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Abstract

E ukaryotic cells exhibit an extensive transcriptional diversity. Only about

a quarter of the total RNA in the human cell can be accounted for by

messenger RNA (mRNA), which convey genetic code for protein generation. The

remaining part of the transcriptome consists of rather heterogenous molecules. While

some classes are well defined and have been shown to carry out distinct functions,

ranging from housekeeping to complex regulatory tasks, a big fraction of the tran-

scriptional output is categorized solely based on the lack of protein-coding capacity

and transcript length. Several studies have shown, that as a group, mRNA-like long

non-coding RNAs (lncRNAs), are under stabilizing selection, however at much weaker

levels than mRNAs. The conservation at the level of primary sequence is even lower,

blurring the contrast between exonic and intronics parts, which impedes traditional

methods of genome-wide homology search. As a consequence their evolutionary his-

tory is a fairly unexplored field and apart from a few experimentally studied cases,

the vast majority of them is reported to be poorly conserved. However, the pervasive

transcription and the highly spatio-temporal specific expression patterns of lncRNAs

suggests their functional importance and makes their evolutionary age and conser-

vation patterns a topic of interest. By employing diverse computational methods,

recent studies shed light on the common conservation of lncRNA’s secondary and

gene structures, highlighting the significance of structural features on functionality.

Splice sites, in particular, are frequently retained over very large evolutionary time

scales, as they maintain the intron-exon-structure of the transcript.

Consequently, the conservation of splice sites can be utilized in a comparative

genomics approach to establish homology and predict evolutionarily well-conserved

transcripts, regardless of their coding capacity. Since splice site conservation can-

not be directly inferred from experimental evidence, in the course of this thesis a

computational pipeline was established to generate comparative maps of splice sites
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based on multiple sequence alignments together with transcriptomics data. Scoring

schemes for splice site motifs are employed to assess the conservation of orthologs.

This resource can then be used to systemically study the conservation patterns of

RNAs and their gene structures. This thesis will demonstrate the versatility of this

method by showcasing biological applications of three distinct studies.

First, a comprehensive annotation of the human transcriptome, from RefSeq, ESTs

and GENCODE, was used to trace the evolution of human lncRNAs. A large majority

of human lncRNAs is found to be conserved across Eutheria, and many hundreds

originated before the divergence of marsupials and placental mammals. However,

they exhibit a rapid turnover of their transcript structures, indicating that they are

actual ancient components of the vertebrate genome with outstanding evolutionary

plasticity. Additionally, a public web server was setup, which allows the user to

retrieve sets of orthologous splice sites from pre-computed comparative splice site

maps and inspect visualizations of their conservation in the respective species.

Second, a more specific data set of non-colinearly spliced latimerian RNAs is stud-

ied to fathom the origins of atypical transcripts. RNA-seq data from two coelacanth

species are analyzed, yielding thousands of circular and trans-spliced products, with

a surprising exclusivity of the majority of their splice junctions to atypically spliced

forms, that is they are not used in linear isoforms. The conservation analysis with

comparative splice site maps yielded high conservation levels for both circularizing and

trans-connecting splice sites. This fact in combination with their abundance strongly

suggests that atypical RNAs are evolutionarily old and of functional importance.

Lastly, comparative splice site maps are used to investigate the role of lncRNAs in

the evolution of the Alzheimer’s disease (AD). The human specificity of AD clearly

points out a phylogenetic aspect of the disease, which makes the evolutionary analy-

sis a very promising field of research. Protein-coding and non-protein-coding regions,

that have been identified to be differentially expressed in AD patients, are analyzed

for conservation of their splice site and evolution of their exon-intron-structure. Both

non-coding and protein-coding AD-associated genes are shown to have evolved more

rapidly in their gene structure than the genome at large. This supports the view of

AD as a consequence of the recent rapid adaptive evolution of the human brain. This

phylogenetic trait might have far reaching consequences with respect to the appro-

priateness of animal models and the development of disease-modifying strategies.
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Zusammenfassung

E ukaryotische Zellen legen eine umfangreiche transkriptionelle Vielfalt an den

Tag. Nur etwa ein Viertel der in der menschlichen Zelle enthaltenen RNA

ist messenger RNA (mRNA), welche den genetischen Code für die Proteingenerierung

übermittelt. Der verbleibende Anteil des Transkriptoms besteht aus eher heterogenen

Molekülen. Während einigen wohldefinierten Klassen spezifische Funktionen zugeord-

net werden können, welche von Zellhaushalt bis zu komplexen regulatorischen Aufga-

ben reichen, wird ein großer Teil der transkriptionellen Produktion ausschließlich auf

Grundlage der fehlenden Kodierungskapazität und der Transkriptlänge kategorisiert.

Einige Studien zeigten, dass mRNA-ähnliche lange nicht-kodierende RNA (lncRNA)

als Gruppe unter stabilisierender Selektion stehen, wenn auch in einem weitaus ge-

ringeren Ausmaß als mRNAs. Die Konservierung auf Ebene der primären Sequenz

ist sogar noch niedriger, wodurch der Kontrast zwischen exonischen und intronischen

Elementen verschwimmt und Methoden der traditionellen Homologiesuche erschwert

werden. Infolgedessen ist die evolutionäre Geschichte der lncRNAs ein recht uner-

forschtes Gebiet und abgesehen von ein paar vereinzelten Fallstudien wird die große

Mehrheit als schwach konserviert vermeldet. Die tiefgreifende Transkription und die

in Raum und Zeit hochspezifischen Expressionsmuster von lncRNA deuten jedoch

auf deren funktionelle Bedeutung hin und machen ihr evolutionäres Alter und ihre

Konservierungsmuster zu einem Thema von Interesse. Durch die Verwendung von

computergestützten Methoden konnten jüngste Studien die verbreitete Konservie-

rung von Sekundär- und Genstruktur von lncRNAs aufzeigen, was die Signifikanz

von strukturellen Merkmalen in Bezug auf deren Funktionalität unterstreicht. Spleiß-

stellen im besonderen werden oft über lange evolutionäre Zeitspannen erhalten, da

sie die Intron-Exon-Struktur des Transkripts bewahren.

Folglich, kann die Konservierung von Spleißstellen durch einen Ansatz der ver-
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gleichenden Genomik benutzt werden, um Homologie herzuleiten und evolutionär

gut konservierte Transkripte unabhängig von deren Kodierungskapazität zu progno-

stizieren. Da es nicht möglich ist die Spleißstellenkonservierung direkt anhand von

experimentellen Indikatoren abzulesen, wurde im Zuge dieser These eine computer-

gestützte Methode entwickelt, welche, basierend auf multiplen Sequenzalignments

und Transkriptomikdaten, “Vergleichskarten” von Spleißstellen erstellt. Ein Punk-

tebewertungssystem für Spleißstellenmotive wird benutzt um die Konservierung der

Orthologen zu beurteilen. Diese Resource kann anschließend verwendet werden um

systematisch die Konservierungsmuster von RNAs und deren Genstrukturen zu un-

tersuchen. Diese Arbeit wird die Vielseitigkeit dieser Methode demonstrieren, indem

die biologische Anwendung in drei verschiedenen Studien präsentiert wird.

Zuerst wird eine umfassende Annotation des menschlichen Transkriptoms, basie-

rend auf RefSeq, EST und GENCODE, benutzt, um die Evolution von humanen ln-

cRNAs nachzuvollziehen. Es konnte festgestellt werden, dass eine große Mehrheit der

menschlichen lncRNAs innerhalb der Eutheria konserviert ist und mehrere hundert

bereits vor der Auseinanderentwicklung von Beuteltieren und höheren Säugetieren

entstanden. Dennoch zeigen sie eine rasante Veränderung in ihren Transkriptstruktu-

ren, welche darauf hindeutet, dass sie tatsächlich alte Bestandteile von Vertebraten-

genomen mit bemerkenswerter evolutionärer Formbarkeit sind. Zusätzlich wurde ein

öffentlicher Webserver aufgesetzt, der dem Nutzer ermöglicht Datensätze orthologer

Spleißstellen aus vorgenerierten Vergleichskarten zu extrahieren und Visualisierungen

der Konservierung in den jeweiligen Spezies zu betrachten.

Als zweites wird ein spezifischerer Datensatz von nicht-linear gespleißten Latimeria-

RNA untersucht um die Ursprünge untypischer Transkripte zu ergründen. Die Ana-

lyse der RNA-seq Daten zweier Exemplare des Quastenflossers ergab tausende zir-

kulärer und Transspleiß-Produkte, wobei die Mehrheit der Spleißverbindungen eine

überraschende Exklusivität für untypisch gespleißte Formen aufzeigt, d.h. diese wer-

den nicht für lineare Isoformen genutzt. Die Konservierungsanalyse mit Spleißstellen-

Vergleichskarten ergibt hohe Konservierungsniveaus sowohl für zirkulärisierende als

auch für trans-verbindende Spleißstellen. Diese Tatsache in Kombination mit ihrem

häufigen Vorkommen, deutet stark darauf hin, dass untypische RNAs evolutionär alt

und von funktioneller Bedeutung sind.

Zuletzt werden Spleißstellen-Vergleichskarten benutzt um die Rolle von lncRNAs

in der Evolution der Alzheimer-Krankheit (AK) zu untersuchen. Die Spezifität der

AK auf den Menschen weist klar auf einen phylogenetischen Aspekt der Krankheit

hin, was deren evolutionäre Analyse zu einem vielversprechenden Forschungsgebiet

macht. Proteinkodierende und nicht-proteinkodierende Regionen, bei denen eine dif-

ferentielle Expression in AK-Patienten erkannt wurde, werden auf die Konservierung
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ihrer Spleißstellen und Evolution ihrer Exon-Intron-Strukturen hin analysiert. Es

kann nachgewiesen werden, dass sich die Genstruktur von sowohl nicht-kodierenden

als auch von proteinkodierenden AK-assoziierten Genen schneller entwickelt als das

Genom im Allgemeinen. Das unterstützt die Auffassung, dass AK die Folge einer

kürzlichen rasanten adaptiven Evolution des menschlichen Gehirns ist. Diese phy-

logenetische Eigenschaft könnte weitreichende Konsequenzen in Bezug auf die An-

gemessenheit von Tiermodellen und die Entwicklung von krankheitsmodifizierenden

Strategien haben.
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E-Mails mit einer spektakulären Reaktionszeit, sogar spät in der Nacht.

Vielen Dank, Steve, dass ich Teil deiner Gruppe sein durfte und für all den Kaffee.
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Mein besonderer Dank geht an dich, Christoph. Danke für deine Unterstützung,
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Chapter 1

Motivation

T he discovery of the DNA double helix in 1953 by Watson and Crick [1] was

a starting shot of the race for its decoding. Since then, our knowledge of

genomes has grown immensely and our conception of their functional principles has

kept changing. Just until recently, the central dogma of biology was that the genetic

code on the DNA is transcribed into RNA and subsequently translated into proteins.

Those were assumed to be the essential building blocks of life responsible for basic

structural, regulatory or catalytic cell functions in all species.

1.1. Overthrow of a dogma

Biosynthesis of proteins was considered to be the main purpose of the cryptic genetic

code. In 1977 the finding that protein-coding genes of mammals are interspersed

with seemingly arbitrarily long segments of intervening non-protein-coding sequence,

now called introns, which are not included in the mature product, triggered the

first earthquake on the ground of protein-centric genetic research [2, 3]. Since studies

showed, that those elements were simply spliced out of the transcript and subsequently

degraded, it was concluded that introns are non-functional evolutionary relics.

The universal conception for a long time remained “the more protein-coding genes,
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the more complex the organism.” While the non-coding rRNA and tRNA and their

“housekeeping” functions in the cell’s translational machinery were already unraveled

in the 1970s, they were deemed an exception to the rule and it was not until the late

1990s that studying the field of non-coding RNA shifted into the focus of scientists.

More functional RNA molecules were discovered, such as the famous Xist RNA or

first microRNAs.

Recent advances in the technology of large-scale genome sequencing revealed even

more surprising insights. Among those were intriguing facts like: The number of

protein-coding genes in the roundworm Caenorhabiditis elegans is almost the same

as in humans [4, 5], we share about 99% of our DNA with chimps and bonobos [6, 7]

and less than 2% of the human genome encodes for proteins. Extensive transcriptomic

studies using high throughput sequencing showed that nonetheless the mammalian

genome is pervasively transcribed in a well regulated manner, that is highly specific

to certain developmental stages or cell tissues in the case of non-coding RNAs [8–11].

All of these findings point us towards the importance of non-protein-coding parts of

the genome, once neglected as “junk DNA”.

To date, more and more functional non-coding transcripts and classes of non-coding

transcripts have been discovered amongst the huge transcriptional output. It became

increasingly evident that the complexity of an organism is in fact correlated to the

proportion of the genome that is non-protein-coding rather than its sheer number

of protein-coding genes [12]. Therefore the protein-centric view of molecular biology

gave way to the era of non-coding RNAs, which hold the key to understanding human

cognition, development and evolution.

1.2. The era of long non-coding RNAs

With tens of thousands of transcripts expressed from the mammalian genomes, long

non-coding RNAs (lncRNAs) make up the largest and most peculiar and at the same

time the least explored class of non-coding RNAs. Transcripts from this group often

resemble protein-coding messenger RNA and undergo capping, polyadenylation and

splicing. These particular transcripts are classified as mRNA-like lncRNAs (mlncR-

NAs). Recent studies identify up to almost 60, 000 well defined lncRNAs produced

from the human genome [13]. Although they usually have a very low expression

rate compared to protein-coding RNAs, they are expressed highly spatio-temporal

specific [14–16]. Some have been shown to be involved in gene regulation processes

associated with essential roles during development, organ growth and diverse disease

pathogenesis [17, 18].
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Apart from a few detailed case studies, global statistical analyses have demon-

strated that, as a group, mlncRNAs are under stabilizing selection. However, their

evolutionary history is poorly understood. While their primary sequence is better

conserved than putative neutrally evolving stretches of the genome, the average se-

quence conservation across species is weak [19–21]. This provides only very limited

contrast between intronic and exonic parts, so that it is difficult at best to infer com-

plete gene structures for orthologs. Not only the level of sequence conservation is low

compared to other functional transcripts [20, 22], but characteristic secondary struc-

tures, like in rRNA or tRNA, are also missing. This absence of typical evolutionary

patterns makes it hard in practice to computationally predict and identify homologs

in genome-wide searches based on sequence similarity. As a consequence > 95% have

been reported as poorly conserved, and suggested to be transcriptional noise [19].

The rapid development of sequencing technology has made it feasible to obtain

high coverage transcriptome data sets for a wide variety of cell and tissue types. In

addition to the systematic efforts to exhaustively catalog the human transcriptome in

the ENCODE project and large cDNA resources amassed by the FANTOM project

[23], rapidly growing resources are also becoming available for a diversity of model or-

ganisms. As a consequence, comparative transcriptomics approaches become feasible,

see e.g. [24, 25] and the review [26].

More recent studies were able to detect higher percentages of conserved lncRNAs.

Washietl et al. [27] demonstrated that 30 − 40% of nearly 2, 000 human lncRNAs

show conserved expression in rodents or ungulates based on direct comparison of

transcriptome sequencing data for six mammalian species. In a similar approach

Necsulea et al. [28] investigated 11 tetrapod species and reported 11, 000 primate-

specific lncRNAs contrasted by 2, 500 highly conserved ones. These numbers are

somewhat lower (19% of lncRNAs are older than primates), presumably because only

one non-primate mammal was included and a direct blast-based homology search

was used in this study. A maximum likelihood approach from Managadze et al.

[29] to estimate the number of lncRNAs from publicly available data resulted in an

estimate of 40, 000−50, 000 lncRNAs of which about 60−70% are conserved between

man and mouse. In 2015 Hezroni et al. [30] used a method of direct transcriptome

comparison from RNA-seq data sets and identified thousands of human lncRNAs

that have homologs with similar expression patters in other species. But still, > 70%

of lncRNAs had no sequence-similar orthologs in species that diverged > 50 million

years ago.

An alleged lack of evolutionary conservation, however, does not imply absence

of functionality. Beyond global sequence conservation, it is possible to utilize the

conservation of gene structures to establish homology. Splice sites, in particular, are
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retained over very large evolutionary time scales in many cases. Indeed, conserved

splice site patterns in combination with multiple genome alignments can be used to

successfully predict novel evolutionarily well conserved non-coding transcripts [31,

32]. While in flies the procedure is conveniently based on intron predictions, one

has to resort to predicting internal exons in mammals. A considerable fraction of

the transcripts detected in this manner shows very little sequence conservation and

resembles lncRNAs. Probably they would not have been detected based on sequence

homology alone.

1.3. Scope and outline

The scope of this thesis is to shed light on the realm of lncRNAs and their evolu-

tionary history to help understanding their biological role in present-day humans. In

the course of this contribution a method was developed to systematically study the

conservation patterns of spliced RNAs, particularly lncRNAs and the evolution of

their gene structures. Therefore comparative maps of splice sites, constructed from

genome-wide multiple sequence alignments together with transcriptomic data, were

employed. Building on the work and results of my diploma thesis [33], the method was

refined and extended and applied in three different biological contexts that yielded

new insights in the field of evolutionary history of human lncRNA, atypically spliced

RNA transcripts of coelacanth and Alzheimer’s disease associated genes.

This thesis is divided into three major parts. Part I elucidates the biological back-

ground that inspired this thesis. The molecular-biological concept and evolutionary

relevance of RNA splicing are highlighted in Chapter 2.

Chapter 3 elaborates on the definition of non-coding RNAs and their functional

mechanisms. Furthermore, the current knowledge about non-coding RNA evolution

and the challenges of their systematic analysis in regards of conservation are discussed.

These sections are based on the review:

Nitsche A, and Stadler PF (2017). Evolutionary clues in lncRNAs.
Wiley Interdisciplinary Reviews: RNA 8. doi: 10.1002/wrna.1376

Part II expounds the technical component of the developed method, regarding its

underlying mathematical principles as well as the framework of its computational

pipeline. Since multiple sequence alignments, provided through online databases,

are prerequisite input files for the developed program, algorithmic concepts of align-

ment methods are explained in Chapter 4, specifying in particular the two programs

that have been used to generate the employed files. Furthermore the mathematical

model of MaxEntScan scoring is explained, which is an essential tool of the developed
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method. Chapter 5 explains in detail the pipeline of the designed computational

method, including the collection of necessary data, the utilization of multiple se-

quence alignments to establish homology of splice sites and how the integration of

MaxEntScan scoring amplifies the power to infer the conservation of transcripts.

Part III showcases three biological applications and presents the conclusions that

can be drawn from their results. First the results of a broad genome-wide approach

to investigate the conservation of human lncRNAs across 46 vertebrates via the in-

troduced splice site maps are unrolled in Chapter 6 based on the publication:

Nitsche A, Rose D, Fasold M, Reiche K, and Stadler PF (2015).
Comparison of splice sites reveals that long non-coding RNAs are
evolutionarily well conserved. RNA 21:801–812. doi: 10.1261/rna.
046342.114

This publication comprises a substantially extended and revised reanalysis of pre-

liminary results of splice site conservation in lncRNAs originally described in my

diploma thesis [33].

Chapter 7 takes a more differentiated turn by particularly analyzing the evolution

of atypically spliced transcripts, such as circular and trans-spliced RNA found in

the RNA-seq data of two coelacanth species. The results, indicating they are of an

evolutionary old age, are presented based on the publication of

Nitsche A, Doose G, Tafer H, Robinson M, Saha NR, Gerdol M,
Canapa A, Hoffmann S, Amemiya CT, and Stadler PF (2014). Atyp-
ical RNAs in the coelacanth transcriptome. Journal of Experimental
Zoology Part B: Molecular and Developmental Evolution 322:342–
351

Chapter 8 focuses on the evolution of genes associated with Alzheimer’s disease. A

genome-wide RNA-profile was established comprising protein-coding an non-coding

transcripts that are differentially expressed in Alzheimer’s disease patients. The sys-

tematic study of those genes with comparative splice site maps revealed their accel-

erated evolution. This chapter is based on the following publication.

Nitsche A, Reiche K, Ueberham U, Arnold C, Hackermüller J, Horn
F, Stadler PF, and Arendt T (2017). Alzheimer related genes show
accelerated evolution. bioRxiv: 10.1101/114108. submitted

The thesis is concluded in Chapter 9, where the findings are discussed in the light

of lncRNA evolution and with respect to their relevance for future research. The three

distinct appendices provide supplementary information of the respective studies for

the interested reader, including further results and methods as well as research that

has been done preliminary.
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1.4. Author contributions and use of personal pronoun

In scientific writing the impersonal style used to be expected and even required. This

convention changed and in a diverse range of scientific publications the use of the

personal pronoun “we” is common to account for the collective work of a group, even

if specific parts have been contributed by a single individual. Since the deliberations

and results of multiple collaborative projects are presented throughout this thesis, the

personal pronoun “we” will be used as well. This does not invalidate the statement

made in the declaration of independence.
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Chapter 2

RNA splicing

I n eukaryotic cells protein-coding genes are interrupted by non-coding stretches,

called introns, which are transcribed but later removed from the transcript in

the process of RNA maturation. This process is called splicing – a reaction catalyzed

by a ribonucleoprotein (RNP) complex, whose components recognize particular in-

tronic elements. The high accuracy of splicing is complemented by spatio-temporal

regulatory mechanisms which make the process highly specific. The vast majority of

human genes produces alternatively spliced transcripts and therefore contribute not

only to the proteomic variety but also to that of the non-coding RNAome. Mutations

in elements of this sensitive splicing machinery can have far reaching effects on the

functional transcriptome.

The information in this chapter is based on the textbooks of Elliott and Ladomery

[38] and Hertel [39], if not stated otherwise.

2.1. Split genes

When Richard Roberts and Phillip Sharp independently discovered “split genes” of

the adenovirus in 1977 [2, 3], the perception of the gene organization changed dramat-

ically and led to further research about the origin of introns. It also sparked debates
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about their potential beneficial role in evolution.

Around 94% of all mammalian genes are interrupted by at least one intron. In the

brief time period after transcription and before transcript processing, the immature

precursor mRNA (pre-mRNA) in the nucleus corresponds in length and content with

the DNA sequence on the gene. These long RNA molecules are also called heteroge-

neous nuclear RNA (hnRNA). The process of splicing, which in fact may already occur

during transcription, will excise intronic sequences and ligate the retained segments,

which are called exons.

In the case of protein-coding genes, exons encode the amino acid sequence of a

protein in an ORF with an average length of ∼ 150 bp and are therefore relatively

short compared to the average intron, which is ∼ 6, 000 bp long but can exceed

extremes of > 400, 000 bp. Not only the intron length, but also the number of introns

per gene varies greatly. The median number of exons in human protein-coding genes

is 7, but there are numerous extreme cases with > 100 exons per gene. The longest

human gene is that of the dystrophin protein. While the 79 exons only comprise

a coding sequence of 14 kb, the large amount of long introns inflates the gene with

seemingly futile sequences to a total length of 2.5Mb.

2.1.1. Splice sites

Each intron has important sequence elements that play an essential role in the splicing

process (Figure 2.1). Located at the exon-intron-boundaries are the splice sites with

a highly conserved but very short consensus sequence. The 5’ splice site, the donor

site, has the consensus sequence AG|GURAGU (exonic|intronic; R = A or G nucleotide)

and the 3’ splice site, the acceptor site, has an intronic AG dinucleotide preceding

the downstream exon. The polypyrimidine tract, located directly upstream of the

acceptor site, is a stretch of 10−20 pyrimidines (Y = U or C nucleotide), predominantly

uridine. Located further upstream (∼ 100 nt) of the 3’ splice site region is the branch

point site (BPS), which is the location of a single A nucleotide that, besides the donor

and acceptor site, is the only sequence that participates in the chemical splicing

reaction. It is surrounded by a poorly conserved sequence, which makes it hard

to identify BPS in introns. In human introns the consensus is YNYURAC (N = any

nucleotide).

While there are slight differences in the intronic splicing elements between species,

e.g. yeast has no polypyrimidine tract but a much more conserved BPS sequence

(UACUAAC), the vast majority of introns conforms to the “GT-AG rule”, which de-

scribes the first two and the last two nucleotides of an intron. This circumstance in-

duces functional equality between splice sites, meaning that any donor can be spliced
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2.1 Split genes

Figure 2.1.: Sequence elements of major spliceosomal introns in human are highly
degenerate but follow certain consensus motifs, especially the intron-exon boundaries, which
conform to the typical GT-AG motif, at the first and last two intronic positions, respectively.
Donor (5’ splice site), acceptor (3’ splice site), branch point site (BPS) and polypyrimidine
(poly-Y) tract interact with components of the major spliceosome to mediate the splicing
reaction (see Section 2.2.1). R = A or G; Y = C or U; N = A, C, G or U. Figure adopted from
[40].

to any acceptor.

2.1.2. The chemical reaction of splicing

The splicing process is one of three post-transcriptional modifications in the course

of RNA maturation. The other two are: capping of the 5’ end and polyadenylation

of the 3’ end. Both of those processing steps primarily serve to enhance the stability

of the nascent mRNA.

Splicing as the third post-transcriptional modification in which introns are precisely

removed from the pre-mRNA transcript and remaining exons are joined together. Its

basic biochemical mechanism is a well characterized process. During the reaction

phosphodiester bonds are split and reformed via hydroxyl groups (—OH), which is

called transesterification. The splicing reaction can be described as a double transes-

terification (Figure 2.2A).

Step 1 The 2’—OH of the BPS adenosine attacks the 5’-phosphate residue at the

donor site, cleaving the 3’—5’ phosphodiester bond and forming a 2’—5’ bond

at the BPS, resulting in an intron lariat (loop) intermediate and a disconnected

upstream exon.

Step 2 The 3’—OH, at the end of the free upstream exon attacks the 3’—5’ phos-

phodiester bond at the acceptor site, forming a new bond between both exons

and releasing the lariat intermediate. The intron lariat debranches and gets

degraded.
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Each splicing process occurs for each intron individually. The order of spliced out

introns does not necessarily comply with the order in which they are present on the

transcript.

2.2. Classes of introns

Introns can be distinguished into three classes that perform splicing in different ways:

(1) spliceosomal introns (2) self-splicing introns (3) tRNA introns.

In eukaryotic cells the splicing process happens predominantly with the help of the

major spliceosome, a complex of RNA and proteins, which assembles directly on the

pre-mRNA. However, in a wide range of organisms (including prokaryotes) the introns

of diverse transcripts (mRNA, rRNA) catalyze the splicing reaction themselves. The

splicing of tRNAs is an exception, since it does not occur via transesterifications.

2.2.1. Spliceosomal introns

Unlike in the transcription or translation process, where the RNA/DNA is scanned

and processed from 5’ to 3’ end, an independent spliceosome complex assembles for

each intron removal and gets degraded after the completed splicing reaction. This

makes seven “spliceosome cycles” for the average human protein-coding pre-mRNA

transcript.

Major spliceosome

A full major spliceosome consists of five small nuclear ribonucleoproteins (snRNP):

U1, U2, U4, U5 and U6. The units are named after their corresponding small nuclear

RNA (snRNA) component, which is rich in uridine. RNA–RNA base pairing interac-

tions of these snRNAs with conserved sequence elements of the pre-mRNA transcript

and other snRNAs are essential for the spliceosome assembly and ensure an efficient

and precise splicing process. For each intron to be spliced out a spliceosome complex

assembles directly on the primary transcript from its subunits (Figure 2.2B).

Complex E The step that commences the spliceosome pathway. U1 binds the donor

site in an RNA–RNA interaction. U2 Auxiliary Factor (U2AF) proteins interact

with the 3’ splice site region elements for stability and protein SF1 binds the

BPS.

Complex A The pre-splicing complex. SF1 is replaced with U2, which imperfectly

base pairs with the BPS sequence. This causes an adenosine bulge, exposing the
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Figure 2.2.: Splicing mechanism. (A) The double transesterification of the chemical
splicing reaction. Re-formation of phosphodiester bonds between the branch point site (BPS)
and 5’ and 3’ splice site of the intron ligate both adjacent exons by forming an intron lariat
intermediate. (B) Illustration of the spliceosome cycle. The spliceosome assembles stepwise
from five snRNP subunits directly on the primary transcript strongly supported via RNA–
RNA base pair interactions. Additional proteins drive the re-arrangement of the complex to
eventually form a catalytic core that promotes the splicing reaction. Afterward the completed
splicing the complex is disassembled and recycled in the next spliceosome assembly. Figure
adopted and rearranged from [40]
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2’—OH of the adenosine BPS and preparing it for the upcoming nucleophilic

attack. The U2AF binding with the poly-Y tract stabilizes the base pairing

interaction of U2.

Complex B The pre-catalytic complex. A trimer of snRNPs U4/U6 and U5 is added

to the spliceosome body, which now contains all snRNP subunits. U5 base pairs

with both exons holding the spliceosome in place.

Complex B* The catalytically active complex. The spliceosome undergoes structural

changes to initiate the catalytic splicing process. Subunit U1 and U4 are dis-

sociated from the complex. This enables U6 to base pair with the now vacant

donor site and U2, which brings the BPS physically closer to the 5’ splice site

and generates the catalytic core of the spliceosome. The first transesterification

takes place.

Complex C The spliceosome only consists of three remaining subunits (U2, U5 and

U6), the 5’ exon and the lariat intermediate bound to the 3’ exon. While U5

still holds both transcript parts together, the second transesterification occurs.

Disassembly All components disassemble. The final spliced product is transported

to the cytoplasm, the intron lariat is degraded and the subunits are re-used for

the next spliceosome assembly.

At each stage additional proteins contribute to the progress of the spliceosome cy-

cle. Proteins like U1C, splicing factors (U2AF) and serine-rich (SR) proteins stabilize

the complex at diverse steps of the assembly. A key role is performed by RNA heli-

cases, which regulate the re-arrangement of the complex and ensure a correct timing

of events under the consumption of ATP or GTP.

Major spliceosomal introns are the most common introns in eukaryotes. We will

employ their specific canonical GT-AG splice site motif to assess the conservation of

splice sites with our method, which will be introduced in Chapter 5.

Minor spliceosome

A small fraction of spliceosomal introns (1 : 300−1 : 670) belong to the minor class of

U12-dependent introns, which occur in metazoans and plants. They are distinct from

canonical introns of the major spliceosomal class, and usually follow the AT-AC rule

instead of the GT-AG rule. The BPS consensus sequence differs as well. All of them

are spliced by an alternative spliceosomal complex - the minor spliceosome, which

uses snRNP U11, U12 and U4atac/U6atac, instead of U1, U2 and U4/U6. These are

functionally equivalent to the subunits of the major spliceosome, but do not show a
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Figure 2.3.: Group I introns. The splicing proceeds as two-step transesterification. Op-
posed to Group II introns, however, the first nucleophilic is not performed by an intronic BPS
but by the 3’—OH of an external guanosine. Hence no lariat structure is formed during the
process. Graphic style inspired by [40].

big sequence similarity. Both spliceosomes use the U5 subunit and a similar set of

proteins is involved to control the chemically identical splicing process. The minor

spliceosome consensus motif will not be considered in our method.

2.2.2. Autocatalytic introns

Some introns are able to excise themselves from the primary transcript without the

help of a spliceosome. They are also referred to as ribozymes since they perform

the splicing in an autocatalytic reaction by folding into a secondary structure that

resembles the catalytic core of the spliceosome complex. Therefore their secondary

structure is highly conserved. According to distinct secondary structures and the

actual splicing reaction, the class of self-splicing introns can be distinguished into

two groups. Although the catalytic reaction proceeds for both groups as a double

transesterification, there are slight differences.

Group I These introns do not develop a lariat intermediate during their splicing pro-

cess. The nucleophilic attack is performed by the 3’—OH of a free exogenous

guanosine, that was previously bound to a specific G-binding site on the tran-

script (Figure 2.3).

Group II The chemical splicing reaction of Group II introns is analogous to those of

spliceosomal introns, meaning they form a lariat with a adenosine BPS.

While spliceosomal introns solely occur in eukaryotes, autocatalytic introns are

present in prokaryotes as well. Group II introns are found in bacteria and in subcel-

lular organelles like mitochondria and chloroplasts. Due to the strong resemblance of

their splicing pathway with those of spliceosomal introns and their self-splicing abil-

ity, it is assumed, that spliceosomal pre-mRNA splicing actually evolved from those

formerly “parasitic DNA elements”.
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2.2.3. tRNA introns

The introns of tRNAs are unusually short and get removed in a different splicing path-

way than the autocatalytic or spliceosomal introns. Opposed to the other splicing

reactions, tRNA splicing is a process of successive cleavage and ligating reactions cat-

alyzed by several enzymes, that occurs in three stages. Here the process is described

on the example of yeast.

Stage 1 Cleavage. An endonuclease enzyme cleaves the intron on both splice sites,

producing two tRNA half-molecules and a linear intron. This leaves unusual

2’—3’ cyclic phosphate (P) and a 5’—OH ends on the half-molecules.

Stage 2 Ligation. An RNA ligase joins both exon-molecules in a multistep reac-

tion. First catalyzed by phosphodiesterase and kinase the unusual ends are

altered into a 2’—P and 5’—P under the consumption of GTP. Then both ends

are joined by synthetase and ligase forms a 5’—3’ phosphodiester bond. This

reaction requires another nucleoside triphosphate, this time ATP.

Stage 3 Removal of 2’—P. The extra 2’—P group from the original donor site that

remained at the splice junction after ligation is transfered to a nicotinamide

adenine dinucleotide (NAD) by a phosphotransferase. The splicing process is

completed and the mature tRNA is present.

2.3. Alternative splicing

A primary transcript of a single gene can be processed into various isoforms or differ-

ent gene products by alternative splicing. This increases the coding capacity of the

genome without increasing the number of genes. About 95% of multi-exonic genes in

the human genome are differentially spliced [41]. This explains the non-proportionate

relation between gene count and complexity of organisms. Through alternative splic-

ing ∼ 20, 000 human genes produce a proteomic diversity of hundreds of thousands

of proteins.

2.3.1. Forms of alternative splicing

While constitutive exons are always included in the spliced product, alternative exons

are elements of the primary transcript, that are variably spliced to be included or

excluded in the mature RNA. The order of the exons, however, is always maintained.

It can be distinguished between five major forms of alternative splicing (Figure 2.4).

Exon skipping. The simplest and most common form of alternative splicing, where
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Figure 2.4.: Five basic forms of alternative splicing. Transcript isoforms can be pro-
duced by variably including exons or using alternative splice site on the 5’ or 3’ end, which
splices exons of altered length. Black lines indicate splicing events. Graphic style inspired by
[40].

an alternative exon is removed entirely together with its adjacent introns.

Mutually exclusive exons. One of two alternative exons is skipped so that only one

of them is present in the mature RNA.

Alternative acceptor. An exon has two or more possible acceptor sites that can be

selected for splicing. This choice will influence the length of the exon (start

point of the exon).

Alternative donor. An exon has two or more possible donor sites, that can be chosen

for splicing. This choice will influence the length of the exon (end point of the

exon).

Intron retention. An intron is not spliced out of the transcript and thus becoming

an “exon” itself. In the case of protein-coding RNA these introns do have an

open reading frame (ORF) corresponding to that of the neighboring exons. In

humans this is the rarest form of alternative splicing.

The biological reality of alternative splicing is more often than not a combination of

these basic forms. As another way to achieve more variety of transcript isoforms, the

transcription machinery can employ alternative transcription start or polyadenylation

sites.

2.3.2. Regulation of alternative splicing

Some genes express all of their isoforms in any cell, while others only produce certain

variants under distinct spatio-temporal conditions, like tissue type, developmental

stage or gender. This is relevant for the regulation of gene expression levels.
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The splicing code

Certain sequence elements within exons and introns function as cis-active sites that

regulate gene expression. They encipher whether the current sequence belongs to an

exon or intron and therefore serve to distinguish between both during the spliceosomal

splicing process. Hence, these sequences are called the splicing code.

They can lead to silencing or enhancing effects on adjacent splice sites, by re-

cruiting trans-regulatory splicing factors, e.g. SR-proteins, which are essential for

the spliceosome assembly. According to location and function these auxiliary regu-

latory elements are referred to as exonic splicing enhancers (ESE) or silencers (ESS)

and intronic splicing enhancers (ISE) and silencers (ISS). Enhancers and silencers

“strengthen” or “weaken” the associated splice sites, respectively.

Large introns can contain numerous sequences similar to the consensus of functional

splice sites. Resulting pseudoexons pose a high risk of erroneous splicing. The splicing

code is crucial for correctly splicing authentic alternative or constitutive exons.

Exon and intron definition

The spliceosome composition described in Section 2.2.1 follows the so-called intron

definition, in which the spliceosome recognizes the intron and assembles directly on

it. Due to the fact that introns are usually huge stretches of sequence, whereas exons

are rather short, the spliceosome composition in higher eukaryotes happens through

exon definition. In this case the spliceosome recognizes the exons first by binding

early spliceosome factors. U1 subunits bind the donors of consecutive introns, while

U2AFs bind the acceptors. This basically marks the beginning and end of the enclosed

exon, as a signal for the spliceosome. An SR-protein chain now connects U2AF of

the upstream intron and U1 of the downstream intron, spanning the complete exon.

The ESEs of this exon are required for this process. When U2 binds the 3’ splice site

region, a rearrangement occurs and the interactions between subunits are now across

the introns. Their subunits form Complex A and follow along the intron definition

pathway.

The mode of spliceosome assembly has a major influence on the form of alternative

splicing that is used. In organisms (e.g. human) that use exon definition, exon

skipping is most common, while intron retention is more common in species that use

the intron definition pathway (e.g. yeast). This makes sense since exons as well as

introns are recognized by the spliceosome and therefore can specifically be included

in or excluded from the mature RNA.
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2.4 Atypical splicing

Other regulating factors

There are additional factors that are able to regulate alternative splicing.

Concentration of regulatory proteins. Proteins that trans-actively bind to auxiliary

elements of exons (ESS, ESE) in the primary transcript can block or activate

splicing, e.g. SR-proteins, heterogeneous nuclear RNPs (hnRNPs).

Epigenetic modifications. RNA-guided modifications of histones affect the splicing

of alternative exons. It has been shown that RNA transcripts recruit histone-

modifying complexes to induce DNA methylation, changes in chromatin struc-

ture and other histone modifications. The involved RNA molecules can be small

or long non-coding RNAs, and even the primary transcript itself [42].

Transcription. Splicing often occurs co-transcriptionally. It has been demonstrated

that the elongation rate of RNAP II has an impact on the inclusion of alternative

exons. The kinetic model proposes that a decelerated elongation rate gives

more time to a weak alternative exon to recruit the splicing machinery, before

a stronger competing exon emerges during the transcription process.

Secondary structure. A single-strand motif can be masked by secondary structure

and blocked from recognition by the splicing machinery. The effect can be

positive or negative, according to the function of the masked element. Another

way of regulating splicing through secondary structure is the ability to bring

two distant elements in close proximity. Alternative secondary structures can

also influence which of multiple mutually exclusive exons is integrated into the

final transcript.

2.4. Atypical splicing

Some splicing events do not follow the described canonical splicing mechanism, where

a 5’ donor and a 3’ acceptor are spliced so that two consecutive exons from a single

preliminary transcript are ligated into a linearly mature RNA product. The advances

in computational and experimental techniques that study the transcriptome unrav-

eled that unconventional splicing events that produce non-colinear transcripts are

biological reality and much more abundant than previously assumed. This section

highlights two types of atypical splicing events.
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Figure 2.5.: Trans-splicing in Trypanosoma brucei follows the double transesterifica-
tion pathway. A spliced leader (SL) RNA, independently transcribed, serves as both donor
and U1 subunit in this spliceosomally catalyzed reaction and provides the 5’ cap for the mature
RNA transcript. The BPS is a conserved adenosine within the intron of a long polycistronic
transcript. Graphic style inspired by [40].

2.4.1. Trans-splicing

It is well known, that some species, such as psychosomatics or nematodes, frequently

produce inter-molecular transcripts, that are trans-spliced products from indepen-

dently transcribed parts, which originate from distant genomic regions or even distant

chromosomes [43]. While this is a rare event in humans and most other organisms,

where splicing usually occurs in cis – within the same molecule – all RNAs are spliced

in trans in Trypanosoma brucei . In this case the splicing involves a “spliced leader”

RNA (SL RNA), see Figure 2.5.

Trans-splicing is crucial for species like Trypanosoma brucei and C. elegans. It is

required to split long polycistronic RNA molecules, which contain coding information

of multiple genes, into shorter individually translatable transcripts.

The chemical reaction of trans-splicing is a similar double transesterification as in

cis-splicing. It is equivalently catalyzed by a spliceosome, where the SL RNA takes

over the role of the U1 subunit. The SL RNA, a mini-exon of 39 nt length, provides

the donor site for the nucleophilic attack by a BPS of a second molecule. This results

in a free SL RNA molecule and a Y-shaped intermediate molecule. In the second

reaction the 3’—OH attacks the acceptor site of the downstream exon, joining both

molecules and releasing the branched intermediate. In the resulting RNA molecule

the SL RNA is now the leading sequence of the spliced exon. This is important for

the stability and efficient translation of the mature transcript, since the mini-exon

features the 5’ cap, which is not present on the RNAP I-transcribed polycistronic

transcripts.

Trans-splicing does also occur in human, but has been generally thought to be

a rare phenomenon playing only a subordinate role in vertebrates [44]. Although

large-scale transcriptome sequencing showed, that non-colinear or chimeric RNAs are

abundant in a variety of species, a considerable fraction of them might be “RTfacts”,

like short homologous sequences (SHS) at the junctions, that are generated by reverse
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2.4 Atypical splicing

Figure 2.6.: Alternative Circularization. Back-splicing can be promoted and regulated
by specific RNA–RNA interactions of intronic elements, e.g. inverted Alu repeats, which
bring the ends of exons in close proximity. When different hybridization is possible the exons
can be circularized alternatively. Figure adopted and rearranged from [54]

.

transcription [45–49].

On the other hand reports of high tissue specific expression of chimeric transcripts,

together with evidence that they contain complete protein domains and detectably

produce a multitude of proteins, emphasize the biological origin and functionality of

these RNAs [10, 50–52].

Strand-switching

In a special case of trans-splicing the transcribed units are derived from opposite

strands. This is called a strand-switch and has been observed in Trypanosoma brucei

and in Drosophila. The best characterized case is that of the local strand-switch at

the mod(mdg4) gene in Drosophila [49, 53].

2.4.2. Back-splicing

Back-splicing events occur when the BPS of an upstream intron attacks the donor

site of a downstream exon, and thus produce circular RNA (circRNA) molecules.

This is also called head-to-tail splicing. The resulting circRNAs are mono- or multi-

exonic, but consist usually of two to three exons, which can be alternatively spliced

(Figure 2.6) [55]. A minimum exon length, however, is required in the case of a

single exon circRNA, such as ciRS-7. The back-splicing event itself employs regular

canonical splice sites and is guided by the spliceosome, however at a lower efficiency

than that of their linear counterparts. Exon skipping events are positively correlated

with circRNA biogenesis, as they commonly derive from spliced alternative middle

exons of pre-mRNAs [55].

The circularization is regulated in cis and trans. The exons of circular RNAs are

often flanked by long intronic sequences, containing reverse complementary elements
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(e.g. Alu repeats) that can base pair with each other to bring both exon ends in

close proximity [55] and therefore promoting the back-splicing event in cis. Some

RBPs can regulate the circRNA genesis in trans, with repressive or enhancing effects

[56, 57].

Due to their relatively low expression level and their non-polyadenylated nature,

they got under the radar of typical poly(A) enriched library sequencing. Just recently

the sequencing of selective libraries of non-polyadenylated RNAs, that were treated

to have all linear RNAs degraded and only retain circular RNA, revealed that a

substantial fraction of spliced human transcripts produce circRNA [58, 59]. Among

those identified are long known prominent examples [60–62], but also several new

interesting circular isoforms, that are conserved between human and mouse [59].

As they had no function assigned originally, they were first thought to be by-

products of defective irregular splicing and received little attention from the scientific

community. While more and more circular transcripts have been validated in several

studies, some of them highly and spatio-temporal specifically expressed, it has become

evident that they emerge from purposeful and well regulated splicing events. Some

circular transcripts are found to be expressed even more frequently than their linear

isoforms [63].

A proposed function of circRNAs is the regulatory role as microRNA sponges as a

crucial component of gene expression. The best studied case is that of ciRS-7, which

harbors over 60 conserved binding sites for miR-7 [64, 65]. However, there are only a

few other known cases in mammals, suggesting that this might not be their primary

role [66].

2.5. Relevance

Even though it takes significantly longer to transcribe genes prolonged with intronic

sequences, and their increased risk of impactful mutations that adds up along the

transcript length, the majority of eukaryotic genes are interrupted by introns.

2.5.1. Enhancement of eukaryotic gene expression

It is well known that introns in fact are beneficial for an efficient expression of eukary-

otic genes [67]. Besides experiments of intron insertion/removal, which showed the

enhancing effect on transcription [68], this is also visible when comparing the yeast

genome and its transcriptomic outcome. While only 4% of its genes contain introns,

those genes contribute to more than a third of the overall mRNA transcripts in the
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cell. While a decelerated maturation of RNA due to an extended gene length can be

profitable to the organism in certain contexts (e.g. tissue patterning), this “intron

delay” [69] can be canceled out on several levels of gene expression when needed.

Transcription. Some introns contain cis-regulatory elements that enhance transcrip-

tion of genes. Secondly, by nucleosome positioning introns can make the DNA

more accessible for transcription [70]. A third possible way to influence the

transcription is the promotion of RNA polymerase II activity, including tran-

scriptional initiation and elongation.

Transcript Processing. The splicing of the last (most downstream) intron positively

affects the polyadenylation of the transcript [71].

Export. The splicing machinery actively promotes the export of the mature RNA

from the nucleus to the cytoplasm, while retaining unspliced transcripts, ensur-

ing that translation only occurs on mature RNA products.

Translation. The splicing process leaves protein marks on the splice junctions, known

as the exon junction complex (EJC), which influence the efficiency of translation

[72].

2.5.2. Evolutionary role

The frequency of discontinuous genes rises with the evolutionary stage of the organ-

ism, indicating an important evolutionary role for eukaryotic organisms.

The feature of splicing ability provides a path to accelerated evolution of new

proteins. Considering exons as modules, that decode functional units of proteins or

structural elements of ncRNA, the addition of new exons as mobile genetic elements,

can easily create new more sophisticated and complex proteins or ncRNAs. As long

as the exon is flanked by introns, the new transcript will be correctly spliced and

translated. The option of alternative splicing further expands the coding capacity of

the genome.

A precise splicing process is essential to achieve the correct and functional gene

product. Hence the position of an intron within a gene and its splice sites are usually

highly conserved. The positions of splice sites therefore pose suitable reference points

to analyze the evolutionary history of non-coding genes in particular, since their

exonic sequences on the other hand show little sequence conservation. By tracing the

evolution of splice sites, we can trace the evolution of gene structure, which means

the evolution of the transcript itself.
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Chapter 3

The curious case of non-coding RNA

O ver the last decade the technology of high-throughput sequencing helped

revealing that an overwhelmingly large fraction of the mammalian genome

is transcribed in some cell type, tissue, or developmental stage [8, 73–75]. Less than

3% of the genome encode all of the ∼ 19, 800 protein coding genes [76, 77] and the

coding sequence itself barely exceeds 1%. However, they account for a disproportion-

ately large fraction of the mass of the human transcriptome (disregarding rRNAs),

due to their high expression rate [10, 13, 78]. Nearly a quarter of the total RNA in

the cell can be attributed to UCSC-annotated exons and thus to mature mRNAs [79].

The vastly diverse remainder of the genome harbors tens of thousands of non-protein-

coding transcripts, many of which are expressed only at very low levels or under very

specific circumstances [80].

3.1. Classes of ncRNA

The complex and extensive non-coding transcriptome comprises a diverse array of

RNA molecules, varying in size, function, abundance, and genomic location and ori-

entation of transcription. Therefore a classification of ncRNAs can be made based on

various aspects. The most common and coarsest distinction is made by length, where

a rather arbitrary length cutoff of 200 nt is dividing the huge diversity of ncRNAs into
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Annotated Human Genes
~60,000 total

Long non-coding RNAs Small non-coding RNAs

Figure 3.1.: Distribution of GENCODE annotated genes. The pie chart on the left
(adapted from [81]) represents the statistic of annotated human transcripts from GENCODE
v23. The two rightmost pie charts (adapted and redrawn from [82]) show the distribution of
annotated non-coding genes in GENCODE v22, further classified into long and small non-
coding RNAs. The fractions of mitochondrial tRNA and other small non-coding RNAs were
too small to display. Label “TEC” stands for “to be experimentally confirmed.”

two classes: small and long non-coding RNAs (lncRNAs), Figure 3.1 and Table 3.1.

Among the group of small ncRNA are well studied classes of ncRNAs, which fulfill

known and well defined tasks in the cell. This category is therefore further distin-

guished by the established function of the RNA molecule. Famous representatives

belong to the long-known group of infrastructural “housekeeping” ncRNAs, compris-

ing small nuclear (snRNA), small nucleolar (snoRNA), ribosomal (rRNA) and transfer

RNA (tRNA), which are involved in transcription, post-transcriptional modifications

(e.g. splicing) and translation of mRNA.

The fairly heterogeneous class of lncRNAs is far more unexplored. The broad

definition of a lncRNA is currently only based on size (> 200 nt), and the feature

they do not have, namely protein-coding capacity, since there are no (known) further

characteristics they all exhibit. Only for a tiny fraction exist detailed case studies that

elucidate their functionality. Hence the majority is further distinguished by genomic

location and orientation of transcription, rather than by function. It is discriminated

between lncRNAs that originate from intergenic regions (lincRNAs) or from already

known annotated genes. In the latter case, their source may be exonic as well as

intronic (PINs and TINs) in both sense or antisense (asRNA) direction.

Identifying these long non-coding transcripts is not trivial. They may contain

potential ORFs of moderate length, are usually transcribed by RNA polymerase

(RNAP) II and frequently spliced, polyadenylated and capped in the same way as

mRNAs [83–85]. About 30% of non-coding RNA even produce alternatively spliced

transcripts [86–88]. The strong resemblance to mRNA transcripts might be one of
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3.1 Classes of ncRNA

Table 3.1.: Brief classification of ncRNA. Non-coding RNA molecules are classified
mostly based on length and genomic origin, since little is known about their functionality. It
is likely that they share a number of qualities, instead of belonging to a single RNA category.

Class RNA type

“Housekeeping”
non-coding RNA

transfer (tRNA), ribosomal (rRNA), small nuclear (snRNA),
small nucleolar (snoRNA), precursor microRNA (pre-miRNA)

Regulatory small
non-coding RNA

microRNA (miRNA), small RNA processed from structured RNA,
small interfering (siRNA), piwi-interacting (piRNA), promoter as-
sociated (paRNA), termini associated (taRNA), splice site asso-
ciated RNA

mRNA-like non-
coding RNA (ml-
ncRNA)

long intergenic non-coding (lincRNA), snoRNA host genes, pri-
mary microRNA (pri-miRNA), antisense (asRNA), intronic RNA
(TINs, PINs), UTR-derived (uaRNA), chromatin associated RNA

Other DualRNA, mRNA with IRES, macroRNA, circular RNA (cir-
cRNA), circular intronic RNAs (ciRNAs)

the reasons that some, now known as non-coding transcripts, have been previously

annotated as protein-coding genes for years [89]. The following features can indicate

that a transcript is non-coding, even if a potential ORF is present: The transcript

is predominantly present in the nucleus; The ORF is not substantially longer than

expected by chance considering the length of the transcript; Codon frequencies are

not random; The nucleotide substitution rates are not biased towards the third codon

position; The aminoacid sequence of the ORF is not similar to known proteins or

protein domains. However, experimental tests of in vitro translation are often critical

to undoubtedly exclude coding capacity.

With the current speed of lncRNA discovery by far outpacing their functional an-

notation, the question has become what fraction of the detectable lncRNAs actually

convey biological functions, as opposed to being coherently transcribed and processed

byproducts without biological relevance. Only a small minority of the nearly genome-

spanning primary transcriptional output of mammalian genomes have been detected

as stable processed RNA products such as protein-coding mRNAs, mRNA-like ncR-

NAs (mlncRNA), or a plethora of short RNA products [90, 91]. Nonetheless, the dis-

cussion whether these “dark matter transcripts” are real or merely technical artefacts

seems to have been (largely) settled in favor of the reality of pervasive transcription

[8, 9, 14, 78, 92, 93].
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3.2. Transcriptional noise vs. functionality

Pervasive transcription, which seems to be prevalent since the last common ancestor

of eukaryotes a billion years ago, produces a widely diverse repertoire of thousands

of long non-coding RNAs from mammalian genomes. However, the classification for

a group of heterogeneous molecules with a tremendous expected functional diversity

which could rival the proteome’s is based merely on size and missing protein-coding

capacity.

Most lncRNAs lack levels of sequence conservation comparable to their protein-

coding sisters. Recent studies estimate that less than 10% of the human genome are

evolutionarily constrained at the sequence level [94]. Such estimates are based on

a comparison with 4-fold degenerate codon positions or ancient repetitive sequences

that are taken as neutrally evolving. As such they are lower bounds limited by the

power of statistical tests and the assumption that the reference really evolves without

constraint. In the light of pervasive transcription this is not necessarily true [95].

This low level of sequence conservation impedes “traditional” genome-wide searches

for homologs both between species and within the same genome. It has led some

researchers to conclude that most lncRNAs convey no important biological functions

[96, 97]. Even if much of the transcriptome evolves (nearly) neutrally at the sequence

level, substantial selection pressures may still act e.g. on gene structure or RNA

structure, as it will be discussed below.

3.2.1. Mechanisms of lncRNA action

A growing body of detailed functional studies about lncRNAs demonstrates that they

can have strong cellular effects and exert non-trivial influence on the organismal level.

LncRNAs affect gene expression through diverse mechanisms and in a wide variety

of genomic contexts. They may exercise positive and negative regulation, act in cis

or in trans, impact transcription, post-transcriptional maturation, or translation, and

function through interaction with RNA, DNA, or proteins. The transcript itself can

serve as a scaffold for binding sites, as molecular decoy, as a guide to target elements,

or as a recruiter or inducer for building molecule complexes (reviewed e.g. in [98–

100]). The best studied cases are those associated with human diseases (reviewed e.g.

in [17, 18, 81]).

There are five established roles for long non-coding RNAs (Figure 3.2), according

to their mechanism of action. One lncRNA can exert multiple of these roles:

Signal lncRNAs (e.g. HOTAIR, HOTTIP, Xist) play essential roles in signal regula-
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3.2 Transcriptional noise vs. functionality

Figure 3.2.: Functional mechanisms of lncRNA. (a) Precisely expressed lncRNA over
space and time as response to developmental cues serve as signal regulators. (b) By titrating
away DNA-binding proteins (e.g. TF) lncRNA act as decoys. (c) They may also guide protein
complexes to specific target sites and/or (d) act as scaffolds to link those proteins and form
a complex. Figure adapted from Lorenzen and Thum [17] and extended.

tion when expressed in a highly spatio-temporal specific manner as a response

to various stimuli.

Decoy lncRNAs (e.g. MALAT1, MHRT, GAS5) can regulate transcription by bind-

ing to and detracting transcription factors or other regulatory proteins away

from chromatin.

Guide lncRNAs (e.g. Xist, HOTTIP, HOTAIR, Fendrr) help chromatin modifying

complexes, typically PRC2, to localize certain target sites on the genome in cis

as well as in trans.

Scaffold lncRNAs (e.g. ANRIL, HOTAIR, Kcnq1ot1) help assemble, link and hold

together aggregations of proteins to form ribonucleoprotein (RNP) complexes

which can affect histone modifications on chromatin.

Sponges are a special form of decoys that act on microRNA (miRNA) targets. They

bind a multitude of microRNA molecules and titrate them away from the target

site, causing a downregulation. Hence lncRNAs act as competing endogenous

RNAs (ceRNAs) to regulate miRNA networks.
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3.2.2. Regulation modes of gene expression

A critical layer of genetic regulation is formed by lncRNAs. They largely contribute to

the high organizational complexity of organisms, while maintaining a steady number

of protein coding genes. Since RNAs are molecules that can be synthesized and

degraded quickly and without high energy costs, they are a perfect match to act as

regulators. It is known that they regulate the expression of neighboring (cis-active)

or distant (trans-active) protein-coding genes, with enhancing or repressive effects

on the expression of a gene.

Transcriptional regulation. Non-coding RNAs transcribed from enhancers or pro-

moters in close proximity to the protein-coding gene can act as co-factors in

ribonucleic complexes to affect transcription factors and indirectly regulate the

transcriptional activity cis. lncRNA genes are in fact enriched in these locations.

Post-transcriptional regulation. Post-transcriptional processing is a multistep event,

which provides regulation targets on a variety of different levels: mRNA mat-

uration, including (alternative) splicing, capping and other editing; transport;

translation; and degradation, including molecule stability. The natural abil-

ity of RNA to base pair with and thus recognize a complementary sequence

makes RNA, especially transcribed from antisense, a highly specific potential

post-transcriptional regulator.

Epigenetic regulation. The modification of chromatin states seems to be the most

common way of lncRNA mediated gene regulation. They recruit chromatin

remodeling complexes to specific genomic loci, which affect the methylation of

histones and therefore regulate transcription. The Polycomb repressive complex

2 (PRC2) induces the repressive chromatin mark H3K27me3. lncRNAs can con-

tribute to this silencing pathway by binding to its subunits Ezh2 and JARID2

and guiding them to a specific target chromatin, or mediating the PRC2 assem-

bly and/or stabilizing it. The mixed-lineage Leukemia (MLL) complex, which

induces the activating chromatin mark H3K4me3, can also be recruited by lncR-

NAs. Another way for epigenetic activation via lncRNAs is to titrate silencing

factors like PRC2 away from chromatin.

See Table 3.2 for a more detailed description of the named lncRNA examples.

Nevertheless, these are only a tiny fraction of all reported lncRNAs, that have been

explored with respect to their function and mechanism of action, which leaves a great

number of transcripts with unknown function.
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Table 3.2.: Examples of important functional lncRNAs. It has been shown that lncRNAs play key roles in cellular pluripotency, differentiation and
developmental patterning, dosage compensation, and genomic imprinting (reviewed in [101]). Amongst the best studied lncRNAs regarding their molecular
function are Xist, HOTAIR and ANRIL.

lncRNA Target Level of
regulation

Acts
in

Effect on
expression

Mechanism Biological context

ANRIL [102, 103] alias
CDKN2B-AS1; located on
chr 9p21; expressed antisense
of INK4A

p15 (INK4B);
CDK6

epigenetic cis repressive
activating

repressive: binds PRC1 and PRC2, inducing chro-
matin modification (scaffold, guide); activating:
molecular sponge for miR-99a

targets a large number of genes throughout
the genome regulation of cell proliferation and
senescence; associated with cardiac diseases, di-
abetes and various cancers

Fendrr [104, 105]; expressed
adjacent of TF gene FOXF1

FOXF1,
Pitx2

epigenetic both dual binds to PRC2 and/or MLL complex to induce
chromatin marks

crucial for heart and body wall development in
mouse

GAS5 [106]; located on chr
1q25

glucocorti-
coid-respon-
sive genes

transcript. repressive acts as decoy for glucocorticoid receptor and stops
it from binding to glucocorticoid response elements

tumor suppressor; key role in cell apoptosis and
growth

H19 [107–109]; located on chr
11q15.5; maternally expressed

IGF2;
miR-7 targets

multiple both silencing exact mode of action is still elusive; has been re-
ported to bind to PRC2, recruit MBD1 and act as
molecular sponge for miRNA let-7

imprinting control and regulation; muscle dif-
ferentiation; growth control; implicated as tu-
mor suppressor

HOTAIR [110–112]; expressed
from the HOXC locus

HOXD locus epigenetic trans repressive mediating chromatin modifying complexes PRC2
and LSD1-CoREST to the target (scaffold, guide,
signal)

involved in distal limb development

HOTTIP [105, 113]; ex-
pressed antisense of INK4A

HOXA locus epigenetic cis activating binds WDR5 of MLL complex forming chromatin
loops and catalyzing the H3K4me3 chromatin
mark

limb morphology, including muscular and skele-
tal tissue

Kcnq1ot1 [114, 115]; located
on chr 11p15; paternally ex-
pressed

Kcnq1 epigenetic cis silencing recruits both PRC2 and G9a to the target gene
to induce two silencing histone marks: H3K27me3
and H3K9me3 (scaffold, guide, signal)

imprinting control of paternal allele; expressed
in placental tissue

MALAT1 [116] alias NEAT2;
located on chr 6p24.3

motility-re-
lated, growth
control genes

multiple trans activating
repressive

activating: binds to the unmethylated PRC2 in-
ducing activating acetylation marks of histone 2;
repressive: sequesters SR splicing factors affecting
alternative splicing (decoy)

regulates synaptogenesis, endothelial prolifer-
ation; associated with a multitude of cancer
types (metastasis, cell growth, apoptosis) and
other diseases, e.g. diabetes

MEG3 [117]; located on chr
14q32.3

p53;
Dlk1

epigenetic trans;
cis

activating recruitment of PRC2 and chromatin modification putative tumor suppressor; imprinting; crucial
for growth and development

PANDA(R) [118, 119]; located
on chr 6p21.2 at the CDKN1A
locus

Bcl-2 transcript. trans repressive activated by p53 binding to the CDKN1A locus;
titrates the nuclear TF NF-YA away from the
chromatin of target genes (decoy)

induced through DNA damage; affects p53-
mediated cell apoptosis and cell-cycle arrests;
associated with cancer

TUNA(R) [120] alias mega-
mind (zebrafish) [16]; located
on chr 14q32.2

Nanog, Sox2,
Fgf4

transcript. trans activating binds three RBPs, guiding the complex to and oc-
cupying the promoters of the target genes

neural differentiation; maintenance of pluripo-
tency; associated with Huntington’s disease

Xist [121]; located on chr
Xq13.2; expressed from the
future inactive chrX

chrX epigenetic cis silencing it physically coats chrX and recruits PRC2, which
induces the repressive chromatin marks (scaffold,
guide, signal)

inactivation of the second X-chromosome in
mammalian females; dosage compensation
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3.3. Conservation of lncRNAs

For a large fraction of mRNAs the only evidence to deem them functional is the

presence of an evolutionarily conserved ORF or the presence of an ORF that would

translate into an amino acid sequence similar to known protein or at least containing

known protein domains. In other words, homology and conservation are accepted as

indicators of biological function and relevance in the world of protein coding genes

and for the highly conserved families of ncRNAs such as miRNA, snoRNAs, snRNAs,

tRNAs, and rRNAs.

Extending this reasonable standard to the entire transcriptome, this section reviews

the available evidence for the evolutionary age and conservation patterns of lncRNAs

3.3.1. Primary sequence

Naturally, ncRNAs do not obey the same evolutionary constraints as protein-coding

transcripts. Instead of featuring high sequence conservation, the majority of non-

coding genes has highly variable intronic and exonic sequences, gene length and

structure, as well as transcriptional start sites. In view of this fact, established

ncRNA orthologs among amniotes are rare. Only a small subset of lncRNAs shows

levels of sequence conservation comparable to protein-coding genes or some of the

evolutionarily old, well-conserved families of ncRNAs.

MALAT1 is one of the best-conserved lncRNAs and regulates alternative splicing

as well as gene expression [116]. It is conserved throughout the jawed vertebrates, but

may have been lost in birds [122]. MALAT1 shares several characteristics, including

nuclear retention [123] and a non-standard processing of its 3’ end [124], with the

longer, but less well conserved, eutheria-specific MENβ RNA. The Xist RNA, which

is the key player in X chromosome inactivation [125] in eutheria, originated from

the pseudogenization of the ancestral LNX3 protein-coding gene under inclusion of

several transposable elements [126, 127].

The lncRNA TUNA was discovered in zebrafish as megamind [16, 120]. TUNA

is involved in brain development but also expressed in spinal chord and eye tissues.

The exonic regions of TUNA feature atypically strong sequence conservation across

vertebrates. In particular, it contains a sequence element of ∼ 200 bp length with

> 80% sequence similarity between human and zebrafish. This level of conservation

exceeds that of most coding regions. Well-studied functionally important ncRNAs

with orthologs over a wide phylogenetic range of species include genes such as Fendrr,

Braveheart, cyrano, and Evf-2 (reviewed in [101]) as well as H19X [28]. A computa-

tionally generated high quality set of 233 constrained lncRNAs was recently reported
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in [128].

Ultraconserved regions (UCRs) are genomic segments that are highly conserved

across almost all vertebrates, with a remarkable 100% sequence identity between

human, rat and mouse [129]. The majority of non-coding UCRs is transcribed into

RNA (T-UCRs) [130] and gives rise to lncRNAs. It remains unclear, however, whether

the extreme conservation of UCRs is caused by direct selection pressure on their RNA

products.

The majority of lncRNAs, exhibits very little measurable sequence conservation.

This does not imply that they are lacking function. Indeed, there are good examples

of lncRNAs without substantial sequence conservation but unambiguous biological

functions, like ANRIL [102] and GAS5. The latter harbors about ten distinct snoR-

NAs in its introns [131], which makes it possible to track the gene throughout the

vertebrates. The very poorly conserved exonic product acts as a riborepressor block-

ing the DNA-binding domain of the glucocorticoid receptor [106, 132].

In extreme cases, rates of sequence evolution are even faster in functional RNA

genes than in neutrally evolving genomic background. In [133] segments in the human

genome were identified that show an atypically strong sequence divergence between

human and chimp that at the same time are highly conserved between chimp and

non-primates. Of these “human accelerated regions”, 96% are located in non-coding

regions [133, 134]. The most famous case, HAR1, might be of importance in the

evolution of the human brain [135]. We refer to [136] for a recent review on HARs.

Although it remains a matter of debate whether the accelerated rate of evolution is

caused by positive selection or is the consequence of compensatory substitutions [137],

examples like this emphasize that a lack of nucleotide-wise sequence conservation

cannot be used as proof for the absence of function.

A series of global statistical analyses [19–22] showed that a large fraction of lncR-

NAs is under stabilizing selection. The measured levels of conservation, however, are

much smaller than for protein-coding genes. A comparison of human lncRNAs with

18 mammals [80] used exonerate [138] to map human lncRNAs to genomic regions

identified by blast as candidate orthologs and counted a human lncRNA as conserved

when 70% were recovered by exonerate. An estimated 44% of the GENCODE 7

lncRNA set was found to be conserved across the major groups of placental mammals

[80].

Estimates based on the average sequence conservation of a lncRNA locus may be

criticized, however, because there is no guarantee that the observed selection pressure

really acts on the RNA. Instead, “phylogenetic footprints”, that is well-conserved

local elements, might also function as transcription factor binding sites at the DNA

37



The curious case of non-coding RNA

level. The HOX clusters serve as a particularly impressive example. On the one

hand, many well-characterized mRNA-like lncRNAs [110, 139], including HOTAIR

[110, 140], HOTTIP [113] and several microRNA precursors [141], are transcribed

from the intergenic regions. On the other hand, the same region is also packed with

conserved functional DNA elements [142–144]. Hence, the observable conservation

of genomic sequence does not in itself provide sufficient information to disentangle

the evolutionary history of lncRNAs. In other words, the fact that the genomic

sequence of a lncRNA exon is sufficiently conserved to be identifiable by blast or

infernal cannot be taken as adequate evidence that the exon is conserved. For

instance, [145, 146] report the conservation of all but one exon of HOTAIR between

man and mouse. Detailed sequencing data [112], on the other hand, indicate that

mouse HOTAIR, like kangaroo HOTAIR [146], completely lacks the first three exons.

Later we will show that the method developed in the course of this thesis recapitulates

this observation by considering the conservation of splice sites only (Figure 6.7B).

Stabilizing selection on lncRNAs also reveals itself as a significant, albeit sometimes

weak, contrast of conservation levels between exonic and intronic sequence. A detailed

analysis of, for instance, mammalian lncRNAs uncovered an increased GC content in

exons compared to introns [147]. Several studies reported strong negative selection

on the promoters of lncRNAs [21, 22]. Based on PhastCons scores [148], lncRNA

promoters match the conservation levels of protein-coding genes [80]. A good example

is the lncRNA RMST, which plays an important role in neuronal development [149],

and is highly conserved at least among tetrapods [150]. We later show, that this can

also be confirmed by tracing the conservation of its splice sites (Figure 6.7D).

3.3.2. Secondary structure

Many well-studied ncRNAs exhibit well-conserved RNA secondary structures. Well

known examples are the many families of structured RNAs compiled in the Rfam

database. It comprises both independent ncRNA genes and a large collection of

structured RNA elements that function as part of larger transcripts. Examples of

the latter are internal ribosomal entry sites (IRES), selenocystein insertion elements

(SECIS), aptamer domains of riboswitches, or the autoregulatory domains of many

of the mRNAs that encode ribosomal proteins [151]. The non-coding RNA MALAT1

has a conserved cloverleaf structure at the 3’ end of the transcript [152]. Importantly,

the mere presence of stable secondary structures cannot be taken as an indication of

biological or molecular function: Random RNA sequences may also fold into highly

complex and stable structures that statistically are no different from known functional

secondary structures [153, 154]. It is necessary therefore to assess the evolutionary
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conservation of the secondary structures.

Over the last two decades a variety of computational methods have been developed

to identify negative selection on RNA secondary structure, i.e., the preservation of

base pairs, and to distinguish it from selection pressure acting to maintain the se-

quence. They fall into two broad classes. Most tools are alignment-based. These

include qrna [155], AlifoldZ [156], EvoFold [157], RNAz [158], or SISSIz [159], and

alignment-free methods such as CMfinder [160]. Although the technical details dif-

fer widely [161], the basic idea is the same: characteristic properties of the input

alignments are measured and compared to the prediction from a background model

that for a given level of sequence conservation assumes that there is no conservation

of structure. The discrepancy between background prediction and foreground mea-

surement is then converted into measure of selection on the secondary structure. By

construction alignment-based approaches depend on the reliability of the multiple se-

quence alignment that is used as input. Hence they are limited in practice to regions

that are at least moderately conserved also at the sequence level. In a genomic screen,

transcript boundaries are usually unknown, hence sliding windows are used, leading

to an unavoidable increase of noise in the predictions.

Alignment-free screens start from homologous sequences that have been identified

based on synteny [162, 163], i.e., the order-preserving arrangement of closely-spaced

homologous genomic elements. Then structure-based alignments are computed as

best estimates for conserved RNA structure. For this task, Foldalign has been used

in [162]. More recent screens [163] used CMfinder [160]. As in the alignment-based

approaches, the predictions are compared to randomized controls to determine cutoff

levels and to estimate false discovery rates (FDR). Alignment-free screens on very

poorly conserved regions still reported large numbers of sequence elements that appear

to be under stabilizing selection for RNA secondary structures. This emphasizes

the point that a lack of observable constraints on individual nucleotides does not

necessarily imply a lack of selective pressure on an entire sequence element.

All computational methods that measure selection on secondary structure are sen-

sitive to modification of the background model, and thus are plagued by relatively

high FDRs. It should be noted that FDR estimates are not without problems as

well as they are obtained from re-running the screen on a computationally random-

ized control. The choice of the background model therefore influences the reported

FDR values. Surveys conducted with different tools, show little overlap, see e.g.

[166], where RNAz and EvoFold is compared on the ENCODE regions (Table 3.3).

While this observation appears to speak against the reliability of the available com-

putational methods, a closer inspection shows that the lack of overlap has a simple

explanation: the sensitivity of the methods depends strongly on sequence conserva-
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Human           GGCUGGCUUUAGCUCA.GCGGUUACUUCGACAGUU...CUUUAAUUGAAACAAGCAACCU.....GUCUGGGUUGUUCGAGA....CCCGCGGGCGCUCUCCAGUCCUUUU.
                ((((((.....((((._((((....((((((((((___....)))))......(((((((_____....)))))))))))).____.)))))))).....))))))....._  -31.70
Microcebus      GGCUGGCCUUAGCUCA.GCGGUUCCUUCGAUCGCAUGUCAACAACUUC.UCUGU........GUAGUCAGAGCGGUUCGAUACCCACCCGCGGGCGCUCUCCAGCCCUUUU.
                ((((((.....((((._((((.....((((((((.((.(.(((.(..._...))________)).).))..)))).)))).......)))))))).....))))))....._  -34.90
Myotis          GGCUGGCUUUAGCUCA.GCGGUUCCUUCGCAUACAGAACUUCCUACUC.GCAGUUGCUCACUUGAGCGACAGCGGUUCGAGA....CCCGCGGGCGCUCUCCAGCCCUUUU.
                ((((((.....((((._((((.((.(((.......)))..((..((.(_((.(((((((....))))))).)))))..))))____.)))))))).....))))))....._  -40.10
Choloepus       GGCCGGCUUUAGCUCAAGCGGUUACUUCGGCUGAUUGACUUCAUUUG..UCAGCAACCCC.....GUCUGGG..GUUCGAGA....CCCGCGGGCGCUUUCCGACCCUUUUU
                ((.(((....(((.(..((((....((((((((((...........)__)))))((((((_____....)))__))))))).____.))))..).)))..))).))......  -33.20
Chicken         GGCCGGCUUUAGCCCA.GCGGUUCCUUCG.GCAAACAGUUUCUGAGUU.GCGG..GCCC.......CGACUGGGGUUCGAU.....CCCGCGGGCACCC.CUGGCCCAUUU.
                ((((((.....((((._((((......((_((...(((...))).)))_)(((__((((_______(....)))))))).._____.))))))))...._))))))....._  -39.20
CONSENSUS       GGCCGGCUUUAGCUCA_GCGGUUCCUUCGACAAAUAACUUCAUAUUC_GCAGU__GCCC______GCCACAGCGGUUCGAGA____CCCGCGGGCGCUCUCCAGCCCUUUU_
                ((((((.....((((..((((....(((((..............................................)))))......)))))))).....))))))......  -22.32

Figure 3.3.: Conservation pattern of amniote vault RNAs [164]. The very uneven
conservation pattern, here a well-conserved stem structure at the ends and highly variable
interior regions is typical of many evolutionarily conserved RNA elements. Secondary struc-
ture predictions for each sequence and the consensus structure of the alignment computed
with RNAalifold [165] are shown in “ViennaRNA notation”: matching pairs of parentheses
denote base pairs, dots indicate unpaired bases. Bases pairs present in the consensus marked
in color. Note that the consensus sequence (defined as the majority vote over an alignment
column) does not fold into the consensus structure. The energy of the consensus structure
(−22.32 kcal/mol) differs substantially from the average folding energy of the unconstrained
sequences (−35.84 kcal/mol). The ratio, here 0.623, serves as a statistically robust measure
of structure conservation e.g. in RNAz [158].

tion and sequence composition. While EvoFold works best on very conserved AU-rich

sequences, RNAz is most reliable on moderately conserved GC-rich sequences. In a

recent, very detailed analysis [167], different tools are therefore combined to a meta-

method that selects the best individual tool for given input parameters. This reduced

the estimated false discovery rate to only 5−22%. In [167], more than 4 million struc-

tured RNA components were identified that are conserved in mammals. This yields

an estimate of 13.6% for the fraction of the genome with selective constraints on

RNA structure. Of these, 88% fall outside the sequence-constrained regions.

CMfinder [160] infers covariance models from unaligned sequences as a means of

detecting secondary structure conservation. It therefore does not pre-suppose signif-

icant sequence conservation. On a test set of 19 known ncRNA families from Rfam,

with randomly generated flanking sequences (200 nt), CMfinder yields more accurate

motif predictions than RNA alignment tools such as RNAalifold [170], Pfold [171],

Foldalign [172], in particular for very short elements and for conserved RNAs with

low sequence similarity. Because of the latter, CMfinder is well suited for identifying

secondary structure conservation in lncRNAs.

In [163], CMfinder was employed for a large-scale screen of the ENCODE regions.

Here, multiz alignment blocks were used to identify syntenic genomic locations.

The screen excluded known coding exons as well as conserved regions as defined

by PhastCons. They report 4933 candidates in non-repetitive regions detected with

CMfinder, compared to 3134 and 3267 of EvoFold and RNAz predictions from [166]

(for comparability a posteriori filtered in [163]). 78% of the predictions in [163] are

complementary to the predictions in [166], adding a total of 3861 CMfinder predicted

candidates to the set of the filtered EvoFold and RNAz predictions. When includ-
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Table 3.3.: Overview of the latest screens for conserved secondary structures in
the human genome. The numbers are directly taken from the publications specified in
column “ref”. Note that not all inputs/predictions have been filtered for coding regions.
The screen in [167] for example was applied on a genome wide input, with a compound of
SISSIz, RNAz and other prediction programs. Some numbers (*) have been recalculated or
converted from fraction to Mb, or vice versa (based on a human genome size of 3095Mb and
a D. melanogaster genome size of 120Mb) , to fit the measuring units of our table. As for
the RNAz results we only show the number of high confidence (p > 0.9) loci.

Species Method Input Input (Mb) Loci % Input % Genome Ref.

hg17 RNAz PhastCons conserved
(excl. coding regions)

82.64 35, 985 6.6 1.76* [168]

hg17 RNAz ENCODE
(excl. repeat regions)

9.76 3707 4.2 0.01* [166]

hg17 EvoFold ENCODE
(excl. repeat regions)

14.44 4986 2.5 0.01* [166]

hg18 CMfinder ENCODE
(excl. PhastCons conserved, incl. repeat regions)

8.68 6587 6.1 0.02* [163]

hg19 SISSIz + EPO alignment
(35 eutherian mammals)

∼ 2600* > 4M 18.5 13.6 [167]

Drosophila RNAz ENCODE
(excl. 5S rRNAs, SRP RNAs)

57.4 16, 377 3.8* 1.75* [169]

ing repeat regions into the screening, 1654 further candidates have been found with

CMfinder, adding a total of previously uncovered 5515 candidates to the comprehen-

sive RNAz/EvoFold set of 17, 046 candidates, extending it by 32%. The total of 6587

predicted candidates spans 0.53Mb, which equals 6.1% of the input sequence, where

in non-repetitive regions twice as many candidates are detected than in repetitive

regions (7.9% vs. 3.9%).

The high false discovery rates have promoted several authors to devise postprocess-

ing methods. In the simplest case, stringent filters are used as in [173]. Structure-

based re-alignments with LocARNA-P [174] and a consistency-based scoring scheme

that measures structure-based alignment reliabilities provide much more accurate

boundaries of regions with evolutionarily conserved secondary structures and con-

siderably reduce the false positive rate. The REAPR tool [175] achieves a substantial

increase in computational efficiency for such approaches.

A major issue with the various computational screens for conserved RNA structure

(see Table 3.3) is the disappointingly small overlap of the actual predictions. This

is readily explained, however, by the very different characteristics of the secondary

structure inference tools. In particular their sensitivities strongly depend on GC

content and sequence conservation. The predictions therefore have to be expected to

be largely complementary. Despite substantial false positive rates, taken together they

demonstrate that evolutionarily conserved structured RNA is an abundant genomic
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feature.

There is a correlation of conserved structures and their distance to the nearest

protein-coding genes. Predominantly, the structurally conserved elements are 50 kb

up- or downstream from the next protein-coding element, indicating their potential

role as molecular functional cis-regulators of those genes.

RNA secondary structures can be modular and very complex. It is likely that

the diversity in functionality and modularity influences the conservation pattern of

specific regions within the lncRNA. This in turn impacts the sensitivity of computa-

tional methods, contributing to the discrepancies between different screens. Finally,

all currently available approaches focus on the base paired regions. Linker sequences,

in which a depletion of base pairs may be a conserved feature, therefore are likely to

remain unnoticed.

A comparison of predicted secondary structures in human and murine transcripts

showed little differences between mRNAs and lncRNAs [176]. The survey [167] re-

ported a small but significant (1.4-fold) enrichment of conserved structures in lncR-

NAs. It appears, however, that this enrichment is not uniform. While functionally

important secondary structure elements have been suggested for several lncRNAs, the

majority of annotated lncRNA is not enriched in evolutionarily conserved RNA ele-

ments [121, 177]. In fact, the relative enrichment of secondary structure elements in

protein-coding exons is more than twice as strong, possibly reflecting the importance

of structured elements in post-transcriptional regulation.

So far, systematic investigations into the conservation of RNA secondary structure

are based only on computational methods. Recently, several experimental techniques

to assay RNA secondary structures on a genome-wide scale have become available,

see [178, 179] for timely reviews. At the time of writing, however, these have not

been employed in a comparative context.

An interesting special case are transcripts with dual functions as both protein-

coding and non-coding RNAs. The paradigmatic example is the steroid receptor

RNA activator (SRA), which produces both a well conserved protein and an elabo-

rately conserved secondary structure [180–183]. As a lncRNA it coactivates steroid

nuclear receptors and also participates, like many others, in chromatin bases gene

regulation [184], while the protein product SRAP appears to function by stabilizing

specific intermolecular interactions in the nucleus [185]. It is unclear at present how

wide-spread such cases are. There is, however, statistical evidence that conserved,

structured RNA elements are quite frequently superimposed on coding sequences

[186, 187]. Experimentally studied examples, such as oskar [188] in fruitflies are very

rare.
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3.3.3. Gene structure

Spliceosomal splice sites constitute highly conserved sequence motifs that can rela-

tively easily be recognized in genome DNA sequences by various statistical pattern

search methods [189, 190]. Evolutionarily conserved splice donors and acceptors are

therefore identifiable in genome-wide multiple sequence alignments. In combination

with additional machine learning techniques that evaluate the sequence between con-

secutive splice donor–acceptor pairs, either short introns [31] or exons [32] have been

used successfully to find evolutionarily well-conserved lncRNAs. With the availabil-

ity of large sets of transcriptome sequencing data this genome-centered approach has

become obsolete as means of genome annotation. It serves as a demonstration, that

conservation of splicing patterns can be used to establish orthology of lncRNAs that

are otherwise not sufficiently well-conserved at sequence level.

The host genes of snoRNAs and microRNAs form a special class of lncRNAs whose

evolution can be studied with relative ease: their payloads, the microRNA precursor

hairpins and the snoRNAs, respectively, are typically very well conserved and, despite

their small size, can be traced at least at phylum level, see e.g. [191, 192] and the

references therein. Although snoRNAs and miRNAs are known to be mobile to a

certain extent, their associations with coding and non-coding host genes are evolu-

tionarily stable at long time-scales [193–195]. Consequently it is possible to identify

putative orthologs in distantly related species. It is not surprising, that many of

the non-coding host genes such as UHG (SNHG1), U87HG [196], or GAS5 [131] also

exhibit deeply conserved gene structures.

Among more distant species orthology of lncRNAs cannot be established unam-

biguously due to rapid sequence divergence. Several authors noted that lncRNAs can

often be found at syntenic positions [16, 30, 197]. These also seem to have signifi-

cantly correlated expression patterns which may hint at analogous functions. Due to

poor sequence similarity blastn fails to identify conservation between the orthologs

of Miat/Gomafu/Rncr2 in human, mouse, frog and chicken. However, the syntenic

position of the locus strongly suggests that they are indeed homologs [99]. This is

supported by the presence of multiple copies of a short motif within the last exon of

the Miat transcripts in all species.

3.4. Evolution of lncRNAs

Taken together, the various threads of evidence outlined in Section 3.3 show that

many lncRNAs indeed convey selectable functions whether or not these selective con-

straints result in levels of nucleotide-wise sequence conservation that is detectable
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with classical measures. It is of key interest, to obtain an overview of the actual num-

bers of lncRNAs that are under measurable evolutionary constraints and to estimate

their evolutionary age. At present, estimates from various studies still differ quite

a bit, but there appears to be an emerging consensus that conserved lncRNAs are

numerous and much older than their poor sequence conservation might suggest.

In an RNA-seq based study covering eleven tetrapods with a total of 185 samples

of eight tissues > 13, 500 multi-exonic homologous families of lncRNAs were identified

[28]. Of these, about ∼ 2500 families are highly conserved, dating back at least to the

eutherian ancestor some 90 million years ago. More than 400 lncRNAs could even

be traced back 300 million years ago. However, the majority (81%) were reported as

primate-specific, classifying only the remaining 19% as conserved beyond primates.

Orthology assignments in this study were based on sequence similarity recognizable by

pairwise blastn comparisons with an additional assessment of synteny. The numbers

therefore have to be regarded as lower bounds on the conserved part of the mammalian

lncRNA system.

In a direct comparison of transcriptome sequencing data for six mammalian species

comprising nine tissues, [27] showed that 30 − 40% of nearly 2000 lncRNAs exhibit

conservational expression patterns between human and rodents and/or ungulates. In

accordance with [28] 80% of the human lncRNAs had orthologs in chimpanzee. The

identification of orthologs between human and each other species, was accomplished

by employing genome-wide pairwise alignments from the UCSC genome browser.

When looking at the level of splice sites, the rate of primary sequence conservation

was significantly higher than for complete lncRNA transcripts (in rhesus 90% of splice

sites vs. 63% of lncRNAs, in rat 62% vs. 35%). By comparing a cufflinks [198]

generated transcript annotation made from the RNA-seq data sets of rhesus, cow,

mouse and rat, with the human GENCODE annotation, 40 − 73% of all cufflinks-

constructed non-coding exons were found to be expressed in human.

The comparison of publicly available data of > 4000 lncRNAs of human and mouse

to estimate the size of the mammalian lncRNome via a maximum likelihood approach,

resulted in a prediction of 40, 000 to 50, 000 lncRNAs of which about 30, 000 (60 −

70%) are conserved between man and mouse [29].

Due to their close proximity and relevance for protein-coding genes, individual

splice sites within untranslated regions (UTRs), as expected, have significantly higher

levels of conservation (∼ 52% and ∼ 62% for 5’UTRs and 3’UTRs respectively)

[35]. Like other estimates of conservation, estimates based on conserved splicing

patterns suffer from the uneven quality of genome-wide multiple sequence alignments.

Since coding exons provide a dense set of high quality anchors, they are better and
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more complete in regions containing much coding sequence. The conservation of

“intergenic” transcripts is therefore systematically underestimated.

Although lncRNAs typically have a relatively low expression rate compared to

protein-coding genes [28, 80], their expression shows very distinctive spatio-temporal

patterns, featuring a substantially higher tissue-specificity than mRNAs [15]. The

tissue-specificity is conserved in all primates in 47% of the cases, and in 28% through-

out the eutherian clade [28]. The extent of spatial conservation, is significantly lower

than in mRNAs. Changes in the tissue-specificity seem to be common. The lncRNA

H19X, for example, is predominantly expressed in placental tissue in human and

mouse, while in opossum it is highly expressed in testis [28].

Not only the expression patterns of lncRNAs are subjects to rapid evolutionary

turnover. This effect can also be observed in the evolution of non-coding gene struc-

ture. When tracing back the conservation of splice sites it becomes obvious that

non-coding gene structures evolve rapidly. While in about 35% of the cases at least

one splice site of a non-coding transcript can be traced back to mouse, less than 13%

of the entirety of all non-coding splice sites -present in human- can still be found in

mouse [35]. This is also visible in the example of HOTAIR, see Figure 6.7B.

3.5. Perspective

Diverse patterns in lncRNAs evolution match the observation that lncRNAs are by no

means a homogeneous group but apparently comprise transcripts with very different

fates, interactions, and biological functions. Nevertheless, there are some commonal-

ities that make it meaningful to study them as a group. There is mounting evidence

that thousands and maybe tens of thousands of lncRNAs are subject to some se-

lective constraints on their gene structure, including promoters, and their splicing

patterns in addition to commonly very weak or even undetectable selection pressures

on their sequences. Expression patterns are frequently very specific to tissues, cell

types, and developmental stages, and are often conserved across species. It is worth

keeping in mind that quantitative estimates of lncRNA conservation suffer from mul-

tiple sources of errors and biases that limit their accuracy. These include (i) the

uneven quality of reference genomes, (ii) the decreasing sensitivity of computational

homology assignments with phylogenetic distance, (iii) ascertainment biases in cer-

tain model organisms such as human, mouse, or fruitfly for which much more data

are available, and (iv) limits to the detectability of transcripts specific to rare cell

types in complex tissues such as brain.

Available data suggest an extensive turnover of entire lncRNA gene structures and
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at a rapid evolution of individual transcripts. This view, however, may to a certain

extent also be confounded by biases in the data. The well-documented specificity

of spatio-temporal expression patterns makes it difficult in practice to find perfectly

matching RNA-seq data sets for cross-species comparison. The relatively low expres-

sion levels of many lncRNAs in most samples presumably reduce the congruence even

further because transcript reconstruction pipelines frequently retrieve only fragments

rather than complete lncRNAs. Our current inability to adequately infer lncRNA

functions from sequence features, furthermore, does not allow us to zoom in on im-

portant parts of a transcript to reduce the noise in evolutionary comparisons. It is

not unlikely, that the current view on evolutionary age and turnover is biased towards

inferring ages that are too young and conservation levels that are too low.

The mounting evidence for selection beyond nucleotide-wise conservation [199] im-

plies that there is need for statistical and computational methods to assess constraints

on secondary structure, distances between recognizable anchor points, and similar

features not only for deep phylogenetic conservation but also at a population level.

Methods to estimate the effects of SNPs on RNA secondary structure [200–202] are

a promising first step, but by no means provide a satisfactory way of measuring

selection pressures on non-coding regions.
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Chapter 4

Technical background

T his chapter will give an overview on the technical principles underlying the

developed method. In particular, Section 4.1 elucidates the algorithmic

concepts of multiple sequence alignments. The section is based on the review of

Chatzou et al. [203] and the textbook of Böckenhauer and Bongartz [204], which are

referred to for further reading.

In addition, we will give a more detailed description of the MULTIZ [205] and EPO

[206, 207] software employed by the UCSC Genome Browser1 [208] and the Ensembl

Project2 [209, 210] to generate the two major file formats that we use as a basic

building block of our pipeline. Hereafter we will refer to those online databases as

UCSC and ENSEMBL, respectively.

In Section 4.2 we will explain the mathematical model of maximum entropy behind

the MaxEntScan software by Yeo and Burge [211] as an essential tool that we employ

to assess the conservation of splice sites.

1http://genome.ucsc.edu/
2http://www.ensembl.org/
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4.1. Mulitple sequence alignment

Multiple sequence alignments (MSAs) are a fundamental tool for comparative ge-

nomics analyses. A robust accurate alignment is crucial for the correctness of the

predicitions made in the course of this work.

The purpose of MSAs in general is to determine the similarity between sequences

of RNA, DNA or amino acids. Their potential scope ranges from phylogenetic tree

reconstruction, RNA structure predicitions and identifying functional features of pro-

teins, such as catalytic sites, target signals or specific domains. We will use MSAs to

draw conclusions about the conservation of splice sites between certain organisms.

4.1.1. Sequence alignment methods

A sequence alignment is a rectangular arrangement of two or more sequences so that

similar features are aligned in one column to reflect their evolutionary relationship.

The goal is to maximize the sum of similarities by inserting gaps into the sequences

so that homologous positions are aligned with each other. The resulting pattern is a

combination of four possible operations per aligned column.

Insertions. A gap is present in the upper sequence, but not in the lower one.

Deletions. A gap is present in the lower sequence, but not in the upper one.

Matches. Both sequences share the same nucleotide.

Substitutions. The sequences have mismatching nucleotides in this colum.

Example 4.1 (Pairwise Alignment).

This is a possible alignment of sequence GACTAGGTCACAG and GTAGATCATCA with the

respective operations for each aligned pair (represented by the leading letter of the

operation).

Sequence 1: GACTAGGTCA-CAG

Sequence 2: G--TAGATCATCA-

(Pattern: MDDMMMSMMMIMMD)

These operations hypothesize the events that occured during the evolution from a

common ancestor. To find the mathematically optimal MSA, the possible operations

are dynamically computed based on a scoring model, which assigns gap penalties

and substitution costs. This scoring function can be rather simple by giving a single

penalty score per gap column, or more sophisticated by introducing higher penalties
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for gap opening than for gap extensions, or by favoring/penalizing certain substitu-

tions based upon biological probabilities (e.g. PAM or BLOSUM matrices).

To this day a multitude of heuristics, adapting and extending the basic global or

local dynamic programming algorithms (Needleman-Wunsch [212], Smith-Waterman

[213] or Viterbi [214]), have been developed to gradually built up MSAs from pair-

wise sequence alignments. Commonly, these heuristics are all based on the progressive

alignment approach [215, 216]. These algorithms follow a certain phylogenetic order

when adding new sequences to the alignment. The order is based on a guide tree,

whose computation via an estimated distance matrix is an essential step of the algo-

rithm itself. The most famous representative of MSA methods is probably ClustalW

[217].

Developing and improving MSA methods remain to be a very active field of re-

search. Its biggest challenge is to balance out evolutionary accuracy with computabil-

ity. There is an increasing amount of available data such as structural dependencies,

phylogenetic relationships, substitution matrices or other data of biological context

that can be incorporated in the MSA computation. This, however, in turn increases

speed and memory usage exponentially. One approach to improve the accuracy

of MSAs is to deal with local minima by introducing consistency to the alignment

method. Consistency-based algorithms reestimate the costs of all possible sets of

pairwise alignments to be in the best agreement with the optimal multiple align-

ment. The archetype of these tools is T-Coffee [218] and its probabilistic variation

ProbCons [219].

4.1.2. Multiple whole genome alignment methods

When dealing with whole genomes, the task of alignment computation is stocked with

a variety of new challenges. The extreme long sequences are highly heterogenous in

function and conservation rate and including structure data on a genome scale is not

possible. To account for the more complex evolutionary events on a larger scale, at

least three additional operations have to be considered in the alignment:

Duplication. The repetition of a sequence segment (e.g. gene, exon) occured.

Inversion. A sequence segment has been reversed.

Translocation. Sequence segments have been exchanged between distant parts.

These operations are incorporated into a segmentation step previous to the align-

ment procedure in which the genomes are split into bins of homologous fragments.

Since our method relies greatly on multiple whole genome alignments provided
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through UCSC and ENSEMBL, this section discusses the basic principles of the

algorithms applied by both online databases to create the respective multiple genome

alignments (MGA).

MULTIZ

The MGAs provided by UCSC are generated with an independently operating com-

ponent of the threaded blockset aligner (TBA) software by Blanchette et al. [205]. TBA

is one of the first programs that splits a whole genome alignment problem into a set

individual distinct local alignment blocks. The MULTIZ program performs the dy-

namic programming step on those sets. To describe the method of MULTIZ adequatly,

we first have to introduce the vocabulary.

Block and blockset. An optimal local alignment between two or more sequences is

a block. Not necessarily all given have to be included in every block. A group

of two or more blocks is a called blockset.

Ref-blockset. A designated “reference” sequence, is present in each block of the

blockset, always in the first row with a positive orientation. Each position of

the reference sequence appears exactly once throughout the blockset, averting

overlapping regions between blocks.

Thread. Sequence S “threads” a blockset, if each position of S appears exactly once

throughout the blockset. A ref-blockset is always threaded by its reference

sequence.

Threaded blockset. A blockset is threaded by all of its sequences. A ref-blockset for

any chosen reference sequence S from the threaded blockset, can be achieved

by projection onto S (maf project).

TBA generates a threaded blockset for a given set of sequences. While TBA does not

take into account inversion or duplication events, MULTIZ can deal with this special

events. It dynamically computes the alignment for three or more sequences, based

on pairwise alignments generated by BLASTZ [220].

The biggest difference to a common alignment program is that MULTIZ is able to

merge two existing MSAs, present as ref-blocksets, into one bigger MSA rather than

just aligning single sequences. This process is guided by a BLASTZ pairwise alignment

between the reference sequences of both ref-blocksets (Figure 4.1). The two MSAs

are treated as sequences (of columns) for which a pairwise alignment is generated

algorithmically similiar to the progressive methods described in Section 4.1.1.

To generate the union U of an S-ref blockset M and a T -ref blockset N , MULTIZ
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Human Mouse Rat Cow DogHuman Mouse Rat

M

Cow Dog

N

Human Cow

G

U

Figure 4.1.: Generation of a MULTIZ alignment. Human-ref blockset M and cow-ref
blocksetN are merged into a new MSA, guided by human-ref blocksetG (a pairwise alignment
generated with BLASTZ). The resulting human-ref blockset U contains all sequences (species)
from both M and N . The reference sequence for each ref-blockset is written in bold letters.
Figure adapted and redrawn from [205]

uses the guiding pairwise S-ref blockset to find a combination of blocks (g,m, n) and

positions (w, x, y, z) in a maximal segment of [w, x] ∈ S and [y, z] ∈ T , so that:

1. w and x are in the same block m ∈ M

2. y and z are in the same block n ∈ N

3. (w, y) and (x, z) are aligned pairs in the same block g ∈ G

When such a combination is found the respective columns, that are aligned to

[w, x] ∈ m and [y, z] ∈ n get aligned in a new block u ∈ U . This method makes

realigning unnecessary.

The algorithm proceeds in order of the positions in S, where the alignment G is used

to translate the current position of S to the aligned positions of T and therefore to

the corresponding segments in N . In the example of Figure 4.1 human is the reference

sequence S. An algorithm called stageMULTIZ uses the alignment G between human

and cow to compute the distinct non-consecutive segments of the cow-ref blockset

N , which have to be compared to the human-ref blockset M by MULTIZ, in order to

find the right combination of (g,m, n) and (w, x, y, z). Columns that have not been

aligned per input block are reported. For further details on the algoritm, see the

publication of Blanchette et al. [205].

The output produced by MULTIZ is in MAF format and is a required input file for

our conservation analysis method, cf. Section 5.2.1.

EPO

The ENSEMBL alignments are generated by a pipeline called EPO. The three consec-

utively executed programs of Enredo, Pecan and Ortheus, first applied to the input

genomes and then feeding into each other, create a whole-genome multiple alignment.

Here we use slightly different vocabulary.

Segment. An unoriented contiguous sequence of DNA basepairs of a single input
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genome.

Directed segment. Segments that are oriented in relation to another segment.

Segment-group. A group of homologous colinear aligned directed segments.

In the first step, Enredo splits the whole input genomes into groups of non-

overlapping homologous colinear segments based on a segmentation graph, which

identifies complex rearrangement events, like duplications and deletions. The con-

struction of the used graph resembles the Mercator orthology constructor [221].

Edges are build to represent homology between genomic regions. A set of non-

overlapping short segment-groups, computed by a local-alignment program, is used

as “genome point anchors” to construct the initial segmentation graph. This is fol-

lowed by non-trivial modifications of merging and removing edges to build the final

graph. We refer to the original publication of Paten et al. [206] for a more detailed

description of this program.

The resulting segment-groups are then given to Pecan, which aligns the colin-

ear segments from each group through a probabilistic consistency-based alignment

method. It combines the same underlying objective function as in ProbCons ([219],

and briefly reviewed in [206]) with a framework of a constrained MSA [222] to work

on a larger scale.

In the final stage, Ortheus, an evolutionary alignment modeller, generates a genome-

wide ancestral sequence reconstruction. By using a phylogenetic tree as additional

input to the MSA – produced by the previous steps – the program infers the evo-

lutionary history of the MSA. The algorithm is based on a probabilistic progressive

alignment variation of the Forward algorithm by Durbin et al. [214], which incor-

porates the generation of sequence graphs. This enables the method to distinguish

insertion from deletion events. For a detailed description of the algorithm, we refer

to the method paper of Paten et al. [207].

4.2. Maximum entropy models of RNA splice sites:

MaxEntScan

The necessity to assess whether a found splice site ortholog is likely to be functional

or not, prompted us to use MaxEntScan, a strong statistical tool introduced by Yeo

and Burge [211]. In order to estimate the likelihood of a proper splicing signal, the

program assigns a log-odd ratio score (MaxEntScan score) to the splice site sequences

based on probabilistic models of acceptor and donor motifs. These models are devel-

oped using the “Maximum Entropy Principle” (MEP), which in contrast to position
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weight matrices or (inhomogeneous) Markov models, accounts for both adjacent and

non-adjacent dependencies between positions. The resulting gain in accuracy has

been shown to reliably predict mis-splicing mutations [189]. The MaxEntScan score

indicates the degree of similarity to a typical canonical major spliceosome splice site

motifs. A higher score means higher probability of a true splice site and also indicates

a strong splice junction.

In this section we will review the work of Yeo and Burge [211]. We briefly introduce

the concept of MEP and explain how maximum entropy models (MEM) of splice junc-

tions have been developed from constrained maximum entropy distributions (MED)

of donor and acceptor motifs from known human transcript data.

We use the same variables as defined in [211] to describe the mathematical model:

X = {X1,X2, . . . ,Xλ} denotes a random sequence of length λ, whose values are taken

from the nucleotide alphabet {A,C,G, T}.

x = {x1, x2, . . . , xλ} is a specific DNA sequence.

p(X) represents the joint probability distribution p(X1 = x1,X2 = x2, . . . ,Xλ = xλ).

P (X = x) is the probability of a state in the distribution.

4.2.1. Maximum entropy method

The MEP, first introduced by Jaynes [223, 224], states that, given a set of possible

distributions, the best approximation of the true distribution is the distribution with

the highest Shannon entropy

H(p̂) = −
∑

p̂(x) log2 p̂(x)

that is the sum over the probabilities of all possible sequences, x. The Shannon

entropy can be seen as a measure of the uncertainty inX. By maximizing the entropy,

we choose the least informative possible distribution, which assumes nothing about

the world that is not known, given a set of constraints on sequences of length λ.

When a background distribution q is known, the Kullback-Leiber divergence can be

used to estimate the logarithmic difference between probability p(x) and q(x). This

is the minimum relative entropy (MRE) principle, where the distribution is chosen

by the lowest relative entropy,

DKL(p̂) =
∑

p̂(x) log
p̂(x)

q(x)
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This is equivalent to a maximal Shannon entropy H, when q is a uniform distribution

of all sequences.

4.2.2. Marginal constraints

The set of constraints used to determine the MED is derived from the marginal

nulceotide frequencies of the emprical distributions. They are expected values or

bounds on these values, which are consistent with features of the empirical distribu-

tion. Therefore, they represent statistics about the true distribution without assum-

ing more than what can be reliably estimated from the available data. To form the

desired specific MED, an initial uniform distribution, where all sequences are equally

likely, is altered to satisfy the well-estimated constraints. It is distinguished between

complete and specific constraints.

Complete constraints define position dependencies. Let Sx be a set of all lower-

order marginal distribution of p(X), which is a joint distribution over a proper subset

of sequence X. The subsets Sm
s ⊆ Sx are complete constraints specified through

marginal-order m, and skips s of the distribution. The first-order constraint, S1
0 ,

always represents the empirical frequencies p(Xi) of {A,C,G, T} at all positions i in

sequence X. The second-order constraint, S2
s additionally determines the dependen-

cies in all possible dinucleotide combinations with neighboring distance s.

Specific constraints are requirements of a specific nucleotide frequency at certain

sequence positions derived from the observed frequency of an element for the respec-

tive member of a complete constraint. For instance, p(X1) as a part of a complete

first-order constraint, has four specific constraints: {A,C,G, T}. One for each possi-

ble nucleotide at position X1. The number of possible specific constraints increases

exponentially with the marginal-order m. In general a member of Sm
s will have 4m

specific constraints.

4.2.3. Maximum entropy model

It is now possible to distinguish between decoys and true signals by generating an

MEM based on a distribution derived from probability distributions of true signals and

decoys with a chosen set of constraint. The iterative scaling of an initial distribution

with a ranked set of constraints specifies the MEDs. This step is described in more

detail in [211].

When P+(X = x) and P−(X = x) are the probabilities of occurrence of the specific
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sequence x for the distribution of signals (+) and decoys (−), respectively, and

L(X = x) =
P+(X = x)

P−(X = x)

then sequence motifs for which L(X = x) >= C are predicted to be true signals. C

is the desired threshold at certain true-positive rate.

4.2.4. Models of the 5’ and 3’ splice site

Yeo and Burge [211] compute specific models for donor (5’) and acceptor (3’) sites

based on a large data set of 1, 821 human transcripts with 12, 715 introns. They

excluded non-canonical splice junctions from the computation.

For the model of the donor motif 9-mer sequences were extracted of which three

nucleotides are from the exonic region and the remaining six from the intronic region.

The best 5’model was achieved with a second-order marginal constraint with a max-

imum skip of s = 5. This accounts for all pairwise dependencies, which positions are

closer than 6 nt to each other.

For the acceptor model a 23 nt long sequence was extracted, containing again three

nucleotides from the exonic region and an intronic fraction of 20 nt in length. Due

to the significantly longer consensus sequence, the sequence was segmented into nine

overlapping fragments. The construction of an “overlapping” maximum entropy with

a second-order marginal constraint achieved the best model for the acceptor site. This

time with a maximal distance of two nucleotides.

These models are the least biased approximation for distributions of short sequence

motifs, consistent with a set of estimated constraints. Therefore, we integrated parts

of a freely available perl script3 in our implementation of generating a splice site

map. It employs the described models to compute the MaxEntScan score of donor

and acceptor sequences, which will serve as an indication whether the ortholgs of the

splice sites are likely to be conserved.

3 http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html

59

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html


Contents

5.1. Compilation of the splice site database . . . . . . . . . . . . . . . . . . . . 61

5.1.1. RefSeq and EST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2. Other sources of annotation . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3. Data from split read mapping . . . . . . . . . . . . . . . . . . . . . . . 65

5.2. Comparative map of splice sites . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1. Multiple sequence alignment . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2. Calculation of orthologous sites . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3. Maximum entropy scoring of splice sites . . . . . . . . . . . . . . . . . 69

5.3. Assessment of splice site conservation . . . . . . . . . . . . . . . . . . . . . 71

5.3.1. False positive rate estimation . . . . . . . . . . . . . . . . . . . . . . . 72

5.4. Estimation of conservation on transcript level . . . . . . . . . . . . . . . . 72



Chapter 5

Comparative splice site

conservation map

T he method developed during this work aims to trace the evolution of tran-

scripts, especially those whose evolutionary history could not be detected

by the conservation of their primary sequence alone. As explained in Chapter 2, splice

sites, as an important element of gene structure, represent a mighty feature of evo-

lution and therefore can be employed instead of pure primary sequence conservation

to assess the conservation of a transcript. Here we will explain how we implemented

this approach to work on a large scale.

5.1. Compilation of the splice site database

At the beginning of a project, we are usually interested in the conservation of a spe-

cific data set from a certain species. As a basic requirement for our approach, we

need a compilation of all splice sites contained in these data. Therefore, depending on

the format of the available data, this collection of splice sites is composed as the first

step of our pipeline. The resulting data set contains the exact location of each splice

sites determined by chromosome, strand and position. Additional information, like

site type (donor/acceptor), the surrounding genomic sequence of 20 nt up- and down-
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Figure 5.1.: Work flow scheme
of splice site database gener-
ation. (1) Download data sets
for desired species and additional
information for intron orientation.
(2) Choose relevant spliced tran-
scripts. (3A) Calculate the correct
reading direction for transcripts in
the EST annotation. Then for
both sets (3A and 3B) extract es-
sential information of each splice
site (marked with a star in the
graphic). Omit splice sites, whose
adjacent introns are shorter than
20nt. (4) Sort both sets and fuse
them uniquely. (5) Get the se-
quence information for each splice
site with twoBit2Fasta tool and
score them via MaxEntScan.

stream of the splice site and if possible EST count and biological context, are stored

as well. Furthermore all possible start and end positions of adjoining introns and

exons are noted, respectively. If the length of an associated intron is less than 20 nt,

the splice site is omitted. This approach excludes too short introns, that are likely

artefacts [225], and ensures the required length for the application of MaxEntScan.

5.1.1. RefSeq and EST

In a rather broad approach, we can compile a substantial list of splice sites from

already existing annotations from diverse sources. We implemented a pipeline that

retrieves RefSeq annotation as well as expressed sequence tag (EST) data from the

UCSC genomes browser. These annotation tracks are automatically parsed into a

list of splice site coordinates. The pipeline outlined in Figure 5.1 is repeated for a

designated set of species, that can be specified as an input parameter. By this means

we can quickly and conveniently generate a comprehensive database of splice sites

for multiple species, which will subsequently serve as evaluation of conservation of

homologous sites (Section 5.3).

In the following we will describe in detail how the splice sites are extracted from

the EST and RefSeq annotation, which are specfied in the files all est.txt and

refGene.txt, respectively. Both files annotate one transcript per line by exon blocks

with equivalent content information in the first five columns.
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Figure 5.2.: Reading direction. The gap between two exons blocks marks the position
of an intron. Start and end positions are generally given in an order corresponding to the
location on the genome. For our method it is essential to correctly determine which side of
the implied intron is donor and which side is acceptor. This can either be directly identified
by the given strand information or indirectly inferred by searching for the canonical splice
motifs.

1. Name: Transcript name or query sequence

2. Chromosome: Reference chromosome/scaffold

3. Strand: Direction of transcription (might differ for all est.txt)

4. Transcript start: Start position of alignment in target (EST) or start of

transcription

5. Block starts: List of start coordinates of each mapped EST block or exon

The two files differ in the content of column 6.

6. Block ends or Block sizes. While refGene.txt directly gives the end coor-

dinate of the exon block, all est.txt is giving the length of the block.

Example 5.1 (all est.txt).

Example 5.2 (refGene.txt).

This kind of exon annotation defines the exact coordinates of splice sites. Two

consecutive exons mark the boundaries for a single intron. The end position of the

5’ exon specfies the donor and the start position of the following 3’ exon specifies the

acceptor. To be precise, we define the coordinate of the first and the last nucleotide

in the intron as the position of the donor and acceptor splice site, respectively. These

are usually guanine nucleotides for canonically spliced introns. For our method, it is

crucial to correctly determine whether a listed splice site is either donor or acceptor.

Therefore, the reading direction of the transcript is an essential information, as blocks

are always listed sorted according to the starting position in the genome (Figure 5.2).

While the correct reading direction for RefSeq transcripts is given in column 3 of
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refGene.txt, getting the strand information for EST supported transcripts is not as

trivial. In fact, column 3 of all est.txt refers to the strand of the genomic sequence

to which an EST aligns. This is not necessarily the direction of transcription, as ESTs

can be sequenced both in 5’—3’ and in 3’—5’ direction. Therefore, further information

is needed to determine the direction of transcription, which is given by an additional

file – estOrientInfo.txt from UCSC Genome Browser. To provide this information

UCSC does some calculations to determine the direction of transcription for each

EST sequence, or give the most likely variant. This is implemented by deducting the

number of CT/AC pairs from the number of GT/AG splice site pairs in the relevant EST

sequence, which is then noted as the value intronOrientation in the aforementioned

file. If intronOrientation is a negative value, the number of complementary CT/AC

sites is higher than proper canonical sites. Thus, it is likely that the considered

EST sequence is given as the reverse complement of the real transcript and the given

strand information in all est.txt has to be switched. A positive intronOrientation

indicates that the given reading direction is correct. However, the closer the value to

zero, the more uncertain is the strand information.

All splice site coordinates are listed uniquely. In other words, if two transcripts

share the same splice site, this site is listed only once in the data set. To retain

the possibility of identifying presumably alternative splice variants, the start and end

positions of all available adjoining introns and exons are noted. Furthermore, for EST

supported splice sites, it is counted how many ESTs mapped on this position. For

RefSeq annotated splice sites it is also possible to note the context. This information is

extracted from column 7 “exon frames” of refGene.txt, which contains information

about the ORF for each exon. They are specified by {0,1,2}, or -1 for no ORF.

Based on this information, it is possible to ascertain if a splice site is located on

a non-coding transcript, on a protein-coding transcript or a non-coding region in

a protein-coding transcript. If all frames of a transcript are -1, it is a non-coding

transcript. Some transcripts have a mixed combination of exon frames starting or

ending with -1 frames. These are protein coding transcripts, where the non-coding

frames correspond to exons of 5’- or 3’-UTRs at the beginning or end of the transcript,

respectively.

5.1.2. Other sources of annotation

Besides the official RefSeq and EST tracks from UCSC, there are plenty of estab-

lished file formats that are common to use for annotating transcripts. We therefore

developed adapted scripts that parse the most common formats, bed12 and gtf/gff

(e.g. GENCODE), into an equivalent list of splice sites. While the format of bed12
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resembles the table schema from RefSeq/EST very strongly and only differs in the

order of relevant columns and some 0-based instead of 1-based coordinates, the pars-

ing of gtf is more complex. In this case, each exon block is given in an extra line.

Thus, it is first parsed into a single line format and thereafter translated into the list

of splice sites.

5.1.3. Data from split read mapping

Recent advances in high-throughput sequencing sparked a raise in the number of

studies that generate experimentally obtained RNA-seq data. A variety of tools

exists, that can map the resulting sequenced fragments of the transcriptome (reads)

back onto the reference genome. In cases of spliced RNAs, the sequence of a read

will map to distant positions on the genomes. It is called a split read. Since we are

particularly interested in the position of splice junctions defined through those split

reads, we use the segemehl mapping tool [226, 227], which contains an algorithm

that is specialized on detecting splits. It reports beginning and end position of splits

in bed-files. The following is a mixed example of different types of possible output

lines.

Example 5.3 (splits.bed).

1 chr10 226068 255829 splits:10:12:11:N:P 0 +

2 chr10 298965 299114 splits:1:1:1:C:P 0 +

3 chr10 138427 138427 distsplice:chr19:47506458:1:1:1:L:P 0 +

4 chr10 162424 162424 diststrandsplice:chr16:731812:1:1:2:L:P 0 +

Conventionally, the parts of the reads map linearly separated by a gap marking

the location of an intron. Those “normal” splice junctions are tagged with the letter

N in column 4 of the output bed-file from segemehl (Example 5.3, 1). The given

start and end positions represent donor or acceptor site, depending on the reading

direction. In cases where the RNA-seq protocol is not strand-specific, we can infer the

direction of transcription by comparing the MaxEntScan scores of the possible splice

site consensus sequences of the reported read with its reverse complement (compare

with Figure 5.2).

Due to the high sensitivity of the split mapping algorithm in segemehl, it can

also effectively detect infrequent atypical splice events, such as in circular or trans-

spliced transcripts. In the bed-file circular splice junctions are tagged with the letter

C in column 4 (Example 5.3, 2). In this special case the start position refers to

the acceptor and the end position to the donor when the reading direction is sense

and vice versa for antisense (Figure 5.3). With that knowledge we can determine

the correct direction of transcription in the same way as for normal splice junctions,
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Figure 5.3.: Circular splice junction. In cases of circular transcripts, fragments of a read
map in an order contrary to its reading direction. The reported split will therefore encompass
exonic regions, putting donor and acceptor sites outside of the split interval. Compared to
“normal” splice junctions (Figure 5.2), the sides of donor and acceptor are switched relative
to their position on the reference genome.

given a canonical splice motif is present. Each trans-splice event (dist) is described

by two entries in the output file. They connect positions on distinct chromosomes or

scaffolds and are labeled as the “left”(L) or “right” (R) part of the split (relative to

the genomic position). This facilitates the identification of the donor and acceptor

side.

A splice sites database obtained by this type of data is considerably more com-

prehensive than those obtained from existing annotations. This is a great asset,

especially when it comes to the investigation of splice events that are less frequent

than the regular linear splicing.

5.2. Comparative map of splice sites

The created database of splice sites can now be used together with orthology in-

formation from multiple sequence alignments to compare splice sites across species.

We establish a comparative map of splice sites by tracing each splice site of a refer-

ence genome set in the alignment and list all aligned positions. Again additionally

to coordinates we store information on splice type, MaxEntScan score (smes) [211]

and whether there is experimental evidence for the functionality of the splice site

ortholog (either from existing annotation or available RNA-seq data). This section

explains the multiple sequence alignment format, which we use and how we extract

the coordinates of the orthologous positions. The pipeline is outlined in Figure 5.4.

5.2.1. Multiple sequence alignment

Our method is designed to search splice sites from a reference genome set in a MAF

multiple sequence alignment. Such a file consists of alignment blocks separated by

blank lines. The first line of a block starts with an ’a’ optionally followed by a
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hg19.chr1         12594  80 + 249250621 GCTCCTG----TCTCC-CCCCA GTGTGTGGTGATGCCAGGCATGCC

ponAbe2.chr2b  21135049  80 + 135000294 GCTCCTG----TCTCC-CCCCA GTGTGTGGTGATGGCAGGCATGCC

bosTau4.chr5  113866915 124 + 125847759 GCTCATGTGTGCCTCCGCCCTA GTGTGTGGTCATGGTGGGCATGCC

canFam2.chr27  45131816  78 +  48908698 GCTC-------CCTCCGCCCTA GTGTGTGGTCATGGTAGGCATGCC

equCab2.chr6   54108250  85 -  84719076 GCTCATGTGTGCCCCCACCCTA GTGTGTGGTTATGGTGGGCATGCC

panTro2.chr15     15215  78 - 100063422 GCTCCTG----TCTCC-CCCCA --GTGTGGTGATGCCAGGCATGCC

danRer6.chr18  44086596  66 -  49271716 -------------------CCA ATGCATTGTTATGGTAGGAATGCC 

Validated

Orthologs

Unannotated

Splice Site

Candidates

Scoring

Scored

Splice Site

Predictions

Step 5

Step 6

Splice Sites

of Aligned 

Species

Splice Site MapComparisonStep 4

Figure 5.4.: Creating the map. (1) Choose reference genome set of splice sites, from
the generated database. Download a multiple alignment, which is centered in the chosen
reference genome. (2) Search the position of each splice site from the reference genome set
in the multiple alignment. (3) Compute the corresponding positions in all aligned species.
(4) Compare the resulting coordinates with the splice site database and discriminate between
experimentally validated sites and new candidates. (5) Extract sequences and score candidates
(cf. Figure 5.1 (5)) (6) Add validated as well as unsupported sites with all relevant information
to the map.

’name=value’ pair, which is usually score=value. Subsequently listed are lines with

different types of data. The lines that are relevant for our method start with ’s’.

These lines contain the aligned sequences and thus represent the actual sequence

alignment. They provide the following information1 organized in six distinct fields:

1. Source name. The name of the source sequence, which is usually given as

’genome.chromosome’

2. Start position. The start position of the aligned region in the source sequence.

If the aligned region is located on the minus strand, then this position is relative

to the reverse-complemented source sequence.

3. Length. The length of the aligned region in the source sequence. This equals

the number of nucleotides minus the number of gaps in this line.

4. Strand. The aligned sequence is from the plus or minus strand, but always

displayed in reading direction (5’ to 3’).

5. Source size. The entire length of the whole source sequence (usually the

chromosome size).

6. Alignment text. The aligned nucleotides and dashes as gaps.

1Description adopted from UCSC Genome Browser. For a more detailed description on MAF format
see http://genome.ucsc.edu/FAQ/FAQformat.html#format5
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Example 5.4 (Alignment Block).

0 a score=42330.0

1 s hg19.chr2 18627 39 + 243199373 GGAAGGGCTCAGTCATCACAGATGCGAAAAG------GCAGTGTG

2 s canFam2.chr17 3030673 44 + 67347617 ACAAGGGCTTAGCCATCACCCATCCCCAAAGGCAGATGGAA-TCA

3 s equCab2.chr15 11627 41 - 91571448 GGGAGGACTCGGCTATCACAGACACAGGAAGGCAAATG----CCA

4 s rheMac2.chr13 16081 45 + 138028943 GGAAGGATTCAGTCATCACAGATGCCGAAAGGCAAACGCAGTGTG

5 s ponAbe2.chr13 33087 44 - 117095149 GAAAAGACTCAG-CATCACAGATGCCGAAAGGCAAACGCAGTGTG

The aligned sequence of Canis familiaris in line 2, starts from position 3,030,673 in

chr17 and ends at position 3,030,717 (= startposition+ length). In line 3 the aligned

region of Equus caballus is displayed in reading direction of the negative strand.

The given start position thus refers to the reverse-complemented sequence of chr15.

Hence the aligned sequence starts at the absolute position 91,559,822 (= sourcesize−

startposition+1) and ends at 91,559,781 (= sourcesize−startposition−length+1).

The MAF file is required to be formatted in a certain layout to properly and effec-

tively work with our search algorithm. (1) The first species of all alignment blocks

has to be identical with the reference genome of the splice site data set for which we

want to investigate conservation. (2) Furthermore the order of alignment blocks has

to be sorted by the start position in the reference genome. The sorting ensures an

effective O(n) runtime of the search algorithm. All UCSC alignments are generated

with MULTIZ and therefore fulfill these requirement (Section 4.1.2). MSAs from EN-

SEMBL are computed with EPO and thus are present in EMF (Ensembl Multi Format)

and need to be converted into MAF with a parser2 before using it as input file.

5.2.2. Calculation of orthologous sites

The search of splice sites in the multiple sequence alignments is straight forward.

The algorithm loops through the list of splice sites of the reference genome data set,

which is sorted by genomic position. A separate loop is initiated in parallel, iterating

block by block over the multiple sequence alignment until the alignment interval

of the current block matches with the current splice site position. It is possible

that a genomic region is used completely or partially in more than one alignment

block. Therefore, subsequent blocks of a matching block have to be controlled for a

compatible alignment frame as well. When all eligible blocks have been detected, we

calculate the orthologous positions of the current splice site in each of the aligned

species.

First we count out the alignment column of the reference splice site by adding up

2Program emf2maf.pl, provided by ENSEMBL at ftp://ftp.ensembl.org/pub/

ensembl-compara/scripts/dumps/emf2maf.pl
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5.2 Comparative map of splice sites

each nucleotide (omitting the gaps) to the start position until we reach the column of

the splice site. To determine the orthologous position in the aligned species, count off

the nucleotides until we reach the determined alignment column. Depending on the

strand information of the aligned sequence, the number of nucleotides is either added

up to or deducted from the starting position of the aligned sequence (see Example 5.3

for calculation of starting position). An aligned gap is considered as absence of an

ortholog in this species.

In the example of Figure 5.4 the algorithm searches for orthologs of the human

acceptor site, annotated in chr1, at position 12, 612 on the plus strand. It found a

relevant alignment block, where the splice site is located within the interval of the

aligned human reference sequence in the first line (12, 594 ≤ 12, 612 < 12, 594 + 80).

Now the alignment column of the acceptor site is determined by counting off the

nucleotides. It is located in column 23, which accounts for 18 nt (= 12, 612− 12, 594)

and 5 gaps. Therefore the orthologous site in dog (canFam2) would be in chr27 at

position 45, 131, 816+23−7 = 45, 131, 832 (7 gaps). The aligned sequence here is from

the plus strand, hence the reading direction corresponds to the one displayed in the

alignment. For zebrafish (danRer6) the aligned sequence corresponds to the minus

strand of the genome. The displayed reading direction is reverse to the numbering of

the sequence. The orthologous position is calculated by subtraction of the nucleotides

and addition of occurring gaps. It is located on chr18 at position 49, 271, 717 −

44, 086, 596 − 23 + 19 = 5, 185, 117.

5.2.3. Maximum entropy scoring of splice sites

The evolution of splice sites cannot be studied meaningfully based only on the an-

notated splice sites as the transcriptomes of many species are poorly covered in cur-

rent databases, in particular in their non-coding regions. We therefore integrated

MaxEntScan scores (see Section 4.2) in our map generation pipeline, in order to de-

termine whether a splice site candidate is likely to be functional or not. This will

serve as indicator for the estimation of conservation rate later.

By employing the perl wrappers provided for download by Burge Lab3, the method

computes smes for all aligned orthologs. It requires information as to whether the

putative splice site is a donor or an acceptor, and a short surrounding sequence of a

certain length as input.

Figure 5.5 shows a graphical representation of a scored comparative splice site map

in the region of the GAS5 locus. The first column constitutes the reference genome

3http://genes.mit.edu/burgelab/maxent/download
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Figure 5.5.: Splice site map of the GAS5 locus. Each line represents a splice site, each
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5.3 Assessment of splice site conservation

Figure 5.6.: Conservation of human lncRNA splice sites in mouse. Filled curves
designate the distributions of MaxEntScan scores for human splice sites (purple) and orthol-
ogous positions that are known to be splice sites in mouse (cyan). The score distribution of
all aligned positions in mouse (brown) is a superposition of conserved functional splice sites
and positions that have been destroyed by substitutions. The cutoff value of 3.0 is indicated
by a green line.

set of splice sites. The other columns in each line represent the orthologs to the

reference splice site in the named species. The color of each pixel reflects smes of the

respective site.

5.3. Assessment of splice site conservation

All splice site orthologs are compared to the previously established database of an-

notated splice sites. If a match is found, the ortholog is considered to be a validated

functional splice site. In a case where no match is found, we invoke smes to assess

the conservation. A splice site is predicted to have a functional ortholog if there is

an orthologous site in the relevant genome with smes > 3.0. This cutoff is estimated

from score distributions illustrated in Figure 5.6. It shows the distribution of donor

and acceptor scores of all splice sites in a human lncRNA set as well as the scores of

all aligned and all validated orthologs in the UCSC human-mouse alignment. While

the majority of known splice sites features scores > 3 (cyan), we observe a clearly

bimodal distribution for the non-validated sites (brown) composed of a large peak

conforming to functional splice sites and a second broader distribution of scores ≤ 3

belonging to positions that most likely have lost their capability of acting as splice

donors or splice acceptors.

In summary the conservation of splice sites can be classified into two compatible

categories: validated and predicted. A conserved splice site therefore has a predicted

or validated functional ortholog in the relevant genome or both.
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Figure 5.7.: Distribution of smes for random human non-exonic GT-AG sites. The
distribution of MaxEntScan scores for the ortholog mouse sequence is displayed in brown.

To make a more intensive use of the established database of annotated splice sites,

the implementation of the generation of the comparative splice site map holds the

possibility to induces a less stringent search for validated orthologs in the multiple

alignment by permitting misalignments around the splice site by a given nucleotide

range.

5.3.1. False positive rate estimation

We sampled random non-exonic positions from the human genome with the additional

requirement of a present canonical motif (GT/AG). About 31% of these sites were

alignable to mouse. In order to make an estimation on the false discovery rate on

ortholog sites, we scored the aligned sequences with MaxEntScan. Figure 5.7 shows

the distribution of the described scores. Only 1.2% and 3.0% of all of the random

GT and AG sites, respectively, had a score > 3 in the aligned mouse sequence. It

is expected that more distant species exhibit even lower false discovery rates. We

emphasize that the score cutoff > 3 is restrictive and will tend to underestimate the

number of conserved splice sites, since the MaxEntScan scores are gauged so that

sites with positive scores are more likely to be functional than not [211]. This is

also consistent with the results from Table 6.1, when comparing the predicted and

validated splice site conservation of human coding regions in mouse.

5.4. Estimation of conservation on transcript level

Conservation rates on the transcript level are derived from its splice sites. We consider

a transcript to be conserved if a particular fraction of its splice sites are conserved

in the respective organism. Hereafter we will refer to that fraction c as the degree
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5.4 Estimation of conservation on transcript level

of conservation. Since c is expressed as a percentage, it weighs each gene equally

regardless of its length or number of splice sites it contains. Hence, this approach

facilitates the comparability between genes of different sizes (number of exons).

Different values of c highlight different aspects of conservation and evolutionary

change: At c > 0% we assay only presence or absence of a gene, and thus its evolu-

tionary origin. The other extreme, c = 100%, focuses on the exact conservation of the

gene structure. By investigating the conservation of transcripts for different degrees

of conservation c and comparing the results, we gain insights into the evolution on

the structural level.
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Chapter 6

Conservation of human lncRNAs

Long mRNA-like transcripts that do not code for proteins are a big part of

the human transcriptome and high-throughput sequencing reveals more and

more of those molecules outpacing the exploration of their functionality. Studying

the evolutionary history of these lncRNAs is essential to comprehend their role in the

human cell. This, however, is a challenging task since their low level of sequence con-

servation precludes comprehensive homology-based surveys and makes them nearly

impossible to align. With the method developed in the course of this work, we are

able to trace the evolution of lncRNAs using the conservation of splice sites.

We show that more than 85% of the human GENCODE lncRNAs were already

present at the divergence of placental mammals and many hundreds of these RNAs

date back even further. Nevertheless, we observe a fast turnover of intron/exon struc-

tures. We conclude that lncRNA genes are evolutionary ancient components of ver-

tebrate genomes that show an unexpected and unprecedented evolutionary plasticity.

We offer a public web service1 that allows to retrieve sets of orthologous splice sites

and to produce overview maps of evolutionarily conserved splice sites for visualization

and further analysis. An electronic supplement containing the ncRNA data sets used

in this study is available at http://www.bioinf.uni-leipzig.de/publications/

supplements/12-001.

1http://splicemap.bioinf.uni-leipzig.de
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Conservation of human lncRNAs

6.1. Data

6.1.1. Transcriptome annotations

As a basis set of human transcripts we obtained a RefSeq track (10/2012, 40, 373

transcripts) from UCSC as well as the GENCODE v14 collection of transcripts [228].

In addition we extracted all splice sites supported by at least one expressed sequence

tag (EST) in the data collection of the UCSC genome browser (downloaded 08/2012).

To achieve a maximum coverage in assessing the experimental validation of splice

site orthologs, we compiled splice site lists for all species of the UCSC alignment,

for which equivalent EST and RefSeq annotation data were available. The generated

splice site database comprised 20 species: Homo sapiens, Pan troglodytes, Pongo

abelii , Macaca mulatta, Callithrix jacchus, Mus musculus, Rattus norvegicus, Cavia

porcellus, Oryctolagus cuniculus, Bos taurus, Equus caballus, Felis catus, Canis fa-

miliaris, Monodelphis domestica, Ornithorhynchus anatinus, Gallus gallus, Xenopus

tropicalis, Fugu rubripes, Gasterosteus aculeatus and Danio rerio.

6.1.2. Reference data sets of lncRNAs

Since many RefSeq non-coding transcripts are associated with coding loci, we focus

our analysis on a restrictively filtered subset of the GENCODE data to ensure conser-

vative estimates of lncRNA conservation. In order to ascertain a high-quality set of

human lncRNAs we applied a series of filtering steps to an initial data set of 21, 271

well-characterized “GENCODE v14 lncRNA” transcripts.

We discarded transcripts that overlapped within annotated protein-coding sequences

or pseudogenes in sense or anti-sense direction annotated by at least one of GEN-

CODE, ENSEMBL, UCSC, or RefSeq. For GENCODE, we could rely on the an-

notation with biotype classification for transcripts and genes. In the case of EN-

SEMBL, RefSeq and UCSC we employed the annotation of coding exons. Since some

of the transcripts overlapping in sense-direction might just be non-coding isoforms of

protein-coding transcripts, we opted to remove them. We also excluded transcripts lo-

cated in anti-sense direction of these coding sequences since conservation of the coding

sequence also constrains the sequence of the opposing transcripts, even though they

are annotated as non-coding. We used RNAcode [229], a tool that efficiently detects

conserved open reading frames in multiple sequence alignments, and Tblastn [230] to

remove transcripts with putative coding regions. We only kept those transcripts that

did not contain exons overlapping with significant RNAcode hits (p < 0.05) or, if an

exon could not be scored by RNAcode due to low sequence conservation, Tblastn hits
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6.1 Data

(E-value < 0.05). We also removed all unspliced entries. At this stage we retained

5, 703 transcripts. The last filtering step included the application of PhyloCSF [231].

All remaining transcripts with a PhyloCSF score > 100 and a possible ORF of length

≥ 30 were sorted out. These cutoffs were chosen accordingly to [15]. This affected

another 290 transcripts. The final data set comprises 5, 413 spliced transcripts with

17, 163 splice sites.

Alternative data sets

Besides the described main data set we additionally investigated the conservation

of one similar data set from Cabili et al. [15] and three other more specific data

sets of microRNA and snoRNA host genes, as well as mouse and zebrafish lncRNAs.

By comparing the conservation results, the evalutation of method performance and

consistency can be corroborated.

The main data set exhibits substantial overlap with the integrative compilation of

14, 274 spliced human non-coding transcripts from different sources covering 24 tissues

and cell types by Cabili et al. [15]. 3, 145 of them are identically (99% reciprocal

strand-specific overlap) represented in our set; the agreement increases to 3, 924 loci

when a sequence overlap of at least 70% is required. We will refer to this collection

of lncRNAs as the Cabili data set.

As an important subclass of spliced lncRNAs with well-understood function, we

generated a set of microRNA and snoRNA host genes. We identified lncRNAs that

overlapped known microRNAs and snoRNAs as annotated by ENSEMBL. This re-

sulted in 128 transcripts hosting microRNAs (containing 602 unique splice sites) and

73 transcripts hosting snoRNAs (335 unique splice sites). Interestingly, snoRNA host

genes and, to a lesser extent also microRNA host genes, on average have more introns

than other lncRNAs (3.7 vs. 2.9 vs. 2.0 introns/transcript in all lncRNAs).

Guttman et al. [232] described a set of mouse lncRNAs involved in the circuitry

controlling pluripotency and differentiation. It comprises 2, 076 spliced transcripts

with 6, 975 splice sites, a major fraction of 77% of them are also validated by EST

or RefSeq data.

Pauli et al. [233] reported a conservative set of 1, 133 lncRNAs expressed in ze-

brafish embryos. A second, smaller set of 691 zebrafish lincRNAs expressed during

brain development is described by Ulitsky et al. [16]; of which only 449 are spliced.

Due to the small overlap of the two sets, we consider their union consisting of 1, 508

spliced transcripts with 5, 415 splice sites for conservation analysis.
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Conservation of human lncRNAs

6.1.3. Multiple sequence alignments

We will employ four distinct reference alignments for the search of orthologs. For the

human data sets we use (1) the MULTIZ-based alignment [205] of 46 vertebrate genomes

provided through the UCSC genome browser and (2) the EPO [206] multiple alignment

of 12 eutherian mammals downloaded from ENSEMBL (Release 63). We reduce the

latter alignment to those 8 species for which ENSEMBL and UCSC utilize the same

genome versions: Homo sapiens, Pan troglodytes, Pongo abelii, Mus musculus, Rattus

norvegicus, Bos taurus, Equus caballus and Canis familiaris. In the following we will

refer to these two multiple sequence alignments as the UCSC and the ENSEMBL

alignment, respectively.

While both species, mouse and zebrafish, are present in the 46way MULTIZ align-

ment, a conservation analysis with a projected alignment thereof would only contain

sequences that are alignable to the human genome. Thus we use (3) the 8-way ze-

brafish MULTIZ alignment (containing five teleosts, frog, mouse and human) and (4)

a mouse centered MULTIZ alignment (reduced to mouse, rat, human, dog, horse and

cow) from UCSC to investigate the conservation of the respective data sets.

6.2. Results

In this study we aimed for a far-reaching traceability of old RNAs. Therefore we used

the conservation degree of c > 0% throughout this result section, unless specified

otherwise. In other words all results regarding the conservation of a transcript are

under the premise, that a transcript is considered to be conserved if at least one of

its splice sites corresponds to a predicted or validated ortholog.

6.2.1. Predicted conservation of protein-coding splice sites shows

specificity of the method

The splice site conservation between human and mouse is summarized by Table 6.1

and Figure 6.1. We observed similar results for other mammalian species (see Supple-

mental Table A.1 and Figure A.1). The RefSeq data set overwhelmingly defines splice

sites of coding exons. Of these are more than 95% alignable, and nearly 92% have

experimentally validated orthologous splice sites in mouse. The high specificity of the

cutoff being smes > 3.0 is highlighted by the fact, that the fraction of experimentally

validated splice site orthologs tallies the fraction of those that are computationally

predicted, with a tendency to even slightly underestimate that actual conservation

rate.
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Table 6.1.: Conservation of splice sites between human and mouse. We report the
conservation of splice sites for different annotation sets. We give an overview on the total
number (N) of splice sites present in human, the number of aligned, predicted, validated and
conserved splice sites. The latter attribute is the union of predicted and validated sites.

Human Mouse
Data set N Aligned Predicted Validated Conserved

RefSeq coding 355,573 340,327 325,323 326,401 333,661
RefSeq 5’-UTR 16,035 11,737 8,200 6,908 8,339
RefSeq 3’-UTR 1,124 828 680 607 693
GENCODE lncRNAs 17,163 7,339 2,179 295 2,188
miRNA host 602 282 105 40 108
snoRNA host 335 141 83 46 85

Figure 6.1.: Conservation of splice sites between human and mouse in different
contexts. In non-gray colors the fraction of all alignable splice sites is shown. Colors from
green to blue display the estimated conservation rate. The remaining fraction of alignable
but likely non-conserved splice sites is shown in purple. The overlap of our predictions with
validated splice sites is displayed in turquoise. In protein-coding RNAs 95% of the splice sites
are at least alignable to mouse, and of those almost all are conserved. While in lncRNAs the
rate of alignable sites drops to around 40%. The fraction of validated splice sites amongst
predicted sites decreased from nearly 98% to only 13%, indicating that there is a high number
of unannotated splice sites.



Conservation of human lncRNAs

Only a small fraction of the RefSeq splice sites falls into UTRs, with more than 14-

fold difference between 5’- and 3’-UTRs. Merely about three quarters of these regions

are aligned between human and mouse in the UCSC alignments. Still, most of the

predicted splice sites are backed up by experimental data. The strong depletion

of introns in the 3’-UTRs has been described previously and can be explained as

a consequence of nonsense-mediated decay (NMD) or a larger tolerance for intron

retention, see e.g. [234].

6.2.2. Conservation of splice sites provides lower bounds on the number

of conserved lncRNAs

Only a tiny fraction of about 3% of the splice sites of human lncRNAs are orthol-

ogous to known splice sites of annotated transcripts in other non-primate Eutheria.

This estimate is consistent with the observation that about 12% of the lincRNAs

compiled in [15] are syntenically paired with a corresponding transcript in another

mammalian species as detectable by TransMap [235]. Furthermore non-coding tran-

scripts are typically expressed at lower levels than their coding counterparts and are

often restricted to specific cell lines or tissues [83].

Clearly, the poor sequence conservation of the lncRNAs [20] limits the number of

human splice sites for which sequences from other eutherian families can be aligned.

As a consequence, we can only determine a lower bound on the numbers of evolu-

tionarily conserved splice sites in lncRNAs. The estimates therefore are limited by

alignment coverage and quality. See Section 6.3 for a more detailed comparison of

UCSC and ENSEMBL alignment.

This small fraction of conserved lncRNAs, however, is mainly the result of the

incompleteness of the transcript catalogs in non-human species. We therefore use

the conservation of splice sites as measured by MaxEntScan scores to obtain more

accurate estimates. As detailed in Section 5.3, a cutoff of smes > 3.0 is sufficiently

specific that we already tend to underestimate the number of conserved splice sites.

Intron-rich lncRNAs, such as GAS5 in Figure 5.5, tend to have an overrepresenta-

tion of poorly conserved splice sites with only marginal support and low MaxEntScan

score. At least some of these are probably mapping artefacts that artificially re-

duce the estimates of splice site conservation from our data set. Since we consider a

lncRNA as conserved if at least one splice site of the human transcript corresponds to

a predicted or experimentally known splice site (c > 0%), the high-scoring splice sites

are sufficient to establish the ancient origin of lncRNAs. The biases introduced by

spurious and low-scoring splice sites in the GENCODE data thus have little impact

on the results at transcript level. Furthermore, we observe no strong dependence of
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Table 6.2.: Multi-exonic lncRNAs. In dependence of the number of exons per transcript,
we provide the number of lncRNAs, the underlying number of splice sites and their average
human MaxEntScan score. For each splice site, we furthermore report the average as well as
the maximum number of species in which we found it. The splice site scores only slightly
increase with the number of exons per transcript. Furthermore, we observed some “ultra-
conserved” splice sites which can be traced in nearly all vertebrate genomes.

Exons 2 3 4 ≥ 5

lncRNAs 2,493 1,545 791 584
Splice sites 4,770 5,665 4,260 4,342
Scoreavg 7.1 7.4 7.6 7.6
Speciesavg 9.8 9.6 10.0 10.1
Speciesmax 44 41 39 40
Splice sites≥40 6 8 0 1

Table 6.3: Conservation of GENCODE
lncRNAs in the UCSC alignment. The
number of conserved and validated splice sites
and transcripts in selected species gives an
overview of the conservation of human lncR-
NAs in vertebrates. A validated splice site is
defined as a known splice site orthologous to
the reference, whereas the category conserved
additionally includes the predicted functional
orthologs. Union 5 refers to conservation
in either mouse, rat, cow, or dog; Union 15
refers to conservation in at least one of the
following species: mouse, guinea pig, rabbit,
cow, horse, dog, elephant, armadillo, opos-
sum, chicken, frog, fugu, zebrafish and lam-
prey.

Species Splice sites Transcripts

Human 17,163 5,413

Cons. Val. Cons. Val.

Mouse 2,188 295 1,910 308

Rat 2,005 164 1,777 185

Cow 3,856 300 2,845 268

Dog 4,234 146 3,053 146

Union 5 6,541 515 3,862 462

Union 15 9,047 506 4,511 462

splice site conservation on the number of exons ni per transcript, although the av-

erage splice site score slightly increases in transcripts with more exons (from 7.1 for

ni = 2 to 7.6 for ni ≥ 4), see Table 6.2.

6.2.3. More than half of the GENCODE lncRNAs are conserved across

the Eutheria

We summarize the results for several mammalian species that have the best tran-

scriptome annotation coverage in Table 6.3.

These data indicate that more than 38% (6, 541 / 17, 163) of the individual splice

sites and 71% (3, 862 / 5, 413) of the transcripts are conserved across the major eu-

therian families. When we include 15 available non-primate vertebrate genomes, this
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number increases further to 4, 511 transcripts (83%) and 53% of the splice sites.

This reveals a massive gap to an estimation of only 3% (506 / 17, 163) conservation

of splice sites and 9% (462 / 5, 413) of transcripts, where only orthologs in annotated

transcripts are considered as conserved.

In 2014 a subset of 1, 898 GENCODE lncRNAs expressed in a certain collection

of human tissues was investigated for conserved expression in five other mammalian

species (chimp, rhesus, cow, mouse, and rat) [27]. Expression from orthologous loci

was observed for 35% (rat) to 80% (chimp) of the human transcripts. In these RNAs,

conservation of between 20% to 60% of the observed human splice junctions were

directly confirmed as conserved by dedicated transcriptome sequencing data. This is

in good agreement with the estimated conservation of mouse splice sites in Table 6.1.

Our numbers, furthermore, are in agreement with the estimate that 60-70% of the

intergenic lncRNAs are conserved between human and mouse [29]. This estimate

is based on the comparison of lncRNA expression from syntenically conserved loci,

without regard to gene structure. Thus we do expect our estimate to be appreciably

more conservative.

A surprisingly large number of lncRNAs can be traced even further: 784 transcripts

(14.5%) are conserved in at least one of the two marsupials (opossum, wallaby) and

446 can be found in the platypus genome.

6.2.4. Nearly 80% of the human lncRNAs may be older than the

primates

By discarding all unaligned positions as missing data and considering only the con-

servation of splice sites of those sequences that are present in the multiple sequence

alignments, we can estimate a crude upper bound on the conservation of lncRNAs.

Table 6.7 summarizes the upper bound estimates in mouse, rat, cow and dog. As

expected, these rates are substantially larger than the conservative estimates of Ta-

ble 6.3, which interprets all missing data as non-conservation (for GENCODE tran-

scripts conserved in mouse, 50.7% compared to 35.3%). Surprisingly, the discrepancy,

however, is rather small for the number of transcripts that are conserved in at least

one of the four species: 79.6% versus 71.3%, see Figure 6.2.

One could argue that a conservation degree of c > 0% might be too low a thresh-

old. To check the effect of the choice of c we repeated our analysis for c > 40%. A

comparison of Figure 6.2B and 6.2C shows that the results change marginally when

employing this much more stringent cutoff. Although the absolute number of con-

served lncRNAs drops, the relative conservation (disregarding non-aligned sites) still

covers more than one third for mammals.
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Figure 6.2.: Conservation of lncRNAs across 46 vertebrates. Indicated in blue is
the fraction of aligned splice sites, in purple the fraction of splice sites that are validated
and/or predicted to be a functional splice site in the respective species. The genome assembly
abbreviations are listed on page 147f. The upper bounds on the fraction of conserved splice
sites are shown in green. The numbers are estimated from the fraction of conserved splice
sites within aligned sequence blocks only. Panel (A) shows the conservation rate of 17, 163
single splice sites, while panel (B) illustrates the conservation on the level of transcripts for
5, 413 lncRNAs. Panel (C) shows conservation of those transcripts if a conservation degree
of c > 40% is required for a transcript to be considered as conserved.

6.2.5. Most human lncRNAs either date back to the origin of the

Eutheria or are primate-specific

We inferred gains and losses of human GENCODE lncRNAs across the vertebrates by

the parsimony criterion, summarized in Figure 6.3. Since the evolutionary distances

within the primate clade are too small to distinguish between splice sites under stabi-

lizing selection and chance conservation due to short divergence time, we left primate

subtree unresolved in this analysis. More than 54% (2, 905 / 5, 413) of the transcripts

arose with the Eutheria and another 21% (1, 114 / 5, 413) can be traced back to the

origins of the Theria, while only 6.3% (343 / 5, 413) are primate specific.

6.2.6. Lineage-specific losses of lncRNAs are common

In contrast to 71% of the transcripts that are conserved between human and at least

one of four eutherian species (Union 5 in Table 6.3), there are few transcripts that

are ubiquitously present. In 2011 Rose et al. [32] introduced a method that detects

novel evolutionarily conserved splice sites and provided a collection of predicted splice

sites that are well-conserved across the Eutheria. 2, 061 GENCODE lncRNAs have at

least one splice site that is contained in this set of predictions. This fits well with 814

transcripts that are conserved between human and all four eutherian species listed in

Table 6.3. This suggests that lineage specific losses are frequent.
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Figure 6.3.: Gains and losses of hu-
man GENCODE lncRNAs across
the vertebrates. Event counts are based
on the parsimony criterion: A loss of a
gene is annotated at the edge before a
maximal subtree without occurrences at
any leaf; a gain event is annotated at the
edge before the last common ancestor of
all observed occurrences. The vertebrate
phylogeny is the phyloFit tree provided
by the UCSC browser. The primate sub-
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Figure 6.4.: Turnover of individual
lncRNA splice sites. Illustration of the
number of gained and lost splice sites from
814 lncRNAs that have at least one splice
site conserved between human and all four
depicted mammals.

Indeed, we miss 12.2% (660 / 5, 413) of the ancestral lncRNAs in mouse and more

than 19% (1, 047 / 5, 413) in armadillo. These numbers have to be taken with caution,

however. Although a conservation degree of c > 0% is sufficient to deem a transcript

conserved, our conservative cutoff tends to over-emphasize losses and misplace origi-

nation events towards the tips of the tree, especially for intron-poor transcripts.

6.2.7. Gene structures of conserved lncRNAs evolve rapidly

Conserved lncRNAs exhibit a rapid evolution of their gene structure. To estimate the

turnover of individual splice sites we consider 814 human transcripts conserved in all

of mouse, rat, cow, and dog. They comprise 3, 080 splice sites. Of these, 87% were

ancestrally present. Most novel splice sites were gained throughout primate evolution.

Complementarily, a comparable number of donors and acceptors have been lost in

Glires (Figure 6.4). In some examples the changes of transcript structure are quite

dramatic. In the ANRIL isoforms, entire groups of exons are primate specific, while

only a few splice sites, mostly located at the 5’ and the 3’ ends, are at least as old

as the Eutheria, see Figure 6.7A. The visibly higher conservation until marmoset,

is consistent with the finding that ANRIL is first fully developed in simians, after

it went through a two-stage evolution [236]. Another famous example is HOTAIR,

where the 5’-most exons appear to be lacking in mouse [112].
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Figure 6.5.: Conservation of lncRNAs from Cabili et al. [15]. The estimated conser-
vation on the level of (A) 32, 515 single splice sites, and 14, 274 transcripts with a required
conservation rate of (B) at least one splice site per transcript and (C) more than 40% of
splice sites per transcript - is similar to the estimation resulting from our filtered lncRNA
data set. In Panel (B) and (C) only the results of 22 species of the 46 vertebrates of the
UCSC alignment are plotted in the graphs.

6.2.8. Alternative data sets lead to consistent results

Conservation of lncRNAs from Cabili et al. [15]

The Cabili data set [15] yields very similar results as the filtered GENCODE data, see

Figure 6.5. The nearly constant conservation rate of about 30% suggests that there

is a population of highly conserved splice sites in ancient lncRNAs. On the other

hand, it also indicates that sequence conservation in the remaining about 70% of

these highly conserved loci is unrelated to splicing and may not be conserved because

of a function at the transcript level.

Conservation of microRNA and snoRNA host genes

MicroRNAs and snoRNAs are subgroups of small structural RNAs with well-defined

functions. They are typically rather well conserved at least across the Eutheria. This

is also true for their host genes, Table 6.4. There is little difference in the predicted

conservation rate of snoRNA and microRNA host genes, even though microRNAs

can be processed from both exonic and intronic parts of a primary transcript [237],

while snoRNAs are obligatorily intronic at least in mammals [238]. Interestingly, a

much larger fraction of snoRNA host genes has experimentally validated conserved

splice sites compared to microRNAs. This is probably due to their different expression

patterns: microRNAs are often tissue or cell-type specific, while snoRNAs are required

ubiquitously.
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Conservation of human lncRNAs

Table 6.4.: Conservation of special subsets. We tabulate the number of conserved
lncRNAs in selected species and in at least one of five Eutheria (human, mouse, rat, cow,
dog), four Eutheria (mouse, human, cow, dog), Teleostei (tetraodon, stickleback) or Tetrapoda
(human, mouse, frog). We decided to disregard rat for the mouse lncRNA subset calculations,
as the two species are too closely related.

Aligned Predicted Validated

128 human transcripts hosting microRNAs

Mouse 102 63 19
Dog 118 92 3
5 Eutheria 122 110 26

73 human transcripts hosting snoRNAs

Mouse 56 49 35
Dog 66 59 20
5 Eutheria 69 63 41

2,076 mouse lncRNAs [232]

Human 1,770 1,113 446
Dog 1,628 944 185
4 Eutheria 1,776 1,237 472

1,508 zebrafish [16, 233]

Teleostei 953 513 112
Tetrapoda 476 170 56

Conservation of mouse lncRNAs from Guttman et al. [232]

The fractions of alignable positions and predicted splice sites among murine pluripo-

tency lncRNAs [232] is comparable to the GENCODE data. At the level of transcripts

we again find substantial conservation across the Eutheria: more than half of the tran-

scripts are predicted to be conserved in human, and 40% of these have experimental

evidence.

Conservation of zebrafish lncRNAs from Ulitsky et al. [16], Pauli et al. [233]

For zebrafish lncRNAs, a much lower conservation level of 34% is observed among

other teleosts. The divergence of zebrafish and Euteleostei is much older than the

divergence of major eutherian groups (150My vs. 95My from paleontological data

[239], or 230-333My [240] vs. about 100-120My [241] estimated from molecular data).

This readily explains the smaller fraction and the lower conservation of alignable splice

sites. Interestingly, more than 11% of transcripts are conserved also in Tetrapoda.
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Figure 6.6.: Gene structure conservation of the GAS5 lncRNA. The GAS5 snoRNA
host gene is among the most highly conserved lncRNAs. Its homologs are easily identifi-
able via the well-conserved snoRNAs (circles) located within its introns. Members of the
SNORD80/Z15 family are shown in blue. Black boxes indicate the major exons supported
by RefSeq and/or EST data. Gray lines indicate splice sites that can be traced manually
in at least one of the genome-wide alignments available in the UCSC browser. Note that
only a subset of these is represented in any individual alignment, cf. Figure 5.5. The tran-
script structure as well as its snoRNA payload has changed also by means of duplications and
deletions.

6.2.9. Many lncRNAs are conserved throughout the vertebrates

Host genes of snoRNAs and microRNAs are found among the best conserved lncR-

NAs. We found 10 snoRNAs and 14 microRNAs among 271 non-coding transcripts,

which are conserved in at least one of the Sauropsida. The deep conservation of host

genes does not come as a surprise since their payload is conserved at least throughout

the vertebrates in many cases [242–245].

The probably best-studied snoRNA host gene, GAS5, harbors about ten distinct

snoRNAs in its introns [131]. It has recently attracted considerable attention since

its in general poorly conserved exonic product acts as a riborepressor that binds

to the DNA-binding domain of the glucocorticoid receptor [106, 132]. Its chicken

homolog is described in detail in [246]. Large clusters of ESTs are easily identified

as GAS5 homologs in frog (xenTro2, scaffold 1:6,870,168-6,878,818) and zebrafish

(ENSDARG00000092337). The example of GAS5 clearly shows the limitations of

genome-wide alignments. Although GAS5 is conserved and functional (at least) across

the gnathostomes, Figure 6.6, the 46-way MULTIZ alignment does not contain the

regions around the splice sites outside the Amniota; even in Sauropsida most parts

are missing. Other well-studied examples of deeply conserved snoRNA host genes

include UHG/SNHG1 (Figure 6.7E), and U87HG [196].

A well-studied microRNA precursor is Rmst, which harbors mir-1251. The hu-

man ortholog was described as differentially expressed in rhabdomyosarcoma sub-

types [248]. The mouse ortholog appeared as Pax-2 related gene in early hind-brain

development [249]. Its evolution was investigated in detail in [150], demonstrat-
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Figure 6.7.: Variation of splice site conservation. The patterns of splice site conservation vary
substantially between different lncRNAs, even when their evolutionary age is comparable. The main
panel refers to the UCSC 46-way alignment. In the case of ANRIL, only a few splice sites are conserved
outside the primates (A). Although the mouse ortholog shares at least some functions with human ANRIL
[247], there are only four shared conserved splice sites. Splice site conservation pattern of the HOTAIR
transcript (B) shows that the 5’ end of the lncRNA is much less well conserved than its 3’ half. The
first exon and intron (splice site at the bottom row of data) overlaps with the protein-coding transcript
HOXC11. HOTTIP, with few exons that are partially conserved, is also a rather typical chromatin-related
lincRNA (C). In contrast, the overwhelming majority of splice sites is conserved in Rmst (D). MEG3 shows
an intermediate pattern, with more lineage-specific losses (E). The snoRNA host gene SNHG1 contains
several splice sites that are deeply conserved among vertebrates (F). Some are even found in teleosts.
Experimentally known splice sites from zebrafish SNHG1 were searched also in the 6-way zebrafish MULTIZ

alignment (G). Additional homologous splice sites in two teleosts demonstrate once more the limitations
arising from alignment quality. The color scheme is explained in Figure 5.5. Thick vertical bars on the
right mark splice sites that belong to a specific transcript (black: plus strand, red: minus strand). Thin
lines between these bars indicate conserved splice sites, that are not part of the annotated transcripts.



6.3 Alignment coverage and quality limit conservation estimates

ing conservation of both the transcript and its expression patterns in opossum and

chicken brains. The comparative splice site map shows that Rmst is conserved also

in Xenopus, Figure 6.7D. The imprinted MEG3 lncRNA exhibits a large number of

differentially expressed isoforms [117]. It is an eutherian innovation apparently asso-

ciated with the emergence of imprinting at the Dlk1 locus [250]. Indeed, only a single

splice site close to the 3’ end of the transcripts is shared with a putative evolutionary

precursor in the marsupials, Figure 6.7E. It hosts the snoRNA SNORD112 as well as

the microRNA mir-770.

The majority of the lncRNAs implicated in chromatin-based regulation can be

traced throughout the Eutheria, although it is very likely that many of them are

evolutionarily even older. A good example is HOTTIP [113], Figure 6.7C, where

we lose the sequence conservation in most parts of the locus outside of the placental

mammals. Although there are a few deeply conserved elements, these do not include

one of the splice site sequences. Nevertheless, the transcript functions also in chick

limb-buds [113], suggesting that the gene is considerably older than the Eutheria.

Two zebrafish lncRNAs that are conserved across vertebrates were investigated in

detail [16]. cyrano (oip5 antisense transcript) is required for proper embryonic devel-

opment. Our splice site map identifies conservation of splice sites across mammals.

However, the sequence is not conserved enough to support an alignment between

teleosts and tetrapods. megamind (located antisense in an intron of birc6) regulates

brain morphogenesis and eye development. The last acceptor site is conserved across

gnathostomes in the 8-way zebrafish centered alignment, Figure 6.7G.

In the GENCODE data set three splice sites from three lncRNAs show conservation

in every species through to lamprey, namely AC011995.1-001, RP11-423H2.3-003, and

RP11-123M21.1-001. These are neither microRNA nor snoRNA host genes. We find

87 conserved transcripts (including one snoRNA host genes) in at least one of the

teleosts. 26% of them even are experimentally validated.

6.3. Alignment coverage and quality limit conservation

estimates

The multiple sequence alignment underlying the splice site map has a major influence

on the estimates of splice site conservation. We computed separate splice site maps

from the UCSC and the ENSEMBL alignments to investigate the impact of align-

ment coverage and quality. The observed splice site conservation differs significantly

between the two genome-wide alignments. Even though the total coverage of the two

alignments is quite similar: About 31% of the whole human genome is aligned to a
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Figure 6.8.: Comparison of UCSC
and ENSEMBL alignment regarding
influence on the estimates of splice site
conservation. All splice sites of 17, 163 hu-
man lncRNAs, aligned to the considered
species are shown distinguished in four
groups within the Venn diagram. Top:
number of human splice sites found in
mouse. Bottom: number of human splice
sites present in at least one out of mouse,
rat, dog, and cow.

mouse sequence in the UCSC alignments, while the fraction is 27% in the ENSEMBL

alignments. This small difference cannot explain the discrepancy of about one fifth

in the coverage of splice sites.

6.3.1. Differences in lncRNA sets

For the majority of the human GENCODE lncRNA splice sites, no aligned mouse

sequence is reported in either alignment. Figure 6.8 shows the overlaps between

the two alignments. Surprisingly, the alignable sequence fragments differ quite a bit

between the two different alignments. Although the coverage of the UCSC alignment

is larger (∼ 4%), there are still nearly one thousand human splice sites for which

the ENSEMBL alignment proposes homologous sequence while no sequence at all is

aligned in the UCSC alignment. Integrating over the four eutherian species, however,

increases the overlap by 16% to more than 78%.

As we expected, the larger coverage of the UCSC alignment results also in a greater

number of alignable lncRNA splice sites. The estimated upper bounds on the con-

servation rates are comparable for both alignments. Interestingly, most (89%) loci

that are alignable in the ENSEMBL alignment only, correspond to conserved splice

sites in at least one the four non-primate mammals, Figure 6.8. When the results of

the two alignments are combined, we obtain a lower bound estimate of 40% for the

fraction of splice sites in lncRNAs that originated early in the evolution of placental

mammals. Although both alignments show a substantial overlap, the fact that we
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Table 6.5.: Conservation of miRNA and snoRNA host genes based upon EN-
SEMBL alignment. We tabulate the number of conserved lncRNAs in selected species and
in at least one of five Eutheria (human, mouse, rat, cow, dog).

Aligned Predicted Validated

128 human transcripts hosting microRNAs

Mouse 82 53 12
Dog 106 81 1
5 Eutheria 109 99 17

73 human transcripts hosting snoRNAs

Mouse 47 42 26
Dog 62 54 19
5 Eutheria 63 57 34

Table 6.6.: Conservation of RefSeq splice sites between human and mouse based
upon ENSEMBL alignment. For a comparison with the results based on the UCSC
alignment see Table 6.1.

Human Mouse
Data set N Aligned Predicted Validated Conserved

RefSeq coding 355,573 260,507 249,588 251,385 256,045
RefSeq 5’-UTR 16,035 8,622 6,022 5,024 6,120
RefSeq 3’-UTR 1,124 608 501 445 511

can find hundreds of splice sites whose conservation is visible only in the more strin-

gent ENSEMBL alignment strongly suggests that the actual numbers might still be

higher.

For the alternative data set of microRNA and snoRNA host genes, the data for

UCSC and ENSEMBL alignments are also quite similar, cf. Table 6.5. Here again

the coverage is a bit smaller for the ENSEMBL alignments.

6.3.2. Differences in RefSeq annotated sets

Table 6.6 outlines major differences in the observed conservation rates of splice sites

compared to the data in Table 6.1, which are computed on the base of the UCSC

alignment. For splice sites in coding regions it makes a difference of nearly 12%, for

UTRs even up to 15% change of estimated conservation rate.
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Table 6.7.: Upper bounds on the percentage of conserved splice sites and tran-
scripts in lncRNAs. The numbers are an estimation based on the fraction of conserved
splice sites amongst alignable sequence only.

Alignment Mouse Rat Cow Dog Union

Splice sites

UCSC 29.6 29.7 40.4 39.5 51.6
ENSEMBL 30.9 30.7 41.4 40.5 52.3

Transcripts

UCSC 50.7 50.5 66.3 67.1 79.6
ENSEMBL 54.5 53.7 68.5 68.6 79.5
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Figure 6.9.: Conservation of lncRNAs across eight mammals according to EN-
SEMBL alignment. The estimated conservation on the level of (A) 17, 163 single splice
sites and (B) 5, 413 transcripts (c > 0%) is similar to the estimation resulting from the UCSC
alignment.

6.3.3. Differences in upper bound estimation

By disregarding the non-aligned sites, the resulting upper bounds on conservation

rate are almost the same for both alignments. Interestingly, the upper bounds in

ENSEMBL are slightly higher (up to 0.3%) than in UCSC alignments. Hence the

ENSEMBL alignments contain relatively more conserved splice sites than the UCSC

data. This difference is even enhanced when data are aggregated to the level of

transcripts, cf. Table 6.7. While in coding sequences the gap between the estimated

upper bounds on the level of single splice sites is only 0.3%, the difference increases

by 10-fold on the transcript level of lncRNAs.
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6.4. SpliceMap web service

The precomputed splice site maps derived from the mentioned multiple sequence

alignments are the base for the SpliceMap web service. This service provides a tab-

ular view of conserved splice site coordinates from a given region and produces cor-

responding visualizations such as those in Figures 5.5 and 6.7. The results can be

exported as a text file as well as a custom track for visual inspection in the UCSC

genome browser. A list of either splice site coordinates or genomic intervals serve as

input.

The underlying algorithm that creates the visualizations of the splice site maps,

extracts the relevant lines from the chosen map determined by the input intervals

or coordinates, and translates the MaxEntScan scores of the orthologous sites in all

available species into a specific color code. The species that are considered depend

on the available species in the multiple alignment, that has been used to calculate

the chosen map. The color scheme translates negative scores to colors from light

pink (smes < 0) to white (smes < −20). These splice sites are highly likely lost in

this species. Scores in the range of [0, 3] can not be unequivocally deemed conserved

nor lost. They are displayed in an intermediate coloring of light blue. Orthologous

sites that exceed the defined cutoff for conservation smes > 3, are shown in turquoise

to dark green. If a predicted orthologous splice site is validated by RefSeq data or

more than one EST, the site is displayed in bright green regardless of the MaxEntScan

score. A species with no aligned sequence for this site gets a neutral gray color to

represent the missing data.

The web site and the computation results are served by a set of Python scripts and

rendered into static HTML using the Mako template engine. The jobs are scheduled

in a queued fashion. Upon completion, the results are transferred to the web server

and available under a personalized link for two weeks. The service can be accessed

at http://splicemap.bioinf.uni-leipzig.de.

6.5. Discussion

The majority of the human long non-coding RNAs dates back at least to the ra-

diation of the Eutheria, and thousands of these transcripts arose even earlier. The

conservation of parts of their transcript structure constitutes compelling evidence for

stabilizing selection, despite the often negligible constraints on the sequence itself.

Utilizing the conservation of splice sites rather than measures of sequence similarity,

furthermore, disentangles for a given locus the selective pressures on DNA elements
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from those that refer to the transcript. Our analysis, which suggests that some 70% of

human lncRNAs date back to the eutherian ancestor is in agreement with an indepen-

dent estimate of the conservation of lincRNAs conservation between man and mouse

[29] and with a direct comparison of lncRNA expression in six diverse mammals [27].

Despite the conservation at transcript level we observed a surprising amount of

turnover at the level of individual splice sites, again in agreement with [27]. We

observe that many of the lncRNA loci exhibit a large number of splicing isoforms.

As a consequence of the lack of detailed transcriptomics data for most species, it is

currently impossible to trace the evolution of individual isoforms. The discrepan-

cies among individual splice sites, however, leads us to hypothesize that differential

selection of isoforms caused the observed rapid divergence of transcript structures.

Together with a prolific innovation of new splice sites this process can quickly obscure

the evolutionary relationships. Our analysis may still drastically underestimate the

evolutionary age of lncRNAs.

We suspect that, as in the case of HOTAIR or ANRIL, major changes of transcript

structure go hand in hand with functional changes. This view is supported by major

differences between isoforms e.g. in the association of their expression levels with

disease phenotypes [103, 251, 252] or the change of function of HOTAIR in mouse

that correlates with the loss of several exons [112]. If our hypothesis is true, lncRNAs

are likely to be the root cause for rapid phenotypic evolution, as their often chromatin-

associated mode of action is subject to large functional changes by easy-to-achieve

changes in gene structure. The selective inclusion or exclusion of protein binding

sites would affect the composition of complexes of enhancers and chromatin modifiers,

see e.g. [253], and thus rapidly alter the rules of transcriptional regulation without

affecting the proteins machinery. A similar scenario can be drawn for the post-

transcriptional regulation of the pool of microRNA composition by sponges such as

HULC [254]. We conclude that lncRNAs are an ancient component of vertebrate

genomes with an unexpected and unprecedented evolutionary plasticity.
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Chapter 7

Conservation of

atypical latimerian RNAs

C oelacanths (Latimeria), as one of the two surviving species of the lobe-

finned vertebrate lineage (sarcopterygian), have the potential to unveil

many evolutionary aspects of the transition of their ancient relatives from aquatic

to terrestrial animals. As anticipated, due to their morphological stasis, the protein-

coding sequence of the African species, L. chalumnae, was shown to have a retarded

evolutionary rate compared to tetrapods, while most other genomic features evolve

at comparable speed. Many prominent changes relative to genomes of bony fish can

be attributed to land adaptation during vertebrates evolution [255]. Here, we will be

concerned with global patterns of the coelacanth’s transcriptome.

High throughput transcriptome sequencing provides a view on the RNA content

of a sample in unprecedented depth and detail. Although the technology as such

promises largely unbiased data, it requires elaborate processing of raw data. It is

at this step that preconceptions about what we expect to see in a transcriptome

can guide quality control and noise filtering procedures. As a result, these are more

often than not neglected as parts of the data set that do not fit to the established

paradigms. In this contribution we therefore focused on this blind spot and aimed to

identify those reads that do not map locally and colinearly to their reference genome.
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In fact, several classes of “atypical” transcripts – circular and apparently trans-spliced

RNAs – have been observed in previous studies as abundant types of transcripts in

mammalian transcriptome data.

By re-analyzing RNA-seq data sets of different tissues from L. chalumnae [255] and

L. menadoensis [256] with increased sensitivity of the employed mapping procedures,

we reveal that both types of non-colinear RNAs are also abundant in the African

and the Indonesian coelacanth. Section 7.1 will give an overview on the workflow

of high-sensitivity split read mapping and postprocessing, that was used to refine

and the considerably expand the existing coelacanth annotation. We observed more

than 8, 000 lincRNAs with normal gene structure and several thousands of circular-

ized and trans-spliced products, showing that such atypical RNAs form a substantial

contribution to the transcriptome. Surprisingly, the majority of the circularizing and

trans-connecting splice junctions are unique to atypical forms, i.e., are not used in

normal isoforms.

In order to investigate in detail the functional and evolutionary significance of

these extraordinary transcripts, we perform a computational splice site conservation

analysis – as described in the Methodology (Chapter 5) – on the newly established

comprehensive coelacanth transcriptome, with special focus on the atypical tran-

scripts. The results that highlight a potentially functional importance and emphasize

the evolutionary relevance of these molecules, are presented in Section 7.2.

7.1. Identification of atypical transcripts via split read

mapping

The majority of tasks regarding the work flow of read mapping, including the handling

of the RNA-Seq libraries were performed by joint first author Gero Doose1.

7.1.1. RNA-seq data sets

In this work four transcriptome data sets have been analyzed. Coelacanth RNA-seq

samples were obtained based on liver (SRR576100) and testis tissue (SRR576101)

from a single individual of L. menadoensis [256] and muscle tissue of a specimen of

L. chalumnae (SRR401852) [255]. As reference data sets we downloaded the pub-

licly available muscle RNA-seq data sets from human (SRR545711) and zebrafish

(ERR145647) from the sequence read archive. All data were paired-end reads se-

1Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
E-mail: gero@bioinf.uni-leipzig.de
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7.1 Identification of atypical transcripts via split read mapping

quenced with a comparable, non-strand-specific sequencing protocol. The raw reads

with length of 101 nt were quality trimmed with FASTX-Toolkit version 0.0.13 [257]

and adapter clipped with Cutadapt version 1.2.1 [258]. For splice site discovery we

mapped all available reads. In order to allow for a direct comparison of the relative

abundance of circular and trans-spliced reads we down-sampled the data sets to ap-

proximately the same size. In this way we avoid artifacts that are caused by the use

of coverage thresholds for the detection of splice junctions. Otherwise, the number of

detected junctions would increase in a poorly controlled manner with the size of the

mapped library.

L. chalumnae genome annotation, described in Amemiya et al. [255], was down-

loaded from ENSEMBL version 70.

7.1.2. Mapping and splice site detection

We used segemehl version 0.1.4 [226, 227] to map the reads onto the Latimeria

chalumnae genome allowing explicitly for split reads. Throughout this chapter we

strictly distinguish between splice sites, defined as the genomic positions of a splice

donor or splice acceptor, and a splice junction, defined as a pair of donor and acceptor

positions spanned by an observed transcript. The splice sites reported by segemehl

were then filtered by haarz, a component of the segemehl suite, in order to accumu-

late high confidence splice sites. To further reduce the chance of mapping artifacts,

only splice junctions supported by at least three split reads were kept. Splice sites

not included in one of these junctions were also removed from further analysis.

We determined three types of splice junctions: (1) “normal” junctions with read

fragments mapped colinearly with the genomic DNA to the same strand of the same

scaffold and an insert size between 15 nt and 50 kb; (2) “circular” junctions on the

same strand of the same scaffold with a distance less than 50 kb and with fragment

order inverted relative to the genomic DNA; (3) “trans-splicing” junctions, where

the two splice sites are located on different scaffolds. The relative orientation is of

course irrelevant in this case. Spliced reads that connect two scaffolds can arise from

normal, colinear splice events if the scaffolds are short or the splice sites are close to

the ends of the scaffolds. In order to avoid contamination from such effects arising

from the incompleteness of the genome assembly, we classified reads as trans-spliced

only if those reads connect loci at least 50 kb from both ends of at least one of the two

involved scaffolds. The number of unique junctions (after previously described filter

steps), which could be assigned to each of these groups are summarized in Table 7.1.

Since a strand-unspecific RNA-seq protocol was used here, the reading direction

of spliced reads could only be inferred indirectly. For reads splitting at canonical
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Table 7.1.: Number of unique junction locations, that meet the mapping criteria and
are supported by a minimum number of three reads.

Species Unique junction locations

Normal Circular Trans

L. menadoensis (liver) 80, 781 1, 061 4, 531
L. menadoensis (testis) 102, 639 1, 216 6, 563
L. chalumnae (muscle) 53, 895 1, 309 3, 296
H. sapiens (muscle) 112, 183 9, 217 8, 172
D. rario (muscle) 78, 613 1, 285 2, 715

splice junctions we used MaxEntScan [211] scores to compare the two putative reading

directions. For both directions we computed the sum of the donor and acceptor score.

If one direction had a positive sum, which was greater than the sum of the opposite

direction plus 3, we defined this as the correct reading direction.

7.1.3. Transcriptome reconstruction and identification of novel lincRNAs

We used cufflinks version 2.0.2 [259] to reconstruct possible transcripts together

with their isoforms. The mapping output of segemehl was modified to fit the input

requirements of cufflinks using a custom script. Separate transcript assemblies for

both the complete Latimeria chalumnae data set and the combined Latimeria mena-

doensis data sets were merged together with cuffmerge as proposed by Trapnell et al.

[260]. Overlaps between transcript and annotation data were computed with the help

of BEDTools [261]. In order to predict the coding potential of transcripts that were

located at unannotated regions we applied RNAcode [229] to the coelacanth-centric

multiple alignment described in Amemiya et al. [255]. Transcripts were classified as

potentially coding if at least half of their exons showed a minimum overlap of 50%

with potentially coding regions. Transcripts that did not overlap with potentially cod-

ing regions were classified as potentially new lincRNAs. To confirm these lincRNA

candidates they were compared against the non-redundant protein database version

(07.03.2012) with tblastx [262]. Candidates that showed significant alignment hits

were added to the potentially coding class. We operationally combined transcripts

with the same reading direction separated by less than 5 kb into a single locus to

account for the fact that many lincRNAs have rather low expression levels and thus

may not be fully covered.
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Figure 7.1.: Overview of splice sites
and “loci” in comparison to the exist-
ing annotation. (Top) Venn diagram of
unique single splice site positions, detected
in our colinear mapped split reads (“normal
splice sites”), annotated by ENSEMBL and
reported in lincRNAs identified in the main
paper [255]. (Bottom) Venn diagram com-
paring ENSEMBL gene annotation with ex-
pressed loci from our mapping data. Tran-
scripts with a distance less then 5 kb to each
other were merged to one loci, resulting in
69, 579 loci. The intersection shows the num-
ber of loci, which overlap gene boundaries
annotated by ENSEMBL. The distinction of
these loci into coding and non-coding is deter-
mined by the biotype of the respective over-
lapping genes.

7.1.4. Splice junctions and transcripts

We made use of the enhanced sensitivity of segemehl in mapping split reads to extend

the ENSEMBL 70.1 gene build for the latCha1 assembly. The extreme similarity

between the two coelacanth species, comparable to human and chimp, justified to

combine the RNA-seq data for the purpose of constructing transcript models.

For the Latimeria chalumunae (muscle complete) RNA-seq data 26, 176, 970 reads

were mapped with local, colinear splits. For the Latimeria menadoensis (testis and

liver) 14, 201, 048 reads were mapped. For the union of these sets 12, 817, 375 normal

split reads that satisfied our filtering criteria were retained. Although the RNA-seq

data had been produced with a non-strand-specific protocol, the reading direction

could be determined with the help of MaxEntScan [211] for 98.8% of these reads

based on the canonical splice site motifs. This resulted in 270, 957 unique splice

sites, of which 208, 956 exactly matched the splice sites of the ENSEMBL 70.1 gene

build for the latCha1 assembly (Figure 7.1, Top). About 43% of the ENSEMBL

splice junctions were not visible in our transcriptome map because the corresponding

genes were not expressed at sufficient levels to pass our filtering criteria in the three

tissues considered here. Additionally, 1, 793 sites matched to splice junctions from

the lincRNA set reported in the Supplemental Material (Supplemental Data 1) of

the coelacanth genome paper [255]. Another 17, 801 mapped to novel splice junctions

within the boundaries of genes annotated in ENSEMBL 70.1 in the correct reading

direction. Since they did not match exactly to positions of annotated splice sites
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Table 7.2.: Relation of splice junctions to annotation.

Species Within Combining One site within Outside

Unique splice junctions

L. menadoensis

(combined)

106,905 (83.4%) 46 (0.1%) 2,692 (2.1%) 18,596 (14.5%)

L. chalumnae

(complete)

72,067 (87.7%) 34 (0.0%) 1,331 (1.6%) 8,759 (10.7%)

Union 119,802 (82.2%) 72 (0.1%) 3,360 (2.3%) 22,424 (15.4%)
Intersection 59,170 (91.4%) 8 (0.0%) 663 (1.0%) 4,931 (7.6%)

Read support

L. menadoensis

(combined)

7,555,360 (86.1%) 513 (0.0%) 115,255 (1.3%) 1,106,975(12.6 %)

L. chalumnae

(complete)

3,463,424 (89.1%) 499 (0.0%) 50,772 (1.3%) 371,906 (9.6%)

Union 11,018,784 (87.0%) 1,012(0.0 %) 166,027 (1.3%) 1,478,881 (11.7%)
Intersection 7,071,592 (92.5%) 430 (0.0%) 63,500 (0.8%) 506,130 (6.6%)

of ENSEMBL 70.1, they are grouped outside of the ENSEMBL overlap and are

shown included within the yellow section in Figure 7.1 (Top). This left 42, 463 novel

splice sites located outside annotated genes, corresponding to 22, 424 distinct splice

junctions that are located entirely outside of annotation. Furthermore, we identified

3, 360 distinct junctions with only one side outside the published annotation. A

detailed comparison of observed splice junctions is compiled in Tables 7.2 and 7.3, a

graphical summary of the splice sites accounting for the exact matches only is given

in Figure 7.1 (Top).

Assembled into transcripts with cufflinks and cuffmerge, these combined tran-

scriptome data of L. chalumunae and L. menadoensis encompassed 126, 235 distinct

transcripts belonging to 109, 761 genes. This amounts to an average of 2.54 exons. Of

these, 86, 203 (68.3%) transcripts were intronless. 61.9% of the transcripts (69, 434)

did not contain exons located within gene boundaries annotated by ENSEMBL. The

majority of these, namely 58, 058 transcripts, were intronless.

About 87% (60, 444) of these new transcripts can be considered as lincRNAs since

they have no overlaps with RNAcode hits or blastx hits in the CCDS database with

an E-value e < 10−10. About 18% of the rest, i.e., 1, 586 new transcripts can be

classified as potentially coding genes, since at least half of their exons overlap by

at least 50% of their sequence with blastx alignments or with regions found by

RNAcode. If strand information was available, the overlap had to be strand-specific.

We found 22, 424 novel splice junctions outside the published annotation corre-

sponding to 41, 139 unique splice sites. Of these, 32, 467 matched exactly with splice

sites in the collated transcript models produced by cuffmerge. 4, 163 additional
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splice sites were located within these transcripts, apparently corresponding to local

variations in the exact splicing position.

It should be noted that a substantial fraction of splice sites from the raw data were

not incorporated into transcript models by cufflinks. This explains e.g. why part of

the splice sites in the lincRNAs annotated in Amemiya et al. [255] are not recovered

in our analysis.

An overview of the transcriptome analysis relative to the previously available an-

notation is given in Figure 7.1 (Bottom), where transcripts were merged into loci

according to a 5 kb window. Overall, we report here 50, 644 novel expressed loci that

were overlooked in previous analyses of the same data sets. Of these, 30, 268 contain

spliced transcripts. The vast majority of newly identified transcripts is non-coding.

Nevertheless, we were able to identify more than 500 additional loci with coding

capacity.

7.2. Splice site conservation analysis and results

In order to obtain evidence for the conservation of gene structure we used the 9-

way coelacanth-centered multiple sequence alignment [255] of Homo sapiens, Mus

musculus, Canis familiaris, Monodelphis domestica, Anole carolenesis, Gasterosteus

aculeatus, Xenopus tropicalis and Gallus gallusto search for the homologous sequence

positions of the set of latimerian splice sites, that we established by split read mapping

data. We followed the regular approach regarding the assessment of conservation, see

Methodology in Chapter 5.

7.2.1. Colinear splice sites

Of the 270, 957 canonical splice sites in the combined data set, which includes 208, 956

sites matching to ENSEMBL annotation (Table 7.3), about 77.8% were alignable in at

least one of eight other vertebrate genomes. More than 96% of these were conserved

according to splice site scores, and for 92.7% there was experimental evidence for a

functional splice site in at least one of these eight species Table 7.4. The overwhelming

majority of these splice sites were located within protein-coding genes.

7.2.2. LincRNA transcript structure

We observed 23, 065 splice sites in 8, 066 spliced lincRNAs in the union of our lincR-

NAs and the lincRNAs reported in the coelacanth genome paper [255]. About 14%
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Table 7.3.: Comparison of observed splice junctions in L. chalumnae and L. mena-

doensis, resulting from reads mapped with local, colinear splits. The addition “filtered”
describes the filtering by haarz mapping criteria and a minimum junction support of three
reads.

L. chalumnae

(muscle complete)

L. menadoensis

(combined)

Union

Normal split reads (total) 26, 176, 970 14, 201, 048 40, 378, 018
Normal split reads (filtered) 3, 931, 662 8, 885, 713 12, 817, 375
With determined reading direction 3, 886, 601 8, 778, 103 12, 664, 704
Unique junction locations 82, 191 128, 239 145, 658
Unique splice sites 156, 763 243, 515 270, 957
Match with ENSEMBL 130, 924 192, 405 208, 956
Match with lincRNA [255] 1, 416 1, 054 1, 793
Within unannotated regions 16, 236 36, 193 42, 463

Table 7.4.: Conservation of normal latimerian splice sites. The first column shows,
how many coelacanth splice sites could be “aligned” to the relevant species. The second
column describes, the number of splice sites, which are annotated as splice sites in this
species. The abbreviation “pred.” refers to “predicted” splice sites, with a MaxEntScan score
> 3 in the aligned sequence. The last column summarizes the “conserved” splice sites, as the
union of the “annotated” and “predicted” ones. “H or M” = human or mouse, “8 Species”
refers to presence of that splice site in at least one of the eight other vertebrates in the
latimeria-centered 9-way multiple sequence alignment.

Species No. of unique splice sites
Coelacanth 270,957

align. annot. pred. cons.
Human 174, 191 168, 623 165, 826 169, 941
Mouse 169, 828 163, 894 162, 067 165, 803
H or M 183, 838 178, 055 176, 661 179, 201
Frog 168, 385 136, 047 159, 808 162, 243
Stickleback 146, 684 69, 617 136, 065 138, 591
8 Species 210, 794 195, 388 203, 219 203, 944
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Table 7.5.: Conservation of splice sites of coelacanth lincRNAs.

Species Splice sites Transcripts
Coelacanth 23, 065 8, 066

align. annot. align. annot.
Human 447 254 310 146
Mouse 350 195 253 117
H or M 540 292 374 166
Frog 823 334 514 190
Stickleback 315 79 229 52
8 Species 1, 839 733 1, 135 394

of the splice sites (1, 839 sites in 1, 135 transcripts) in this combined lincRNA set were

alignable to sequence in at least one of the other eight vertebrate genomes included

in the latimeria-centered MSA (Table 7.5). Of these, 40% exactly correspond to an

annotated splice site in at least one of these species, providing direct evidence for the

partial conservation of 301 lincRNA loci (merged from 391 transcripts).

The rather poor conservation of lincRNAs as measured by splice sites does not

come as a surprise, since only a small fraction of the observed splice junctions were

included in the multiple sequence alignments in the first place. Their level of sequence

conservation was very low compared to other functional transcripts [20, 22], although

there is good evidence that, at least as a group, mRNA-like non-coding RNAs are

under stabilizing selection [19–21, 197].

7.2.3. Circularized transcripts

For L. menadoensis and L. chalumnae we observed 5, 760 circularizing junctions and

17, 066 trans-splicing junctions. For a fraction of 10.6% and 28.7%, respectively,

we were able to determine a reading direction, based on canonical splice motifs.

Thus 610 circular junctions remain, consisting of 1, 120 canonical splice sites. Almost

half of these splice sites (501) are also utilized in regular, colinear splice junctions.

They are surprisingly well conserved: more than 60% are located in a region that

is alignable in at least one other distant vertebrate and more than a third of these

positions constitute a functional splice site according to the available experimental

evidence, see Table 7.6. A comparison of circularizing splice junctions with recent

reports of circular microRNA sponges in the human transcriptome [64, 65] did not

provide evidence for the conservation of these particular RNAs between mammals

and coelacanth, however.
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Table 7.6.: Conservation of circular latimerian splice sites. Since 501 of the 1, 120
circular splice sites are also involved in normal splice events, we only used the remaining 619
for the conservation statistic. For a column description see Table 7.4.

Species No. of unique splice sites
Coelacanth 619

align. annot. pred. cons.
Human 282 117 103 132
Mouse 273 102 96 116
H or M 296 126 115 147
Frog 291 81 102 109
Stickleback 263 39 81 89
8 Species 375 147 173 202

Table 7.7.: Conservation of latimerian trans-splice sites. Since 1, 116 of the 7, 486
trans-splice sites are also involved in normal splice events, we only used the remaining 6, 370
for the conservation statistic. For a column description see Table 7.4.

Species No. of unique splice sites
Coelacanth 6, 370

align. annot. pred. cons.
Human 1, 887 1, 616 1, 607 1, 653
Mouse 1, 815 1, 540 1, 534 1, 583
H or M 2, 023 1, 738 1, 746 1, 781
Frog 1, 814 1, 249 1, 525 1, 550
Stickleback 1, 545 640 1, 274 1, 306
8 Species 2, 483 1, 964 2, 128 2, 150

7.2.4. Trans-spliced transcripts

In the combined Latimeria RNA-seq data we found 17, 066 trans-splice junctions

connecting different scaffolds. Among these are 338 that are backed by more than

100 split reads. The majority of these splice sites were unique to trans-splicing events.

Table 7.7 summarizes the conservation of the trans-splicing sites. Only a third of

them could be aligned to homologous sequences in other vertebrates. In most of these

cases we observed a functional splice site in the other species. However, in general, the

specificity for non-local junctions does not appear to be as conserved across species

as other splice sites.
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7.3 Discussion

7.3. Discussion

Atypical transcripts, characterized by mapping non-locally or non-linearly to the ref-

erence genome, become more and more recognized as a prevalent part of the RNA

world. In this contribution we analyzed in detail the available RNA-seq data of two

coelacanth species, L. chalumnae and L. menadoensis. The improved mapping al-

gorithm implemented in segemehl [227], which deals efficiently with both typical

and atypical transcripts, allowed us to paint a comprehensive picture of the diverse

coelacanth transcriptome. In particular we report 51, 488 additional expressed loci

from which normal transcripts arise (576 protein-coding and 37, 099 lincRNAs), to-

gether with 362 splice sites of circular RNAs and 4, 698 of long-range (trans-spliced)

connections. The very high fraction of junctions that use canonical splice sites is a

strong indicator that the overwhelming majority of these transcripts cannot be dis-

missed as artificial products of RT-based technology but instead must be interpreted

as biological reality.

The use of comparative splice site maps provides the most remarkable finding

of this study, which is the unexpectedly high level of evolutionary conservation of

splice sites involved in circularization. Especially, as the majority of these sites is

exclusive to circularized transcripts. Their conservation indicates that they play an

important key role in cell functionality. Recent reports of abundant, stable and

often conserved circular RNAs in mammals have identified them as a crucial class of

regulatory molecules [59, 64, 65]. Our results show that such “atypical” transcripts

are evolutionarily old, dating back at least to an osteichthyan ancestor. Non-locally

spliced transcripts are even less well understood. The statistical similarities in splice

site usage and conservation between trans-spliced and circularized products, suggests

that at least a subset is also functional. This observation is further strengthened

by evolutionary conservation of a fraction of the non-local trans-splice sites, albeit

a smaller one than with the circularizing sites. Future exploration of the functional

significance of “atypical” transcripts, such as these, promises to yield many new

insights.
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Chapter 8

Evolution of

Alzheimer associated genes

Alzheimer’s disease (AD) is an age-related chronic neurodegenerative disor-

der of unknown cause with complex genetic and environmental traits. It

is pathologically characterized by neurofibrillar aggregates of Aβ-peptides and the

microtubule-associated protein tau. Transgenic mice models of AD have been suc-

cessfully established for therapeutic research. However, the observations that have

been made with these mice models could not be translated into effective therapies for

AD patients by now. While AD is extremely prevalent in human elderly, both Aβ and

tau pathology are less common in non-primate mammals, and even non-human pri-

mates develop only an incomplete form of the disease [263]. This human-specificity

suggests a phylogenetic aspect of AD. Still, the evolutionary dimension of the AD

pathomechanism remains difficult to prove and has not been established unequivo-

cally so far. Defining those clear-cut phylogenetic traits of the AD pathomechanism,

however, will have far reaching consequences with respect to our approaches of disease

prevention and therapy including defining appropriate model systems.

To prove the contribution of brain evolution towards the AD pathomechanism, we

applied the systematic analysis on the conservation of splice sites, as described in

Chapter 5, to a data set of AD-associated protein-coding and non-coding genes. The
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Evolution of Alzheimer associated genes

AD-associated genome-wide RNA profile, comprising both the protein-coding (cRNA)

and non-protein-coding (ncRNA) transcripts, was established through microarray

analysis in preceding work, which will be outlined in the following Section 8.1.

Genome-wide studies that systematically analyze the evolutionary age of protein-

coding and non-protein-coding AD-associated genes have not been performed previ-

ously. While major evolutionary changes might have occurred at the transcriptomic

level, they appear to be particularly pronounced for lncRNAs [28, 35]. As shown by

analyses of sequenced genomes of a large variety of species, the relative amount of non-

coding sequence increases consistently with complexity [12]. Thus, lncRNAs, most

likely constitute a critical layer of gene regulation in complex organisms that have

expanded during evolution [264]. However, the evolutionary histories of lncRNAs are

hard to study due to their usually low level of sequence conservation (discussed in

Chapter 3). This not only hampers comprehensive homology-based annotation efforts

but also makes it nearly impossible to obtain the high fidelity sequence alignments

that are required for in depth studies into their evolution.

As elucidated throughout this thesis, we can utilize the conservation of gene struc-

ture, or more precisely the conservation of splice sites to establish homology of lncR-

NAs. We have already shown in previous research [35] that lncRNAs, although

clearly ancient components of vertebrate genomes, exhibit a rapid turnover of their

intron/exon structures, which may be indicative of functional adaptation.

While the disease-relevance of lncRNAs is increasingly recognized, previous system-

atic gene expression profiling studies nevertheless focused predominantly on protein-

coding genes. Consequently, so far, only a few individual AD-associated ncRNAs

have been identified and functionally characterized [265].

8.1. Previous work

To detect the conservation of splice sites, specifically of AD-associated genes, we used

a set of transcripts, that were identified to be differentially expressed in AD. This set

was obtained via the employment of a microarray and subsequently the use of a variety

of bioinformatic methods. This stages of the workflow were performed previously in

the course of a collaboration of the Paul-Flechsig-Institute for Brain Research (PFI,

Leipzig, Germany), together with the RNomics group at the Fraunhofer Institute

for Cell Therapy and Immunology (IZI, Leipzig, Germany), and the Bioinformatics

Group in the Department of Computer Science at University of Leipzig (Germany).

In the following the work stages and the methods that were used to obtain the

data set, which was used to generate a comparative splice site map are explained.
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8.2 Data sets

Besides Appendix C.1, where the steps are described in more detail, it is refered to

these individuals, who designed and performed the array experiments and performed

the bioinformatic analysis of the expression data:

• Prof. Dr. Thomas Arendt, thomas.arendt@medizin.uni-leipzig.de

• Dr. Christian Arnold, christian.arnold@embl.de

• Dr. Kristin Reiche, kristin.reiche@izi.fraunhofer.de

• Dr. Jörg Hackermüller, joerg.hackermueller@ufz.de

An extensive description and evaluation of the process of identifying differentially

expressed loci can be found in the Ph.D. thesis of Christian Arnold [266].

8.1.1. Microarray workflow

At first a custom array was designed comprising 931, 898 probes derived from Ag-

ilent’s Whole Human Genome Oligo array, lncRNA probes extracted from public

databases, computationally predicted loci of structured RNAs, and lncRNA probes

experimentally identified by transcriptome-wide expression variation studies based on

the Affymetrix Human Tiling 1.0 array comparing AD patients with control samples.

Applying this custom array to 19 AD patients and 22 age-matched control samples,

we identified a differential expression of 154 multi-exonic cRNAs with a total of 4, 162

splice sites and 141 multi-exonic lncRNAs with a total of 1, 297 splice sites. We will

refer to these loci as differentially expressed regions (Figure 8.1, blue barrel), which

we used to obtain our final signal data sets in the next step.

8.2. Data sets

We compiled lists of splice sites from the GENCODE v14 annotation for human

protein-coding genes and long non-coding RNAs. Genome wide multiple sequence

alignments across 18 vertebrate genomes were used to construct two maps of con-

served splice sites as background sets as described in Chapter 5. Independently for

cRNAs and lncRNAs, the signal sets were obtained as intersection of the background

maps with the differentially expressed regions. Thus the signal sets are designed as

strict subsets of the background – a trait that ensures comparability. The splice site

conservation rates of the background were then compared to the conservation rates

of the signal. To evaluate the statistical significance of the differences in the conser-

vation rates, we computed an empirical p-value by drawing 1, 000 random samples

of matching size from the GENCODE-derived backgrounds. We used p < 0.05 as
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Figure 8.1.: Method workflow. We constructed background sets from the GENCODE
v14 annotation and generated their splice site conservation maps with genome-wide multiple
sequence alignment. The splice site conservation map for the AD-related genes is obtained
as the intersection of the differentially expressed custom array loci with the background set.
Empirical p-values are computed from sets of random loci of matching size drawn from the
GENCODE-derived background to evaluate the statistical significance.

significance threshold. Compare with Figure 8.1 for a schematic work flow.

Additionally, a control set was obtained as intersection with regions that are ex-

pressed in human brain, to preclude a possible bias in the results of AD-associated

regions towards generally brain-expressed transcripts. We used brain expression data

from the study of Necsulea et al. [28] here.

8.3. Results

In order to compare the conservation of genes at a structural level, we classify the data

by the “degree of conservation” c, which is the fraction of conserved splice junctions

per gene. We ask – for a fixed value of c – whether loci that are differentially expressed

in AD patients show signs of accelerated evolution compared to the set of genes, which

are included in the GENCODE v14 annotation of the human genome.

8.3.1. Protein-coding AD-associated genes are not younger than

background

Nearly all AD-associated protein-coding genes are evolutionarily old (Figure 8.2D).

There were no differences in conservation rate at c > 0% between AD-associated and

all protein-coding genes, i.e., AD-associated protein-coding genes did not originate

later in evolution than other protein-coding genes. In line with previous reports

[264], lncRNAs are much less well conserved and many have emerged in the course
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Figure 8.2.: Conservation rates of human AD-associated non-protein-coding (A-
C) and protein-coding (D-F) regions for different conservation degrees (c > 0%, c >
60%, c = 100%). On the horizontal axis mammalian species are indicated (denoted by the
UCSC abbreviations, which can be found on page 147f.) at their phylogenetic distance from
human. Distinct data points are connected by lines to guide the eye. Variations in assembly
and alignment quality cause some non-monotonicity in the curves, the overall decrease of
conservation with phylogenetic distance is nevertheless clearly visible. Statistical significance
of differences is computed independently for each species. Filled circles indicate p < 0.05.
The fraction of detectable conserved AD-associated non-coding genes is marginally higher
than the conservation of the background set non-coding transcripts if only presence/absence
of a transcript is considered (A). In contrast, if conservation of the entire gene structure
is considered, AD-associated genes are significantly less conserved than the control. This is
true for both lncRNAs (C) and protein-coding genes (F). Additional controls against possible
confounding effects e.g. of alignment quality in Figure 8.3 and Figure 8.4 corroborate that
the trends shown here are robust.

of mammalian evolution. The fraction of conserved lncRNAs thus decreases rapidly

with evolutionary time (Figure 8.2A-C). As for protein-coding sequences we do not

observe a significantly younger origin of AD-associated genes.

8.3.2. AD-associated genes are subject to accelerated change of gene

structure

While there is no recognizable difference in the evolutionary age of origin between

AD-associated genes compared to the transcriptome as a whole (Figure 8.2D), we

observe significant, albeit more subtle differences in the evolution of AD-associated

and general lncRNAs, concerning the changes in gene structure. With an increasing

degree of conservation c, the initially higher conservation rate of AD-associated non-

coding genes decreases and eventually falls distinguishably below the background level
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(Figure 8.2A-C). The difference between AD-associated and general lncRNA genes

becomes significant for c > 60% (p < 0.05) in the comparison with distantly related

mammals. When complete conservation of gene structure is considered, c = 100%,

the lower conservation rate of AD-associated ncRNAs becomes significant even in

primates. In other words, the fraction of transcripts that have the entirety of their

splice sites conserved is smaller amongst AD-associated ncRNAs than amongst non-

coding genes at large. AD-associated ncRNAs hence show an accelerated evolution

of their gene structure. This is indicative of a more rapid functional adaptation of

AD-associated non-coding genes.

Despite the very high conservation rates of protein-coding genes in general, we ob-

serve the same increase of splice site turnover in AD at c = 100%. In fact, the relative

effect is even stronger compared to non-protein-coding loci (≈ 30-40% versus ≈ 5-15%

difference, shown as red lines in Figure 8.2C and 8.2F, respectively). However, even

a moderate level of splice site turnover is much less common for protein-coding genes

than for non-coding genes. This is reflected by the negligible differences between the

conservation rates of signal and background for c > 60%. Since the same fraction

of transcripts is already detectable at low conservation degrees, while the conserva-

tion rate decreases with higher c, we conclude that splice sites are systematically less

conserved in human AD-associated regions compared to the typical behavior of the

transcriptome. While protein-coding loci exhibit an enhanced rate of small changes

in their gene structure, we observe large changes in lncRNAs, again with a signifi-

cantly enhanced rate in the AD-associated ncRNAs. This suggests that in particular

AD-associated non-coding genes play an important, as yet largely unexplored, role in

the AD pathomechanisms.

8.3.3. Upper bounds of conservation rates are consistent with findings

Quality and completeness of the underlying alignment may influence the conservation

results. Naturally, alignments do have gaps and not every splice site has an ortholog

position aligned in each species. This is a concern in particular for non-model organ-

isms. As a control, we therefore also calculated the percentage of positions that can

be aligned independently of any splice site conservation (Figure 8.3) and the fraction

of conserved genes among alignable genes (Figure 8.4), which represents the upper

bounds of transcript conservation rate. The overall trends and the conclusion of the

analysis remain unchanged, when taking into account the fraction of unaligned and

annotated data.
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Figure 8.3.: Fraction of alignable human AD-associated non-protein-coding (A-
C) and protein-coding (D-F) regions for different degrees of alignability (a > 0%, a >
60%,a = 100%), that is the fraction of splice sites per region which are alignable to another
species. On the horizontal axis mammalian species are indicated (denoted by the UCSC
abbreviations) at their phylogenetic distance from human. Distinct data points are connected
by lines to guide the eye. Statistical significance of differences is computed independently for
each species. Filled circles indicate p < 0.05.
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Figure 8.4.: Upper bound of conservation rates of human AD-associated non-
protein-coding (A-C) and protein-coding (D-F) regions for different conservation
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Figure 8.5.: Conservation rates of human brain-expressed non-coding and protein-
coding genes in comparison with the respective background of GENCODE v14 annotated
genes for different degrees of conservation (c > 0%, c = 100%).

8.3.4. No brain related bias in data

When we employ the control set of brain-expressed human transcripts as background,

all found results remain valid, since the difference in conservation rates compared to

GENCODE v14 annotated genes at large and the subset known to be expression

in brain is marginal for all degrees of conservation c for both protein-coding and

non-coding genes, Figure 8.5.

8.4. Discussion

We have shown here that gene structures of both lncRNAs and proteins associated

with AD evolve faster than the genome at large, while there is no evidence that

AD-associated genes originated particularly late in evolution.

The enhanced rate of gene structure evolution in AD-related genes hints a relation

of AD to recent adaptive evolution, presumably in relation to the rapid evolution of

the human brain, which may have caused changes of cerebral structure and function

that have rendered the human brain sensitive to AD [267]. Importantly, replacing

the background set by only genes expressed in brain does not affect the conclusions.

Major phenotypic brain changes that have occurred in the course of recent human

evolution, in particular between human and chimpanzee, appear to be mostly the

result of an increase in gene expression and are, thus, reflected at the transcriptomic

level. [268–270]. Genes whose expression has increased in human brain are mainly

related to growth and differentiation [271] and frequently are involved in transcrip-

tional regulation and RNA processing [268, 269]. The most significant differences
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8.4 Discussion

in gene expression between the human and non-human primate brain have been ob-

served in the association cortex [268, 272], i.e., brain areas that have expanded during

hominid evolution [273] and are affected in AD most early and most constantly [274].

Evolutionary expansion of the neocortex, and in particular phylogenetic shaping of

association areas, is associated with a developmental deceleration and an extended

period of high neuronal plasticity into adulthood [271]. The presence of these neu-

rons which remain structurally immature throughout their lifespans might provide

the prerequisite both for the human adaption to the “cognitive niche” and for a high

vulnerability towards factors that lead to the development of AD [275–277].

Our data support the concept that neuronal vulnerability in AD is a result of

the evolutionary legacies that have occurred during the course of evolution of the

human brain, making AD an example of antagonistic pleiotropy. This evidence for

a phylogenetic trait of AD highlights the necessity to reconsider our approaches to

define the molecular pathology of AD and the appropriateness of current animal

model systems [278] to develop disease-modifying strategies.
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Chapter 9

Conclusion

T his thesis introduces a method to reliably predict the conservation of RNA,

based on the conservation of their splice sites. This enables a prediction

independent from coding capacity in form of preserved open reading frames, what

makes this method suitable particularly for investigating the conservation of non-

coding RNAs. By focusing on the conservation of gene structure, represented through

splice sites, it is possible to capture the evolution of lncRNA transcripts separately

from other selective constraints such as regulatory DNA elements that may affect

sequence conservation.

This approach employs comparative splice site maps, which are generated from

transcriptomics data together with multiple sequence alignments. The splice site

motif scoring method of MaxEntScan is used to assess the conservation of orthologous

sites. The accuracy of the method will profit from future advances in large-scale in-

depth sequencing technologies, that can provide more comprehensive transcriptome

and genome assemblies to tone down the limiting factors of alignment imperfections

and incomplete transcriptome annotations. However, when the method is applied

to RefSeq annotated protein-coding RNAs, the prediction of conserved splice sites

in the extensively explored model-organism mouse, almost perfectly matches with

experimentally validated sites. This fact in combination with the low estimated false

positive rate, corroborates the high precision and robustness of the method.
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Conclusion

The specificity of the chosen reference transcriptomics data and the range of species

in the employed multiple sequence alignment can be adapted to find answers for a

broad scope of evolutionary questions.

In Chapter 6 we used comparative maps among non-coding splice sites to predict

the conservation of human lncRNAs across 46 vertebrate genomes. The number of

evolutionarily conserved single splice sites (e.g. ∼ 13% of all splice sites between

human and mouse), provide a lower bound on the estimated number of conserved

lncRNA and are in good agreement with previously suggested conservation rates in

the studies of Washietl et al. [27], Necsulea et al. [28] and Managadze et al. [29].

Considering a lncRNA transcript as evolutionarily conserved, if at least one of its

splice sites is present in the other species (c > 0%) we were able to trace more than

85% of human lncRNAs back to the divergence of placental mammals. This number

presumably constitutes an upper bound. More examples of lncRNAs with relatively

high levels of sequence conservation that also exhibit completely or partially conserved

gene structure between mouse and human can be found in the slncky browser [128],

confirming also many of the computational findings in Chapter 6.

RNA trans-splicing and circularization increase the potential of genetic informa-

tion to form various products which enrich the diversity of the proteome or the reg-

ulatory machinery. Although trans-splice events are reported to occur more fre-

quently in lower species than in higher vertebrates, we identified more than 17, 000

trans-connecting splice junctions (donor–acceptor pairs) and nearly 5, 800 circulariz-

ing junctions in a joined data set of RNA-seq data from two latimerian species by

employing the specialized mapping tool segemehl. The abundance of these atypical

transcripts suggests that they are in fact a previously hidden component of vertebrate

genomes. A decent fraction of those junctions uses canonical splice sites, indicating

a spliceosome-mediated splicing process which eliminates the possibility that these

transcripts are merely RTfacts.

The conservation analysis of the subsets of trans-splice and circular splice sites,

that were canonical and exclusively involved in atypical splicing, yielded an unex-

pectedly high level of evolutionary conservation for both sets as further evidence

against the hypothesis of “splicing noise” from aberrant transcription. Our results

reveal that these transcripts are evolutionarily old and must have been present at

least at the divergence of tetrapods and teleostei, as we find orthologs between coela-

canth and human. This indicates that chimeric and circular RNAs are of importance

for physiological cell functions which also suggests a pathological role.

Indeed, circular RNAs have been found to be associated with the occurrence of

diverse human diseases [279]. In recent studies they have been described as abundant
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stable transcripts of eukaryotic cells, with spatio-temporal specific expression pat-

terns, that are especially enriched in the human brain [56, 59, 63]. Since circRNAs

have been discovered to act as regulators of gene expression in the role of miRNA

sponges [64, 65], there is emerging evidence that a dysregulation of circRNAs may

impact the pathology of various human diseases, e.g. Alzheimer’s disease [280].

By establishing an AD-associated genome-wide RNA-profile of both protein-coding

and non-protein-coding transcripts, we were able to investigate the evolution of AD.

Since AD is a young disease from the evolutionary perspective, we expected to find

little conservation in distant species. However, we could show that AD-associated

genes did not originate later than non-AD-associated genes. In fact, we detected the

same up to a significantly (p < 0.05) higher fraction of these genes in the respective

species (c > 0%). Conversely, when comparing the conservation rates of transcripts

with a completely conserved gene structure (c = 100%), we saw significantly less

conserved AD-associated than non-AD-associated genes for both protein-coding and

non-protein-coding regions. This is striking evidence for an accelerated evolution of

AD-related genes. Importantly, genes expressed in brain do not exhibit this peculiar

conservation pattern and instead are nearly congruent with the background.

Changes in gene structure can be expected to have in general larger functional

effects than point mutations. The enhanced evolution rate of gene structure in AD-

associated genes supports the view of AD as a consequence of recent rapid adap-

tation of genes involved in functionality and cerebral structure of the human brain

[267]. This phylogenetic trait highlights the necessity for a paradigmatic change of

AD concepts and the need to reconsider the appropriateness of current animal-models

to develop disease-modifying strategies. Non-coding genes in particular play an im-

portant, as yet largely unexplored role in AD.

At present we can only assert that lncRNAs in general show a high level of vari-

ability in their gene structure. In the absence of data that would allow us to locate

specific functions or molecular interactions to individual exons, we can only speculate

about the functional meaning of the observed rapid turnover. The most plausible

view is that many lncRNAs act as “coat hangers” [281, 282], i.e., interaction part-

ners, for several proteins and RNA partners. Turnover in gene structure thus would

translate into different composition and thus likely modified molecular functions of

ribonucleo-particles. Small genetic changes therefore may be amplified to substantial

effects at the functional level, making lncRNAs and their isoforms a prime candidate

to understand rapid, lineage-specific adaptations and exaptations.
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Appendix A

Conservation of human RNAs

A.1. Supplementary results

We used RefSeq annotated transcripts in order to investigate the conservation of

protein-coding sequences. Table A.1 shows the absolute conservation of coding splice

sites for four chosen mammals, namely mouse, rat, dog, and cow. The chart in

Figure A.1 illustrates, that the level of predicted conservation (blue and cyan colored)

is similar in all of these species. The high annotation rate of predicted conserved splice

sites in mouse (cyan) suggests that to a large extent the predicted splice sites in the

remaining species are unannotated protein-coding splice sites.
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Table A.1.: Conservation of RefSeq splice sites. RefSeq annotated transcripts were
used for estimation of coding transcripts only, since the majority of the non-coding RefSeq
transcripts are still associated with coding loci.

Coding 3’-UTR 5’-UTR

Human 355,573 1,124 16,035

Mouse

Aligned 340,327 828 11,737
Predicted 325,323 680 8,200
Validated 326,401 607 6,908
Conserved 333,661 693 8,339

Rat

Aligned 324,604 770 10,954
Predicted 310,135 627 7,669
Validated 276,676 522 5,090
Conserved 317,055 635 7,753

Dog

Aligned 343,042 915 12,111
Predicted 327,591 761 8,485
Validated 149,575 455 2,614
Conserved 331,434 768 8,527

Cow

Aligned 337,301 880 12,711
Predicted 322,453 747 9,109
Validated 269,218 543 5,404
Conserved 329,448 753 9,217



Figure A.1.: Conservation of RefSeq splice sites in mouse, rat, dog and cow.
Graphical illustration of numbers displayed in Table A.1.



Contents

B.1. Supplementary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.1. Variation calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.2. Circular motif search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.3. SHSs and RTfacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1.4. Coverage estimation for splice junctions . . . . . . . . . . . . . . . . . 132

B.1.5. Validation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2. Supplementary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Appendix B

Identification of atypical

transcripts in coelacanths

B.1. Supplementary methods

B.1.1. Variation calling

Variation within and between the two coelacanth species was quantified by determin-

ing SNPs of mapped transcriptome at all sites with a coverage of at least 8 reads. We

used GATK version 2.3 [283] for SNP calling.

B.1.2. Circular motif search

In order to find a putative motif that is predominantly associated with circular junc-

tions, we extracted 6 nt of DNA sequence at each splice site (3 nt in exon and intron)

and combined it to form a 12 nt sequence pattern for each splice junction. This re-

sults in 5, 561 unique patterns for 5, 760 circular splice junctions and 27, 311 unique

patterns for 213, 417 normal splice junctions. We employed MEME [284] for the motif

search. It was run with the “zero or one match per sequence” option. As expected,

the canonical splice junction motif was readily recovered. After removing about 700

12-mers that conform to a canonical or minor spliceosome motif, we again started the
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Identification of atypical transcripts in coelacanths

MEME motif search to see if any additional characteristic patterns could be detected.

This was not the case.

B.1.3. SHSs and RTfacts

We analyzed to which extent the splice junctions of the data sets can be explained

by the short homologous sequences model proposed in Li et al. [45] or by RT PCR

artifacts that show similar sequence homology (cf. [48]). We thus computed the

maximal length of the homologous subsequences between the exonic regions of the

donor and acceptor splice sites. An exact overlap of at least 4 nt was counted as

“short homologous sequence” (SHS), which may indicate an RTfact.

B.1.4. Coverage estimation for splice junctions

In order to investigate the relationships between RNA expression and abundance of

spliced RNA reads, we defined “coverage loci” as follows: We considered genomic

regions with a minimum coverage of 8 reads and merged sites separated by less than

100 nt. Sites smaller than 50 nt were removed from further analysis. To account for

inaccuracies in determining the boundaries of loci, we counted all spliced reads with

a splice junction within 50 nt of a “coverage locus”.

B.1.5. Validation experiments

The first-strand cDNA and genomic DNA from muscle of L. menadoensis was am-

plified by thermal cycling using the Takara ExTaq PCR kit (Takara, Japan). Primer

pairs were designed to generate a PCR product that spanned the fusion site for these

transcripts. Additional control primers were designed to amplify sequences present

only in the local genomic contexts. Amplification was performed for 30 cycles at

94 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 1min, with a final elongation for 8min

at 72 ◦C. The amplified PCR products were sub-cloned into the pCRII-TOPO dual

promoter vector (Invitrogen) and sequenced.

B.2. Supplementary results

Mapping and variation

Between 75% and 80% of the reads in the individual RNA-seq data sets could be

mapped to the reference genome. Between 1/6 and 1/5 of these mapped with splits.
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B.2 Supplementary results

In addition, sub-sampled libraries were mapped to obtain comparable sample sizes

for quantifying circular and trans-spliced reads.

The RNA-seq libraries of L. chalumnae muscle tissue and L. menadoensis liver

and testis were of comparable size and quality, covering slightly more than 1% of the

genome assembly. Using these transcriptome data as a reference, the two Latimeria

species were very similar. The L. menadoensis transcripts showed only about 0.3% di-

vergence from the L. chalumnae reference genome, while the number of heterozygous

SNPs, i.e., the intra-specific variation in L. menadoensis, was about twice as large.

The number of homozygous differences between transcriptome and reference genome

barely exceeded 0.1% and was consistent with about 0.4% heterozygous SNPs in L.

chalumnae RNA-seq data. The small divergence relative to the intra-specific diversity

justified a joint analysis of all coelacanth transcriptome data in the following.

Comparison of normal and atypical transcripts

For a better comparison of the properties of circular and trans-spliced transcripts in

the individual data sets we used sub-samples of equal size. In this way we obtained a

comparable sequencing depth, which should at least alleviate the biases arising from

very rare junctions in the largest data sets. While this simple normalization cannot

account for differences in the expression profiles of the different tissues it should at

least make the data sets qualitatively comparable.

Results for the two coelacanth species are very similar, hence we use their union.

We compared atypical reads with normal (local and colinear) splice events for coela-

canth, human, and zebrafish RNA libraries. As expected, the overwhelming majority

of normal splice events utilizes canonical splice patterns. In contrast, circular and

trans (long-range) splice events often use alternative sequence patterns, although a

substantial fraction still conforms to the canonical motifs. We observed that in the

coelacanth data, more circularizing splice junctions are off by 1 or 2 nt compared to

both the human and the zebrafish data set. Adding these to the canonical subset,

yielded nearly the same fraction of about 70−80% canonical splice motifs as zebrafish

and human. We note that this fraction is substantially larger than the numbers re-

ported in Li et al. [45]. Surprisingly, most of the circularizing and trans-joining splice

junctions are disjoint from normal splice junctions. This effect is even more pro-

nounced in coelacanth and zebrafish than in human. This pattern, which we observe

for both the circularizing and the trans-junctions strongly suggests that the resulting

unconventional transcripts are not merely a by-product of conventional, local splicing

events.

Since a substantial fraction of the circular and trans-splice junctions did not fit the
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Identification of atypical transcripts in coelacanths

canonical splice site motif, we searched for additional over-represented patterns in the

remaining junctions. No significant pattern could be identified, however. We then

searched for the “short homologous sequences”, i.e., short sequences with four or more

nucleotides, shared by the sequences surrounding the “splice junction”. According

to Houseley and Tollervey [48], however, these might be RTfacts. We found that

such patterns are rare in our data, ranging from 0.7% to 2.6% of the circularized or

trans-spliced transcripts. At the same time, the majority of atypical junctions are

associated with canonical splice site motifs. We thus conclude that contamination

levels in our data are low and the majority of both circular and trans-spliced RNAs

cannot be explained as technical artifacts.
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Appendix C

Spadework of

the Alzheimer Project

The Alzheimer Project [37] was a collaboration between the PFI, IZI and the Bioinf

Group of University Leipzig (see Section 8.1). Therefore multiple people contributed

to the project at certain stages, like lab work and microarray processing. This chapter

is based on the Supplement of the resulting publication [37] and provides a detailed

description of all worksteps that were implemented by the co-authors previously to

the computational conservation analysis, which was performed on the resulting data

set of differentially expressed loci. Section C.2 specifies once more how the final data

set was obtained.

C.1. Supplementary methods

C.1.1. Patient and control samples

We used brain tissue from 41 deceased subjects, 22 of whom developed AD before

they died; the other 19 were considered healthy controls with no history of neuro-

logical or psychiatric illness. The diagnosis of AD was made on the basis of both

clinical and neuropathological evidence according to the criteria of the International
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Working Group (IWG) for New Research Criteria for the diagnosis of AD [285, 286]

in the revision of 2014 (IWG-2) [287], the NIA-AA diagnostic criteria in the revision

of 2011 [288–291], and the NIA-AA guidelines for the neuropathological assessment

of AD [292, 293]. Only cases with typical AD according to the IWG-2 criteria were

included. All cases had undergone neuropsychological assessment during the final six

months of their lives. Clinical Dementia Rating (CDR) scale scoring was based on

neuropsychological testing (CERAD) [294], MMSE [295], and rating scales [296]. All

cases were neuropathologically assessed for NFT stage according to Braak and Braak

[274, 297] and Braak et al. [298], for Aβ/amyloid plaque score according to Thal

et al. [299], and for neuritic plaque score according to CERAD [300]. NFTs and

Aβ/amyloid plaques were detected by immunocytochemical labeling of phosphotau

(anti-human PHF-tau monoclonal antibody AT8; Thermo Scientific) and Aβ (beta

amyloid monoclonal antibody, 6E10; BioLegend), respectively. Severity of AD pathol-

ogy was staged following the consensus guidelines for the neuropathologic evaluation

of AD according to Hyman et al. [292] and Montine et al. [293].

Case recruitment, autopsy, and data handling were performed in accordance with

the ethical standards as laid down in the 1964 Declaration of Helsinki and its later

amendments as well as with the convention of the Council of Europe on Human Rights

and Biomedicine, and were approved by the responsible Ethics Committee of Leipzig

University.

C.1.2. RNA isolation

RNA was isolated by TRIzolTM method (Invitrogen, Karlsruhe, Germany). 100mg

deeply frozen human brain tissue (temporal cortex) was homogenized in the presence

of 1ml Trizol in a glass-TeflonTM homogenizer. The homogenate was transferred to a

microtube and after adding chloroform, samples were centrifuged at 15, 000 g (4 ◦C)

for 15min and the supernatant transferred to a fresh tube. Samples were mixed

with equal amounts of isopropanol and centrifuged at 12, 000 g (4 ◦C) for 15min to

precipitate the RNA. After washing, the pellet was air-dried and dissolved in water.

RNA quality was assessed by denaturing formaldehyde agarose gel electrophoresis,

by spectrophotometry (scanning at 220− 320 nm) and by analysis using Agilent 2100

bioanalyzer. Only samples with RIN > 5 were further processed. The RNA concen-

tration was estimated spectrophotometrically by absorbance at 260 nm, concentration

was adjusted to 1mg/ml and RNA was stored at −80 ◦C until use.
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C.1.3. Whole genome tiling arrays

Equal masses of total RNA derived from three patient and three control samples,

respectively, were pooled. The Affymetrix Human Whole Genome Tiling Array 1.0

Set consisting of 14 arrays was used according to the manufacturer’s instructions,

except that separate labeling reactions were used for each array starting from 10µg

pooled total RNA.

We used the TileShuffle algorithm described in [301] to determine expressed and

differentially expressed genomic intervals. Affymetrix Human Whole Genome Tiling

Array 1.0 Set raw signal intensities were mapped to human genome version NCBI36

using Affymetrix BPMAP files1. Expressed segments were detected with the TileShuf-

fle parameter settings: window size = 200, the window score was defined as the arith-

metic mean trimmed by the maximal and minimal values over signal intensities of

all probes in a window, number of permutations = 10, 000 and number of GC classes

= 4. All windows with an adjusted p < 0.05 according to Benjamini and Hochberg

[302] were defined to be significantly expressed. DE-TARs are differentially expressed

TileShuffle intervals with adjusted p < 0.05 (window size = 200, the window score

was defined as the log-fold-change discarding all probes with converse behavior as

observed for the relevant significantly expressed windows, number of permutations

= 100, 000 and number of GC classes = 1). Finally, the genome coordinates of all sig-

nificantly expressed and all significantly differentially expressed segments were lifted

over2 to GRCh37 (hg19).

C.1.4. Design of the Alzheimer Custom Microarray

Genomic intervals that were found expressed in the tiling array approach in AD or

control were combined with regions we found differentially expressed in tiling array

experiments on p53 induction, STAT3-signaling, cell cycle phases, and macroRNAs

called STAiRs, described in [303], a list of manually curated AD-associated genes

from literature, and other sources of annotated or predicted ncRNAs for probe de-

sign: Known lncRNAs retrieved from public databases — NONCODE [304], lncR-

NAdb [305], fRNAdb [306], RNAdb [307], H-InvDB [308], GENCODE v4 [309], RefSeq

[310], from literature — lncRNAs originating from actively transcribed genes [311],

chromatin-associated RNAs [312], snoRNAs from the snoBoard database [313], in-

tronic RNAs identified in [314], and genomic intervals with RNA secondary structure

under stabilizing selection (RNAz [315], Evofold [157]). Since natural antisense tran-

1http://www.affymetrix.com/analysis/downloads/lf/tiling/Hs35b_MR_v02-2_NCBIv36_v2.

bpmap.zip
2http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver
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Spadework of the Alzheimer project

scripts appear to regulate transcription and translation of neighboring genes (e.g.

[316]), we designed probes antisense to protein-coding genes (GENCODE v4). MR-

NAs were represented by Agilent’s 026652 catalog probe set, which is based on human

RefSeq mRNA sequence. Also, we designed probes for all protein-coding genes found

additionally in GENCODE v4.

Custom microarray probe design is a non-trivial task for pervasively transcribed

genomes. The CEM-designer pipeline [317] was therefore used to facilitate (i) the

collection and generation of a set of unified target sequences and (ii) the selection of

a set of sensitive and specific probes that represent the target sequences best while

meeting space constraints of the array. Target sequences shorter than 60 bp and du-

plicate target sequences (i.e., identical start and end positions) were discarded. Parts

of non-coding annotations that overlapped coding sequences were removed to enable

a clear separation between probes interrogating non-coding and coding transcripts.

Probe design was performed using Agilent’s eArray platform, using standard pa-

rameters for expression arrays, in particular 60 bp probes and the base composi-

tion methodology, which aims at equally distributing probes across the target se-

quence. Probe uniqueness was checked against human genome assembly version hg19,

rigorously discarding non-uniquely mapping probes using BLAT with options that

maximize sensitivity (-stepSize=5 -repMatch=1000000 -fine -minIdentity=90).

This design strategy ensured that probes were unique both on the DNA and RNA

level (according to human genome version GRCh37/hg19 and all known RefSeq tran-

scripts, respectively).

The number of probes per target sequence was set in dependence to target length.

Target sequences were represented by exactly one probe if the length was 60 ≤ l < 300,

three probes if the length was 300 ≤ l < 600, and five probes if the length was

600 ≤ l < 1000. Target sequences longer than 1000 bp were split into intervals of

60 bp overlapping ≤ 1000 bp chunks to ensure that probes may also be designed in

the vicinity of the split positions. Each subsequence was then treated as an individual

region subject to the design strategy as described above. For target sequences with

an unknown reading strand (e.g., sequences originating from the various tiling array

experiments, ncRNA predictions, and chromatin-associated ncRNAs), we designed

probes for both strands.

Overall, the Alzheimer Custom Microarray contains 931, 898 probes of which

905, 197 are custom probes. A summary of the genomic distribution of probes is

shown in Table C.1.
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Table C.1.: Genomic distribution of probes for the Alzheimer Custom Microarray,
based on GENCODE version 4, which was used for probe design. A probe corresponds to a
category if it overlaps strand-specifically to at least 95% (57 nucleotides) with at least one
annotation (i.e., feature or sequence) of the category. For introns and intergenic regions, the
strand information has been ignored. 5’UTRs and 3’UTRs correspond to 5’ and 3’ untrans-
lated regions of mRNAs. CDS corresponds to the coding exons of mRNAs. The relative
fraction is defined according to overall number of probes on the Alzheimer Custom Array.
The total numbers in the last column may not add up to 100% due to the mandatory control
probes and probes that overlap with no category with at least 95%.

Annotation category Number of probes Relative fraction (in %)

5’UTRs (sense) 39, 233 4.21
5’UTRs (antisense) 38, 021 4.08
CDS (sense) 70, 451 7.56
CDS (antisense) 43, 799 4.70
3’UTRs (sense) 101, 297 10.87
3’UTRs (antisense) 73, 340 7.87
Introns 388, 881 41.73
Intergenic regions 162, 803 17.47
Pseudogenes 8, 201 0.88
Repeats 17, 706 1.90

C.1.5. Processing of the Alzheimer Custom Microarray

Total RNA quality was checked using Agilent’s 2100 Bioanalyzer and only samples

with a RIN ≥ 5.0 were retained for microarray analysis. For 19 patient and 22 control

samples 1µg of total RNA was labeled using the Quick Amp Labeling Kit (Agilent,

Waldbronn, Germany), according to the manufacturer’s instructions with the adapta-

tion of using 120 pmol of a random N6−T7 primer (Metabion, Planegg, Germany) in-

stead of a polyT-T7 primer. cRNA quantity was checked using a NanoDrop ND-1000

UV-VIS Spectrophotometer, as enlisted in the manufacturer’s instructions. 1.65 µg of

labeled cRNA was used for hybridization following manufacturer’s instructions. Af-

ter hybridization the arrays were washed according to the manual and scanned using

the Agilent G2565CA Microarray Scanner System with Agilent Scan Control Soft-

ware (Version A851) following settings for scanning: Profile: AgilentG3 GX 1Color;

Channels Green; Scan Region: Agilent HD (61 × 21.6mm); Resolution 3µm double

pass; Tiff: 20 bit; Green PMT Gain: 100%. Result tables were extracted after grid

placement using Agilent Feature Extraction Software (Version 11.5.1.1)
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C.1.6. Identification of differentially expressed probes

Differential expression analysis was performed using R and the Bioconductor pack-

age Limma [318]. Quality control of arrays were performed by checking distribution of

“bright corner”, “dark corner” probes, and relative spike-in concentration versus nor-

malized signal. The controls confirmed high quality of the results and consequently

all microarray data were included in the downstream analysis. Initially, independent

filtering was performed, removing probes (i) with signal intensity above the back-

ground in less than one third of all arrays and (ii) exhibiting an interquartile range

of log2 signal intensity across all samples of less than 1. Background expression was

defined by the mean intensity plus three times the standard deviation of negative

control spots (Agilent’s 3xSLv spots). 113, 047 out of 931, 898 probes were retained

after filtering. Signal intensities were quantile normalized [319] but not background

corrected, due to the low background intensities of Agilent arrays.

Differential expression between AD and control samples was determined using a

linear model that includes age because on average, individuals from the AD group

were older than controls (∼81 and 65 years, respectively):

E[Xi] = α×AD+ β ×Age + ǫ (C.1)

where E[Xi] is the expected expression of probe i, ǫ an error term, α the coefficient

modeling the impact of AD on the expression variance of probe i, and β the coefficient

modeling the influence of the patient’s age. The linear model was fitted using the

R package Limma and reliable variance estimates were obtained by Empirical Bayes

moderated t-statistics. False discovery rate was controlled by a modified Benjamini-

Hochberg procedure that incorporates an estimated proportion of the null p-values

[320] to compute q-values using the fdrtool R package [321, 322].

With q < 0.2, a comparably relaxed cutoff for controlling the false discovery rate of

individual probes was chosen, because individual probes were subsequently aggregated

for each annotated item, as described below. Probes meeting this cutoff and uniquely

mapping to the genome defined the set sdiff that we used for all subsequent analyses.

C.1.7. Identification of differentially expressed loci

Subsequently, we identified differentially expressed loci aggregating differentially ex-

pressed probes. The rationale behind this step was to identify the set of genes that

show particularly trustworthy signs of differential expression. We argue that the dif-

ferential expression of an individual probe may not be a sufficient criterion for the
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corresponding gene to be deemed differentially expressed. For example, consider the

following case for a particular gene g for which one differentially expressed probe Pdiff
mapping to g has been identified. Among all probes that map to g, Pdiff may be a

false positive, and all other probes do not show signs of differential expression. Thus,

further incorporating g may not be useful because other genes show much stronger

and homogeneous signals with respect to differential expressions of probes.

Therefore, we deemed loci as differentially expressed if a significant fraction of

probes overlapping the locus in sense direction exhibited differential expression in “the

same direction”, i.e., with same sign of log fold change, according to a binomial test

(p < 0.05). Sources for annotations were equal to those used for probe design except

for GENCODE, where v14 was used. GENCODE was used as primary annotation

and all non-overlapping annotations from the other sources were used in addition.

Probes were considered, if at least 95% of its sequence overlapped with a particular

annotation. Annotations were considered per gene, i.e., we considered overlaps with

all exons of a gene and did not test for individual transcripts. If a probe mapped

to multiple distinct annotated genes, we tested each gene individually but recorded

the ambiguity to avoid losing potentially relevant signals. We considered only sense

and discarded antisense overlap because the transcript structure is not known for

transcripts that are antisense to annotated transcripts unless they map to known

antisense transcripts, which were already included in the various annotation sources

as listed above. However, for annotation items with an unknown reading direction

(e.g., loci from the tiling array experiments, ncRNA predictions, caRNAs [312]), we

ignored the strand information and considered all overlaps.

For each probe P ∈ sdiff, we determined whether p was located in a locus with

known transcripts (protein-coding, non-coding, or pseudogenes, as described before).

A probe was mapped to a particular gene if it was located in (i) an exon of at least

one annotated splice variant (only for protein-coding transcripts because non-coding

and pseudogene transcripts may exist in an unspliced and/or spliced version), (ii)

the UTR of that gene, or (iii) in a putative previously unrecognized exon (no overlap

with annotated exons but located in an exon of at least two spliced ESTs). Probes

located exclusively intronic of a protein-coding gene (i.e., no overlap with annotated

exons and less than two overlaps with exonic ESTs) were classified as putative intronic

transcripts and therefore added to the non-coding list. If multiple introns overlapped,

we used the cluster of overlapping introns as loci.

For each differentially expressed probe Pi ∈ sdiff that overlapped with a particular

differential expression candidate i (i.e., a locus with known or unknown transcript

structure) in sense direction, we then identified the set of probes Palli that also

overlapped with i with the criteria as described above (with respect to their genomic
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location such as exonic or intronic) and recorded the fraction of probes for which the

expression level change was in the same direction as Pi (i.e., up- or downregulated as

compared to the control group). We then used a one-tailed binomial test to identify

differentially expressed loci with a significance threshold of p < 0.05. As this threshold

can only be met with a minimal sample size of five probes, we separately recorded

cases with less than five overlapping probes but more than 50% of the overlapping

probes had a expression level change in the same direction.

Additionally, we recorded transcripts that achieved borderline significance (4 out of

5, 5 out of 6, and 6 out of 7 probes changing in the same direction). These loci should

be treated with caution, however, because they may contain an increased amount

of false positives. For probes located in loci with unknown transcript structures, we

checked if the probe overlapped with spliced ESTs. If more than one spliced EST

overlapped with the probe, we used the full overlapping EST cluster as locus rather

than the original locus for the subsequent significance test. Lastly, for each of the four

classes (three types of known transcripts and unknown transcripts), we filtered the list

and only retained loci for which either the binomial test was significant or for which

at least one probe had a differential expression q < 0.05. Although this procedure

eliminates potentially relevant signals, it reduces the number of false positives due to

the relatively high initial q-value.

C.2. Supplementary results

We followed a multi-step approach to identify AD-associated changes in gene expres-

sion: Initially, a whole genome tiling array was used to identify expressed regions in

pooled AD and control samples, respectively. An Alzheimer Custom Microarray

was designed, which interrogated the intervals identified as expressed in the tiling ar-

ray approach, additional intervals found differentially expressed in response to several

pathways and cell cycle described in [303] and additional ncRNA annotations from

literature and databases. Subsequently, this custom array was applied to a set of AD

and control samples for identifying AD-associated coding and non-coding genes.

C.2.1. Tiling arrays identify expressed regions in AD and control samples

We used whole genome tiling arrays to identify non-annotated transcripts in in three

pooled AD and three pooled control samples, respectively. Using the TileShuffle

algorithm we identified 64, 488 and 48, 412 transcribed fragments (transfrags) in AD

and control samples, respectively, expressed significantly higher than background

(FDR < 0.05). Again using TileShuffle, we found 1, 459 transfrags that were sig-
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nificantly expressed in at least AD or control samples and significantly differentially

expressed between both conditions (FDR < 0.05)

C.2.2. Differentially expressed loci in Alzheimer’s disease

Applying a custom expression microarray specifically designed for this study (cf. Sec-

tion C.1) to 19 AD and 22 control samples, we identified 4, 184 probes differentially

expressed between AD and control (q < 0.2). Of these, 4, 095 mapped uniquely to

the genome. Using a multi-step approach, we identified a set of 764 differentially

expressed genomic loci, 31 of which were associated with at least three distinct dif-

ferentially expressed probes. Dependent on the genomic location of the differentially

expressed probe(s), we then associated each genomic locus with one of the four fol-

lowing classes: protein-coding, non-coding, pseudogenes, and uncharacterized. The

first three classes corresponded to known transcripts, whereas the latter represented

loci with uncharacterized transcript structure and strand. In summary, we iden-

tified 162 differentially expressed protein-coding genes, 460 differentially expressed

non-coding genes or non-coding loci, 29 differentially expressed pseudogenes, and 113

differentially expressed loci with unknown/uncharacterized transcript structure and

type that did not overlap with any known genes or transcripts. The intersection of

the identified differentially expressed loci with the constructed splice site conserva-

tion map of the GENCODE-derived background, resulted in a set of 4, 162 splice sites

falling in 154 multi-exonic protein-coding transcripts and a set of 1, 297 splice sites

falling in 141 multi-exonic non-protein-coding transcripts. Those data sets were used

to compute the splice site conservation.
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[7] Prüfer K, et al. (2012). The bonobo genome
compared with the chimpanzee and human
genomes. Nature 486:527–531.

[8] Consortium EP (2012). An integrated encyclo-
pedia of DNA elements in the human genome.
Nature 489:57–74.

[9] FANTOM Consortium and the RIKEN PMI
and CLST (DGT) (2014). A promoter-level
mammalian expression atlas. Nature 507:462–
470. doi: 10.1038/nature13182.

[10] Djebali S, et al. (2012). Evidence for transcript
networks composed of chimeric RNAs in human
cells. PLoS One 7:e28213.

[11] Carninci P, et al. (2005). The transcriptional
landscape of the mammalian genome. Science
309:1559–1563.

[12] Taft RJ, Pheasant M, and Mattick JS (2007).
The relationship between non-protein-coding
DNA and eukaryotic complexity. Bioessays
29:288–299.

[13] Iyer MK, et al. (2015). The landscape of long
noncoding RNAs in the human transcriptome.
Nature genetics 47:199–208.

[14] Clark M, Amaral P, Schlesinger F, Dinger M,
Taft R, et al. (2011). The reality of pervasive
transcription. PLoS Biology 9:e1000625.

[15] Cabili MN, Trapnell C, Goff L, Koziol M,
Tazon-Vega B, and Regev JL Avivand Rinn
(2011). Integrative annotation of human large
intergenic noncoding RNAs reveals global prop-
erties and specific subclasses. Genes Dev
25:1915–1927.

[16] Ulitsky I, Shkumatava A, Jan CH, Sive H, and
Bartel DP (2011). Conserved function of lincR-
NAs in vertebrate embryonic development de-
spite rapid sequence evolution. Cell 147:1537–
1550.

[17] Lorenzen JM, and Thum T (2016). Long non-
coding RNAs in kidney and cardiovascular dis-
eases. Nature Reviews Nephrology 12:360–373.

[18] Esteller M (2011). Non-coding RNAs in human
disease. Nature Reviews Genetics 12:861–874.

[19] Ponjavic J, Ponting CP, and Lunter G (2007).
Functionality or transcriptional noise? Ev-
idence for selection within long noncoding
RNAs. Genome Res 17:556–565.

[20] Marques AC, and Ponting CP (2009). Cata-
logues of mammalian long noncoding RNAs:
modest conservation and incompleteness.
Genome Biol 10:R124.

[21] Guttman M, et al. (2009). Chromatin signa-
ture reveals over a thousand highly conserved
large non-coding RNAs in mammals. Nature
458:223–227.

[22] Pang KC, Frith MC, and Mattick JS (2006).
Rapid evolution of noncoding RNAs: lack of
conservation does not mean lack of function.
Trends Genetics 22:1–5.

[23] Suzuki M, and Hayashizaki Y (2004). Mouse-
centric comparative transcriptomics of pro-
tein coding and non-coding RNAs. Bioessays
26:833–843.

155



[24] Baldo L, Santos ME, and Salzburger W
(2011). Comparative transcriptomics of East-
ern African cichlid fishes shows signs of positive
selection and a large contribution of untrans-
lated regions to genetic diversity. Genome Biol
Evol 3:443–455.
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