
   

 

Prairie Pothole Drainage 

and Water Quality 
 

 

A Thesis Submitted to the College of  

Graduate Studies and Research 

in Partial Fulfillment of the Requirements  

for the Degree of Master of Science 

in the Department of Geography 

and Planning, 

University of Saskatchewan 

Saskatoon 

 

 

 

By 

Nathalie Nicole Brunet 

 
 
 
 
 
 
 
 
 
 
 
 

© Copyright Nathalie Nicole Brunet, April 2011. All rights reserved. 



 

 i  

PERMISSION TO USE 
 
In presenting this thesis/dissertation in partial fulfillment of the requirements for a 
Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this 
University may make it freely available for inspection. I further agree that permission for 
copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes 
may be granted by the professor or professors who supervised my thesis/dissertation work or, 
in their absence, by the Head of the Department or the Dean of the College in which my 
thesis work was done. It is understood that any copying or publication or use of this 
thesis/dissertation or parts thereof for financial gain shall not be allowed without my written 
permission. It is also understood that due recognition shall be given to me and to the 
University of Saskatchewan in any scholarly use which may be made of any material in my 
thesis/dissertation. 
 
 

DISCLAIMER 
 

Reference in this thesis/dissertation to any specific commercial products, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement, recommendation, or favoring by the University of Saskatchewan. The views 
and opinions of the author expressed herein do not state or reflect those of the University of 
Saskatchewan, and shall not be used for advertising or product endorsement purposes. 
 
Requests for permission to copy or to make other uses of materials in this thesis/dissertation 
in whole or part should be addressed to: 
 

Head of the Department of Geography and Planning 
Department of Geography and Planning  
Room 125 Kirk Hall 
117 Science Place 
University of Saskatchewan 
Saskatoon, Saskatchewan 
S7N 5C8 
Canada 



 

 ii  

ABSTRACT 

Pothole wetlands are ubiquitous throughout the Prairie Pothole Region and since 1900, 40-

70% of potholes in the region have been drained to increase agricultural production. This 

thesis describes factors influencing spatial and temporal variations in wetland water quality 

and characteristics of drainage water. Research was conducted at Smith Creek watershed, 

southeastern Saskatchewan, where there has been controversy over recent renewed efforts to 

drain wetlands. Following snowmelt in 2009, 67 wetlands were sampled to determine 

whether spatial variations in wetland water quality were attributable to land cover, 

permanence classes, and surface drainage characteristics. Wetlands with cropped uplands had 

greater TP and K than wetlands with wooded and grassed uplands; TP, TDN, and DOC were 

higher in seasonally than permanently ponded wetlands; and salts were lower in wetlands 

with wooded uplands compared to wetlands with cropped and grassed uplands. 

Measurements of water quality of one permanently ponded wetland over a 20 week period in 

2008 showed that the wetland acted as a solute trap. Variations in salts and DOC were 

influenced by hydrological processes such as runoff, evaporation, and shallow groundwater 

seepage, whereas variations in nitrogen, phosphorus, and bacteria were influenced by biotic, 

sorption, and hydrological processes. The experimental drainage of this wetland in 

November 2009 demonstrated that its water quality was an important control of drainage 

water quality. Further, the wetland ditch acted as a simple conduit, i.e., little solutes loss or 

gain occurred along it. In spring 2009, water quality along seven ditches and five natural 

connections that form between wetlands (termed spills) was compared. Concentrations of 

most solutes were similar, except TDN, DOC, HCO3
-, K+, and Ca2+ that were higher in 

ditches than spills. Minimal changes in water quality along ditches and spills occurred, likely 

due to the low temperatures occurring in spring that restrict biotic processing and sorption. 

Notably, because ditches connect wetlands to streams, as opposed to spills that connect 

adjacent wetlands, ditches have a greater potential to contribute to downstream solute 

loading. Wetland drainage efficiency and wetland water quality were deemed the factors 

critical to determining solute exports via ditches. Results of wetland water quality and 

drainage characteristics can be useful to future modeling exercises and could be used to 

inform wetland drainage practices and policies. 
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1.0 INTRODUCTION 

The prairie pothole region (PPR) contains millions of pothole wetlands that generally 

lack surface water inflows and outflows. The ecological importance of these potholes is 

underscored by the fact that the PPR represents only 10% of the continent’s waterfowl 

breeding area but it produces half of North America’s waterfowl in an average year (Smith et 

al., 1964; Batt et al., 1989). Historically, agricultural practices have led to wetland drainage: 

over the past century, 40 – 70% of the wetlands located in the western prairies have been 

drained to increase agricultural production (Tiner, 1984; Dahl, 1990; Brinson and Malvarez, 

2002; Watmough and Schmoll 2007). Recently, there have been renewed efforts to drain 

potholes (Watmough and Schmoll 2007), especially in the Canadian Prairie Provinces. 

Pothole drainage conflicts are centred around attempts to balance the private costs and social 

benefits associated with potholes on agricultural lands (Porter and van Kooten, 1993; Curtos 

et al., 2010). Costs accrued by private landowners include greater expense to farm around 

potholes, delayed seeding in inundated areas, and the foregone opportunity to increase 

agricultural production (Curtos et al., 2010). The social benefits of potholes include water 

storage and flood attenuation, wildlife habitat, and solute trapping (Curtos et al., 2010). 

The construction of drainage ditches that connect previously isolated potholes to streams 

has been hypothesized to adversely affect downstream water quality (Leibowitz and Vining, 

2003; Whigham and Jordan, 2003). However, to date there are no field studies to support or 

refute this conjecture. This thesis aims to explore the impacts of wetland drainage on prairie 

water quality by characterizing the spatial and temporal variation in prairie potholes water 

quality and assessing solute exports from naturally and artificially drained pothole wetlands. 

This work is a component of a larger research project that includes a comparison of stream 

water quality among subbasins where historical wetland distribution is similar, but recently 

the subbasins have been subject to differing degrees of drainage, and a study relating wetland 

drainage to changes in ecosystem function as determined by macroinvertebrate assemblages 

(Westbrook et al., 2011). Provided in the remainder of this chapter is a review of the 

literature describing what is known about how surrounding land use, permanence, and 

hydrology influence pothole water quality and insight into the possible downstream effects of 

their drainage. 



 

2 
 

1.1 Prairie Pothole Region 

Prairie potholes are a regional type of isolated wetland found in the PPR of North 

America (Figure 1.1). The region is estimated to cover approximately 715 000 km2 (Euliss et 

al, 1999). The prairie potholes formed during the last glacial retreat that created the 

hummocky, undulating terrain typical of the prairies (Tiner, 2003). About 40% of the PPR 

located in Canada consists of hummocky moraines which have a wetland density of 18 

wetlands/km2 and the remaining 60% of the Canadian PPR landscape is mostly lacustrine 

and fluvial materials which average five wetlands/km2 (National Wetlands Working Group, 

1988). Many of the wetlands located in the hummocky moraine region are isolated prairie 

potholes. These potholes normally do not contribute to streamflow (Stichling and Blackwell, 

1957), but during very wet conditions, temporary surface connections can occur among 

potholes (Leibowitz and Vining, 2003; Winter and LaBaugh, 2003; Spence, 2006).  

 

 
Figure 1.1 Map of the Prairie Pothole Region of North America. 

 

The PPR represents only 10% of the continent’s waterfowl breeding area; however, it 

produces half of North America’s waterfowl in an average year (Smith et al., 1964; Batt et 

al., 1989). Much of the ecological importance of small prairie potholes is related to 

biodiversity: these wetlands often have high species richness due to moisture gradients 

caused by gentle slopes and varying moisture conditions (Leibowitz, 2003). Shallow 

wetlands thaw more quickly than deep wetlands in the spring and provide early feeding 

habitat for breeding ducks and other waterfowl. As well, prairie potholes and surrounding 

uplands provide the high habitat diversity required to support populations having broad life 



 

3 
 

history requirements, such as amphibians that require aquatic habitat for breeding and larval 

development but later become largely terrestrial during adult life stages (Wilbur, 1984). 

Prairie potholes also play an important role in the life cycles of many mammals which 

markedly affect other components of wetland ecosystems (Fritzell, 1989). The muskrat is an 

example of an animal found throughout the PPR; they inhabit all types of wetlands 

temporarily, but they only prosper in wetlands deep enough to sustain under ice activity 

throughout the winter (Fritzell, 1989).  

1.2 Pothole Water Budget 

Many unaltered prairie potholes have no surface water connections, except perhaps in 

exceptionally wet years (Leibowitz and Vining, 2003). The most significant input (Figure 

1.2) to the northern prairie pothole water budget is snowmelt; other large inputs include 

precipitation directly on the wetland and surface runoff during intense rainfall events (Woo 

and Roswell, 1993; Hayashi et al., 1998a; Winter et al., 2001; van der Kamp and Hayashi, 

2009). The snowmelt water input is vital for the existence of wetlands because summer 

precipitation is exceeded by evapotranspiration in the semi-arid prairie region. Snowmelt is 

also important to wetland existence because windblown snow tends to be redistributed from 

areas of sparse vegetation and accumulates in the topographic depressions occupied by 

potholes (Fang and Pomeroy, 2008). The input from catchment snowmelt runoff is also 

generally high due to the reduced infiltration capacity of frozen soils (Gray et al., 2001; van 

der Kamp et al., 2003) unless macropores are abundant and soils are dry (van der Kamp et 

al., 2003; Bodhinayake and Si, 2004). For a typical seasonally ponded prairie pothole, 

snowmelt runoff transferred 30 – 60% of winter precipitation on the upland into the wetland 

to form the pond in the centre (Hayashi et al., 1998a). Pond refers to the variably inundated 

portion of the wetland (Figure 1.2). Overland flow events originating from the catchment are 

rare in the summer because unfrozen soils have higher infiltration and storage capacities and 

low moisture contents caused by large evapotranspiration demands (Hayashi et al., 1998a; 

van der Kamp and Hayashi, 2009; Pomeroy et al., 2010). Surface runoff is most frequently 

generated only in the riparian zone in summer where the water table is closer to the ground 

surface (van der Kamp and Hayashi, 2009).  

The dominant pathways by which water leaves the wetland are evapotranspiration and 

infiltration driven by evapotranspiration at the willow ring (Woo and Roswell, 1993; Hayashi 
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et al, 1998a; van der Kamp and Hayashi, 2009). For a typical seasonally ponded prairie 

pothole, infiltration accounted for 75% of water leaving the central pond and 

evapotranspiration accounted for 25% of the water level decline in the pond (Hayashi et al., 

1998a) (Figure 1.2). Shallow groundwater exchanges occur readily through the relatively 

permeable fractured material (silty and clayey glacial till with hydraulic conductivity of 

~1000 m/yr; van der Kamp and Hayashi, 2009) located a few meters beneath the wetland. 

Water infiltrating under the pond moves laterally to the wet margin and the uplands, and then 

vertically upward into the capillary fringe where it is consumed by evaporation and root 

uptake (Hayashi et al., 1998a). Deep groundwater flow exchanges have little effect on the 

water balance due to the low hydraulic conductivity (~0.1 m/year) of the deeper underlying 

tills (van der Kamp and Hayashi, 2009). Published estimates of groundwater recharge to 

regional aquifers by wetlands in the prairies range from 2 – 40 mm/yr (van der Kamp and 

Hayashi, 1998; Hayashi et al. 1998a). Depending on variations in climate, its position in the 

landscape, the configuration of associated water tables and the hydraulic conductivity of the 

underlying geological substrate, potholes can have a groundwater recharge, flow-through or 

discharge function (LaBaugh et al., 1998; van der Kamp and Hayashi, 1998; Euliss, 1999; 

Toth, 1999).  

 
Figure 1.2 Principle prairie pothole water balance components (van der Kamp and Hayashi, 
2009) and the annual water balance (mm) of a seasonally ponded wetland at St. Denis, SK 
(Hayashi et al., 1998a). 
 

The magnitude of surface runoff inputs to the pothole is sensitive to changes in soil 

conditions and surrounding land cover (van der Kamp et al., 2003; Bodhinayake and Si, 

2004). The infiltration potential of frozen soils is larger if the soils are dry and have a well-
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developed macropore structure compared to saturated soils with poor macropore 

development which have very low infiltration potential (Gray et al., 2001). Cultivation 

reduces macroporosity and infiltration capacity. Upland areas composed of grass tend to have 

higher macroporosity and infiltration capacity (Bodhinayake and Si, 2004), which increases 

infiltration of snowmelt water and rain, and decreases surface runoff (van der Kamp and 

Hayashi, 2009). For example, van der Kamp et al. (2003) showed that the conversion of land 

surrounding a pothole from cultivated to undisturbed grassland caused a pothole to dry out 

because grasslands more efficiently trap windblown snow, snowmelt infiltration into the 

frozen grassland soil was high enough to absorb most or all of the runoff in spring, and 

summer runoff was limited by the high infiltration potential of the grassland soil. Recent 

work has also shown that other changes on the land, specifically reduced stubble height in a 

cultivated field, increases basin snowmelt runoff by increasing blowing snow transport to and 

snow accumulation in the pothole (Fang and Pomeroy, 2008). Aspen forest stands have also 

been found to retain windblown snow (Fang et al., 2010).  

Shallow groundwater exchanges are also influenced by land cover surrounding the 

pothole. In summer, trees around the pond seem to reduce the air flow and turbulent transport 

of vapor within the wetland such that evapotranspiration rates within the pond are less than 

potential evaporation rates of large lakes in the same region (Hayashi et al., 1998a). The 

transpiration of vegetation in the willow ring surrounding the pothole also drives the shallow 

horizontal flow of infiltrated water out of the pothole (Hayashi et al., 1998a). For example, 

Hayashi et al. (1998a) showed that the shallow flow direction was reversed, and was directed 

toward a pothole in St. Denis, Saskatchewan when vegetation was removed from a part of the 

upland in a year of summer fallow.  

Isolated prairie potholes typically form no surface connections to the stream network at 

average water levels, and thus can be effective at flood attenuation (Hubbard and Linder, 

1986; Murkin, 1998). A pothole will store precipitation and snowmelt up to a certain 

threshold beyond which it can spill over towards a down-gradient receiver (Leibowitz and 

Vining, 2003; Spence, 2006). The volume of storage available in prairie potholes isolated 

from the stream network depends on previous runoff and climactic conditions. Potholes are 

most effective in flood attenuation when they have a high capacity to store additional water 

(McAllister et al., 2000).  
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1.3 Pothole Permanence and Classification 

The ponds at the centre of prairie pothole wetlands range in terms of water permanence 

from those that contain water for only a few days following spring snowmelt, to those that 

are continuously inundated. Shallow, local groundwater flow such as shoreline related 

seepage can have a critical influence on pond permanence and a pothole’s hydrological 

function; however, deep, regional groundwater exchanges do not significantly affect pond 

permanence (Parsons et al., 2004; van der Kamp et al., 2003; van der Kamp and Hayashi, 

2009).  

Vegetation zone presence or absence, distributional pattern, and sequence are factors J. B. 

Millar used to create his 1976 classification system (Table 1.1). He based his system on 

Stewart and Kantrud’s (1971) system, but made changes to reflect the specific needs of the 

Canadian Prairies. Wetlands in his system are named according to the type of vegetation 

zone dominating the central portion of the basin under normal water regimes. Salinity is 

included in Millar’s classification system as it often reflects the involvement of groundwater 

in the moisture regime of a pothole (Millar, 1976; Hayashi et al., 1998b). According to 

Stewart and Kantrud (1971), seasonal and semi-permanent are the dominant pond 

permanence classes present in the prairies, in terms of surface area. Temporary ponds are 

numerous; however, their cumulative area is small, whereas permanent and alkali ponds are 

large but their quantity is limited. 

Potholes of each permanence class can show sharp differences in time of inundation and 

in water depth between periods of drought and deluge (Johnson et al., 2004). A drought year 

was found to shift wetland time of inundation by approximately one permanence class. 

Johnson et al. (2004) explored differences in times of inundation during periods of drought 

(late 1980s) and deluge (mid 1990s) for seasonally, semi-permanently, and permanently 

ponded prairie wetlands in South Dakota, USA. They found seasonally ponded wetlands 

experienced the greatest variability in time of inundation (Table 1.2).  

 



 

7 
 

 
 
Table 1.1 Summary of normal vegetation patterns in stable wetlands. Images reproduced with 
the permission of the Minister of Public Works and Government Services Canada, 2011. 
(Millar, 1976, Wetland Classification in western Canada, p.13, Canadian Wildlife Service 
Report Series No. 37). 

Vegetation Zone Sequence
Letter abbreviations in each diagram identify vegetation zones

Description
(National Wetlands Working
Group, 1971)

Inundation Vegetation Zone Type

Wet Meadow

Generally not considered true
wetlands. Transition area
occupying the central area of
shallow depressions or
peripheral bands of deeper ponds

Temporary ponds
Three to four weeks in the
spring, usually dry by late
May.

Fine textured grasses and
sedges of low stature,
variety of forbs.

Shallow Marsh

Forms an inner band to the wet
meadow and may occupy central
areas of seasonal ponds, or
marginal bands of semi-
permanent to permanent ponds

Seasonal ponds
Lasts until July or early
August. Have 0 - 30 cm of
water until midsummer
(Walker and Coupland,
1970).

Coarse grasses, sedges,
forbs (0.46 – 1.22 m),
water tolerant herbs, some
floating plants.

Emergent Deep Marsh

Depending upon water
periodicity, may exhibit open
water, emergent, or drawdown
areas, usually with interspersed,
patchy, or closed vegetation
cover.

Semi-permanent ponds
Ordinarily flooded to late
spring or fall (1- 30 cm,
(Walker and Cropland,
1970)), and occasionally
throughout the winter.

Coarse and robust grass-
like plants, taller than
those in the shallow
marsh zone.

Open Water Marsh

Stable, shallow open water
subform occupying the central or
deepest portion of the basin.
Shallow open water zone is
<75% of wetland’s diameter.

Shallow Open Water Wetland

Stable, shallow open water
subform occupying the central or
deepest portion of the basin.
Shallow open water zone is
>75% of wetland’s diameter.

Permanent ponds Flooding
is permanent or occurs for
several years at a time.
Depth by the September
exceeds 20 cm and may be
>1 m.

Submergent and floating
aquatic plants. Water is
shallow enough to permit
growth of most rooted
aquatic plants.

 
 

 
Table 1.2 Time of inundation for glaciated prairie wetlands in South Dakota, USA. Time of 
inundation is the percentage of sample days (~15) during the growing season when standing 
water was present. (Johnston et al., 2004). 

Permanence Class Dry Period (late 1980s) Wet Period (mid 1990s) 
Temporary 0% 0 – 67% 
Seasonal 0 – 29% 46 – 100% 

Semi-permanent 13 – 17% 100% 

1.4 Pothole Water Quality 

Water quality is defined differently by engineers, ecologists, hydrologists, etc., and can 

encompass a wide range of water quality descriptors depending on the end user, the context 

of interest, and natural conditions (Meybeck, 2005). This thesis will focus on water quality 

based on chemical, physical, and biological descriptors that affect the structure and function 

of ecosystems as well as those that negatively impact human and livestock health, if present 

in elevated concentrations. Isolated prairie potholes exhibit high spatial and seasonal 
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variations in water quality (LaBaugh and Swanson, 2004). Different sources of water, land 

use of the catchment area, and pond permanence have been shown to regulate pothole water 

quality. Here I present a review of factors regulating isolated prairie pothole water quality 

followed by a discussion of how pothole water quality may change along man-made drainage 

ditches that connect isolated potholes to streams. 

1.4.1 Dissolved Oxygen 

Pond and lake water can be stratified into two zones separated by a transition zone, the 

thermocline. The thermocline is characterized by a large temperature gradient. Above the 

thermocline is the epilimnion, which remains in contact with the atmosphere. Below the 

thermocline is the hypolimnion, which is separated from the atmosphere and is non-turbulent 

(Kalff, 2002). Following stratification of eutrophic lakes, dissolved oxygen (DO) 

concentrations in the epilimnion remain close to saturation; however, DO decreases in the 

hypolimnion due to the decomposition of organic matter and the separation of the deep water 

(Kalff, 2002). 

Potholes are generally assumed not to be stratified (Sloan, 1972; Barica, 1974a), owing to 

shallow depths (i.e., mixing depth > actual depth), wind action, and advective mixing (Sloan, 

1972). However, Detenbeck et al. (2002) observed that all but one of 20 potholes (maximum 

depth of 125 cm) in North Dakota became stratified at least once during the growing season. 

Five of these remained stratified throughout the growing season, but only three approached 

anoxia near the bed. Even in unstratified potholes DO decreases with depth, and reaches 

anaerobic conditions within the sediment (Barica, 1974a). Anoxic conditions exist in pothole 

sediments because of microbial oxygen demand for the decomposition of organic matter and 

limited oxygen diffusion from the water column (Birgand et al., 2007). Most potholes 

develop anaerobic conditions during ice cover when aeration is prevented and decomposition 

processes dominate (Barica, 1974b). Large decreases in DO can also occur in midsummer 

following the collapse of significant algae blooms because of rapid bacterial decomposition 

of dead algal cells (Barica, 1974b). DO also fluctuates diurnally with productivity 

(Detenbeck et al., 2002). 

The oxygen regime of pothole water affects a wide range of redox-sensitive 

biogeochemical processes (Mitsch and Gosselink, 1993). In oxygen depleted systems, iron is 

reduced, releasing phosphorus that was previously held as ferric phosphate compounds 
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(Reddy and DeLaune, 2008). Phosphorus can also be retained by wetlands as oxides and 

hydroxides of iron and aluminum (Mitsch and Gosselink, 1993). Higher DO tends to 

stimulate nitrification and inhibit denitrification (Birgand et al., 2007), which would elevate 

nitrate concentrations in potholes. Lower DO causes decomposition rates to be slower 

leading to an accumulation of organic matter on pothole beds (Neely and Baker, 1989).  

1.4.2 Nutrients 

Prairie potholes may be important in maintaining stream water quality by trapping and 

storing nitrogen (N) and phosphorus (P) derived from agricultural runoff (Neely and Baker, 

1989; Johnston, 1991; van der Valk and Jolly, 1992; Crumpton and Goldsborough, 1998; 

Murkin, 1998). Thus, land cover characteristics in upland areas of prairie catchments play an 

important role in determining nutrient concentrations in potholes. For example, Crosbie and 

Chow-Fraser (1999) showed an increase in N and P concentrations relative to the proportion 

of agriculture land in the catchments of southern Ontario marshes. Nutrient concentrations in 

upland runoff are expected to be higher when a manure or fertilizer application is followed 

by an intense rainfall (Neely and Baker, 1989; Hargrave and Shaykewich, 1997; McDowell 

et al., 2001). Most of the nutrient transport from catchments has been shown to correlate well 

with sediment loss; thus nutrient loss can be inferred from soil transport rates (Hargrave and 

Shaykewich, 1997). Soil erodibility in the semi-arid Brown soil zone near Swift Current, SK 

is lowest when soils are frozen in winter, intermediate in summer and immediately preceding 

snowmelt, and significantly greater during snowmelt when soils are partially frozen 

(McConkey et al., 1997). In Wood Mountain loams on the Canadian prairies, snowmelt 

runoff concentrations of N and P from a summer fallow plot were much greater than from a 

wheat stubble plot, due to low vegetation litter cover, thereby facilitating the suspension and 

movement of nutrients (Nicholaichuk and Read, 1978).  

N and P in the pothole water column can be exchanged to the atmosphere (N only), 

sediment-interstitial water, and living and dead biomass through biogeochemical processes 

(Figure 1.3). Each of these storage compartments can also be a N or P source to the pothole 

water. Inorganic forms of N found in prairie potholes are nitrite (NO2
-), nitrate (NO3

-), 

ammonia (NH3), and ammonium (NH4
+) (Neely and Baker, 1989). Except in very warm and 

alkaline environments (temperatures > 15oC, pH > 8.5), most of the NH3 in freshwater exists 

in the ionic form, NH4
+ (Emerson et al., 1975). Organic and inorganic forms of N are 
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considered bioavailable (Antia et al., 1991). NH4
+ is produced upon the decomposition of 

organisms or excretion by animals and can be converted back to organic N by plants and 

microorganisms, become sorbed to soil particles, or in aerobic environments it can also be 

oxidized to NO3
- through nitrification, which is easily transported by flowing water (Kalff, 

2002). Nitrification also produces N2O as a by-product. Denitrification is the most significant 

process for N removal (as N gases) from isolated potholes (Neely and Baker, 1989). Tracer 

studies suggest that up to 80% of sustained external NO3
- loads could be lost through 

denitrification (Crumpton et al., 1993; Moraghan, 1993). Other tracer studies, however, have 

shown N2O emissions during nitrification are larger than those during denitrification in 

ephemeral, cultivated wetlands (Bedard-Haughn et al., 2006). Suitable conditions for 

denitrification to occur include anoxic conditions, a sizable denitrifier population, a source of 

organic carbon, and an abundance of NO3
- (Neely and Baker, 1989; Birgand et al., 2007). 

Fluctuations in water levels and the drying out and subsequent re-flooding of ephemeral 

potholes exposes their soils to the atmosphere, which can result in larger N losses (Neill, 

1995) due to the sequential processes of nitrification while soils are exposed to the 

atmosphere followed by denitrification after inundation (Neill, 1995; Baldwin and Mitchell, 

2000).  

The important forms of P in prairie potholes are inorganic P as orthophosphate (PO4
-3) 

and organic P (Mitsch and Gosselink, 1993). PO4
-3 is considered bioavailable (Reddy et al., 

1999) and is often applied to agricultural fields as fertilizer while organic P is formed 

primarily by biological processes. Sources of organic P include manure and plant matter, but 

it can also be formed from PO4
-3 (Csuros, 1997). P retention mechanisms in potholes include 

biotic processes: assimilation by vegetation, plankton, periphyton, and microorganisms, and 

abiotic processes: adsorption by sediments, precipitation, and exchange between sediment 

and the overlying water column (Reddy, et al. 1999). The most significant pathway for P 

removal from the pothole water column is movement to the sediment-interstitial water 

column via sedimentation and precipitation with ions (Neely and Baker, 1989; Reddy et al., 

1999). P precipitates with calcium and magnesium compounds in alkaline environments, and 

with aluminum and iron in acidic environments (Reddy, et al. 1999). Precipitation with 

calcium, for example, increases significantly with calcium concentrations >100 mg/L and pH 

> 9 (Diaz et al., 1994). Depending on concentration gradients between the water column and 

the sediment-interstitial water, P can diffuse to the underlying soil, become adsorbed and 
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retained in the sediment, or P can return to the surface water by diffusion and mixing by 

bioturbation and re-suspension during turbulent water conditions (Reddy et al., 1999).  

 
Figure 1.3 Generalized diagram of nitrogen, phosphorus, and carbon transformations and 
fluxes in a typical prairie wetland. Org is organic. 
 

Microorganisms, emergent, submersed and floating macrophytes, as well as algae take up 

N and P from pothole waters and sediments. Nutrient concentrations in pothole vegetation 

tend to be highest early in the growing season and decrease as the plants mature and senesce 

(Johnston, 1991). The macrophyte N uptake efficiency in relatively stagnant water can be 

predicted as floating > submersed > floating-leaved > emergent (Birgand et al., 2007). 

Submersed macrophytes can obtain nutrients from the sediment in which they are rooted as 

well through adventitious roots growing in the water column, whereas emergent plants obtain 

most of their nutrients from the sediment (Kalff, 2002). Rooted macrophytes can be thought 

of as nutrient pumps that remove stored nutrients from sediment then return them to the 

water column via decomposition (Neely and Baker, 1989). During decomposition, nutrients 

are initially leached from macrophytes immediately following death and inundation. Up to 

30% of the nutrients in litter were released by leaching within 2 days of re-flooding a 

Manitoba marsh after a dry period (Murkin et al., 2000). This rapid leaching can contribute to 

peaks in pothole nutrient concentrations. Following leaching, N and P accumulate within the 

litter which functions as a short term sink during microbial breakdown and long term sink as 
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undecomposed (refractory) N and P remain in the litter after the conversion to soil (Neely 

and Baker, 1989; Birgand et al., 2007).  

Although N and P are essential nutrients for plant production, excessive amounts in 

potholes can degrade water quality and lead to algae blooms. High nutrient concentrations in 

surface waters is one of the most serious water quality problems facing western Canada 

(Schindler and Donahue, 2006; Saskatchewan Watershed Authority, 2007a). Algal blooms 

cause decreased light penetration, reduced DO, and ultimately, eutrophication (Johnston, 

1991). Many prairie lakes and potholes are eutrophic and N-limited, largely due to naturally 

high input from the drainage area (Barica, 1987; Anderson, 1988). Since high concentrations 

of N can be toxic to aquatic organisms, livestock, and people (Saskatchewan Watershed 

Authority, 2007b), a number of water quality guidelines at the National and Provincial level 

have been set. The Canadian Council of Ministers of the Environment (CCME) Canadian 

Environmental Quality guideline for the protection of aquatic life for nitrate is 2.9 mg NO3
--

N/L (CCME, 2003). The guideline for NH3 + NH4
+ is greatly affected by temperature and 

pH: within typical prairie pothole conditions the guideline ranges from 18.5 mg NH3-N/L 

(0oC, pH = 7.0) to 0.07 mg NH3-N/L (15oC, pH = 9.0) (CCME, 2003). The Saskatchewan 

Watershed Authority (2007b) objective for the water quality index for the Lake Stewardship 

Program is 0.1 mg TP/L. 

1.4.3 Carbon Dynamics 

Dissolved inorganic carbon (DIC) buffers freshwaters against rapid changes in pH 

(Figure 1.3) and is affected by photosynthetic and respiratory activity of aquatic organisms. 

DIC is the sum of all carbon present as carbon dioxide (CO2), carbonic acid (H2CO3), 

bicarbonate (HCO3
-), and carbonate (CO3

2-) (Wetzel and Likens, 2000). The relative 

proportion of inorganic carbon (C) species in solution is related to pH such that HCO3
- is the 

dominant species for pH conditions between 6.5 – 10 and the proportion of CO3
2- increases 

for pH > 8.5 (Stumm and Morgan, 1970). Prairie potholes are typically slightly acidic to 

alkaline (Driver and Peden, 1977; Detenbeck et al., 2002) so most of the DIC would be 

expected to be in the HCO3
- form. Respiration adds CO2 to an aquatic system and reacts with 

the water to yield carbonic acid (H2CO3), which subsequently disassociates and produces H+. 

At the same time, any CO3
2- that is present consumes H+ and yields HCO3

-. In the absence of 

CO3
2-, OH- neutralizes the added H+ (Kalff, 2002). The concentration of H+ remains nearly 
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constant, and thus pH remains relatively stable until the available supply of HCO3
- and CO3

2- 

are exhausted (Wetzel and Likens, 2000). Algae and submersed aquatic macrophytes require 

carbon for high sustained growth; CO2 is the form of DIC most readily utilized (Wetzel, 

2001). 

Organic C in natural waters consists of dissolved organic C (DOC) and particulate 

organic matter (POC). Operationally, POC is defined as the amount of organic matter 

retained at the 0.5 μm size level (Wetzel and Likens, 2000). DOC is a highly variable and 

heterogeneous composition of fulvic acids, humic acids, and organic matter in various stages 

of decomposition (Lampert and Sommer, 2007). Organic C in the pothole water column can 

be exchanged to the atmosphere, sediment-interstitial water, and living and dead biomass 

through biogeochemical processes (Figure 1.3). Organic C is released from 

photosynthetically fixed C upon cell death (Bertilsson and Jones, 2003). It is supplied to 

aquatic ecosystems from both the surrounding terrestrial ecosystem (allochthonous) and 

internal, within wetland, (autochthonous) sources (Findlay and Sinsabaugh, 2003). 

Allochthonous inputs are generally dominated by the advective transport of surface water or 

groundwater travelling through or over soil and litter (Aitkenhead-Peterson et al., 2003). 

Factors that can increase allochthonous DOC inputs to lakes or potholes include large 

catchment/pond area ratio, steep catchment slopes, barriers to infiltration, high antecedent 

moisture conditions, increased vegetation cover, plant litter, high pH, high DOC content in 

the soil, and low soil retention capacity due to high clay content (Aitkenhead-Peterson et al., 

2003). DOC serves as an energy source, attenuates UV solar radiation, protecting protect 

aquatic organisms, and alters contaminant toxicity and nutrient availability (Williamson et 

al., 1999). A large fraction of allochthonous C is generally less available and quite resistant 

to further microbial degradation due to a typically lengthy exposure to microbial 

decomposition and transformation on land (Kalff, 2002). Autochthonous C is more labile and 

originates from excretion by living organisms, cell breakdown (autolysis), herbivore grazing, 

and microbial decomposition of dead organisms (Lampert and Sommer, 2007). 

 DOC can be lost from the water column due to coagulation and flocculation, and 

subsequent settling (Molot and Dillon, 1996; von Wachenfeldt and Tranvik, 2008). DOC 

fluxes to the sediment-interstitial water column also occur by diffusion when concentrations 

are greater in the pothole water, which typically occurs from mid-July until pond freeze-up; 

however, the rate of diffusion is quite small and this process is likely relatively unimportant 
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(Waiser, 2006). Heterotrophic aerobic bacteria in the water column and anaerobic bacteria in 

pothole sediments degrade soluble organic C to CO2 and CH4, respectively; sedimented, 

relatively insoluble organic C compounds, become buried in anaerobic sediments where rates 

of degradations are low (Wetzel, 2001). 

Allochthonous DOC (synthesized within the drainage basin) is typically more aromatic 

(coloured) than autochthonous DOC (synthesized in the pond) (Waiser and Robarts, 2000; 

Kalff, 2002). Coloured DOC attenuates light which regulates the depth at which 

phytoplankton photosynthesis can occur and protects aquatic organisms from the harmful 

effects of UV radiation (Kalff, 2002). Autochthonous C in prairie lakes and potholes 

undergoes significant photochemical degradation that lowers the aromaticity and molecular 

weight of DOC with increased residence time (Waiser and Robarts, 2000; Waiser and 

Robarts, 2004). In contrast with freshwater lakes in humid regions, DOC concentrations in 

prairie lakes and potholes tend to be high (Table 1.3) and increase with salinity, a proxy 

estimate of water residence time (Curtis and Adams, 1995; Waiser, 2006). For example, 

freshwater potholes in the St. Denis National Wildlife Area, Saskatchewan that lost most of 

their water via infiltration to the pothole margin had lower DOC concentrations than saline 

ponds that lost most of their water by evaporation (Waiser, 2006). From the same study, 68% 

of DOC mass present in a seasonally ponded pothole was accounted for by spring runoff, 

whereas no significant increase in DOC mass occurred in a permanently ponded pothole that 

had a small increase in volume due to spring runoff. DOC in potholes can also vary 

temporally. For example, Waiser (2006) found DOC concentrations increased by up to a 

factor of 3 from spring to fall in a St. Denis pothole that lost most of its water by evaporation. 

 
Table 1.3 Concentrations of DOC in PPR; 1seasonal variation and 2multiple water bodies 
sampled. 

Location DOC (mg/L) Data Source 
St-Denis, SK 19.7– 02.71,2 Waiser, 2006 

Aspen parkland/grassland 
prairie transition, AB 

22–3302 Curtis and Adams, 1995 

Central Saskatchewan 4.1–156.22 Arts et al., 2000 

Woodworth, ND (native prairie) 25–1301; 14–421 Detenbeck et al., 2002 

Woodworth, ND 
(non-native prairie, tilled) 

19–731; 16–451 Detenbeck et al., 2002 
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1.4.4 Major Ions 

The composition of major ions, termed salts, can be used to classify wetland types 

(Driver and Peden, 1977), provide insight into potential sources of water (LaBaugh et al., 

1987), and be used as an indicator of water quality in combination with physical, biological, 

and other chemical descriptors (Meybeck, 2005). Driver and Peden (1977) examined ion 

dominance patterns, based on equivalent concentrations, for different pothole permanence 

classes located in Manitoba and Saskatchewan and found ionic dominance patterns in 

temporarily ponded wetlands were Ca2+ > K+ > Mg2+ > Na2+ / HCO3
- > Cl- > SO4

2-, in semi-

permanently ponded wetlands potholes were Mg2+ > Ca2+ > Na+ > K+ /SO4
- > HCO3

- > Cl-, 

while permanently ponded ones were Ca2+ > Mg2+ > Na+ > K+ / HCO3
- > SO4

2- > Cl-. The 

general pattern of ionic dominance did not change during the seasons, however salt 

concentrations and salinity, measured as conductivity, did vary and the greatest variation was 

found in semi-permanently ponded wetlands. Results from other studies are contradictory 

with regards to static ionic dominance patterns. For example, Detenbeck et al. (2002) 

observed variations in ionic dominance patterns of seasonally ponded potholes and 

concluded that the variations were not due to experimental catchment treatments (native 

prairie, restored prairie, tilled summer fallow) but instead were influenced by catchment 

position and the length of groundwater flowpaths. However, the trend of seasonal increases 

in salinity was similar. These seasonal increases were deemed to be controlled primarily by 

the semi-arid climate of the Canadian prairies, where evaporation exceeds summer 

precipitation. Seasonally, evaporation increases salinity (Table 1.4), which concentrates 

soluble salts (Rózkowska and Rózkowski, 1969) and causes precipitation of less soluble salts 

(Holland, 1978). As the concentration of salts increases, potholes become saline (with 

chlorides) or alkaline (with sulfates). Many semi-permanently and permanently ponded 

potholes are characterized by high salinity (Stewart and Kantrud, 1971; Millar, 1976; Driver 

and Peden; 1977). Some researchers (e.g. LaBaugh et al., 1987; van der Kamp and Hayashi, 

2009) believe this indicates a transport of dissolved salts via groundwater and surface water 

flowpaths and their subsequent evapoconcentration. The use of water containing salt 

concentrations that exceed CCME guidelines for water used for irrigation (100 – 700 mg Cl-

/L) and for livestock (1000 mg SO4
2-/L and 1000 mg Ca2+/L) is not recommended. 
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Table 1.4 Salinity characteristics of prairie potholes: 1seasonal range and 2multiple water 
bodies sampled. 
Location Type Salinity Units Data Source 
St-Denis, SK Potholes 312 – 33,4931,2 μS/cm Waiser, 2006 

Woodworth, ND (native 
prairie) 

Potholes
 

160 –17201,2 μS/cm Detenbeck et al., 
2002 

Woodworth, ND (non-native 
prairie, tilled) 

Potholes
 

260 – 27101,2 μS/cm Detenbeck et al., 
2002 

Central SK Potholes 
and lakes

270 – 743002 μS/cm Arts et al., 2000 

Cotton Wood Lake area, ND Potholes 110 – 71401,2 μS/cm Labaugh et al., 
1987 

Southwestern MB Lakes 305 – 78371,2 μS/cm Barica, 1975 

Moose Mountain, SK Potholes 
and lakes

120 – 1291441,2 ppm Rózkowska, & 
Rózkowski, 1969 

Central & southern SK Lakes 35 – 1180001,2 ppm Rawson, 1944 

 

1.4.5 Microbiological Parameters 

 All surface waters contain a variety of bacteria and most are considered benign to human 

health. However, some bacteria found in animal feces, such as Escherichia coli (E. coli), 

including the virulent 0157:H7 strain, are a concern because humans and livestock can 

contract diseases through direct contact with contaminated water (Miller, 2001). Coupled 

measures of E. coli and total coliforms (T. coli) serve as indicators for the presence of enteric 

pathogens found in fecal pollution (Federal-Provincial Working Group on Recreational 

Water Quality of the Federal-Provincial Advisory Committee on Environmental and 

Occupational Health, 1992). 

A major non-point source of disease causing bacteria in agricultural landscapes is runoff 

containing animal wastes from pastures or fields fertilized with manure (Hyland et al., 

2003). Bacterial densities in surface waters frequently peak during spring runoff (Ontkean et 

al., 2003) and increase following precipitation events (Hyland et al., 2003; Gannon et al., 

2005) as water flows from upland areas to surface water bodies. Factors influencing bacterial 

contamination include topology of the landscape as well as farm specific practices such as 

grazing, access of livestock to streams, the amount and time of year of manure applications, 

and the length of time between fertilizer applications and precipitation events (Gannon et al., 
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2005). For example, Depoe and Westbrook (2003) found stream water coliform densities 

were significantly higher for Alberta watersheds with moderate or high compared to low 

agricultural intensity. Potholes can be further contaminated by semi-aquatic mammals and 

waterfowl (Hyer and Moyer, 2004). Removal mechanisms for bacteria in potholes include 

sediment retention and natural die-back (Hemond and Benoit, 1988; Auer and Niehaust, 

1993). Fecal coliforms tend to concentrate in sediment where they survive longer, potentially 

due to the greater organic matter present in the sediment (Karim et al., 2004). The CCME 

recreational water quality guideline for indicator bacteria is 200 fecal coliforms or 200 E. coli 

per 100 ml of sample, based upon the average of at least five samples. The CCME water 

quality guidelines for the protection of agricultural water is 100 E. coli per 100 ml of sample 

for crop irrigation, and is animal-specific for livestock watering, but generally should be 

under 2 E. coli per 100 ml of sample. 

1.4.6 Snowmelt Chemistry 

As snow and snowmelt runoff account for such a large proportion of the prairie pothole 

water budget, their water quality characteristics have the potential to significantly influence 

pond water quality. Ions become entrapped in ice crystals as snow particles form and fall, 

and ions continue to accumulate on the snowpack due to dry deposition (DeWalle, 1989). 

With snowpack metamorphosis and re-freezing, ions become excluded because they lack the 

ability to incorporate into the crystal lattice of ice and thus become concentrated in the quasi 

liquid layer (Colbeck, 1981). As a result, ion concentrations in this layer often exceed 

concentrations in the parent snowpack (Johannessen and Henriksen, 1978) and the first pulse 

of snowmelt can be responsible for flushing the majority of solutes out of snowpacks 

(DeWalle, 1989). Lab experiments have shown that during snowmelt, there is an initial 

enrichment, followed by a rapid decrease in ion concentration as melt progresses, until the 

meltwater is depleted relative to the parent snowpack (Johannessen and Henriksen, 1978; 

Lilbæk and Pomeroy, 2007). Ion exclusion has also been found to take place during basal ice 

formation in the laboratory (Lilbæk and Pomeroy, 2008). A basal ice layer can form if the 

melt rate exceeds the infiltration rate, leading to ponding at the base of the snowpack, and if 

soils are sufficiently cold and moist (Woo and Heron, 1981); conditions typical of the 

prairies (Fang et al., 2007). Rain on snow events can lead to lower enrichment rates due to 

decreased contact time with the snow and a greater proportion of free water; whereas the re-
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freezeing and ion exclusion that occurs during melt-freeze-cycles enhance meltwater 

enrichment (Colbeck, 1981; Marsh and Pomeroy, 1999).  

Snowmelt runoff can also contain significant amounts of nutrients because 

microbiological activity persists beneath snowpacks at temperatures > -7 or -8 oC. This 

activity can lead to the mineralization of N and P under snow and a potential nutrient pulse at 

the onset of melt (Devito et al., 1999; Jones, 1999). However, losses of NO3
- and NH4

+ have 

also been observed in snowpack runoff relative to the parent snowpack, due to microbial 

utilization and their rate of uptake is increased in wet conditions (i.e. rain of snow events and 

ripe snowpacks). Gains also occur and are attributed to the degradation of organic matter, 

leaching, and/or ion exchange mechanisms (Jones, 1989). Lilbæk (2009) measured a relative 

enrichment of the concentrations of DOC and most major ions in snowmelt water that has 

been in contact with a frozen organic layer (forest detritus) in a laboratory experiment, 

however concentrations of NO3
- and Mg2+ decreased.  

The chemical composition of meltwater can also change as it flows through soils due to 

mixing with the soil matrix water and interaction with the soils (Quinton and Pomeroy, 

2006). These changes are influenced by the chemical composition of the soil, weathering, 

micro-organisms, nitrogen cycling, carbonate equilibrium reactions, and redox reactions 

(Ollier, 1984; Anderson, 1988). Thus, snowmelt solute inputs to potholes would be expected 

to be greatest where soil infiltration capacity is low and there is contact with the soil. 

1.5 Drainage Characteristics 

Historically, agricultural practices have led to wetland drainage: over the past century, 40 

– 70% of the wetlands located in the western prairies have been drained to increase 

agricultural production (Tiner, 1984; Dahl, 1990; Brinson and Malvarez, 2002; Watmough 

and Schmoll 2007). Recently, there have been renewed efforts to drain potholes (Watmough 

and Schmoll 2007), especially in the Canadian Prairie Provinces. Potholes are being drained 

to increase agricultural production and to reduce the costs of farming around potholes 

(Scarth, 1998; Brinson and Malvarez, 2002; Cortus et al., 2010). If wetland drainage does not 

completely eliminate the wetland it will largely decrease the time and depth of inundation. 

Temporary wetlands are the most common permanence class in the PPR, and the most 

impacted by drainage and farming practices (Euliss et al., 2001). Wetland loss due to land 

use conversion causes direct habitat loss, where the ecological functions discussed previously 
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are lost. The magnitude of functional loss is not proportional to wetland size, meaning that 

the loss of area comprised of multiple small isolated wetlands may be more significant than 

the loss of the same area comprised of large ones (Trochlell and Bernthal, 1998). King (1998, 

cited in Leibowitz, 2003) illustrated that cumulative wetlands losses can affect biodiversity in 

a nonlinear fashion (i.e. a small regional loss of isolated wetlands caused a sharp decrease in 

biodiversity).  

Pothole drains are typically narrow (1 to 3 m) with a rectangular cross sectional area and 

low sinuosity (i.e. very straight). Drainage ditches create new surface water connections 

between wetlands that were previously isolated and other wetlands, roadside ditches, and 

streams. The new connections transform the hydrologic conditions of the prairies such that 

previously non-contributing areas now regularly contribute to streamflow. Figure 1.4 

illustrates the different ways that surface water can enter a stream where drainage ditches are 

present (McAllister et al., 2000). Isolated wetlands have the potential to intercept and store 

surface runoff, drains can transport water from one wetland to another, which can cause local 

flood damage to agricultural crops or communities surrounding the terminal wetland. A 

drainage ditch can also transport surface water runoff directly from a wetland to a stream. 

Drainage of many potholes has been found to have the potential to significantly increase 

downstream flood frequencies and magnitudes (Campbell and Johnson, 1975). For example, 

Yang et al. (2008) used the SWAT model to show that a loss of 70% of 1968 wetlands in the 

Broughton’s Creek watershed in western Manitoba to drainage and degradation increased the 

basin’s contributing area by 31% (19 km2), increased peak flows by 18%, and increased 

stream flow by 30%. Similarly, a Saskatchewan Watershed Authority (2008) assessment 

identified that agricultural drainage contributed to the high water levels in terminal (Waldsea) 

and near-terminal (Deadmoose, Houghton, Fishing) lake basins in 2007 resulting from 

increased runoff due to increased effective drainage areas. A larger study, of which this study 

is part, also shows that Smith Creek subbasins experiencing greater wetland drainage indeed 

have poorer water quality (Westbrook et al., 2011). 

 It has been hypothesized that stream water quality would be adversely affected by man-

made drainage ditches that connect isolated potholes to streams (Leibowitz and Vining, 

2003; Whigham and Jordan, 2003). However, to date there are not field studies to support or 

refute this conjecture. Considerable field-based research has been directed toward the study 

of upland agricultural drainage ditches that are used to channel runoff away from agricultural 
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fields (Vadas et al., 2007). However, these studies often analyze solute transport along well 

established ditches, as opposed to newly constructed ditches. Study of a newly constructed 

ditch is also important because the initial solute export may be substantial given the high 

solute storage potential in wetlands as well as the lack of vegetation and freshly exposed soil 

along the new ditch, factors key in solute uptake/release. Preceding works may prove useful 

to understanding solute losses from potholes drainage, with the caveat that researchers have 

focused primarily on nutrients and coliform rather than including other water quality 

descriptors in their works. A review of findings from upland drainage ditch and low order 

agricultural stream studies is presented in the following paragraphs.  

 

 
Figure 1.4 Surface runoff pathways. Runoff can enter streams directly or enter and be stored 
in wetlands. Stored runoff can be released from wetlands via drainage ditches and flow either 
into other wetlands or streams. 

 

The water regime in pothole drains is characterized by the advective flow of water 

downstream and a greater potential inward flux of oxygen due to turbulent mixing. Since 

solute sedimentation rates vary inversely with the velocity of flowing water (Julien, 2002), 

relatively lower sedimentation rates are anticipated in upland drainage ditches compared to in 

potholes. However, recent studies have shown relatively high retention of mostly P (as well 

as some N) in upland ditches where soils have substantial sorption or retention capacities 

(Sharpley et al., 2007; Strock et al., 2007). Nguyen and Sukias (2002) showed ditch 

sediments in New Zealand contained 42 – 57% of P originating from agricultural catchments 

loosely bound with aluminum, iron, and carbonate, and 6 – 39% of P stored more 



 

21 
 

permanently in the sediment as refractory P. They also showed the proportion of P 

transported was governed by the form of P and the retention characteristics of the ditch 

sediments. Periodic high flow events that occur during snowmelt and significant rainfall 

events increase velocity, shear force, and scour along the ditch bottom causing the 

re-suspension of sediments and organic matter and consequently their downstream transport 

(Sharpley et al., 2007; Birgand, 2007). Other researchers (Needleman et al., 2007) have 

shown macrophytes and algae can also temporarily store nutrients. However, they eventually 

die due to seasonality, water level drops, or other causes and can subsequently contribute 

organic matter to the water column and the accretion of sediment. Macrophytes can also play 

an indirect role in solute retention by reducing flow velocities and re-suspension rates, as 

well as increasing sedimentation (Birgand, 2007).  

For redox-sensitive water quality parameters, increased oxygenation during transport 

along ditches would be expected to change their concentrations. Kemp and Dodds (2001) 

showed stimulation of nitrification and the inhibition of denitrification in a 2nd order prairie 

stream with higher DO concentrations, which would be expected to result in a net reduction 

in N removal along the stream (Birgand et al., 2007). Stimulated nitrification rates can also 

lead to increased transport of N to receiving streams since NO3
- is quite mobile compared to 

NH4
+, which is easily adsorbed to negatively charged ditch surface particles (Strock et al., 

2007).  

1.6 Current Research Gap and Thesis Objectives 

Wetland water quality is expected to be an important control of that in drainage water. 

Previous studies have documented select water quality variables, often in relation to 

individual driving factors (Rözkowska & Rözkowski, 1969; Driver and Peden, 1977; Miller 

et al., 1985; Labaugh et al., 1987; Swanson et al., 1988; Neely and Baker, 1989; Detenbeck 

et al., 2002; Waiser, 2006), however, a concurrent assessment of both nutrients and salts in 

potholes is warranted given that differing control mechanism interact and drive nutrient and 

salt concentrations (LaBaugh et al., 1987; Wetzel, 2001). Factors such as permanence and 

land cover type also do not act in isolation and could instead interact with one another to 

regulate wetland water quality.  

The intensification of agriculture has led to substantial wetland drainage throughout the 

prairies (Tiner, 1984; Dahl, 1990; Brinson and Malvarez, 2002; Watmough and Schmoll 
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2007). Recent studies have mainly focused on the effects of wetland drainage on downstream 

flooding (Saskatchewan Watershed Authority, 2008; Yang et al., 2008; Fang et al., 2010). 

However, potholes have been shown to act as sinks for non-point loads due to their lack of 

permanent surface outflow (Neely and Baker, 1989; Crumpton and Goldsborough, 1998) and 

although no field-based studies have been conducted, there is a popularly held belief that the 

creation of artificial connections (i.e. ditches) between prairie potholes and downstream 

surface waters negatively impacts water quality due to the export of previously stored 

solutes. For example, a recent decision by the Water Appeal Board (16 August 2007) in the 

case of Ducks Unlimited Canada vs. Jack Kalmakoff to close a drainage ditch was due, in 

part, to a perceived degradation of the downstream ecosystem.  

Thus, the objectives of this thesis are to: 

1) characterise the spatial variation in water quality of prairie potholes following snowmelt; 

2) identify factors influencing temporal patterns in wetland water quality; 

3) quantify solute export from a newly constructed drainage ditch; and 

4) compare solute export along artificial ditches and natural spills. 

To meet objective 1, water quality in 67 pothole wetlands representing different land 

cover types and permanence classes was measured. To meet objective 2, intensive temporal 

measures of water quality in one permanently ponded wetland were taken. To meet objective 

3, a wetland drainage experiment was conducted whereby the wetland with intensive 

temporal measures of water quality was ditched and the water quality along the newly 

constructed ditch was characterized during the time taken to drain the wetland. Since 

potholes can also naturally fill and then spill (Leibowitz and Vining, 2003; Spence, 2006), 

comparison of water quality were made along natural and artificial pothole connections to 

meet objective 4.  
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2.0 METHODS 
2.1 Study Design 

2.1.1 Study Sites 

Research was conducted at Smith Creek watershed (50°50'4"N 101°34'48"W, Figure 2.1 

inset), which is located within the PPR in southeastern Saskatchewan. The watershed is ~445 

km2 with a highly variable effective contributing area (Pomeroy et al., 2009). The 

contributing area is continuously increasing as farmers drain more potholes to increase 

agricultural production (Figure 2.1). The terrain is level to undulating and rolling. Smith 

Creek watershed is located in the Aspen Parkland Continental Prairie Wetland subregion 

(National Wetlands Working Group, 1988). Soils in the region are a mixture of Black 

(Oxbow) and Thick Black (Yorkton) chernozems formed in loamy glacial till (Agriculture 

and Agri-Food Canada et al., 2009). Geological Survey Hydrogeochemical maps show that 

the groundwater in surficial deposits at Smith Creek watershed are HCO3
-, Mg2+, and Ca2+ 

dominated with specific conductivity likely below 640 μS/cm (Officers of the Geological 

Survey of Canada, 1967). These groundwater characteristics are similar to those noted by 

Barica (1978) in the Erikson lakes region, 120 km southeast of Smith Creek watershed. 

The regional climate is semi-arid. The mean monthly temperatures are -17.9 °C in 

January and +17.8 °C in July, measured at the Yorkton airport, ~50 km west. The mean 

(1942 – 2009) annual precipitation is 438 mm of which 121 mm occurs mostly as snow in 

November to April (Environment Canada, 2009). Precipitation prior to the 2008 study period 

was in the 53rd, 34th, and 26th percentile for winter 2007, summer (May – October) 2007, and 

winter 2008, respectively. Summer 2008 and winter 2009 precipitation amounts were in the 

60th and 66th percentile, respectively. Precipitation for the months of May 2008 (18 mm) and 

July 2008 (208 mm) were respectively in the 13th and 95th percentile of values measured at 

the Yorkton weather station. 

Proportions of land use were determined by Fang et al. (2010) and Guo et al. (in press) 

using unsupervised classification of SPOT 5 images from October 1, 2008. The dominant 

land use is agriculture, occupying 54% of the watershed. Common crops include wheat, 

canola, and flax. Eight percent of the watershed is grassland and pasture. Wooded areas and 

wetlands/open water account for 23% and 11% of the watershed, respectively. Wooded 

stands are characterized by trembling aspen (Populus tremuloides) with pockets of balsam 

poplar (Populus balsamifera), together with an understory of mixed herbs and tall shrubs. 
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Wetland vegetation is predominately willow (Salix spp.), cattails (Typha latifolia L.), sedges 

(Carex spp. and Scirpus spp.), duckweed (Lemna spp.), pondweed (Potamogeton spp.), and 

water smartweed (Polygonum amphibium L.). Grasslands are comprised largely of western 

porcupine grass (Stipa curtiseta), plains rough fescue (Festuca hallii), pasture sage 

(Artemisia frigida), and Lewis wild flax (Linum lewisii). The majority of the wetlands in the 

Smith Creek watershed belong to the marsh and shallow open water classes (National 

Wetlands Working Group, 1988). The average wetland density in the basin is ~20 

wetlands/km2. Many of the wetlands in the basin are typical, isolated prairie potholes that 

formed in glacial depressions, that at average surface water level have no surface inflows or 

outflows.  

 
Figure 2.1 Historic (1958) and current day (2000) distribution of the drainage network, lakes, 
and wetlands at Smith Creek watershed. Produced by Logan Fang in conjunction with Ducks 
Unlimited Canada. Inset: Smith Creek watershed within Saskatchewan, Canada. 
 

2.1.2 Spatial Variation in Wetland Water Quality  

Water quality in 67 wetlands (Figure 2.2) was assessed following snowmelt in 2009. 

Wetland selections were made based on obtaining relatively equal numbers of wetlands in 
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the different land cover and permanence classes (Table 2.1), as well as on accessibility. 

Upland land cover classes were crop, wood, and grass while pond permanence classes were 

seasonal, semi-permanent, and permanent. The wetlands sampled were located in eight 

different soil units with various quantities of Oxbow (Ox), Yorkton (Yk), Whitewood (Wh), 

and Whitesand (Ws) soils (Figure 2.2) (Agricultre and Agri-Food Canada, 2009). Pond 

permanence classes were determined using a combination of the vegetation structure of the 

pothole, as per Millar (1976) and Stewart and Kantrud (1971), in combination with 

observations of the presence or absence of surface water recorded on air photos (October 26, 

1959 and May 31, 2001), and SPOT 5 imagery (July 5, 2007. The approach used to classify 

pond permanence is summarized in Figure 2.3. The dominant vegetation type located in the 

centre of the wetlands was identified August 11-14, 2009. Sampling was conducted in spring 

prior to the anticipated drying of seasonally ponded wetlands. Water samples were collected 

once during May 19 – 21, 2009 from roughly the deepest point in the wetland, which is 

typically the centre of the ponds, at the midpoint in the water column.  

In addition to classifications based on surrounding land cover and pond permanence, 

wetland locations along the Smith Creek surface drainage network were determined (Figure 

2.4). Fang et al. (2010) used an automated basin delineation technique, “TOPAZ” (Garbrecht 

and Martz, 1993, 1997), to extract sub-basins and drainage network channels based on a 

LiDAR DEM of the Smith Creek drainage basin. The DEM was resampled to 50 m to 

provide a more computational efficient input for the TOPAZ program. TOPAZ processing 

parameters included a minimum 5 ha threshold for an upstream drainage area below which a 

source channel is initiated and maintained and a minimum of 100 m for an acceptable length 

for the source channel to exist. Spatial variations in wetland water quality were compared 

among wetlands located along a potential fill and spill sequence and in different TOPAZ sub-

basins. Due to limitations caused by the extent of the LiDAR DEM only 35 wetlands were 

included in the TOPAZ analysis.  
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Table 2.1 Number of wetlands sampled in each land cover and permanence class. 
 Permanence Class  

Land Cover Class Seasonal Semi-permanent Permanent Total 
Crop 7 6 8 21 
Grass 9 7 8 24 
Wood 6 7 9 22 
Total 22 20 25 67 

 

 

 

 
Figure 2.3 Dichotomous key used to determine wetland pond permanence. Plant species 
listed indicate dominant vegetation at the wetland centre. 
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Figure 2.4 TOPAZ drainage network, TOPAZ sub-basins, and wetlands sampled in 1a) sub-
basins 50 and 36, and 1b) sub-basins 138, 148, 153, 157, and 174; 2) Smith Creek TOPAZ 
drainage network and TOPAZ sub-basins containing wetlands sampled. A potential fill and 
spill sequence is located in sub-basin 138 and low-gradient connections may form in sub-
basins 153 and 157. 
 

2.1.3 Wetland Drainage Experiment 

The permanently ponded wetland (LR3) selected for the drainage experiment was an 

ideal choice as there was detailed hydrological information for it prior to its drainage (Minke 

et al. 2010). Also, the landowner was keen to drain it and the drain was expected to connect 

to Smith Creek. Water samples were collected weekly at the centre of wetland LR3 from 

April 18 to October 22, 2008, prior to its drainage. Water level was measured hourly using a 

PT2X pressure transducer (Northwest Instrumentation Inc.) located near the wetland 

perimeter. Rainfall was measured nearby using a tipping bucket (Texas Electronics Inc., TR-

525M) and a standard volumetric rain gauge. A crawler excavator and professional operator 

were employed to construct the artificial drainage ditch (DT6) and connect it to a down-

gradient wetland, November 19 – 20, 2008. At the time of drainage wetland LR3 was 

covered with ~8 cm of ice. Water sample collection began November 20, 2008 one hour after 
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the ditch was completed. The initial sampling instance was delayed to maintain a safe 

distance from the excavator and due to attempts to remedy nonfunctional flow gauging 

equipment afflicted by the cold air temperature (-15 oC). Three additional sets of samples 

were collected 4 hr, 6 hr, and 23 hr after the start of drainage. Water samples were collected 

from within the wetland and at points 45 m, 70 m, 110 m, and 140 m along the ditch, as 

measured from the wetland edge (Figure 2.5) at the midpoint in the water column. 

 
Figure 2.5 The wetland drainage experiment sample site in the LR3 wetland and sites along 
the newly constructed drainage ditch (DR) as well as the location of the water level recorder 
(PT2X). 

2.1.4 Comparing Artificial Ditches to Natural Spills 

Water quality along seven artificial drainage ditches (i.e. ditches, abbreviated DT) and 

five natural connections (i.e. spills, abbreviated SP) (Table 2.2) was compared. The ditches 

and spills selected for the study drained wetlands that did not have any surface water inflows, 

with the exception of DT3. DT1 drains into the wetland drained by DT3, however, at the 

time of sampling, DT1 was snow covered and not flowing. Due to the variation in ditch and 

spill length, locations for water sampling along the ditch varied (Table 2.2). Samples were 

collected April 10 – 18, 2009. Water samples were collected from the thalweg of the 

connection, starting at the most downstream sample location at one-half water depth. Manual 
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flow gauging was carried out at the time of water quality sampling using a Marsh-McBirney 

Flo-mate 2000 velocity meter and wading rod. Velocity at 60% depth was measured at 20 – 

40 cm intervals, so that no more than 20% of the total stream discharge was measured at each 

point. Ditch or spill discharge was calculated as the sum of the product of velocity and 

average stream depth at each sample interval.  

  
Table 2.2 Photographs of artificial ditches (DT) and natural spills (SP) studied that drain 
wetlands at Smith Creek watershed and means of physical properties measured along the 
connections: discharge (Q), velocity (v), depth (d), width (w), water temperature (T). Sample 
locations were measured from the wetland edge along the connection. 

Sample locations (m):  
0, 30, 60, 90, 120, 150 
Q: 0.06 cms 
v: 0.04 m/s 
d: 0.37 m 
w: 3.05 m 
T: 6.5 oC 

 

DT1 DT2

Sample locations (m):  
0, 25, 50, 75, 100 
Q: 0.002 cms 
v: 0.009 m/s 
d: 0.07 m 
w: 2.99 m 
T: 6.7 oC 

Sample locations (m):  
0, 25, 50, 75, 100 
Q: 0.02 cms 
v: 0.02 m/s 
d: 0.33 cm 
w: 4.45 m 
T: 4.9 oC 

  Sample locations (m):  
0, 25, 50, 75, 100, 125 
Q: 0.16 cms 
v: 0.11 m/s 
d: 0.27 m 
w: 5.59 m 
T: 4.1 oC 

Sample locations (m):  
0, 25, 50, 75, 125, 175 
Q: 0.02 cms 
v: 0.01m/s 
d: 0.22 m 
w: 11.0 m 
T: 7.2 oC 

  Sample locations (m):  
0, 25, 50, 75, 100, 125 
Q: 0.06 cms 
v: 0.06 m/s 
d: 0.32 m 
w: 4.01 m 
T: 5.1 oC 

Sample locations (m):  
0, 50, 100, 150, 200, 250 
Q: 0.02 cms 
v: 0.05 m/s 
d: 0.16 m 
w: 3.05 m 
T: 2.9 oC 

  Sample locations (m):  
0, 5, 10 
Q: 0.07 cms 
v: 0.01 m/s 
d: 0.28 m 
w: 22.3 m 
T: 5.3 oC 

Sample locations (m):  
0, 15, 30, 45 
Q: 0.02 cms 
v: 0.005 m/s 
d: 0.16 m 
w: 27.1 m 
T: 2.8 oC 

  Sample locations (m):  
0, 8, 15 
Q: 0.006 cms 
v: 0.02 m/s 
d: 0.07 m 
w: 6.40 m 
T: 1.9 oC 

Sample locations (m):  
0, 9, 18, 36 
Q: 0.002 cms 
v: 0.001 m/s 
d: 0.18 m 
w: 8.49 m 
T: 6.5 oC 

  Sample locations (m):  
0, 10, 20 
Q: 0.001 cms 
v: 0.001 m/s 
d: 0.10 m 
w: 4.57 m 
T: 4.4 oC 

 

DT3 DT4
 

DT5 DT6
 

DT7 SP1
 

SP2 SP3
 

SP4 SP5
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2.2 Water Sample Collection and Chemical Analysis 

Water samples for salt and nutrient analysis were collected in pre-rinsed 1 L polyethylene 

or two 350 mL glass bottles, kept on ice during the day, and then split. Temperature-

compensated specific conductance (SC) and pH were measured in the field laboratory on the 

day of sampling using Hach sension156 and Orion 3-Star hand-held meters, respectively. 

Two sample aliquots were preserved by the addition of HNO3 and H2SO4, respectively, 

followed by refrigeration at 4oC. A third aliquot was filtered through a 0.45 μm Whatman 

GF/C glass microfiber filter then frozen. The HNO3 preserved sub-sample was analyzed for 

total phosphorus (TP) concentration at Saskatchewan Research Council Analytical 

Laboratories, Saskatoon, SK (SRC) within three days of sampling by inductively coupled 

plasma atomic emission spectroscopy (Standard Methods part 3120). Samples preserved with 

H2SO4 were only collected for the 2008 wetland drainage experiment and analyzed for Total 

Kjeldahl Nitrogen (TKN) at SRC within three days of sampling by digestion and subsequent 

ammonia analysis (EPA 351).  

Filtered samples were analyzed for the following chemical parameters. Total dissolved 

nitrogen (TDN) and dissolved organic carbon (DOC) for samples collected in 2009 were 

analyzed at the University of Saskatchewan on a Shimadzu TNM-1. DOC samples from 2008 

were analyzed at SRC by UV persulfate digestion and non-dispersive IR detection, (Standard 

Methods part 5310C). Orthophosphate as phosphorus (orthoP) was analyzed at SRC 

colorimetrically (Standard Methods part 4500-P part E). A Westco SmartChem Discrete 

Analyzer (SmartChem 200, Method 375-100E-1) was used for analysis of ammonium 

nitrogen (NH4
+) and nitrate plus nitrite nitrogen, reported as NO3

-. Major ions (Cl-, HCO3
-, 

SO4
2-, Na+, K+, Mg2+, and Ca2+) were analyzed by ion chromatography with a Dionex Model 

ICS-2000 using potassium hydroxide and methanesulfonic acid EluGen for anion and cation 

analysis respectively at the University of Saskatchewan. Carbonate concentrations were 

assumed to be negligible due to high sample pH and its absence in pilot tests.  

Water samples for coliforms, i.e. Escherichia coli (E. coli) and total coliforms (T. coli), 

were only collected for the wetland drainage experiment due to challenges associated with 

transport times to the laboratory. They were collected in 100 mL sterile bottles, preserved 

with Na2S2O3, and submitted to SRC within 24 hours for analysis by chromogenic substrate 

method (Standard Methods part 9223).  
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The following terms are used throughout this thesis: nutrient refers to all forms of 

nitrogen and phosphorus; salt refers to Cl-, HCO3
-, SO4

2-, Na+, K+, Mg2+, and Ca2+; coliforms 

refers to E. coli and T. coli; and solute refers to all parameters measured. 

2.3 Data Analyses 

2.3.1 Spatial Variation in Wetland Water Quality 

A multivariate analysis of water quality measurements was carried out to evaluate the 

possible effects of pond permanence and surrounding land cover type. Data were log 

transformed to correct for nonnormality and heteroscedasticity (Legendre and Legendre, 

1998). Following preliminary data analysis, the water quality data set was divided into 

nutrient (TP, orthoP, TDN, NO3
-, NH4

+, DOC, and K+) and salinity (SC, pH, Cl-, HCO3
-, 

SO4
2-, Na+, Mg2+, K+, and Ca2+) variable sets because the mechanisms controlling nutrient 

concentrations in the wetlands have been shown to be different from mechanisms controlling 

salt concentrations (Wetzel, 2001). Mass per volume concentrations (i.e. mg/L) were 

converted to milliequivalent concentrations (i.e. meq/L) for analysis of major ions. The ion 

charge balance (ICB) of samples was calculated as  

∑ ∑
∑ ∑

+
−

=
anionscations
anionscationsICB

 

The acceptable error depends on the total ion concentration of the sample and increases 

for low concentrations. Fishman and Friedman (1989) suggest an acceptable error of 2%, 3%, 

and 12% for samples with a total (cation plus anions) milliequivalent per litre value of 20, 7, 

and 0.9, respectively. Ion charge balances ranged from -9.8% to 25.2% and averaged 9.9%. 

Ion charge balance values for each wetland are included in Appendix B. 

A two-way multivariate analysis of variance (MANOVA) was used to test the 

relationships among land cover and permanence classes for the nutrient and salinity data sets. 

Post hoc comparison tests (two-way ANOVAs) were used to determine which variables 

contributed to the occurrences of significant differences among factor classes. Significant 

differences among land cover and permanence classes were assessed using Tukey's Honest 

Significant Difference pairwise comparisons test, which is applicable to mildly unbalanced 

designs (Everitt and Hothorn, 2006). These statistical analyses were conducted using the R 

statistical language and environment (R Core Development Team, 2005). A type I error rate 

of 0.05 was used in significance tests unless otherwise stated. 
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Trilinear or piper plot diagrams were created using the Piper Plot macro of SigmaPlot 

v9.01 for the wetlands located within the TOPAZ drainage network. Piper plots are used to 

indicate geochemical facies, hydrogeochemical evolutions along a flow path, and mixing 

trends (Fetter, 2001).  

2.3.2 Wetland Drainage Experiment 

Wetland volumes were estimated by inputting water levels into the full volume-area-

depth equation (Hayashi and van der Kamp, 2000). Coefficients required for the estimates 

were obtained by Minke et al. (2010) from a digital elevation model derived from total 

station survey data. The volume of ice water in the wetland at the time of drainage was 

estimated using the density of ice (920 kg/m3) and the average ice thickness (Andres and van 

der Vinne, 2001). Solute mass in the wetland was estimated by multiplying solute 

concentration by wetland volume estimate at the time of sampling. Changes in solute mass 

relative to chloride, which is impacted by hydrological processes such as evapotranspiration 

and dilution in the wetland but is biotically conservative, were used to indicate biotic or 

geochemical processing of solutes in the wetland (Heagle et al., 2007; Duff et al., 2009). 

Data were normalized to their May 1, 2008 mass for the comparison with chloride; at this 

date, nutrient concentrations in the wetland had stabilized and provided an adequate 

reference point. 

Total loads exported from wetland LR3 along the newly constructed ditch were 

calculated by multiplying average solute concentration along the ditch by the change in 

estimated wetland volume at each sampling point. Loads were normalized along the length of 

the new ditch by dividing the load at each sample point along the ditch by the load at the first 

sampling point (DR1) in the ditch. For display purposes, a value of one was subtracted from 

these values to set the slope intercept to zero. The statistical significance of the linear 

relationship between normalized load and distance along the ditch was tested using the linear 

model (lm) function of the R statistical language and environment (R Core Development 

Team, 2005). The slopes of the normalized concentrations that were determined to be 

significantly linear were statistically compared, in a manner analogous to a t-test, as per Zar 

(2000) to the slope of biotically conservative Cl-. Slopes were compared at each sampling 

instance to assess whether solutes were added or removed along the length of the ditch. 
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Significantly different slopes indicate nutrients or salts are either abiotically or biotically 

removed (or added) as water travels along the ditch length. 

2.3.3 Comparing Artificial Ditches to Natural Spills 

Significant differences in solutes (concentrations and loads) and physical properties 

between ditches and spills were assessed with t-tests computed using SPSS (version 14.0). 

Data used in the t-tests were log transformed, average values measured along each ditch or 

spill. Differences between loads at the connection inlet and outlet were also compared to zero 

using t-tests to assess whether transformations of solutes occurred along the length of the 

connection. A type I error rate of 0.05 was used unless otherwise stated. 
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3.0 RESULTS 

3.1 Spatial Variations in Wetland Water Quality 

Nutrient concentrations in the pothole wetlands studied ranged widely (APPENDIX A). 

TP ranged from 0.02 to 2.8 mg/L. Based on the trophic classification presented in Wetzel 

(2001), most wetlands studied could be classified as eutrophic, with the exception of six 

which could be classified as hypereutrophic (i.e. TP > 0.6 mg/L),. The majority of P was 

typically in the organic form, with the exception of six wetlands in cropped areas and one 

wetland in a wooded area that were characterized by greater proportions of orthoP. TDN in 

the wetlands ranged from 0.8 to 2.8 mg/L. N was predominantly present in the organic form 

with DON making up 96% on average of TDN. Comparing mass ratios of dissolved 

inorganic nitrogen (NO3
- + NH4

+) to dissolved inorganic phosphorus (orthoP) (i.e. 

DIN:orthoP) to the Redfield Ratio provides insight into nutrient limitations that may restrict 

algal growth (Rhee and Gotham, 1980; Wetzel, 2001). Based on this ratio, eight wetlands 

may be P limited (DIN:orthoP>12:1), 46 may be N limited (DIN:orthoP<7:1), and 13 may be 

limited by neither N nor P (i.e., DIN:orthoP 7 – 12:1). However, many sites had elevated 

nutrient concentrations and may not be limited by N or P (Dodds, 2003). DOC ranged from 

19 to 55 mg/L. 

Salt concentrations in the pothole wetlands studied also varied greatly (APPENDIX B). 

The wetlands were neutral to slightly basic (pH of 6.6 – 8.6) and ranged from fresh to 

brackish (SC of 57 – 1780 μS/cm). Maximum concentrations of salts were HCO3
- = 3.8 

meq/L, SO4
2- = 15.5 meq/L, Mg2+ = 13.7 meq/L, and Ca2+ = 6.8 meq/L. Distinct patterns of 

ion dominance groups were apparent (Figure 3.1). With the exception of one wetland (W3), 

all 29 wetlands with SC > 413 μS/cm were characterized by SO4
- > HCO3

- > Cl- and Mg2+ > 

Ca2+ > K+ > Na+. All but two of these wetlands were classed as crop or grassland; 41% and 

34% of these were classed as permanently and semi-permanently ponded, respectively. The 

other anion dominance pattern observed was HCO3
- > SO4

2- > Cl-, and 50% of these wetlands 

were also characterized by Mg2+ > Ca2+ > K+ > Na+. The second most common (21%) cation 

dominance pattern for these wetlands was Ca2+ > Mg2+ > K+ > Na+.  

The two-way MANOVA for the nutrient variable set indicated significant differences 

existed among land cover types (p = 0.01) and permanence classes (p = 7x10-5). However, 

there was no significant interaction between land cover type and pond permanence class (p = 
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0.23). For the salinity variable set, there was a significant difference among land cover types 

(p = 5x10-10). However, differences among permanence classes (p = 0.11) and the interaction 

between land cover type and pond permanence class (p = 0.46) were not significant. 
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Figure 3.1 Distribution of cation and anion dominance groups as a function of specific 
conductivity for the 67 wetlands studied grouped by a) land cover and b) permanence classes. 
Semiperm is semi-permanently ponded wetlands. 
 

Subsequent pairwise comparison tests elucidated differences among surrounding land 

cover types (Table 3.1) and permanence classes (Table 3.2) for the nutrient variable set and 

land cover types for the salinity variable set There were significant differences among land 

cover types for TP and K+, i.e., wetlands with cropped uplands had greater TP and K+ than 

wetlands with wooded or grassed uplands. Significant differences among permanence classes 

for TP, TDN, and DOC were also found. Permanently ponded wetlands had lower TP than 

seasonally and semi-permanently ponded wetlands. In addition, TDN and DOC were higher 

in seasonally ponded wetlands compared to semi-permanently and permanently ponded 
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wetlands. SC, Cl-, HCO3
-, SO4

2-, Na+, Mg2+, and Ca2+ concentrations were significantly lower 

in the wetlands with wooded compared to the cropped and grassed uplands.  

Ionic proportions of wetlands included in the TOPAZ drainage network analysis are 

summarized in Figure 3.2. Ionic proportions of wetlands in sub-basins 153 and 174 were 

similar within each sub-basin, and these wetlands occupied similar topographic positions 

whereas wetlands located in sub-basin 138 showed a hydrochemical evolution from HCO3
- to 

SO4
2- dominated water (Figure 3.3). These ionic proportions and their relative position along 

the TOPAZ drainage network (Figure 3.4) suggests that wetlands in sub-basin 138 may 

connect along a fill and spill sequence. Wetlands located near the top of this TOPAZ 

drainage network (W48 and W50) were dominated by HCO3
- and there is a general trend of 

increasing proportions of SO4
2- along the flow path from W55 to W86 and W88.  
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Table 3.1 Mean and standard error of wetlands within land cover classes and a summary of 
results for two-way ANOVAs. Differing letter subscripts indicate significantly different (α = 
0.05) Tukey’s pairwise comparisons. * and ** denote a statistically significant difference at α 
= 0.05 and α = 0.01, respectively.  

  Land Cover Class Two-way ANOVA 
 Variable  Unit Crop Grass Wood F p-value 
pH  7.33c 7.42 c 7.18d 1.96 0.151 

  (0.08) (0.09) (0.12)   
SC µS/cm 633c 649c 194d 22.86 0.000** 

  (104) (75) (23)   
Cl- meq/L 0.19c 0.23c 0.05d 19.77 0.000** 

  (0.02) (0.05) (0.00)   
HCO3

- meq/L 1.89c 1.88c 1.18d 10.22 0.000** 

  (0.15) (0.13) (0.11)   
SO4

- meq/L 3.24c 3.77c 0.33d 22.07 0.000** 

  (0.81) (0.75) (0.13)   
Na+ meq/L 0.57c 1.39c 0.07d 31.60 0.000** 

  (0.16) (0.31) (0.02)   
Ca2+ meq/L 1.65c 1.59c 0.64d 13.15 0.000** 

  (0.23) (0.27) (0.06)   
Mg2+ meq/L 3.63c 4.13c 0.78d 20.72 0.000** 

  (0.83) (0.67) (0.16)   
K+ meq/L 0.63c 0.43d 0.43d 4.17 0.020* 

  (0.07) (0.03) (0.04)   
TP mg/L 0.46c 0.18d 0.15d 4.68 0.013* 

  (0.14) (0.04) (0.03)   
orthoP mg/L 0.10 0.02 0.07 1.98 0.148 

    (0.03) (0.01) (0.03)     
TDN mg/L 1.40 1.23 1.27 2.62 0.082 

  (0.08) (0.10) (0.06)   
NO3

- mg/L 0.03 0.02 0.02 0.54 0.585 

  (0.01) (0.01) (0.01)   
NH4

+ mg/L 0.026 0.027 0.026 0.56 0.572 

    (0.004) (0.003) (0.026)     
DOC mg/L 34.0 32.3 31.7 0.39 0.682 

  (2.1) (1.6) (1.6)   
DIN:orthoP  4.3 6.7 5.3 1.75 0.183 
  (1.2) (2.0) (1.4)   
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Table 3.2 Mean and standard error of wetlands within permanence classes and a summary of 
results for two-way ANOVAs. Semiperm is semi-permanently ponded wetlands. Differing 
letter subscripts indicate significantly different (α = 0.05) Tukey’s pairwise comparisons. * 
and ** denote a statistically significant difference at α = 0.05 and α = 0.01, respectively.  

  Permanence Class Two-way ANOVA 
 Variable  Unit Seasonal Semiperm Permanent F p-value 
pH  7.18a 7.21a,b 7.52b 4.26 0.019* 

  (0.09) (0.09) (0.10)   
SC µS/cm 446 417 601 1.68 0.195 

  (81) (56) (102)   
Cl- meq/L 0.21 0.14 0.13 0.67 0.516 

  (0.06) (0.03) (0.02)   
HCO3

- meq/L 1.66 1.57 1.71 0.17 0.842 

  (0.15) (0.12) (0.16)   
SO4

- meq/L 2.06 1.95 3.25 1.56 0.219 

  (0.79) (0.43) (0.78)   
Na+ meq/L 0.62 0.50 0.93 2.15 0.126 

  (0.25) (0.16) (0.27)   
Ca2+ meq/L 1.42 1.17 1.29 0.08 0.921 

  (0.32) (0.15) (0.19)   
Mg2+ meq/L 2.33 2.20 3.89 2.54 0.088 

  (0.66) (0.40) (0.81)   
K+ meq/L 0.55 0.51 0.43 1.44 0.246 

  (0.05) (0.07) (0.03)   
TP mg/L 0.36a 0.34a 0.11b 8.73 0.001** 

  (0.08) (0.14) (0.02)   
orthoP mg/L 0.06 0.09 0.04 0.20 0.821 

    (0.02) (0.03) (0.01)     
TDN mg/L 1.58a 1.21b 1.12b 11.43 0.000** 

  (0.10) (0.07) (0.05)   
NO3

- mg/L 0.02 0.04 0.02 0.16 0.851 

  (0.00) (0.01) (0.01)   
NH4

+ mg/L 0.026 0.024 0.030 1.02 0.366 

    (0.003) (0.003) (0.003)     
DOC mg/L 38.0a 31.5 b 28.8 b 8.96 0.000** 

  (2.0) (1.2) (1.4)   
DIN:orthoP  4.3 6.8 5.6 0.30 0.742 
  (1.0) (2.4) (1.3)   
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Figure 3.2 Piper plot of wetlands grouped by TOPAZ subbasins shown in Figure 2.4. 
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Figure 3.3 Central diamond shape of piper plot for wetlands located along a potential fill and 
spill sequence in sub-basin 138 (Figure 3.4) as identified from the TOPAZ drainage network 
analysis and topographic (LiDAR) position (left). Wetlands may also form low-gradient 
connections in wet years (sub-basins 153 and 157; right). Arrow depicts the general direction 
of a potential fill and spill sequence within the sub-basin. Circles encompass clusters of 
wetlands that may form low-gradient surface water connections. 
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Figure 3.4 TOPAZ drainage network and wetland locations within TOPAZ sub-basin 1) 157 
and 153, and 2) 138. Wetlands in sub-basins 153 and 157 potentially form low-gradient 
surface water connections. Wetlands in sub-basin 138 form a potential fill and spill sequence. 
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3.2. Solute Export during Wetland Drainage 

3.2.1 Hydrological Characteristics of the LR3 Wetland Prior to Drainage 

The volume of the LR3 wetland increased from 776 m3 on October 23, 2007 to 2703 m3 

on April 18, 2008 following snowmelt. The volume tended to decrease during rain free 

periods and increase following rain events throughout the 2008 open water season (Figure 

3.5). Following the snowmelt period, volume decreased ~60% throughout spring and early 

summer, reaching a minimum on July 7. Frequent and large rain events (termed midsummer 

rain events, Figure 3.5) occurred between July 7 and August 14, which caused the volume in 

LR3 to increase above the spring volume and remain high until the drainage experiment in 

November. Based on daily wetland water level fluctuations and precipitation data, ~6 

mm/day of water was estimated to be lost from the wetland between May 1 and October 22, 

2008. Daily water level increases in the LR3 wetland exceeded daily precipitation by >5 mm 

on 14 days during the study period, indicating that surface and/or subsurface runoff likely 

contributed to the increase in wetland water storage. Specifically, runoff contributions to the 

wetland likely occurred on at least nine days during the midsummer rain events as well as on 

May 28, June 12, June 23, October 6 and October 12. 

 
Figure 3.5 Daily rainfall and volume in the wetland prior to drainage and during the drainage 
experiment. 

3.2.2 Water Quality Characteristics of the LR3 Wetland Prior to Drainage 

Concentration (Figure 3.6) and mass (Figure 3.7) of forms of N and P were highly 

seasonal variable. Seasonal TP concentrations in LR3 ranged from 0.22 mg/L to below 

analytical detection limits (i.e., 0.01 mg/L). TP mass and concentration were both elevated 

April 18 and decreased sharply to lows on May 8. During the relatively rain free spring and 
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early summer, TP concentration increased, peaking July 10. TP mass also increased during 

the relatively rain free period, however, it continued to increase during the midsummer rain 

events, whereas TP concentration declined in late July and increased in early August. TP 

concentrations and mass stabilized throughout much of August and September and began to 

decline in late September. TP mass and concentration spiked October 15 following a 15.8 

mm rain event on October 13 – 14. OrthoP concentrations in the wetland ranged from 0.15 

mg/L to below analytical detection limits (i.e., 0.01 mg/L). Seasonal variations in orthoP 

concentration and mass were similar to TP. TP (p = 0.42) and orthoP (p = 0.29) were not 

significantly correlated with Cl-. The normalized mass data (Figure 3.8) show that TP and 

orthoP were both added to the wetland relative to Cl- during the growing season.  

 

 
Figure 3.6  Concentration of nitrogen, phosphorus, and coliforms measured in the wetland 
prior to the drainage experiment and in the newly constructed ditch. 
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Figure 3.7 Total mass of nitrogen and phosphorus, and most probable number (MPN) of 
coliforms measured in the wetland prior to the drainage experiment and the cumulative 
amount exported via the newly constructed ditch. 
 

TKN concentrations in the wetland ranged from 3.7 mg/L to 1.1 mg/L. NO3
- and NH4

+ 

concentrations ranged from below analytical detection limits (i.e., 0.01 mg/L) to 3.6 mg/L 

and 0.9 mg/L, respectively. Average concentrations of TKN, NO3
-, and NH4

+ were 

respectively 1.9 mg/L, 0.23 mg/L, and 0.06 mg/L. TKN, NO3
-, and NH4

+
 concentrations were 

elevated following snowmelt and masses decreased to lows May 22, May 15, and May 1, 

respectively. During the relatively rain free period of April 18 to June 6, TKN concentration 

increased and peaked July 3. NH4
+ and NO3

- concentrations were quite variable throughout 

the study period. Near the start of the midsummer rain events (July 10) TKN and NO3
- 

decreased significantly while NH4
+ increased slightly. Peaks in concentrations were reached 

July 17 (TKN and NH4
+) and July 23 (NO3

-). Minimum NH4
+ and NO3

- concentrations 

occurred October 8 and 22, respectively. Mass of TKN and NH4
+ increased steadily from 

July 10 until August 21 and August 28, and then tended to decrease until the start of the 



 

46 
 

drainage experiment. NO3
- mass was highly variable during the same time period, but 

remained constant and low after September 24. Comparing nutrient ratios (i.e. DIN:orthoP) 

to the Redfield Ratio indicates that the limiting nutrient in the wetland was potentially P in 

spring (Figure 3.8; Rhee and Gotham, 1980; Wetzel, 2001). After June 5, the limiting 

nutrient in the wetland was most likely predominantly N. TKN was positively correlated with 

Cl- (r = 0.56, p = 1x10-3), however, NH4
+ (p = 0.72) and NO3

- (p = 0.64) were not correlated 

with Cl-. The normalized mass data (Figure 3.9) show that over the course of the study 

period, NH4
+ was added to the wetland, NO3

- was removed, and TKN was neither largely 

added nor removed relative to Cl-. 
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Figure 3.8  Mass ratio of dissolved inorganic nitrogen (NO3

- + NH4
+) to orthoP measured in 

the wetland prior to drainage. Ratio values below seven indicate that algal production may 
have been limited by nitrogen. 

 

Variations in density (Figure 3.6) and most probable number (MPN), an estimate of total 

number, (Figure 3.7) of both T. coli and E. coli were very similar throughout 2008, and as 

such only trends in MPN are summarized. Following the snowmelt period, T. coli and E. coli 

total number in LR3 decreased until May 28, then increased until June 26 and June 19, 

respectively. Minimums were reached July 10. T. coli and E. coli total numbers increased 

during the midsummer rain events. T. coli and E. coli total numbers then generally decreased 

until the start of the drainage experiment. A secondary peak in E. coli and T. coli occurred 

October 8. Neither T. coli (p = 0.12) nor E. coli (p = 0.50) were significantly correlated with 

Cl-. 
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Figure 3.9 Normalized mass measured in the wetland during 2008. Data were normalized to 
May 1, 2008. 

 

Seasonal variations in salts and DOC concentrations were similar throughout summer 

2008, with the exception of HCO3
- (Figure 3.10). DOC (r = 0.88, p = 3x10-11) and all salts (r 

= 0.93  – 0.98, p = 3x10-25 – 7x10-14), with the exception of HCO3
- (p = 0.32), were 

significantly correlated with Cl-. Following snowmelt and during the relatively rain free 

spring and early summer, salt and DOC concentrations generally increased, peaking around 

July 10. Salt concentrations then reached minimums on July 30 during the midsummer rain 

events and then increased until the start of the drainage experiment. In contrast, HCO3
- 

concentration did not noticeably increase between the snowmelt and the end of July. Steady 

increases in HCO3
- concentrations were observed between August and October. Trends in 

salts and DOC mass (Figure 3.11) differed from trends in concentration. Salt and DOC mass 

decreased in the wetland during the relatively rain free spring and early summer until July 10 

then increased on average by a factor of 2.4 and peaked ~August 28. Salt and DOC mass 

mostly decreased in September and increased in October. The ion dominance pattern in the 

LR3 wetland was SO4
2- > HCO3

- > Cl- and Mg2+ > Ca2+ > Na+ > K+, which remained 
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constant throughout the study period in 2008. Seasonal variation in pH (Figure 3.10) was 

similar to those observed for salt concentrations. However, pH peaked at 9.5 on July 3 and 

reached a minimum value of 7.4 on August 14. The normalized mass data (Figure 3.8) show 

that DOC, HCO3
-, and Ca2+ were added to the wetland relative to Cl-. 

 
Figure 3.10 pH and concentration of DOC and salts measured in the wetland prior to the 
drainage experiment and in the newly constructed ditch. 
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Figure 3.11 Total mass of DOC and salts measured in the wetland prior to the drainage 
experiment and the cumulative mass exported via the newly constructed ditch. 
 

3.2.3 Water Quality Trends during Experimental Wetland Drainage 

At the time of the drainage experiment, the LR3 wetland was covered by ~8 cm of ice. 

As a result, only 81% of the water was in liquid form. The wetland volume decreased rapidly 

when the drainage ditch was completed (Figure 3.5). After 4 hr of drainage, 30% of the water 

and ~80% of solutes exported during the experiment had exited the wetland via the ditch. 

The average ditch water temperature was 0.6 oC, 0.4 oC, 0.3 oC, and 0.1 oC after 1 hr, 4 hr, 6 

hr, and 23 hr of drainage. Following a preliminary analysis, the samples collected from 

within the wetland (LR3) during the experiment were not included in future analysis because 

the sampling point became too shallow and the samples were deemed unrepresentative of the 

water exiting the wetland at the time. Concentrations of N, P, coliforms, and salts in the 

drainage ditch exceeded those measured in the wetland at the start of drainage (Figures 3.6 
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and 3.10). DOC concentrations in the ditch were less than that measured in the wetland at the 

start of drainage, not including the final sampling instance, 23 hr after the start of drainage. 

The pH was consistently lower in the newly constructed drainage ditch than in the wetland at 

the start of drainage.  

Over the course of the drainage experiment, concentrations of N, P, and DOC generally 

increased in the drainage ditch. However, concentrations of TP, NO3
-, and NH4

+ were greater 

1 hr after the start of drainage compared to concentrations measured 4 and 6 hr after the start 

of drainage. Total solute mass or number exported from LR3 during the experiment is 

summarized in Figures 3.7 and 3.11. The total masses of TP, orthoP, NO3
-, and NH4

+, and the 

total number of E. coli and T. coli exported via the drainage ditch exceeded those estimated 

in the wetland at the start of the drainage experiment by a factor of 1.2, 2.1, 19.0, 4.3, 19.4, 

and 18.9, respectively. Total masses of TKN, DOC, and salts exported via the drainage ditch 

were less than those estimated in the wetland at the start of the drainage experiment by 

factors ranging from 0.4 to 0.6. 

Results for solutes that were significantly correlated (α = 0.05) with distance along the 

drainage ditch and that also had at least marginally significantly different (α = 0.10) slopes 

than Cl- are shown in Figure 3.12. Slopes that differ from Cl- suggest that the nutrient or ion 

experienced biotic processing, sorption or release along the ditch length. Slopes of DOC (1 

hr), orthoP (1 hr, 4 hr, and 23 hr), T. coli (4 hr), HCO3
- (6 hr), and NH4

+ (6 hr and 23 hr) 

were less steep than the Cl- slope. Slopes of HCO3
- (4 hr), T. coli (23 hr), and NO3

- (23 hr) 

were steeper than the Cl- slope. Normalized Cl- concentrations were not significantly (α = 

0.05) correlated with distance 4 hr and 6 hr after the start of drainage. 

3.3 Ditch and Spill Solute Exports 

Ditches were on average 71 % longer (p = 1x10-4), 12 % narrower (p = 0.035), and 

tended to have 33% higher flow velocities (p = 0.016) than spills (Figure 3.13). Solute 

concentrations also differed between ditches and spills (Figure 3.14). Specifically, TDN (p = 

0.003), DOC (p = 0.007), HCO3
- (p = 0.023), K+ (p = 0.001), and Ca2+ (p = 0.010) 

concentrations were greater in ditches than spills. NO3
-
 (p = 0.058) and NH4

+ (p = 0.055) 

concentrations tended to be higher in ditches than spills. Loads of TDN (p = 0.038), NO3
- (p 

= 0.034), and K+ (p = 0.048) were also significantly greater in ditches than spills (Figure 

3.15). In contrast, loads and concentrations of TP and orthoP were not significantly different 
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between ditches and spills. T-test comparisons of inlet and outlet loads showed that solute 

loads did not change along the length of ditches or spills (0.29 < p < 0.97), with the exception 

of orthoP which was marginally greater (p = 0.058) at spill outlets than inlets. 
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Figure 3.12 Slopes of normalized concentrations measured along the newly constructed 
drainage ditch a) 1 hr, b) 4 hr, c) 6 hr, and d) 23 hr after the start of the drainage experiment. 
Concentrations were normalized by dividing the concentration at each sample point along the 
ditch by the concentration at the first sampling point (DR1) in the ditch. A value of one was 
then subtracted to set the intercept to zero. Only solute slopes that were at least marginally 
different (α = 0.10) from the chloride slope and that had significant (α = 0.05) linear 
relationships between normalized concentration and distance are shown. p-values indicate the 
level of significance for slopes differing from chloride, suggesting that a portion of the 
variability is due to biotic processes or sorption. 
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Figure 3.13 Mean and standard error of ditch and spill physical properties. *denotes a 
statistically significant difference at α = 0.05 and **denotes a statistically significant 
difference at α = 0.01. 
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Figure 3.14 Mean and standard error of a) nutrients and DOC concentrations, and b) salt 
concentrations, SC, and pH in ditches and spills. *denotes a statistically significant difference 
at α = 0.05, and **denotes a statistically significant difference at α = 0.01. 
 

3.4 Exceedance of Federal and Provincial Water Quality Guidelines 

 TP concentrations in the newly constructed ditch, 6 of 7 ditches, and 3 of 5 spills 

exceeded the Saskatchewan Watershed Authority (2007b) objective for the Lake Stewardship 

Program water quality index. This objective was also exceeded in 40 of 67 wetlands sampled. 

Exceedances occurred in 71%, 50%, and 59% of wetlands with cropped, grassed, and 

wooded uplands, and 77%, 65%, and 40% of seasonally, semi-permanently, and permanently 
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ponded wetlands. The TP objective was also exceeded for 45% of the LR3 wetland sampling 

instances. 
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Figure 3.15 Mean and standard error of ditch and spill nutrient, K+, and DOC loads. *denotes 
a statistically significant difference at α = 0.05. 

 

The majority of NO3
- concentrations measured in the wetlands, newly constructed ditch, 

ditches, and spills did not exceed the CCME guideline for the protection of aquatic life 

(2003). However, this guideline was exceeded twice in the LR3 wetland following snowmelt 

and in 2 of 7 ditches. The CCME guideline for NH3 + NH4
+ was only exceeded by the first 

two samples obtained following snowmelt in the LR3 wetland. 

The use of water containing salt concentrations that exceeded CCME guidelines for water 

used for irrigation and for livestock is not recommended. Concentrations of Cl-, SO4
2-, and 

Ca2+ measured in the 67 wetlands, ditches, and spills sampled in 2009 were below the CCME 

guidelines. The SO4
2-

 guideline for livestock watering was exceeded twice in the LR3 

wetland when the wetland volume was lowest and in the newly constructed drainage ditch 1 

hour after the start of drainage. 

The CCME indicator bacteria guideline for recreational water quality was only exceeded 

by the samples collected in the newly constructed ditch 23 hours after the start of drainage. 

The CCME indicator bacteria guideline for the protection of agricultural water for crop 

irrigation was exceeded July 23, 2008 in the LR3 wetland. With the exception of the 

November 20, 2008 sample in the LR3 wetland, all samples collected in the LR3 wetland and 

the new ditch exceeded the indicator bacteria CCME guideline for livestock watering.  
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4.0 DISCUSSION 

4.1 Spatial Variation in Wetland Water Quality 

Researchers have previously used ion dominance patterns and SC (as a proxy for net 

groundwater seepage rates) as indicators of pond permanence (Sloan, 1972; Millar, 1976; 

Driver and Peden, 1977). Although exchanges between the wetland and deep groundwater 

have only a minimal influence on the water balance, their effect on salinity can be important 

as the direction of flow determines whether salts accumulate in the wetland due to upward 

flow or are leached out of the wetland by outward flows (Hayashi et al., 1998b; van der 

Kamp and Hayashi, 2009). SC has thus been used as an indicator of relative position of 

wetlands along local groundwater flow paths (LaBaugh and Swanson, 2004). However, 

results presented herein show that neither SC nor ion dominance can be used to distinguish 

among pond permanence classes at Smith Creek watershed. Although all but one of the six 

highest SC measurements were obtained from permanently ponded wetlands, there was no 

significant difference among permanence classes for SC or salt concentrations. This lack of 

difference among groups likely occurred due to the high variation within groups and because 

permanence classes are not strictly distinct and static. Instead, potholes within each 

permanence class can show sharp differences in time of inundation and in water depth 

between periods of drought and deluge (Johnson et al., 2004), conditions common in the 

prairies. The lack of difference among permanence classes may also be attributed to the fact 

that salt concentrations and SC were likely diluted during the sampling period by snowmelt 

runoff, which would mask differences between permanence classes. Differences among 

permanence classes may however become more pronounced later in the season due to 

evapoconcentration (Rózkowska and Rózkowski, 1969; LaBaugh et al., 1987). Other studies 

have mostly conducted their sampling campaigns midsummer (e.g. Arts et al., 2000); 

however, wetlands included in this study were not sampled later in the season because 

seasonally ponded wetlands typically become dry.  

Variations in wetland water quality may instead be related to localized shallow 

groundwater (Hayashi et al. 1998a; van der Kamp and Hayashi 2009) and ephemeral surface 

connections, whereby wetlands fill and spill towards down-gradient receivers (Spence, 

2006). Leibowitz and Vining (2003) used variations in SC as evidence for a wetland filling 

and spilling into a down gradient receiver wetland. These associations may serve as 
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indicators for a wetland’s position within a fill and spill sequence; Wetland located at the top 

of a fill and spill sequence are more likely to have lower SC and be HCO3
- dominated, 

compared to terminal or down gradient wetlands in the fill and spill sequence that would 

likely have higher SC and be SO4
2- dominated due to the accumulation and concentration of 

solutes. For example, an association between SC and anion dominance has been previously 

observed in prairie lakes and wetlands (Rawson, 1944; Rózkowska, & Rózkowski, 1969; 

Barica, 1975; Gorham et al., 1983; LaBaugh et al., 1987, Swanson, 1988). As salts become 

increasingly concentrated by evaporation in closed basins, saturation levels for calcium and 

magnesium carbonates are reached first, and then of calcium sulfate, causing the minerals to 

precipitate in that order (Holland, 1978). 

Ionic proportions and topographic positions of wetlands in sub-basins 153 and 174 were 

similar, suggesting that these wetlands transiently form low-gradient connections and mix 

during very wet periods. Such conditions occurred in Smith Creek in spring 1995 when the 

highest stream discharge values over the 32 year period of record were observed 

(Environment Canada, 2011; Figure 4.1). The legacy of these flood conditions may explain 

the similarities in ionic proportions among wetlands in sub-basins 153 and 157, respectively. 

 
Figure 4.1  Aerial photo of Smith Creek basin during maximum discharge observed over 32 
period of record (spring, 1995). Photo courtesy of Don Werle. 
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 Ionic proportions of wetlands located in sub-basin 138 showed a hydrochemical 

evolution from HCO3
- to SO4

2- dominated water and the relative position of these wetlands 

along the TOPAZ drainage network suggests that these wetlands may form a fill and spill 

sequence. Wetlands located near the top of the TOPAZ drainage network (W48 and W50) 

were dominated by HCO3
- and during wet periods, these wetlands may fill and spill into 

down gradient receivers such as W54 and W55. W54 also likely receives water from 

wetlands located in the northwest portion of the basin during wet periods. W86 and W88, 

located near the bottom of the TOPAZ drainage network, were SO4
2- dominated. Although 

W85 and W117 are not located along the TOPAZ drainage network, the LiDAR DEM and 

their ionic proportions suggest that they form low-gradient surface water connections with 

adjacent wetlands that are connected to the fill and spill flow path during wet periods. Future 

field testing of geochemical evolution along fill and spill pathways and transient low-gradient 

wetland connections is needed. 

The 67 wetlands sampled also grouped distinctly into low SC and HCO3
- dominated 

groups, largely typical of the wetlands with wooded uplands, and relatively high SC and 

SO4
2- dominated groups. A relational shift in ion dominance with increasing SC has been 

previously noted by Gorham et al. (1983) in a study of lakes in north-central United States. 

This shift was reflected a westward increase in climactic aridity and a sequencing of glacial 

drift from noncalcareous, to calcareous, and to calcareous with abundant sulfur-bearing 

minerals. It is thus possible that the observed differences in wetland salinity at Smith Creek 

among land cover types may be attributed to differences in soil characteristics and a detailed 

analysis of soil characteristics in relation to wetland pond water quality may provide insight 

into spatial variations. Significantly lower SC and salt concentrations measured in the 

wooded areas could also result from their likely position near the top of a fill and spill 

sequence, rather than characteristics of the surrounding uplands.  

Snowmelt characteristics (i.e. slow/delayed melt and high infiltration) may also partially 

explain the low SC observed in wetlands with wooded uplands. Laboratory experiments have 

shown that early snowmelt runoff can contain elevated ion concentrations as a result of ion 

exclusion, followed by a rapid decrease in ion concentration as melt progresses (Johannessen 

and Henriksen, 1978; Lilbæk and Pomeroy, 2007). Thus, wetlands with grassed and copped 

uplands receiving early snowmelt runoff may also receive a significant pulse of salts with 

snowmelt runoff. However, the magnitude of snowmelt water inputs will depend on the 
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infiltration capacity of the surrounding uplands. The infiltration potential of frozen soils is 

higher if the soils are dry and have a well-developed macropore structure (Gray et al., 2001; 

Bodhinayake and Si, 2004). Cultivation typically reduces macroporosity and infiltration 

capacity (Bodhinayake and Si, 2004), which decreases infiltration of snowmelt water and 

rain, and increases surface runoff to depressions (van der Kamp and Hayashi, 2009). The 

higher infiltration capacity of wooded soils (Gray et al., 2001), suggests that fewer solutes 

are transported by snowmelt runoff from wooded uplands than from grassed or cropped 

uplands. Volumetric soil moisture, measured October 22, 2008 was 53%, 33% and 21% in 

representative grass, crop, and wood areas at Smith Creek watershed (Fang et al., 2010). 

Although volumetric soil moistures at the onset of melt likely differed, SC was not 

significantly different between wetlands with cropped and grassed uplands. SC could also 

have been lower in wetlands with wooded uplands because the rate of snowmelt is slower in 

wooded areas compared to open areas since trees emit long wave radiation, which contributes 

to melting snow, however trees also absorb shortwave radiation and reduce turbulent 

transfers of heat to the snow surface, which reduces snow melt rates (Suzuki et al., 2003). A 

longer snowmelt period can further increase infiltration and also increases the probability that 

rain on snow events will occur. Rain on snow events can lead to lower ion enrichment rates 

due to decreased contact time of precipitation with the snow and a greater proportion of free 

water (Colbeck, 1981; Marsh and Pomeroy, 1999). Rain on snow events did not occur during 

the 2008 melt period, however these events were frequent during the 2009 melt period.  

Wetlands with wooded uplands may also, in part, have lower Ca2+, K+, and Mg2+ 

concentrations than wetlands with grassed or cropped uplands because their uplands are 

comprised primarily of aspen (Populus tremuloides), which are known to store these solutes 

in their standing biomass (Wang et al., 1995). Aspen have the ability to cycle Ca2+ from 

soluble sources at depths (or from within adjacent wetlands) to the soil surface, leading to 

secondary calcite precipitation in forest soils (Fuller et al., 1999). Similar processes likely 

also affect other solutes. 

SC and salt concentrations measured throughout the Smith Creek watershed were lower 

than maximum values measured at other lakes and wetlands in the PPR (Rózkowska and 

Rózkowski, 1969; Barica, 1975; LaBaugh et al., 1987; Detenbeck, 2002; Waiser, 2006) and 

were comparable to values observed by Nicholson (1995) in a northern Alberta transition 

zone between semi-arid prairie and moister boreal forest. These lower concentrations may be 
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the result of dilution caused by the relatively higher annual precipitation at Smith Creek 

watershed compared to other parts of the PPR (Millet et al., 2009), which would increase the 

precipitation to evaporation ratio and minimize the effects of evapoconcentration. 

Additionally, the midsummer rain events that occurred in the region during the 2008 summer 

prior to wetland sampling caused many wetlands to fill with dilute rain water and remain 

relatively full at the time of freeze-up. SC was also likely low because samples were 

collected in late spring 2009, shortly after the wetlands have filled with dilute snowmelt 

runoff, and before salts have become concentrated by evaporation. Dilute salt concentrations 

in precipitation have been measured 220 km southwest of Smith Creek at Bratt’s Lake 

station, which is part of the Canadian Air and Precipitation Monitoring Network (CAPMoN, 

2007). Although not measured, it is likely that some of the HCO3
- dominated wetlands with 

SC near 400 μS/cm became SO4
2- dominated later in summer, based on the work of LaBaugh 

et al. (1987) and Detenbeck et al. (2002), which showed some temporal progression in a 

seasonally ponded wetland ion dominance patterns.  

Some of the spatial variation in wetland nutrients can be attributed to variations in land 

cover and permanence classes. The greater TP and K+ concentrations measured in wetlands 

with cropped than wooded and grassed uplands may be the result of varying amounts of 

surface runoff influenced by infiltration capacity from different land cover types, as 

described above. The higher concentrations of TP, TDN and DOC in seasonally ponded 

wetlands likely results from the pronounced periods of flooding and drying that affect them. 

Mineralization of organic matter is enhanced during dry periods, resulting in leaching of 

nutrients from standing dead litter and sediment when the next inundation occurs (Bärlocher 

et al. 1978; Neill, 1995; Baldwin and Mitchell, 2000; Aldous et al., 2005). In contrast, the 

lack of vegetation and continuous flooding of sediments located within the open-water zones 

of permanently ponded wetlands and some semi-permanently ponded wetlands would not 

lead to the same enhanced mineralization and nutrients released (Brinson et al. 1981). 

LaBaugh and Swanson (2004) suggested that this vegetation zonation explained the 

occurrence of higher TP concentrations in seasonally ponded wetlands compared to semi-

permanently ponded ones. Permanently ponded wetlands are also typically deeper, and thus 

less prone to sediment resuspension and the associated resuspension of nutrients. Nutrient 

concentrations may also be lower in permanently ponded wetlands due to the presence of 

floating and submersed vegetation that more efficiently remove nutrients from the water and 
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sediment compared to emergent plants of seasonally ponded wetlands that obtain most of 

their nutrients from the sediment alone (Birgand et al., 2007). The near continuous flooding 

of semi-permanently and permanently ponded wetlands also suggests that conditions may be 

sufficiently reduced for denitrification to occur, also leading to comparatively lower total N 

concentrations (Neely and Baker, 1989; Crumpton and Goldsborough, 1998). Further, 

seasonally ponded wetlands are often cropped when they are dry, thus they can have higher 

N and P concentrations than semi-permanently or permanently ponded wetlands because of 

direct fertilizer application (Cowardin et al., 1981).  

In addition to differences in nutrients among pond permanence classes, differences in 

nutrients were also found among surrounding land cover types. The greater TP and K+ 

concentrations in wetlands with cropped than wooded and grassed uplands may have resulted 

from fertilizer inputs being transported to wetlands from their cropped uplands during runoff 

events (Hansen et al., 2002; Little et al., 2007; Tiessen et al., 2010). The finding that N and 

DOC did not differ significantly among land cover types was surprising given that other 

researchers have shown that apsen litter contains fewer nutrients and DOC than grass litter 

(Fuller and Anderson, 1993; Köchy and Wilson, 1997), and that nutrients stay stockpiled in 

woody biomass for extended periods of time (Wang et al., 1995); thus fewer nutrients and 

DOC would be expected to be available for leaching to wetland water columns in wooded 

areas. The lack of significant difference in N among land cover types may also be attributed 

to the fact that the majority of wetlands sampled, similar to shallow prairie lakes, were likely 

eutrophic and characterized by low DIN:orthoP ratios, and were thus potentially N limited 

(Barica, 1990; Hall et al., 1999); meaning that excess N could be readily taken up.  

The analysis of dissolved nutrient ratios should however only serve as a rough guide of 

nutrient limitation because ratios of DIN to soluble reactive phosphorus (SRP; an estimate of 

orthoP) are a weak surrogate for TN:TP that represent the total nutrient content actually in 

biomass or available for incorporation into active biomass (Dodds, 2003). Additional 

problems with using this ratio to indicate nutrient limitation may also arise because 

concentrations of DIN and SRP are not necessarily indicative of supply or nutrient turnover 

rates (Dodds, 2003). Furthermore, aquatic systems can become nutrient saturated and 

insensitive to changes in nutrients concentrations. In freshwater lakes, a threshold value for 

SRP has been suggested to be to be 8 µg/L by Cooke et al. (1993) and Marsden (1989), and 

10 µg/L by Prepas (1983), Auer et al. (1986), and Interlandi and Kilham (2001). Davies et al. 
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(2004) found that plankton communities were not limited by phosphorus when TP exceeded 

11 μg/L. However, in a prairie lake study by Waiser and Robarts (1995), a higher threshold 

value of 30 µg/L SRP was suggested because in this highly saline system, all P may not be 

available for microbiological growth. Thus, a threshold value between 10 μg/L and 30 μg/L 

orthoP is likely for moderately saline Smith Creek wetlands, given that Dodds (2003) reports 

that measures of SRP often underestimate the amount of orthoP. Percentages of Smith Creek 

wetlands sampled with orthoP concentrations < 10 μg/L and > 30 μg/L were 54% and 25%, 

respectively. Studies in freshwater lakes of DIN have suggested that at concentrations above 

15 – 50 μg/L, nitrogen is not limiting (Davies et al, 2004), while Interlandi and Kilham 

(2001) suggested that this threshold is 100 μg/L. Percentages of Smith Creek wetlands with 

DIN < 50 μg/L and > 100 μg/L were 61% and 5%, respectively; average DIN was 52 μg/L. 

Results also show that the interaction between land cover and permanence classes did not 

significantly influence nutrient or salt water quality parameters. Thus, control mechanisms on 

water quality parameters attributable to pond permanence and land cover type are likely 

additive. The lack of significant interaction and extensive differences among permanence or 

land cover classes may have also resulted from the relatively high variability of wetland 

water quality measured. Other factors not considered in this study that could also influence 

prairie pothole water quality include grazing, cultivation, and tillage practices, soil 

characteristics, shallow groundwater fluxes, and the presence of willow rings surrounding 

wetlands.  

The hypothetical drainage of these wetlands would decrease the amount of water stored 

on the landscape and would likely increase streamflow of Smith Creek during spring freshets 

(Campbell and Johnson, 1975; Saskatchewan Watershed Authority, 2008; Yang et al., 2008). 

Permanently ponded wetlands are generally larger and contain more water; however, TP and 

TDN concentrations were more dilute in these wetlands. Thus, downstream loadings could 

comparatively be greater due to the drainage of an equivalent volume of smaller, seasonally 

ponded wetlands with elevated TP and TDN. Although water in the wetlands did not exceed 

guidelines for NO3
-, NH4

+, Cl-, SO4
2-, and Ca2+ the provincial objective for TP was exceeded 

and these exceedances occurred most frequently in seasonally ponded wetlands with cropped 

uplands. Consequently, wetland drainage would be expected to degrade downstream water 

quality with respect to P. As the research site is a sub-basin of the Assiniboine River, nutrient 
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loadings from drained wetlands could facilitate further eutrophication of Lake Winnipeg, into 

which the Assiniboine River drains (Schindler, 1977; Armstrong, 2002).  

4.2 Factors Influencing Temporal Patterns in Wetland Water Quality  

The LR3 wetland effectively trapped N, P, DOC, coliforms, and salts during runoff 

events and exchanged them with the surrounding uplands between events prior to the 

construction of the drainage ditch. Intensive temporal measures at the LR3 wetland show 

hydrological processes, such as runoff, evaporation, and shallow groundwater seepage, are 

the dominant control on all solutes studied, except for HCO3
-. However, the lack of 

significant correlations with Cl- for most nutrient variables; and differing seasonal dynamics 

of concentrations, masses and normalized masses among salts and DOC compared to N, P, 

and coliforms suggest differing control mechanisms in the wetland. Differing control 

mechanism for salts, nutrients, and coliforms are recognized (Wetzel, 2001) and LaBaugh et 

al. (1987) suggested that differing control mechanisms were responsible for variations 

between salt and nutrient concentrations in prairie wetlands. Seasonal fluctuations of salts 

and DOC appear to be primarily linked to hydrological processes due to the significant 

correlations with Cl-. Whereas variable seasonal dynamics observed between major 

snowmelt and precipitation events, and the lack of significant correlations between Cl- and 

TP, orthoP, NH4
+, NO3

-, and coliforms suggests that wetland N, P, and coliforms are linked 

to both hydrological processes and biotic/sorption processes. For example, wetland nutrients 

have been shown to be influenced by sequences of algae and plant uptake and decay, 

microbial processing (i.e. mineralization, nitrification, and denitrification), sedimentation, 

and waste from waterfowl and semi-aquatic mammals (Barica, 1974b; Neely and Baker, 

1989; Neill, 1995; Labaugh and Swanson, 2004).  

Temporal variations in solute concentrations and masses in the wetland can be largely 

attributed to the hydrologically isolated nature of the wetland. The estimate of ~6 mm/day of 

water lost from the wetland is within the range of those for other isolated prairie wetlands 

(1.7 – 7.4 m) via shallow groundwater infiltration and evapotranspiration (Shjeflo, 1968; 

Millar 1971; Woo and Roswell, 1993; Hayashi et al. 1998a; Su et al., 2000). Shallow, lateral 

flows, driven by hydraulic gradients and transpirative demand by upland plants, occur at 

wetland margins within the top 5 – 6 m of till in this landscape where the hydraulic 

conductivity is relatively high due to fractures (Hayashi et al., 1998a). These flows transport 
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solutes with them (Hayashi et al. 1998b; Parsons et al., 2004), explaining the reduction in 

mass of most solutes in the wetland between rain events.  

Transport with lateral flows can effectively concentrate solutes in uplands (Arndt and 

Richardson, 1993; Winter and Rosenberry, 1995). They are then likely to be leached and 

cycled back to the wetland during snowmelt and rainfall runoff events. Precipitation events 

can also cause the water table beneath the wetland margin to rise above the pond level 

causing a reversal in shallow groundwater flow toward the pond (Gerla 1992; Winter and 

Rosenberry, 1995; Hayashi et al., 1998b; Parsons et al., 2004), which would also transport 

solutes back to the wetland. Surface and/or subsurface runoff, indicated by daily water level 

increases that exceeded 5 mm, are likely responsible for the high solute masses and coliform 

loads observed during the snowmelt period and the increases that occurred following the rain 

events.  

Concentrations of DOC and salts increased during rain free periods likely due to 

evapoconcentration and mass decreased likely due to the transport with water out of the 

wetland by means of evaporation driven shallow groundwater seepage (Hayashi et al. 1998b; 

Waiser, 2006), as is described above. Data from Bratt’s Lake station of the Canadian Air and 

Precipitation Monitoring Network (CAPMoN), which is 220 km southwest of the Smith 

Creek watershed, show precipitation is dilute with regards to Cl-, Na+, Ca2+, Mg2+ and K+ 

(CAPMoN, 2007). As a result, inputs during the midsummer rain events lead to a decrease in 

salt concentrations. It is thus unlikely that the large increases of salt mass measured 

immediately following rain events were primarily caused by inputs from direct precipitation 

on the wetland, but rather the increases were caused by solutes transported by runoff and 

potentially by shallow groundwater inputs. Although increases in DOC concentrations have 

been associated with high rates of summer precipitation in boreal lakes (e.g. Hudson et al., 

2003; Zhang et al., 2010), DOC concentration in the LR3 wetland decreased following the 

mid-summer rain events; however DOC mass did increase during that time period.  

Following snowmelt, the wetland had high nutrient concentrations. While transient, 

elevated N and P concentrations that exceeded water quality guidelines immediately 

following snowmelt are important to note because ditched wetlands drain at this time.  Since 

both NH4
+ and NO3

- were elevated in the wetland following snowmelt, flushing of DIN from 

soils insulated by snow is likely, as has been shown for boreal forest systems (Devito et al. 

1999; Jones, 1999). Soil (0 – 20 cm) temperatures at Smith Creek during the winter prior to 
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the sampling of the wetland were above -6 oC (Fang et al. 2010), and thus nutrient 

mineralization was possible beneath the snowpack.  

Elevated nutrient concentrations also coincided with a 2.5-fold increase in wetland 

volume, relative to the previous fall. Upon re-wetting, freshly flooded above ground litter 

leaches stored N and P to the water column (Reddy and Patrick, 1975; Davis and van der 

Valk, 1978; Neill, 1995) and nutrients accumulated in soils of the wetland periphery are also 

released (Reddy and Patrick, 1975; Murkin et al., 2000; Aldous et al., 2005). As has been 

shown to occur in agricultural systems, runoff likely transported nutrients from the cropped 

areas of the catchment that received fertilizer in fall 2007 and May 2008 (Hansen et al., 2002; 

Little et al., 2007) or from soils in the region that are naturally nutrient rich, especially in P 

(Anderson, 1988). Similar to results from Batt et al. (1989) and LaBaugh and Swanson 

(2004), these elevated N and P concentrations also coincided with periods of use by breeding 

waterfowl. 

The midsummer runoff events led to increased TKN and TP mass in the LR3 wetland. 

Prior to the rain events orthoP represented 13% on average of TP and increased to 60% 

following the rain events. This increase in the proportion of P as orthoP may have resulted 

from the transport of orthoP with sediment (Neely and Baker, 1989) during overland flows. 

Although NH4
+ and NO3

- are predominantly transported with surface runoff and subsurface 

flows, respectively (Neely and Baker, 1989), their percentages of TN were similar before and 

during the midsummer rains. Average concentrations of NO3
- and NH4

+ in precipitation at the 

CAPMoN Bratt’s Lake station (2007) are 0.5 mg/L and 0.8 mg/L, respectively. These 

concentrations are much greater than those measured in the wetland throughout the study 

period. Thus wet deposition in addition to upland runoff and leaching from soil and plants 

located within the freshly flooded wetland periphery could have contributed to the increase in 

nutrient concentrations and mass loads measured in midsummer. The normalized mass data 

suggest that reductions in TP, orthoP, and NH4
+ mass following the midsummer rain events 

were due to biotic uptake and/or biogeochemical reactions. Furthermore, the normalized 

mass data also suggest that NO3
- was effectively removed from the wetland system relative to 

Cl-, likely by biotic uptake and denitrification. Although measurements of nitrogen cycling in 

prairie wetlands are limited (e.g. Moraghan, 1993), and some of the following factors were 

not measured for LR3 wetland, authors such as Neely and Baker (1989) have noted that 

conditions are likely suitable in prairie wetlands for denitrification to occur: anaerobic 
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conditions, the presence of a large organic carbon base, an abundance of NO3
-, and sizable 

denitrifier population. 

Temporal variations in Ca2+ and HCO3
- were likely influenced by carbonate equilibrium 

relationships as Heagle et al. (2007) identified carbonate mineral dissolution to be an 

important geochemical reaction in a recharge prairie wetland. Normalized mass data showed 

that proportions of HCO3
- and Ca2+ became elevated relative to Cl-. This result suggests that 

the increase in these ions was not attributable to water inputs, marked by Cl- variations, 

alone. Sulfate reduction was also identified as a key geochemical reaction by Heagle et al. 

(2007). However, the proportional mass data did not indicate that SO4
2- was removed from 

the wetland differently than was Cl-, meaning sulfate reduction was likely not an important 

driver of SO4
2- at this site.  

A major non-point source of disease causing coliforms and indicator coliforms in 

agricultural landscapes is runoff containing animal wastes from pastures or fields fertilized 

with manure (Hyland et al., 2003). While the wetland catchment was not fertilized with 

manure or grazed by cattle over the course of the study period, the high coliform densities 

measured have been observed in comparable agricultural systems following snowmelt and 

large precipitation events (Ontkean et al., 2003). Semi-aquatic mammals and waterfowl that 

commonly occupy the wetland can also contaminate wetland water and uplands with fecal 

matter (Hyer and Moyer, 2004; Kadlec et al., 2007). Muskrats occupied the wetland as 

evidenced from lodges constructed sometime between June 25 and September 24, 2008. 

Given that all but one sample collected in the LR3 wetland exceeded the animal-specific 

CCME indicator bacteria guideline for livestock watering, livestock should be prevented 

from accessing similar wetlands. 

4.3 Water Quality Characteristics of a Newly Constructed Drainage Ditch 

Construction of the drainage ditch at LR3 transported solutes previously stored in the 

wetland downstream. Wetland water storage decreased exponentially when the drain was 

completed. Within four hours ~80% of solutes and 30% of water exported had exited the 

wetland. However, because the wetland was not fully drained, significant proportions of 

solutes remained in the wetland at the end of the drainage experiment. The newly constructed 

ditch acted primarily as a conduit, transporting solutes downstream directly from the wetland. 

Although some solute concentrations were significantly correlated with distance along the 
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newly constructed ditch and had slopes that differed from the Cl- slope, these relationships 

were not consistent across time. For example, concentrations of HCO3
- were higher along the 

ditch length 4 hr and lower 6 hr since the start of the drainage experiment and concentrations 

of orthoP were often constant along the length of the ditch with the exception of the first 

point that differed. These data thus suggest that no consistent biotic or abiotic processing 

occurred along the length of the new ditch. This result is in direct contrast with previous 

studies that have shown that agricultural drainage ditches can act as solute sources and/or 

sinks where changes in solute concentrations are attributed to sedimentation/resuspension, 

adsorption/desorption, biotic uptake/release, and microbial mediated reactions such as 

mineralization and nitrification (Skaggs et al., 1994; Sharpley et al., 2007; Strock et al., 

2007). However, the conditions reported in this study differed from existing studies by: i) the 

experimental drainage ditch was shorter than ditches typically studied, such that the 

residence time may be too short for processing to occur; ii) the ditch was new and lacked 

well established aquatic vegetation and microbial communities; and iii) drainage occurred 

over a very short period in late fall when water temperature was near freezing. Cold 

temperatures have been shown by others to restrict nutrient uptake by vegetation, microbially 

mediated reactions, as well as sorption and diffusion rates (Kadlec and Reddy, 2001). Fall 

ditch construction following harvest, when water temperatures are lowest, is more common 

than spring ditch construction because wetter soils in spring impede access to wetlands by 

heavy machinery and farmers are not preoccupied with seeding. The drainage conditions 

studied here are common in the prairies, and thus results herein should be transferable to 

other watersheds in the PPR, although rigorous quantitative testing and monitoring is 

recommended. 

Although there was no change in concentration along the length of the new ditch, there 

was an increase in concentration of most solutes studied with time since the start of drainage. 

This trend suggests that a vertical concentration gradient existed in the wetland such that the 

water closest to the sediment and in the sediment porewater had the highest solutes 

concentrations.  Barica (1974), Fisher and Reddy (2001), and Barker et al. (2010) have found 

vertical concentration gradients and elevated concentrations in sediment pore water in similar 

marshes and shallow lakes. Fecal coliforms also tend to concentrate in sediment where they 

survive longer, potentially due to the greater amount of organic matter present in the 

sediment than water column (Karim et al., 2004). A vertical gradient in concentration may 
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also explain why the masses and total numbers of TP, orthoP, NO3
-, NH4

+, E. coli and T. coli 

exported via the drainage ditch exceeded estimates of those in the wetland. Wetland water 

samples were obtained from the centre of the wetland at half the water depth and thus the 

amount of mass calculated from these samples would be underestimated if a vertical 

concentration gradient existed. Solutes may also become stockpiled by the undrained portion 

of wetland since at the end of the drainage experiment ~50% of the water, TKN, DOC, and 

salts estimated remained in the wetland. 

Another explanation for the increase in concentration of water quality parameters is that 

many wetlands in the prairies have salt rings around them (Arndt and Richardson, 1993). 

Salts are likely concentrated by shallow groundwater fluxes at this transition zone between 

wetlands and their uplands. Constructing a ditch that traverses this ring may have also 

contributed to the elevated concentrations and mass exceedances observed at LR3. Further 

research is needed to determine the cause of the mass exceedances because accurately 

estimating the amount of solutes leaving the wetland is the most important factor for 

predicting downstream export and associated ecological consequences, given that the ditch 

acted as a simple conduit.  

Because snowmelt runoff typically dominates prairie wetland water inputs, proportions of 

nutrients transported by snowmelt runoff generally exceed amounts transported during 

rainfall events (Timmons and Holt, 1977; Tiessen et al., 2010). Thus, had it not been for the 

uncharacteristically high midsummer rainfall, solute concentrations leaving the wetland 

would probably have been much higher and solute mass exported lower at the time of 

drainage. However, it is likely that the guideline for TP would remain the only nutrient 

guideline exceeded. Decreases in SC and salt concentrations, have also been attributed to 

rainfall and decreased evaporation (Barica 1978; LaBaugh and Swanson, 2004). The increase 

in concentrations of salts between October 22 and the time of drainage were likely a result of 

their exclusion from the overlying ice and their freezing-out into a reduced water volume 

(Barica, 1975; Schwartz and Gallup, 1978; Lilbæk and Pomeroy, 2008). Whereas low 

coliform numbers at the start of the drainage experiment were likely the results of 

sedimentation on the wetland bed (Auer and Niehaus; 1993; Wang and Doyle 1998).  
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4.4 Comparing Artificial Ditches to Natural Spills 

Similar to the results for the newly constructed drainage ditch, water quality was not 

altered during transport along ditch or spill connections. Consequently, the significantly 

greater concentrations of TDN, DOC, HCO3
-, K+, and Ca2+ observed in ditches than spills 

were most likely due to differences in wetland water quality rather than differing physical 

attributes of drains and spills. Ditches often drain seasonally ponded wetlands because these 

wetlands are frequently the easiest to drain and because ditching permanently and semi-

permanently ponded wetlands effectively turns them into seasonal ones because they are 

drained each year. Ditched wetlands are also predominantly located in cropped areas, a 

situation typical across the PPR (Gunterspergen et al., 2002). In contrast, spills flowed 

largely from permanently ponded wetlands and were located only in grass and wooded areas. 

As outlined in section 3.1 of this thesis, seasonally ponded wetlands are characterized by 

greater concentrations of TP, TDN and DOC; and TP and K+ concentrations are greatest in 

wetlands with cropped uplands. As a result, ditches draining this type of wetland have the 

potential to contribute higher concentrations of these nutrients to downstream ecosystems. 

The ditches and spills also had significantly different physical characteristics. The ditches 

were more channelized, longer, and had higher flow velocities. Although this had no 

apparent direct influence on the quality of the water moving along them, the differences are 

likely to influence the impacts on downstream water bodies. Wetland drainage ditches are 

created to connect wetlands to the watershed drainage network. In contrast, the short length 

of spills means they are often transiently connecting wetlands to other wetlands. These 

different connection characteristics suggest that wetland drainage has a higher likelihood of 

enhancing downstream nutrient, salt and coliform loading than spills. 

To date, one of the only study of prairie pothole drainage effects on downstream water 

quality (nutrients only) was a modeling exercise that compared different scenarios of wetland 

restoration at Broughton Creek watershed, Manitoba (Yang et al. 2008). Using the SWAT 

model, they ran a wetland restoration scenario in which the 2005 wetland area was increased 

to match 1968 conditions. They predicted a 23% reduction in TN and TP loads to the stream 

using an empirical nutrient export coefficient. Results presented herein suggest that a nutrient 

export coefficient other than 1 is not warranted. This result is likely attributable to generally 

low temperatures during the snowmelt period when ditches and spills flow and when new 

ditch construction occurs. Instead, the volume of water and solute mass exported from a 
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drained wetland will depend on: i) how effectively the ditch drains the wetland; and ii) the 

water quality characteristics of the wetland that are influenced by the surrounding land cover 

and permanence classes. 

 Increased salinity in downstream water and in soils adjacent to waterways can have 

negative impacts on downstream water quality and agricultural production decreasing soil 

fertility and impeding the growth of crops in soils adjacent to ditches (Skarie et al., 1986; 

Steppuhn et al., 2001). However, the provincial guidelines for Cl-, SO4
2-, and Ca2+ were not 

exceeded in the ditches and spills, and thus wetland drainage is not expected to degrade soil 

productivity as a result of direct salinisation. The more frequent exceedance of NO3
- and TP 

guidelines in ditches than spills further suggests that ditches will more negatively impact 

downstream water bodies. Moreover, the impacts of wetland drainage on water quality will 

likely be intensified where wetland ditches drain to terminal and near terminal basins, such as 

the nearby Waldsea, Deadmoose, Houghton, and Fishing lake basins, as nutrients can 

become increasingly concentrated by evaporation.  
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5.0 CONCLUSIONS 

This thesis has shown that spatial variations in wetland water quality can be attributed in 

part to different land cover and permanence classes. Unexpectedly, there was no interactive 

(i.e. non-additive) effect of land cover and permanence classes on wetland solute chemistry. 

It was also shown that neither SC nor ion dominance can be used to distinguish among pond 

permanence classes at Smith Creek watershed. This lack of association is in contrast with 

previous studies that have linked ion dominance patterns and SC (as a proxy for net 

groundwater seepage rates) to pond permanence. Results also indicate that position within a 

fill and spill flow pathway, and whether wetlands form low-gradient surface water 

connections during wet conditions may also partially explain observed spatial variations in 

wetland pond water quality. Factors not explicitly addressed in this thesis, such as 

agricultural practices, soil characteristics, landscape position, and drought/deluge cycles, can 

also affect water quality and thus complicate prediction of wetland water quality at the 

watershed scale. Future comprehensive investigation of these factors could be informative. 

Overall though, the results mean knowledge of land cover and/or permanence class can be 

used to provide a reasonable estimate of the water quality of a wetland. Testing of the 

usefulness of a wetlands position within a fill and spill sequence across the PPR is 

recommended. 

In addition to the high spatial variation in wetland water quality documented, this thesis 

also provides a temporally intensive investigation of the water quality of one permanently 

ponded wetland (LR3) that was experimentally drained in late fall following freeze-up. 

Variations in salts and DOC prior to drainage were linked to hydrological processes, such as 

runoff, evaporation, and shallow groundwater seepage, whereas variations in N, P, and 

coliforms seemed to be regulated by biotic and sorption processes in addition to hydrological 

processes. The wetland acted as a sink and appeared to exchange solutes with the 

surrounding uplands. This study did not analyze specific constituent pathways and a 

comprehensive understanding of water quality processes and pathways occurring in isolated 

prairie wetlands and its uplands is currently lacking and would be beneficial. 

Wetland water quality was found to be an important control of water quality in drainage 

water. Thus, the occurrence of high nutrient concentrations measured in the intact wetland at 

the onset of the spring freshet has important implications because drained wetlands typically 

connect with streams or other downstream water bodies at this time. Hence, wetland drainage 
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may augment downstream nutrient loading. Not assessed in the wetland drainage experiment 

was how changing the permanently ponded wetland to a temporarily or seasonally ponded 

one will influence nutrient exports in future spring freshet events. For instance, will nutrient 

concentrations remain high in the wetland from year to year, and similar to those observed in 

seasonally ponded wetlands at Smith Creek? Or, will nutrients become progressively flushed 

from the stockpiles established in the drained wetland soils leading to reduced nutrient 

exports over time?  

Different physical characteristics between ditches and spills suggest that potential 

impacts on downstream solute loadings will be greater for wetlands drained by ditches than 

spills because of the increased degree of connectivity to streams. Transport of water along 

ditch and spill connections was shown here not to alter water quality characteristics along the 

new ditch and during snowmelt period, when hydrologic connectivity in the watershed is 

maximized. Because the ditches acted as simple conduits, an export coefficient of 1, 

signifying no change in concentration or mass, is recommended for use in future wetland 

drainage modeling exercises. Ditch age (as a proxy for ditch condition) was not controlled 

for in this study. While the body of scholarly work on the study of upland agricultural 

drainage ditches shows that ditch condition (e.g. grassed vs. bare) can influence nutrient 

exports, it is unknown whether the same effects would be found for wetland ditches located 

in the PPR. The use of flow control structures that delay drainage in spring could serve to 

reduce flood impacts due to wetland drainage and could increase nutrient retention by 

vegetation during the growing season.  

Physical characteristics of drained wetlands were most similar to those of seasonally 

ponded wetlands with cropped uplands. This suggests that significant amounts of TP, TDN, 

DOC, and K+ may be transported downstream when wetlands are drained. Results also 

suggest that the efficiency with which a wetland is drained is an important factor in 

quantifying downstream exports. Thus, the proportion of water volume lost along with 

knowledge of the water quality characteristics of the wetland, although challenging to 

characterize, appear to be the most crucial characteristics for the accurate prediction of 

drainage exports through modeling. The temporally intensive measures of water quality 

during drainage suggested that a vertical concentration gradient existed in the LR3 wetland 

such that the water closest to the sediment and in the sediment porewater had the highest 

solute concentrations. As a result, wetland water samples obtained from the centre of the 
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wetland at half the water depth are likely to provide an underestimate of the total solute mass 

in the wetland if calculated from these samples. The use of composite samples, comprised of 

samples collected at different locations and depths within the pond, may serve to better 

characterize total solutes contained in wetlands. An investigation of the spatial variability of 

water quality in the wetland at the time of drainage may also be useful for estimating solute 

exports, especially if the wetland is stratified and not completely drained. 

Although water in the wetlands, ditches, spills, and drainage experiment generally did not 

exceed guidelines for NO3
-, NH4

+, and salts, the provincial objective for TP was frequently 

exceeded. Consequently, wetland drainage is likely to degrade downstream water quality 

with respect to P. As well, stream water quality may be degraded by the export of TDN along 

wetland drains if the receiving streams are N-limited. As the research site is a sub-basin of 

the Assiniboine River, nutrient loadings from drained wetlands could facilitate further 

eutrophication of Lake Winnipeg, into which the Assiniboine River drains. The larger study, 

of which this thesis is part, shows that Smith Creek subbasins experiencing greater wetland 

drainage indeed have poorer water quality (Westbrook et al., 2011). The study of water 

quality along a ditch drainage network containing multiple drained wetlands, combined with 

a measure of wetland connectivity, may also prove useful for better quantifying exports due 

to wetland drainage.  

Overall, results presented herein should be useful for water resource managers and 

landowners in Smith Creek watershed to make informed decisions with regards to better 

understanding solute loading due to wetland drainage. Thesis results could also be used in the 

future to inform model creation suitable for simulating downstream impacts of wetland 

drainage.  
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APPENDIX A 
Nutrient variable set water quality measurements of 67 wetlands located at Smith Creek 
basin SK, sampled May 19 – 21, 2009. Notes indicate if the area surrounding the wetland 
was tilled, used for grazing, and the type of crop harvested in 2008. Semiperm is semi-
permanently ponded wetlands. 

ID Land Cover Notes Permanence Max Depth orthoP TP TDN NO3
- NH4

+ DOC DIN:orthoP 
        (cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mass) 

W3 Grass Ungrazed Seasonal 44 0.005 0.09 1.13 0.018 0.011 33.0 5.8 
W4 Grass Ungrazed Semiperm 79 0.005 0.09 0.91 0.002 0.016 28.9 3.6 
W6 Grass Ungrazed Semiperm 63 0.005 0.13 0.90 0.021 0.032 30.3 10.6 

W10 Grass Ungrazed Seasonal 62 0.03 0.17 1.08 0.018 0.036 28.4 1.8 
W11 Grass Ungrazed Permanent 102 0.01 0.12 1.39 0.013 0.038 36.5 5.1 
W13 Grass Ungrazed Permanent 87 0.01 0.07 1.01 0.007 0.010 33.1 1.7 
W17 Wood Ungrazed Permanent 54 0.14 0.24 1.17 0.045 0.038 33.1 0.6 
W18 Wood Ungrazed Permanent 60 0.06 0.13 0.94 0.009 0.018 19.2 0.5 
W21 Wood Ungrazed Seasonal 44 0.12 0.22 1.50 0.014 0.041 38.6 0.5 
W22 Wood Ungrazed Permanent 58 0.18 0.29 1.35 0.006 0.041 32.6 0.3 
W24 Wood Ungrazed Semiperm 56 0.35 0.43 1.09 0.013 0.014 33.9 0.1 
W27 Wood Ungrazed Permanent 100 0.03 0.16 1.05 0.017 0.044 21.6 2.0 
W28 Wood Ungrazed Permanent 96 0.01 0.11 1.12 0.008 0.014 27.8 2.2 
W30 Wood Ungrazed Semiperm 59 0.47 0.53 1.30 0.007 0.017 35.0 0.1 
W32 Wood Ungrazed Semiperm 52 0.02 0.22 0.99 0.002 0.018 24.2 1.0 
W34 Crop Canola/Tilled Permanent 67 0.03 0.08 1.16 0.027 0.040 22.3 2.2 
W35 Crop Canola/Tilled Permanent 76 0.1 0.18 1.29 0.035 0.025 26.2 0.6 
W37 Crop Canola/Tilled Semiperm 78 0.03 0.17 1.31 0.025 0.014 30.9 1.3 
W40 Crop Canola/Tilled Seasonal 34 0.005 0.19 1.49 0.002 0.014 37.1 3.2 
W42 Crop Canola/Tilled Seasonal 48 0.005 0.55 0.88 0.006 0.014 26.8 4.0 
W43 Crop Canola/Tilled Permanent 109 0.005 0.05 0.77 0.006 0.036 21.4 8.4 
W45 Grass Grazed Semiperm 74 0.03 0.11 1.41 0.008 0.053 31.3 2.0 
W46 Grass Grazed Permanent 98 0.03 0.08 1.10 0.008 0.035 26.3 1.4 
W47 Grass Grazed Seasonal 36 0.04 0.18 1.13 0.023 0.012 30.9 0.9 
W48 Wood Grazed Permanent 90 0.005 0.02 0.81 0.006 0.012 22.5 3.6 
W50 Wood Grazed Seasonal 34 0.005 0.10 1.48 0.010 0.042 30.1 10.4 
W54 Wood Grazed Semiperm 44 0.005 0.09 1.05 0.012 0.035 29.8 9.3 
W55 Wood Grazed Permanent 70 0.005 0.02 0.88 0.007 0.013 24.0 3.9 
W61 Wood Grazed Permanent 80 0.005 0.02 1.14 0.005 0.014 29.5 3.8 
W67 Wood Grazed Semiperm 65 0.005 0.04 1.15 0.004 0.012 31.0 3.2 
W68 Wood Grazed Seasonal 20 0.005 0.06 1.61 0.002 0.013 31.7 3.0 
W69 Wood Ungrazed Seasonal 22 0.005 0.11 1.82 0.040 0.041 52.8 16.2 
W71 Wood Ungrazed Semiperm 66 0.005 0.17 1.40 0.037 0.040 30.1 15.4 
W72 Wood Ungrazed Seasonal 61 0.03 0.18 1.48 0.023 0.041 35.5 2.1 
W73 Wood Ungrazed Semiperm 64 0.02 0.05 1.77 0.034 0.015 42.4 2.4 
W75 Wood Ungrazed Seasonal 28 0.005 0.11 1.66 0.022 0.042 38.3 12.8 
W85 Crop Wheat/Tilled Semiperm 62 0.01 0.19 1.23 0.005 0.024 30.2 2.9 
W86 Crop Wheat/Tilled Permanent 102 0.03 0.09 1.86 0.015 0.014 51.5 1.0 
W87 Crop Wheat/Tilled Seasonal 26 0.26 0.61 1.98 0.027 0.039 50.7 0.3 
W88 Crop Wheat/Tilled Semiperm 70 0.3 0.93 0.95 0.222 0.029 24.2 0.8 
W89 Crop Wheat Permanent 102 0.005 0.06 0.83 0.007 0.031 20.7 7.6 
W90 Crop Wheat Semiperm 87 0.005 0.13 1.64 0.016 0.020 38.8 7.2 
W91 Crop Wheat Seasonal 50 0.43 1.10 1.65 0.027 0.020 44.2 0.1 
W93 Crop Canola Seasonal 74 0.02 0.11 1.34 0.036 0.002 33.0 1.9 
W96 Grass Ungrazed Seasonal 44 0.005 0.10 1.74 0.022 0.013 44.9 7.0 
W98 Grass Ungrazed Permanent 90 0.01 0.03 1.15 0.022 0.033 33.2 5.5 
W100 Grass Ungrazed Seasonal 32 0.005 0.05 1.25 0.028 0.034 35.3 12.4 
W101 Grass Ungrazed Permanent 66 0.005 0.03 0.87 0.004 0.034 27.5 7.6 
W102 Grass Ungrazed Seasonal 22 0.03 0.87 2.49 0.007 0.025 55.3 1.1 
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APPENDIX 1: continued 
ID Land Cover Notes Permanence Max Depth orthoP TP TDN NO3

- NH4
+ DOC DIN:orthoP 

        (cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mass) 

W103 Grass Grazed Permanent 97 0.12 0.29 1.00 0.002 0.045 29.7 0.4 
W104 Grass Grazed Seasonal 26 0.03 0.22 1.41 0.005 0.009 33.6 0.5 
W106 Grass Grazed Permanent 70 0.14 0.37 1.26 0.014 0.012 31.6 0.2 
W107 Grass Grazed Permanent 98 0.005 0.07 0.79 0.019 0.023 24.8 8.4 
W108 Grass Grazed Seasonal 20 0.01 0.42 2.77 0.026 0.048 49.6 7.4 
W110 Grass Grazed Semiperm 46 0.005 0.12 0.85 0.226 0.015 24.2 48.1 
W111 Crop Canola Semiperm 69 0.2 0.34 1.70 0.028 0.002 39.7 0.1 
W112 Grass Ungrazed Semiperm 31 0.005 0.10 1.09 0.011 0.035 35.5 9.2 
W113 Crop Wheat Permanent 91 0.005 0.05 1.06 0.045 0.035 27.5 16.0 
W114 Crop Wheat Semiperm 84 0.38 2.80 1.60 0.008 0.039 37.3 0.1 
W115 Crop Wheat Seasonal 34 0.13 1.30 1.83 0.022 0.016 42.0 0.3 
W116 Crop Canola Permanent 80 0.005 0.12 1.34 0.016 0.084 37.5 20.0 
W117 Crop Wheat/Tilled Seasonal 38 0.05 0.53 2.17 0.009 0.018 45.2 0.5 
W118 Crop Wheat/Tilled Permanent 87 0.005 0.09 1.34 0.024 0.036 26.5 12.0 
W119 Wood Grazed Permanent 70 0.01 0.08 1.31 0.226 0.015 34.7 24.1 
W120 Grass Grazed Semiperm 74 0.005 0.07 0.90 0.014 0.015 28.1 5.8 
W121 Grass Grazed Seasonal 55 0.02 0.57 0.90 0.025 0.036 19.6 3.0 
W122 Grass Grazed Semiperm 60 0.005 0.08 0.92 0.026 0.033 24.2 11.8 
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APPENDIX B 
Salinity variable set water quality measurements of 67 wetlands located at Smith Creek 
basin, sampled May 19 – 21, 2009. Semiperm is semi-permanently ponded wetlands. 

ID Land Cover Permanence pH SC Cl- HCO3
- SO4

2- Na+ Mg2+ Ca2+ K+ ICB 
        (μS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) % 

W3 Grass Seasonal 6.75 163 2.1 89.8 0.8 1.3 9.7 8.6 16.0 4.5 
W4 Grass Semiperm 7.24 414 1.8 120.5 95.7 8.9 28.2 21.1 10.0 0.0 
W6 Grass Semiperm 7.31 656 1.7 124.7 210.0 19.3 68.5 39.2 11.9 14.9 

W10 Grass Seasonal 7.44 309 3.8 80.2 22.0 2.6 15.3 12.7 14.0 11.3 
W11 Grass Permanent 7.68 695 1.8 127.8 168.4 21.0 74.2 35.6 16.0 23.9 
W13 Grass Permanent 7.24 404 1.3 79.3 49.3 5.7 20.3 9.7 7.9 4.8 
W17 Wood Permanent 6.92 158 2.0 63.0 0.6 0.3 6.2 13.8 20.3 22.4 
W18 Wood Permanent 6.55 63 1.5 25.7 0.1 0.2 1.6 4.6 11.3 17.0 
W21 Wood Seasonal 6.78 149 2.3 54.4 6.3 0.3 4.8 11.3 23.4 18.5 
W22 Wood Permanent 6.86 131 1.9 62.8 0.5 0.2 4.8 10.0 18.9 11.8 
W24 Wood Semiperm 6.77 127 1.4 63.7 0.1 0.2 3.8 11.0 19.4 11.6 
W27 Wood Permanent 6.74 111 2.4 48.2 2.3 0.5 4.3 8.7 12.7 11.3 
W28 Wood Permanent 6.76 150 2.0 70.0 7.8 0.6 6.7 11.3 13.4 4.2 
W30 Wood Semiperm 6.83 127 1.7 64.7 0.1 0.2 3.8 9.8 21.5 10.3 
W32 Wood Semiperm 6.84 57 0.0 18.3 0.1 0.1 1.2 4.9 4.6 21.0 
W34 Crop Permanent 7.19 181 2.0 72.6 9.1 2.0 7.8 13.1 8.3 5.4 
W35 Crop Permanent 7.19 211 4.9 69.1 18.3 1.9 7.7 14.1 18.1 6.5 
W37 Crop Semiperm 7.26 296 3.3 95.3 40.0 3.8 10.0 16.3 9.6 -9.8 
W40 Crop Seasonal 7.38 287 4.6 98.4 6.0 5.4 11.8 19.3 18.7 17.3 
W42 Crop Seasonal 6.80 147 9.5 56.2 1.0 2.3 4.8 11.5 13.4 7.7 
W43 Crop Permanent 7.59 230 2.9 66.9 2.7 1.7 6.6 10.4 11.2 7.2 
W45 Grass Semiperm 7.28 413 3.2 98.5 70.2 7.5 29.1 14.5 14.2 9.2 
W46 Grass Permanent 7.47 314 5.9 77.4 50.7 6.7 22.5 13.9 13.5 12.1 
W47 Grass Seasonal 7.10 414 12.4 103.4 52.1 6.9 25.4 22.3 12.8 10.1 
W48 Wood Permanent 7.75 306 2.0 113.2 39.7 4.5 17.5 18.3 12.9 2.5 
W50 Wood Seasonal 7.19 144 0.7 53.9 14.0 0.5 7.8 12.0 9.1 11.3 
W54 Wood Semiperm 8.62 451 1.9 62.7 114.6 9.9 41.2 30.7 17.3 25.2 
W55 Wood Permanent 8.42 374 0.7 66.7 44.3 2.4 14.3 19.6 7.3 9.3 
W61 Wood Permanent 7.74 422 3.9 94.6 81.7 6.8 24.5 18.2 18.2 4.6 
W67 Wood Semiperm 6.93 134 2.8 79.9 0.7 0.6 5.0 9.0 19.3 -1.0 
W68 Wood Seasonal 6.88 112 1.2 55.5 1.3 0.4 4.7 10.8 12.6 13.6 
W69 Wood Seasonal 7.06 211 1.4 87.9 8.1 0.9 7.6 13.3 34.1 14.4 
W71 Wood Semiperm 7.09 182 2.0 80.4 3.9 0.8 5.9 11.3 16.7 1.8 
W72 Wood Seasonal 6.90 170 2.7 77.7 5.4 0.9 6.9 11.0 25.8 10.8 
W73 Wood Semiperm 6.94 196 1.7 110.9 9.2 1.5 10.3 12.7 22.5 1.4 
W75 Wood Seasonal 7.24 194 0.9 70.2 2.1 1.1 4.9 12.7 13.0 7.7 
W85 Crop Semiperm 7.07 504 3.5 125.5 111.0 4.2 27.7 32.6 18.9 1.2 
W86 Crop Permanent 7.91 577 6.1 93.3 140.8 10.6 38.4 23.3 23.9 7.6 
W87 Crop Seasonal 6.84 399 9.0 99.1 34.5 4.7 16.4 21.7 33.9 15.0 
W88 Crop Semiperm 7.19 677 7.0 135.4 167.4 11.0 57.8 40.3 42.6 17.1 
W89 Crop Permanent 8.16 1694 5.1 145.4 505.4 44.0 133.4 40.4 17.0 8.1 
W90 Crop Semiperm 7.51 506 3.4 68.7 92.6 6.1 20.1 27.0 12.6 6.6 
W91 Crop Seasonal 6.96 975 13.3 130.0 329.3 18.6 68.7 74.5 39.2 8.9 
W93 Crop Seasonal 7.09 391 6.8 115.1 31.9 3.2 16.1 24.0 33.2 12.2 
W96 Grass Seasonal 7.15 868 8.5 157.8 256.1 70.2 55.0 26.3 16.1 6.6 
W98 Grass Permanent 7.56 1241 8.6 161.6 417.9 120.1 107.8 53.0 20.9 19.7 
W100 Grass Seasonal 7.27 890 5.2 117.4 284.0 60.8 68.0 47.3 13.7 15.6 
W101 Grass Permanent 7.06 792 3.7 95.1 248.2 54.7 47.5 53.1 12.7 15.1 
W102 Grass Seasonal 7.80 865 5.8 212.1 177.6 24.8 54.5 34.3 19.6 2.9 
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APPENDIX 2: continued 
ID Land Cover Permanence pH SC Cl- HCO3

- SO4
2- Na++ Mg2+ Ca2+ K+ ICB 

        (μS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) % 

W103 Grass Permanent 7.98 584 7.6 114.1 108.7 12.7 43.5 27.1 18.9 15.8 
W104 Grass Seasonal 7.94 376 7.7 124.8 6.3 1.2 10.3 18.0 25.9 1.4 
W106 Grass Permanent 7.86 776 11.2 141.6 180.9 21.9 67.6 36.8 24.1 16.7 
W107 Grass Permanent 8.12 1303 13.6 160.1 464.5 80.7 128.9 31.1 23.5 12.4 
W108 Grass Seasonal 8.54 1557 46.3 116.8 742.6 100.9 166.1 135.9 32.2 15.7 
W110 Grass Semiperm 7.17 520 9.5 53.6 156.8 27.8 28.9 20.4 13.6 5.7 
W111 Crop Semiperm 7.37 795 15.1 139.5 191.4 12.1 47.0 49.8 55.8 10.7 
W112 Grass Semiperm 7.00 806 11.5 122.8 273.6 51.2 49.2 49.9 22.0 7.5 
W113 Crop Permanent 7.58 1396 10.1 163.1 538.6 61.7 137.1 60.3 24.3 10.8 
W114 Crop Semiperm 7.13 349 8.6 118.8 30.5 4.6 15.1 21.4 33.1 8.7 
W115 Crop Seasonal 7.08 314 11.6 131.6 8.8 1.5 8.3 19.6 39.1 1.1 
W116 Crop Permanent 8.05 1780 8.2 232.9 488.9 50.3 149.4 28.7 29.6 7.9 
W117 Crop Seasonal 7.23 771 4.2 162.0 187.6 6.6 52.9 71.4 22.2 13.5 
W118 Crop Permanent 7.43 823 1.7 103.6 329.0 20.0 89.9 76.5 16.2 18.5 
W119 Wood Permanent 8.24 307 1.5 165.5 7.7 2.9 19.5 15.2 16.5 -0.1 
W120 Grass Semiperm 7.73 865 16.0 127.0 284.3 57.5 67.6 34.0 20.5 9.8 
W121 Grass Seasonal 6.59 98 2.0 33.7 2.9 0.6 3.7 8.3 9.0 18.5 
W122 Grass Semiperm 6.95 262 3.1 108.6 18.9 1.9 13.5 12.8 11.2 -3.1 
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