analogies in the pattern-
ing. Roughly speaking, word order relations usually involve two cat-
egories with unequal degrees of dependency — recall our discussion
on dependency length minimization in the previous section. The
dependent category extends or makes more precise the meaning of
the head; thus we have the dependent-head pairs O-V, Adj-N, Det-
N, Num-N, among others. Vennemann proposed under the name of
Principle of Natural Serialization that the consistency of word order is
due to the harmonic arrangement of words into two classes: head-
dependent and dependent-head, which correspond to VO and OV.

While elegant, this account does not fare very well against data. In
an attempt to salvage the idea, Hawkins [106] suggested that the pref-
erence for head-dependent or dependent-head languages is, rather
than categorical, a gradient force — languages can handle a mixture
of both patterns, but the less harmonic they are, the less likely to
be become fixed due to the extra strain. In both Hawkins and Ven-
nemann’s approaches, the OV-VO distinction is just one out of the

39



dependencies in word order patterns

many predicted by the Principle of Natural Serialization without any
special status (see panel (d) in Figure 1).

Finally, a more general criticism to the validity of synchronic word
order patterns as cognitive or functional phenomena got its most re-
cent exemplar in work by Dunn et al. [66]. If there exist real pres-
sures pushing languages towards specific combinations of word or-
der, this should appear most clearly in the diachronic dimension: a
change OV→VO should be followed by its putative associated vari-
able, Pos→Pre. They perform a standard Bayesian model compari-
son between two evolutionary models: one in which each word order
pattern is free to change independently from the other, and another
where they are correlated. They did not find evidence for universally
valid correlated changes, which lead them to conclude that no word
order correlations exist beyond the scope of individual lineages. This
lead them to conclude that

[. . . ] systematic linkages of traits are likely to be the rare
exception rather than the rule. Linguistic diversity does
not seem to be tightly constrained by universal cognitive
factors specialized for language. Instead, it is the product
of cultural evolution, canalized by the systems that have
evolved during diversification, so that future states lie in
an evolutionary landscape with channels and basins of
attraction that are specific to linguistic lineages.

Thus, no fundamental word order correlations exist beyond the
accidental and contingent events of human history, as reflected by
panel (a) in Figure 1.

2.4 word order correlations : facts , chance or statisti-
cal chimera?

In a nutshell, we are a far cry from having any statistically conclusive
evidence on any of the four theories presented so far.

First, word order patterns are transmitted vertically (i.e. from the
previous generations of the related population of speakers) and they
are susceptible to change due to contact with other languages, which
results in apparent large areas with rather homogenous word or-
der features [62, 225]. Because of this, it is a possibility that uni-
versal tendencies are the residual of particularly prolific lineages or
ancient large-scale contact events. Making the case for universal cross-
linguistic tendencies requires the assessment of as much independent
evidence as possible, but the actual distribution of languages is not
balanced across the putatively independent genealogical and areal
units. When the data for individual units is scarce, it might lead to
either the rejection of truly universal tendencies or the adoption of
spurious associations.
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For instance, Dryer’s procedure for establishing a word order cor-
relation consists in counting the proportion of genera within six large
linguistic areas — if all of them share the same bias, then a new cor-
relation is established. When analysing the distribution of NGen in
SVO languages, Dryer counts the evidence for Africa (10 Gen(itive)
N(oun) and 34 N(oun) Gen(itive)) as equivalent and opposite to that
of North America (2 GenN and 5 NGen) [65]. A simple (two-tailed)
binomial test reveals that, while the first bias is supported at conven-
tional values (p < .001) the second effect is indistinguishable from
the no-bias situation (p = .45), so definitive conclusions cannot be
drawn.

Similarly, while Dunn et al.’s approach reveals important aspects of
the independent historical development of individual linguistic fam-
ilies, it is limited by the absence of enough variation in word order
patterns within them [46]. In addition, the fact that four linguistic
families — no matter how big — fail to conform to a global statistical
tendency is not enough to disqualify any strong informative gener-
alization about the languages of the world [23]. Conversely, when
the pattern being considered comprises several possible levels, unat-
tested instances cannot be deemed to stand for impossible languages
since the sample size required for ruling out them with confidence
exceeds the amount of data available. For instance, the arrangement
of Adj(ective), Num(eral), Dem(onstrative) and N, admits 24 logically
possible combinations [41]: even in the unrealistic case in which all
of the combinations have the same a priori chance of being attested,
and assuming a sample of 50 completely independent languages, we
would still expect to miss about 3 combinations.

Some contemporary methods can accommodate some phylogenetic
information while being statistically sound and generalizable to a
large number of language families and isolates. Bickel and collab-
orators developed a method known as “Family Bias” [24]. Binomial
tests are performed within linguistic families —and with some adjust-
ments, to isolates— and those that succeed in showing a consistent
bias are marked as such. The method can accommodate specific infor-
mation about the phylogeny of the involved languages as well, and
it constitutes a dramatic improvement with respect to the preceding
tradition. Other regression-based approaches are mixed effects mod-
els (where areal and genealogical information can be structured as
random effects [117]) and (if more precise genealogical information
is available) phylogenetic generalized least squares, where branch
length is mapped into the covariance matrix via a model of neutral
evolution (cf. [169]). Finally, a fully Bayesian approach to the issue
has been attempted as well [49].

Second, since these proposals were all formulated on the basis of
similar empirical observations, they coincide to a large extent on the
expected pairs of associated word orders [6]. Furthermore, some of
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the more technical notions involved in those theories — like “phrasal
head” or “fully-recursive category” — provide extra degrees of free-
dom to accommodate discrepancies [209], and even clear violations
are justified in ways that are post hoc if correct. For instance, the
absence of patterning between OV/VO and Num, Dem and Adj (that
conflicts with the head ordering processing theory) can be argued
to be the result of the later categories composing characteristically
shorter phrases — more concretely, Num, Dem and Adj are argued
to be usually single words — which would not impose a large enough
burden to the parser as to force a word order change according to the
general preference [106].

Third, most research focuses on pairwise dependencies between
patterns. The only explicit testing of the relevance of higher-order
dependencies was attempted by Justeson and Stephens [126]. Based
on 147 languages, they performed a log-linear modelling of the joint
probabilities of six word order patterns, and they equated the specifi-
cation of different interaction terms to the explicit theories of Hawkins,
Greenberg and Lehmann. The conclusion they reach is that Green-
berg’s take, although probably wrong about the specifics of the cor-
relation pairs, was essentially right about the fact that there do not
seem to be reasons to posit higher-order dimensional dependencies
beyond the pairwise levels. While ahead of its time, Justeson and
Stephens paper faces two important limitations. First, the number of
languages is too small to yield reliable estimates on the higher-order
coefficients. Second, their model selection procedure is (presumably)
based on a hierarchical partition of the interaction terms, which is
arbitrary in principle and can lead to different best models depend-
ing on it. Finally, their calculations are based on likelihood ratio tests
assuming the χ2 asymptotic distribution as in Wilk’s theorem, which
might be inadequate due to poor sample size or the violation of the
assumptions of the theorem.

If this statistical approach seems to favor only low-order interac-
tions, on the contrary, “universal” trends are easier to find when
more variables are taken into account. Consider for instance the post-
positional noun modifier hierarchy [105], which states that (in Hawkins’
notation)

Post ⊃ ((AdjN∪RCN ⊃ DemN&NumN)&(DemN∪NumN ⊃ GenN))

The problem with these universal claims is that the number of con-
ditioning variables diminishes dramatically the subsets for which the
statement is relevant. In this case, the postpositional noun modifier
makes a maximal statement about languages that have postpositions,
that are AdjN, RCN and DemN. The result is usually a dramatic re-
duction of scope and increased concerns about statistical validity.

Ultimately, while word order patterns occupy a central role in our
understanding of linguistic behaviour, these issues hold us from de-
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ciding which of the competing theories of word order patterns (if any)
explains the available data better.

In spite of all these limitations, it is possible to build a comprehen-
sive statistical evaluation that 1) models the complex dependencies
between word orders while 2) taking into account the individual ge-
nealogical and areal histories of languages using 3) fleshed out pre-
dictions that bind synchronic patterns with diachronic processes. I
provide such an evaluation in the following sections.

2.5 materials

Word order data from 853 languoids was collected from WALS,4 cov-
ering 742 unique languages, all continents, 161 Glottolog families,
275 WALS genera and 24 AUTOTYP areas. As it is usually the case,
the relevant groupings are unbalanced: 55% of the genera have only
one language, and 15% only two. A total of eight word order vari-
ables were registered: order of verb and object (OV-VO), subject and
verb (SV-VS), genitive and noun (NGen-GenN), adposition and noun
phrase (pre-post), noun and adjective (AdjN-NAdj), demonstrative
and noun (DemN-NDem), numeral and noun (NumN-NNum) and
noun and relative clause (NRel-RelN). The sample contains only lan-
guages marked with one of the two canonical orders; those with other
values (like simultaneously having both NRel and RelN or inpositions
instead of pre- or post-positions) where excluded beforehand. While
there are other sources for word order patterns —- even WALS have
over two dozen of such variables — the variables chosen for the anal-
ysis are the most widely discussed in the literature, plus they all have
a decent coverage and enough observed variability, which is a sine
qua non for any ulterior inference we might want to attempt.

The recorded variables vary in their coverage (see table 2), ranging
from an almost perfect coverage of OV-VO (96%) to a rather poor 63%
of NRel-RelN with a mean of 87%.

A map displaying the geographical distribution of the languages
can be observed in Figure 2

2.6 the inference of dependencies

2.6.1 Directed Acyclic Graphs

The first fundamental step in the direction of understanding how
word order patterns associate with each other is to choose a flexible
yet informative model in which the data could be represented. Ideally,
such a model will permit me to approach the question of which are

4 All of the WALS chapters used here were authored by Matthew Dryer.
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Word order pattern Coverage WALS code
Object and verb 0.97 X83A
Subject and verb 0.96 X82A
Adjective and noun 0.94 X87A
Genitive and noun 0.88 X86A
Numeral and noun 0.87 X89A
Demonstrative and noun 0.86 X88A
Adposition and noun phrase 0.81 X85A
Relative clause and noun 0.63 X90A

Table 2: Data coverage and WALS code of the word order patterns
used in this study

Figure 2: Map of languages with word order information

Geographical distribution of 853 languages for which word order
patterns information was available. The colouring correspond to the
projection of the first three principal components of their word order

variables into RGB coordinates.

the causal dependencies among the variables Y, which will amount
to estimate the objects

Pr(Yk = yk||Y1 = y1, . . . , Yk−1 = yk−1, Yk+1 = yk+1, . . . , YN = yN) (1)

The elements on the left of the || glyph need to be understood as
indicating that the values those variables express have been achieved
by means of an intervention. This stands in opposition to the analog
observational object, simply the conditional dependency relation

Pr(Yk = yk|Y1 = y1, . . . , Yk−1 = yk−1, Yk+1 = yk+1, . . . , YN = yN) (2)

The difference between the two is rather subtle: while in principle
both are statements about random variables, in the second case the
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variables stand for observations in the world, whereas the first cap-
tures the probabilistic effect of of supernaturally changing the vari-
ables on the conditioning side to specific values. To illustrate this in
our case,

Pr(OV|NGen, postpositions)

could be approximated by the ratio of the observed languages in the
world with NGen and postpositions that are OV as well. In contrast,

Pr(OV||NGen, postpositions)

would be estimated by forcing languages to adopt NGen and post-
positions and then (perhaps after waiting for them to become stable
languages) calculating the fraction of those that happen to be OV.

The model I will employ here is a Directed Acyclic Graph (DAG),
a graph structure with enough flexibility to accommodate all plausi-
ble dependency relations which at the same time provides powerful
statistical ways to cross (under appropriate conditions) the line from
observational to interventional statements [210].

Let us assume that underlying the data exists a causal model for
which the exact causal dependencies can be defined. Variables are
displayed as nodes and causal connections as directed edges — so an
edge going from variable A to B should be read as “A causes B”. In
this case, A would be the direct cause of B, but any variable that is
connected via a series of directed edges to B would be also regarded
as a cause of B — an indirect cause (see Figure 3) All the variables that
are direct causes of A are its parents, Pa(A), and the collection of all
the variables that are either direct or indirect causes of A are its ances-
tors, An(A). Conversely (and following with the kinship metaphors)
all the variables for which A is their direct cause are referred as its
children, and in general all those variables that have A as their direct
or indirect cause are its descendants. Naturally, all those variables that
are not the descendants of A are its non-descendents. Figure 3 illus-
trates the nomenclature and the basic concepts introduced here.

We will let aside directed cycles from our representation, since they
imply that causality could be reflexive5. The class of graphs that
reflect these properties are called Directed Acyclic Graphs (DAGs).

So far we have not discussed in which way causal relations are
expressed explicitly. For that we need the Causal Markov Condition
[190, 210], which simply states that a variable is independent from its
non descendants by conditioning on its parents. In other words, if
we fix in some way the causes of a variable then the variation of the
values of that variable can only affect those which are its descendants.
This is an explicit bridge from a causal theory to (statistical) indepen-
dence.

5 Models that involve reflexive causal relations exist but they are far less understood
(from an algorithmic and formal point of view) than models without that property.
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Figure 3: Basics of a DAG

Scheme of a directed acyclic graph (DAG). In the perspective of the
green node, nodes that have ongoing / ingoing edges to / from it

are called parents / children. The set of all the nodes to which there
exists a directed path to / from the green node are referred as

ancestors (in blue) / descendants (in green).

The Causal Markov Condition then determines the causal relations
that can be read off the causal graph. Explicitly, it implies that the
joint probability distribution of all the variables in the graph is simply

Pr(X1, X2, . . . , Xn) =
N

∏
i=1

Pr(Xi|Pa(Xi)) (3)

Which in other words means that the set of causes of a variable
determines its probability distribution. Needless to say, this general
framework can suit any probabilistic functional dependency between
an effect and its causes. A variable X could be a simple linear func-
tion of its parents with normally distributed noise (which is perhaps
one of the most common modelling choices) but any mixture of dis-
tributions depending on any kind of function can be plugged in as
well. Naturally, a purely deterministic function can be modelled in
this manner as well.

More in general, conditional dependency relations between any
set of variables can be easily deduced from the graph thanks to the

46



2.6 the inference of dependencies

Markov Causal Condition by means of the graph-theoretic concept of
d-separation, [190]. In this context, if a set Z of variables d-separates (d-
connects) another, then the latter group of variables is conditionally
independent (dependent) by conditioning on Z. The final relevant ter-
minological ingredients are the v-structures (node triads following the
scheme A → B ← C, where the central node is referred as a collider)
and unblocked path, a path that does not contain any v-structures. D-
separation is composed by a few simple rules, which I will express
by considering the simple case of two nodes X and Y:

• If there is an unblocked directed path between X and Y in the
DAG, X and Y are d-connected.

• X and Y are d-connected by a set Z if no blocked path connect-
ing them contains a v-structure that traverses a member of Z. If
there are no blocked paths between X and Y, then Z d-separates
X and Y.

• If a collider or a descendant of it is in Z then all the paths it
traces should be regarded as unblocked

We will see that the inference of the quantity expressed in equation
1 is hard, but that we will be able to secure some information about
the causal dependencies, namely which variables affect which others
(this is, without a precise estimate on the magnitude of the influence)
by assuming that the variables we used achieve causal sufficiency (see
below). Even when this does not hold, DAGs still express the best sta-
tistical guess about the causal dependencies between variables: their
conditional dependencies.

2.6.2 From observational data to causal graphs

We are already equipped with a natural model for causal relations.
The challenge is now to infer causality out of purely observational
data. The link comes from merging the graphical representation dis-
cussed before with statements about conditional independence be-
tween variables as they are inferred from data.

As we have seen, the causal graph model entails a series of condi-
tional dependencies. Crucially, given proper conditions it is possible
to invert the logic and go from a series of judgements about the sta-
tistical independence of a series of variables — which is in principle
obtainable from observational data — to the actual causal relations
in our framework. This last inference is possible once we assume the
Causal Faithfulness Condition, which states that all of the independence
relations that can be read from the data are represented in the graph
and vice versa6.

6 Concretely, it has been proved that in the space of parameters of multinomial distri-
butions on a graph, non-faithful distributions have measure zero — in other words,

47



dependencies in word order patterns

A naı̈ve strategy would be to test, for each pair of variables, whether
they are dependent after conditioning on every other possible set of
variables. If two variables that are dependent remain so after these
tests, then by the structure of the causal graphs the only alternative
is for them to be connected in the graph. A smarter strategy is imple-
mented in the PC algorithm (which we adopt in our analysis; Spirtes
et al. [210]), which essentially determines the same facts by perform-
ing a smaller number of tests.

The roundabout strategy of the PC algorithm consists in consider-
ing sets of neighbors of larger cardinality sequentially. It starts with
a complete graph. First, marginal conditional independence tests are
performed over each set of variables. For each pair of nodes that turn
out to be independent, their edge is removed. Then, for each of the
pairs that are still connected, independence is tested again but this
time conditioning on a third variable. Instead of trying with each
variable, the PC algorithm considers only those nodes that are still
connected to the target nodes. The reason is simple: if there is any
set of nodes that d-separates both nodes, it has to include at least one
direct neighbor of each. The process thus continues with subsequent
conditioning sets7.

The output of any of these procedures is called the “skeleton” of the
causal graph, which is an undirected graph [210]. Given a conditional
independence oracle, the PC algorithm is guaranteed to retrieve the
true underlying skeleton and a class of compatible directed edges, as
I discuss later.

Once the skeleton of the causal graph has been obtained, the algo-
rithm proceeds on orienting the edges. Given three nodes connected
by two edges (X − Z − Y) we can have 4 oriented graphs, as shown
in Figure 4.

Two of those graphs correspond to a directed path from one ex-
treme to the other: X → Z → Y and X ← Z ← Y. This structure
correspond to the case in which all the influence from X to Y (or
the other way around) is mediated by Z. Another possible graph is
the so-called fork, X ← Z → Y, which corresponds to Z being a
common cause of both X and Y. In all of these cases, if we intervene
in the world and remove Z from the system, then X and Y cease to
be connected causally. In particular, if we condition on Z we obtain
that X and Y are independent. If we actually find that this is the
case (namely that X and Y are independent given Z) then we can-
not tell which of the three cases represent the data we observe. The
last possible directed graph based on three nodes and two edges is
X → Z ← Y, usually referred as a v-structure. Here X and Y are in-

there is a zero chance of picking randomly any distribution consistent with a graph
and finding that is not faithful [157]

7 It should be noted that this entails that the variables to be tested depend on the order
on which the analysis is performed. Current implementations of the PC algorithm
solve this issue [42].
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2.6 the inference of dependencies

Figure 4: Node triads

All possible four orientations of two edges and three nodes. In the
context of DAGs, (a), (b) and (d) imply the conditional independence

of X and Y with respect to Z. In contrast, in (c) X and Y are
independent but become dependent by conditioning on the levels of
Z. This different behavior is key for linking conditional dependency

statements and (unobserved) structural properties of the DAG.

dependent but contribute to the variable Z. Now, if we condition on
Z, then X and Y become dependent. If we do find this phenomenon,
we are in presence of a v-structure, and hence we can induce the
orientation of the edges.

In this way, orienting v-structures can help orienting adjacent non
v-structures. For example, imagine that there is a collider detected
X → Z ← Y, and the skeleton connects another variable A to Z. If
there is no collider detected, A → Z ← Y or A → Z ← X, then
by exclusion the orientation must be Z → A. Once these orienta-
tions have been established, further directed edges can be determined,
for instance when one of the possible orientations leads to a cycle —
which we recall are excluded from our representation. Resolving all
orientations in this way may not be possible for every skeleton. In
other words, the independence statements usually underdetermine
the causal graph. The final product of the algorithm is not, then, a
simple causal graph but a collection of possible DAGs compatible
with the data, with both oriented and non-oriented edges [210].

The DAG generated with the PC algorithm can be proven to re-
trieve the real underlying causal graph if we are equipped with the
real dependency relations and, critically, if the set of variables are
causally sufficient, which means that all the causes have been cap-
tured in our set of variables. Critically, DAGs are not closed under
marginalization — DAGs inferred after removing or including one
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variable do not hold any trivial relation with the DAG based on the
original data. Furthermore, selection variables (which can be equated
to an unbalanced sampling of data in the space of their covariates) can
alter the dependencies.

Under appropriate yet stringent conditions, there are ways of infer-
ring relations even in the presence of an arbitrary number of selec-
tion and hidden variables. However, for my research question this
is irrelevant. As we have seen, three out four theories of word or-
der patterns lead to contrasting DAGs even with a limited number
of variables — following the panels of Figure 1, (a) would imply no
dependencies, (b) diverse pairwise dependencies and (c) dependen-
cies involving mostly OV-VO. I will make use of a different strategy
for the assessment of (d), that explicitly appeal to factors outside the
observable word order patterns.

2.6.3 Results

In order to account for genealogical dependencies, I repeat n = 5000
times the DAG inference procedure by sampling randomly one lan-
guage per WALS genus — which are defined so to have comparable
time depths. Each random sample will have some missing values.
Three different approaches were used for missing data imputation.
In order of complexity, they are:

• Random imputation. Missing values are assigned randomly to
either of the two levels of the variable,

Xmiss ∼ Bernoulli(0.5) (4)

This scheme treats missing values as effective noise. While miss-
ing potentially relevant information that might conduct towards
a more efficient imputation, it also serves as a baseline condi-
tion: any pattern found under this procedure can be considered
as firmly established.

• Bernoulli imputation. Similar to the previous scheme, but with
the parameter of the Bernoulli trial estimated from the observed
values

Xmiss ∼ Bernoulli( p̂obs) (5)

The observed parameter of the Bernoulli distribution was esti-
mated using a simple Laplace rule of succession.

• Gibbs sampling imputation. This is a Bayesian approach that es-
timates the cells of the contingency table by means of a Dirichlet
process mixture of products of multinomial distributions [207].
The prior has full support on the space of possible distributions
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consistent with the observed data, and in the case of finite mix-
tures the problem can be solved via maximum-likelihood - in-
deed, that will be the strategy I will be follow in Chapter 2 un-
der the name of latent class analysis. The infinite mixture model
I use here, while complex, it is nonetheless a classic Bayesian
approach — uninformative priors, Gibbs sampling via MCMC,
etc. — and it has the purpose being as flexible as possible.

The sequence of imputations schemes also follows the degree on de-
pendency on the rest of the data: Bernoulli imputation does not de-
pend on the data at all, Bootstrap imputation depends on the distribu-
tion of values of the imputed variable and Gibbs imputation depends
on the information present in the joint probability distribution of all
variables.

As independence test I use a simple G2 test. It involves the calcula-
tion of the statistic

G2 = 2 ∑
x,y,S

Pr(x; y; S) ln
(

Pr(x; y|S)
Pr(x|S)Pr(y|S)

)

where S is any set of variables other than x and y. This quantity has
an asymptotic χ2 distribution in the independent case, with appropri-
ate degrees of freedom. As it was mentioned before, we have to make
sure that the amount of data is sufficient for such an approximation;
a common rule of thumb asks for no less than 10 · 2|S| data points,
where |S| is the size of the conditioning set. This implies that we will
be able to condition on no more than 4 variables at the time — condi-
tioning on 5 variables requires a nominal number of 320 data points,
slightly off the 275 independent points from each genera. However,
in the procedure it was never encountered the need of conditioning
on sets larger than 4.

Given the asymptotic χ2 distribution, we proceed to test the com-
peting hypothesis of our observed G2 not being a sampled value from
it at a fixed α value. While formally a level for significance, in this
case it should be regarded more as a regularization parameter. In
general, it is expected that the set of edges inferred from smaller val-
ues of α will be contained in the DAGs for smaller values. In this
case, the fact that multiple random samples were integrated allows
us to have a natural estimate of the robustness of the inferred edges.
Heuristically, it can be seen that changing α changes the support for
a particular in a more or less continuous manner. α = 0.001 was cho-
sen since it does not yield more than a couple of saturated edges —
this is, edges that are inferred in all the samples — while being able
to capture even very weak links at the same time. In the end, the
discussions will be based on the relative support across the random
samples.

The output of the PC algorithm assuming a cutoff of 0.001 is pre-
sented in Figure 5.
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Figure 5: Word order DAGs with different imputation methods

DAGs from the PC algorithm applied to 5000 random samples based
on three imputation methods (discussed in the main text). The

numbers attached to the edges represent the fraction of samples in
which the edge was inferred.

The graphs turn out to be quite dense, although a considerable
fraction seems to be supported only by a small number of samples.
The graphs involving edges appearing in at least 2/5 of the samples
is simpler to interpret, as it can be seen in Figure 6

Figure 6: Word order DAGs with different imputation methods
(only well-supported edges)

DAGs from the PC algorithm applied to 500 random samples based
on three imputation methods (discussed in the main text). The

numbers attached to the edges represent the fraction of samples in
which the edge was inferred. Only edges with a value over 2/5 of

the total number of supporting samples are displayed.

The output of the three methods are almost identical, as it can
be seen. The random and Bernoulli strategies show the same edges
(and directions), whereas the Gibbs’ imputation method differs with
respect to them in two respects: it has a directed edge from adNP
to RCN and it lacks the directed edge binding OV to GenN. This
is not entirely surprising since the Gibbs’ sampler exploits the struc-
ture between the variables, thus inflating the dependencies found in
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the fraction of observed data. Unsurprisingly, the changes imply the
three variables with the poorest coverage in the data.

From now on, we will focus on the analysis of the DAG inferred via
the Bernoulli method, which makes use of the information present
within variables without building in the observed dependencies be-
tween variables. The edges with the largest representation with this
method can be observed in Figure 7

Figure 7: Close-up of Bernoulli-imputed word order DAG

The DAG composed by the bootstrap imputation method is shown.
The numbers attached to the edges represent the fraction of samples

in which the edge was inferred. Only edges with a value over 2/3
are displayed.

In agreement with the literature, we find that a cluster of word or-
der patterns seems to accommodate to OV-VO to some extent: SV-VS,
GenN-NGen and pre-post. Relative clauses might be related as well,
but the presence of links involving it have a low support (most likely
due to missing data). The other observed edges involve a reciprocal
relation between DemN-NDem and AdjN-NAdj, and NumN-NNum
with SV-VS and AdjN-NAdj. These results strongly argue against a
scenario where OV-VO determines the overall structure of word or-
der patterns, and it is compatible with the Greenbergian “pairwise
only” stance. As for the case where no real dependencies exist in
the data, it would be still possible to argue that beyond genealogical
control, the observed dependencies come to be as a result of areal
diffusion. Let us flesh out more precisely how this argument could
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be articulated here: word order patterns that appear as dependent in
our analysis could be conjectured to be simply the result of a few bun-
dles of properties being particularly frequent in some linguistic areas.
This would mean that beyond those areas there will be no support
for such dependencies.

As a manner of testing precisely this, I repeated the inference of the
DAG but this time randomizing the word order pattern values within
languages belonging to the same area (according with the AUTOTYP
classification). If the hypothesis to evaluate is that the patterns are
due to areal spread as described above, then this randomization test
should yield results similar to those of the original analysis. Ran-
domizing areas where no such bias exist should not be relevant to
the overall dependency, and the same process over areas where a
particular set of features has spread over should reflect a degree of
homogeneity that would be unchanged under this procedure.

It should be noticed that this procedure is likely to overestimate
the areal influence since, for many linguistic areas, there will be no
effective change at all — for some of them in the Americas, Australia
and Asia there are no more than five languages. Furthermore, if the
regularities I found are really areal, then the randomization process
should weaken the influence of the covariates, thus enhancing the
chance of finding the relation.

I ran the randomization process 100 times and compared the frac-
tion of samples in the output against the empirical values (without
randomization). The results can be observed in Figure 8

A number of telling conclusions can be drawn from these results.
All in all, it is clear that (apart from the link ad.NP → O.V) the per
area permutations yield support values comparable or larger to those
in the original data in less than 5% of the times. Under the hypothesis
that there is no cause behind word order patterns apart from the areal
spread of certain features, we would expect much less extreme values
in general. Using corrected P-values and the Benjamini-Hochberg
method -both conservative choices- the expected FDR turns out to
be 0.18 for all of the links and less than 0.034 when ad.NP → O.V
is removed. What this implies is that, even after the sequence of
decisions that inflate the number of false negatives, we would have
expected less than two out of nine links found in the DAG as the
result of a purely areal effect. We can, thus, safely reject contact as
the sole explanation.

The links involving OV-VO are the ones for which the random per-
mutations yield a small yet significant fraction of cases with compa-
rable support. This situation can be opposed to what is found with
links involving the order of demonstratives and numerals. It is un-
clear why is this the case.

Finally, the link between OV-VO and SV-VS is the one with the
poorest presence in the permuted samples. This seems to be a conse-
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Figure 8: Support for edges in DAG with randomizations per area

Each panel displays the distribution of the support — the fraction of
random samples — based on 100 random permutations of the word

order patterns within linguistic areas.The fraction in the
distributions in blue and red correspond to random permutations

that yield less and more than 2/3 of support. The vertical line
correspond to the empirical value. One-tailed P-values are included

in the label of each graph.

quence of the subject preference: the presence of VS forces the object
to come after the verb and the subject, conditions whose violation
leads to some of the rarest word order patterns, VOS and OVS.

2.7 word order archetypes

2.7.1 Higher-order dependencies

The causal graph of word order properties allowed us to retrieve the
structure of pairwise dependencies, and we found evidence for the
existence of non-trivial relations and a relevant yet not overwhelming
role of OV-VO as an centralizing feature. We have practically ruled
out the extreme scenarios represented by panel (a) and (c) in Figure
1.
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The accumulation of pairwise dependencies is not transparent with
respect to higher-order groupings of levels among the variables. Let
us take the case of a particular value of the variable OV-VO: OV. OV
determines adpN, GenN and, at a lesser extent, SV. This does not
entail, however, that we expect to find two word order “archetypes”
coinciding with each of the two possible orderings of the object and
the verb. Each level can have a different predictive value, although
overall OV has to be informative of the other variables in toto. In
information theoretic terms, while the mutual information between
two variables can be positive and of considerable magnitude, indi-
vidual pointwise mutual information terms can perfectly be zero or
negative.

The challenge is to find statistical evidence for word order archetypes
in data. While for the analysis of two variables we count with several
measures that let us inquire with precision potential dependencies,
the panorama is more complicated with the inclusion of more dimen-
sions. For example, in the “simple” case of three variables, given the
joint probability distribution Pr(X1, X2, X3) we can ask whether it is
statistically distinguishable from any of the 4 possible factorizations
of the variables that imply some independence: Pr(X1, X2)Pr(X3),
Pr(X1)Pr(X2, X3), Pr(X1, X3)Pr(X3), Pr(X1)Pr(X2)Pr(X3).

The inferred DAGs provide answers for at least the connected vari-
ables in the graph. Given any two nodes or variables X1 and X2
connected in the DAG and any of their neighbors X3, by construction
we know that Pr(X1, X2|X3) ̸= Pr(X1|X3)Pr(X2|X3) via the G2 test.
From this it follows that, in the same circumstances, Pr(X1, X2, X3) ̸=
Pr(X1)Pr(X2|X3). Naturally, given any third variable (namely, not
necessarily a neighbor of X1 or X2), it is true as well that Pr(X1, X2, X3)
̸= Pr(X1)Pr(X2)Pr(X3)

A more interesting question is how much do the relative orders of
dependencies count in the overall joint probability distribution. In
the framework of information theory, Amari has suggested to com-
pare joint probability distributions against the maximum entropy dis-
tribution resulting from fixing its n-order marginals to the ones of the
target distribution. Thus, for instance, Pr(X1, X2, X3) could be com-
pared against a distribution Ω(X1, X2, X3) such that ∑k Ω(Xi, Xj, Xk)
= Pr(Xi, Xj) for each assignment of the indexes. In this manner, if
both the empirical and the maximum entropy distributions are sta-
tistically indistinguishable, one could determine that there is no in-
formation encoded in the joint probability distribution that it is not
present in any of its (pairwise) marginals. These ideas, while promis-
ing, yet awaits for a better statistically grounded treatment.
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2.7.2 Latent class modelling

The question of higher-order dependencies will be approached here
by means of clustering analysis. While a large number of categorical
clustering methods consist on the assignment of instances to classes,
this is only of secondary interest in our case because the focus is
on unraveling the archetypes themselves, independently of their par-
ticular instances. Furthermore, many of those methods use metrics
between instances that are hard to motivate theoretically, and they
cannot be assessed with model comparison techniques.

A worthwhile strategy is to model the data by means of a number
of latent (unobserved) classes with the aid of a statistical suite of tools
referred as Latent Class Analysis (LCA). In the most basic setting (and
within the binary variables scenario we have investigated so far) this
is equivalent to propose that the underlying generative model of the
observed data is given by a a simple Bernoulli process independently
for each variable (Wi) given the class cj:

Pr(W1 = w1, W2 = w2, . . . , WN = wn|C = cj) =
N

∏
i=1

π Ii
cj,i(1− π Ii

cj,i) (6)

where πcj,i is the probability of variable i to have one particular
level under class cj and Ii is an indicator variable that equals one
for the level with probabilities π·,i. Given a number of classes K,
there are K · (N − 1) + K − 1 free parameters to be estimated - K ·
(N − 1) variable probabilities and the K − 1 values associated with
the probability distribution of the classes, Pr(C). Thus, the instances
can be thought as coming from a finite mixture model,8

Pr(W1 = w1, W2 = w2, . . . , WN = wn; C = cj) = Pr(C = cj)
N

∏
i=1

π Ii
cj,i(1−π Ii

cj,i)

(7)
If the distribution of the classes C was available, then the estima-

tion of the binomial parameters for each class reduces to a simple
maximum likelihood calculation. On the other hand, if we knew be-
forehand the parameters attached to each class then we could infer
the mixture of classes in the data. Unfortunately, finding the maxi-
mum of both model and class parameters cannot be done analytically
in the non-trivial case of |C| ≥ 2.

Our data are not particularly intractable with brute search over a
grid of sufficient precision over the parameter space, but the problem
of missing data would still be present - this is not minor since, we
recall, 13% of the data are absent from our database. One alternative

8 There exist infinite mixture models in which LCA can be casted into. Because these
models bear no utility to the issues studied here they will not be considered.
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would be to do multiple imputations as in the causal graph case,
but a much better alternative exists that solves at the same time the
problem of the efficient calculation of the maximum of the likelihood
function and the missing data. The solution is the famous expectation-
maximization (EM) algorithm9.

The gist of the method resides in the convexity of the logarithm
and a convergence theorem. Consider the log-likelihood function,

ℓ(w; θ) = log(∑
c

Pr(c)Pr(w|c, θ))

where θ summarizes all the binomial parameters of all classes. By
Jensen’s inequality,

ℓ(w; θ) ≥∑
c

Pr(c) log(Pr(w|c, θ)) = g(w; θ) (8)

So g(w; θ) is a lower bound for the likelihood function. On the
other hand, given θ and w we get

Pr(c|w; θ) =
Pr(w|c; θ)Pr(c|θ)

ℓ(w; θ)
(9)

Starting from a (probably random) estimate of the parameters sub-
ject to the usual normalization constraints, the EM iterates between
estimating Pr(c|w; θ) and plugging it into equation 8 so to get an ap-
proximation of ℓ(w; θ) by maximizing g(w; θ). The θ that maximize
the previous expression are used again in equation 9, starting again
the process. While in practice convergence is determined by tracking
the differences in likelihood (or Pr(c|w; θ)), a theorem guarantees the
convergence towards a local maximum of Pr(θ|w).

2.7.3 Determining the number of classes

We have assumed throughout the discussion that the number of classes
|C| = k is fixed, but this is exactly one of the main aspects of the anal-
ysis - strong evidence for the existence of archetypes would be ex-
pressed as a few classes capable of satisfactorily capturing the varia-
tion in the data, whereas an “everything goes” situation should break
down the data into a myriad of combinations with modest coverage.
Fortunately, we can appeal to the residual likelihood functions esti-
mated before and perform model selection across the dimension of
number of classes.

Naturally, the larger the number of classes the better the goodness-
of-fit metrics. However, if data is effectively explained by a few
archetypes, the improvement in goodness-of-fit beyond their number

9 By the time I write this, the paper that formalized the technique — since it was in-
vented a few times in different contexts— accumulates a whooping 42000+ citations.
EM is the textbook successful case of marriage between frequentist statistics and
computation.
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would be marginal. Importantly, the number of classes can feature ex-
plicitly in the model selection. Two popular techniques for this use as
a comparison the log-likelihood function with an additive penaliza-
tion term: for the Akaike Information Criterion (AIC) this is simply k,
and in the Bayesian Information Criterion (BIC) this is k log N, where
N is the sample size. Both have interesting properties and (perhaps
in contrast to their similar functional form) they depend on markedly
different takes on model selection. Because we expect a rather simple
model out of the data, BIC appears as the reasonable choice [237].10

Let us take an Empirical Bayes approach to model selection as a
way of motivating BIC, which is explicitly defined as

BIC = −2ℓ(w; θ) + 2 log N

Recall that the Bayes Factor (BF) is defined as

BF =
Pr(x|M1)Pr(M1)
Pr(x|M2)Pr(M2)

which determines how much more likely a model M1 is given the
data and priors with respect to an alternative model M2. Ideally, we
would like to have access to the real model Mreal so we could choose
among our candidates models which is the one that minimizes its
relative BF. In practice, we are left only with the likelihood functions
of individual models, and we can hope the priors to be not extremely
relevant in the case of large N.

Suppose now that the priors on the model parameters are modelled
as a multivariate normal distribution,

θ|Mk ∼ N (θ̂ML, Σ̂ML)

where θ̂ML and Σ̂ML are the maximum-likelihood estimates of the
mean and the covariance of the parameters, respectively. This is a
fairly typical parametrization of uncertainty.

Given the following conditions,

• The true model is under consideration

10 On the BIC/AIC divide, Vrieze [237] says:

In our experience applied articles rarely defend their use of a partic-
ular model selection criterion, but instead give a reference or two to
seminal (and too often mathematically inaccessible) articles about it.
The articles leave to the reader to determine why one criterion was
used and not another. In an extreme example, we have recently seen
an article that used four criteria (two of which were linear functions
of each other), and stated that the model for which three of the four
criteria agreed would be selected as the best model. This approach
does not reconcile the differences between selection criteria (except in
the case where all criteria agree). Reconciling the differences between
AIC and BIC appears to be very diffcult, if not impossible.
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• The dimension of the model is independent of the sample size
N

• The number of parameters is finite

the BIC will asymptotically approach the BF between the target model
and the real model with error O(N−1).

I evaluated the BIC values associated to C from 1 to 10 in 500 ran-
dom genealogical samples of the data. The results can be observed in
Figure 9

Figure 9: BIC by number of clusters

Boxplot of BIC values associated with random genealogical samples
according to the number of clusters posited by the LDA. The BIC
value associated to only one cluster is considerably larger than for

any other value (∼2400).

C=4 appears as the best candidate, although the difference with
C=5 and C=3 is not sufficient to embrace the idea that these four
clusters are a “natural” description of the data. It is important to
bear in mind that each genealogically balanced sample yields a dif-
ferent class profile. Although the distribution of the goodness-of-fit
and penalized likelihood measures suggested that the overwhelming
majority of them can be adequately described by roughly four latent
classes, this does not guarantee the inferred classes to be compara-
ble across samples. Firstly, even in the case of perfect equivalence,
the stochastic nature of the EM algorithm might yield different la-
bel orderings to classes with strictly the same parametrization — a
phenomenon referred as label switching.

Second, and more importantly, it might be that some (or all) classes
are not robust at all. The last step in the evaluation of the existence
(and composition) of word order archetypes is to gather evidence on
the presence of four robust clusters of classes.

A superficial inspection of the data by comparing the Euclidean dis-
tances between the aggregated collection of four vectors of binomial
parameters (for each of the 500 random samples) yields the heatmap
in Figure 10.
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Figure 10: Archetypes’ clusters

Heatmap based on the average clustering of archetypes’ instances.
More intense tones of blue imply larger chance of N or NP last (as in

VO, prepositions, Dem N) and the contrary is true for red.

Class S/V O/V adp Gen/N Adj/N Dem/N Num/N RC/N
1 SV VO pre NGen NAdj NDem NNum NRC
2 VS VO pre NGen AdjN DemN NumN NRC
3 SV OV post GenN NAdj NDem NNum NRC
4 SV OV post GenN AdjN DemN NumN RCN

Table 3: Word order of the four inferred archetypes. In all of the
cases but one - AdjN in class 2 - the probability of any of
the archetypal word order patterns is such that the 95 % CI
lies above 0.5.

There seems to be four coherent blocks of roughly equal size. If we
chose to characterize the inferred classes in terms of the most likely
word order patterns exhibited, we obtain Table 2.7.3. Interestingly,
there are two sets of three variables that tend to change harmonically:
one that integrates O/V, adp and Gen/N and a second that comprises
N and Adj, Dem and Num.

More rigorously, we can characterize the statistical properties of
the clusters. In principle, following the philosophy discussed early in
this chapter, it seems honest to model the clusters with some degree
of parametric specification. This seems appealing because, in fairly
general cases, the maximum likelihood estimators are asymptotically
normal. Because probabilities are doubly censored data — in the
sense that they are contained in the closed interval [0, 1] — and it
is not unreasonable to expect some estimated parameters as being
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strictly 1 or 0, appealing to simple Gaussian mixture models is not
warranted unless we are willing to introduce these restrictions. I will
explore other alternatives here.

A popular non-parametric evaluation metric for the number of clus-
ters is the silhouette statistic. Given a fixed assignment of datapoints
– latent classes in this case – to clusters, we can define the average
distance of datapoint i to the rest of the member of its cluster Ci as

mi =
1
|Ci| ∑

j∈Ci

dij (10)

Similarly, define ni as the minimum average distance of a datapoint
to the members of another cluster,

ni = min
Ch ̸=i

{
1

|Ch| ∑
j∈Ch

dij

}
(11)

then the ratio

si =
ni −mi

max{ni, mi}
(12)

si ranges between 1 and -1, and it can be interpreted as how suit-
able the assignment of i to its cluster is. The average of si across all
datapoints, S, is the silhouette statistics and it can be used to choose
the most appropriate number of cluster in the data given a clustering
method and a distance. With k-means and four clusters appears as
optimal when compared to alternative k clusters ranging from 2 to
10, yielding S = .940 with Euclidean and S = .947 with Manhattan
distance, respectively.

In conclusion, we can capture a considerable amount of variation
of the word order data by means of four word order archetypes. They
are represented by different fractions of the population in each sam-
ple, as evinced in Figure 11

2.8 conclusion

In the preceding sections, I have discussed in detail the analysis of
word order patterns data in the light of four competing theories about
their mutual dependencies: (1) there are no consistent relations be-
tween them beyond contingent associations due to cultural evolution
(2) only pairwise relations can be accounted for, without any further
structure (3) the adjacency of the verb and the object is the main
structuring force and (4) a common external factor (like the consis-
tent placement of the heads in relation to their dependents) harmo-
nizes word orders. The analysis of pairwise dependencies via DAGs
showed the existence of reliable links involving at least 9 (directed)
pairs out of a total of 56. Those dependencies did not disappear even
after conditioning on other neighbouring variable or variables, and
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Figure 11: Archetypes’ populations

Distribution of the populations of the four word order archetypes
based on 500 genealogically balanced samples of languages.

the strength of their presence could not be explained by areal effects
only. The pairwise dependencies might be part of higher-order de-
pendencies; in particular, we find two sets of three variables that tend
to be aligned, and four wide word order alignments (in contrast to the
64 logically possible combinations licensed by the 8 binary features).
The hierarchical structure among those relations beyond pairwise de-
pendencies does not specially highlight the role of OV/VO, nor it is
strong enough as to imply a single latent variable behind them.

The resounding message is that, in agreement with claims from
traditional synchronic typology, robust word order patterns exist be-
yond the effects of historical contingencies. The next natural question
is: why? Probably there is no single factor determining these arrange-
ments, and the synchronic developments leading to them might be as
diverse as the actual attested cases. While the literature does not lack
facile attempts at explanations based on loose processing or cogni-
tive advantages, the fact that certain patterns are seen time and again
lends itself to an explanation based on a common bias expressed by
different mechanisms under different circumstances.

An apt analogy can be made with the ideas surrounding conver-
gent evolution in biology [143]. Unrelated species might converge to
the same traits or behaviours across the tree of life due to a number of
causes, for instance as a consequence of common constraints that di-
rect their evolution, limitations on the production of varieties or com-
mon selective pressures. A paradigmatic example of the later case is
the development of wings: the (fairly distant) species of bats, birds,
insects and Pterosaurus all evolved wings at some momentous point
of their phylogenies, and they did it by means of sharply different
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genetic, developmental and structural pathways — so for instance in-
sect wings were exapted from membranes whose function was to cool
down body temperature, whereas in bats they are the homologues of
mammal legs. Still, in all of those species, wings allow for metabol-
ically cheap transportation, a trait with a clear functional value that
seem to have been the product of natural selection. It is perhaps too
soon to declare that the explanation we are seeking is of a functional
or adaptive flavour — the existence of ‘non-harmonic’ word order
patterns clearly shows that languages do not require them in order to
be suitable for their purposes. Nevertheless, given the saliency and
the central role word order patterns occupy in the way speech is struc-
tured, they are among the strongest candidates for serious scientific
inquire in this direction.
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3
N O N - A R B I T R A RY S O U N D - M E A N I N G
A S S O C I AT I O N S

3.1 introduction

Although there is substantial debate in the language sciences over
how to best characterize the features of spoken language, there is
nonetheless a general consensus that the relationship between sound
and meaning is largely arbitrary [110, 194, 204]. Plenty of exceptions
exist, however, within individual languages. For instance, ideophones—
a class of words found in many languages—convey a communicative
function (or meaning) through the depiction of sensory imagery [55].
In the Mel language Kisi Kisi (spoken in Sierra Leone) hábá means
“(human) wobbly, clumsy movement”, and hábá-hábá-hábá “(human)
prolonged, extreme wobbling”; here repetition serves as a way to
convey the meaning of intensity. More generally, the resemblance
between certain aspects of the acoustic basis of speech and their ref-
erents, iconicity, is the most researched and well-known case of non-
arbitrary associations between sound and meaning [57]. Systemacity,
in contrast, refers to (statistical) regularities that are common to par-
ticular set of words, created by historical contingencies and analog-
ical processes [57]. For example, word-initial gl- in English evokes
the idea of a visual phenomenon (as in glare, glance, glimmer) [18]. At
a larger scale, there is evidence that the phonological properties of
whole morphosyntactic classes of words (like verbs and nouns) are
distinct in several languages [161].

The evidence of recurring regularities in sound-meaning mappings
across multiple languages is considerably more modest, despite its
potential importance for fundamental questions about language evo-
lution and the role of basic perceptual biases in cognition. For exam-
ple, certain shape-sound associations—known as the bouba-kiki effect
[129, 154, 197]—are believed to rely on the ability that humans (and
perhaps also other primate species [144]) have for associating stim-
uli across different modalities [47]. Other plausible sources of cross-
linguistic associations include, for instance, the relationship across
many animal species between vocalization frequency and animal size
[109], the mimicry of referents via unconscious mouth gesturing [20],
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and the persistence of vestiges of a conjectured early human language
[114].

Experimental studies support the hypothesis that humans are in-
deed sensitive to such associations. It has been demonstrated several
times that paticipants perform above-chance when asked to pair up
words with opposite meanings (antonyms) in languages unknown to
them [186], and that English speakers might even be able to decide
on the concreteness of words from languages to which they have not
been exposed [198]. However, this evidence for non-arbitrary sound-
meaning associations pertains only to narrow pockets of the vocab-
ulary, making it unclear whether a more general pressure towards
arbitrariness may overpower such potential biases when considering
a more semantically diverse selection of the vocabulary [110, 162].

A further issue with current studies of non-arbitrariness in sound-
meaning correspondences is that, save for a single exception [239],
cross-linguistic corpus studies of non-arbitrary associations have tended
to rely on a small number of languages (maximally 200) and fo-
cusing on small semantically-restricted sets of words, ranging from
phonation-related organs [232] to South American animals [20], to
spatial orientation (demonstratives) [109, 124], repair initiators (like
huh? in English) [56] and the conceptualization of magnitude in Aus-
tralian languages [108]. These studies involve confirmatory analyses,
aiming to test specific hypotheses regarding sound-meaning corre-
spondences; as a consequence, they are guided by a priori intuitions
or indirectly by findings from other disciplines. These limitations
may help explain, at least in part, why language scientists typically
consider non-arbitrary associations to be marginal phenomena that
may only apply to small, strictly circumscribed regions of the vocab-
ulary [194]. In this paper, we therefore conduct a comprehensive set
of analyses involving a semantically diverse set of words from close
to a two-thirds of the world’s languages.

3.2 testing associations on a global scale

The availability of a large collection of word lists allows us to search
for statistically robust associations in an unsupervised, theory-neutral
manner. This collection is the version 16 of the ASJP database [70].
ASJP comprises 6895 word lists from around 62% of the world’s lan-
guages, covering 85% of families, isolates, and unclassified languages
(using the Ethnologue [138] for these statistics). To summarize ge-
nealogical relatedness, we introduce the notion of lineage: a maximal
set of languages that can be shown to have a common ancestor. Such
a set may have only one member (an isolate) or multiple members
(a family). After removing artificial languages, pidgins and creoles
and varieties whose ISO-639-3 code cannot be confirmed, the number
goes down to 6447 word lists, corresponding to 4298 different lan-
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3.2 testing associations on a global scale

Figure 12: Geographic coverage of ASJP

Geographic distribution of the 6452 word lists from the ASJP
database [70]. Colors distinguish different linguistic macro-areas,
regions with relatively little or no contact between them (but with
much internal contact between their populations). These are North

America (orange), South America (dark green), Eurasia (blue),
Africa (green), Papua New Guinea and the Pacific Islands (red) and

Australia (fuchsia).

guages and 359 lineages. In terms of lineages, then, the data covers
about 85% of of the totality of them (see Fig. 1).

The database was not constructed for the specific purpose of study-
ing sound-meaning associations, but rather for identifying genealog-
ical relations among languages. For this reason, it generally consists
of the 40-item subset of the 100-item so-called Swadesh list [219] that
are assumed to remain stable as languages diverge into different lin-
eages over time [112]. Of these word lists, 328 additionally contain
the remaining 60 Swadesh lists items.

Words are rendered in a unified transcription system, which fa-
cilitates cross-linguistic comparison but also ignores phonetic details
such as vowel length, nasalization, tones, and retroflexation. Vowel
quality distinctions are merged into seven categories (high front, mid
front, low front, high-mid central, low central, high back, mid-low
back) (see [34] for a discussion of the system). The ASJP symbol
scheme and its phonetic counterparts can be found in Table 4.

Each 40-item word list provides translational equivalents, when
available, for the following items: blood, bone, breast, come, die, dog,
drink, ear, eye, fire, fish, full, hand, hear, horn, I, knee, leaf, liver, louse,
mountain, name, new, night, nose, one, path, person, see, skin, star, stone,
sun, tongue, tooth, tree, two, water, we, you (sg). The additional Swadesh
list items contained in some of the word lists are: all, ash, bark, belly,
big, bird, bite, black, burn, claw, cloud, cold, dry, earth, eat, egg, feather,
flesh, fly, foot, give, good, grease, green, hair, head, heart, hot, kill, know, lie,
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Table 4: ASJP symbols and their description. IPA equivalents of the
symbols can be found in Tables 1-2 of [34].

Symbol Description
p voiceless bilabial stop and fricative
b voiced labial stop and fricatve

m bilabial nasal
f voiceless labiodental fricative
v voiced labiodental fricative
8 voiceless and voiced dental fricative
4 dental nasal
t voiceless alveolar stop

d voiced alveolar stop
s voiceless alveolar fricative
z voiced alveolar fricative
c voiceless and voiced alveolar fricative
n voiceless and voiced alveolar nasal
S voiceless postalveolar fricative
Z voiced postalveolar fricative
C voiceless palato-alveolar affricative
j voiced palato-alveolar affricate

T voiceless and voiced palatal stop
5 palatal nasal
k voiceless velar stop
g voiced velar stop
x voiceless and voiced velar fricative

N velar nasal
q voiceless and voiced uvular stop
X uvular fricatives and pharyngeal fricatives
7 voiceless glottal stop
h voiceless and voiced glottal fricative
l voiced alveolar lateral approximate

L all other laterals
w voiced bilabial-velar approximant
y palatal approximant
r all varieties of “r-sounds”
i high front vowel, rounded and unrounded
e mid front vowel, rounded and unrounded
E low front vowel, rounded and unrounded
3 high and mid central vowel, rounded and unrounded
a low central vowel, unrounded
u high back vowel, rounded and unrounded
o mid and low back vowel, rounded and unrounded
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long, man, many, moon, mouth, neck, not, rain, red, root, round, sand, say,
seed, sit, sleep, small, smoke, stand, swim, tail, that, this, walk, what, white,
who, woman, yellow.

Regarding the classification of languages, the Glottolog genealogi-
cal classification is preferable over other available alternatives because
it is the only one to classify every living or extinct language while pro-
viding brief pointers to justifications for all choices taken—however,
a less conservative independent classification was used additionally
in the main test (see below). We stratify languages geographically by
dividing the world’s landmass into six largely independent linguistic
macro-areas: North America, South America, Eurasia, Africa, Greater
New Guinea and Australia—these regions have a history of attested
contact within them but little contact between them in prehistorical
times [101].

3.3 detecting sound-meaning associations

We aim to capture robust and widespread tendencies in sound-meaning
associations, where “tendency” should be understood as a systematic
bias in the frequency with which certain words tend to carry spe-
cific symbols in contrast to their baseline occurrence in other words.
Crucially, a strong tendency does not imply that a signal has an ex-
tremely high frequency of occurrence, and conversely a very frequent
sound-meaning co-occurrence is not sufficient evidence to discount
chance. Importantly, whatever advantage a sound-meaning pairing
might confer in terms of learning or processing, it has to be consid-
ered in the context of a myriad of competing factors that shape the
phonetic and phonological fabric of words, from articulatory produc-
tion costs [172] to systemic constraints due to the similarity with other
lexical elements [236].

Our statistical approach consists in a series of tests where the pres-
ence of a symbol in a word is contrasted against a suitable subset of
other words, and then the bias is evaluated across lineages. To begin,
we calculate, for each concept and symbol, a genealogically balanced
average ratio of the times they co-occur in a word of a language for
which both symbol and concept are attested, and compare that quan-
tity with a proper random counterpart. The fundamental statistic in
our analysis is pij, the maximum likelihood estimator (i.e. the sample
frequency) for the probability of finding that concept i has at least
one instance of symbol j, after randomly choosing a lineage, a lan-
guage within the lineage and a dialect within the language (if any) in
that sequential order. Naturally, this calculation is restricted to the set
of dialects of languages for which the concept and the phone are at-
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tested (which we will refer as Sij); for each of those sets this quantity
is formally:

pij =
1
|L|

|L|

∑
k=1

(
1

|Lk|

|Lk |

∑
l=1

1
|Lkl |

|Lkl |

∑
d=1

πkld
ij

)

The sets L, Lk and Lkl are the sets of all lineages, languages within
lineage k and dialects of language l within lineage k. πkld

ij is a binary
variable that takes value 1 if there is at least one instance of symbol
j in the word for concept i for dialect d of language l from lineage k
(always within the set Sij) and 0 otherwise.

This computation is conservative in that all languages known to be-
long to the same genealogical group influence the aggregated statis-
tics in the same way regardless of their size, but on the other hand
it guarantees the minimum possible bias in the dependence of the
languages’ words. In order to avoid testing cases whose coverage is
insufficiently wide before testing, we evaluated only those associa-
tions for which Sij comprises ten lineages in each of three different
macro-areas at least.

Conversely, for each dialect of each language we calculated the pro-
portion of words other than that associated with i that have symbol
j, and we note this as πkld

−ij, and similarly the genealogical balanced
average as p−ij. These probabilities are used to produce nsim = 1000
Monte Carlo simulations of symbol j presence/absence for all the lan-
guages in Sij - the set of p−ij values resulting from these simulations
will be called ζij. The purpose is to compare ζij with πij in order
to answer the question: does symbol j appear much more (or much
less) often when a subset of words referring to concept i is selected
than in a randomly picked set of words from the same languages?
The two-tailed P-value for a particular concept i and symbol j is then
[185]

P =
1

nsim + 1
(
2 min{|x ∈ ζij : x ≥ pij|, |x ∈ ζij : x ≤ pij|}+ 1

)

where | · | is the cardinality of the set.
There are four potential sources of false positives in this scheme,

for which we need to control.
First, the large number of tests performed require a control for type

I errors. We perform a False Discovery Rate (FDR) analysis fixing the
FDR rejection threshold to .05, which means that we will allow no
more than 5% of false positives on average. For this purpose we use
the method described in [217]. The basic idea is that the distribution
of P-values comes from a mixture of a uniform distribution (that cor-
responds to the baseline of tests where no associations beyond chance
are present) and a distribution concentrated near P = 0 of true pos-
itives. The method used here learns the mixture proportion of the
uniform distribution from values P from 1 down to a threshold that
is adjusted in order to reduce the false non-discovery rate (FNDR).
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Figure 13: Word length variation in ASJP

On the left, genealogically balanced average of the number of
characters for each of the 40 concepts with most coverage in ASJP.
The horizontal bars represent approximate 95% CI for the average.

On the right, distribution of the genealogically balanced average for
all of the concepts in ASJP. In both graphs, the vertical blue bar

represents the mean value across all concepts in ASJP.

This entire procedure was repeated with a different, less conserva-
tive, genealogical classification—the one provided by the World Atlas
of Language Structures (WALS) [103]. For our analysis, we only con-
sidered associations that were below the defined FDR level according
to both classifications. The fraction of the component of true nega-
tives learned from both classifications was around 0.65.

Second, word length is trivially correlated with the chance of find-
ing any particular symbol. There is considerable variance in the (ge-
nealogically balanced) length of the words in our dataset, with some
pronouns, negation and basic verbs (like say and give) consisting only
of about three symbols on average, whereas the length of some color
words and body part terms contain is over five (see Fig. 13).

To control for this confound, for each language (and dialect) in Sij,
n = 1000 of independent simulations we sampled without replace-
ment as many random symbols from words other than i up to the
length of word i. This effectively produces, for each word i, a ran-
dom counterpart equivalent to shuffling all the symbols correspond-
ing to all the the words of a language while keeping word lengths
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constant. Over each of those sets, the same association test based on
the Glottolog classification was performed.

Third, besides the mere number of symbols, word length might
be a confound due to the fact that different phonotactic restrictions
might apply accordingly. For instance, in a language that only al-
lows CV structures and also prohibits the presence of word-initial liq-
uids, no monosyllabic words will carry liquids. To remedy this, we
repeated the same global test using the Glottolog classification this
time comparing pij with simulations obtained from words of exactly
the same number of symbols in each language (and dialect).

In both of these two last procedures, we imposed a stricter cutoff:
if any of the simulations yield a value of pij equally or more extreme,
we would reject the association as of potential interest.

Fourth, an important indicator for a consistent bias of a sound-
meaning association is its ubiquitous nature. Finding that a sound-
meaning association arises independently in areas with not strong
contact in historical times is a strict yet important litmus test. Besides,
some associations might result due to a large-scale areal contact or
unresolved genealogy. With this idea in mind, for each macro-area
with at least 10 independent lineages in Sij, we analyzed the presence
of a significant direction of association as in the main associations
test—computing both empirical and random probabilities using only
the languages of that area—with the difference that we flagged each
macro-area specific association with P ≤ .1. It should be noticed that
this does not imply a softer rejection threshold than in the worldwide
case: we only keep associations that display a bias consistent with the
world-wide trend in at least half of the macro-areas, with the extra
condition that no macro-area should exhibit a bias in the opposite
direction.

To summarize: only associations that successfully satisfied all the
requirements of the overall association test (with Glottolog and WALS
classifications independently), the word length and the matched-length
tests, and for which a consistent preference in at least half of the
macro-areas could be found were considered “signals”.

It should be noted that the overall testing scheme is conservative
and that it is likely to have a large false negative rate. Also working
against our analyses is the fact that the core set of concepts we use
was originally gathered due to their exceptional phylogenetic persis-
tence and resistance to borrowing, thus rendering them less likely to
be adapted to potential functional biases that might underlie specific
sound-meaning associations. Moreover, it is not clear a priori whether
the granularity of our phonetic descriptions is sufficiently fine to cap-
ture widespread sound-meaning relations—for instance, the opposi-
tion between voiced and unvoiced consonants and between rounded
and unrounded in vowels have been suggested to bear importance
for sound-symbolism [124, 142], but each feature pair are usually con-
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flated under a single symbol in the database. For these reasons, the
associations found in our analyses should be regarded as providing
a lower-bound estimate of the presence of non-arbitrariness in sound-
meaning pairings.

3.4 strong worldwide associations

Our analysis detected 74 (positive and negative) signals, involving
30 concepts and 23 symbols. Signals will be described in terms of
the most relevant information about them: the frequency of the sym-
bol in the words corresponding to the concept (p), the ratio between
that frequency and the frequency in other words (RR), the number
of lineages that were analyzed for the global association (nl) and the
ratio between the number of areas where the association was inde-
pendently found and the total number of tested areas (as/at). Table 5
and6 display the positive and negative signals, respectively.

Some concepts are associated with more than one signal. These are
expected to be correlated; across languages it is often observed that
there are preferences or restrictions with regard to the co-occurrence
of symbols within one and the same word for either diachronic or
synchronic phonotactic reasons. As an example, it is known that high
front vowels trigger palatalization [15], so it is therefore not surpris-
ing that the voiceless palato-alveolar affricate C appears with i in the
signals of small.

We analyze this statistically by taking sets of languages for which
both the concept and the symbol associated with a pair of signals
was present in at least ten lineages in each of (at least) three macro-
areas. The association between signals—which we will refer to A and
B here—was tested by means of a simple mixed effects logistic model,

logit(signal A presence) = αsignal B presence + αlineage

where αsignal A presence is the coefficient related to the presence of
signal A, and αlineage is a random coefficient structured according
to lineage. To the results obtained by comparing all the pairwise
associations between signals belonging to the core 40 words, we ap-
plied a threshold on the FDR of 5%. About 12% of the 2062 cases
satisfied this condition. Signals sharing a concept tend to be signifi-
cantly associated in about 41% of the time, against only 8% of signals
involving different concepts. The results of associations regarding
same-concept signals and the genealogically balanced average effect
on the presence of signal B on A can be found in Table 7.

The signals found in our analysis show a mixture of well-known
and new associations. In line with the considerable literature on mag-
nitude sound symbolism, the concept small was found to be associ-
ated with the high front vowel i (RR=1.58, p=.61, nl=78, as/at=3/5),
consistent with findings linking vowel height quality and size [109,
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Table 5: Complete list of positive signals found in the ASJP database.
The column ‘Areal ratio’ indicates the ratio between the num-
ber of areas where the signals are independently found with
respect the total number of areas with minimum coverage.
RR stands for “risk ratio”. Family counts come from Glot-
tolog [184].

Concept Symb. pij p−ij σ(p−ij) ∆ RR Lineages Areal ratio
ash u 0.516 0.270 0.043 0.25 1.91 68 3/5
bite k 0.438 0.259 0.042 0.18 1.69 73 3/5

bone k 0.311 0.223 0.016 0.09 1.39 333 3/6
breasts u 0.376 0.257 0.018 0.12 1.46 317 4/6
breasts m 0.326 0.200 0.016 0.13 1.63 320 4/6

dog s 0.225 0.128 0.015 0.10 1.76 285 3/5
ear k 0.319 0.224 0.017 0.09 1.42 338 4/6
fish a 0.613 0.524 0.019 0.09 1.17 327 3/6
full p 0.255 0.121 0.016 0.13 2.11 231 5/6
full b 0.229 0.120 0.016 0.11 1.91 213 4/6

hear N 0.199 0.127 0.018 0.07 1.57 182 3/6
horn k 0.339 0.222 0.019 0.12 1.53 221 4/6
horn r 0.271 0.155 0.019 0.12 1.75 191 3/6

I 5 0.129 0.063 0.015 0.07 2.06 136 4/6
knee u 0.472 0.256 0.018 0.22 1.84 303 4/6
knee o 0.406 0.239 0.017 0.17 1.70 291 4/6
knee p 0.218 0.121 0.014 0.10 1.81 278 5/6
knee k 0.374 0.226 0.018 0.15 1.66 305 5/6
knee q 0.313 0.136 0.027 0.18 2.30 73 3/5
leaf p 0.232 0.119 0.014 0.11 1.94 290 3/6
leaf b 0.185 0.124 0.014 0.06 1.48 274 3/6
leaf l 0.268 0.154 0.016 0.11 1.75 270 4/6

name i 0.474 0.378 0.020 0.10 1.25 320 3/6
nose u 0.351 0.255 0.018 0.10 1.38 325 4/6
nose n 0.356 0.242 0.016 0.11 1.47 334 4/6
one t 0.266 0.178 0.015 0.09 1.49 343 3/6
one n 0.320 0.248 0.017 0.07 1.29 348 3/6
red r 0.350 0.156 0.037 0.19 2.24 61 3/5

round r 0.371 0.149 0.038 0.22 2.48 56 4/5
sand s 0.325 0.126 0.034 0.20 2.58 65 3/5

small i 0.613 0.389 0.043 0.22 1.58 78 3/5
small C 0.416 0.081 0.029 0.33 5.12 61 3/4

star z 0.158 0.063 0.018 0.10 2.52 96 3/5
stone t 0.239 0.181 0.015 0.06 1.32 340 3/6

tongue e 0.339 0.220 0.017 0.12 1.54 322 5/6
tongue E 0.278 0.161 0.020 0.12 1.73 164 4/6
tongue l 0.419 0.151 0.017 0.27 2.77 280 6/6

we n 0.380 0.246 0.017 0.13 1.54 325 3/6
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Table 6: Complete list of negative signals found in the ASJP database.
The column ‘Areal ratio’ indicates the ratio between the num-
ber of areas where the signals are independently found with
respect the total number of areas with minimum coverage.
RR stands for “risk ratio”. Family counts come from Glot-
tolog [184]

Concept Symb. pij p−ij σ(p−ij) ∆ RR Lineages Areal ratio
bone y 0.065 0.122 0.013 -0.06 0.54 312 3/6

breasts a 0.422 0.524 0.020 -0.10 0.81 329 3/6
breasts h 0.093 0.149 0.016 -0.06 0.62 254 3/6
breasts r 0.083 0.175 0.015 -0.09 0.47 290 3/6

dog t 0.106 0.182 0.015 -0.08 0.58 337 4/6
drink a 0.421 0.533 0.020 -0.11 0.79 310 4/6

eye a 0.423 0.527 0.018 -0.10 0.80 357 4/6
I u 0.116 0.262 0.018 -0.15 0.44 328 5/6
I p 0.021 0.122 0.014 -0.10 0.18 297 5/6
I b 0.030 0.124 0.014 -0.09 0.24 276 4/6
I t 0.079 0.181 0.016 -0.10 0.44 332 4/6
I s 0.036 0.131 0.015 -0.10 0.27 279 4/5
I l 0.030 0.161 0.016 -0.13 0.19 277 6/6
I r 0.061 0.177 0.015 -0.12 0.35 294 6/6

name o 0.169 0.254 0.018 -0.09 0.67 297 4/6
name p 0.049 0.122 0.015 -0.07 0.40 283 3/6
nose a 0.391 0.524 0.019 -0.13 0.75 339 4/6
skin m 0.109 0.207 0.016 -0.10 0.53 323 4/6
skin n 0.170 0.256 0.016 -0.09 0.66 329 4/6

tongue u 0.164 0.264 0.017 -0.10 0.62 327 3/6
tongue k 0.167 0.232 0.017 -0.07 0.72 334 4/6

tooth b 0.054 0.126 0.014 -0.07 0.43 282 4/6
tooth m 0.130 0.205 0.016 -0.08 0.63 335 4/6
water t 0.066 0.184 0.015 -0.12 0.36 345 6/6

we p 0.052 0.121 0.015 -0.07 0.43 288 5/6
we l 0.064 0.160 0.016 -0.10 0.40 268 5/6
we s 0.077 0.129 0.015 -0.05 0.60 273 3/5

you u 0.149 0.259 0.017 -0.11 0.58 316 3/6
you o 0.165 0.246 0.017 -0.08 0.67 306 3/6
you p 0.046 0.124 0.014 -0.08 0.37 289 3/6
you t 0.072 0.182 0.015 -0.11 0.40 322 5/6
you d 0.045 0.129 0.015 -0.08 0.35 264 4/6
you q 0.043 0.146 0.029 -0.10 0.29 75 3/5
you s 0.049 0.131 0.015 -0.08 0.37 271 4/5
you r 0.053 0.180 0.016 -0.13 0.29 284 6/6
you l 0.030 0.159 0.016 -0.13 0.19 266 6/6
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Table 7: Dependencies between signals involving the same concept.
The effect is the genealogically balanced mean change in
probability of finding the first symbol given that the second is
present (as estimated by the mixed model). Only entries with
q-values smaller than 0.05 shown. See Materials & Methods
for further details.

Concept Symb.1 Symb.2 Effect Fam. tested
bone y k -0.04 298
bone k y -0.14 298

breasts h m -0.04 237
breasts u a -0.16 314
breasts u m -0.10 309
breasts a u -0.16 314
breasts a m 0.18 317
breasts a r 0.11 285
breasts m h -0.10 237
breasts m u -0.08 309
breasts m a 0.12 317
breasts r a 0.03 285

dog s t -0.08 281
dog t s -0.04 281
full b p -0.17 175
full p b -0.21 175

I b t 0.02 264
I s u -0.02 265
I t b 0.04 264
I u s -0.07 265

knee k q -0.19 71
knee o u -0.28 273
knee q k -0.22 71
knee u o -0.29 273
leaf l b 0.10 217
leaf b l 0.09 217
leaf b p -0.18 226
leaf p b -0.21 226

name o i -0.06 290
name i o -0.12 290
nose a n 0.05 329
nose a u -0.09 321
nose n a 0.05 329
nose n u -0.05 319
nose u a -0.09 321
nose u n -0.06 319
one n t -0.07 338
one t n -0.06 338

tongue E e -0.17 142
tongue e E -0.16 142

tooth b m 0.03 272
tooth m b 0.02 272

we l n -0.04 257
we n l -0.19 257
we n p -0.06 279

you d t -0.04 253
you r o 0.02 254
you u o -0.10 285
you o r 0.15 254
you o s -0.04 252
you o u -0.11 285
you t d -0.04 253
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186], and with the palatal consonant C (RR=5.12, p=.41, nl=61, as/at=3/4),
also in agreement with previous work [108, 109].

We also observed a strong association between round and r-sounds
(RR=2.48, p=.37, nl=56, as/at=4/5). While most recent research has
emphasized the role of consonants in shape-sound meaning associ-
ations like this [78, 182], the usual hypothesis in this direction con-
cerned the correlation between vowel roundedness and round objects
[154] – association that appears as a tendency in our analyses without
reaching the minimum statistical threshold established before. Both
small and round have been linked to the phenomenon of cross-modal
mapping [14, 47, 197]. Another property word, full, is endowed with
a pair of signals involving voiced (RR=1.91, p=.22, nl=213, as/at=4/6)
and unvoiced bilabial stops (RR=2.11, p=.13, nl=231, as/at=5/6).

Some of the strongest signals found correspond to body parts. Tongue
was very strongly associated with the lateral ‘l’ (RR=2.77, p=.41, nl=280,
as/at=6/6) and the mid and low front vowels e (RR=1.54, p=.11,
nl=322, as/at=5/6) and E (RR =1.73,p=.11 ,nl=164, as/at=4/6). Nose
was found to be associated most strongly with the alveolar nasal n
(RR=1.47, p=.35, nl=334, as/at=4/6), the high back vowel u (RR=1.38,
p=.35, nl=325, as/at=4/6). The link between nose and nasality has
been noted previously [95], in particular in reference to the conjecture
that body part terms used in phonation makes use of the distinctive
qualities provided by the relevant organ [232].

Breasts was associated with the bilabial nasal consonant m (RR=1.63,
p=.32, nl=320, as/at=4/6) and the high back vowel u (RR=1.46, p=.37,
nl=317, as/at=4/6). Similar associations were found in the nursery
terms for mother, a concept with which it often colexifies. It has been
suggested that this might be due to the mouth configuration of suck-
ling babies or to the sounds feeding babies produce [120, 231].

While this study lends support to a number of associations that
were either elicited in experiments or conjectured based on a much
smaller number of languages, it also provides telling negative evi-
dence on others. Together with the association between high front
vowels and the concept of small, there has been reports on a connec-
tion between back low vowels and the notion of big [124]. However,
big (nl=73) and large (nl=74) and o did not show any relevant signa-
ture of association in our sample at the global level. Similarly, an
analogous front/back vowel opposition has been proposed to hold
between proximal and distal pronouns—the purported explanation
being that proximal referents tend to be small whereas distal refer-
ents are usually large [124]. The concepts this (nl=71) and that (nl=74),
however, do not show any associations with i and o (respectively).
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3.5 origins and nature of the associations

As discussed in the previous sections, there are multiple theories
which attempt to elucidate why humans find that some sounds are
more convenient or salient in association with certain meanings. How
these hypothesized mechanisms lead to the widespread biases in vo-
cabularies we find here is a complex question that is unlikely to be
fully answered by the inspection of wordlists. Nonetheless, we can
attempt to evaluate some of the potential consequences of those theo-
ries given the coarse level of detail of our data.

Functional advantages might increase the likelihood of signals be-
ing borrowed across languages in contact with one another, thus
producing spatial diffusion patterns [231] (see Figure 2). The exis-
tence of opposing factors obscure definitive inferences in this direc-
tion, though: basic vocabulary items are particularly resistant to bor-
rowing but unresolved genealogy involving nearby languages would
be confounded with borrowing. In the same direction, large pop-
ulations have been claimed to be more efficient at gaining and re-
taining non-arbitrary sound-meaning associations given a potential
functional value [231], which is coherent with recent evidence from
some Austronesian languages showing that larger populations gain
new words at a faster rate [33].

We determined whether present-day log population size and log
distance to the nearest genealogically unrelated language bearing the
(positive) signal are effective predictors for signal presence. For each
positive signal we calculated the great circle distances—i.e., the dis-
tance in kilometers of the shortest geodesic connecting two points in
the surface of the Earth—involving all languages having both the rel-
evant symbol and concept (but not necessarily the signal) and their
nearest language from a different lineage that has the (positive) signal
(dnn). More precisely, the hypothesis is that small distance from a lan-
guage that has a signal will influence the likelihood of signal presence
in a given language. Only signals belonging to the group of 28-40 bet-
ter attested concepts were used for the analysis, and only one dialect
per language was chosen. Extinct languages were excluded from the
analyses.

For the testing we used a generalized logistic model with random
effects:

logit(E[signal presence]) = α + (βdnn + β
lineage
dnn ) log(1 + dnn)

+ βpop log(population) + αlineage

where the superscripted coefficients (βlineage
dnn and αlineage) are random

effects structured according to the lineage. Lineage as a random inter-
cept is introduced as a means of accounting for the varying baseline
presence of the signals within lineages, and their presence as ran-
dom slopes aims to capture the fact that lineages have spread with
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3.5 origins and nature of the associations

Figure 14: Spatial scenarios for signal distributions

Competing configurations of the spatial distribution of the tested
languages. Blue and fuchsia dots represent languages with and

without a specific signal, respectively. In the panel to the left, the
likelihood of a language having the signal is correlated with its

geographical distance to its nearest neighbor, and on the right there
is no spatial structure.
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Table 8: Estimated parameters (β), genealogical balanced mean prob-
ability difference (difference in 1-10000 km. reference) and
P-values for the distance to nearest neighbor (dnn) and popu-
lation model, displayed only for the signals and variables that
reached significance at α = 0.05. See main text for details.

Dist. to nearest neighbor Population
Concept Symb. β diff. P-value β diff. P-value

stone t -0.59 -0.29 0.01 - - -
full p -0.54 -0.44 0.01 - - -
dog s -0.44 -0.18 0.05 0.79 0.06 < 10−3

tongue E -0.36 -0.34 0.03 - - -
knee o -0.26 -0.27 0.03 - - -
knee u -0.26 -0.25 0.02 - - -
nose n -0.24 -0.20 0.04 - - -
fish a - - - 1.01 0.18 < 10−3

knee p - - - -1.09 -0.12 < 10−3

leaf b - - - 0.57 0.06 0.01
leaf p - - - -0.51 -0.05 0.04

name i - - - -0.42 -0.08 0.01
one t - - - -0.58 -0.06 0.002
star z - - - 0.86 0.05 0.05

tongue e - - - -0.36 -0.06 0.03
tongue l - - - 1.17 0.18 < 10−3

different rates across the globe. The logarithmic transforms aims to
reduce the effect of population and distance outliers. P-values were
estimated through an asymptotic likelihood ratio test. Apart from the
estimated coefficients, we calculated the genealogical balanced mean
difference in probability of having a signal for two reference points,
one variable at a time. For population, the difference was calculated
between fixing all languages’ populations to 10000 individuals and a
single individual, and for dnn between 1000 km—which is roughly
the maximum radius of linguistic areas as defined in AUTOTYP—
and 0 km (which correspond to the situation where both languages
as spoken at the same place). The results can be observed in Table
reftab:spatial.

At α = 0.05, log population turned out to be significant in about
one third of the cases, but the effect was small and as many times
positive as it was negative, which rules out a consistent role for popu-
lation. Only one fifth of the signals showed sensitivity to the distance
of nearest neighbors with signal, with all of the cases having an effect
in the predicted direction by our model. On average, and in contrast
to the case in which a language and its signal-bearing nearest ge-
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Cognate-signal
  association

No association

Figure 15: Genealogical scenarios for signal distribution
Genealogical trees of languages where leaves are words for specific

referents. In the figure to the left, cognate classes (depicted as
different shapes) are associated with signal presence (blue shapes),

whereas to the right there is no such correspondence.

nealogically unrelated neighbor are spoken in exactly the same place,
the probability of finding the signal also in the language drops by
28%.

From a historical perspective, it has been suggested that sound-
meaning associations might be evolutionarily preserved features of
spoken language [187], potentially hindering regular sound change
[186]. Furthermore, it has been claimed that widespread sound-meaning
associations might be vestiges of one or more large-scale prehistoric
proto-languages [114]. Tellingly, some of the signals found here fea-
ture prominently in reconstructed “global etymologies” [202, 212]
that have been used for deep phylogeny inference [188]. If signals
are inherited from an ancestral language spoken in remote prehistory,
we might expect them to be distributed similarly to inherited, cognate
words; that is, their distribution should to a large extent be congruent
with the nodes defining their linguistic phylogeny (see Figure 3 for
illustration).

A direct evaluation of this hypothesis is infeasible due to the ab-
sence of etymological dictionaries for all but a few families. More
precisely, a proper phylogenetic test in the context of language his-
tory would comprise some kind of data carrying a phylogenetic sig-
nal (like cognate sets or collections of regular sound changes) and a
sound evolutionary model that would lead to a tree or a distribution
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of trees. Unfortunately, such trees exist for only a handful of language
families.

However, it can be tested indirectly given that cognate words are
expected to be more similar to one another than non-cognates [213].
If it is a correct hypothesis that signals render words less prone to
change and that they are prehistoric vestiges, then, after controlling
for concept, symbol, and lineage, we would expect to find that the
similarity among words is predicted by signals.

The distance between words used here is the Levenshtein distance,
which has found several uses in linguistics and often correlates with
perceptual, processing and other meaningful lexical distances differ-
ences [4,5]. The Levenshtein distance between strings x and y LD(x,y)
is defined as the minimum number of edits, additions or deletions of
characters necessary to make two strings identical. For instance, ‘Zul-
tus’ and ‘sulus’—star in Uyghur and Sakha (two Turkic languages)
respectively, have a Levenshtein distance of 2: a change of ‘Z’ to ‘s’
and the deletion of ‘t’ in the Sakha word. The normalized Levenshtein
distance is simply l = LD(x, y)/ max(|x|, |y|)

For every family with at least six languages and every combination
of concept and symbol, we calculated the Levenshtein distance be-
tween all members of two groups: word pairs for a concept belonging
to a combination, and word pairs for a concept sharing at least one
symbol but not the symbol relevant for the combination. For instance,
given a family with three languages having the forms ana,ena and ete
for the concept “rock”, and considering the combination rock-n, we
will have the two following groups: (ana,ena) and (ena,ete). Families
with less than three distances in any of the groups were excluded
from the analysis.

In order to summarize the previous information, we calculated,
for each family, the probability of choosing a distance in the signal-
sharing group and another in the non-signal-sharing group and find-
ing that the first is smaller than the second (Pr(ls < l−s)). The larger
this quantity, the more reliable an estimator of wordform similarity
the association is.

Then we implemented the following beta regression mixed model
with logistic link function and constant precision parameter:

logit(E[Pr(ls < l−s)]) = ∑
concepts

βi Ii + ∑
symbols

β j Ij

+ αsignalhood + αlineage

where the i and j indexes run over the set of concepts and symbols,
respectively, the coefficient “signalhood” indicates whether the com-
bination of concept and symbol is to be found in Table S2. ‘signal-
hood’ was coded as a single level common to all individual positive
signals. αlineage stands for a random intercept according to lineage. In
order to cope with a few values of Pr(ls < l−s) identical to 1 (that
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account for less than 0.5% of the data) we applied the transforma-
tion t(x) = (x(N − 1) + 0.5)/N to the values. As a way of account-
ing for the more robust evidence provided by lineages with a large
number of distance pairs to be compared, we included a weight for
each observation equal to the logarithm of the number of such pairs
involved—however, the results did not differ considerably from the
unweighted case.

Overall, the model quality is heavily dominated by lineage: 86%
vs. 3% of explained deviance with and without the lineage random
effect, respectively. Signal presence (while significant) has a negligi-
ble effect in the opposite direction than predicted: the genealogically
balanced average effect is less than a 0.5% decrease in similarity for
those words sharing a signal-related symbol compared to those shar-
ing some other symbol.

Consistency in word position is important for establishing cognacy
[118, 213]. Further support for the idea that signals are not residuals
of deep history comes from the analysis of the position within the
word in which they occur, in particular whether they have a clear
word-initial bias.

We simulate, for each language and signal, random positions of the
relevant signal-associated symbol based on all the available positions
in the word according to the consonant/vowel distinction. Concretely,
we calculate the number of times the phone is initial when its simu-
lated counterpart is not, averaging genealogically and respecting the
vowel and consonant template of each word. Then we compare this
quantity in the original word list against n = 1000 simulations and
consider those cases in which the original bias is larger than 95% of
the simulated cases. These results can be observed in Table 9.

All in all, we find that signals do not have a consistent cross-linguistic
preference or dispreference in this respect beyond well-established
cross-linguistic phonotactic patterns, such as the avoidance of liquids
or the prevalence of dorsal and labial stops in word-initial position
[145, 196] (see Supplemental Methods and Table S5).

In perspective, these results suggest that although it is possible that
the presence of signals in some families are symptomatic of a partic-
ularly pervasive cognate set, this is not the usual case. Hence, the
explanation for the observed prevalence of sound-meaning associa-
tions across the world has to be found elsewhere [36].

3.6 conclusion

We have demonstrated that a substantial proportion of words in the
basic vocabulary are biased to carry or to avoid specific sound seg-
ments, both across continents and linguistic lineages. Given that our
analyses suggest that phylogenetic persistence or areal dispersal are
unlikely to explain the widespread presence of these signals, we are
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Table 9: Analysis of word-initial position bias. Bias measure how
more or less frequently the symbol appears in word initial
position for that concept. Lineages counts how many lin-
eages had at least one language for which the analysis could
be performed. See Materials & Methods for more details.

Concept Symb. Bias Lineages
bite k 0.20 42

bone k 0.09 162
breasts u -0.06 185
breasts m 0.05 152

ear k 0.07 159
fish a 0.05 249
full b 0.11 81
full p 0.12 100

horn r -0.23 82
horn k 0.15 115
knee o 0.10 177
knee p 0.09 104
knee k 0.07 177
knee q 0.19 35
leaf l -0.14 120
one n -0.07 175
red r -0.24 28

tongue l -0.09 160
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left with the alternative that the signals are due to factors common
to our species, such as sound symbolism, iconicity, communicative
pressures or synaesthesia. We expect future research to further eluci-
date the role and interaction of these factors in driving the observed
sound-meaning association biases, and to extend the scope of our
findings to a broader portion of the vocabulary.

The outcome of our analyses have consequences for historical and
comparative linguistics, where it has been suggested that there is a
small set of ultra-conserved words that are particularly useful for es-
tablishing ancient genealogical relations beyond the limits of the com-
parative method [188]. However, some of these words are involved in
the signals discovered here: we is associated with the alveolar nasal,
hear with the velar nasal, and ash with the vowel u. Thus, proposals of
far-reaching etymologies based on words of similar form and mean-
ing should be accompanied by an evaluation of whether the observed
lexical similarities might have resulted from the kinds of signal dis-
cussed in this paper rather than common inheritance. More generally,
even though it is unclear whether the locus of the emergence of sig-
nals is in the invention or historical development of lexical roots, our
findings have implications for the study of the dynamics of lexical
phonology.

In summary, our results provide new insights into the constraints
that affect how we communicate, suggesting that despite the im-
mense flexibility of the worlds languages, some sound-meaning as-
sociations are preferred by culturally, historically and geographically
diverse human groups.
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4
C R E O L E S A S A T Y P O L O G I C A L G R O U P

4.1 extreme contact languages

The label “creole” is given to languages that are considered to be
the result of extreme contact situations, prototypically (but not ex-
clusively) as the result of the exploitation of slave plantations fol-
lowing the European colonial expansion since the end of the Middle
Ages. As with all other languages creoles have a considerable share
of words that can be traced back to another language or languages1.
In the case of creoles, those languages -referred as lexifiers- were most
of the time dialects of European languages. English speakers will be
able to get a sense of the following extract (meant to be read following
English writing conventions) from the New Testament:

So King Herod sen fa de man dem dat done come fom de
east fa meet wid um, bot e ain tell nobody bout de meetin.
Den Herod aks dem man fa tell um de zact time wen dey
fus see dat staa. E tell um say, “Oona mus go ta Betlem an
look roun good fa de chile. Wen oona find um, mus come
back an leh me know, so dat A kin go mesef fa woshup
um op too.”

The piece is in Gullah, a creole that is still spoken in the states of
Georgia and South Carolina in the United States. Gullah, a proto-
typical creole, originated from the interaction between English — its
lexifier — and a number of African languages from the Guinea coast,
which are collectively labelled as substrate languages. Beyond proper
nouns, many words of English origin can be easily spotted, including
verbs (tell, go, say), nouns (kin “king”, man, chile “children”), adjec-
tives and adverbs (zact “exact”, good). For most languages, the lexical
material is transmitted along with the grammar. This enables the
possibility of historical linguistics, in fact: by detecting vocabulary of
common origin (and regular sound changes) in a set of languages,
linguists are able to make predictions about the common ancestry of
the underlying grammars as well. However, for creoles, there is no

1 As an exception one could refer here to some secret languages, which explicitly alter
the words of a target language (or directly create new artificial words) in order to
make it unintelligible to outsiders.
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consensus about whether this is the also the case. The theories that
have been put forward in the last half-century about the origin of
creole grammars range from the spectacular to the dull. While some
regard creoles as average languages (putting aside their particular
social underpinnings), others think they might be a linguistic Holy
Grail that could ultimately shed light on fundamental issues such as
the evolution of human language, the importance of communication
for shaping language structures and the strength of innate linguistic
biases.

4.2 origins of creoles

Recurrently, researchers have pointed out that there seems to be a
number of features shared by all or most of creole languages [208,
234]. Considering some of the recurrent (but not omnipresent) fea-
tures there is the SVO word order, the realization of tense, aspect and
mood markers as free morphology, and the lack of noun classes, in
particular gender — for an excellent review see [51]. Perhaps follow-
ing the intuition from classic historical linguistics, the first ideas about
these commonalities attempted to find a single root to all creoles. The
candidate for siring a large number of creole languages was thought
to be a pidgin — which is, as a first approximation, a restricted com-
munication code with an extremely limited lexicon that does not have
any native speakers — that served for the purpose of commerce and
exchange in the Atlantic between the XV and XVI centuries and that
was based on Portuguese [223]. In many cases the slave trade that fed
the creole-speaking populations can be traced back to Portuguese set-
tlements in the African west coast, where slaves and their exploiters
used the pidgin. That common origin would explain some otherwise
curious parallels in lexica and grammar. To take an example, creoles
like Sranan, Negerhollands and Haitian (none of which developed
in a Portuguese-speaking setting) all have a similar locative preposi-
tion na with a number of functions that resemble the Portuguese na
(LOC.SG.FEM).

In contrast, Bickerton has argued that creoles exhibit shared prop-
erties because they represent an initial state of the possible grammars
that are available to all humans, before language change and con-
tact make them drift away from that configuration [27]. In order to
introduce Bickerton’s argument we should refer to another idea that
suggests creole languages develop from pidgin languages via nativiza-
tion: pidgins turn into a full-fledged (creole) language once they are
learned as first language. Bickerton’s battle horses are Hawai’ian Pid-
gin and Hawai’ian Creole. In the XIX century, a blooming sugar cane
industry in the island witnessed a diverse migration of labor work-
ers coming from China, the Philippines, Japan, other Pacific islands
and European countries, besides the native population and the En-
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glish. By the end of the century a more or less stable pidgin emerged
as an ancillary communication means for the linguistically diverse
community of workers. With striking speed, in perhaps a single gen-
eration, a creole spoken by the descendants of those workers could
be identified. The commonalities between the original pidgin and
the creole are considerable, which led Bickerton to argue that the
pidgin learned as L1 (first language) was enriched with the full ex-
pressive machinery of any other natural language by means of a ge-
netic blueprint characteristic of our species. Furthermore, Hawai’ian
Pidgin seems to exhibit considerable variation according to the ethno-
linguistic affiliation of the speakers — as an example, pidgin speakers
of Japanese origins would use SOV order while Filipinos would pro-
duce VS sometimes, which turns out to be a transparent substrate
effect since Japanese is SOV while many Philippines’ languages are
VS. In Hawai’ian Creole, basic word order seems to be a rigid SVO
regardless of ethnolinguistic background, and many grammatical fea-
tures that were largely optional before (like the marking of tense and
aspect) now are obligatorily expressed. The fact that a handful of fea-
tures (that will be discussed in the next section) seem to emerge in
other creoles as well, following a hypothetically similar trajectory —
that is, having a preceding pidgin stage— led Bickerton to conjecture
that those might correspond to some sort of “default” configuration
for languages, which in his early work was used to argue for creoles
as a window to the process of language evolution.

There is an important issue with the sample of creoles on which
Bickerton based his observations, though. Although the genealogy
of creole languages cannot be accounted for in a transparent way by
means of trees as with other (but certainly not all, and maybe not
even the majority of) languages, no researcher would deny the fact
that at least some of the typological features of creole languages are
in close connection to those of its parents. This serves as a prelude to
the issue being treated in this chapter: the imbalance in most of the
compiled data on creoles is dramatic; the large majority of existing
(and described) creole languages have as a lexifier at least one of a
few West European languages — notably English, Dutch, Spanish,
French and Portuguese — or languages from the Macro-Sudan belt
as substrates [98]. Actually, when creoles outside of those ancestry
groups are taken into account, violations to some presumed universal
features of creoles can be found. Baker [11] mentions the case of
Yilan Creole, a recently discovered language spoken in a few villages
of Northeast Taiwan that emerged from the contact between Atayal
(an Austronesian language) and Japanese [243]. Yilan Creole has a
few properties (like SOV word order) that go against the proposals
Bickerton (and others) have put forward in relation to the universal
properties of creoles.
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Those who eschew the idea of creoles having universal properties
fail to agree on what is the relative relevance of a creole’s ancestry in
the genesis of its grammatical structure. The relexification hypothesis
suggests that most creole languages are substrate grammars coated
with a vocabulary from the lexifier [132]. Speakers of substrate lan-
guages had a very limited access to the lexifier, and in consequence
they adopt labels that match in some way the references present in
their own lexicon. Naturally this leaves out all the material for which
an adequate pairing could not be established — notably functional
words or morphology standing for grammatical features absent in
the substrates, which would explain why creole languages seem to
be isolating languages in general. Lefevebre proposes as a paradig-
matic example the analysis of the semantics of the word ansasinen in
Haitian Creole, which is a clear borrowing from French (assassiner).
While in both languages the word has the meaning “to murder”, in
Haitian Creole it also means “to mutilate”. Strikingly, Fongbe (one
of the West African languages that served as a substrate) has a word
(hù) with exactly that polysemy pattern, which suggests that it is still
in place in Haitian Creole, although with a French label [132].

On the other hand, some have argued that creoles are actually reg-
ular offspring of their lexifiers with some influence from their sub-
strates, similarly to Romance languages in relation to Latin [39]. One
of the theories consistent with this idea places considerable weight
on the original population of speakers of the lexifier, which, in anal-
ogy with genetics, is referred as the “founder principle” [168]. As
with the relexification hypothesis, the inspiration for this idea comes
from French-based creoles. A simplified account of the theory fol-
lows: the language of the first settlers (who many times spoke koiné
varieties of the languages) would be learned with accuracy by the first
groups of slaves. The success of the plantations increased the need
for manpower, and soon the Europeans (and the first slaves) were
outnumbered. This complicated the access to the language for the
newcomers, and thus successive generations shaped the language ac-
cording to these restrictions (and the linguistic features they brought
in from their own languages). While it is true that the special cir-
cumstances of creoles might have accelerated the pace of language
change, the kind of general processes they undergo are common to a
large number of (non-creole) languages, and they receive the name of
“contact-induced shift”. In this respect, there is nothing special about
creoles as a distinctive linguistic group.

In the last years there has been a revival of the idea of creole being
a coherent group with universal (or quasi-universal) properties be-
yond the influence of their ancestry and far from ideas of hard-wired
linguistic biases. The argument goes that creoles emerge in a situa-
tion of extreme pressure for communication, and as such some of the
resources they display might be considered as natural or economic
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against alternatives that attempt to handle other possible constraints
as well (or that have accumulated over the years a number of not
obviously functional features). In words or Bakker [12]:

If we think of creoles as the result of retention (from super-
strate most significantly a partial lexicon and grammar;
and substrate most significantly in phonology and syn-
tax), loss (from superstrate part of the grammar) and re-
constitution (from neither substrates or superstrates), then
creoles shed light on what properties are necessary in lan-
guages. Why do creoles almost universally develop tense
and aspect systems, plurality, negation, an article system,
etc. through grammaticalization, after they have been lost,
but never e.g. gender? The solution may be found in
pragmatic and cognitive saliency of certain semantic dis-
tinctions. In biological life, the existence of genders and
sex are needed for the reproduction and survival of our
species, but in reconstituted languages grammatical gen-
der would be counterproductive, as it is altogether super-
fluous. [. . . ]

If one considers creoles unexceptional continuations of the
lexifier, following the claim that the change from Latin to
French was of the same magnitude as the change from
French to Haitian, there is a big problem here. Why would
there be no evidence of any creole with grammatical gen-
der, not even within 40 to 400 years of development, whereas
almost no Indo-European lost gender during 6,000 to 10,000
years? The explanation is obvious, and that is that cre-
oles and pidgins never had gender. Pidgins started from
zero, when the creators started adopting words and fea-
tures they found useful from the lexifier and their mother
tongues. The creoles built on that. No one found gender
marking useful so they didn’t adopt that. Creolization
was preceded by a process of loss call it pidginization or
simplification. And in contrast to other semantic distinc-
tions, the creators of the creole wisely avoided the recon-
stitution of gender distinctions. Smart.

These ideas are often linked with the slippery concept of “com-
plexity”, that became installed in the discussions about creoles after
the publication of a paper in 2001 with the stark title: “The world’s
simplest grammars are creole grammars” [156]. According to the
researchers sympathetic to this idea, a part of the grammar of a lan-
guage can be considered as more complex than the equivalent of an-
other if the first involves more distinctions or elements (other things
being equal). Thus, the ten tones of Trique (Oto-Manguean) are more
complex than the five of Thai, and the fifteen cases of Finnish are
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more complex than the two of Aleut (Eskimo-Aleut). Whether these
distinctions bear any impact for the processing, production or acqui-
sition of language is still to be demonstrated. Good makes the point
that, in the light of an imperfect access to the ancestral languages, it
makes sense to expect a paradigmatic rather than syntagmatic reduction
in complexity [91]. Roughly, while the successful transmission of a
paradigm — like the different pronouns of a language — involves the
individual transmission of each of its members or generating rules,
lexical items or constructions (like the passive) can in principle be
passed unitarily. In his own words,

Consider, for instance, what is required for the string of
phonemes associated with cat to be transferred into a jar-
gon from English. All that is needed is for /ket/ to be
used in by a single member of the jargon community and
for the other members to understand what is being re-
ferred to, at which point they may re-use this form to
refer to similar entities. By contrast, for the English sin-
gular/plural distinction to be transferred, logically speak-
ing, two linguemes must be transferred, e.g., cat and cats,
since it is only possible for plural marking to enter the
new contact variety if the coding of plurality via an affix
is discoverable on the basis of the forms being used by its
speakers. For this to happen, at least one singular and one
plural noun must be transferred.

Last but not least, at this point it should be clear that there are two
implicit formal models of creole profile being discussed in the litera-
ture. One consists in a more often than not fixed template of features
to which creoles develop into or are born with. The bioprogram hy-
pothesis and the pan-creole features of Bakker and Daval-Markussen
[51] fall into this category. The other is instead of a more probabilistic
nature and it involves perhaps a larger range of linguistic phenomena:
there are certain features that we will expect to see more frequently in
creoles, but it is the large number of the occurrences of those which
characterizes creoles in toto instead of a few fixed traits. Researchers
that discuss creoles from the vantage point of complexity endorse this
characterisation.

4.3 a statistical turn

In perspective, the gains for settling the issue of whether there is
a creole profile cannot be overestimated. If there is such a thing,
then creoles would be the most outstanding natural experiment to
tell apart what is necessary from what is contingent in the structure
of languages. If not, it would argue in favour of the idea that cul-
tural evolution of language is strong and robust even in the extreme
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situations of creole origin. Beyond the (already substantial) theoret-
ical profit, there are concrete practical consequences for having the
answer. Daval-Markussen, after determining a set of diagnostic fea-
tures for the creole profile, find that Hmong Njua (a Hmong-Mien
language from Laos) complies with it [50]. Reviewing genetic and
linguistic evidence he finds that the case for that language being a
creole is considerable. In other words, a positive answer to the creole
profile question would provide us with a relatively inexpensive way
of making inferences about the sociocultural past of languages for
which direct knowledge might be limited.

Given the importance of the topic, and from an outsider perspec-
tive, it might seem puzzling that such a large number of (in prin-
ciple) mutually excluding theories on the emergece of creoles could
exist. But testing the nature of the origin of creoles and, in particular,
whether there is such a thing as a creole profile are conspicuously
difficult tasks. For starters, most creoles developed in a very short
amount of time — a few generations versus centuries in the case of
West European languages — and they usually lack appropriate docu-
mentation. Most of what is known about the early stages of creoles
comes from religious orders (that attempted to acquire the language
for spreading the New Testament in the populations) and secular Eu-
ropeans associated with the colonies.

With respect to the substrate languages the situation is close to
helpless but due to a different reason: most of the time there is only
very vague information about which languages those were in the first
place. Labor workers and slaves involved in creoles came from virtu-
ally every corner of the planet — just in the West Indies one could
find speakers of East Asian, Pacific, West European and Native Amer-
ican languages. True, a large number of slaves came from the Atlantic
coast of Africa and in particular from the Guinea Region, which, un-
fortunately for the scientific question at hand, happens to be the sec-
ond most linguistically diverse area in the world after Papua New
Guinea. In this context, proponents of the relexification hypothesis
have been accused of triggering the Cafeteria Problem: by looking hard
enough among the many African languages of that region, one would
be able to find at least one that matches some aspect of the creole be-
ing studied [167].

While lexifiers are in a better position as comparison standards
for creoles (since West European languages are the most studied lan-
guages in linguistics) it has been argued that the varieties that con-
tributed to the genesis of creole languages were not the standard va-
rieties but were instead particular sociolects that sometimes could di-
verge from their source. An interesting case is the variety of English
spoken by pirates in the Caribbean just before the explosion of sugar
cane plantations [53]. It is thought that groups of aboriginal Amer-
icans and African slaves might have picked up their first European
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languages through contact with pirates. Pirate’s language was heav-
ily influenced by other low prestige varieties of English as well as the
languages of the other peoples involved in maritime trade. Pirates
were skilled in multiple languages apparently; the infamous Henry
Morgan spoke English, Welsh and French. Strikingly, in the pirate
ships’ logs it is possible to find features that are absent in standard
English but present in many of its creoles, such as for instance the
inflection patterns of copula verbs.

Finally, it is in general not clear what would be the value of pre-
dictions built on generalizations (and theories) of language change
of non-creole languages. Whether the study of long-scale processes
— like the great vowel shift, that remodelled the vowel space of En-
glish over a time lapse of 300 years — can tell us anything about
creole development, that typically occurs in a few generations, is still
to be answered. On top of that (and perhaps barring some changes
in phonological systems) even for non-creole languages the number
of diachronic laws is modest, and they are almost exclusively better
casted as tendencies instead of deterministic forces.

This state of affairs redirected the attention from purely linguistic
to more statistical grounds. The implicit (and sometimes perhaps
concealed) philosophy behind the quantitative and statistical work I
will review in the next section is that we can attempt to solve the
creole profile question based on our (statistical) analysis of data. If a
reasonable analysis shows that some features are attached to creoles
and less so to non-creoles, then we could call that the creole profile,
and the results thus obtained should fuel the development of a theory
about creoles.

4.4 caveats for the testing of the creole profile

The first natural step in this analysis is to evaluate the characteristics
of the data on creoles at hand. To the extent of my knowledge, all
databases where creole typological information features extensively
have been built with those particular languages in sight, in contrast to
other typological databases that sacrifice the description of potentially
interesting traits for a region or a phylogeny for the sake of increased
cross-linguistic comparability. This has likely an impact on the chosen
features. For instance, although about one third of the languages in
the world are described as displaying an ergative alignment system,
no creole database systematically codes for this, the reason being very
probably that there does not seem to be any creoles falling within that
category [156]. On the other hand, while the presence of prenasalized
stops is not coded in many cross-linguistic databases, it is usually
brought into question regarding creoles - which does not come as
a surprise since many West African languages (which are the usual
substrates) have them. All this means that, from the onset, the subset
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of variables present in those databases share a bias towards aspects
that are deemed to be of interest for creolists. It should not come as
a surprise then if a handful of those features are enough to draw a
typological line between creoles and non-creoles, as it was found [51].

Even more, different aspects of grammars tend to be not repre-
sented with the same number of detail or through the same number
of entries in these databases. On top of that there are functional and
diachronic affinities between features (see Chapter 2). Ultimately this
translates into highly correlated and redundant features. This could
be simply solved by studying those correlations from independent
samples. However, creoles pose a formidable challenge: determining
the correlations of features from creole data assumes the indepen-
dence of those languages, but in principle the complementary read-
ing is plausible as well: it might be that the features are correlated as
a result of those languages being creoles. Inferring the dependencies
from non-creole languages also runs into the same conundrum.

To worsen the situation, the range of the number of variables an-
alyzed by creolists is considerably wide, and this has never been ex-
plicitly taken into account. Trivially, a larger number of available
dimensions is more likely to yield a separating criterion for any pro-
posed classification.

Given this cumbersome landscape, the best strategy to adopt is
not to screen the variables at all. The idea would be that if there is
any bias in the distribution, number or correlational structure of a
set of features, then this should translate into a better classificatory
power of any arbitrary group of independent languages. Comparing
how well we can distinguish creoles from a structurless sample of lan-
guages of the world in contrast to random assignments of languages
into two groups appears as a sensible solution for this issue.

As a second stage, claims about any profile-defining features should
address the question of whether the affiliation of creoles to their an-
cestral languages explains the regularities. From a purely data-based
perspective, creole-defining features should be ostensible indepen-
dent from their ancestry unless there is a good alternative explana-
tion that could account the accidental coincidence. Repeating the
previous testing without those features for which there is substantial
statistical evidence of their association with an ancestral lineage will
be a litmus test for a robust creole profile.

4.5 exploratory analyses and ancestry-related features

4.5.1 Data

For all further tests I use the largest published dataset on the struc-
ture of creole languages, the Atlas of Pidgin and Creole Languages
(APiCs) [160]. This survey shares a number of typological features
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that can be readily compared with another large database of lan-
guages, the World Atlas of Language Structures (WALS) [103], which
was introduced already in Chapter 2. This set of common features
comprises properties of nominal and verbal phrases, word order pat-
terns, clausal syntax, a bit of phonology and locus of coding. While
this implies a considerable loss of information in comparison with
the full APiCs (which has 131 features in total), a quick assessment
of the abandoned variables shows that those were the most idiosyn-
cratic to creoles and pidgins, so this strategy helps alleviating the bias
discussed before.

As a comparison group I choose a genealogically balanced sample
with particularly good coverage in the WALS for the set of shared
languages. None of the languages of the sample have been shown to
be a creole2, and they all belong to different genera.

A few languages from the APiCs database were removed due to
them being represented by means of a very close dialect or variety
in order to avoid over-counting essentially the same language. After
removing both languages and features with low coverage, I ended up
with a set with 53 creole languages and a balanced sample of 106 non-
creole languages. 41 out of the 48 shared features between APiCs and
WALS have more than a 75% in our sample and thus were retained
for analysis. About 8% of the relevant feature values were missing
in the aggregated data. Most of those come from the non-creole set
(which exhibits 12% of missing entries); creoles have an almost perfect
coverage, with less than 2% of missing data (see Table 10).

4.5.2 Exploratory analysis

An exploratory analysis of the data was conducted to detect eventual
oddities and to have a better grasp of the typological dispersion of
the languages at hand.

The first question that could be readily answered is whether there
is any evidence for the idea that the distribution of features within
the creoles’ set is not readily comparable to the typical world-wide
distribution in non-creole languages. As a rough model, I approx-
imated the later with the Laplaced-smoothed empirical frequencies
observed in the whole WALS — not only on the reference subset de-
scribed before — and then evaluated the P-value corresponding to a
multinomial test applied to the creole languages. The results can be
observed in Table 11.

The majority of features are distributed in a way that is decidedly
different from the worldwide, non-creole sample. Between a fifth and

2 However, Chamorro has been regarded in the past a Spanish creole due to the large
amount of vocabulary it took from that language, and Hmong Njua has been flagged
as a potential creole based on the work of Daval-Markussen (as discussed in the main
text)
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Feature description Levels Creole cov. WALS cov.
Order of subject, object and verb 6 1.00 0.95

Order of genitive and noun 2 1.00 1.00
Order of adjective and noun 4 1.00 0.98
Order of adposition and NP 5 1.00 0.98

Order of demonstrative and noun 4 1.00 0.98
Order of numeral and noun 4 1.00 0.95

Order of RC and noun 6 1.00 0.90
Pos. of interrogative phrases 3 1.00 0.92

Gender in indep. pers. pronouns 5 1.00 0.99
Inclusive/exclusive dist. in indep. pers. pron. 4 1.00 1.00

Politeness in pronouns 4 0.85 0.94
Indefinite pronouns 5 1.00 0.74

Occurrence of nominal plurality 6 1.00 0.72
Coding of nominal plurality 8 1.00 0.97

Definite articles 5 1.00 0.87
Indefinite articles 5 1.00 0.82

Pronominal and adnominal demonstratives 3 1.00 0.75
Distance contrasts in demonstratives 5 1.00 0.86

Ordinal numerals 8 0.89 0.84
Numeral classifiers 3 1.00 0.74

Locus of marking in pos. NP 5 1.00 0.89
Suppletion acc. to tense and aspect 4 1.00 0.96

Prohibitive 4 0.98 0.92
Alignment of case marking and full NP 5 1.00 1.00

Alignment of case marking of pron. 7 1.00 0.93
Ditrans. constructions, give 4 1.00 0.90

Expression of pronominal subjects 6 1.00 0.89
Comitatives and instrumentals 3 0.98 0.72

Nominal and verbal conjunction 3 1.00 0.80
Zero copula for predicative nominals 2 1.00 0.83

Nominal and locational predication 2 1.00 0.83
Intensifiers and relfexive pronouns 2 0.89 0.75

Reciprocal constructions 4 0.96 0.73
Applicative constructions 7 1.00 0.93
Relativization on subjects 4 0.89 0.79

Want complement subjects 5 1.00 0.73
Negative morphemes 6 0.85 0.97

Neg. indef. pron. and predicate neg. 4 1.00 0.67
Polar questions 6 1.00 0.95

Tone 3 0.98 0.96
Vowel nasalization 2 1.00 0.93

Table 10: Number of levels and coverage of the grammatical fea-
tures analyzed in APiCS and WALS
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Feature P-value
Order of subject, object and verb < 10−3

Order of adjective and noun < 10−3

Order of adposition and NP < 10−3

Order of numeral and noun < 10−3

Order of RC and noun < 10−3

Pos. of interrogative phrases < 10−3

Inclusive/exclusive dist. in indep. pers. pron. < 10−3

Indefinite pronouns < 10−3

Occurrence of nominal plurality < 10−3

Coding of nominal plurality < 10−3

Definite articles < 10−3

Indefinite articles < 10−3

Pronominal and adnominal demonstratives < 10−3

Distance contrasts in demonstratives < 10−3

Ordinal numerals < 10−3

Numeral classifiers < 10−3

Locus of marking in pos. NP < 10−3

Prohibitive < 10−3

Alignment of case marking and full NP < 10−3

Alignment of case marking of pron. < 10−3

Ditrans. constructions, give < 10−3

Expression of pronominal subjects < 10−3

Comitatives and instrumentals < 10−3

Applicative constructions < 10−3

Relativization on subjects < 10−3

Want complement subjects < 10−3

Negative morphemes < 10−3

Polar questions < 10−3

Order of genitive and noun 0.001
Tone 0.002

Nominal and locational predication 0.006
Reciprocal constructions 0.019

Suppletion acc. to tense and aspect 0.029
Neg. indef. pron. and predicate neg. 0.041

Gender in indep. pers. pronouns 0.053
Nominal and verbal conjunction 0.069

Vowel nasalization 0.075
Order of demonstrative and noun 0.170

Zero copula for predicative nominals 0.434
Intensifiers and reflexive pronouns 0.485

Politeness in pronouns 0.582

Table 11: P-values of creole features in relation to their worldwide
typicality.
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a quarter of all features will be rejected under conventional statistical
thresholds.

For the purpose of investigating the internal variation within the
creole languages, I used a simple Gower similarity, which is defined
as the fraction of shared features between two languages that have
the same value in each of them,

G(i, j) =
∑φ∈Φij

δ(φi = φj)

|Φij|
(13)

where i and j parametrize languages and Φij is the set of features that
are coded for languages i and j.

There are no two languages in our sample with similarity equal or
larger than 0.85. By taking all the languages with a similarity of 0.8
at least we see a clear clustering of some creoles according to their
lexifiers, as shown in Figure 16.

Figure 16: Superficial creole clusters

Similarity graph for creole languages with over 80% of shared
features coded with the same value. Labels indicate the common

lexifier of the languages.

Superficial clustering techniques like this cannot be taken as any-
thing else than suggestive evidence that cannot stand alone as a proof.
All features contribute equally likely to the aggregated similarity,
whereas the expectation is that there might be a dramatic difference
in the value certain properties have as diagnostic of creolness. More
critically, there is no treatment to the obvious collinearity patterns
present in the features, as discussed in the previous section.

As a second exploratory step, I studied how well individual vari-
ables predicted class membership of languages (creole/non-creole)
and viceversa. A few univariate measures of association for categori-
cal values between typological variables and the class label were used.
G2 tests of independence (based on the χ2 approximation) were per-
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formed on the whole set, as well as regular significance testing of the
specific measures described next.

Goodman-Kruskal λ and τ statistics were used in order to evaluate
the pairwise predictive power. Goodman-Kruskals λ is the relative
reduction of classification error due to the independent variable X
given the baseline of the modal frequency of the dependent variable
Y,

λ(x; y) =
1−maxy Pr(Y = y)−∑i maxy Pr(Y = y|X = xi)

1−maxy Pr(Y = y)

Goodman-Kruskals τ, instead, uses as baseline the strategy of choos-
ing each value in the support of Y according to its probability. If we
call f̂ = ∑y∈Y Pr(Y = y)2, then

τ(x; y) =
1− f̂ −∑y∈Y ∑x∈X Pr(Y = y|X = x)2

1− f̂
(14)

τ and λ are not symmetric. When the direction of prediction is
from the feature values to the membership I use the subscript ‘F’,
and ‘M’ in the other case. Results can be observed in Table 12.

For about 85% of the features there is a detectable association be-
tween their values and the language membership. However, for only
25% of the features the gain in predictive power (for at least one of
the measures and directions) is meaningful.

Critically, it is important to screen out those features for which
some evidence of ancestry origin could be established. I mentioned
before that pinning down individual languages from WALS acting
as lexifiers and substrates is unfeasible. However, we do have access
to more general information about the genealogical (or typological)
groups to which they belonged to. The idea is then simply to estab-
lish whether individual features show sufficient dependency with any
group of their ancestry and flag them as potentially inherited. There
is a tradeoff between how specific these levels can be and the possibil-
ity of statistically demonstrating any dependency, so for this reason
I latched to whatever grouping level was available where some vari-
ation could be appreciated. Naturally, statistical associations can be
detected only when there is enough variation in the data. This does
not rule out the possibility that there is a direct influence of the an-
cestry over creoles for those features, but just that the point exceeds
what can be argued based on the primary analysis of the data solely.

At the lexifier level, a difference between Germanic and Romance
languages can be readily established within the West European lan-
guages. Austronesian and Macro-Sudan languages also contribute
significatively to the substrates. Finally, the European/Macro-Sudan
“biclan” — implying European lexifier as well as substrate from Macro-
Sudan— is by far the most commonly attested combined pair of an-
cestry lineages.
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Feature λF λM τF τM
Comitatives and instrumentals 0.54 0.51 0.45 0.31
Occurrence of nominal plurality 0.53 0.35 0.37 0.18
Expression of pronominal subjects 0.47 0.37 0.41 0.19
Indefinite pronouns 0.43 0.38 0.37 0.24
Indefinite articles 0.38 0.27 0.36 0.13
Prohibitive 0.36 0.21 0.34 0.15
Order of subject, object and verb 0.34 0.19 0.35 0.20
Coding of nominal plurality 0.32 0.23 0.30 0.09
Ditrans. constructions, give 0.30 0.15 0.24 0.09
Pronominal and adnominal demonst. 0.26 0 0.14 0.08
Order of adposition and NP 0.24 0.33 0.33 0.25
Locus of marking in pos. NP 0.19 0 0.18 0.04
Polar questions 0.19 0.03 0.16 0.06
Distance contrasts in demonstratives 0.17 0 0.17 0.05
Want complement subjects 0.17 0 0.23 0.06
Relativization on subjects 0.13 0 0.14 0.03
Reciprocal constructions 0.06 0 0.04 0.01
Definite articles 0.06 0.06 0.16 0.09
Neg. indef. pron. and predicate neg. 0.06 0 0.05 0.01
Ordinal numerals 0.04 0 0.13 0.02
Pos. of interrogative phrases 0.04 0.28 0.14 0.10
Order of genitive and noun 0.02 0.13 0.09 0.13
Order of RC and noun 0.02 0 0.18 0.09
Tone 0.02 0 0.07 0.02
Order of adjective and noun 0 0.20 0.07 0.05
Order of demonstrative and noun 0 0 0.01 0
Order of numeral and noun 0 0 0.10 0.08
Gender in indep. pers. pronouns 0 0 0.04 0.01
Incl./excl. dist. in indep. pers. pron. 0 0 0.09 0.05
Politeness in pronouns 0 0 0.03 0
Numeral classifiers 0 0 0.08 0.05
Suppletion acc. to tense and aspect 0 0 0.03 0.01
Alignment of case marking and full NP 0 0 0.14 0.08
Alignment of case marking of pron. 0 0.07 0.10 0.07
Nominal and verbal conjunction 0 0 0.04 0.09
Zero copula for predicative nominals 0 0.02 0.01 0.01
Nominal and locational predication 0 0 0.02 0.02
Intensifiers and reflexive pronouns 0 0 0.01 0.01
Applicative constructions 0 0 0.15 0.09
Negative morphemes 0 0 0.19 0.10
Vowel nasalization 0 0 0.02 0.02

Table 12: Goodman-Kruskalś statistics on the prediction of member-
ship from features (F-index columns) and the other way
around (M-index columns).
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Simple Fisher’s exact tests between each feature and ancestry group
were performed. For instance, consider the case of the relative order
of the genitive and the noun and the lexifiers (Table 13)

Order of genitive and noun Germanic lex. Romance lex. Other
GenN 13 3 1
NGen 3 19 5

Both equally likely 8 1 0

Table 13: Creole counts for the order of genitive and noun according
to the lexifier

Without the need of invoking any theory of feature transmission,
our data strongly suggests that lexifiers do play a role in the manifes-
tation of this variable in their corresponding creoles. Strikingly, for
the majority of features this is the case as well, as it can be seen in
Table 15.

4.6 probabilistic profile classification

4.6.1 Random forests

As discussed before, one possible way in which creolization could
have impacted the typology of a language is by means of biasing
probabilistically different properties without the need of imposing
any deterministic template. In this case, the effort is geared towards
modelling the conditional probability distribution of the class with
respect to the variables,

Pr(class|F1, F2, . . . , FN) (15)

As a way of tackling this problem, for instance, one could estimate
unseen feature combinations by imputing a binominal distribution
based on the sample distribution of k-nearest neighbors, where k
would be selected by cross-validation or some other classification ef-
ficiency measure. Setting aside the issue that the data is quite sparse,
I find there is a more troubling conceptual problem with such proce-
dures. By taking nearest neighbors (or any other strategy consisting
on local estimates) we become prey of the democracy of features, as
I discussed before in relation to clustering techniques by focusing
on the feature correlation issue. Some of the languages in our sam-
ple — like the two varieties of Chabacano, Ternate and Zamboanga
— are different enough to be considered as independent points yet
extremely similar in other respects, and they might perfectly be re-
garded as dialects. Presumably, the commonalities among them go
beyond a hypothesized creole profile since they have been in contact
with similar languages as well. Because of that, even a very efficient

104



4.6 probabilistic profile classification

Feature Lexifier Substrate Biclan
Order of subject, object and verb 0.42 0.01 0.03

Order of genitive and noun < 10−2 0.38 0.16
Order of adjective and noun < 10−2 0.65 0.85

Order of adposition and NP 0.36 0.36 0.34
Order of demonstrative and noun 0.01 1.00 1.00

Order of numeral and noun < 10−2 0.08 0.07
Order of RC and noun 0.74 0.22 0.08

Pos. of interrogative phrases < 10−2 < 10−2 < 10−2

Gender in indep. pers. pronouns 0.01 0.20 0.18
Incl./excl. dist. in indep. pers. pron. 0.41 < 10−2 0.04

Politeness in pronouns 0.25 0.12 0.23
Indefinite pronouns 0.97 0.05 0.30

Occurrence of nominal plurality 0.02 0.60 0.62
Coding of nominal plurality < 10−2 0.02 0.04

Definite articles < 10−2 0.01 < 10−2

Indefinite articles < 10−2 0.02 0.01
Pronominal and adnominal demonst. 0.41 0.06 0.02
Distance contrasts in demonstratives 0.26 0.11 0.36

Ordinal numerals 0.12 0.48 0.37
Numeral classifiers 0.47 0.34 0.58

Locus of marking in pos. NP < 10−2 < 10−2 < 10−2

Suppletion acc. to tense and aspect 0.45 0.80 0.42
Prohibitive 0.06 < 10−2 < 10−2

Alignment of case marking and full NP 0.01 < 10−2 < 10−2

Alignment of case marking of pron. 0.02 0.42 0.24
Ditrans. constructions, give 0.09 < 10−2 < 10−2

Expression of pronominal subjects < 10−2 < 10−2 < 10−2

Comitatives and instrumentals 0.08 0.14 0.12
Nominal and verbal conjunction 0.03 0.17 0.77

Zero copula for predicative nominals 0.21 0.05 0.03
Nominal and locational predication 0.03 0.49 0.78
Intensifiers and relfexive pronouns 0.01 0.03 0.21

Reciprocal constructions 0.18 0.62 1.00
Applicative constructions 0.01 0.31 0.18

Relativization on subjects 0.22 0.50 0.26
Want complement subjects 0.40 0.19 0.15

Negative morphemes 0.35 0.70 0.24
Neg. indef. pron. and predicate neg. 0.04 0.03 0.08

Polar questions 0.10 0.64 0.49
Tone 0.04 0.01 < 10−2

Vowel nasalization 0.01 0.19 0.38

Table 15: Association between features and ancestry group. The num-
bers are P-values from Fisher’s exact test. Feature labels in
bold reflect no association detected for any of the three an-
cestry groups.
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estimate of the conditional probability distribution might be latching
on the wrong features.

Our estimate method should make use of features for which global
evidence of an association with the creole profile exists. Because of
this, I turn my attention to a powerful classification technique with
state-of-art performance: random forests.

Random forests consist of an ensemble of unbiased binary condi-
tional independence trees (CIT) [113]. CIT are decision trees that are
the outcome of the following recursive algorithm

1. Find the explanatory variable that is most strongly associated
with the response variable. Here this was done by means of
choosing the minimum P-value from all the dependency tests
between response and explanatory variables.

2. Partition the space in two parts according to the explanatory
variable found in the previous step, in such a way that the asso-
ciation between the values of this variable and the response is
maximized.

3. For each of the two partitions induced in the previous step, go
to 1) and repeat the process until no variable is significantly
associated with the response.

In our case, such a procedure would induce an hypothetical tree as
the one schematically shown in Figure 17

Figure 17: Classification tree

Schematic representation of a conditional inference tree (CIT).

By using only those features that show a correlation at the global
level, we guarantee that the induced probability distribution is then
theoretically relevant. It is crucial to notice that the correlation is
calculated by assuming independent languages. This is a very rea-
sonable assumption for the WALS sample, but some — those that
defend some degree of affiliation between creoles and their ancestry
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— might object that this is exactly not the case. However, the conflict
should be resolved by this same process: if creolness trumps ancestry
and it brings stronger and more reliable cues, then it should be the
case that its associated features will emerge often in the construction
of the trees.

CIT is a powerful technique, although it induces hard decision
boundaries in the data. This can be solved by means of generating
an ensemble of trees and then combining the individual predictions,
a general machine learning strategy referred as boosting [205]. Such
collection of trees is dubbed a forest. The tests used in our case follow
[218] in order to guarantee that the number of levels a variable has
does not influence its likelihood of being chosen; this also determined
that about 60% of the data points (languages in our case) are sampled
without replacement for every tree.

In definitive, I used random forests to determine how efficiently
creoles can be distinguished from non-creoles in our data. I produced
a comparison baseline by randomizing the classes labels 50 times for
each of the 30 imputations and evaluating the classificatory properties
of random forests on each of the sets.

4.6.2 Results

Applying these techniques to our data require complete datasets. I
have introduced before the characteristics of a multiple imputation
scheme based on a Gibbs’ sampler and a conditional multinomial
model — the same algorithm was used here [207]. Data were im-
puted independently for creoles and non-creole languages — while
in practical terms this was observed to have little impact on the ac-
tual filled values, formally it guarantees that if there is any bias intro-
duced by the procedure this would go in the direction of making both
groups more homogenous internally. n = 30 independently imputed
sets were produced. The imputed sets share on average 95% of their
feature values and no relevant variance whatsoever.

When using all features, the full set of creoles can be distinguished
from non-creoles efficiently, with good OOB precision and recall val-
ues (see Table 16 and Figure 18). In contrast, none of the 100 random
groups per imputation matched any of the indices, and they exhibit
poor classificatory properties (see Table 16).

Applying the same procedure now only to the features not flagged
as ancestry-dependent, we get the results in Figure 19

Again, a distinction between creoles and non-creoles can be deter-
mined on a statistical basis, with the random case being considerably
worst than the empirical (see Table 16).
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Figure 18: Random forest classification with all features

Distributions for the creole and non-creole coverages for the
empirical (red) and the random (blue) classification based on

random forests and all variables. Color intensity increases with
density of all datasets analyzed for that group. The red lines

correspond to classifiers of precision 0.9, 0.7 and 0.5 (from bottom to
top).

4.6.3 Variable importance

Once a forest has been constructed, it is possible to measure the rel-
ative importance every variable has for the purpose of classification.
In every tree built for the random forest, a number of observations
are left out and are not being used for the construction of the clas-
sifier — these receive the name of Out Of Bag (OOB) observations.
For each predictor, then, some metric of classification accuracy of the
OOB sample is applied to each tree, which is then contrasted with
the same measure applied after the permutation of the predictor. The
idea is clear: if a predictor does not have any bearing on the the
dependent variable, then the permutation should not impact the clas-
sification accuracy.

There are two further aspects of this procedure. As discussed at
the beginning of this section, random forests were used to handle
the potential correlations among predictors. A simple approximate
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Recall Precision
Features Type mean SD mean SD

All Empirical 0.92 0.01 0.79 0.03
All Random 0.10 0.11 0.21 0.18

Reduced Empirical 0.91 0.01 0.74 0.04
Reduced Random 0.07 0.11 0.15 0.19

Table 16: Precision and recall values of the creole class with random
forests, in both empirical and random cases for the whole
and reduced set of features.

solution to this issue in the determination of variable importance is to
perform the permutations of the predictors by blocks that correspond
to the levels of its corresponding covariates. Heuristically, I used the
rule P ≤ 0.05 to define the set of relevant covariates. Notice that
the output of the algorithm could be dramatically affected by the
threshold: in a case of strongly correlated independent variables, the
multiplicity of variables on which it has to be conditioned on for
the permutation could lead to a case in which there is virtually no
difference between the permuted and the original variable.

Finally, imbalanced classes might produce inflated variable impor-
tance measures. If a particular class is extremely frequent, permu-
tation of a few predictors is not expected to change drastically the
classification accuracy of this class (since random forests will anyhow
try to assign most of the instances to this class). On the contrary,
the minority class, which is perhaps detected thanks to a few vari-
able combinations, is likely to be less robust to permutations. These
considerations are not built in into the usual estimators of variable
importance. A useful alternative is to calculate, before and after the
permutations, the AUROC (Area Under Receiver Operator Character-
istic), which is simply the fraction of OOB pairs of different classes to
which the algorithm correctly predicts their membership [122].

In sum,

VIj =
1

|trees| ∑
i

AUROCij −AUROCiπ(j) (16)

4.6.4 Results

After pruning all those variables with marginal variable importance,
a small number of them seems to carry the largest independent con-
tribution to the classification, as it can be seen in Figure 20

As it can be witnessed, there is some variation in the variable im-
portance scores across imputations.

The evaluation of variable importance for the set of independent
features is completely consistent, as seen in Figure 21
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Figure 19: Random forest classification with non-genealogical
features

Distributions for the creole and non-creole coverages for the
empirical (red) and the random (blue) classification based on

random forests and only those variables for which no genealogical
association could be established. Color intensity increases with

density of all datasets analyzed for that group. The red lines
correspond to classifiers of precision 0.9, 0.7 and 0.5 (from bottom to

top).

The relative order of values is the same as in the set with all fea-
tures, once the ancestry-dependent ones are removed.

4.7 prototype profile classification

4.7.1 Associations rule mining

In this scenario the goal is to find a specific configuration of features
—the prototype— with the ability of predicting creole languages and
viceversa. Instead of determining, over all features and values, what
is the probability that a particular configuration corresponds to a cre-
ole language, here I will seek to find the best fixed combination of
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Figure 20: Variable importance based on all features

Boxplots of variable importance as inferred from a random forest
based on all features.

feature values. Statistically speaking, a good prototype (involving
feature values F1 = f1, F2, . . . , Fn) will be one with high values of

Pr(class = creole|F1 = f1, F2, . . . , Fn)

and
Pr(F1 = f1, F2, . . . , Fn|class = creole)

In other words, the first conditional probability determines the re-
call of a particular creole prototype (i.e. what is the fraction of all
creoles that respond to that precise pattern) whereas the second is
directly related to precision — namely, what is the fraction of cre-
oles over all languages that exhibit those properties. A high value of
recall can be obtained if a particular feature value is shared across
all the languages —which would mean that is trivially shared by all
creoles, specifically— and, similarly, a high value of precision can be
achieved if a complex rule that only fits one creole is proposed. In
order to avoid such irrelevant cases, it is necessary to use a measure
that combine both aspects of classification. A standard solution is the
weighted harmonic mean of accuracy and recall,

Fβ = (1 + β2)
precision · recall

β2 · precision + recall

which is called as F-measure [195]. The β parameter determines
the relative importance of recall over precision — when recall =
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Figure 21: Variable importance for random forests using features
without genealogical association

Boxplots of variable importance as inferred from a random forest
based on features without genealogical association.

β · precision, Fβ = precision. Notice that the F-measure does not
consider the true negatives — the proportion of languages that are
not creoles, in this case. More and less non-creole languages in the
sample will characteristically produce smaller and larger values of
precision (and F-measure.) However, and beyond the fact that the
two classes of languages are not extremely unbalanced in our case
study, here we are interested in the quality of classification of creoles
in relation to other comparable groupings — any positive or negative
bias will become clear in the randomized sets of languages.

Hence, the goal is to mine the data in order to retrieve the best
rules according to some measure of classification efficiency. From
the point of view of computational complexity, a brute-force search is
suboptimal but feasible anyhow. An efficient alternative is the classic
breadth first algorithm a priori [4].
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The structure of the rules inferred is simply given by

F1 = f1, F2, . . . , Fn =⇒ class = creole (17)

where n, the number of features on the left-hand side of the rule,
is referred as the rule length.

As with the probabilistic profile analysis, I compared the rules in-
duced by the apriori algorithm in the empirical case against 1500
randomizations of the data’s classes (50 for each of the 30 imputed
datasets). For each of the real and randomized datasets and a given
prototype length — the number of features that compose the pro-
totype — I found the best candidate according to four information
retrieval measures: recall, F1, F2 and F0.5.

4.7.2 Results

In the empirical data, a number of strong candidates for creole proto-
type were found with the a priori algorithm. Results can be observed
in Figure 22.

For all of the rule sizes and the classification measures, the distribu-
tion of all the best values for the empirical data achieves larger values
than those of the randomized versions. It is interesting to note that,
for length 1, the empirical values of recall are not much higher than
that of the random groups — this is simply a reflection of the fact
that some typological features are extremely frequent. All of the em-
pirical values for all the measures and rule lengths are above 0.7. As
expected, the values of recall and F2 shrink as rule length increases,
whereas the opposite occurs with F1 and F0.5.

Interestingly, similar results are found when the reduced set of fea-
tures with no ancestry association is used, as it can be seen in Figure
23

4.8 misclassification patterns

So far we have shown that both implementations of the creole profile
yield an efficient classification scheme that distinguishes creoles from
non-creoles. However, both takes on the creole profile end up with a
classification scheme that is not perfect. The analysis of the cases that
are misclassified — namely, non-creole languages that are flagged as
creoles — plays a crucial role in the discussion about what is precisely
that our classification schemes are capturing.

We center our attention on those languages that were on average
misclassified at least half of the time (for at least one rule length, in
the case of the prototype profile, and overall for the probabilistic pro-
file). The misclassified languages according to the prototype profile
can be found in Table 4.8 (all features) and Table 4.8 (reduced set of
features).
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Language 1 2 3 4
Berbice Dutch 0.00 0.11 0.56 0.84

Diu Indo-Portuguese 0.43 0.46 0.50 1.00
Ghanaian Pidgin English 0.12 0.39 0.60 0.87

Kikongo-Kituba 0.46 0.07 0.04 0.51
Korlai 0.75 1.00 1.00 1.00

Kriol 0.00 0.30 0.51 0.25
Lingala 0.56 0.14 0.40 0.68

Papia Kristang 0.10 0.08 0.36 0.89
Sri Lanka Portuguese 0.54 0.95 1.00 1.00

Ternate Chabacano 0.54 0.95 0.99 1.00
Zamboanga Chabacano 0.54 0.95 0.99 1.00

Arabic (Egyptian) 0.57 0.58 0.53 0.73
Apurin 0.57 0.46 0.00 0.00

Bagirmi 0.58 0.59 0.57 0.75
English 0.79 0.93 0.97 0.99

Ewe 0.72 0.62 0.02 0.00
Finnish 0.57 0.30 0.00 0.00
Guaran 0.57 0.12 0.00 0.00
Hausa 0.44 0.86 0.60 0.32

Hmong Njua 0.67 0.43 0.66 0.64
Indonesian 0.62 0.53 0.86 0.39

Ju’hoan 0.54 0.61 0.24 0.03
Khmer 0.65 0.54 0.51 0.39

Khasi 0.69 0.41 0.50 0.00
Lango 0.32 0.58 0.53 0.25

Latvian 0.79 0.70 0.57 0.01
Mapudungun 0.57 0.17 0.00 0.00

Maung 0.62 0.57 0.53 0.66
Maybrat 0.35 0.63 0.54 0.26

Mandarin 0.57 0.13 0.00 0.00
Ngiyambaa 0.53 0.07 0.00 0.00

Nahuatl (Tetelcingo) 0.50 0.57 0.51 0.47
Russian 0.67 0.55 0.50 0.00
Spanish 0.58 0.58 0.51 0.00
Swahili 0.32 0.45 0.51 0.25

Taba 0.42 0.54 0.66 0.25
Thai 0.61 0.40 0.50 0.64
Tiwi 0.33 0.59 0.50 0.25

Vietnamese 0.78 0.51 0.51 0.64
Wich 0.60 0.56 0.56 0.68

Yoruba 0.78 0.51 0.52 0.73

Table 17: Misclassification percentages for the average across all the
best rules according recall, F1, F0.5 and F2 for a given rule
length using all features. Only languages misclassified more
than 50% for at least one rule length are displayed.
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Language 1 2 3 4
Ambon Malay 0.00 0.27 0.89 0.95

Angolar 0.09 0.00 0.13 0.72
Berbice Dutch 0.35 1.00 1.00 1.00

Fa d Ambo 0.09 0.00 0.13 0.72
Ghanaian Pidgin English 0.75 1.00 1.00 1.00

Gullah 0.00 0.27 0.89 0.95
Korlai 0.91 1.00 1.00 1.00
Kriol 0.16 0.25 0.56 0.93

Santome 0.09 0.00 0.13 0.72
Sri Lanka Portuguese 0.91 1.00 1.00 1.00

Arabic (Egyptian) 0.60 0.52 0.58 0.62
Arapesh (Mountain) 0.54 0.35 0.24 0.23

Bagirmi 0.60 0.41 0.35 0.38
Berber (Middle Atlas) 0.60 0.44 0.40 0.43

Barasano 0.56 0.00 0.00 0.00
Chamorro 0.64 0.58 0.63 0.65

English 1.00 1.00 1.00 1.00
Ewe 0.56 0.00 0.00 0.00

Greek (Modern) 1.00 0.88 0.57 0.56
Hausa 1.00 1.00 1.00 0.99

Hmong Njua 0.57 0.47 0.34 0.03
Indonesian 0.51 0.25 0.00 0.00

Irish 1.00 0.91 0.67 0.66
Iraqw 0.51 0.52 0.51 0.00

Jakaltek 0.60 0.25 0.00 0.00
Ju’hoan 0.56 0.00 0.00 0.00

Ket 0.51 0.00 0.00 0.00
Khmer 0.58 0.25 0.00 0.00

Khasi 0.51 0.42 0.34 0.00
Lango 0.60 0.52 0.58 0.62

Latvian 0.91 1.00 0.87 0.28
Malagasy 0.68 0.62 0.67 0.68

Maori 0.51 0.44 0.36 0.00
Maung 0.63 0.57 0.62 0.64

Maybrat 0.68 0.36 0.00 0.00
Mixtec (Chalcatongo) 0.62 0.57 0.62 0.64

Mangarrayi 0.60 0.52 0.58 0.62
Nahuatl (Tetelcingo) 0.64 0.56 0.62 0.66

Persian 0.91 0.73 0.05 0.00
Russian 0.60 0.52 0.58 0.62
Spanish 0.71 0.54 0.42 0.43
Swahili 0.51 0.52 0.51 0.00

Taba 0.61 0.26 0.00 0.00
Thai 0.51 0.25 0.00 0.00
Tiwi 0.69 0.64 0.68 0.70

Vietnamese 0.60 0.35 0.00 0.00
Wari’ 0.56 0.58 0.53 0.02
Wich 0.60 0.40 0.34 0.36

Yoruba 0.51 0.52 0.51 0.00

Table 18: Misclassification percentages for the average across all the
best rules according recall, F1, F0.5 and F2 for a given rule
length using the restricted set of features. Only languages
misclassified more than 50% for at least one rule length are
displayed.
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Figure 22: Distribution of best rules for all features

Distribution of the classification properties for the best rules in the
empirical (red) and randomized (blue) datasets.

Two patterns arise. First, while the vast majority of languages
belong to the European/Macro-Sudan biclan, they are actually un-
derrepresented in the misclassified languages. Second, among the
non-creole languages flagged incorrectly as creoles we find either the
usual European or Macro-Sudan ancestors or languages typologically
close to them.

It would be possible to argue that these results are a simple byprod-
uct of the relative lack of versatility of the rule-based approach, and
that the probabilistic approach should be exempt of this clear ances-
tral bias. However, the results are of a similar nature for that model
as well, as it can be seen in 4.8 and 4.8.

These results show a clear pattern: the classifiers are picking up
a group that can be better described as a combination of most cre-
oles and the Indo-European and Sub-Saharan African languages, in
contrast to most other non-creole languages as well as creoles with
uncommon lexifiers or substrates.
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Figure 23: Distribution of best rules for independent features

Distribution of the classification properties for the best rules in the
empirical (red) and randomized (blue) datasets.
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Language Frequency
Korlai 1.00

Sri Lanka Portuguese 1.00
Ternate Chabacano 0.73

Zamboanga Chabacano 1.00
English 1.00

Ewe 0.97
Hausa 1.00

Indonesian 1.00
Ju—’hoan 0.97

Lango 1.00
Latvian 0.97
Russian 1.00

Table 19: Misclassification percentages for random forest using all fea-
tures. Only languages misclassified more than 50% for at
least one rule length are displayed.

Language Frequency
Berbice Dutch 0.87

Ghanaian Pidgin English 0.87
Korlai 1.00

Sri Lanka Portuguese 1.00
Zamboanga Chabacano 1.00

English 1.00
Greek (Modern) 1.00

Hausa 1.00
Indonesian 1.00

Irish 1.00
Iraqw 1.00
Lango 1.00

Latvian 1.00
Persian 1.00
Russian 1.00

Table 20: Misclassification percentages for random forest using the
reduced set of features. Only languages misclassified more
than 50% for at least one rule length are displayed.
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4.9 conclusions

4.9 conclusions

I have shown that creoles can be distinguished efficiently from non-
creole languages on a typological basis, without the need of pre-
selecting which variables would be relevant for that purpose. This
is true for both a fixed-rule scheme as well as a probabilistic classi-
fier. Surprisingly, their classification efficiency becomes only slightly
impoverished when only features for which no ancestral association
can be found are used.

However, the misclassification patterns reveal that, in spite of the
previous pruning of the ancestry-related features, the structures that
are being picked up are of a clearly genealogical nature, in particu-
lar related to the overwhelming contributors from Europe and Sub-
Saharan Africa.

Knowing the rough ancestry of a creole does not perfectly predict
the value of any particular feature, possibly due to the fact that the
ancestry groups might fail to capture variation structured by the dif-
ferent sources creoles have at their disposition (due to limitations dis-
cussed before), or because of regular language change, which renders
languages less similar to their ancestry through time. In principle,
some of this variation unexplained by the ancestry in the creoles fea-
tures might well be due to genuine innovation of grammatical struc-
tures related to creolization, and more generally our results do not
preclude the existence of truly creole features (perhaps in domains
that are not well covered by our data, like morphophonology) but
they prove that the overwhelming majority of creole grammars are
transmitted as in any other natural language, either by genealogy or
contact. Crucially, our results bring into question the need of a trans-
mission bottleneck and a pidgin phase in the history of the develop-
ment of creoles to explain commonalities across creole languages. If,
as we have shown, a substantial number of features are passed along
from the ancestry to the creoles, then positing an intermediate pidgin
stage that would have considerably reduced and simplified the an-
cestry features does not seem to be plausible, since it would remain
to be explained why creoles faithfully continue word orders, copula
patterns, ditransitive constructions, subject relative clauses, and indef-
inite pronoun patterns — just to mention some grammatical patterns
— which are continued from their ancestral languages.

It should be stressed that these results are consistent with both
genealogical and contact-related transmission. Some of the creoles
have coexisted with some of their ancestral languages, which might
have resulted in the ancestry-dependent features being a later devel-
opment in the history of those languages.

Why such a complex human behaviour can be successfully trans-
mitted even in the typical (intricate and multilingual) contact situa-
tions of creoles is still unclear. Whatever the underlying reason, put
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together, our results speak about the astonishing resilience of lan-
guage transmission.
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5
E C O L O G I C A L P R E S S U R E S O N S P E E C H S O U N D S

5.1 human behaviour is flexible

While non-human apes are restricted to a rather narrow set of eco-
logical and geographical circumstances, the Sapiens species — and
some the related species of the Genus Homo — have spread over the
range of all other vertebrates (which accounts to most of the Earth’s
land) [211]. The efficient cause behind this evolutionary success story
is, undoubtedly, the versatility of human behaviour, a true testimony
of adaptiveness. Diet, sleep habits, age of reproduction, parental in-
vestment and basic societal organization vary dramatically from the
trepang harvesters in the Philippines —who spend most of their lives
in a boat on the sea— to the Andes cultivators of Maize and the
professors of the University of Leipzig. Some of these dimensions
of variation have compelling (or at least, suggestive) explanations in
terms of evolutionary biology. To take one example among many, the
average number of a woman’s childbirth in a population is tightly
correlated to chance of child death, which in its turn it is a good pre-
dictor of the overall investment of the parents on their offspring [175].
These concepts and ideas are (not innocently) the same that are used
to explain the differences in other species’ behaviour, from penguins
to E. Colli.

Even more, aspects of human life that appear to be beyond the
mundane influence of immediate or mediate bodily needs have been
linked (with differing degrees of success) to the same causing factors.
Religiosity, xenophobia, ethnocentrism and in-group solidarity have
been argued to emerge with more intensity in regions and popula-
tions that are subject to large pathogen-stress [76]. Belief in moral-
izing high gods is stronger in populations that inhabit ecologically
labile regions, which suggests that (at least some kinds of) religios-
ity might appear as adaptive strategies to cope with a changing and
unpredictable context [29].

These changes in behaviour are sometimes paralleled, reinforced
or made unnecessary by modifications in the biological basis of hu-
man populations. High-altitude settings pose the serious threat of hy-
poxia, but a special set of genes (that maximize oxygen-intake) have
evolved independently in Tibet, the Ethyopian plateau and the Andes
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[163]. Skin color is strongly associated with amount of exposure to
UV radiation: darker tones resist better solar radiation, while fairer
ones are better for the absorption of calcium in light-poor regions
[115]. Populations that have practiced pastoralism for a long period
of time have gained, in many cases, an appropriate set of genes that
break down lactase efficiently even in adulthood [221].

Given this brief summary of how human behaviour and (in a lesser
extent) human biology are connected to the surrounding pressures
imposed by the environment, the question is: what happens with
language, the human behaviour par excellence? Sadly — and leaving
aside romantic and inaccurate accounts about the number of words
for snow that Inuktitut has and the like — there has been almost no
mainstream linguistic research in this direction in the last hundred
years and until very recently.

If there is any suspect among the aspects of human language to ex-
hibit the behavioural (and maybe biological) variation discussed be-
fore, that is the capacity to produce sounds. While presumably most
of the operations concerning morphosyntaxis, semantics or phonol-
ogy involve arrangements of firing neurons in the brain, the produc-
tion and (the initial stages of) perception of speech depend on hard-
ware that has been used for communication for at least the last half a
million years1

5.2 the world-wide distribution of speech sounds

The first step is, naturally, to describe the range of variation of the
speech sounds that characterize the languages of the world. More pre-
cisely, we will study the distribution of phones: human speech sounds
described in basic phonetic dimensions, like manner and place or ar-
ticulation and voice.

The data for this cross-linguistic analysis come from the 2013 ver-
sion of the PHOIBLE [165]. PHOIBLE gathers published descriptions
of languages’ phone inventories; the version used here covers about
1200 languages divided among most linguistic areas.

As with all the previously described linguistic databases, there are
many factors that introduce noise in the data. Sometimes similar
phones are collapsed under a similar label or are not described at all
because they do not imply phonemic distinctions in a language, or
the size of the corpus the description was based on was insufficient
to capture the occurrence of low-frequency phones. Because of this,
classes of phones – instead of individual phones – have been the usual

1 This is a thorny subject with which I do not want to engage here, but estimates on
the origin of modern language range between 50k to 2M ybp [22, 52]. This is not
necessarily informative about when speech became functional for the purpose of
communication, though.
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object of study for cross-linguistic comparison, and we will follow
this direction here as well.

5.2.1 Results

Raw number of different phones is a classic measure that is often as-
sociated to the slippery concept of linguistic complexity (which we
encountered in chapter 4). Some early proposals suggested that the
distribution of this quantity is more or less normal, thus implying
that large-scale variation in this dimension lacks an interesting struc-
ture and is probably due to neutral historical processes [178]. A log-
normal model was predicted as well on the basis of a simple mul-
tiplicative model [125]: if languages make a productive use of their
phonetic features, then — under the questionable approximation of
features as combinatorial units, which is empirically inadequate —
the overall distribution of number of phones could be approximated
by the product S = ΠiFi, where Fi is a random variable that takes
value 1 if the feature i is not part of the language repertoire or any
other positive number equivalent to the number of distinctions al-
lowed by the feature. This leads to a log-normal distribution for the
random variable S.

The empirical distribution of S can be observed in Figure 24. Unsur-
prisingly, S is right-skewed (as many other count data distributions)
with a skewness of 1.75. The language with the largest phone inven-
tory is the Khoe-San !Xóõ with 161 units and the smallest are Pirahã (a
Mura isolate) and Rotokas (West Bougainville) with 11. While a more
detailed parametric evaluation of the distribution could be done, the
fact that S is a coarse pooled empirical distribution that collapses his-
torical and areal information makes any further formal exploration
futile.

Most of what we have pointed out for segment distributions is also
true for the most important partitions of phones —consonants and
vowels— when taken separately. A more important relation among
these two categories concerns the hypothesis of a linguistic trade-off.
Following the idea that the overall number of phones is a faithful
proxy for complexity, and that languages are expected to be roughly
comparable in that dimension in order to achieve their main function,
it has been conjectured that an increase in complexity in a partic-
ular subsystem would lead to a decrease of complexity in another
[151, 191] — one often-cited instance of such phenomenon being, for
instance, the relative word order rigidity in languages with little mor-
phology.

Maddieson [146, 147] investigates correlational patterns between
different phonological subsystems in an attempt to shed light on com-
pensatory relations in phonological system, noting that regardless of
whether the driving force is historical or communicative (or whether
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Figure 24: Distribution of best rules for independent features

Aggregated distribution of phone inventory size. Log-normal
approximation (upper panel) and divided by continent (lower panel.)

if it exists at all), compensatory dependencies should emerge in a
survey of phonological properties of the world’s languages. Mad-
dieson and Disner [149] examines suprasegmentals (tone and stress)
in a set of 317 languages and reports that the “overall tendency ap-
pears once again to be more that complexity of different kinds goes
hand in hand, rather than for complexity of one sort to be balanced
by simplicity elsewhere.”

As a proof of concept, we test this with a simple mixed-effect model
with WALS genera as random intercepts and slopes and scaled vari-
ables,

consonants = (β + βgenera)vowels + α + αgenera

where β and α are the fixed effects (slope and intercept respec-
tively) and βgenera and αgenera the corresponding random slopes and
intercepts. This model suggests that number of vowels is a significant
predictor of the number of consonants (β = 0.15,P < 10−3), although
the overall quality of the model does a poor job at explaining the vari-

124



5.3 the acoustic adaptation hypothesis

ation: the marginal R2 (the proportion of variance accounted for the
inclusion of the fixed effects) is less than 0.02, whereas the conditional
R2 (with random effects included) is 0.56. Once again, the aggregated
effect disappear when genealogical dependencies are taking into ac-
count.

5.3 the acoustic adaptation hypothesis

Within anthropology, some researchers have explicitly endorsed the
idea that ecology affects the composition of phonic systems through
modifying the conditions of vocal communication.

Fought et al. [79] and Munroe et al. [171] find that cold climate
significantly predicts lower average proportions of CV syllables in
words, and they submit that the reason is that people in warmer
climates spend more time outdoors and therefore communicate at
greater distances compared to people in colder climates. Aiming to
take into account Galton’s problem, a further study shows that this
effect also holds within four language families [170]. Distal communi-
cation might also explain why languages spoken in warm areas tend
to have more sonorous sounds (i.e. sounds that carry more energy).
This idea is reinforced by a follow-up study by Ember and Ember [67],
where it is found that additional hindering factors, including density
of plant cover and mountainous terrain, predict total-sonority scores2.

This idea has a long pedigree in animal communication studies,
under the form of the acoustic adaptation hypothesis (AAH,[166, 199,
241]). The hypothesis states that animal communication systems are
adapted to the climatic/ecological environment in which they oper-
ate, optimized for the transmission characteristics of the environment
or other factors like phenotypic plasticity (e.g. Ziegler et al. [245]).
Evidence for associations between the acoustic attributes of a habitat
and vocalizations have been found in birds, prairie dogs and macaque
monkeys [174].

Besides the obvious differences between the anthropological and
the animal communication literature, the later is considerably more
explicit when comes to explain why systems change in the direc-
tion of a better fit between acoustic signal and environment: typi-
cal Darwinian dynamics. While it seems straightforward to assume
a scenario where more efficient signals improve mating or survival
chances in non-human animals, how exactly languages develop more
sonorous repertoires in the presence of communication obstacles is
left undiscussed.

The pioneer study of Maddieson (summarized in Maddieson and
Coupé [148]) makes an explicit link from the work of Fought et al.
[79] and Munroe et al. [171] to the AAH. Maddieson uses a sample

2 And, we should add, other predictors outside of the explanatory scope of the acous-
tic adaptation hypothesis, like the amount and prevalence of extra-marital sex [68].
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of about 450 languages and shows a correlation between the sum
of consonant inventory size and a measure of syllabic complexity
— both are normalized to give them equal weight and the result is
called phonological index — and absolute latitude (a point demarcat-
ing a central location for the speaker population). This is used to
vindicate the account laid out before: temperate environments with
open vegetation facilitate transmission of higher frequency signals
more than warmer and more densely vegetated environments, which
entails that languages spoken close to the Equator tend to use more
sonorous sounds (and specifically, more vowels) than those far from
it.

5.3.1 A stringer test of the AAH

In the absence of a precise mechanism explaining how the AAH is
expressed in language, the correlations discussed in the previous sec-
tion are nothing but a first suggestive step forward.

Maddieson and Coupé [148] overcomes one of the most obvious
limitations of previous studies, which was the modest size of the
data used. Using either LAPSYD, [150] or the already introduced
PHOIBLE should be, at least when dealing with coarse descriptions
of inventories, the minimum standard.

The usage of latitude as a proxy for the actual ecological variables
is not justified given the availability of high-resolution satellite infor-
mation. Ultimately, we would like to test that a specific ecological
factor or combination of factors is predictive of certain characteristics
of the repertoires even after accounting for otherwise circumstantial
correlates (like latitude). However, as we have pointed out before,
which variable precisely triggers or explains the AAH in language is
undetermined.

There is a last requirement that the testing of the AAH needs to
satisfy: it should be able to outperform other competing or overlap-
ping explanations. Among the theories that have been put forward
to explain why the distribution of language sounds is the way it is
by appealing to exogenous factors, two have gained notoriety and are
regularly discussed: the population link (via absolute population and
contact) and the Out-of-Africa scenario. We have briefly discussed the
later: in analogy with population genetics, languages can be approx-
imated as phone pools that are amenable of being subject to bottle-
necks due to migration, thus leaving a trace of decreasing number of
phones according to (migration) distance with respect to the putative
origin of modern human languages, in Africa [7, 44]. The population
link suggests that the number of people speaking a language in a
given time has an impact on the rate the language will gain or lose
phonemic distinctions [7, 107], although there has been work showing
that the available evidence is weak and mostly an artifact of Galton’s
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Problem [60, 164]. In addition, the number of languages with which
a language is in contact might impact its own repertoire (through
loanwords, for instance.)

In certain manner, these three predictors (distance from Africa, pop-
ulation size and density of neighbors) are comparable to the AAH
in that they are not fully-fledged testable mechanisms and that they
strongly rely on the statistical fit of the data. If the AAH does not
yield a better model than these other alternatives, then we can safely
forget about deciding on its feasibility based on this type of data.

5.3.2 Results

In the absence of a single and well-defined ecological variable to test,
we first summarize the variation in the ecological variables across the
languages of the world via a simple principal component analysis.
The variables used for this purpose encompass all of the factors that
have been previously highlighted: annual mean temperature, tree
coverage and precipitation. The first component of the decomposi-
tion (that explains 63% of the variance) gets positive projections of
0.62, 0.66 and 0.41 for tree coverage, precipitation and temperature,
respectively. The behaviour of this component (which we will refer
for short as “environment”) can be linked to a coherent unique pre-
diction: a unit increase in this dimension would lead to a reduction
in the number of non-sonorous sounds.

As for the segment classes, we divide the individual elements of
both PHOIBLE and LAPSYD into three encompassing categories: vow-
els, sonorants and obstruents (in order of decreasing sonority). The
reason why we collapse several segments within these broad bins is
twofold. First, determining relative sonority between individual seg-
ments that belong to these categories is not always straightforward,
and second, the presence of most individual segments is likely to
be tied to specific linguistic areas or lineages. Using these segment
classes permits to predict a particular cline of the expected effect of
the acoustic adaptation hypothesis: obstruents > sonorants > vowels.

In order to test this, we propose a generalized mixed effects model
with a Poisson link

log(δ) = β + βEnvironmentzEnvironment + βDist. from AfricazDist. from Africa

+βLog. populationzLog. population + βContact int.zLog. Contact int.

+αFamily + αArea

where δ is the mean number of segments of a given class. Coef-
ficients β· are composed by a fixed effect plus a random slope de-
pending on linguistic family. α· are random intercepts according to
the relevant subscripted variable. All predictor variables have been
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z-transformed for the sake of model convergence and coefficient com-
parability.

Segment data come from a combined dataset of PHOIBLE and LAP-
SYD consisting of a balanced set of 1400 languages. Logged popula-
tion size and geographical distribution of languages was taken from
Ethnologue [138]. The number of linguistic neighbors is measured in
a circle centered in a given language with radius of 1000 km, and the
out-of-Africa distance is measured in a similar fashion to Atkinson
[7] by considering waypoints between continents. Parametric boot-
strapping was employed on order to obtain confidence intervals for
the main effects. Results can be observed in Figure 25.

Figure 25: Evaluation of the Acoustic Adaptation Hypothesis

Each panel corresponds to the estimated coefficients (blue dots) and
bootstrapped 95% confidence intervals for the segment classes

(vowels, sonorants and obstruents) for each of the four predictors
(environment, distance from Africa, log-transformed population and

contact intensity).

For starters, the role of logged population and contact intensity can
be disregarded as not relevant (since the confidence intervals include
or are adjacent to zero for all categories.) While no effect of environ-
ment can be observed in vowels and sonorants, there is a clear effect
on the obstruents (exp(−0.07) ≈ 0.93, which means that increasing 1
SD the environment variable leads to a decrease of about 7% in the
number of obstruents). This is consistent with the cline proposed be-
fore: if there is any effect, it should be more visible in obstruents (and
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then sonorants and finally vowels.) Interestingly, the out-of-Africa ef-
fect emerges as well: 1 SD in that direction leads to a decrease of
about 14% of the number of sonorants a language has.

5.4 tones and humidity

In the previous section we considered the importance of the acoustic
properties of the environment for the change and development of
phonic systems, and we ended up with inconclusive results. Here we
take a different perspective with a much more robust grounding, by
considering whether ecology can impact in any meaningful way the
anatomical basis of speech.

5.4.1 Vocal folds hydration

The larynx is the main organ responsible for the main frequencies
of speech sounds of pulmonic nature [149]. It can be roughly de-
scribed as a muscle and cartilage tube that connects the trachea with
the bucal cavity. More or less in the middle of its length there are
two flap-like pieces of tissue perpendicular to the main axis of the
larynx. The space between these vocal folds, the glottis, can be open
or closed at will, thus changing the aerodynamic properties of the
air that emerges from the lungs. The most pervasive effect of vocal
fold vibration is to confer voice to consonants, a buzz-like quality re-
sponsible for the differences between /b/ and /p/ or /g/ and /k/
in English. Other configurations of the glottis and the vocal folds are
responsible for some other consonantal classes, like glottal stops —
achieved through phonation while the glottis is closed.

Critically for our study, while the rate of vibration of the vocal folds
is beyond the minimum threshold of human audition — 1 versus 20
Hz — it does impact on the perception of pitch. Pitch is relevant for
prosody and intonation, which are frequently used to convey specific
pragmatic meanings (e.g. between affirmative and declarative sen-
tences in English). In those cases, pitch changes might occur over a
span of several words or even phrases. More restrictively, differences
in pitch or pitch countours within individual phones — mostly vow-
els — is used in some languages with the purpose of distinguishing
lexical meanings. For instance, the difference between the Thai words
mák (ADV often, frequently) and màk (V ferment) is that the vowel of
the first word involves rising pitch whereas the second has a decreas-
ing pitch. When this is the case, these phonemic differences in pitch
receive the name of tones.

Experimental evidence — mainly based on bovine and canine ex-
cissed larynxes — shows that vocal fold vibration decreases with de-
hydration. Considerable human clinical reports — of populations
ranging from karaoke singers to school teachers — coincide on that
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dehydration increases the PTP (phonation threshold pressure) and
PPE (perceived phonation effort). These effects are summarized in
Everett et al. [73].

There are two noticeable effects in phonation that result from dessi-
cated air inhalation: jitter (imprecise pitch) and shimmer (varying
amplitude). Males have a pitch range of about 100 Hz [130], and the
minimal phonemic frequency distance between two tones is around
20-30 Hz [141]. It has been suggested that the limit on the number of
level tonemes a language can have is five [149], but even in those cases
secondary phonetic laryngeal features serve as cues to the tonemes
[130].

Other things being equal, the most important factor determining
hydration is the temperature of aspired air, which is directly depen-
dent on climate and geography. On the evolutionary time scale, a sus-
tained exposure to particular climatic conditions might have driven
some of the phenotipic differences in nasal features observable in the
world today — dry air in contact with the mucosal tissue gets warmer
and more humid, so different volume/surface ratios might be the re-
sult of strong environmental pressures [183].

This converging evidence leads to the prediction that the develop-
ment of languages with many tonemic distinctions will be hindered
or at least not favoured in languages spoken in dry and/or cold re-
gions.

It is timely to note that this is not the first proposal relating hydra-
tion and phonic systems. Everett [72] focused his attention on ejectives,
relatively rare non-pulmonic consonants that are produced by releas-
ing air from the bucal cavity in a sudden manner. Everett noticed
that those consonants are found in a few regions of the world: the
Ethiopian highlands, the Andes, the Caucasus, Tibet and the North
American Cordillera, all places of considerable high altitude. He
suggested that the reliance on ejectives, being non-pulmonic phones,
helps preventing water vapor loss, which is more accentuated in high
altitudes.

5.4.2 Results

To test this hypothesis we make use of the Phonotactics Database of
the Australian National University (ANU), the largest collection of
phonological and phonetic inventories to date [61].

Figure 26 is a map representing the distribution of languages with
and without systems of complex tone, for the larger ANU database
(3,756 languages). As we see in the figure, about 20% of the languages
have complex tone (n = 629)

The ecological variables we chose to evaluate that more directly re-
late to our hypothesis are the mean humidity (MH) and mean average
temperature (MAT).
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Figure 26: Distribution of languages with and without complex
tonal systems.

Distribution of the languages in the Phonotactics Database of the
Australian National University (ANU) [61]. Blue and red dots

correspond to languages without and with complex tonal systems.
The color of landmass maps on humidity: the whiter, the more

humid.

Beyond the typical areal and genealogical correlations that we have
encountered in the previous chapters, our testing scheme needs to
account for the fact that most of the populations and languages of the
world are circumscribed to the Equatorial belt. For most typological
features, the majority of languages having a particular property will
be trivially found in warm and humid places due to this demographic
bias.

Second, it is important to remark that the claim is silent with re-
spect to the development of complex tonal systems in humid and
warm places — more precisely, we do not predict any trade-off be-
tween climate and the presence of tonemes beyond certain minimal
ecological conditions. Ideally, we would like to determine such thresh-
old from experimental data, but such an endeavour is well beyond the
reach of the present study.

In order to address these concerns, we evaluated the hypothesis
in the light of a resampling scheme. Summarily, if the most humid
regions in which a sample of complex tonal languages can be found
are systematically more humid than what it would be found for re-
gions of languages with no tones or with a simple tonal system, then
we can be confident that the hypothesis lives up to its most direct
observational consequences.

More specifically, and given the fact that languages without com-
plex tone outnumber languages with complex tone in a 6:1 relation,
we sampled exactly the same number of languages coming from both
groups in each iteration. In each run, different lower quantiles of hu-
midity were computed on each set of languages, which were sampled
in a genealogically balanced way (i.e., each family or isolate is repre-
sented by a single randomly chosen member in each set and each
run).
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The distributions of the languages with and without complex tone
clearly differ. The 15th, 25th, 50th, and 75th MH percentiles of bal-
anced samples of languages with complex tone have higher MHs in
89%, 88%, 43%, and 49% of the sample cases, respectively, when con-
trasted to the simulations’ balanced samples of the same percentiles
for the remaining languages. This is exactly in line with our predic-
tions, as languages with complex tone overwhelmingly have higher
MHs in the lower percentile ranges, suggesting clearly that such lan-
guages are extremely infrequent in very arid contexts, regardless of
temperature. The 15th, 25th, 50th, and 75th MAT percentiles of bal-
anced samples of languages with complex tone have higher MATs in
93%, 77%, 17%, and 19% of the sample cases, respectively, when con-
trasted to the equivalent simulations balanced samples of remaining
languages. These results also pattern neatly in the direction of our
prediction, as languages with complex tone are clearly particularly
avoided in very cold regions but also in very hot, arid regions.

The distribution of the seven language isolates with complex tone
is also restricted to warm and humid regions: Amazonia (Ticuna, Pi-
rahã), sub-Saharan Africa (Laal, Banggime) and New Guinea (Damal,
Lepki, Morori). In contrast, the 108 isolates without tone are spoken
throughout the Americas, Eurasia, Africa, and Australia. A number
are spoken in high latitudes in North America, South America, and
Eurasia, as well as in numerous other arid regions. For both MH
and MAT, there are clear disparities across isolates with and without
complex tone, respectively. The average MH for isolates with com-
plex tone is 0.017, whereas the average for other isolates is 0.013. This
crossgroup disparity is significant (P = 0.02, MannWhitney). Sim-
ilarly, the average MAT for isolates with complex tone, 23.7 C, is
greater than the average for the remainder of isolates, 19.1 C, but not
significantly so (P = 0.07, MannWhitney). These disparities align with
the predictions of our account, despite the small number of isolates
with much tonality.

5.5 conclusions

In this chapter I have studied the overall distribution of human speech
inventories and their relation to potential exogenous factors (like en-
vironment and demography).

The distribution of different segments is quite complex and cannot
be captured satisfactorily through a parametric model, and the rela-
tion between segment classes is too weak as to shed light on poten-
tial mechanisms of segment gain or loss. This fact has an important
consequence for the study of speech sounds as being behaviourally
adaptive: if the observed distributions could be described by a sim-
ple parametric model, this could suggest that a simple process (like
multiplicative growth or Brownian motion) is enough to understand
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the variation in the number and quality of speech sounds used by the
languages of the world.

Segment inventory size was tested against four proposed predic-
tors in the literature: population size, contact, out-of-Africa distance
and a number of ecological variables that hinder the propagation of
soundwaves (like tree coverage and rainfall), summarized under a
single dimension. I found no evidence for demographic factors, but
the prediction born out by the acoustic adaptation hypothesis — less
sonorous sounds will be less preferred in environmental contexts of
strong soundwave degradation — is corroborated through a notice-
able effect of environment on the number of obstruents. Puzzlingly,
our models fail to reject the out-of-Africa effect proposed by Atkinson
[7], although it is found to be restricted to sonorants only. Why this
is the case is unclear at this point.

Finally, after a lengthy literature review on the physiology of the
larynx and its role in speech production, I investigated whether the
distribution of complex tonal languages could be restricted to areas
of particular conditions of humidity, which turned out to be true.

All in all, these observational studies point out to the notion that
at least some aspects of speech seem to covary with the environment,
either indirectly (as in the case of the acoustic adaptation hypothesis)
or directly (as in the distribution of complex tonal languages.)

There is one remaining important criticism that needs to be ad-
dressed in relation to this conclusion. Phonological systems have a
strong areal flavour, which is most patent in the tones’ study. From
the perspective offered here, it must be asked why linguistic tone is
so pervasively transferred across languages in some regions and why
those regions tend to have arid borders. The account entertained here
offers a natural explanation for this tendency and directly explains
why the regions in which interlinguistic contact has led to pervasive
use of tone —for example, sub-Saharan Africa and Southeast Asia—
are warm humid regions. Put differently, it seems likely that tone
spreads across languages more effectively via interlinguistic contact
in regions with favorable ambient conditions, and very cold/dry re-
gions apparently serve as barriers to the spread of (complex) tone.
Both external and internal diachronic processes may be impacted to
some degree by such ambient conditions, in ways that, at the least,
merit serious consideration.

Particularly in light of the ubiquity of speech in the human experi-
ence, human sound systems are likely to be susceptible to ecological
pressures. In cultures in which speech volume has been assessed
quantitatively, it has been found that humans produce on average
15,000+ words per day [158]. So, if speakers rely on a sound pattern
that is maladaptive (even in minor ways) in particular conditions,
they do so ubiquitously. The analyses presented here suggest that
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such an effect could have played a role in shaping the distribution of
human speech sounds.
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6
A N E U T R A L A P P R O A C H T O L A N G U A G E

In this thesis I have approached a number of relevant issues on the
nature of language by means of observational data and a diverse set
of statistical methods. The individual conclusions of each of the four
studies can be found in the respective chapters, so I am left now with
the assessment of my initial goal for this piece of work and whether
any general conclusions can be inferred.

I shall start with the obvious: an enterprise like the one I under-
took is feasible. While more data and better methods are always
welcomed, in all (or almost all) cases the marriage between statis-
tics and linguistics led to clear results — not always groundbreaking,
sometimes tentative but eventually new, interesting and challenging.

One of the two primary takeaway messages of this thesis is that
statistical analysis and reliance on observational data are not biased
towards supporting hypotheses coming from any specific theoreti-
cal camp. The unraveling of copious sound-meaning associations in
unrelated vocabularies goes against classic textbook truths, but my
findings on word order patterns are perfectly within the set of pre-
dictions that Greenberg produced over half a century ago. Linguists
who believe languages are adaptive systems that accommodate to the
needs and pressures operating over their users might find their mes-
sage vindicated through the conclusions regarding tonal languages
and humidity, but my conclusions on the origins of creole languages
are absolutely compatible with that of the majority of generativists
and in stark opposition to the idea of the previously mentioned com-
munity. This point cannot be stressed enough: choosing to look at
languages through the lens of statistics does not imply taking sides
in the (still active) rivalries found between schools of linguistics.

In close connection to this, the remaining important conclusion of
this thesis involves reconsidering the role of observational data for
the causal understanding of language.

It is clear that linguistics is not anymore a discipline about what
we can observe or think about language. One the one hand, experi-
ments in all the branches of linguistics grow in quality and ambition:
we can intervene in the world and see, for instance, how humans re-
act to non-canonical syntactic constructions or to communication in
noisy conditions or how brains process subtle differences in prosody
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or meaning. Experiments are the gold standard of science — obser-
vational data can be interesting but they provide ultimately only a
correlational understanding of the world. On the other hand, compu-
tational models developed from simple parametric models into ambi-
tious enterprises where researchers can explore what would happen
in synthetic micro-worlds where counter-factual situations like effort-
free communication, instantaneous gene-culture co-evolution or mat-
ing success tied to lexicon size are possible.

The forceful conclusion — one entertained by more than a few and
rarely overtly expressed — is that the analysis of observational data
belongs to the prehistory of the discipline, and that cause-effect re-
lations can be only achieved either in experimental setups or in the
rational conditions imposed by simulations. I beg to disagree.

As expressed before, languages do not always seem to go in par-
allel with whatever is best or preferred or easier from the point of
view of the language users’ needs or goals. For instance, while it is
possible to envision scenarios where hypothetically simpler commu-
nication systems might replace more quirky ones, we see that creoles
carry on, in a rather faithful fashion, the characteristics of their an-
cestral languages. Biases towards associating specific sounds with
meanings in experimental conditions have been reported in almost
every single domain of reference, yet we only find a handful of those
associations robustly expressed in the languages of the world. The
point here is that brains and behaviours of the humans who speak or
sign a language are just but one (albeit important, of course) ingredi-
ent of language. We know embarrassingly little about the inception
of language, but it is unlikely that language could be just a simple
scaled-up picture of the psychology, preferences or communicative
eagerness of a single human as captured in an experimental setup.

In addition, it seems that the number of factors that can potentially
shape the distribution of the world’s languages is larger than previ-
ously thought, and that their importance and effect are not constant
across history or region. Humidity might determine the fate of tonal
systems in extreme conditions, but it is unlikely to play any role in
less than extreme circumstances. A few word order patterns are ro-
bustly attested in the regions of the world, although South America
hosts a number of interesting exceptions — maybe the unusual mi-
gration and contact history has something to tell us about this. So,
instead of the orderly and mechanistic world implicit in computer
simulations, we are left with the impression that whatever we believe
about what is common or important across languages has resulted
from a large number of interacting and contingent forces.

Thus, experiments and simulations are excellent new ways of think-
ing about language, but they are far from being the silver bullet of
linguistic research. The question of “what happens when languages
develop in the presence of a myriad of potentially opposing forces
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and under the influence of a large number of contingent historical,
environmental and social events?” seems to have only one reasonable
answer: look at the languages of the world. I tried to do my best to
show that, thanks to the data and the methods of the 21st century,
this is more feasible and worthy than ever before.
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gins of word order. Cognition, 131(3):431–436, 2014.

[207] Yajuan Si and Jerome P Reiter. Nonparametric bayesian mul-
tiple imputation for incomplete categorical variables in large-
scale assessment surveys. Journal of Educational and Behavioral
Statistics, 38(5):499–521, 2013.

[208] Jeff Siegel. The emergence of pidgin and creole languages. Oxford
University Press, 2008.

[209] Jae Jung Song. Word order. Cambridge University Press, 2012.

[210] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causa-
tion, prediction, and search. MIT press, 2000.

[211] Craig Stanford, John S Allen, and Susan C Antón. Biological
anthropology: the natural history of humankind. Pearson, 2016.

[212] S. A. Starostin and Bronnikov Y. Languages of the World Et-
ymological Database. Available at Part of the Tower of Babel
- Evolution of Human Language Project, 1998. URL http:

//starling.rinet.ru/cgi-bin/main.cgi?flags=eygtnnl.

[213] Lydia Steiner, Peter F Stadler, and Michael Cysouw. A pipeline
for computational historical linguistics. Language Dynamics and
Change, 1(1):89–127, 2011.

[214] Stephen M Stigler. Statistics on the table: The history of statistical
concepts and methods. Harvard University Press, 2002.

[215] William C Stokoe. Sign language structure: An outline of the
visual communication systems of the american deaf. Journal of
deaf studies and deaf education, 10(1):3–37, 2005.

[216] Sabine Stoll. Studying language acquisition in different linguis-
tic and cultural settings. The Routledge Handbook of Linguistic
Anthropology, page 140, 2015.

156



Bibliography

[217] K. Strimmer. fdrtool: a versatile r package for estimating local
and tail area-based false discovery rates. Bioinformatics, 24(12):
1461–1462, 2008.

[218] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and
Torsten Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC bioinfor-
matics, 8(1):1, 2007.

[219] M. Swadesh. Towards greater accuracy in lexicostatistic dating.
Int J Am Linguist, 21:121–137, 1955.

[220] Morris Swadesh et al. What is glottochronology. The origin and
diversification of languages, pages 271–284, 1972.

[221] Dallas M Swallow. Genetics of lactase persistence and lactose
intolerance. Annual review of genetics, 37(1):197–219, 2003.

[222] Daniel Swingley. Contributions of infant word learning to lan-
guage development. Philosophical Transactions of the Royal Society
of London B: Biological Sciences, 364(1536):3617–3632, 2009.

[223] Douglas Taylor. Language shift or changing relationship? In-
ternational Journal of American Linguistics, 26(2):155–161, 1960.

[224] Stefan Th. Gries. The most under-used statistical method in cor-
pus linguistics: multi-level (and mixed-effects) models. Corpora,
10(1):95–125, 2015.

[225] Sarah Grey Thomason and Terrence Kaufman. Language contact.
Edinburgh University Press Edinburgh, 2001.

[226] Andrei Nikolaevich Tikhonov. Regularization of incorrectly
posed problems. SOVIET MATHEMATICS DOKLADY, 1963.

[227] Michael Tomasello. The cultural roots of language. Communi-
cating meaning: The evolution and development of language, pages
275–307, 1996.

[228] Michael Tomasello. Constructing a language: A usage-based theory
of language acquisition. Harvard university press, 2009.

[229] Olga M Tomic. Balkan Sprachbund morpho-syntactic features, vol-
ume 67. Springer Science & Business Media, 2006.

[230] Russell S Tomlin. Basic Word Order (RLE Linguistics B: Grammar):
Functional Principles, volume 13. Routledge, 2014.

[231] H. Traunmüller. Sound symbolism in deictic words. In Tongues
and Texts Unlimited. Studies in Honour of Tore Jansson on the Occa-
sion of his Sixtieth Anniversary, pages 213–234. Janson T, Aili H,
af Trampe P (Stockholms Universitet, Institutionen för klassiska
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