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ABSTRACT 

 

Despite the availability of live attenuated measles virus vaccines, a large number of 

measles-associated deaths occur among infants in developing countries during the 

“window of susceptibility” (age 4-9 months). During this period declining maternal antibody 

titers are no longer protective against wild-type measles virus (MV) and impede successful 

immunization with the live attenuated vaccines. Therefore, the development of a safe 

vaccine that would induce protective immunity in the presence of maternally derived MV-

specific antibodies in young infants and would close the “window of susceptibility” is 

desirable. Since adenoviruses have been shown as suitable vaccine candidates capable of 

eliciting potent protection against mucosal infectious diseases, the ability of an adenovirus-

vectored anti-measles vaccine to elicit robust immune responses against MV was 

assessed in this study. Mice immunized intramuscularly or intranasally with a combination 

of human adenovirus serotype 5 (Ad5) recombinants expressing MV hemagglutinin (H) and 

fusion (F) glycoproteins developed MV-specific neutralizing antibody titers similar for both 

routes of immunization. However, intramuscular immunization of mice with Ad5 

recombinants resulted in induction of a predominant T helper type (Th1) immune response, 

whereas intranasal immunization induced a balanced Th1/Th2 immune response. 

Furthermore, intranasal immunization resulted in increased titers of MV-specific 

immunoglobulin A (IgA) in lungs in comparison to intramuscularly immunized animals. The 

ability of the Ad5 recombinants to induce protective immune responses in cotton rats by 

different routes of administration was also evaluated. Cotton rats that received a single 
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dose of the Ad5 recombinants intramuscularly or intranasally experienced a rise in MV-

specific neutralizing antibody titers and reduction of the viral RNA load in the lung tissue 

after intranasal MV challenge. In addition, the largest reduction in viral replication was 

observed in the group of cotton rats inoculated with the Ad5 recombinants intranasally. 

Based on these observations, the Ad5-based vaccine appears to be a suitable candidate 

against measles. Furthermore, a capability of purified globular head domain of MV H 

protein produced in a human cell line to induce MV-specific immune responses in mice was 

tested. Subcutaneous immunization of mice with the recombinant protein alone resulted in 

both humoral and cell-mediated immunity, characterized by the production of MV-specific 

serum IgG and neutralizing antibodies, as well as interferon gamma (IFN- and interleukin 

5 (IL-5) production by in vitro restimulated splenocytes. The former responses were further 

enhanced by formulation of the protein with aluminium hydroxide. However, very low 

numbers of INF- secreting cells and low levels of IgG2a in the serum suggested a Th2 

immune response. Novel adjuvants (Th1-directing), as well as MV F protein should be 

considered for the inclusion into the vaccine formulations to induce more balanced Th1/Th2 

immune responses against measles. 
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1.0 LITERATURE REVIEW 

 

1.1 MEASLES VIRUS 

1.1.1 Measles virus genome and proteins 

Measles virus (MV) is a member of the Morbillivirus genus in the subfamily of 

Paramyxovirinae of the Paramyxoviridae family. Humans are the only reservoir for MV, but 

non-human primates can also be infected with MV and develop a disease similar to 

measles in humans. MV is a 15 kb, enveloped, non-segmented negative-strand RNA virus 

replicating entirely in the cytoplasm of the host (Fig. 1.1B). The RNA of MV has a short 

leader sequence at the 3’ end and a trailer sequence at the 5’ end, which do not have any 

coding capacity and are thought to function as regulators of transcription and replication. 

The 3’ noncoding region contains a recognition site for the RNA polymerase complex, 

which sequentially initiates transcription of the viral genes (Horikami and Moyer, 1991). 

Furthermore, there is evidence that this region is involved in triggering the early interferon 

response (Plumet et al., 2007). Six non-overlapping genes encoding the six structural 

proteins, namely nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), 

hemagglutinin (H), and large (L), are located between the leader and trailer regions (Fig. 

1.1A). In addition, the P gene encodes two nonstructural proteins, C and V (Griffin, 2007). 

In the viral particle, N is the most abundant structural protein. Its primary function is to form 

a helical nucleocapsid around the genomic RNA. This nucleocapsid is associated with P 

and L proteins to form ribonucleoprotein complex that is the template for both transcription  
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Figure 1.1. Measles virus. Schematic diagram of measles virus genome (A). N, P, M, F, H, 

L, genes encoding the six structural proteins, namely nucleoprotein (N), phosphoprotein 

(P), matrix (M), fusion (F), hemagglutinin (H), and large (L), respectively. P, gene encodes 

two nonstructural proteins, C and V that are alternatively translated from the RNA. 

Schematic diagram of measles virus (B). M, H, F, N, L, P, proteins of measles virus. 
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and replication. The RNA-dependent RNA polymerase composed of the P and L proteins 

carries out the latter processes. The L protein functions as the catalytic component of the 

polymerase complex, whereas the P protein binds to L and N proteins as well as RNA to 

form the replicase complex. The H, F and M proteins, together with lipids from the host cell 

membrane, form the viral envelope (Griffin, 2007). Transmembrane glycoproteins, F and H, 

are found at the outer surface of the lipid envelope and needed for fusion and entry 

(Cattaneo and Rose, 1993; Wild, Malvoisin, and Buckland, 1991; Zhang et al., 2005). The 

M protein lines the interior of the envelope and mediates the contact between the 

nucleocapsid and the glycoproteins during virus assembly (Iwasaki et al., 2009). Two non-

structural proteins, C and V, are not essential for virus replication in tissue culture 

(Radecke and Billeter, 1996; Schneider, Kaelin, and Billeter, 1997), but believed to regulate 

transcription and replication and interact with cellular proteins modulating the intracellular 

environment (Devaux et al., 2007; Liston, DiFlumeri, and Briedis, 1995; Tober et al., 1998). 

 

1.1.2 Hemagglutinin protein 

The hemagglutinin protein mediates receptor attachment of MV and is an important 

determinant of morbillivirus cellular tropism (Griffin, 2007). In addition, it supports fusion of 

the infected cells mediated by F protein, as specific F-H protein interactions are required 

for the cell fusion (Cattaneo and Rose, 1993; Wild, Malvoisin, and Buckland, 1991). Two 

major receptors mediating the MV entry into the cell are CD46 and CD150 or SLAM 

(Griffin, 2007). There is evidence suggesting that an unknown epithelial cell receptor can 

also mediate the virus entry (Takeda et al., 2007; Takeuchi et al., 2003). Wild-type strains 
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of MV use SLAM as the primary cellular receptor (Erlenhoefer et al., 2001; Hsu et al., 2001; 

Ono et al., 2001), which is expressed on cells of the immune system including immature 

thymocytes, activated T and B lymphocytes, activated monocytes, and mature dendritic 

cells (Griffin, 2007). CD46 is the ubiquitous regulator of complement activation, which is 

present on all nucleated cells (Liszewski and Atkinson, 1992). This receptor is used 

efficiently by tissue culture-adapted and vaccine strains of MV for adhesion (Bartz et al., 

1998; Condack et al., 2007). The latter strains also interact with SLAM, but exhibit a 

decreased tropism for lymphocytes. 

MV H is a 617 amino acid (78-kDa) type II transmembrane glycoprotein (Fig. 1.2B), 

which is located on the surface of virions and infected cells as a homotetramer consisting 

of two disulfide-linked homodimers (Griffin, 2007). This protein is comprised of an N-

terminal cytoplasmic tail (1-34 aa), a transmembrane domain (36-58 aa), an extracellular 

membrane-proximal stalk domain (59-154 aa) containing two disulfide bonds formed by 

cysteine residues C139 and C154, and a large C-terminal globular head (157-607 aa) 

(Alkhatib and Briedis, 1986; Colf, Juo, and Garcia, 2007; Griffin, 2007; Hashiguchi et al., 

2007; Plemper, Hammond, and Cattaneo, 2000). Crystal structure of MV-H (Edmonston) 

head domain was determined, and binding regions on the H head domain for the different 

cellular receptors were identified (Colf, Juo, and Garcia, 2007; Hashiguchi et al., 2007). In 

addition, it has been shown that N-linked sugars at N-linked sites 200 and 215 cover wide 

areas of MV H protein (Hashiguchi et al., 2007), and glycosylation plays an important role 

in the processing and antigenicity of MV H protein (Griffin, 2007). 
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Figure 1.2. The MV envelope glycoproteins. Schematic of the MV F-protein (A). The 

disulfide bond (S-S) holding cleavage fragments F1 and F2 is indicated. FP, fusion peptide; 

HRA, HRB, heptad repeats A and B, respectively. TM, transmembrane segment; CT, 

cytoplasmic tail; N and C, N- and C-terminus, respectively. Schematic of the MV H-protein 

(B). CT, cytoplasmic tail; TM, transmembrane segment; N and C, N- and C-terminus, 

respectively. 
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1.1.3 Fusion protein 

The fusion protein facilitates fusion of the virion and host cell membranes during 

virus infection and mediates fusion of infected cells (Lamb, 2007). The MV F protein (Fig. 

1.2A) is a 553 amino acid type I transmembrane glycoprotein located on the surface of 

virions and infected cells as a trimer and comprised of a globular head domain, a helical 

stalk region consisting of membrane-proximal heptad repeats A and B, a transmembrane 

domain, and a cytoplasmic tail (Griffin, 2007; Yin et al., 2006). 

The F protein is synthesized as an F0 precursor (F0, 60 kDa). In the trans-Golgi, F0 

is cleaved by the ubiquitous intracellular protease furin into F1 (a membrane-spanning 

subunit, 40 kDa) and F2 (a membrane-distal subunit, 20 kDa) subunits, which are 

covalently linked by a disulfide bond (Bolt and Pedersen, 1998; Griffin, 2007). After 

cleavage, the fusion peptide located at the N-terminus of the F1 fragment is ready to be 

inserted into the target membrane to initiate fusion (Bolt and Pedersen, 1998; Watanabe et 

al., 1995). The F2 subunit of the MV F protein is glycosylated and has three N-linked 

carbohydrate chains that have important roles in processing, cell surface expression and 

function of the MV F protein (Griffin, 2007; Hu et al., 1995). In addition, it was shown that 

single tyrosine residues in the cytoplasmic tails of the glycoproteins are responsible for 

basolateral targeting of F and H in polarized epithelial cells, and their basolateral 

expression is important for the cytopathic properties (syncytia formation) of MV infection in 

vivo and in vitro (Moll et al., 2004). Moreover, in polarized epithelial cells, interaction of M 

protein with the glycoprotein cytoplasmic tails allows retargeting of F and H proteins to the 

apical surface for the virion release (Naim, Ehler, and Billeter, 2000). 
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1.2 MEASLES 

1.2.1 Pathogenesis of measles infection 

MV is a human-restricted pathogen. It is highly contagious in nature and transmitted 

from person to person by respiratory droplets. The clinical pathogenesis of measles is 

divided into four phases: incubation, prodromal, exanthematous (rash), and recovery. After 

the incubation period of 10 to 14 days, the patient undergoes a 2- to 3-day prodromal stage 

with fever, coryza, cough, conjunctivitis and small white spots inside the cheeks (Koplik’s 

spots). The maculopapular rash develops in a few days, and its onset coincides with the 

appearance of adaptive immune responses and initiation of virus clearance. Measles is 

typically a self-limiting disease, and recovery is followed by lifelong immunity to the virus. 

However, the high mortality and complication rates associated with the MV infection are 

mainly due to secondary infections that arise during measles-induced immunosuppression. 

The disease can be very severe for malnourished children and immunocompromised 

individuals. Serious complications include blindness, diarrhea, otitis, 

laryngotracheobronchitis, pneumonia, measles inclusion body encephalitis and subacute 

sclerosing panencephalitis (Griffin, 2007). 

Two models of MV pathogenesis have been proposed. The current model implies 

that the initial event is established in the respiratory tract with the virus replication in 

tracheal and bronchial epithelial cells, followed by infection of lymphoid cells, perhaps 

pulmonary macrophages or dendritic cells (DCs), that transport MV to the regional lymph 

nodes where it is amplified and gives rise to primary viremia (Griffin, 2001; Rall, 2003; 

Schneider-Schaulies, Meulen, and Schneider-Schaulies, 2003; Sips et al., 2007). The 
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primary viremia, typically of brief duration and low titer, occurs two to six days after 

infection. In this phase virus enters the bloodstream and spreads to other lymphoid tissues 

including spleen, liver and bone marrow that are typical sites of secondary viral replication. 

The second phase of viremia begins 10 days after exposure. This phase is accompanied 

by characteristic lymphopenia and dissemination of virus to multiple organs including the 

skin, gastrointestinal tract, liver, central nervous system and thymus (Tyler, 2001). In these 

various sites, MV antigens are detected in endothelial and epithelial cell as well as 

monocytes and macrophages (Moench et al., 1988) In blood, monocytes are the primary 

infected cells, but B and T cells can be infected as well (Esolen et al., 1993; Grivel et al., 

2005; McChesney et al., 1989). In the thymus and spleen, epithelial cells and macrophage-

rich areas are sites of MV replication, respectively (Moench et al., 1988). On the contrary, 

an alternative model suggests that initial targets of wild-type MV are SLAM-expressing 

lymphatic cells that cause systemic spread of the virus (de Swart et al., 2007; von 

Messling, Svitek, and Cattaneo, 2006; Yanagi, Takeda, and Ohno, 2006). In this alternative 

model, MV infects certain epithelial cells from the basolateral side via the unknown 

epithelial receptor and buds from the apical side when it leaves the host (Leonard et al., 

2008). To conclude, MV infection starts in the respiratory tract; however, the type of cell of 

initial viral replication, if any, has not been definitely determined (de Swart, 2008). 

 

1.2.2 Immune responses to measles infection 

Innate and adaptive immune responses are both involved in MV clearance, recovery 

from infection and the establishment of long-term immunity. Activation of innate immunity is 
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essential for the control of viral infection and initiation of adaptive immune responses. 

During the incubation period MV replication is controlled by nonspecific innate host 

responses. The innate immune system detects pathogens through interaction of pathogen 

recognition receptors (PRRs) with pathogen-associated molecular patterns. Various 

research groups have reported that MV can trigger the activation of signalling pathways 

activating the production of proinflammatory cytokines such as interferons, interleukins, 

and tumor necrosis factor- in vivo and in vitro (Helin et al., 2001; Sato et al., 2008; Sato, 

Miura, and Kai, 2005). 

IFN- plays an important role in the initiation of innate immunity by a number of 

different mechanisms. Type I IFNs induce an antiviral state in the cell, maturation of DCs, 

as well as enhance cytotoxic T cell responses and stimulate production of chemokines, 

which recruit inflammatory cells to the site of infection (Hahm et al., 2005; Helin et al., 

2001; Leopardi, Hyypia, and Vainionpaa, 1992; Vidalain et al., 2002). However, the role of 

type I IFNs in MV infection is still unclear due to discrepancies between various studies. 

For instance, it has been shown that wild-type MV activates signalling pathways involving 

interferon regulatory factor-3 and nuclear factor-B involved in the initiation of innate 

immune responses in the human lung epithelial cells (Helin et al., 2001). In addition, MV 

infection also resulted in an efficient IFN- and IL-6 production. On the contrary, Naniche 

et al. (2000) demonstrated that wild-type MV is able to suppress the synthesis of IFN- in 

peripheral blood mononuclear cells (PBMC). In addition, a comparison of vaccine strains 

with wild-type MV led to the conclusion that wild-type MV induces very low levels of IFN-

 and possesses mechanisms to suppress the type I IFN production (Naniche et al., 

2000; Shingai et al., 2007). Furthermore, production of IL-12 that participates in linking the 
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innate and adaptive immune responses can be inhibited by MV in vitro and in vivo (Atabani 

et al., 2001; Karp et al., 1996; Polack et al., 2002). Finally, in vivo, there is little evidence of 

IFN production in response to natural infection (Griffin et al., 1990; Shiozawa et al., 1988; 

Zilliox, Moss, and Griffin, 2007). While the mechanism of inhibition remains unclear, some 

data suggest that C and V proteins of MV interfere with IFN signalling (Palosaari et al., 

2003; Shaffer, Bellini, and Rota, 2003). 

Studies performed to demonstrate the role of natural killer cells in early anti-viral 

defences revealed that natural killer cell activity in children with acute measles is reduced 

compared to values for children without measles infection (Griffin et al., 1990). The role of 

DCs as the primary professional antigen presenting cells for initiation of the immune 

response to MV has also been investigated. DCs can be infected with wild-type MV, as well 

as the vaccine strains, but the infection of DCs is strain dependent and more efficient by 

wild-type strains of MV (Murabayashi et al., 2002; Ohgimoto et al., 2001). MV-infected DCs 

co-cultured with lymphocytes cause lymphocyte infection and eventually undergo apoptosis 

(Fugier-Vivier et al., 1997; Murabayashi et al., 2002; Servet-Delprat et al., 2000). Moreover, 

it was shown that MV-infected DCs failed to promote T cell expansion (Shishkova et al., 

2007). Nevertheless, in spite of the deficiencies identified in innate system function, robust 

humoral and cellular immune responses are mounted to MV infection. 

The humoral arm of the immune response has been extensively studied to 

determine vaccine efficacy and to assess protection against measles. Measles-specific 

antibodies appear within several days after the onset of the rash and their titers rise rapidly 

thereafter (Bech, 1959). Measles-specific IgM antibodies are the earliest antibody type to 

develop and can be detected in serum by 3 days and for 28 days after the onset of the rash 
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in most individuals (Helfand et al., 1997; Rossier et al., 1991), followed by a switch first to 

IgG2 and IgG3 and then, in the memory phase, to IgG1 and IgG4 (Isa et al., 2001). IgG 

responses are induced shortly thereafter, peak at 3-4 weeks, and are maintained for a long 

time (Stokes et al., 1961). 

 Antibodies are generated to most MV proteins. The majority of rapidly produced and 

abundant antibody is directed against the N protein. Antibodies against N and H proteins 

increase notably during the second week after the onset of the rash and also antibodies 

against M and F proteins can be detected by that time but only in small amounts (Graves et 

al., 1984). The majority of neutralizing antibodies are directed against the H protein of MV, 

but up to 10% of neutralizing antibodies are specific for the MV F protein (de Swart et al., 

2009). Furthermore, it has been revealed that human convalescent sera show reactivity to 

linear and conformational MV H epitopes and recognize linear epitopes in six to seven 

regions over much of the F protein (Griffin, 2007). 

 The importance of neutralizing antibodies in protection at the time of virus exposure 

has been illustrated in multiple studies. It has been shown that passively acquired maternal 

antibodies confer protection of infants against MV infection (Griffin, 1995). Another 

indication of the importance of neutralizing antibodies is the fact that susceptible individuals 

can be protected by post-exposure administration of anti-MV immunoglobulin if given within 

the first three days after exposure (Norrby, 1995; Wyde, 1999). Correlates of protection 

against measles have also been defined. MV-specific neutralizing antibody titers at the 

time of exposure to virus correlate with protection from disease. Serum plaque reduction 

neutralizing (PRN) titers of 200 mIU/ml are considered protective (Chen et al., 1990; Samb 

et al., 1995; WHO, 1993). Furthermore, although quantitative antibody responses are 
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important in preventing measles infection, qualitative or functional parameters of humoral 

immunity have been shown to correlate with protection (Bouche, Ertl, and Muller, 2002; 

Griffin, 2007). Recent study, which was undertaken to enlighten mechanisms involved in 

atypical measles, demonstrated that immunization with the formalin-inactivated measles 

vaccine (FIMV) resulted in anamnestic production of nonprotective, low-avidity, 

complement-fixing antibodies, immune complex deposition and atypical measles pathology 

in macaques upon natural measles infection (Polack et al., 2003a). These findings show 

the importance of the quality of the antibody response in conferring protection to re-

infection. 

Although antibodies provide protection and prevent measles infection following 

natural infection, vaccination, or passive transfer of antibodies (Albrecht et al., 1977; Black, 

1989; Chen et al., 1990; Halsey et al., 1985; Permar, Griffin, and Letvin, 2006), their role in 

clearance of MV remains unclear. Recent studies using non-human primates demonstrate 

that antibodies have a limited role in the control of MV replication and clearance (Permar et 

al., 2004; Permar et al., 2003). However, several studies suggest the relative contributions 

of humoral immunity to the clearance of MV. In one study it was shown that the failure of 

children to mount sufficient hemagglutinin-inhibiting antibody titers was associated with a 

poor prognosis (Wesley, Coovadia, and Kiepiela, 1982). Moreover, correlation between 

antibody-dependent cellular cytotoxicity antibody titers and reductions in viremia was also 

demonstrated (Forthal et al., 1994). Finally, antibody-induced antigenic modulation affects 

intracellular viral replication (Fujinami and Oldstone, 1979; Fujinami and Oldstone, 1980; 

Schneider-Schaulies et al., 1992). 
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While the role of antibody responses in the clearance of MV is still unclear, the 

importance of cellular immunity in the control of MV infection was demonstrated in humans 

and confirmed by observation in the rhesus monkey model. Clinical data from patients 

indicate that children with B-cell deficiencies (e.g. agammaglobulinemia) recover from 

measles and develop lifelong immunity (Bruton, 1953; Good and Zak, 1956), whereas 

individuals with T-cell deficiencies develop a severe or fatal disease (Mitus et al., 1965; 

Nahmias et al., 1967). Clinical observations in rhesus monkeys indicate that the CD8(+) 

lymphocyte-depleted animals exhibited a more severe, extensive rash and prolonged high-

titer viremia compared to the control animals (Permar et al., 2004; Permar et al., 2003), 

indicating a central role for CD8(+) lymphocytes in recovery from illness by controlling viral 

replication and dissemination (de Vries et al., 2010). Moreover, the contribution of cell-

mediated immunity was also demonstrated in rhesus macaque studies, when there was no 

cytotoxic T cell response induced after FIMV immunization and antibodies did not undergo 

affinity maturation (Polack et al., 1999; Polack et al., 2003a). Importantly, atypical measles 

primed by FIMV immunization was associated with immune complex deposition in affected 

tissues, eosinophilia, and a Th2 polarization of the immune response (Polack et al., 1999). 

Cellular immune responses have been shown to peak at the time of rash as plasma 

levels of soluble CD8 and -2 microglobulin increase (Griffin, 2007) and activated T cells 

are detected in circulation  (Ward et al., 1990), as well as in areas of MV-infected epithelial 

cell of the skin (Permar et al., 2003). Viremia is cleared within a few days after the onset of 

rash and MV is no longer detectable in PBMCs by co-cultivation (Permar et al., 2003). 

However, viral RNA is still detected in PBMCs as well as in respiratory secretions and urine 

for several weeks after apparent recovery (Riddell et al., 2007). Following virus clearance, 
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numbers of CD8(+) T cells in circulation and plasma levels of soluble CD8 and IFN- 

decline (Moss et al., 2002; Ohga et al., 1992; Ryon et al., 2002), whereas numbers of 

activated CD4(+) T cells decrease more slowly (Ryon et al., 2002). During the acute phase 

of measles infection, production of IFN- and IL-2 (Th1 type cytokines) by CD4(+) T cells is 

increased, while the convalescent phase is characterized by elevations in levels of the type 

2 cytokines, IL-4 and IL-5. This type 2 cytokine skewing may last for several weeks after 

clearance of the virus and resolution of the rash. This pattern of cytokine production is 

consistent with the activation of CD8 (+) (IFN-) and type 1 CD4 (+) (IFN- and IL-2) T cells 

early in the immune response, followed by activation of type 2 CD4 T cells (IL-4, IL-13) and 

then regulatory T cells (IL-10) during recovery (Griffin, 2007). Furthermore, MV infection 

causes severe and prolonged immunosuppression, which is thought to be responsible for 

the occurrence of secondary infections. Manifestations of immune suppression include 

impairment of humoral and cellular immune responses to new antigens and polarization of 

effector CD4 T cells to produce Th2 cytokines, as well as suppression of delayed type 

hypersensitivity skin test responses and lymphoproliferative responses to mitogens (Griffin, 

2007). Similarly, immunosuppression and type 2 cytokine skewing induced by measles 

vaccination was also documented, but none of these effects appear to be clinically 

significant (Smedman et al., 1994; Ward and Griffin, 1993). However, months to years after 

natural infection or vaccination, measles-specific IFN-- and IL-4- secreting cells were 

detected among PBMCs stimulated with MV antigens, suggesting that measles immunity is 

maintained by both Th1/Th2 cells (Dhiman et al., 2005; Ovsyannikova et al., 2003). 

 Findings in murine and non-human primate models indicate that all main structural 

proteins are recognized by T cells in the context of either MHC class I or class II molecules 



15 

 

(van Els and Nanan, 2002). A number of these epitopes were also confirmed in humans 

during natural infection or vaccination, including epitopes in H, M, and C proteins (Jaye et 

al., 2003; Ota et al., 2007). 

 

1.2.3 Animal models of measles infection 

The first animal model for measles was non-human primates. The two species, 

rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) 

have been used as animal models for immunopathogenesis and measles vaccination 

studies (El Mubarak et al., 2007). These primates are highly susceptible to MV infection 

and develop similar disease manifestations to those associated with measles in humans 

after experimental inoculation with this virus. Clinical manifestations include Koplik spots, 

leucopenia, immunosuppression and a morbilliform rash (Auwaerter et al., 1999; Kobune, 

Sakata, and Sugiura, 1990; Kobune et al., 1996). Similar to humans, wild-type MV strains 

cause disease in the macaques, whereas vaccine strains do not (Auwaerter et al., 1999). 

Infectious virus can be isolated from PBMCs, lung lavages and pharyngeal epithelial cells 

(El Mubarak et al., 2007; van Binnendijk et al., 1994). However, the use of these animals is 

restricted due to the high cost, the limited availability, the lack of inbred population and 

ethical reasons. 

 Other research aimed to the study of MV infection and pathogenesis has been 

focused on rodent-adapted MV. Rodent-adapted neurotropic strains of MV induce 

encephalitis in nontransgenic mice, rats, or hamsters after intracerebral infection, but the 

infection does not spread to the periphery (Duprex et al., 1999; Moeller-Ehrlich et al., 2007; 

Schubert et al., 2006). Recently, identification of two human receptors, CD46 and CD150, 
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for the MV entry, has allowed researchers to study MV in new transgenic animal models 

(Manchester and Rall, 2001; Sellin and Horvat, 2009). Although none of them mimic MV 

infection in humans, they have provided valuable information and new insights into the 

pathogenesis of measles. 

 The cotton rat model is also used to investigate measles vaccination and 

pathogenesis. The cotton rat (Sigmodon hispidus) is a new world rodent that belongs to the 

order Rodentia, family Muridae, and subfamily Sigmodontinae. Since 1939, cotton rats 

have been used extensively as laboratory animals and found to be susceptible to a variety 

of human viruses including influenza A and B, parainfluenza, adenovirus, respiratory 

syncytial virus (Faith et al., 1997). Cotton rats are also naturally susceptible to MV infection 

after intranasal inoculation. They can be infected with both vaccine and wild-type MV 

strains, but they are semi-permissive for MV infection (the titers of virus obtained from the 

lung tissue are proportionate to the titer of the inoculum) (Wyde et al., 1992; Wyde et al., 

1999). After intranasal infection with MV, cotton rats demonstrate reduced activity without 

overt clinical signs. Wild-type viruses are found in lung tissues, the mediastinal draining 

lymph nodes and spleen (Pfeuffer et al., 2003; Wyde et al., 1999), whereas vaccine strains 

of the virus replicate in lungs, but rarely spread to the lung-draining lymph nodes (Pfeuffer 

et al., 2003). Differences in the virus spread between wild-type and vaccine strains might 

be related to differences in the receptor usage (Pfeuffer et al., 2003). In addition, studies 

with the use of recombinant viruses to investigate the relevance of receptor usage in cotton 

rats revealed that in these rodents, as in humans, MV uses two receptors that homologous 

to the human molecules, CD46 and CD150 (Pfeuffer et al., 2003). Infectious virus induces 

an atypical pneumonia with interstitial infiltrates and can be detected in lung epithelial cells 
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(Moll et al., 2004), as well as in macrophages isolated by bronchoalveolar lavage from 

intranasally infected animals (Pfeuffer et al., 2003; Wyde et al., 1999). The Edmonston 

strain of MV replicates in lungs of cotton rats for at least 7 days after virus inoculation with 

peak pulmonary titers occurred on day four (Niewiesk et al., 1997; Wyde et al., 1992). 

Importantly, to recover virus from lung homogenates in a reproducible fashion, a minimal 

infectious dose of 5 X 103 PFU was needed (Niewiesk et al., 1997). It has also been shown 

that MV RNA is detectable by RT-PCR in many organs of cotton rats infected with this 

strain of MV for 4 or 7 days (Niewiesk et al., 1997). Similar to humans, suppressive effect 

of MV was also found in cotton rats. Proliferation of splenocytes stimulated with mitogens 

and keyhole limpet hemocyanin-specific T cells was suppressed ex vivo (Niewiesk et al., 

1997; Niewiesk, Gotzelmann, and ter Meulen, 2000). Moreover, it was found that 

suppressive effect of wild-type and vaccine viruses differs. For instance, wild-type virus 

suppresses proliferation of splenocytes to mitogens at all titers tested (105 or 104 TCID50) 

for up to 20 days (Pfeuffer et al., 2003), whereas the Edmonston vaccine strain inhibits 

proliferation of splenocytes only at high titers (>106 PFU) for up to 10 days (Niewiesk et al., 

1997). Further studies investigating the inhibitory effect of MV on B or T cells of cotton rats 

revealed that proliferation of B and T cells stimulated with B cell and/or T cell mitogens was 

inhibited by MV ex vivo (Niewiesk, Gotzelmann, and ter Meulen, 2000). In addition, 

Niewiesk et al assessed the influence of MV infection on B and T cell responses in vivo. 

The results have demonstrated strong inhibition of antigen-specific primary and secondary 

T cell responses. In contrast, primary and secondary B cell responses were not altered by 

MV infection (Niewiesk, Gotzelmann, and ter Meulen, 2000). MV infection induces 

protective immune responses in cotton rats and is cleared by day 10. The T cell responses 
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develop earlier during infection. They are first seen on day 5, peaks on day 7 and 8, and 

remain detectable for 90 days (Pueschel et al., 2007). The animals mount MV-specific 

neutralizing antibody immune responses which can be detected 6 days after infection by 

ELISA and 12 days after infection by the neutralization assay (Niewiesk&Germann, 2000). 

As in humans, passively acquired or actively induced serum neutralizing antibodies against 

MV protect animals against infection (Schlereth et al., 2000b). Besides, cotton rats 

vaccinated with the live attenuated vaccine virus (Edmonston strain) are protected against 

disease, but the efficacy of immunization by different routes of inoculation varies (Schlereth 

et al., 2003). 

Cotton rats have also been used to test putative vaccine candidates, as clearance of 

MV infection in these animals correlates with the development of neutralizing antibodies. 

Several vector systems expressing the F, H, and/or N proteins have been shown to induce 

protective levels of neutralizing antibodies. Among these systems are adenovirus (Fooks et 

al., 1998), immune stimulating complexes (ISCOM) (Wyde et al., 2000), modified virus 

Ankara (Weidinger et al., 2001), canarypox virus vectors (Wyde et al., 2000), plasmid 

immunization (Schlereth et al., 2000a), Salmonella and Shigella-mediated plasmid transfer 

(Pasetti et al., 2003) and recombinant vesicular stomatitis virus (VSV) (Schlereth et al., 

2003). Moreover, cotton rat provides a suitable animal model for studying the inhibition of 

vaccine-induced seroconversion by maternal antibodies. By immunization of dams and 

measuring the level of MV-specific antibodies transferred to pups, Schlereth et al. (2000b) 

demonstrated that maternal antibodies inhibited vaccine-induced seroconversion in cotton 

rats after immunization with the vaccine strain of MV. Nevertheless, this approach has a 

few disadvantages, including variability of maternal antibody titers between pups and 
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inability to distinguish between actively generated and passively transferred antibodies 

(Niewiesk, 2001). To overcome these problems, a new approach with the use of human 

MV-specific antibodies as a source of ‘maternal’ antibodies has been developed (Schlereth 

et al., 2000b). Using this system it has been demonstrated that a recombinant VSV 

expressing MV H protein induces high titers of neutralizing antibodies to MV in the 

presence of pre-existing MV-specific antibodies (Schlereth et al., 2000b). 

 

1.3 MEASLES VIRUS VACCINES 

1.3.1 Live attenuated measles virus vaccines 

The Edmonston B strain of MV licensed in 1963 was the first attenuated live 

measles vaccine (Enders, Katz, and Holloway, 1962). However, due to induced fever and 

rash in a large proportion of children (Katz, Enders, and Holloway, 1960) its further 

attenuation in chick embryo fibroblasts at reduced temperature was implemented. This led 

to the development of live attenuated vaccine (LAV) strains, Schwarz and Moraten. The 

Moraten vaccine is the only measles vaccine used in the United States, whereas Schwarz 

and Edmonston-Zagreb are widely used throughout the world (Moss and Griffin, 2006). 

LAV administered subcutaneously or intramuscularly with a dose between 103 and 

104 PFU induces both neutralizing antibody and cellular immune responses, which are 

qualitatively similar to those induced by the natural infection, although neutralizing antibody 

titers are lower (Krugman, 1971; Ovsyannikova et al., 2003). Antibodies first appear 12-15 

days after vaccination and peak at 1-3 months. LAV is used as a single-virus vaccine or in 

combination with other LAVs such as those for mumps, rubella and varicella. The 
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recommended age of vaccination varies from 6 to 15 months. However, LAVs are generally 

well tolerated and highly effective in infants 9 months of age or older (Markowitz and 

Nieburg, 1991). Besides, this type of vaccine is recommended for administration to human 

immunodeficiency virus (HIV)-infected children who do not have severe 

immunosuppression (Moss, Clements, and Halsey, 2003). LAVs against measles have an 

excellent safety record and have saved the lives of millions of children (Wolfson et al., 

2007). For instance, prior to the development and widespread use of LAVs, measles was 

estimated to result in 5-8 million deaths annually (Moss and Griffin, 2006), however, 

nowadays, with the use of LAVs significant progress has been made in measles control, 

reducing a number of deaths attributed to measles from an estimated 733,000 in 2000 to 

164,000 in 2008 (MMWR, 2009). 

Even though major progress has been made in interrupting endemic MV 

transmission, measles remains a major cause of infant and young child morbidity and 

mortality for a vaccine-preventable disease in a number of developing countries (Grais et 

al., 2007; Moss, 2007). Several factors converge to facilitate the transmission of MV, 

ranging from low vaccination coverage to limitations of LAV. First, a reconstituted LAV is 

very unstable as it is readily inactivated by heat and light and loses about half of its potency 

at 20oC and almost all potency at 37oC within 1 h (Melnick, 1996). Therefore, a cold chain 

must be maintained to support measles immunization activities. Second, LAV should be 

administered intramuscularly or subcutaneously to young infants, as aerosolized vaccine 

induced lower primary immune responses compared to subcutaneously delivered vaccine 

(Low et al., 2008). This requirement implies that there is a need for professional healthcare 

workers, sterile needles and proper disposal of contaminated waste material. Besides, due 
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to high infectivity of MV and primary and secondary vaccine failures, two doses of LAV 

must be administered to achieve sufficient levels of population immunity (95%) to interrupt 

MV transmission (Cutts, Henao-Restrepo, and Olive, 1999). Importantly, the presence of 

maternal antibodies and immunological immaturity of the recipient hamper effective 

immunization of infants (Gans et al., 1998; Leuridan and Van Damme, 2007). Interference 

due to passively acquired antibodies among infants has been observed since the live 

attenuated measles vaccine was introduced in the 1960s. For instance, it was shown that 

12 month-old children immunized against measles failed to seroconvert in the presence of 

high maternal antibody titers, whereas children with low maternal antibody titers 

seroconverted. Additionally, the resulting antibody titers were significantly lower than those 

in children without pre-existing immunity (Albrecht et al., 1977). In addition, vaccination 

efficacy in infants may be also impaired due to the immaturity of their immune system 

(Gans et al., 1998). Thus, the proportion of children that develop protective levels of 

antibodies is 67% below 9 months (Gans et al., 1998), 85% at 9 months (Diaz-Ortega et 

al., 1994), 95% at 12 months of age (Cutts, Grabowsky, and Markowitz, 1995). Considering 

the optimum age for seroconversion and the probability of acquiring measles before that 

age the World Health Organization (WHO) recommended measles vaccination at 12-15 

months in areas with low measles burden or at 9 months in areas where measles remains 

prevalent (WHO, 2002). However, many children are no longer protected by maternal 

antibodies at the age of 3 months and earlier, especially in low-income developing 

countries (Dabis et al., 1989), and thereby susceptible to wild-type MV infection. Therefore, 

there are several requirements that would be advantageous for a new vaccine to meet. 

First, it would eliminate the need for a cold chain, and avoid the use of needles and 
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syringes (Mitragotri, 2005). Second, it would be efficacious in the presence of maternal 

antibodies allowing vaccination of infants before 6 months of age to close the window of 

susceptibility between the decay of maternal antibodies and vaccination. Third, induction of 

protective immunity overcoming immunologic immaturity of young infants would be 

desirable. Finally, it would be safe for immunocompromised individuals. 

 

1.3.2 Experimental vaccines 

Several approaches to protect children against measles and close the gap of 

susceptibility, even in the presence of maternal antibodies, are being evaluated, including 

alternative routes of administration and alternative dosages of live attenuated measles 

vaccines or alternative vaccines. First attempt to increase seroconversion rates in infants 

was immunization with ‘high-titer’ Edmonston-Zagreb live attenuated measles vaccine, 

when 100-fold higher doses were used. Some studies revealed that these vaccine 

candidates were more immunogenic in infants with maternal antibodies than standard ‘low-

titer’ vaccines (Aaby et al., 1988; Markowitz et al., 1990; Whittle et al., 1990). Therefore, 

WHO recommended these vaccines for use in countries with significant measles 

transmission where the risk of death by measles was high (WHO,1990). However, ‘high-

titer’ measles vaccines were associated with an increased mortality in girls over the 

subsequent 2-3 years that may be related to long-term suppression of immune responses 

to other pathogens (Seng et al., 1999) or to changes in the sequence of vaccine 

administration (Aaby et al., 2006). Consequently, the WHO recommendation was 

withdrawn. 
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 Alternative non-percutaneous routes of vaccine administration have also been under 

intensive investigation as simplifying the delivery of measles vaccine could increase the 

coverage, acceptance, safety, and efficiency of measles elimination efforts (Cutts, 

Clements, and Bennett, 1997). The aerosol route is especially attractive for mass 

vaccination, and was originally proposed and promoted by Albert Sabin. In the 1980s, in 

Mexico, Albert Sabin and his colleagues were vaccinating children against measles with 

aerosolized measles vaccine (Sabin et al., 1984; Sabin et al., 1983). By the mid-1990s it 

was clear that this was an effective method for measles vaccination. One of the earliest 

meta-analysis reviewed intradermal, conjunctival, oral, intranasal, and aerosol delivery 

routes found that the administration of measles vaccine by aerosol and intranasal routes 

appeared to be the most promising (Cutts, Clements, and Bennett, 1997). Recent 

systematic reviews of published studies to examine the immunogenicity and safety of 

aerosolized route of measles vaccine administration revealed varying results. One meta-

analysis concluded that the respiratory route of delivery of measles vaccine is at least as 

efficacious as measles vaccine administered through the subcutaneous route (Hiremath 

and Omer, 2005). A more recent meta-analysis found that aerosolized measles vaccine 

appears to be equally or more immunogenic than subcutaneous vaccine in children aged 

10 months and older, and, in contrast, seroconversion rates were lower with aerosolized 

than with subcutaneous vaccine in children below 10 months  (Low et al., 2008). However, 

it was suggested that observed differences between these routes were attributable to more 

than 25-fold lower dose administered by aerosol route, and that an improvement of aerosol 

delivery or increasing the dose may enhance the immunogenicity of primary measles 

vaccination by the aerosol route in this age group (Wong-Chew et al., 2006). Other trials 
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have demonstrated that measles vaccine administered via aerosol provides a superior 

boosting response, compared to vaccination by injection (Castro et al., 2005; Dilraj et al., 

2007; Sepulveda-Amor et al., 2002). As a result, aerosol administration of currently 

licensed measles vaccine is a component of the WHO measles morbidity reduction and 

elimination strategy (WHO, 2004). WHO is currently evaluating three aerosol devices in 

clinical trials with the expectation that at least one can be licensed for use with the 

Edmonston-Zagreb measles vaccine. In addition, assessment of a measles vaccine in a 

powder form has also been supported. However, establishing the safety of aerosolized 

measles vaccines is a priority as theoretical concerns, such as exacerbation of asthma in 

young children or increased risk of vaccine-induced pneumonia or encephalitis, associated 

with these vaccines have not been addressed (Valdespino-Gomez et al., 2006). 

Among the approaches currently considered to develop second generation measles 

vaccines, are the use of recombinant viruses expressing the relevant measles proteins as 

well as the use of DNA vaccines and viral subunits formulated with new adjuvants (de Vries 

et al., 2008). Investigation of the efficacy of LAV and killed measles vaccines has advanced 

our knowledge of the determinants of protective immunity. Therefore, development of a 

new vaccine against measles with certain characteristics would be desirable. A new 

vaccine should induce neutralizing antibodies to the H and F proteins in addition to 

stimulating the cellular immune response, should not prime individuals for atypical measles 

on exposure to wild-type MV, and should not be associated with prolonged 

immunosuppression. 

Due to their simplicity and versatility DNA vaccines became a promising strategy for 

developing immunity against several infectious diseases. DNA vaccines are chemically and 
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biologically stable, easy to produce at comparatively low cost, induce strong T cell 

responses, and do not induce anti-vector immunity (Ingolotti et al., 2010). Early studies on 

DNA vaccine immunization against measles showed that these vaccines could induce 

good humoral and cellular responses in mice and cotton rats (Cardoso et al., 1996; Etchart 

et al., 1997; Yang et al., 1997). Further, DNA vaccines encoding either or both of MV H and 

F proteins could confer protection from measles in naive, juvenile rhesus macaques 

without evidence of atypical measles (Polack et al., 2000). Moreover, partial protection 

from MV challenge in the presence of maternal antibodies was observed in macaques 

vaccinated with a DNA plasmid encoding MV F, H and N (Premenko-Lanier et al., 2003). 

However, the vaccination did not lead to seroconversion in all animals, and low levels of 

neutralizing antibodies were induced. 

More recent studies have focused on the use of Sindbis replicon-based DNA 

vaccines and adjuvants to enhance immunogenicity of DNA vaccines. Sindbis replicon-

based DNA approach makes use of the propensity of alphaviruses to generate multiple 

copies of mRNA encoding structural proteins (Polo et al., 2000). As a result of efficient 

RNA amplification, high levels of the recombinant protein are produced (Boorsma et al., 

2003), which along with activation of innate immune pathways by these vaccines (Leitner 

et al., 2003) increase their immunogenicity. Promising results were shown in a rhesus 

macaque study with the use of Sindbis virus-based replicon plasmid (SINCP)-based 

vaccines, where monkeys primed with the DNA plasmid expressing MV H protein 

developed high PRN titers, durable responses after boosting with LAV given by aerosol or 

subcutaneously or with Protollin-MV given intranasally, and were 100% protected from 

measles (Pasetti et al., 2007). Besides, Pasetti et al investigated immunosuppression and 
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predisposition to atypical measles in infant macaques primed with DNA vaccines and found 

that there was no apparent dampening of either antibody or INF--secreting T-cell 

responses to tetanus toxoid in vaccinated/challenged animals versus the 

unvaccinated/unchallenged controls and no evidence of atypical measles (Pasetti et al., 

2007). 

 A number of DNA adjuvants have also been studied. One current trend in DNA 

vaccination is the use of biodegradable cationic polylactide co-glycolide (PLG) 

microparticles. Their utility for delivery and enhanced immunogenicity has been shown in 

mice (Pan et al., 2008b). However, the same PLG/SINCP vaccine expressing MV H protein 

partially protected intramuscularly vaccinated macaques from challenge or showed no 

protection in monkeys vaccinated intradermally that had more severe rashes and higher 

viremias, suggesting exacerbated disease (Pan et al., 2008b). Another example of 

polymers that have been explored for measles DNA vaccination is Vaxfectin® (Hartikka et 

al., 2001). It was shown that infant and juvenile macaques vaccinated with Vaxfectin 

formulated codon-optimized DNAs encoding MV H and F glycoproteins developed 

sustained neutralizing antibody and MV-specific T cell responses and were protected from 

an intratracheal challenge (Pan et al., 2008a). 

 Subunit vaccines formulated with novel adjuvants represent another promising and 

viable strategy to the production of vaccines against measles. They possess characteristics 

that make them a safe and effective vaccine platform. Recently, some advances were 

made with a Protollin-MV vaccine candidate. Protollin-MV is a vaccine produced by mixing 

split MV antigen, which includes H and F proteins, with the novel intranasal adjuvant 
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ProtollinTM (Lowell GH, 2004) comprising Neisseria meningitides outer membrane proteins 

non-covalently complexed with Shigella flexneri 2a lipopolysaccharide. It was shown that 

intranasal immunization of mice with two or three doses of Protollin-MV induces both 

systemic and mucosal neutralizing antibody responses as well as elicits a balanced 

Th1/Th2-type response (Chabot et al., 2005). Moreover, some promising results were 

reported in rhesus macaques, where MV seronegative juvenile macaques received three 

doses of Protollin-MV had a strong neutralizing antibody response and were also protected 

from MV challenge, exhibiting neither viremia nor signs of illness and atypical measles 

(Pasetti et al., 2007). Another promising adjuvant for measles immunization that has the 

ability to induce strong antigen-specific humoral and cellular immune responses is 

immunostimulatory complexes (ISCOMs) (Sun, Xie, and Ye, 2009). ISCOMs are delivery 

systems comprised of antigen, cholesterol, phospholipid and saponin.  Varsanyi et al 

reported that mice inoculated subcutaneously with either H- or F-ISCOMs (preparations of 

H and F proteins obtained from F-, or H-depleted MV-lysates) were fully protected against 

a lethal MV challenge (Varsanyi et al., 1987). Moreover, cynomolgus monkeys vaccinated 

with the same MV H and F protein-ISCOM formulations developed MV-specific humoral 

and cellular immune responses in the presence and absence of passively transferred 

antibodies and were partially protected from intratracheal challenge with wild-type MV (van 

Binnendijk et al., 1997). Although these preparations have been shown to be highly 

immunogenic and are able to induce humoral and cell-mediated immunity, their 

development has been hampered by problems related to the toxicity of crude Quil A 

preparations (Cox, Sjolander, and Barr, 1998). However, purified Quil A components 

without undesired side effects have been confirmed as potent adjuvants in mice (Stittelaar 
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et al., 2000a). These improved vaccine candidates have been also tested in cotton rats that 

were completely protected from pulmonary virus infection and extrapulmonary 

dissemination (Wyde et al., 2000). Furthermore, additional study to evaluate the longevity 

of protective levels of MV neutralizing antibody in macaques showed that the same Quil A-

based vaccine candidates induced long-lasting protective levels of VN antibodies in a “one-

shot” regimen (Stittelaar et al., 2002). Therefore, the properties of ISCOMs make them 

suitable for use in vaccines but their safety needs further clinical investigation for the 

development of novel vaccines against measles (Sun, Xie, and Ye, 2009). 

 The idea of using viruses as gene-delivery systems to combat diseases stems from 

a documented immunogenicity and safety profile of the majority of existing live-attenuated 

vaccines. Recent developments in genetic engineering coupled with the accumulated data 

on the nucleotide structure of viral genomes and functions of viral genes allowed precise 

manipulations of viral genomes cloned as bacterial plasmids (Takeda et al., 2000) or 

bacterial artificial chromosomes (Cui et al., 2009) and led to the development of a wide 

range of different DNA (Dudek and Knipe, 2006) and RNA (Brandler et al., 2007; Wu, Kim, 

and Kang, 2009) viruses as vectors for efficient delivery of vaccine antigens. This strategy 

has been applied for the development of vaccines against many dangerous pathogens, 

including measles. Among the most promising viral vectors delivering MV antigens are 

adenovirus vectors (Fooks et al., 1998; Fooks et al., 1995), recombinant modified vaccinia 

virus Ankara (El Kasmi and Muller, 2001; Stittelaar et al., 2001; Stittelaar et al., 2000b), 

alphavirus (Pan et al., 2010), parainfluenza virus (Skiadopoulos et al., 2001), and vesicular 

stomatitis virus (Schlereth et al., 2003). Other vectors under research include recombinant 

bacterial vectors, the Bacille Calmette-Guerin (Zhu et al., 1997), Shigella flexneri and 
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Salmonella enteric serovar Typhi (Pasetti et al., 2003). Each of these vectors has unique 

properties that should be considered for the selection of the optimal vector for the 

vaccination strategy of choice. 

Vaccination using replication-defective (E1/E3) recombinant Ad5 vector vaccines 

have been reported to be promising for vaccine applications because of their ability to 

induce robust humoral and cellular immune responses in mice, dogs, non-human primates 

and humans (Appaiahgari et al., 2006; Barratt-Boyes et al., 2006; Catanzaro et al., 2006; 

Gomez-Roman and Robert-Guroff, 2003; See et al., 2006; Tims et al., 2000). Alkhatib and 

Briedis reported the construction and initial characterization of replication-defective Ad5 

expressing MV H under the control of an adenovirus major late promoter (MLP) in vitro 

(Alkhatib and Briedis, 1988). Their study demonstrated that biologically active MV H protein 

expressed by the Ad recombinant was properly glycosylated and transported efficiently to 

the cell surface. Similarly, the construction of the Ad5MVF recombinant with the MV F gene 

under the control of the adenovirus MLP resulted in expression of biologically active MV F 

protein that was glycosylated, cleaved and transported to the cell surface (Alkhatib, 

Richardson, and Shen, 1990). Later, the protective efficacy of Ad5 recombinants 

expressing MV H and F proteins under the control of the highly efficient human 

cytomegalovirus (CMV) immediate early promoter was investigated in vivo (Fooks et al., 

1998). This study demonstrated that oral or intraperitoneal immunization of mice with the 

recombinant Ad5 expressing MV F protein failed to protect mice, whereas immunization 

with the recombinant Ad5 expressing MV H protein elicited a significant protective 

response in mice challenged with MV. Moreover, oral or intraperitoneal administration of 

replication-defective Ad recombinants could not elicit humoral immune responses, 
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suggesting that the protection was mediated by cell-mediated immunity. This research also 

revealed that immunization of cotton rats by the intraperitoneal route with the Ad5 viruses 

expressing the MV H or F proteins led to a reduction of MV titers in lungs after challenge, 

whereas intranasal immunization did not result in significant levels of protection (Fooks et 

al., 1998). 
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2.0 HYPOTHESES AND OBJECTIVES 

 

 The overall hypothesis of this study was that new vaccine candidates based on a 

replication-defective Ad5 vector and MV H protein subunit vaccine will be able to elicit 

protective immune responses against MV. To evaluate this hypothesis two sets of studies 

were carried out. 

 The hypothesis for the first set was that immunization with a combination of 

recombinant adenoviruses expressing the MV glycoproteins will induce potent anti-measles 

immune responses to protect cotton rats against MV challenge. Thus, the first objective 

here was to generate recombinant replication-defective E1/E3-deleted adenoviruses 

expressing either MV F or H proteins. The next objective was to examine immunogenicity 

of the Ad5-based vaccine candidate in mice and protective efficacy in cotton rats. 

The hypothesis for the second set was that immunization with a parenterally 

delivered MV H protein subunit vaccine will result in induction of MV-specific immune 

responses in mice. Thus, the objective was to develop a stable human cell line expressing 

a recombinant MV H protein as well as to assess the ability of this protein to elicit MV-

specific immune responses in mice.
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3.0 ADENOVIRUS-VECTORED VACCINE FOR MEASLES 

 

Published in Vaccine (Lobanova et al., 2010). 

 

3.1 INTRODUCTION 

 

Measles is a human-restricted, highly contagious infectious disease and causes 

severe health complications, such as pneumonia, blindness, diarrhea and encephalitis. 

Malnourished and un-immunized children under five years of age are most vulnerable to 

illness and death from this disease. Prior to the introduction of measles live attenuated 

vaccines measles was estimated to result in 5-8 million deaths annually. Nowadays, 

despite the global coverage of 83% with a single dose vaccination, measles remains a 

leading cause of mortality among children in developing countries (MMWR, 2009). 

Among factors that facilitate MV transmission are low vaccine coverage and several 

limitations associated with the use of live attenuated measles vaccines. One of the 

drawbacks of current measles vaccines is a technical and financial burden for developing 

countries to maintain an uninterrupted cold chain, as the vaccine efficacy depends on its 

thermal stability. In addition, the presence of maternal antibodies and the immunological 

status in newborns and young infants have the most significant influence on the efficacy of 

LAVs (Albrecht et al., 1977; Gans et al., 1998). The invasive nature of the measles vaccine 
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administration implies the necessity of medical personnel and the availability of needles 

and syringes. The latter is associated with an additional safety issue, such as transmission 

of infectious diseases through unsafe injections. According to the WHO data, more than 

50% of all injections administered in developing countries are unsafe (Miller and Pisani, 

1999). Finally, to disrupt measles transmission two doses of vaccine as a part of routine 

childhood vaccination programs should be delivered (Cutts, Henao-Restrepo, and Olive, 

1999). However, in 2008, only 16 of 47 priority countries with the highest burden of 

measles conducted two doses measles-containing vaccine supplemental immunization 

activities (MMWR, 2009). Therefore, thermally stable vaccines that could overcome the 

pre-existing maternal immunity and be administered in a safe, cost effective and non-

invasive way suitable for mass vaccination campaigns are desirable. In addition, a novel 

measles vaccine should meet certain immunological requirements that are the correlates of 

protection, including the induction of certain levels of neutralizing antibodies in addition to 

stimulation of the cellular immune response (Krugman, 1971; Ovsyannikova et al., 2003; 

Polack et al., 1999; Polack et al., 2003a). 

Adenoviruses possess several features that make them a suitable vaccine 

candidate capable of eliciting potent protection against mucosal infectious diseases. Due to 

low virulence, ample safety profile, genetic flexibility, and gene transfer potency replication-

defective Ads have been widely used as vectors for vaccination against many infectious 

diseases (Appaiahgari et al., 2006; Barratt-Boyes et al., 2006; Catanzaro et al., 2006; 

Gomez-Roman and Robert-Guroff, 2003; See et al., 2006; Tims et al., 2000; Volpers and 

Kochanek, 2004). In addition, Ads can induce potent long-term humoral and cellular 

immune responses directed to the expressed product (Juillard et al., 1995; Seder and Hill, 
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2000). Furthermore, the natural tropism of Ads to the respiratory epithelium allows their 

mucosal application (Santosuosso, McCormick, and Xing, 2005), which can be superior in 

eliciting protection from measles (Neutra and Kozlowski, 2006). By exploiting the mucosal 

route of administration of replication-defective Ad vectors, maternal pre-existing immunity 

against measles may also be overcome. For instance, mucosal administration of measles 

and measles-rubella vaccines was shown to be more efficient than subcutaneous 

administration in pre-immunized humans (Bennett et al., 2002; Dilraj et al., 2000). Finally, 

the improvement of the stability profile of Ad5-based vaccine formulations should enhance 

the utility of Ad5 as a vector for vaccines, as an optimized liquid formulation can be stored 

for at least 2 years at 4oC and has adequate short-term stability at ambient temperatures 

(Evans et al., 2004). In the present study, the ability of Ad5 recombinants expressing the 

MV glycoproteins to elicit balanced and protective immune responses against MV in mice 

and cotton rats was investigated. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Cell lines and viruses - Human embryonic kidney (HEK) 293 cells (ATCC, 

CRL-1573) were propagated in minimum essential medium (MEM; Sigma-Aldrich, St. 

Louis, MO) supplemented with 0.1 mM non-essential amino acids (Invitrogen, Carlsbad, 

CA), 10 mM HEPES buffer (Invitrogen), 50 g/ml gentamicin (Invitrogen) (complete 

medium), and 10% heat-inactivated fetal bovine serum (FBS, Lonza). Edmonston strain of 
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MV (ATCC, VR-24) was propagated in Vero (African monkey kidney, ATCC, CCL-81) cells, 

maintained in complete medium supplemented with 2% heat-inactivated FBS. Briefly, 

subconfluent monolayers of Vero cells were infected at a multiplicity of infection (MOI) of 

0.05-0.1 TCID50 per cell. After 1 h adsorption at 37oC, the complete medium/2% FBS was 

added to the cells. Four to five days after infection, infected cells were harvested with the 

medium when approximately 80-90% of the cells were involved in cell fusion. Two freeze-

thaw cycles were performed to release the virus from the infected cells, followed by 

clarification at 500 g at 4oC for 10 min. 

 

3.2.2 Plasmids and generation of Ad5-MV-F and Ad5-MVvacH recombinant 

viruses - The pH5-R plasmid contains the right end viral sequences of the Ad5 genome 

with the 1878 bp deletion in the E3 region. The transfer plasmid pH5-L contains the left end 

viral sequences (nt 1-6100) of the Ad5 genome with early E1 region substituted by 

transcriptional control elements, including the CMV promoter and the bovine growth 

hormone polyA (BHG polyA) signal (Zakhartchouk et al., 2005). pUC-MV-F, ordered from 

GeneScript Corporation (Piscataway, NJ), contains a codon optimized sequence of the MV 

F gene (the codon adaptability for human cells and the entire mRNA structure were taken 

into consideration). pCG-MVvacH, provided by Dr. Roberto Cattaneo (Mayo Clinic, 

Rochester, USA), contains the native sequence of the MV H gene (Muhlebach, Leonard, 

and Cattaneo, 2008). Methodology of the construction of replication-defective recombinant 

adenoviruses has been previously described (Bett et al., 1994). Briefly, pCG-MVvacH was 

used as a template to amplify the full length MV H gene using primers (MVvacH-FOR) 5’-
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CCCAAGCTTATGTCACCACAACGAGACCG-3’ and (MVvacH-REV) 5’-

ATTTGCGGCCGCCTATCTGCGATTGGTTCCAT-3’. PCR were carried out using a 

Phusion High-Fidelity PCR kit (New England Biolabs, Pickering, ON). The amplified PCR 

fragment was digested with HindIII and NotI and then ligated into the expression cassette 

of pH5-L cut with the same enzymes, resulting in the transfer vector pH5L-MVvacH. pH5L-

MV-F was constructed by excision of the MV F gene from pUC-MV-F by SalI/KpnI 

digestion and ligation of the fragment into pH5L cut with the same enzymes. Modified left-

hand fragments of the Ad5 genome were released from the transfer vectors pH5L-MVvacH 

and pH5L-MV-F by PacI digestion. The resulting transfer fragments were separately co-

transfected in HEK 293 cells with the right-hand portion of the Ad5 genome excised from 

the pH5-R plasmid by PacI digestion. Co-transfections were carried out using a Calcium 

Phosphate Transfection Kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s 

instructions. Two replication-defective recombinant adenoviruses generated by 

homologous recombination in HEK 293 cells (Graham et al., 1977) were named Ad5-MV-F 

and Ad5-MVvacH. Ad5-MV-F was rescued after the co-transfection followed by three blind 

passages in HEK 293 cells, whereas Ad5-MVvacH was rescued after the co-transfection 

and two blind passages in HEK 293 cells. Replication-defective Ad5 rescued using 

unmodified transfer fragments excised from pH5-R and pH5-L was named Ad5-Empty 

(control adenovirus). 

 

3.2.3 Virus purification - To purify adenoviruses HEK 293 were plated in 150-cm2 

Corning flasks and infected with high titer stocks of Ad5-MV-F or Ad5-MVvacH when 
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monolayers reached approximately 80% confluency. The cells along with culture medium 

were harvested at 48 h post-infection when full cytopathic effect (CPE) was observed. Cell 

suspensions were clarified by centrifugation at 3,000 rpm for 10 min. After centrifugation 

the culture medium was aspirated off, and the pellets were combined and resuspended in 

phosphate buffer with 7% glycerol. Samples were stored at -80oC. Subsequently, 1.2 ml of 

5% sodium deoxycholate was added to 12 ml of thawed cell lysate. After 30 min incubation 

at room temperature (RT), 120 l of 2 M MgCl2 and 60 l of DNase I solution were added. 

The samples were incubated at 37oC for 30 min and then centrifuged at 3,000 rpm for 15 

min at 5oC. In an ultracentrifuge tube, 4 ml of 1.25 g/ml CsCl was overlaid with 1.5 ml of 

1.35 g/ml CsCl. This was overlaid with 6 ml of the viral supernatant and centrifuged at 

35,000 rpm (Beckman SW41 rotor) for 2 h at 10oC (accelerate/decelerate set to 1). Viral 

bands, located at the 1.25g/ml-1.35g/ml interface, were collected by puncturing the side of 

the tube with a syringe. The withdrawn virus was transferred to an ultracentrifuge tube and 

the volume was increased with 1.35 g/ml CsCl. A second ultracentrifugation was performed 

at 35,000 rpm (Beckman SW50.1 rotor) for 16-20 h at 4oC. The single band was collected, 

and 50% sucrose was added to the virus suspension to bring the sucrose concentration to 

1%. Finally, the virus suspension was dialyzed against three changes of 1,500 ml of 

phosphate-buffered saline containing 1%, 2% and 5% sucrose, respectively, at 4oC, and 

stored at – 80oC until use. 

For MV purification, Vero cells were infected at a MOI of 0.05 and incubated at 37oC 

in humidified atmosphere with 5% CO2. After 48 h, the culture medium was aspirated and 

2.5 ml of MEM without FBS were added into each 150-cm2 flask. Infected cells were 

collected by scraping and subjected to two freeze-thaw cycles. Cell debris was removed by 
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centrifugation at 500 g for 10 min at 4oC. Concentrated virus was centrifuged at 4oC for 4 h 

at 25,000 rpm (Beckman SW32 rotor) through 20% (w/v) sucrose onto a cushion of 60% 

(w/v) sucrose. Subsequently, the virus was collected at the interface, dialysed overnight in 

a Slide-A-Lyzer dialysis cassette (Pierce, Rockford, IL) against 1,500 ml of phosphate 

buffered saline (PBS) at 4oC, and stored at - 80oC until further use in ELISA. Protein 

concentration of the purified MV was determined using Bio-Rad Protein Assay (Bio-Rad, 

Hercules, CA), based on the Bradford dye-binding procedure (Bradford, 1976). 

 

3.2.4 Virus titration – MV titers were determined by 50% tissue culture infective 

dose (TCID50) method on Vero cells. Shortly, ten-ford serial dilutions of MV stock in MEM 

without FBS were added to 70-80% confluent Vero monolayers in 96-well tissue culture 

plates (Corning Inc., Corning, NY). Cells were incubated for 5 days at 37oC in a humidified 

atmosphere with 5% CO2, and wells were scored for the presence of viral cytopathic effect 

(CPE). Viral titer was expressed as TCID50/ml (Karber, 1931; Spearman, 1908). Viral 

stocks (1x106 TCID50/ml) were stored at – 80oC until further use in virus neutralization 

assay or challenge trials. 

Titration of the adenovirus vectors was carried out by TCID50 method using HEK 

293 cells. Briefly, HEK 293 cells were collected by trypsinization, and 1x105 cells/ml cell 

suspension was prepared in complete medium supplemented with 10% FBS. One hundred 

l of the cell suspension were plated into each well of a 96-well plate (Corning Inc.) along 

with 100 l of 10-fold virus dilutions made in serum-free medium. After 14 days of 

incubation, wells were scored for the presence of viral CPE. Spearman-Karber statistical 
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method was used for determining the TCID50 value of recombinant adenoviruses (Karber, 

1931; Spearman, 1908). 

 

3.2.5 Isolation of adenoviral DNA from infected cell lysates and PCR - HEK 

293 cells were infected with high titer stocks of Ad5-MV-F, Ad5-MVvacH, or Ad5-Empty, 

and cultured in complete medium supplemented with 5% FBS. After 48 h.p.i., when full 

CPE was observed, the cell suspension was harvested and subjected to three cycles of 

freezing and thawing. Cell debris was removed by centrifugation at 1,500 rpm for 5 min. 

Two hundred and seventy-five l of clarified virus supernatant were used for the DNA 

isolation. This procedure included incubation of the supernatant with 10 l of DNase I (10 

mg/ml) at 37oC for 30 min, followed by addition of 6 l of 0.5 M ethylenediaminetetraacetic 

acid (pH 8), 7.5 l of 20% sodium dodecyl sulfate (SDS), 1.5 l of Proteinase K (20 mg/ml) 

and incubation at 50oC for 1 h. Total DNA was further extracted using the BIO101 

GeneClean (GC) Spin Kit (Integrated Sciences, NSW, Australia) according to the 

manufacturer’s instructions. For detection of insertion of the MV F and H genes into the 

Ad5 genome the total DNA extracted from virus-infected or mock-infected cells was 

subjected to the amplification using 2X PCR Master Mix (Fermentas, Burlington, ON). 

Primers, (ADAPT R) 5’-GCCACGCCCACACATTTCAG-3’ and (CP52) 5’-

CGCCCCATTGACGCAAA-3’, were designed to anneal in the sites flanking the deleted E1 

region of the Ad5 genome. PCR was carried out in 50 l containing 25 pmol of each primer 

and ~0.1 g of DNA, using 30 cycles each consisting  of 10 sec at 98oC, 30 sec at 56oC, 
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and 1 min at 72oC. Amplification products were size-separated by electrophoresis in 1% 

agarose gels. 

 

3.2.6 Western blotting - Non-complementing Vero cells grown in a six-well plate 

(106 cells/well) were infected with Ad5-MV-F (MOI 100 TCID50/cell), Ad5-empty (MOI 100 

TCID50/cell), MV Edmonston (MOI 0.1 TCID50/cell) or mock-infected. Total cell extracts 

were prepared at 72 h.p.i. by resuspension of cell pellets in RIPA buffer (50 mM Tris-HCl, 

pH7.4, 1% sodium deoxycholate, 1% NP-40, 0.1% SDS and 150 mM NaCl) supplemented 

with aprotinin and phenylmethanesulfonylfluoride, followed by incubation on ice for 30 min 

and two short cycles of sonication. Solubilized proteins were analyzed by SDS-

polyacrylamide gel electrophoresis (PAGE) and immunoblotting. Samples were boiled at 

96oC for 5 min in 2X loading buffer containing 4% -mercaptoethanol (Sigma, St. Louis, 

MO). The proteins were transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, 

CA). The membrane was blocked by overnight incubation with 5% skim milk in TBS/0.1% 

Tween-20 at 4oC, followed by incubation at RT for 4 h with MV F-specific mouse 

monoclonal antibody (mAb) (Fost-2 antibody was kindly provided by Dr. Waku, INSERM, 

Lyon, France) diluted 1:500. Bound antibodies were detected by incubating the blot with 

goat anti-mouse HRP-conjugated secondary antibody (GE Healthcare, Baie d’Urfe, QC) 

(1:3,000) at RT for 1 h, followed by visualization of specific protein bands using ECL-plus 

reagent (GE Healthcare). 

 

3.2.7 Fluorescence activated cell sorting (FACS) - Vero cells, cultured in a 12-

well plate (105 cells/well) were mock-infected or infected with either 100 TCID50/cell of Ad5-
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Empty or Ad5-MVvacH. After 48 h.p.i., the cells were trypsinized, washed three times with 

PBS, and subjected to immunostaining with the clone CV1CV4 anti-measles mAb (1:5,000) 

(GenWayBiotech, San Diego, CA) along with goat Cy2-conjugated anti-mouse IgG (1:100) 

(Jackson Immunoresearch, West Grove, PA) at 4OC for 1 h. To confirm the specificity of 

the assay, a protein A-specific mAb (1:15,000) (IgG1 isotype; Sigma-Aldrich, St. Louis, 

MO) was taken as an isotype control. After washings with PBS, the cells were analysed on 

a FACSCalibur flow cytometer (Becton Dickinson). The acquired data were analyzed using 

CellQuest software. 

 

3.2.8 Immunoprecipitation - Vero cells grown in a six-well plate (106 cells/well) 

were infected with 100 TCID50/cell of Ad5-MVvacH or Ad5-Empty. For positive control, the 

cells were infected with MV Edmonston at a MOI of 0.1. After virus absorption for 1 h, the 

cells were incubated in complete medium containing 5% FBS. After 36 h.p.i., the medium 

was replaced to methionine/cysteine-free MEM (Sigma-Aldrich) supplemented with 2% 

dialysed FBS (Invitrogen) and 100 Ci of [35S]methionine/cysteine (100 μCi/well, Perkin 

Elmer, Woodbridge, ON). Following 12 h of labelling, the cells were harvested and lysed 

with 200 l of RIPA buffer for 30 min on ice, followed by two short cycles of sonication. The 

supernatants were incubated overnight at 4oC with 10 μl of the clone 166 anti-measles 

mAb (GenWay Biotech). Subsequently, 100 l of Protein A sepharose beads pre-incubated 

with a rabbit anti-mouse polyclonal antibody were added to the supernatants. After 

incubation at 4oC for 6 h, the beads were washed four times with RIPA buffer, and the 
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samples were subjected to SDS-10%PAGE. The gel was vacuum-dried at 80oC for 2 h and 

analysed by autoradiography. 

 

3.2.9 Syncytium formation assay - Vero cells cultured in a 48-well plate (105 

cells/well) were infected with 100 TCID50/cell of Ad5-MV-F and Ad5-MVvacH or Ad5-

MVvacH alone. Vero cells infected with MV (MOI=0.01) and uninfected Vero cells were 

taken as a positive and negative control, respectively. After 48 h.p.i., the cells were fixed 

with 75% ethanol/25% glacial acetic acid at RT for 15 min, and stained with Giemsa stain 

(Ricca Chemical, Arlington, TX). After washing with distilled water, plates were air-dried 

and examined under a microscope. 

 

3.2.10 Mouse trial - Purified Ad5-MV-F and Ad5-MVvacH were used in this study. 

Six-week-old female C57BL/6 mice were randomly allocated to three groups of five animals 

each and vaccinated twice intramuscularly (IM) or intranasally (IN) at a 4-week interval. 

The first group of mice was inoculated IM with a combination of Ad5-MV-F and Ad5-

MVvacH (collectively called Ad5-F/H) with a dose of 5x108 TCID50 of each virus per mouse. 

The second group was inoculated IN with the same dose of combined recombinants. 

Before intranasal vaccination, each mouse was anaesthetized with isoflurane. The third 

group was left as a negative control. Blood was collected prior to the first immunization as 

well as at week 4 (prior to the boost) and week 7. Blood samples were allowed to clot at RT 

for 2 h before centrifuging for 20 min at 2,000 g, and the resulting sera were stored at -
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800C. Subsequently, sera were tested for total MV-specific IgG and IgG subclasses by 

ELISA and for the presence of MV-specific neutralizing antibodies. Mice were euthanized 

three weeks after the boost, and lungs were removed for preparation of bronchoalveolar 

lavages (BAL) that were sampled for the presence of MV-specific IgA by ELISA. To 

prepare BAL, lungs were washed with 0.5 ml of PBS and the fluids were collected into 15-

ml Falcon conical tubes (BD Biosciences). Clarified supernatants were transferred into new 

tubes and stored at –80oC. All procedures involving animals were performed in accordance 

with the guidelines of the Canadian Council for Animal Care. 

  

3.2.11 Cotton rat trial - Six-week-old cotton rats of either sex were randomly 

allocated into four groups of five animals. Before vaccination, each rat was anaesthetized 

with isoflurane. Groups 1 and 2 were immunized either IM or IN with Ad5-F/H with a dose 

of 5x108 TCID50 of each virus per rat. Groups 3 and 4 were inoculated either IM or IN with a 

control virus, Ad5-Empty (109 TCID50 per animal). One rat died during the course of the 

study and was excluded from all analyses. Four weeks after vaccination, all cotton rats 

were anaesthetized with isoflurane and challenged IN with Edmonston strain of MV (5x104 

TCID50 per rat). Blood was collected prior to the first immunization and at week 4 prior to 

the challenge. Blood samples were allowed to clot at RT for 2 h before centrifuging for 20 

min at 2,500 rpm, and the resulting sera were stored at -800C. Subsequently, sera were 

tested for the presence of MV-specific neutralizing antibodies. Total RNA was extracted 

from the homogenates of lungs collected on day 4 after challenge. Viral RNA was detected 

by RT-PCR with primers specific for the N gene of MV. All procedures involving animals 
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were performed in accordance with the guidelines of the Canadian Council for Animal 

Care. 

 

3.2.12 Enzyme-linked immunosorbent assay (ELISA) - Sera were assayed for 

MV-specific IgG, IgG1, and IgG2a, whereas BAL samples were tested for MV-specific IgA. 

Ninety-six-well IMMULON 2 microtiter plates (Thermo Scientific, Hudson, NH) were coated 

overnight at 4oC with 100l/well of 1 µg/ml purified and UV-inactivated MV. The plates 

were washed five times in PBS containing 0.05% Tween-20, and incubated at room 

temperature for 2 h with samples serially diluted with PBS containing 0.5% gelatine and 

0.05% Tween-20, beginning at 1:100, and continuing in 4-fold dilutions (sera) or 2-fold 

dilutions (BAL). After five washes biotinylated goat anti-mouse antibodies (Caltag 

Laboratories, Buckingham, UK) diluted 1:5,000 were added, followed by incubation at RT 

for 1 h and five washes. Alkaline phosphatase (AP)-conjugated streptavidin (Jackson 

Immunoresearch, West Grove, PA) at dilution of 1:5,000 was used to detect bound IgG, 

IgG1, IgG2a and IgA. Following 1-h incubation at RT, the plates were washed eight times 

with distilled water. Reactions were visualized with p-nytrophenyl phosphate (Sigma-

Aldrich), stopped with 1% HCl, and analyzed at O.D. 405 nm using an ELISA plate reader 

(Molecular Devices Corporation, Sunnyvale, CA). Results were expressed as the reciprocal 

of the highest dilution resulting in a reading of 2 standard deviations above the value of the 

negative control serum. 

 

3.2.13 Virus neutralization assay - Serum samples were heat-inactivated at 56oC 

for 30 min and were then diluted in MEM (no FBS), beginning at 1:20 dilution and 
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continuing in two-fold dilutions. Each serum dilution was incubated with 100 TCID50 of MV 

Edmonston strain for 1 h at 37oC. Sample-virus mixtures were added to sub-confluent Vero 

cell monolayers cultured in ninety-six-well plates and incubated at 37oC for 5 days. Cell 

cultures were examined on day 6 for characteristic CPE. Virus-neutralizing titers are 

expressed as the reciprocal of the highest dilution that completely inhibited virus-induced 

CPE.  

 

3.2.14 RNA isolation and semi-quantitative reverse transcription polymerase 

chain reaction (RT-PCR) - Four days after challenge, cotton rats were euthanized and 

lungs were removed into 2-ml screw-cap tubes (VWR International) containing 2.4-mm 

zirconia microbeads (BioSpec Products, Bartlesville, OK) and 1 ml of Trizol (Invitrogen), 

and were homogenized in a mini-beadbeater (BioSpec Products) for 10 s. RNA was 

isolated from 100µl of lung homogenates using additional 400 µl of Trizol reagent 

(Invitrogen) according to the manufacturer’s instructions. Quantification of RNA was 

performed using the Agilent RNA analysis kit (Agilent Technologies, Santa Clara, CA) and 

2100 Bioanalyzer. The purified RNA samples were subjected to RT-PCR using the 

OneStep RT-PCR kit (Qiagen, Hilden, Germany). Briefly, RT-PCR was performed in a final 

volume of 50 μl, containing 1 µg of RNA and MV-specific primers, NPB1 and NPB2 

(Nakayama et al., 1995), flanking a 169 bp fragment of the MV N gene. A 128 bp fragment 

of cotton rat 2-microglobulin gene was amplified with primers (1) 5’-

CGCACCATGGCTCGTACCGT-3’ and (2) 5’-TGGGGTGGGTGGAACTGGGA-3’ as a 

housekeeping gene control. Thermal cycler parameters were as follows: reverse 
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transcription for 30 min at 50oC; enzyme activation for 15 min at 95oC; followed by 35 

cycles of denaturation for 1 min at 94oC, annealing for 1 min at 56oC, and extension for 1 

min at 72oC; final extension for 10 min at 72oC. PCR products were separated by 

electrophoresis through 2% agarose gel and stained with ethidium bromide. Average 

intensities of DNA bands were quantified using Bio-Rad Quantity One software. The 

intensities of MV-specific DNA bands were normalized to intensities of 2-microglobulin 

cDNA fragments that were separated on the same gel. Normalized intensities of bands 

were compared to the highest normalized band intensity value which was set at 100%. 

 

3.2.15 Statistical analysis - All data were analyzed using GraphPad Prism Version 

5.03 software. Differences among all groups were examined using the Mann-Whitney U 

test. Differences were considered significant if P<0.05. 

 

3.3 RESULTS 

 

3.3.1 PCR analysis of genomes of the recombinant adenoviruses - To confirm 

the insertion of MV genes into Ad5 genomes, adenoviral DNA was isolated from HEK 293 

cells infected for 48 h with Ad5-MV-F, Ad5-MVvacH, Ad5-Empty or mock-infected. The 

isolated total DNA samples were subjected to PCR with primers ADAPT R and CP52 that 

were designed to anneal in the areas flanking the deleted E1 region of the Ad5 genome. As 

predicted, a 418 bp PCR fragment was amplified from the Ad5-Empty DNA (Fig. 3.1A and 
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B), whereas the insertion of MV H and F genes led to the increase of the size of amplified 

fragments to 2,233 bps (Fig. 3.1A) and 2,097 bps (Fig. 3.1B), respectively. No fragments 

were amplified in no template controls and the sample of DNA extracted from mock-

infected cells (Fig. 3.1A and B). 
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Figure 3.1. Validation of the insertion of expression cassettes for MV H and F proteins in 

place of the deleted E1 region of Ad5. Viral DNA was isolated from HEK 293 cells infected 

with Ad5-MVvacH, Ad5-MV-F, Ad5-Empty or mock-infected, and a fragment encompassing 

the expression cassette was amplified using the same primer pair. (A) Expected PCR 

fragments 2,233 bps and 418 bps amplified from Ad5-MVvacH and Ad5-Empty DNA, 

respectively. (B) As predicted, a 2,097 bp fragment was amplified from Ad5-MV-F DNA. 

NTC, no template control. Values on the left of the panels are fragment sizes in base pairs. 
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3.3.2 Characterization of the expression of MV F and H proteins by the 

recombinant adenoviruses - Validation of MV F protein expression by Ad5-MV-F was 

performed on non-complementing Vero cells that were either uninfected or infected with 

Ad5-Empty, Ad5-MV-F or MV. The cells were collected at 72 h.p.i. and total cell extracts 

were prepared and examined by Western blotting using the F protein-specific mAb. As 

anticipated, no MV F protein-specific bands were detected in lysates of uninfected or Ad5-

Empty-infected cells (Fig 3.2).The antibody recognized 60 kDa and 40 kDa protein bands, 

corresponding to uncleaved F0 and cleaved F1 forms of the F protein, respectively, only in 

whole-cell extracts of Ad5-MV-F and MV-infected cells (Fig. 3.2). In addition, a high 

molecular mass protein band was detected by the antibody. This band may correspond to 

the F protein trimers (Lee et al., 2007). 

The expression of H protein in Ad5-MVvacH-infected cells was determined by 

immunoprecipitation. Vero cells were mock-infected or infected with Ad5-Empty, Ad5-

MVvacH, or MV. At 36 h.p.i., the cells were metabolically labeled for 12 h with [35S] 

methionine/cysteine. Following labeling, total lysates of the infected cells were 

immunoprecipitated with the MV H-specific mAb and analyzed by SDS-PAGE under 

reducing conditions. The immunoprecipitation of Ad5-MVvacH-infected lysates revealed a 

band with molecular mass about 78 kDa (Fig. 3.3), which co-migrated with the H protein 

produced in the MV-infected cells. No similar band was observed in mock-infected or Ad5-

Empty infected cell lysates. 

To test whether the H protein expressed by the recombinant adenovirus was 

present at the surface of infected cells, Ad5-MVvacH-infected Vero cells were labeled with 

the MV H-specific mAb and analyzed by FACS. As shown in Figure 3.4, the antibody 
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stained more than 97% of Vero cells infected with Ad5-MVvacH. In contrast, only 

background levels of staining were detected in the samples of Ad5-Empty-infected or 

uninfected cells. Moreover, less than 1% of the Ad5-MVvacH infected cells were stained 

with the isotype control antibody, confirming the specificity of the assay. 

The biological activity of the recombinant F and H proteins was tested by examining 

the ability of these recombinants to cause cell fusion through F protein and subsequent 

syncytium formation in Vero cells, which are characteristics of MV infection. It has been 

demonstrated that fusion requires the expression of H and F proteins, as well as F-H 

protein interactions (Cattaneo and Rose, 1993; Wild, Malvoisin, and Buckland, 1991). In 

agreement with previously published results (Fooks et al., 1998), Vero cells infected with 

the combination of Ad5-MV-F and Ad5-MVvacH developed characteristic syncytia (Fig. 3.5, 

panel C), whereas the H-expressing adenovirus alone did not show any syncytium 

formation (panel B). As anticipated, no syncytium formation was detected in uninfected 

cells (panel A), whereas the infection with MV resulted in the development of characteristic 

cell fusions (panel D). 
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Figure 3.2. Detection of the MV F protein expression in Vero cells infected with the Ad5-

MV-F recombinant. Non-complementing Vero cells were infected with Ad5-MV-F, MV, Ad5-

Empty or mock-infected. At 72 h post-infection, the total cell extracts were prepared and 

analyzed with F-specific mAb, Fost 2, by Western blotting. F0, F1 species and F trimers are 

indicated on the right of the panel. Non-specific cellular proteins detected by the antibody 

are indicated by asterisks. Values on the left of the panel are molecular masses in kDa. 
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Figure 3.3. Detection of the MV H protein expression in Vero cells infected with the Ad5-

MVvac H recombinant. Vero cells were mock-infected or infected with Ad5-Empty, Ad5-

MVvacH, or MV. At 36 h.p.i., the cells were pulse labelled for 12 h with [35S] 

methionine/cysteine. Total lysates of the infected cells were immunoprecipitated with the 

MV H-specific mAb and analyzed by SDS-10%PAGE under reducing conditions. Proteins 

from the lysates of radiolabelled Vero cells, uninfected, infected with Ad5-empty, MV or 

Ad5-MVvacH, a molecular mass marker containing [14C] methylated proteins. The 

migration of molecular mass standards (in kDa) is shown on the right of the panel. 
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The  

 

 

Figure 3.4. Detection of the MV H protein expressed by Ad5-MVvacH on the surface of 

infected Vero cells by FACS. (A) Representative diagrams of the analysis results. (B) 

Medians of three independent experiments with range. Non-complementing Vero cells 

were infected with Ad5-MVvacH, Ad5-Empty or mock-infected. At 48 h post-infection, the 

cells were collected and incubated on ice with MV H-specific mAb CV1CV4 along with goat 

Cy2-conjugated anti-mouse IgG for 1 h. The percent of Cy2-positive cells was determined 

by FACS analysis. *, P < 0.05. 
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Figure 3.5. Cell fusion assay showing syncytium formation in Vero cells infected with a 

combination of Ad5-MV-F and Ad5-MVvacH. Vero cells infected for 48 h at MOI of 100 with 

(B) Ad5-MVvacH, (C) with the combination of Ad5-F/H recombinants (MOI of 100 with Ad5-

MV-F and MOI of 100 with Ad5-MVvacH). Uninfected Vero cells (A) and Vero cells infected 

with MV (D) were taken as a negative and positive control, respectively. Syncytia were 

visualized by fixation with 75% ethanol/25% glacial acid and stained with Giemsa dye. 

Syncytia are indicated with arrows.  
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3.3.3 Measles-specific humoral immune responses in mice immunized with 

the Ad5 recombinants - To determine the immunogenicity of the adenovirus-vectored 

vaccine against MV, two groups of C57BL/6 mice were vaccinated twice IN or IM with a 

combination of Ad5-MV-F and Ad5-MVvacH with a dose of 5X108 TCID50 of each virus per 

mouse. Humoral immune responses were examined by measuring the MV-specific IgG 

titers and virus neutralizing titers after the first and second immunization. Significantly 

higher levels of IgG were elicited after the first inoculation of mice with the Ad5-F/H 

recombinants compared to the control mice (P<0.05) (Fig. 3.6A). Following the second 

immunization, Ad5-F/H resulted in higher levels of serum IgG production regardless of the 

route of vaccination, although the difference between IM and IN vaccinated groups was not 

statistically significant. 

To evaluate the biological effectiveness of antibodies produced in the sera, in vitro 

virus neutralizing titers were assessed after each immunization. After the first vaccination, 

high MV-specific serum-neutralizing antibody titers (Fig. 3.6B) were induced in mice 

immunized IN or IM compared to the control group (P<0.01). Following the second 

vaccination with Ad5-F/H, neutralizing antibody levels significantly increased (P<0.05). 

However, there was no significant difference in the MV-specific serum-neutralizing antibody 

titers between the groups of mice vaccinated IM or IN at either week 4 or week 7. 

To evaluate the type of immune responses induced by the adenovirus-vectored 

vaccine, the MV-specific IgG subclass titers were determined after two consecutive 

immunizations by ELISA. As evident in Figure 3.6C, the mice vaccinated with Ad5-F/H IM 

or IN experienced a significant increase in IgG1 (P<0.05) and IgG2a (P<0.05) compared to 
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the control group. However, IM inoculation of the Ad recombinants resulted in induction of 

a predominant Th1-type immune response, whereas IN immunization elicited a more 

balanced Th1/Th2 immune response since there was no statistically significant difference 

between MV-specific IgG1 and IgG2a titers. 

To assess the MV-specific mucosal immune response, the secretion of IgA in BAL 

samples was measured after two immunizations. As shown in Figure 3.6D, significantly 

higher MV-specific IgA titers were detected in all immunized mice compared to the control 

group. In addition, 100-fold increase in IgA titers was found in BAL of mice, vaccinated IN, 

compared to those observed in BAL samples of mice, vaccinated IM. These results 

demonstrate advantage of the IN route of vaccination for the induction of mucosal MV-

specific immunity after the immunization with the Ad5-F/H recombinants. 
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Figure 3.6. MV-specific humoral immune responses in sera of mice immunized with a 

combination of Ad5-MV-F and Ad5-MVvacH. Two groups of mice (5 mice in each group) 

were immunized twice at a 4 week interval with Ad5-F/H recombinants (5X108 TCID50 of 

each virus per mouse). The third group was left as a negative control. One group of mice 
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received two IM inoculations with Ad5-F/H, whereas the second group received two IN 

inoculation. Three weeks after the second immunization animals were euthanized. Sera 

were collected at week 4 (prior to the boost) and week 7, and BALs were collected at week 

7. (A) MV-specific IgG titers (mean with SD) in sera of mice after the first and second 

immunization. (B) Virus neutralizing antibody titers (mean with SD) in sera of mice after the 

first and second immunization. Virus-neutralizing titers are expressed as the reciprocal of 

the highest dilution that completely inhibited virus-induced CPE. (C) MV-specific IgG1 and 

IgG2a (mean with SD) in mouse sera after two consecutive immunizations. (D) MV-specific 

IgA titers (mean with SD) in BALs of mice at week 7 after the first immunization. ELISA 

results are expressed as the reciprocal of the highest dilution resulting in a reading of 2 

standard deviations above the value of the negative-control serum. *, P < 0.05; **, P < 

0.01.
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3.3.4 Measles-specific immune responses in cotton rats immunized with the 

Ad5 recombinants - To determine the presence of MV-specific immune responses, virus 

neutralizing titers were evaluated in sera of cotton rats four weeks after a single 

vaccination. The cotton rats vaccinated IN or IM with Ad5-F/H displayed high MV-specific 

serum neutralizing-antibody titers (Fig. 3.7). Importantly, similar serum neutralizing-

antibody titers were induced by Ad5-F/H delivered IN or IM. As expected, no virus 

neutralizing antibody titers were induced by Ad5-Empty regardless of the route of 

inoculation. 

 

3.3.5 Protection of cotton rats against measles virus respiratory challenge - To 

evaluate the protective capacity of Ad5-F/H anti-measles vaccine, cotton rats were 

challenged IN with MV Edmonston four weeks after the vaccination and the viral RNA load 

in lungs was examined by PT-PCR. The rat -2 microglobulin mRNA was detected in all 

samples for the data normalization. The results of RT-PCR analysis revealed that all 

vaccinated groups showed a decrease in viral replication, compared to the mock-

vaccinated, virus-challenged groups (Fig. 3.8A and B). According to the densitometry 

results, fragments amplified from the lung homogenates of cotton rats immunized IM 

demonstrated nearly 81% reduction in the normalized band intensity (Fig. 3.8B), whereas 

MV RNA was undetectable in the lungs of cotton rats immunized IN (Fig. 3.8A and B). 

These data suggest that IN delivery of the Ad5-F/H vaccine induces a more pronounced 

suppression of the MV replication in lungs of cotton rats than IM delivery. 
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Figure 3.7. MV-specific neutralizing antibody titers (mean with SD) in week 4 sera of cotton 

rats. Two groups of five rats each were immunized once IM or IN with Ad5-F/H (5X108 

TCID50 of each virus per rat). The third and fourth groups (5 mice in each) were immunized 

once IM or IN with a dose of 109 TCID50 of Ad5-Empty. Four weeks later, cotton rats were 

challenged IN with MV Edmonston (5X104 TCID50 per rat). Four days after the challenge, 

cotton rats were euthanized. Sera were collected at week 4 (prior to the challenge). Virus-

neutralizing titers are expressed as the reciprocal of the highest dilution that completely 

inhibited virus-induced CPE. **, P < 0.01. 
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Figure 3.8. Protection of cotton rats against measles virus respiratory challenge. (A) 

Detection of viral RNA in the lung tissue of cotton rats. Cotton rats were immunized with 

Ad5-F/H IM (Group 1), Ad5-F/H IN (Group 2), Ad5-Empty IM (Group 3), or Ad5-Empty IN 

(Group 4). All animals were challenged IN with MV Edmonston strain four weeks after the 

single immunization. Viral RNA was detected by RT-PCR with primers specific for the N 

gene of MV. A 169 bp N gene-specific cDNA fragment is depicted on the left of the panels. 

-2 microglobulin was chosen as a housekeeping gene. A 128 bp -2 microglobulin gene-

specific cDNA fragment is depicted on the left of the panels. NTC, no template control. 

+contr, MV RNA control. M, GeneRuler 1 kb Plus DNA Ladder (Fermentas, Burlington, 

ON). (B) Intensities of bands were measured with the aid of Bio-Rad Quantity One software 

(version 4.6.3), then normalized to the intensities of the housekeeping gene bands and 

represented as a graph. *, P < 0.05.
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3.4 DISCUSSION 

 

Based on the knowledge obtained from studies of LAV and formalin-inactivated 

vaccines, the correlates of protection against measles have been determined. The 

induction of both arms of the immune system is necessary. Humoral immune responses 

play an important role in preventing MV infection and neutralizing antibody titers correlate 

with protection (Albrecht et al., 1977; Black, 1989; Chen et al., 1990; Halsey et al., 1985; 

Permar, Griffin, and Letvin, 2006), whereas cell-mediated immunity controls viral replication 

and is being critical in maintaining long-term recall response (de Vries et al., 2010; 

Ovsyannikova et al., 2003). In addition, studies of pathogenesis of atypical measles 

revealed that the induction of a Th1/Th2 balanced immune response is required, as Th2-

skewed responses may prime for more severe disease (atypical measles) upon infection 

with wild-type MV (Polack et al., 1999; Polack et al., 2002). Furthermore, the importance of 

generating potent immune responses at the site of pathogen entry has been recognized. 

There is evidence that vaccines administered by mucosal route are superior in eliciting 

protection from pathogens that initiate their replication at the mucosal site in comparison to 

other routes of vaccination (Neutra and Kozlowski, 2006). The partial explanation for this is 

that there are receptor-mediated recognition systems that serve to focus the immune 

response at the site where antigen or pathogen was initially encountered. Thus, it is 

believed that greater immune response may be achieved if measles vaccine is 

administered mucosally via the respiratory tract (Castro et al., 2005; Dilraj et al., 2007; 

Sepulveda-Amor et al., 2002). 
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The main goal of my investigation was to evaluate recombinant adenovirus as a 

vaccine candidate against measles. To this end, two recombinant Ad5 vectors expressing 

MV H or F proteins were generated and their capability to express recombinant F and H 

proteins of MV was assessed. Immunogenicity and protective efficacy of the Ad5-based 

vaccine represented by a combination of Ad5-MV-F and Ad5-MVvacH were examined in 

C57BL/6 mice and cotton rats. 

Two Ad5 recombinants were generated by homologous recombination in HEK293 

cells. Ad5-MV-F recombinant contains a codon-optimized cDNA of the gene encoding MV 

F protein, whereas Ad5-MVvacH contains the native sequence of the MV H gene. The 

reason for this is that I experienced difficulty in rescuing the Ad5 recombinant containing a 

codon-optimized MV H gene. This agrees with previously reported studies, where some Ad 

vaccine vectors were consistently difficult or impossible to rescue due to the toxicity of 

recombinant transgene expression, especially in the cases when the transgene was codon-

optimized and transcribed from a strong promoter (Zhao et al., 2009). In line with the 

previously published data (Alkhatib and Briedis, 1988; Alkhatib, Richardson, and Shen, 

1990; Fooks et al., 1998), this study demonstrated that the recombinant adenoviruses were 

capable to express the biologically active recombinant F and H proteins that possess 

characteristics of the wild-type MV proteins. 

To evaluate and compare the immunogenicity of Ad recombinants delivered by 

intramuscular and intranasal routes, isotypic responses in serum were analysed and MV-

specific total IgG and neutralizing antibody titers in serum as well as MV-specific IgA titers 

in BALs from mice immunized with a combination of Ad5 recombinants were measured. 
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Analysis of MV-specific IgG subclasses in sera from immunized mice revealed that the 

adenovirus-vectored vaccine inoculated IN elicited a balanced Th1/Th2 immune response, 

whereas IM immunization induced a predominant Th1-type immune response. 

Immunization of C57BL/6 mice with the Ad5-based vaccine resulted in induction of similar 

MV-specific IgG titers regardless of the route of immunization, indicating the ability of 

mucosal immunization with the Ad5 recombinants to produce systemic antibody responses 

at levels that were comparable to those induced by parenteral vaccination routes. This is in 

concordance with previously reported studies, where following intranasal immunization, 

certain live vectors were able to elicit high systemic IgG titers of the same magnitude as 

those induced by parenteral vaccination routes (Egan et al., 2004; Enose et al., 2002). 

Serum neutralizing titers were the key readout for immunogenicity, as these antibodies 

correlate with protection from measles (Chen et al., 1990). In mice, the Ad5 recombinants 

delivered IM or IN elicited similar neutralizing titers that were above the protective threshold 

in humans (titers >120 mlU/ml measured by PRN, which is ten-fold more sensitive than 

neutralization assay (Chen et al., 1990), are deemed protective in humans (Samb et al., 

1995; WHO, 1993)) following the first and second immunization. Although MV-specific IgA 

titers were induced by the Ad5 recombinants inoculated IM or IN, nasal administration led 

to a significant (P<0.01) 100-fold increase in MV-specific IgA titers in BALs as compared to 

those induced by intramuscular immunization. Therefore, this study demonstrated that the 

mice immunized with the recombinant adenoviruses either intramuscularly or intranasally 

developed robust MV-specific antibody immune responses even after a single 

immunization. On the contrary, Fooks et al. showed that mice immunized with one of the 

adenovirus recombinants orally or intraperitoneally failed to mount a significant neutralizing 
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antibody response although low levels of MV-specific IgG were detected by ELISA (Fooks 

et al., 1998). This discrepancy may be due to the use of a different mouse strain or a 

different route of immunization in the present study. The other contributing factor may be 

that Fooks et al. (Fooks et al., 1998) immunized rodents with individual viruses, whereas in 

this study the vaccinations were done with a combination of two recombinant 

adenoviruses. In addition, the Ad5-MV-F recombinant contains a codon-optimized F gene 

that may have improved the F protein expression. 

The next step of this research was testing the efficacy of IM or IN immunization with 

the Ad5 recombinants in inducing protection of cotton rats against the intranasal challenge 

with MV by measuring the levels of neutralizing antibodies and virus replication. In cotton 

rats, neutralization assay (NT) titers of >12 are proven to be protective (Schlereth et al., 

2000b), similar to the situation in humans (Samb et al., 1995; WHO, 1993). In this study, 

immunization of cotton rats with the combination of recombinant adenoviruses elicited 

similar MV-specific serum neutralizing-antibody responses regardless of the delivery route. 

In addition, the Ad5 recombinants inoculated IM or IN elicited NT titers 29-fold and 34-fold 

above the protective threshold following a single immunization of cotton rats, respectively. 

Interestingly, immunization by the intramuscular route with the Ad5 recombinants led to 

reduced levels of MV replication in the lungs after IN MV challenge, whereas intranasal 

immunization resulted in undetectable levels of MV RNA, suggesting that mucosal MV-

specific IgA antibodies play an important role in protection against MV infection. Therefore, 

the data presented here may indicate that a single mucosal administration of the 

recombinant adenoviruses is able to initiate protective systemic and mucosal immune 

responses that effectively suppressed MV replication in lungs of cotton rats. In contrast, 
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Fooks et al. demonstrated that intranasal immunization of cotton rats with one of Ad5 

recombinants did not result in significant levels of protection (Fooks et al., 1998), which 

may be explained by the use of individual viruses in the latter study. Similarly to results of 

this study, a single intranasal, but not parenteral administration of an adenovirus-vectored 

TB vaccine protected mice from pulmonary tuberculosis (Wang et al., 2004), which is an 

additional confirmation of capability of replication-deficient adenoviral-based vectors to 

induce potent mucosal immune protection. 

There is evidence that the presence of pre-existing antivector host immunity may 

hamper the efficacy of an adenovirus-vectored vaccine (McElrath et al., 2008). 

Furthermore, the attenuated MV vaccine does not induce protection in the presence of anti-

measles maternal antibodies in humans (Leuridan and Van Damme, 2007). Therefore, 

future studies will be set to determine whether intranasal adenovirus-vectored vaccine is 

efficacious in the presence of MV- and Ad5-specific antibodies. In this regard, different 

approaches to overcome this limitation are being sought, including engineering of vaccine 

vectors from viral strains that have not circulated widely in host population (Mastrangeli et 

al., 1996), employing a non-human adenovirus as a vector (Moffatt et al., 2000) or by 

mutating viral surface proteins in order to evade host neutralizing antibodies (Roberts et al., 

2006). Moreover, the development of Ad5 vectors with additional deletions of their genome 

may overcome pre-existing Ad5 immunity due to a significant reduction of expression of 

viral late genes (Gabitzsch et al., 2009). Heterologous prime-boost vaccination strategy 

(DNA-prime and Ad5-boost) was also shown to be effective in the terms of low levels of 

antivector immunity (Yang et al., 2003). Another approach to circumvent the problem of 

pre-existing antivector immunity is to exploit the asymmetry in induction of systemic and 
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mucosal immune responses. Specifically, mucosal administration of the E1/E3-deleted Ad5 

expressing Ebola Zaire glycoprotein, but not intramuscular or oral administrations in mice 

with pre-existing immunity to Ad 5 (systemic neutralizing antibodies titers of 1:320), 

induced protection against the lethal challenge (Croyle et al., 2008). In addition, other 

studies demonstrated that mucosal administration of replication-defective Ad5-derived 

vaccines has also conferred protection against challenge with other pathogens in the 

presence of pre-existing immunity to the vector in different models, including humans (Shi 

et al., 2001; Van Kampen et al., 2005; Xiang et al., 2003). The mucosal route of 

administration of replication-defective Ad vectors may also allow circumventing maternal 

pre-existing immunity against measles. For instance, mucosal administration of measles 

and measles-rubella vaccines was shown to be more efficient than subcutaneous 

administration in pre-immunized humans (Bennett et al., 2002; Dilraj et al., 2000). 

Moreover, nasal administration is an easy, fast and painless way of vaccine delivery, which 

helps to reduce the need for trained healthcare workers, needles, syringes and disposal of 

hazardous wastes (Kersten and Hirschberg, 2007). In addition, nasal immunization can 

prime the immune system for both systemic and mucosal immune responses that are 

critical to provide optimal protection against the disease (Neutra and Kozlowski, 2006). 

In summary, this study has demonstrated that a single intranasal immunization of 

mice and cotton rats with the vaccine, comprising of two recombinant adenoviruses 

expressing MV H and F proteins, elicited robust MV-specific antibody responses in serum. 

Furthermore, the results showed that the vaccine given intranasally was more effective 

than the vaccine given intramuscularly in the induction of MV-specific mucosal IgA in 
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mouse respiratory tract and in the reduction of viral RNA load in the lungs of immunized 

cotton rats after intranasal MV challenge. 
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4.0 RECOMBINANT PROTEIN-BASED VACCINE FOR MEASLES 

 

4.1 INTRODUCTION 

 

Vaccination against measles with the current licensed vaccines has been successful 

in developed countries. However, in developing countries, measles remains a leading 

cause of high mortality among young infants (MMWR, 2009). This may in part be attributed 

to the limitations of the live attenuated measles vaccines, such as low efficacy of LAV in 

young infants due to the presence of maternal MV-specific neutralizing antibodies and 

immaturity of infant’s immune system. The latter factors hamper successful vaccination 

with LAV. As a result, many infants under the age of 9 months are left unprotected before 

they reach the age of vaccination (WHO, 2002). One of the earliest approaches to 

vaccinate children at an early age (4-6 months) was discontinued due to high mortality 

rates observed among girls that received the ‘high-titer’ LAV (Aaby et al., 2006; Seng et al., 

1999). Therefore, there is the need for an alternative vaccine that can be administered 

successfully at an early age and overcomes the negative impact of maternally derived MV-

specific neutralizing antibodies and immune immaturity in young infants.  

Subunit vaccines formulated with new adjuvants are among the currently considered 

vaccine candidates (de Vries et al., 2008). The ISCOM and Protollin formulations 

incorporating MV glycoproteins have been shown to induce both humoral and cellular 

immune responses, as well as antiviral protection in rodents and macaques (Chabot et al., 
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2005; Pasetti et al., 2007; Stittelaar et al., 2002; van Binnendijk et al., 1997; Varsanyi et al., 

1987; Wyde et al., 2000). In addition, ISCOM formulations have been shown protective in 

the presence of passively acquired MV-specific antibodies (van Binnendijk et al., 1997). 

H protein of MV plays a vital role in viral tropism, receptor binding, hemagglutinating 

activity and induction of protective immunity against viral infection (Griffin, 2007). Although 

two glycoproteins are thought to be important for the induction of effective MV-specific 

immunity, the majority of neutralizing antibodies are generated against the MV H protein: 

they neutralize MV in vitro and provide protection against MV in vivo (Brinckmann et al., 

1991; Cardoso et al., 1996; de Swart et al., 2009; Drillien et al., 1988; Giraudon and Wild, 

1981; Giraudon and Wild, 1985; Varsanyi et al., 1987). These antibodies are mostly 

directed against linear epitopes, as well as epitopes dependant on conformation and 

glycosylation (Griffin, 2007). Glycosylation has been shown to be necessary for the proper 

folding, dimerization, and antigenicity of the protein (Griffin, 2007). Major conformational 

epitopes and glycosylation sites are located within the C-terminal globular head domain of 

MV H (Griffin, 2007). Thus, this protein should be produced in mammalian cells, as its 

antigenicity and immunogenicity depend on proper conformation and glycosylation. In 

addition, the strength of a cell line-based technology is its safety, scalability and 

productivity. Therefore, in this study, the development of a stable human cell line producing 

a secreted globular head domain of MV H protein was undertaken and the ability of the 

protein to induce MV-specific immune responses in mice was examined. 



71 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Construction of the recombinant MV H protein expression plasmid - The 

pUC-MV-H plasmid (GeneScript Corp., Piscataway, NJ), containing a codon optimized MV 

H gene (the codon adaptability for human cells and the entire mRNA structure were taken 

into consideration), served as a template to amplify a part of the MV H gene encoding the 

globular head domain of the protein (amino acids 156-617) by PCR using the Phusion 

High-Fidelity PCR kit (New England Biolabs, Pickering, ON). Briefly, PCR was carried out 

in 50 l containing 25 pmol of each primer (MV-H-head-FOR) 5’-

TTGGCCGGCCAGACGTTGCCGCCGAAGAGTT-3’ and (MV-H-head-REV) 5’-

ATTTGCGGCCGCTCGGCGATTAGTGCCATCTT-3’, and ~0.1 g of DNA. Reaction 

parameters were as follows: enzyme activation for 1 min at 95oC; followed by 30 cycles of 

denaturation for 1 min at 95oC, annealing for 1 min at 56oC, and extension for 1 min at 

72oC; and final extension for 1 min at 72oC. The product was then digested with FseI and 

NotI (New England Biolabs, Ipswich, MA) and the resulting fragment was ligated into 

pIRESpuro (Clontech, Mountain View, CA) in frame with the mammalian transin secretion 

signal, the protein A purification tag coding sequence and the tobacco etch virus (TEV) 

protease cleavage site resulting in pProtA-MV-H156/617. Correct sequence of the 

recombinant gene was confirmed by nucleotide sequencing. 
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4.2.2 Generation of a stable cell line expressing the globular head domain of 

MV H protein - For transient transfections, HEK 293T cells (ATCC, CRL-1573) were plated 

in a six-well plate (106 cells/well) and maintained in Dulbecco’s Modified Eagle Medium 

(DMEM; Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated FBS (Lonza), 

0.1 mM non-essential amino acids (Invitrogen), 10 mM HEPES buffer (Invitrogen) and 50 

g/ml gentamicin (Invitrogen). When the monolayers were 70-80% confluent, the cells 

were transfected with 6 g of pProtA-MV-H156/617 using the Calcium Phosphate 

Transfection Kit (Invitrogen, Carlsbad, CA), according to the manufacturer’s instructions. 

To produce stably transfected cell lines, puromycin (Invitrogen) was added one day after 

transfection to a final concentration of 5 g/ml. Resistant clones were clearly visible 13 

days following transfection. The cell media were collected from wells with expended 

individual clones and analyzed by Western blotting with the protein A-specific mAb. IgG-

sepharose affinity purification of the fusion protein was carried out at the University of 

Toronto in the laboratory of our collaborator, Dr. James Rini. The purified recombinant 

protein was released from the tag by TEV protease digestion. The resulting purified MV-

H156/617 protein (no protein A tag) was used in the mouse trial and ELISPOT assay. 

 

 4.2.3 Western blotting – To detect the expression of recombinant ProtA-MV-

H156/617 protein, the collected medium samples were incubated at 96oC for 5 min in 2X 

loading buffer containing 4% -mercaptoethanol (Sigma-Aldrich, St. Louis, MO) and 

separated by SDS-10% PAGE. The separated proteins were transferred onto a 

nitrocellulose membrane (Bio-Rad, Hercules, CA). The membrane was blocked overnight 

with 5% skim milk in TBS/0.05% Tween-20 at 4oC, followed by incubation for 4 h at RT with 



73 

 

the protein A-specific mAb (Sigma-Aldrich, St. Louis, MO) diluted 1:5,000. Bound 

antibodies were detected by incubating the blot with goat anti-mouse HRP-conjugated 

secondary antibody (1:3,000) (GE Healthcare, Baie d’Urfe, QC) at RT for 1 h, followed by 

incubation with the ECL-plus reagent (GE Healthcare). 

 

 4.2.4 Mouse trial - The purified recombinant MV-H156/617 protein was used in 

this study. Six-week-old female C57BL/6 mice were randomly allocated to seven groups of 

five animals each and vaccinated twice subcutaneously (SC) at a 4-week interval. Three 

groups of mice were immunized with a total volume of 100 l at 0.3 g, 3 g or 15 g of 

MV-H156/617 per immunization. The other three groups were immunized with a volume of 

100 l at 0.3 g, 3 g, or 15 g of the protein formulated with aluminium hydroxide 

(Brenntag Biosector, Frederikssund, Denmark). Group 7 was left as a negative control. 

Blood was collected prior to the first immunization as well as at week 4 (prior to the boost) 

and week 7. Blood samples were allowed to clot at RT for 2 h before centrifuging for 20 

min at 2,000 g, and the resulting sera were stored at -80oC. Subsequently, sera were 

tested for total MV-specific IgG and IgG subclasses by ELISA and for the presence of MV-

specific neutralizing antibodies by in vitro virus neutralization assay. Mice were euthanized 

three weeks after the boost for isolation of splenocytes for ELISPOT assays. All 

procedures involving animals were performed in accordance with the guidelines of the 

Canadian Council for Animal Care. 
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4.2.5 Virus neutralization assay - Sera were assayed for MV-specific neutralizing 

antibodies, as described in section 3.3.13. Virus-neutralizing titers are expressed as the 

reciprocal of the highest dilution that completely inhibited virus-induced CPE.  

 

4.2.6 ELISA - Sera were assayed for MV-specific IgG, IgG1, and IgG2a, as 

described in section 3.3.12. Results were expressed as the reciprocal of the highest 

dilution resulting in a reading of 2 standard deviations above the value of the negative 

control serum. 

 

4.2.7 IFN- and IL-5 enzyme-linked immunospot (ELISPOT) assays - For 

isolation of splenocytes, mice were euthanized and spleens were removed and placed into 

tubes containing RPMI medium 1640 supplemented with 10 mM HEPES buffer (Invitrogen, 

Carlsbad, CA), 0.1 mM non-essential amino-acids (Invitrogen), 1 mM sodium pyruvate 

(Invitrogen), and 2 mM L-Glutamine, 100 U/ml Penicillin, 100 mg/ml Streptomycin 

(Invitrogen), and kept on ice. Then spleens were cut into pieces and gently pushed through 

sterile 100 l cell strainers (BD Biosciences, Mississauga, ON) into Petri dishes containing 

RPMI. Splenocytes were centrifuged for 10 min at 1,200 rpm at 4oC and resuspended in 5 

ml of RPMI supplemented with 0.1 mM non-essential amino acids (Invitrogen), 10 mM 

HEPES buffer (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 2 mM L-Glutamine, 100 

U/ml Penicillin, 100 mg/ml Streptomycin (Invitrogen) and 10% FBS (Lonza). Unifilter plates 

(GE Healthcare, Piscataway, NJ) were coated overnight at 4°C with rat anti-mouse IFN-

or IL-5-specific mAbs (BD Biosciences, Mississauga, ON) at the concentration of 2 
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g/ml. Next day plates were washed with RPMI supplemented with 10% FBS and blocked 

with the same medium for 1 to 2 h at 37oC. Isolated splenocytes were cultured at 5X106 

cells per well in triplicate wells (96-well plates) in the presence of 10 g of recombinant 

MV-H156/617 protein per ml. Control cells were cultured with medium only. After 48 h of 

incubation at 37oC in humidified atmosphere with 5% CO2, plates were washed five times 

with PBS/0.05% Tween-20 and incubated overnight at 4oC with biotinylated anti-mouse 

IFN- or IL-5 antibodies (BD Biocsiences) at the concentration of 2 g/ml in PBS/0.05% 

Tween-20. Subsequently, the plates were incubated for 1.5 h at RT with AP-conjugated 

streptavidin (Jackson Immunoresearch, West Grove, PA) diluted 1:1,000 in PBS. Bound 

IFN- or IL-5 antibodies were visualized by incubation with 5-bromo-4-chloro- 3-

indolylphosphate and nitroblue tetrazolium substrate (Sigma-Aldrich, St. Louis, MO). The 

plates were washed in distilled water and air dried; spots were then counted using an 

inverted microscope. The number of IFN- or IL-6-secreting cells was expressed as the 

difference between the number of spots per 106 cells from MV-H156/617 stimulated 

cultures and the number of spots per 106 cells from control cultures. 

 

4.2.8 Statistical analysis - All data were analyzed using GraphPad Prism Version 

5.03 software. Differences among all groups were examined using the Mann-Whitney U 

test. Differences were considered significant if P< 0.05. 
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4.3 RESULTS 

 

4.3.1 Characterization of the recombinant MV H protein expression by stable 

cell lines – The recombinant MV H protein (762 aa) contains (Fig. 4.1) a transin secretion 

signal (1-32 aa) which directs the protein through the secretory pathway and induces 

accumulation of the protein in medium. The secretion signal is followed by a protein A 

purification tag (33-281 aa) serving for affinity purification. A tobacco etch virus protease 

cleavage site is located between the protein A purification tag and the H globular head 

domain (301-762 aa), allowing release of the H globular head domain during purification.  

To verify the expression of the fusion protein, transient transfections of HEK 293T 

cells were carried out and cell culture media collected at indicated time points were 

subjected to Western blotting. A secreted protein with molecular mass about 95 kDa was 

detected in the media collected at 24 h, 48 h or 72 h post-transfection (Fig. 4.2), but not in 

the media of untransfected cells. The amount of the secreted protein in the media of 

pProtA-MV-H156/617-transfected cells increased from 24 h to 72 h post-transfection. The 

predicted molecular mass of the nascent ProtA-MV-H156/617 peptide is 85 kDa. However, 

all active sites of the addition of N-linked oligosaccharide chains are located within the 

globular head domain of H protein (Hu et al., 1994). Hence, the resulting molecular mass of 

the secreted fusion protein is expected to be more than 85 kDa. The lower molecular mass 

bands detected at 48 h and 72 h post-transfection most likely represent the degradation 

products, whereas high molecular mass protein bands may correspond to the H protein 

dimers (Hashiguchi et al., 2007). 
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Transfection of HEK 293T cells with pProtA-MV-H156/617 and selection of stably 

transfected clones resistant to puromycin resulted in the development of stable cell lines 

expressing the globular head domain of MV H protein fused with a portion of Protein A of 

Staphylococcus aureus (Fig. 4.3). To ascertain the expression of the fusion protein, 

samples of the cell media were collected from individual clones and equal volumes of cell 

media were analyzed by Western blotting with the protein A-specific mAb. Clones 4, 9, 10 

and 14 were chosen for further work due to the correct size of the protein expressed and a 

high level of the protein expression.  
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Figure 4.1. Schematic of the recombinant ProtA-MV-H156/617 protein. TSS, transin 

secretion signal; N and C, N- and C-terminus, respectively. 
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Figure 4.2. Validation of the secretion of the ProtA-MV-H156/617 protein into the media of 

transfected cells. HEK 293T cells were transfected with the pProtA-MV-H156/617 plasmid 

using calcium-phosphate method, and the cell culture media was collected at 24 h, 48 h 

and 72 h post-transfection and subjected to detection of the ProtA-MV-H156/617 fusion 

protein by immunoblotting with a protein A-specific mAb diluted 1:5,000. Bound antibodies 

were detected by incubating the blot with goat anti-mouse HRP-conjugated secondary 

antibody (1:3,000) at RT for 1 h and enhanced chemiluminescence substrate. Values on 

the left of the panel are molecular masses in kDa. 
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Figure 4.3. Expression of the recombinant ProtA-MV-H156/617 protein by stably 

transfected cell lines. HEK 293T cells were transfected with pProtA-MV-H156/617 using 

calcium-phosphate method. Selection of clones resistant to puromycin resulted in the 

development of stably transfected cell lines expressing the recombinant ProtA-MV-

H156/617 protein. Cell culture media were collected and the protein secreted into the 

media was detected by immunoblotting with the protein A-specific mAb. Values on the left 

of the panels are molecular masses in kDa. 
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 4.3.2 MV-specific humoral immune responses in mice immunized with the 

recombinant MV H protein - Humoral immune responses induced by the purified MV-

H156/617 protein alone or the protein formulated with aluminium hydroxide were examined 

by measuring the MV-specific IgG ELISA titers after two immunizations. Significantly higher 

IgG production (P<0.05) was observed in unadjuvanted groups when 15 g of the protein 

were inoculated (P<0.05) compared to the 0.3-g inoculated group (Fig. 4.4A). This 

response was further increased by the addition of aluminium hydroxide to the formulation. 

In addition, adjuvanted vaccine groups demonstrated a significant increase of the MV-

specific IgG titers compared to the groups vaccinated with MV H protein alone. 

  To evaluate the biological effectiveness of antibodies produced in the sera, virus 

neutralizing titers were examined after two vaccinations. Immunization with MV-H156/617 

protein/aluminium hydroxide resulted in significantly higher virus neutralizing titers than 

immunization with the recombinant MV-H156/617 protein alone (Fig. 4.4B), confirming the 

additive effect of co-formulation with aluminium hydroxide on humoral immunity against 

MV. 

To characterize the type of immune response generated, MV H-specific IgG1 and 

IgG2 levels in the mouse sera were determined. As shown in Figure 4.4C, immunization of 

mice with the MV-H156/617 protein alone or MV-H156/617 protein/aluminium hydroxide 

resulted in the induction of predominantly MV-specific IgG1 titers, which is an indication of 

Th2-type immune response. Although the IgG2 titers were not significantly different in the 

MV-H156/617 and MV-H156/617/aluminium hydroxide groups, IgG1 titers were 

significantly higher (P<0.01) in the aluminium hydroxide group after two consecutive 
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immunization. Correspondingly, IgG1/IgG2 ratio was higher in the MV-H156/617 

protein/aluminium hydroxide group after two vaccinations than that in the MV-H156/617 

group. 

 

4.3.3 MV-H-specific cell-mediated immune responses in mice immunized with the 

recombinant protein - To determine the level of MV-specific cellular immunity after two 

consecutive immunizations, we measured the secretion of IFN- and IL-5 by in vitro 

restimulated splenocytes using ELISPOT assay. No IFN- secreting cells were induced by 

mock vaccination, and low numbers of IFN- secreting cells were observed after two 

vaccinations with the MV-H156/617 protein and MV-H156/617 protein/aluminium hydroxide 

(mean numbers of IFN- secreting cells: mice immunized with the protein alone – 3; mice 

inoculated with the MV-H156/617 protein/aluminium hydroxide – 4). In contrast, high 

numbers of IL-5 secreting cells were detected in the groups that received MV-H156/617 

protein or MV-H156/617 protein/aluminium hydroxide (mean numbers of IL-5 secreting 

cells: mice immunized with the protein alone – 248; mice inoculated with the MV-H156/617 

protein/aluminium hydroxide – 347; control mice – 8) (Fig. 4.5). In addition, there was no 

significant difference between groups of mice vaccinated with the MV-H156/617 protein or 

MV-H156/617 protein/aluminium hydroxide in terms of IFN- or IL-5 secretion (Fig. 4.5). 

These results indicate that immunization with the purified MV-H156/617 protein primed for 

a type 2 skewing of the cytokine response. 
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Figure 4.4. MV-specific humoral immune responses in sera of mice immunized with the 

recombinant globular head domain of MV H protein. Six groups of mice (5 mice in each 

group) were immunized SC twice at a 4 week interval. Three groups of mice were 

inoculated with 0.3 g, 3g, or 15 g of the globular head domain of MV H protein. The 

other three groups were immunized with the same SC doses of the protein formulated with 

aluminium hydroxide. Group 7 was left as a negative control. Three weeks after the second 



84 

 

immunization animals were euthanized. Sera were collected at week 4 (prior to the boost) 

and week 7. (A) MV-specific IgG titers (mean with SD) in sera of mice after two 

consecutive immunizations. (B) MV-specific virus neutralizing titers (mean with SD) in week 

7 sera after two immunizations. Virus-neutralizing titers are expressed as the reciprocal of 

the highest dilution that completely inhibited virus-induced CPE. (C) MV-specific IgG1 and 

IgG2a (mean with SD) in week 7 sera of mice. ELISA results are expressed as the 

reciprocal of the highest dilution resulting in a reading of 2 standard deviations above the 

value of the negative control serum. *, P < 0.05; **, P < 0.01.
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Figure 4.5. Numbers of IL-5 secreting splenocytes (mean with SD) in response to in vitro 

restimulation with the purified globular head domain of recombinant MV H protein. Group C 

was immunized twice SC at a 4-week interval with 15 g of the purified globular head 

domain of recombinant MV H protein. Group F was inoculated twice SC at a 4-week 

interval with 15 g of the purified protein formulated with aluminium hydroxide. Group G 

was inoculated with saline. Three weeks later after the second immunization animals were 

euthanized. **, P < 0.01. 
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4.4 DISCUSSION 

 

Surface proteins of MV are the main targets of immune system to generate 

protective immunity, which makes them ideal antigens for vaccine development. In this 

regard, several expression systems have been used to express the recombinant MV 

glycoproteins: mammalian cell expression systems based on vaccinia (Kidokoro et al., 

2002), canarypox (Taylor et al., 1992), adenovirus (Alkhatib and Briedis, 1988), Semliki 

forest vectors (Bouche et al., 1998), insect cell expression system (Sadigh et al., 2008; 

Takehara et al., 1992; Vialard et al., 1990), and plant-based system (Webster et al., 2005). 

The lack of proper conformation and post-translational changes in prokaryotes, and to 

certain extent in insect- and plant-based expression systems, restrict their application for 

therapeutic protein production (Arya, Bhattacharya, and Saini, 2008; Webster et al., 2005). 

In contrast, a mammalian cell expression system has been shown to provide proper post-

translational modification of the H protein (Gerald et al., 1986). In our study, calcium 

phosphate transfection of HEK 293T cells with pProtA-MV-H156/617 and selection of 

clones resistant to puromycin resulted in the development of stable cell lines expressing 

the recombinant ProtA-MV-H156/617 protein. In Western blotting, the protein migrated 

under reducing conditions as a strong wide band with an estimated molecular mass of 

about 95 kDa, which is higher than the predicted molecular mass of the nascent ProtA-MV-

H156/617 peptide. This suggests that the protein has undergone some post-translational 

modifications, perhaps glycosylation, which was shown to play an important role in the 

processing and antigenicity of the MV H protein (Hu et al., 1994). The secretion signal of 
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MV H protein is located within the cytoplasmic tail (Griffin, 2007). Even though this domain 

was deleted from the recombinant ProtA-MV-H156/617 protein, the mammalian transin 

secretion signal was placed at the N-terminus of the recombinant ProtA-MV-H156/617 

protein to direct the protein through the secretory pathway, where glycosylation takes place 

(Vitale and Denecke, 1999). In addition, the secretion of ProtA-MV-H156/617 into medium 

and presence of the protein A tag at its N-terminus facilitated functional analysis and 

subsequent purification of this protein. Immunoblotting revealed high levels of the protein 

expression as early as 24 h post-transfection, which may be attributed to codon-optimized 

MV H gene sequence placed under a strong CMV promoter. Furthermore, the advantage 

of the expression system used in this study over a number of mammalian viral expression 

systems is the absence of safety issues associated with pathogenicity of viral vectors. 

 The examination of immunogenicity of purified MV H globular head domain revealed 

that all groups of mice immunized with the protein alone seroconverted after two SC 

immunizations. The increases in serum IgG levels were dependent on the concentration of 

the recombinant protein used for the vaccine formulation. The role of anti-MV neutralizing 

antibodies in protection against MV infection is well-established, neutralizing titers of >120 

mIU/ml in humans correlate with protection even in the absence of a cellular response 

(Samb et al., 1995; WHO, 1993). Although antibody responses after two consecutive 

immunizations with the protein were strong, I found that the purified globular head domain 

of MV H alone failed to stimulate significant MV-specific neutralizing antibody titers unless 

the mice were immunized with the protein formulated with aluminium hydroxide. However, 

the ability of the protein to induce low MV-specific neutralizing titers at the highest dose 

tested suggests that it possesses a correct conformational structure, which is critical in 
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induction of antibodies capable of recognizing the pathogen upon infection (protective 

immune responses). The production of MV-specific IgG and neutralizing antibodies was 

further increased by the addition of aluminium hydroxide. This was expected, as aluminum 

hydroxide boosts humoral immunity by providing Th2 cell help to follicular B cells 

(Lambrecht et al., 2009). 

 Mice immunized with the globular head domain of MV H protein alone developed a 

predominantly Th2 immune response. As expected, the addition of aluminium hydroxide 

further polarized immune response toward a Th2-type response, which agrees with the 

observation that the major role of aluminium-induced IL-4 in Th-subset stimulation is to 

downregulate the Th1 response (Lindblad, 2004). However, induction of Th2-skewed 

responses should be avoided in measles vaccination because they may prime for atypical 

measles (Polack et al., 1999; Polack et al., 2003a; Polack et al., 2002). A more balanced 

Th1/Th2-type immune response could be established by inclusion of the F protein (Polack 

et al., 2003b) and/or Th1-directing adjuvants (e.g., CpG oligodeoxynucleotides) into the 

vaccine formulation. However, it was shown that induction of a Th2 polarization of immune 

responses is not sufficient to elicit atypical measles, and other factors, such as the 

formation and deposition of immune complexes, play an important role in the pathogenesis 

of atypical measles (Polack et al., 2003b). 

 The role of cell-mediated immunity in controlling viral replication and maintaining 

long-term recall response has been extensively studies in non-human primates and 

humans (de Vries et al., 2010; Permar et al., 2004; Permar et al., 2003). The examination 

of cellular immune responses revealed that immunization with the globular head domain of 
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MV H protein elicited high MV-specific IL-5 and low IFN-production, indicating priming for 

a type 2 skewing of the cytokine response. In this study, the Th2 bias may be associated 

with inability of the globular head domain of MV H protein to induce activation of monocytes 

via TLR2 and elicit production of IL-12 through this mechanism, as it was shown that the H 

proteins of UV-inactivated vaccine strains, including Edmonston, do not activate cells via 

both human and murine TLR2 in comparison to UV-inactivated wild-type MV H protein 

(Bieback et al., 2002). The data presented here showed that the addition of aluminium 

hydroxide to 15 g of MV-H156/617 had little effect on induction of IFN- and IL-5 secreting 

cells. Although the numbers of IFN- and IL-5 producing cells were higher in mice 

immunized with the globular head domain of MV H protein formulated with aluminium 

hydroxide compared to mice immunized with the protein alone, this difference did not reach 

statistical significance. These results are in concordance with previously published data, 

where subunit vaccine based on secreted antigens from Mycobacterium tuberculosis and 

formulated with aluminum hydroxide primed for a cellular response (monitored as antigen-

specific proliferation of lymphocytes) with a low production of IFN-and IL-5 cytokines in 

C57BL/6J mice (Lindblad et al., 1997). Although, other aspects of cell-mediated immunity, 

for instance, antigen-specific lymphocyte proliferation and IL-4 production, remain to be 

studied, these data provide evidence that the globular head domain of MV H protein is able 

to induce Th2-skewed cellular responses against MV. 

 In summary, the results presented here demonstrate that, in mice, the purified MV H 

protein produced in the mammalian expression system, have displayed certain 

immunogenic properties. The immunogenicity of the protein is confirmed by its ability to 
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induce moderate humoral immune responses as well as cell-mediated immunity monitored 

as antigen-specific production of IL-5 in the ELISPOT assay. Undoubtedly, formulation of 

the protein with Th1-directing adjuvants is required to enhance its immunogenicity and 

protective efficacy. In addition, inclusion of the MV F protein into the vaccine formulation 

may contribute to the optimization of protective immune responses, as generation of MV-

specific neutralizing antibodies against both glycoproteins is required for complete 

protection against measles (de Swart et al., 2009; Varsanyi et al., 1987). The immunogenic 

properties of the purified globular head domain of MV H protein may be attributed to proper 

folding and other post-translational modifications conferred by the mammalian expression 

system. 
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5.0 GENERAL DISCUSSION AND CONCLUSIONS 

 

Studies investigating MV biology and pathogenesis as well as the efficacy of LAV 

have advanced our knowledge of the determinants of protective immunity against measles. 

In numerous studies, the role of MV-specific antibodies in prevention of measles infection 

following natural infection, vaccination, or passive transfer of antibodies has been shown. 

Moreover, the neutralizing antibody titers have been defined as correlates of protection 

(Chen et al., 1990). Evidence for importance of cellular immunity in the control of MV 

replication and maintenance of long-term recall response was also demonstrated (de Vries 

et al., 2010; Ovsyannikova et al., 2003). In addition, studies focused on pathogenesis of 

atypical measles provided insight into mechanisms leading to the exacerbated disease that 

was observed in individuals vaccinated with FIMV and subsequently exposed to wild type 

MV. FIMV was licensed in the United States in the 1960s (de Vries et al., 2008). Recipients 

received this vaccine developed short-lived immunity characterized by moderate levels of 

hemagglutination inhibiting antibodies and a lack of production of antibodies to F (Merz, 

Scheid, and Choppin, 1980). In macaques, immunization with FIMV resulted in induction of 

immunity with no cytotoxic T cell response and nonprotective, low-avidity, complement-

fixing antibodies (Polack et al., 1999; Polack et al., 2003a). This leads to immune complex 

deposition in affected tissues, eosinophilia, pneumonitis and a Th2 polarization of the 

immune response (Polack et al., 1999). Problems associated with induction of aberrant 

immune responses and predisposition to the enhanced disease led to the withdrawal of this 

vaccine in 1967 (de Vries et al., 2008). However, findings of these studies showed the 
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importance of the quality of immune responses in conferring protection to re-infection. 

Overall, all these data set the requirements that may lead to improvement of current MV 

vaccination strategies and/or development of alternative ones. 

 My work was initially built upon a study done by Fooks et al (Fooks et al., 1998). 

This research group described the construction and initial characterization of replication-

deficient Ad5 recombinants expressing the MV H and F genes under the control of CMV 

immediate early promoter. In addition, they determined whether these adenovirus 

recombinants could elicit immune responses protective against MV challenge in mice and 

cotton rats, when administered by parenteral or mucosal routes. Mice and cotton rats were 

immunized with the Ad5 recombinants expressing the MV H or F protein in two doses 

containing 108 PFU one week apart. They showed that oral as well as parenteral 

administration of the H-expressing recombinant adenovirus elicited a significant protective 

response in mice challenged intracranially with a rodent-adapted MV strain, whereas the F-

expressing adenovirus delivered orally or intraperitoneally failed to protect mice. Mice 

immunized with either recombinant developed low levels of MV-specific IgG. Antibodies 

elicited in mice following immunization with either recombinant had no in vitro neutralizing 

activity, suggesting involvement of a cell-mediated immune response in protection. In 

cotton rats, immunization by the intraperitoneal route with the adenoviruses expressing the 

MV H or F protein resulted in reduced virus titers in the lung and the absence of 

histological signs of infection, whereas intranasal immunization with the adenoviruses 

expressing the H or F proteins did not confer significant levels of protection. Based on 

observations of the previously described study (Fooks et al., 1998) and the fact that 

antibodies to both glycoproteins of MV are required for virus neutralization to provide 
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protection (de Swart et al., 2009; Varsanyi et al., 1987), I concluded that a combination of 

Ad5 recombinants expressing MV H or F proteins should be administered in order to 

induce protective immune responses. In addition, analyses of syncytium formation assays 

performed in this study as well as by Fooks et al (Fooks et al., 1998) revealed that the 

ability of a combination of the Ad5 recombinants expressing MV H or F proteins to cause 

pronounced cytopathic effects in monolayers of Vero cells could enhance the 

immunogenicity of this vaccine candidate. This conclusion was based on the observation 

that cytopathic viruses are extremely immunogenic since they cause massive cell death, 

which has to be cleared by phagocytes (Chen and Ron, 2006). Therefore, the hypothesis 

of this study was that the combination of Ad5 recombinants would able to induce potent 

immune responses to protect animals against MV challenge. 

 As was done by Fooks et al in mice, I aimed to employ parenteral and mucosal 

immunization. In contrast to the previously published data (Fooks et al., 1998), this study 

demonstrated that IM or IN immunization of C57BL/6 mice with two doses of the 

combination of Ad5 recombinants resulted in induction of a strong humoral immune 

response characterized by high levels of MV-specific IgG and neutralizing antibodies. In 

addition, the results revealed that the Ad recombinants administered IN or IM induced 

balanced Th1/Th2 and predominant Th1-type immune responses, respectively. 

Furthermore, the data presented here demonstrated that IN immunization with the 

combination of Ad5 recombinants expressing MV H or F proteins elicited higher levels of 

IgA in the lung, as well as high MV-specific IgG and neutralizing antibody titers of the same 

magnitude as those induced by intramuscular immunization. These results suggest 

potential applicability of the replication-deficient Ad vectors for mucosal immunization 



94 

 

against measles, which are in agreement with previous reports, where adenovirus-based 

mucosal vaccination was effective in protecting against infections caused by HIV, HSV and 

Mycobacterium tuberculosis in animal models (Santosuosso, McCormick, and Xing, 2005). 

The next step was to examine whether the Ad5 recombinants administered IN or IM 

could confer protection in cotton rats against MV challenge. This study demonstrated that a 

single intranasal or intramuscular immunization with the combination of Ad5 recombinants 

resulted in induction of similar MV-specific neutralizing antibody titers, but different levels of 

suppression of MV replication in the lungs after IN MV challenge. The levels of MV-specific 

neutralizing antibodies induced by the Ad5 recombinants were well above the protective 

threshold value, as neutralization assay titers of >12 are proven to be protective in cotton 

rats (Schlereth et al., 2000b) and in humans (Samb et al., 1995; WHO, 1993). In contrast to 

the previous study (Fooks et al., 1998), intranasal immunization of cotton rats was superior 

in suppression of MV replication compared to parenteral immunization, suggesting an 

importance of mucosal MV-specific IgA antibodies in protection against MV infection. 

These data agreed with the studies, where in vitro anti-MV IgA functions include the 

prevention of virus entry and the interruption of virus replication (Yan et al., 2002), as well 

as another study in which a single intranasal, but not parenteral administration of an 

adenovirus-vectored TB vaccine protected mice from pulmonary tuberculosis (Wang et al., 

2004). Overall, these results agreed with the hypothesis that immunization with the 

combination of recombinant adenoviruses expressing the MV glycoproteins would induce 

potent immune responses to protect animals against MV challenge. 
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The development of a measles subunit vaccine may prevent the limitations 

associated with LAV and eventually contribute to global measles eradication, as it can be 

administered safely to young infants at an early age and close the “window of 

susceptibility” (age 4-9 months) between the decay of maternal antibodies and vaccination 

with LAV. Several studies proving the immunogenicity, safety and efficacy of measles 

subunit vaccines had already been completed by others in rodents and macaques. 

However, to my knowledge, the measles virus antigens used in these studies have been 

expressed in mammalian cell expression systems based on viral vectors or were derived 

from a split antigen preparation. Major drawback of these expression systems is safety 

issues associated with the use of live viruses for production of MV glycoproteins. The 

development of a stable cell line expressing MV H or F proteins based on the HEK 293 

mammalian platform may possess some advantages. This system facilitates a high yield 

production of recombinant proteins and is suitable for suspension-growing (Pham, Kamen, 

and Durocher, 2006). In addition, 293 human embryonic cells can confer the most proper 

post-translational processing of the recombinant MV H protein, which is important for its 

antigenicity (Hu et al., 1994). Therefore, the goal of this study was to test the feasibility of 

production of the recombinant MV H protein by stably transfected HEK 293 cells and to 

examine the ability of this recombinant protein to induce MV-specific immune responses 

against measles. 

In the study presented here, the production of the recombinant globular head 

domain of MV H protein by the human stable cell lines is characterized by a high yield of 

the protein with proper post-translational modifications, ease of its functional analysis and 

purification, and the absence of safety concerns associated with pathogenicity of viral 
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vectors. Furthermore, this study demonstrated that subcutaneous immunization of C57BL/6 

mice with the purified protein alone resulted in induction of a Th2-skewed immune 

response characterized by the moderate production of MV-specific IgG in the serum, as 

well as the production of IL-5 by in vitro restimulated splenocytes. The addition of 

aluminium hydroxide increased the magnitude of MV-specific neutralizing titers, which 

correlate with protection against measles (Chen et al., 1990), but had little effect on cellular 

immune responses. Thus, these results demonstrated that the purified globular head 

domain of MV H protein was able to induce moderate humoral immune responses as well 

as cell-mediated immunity monitored as the antigen-specific production of IL-5 in the 

ELISPOT assay. 

Ultimately, it was demonstrated here that parenteral and mucosal immunization with 

the combination of Ad5 recombinants expressing the MV glycoproteins resulted in the 

induction of predominant Th1-type and balanced Th1/Th2 immune responses in mice, 

respectively. Intranasal immunization of mice confirmed mucosal applicability of the 

replication-deficient adenoviruses, as they induced mucosal MV-specific IgA antibodies, as 

well as the production of MV-specific IgG and neutralizing antibodies in the magnitude 

comparable to IM immunization. In addition, IN delivery of the Ad5 recombinants was 

superior to IM delivery, in terms of reducing viral replication in the lungs of cotton rats. 

Thus, the intranasal delivery of the combination of Ad5 recombinants is superior for 

inducing mucosal immunity, as well as protection against MV challenge in cotton rats. 

Furthermore, this study demonstrated the feasibility of production of the globular head 

domain of MV H protein by the stable HEK 293 cell line and the immunogenicity of the 

purified protein in mice characterized by the induction of Th2-skewed immune responses. 
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There are essentially several problems that will need to be addressed in future 

studies with respect to the immunization against MV and to the vaccine candidates 

characterized in this study. The MV immunization-related problems include the induction of 

protective immune responses in the presence of maternal MV-specific antibodies and risks 

of vaccine-enhanced disease (atypical measles) upon subsequent infection. A problem 

attributed to the immunization with Ad5 recombinants is induction of protective immunity in 

humans in the presence of pre-existing Ad5-specific antibodies. 

There are many studies that documented the role of pre-existing MV-specific 

antibodies in suppression of subsequent immune responses against MV in infants 

(Albrecht et al., 1977; Leuridan and Van Damme, 2007), primates (Premenko-Lanier et al., 

2003; Premenko-Lanier et al., 2004; van Binnendijk et al., 1997; Zhu et al., 2000) , cotton 

rats (Pueschel et al., 2007; Schlereth et al., 2000a; Schlereth et al., 2000b; Weidinger et 

al., 2001), and mice (Galletti, Beauverger, and Wild, 1995). In infants, it was shown that 

preexisting MV-specific maternal antibodies interfere with vaccine-induced seroconversion, 

and do not protect against wild-type MV (Leuridan and Van Damme, 2007). In cotton rats, 

inoculation with high titers of human MV-specific antiserum blocked completely the 

neutralizing antibody immune response and reduced the T cell response after the 

immunization with a MV vaccine virus (Pueschel et al., 2007). Although T cell responses 

were detectable, the absence of neutralizing antibodies resulted in no protection. In 

macaques, the presence of relatively low levels of MV-specific antibodies at the time of 

vaccination interfered with MV-specific antibody responses induced by vaccination with 

MV-Schwarz (a vaccine strain), but did not affect the induction of MV-specific proliferative T 

cell and CTL responses (van Binnendijk et al., 1997). As a result, only partial protection 
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was demonstrated in monkeys vaccinated with MV-Schwarz, suggesting the role of T cell-

mediated immunity in protection in the presence of low levels of specific neutralizing 

antibodies (van Binnendijk et al., 1997). However, some studies revealed that the 

suppressive effects of the pre-existing MV-specific antibodies can be overcome by a two-

dose IM/IN delivery of a modified vaccinia virus Ankara expressing the MV glycoproteins, 

or IN immunization with a single dose of VSV expressing MV H (Schlereth et al., 2003; 

Schlereth et al., 2000b). Furthermore, aerosol vaccination of children with LAVs has been 

proven to be more effective in the presence of pre-existing MV-specific antibodies than 

vaccination by parenteral route (Bennett et al., 2002; Dilraj et al., 2000; Sepulveda-Amor et 

al., 2002). Thus, these results indicate that mucosal delivery of MV vaccines may 

circumvent the suppressive effect of maternal antibodies on the induction of MV-specific 

immune responses. In addition, mucosal immunization also offers other advantages, such 

as the induction of both systemic and mucosal immune responses that provide optimal 

protection against the disease (Neutra and Kozlowski, 2006), avoidance of pre-existing 

Ad5-immunity in humans (Croyle et al., 2008; Shi et al., 2001; Van Kampen et al., 2005; 

Xiang et al., 2003), ease of vaccine administration, and minimization of the risk associated 

with transmission of infectious diseases through unsafe injection. 

With regard to atypical measles, it seems that the replication-deficient Ad5-based 

vaccine candidate is not likely to predispose for this type of immunopathology. This 

assumption is supported by the fact that, in general, replication-deficient Ad5 vectors 

possess type 1 adjuvant properties and can induce potent long-term humoral and cellular 

immune responses directed to the expressed product (Juillard et al., 1995; Seder and Hill, 

2000). The results of this study confirmed the induction of a Th1-type immune response by 
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the combination of Ad5 recombinants expressing MV H and F proteins. However, the 

immunogenicity and protective efficacy of the subunit vaccine candidate may benefit from 

the inclusion of Th1-directing adjuvants and MV F protein into the vaccine formulation. 
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