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ABSTRACT 

A declining area of arable land has heightened pressure to increase food production for a 

growing world population. The potential to enhance food production by increasing the number 

of irrigated farms is high on the Canadian Prairies. However, expansion of irrigated farms will 

likely influence agricultural greenhouse gas (GHG) emissions. Quantification and comparison 

of energy partitioning of surface energy fluxes, crop microclimatic modification, soil 

environment variation, and GHG emissions from irrigated and non-irrigated fields in the 

Canadian Prairies are explored in this research. The observed field data were also used to check 

the suitability of a regional version of a process-based GHG simulation model, the 

Denitrification-Decomposition (CDN-DNDC) model. It was found that irrigation alters energy 

partitioning noticeably, which promoted crop microclimatic modification leading to reduced 

vapor pressure deficit and canopy temperature. However, despite a much smaller proportion of 

the net radiation in non-irrigated systems being consumed by evaporation, the dryland fields 

did not exhibit markedly warmer soil temperatures. Soil water was found as the critical factor 

in influencing soil GHG emissions, and availability of soil nutrient was the dominant factor in 

soil N2O emissions from irrigated systems. The performance of the CDN-DNDC model to 

predict soil moisture under irrigation conditions during growing season was good, which 

allowed the model to be used to simulate different irrigated conditions. The CDN-DNDC 

model simulated and measured N2O emissions from irrigated and non-irrigated fields were 

compared, indicating that this model is suitable to assess N2O emissions from different 

management systems under irrigated conditions in the Canadian Prairies. According to the 

CDN-DNDC model, a future increase in irrigated fields will increase N2O emission. However, 

when crop yield is taken into consideration, there is actually a lower mean annual nitrous oxide 
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intensity in the irrigated field. The performance of the CDN-DNDC model was less accurate in 

predicting N2O emission and soil water after the spring thaw, and in predicting soil temperature 

with respect to irrigation. This research provides a first look at energy partitioning, crop 

microclimatic, and soil environment modification, as well as GHG dynamics from irrigated 

agricultural fields in the Canadian Prairies. 
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1. INTRODUCTION 

1.1    BACKGROUND  

In the 21st century, food demand is expected to be higher than in the 20th century, 

therefore agricultural production must increase. To increase crop production to a level that will 

satisfy the growing population, fertilizer and water may need to be applied in greater quantities. 

Irrigation and the application of fertilizer can increase crop yield, but may also increase 

greenhouse gas (GHG) emissions (Liebig et al. 2005). Much of Canada’s agricultural 

production comes from the Canadian Prairies (Statistics Canada, 2011). Due to the vast 

agricultural land, this region also emits a significant amount of GHG; in 2012, Canada’s share 

in the global context was 1.6% (Environment Canada, 2014). Therefore, GHG emission must 

be controlled if this region is to fulfill the world’s food demand in a sustainable manner.  

Globally, greenhouse gas emissions from the agricultural crop production sector are 

mainly CH4 from flooded irrigated fields, and N2O and CO2 from other types of irrigated and 

non-irrigated fields. Within the Prairies, where flood irrigation is infrequently practiced, N2O 

and CO2 are the main trace GHGs. Nitrification/denitrification processes and soil respiration 

under wet conditions are responsible for N2O (Beauchamp, 1997) and CO2 (Oberbauer et al., 

1992; Davidson and Trumbore, 1995) emissions, respectively. As high soil water content can 

enhance the rate of denitrification as well as soil respiration, irrigation is expected to inherently 

influence N2O and CO2 emissions. However, there are very few studies concerning the specific 

influence of irrigation upon GHG emissions.  As water application via irrigation is vital for 

agricultural production, a detailed study of how irrigation influences GHG emission, and how 

irrigation might improve crop yields while lowering GHG emission, is warranted.  
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 Cropland GHG emission can be minimized by improving agronomic practices and 

nutrient use, by reducing tillage intensity, and by residue management. However, there is 

limited research that investigates effects of water management on the reduction of GHG 

emission (IPCC 2007). Improved water management was shown to reduce GHG emission 

significantly in a study in South-Eastern Queensland, Australia, by Scheer et al. (2012). The 

researchers irrigated wheat and cotton when the available soil water content had been depleted 

by 50%, 60%, and 85% and found that irrigation at 60% water depletion resulted in the lowest 

N2O emission. Water management, combined with other management practices, needs further 

research to determine its effectiveness in reducing GHG emission in the agricultural sector.    

Sprinkler irrigation, a common method of irrigation in the Prairies, changes the surface 

energy fluxes above the crop canopy primarily via the change in the latent heat flux and  

sensible heat flux partitioning and the crop microclimate. This involves air, canopy, and soil 

surface temperatures, and the vapor pressure deficit. Irrigation increases the latent heat flux 

(energy released or absorbed by a body during a constant-temperature process), whereas the 

sensible heat flux (heat exchanged by a body that changes the temperature of the body) is 

decreased. This alters crop transpiration, soil temperature, and ground heat flux, which can be 

expected to influence soil GHG emissions. For example, soil temperature is correlated with soil 

GHG emission (Castaldi 2000), and variations in soil temperature occur in response to changes 

in the sensible heat flux. Irrigation also causes more obvious variations in the soil environment 

(volumetric water content, and matric potential) which may enhance GHG emissions. These 

variations depend on the volume of irrigation water and on the timing of irrigation. However, it 

is not presently understood how significant the enhancement of GHG emission is from an 

irrigation event, or how long this effect may last. Following irrigation, increased soil moisture 
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tends to increase N2O emission via denitrification (Drury et al., 2003), and to increase CO2 

emission via soil respiration (Liu et al. 2002). When soil temperature increases, both N2O 

(Dinsmore et al., 2009; Schindlbacher et al., 2004) and CO2 emission (Reth et al., 2005) can 

increase exponentially. These are common scenarios in a nutrient rich field. The variation in 

soil environment and its influence on soil GHG emission, and the time period of GHG emission 

in an irrigated agricultural are not well addressed in the literature. In this research, variations in 

energy partitioning, crop and soil environments, and their resulting influence on GHG emission 

were compared in irrigated and non-irrigated agricultural fields.   

Implementation of proper management practices can reduce GHG emission. A process-

based simulation model that represents the processes that usually occur in the soil can be used 

to predict the field condition and likewise the GHG emission. Such a process-based model can 

include more factors that influence the variability in GHG emissions than an empirical research 

method. As such, newly developed soil GHG simulation models can help to improve our 

understanding of the factors that affect GHG emissions in the long term, providing the 

capability to predict future GHG emission dynamics. Available process-oriented models like 

DeNitrification-DeComposition (DNDC), and Daily Century (DayCent) that can simulate GHG 

emission (with respect to processes like nitrification, denitrification, and mineralization) could 

potentially be used to investigate GHG emission and corresponding mitigation strategies for a 

given site. Although both DNDC and DayCent models are commonly used in Canadian 

agriculture (Chan et al., 2008), daily GHG emission predictions by the DayCent model are 

reported to be less reliable (Del Grosso et al. 2000). Furthermore, the DNDC model has been 

modified for regional use in Canada. As daily simulations of GHG emission were required in 

this research and a regional version (CDN-DNDC) of the DNDC model was available, the 
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DNDC model was selected for this study. The DNDC model has been used worldwide to 

explore GHG emission after treatments such as fertilizer (Smith et al., 2002; Li Hu et al., 2012; 

Kröbel et al., 2011), tillage (Smith et al., 2008), and film mulching (Han et al., 2013). The  

DNDC model has also been used to investigate crop yield (Zhang et al., 2002; Kröbel et al., 

2011), crop growth and biomass (Kröbel et al., 2011), soil water and temperature (Smith et al., 

2002 and 2008), and emission factors (Smith et al., 2012; Giltrap et al., 2013). However, the 

regional suitability of these models cannot be assumed. For example, Smith et al. (2002) tested 

the DNDC model (version 7.1) at two different agricultural sites in Canada and got a stronger 

agreement between predicted and actual GHG emissions in eastern Canadian agricultural fields 

than in western Canadian agricultural fields. This variation was primarily caused by the 

regional differences in the soil environment during winter. Subsequently, the DNDC model 

predictions have been improved for various crops and management conditions. Recently the 

regional version (CDN-DNDC) of DNDC model for this region has been coupled with new 

routines of transpiration and potential evapotranspiration (PET) along with the  Food and 

Agricultural Organization (FAO) crop coefficient modification and biomass growth curve for 

Canadian crops (Grant, personal communication, 2015) for better prediction of soil moisture 

and crop evapotranspiration (ET). In this research the CDN-DNDC model is used in Western 

Canada, where soils are seasonally frozen, to predict the growing season GHG emissions. 

Limitations of the model for this region will be determined so that further modifications can be 

made. Although the DNDC model has been used to evaluate the emissions from agricultural 

soil after different treatments, the model has not been used to explore GHG emission versus 

irrigation practices. Hence, the CDN-DNDC model will be used to explore irrigation practices 

in Western Canada that lead to minimum GHGs emissions. 
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1.2    PROBLEM STATEMENT  

To increase crop productivity and decrease GHG emission, an improved understanding of 

the effect of irrigation upon soil GHG emissions is essential. It is also important to understand 

the energy partitioning above the soil and canopy surface due to irrigation practices, which alter 

the crop microclimate and soil environment, subsequently influencing GHG emission. Limited 

research on how irrigation practice can be improved to obtain higher crop yield and lower GHG 

emission is present in the literature. To develop new irrigation-related mitigation strategies and 

to quantify the influence of irrigation on GHG emission, a GHG simulation model can play a 

vital role where field experiments are logistically and financially burdonsome. The GHG 

emission simulation model DNDC, has not been applied to examine the influence of irrigation 

on soil N2O emission and crop production. To the author’s knowledge, this will be the first test 

of the DNDC model with respect to the effect of crop irrigation on GHG emissions in the 

Canadian Prairie region.  

1.3    OBJECTIVES    

The overall objective of this research is to assess how irrigation influences crop and soil 

environments to enhance GHG emissions. The specific objectives are to: 

1. Assess the variation of energy partitioning, crop microclimate, soil 

moisture, and soil temperature during sprinkler irrigation and quantify their resulting 

influence on GHG emissions; and  

2. Assess N2O emission using the CDN-DNDC model and explore the 

effect of irrigation management on soil N2O emission.  
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1.4    CONCEPTUAL MODEL 

In the energy balance equation (net radiation – ground heat storage = latent heat flux + 

sensible heat flux), the difference between net radiation and ground heat storage is equal to the 

sum of the latent heat flux and the sensible heat flux. The latent heat flux represents the energy 

required to change the phase of a substance (e.g., liquid water to water vapor). The sensible 

heat flux represents the energy required to change the temperature of a substance without 

changing the phase (e.g., warming of the air, soil, and crop canopy in an agricultural field). 

Consider two adjacent fields, of which only one is under irrigation. The incoming radiation 

supplied to the two sites will be identical; however, the outgoing radiation, latent and sensible 

heat flux, can vary due to an irrigation event. When sprinkler irrigation is applied, some of the 

radiation is used to evaporate the water, whereas in the non-irrigated field a larger portion of 

the radiation is used to warm up the soil, canopy, and air. Hence, irrigated and non-irrigated 

fields acquire a different energy balance. As irrigation alters both the energy and water balance, 

it modifies the soil environment (i.e., soil moisture and temperature) and influences greenhouse 

gas emissions. The first objective of this research is to assess these variations and quantify their 

influence on GHG emission. 
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 Fig. 1.1. Energy balance terms in irrigated and dry fields during irrigation practices (SWR = 

short wave radiation, LWR = long wave radiation, LE = latent heat flux, H = sensible heat flux, 

and Qg = ground heat storage). 

As N2O emissions tend to increase under the conditions of moist soils, expanding the 

irrigated area may increase the total GHG emissions. However, the crop yield also increases 

when irrigation is applied, therefore, both N2O emission and crop yield must be considered. A 

field experiment for this goal would involve high time and cost constraints, therefore, a 

process-based model will represent the field condition. The second objective of this research is 

to evaluate the N2O emission from an irrigated agricultural field using a process-based model 

(CDN-DNDC model).  

1.5    THESIS STRUCTURE  

This thesis is written in manuscript style; hence, each objective is addressed in a separate 

chapter. Chapter 2 presents the literature review of this research. Chapter 3 presents the first of 

the two research studies - a field-based investigation of how irrigation influences surface 

energy fluxes, crop microclimate, and soil environment, resulting in changes in soil GHG 

emission. The specific objectives of this study were to: (a) measure and compare the latent heat 

flux, the sensible heat flux, the net radiation, and the ground heat flux from typical irrigated and 
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non-irrigated cropping systems; to (b) measure and compare the canopy and soil surface 

temperature, and vapor pressure deficit corresponding to irrigation; and to (c) observe how soil 

GHG fluxes varied between the irrigated and the non-irrigated field. In the second study, 

presented in Chapter 4, a process-based model investigation of how irrigation influenced soil 

N2O emission. The objective of this study was to: (a) determine the suitability of the CDN-

DNDC model by validating the model for this region; to (b) identify sensitive model 

parameters for this region; and to (c) determine the long-term effect of irrigation on crop yield 

and N2O emission. Following the research studies, Chapter 5 - Summary and Conclusions - ties 

Chapters 3 and 4 together and suggests areas for future research. A list of the literature cited 

throughout the thesis is presented at the end of the each chapter. The document is concluded 

with a collection of Appendices.  

 

 

 

 

 

 

 

 



9 
 

1.6    REFERENCES 

Beauchamp, E. G., 1997. Nitrous oxide emission from agricultural soils. Canadian Journal of Soil 

Science 77: 113-123. 

Environment Canada, 2014. Canada’s emissions trends. Cat. No.: En81-18/2014E-PDF. ISSN: 2291-

9392. 

Castaldi S., 2000. Response of nitrous oxide, dinitrogen and carbon dioxide production and oxygen 

consumption to temperature in forest and agricultural light-textured soils determined by model 

experiment. Biology and Fertility of Soils 32, 67-72.  

Chen, D., Li, Y., Grace, P., and Mosier, A. R., 2008. N2O emissions from agricultural lands: a synthesis 

of simulation approaches. Plant and Soil, 309: 169-189. 

Davidson, E. A., and Trumbore, S. E., 1995. Gas diffusivity and production of CO2 in deep soils of the 

eastern Amazon. Tellus B, 47: 550-565. 

Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S., 2000. General model for 

N2O and N2 gas emissions from soils due to denitrification. Global Biogeochemical Cycles. 

14(4):1045-1060 

Dinsmore, K. J., Skiba, U. M., Billett, M. F., Rees, R. M., and Drewer, J., 2009. Spatial and temporal 

variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland: Implications for 

modelling and up-scaling, Journal of Soil Biology and Biochemistry 41: 1315-1323. 

Drury, C. F., Zhang, T. Q., Kay, B. D., 2003. The Non-Limiting and Least Limiting Water Ranges for 

Soil Nitrogen Mineralization. Journal of Soil Science Society of America 67: 1388-1404.  

Grant, B., 2015. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food, Canada, 

Personal communication.  

Scheer, C., Rowlings, D., Grace, P., Robinson, P. G., 2012. Lowering of nitrous oxide emissions from 

irrigated grains – cotton farming systems in South cotton farming systems in South Eastern 



10 
 

Queensland.  Climate Change Research Strategy for Primary Industry second national CCRSPI 

Conference. 27- 29 November, Melbourne Cricket Ground, Melbourne, Victoria, Australia 

Schindlbacher, A., Boltenstern, S. Z., and Bahl, B., 2004. Effects of soil moisture and temperature on 

NO, NO2, and N2O emissions from European forest soils, Geophysical Research, 109, D17302, 

doi: 101029/2004JD004590. 

Smith, W. N., Desjardins, R. L., Grant, B., Li, C., Lemke, R., Rochette, P., Corre, M. D. and Pennock, 

D., 2002. Testing the DNDC model using N2O emissions at two experimental sites in Canada. 

Canadian Journal of Soil Science 82: 365-374. 

Smith, W. N., Grant, B. B., Desjardins, R. L., Rochette, P., Drury, C. F., and Li, C., 2008. Evaluation of 

two process-based models to estimate soil N2O emissions in Eastern Canada. Canadian Journal 

of Soil Science 88: 251-260.  

Smith, W.N., Grant, B.B., Campbell, C.A., McConkey, B.G., Desjardins, R.L., Kröbel, R., Malhi, S.S., 

2012. Crop residue removal effects on soil carbon: measured andinter-model comparisons. 

Agriculture. Ecosystem and Environment, 161: 27-38. 

Statistics Canada. 2011. Census of Agriculture, farm and farm operator data, snapshot of Canadian 

agriculture.  Available at http://www.statcan.gc.ca/pub/95-640-x/2011001/p1/p1-01-eng.htm#II 

(verified 24 March 2016). 

Zhang, Y., C. Li, Zhou, X., and Moore B., 2002. A simulation model linking crop growth and soil 

biogeochemistry for sustainable agriculture. Ecological Modeling, 151: 75-108. 

 

 

 

 

 

 

 

 



11 
 

2. REVIEW OF LITERATURE 

This chapter provides an overview of previous research on soil-based emissions of 

major greenhouse gasses (GHGs) from agricultural cropped field under irrigated conditions 

along with their relation with surface energy fluxes, water balance, and management practices 

e.g. tillage and irrigation. This chapter also provides an overview of surface energy fluxes and 

crop microclimates within agricultural fields. Finally, an overview of GHG simulation models 

is provided. The main purpose of the literature review was to identify the gaps in previous 

research which are used to guide the present research.  

2.1   GREENHOUSE GAS EMISSIONS AND AGRICULTURE 

The major greenhouse gasses (GHGs) from agriculture are nitrous oxide (N2O), carbon 

dioxide (CO2), and methane (CH4) (IPCC, 2001). Agricultural lands occupy about 40-50% of 

the Earth's land surface (consisting of cropland, managed grassland and permanent crops, 

agroforestry, and bio-energy crops) (IPCC, 2007).  In 2010, the total land under agricultural 

production was 4,889 Mha, an increase of 7% (311 Mha) since 1970 (FAOSTAT, 2013). 

However, agricultural land area has decreased by 53 Mha since 2000 due to a decline of 

cropland area (Smith et al., 2014). Around 10-12% of total global anthropogenic emissions of 

GHGs came from agriculture (IPCC, 2014) in 2010. About 47% of total anthropogenic 

emissions of CH4 and 58% of N2O was contributed by agriculture. The largest source of N2O is 

soil emissions, and the largest source of CH4 is enteric fermentation, amounting to about 38% 

and 32%, respectively, of the total non-CO2 emissions. Biomass burning (12%), rice production 

(11%), and manure management (7%) account for the remainder (US-EPA, 2006). 
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Agricultural crop and livestock production emissions increased to 14% of the total 

emission in 2011 as compared to the emissions from 2001. However, the emissions due to land 

use change and deforestation registered nearly a 10% decrease over the 2001-2010 period 

(FAO, 2014). Globally, agricultural GHG (CH4 and N2O) emissions increased 17% between 

1990 and 2005 (US-EPA, 2006), which is equivalent to 58 Mt CO2-eq yr-1. Due to the higher 

utilization of nitrogen fertilizer and animal manure production, FAO (2003) predicted N2O 

emission will be 35-60% higher by 2030. The N2O emissions will also increase at least 50% by 

2020 relative to 1990 (Mosier and Kroeze, 2000; US-EPA, 2006) due to the projected food 

demand.  

The main emissions from Canadian agriculture are N2O and CH4 from crop production 

and the animal sector.  Agriculture accounts for 72% of the national N2O emissions. The main 

drivers of the emissions from the agricultural crop production sector are synthetic nitrogen 

fertilizers applied in the Prairies (NIR, 2012). That is why the crop production itself contributed 

19 and 22 Mt CO2eq yr-1 in 2005 and 2010, respectively (Environment Canada, 2012).  Here, 

N2O is the main trace of the GHGs emission whereas CO2 is the second one. As flood irrigation 

is rarely practiced in this region, CH4 production is relatively low. The details of N2O and CO2 

trace gas emissions are presented in the next sub-sections. 

Potential greenhouse gas emission mitigations within the agricultural sector depend on 

sustainable development, climate change policies, and improvement of environmental quality 

(IPCC, 2007). There is a likelihood of higher emissions in the future due to increasing use of 

nitrogen fertilizer. According to IPCC, the most obvious options for GHGs mitigation within 

the agricultural sector is through improved agronomic practices, increased nutrient efficiency 

use, and better residue management. Another significant mitigation possibility is improved 
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water management, which has received comparatively little consideration within the crop 

production sector.    

2.1.1 N2O emission 

Soil N2O is generated by the microbial transformation of nitrogen in soils and manures 

and is often enhanced in a field where available nitrogen (N) exceeds plant requirements, 

usually under wet conditions (Smith and Conen, 2004; Oenema et al., 2005). The overall N 

cycle in soil is given in Fig. 2.1.  

 

Fig. 2.1. Overall N cycle in soil (Courtney et al. 2005, with permission) 

Nitrous oxide is an important trace greenhouse gas, which has 298 times the global 

warming potential of carbon dioxide with a contribution of 8% to the anthropogenic global 

warming (IPCC, 2007). In 2011, an averaged atmospheric N2O emission was 324.2 ppb, which 

was 5 ppb above the reported value for 2005 (IPCC, 2013). Prather et al. (2012) reported that 

this is an increase of 20% over the estimate for 1750 derived from ice cores. Many researchers 
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(Rockmann and Levin, 2005; Ishijima et al., 2007; Davidson, 2009; Syakila and Kroeze, 2011) 

have found that N2O emissions have been increasing since the 1950s, mainly due to the 

emission from soils associated with the use of synthetic and organic (manure) nitrogen 

fertilizer. Mosier et al. (1998) also stated that 50-60% of the anthropogenic-induced N2O 

emissions came from agriculture, where the main direct emission was from agricultural soils.  

In an agricultural field, N2O emission can be produced from several microbial activities. 

The two main processes of N2O emission are nitrification under aerobic conditions, and 

denitrification in an oxygen deficit (anaerobic) environment. Nitrous oxide emission is highly 

variable due to the variability of soil carbon content, soil moisture, and nitrogen inputs. The 

factors that can influence N2O emission are moisture and aeration, temperature, soil and 

fertilizer nitrogen, soil pH and salinity, soil organic carbon (SOC), types of vegetation, and 

bulk density (Granli and BØckman, 1994; Stehfest and Bouwman, 2006). The processes that 

are responsible for N2O emission are briefly described in the following sub-sections.  

Soil N2O emission increases with soil organic content and decreases with a reduction in 

bulk density, and an increase in soil pH (Kanerva et al., 2007; Stehfest and Bouwman, 2006). 

Niklaus et al. (2006) found that N2O emission can decrease if the plant species diversity 

increases, particularly if legumes are present. Khalil and Baggs (2005) reported that N2O 

emission becomes the highest in wet soils when WFPS is about 75%. They also found that 90% 

N2O emission comes through the denitrification process when soil micropores are primarily 

anaerobic.  
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2.1.1.1 Nitrification  

Nitrification is a microbial process that converts ammonium to NO2
- and NO3

- by the help 

of several bacterial activities. Nitrification is carried out by chemolithoautotrophic bacteria 

under aerobic condition so that the bacteria can use O2 as a terminal electron acceptor. At first, 

NH4
+ is oxidized to NO2

- by ammonia oxidizing species of the genus Nitrosomonas, and then 

during the second step Nitrobacter and Nitrococcus bacteria oxidizes NO2
- to NO3

- (Bremner 

and  Blackmer, 1981; Watson et al. 1981) (Eq. 2.1 and 2.2).   

During the first step, hydroxylamine (NH2OH) and nitroxyl (NOH) are also formed, 

which are intermediate and unstable compounds. At this time, large amounts of molecular O2 is 

consumed by ammonia oxidizers, causing an anaerobic microsite condition leading to a 

reduction of NO2
- to N2O and N2 (Zart and Bock, 1998; Colliver and Stephenson, 2000). 

                      2𝑁𝑁𝑁𝑁4+ + 3𝑂𝑂2 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 1)���������������������������������������������������⃗  2𝑁𝑁𝑂𝑂2− + 2𝑁𝑁2𝑂𝑂 + 4𝑁𝑁+                (2.1) 

                                                                                        𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁 (𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 2) 

                                                                            2𝑁𝑁𝑂𝑂3− 

  
                                                              𝑁𝑁𝑂𝑂                 𝑁𝑁𝑂𝑂                   𝑁𝑁𝑂𝑂 

 

                     2𝑁𝑁𝑁𝑁4+ ⟶ 𝑁𝑁𝑁𝑁2𝑂𝑂𝑁𝑁 ⟶𝑁𝑁𝑁𝑁𝑂𝑂                                         𝑁𝑁𝑂𝑂2−  →  𝑁𝑁𝑂𝑂3−            (2.2) 

                                                                      𝑁𝑁𝑂𝑂2𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 
                                                                                                   𝑁𝑁2𝑂𝑂  

Many researchers (Šimek., 2000; Zaman and  Chang, 2004; Zaman and  Nguyen, 2010) 

have found that sufficient soil O2 levels (optimum at WFPS of 60%), adequate NH4
+ 

concentrations, a favorable soil temperature above 5°C (optimum 25 to 35°C), and soil pH 
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above 5 (optimum 7 to 9) control the rate of autotrophic nitrification. Zaman et al. (2007) 

mentioned NH4
+ and O2 concentrations as the most critical factor. Armstrong (1964) found that 

nitrification can also occur under water-logged soil conditions.  

2.1.1.2 Denitrification  

Denitrification is a microbial process where NO3
- and NO2

- are reduced to N2O and N2 

through respiratory metabolism. Under anaerobic (absence of sufficient oxygen) microbial 

(mainly bacterial) conditions, denitrification reduces nitrate successively to nitrite and then to 

the gases of NO, N2O, and N2. 

𝑁𝑁𝑂𝑂3− → 𝑁𝑁𝑂𝑂2− → 𝑁𝑁𝑂𝑂 → 𝑁𝑁2𝑂𝑂 → 𝑁𝑁2 

Several species of bacteria are involved in the complete reduction of nitrate to molecular 

nitrogen, and more than one enzymatic pathway has been identified in the reduction process. 

Four different reductase enzymes stimulate the complete denitrification process. Although 

denitrifiers are aerobic bacteria, they like to use N-oxides at low O2 level (Tiedje, 1988). 

Factors that influence denitrification rates are: (i) NO3
- substrate to accept electron, (ii) 

organic C to donate electron in an O2 limited condition when soil moisture content >60% 

WFPS, (iii) suitable soil pH (5 to 8), (iv) soil temperature between 5 to 30°C (optimum 25°C) 

(Aulakh et al., 2001; Zaman et al., 2007, 2008b, 2008c, 2009). The critical regulator of 

denitrification is O2 (Tiedje 1988). Hence, factors such as rainfall events, soil texture, and 

tillage, which can alter soil O2 levels can influence the denitrification rate.  
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2.1.2 CO2 and CH4 emission 

The estimated amount of global anthropogenic CO2 emission from agriculture in 2005 

was 5.1 to 6.1 GtCO2-eq yr-1 (10-12% of global GHGs), whereas 3.3 GtCO2-eq yr-1 emission 

was contributed by CH4 (IPCC 2007). In agricultural fields, CO2 is mainly released from 

burning of plant litter or microbial decay of soil organic matter (Smith, 2004b; Janzen, 2004). 

When organic decomposition occurs in oxygen-deprived conditions, such as from under stored 

manures or flooded lands, CH4 is released to the atmosphere (Mosier et al. 1998). Soil carbon 

dynamic processes are shown in Fig. 2.2. When CO2 emissions occur from the soil through 

respiration, they follow three different biological respiration processes: namely, microbial 

respiration, root respiration and faunal respiration (Edward 1975) along with one non-

biological reaction i.e. chemical oxidation at a higher temperature. Factors that affect CO2 

emissions from soil are soil temperature, moisture, texture, pH, available C, and N content in 

the soil (Bunnell et al. 1977). Soil moisture is the key factor of CH4 emission as soil moisture 

control the diffusivity of soil (US-EPA, 2010).   

 

Fig. 2.2. Soil carbon dynamics processes in soil. O = Oxidation, M = Methanogenesis 
(modified from Lal, 2001) 
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Soil texture affects the formation of CO2 by affecting the growth of bacteria and fungi 

through the supply of air and moisture. Soil texture also affects water infiltration and gas 

diffusion rates into soil, indirectly influencing CO2 emission. CO2 evolution is higher in clay 

soil than sandy soil (Kowalenko and Ivarson, 1978). Soil pH can affect the growth and 

proliferation of soil microbes. Soil CO2 efflux is lower in soil at pH 3.0 than a soil with pH 4.0 

(Sitaula et al., 1995). Soil CO2 emission increase with the rise of soil pH up to 7.0 (Kowalenko 

and Ivarson, 1978). However, soil pH above 7.0 can reduce CO2 emissions. Nitrogen fertilizer 

also affects CO2 emission directly by adding nitrogen to the soil and indirectly by affecting soil 

pH (Katznelson and Stevenson, 1956). Though inorganic N has a relatively small effect on CO2 

emissions, manure application can increase CO2 emission by increasing soil respiration by a 

factor of 2 to 3 (Rochette and Gregorich, 1998).  

2.2    IRRIGATION IN CANADA 

Agricultural production used approximately 1.7 billion cubic meters of water in Canada 

in 2012 (Agricultural Water Survey, 2012). Most of this water was used to irrigate agricultural 

field crops. The main irrigation areas are located in the provinces of Alberta and Saskatchewan, 

followed by Manitoba, British Columbia, and Ontario. Harker et al. (2004) reported that the 

Prairies use the 75% of the withdrawn water in the country in the agricultural sector, from 

which approximately 85% of that is used for irrigation.  

In the late 1800s, irrigation development began in Alberta and Saskatchewan in order to 

increase production and economic benefit. In Saskatchewan, the highest expansion of irrigated 

land occurred in the first two decades of the 20th century (SIPA, 2008). By 1930, expansion had 

slowed down due to widespread drought on the prairies, i.e. the ‘Dirty Thirties’. Following the 
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drought there was interest in expanding irrigation facilities and, as a result, Lake Diefenbaker 

reservoir was developed as the primary source of irrigation water in Saskatchewan. The total 

irrigated land in Saskatchewan at the end of 1920 was 4419 hectares which had expanded to 

141639 hectares by the end of the 20th century (SIPA, 2008). In Saskatchewan, the most 

popular method of irrigation is sprinkler (Ruffino, 2009) with 2,075 farms under this type of 

irrigation in 2010 (Statistics Canada, 2010). 

2.3    ENERGY AND WATER BALANCE OF IRRIGATED FIELD 

Irrigation plays a role in modifying the net energy budget (Eq. 2.3), and the water budget 

(Eq. 2.4). Along with increasing the soil water content, sprinkler irrigation also influences the 

surface energy fluxes and crop microclimate. Jiang et al. (2014) investigated the effect of 

irrigation on surface energy fluxes and temperature in Northern China and found that irrigation 

influenced the spatial pattern of the surface energy budget. They noted that irrigation resulted 

in a mean annual latent heat flux increase of 12.10 Wm-2, and sensible heat flux decrease of 

8.85 Wm-2 and a reduction in air temperature of 1.3 °C, across their study region. During 

sprinkler irrigation, the air, canopy, and soil temperatures are reduced while the atmospheric 

water vapor (relative humidity) increases (Tolk, et al., 1995; Liu and Kang, 2006a; Cavero, et 

al., 2009; Zhao, et al., 2012). This disparity comes from the variation of energy balance terms 

(Eq. 2.3). After an irrigation event on a sunny day most of the incoming radiation is used to 

evaporate water from its liquid form to vapor form (through latent heat flux); hence, sensible 

heat exchange between atmosphere and soil and canopy is reduced, which can lower the 

conductive heat flow into the soil and alter the soil temperature.  

𝑅𝑅𝑛𝑛 − 𝐺𝐺 − 𝑆𝑆 = 𝐿𝐿𝐿𝐿 + 𝑁𝑁                                                                                                   (2.3) 
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𝐼𝐼 + 𝑃𝑃 = 𝐿𝐿𝐸𝐸 + ∆𝑆𝑆 + 𝑅𝑅 + 𝐷𝐷                                                                                            (2.4) 

In the energy and water balance equations above: Rn = net radiation (W m-2); G = ground 

heat flux (W m-2); S = storage heat flux (W m-2); LE = latent heat flux (W m-2); H = sensible 

heat flux (W m-2); I = irrigation (mm); P = precipitation (mm); ET = evapotranspiration (mm); 

ΔS = change in soil moisture storage (mm); R = surface runoff (mm); and D = deep percolation 

(mm).  

Water loss due to runoff and deep percolation are usually considered negligible when 

modern sprinkler irrigation is practiced (Thomson, 1986), so the final form of equation 2.4 

simplifies to: 

𝐼𝐼 + 𝑃𝑃 = 𝐿𝐿𝐸𝐸 + ∆𝑆𝑆                                                                                                            (2.5) 

Irrigation water application modifies the field water balance by altering the ET as well as 

soil moisture storage. Many studies have shown that after irrigation ET in the irrigated field 

rises due to the presence of readily available water for evaporation (Tolk et al., 1995; Cavero et 

al., 2009). Suna et al. (2006) found a linear relationship between irrigation and 

evapotranspiration in their research in North China Plain.  

2.4    IRRIGATION AND CROP MICROCLIMATIC VARIATION 

Sprinkler irrigation applies water in the cropped field, imitating a form of rainfall. 

During, and after sprinkler irrigation, evaporation increases from airborne droplets, canopy 

interception, and the wet soil surface. Hence, the crop microclimate is highly influenced by an 

irrigation event. During the evaporation process, droplets add water vapor to the atmosphere by 

exchanging heat with the air (Kohl and Wright, 1974). Tolk et al. (1995) mentioned that vapor 
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pressure deficit (VPD) and air temperature decreased significantly during and following a 

sprinkler irrigation event. Many other researchers (Robinson 1970; Steiner et al. 1983; 

Thompson et al. 1993; Liu and Kang 2006a; Cavero et al. 2009, Yenny et al. 2013) also have 

found that air temperature and air vapor pressure deficit (VPD) decreased due to irrigation. Liu 

and Kang (2006b) reported decreases of canopy temperature of wheat of 0.3 to 2.8 °C in a 

sprinkler-irrigated field compared to a non-sprinkled field. When Steiner et al. (1983) 

compared the microclimate of maize under center pivot sprinkler and surface irrigation; they 

found that the daily average canopy and air temperatures of the sprinkler irrigation field were 

cooler than those of the surface irrigation field. Tolk et al. (1995) and Cavero et al.  (2009) 

found for lateral move and solid set sprinkler irrigation also decreases the canopy temperature.  

It has also been found that the cooling effect of sprinkler irrigation is higher during days 

of high evaporative demand. Yenny et al. (2013) reported that conditions of decreased air 

temperature lasted about 1.3 hours after an irrigation event, which is similar to the findings of 

other studies (Thompson et al., 1993; Tolk et al., 1995; Cavero et al., 2009).  

2.5    IRRIGATION AND GREENHOUSE GAS EMISSION 

Kulshreshtha and Junkins (2001) stated that, when irrigation development occurs, GHG 

emission comes from three different sources, namely direct emission, indirect emission, and 

induced emission (Fig. 2.3). Irrigated land requires more fertilizer input in order to achieve 

higher yields, so emissions are usually increased. Similarly, due to higher production in 

irrigated land, more crop residue stays in the field, which results in higher emissions from soil. 

Irrigation water can also transport nitrogen into groundwater through leaching.  
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Fig. 2.3. Overview of Greenhouse Gases Emissions from irrigated agricultural crop 
production (Kulshreshtha and Junkins, 2001) 

2.6    SOIL MOISTURE AND TEMPERATURE EFFECTS UPON GHG 

EMISSION 

Carbon dioxide and N2O emissions are anticipated to increase under irrigation. Soil 

moisture and temperature are the vital environmental factors which influence GHG emission 

from the soil through the modification of soil respiration, nitrification, denitrification, and 

mineralization. Dry soil rewetting by irrigation or rainfall can increase soil CO2 emission as it 

enhances respiration, C mineralization, and microbial activities, (van Gestel et al., 1993; 

Calderon and Jackson, 2002). N2O production can be affected by soil water content as limited 

O2 availability from high soil water produces N2O via denitrification (McKenney et al., 2001).  

An increase in the water filled portion of the pore space results in restriction of oxygen 

diffusion. One way of measuring the level of O2 availability in the soil is by assessing the 
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percentage water filled pore space (WFPS) (Maag and Vinther, 1999). At lower percentage of 

WFPS, N2O production is low due to the restricted microbial activity. When soil water content 

is increased, nitrification and other aerobic processes set in. The nitrification process is 

considered to be at its optimum between 50 and 60% WFPS (Stevens et al., 1997).  

Denitrification processes over takes nitrification very rapidly at WFPS above 60%, reaching its 

peak between 70 and 90% WFPS (Lemke et al., 1998). Ruser et al. (2006) and Drury et al. 

(2003) found maximum N2O fluxes from the soil with 90% WFPS, and Bouwman (1990) 

reported that the threshold of denitrification is 65% of field capacity (FC). Denitrification 

promoted by a wetting and drying cycle (Bouwman 1990, Letey et al. 1981). During wetting, 

more N2O emissions take place, and if after wetting soil dried very quickly then reduction of 

N2O to N2 can be prevented (Bouwman 1990, Leteyet al. 1981). Jha et al. (2012) also found a 

higher denitrification rate in saturated soils versus those at field capacity. 

Some studies have shown that emissions of N2O increase with rising soil temperatures. 

During denitrification, the ratio of N2O/N2 increases with decreasing temperatures. The rate of 

nitrification and denitrification is influenced by the soil temperature (Bouwman 1990). For 

elevating soil temperature up to 60°C or even 75°C, denitrification rates increase (Bouwman 

1990). This increasing trend is exponential for soil temperatures between 0°C to 25°C 

(Rochette et al. 2004, Castaldi 2000). However, the optimum denitrification occurs at 

temperatures > 25°C while the lowest rate occurs at a temperature < 15°C (Bouwman 1990, 

Keeney et al. 1979). At soil temperatures between 0°C and 5°C denitrification is relatively low 

(Bailey and Beauchamp 1973; Knowles 1982). The optimum rate of nitrification occurs 

between 30°C and 35°C (Alexander 1977; Bouwman1990). Nitrification is negligible at 

temperatures < 5°C and > 40°C (Bouwman 1990). 
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Soil moisture is one important factor of CO2 emission. Soil moisture increases CO2 

emission up to an optimum level, after which emissions decrease again. A periodic drying and 

wetting also influence CO2 development. Orchard and Cook (1983) found that during 

rewetting, soil microbes start working from a latent state in dry soil, hence increasing CO2 

evolution. Borken et al. (1999) observed that drought reduces soil respiration, but after this, any 

rewetting increased the respiration by 48% to 144%. Moore and Dalva (1997) found that CO2 

emission exhibits a positive, linear relation with soil water content. Under dry condition soil 

respiration is higher during the day time than night time, whereas under wet condition soil 

respiration is same in both at day and at night (Grahammer et al. 1991). 

Soil CO2 emission is greatly influenced by soil temperature. The diurnal fluctuation of 

temperature can affect root respiration (Bouma et al., 1997). Sato and Seto (1999) observed that 

CO2 emission increases exponentially with increase in incubation temperature from 4 to 40°C. 

Kirschbaum (1995) found that 10% soil organic carbon will be lost if mean annual temperature 

increases just 1°C in a region where the mean annual temperature is 5°C. He also reported that 

3% soil organic carbon will be lost for the same amount of annual temperature increase in a 

region where the mean annual temperature is 30°C. Moore and Dalva (1997) simulate soil 

temperature in a laboratory incubation test to see its effect on CO2 emission and found that CO2 

emission is 2.4 times higher at 23°C than that at 10°C.   

2.7    RELATION OF TILLAGE AND CROPPING SYSTEM WITH GHG 

EMISSIONS 

Soil disturbance and microbial activities lessen with the reduction of tillage intensity, 

which in turn reduces the emission of CO2 and N2O (Lemke et al., 1999; Drury et al., 2006; 
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Mosier et al., 2006). Inversely, CO2 emission can rise due to higher soil aeration and disruption 

of soil aggregates (Roberts and Chan, 1990) after increasing tillage intensity. The quality and 

quantity of crop residue which returns to the soil depends on the cropping system and can affect 

CO2 and N2O emissions (Mosier et al., 2006; Sainju et al., 2010). Field management practices 

influence soil temperature and water, which are two important factors of GHGs emission, 

hence influence soil CO2, N2O, and CH4 emissions (Parkin and Kaspar, 2003; Dusenbury et al., 

2008;  Liebig et al., 2010). As tillage creates a favorable condition for microbial decomposition 

of plant residue in the soil, tilled soil emits a higher amount of CO2 than from an undisturbed 

(or zero tillage) soil (Rochette and Angers, 1999). The cause of low CO2 emission from the no-

tilled field is reduced gas diffusivity and air-filled porosity (Ball et al., 1999). They found the 

proportion of respired soil organic C in the 60-day period was twice in moldboard plowing 

field than a no-tillage field. Tillage often results in drier soil because of higher rates of soil 

evaporation, leading to altered GHGs emission patterns, such as an increase in CO2 fluxes 

(Curtin et al., 2000; Al-Kaisi and Yin, 2005).  

2.8    GREENHOUSE GAS SIMULATION MODELS 

In-situ measurement of greenhouse gas emissions can provide accurate estimates of the 

implications of changing agricultural practices. However, considering the diversity of crop, 

soil, climate, and fertilizer management, it is difficult to represent a broad range of conditions 

during field research studies. To overcome this problem, GHG simulation models can be used.  

There are many GHG simulation models e.g. Daily-time-step version of the CENTURY 

ecosystem model (DAYCENT) (Parton et al. 1996, 1998, 2001; Del Grosso et al. 2000), 

DeNitrification–DeComposition (DNDC) (Li et al. 1992a, b,1994, 1996; Li 2000), ecosys 
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(Grant 2001), Nitrogen LOsses from Soil Systems (NLOSS) (Riley and Matson 1998, 2000), 

Expert-N (Engel and Priesack 1993; Priesack et al. 2001), Water and Nitrogen Management 

Model (WNMM) (Li et al. 2005, 2007), FASSET (Olesen et al. 2002), and CERES-NOE 

(Godwin and Jones 1991; Henault et al. 2005). Among these, NGAS-DAYCENT, DNDC, 

ecosys and Expert-N are applicable for Canadian agriculture (Chen et al., 2008). The most 

popular two models for this region are DayCent and DNDC (Chen et al., 2008).   

The initial soil nitrification model (NGAS) was developed by Mosier et al.  

(1983) and became a mechanistic model to predict daily N2O losses from semi-arid grasslands 

and irrigated soil after using the effort of Mosier and Parton (1985), and Parton et al. (1988a, 

b). Later on, NGAS-DAYCENT (Parton et al. 1996, 1998, 2001; Del Grosso et al. 2000), a 

daily-time-step version of CENTURY ecosystem model, was developed to simulate NO, N2O 

and N2 and CH4 emissions. Grant and Pattey (2003) described this model as relatively simple 

and more empirical compared to other detailed ecosystem models. Parton et al. (1996; 2001), 

and Del Grosso et al. (2000) have investigated the accuracy of this model in a few regions 

including Colorado, USA. They found that this model accurately simulates the annual mean 

trend of N2O emission; however, the daily observed and modeled emission had some 

dissimilarity.  

The DNDC model, a complex simulation model, has been developed by Li et al. (1992a, 

b). This model predicts daily N2O emission through nitrification and denitrification process, 

CO2 emission from the decomposition of organic matter and root respiration as well as CH4 

emission. To simulate emission, an hourly-time-step denitrification sub-model of DNDC is also 

available. With some site-specific modification, this model has widely been used in many 

countries for both site and regional N2O emission from agricultural fields (Li 1995; Li et al. 
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1996; Plant 1999; Wang et al. 1997; Zhang et al. 2002; Brown et al. 2002; Xu-ri et al. 2003; 

Cai et al. 2003; Smith et al. 2004; Saggar et al. 2004; Pathak et al. 2006). For different purposes 

like N2O emission (Smith et al., 2002), N2O emission factor (Smith et al., 2012; Giltrap et al., 

2013) and crop yield (Kröbel et al., 2011) determination, this model has been improved 

significantly to represent Canadian agriculture. This model is poor for predicting N2O emission 

during spring thaw period from regions where soils are continuously frozen during winter 

(Smith et al., 2002, Kariyapperuma et al., 2011). Recently this model has been improved for 

water use in the agricultural fields in Canada by coupling new routines of transpiration and 

potential evapotranspiration (PET) along with FAO crop coefficient modification and biomass 

growth curve for Canadian crops (Grant, personal communication, 2015).   

2.9    SUMMARY  

This review reveals a lack of significant literature regarding the specific topic of 

investigation for this research. To date, the combined influence of irrigation on surface energy 

flux, crop microclimate, soil environment and GHG emissions has not been considered. 

Furthermore, this review points to a lack of regional application of GHG simulation models 

(e.g. DNDC) in irrigated fields, particularly in the seasonally frozen Canadian Prairies.      
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3. EFFECT OF IRRIGATION UPON SURFACE ENERGY FLUX, 

CROP MICROCLIMATE AND SOIL ENVIRONMENT TO INFLUENCE 

SOIL GHG EMISSIONS 

3.1.1 PREFACE 

The Canadian Prairies has a great potential to increase crop yield by expanding irrigated 

farms. Irrigation drives higher crop production, however, it also can lead to higher greenhouse 

gas (GHG) emissions. As irrigated fields require a relatively higher amount of fertilizer than 

non-irrigated fields, GHG emission can increase after irrigation. The change in soil 

environment, created by irrigation can also produce favorable conditions for enhanced GHG 

emissions. However, the dynamics of soil water, temperature, energy partitioning, and crop 

microclimatic modifications that occur with irrigation have not previously been examined in 

agricultural fields in the Canadian Prairies; and thus form the goal of this study.  The objective 

was addressed through continuous, in situ monitoring of surface energy fluxes, crop 

microclimate, soil conditions, and soil GHG flux over a period of two years. 

3.1.2 ABSTRACT  

Soil moisture and temperature, two important driving factors of GHGs emissions from 

agricultural soils, are influenced by the practice of irrigation. Irrigation not only alters soil 

moisture and temperature to stimulate GHG emission but also changes surface energy fluxes, 

which may influence the crop production. This study investigates the influence of sprinkler 

irrigation events upon surface energy fluxes, crop microclimate, soil moisture, soil temperature, 

and soil GHG emissions from adjacent irrigated and non-irrigated wheat and canola fields, 
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located south of Saskatoon, Saskatchewan. All of the energy balance components were 

independently measured in each field, as well as soil moisture and soil temperature. Soil GHG 

emissions were measured semi-weekly using the static gas chamber method. This study 

observed that, following snowmelt, early season soil moisture conditions were adequate and 

energy fluxes were similar for both fields. However, later in the season, from mid-July through 

August, there was a strong decrease in soil moisture in the non-irrigated field due to a lack of 

rainfall. This created a sharp contrast between fields in how the available energy was 

partitioned. As the soil moisture in the non-irrigated field declined, the latent heat flux 

correspondingly decreased and more energy went into warming up the crop canopy and soil 

surfaces, causing larger sensible heat exchange with the atmosphere. The partitioning of the 

energy fluxes due to irrigation promoted crop microclimatic modification leading to reduced 

vapor pressure deficit and canopy temperature. However, despite a much smaller proportion of 

the net radiation in non-irrigated systems being consumed by evaporation, the non-irrigated 

fields did not exhibit markedly warmer soil temperatures. The soil GHG emissions were 

highest during the early season when both fields had high soil moisture and soil nutrient, but 

later in the season GHG emissions were minimal, due to a lower nutrient availability in 

irrigated field and lower soil moisture in non-irrigated field. Soil water was found as the critical 

factor in influencing soil GHG emissions, however, availability of soil nutrient (soil N) was the 

dominant factor in soil N2O emissions from irrigated systems.   

Keywords: latent heat flux, sensible heat flux, crop microclimate, soil environment, 

GHG.  
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3.2    INTRODUCTION  

Agricultural fields occupy about 40-50% of the earth's land surface (consisting of 

cropland, managed grassland and permanent crops, agro-forestry and bio-energy crops, IPCC, 

2007). Only around 12% (1.5 billion ha) is used for crop production (FAO, 2012). Similarly in 

Canada, 36.4 million ha is used for cropland from a total of 67.5 million ha of agricultural land. 

As the limited agricultural area is a constraint to higher food production, supporting 

management activities like irrigation, and fertilizer application can increase production; but 

they also increase greenhouse gas (GHG) emissions (Liebig et al., 2005). The Canadian Prairies 

region has a potential opportunity to help fulfill the world food demand by increasing the 

portion of its land that is irrigated. FAO (2013) reported that just 20% of the world's irrigated 

croplands produced 40% of the global harvest.  

Increased agricultural production in the Prairies is likely to also increase greenhouse gas 

emissions; mainly nitrous oxide (N2O) emission. Agriculture accounts for 72% of the national 

N2O emissions of Canada. Crop production itself contributed 19 and 22 Mt CO2e in 2005 and 

2010, respectively (Environment Canada, 2012). For the purpose of minimizing greenhouse gas 

emission from the Prairies agricultural sector, research on different agronomic practies (i.e. 

reduced tillage, optimizing fertilizer application, and avoiding fall fertilizer application) has 

been conducted, and associcated best management practices have been promoted. Within the 

Prairies, the largest magnitude of N2O emissions are often observed after rainfall or irrigation 

events during the growing season (Lemke, 2007; Lemke and Farrell, 2008). Irrigation alters the 

soil moisture, which is one of the most prominent environmental factors influencing GHG 

emission from the soil through its effect on soil respiration, nitrification, denitrification, and 

mineralization. However, there has been little focus on improving irrigation management, as a 



48 
 

GHG mitigation strategy, and the exact mechanisms of how sprinkler irrigation may influence 

GHG emissions have not been previously studied.  

The main purpose of irrigation is to increase crop productivity by improving soil water 

availability, but it can also alter the energy partitioning, which affects the temperature, water 

transport, and plant growth (Burba et al., 1999). Model investigations have found that irrigation 

decreases near-surface air temperatures, and increases relative humidity (Sacks et al. 2009). 

Enhanced soil moisture due to irrigation leads to greater evapotranspiration and a resulting 

cooling of the land surface through the repartitioning between sensible heat fluxes and latent 

heat fluxes (Sacks et al. 2009, Puma et al. 2010). The radiation energy above plant canopies is 

mainly consumed by latent and sensible heat fluxes, therefore the relative proportion of energy 

consumed by the evaporation process has an influence on how much radiation is available to 

warm the canopy and soil. Thus, it is important to know how the practice of irrigation changes 

the surface energy fluxes, and the crop and soil environment, in ways that can influence 

greenhouse gas emissions from soil. It is not presently understood how significant of an 

enhancement is caused by a single  irrigation event, nor how long this effect may last. For 

instance, Tolk et al. (1995) found sprinkler irrigation resulted in a short term reduction of crop 

transpiration, by more than 50%, during the irrigation process, as compared to a non-irrigated 

field.  The purpose of this research is to investigate the energy variation mechanisms due to 

irrigation and their resulting influence on crop microclimate and soil environment, and any 

associated enhancements to GHG emissions.  
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3.3    METHODOLOGY 

Two adjacent agricultural lands were selected, where one was irrigated, and the other was 

non-irrigated. All required measurement were performed in each field to get a clear idea how 

irrigation changes the energy partitioning, crop microclimate, soil environment, and GHG 

emissions. 

3.3.1 Experimental site 

The test site was located approximately 70 km southwest (51.65N, 106.95W, elevation: 

481.5. m.a.s.l.) of Saskatoon. The 30 years mean annual temperature is 3.8°C and precipitation 

is 348.6 mm; whereas the summer time (May to August) mean temperature is 16.13°C and 

precipitation is 205.4 mm (Source: Environment Canada) for this region. Field investigations 

were conducted from June 2012 to October 2013 on two different crops, wheat in 2012 and 

canola in 2013. The non-irrigated field was same for the year 2012 and 2013, but the irrigated 

field differed between years 2012 and 2013 (Fig. 3.1) due to crop rotation difference between 

irrigated and non-irrigated dryland production systems. All fields were nominally the size of ¼ 

section, however the actual seeded area varied between 45 and 58 ha.  In every field, 

instruments were installed along a 125 m transect, parallel to the direction of crop rows (green 

box in Fig. 3.1), to reduce the disturbance related to normal cropping operations. Due to the 

close location of these fields, all soil physicochemical properties were similar (Table 3.1). All 

three fields were managed by the same owner from 2006 to 2013; therefore, all fields were 

treated in a very similar manner. The specific management activities are detailed in Table 3.2.  

In 2012, larger-than-normal seasonal rainfall occurred (Table 3.2); hence, the amount of 

irrigation applied was less than a typical amount. During the summer study period (May to 
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August in 2012 and 2013), the cumulative rainfall recorded was 317 mm in 2012, and 213 mm 

in 2013. The 2013 year can be considered to be a more normal year in terms of the relative 

amounts of rainfall received and irrigation applied.  

Table 3.1. Physical properties of soils 

Soil feature Year Dry land Irrigated field 
(2012) 

Irrigated field 
(2013) 

 
pH 

2011 
2012 
2013 

8.26  
7.05 
8.07  

7.65  
7.59 
-- 

8.32  
7.22 
8.32  
 

 
EC (μS cm-1) 

2011 
2012 
2013 

529  
270 
370  

533  
287 
-- 

409  
664 
333  
 

Bulk density (g cm-3)  1.17 1.18 1.17 
Porosity (%)  56 56 56 
Soil texture  Loam 

 

 

Fig. 3.1. Experimental site for field experiment (51.65N, 106.95W)  

N 

Spring Creek road 

Non-irrigated field  

Irrigated field (2012) 

Irrigated field (2013) 

South Saskatchewan River 

= Position of all instruments and gas chamber 

= Centre of Centre Pivot 
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Table 3.2. Farm management for crop production during experiments (DL= non-irrigated 
field, IL= irrigated field) 

 2012 2013 
Land type DL IL DL IL 
Crop type Wheat (Triticum spp.) Canola (Brassica napus) 
Variety AC Barrie AC Carberry InVigor L130 
Date of seeding May 17 May 15 May 16 May 15 
Date of swathing Aug 29 Aug 30 Aug 12 Aug 22 
Fertilizer (Fall, kg N ha-1) 67 100 78  138  
Fertilizer (Spring, kg N ha-1)  6 10 11  6  
Total rainfall (mm) 321 178 
Total irrigation (mm) 51 127 

3.3.2 Measurements of surface energy fluxes  

It was necessary to measure net radiation, latent heat flux, sensible heat flux, ground heat 

flux, and ground heat storage to get a clear understanding of surface energy fluxes.  

As the fields are adjacent, it was assumed that the incoming radiation in both fields is the 

same. Hence, the net radiation (Rn) was computed using a Hukseflux four-component (Model 

NR01, HuksefluxUSA Inc., USA), and Hukseflux two-component net radiometer (Model 

RA01, HuksefluxUSA Inc., USA) placed 2 m above the ground level on the non-irrigated and 

irrigated fields, respectively. The four-component net radiometer recorded the incoming 

shortwave and longwave radiation as well as reflected shortwave and emitted longwave 

radiation. Moreover, two-component net radiometer records only reflected shortwave and 

emitted longwave radiation. From these all incoming and outgoing radiation, net radiation was 

determined by using the following two equations:  

𝑅𝑅n =  (𝑆𝑆in − 𝑆𝑆out) + ( 𝐿𝐿in −  𝐿𝐿out)                   (3.1) 

𝑅𝑅n =  𝑆𝑆net +  𝐿𝐿net                     (3.2) 
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Where, Rn is net radiation, Sin is the incoming shortwave solar radiation, Sout is the 

reflected shortwave solar radiation, Lin is the atmospheric longwave radiation, Lout is the surface 

longwave i.e. emitted longwave radiation, Snet is net short wave radiation and Lnet is net 

longwave radiation. 

The eddy covariance (EC) system was used to measure the turbulent fluxes of latent and 

sensible heat, which was placed at 3 m above the ground level. It is composed of a  fast-

response open-path infrared gas analyzer  (LI-7500, Licor, Inc., Lincoln, NE, USA) to measure 

atmospheric H2O to calculate latent heat flux. It is coupled with a tridimensional sonic 

anemometer (CSAT-3, Campbell Scientific, Inc., Logan, UT, USA), which was used to 

measure wind speed. The digital signals from these instruments were sampled at 20 Hz.  

EddyPro software was used to post-process the raw eddy covariance (EC) data to 

compute latent and sensible heat fluxes. Weekly measurements of crop height in each field was 

recorded throughout the growing season (May to August in 2012 and 2013) in order to account 

for the choosing aerodynamic roughness height.  

The soil ground heat flux is the sum of the heat flux through a plate installed at a 

particular depth (8 cm) and soil heat storage in the layer above the plate. The soil heat flux 

(Gobs) was measured with two heat flux plates (HFP01, Campbell Scientific, Inc., Logan, UT, 

USA) buried in the ground at 8 cm depth. The values of Gobs were obtained by averaging these 

two measurements. The soil heat storage was calculated by using soil temperature at 2, 4, and 8 

cm depth at the same soil pit, where the heat flux plates were installed.  
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Fig. 3.2. Eddy covariance with all other instruments above soil ground  

3.3.3 Investigation of crop microclimatic modification 

To investigate the modification of crop microclimate after irrigation, air temperature, 

canopy temperature, soil surface temperature, and vapor pressure deficit (VPD) was recorded 

continuously throughout the study period. Air temperature and relative humidity was recorded 

by a Rotronics HC2_S3 temperature and relative humidity probe. This half hourly temperature 

and relative humidity data then processed by Eqs. 3.3 to 3.5 to calculate vapor pressure deficit.  

𝑉𝑉𝑃𝑃𝐷𝐷 =  𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑎𝑎                     (3.3) 

𝑠𝑠𝑠𝑠 = 0.6108 exp � 17.27 𝑇𝑇
𝑇𝑇+237.3

�                                   (3.4)        

𝑠𝑠𝑎𝑎 =  𝑅𝑅𝑅𝑅
100

 𝑠𝑠𝑠𝑠                     (3.5) 

Where, es is saturated vapor pressure in kPa, ea is actual vapor pressure in kPa, and T is 

air temperature in °C. 
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Canopy and soil surface temperature was measured using Apogee infrared radiometers 

(Model SI-121; Apogee Instruments Inc, USA). The wind speed was also recorded by R.M. 

Young Wind Monitor (Model 05103; R.M. Young Company, USA) as well as by the sonic 

anemometer in eddy covariance system.  

3.3.4 Monitoring soil water and temperature  

Continuous measurements of soil water and soil temperature was performed in the field 

throughout the growing season to explore the effect of irrigation on soil environment. Soil 

volumetric water content and temperature were measured using CS650 Time Domain 

Reflectometer (TDR) probes at two different depths (10 cm and 25 cm). Each probe had two 

stainless steel rods (300 mm long × 3.2 mm diameter, and 32 mm spacing between the rods). 

The TDR was installed into the soil at four different locations. The distance of the measurement 

locations from the first chamber on each transect were 15, 45, 80 and 110 m. 

 

Fig. 3.3. Time domain reflectometer, heat dissipation probe, and thermocouples  
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3.3.5 Other measurement and data acquisition  

Rainfall and irrigation amounts were recorded by a tipping bucket (TR-525; Texas 

Electronics Inc., USA) rain gauge at two different locations in each field. In 2013, standard rain 

gauges were also installed in both fields, and a Belfort rain gauge (Belfort 3000; Belfort 

Instrument, Baltimore MD) was installed in the non-irrigated field.   

Campbell Scientific CR3000 micro loggers and AM16/32 relay multiplexers (Campbell 

Sci. Inc., Canada) were used as data loggers to collect and record all data from different sensors 

at 30-minute intervals.  

3.3.6 Measurement of soil greenhouse gas emission 

During the growing seasons, soil greenhouse gas emissions were measured using static 

acrylic chambers (22 × 45 × 10 cm). During sampling (twice a week), the chamber was sealed 

with a lid, and three series of gas samples were collected at fifteen, thirty, and forty-five-minute 

after closing the chamber. Ambient air gas samples, which were collected at the beginning and 

end of each sample collection, were used to determine reference values. After collection, the 

gas was analyzed by gas chromatography (Bruker 450 GC, Bruker Biosciences Corporation, 

USA) (Farrell and Elliott, 2007) to calculate the concentration of N2O, CO2, and CH4. The raw 

greenhouse gas data were used to calculate fluxes using the Hutchinson and Mosier (1981) 

method to get the final emissions.  
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Fig. 3.4. Static gas chamber (Acrylic chamber) 

3.4    RESULTS AND DISCUSSION 

The purpose of this research was to determine the effect of irrigation on soil greenhouse 

gas emissions by influencing crop surface energy fluxes, crop microclimate, and soil 

environment. An above normal rainfall made the growing season wet in 2012 compared to 

2013. As the crop water requirements for wheat (2012) and canola (2013) are similar (Govt. of 

Alberta, 2011), this section presents compiled results from both years together.  

The measured data of a few consecutive days were combined using mean values to 

examine the effect of irrigation at the diurnal scale. This was compiled for three different 

example periods: (a. - Early S) early season of crop when there was not any irrigation or 

rainfall [June 21st to 30th, 2013]; (b. - Mature Dry) mature stage of crop when background soil 

conditions were dry and  irrigation was applied [July 22nd to 30th, 2013], and (c.- Mature Wet) 

mature stage of crop when irrigation was not applied because background soil condition were 

Walking trail 

Chamber 
with lid 

22 cm 

45.5 cm 

10 cm 

Chamber 
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wet due to the presence of rainfall [August 1st to 5th, 2012].  The effect of irrigation at daily 

timescales was also assessed, but in this case only the data from 2013 were considered. 

3.4.1 Variation of surface energy fluxes  

The hourly variation of energy fluxes during the example time periods are shown in Fig. 

3.5. In the early season (Early S), when conditions were relatively uniform due to spring rain 

events, there was very little difference in any of the energy fluxes between the irrigated and 

non-irrigated systems. However, at the mature stage of the crop in a typical year (Mature Dry), 

while net radiation stayed the same in both fields, the latent and sensible heat flux changes 

noticeably due to the presence of irrigation. The difference in latent and sensible heat flux due 

to irrigation was more than 100 Wm-2 during the day time when incoming short wave radiation 

was high. The reason for this is that in the irrigated field, most of the incoming radiation is used 

to evaporate water from soil and canopy surface. On the other hand, due to lack of moisture in 

the non-irrigated field, the incoming radiation mainly warms up the soil and canopy surface 

resulting in a high sensible heat flux in the non-irrigated field. During night time both fields 

had similar small fluxes. In 2012, when the field did not receive any irrigation because of a 

higher amount of rainfall (Mature Wet), very little difference was observed between the 

irrigated and non-irrigated fields, as the availability of water for evaporation was similar in 

both cases. 
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Fig. 3.5. Hourly mean surface energy fluxes (DL= Non-irrigated field, IL= Irrigated field, 
Rn= Net radiation, LE=Latent heat flux, H= Sensible heat flux) 

In 2013, most of the irrigation was applied in July, so the latent and sensible heat fluxes 

from both fields were compared during this period to identify the effect of irrigation upon the 

energy fluxes at the daily timescale (Fig. 3.6). During and after irrigation, the irrigated field had 

higher latent heat fluxes, and the non-irrigated field had higher sensible heat fluxes. This trend 

varied slightly for the days near July 6th and 13th because both fields received rainfall and had 

similar fluxes. During July, the average difference of latent heat fluxes and sensible heat fluxes 

between irrigated and non-irrigated field was 41 W m-2 and 13W m-2, respectively. The highest 

difference in latent and sensible heat flux was observed 122 W m-2 on 26th of July and 67 W m-

2 on 27th of July, respectively.  
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Fig. 3.6. Daily variation of latent and sensible heat flux in 2013 (DL= Non-irrigated field, 
IL= Irrigated field, LE=Latent heat flux, H=Sensible heat flux). Blue arrows indicate the timing 
of irrigation events. Red arrows indicate the timing of rainfalls  

The change in sensible heat flux is driven by both a decrease in soil temperature due to 

the additional evaporative cooling accompanying irrigation and a shift in the energy 

partitioning so that more of the Rn is devoted to evaporation than to surface heating. The 

warming effect of sensible heat flux in non-irrigated field was different at the various times of 

the season. During the early season when leaf area was small, a good portion of net radiation 

can heat up the soil surface. However, during the late season when the leaf area almost fully 

covered the surface of the ground, a higher portion of radiation was used to warm the canopy. 

From these observations, it is found that irrigation creates a perceptible modification of the 

energy fluxes. This study showed that irrigation can enhance the surface energy fluxes at 

hourly and daily timescale. Similar variations in latent and sensible heat flux due to irrigation 

are reported in the literature. Kueppers and Snyder (2011) reported a variation in surface 
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energy partitioning in their analysis of regional climate model simulations. They found that 

conversion of natural vegetation to irrigated agriculture can reduce net radiation by 10-30 W m-

2 and sensible heat flux by 100-350 W m-2 and increase latent heat fluxes by 200-450 W m-2 

from May through September. Jiang et al., (2014) observed in a modelling study in a Northern 

China region, that conversion to irrigated agriculture leads to an increase in annual mean latent 

heat fluxes of 12 W m-2, and a decrease in annual mean sensible heat fluxes of 99 W m-2. In 

another model study in the U.S. Great Plain region, Huber et al., (2014) found that increased 

area of irrigation would increase mean latent heat flux by 89% and decrease mean sensible heat 

flux by 64%.   

3.4.2 Change in crop microclimate 

Figs. 3.7 and 3.8 demonstrate the hourly variation of crop microclimatic parameters (e.g. 

air temperature, canopy temperature, soil surface temperature, VPD, and ET) in both irrigated 

and non-irrigated fields. At the early stage of the crop (Early S), most of these parameters were 

similar in both fields except soil surface temperature, which varied due to the leaf density of 

crop and weed in the field. During the mature stage of the crop, provided that soil moisture 

conditions are comparable (Mature Wet), these parameters were similar in both fields. 

However, when there is a difference in moisture imposed by irrigation (Mature Dry), it 

noticeably influences these parameters. In the case of air temperatures the difference was 

relatively small, however, a large difference was observed on VPD and ET in both fields. It 

should be noted that these graphs have been produced by averaging the results of a few days; 

whereas, irrigation water was applied to the crop at different times of the day. Thus, due to the 
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smoothing effect of averaging, the microclimatic variation immediately following irrigation 

will appear to be somewhat muted.   

Figs. 3.9 and 3.10 illustrate the daily variation of crop microclimate due to irrigation 

during the month of July, 2013. These figs. show that irrigation does not influence all of the 

microclimatic parameters at the daily time scale. Irrigation reduced the canopy temperature and 

vapor pressure deficit which indicates that crop heat stress and transpiration rate will be lower 

in the irrigated field compared to a non-irrigated field. The observed variation of soil 

temperature was small between these two fields, suggesting that soil water was the governing 

factor for soil microbial activities and other bio-chemical reactions like nitrification, 

denitrification, and respiration. Although the daily average soil surface temperature in both 

fields was similar, there was a large difference in the hourly variation of soil surface 

temperature. At daily scale, the average difference of canopy temperature in July 2013 was 

1.54°C with the highest difference of 3.63°C observed on 7th of July and the lowest difference 

was 0.02°C on 16th of July. Irrigation did not appear to alter air temperature at the daily scale, 

but it decreased air temperature just after irrigation at the hourly scale after each irrigation 

event in day times (data not shown). Irrigation decreased VPD during and after second 

irrigation application period (13th to 22nd of July) as irrigation increased latent heat flux in this 

field. For the same reason, the measured ET in irrigated field was higher than that in the non-

irrigated field (Fig. 3.10).   

Similar observations of crop microclimatic variation due to irrigation have been reported 

in the literature. Liu and Kang (2006) reported from their experiment on North China Plain that 

air temperature at 1m height was reduced by 1.8°C under sprinkler irrigation. Cavero et al., 

(2009) mentioned that daytime irrigation decreased air temperature by 3.3 to 4.4°C and VPD by 
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1.0 to 1.2 kPa at 0.5 m below the crop canopy height. Yenny et al. (2013) found that the 

average decreases during irrigation were 1.8-2.1°C for air temperature, 0.53-0.61 kPa for VPD, 

3.1-3.8°C for canopy temperature. Similar to the present study, their research found that 

microclimatic changes were higher in drier and warmer days.  

 

Fig. 3.7. Crop microclimatic parameter: all temperatures (DL= Non-irrigated field, IL= 
Irrigated field, T= Temperature, Sur=Surface) 
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Fig. 3.8. Crop microclimatic parameter: VPD and ET (DL= Non-irrigated field, IL= 
Irrigated field, VPD=Vapor pressure deficit, ET=Evapotranspiration) 

 

Fig. 3.9. Daily variation of air, canopy and soil surface temperature in 2013 (DL= Non-
irrigated field, IL= Irrigated field, T=Temperature, SST=Soil surface temperature. Blue arrows 
indicate the timing of irrigation events. Red arrows indicate the timing of rainfalls) 
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Fig. 3.10. Daily variation of vapor pressure deficit and actual evapotranspiration (ET) in 
2013 (DL= Non-irrigated field, IL= Irrigated field, VPD= Vapor pressure deficit, ET= 
Evapotranspiration. Blue arrows indicate the timing of irrigation events. Red arrows indicate 
the timing of rainfalls) 

3.4.3 Change in soil moisture 

Figures 3.11 and 3.12 show the soil volumetric water content at 10 and 25 cm depth 

corresponding to rainfall and irrigation for the period when sensors were installed in the field.  

The shaded colored box represents the critical level of soil moisture for soil N2O emission, 

which is 60% water filled pore space (WFPS). In 2012, soil moisture at both 10 and 25 cm 

depths, in both fields, was similar until the first week of July. All observations were similar 

until the second irrigation, except for the soil moisture at 10 cm depth in the non-irrigated field. 

Due to irrigation, soil moisture was maintained above the critical level until the last irrigation 

on 14th of August. From the middle of July, soil moisture in the non-irrigated field was lower 

than this level. Moreover, at the end of the season, soil moisture in both fields was lower than 
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the critical level. In 2013, both fields had similar early soil moisture which was above the 

critical level due to infiltrated snow melt water. Soil water decreased gradually in both fields 

until the first week of July. After that, the soil moisture in the irrigated field increased 

corresponding to irrigation and stayed above the zone of 60% WFPS until the second week of 

August. In the non-irrigated field, soil moisture rose corresponding to a big rainfall event on 6th 

July and gradually decreased afterward. After mid-season, when crop water requirements are 

high, rainfall alone was not able to increase soil moisture.     

 

Fig. 3.11. Soil moisture in 2012, the shaded area representing the area of 60% WFPS 
(SW= Soil water, DL= Non-irrigated field, IL= Irrigated field, VWC=volumetric water content, 
RF= Rainfall, Irri= Irrigation, WFPS=Water filled pore space) 
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Fig. 3.12. Soil moisture in 2013, the shaded area representing the area of 60% WFPS 
(SW= Soil water, DL= Non-irrigated field, IL= Irrigated field, VWC=volumetric water content, 
RF= Rainfall, Irri= Irrigation, WFPS=Water filled pore space) 

3.4.4 Variation of soil temperature and ground heat flux 

In this section soil temperatures measured by T-type thermocouples are compared. Fig. 

3.13 shows the daily variation of soil temperature between irrigated and non-irrigated fields 

during July 2013. The delta values were calculated by subtracting the temperatures of the 

irrigated field from those of the non-irrigated field. This Fig. clearly demonstrates that 

irrigation decreased soil temperatures, but the effect was very small. The average difference 

between the two fields for the month of July was 0.50°C at 0-10 cm depth.  

The lower panel of Fig. 3.13 shows the daily ground heat flux (GHF) difference between 

the irrigated and no-irrigated fields. Ground heat transfer was slightly higher in the non-

irrigated field compared to the irrigated field. However, as the irrigated field had higher soil 
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moisture, ground soil heat storage was higher in this field. In a modeling study Huber et al., 

(2014) found that irrigation changes the hourly-averaged GHF in July in a relatively small 

range (<1 W m-2).  

 

Fig. 3.13. Daily mean difference (non-irrigated- irrigated) of soil temperature (at 0-10 cm 
depths) and ground heat flux in 2013 (T=Temperature, GHF= Ground heat flux). Blue arrows 
indicate the timing of irrigation events. Red arrows indicate the timing of rainfalls.    

3.4.5 Variation in greenhouse gas emission from soil surface  

In 2012, soil moisture was high in both the irrigated and non-irrigated fields due to 

rainfall events on 15th and 25th of June and 16th of July. Similarly, irrigation events raised the 

moisture level of the irrigated field on 16th and 26th of July. However, in the case of GHG 

emission in 2012 (Fig. 3.14), the fluctuation of emissions of N2O and CO2 was dissimilar to 

soil water fluctuations. On 15th June, only N2O emissions from the irrigated field increased with 

soil moisture. After June 15th, N2O emissions from both the irrigated and non-irrigated fields 

were similar (Fig. 3.14) except for a few days when irrigated field had higher emission. In 

2013, soil moisture was elevated in the irrigated and non-irrigated fields due to rainfall on 8th 
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and 12th of June and 6th of July, and in the irrigated field due to irrigation on July 6th, and 13th 

and August 1st. Soil N2O emission from the irrigated field increased after the rainfall on 8th and 

12th of June, after that, both fields had a similar trend and amount of emission (Fig. 3.15). 

Although there was a relatively large amount of irrigation applied in this year, the GHG 

emission did not increase in this field due to the irrigation.  

In spring, soil GHG emission was higher in both fields due to snow melt water and fall 

fertilizer (David 2014). The details about seasonal cumulative GHG emission, as well as the 

fluctuation of emission along the transect location are explained in David (2014).   

 

Fig. 3.14. N2O and CO2 emission from irrigated and non-irrigated field in 2012 
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Fig. 3.15. N2O and CO2 emission from irrigated and non-irrigated field in 2013 

3.5   SUMMARY AND CONCLUSIONS  

This study concludes that irrigation exerts a strong influence upon the variation in latent 

and sensible heat fluxes, as compared to a non-irrigated field. On a clear sky day, the difference 

of latent or sensible heat fluxes between irrigated and non-irrigated field can be as high as 100-

200 W m-2. In July in 2013, a monthly mean difference of latent and sensible heat flux between 

irrigated and the non-irrigated field was 41 and 13 W m-2, respectively. It demonstrates how the 

availability of water in an agricultural field, as controlled through irrigation, could control the 

surface energy partitioning. Consequently, latent heat flux in the irrigated field increased the 

relative humidity and decreased the crop heat stress, as compared to the non-irrigated field. In 

the non-irrigated field, a greater proportion of the net radiation was available to exert a 

warming effect upon the canopy and soil. During the typical month of July 2013, mean 

monthly canopy and soil surface temperature was 1.5 and 0.5°C higher in the non-irrigated 
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field, respectively. Also, VPD was decreased in irrigated field after irrigation and ET was 

increased. On average, ET from the irrigated field was 1.54 mm higher in July 2013 compared 

to the non-irrigated field.  

This research indicates that irrigation exerts a much stronger influence on soil moisture 

conditions than those of soil temperature. Despite the changes in energy partitioning caused by 

irrigation, soil temperatures were only modified slightly. Conversely, irrigation maintained soil 

moisture levels at or above 60% WFPS for most of the growing season, thereby providing more 

favorable conditions for denitrification.  

Due to snow melt water and early season rainfall events, irrigation was not required early 

in the season. Therefore, GHG emissions during this period were not likely enhanced by 

irrigation practices, except via differences in fertilization amounts. Later in the season, when 

irrigation is typically applied, GHG emission from both irrigated and non-irrigated fields were 

low. The mechanisms of emission were not the focus of this research, but the low late season 

emissions, where irrigation practices were most likely to have an influence, may have been due 

to low available nitrogen levels. 

 In this study, soil environmental parameters and energy fluxes were monitored 

continuously, however, GHG fluxes were only sampled periodically. Thus, an opportunity for 

future research may be to employ an automated GHG soil emission measurement system to 

better understand the influences of irrigation at shorter timescales.     
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4. EVALUATING N2O EMISSIONS FROM IRRIGATED 

AGRICULTURAL FIELDS IN WESTERN CANADA WITH CDN-DNDC 

MODEL 

4.1.1 PREFACE  

The high number and large size of farms in the Canadian Prairies makes it an important 

region for agriculture in Canada (Statistics Canada, 2014). In 2014, Canadian agriculture was 

responsible for 8% of the total national greenhouse gas (GHG) emissions and 70% of the 

national nitrous oxide (N2O) emission (NIR, 2016). Hence, there is a need to control GHG 

emission, particularly N2O emission, from Prairie agriculture. As soil water exerts a dominant 

control upon N2O emissions from nitrogen (N) rich agricultural fields, proper water 

management is essential to mitigate N2O emission. To develop new irrigation-related 

mitigation strategies and to quantify the influence of irrigation on GHG emission, a GHG 

simulation model can play a vital role where field experiments are logistically and financially 

burdonsome. The GHG emission simulation model Denitrification-Decomposition (DNDC), 

has not been applied to examine the influence of irrigation on soil N2O emission and crop 

production. The goal of this study was to assess how a regional version of the DNDC model 

(CDN-DNDC) could predict N2O emission under irrigation condition. The objective was 

addressed through a two-year continuous field experiment to validate the CDN-DNDC model 

followed by sensitivity test and long-term scenario development.  
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4.1.2 ABSTRACT   

Denitrification-Decomposition (DNDC) is a well-known robust process-based model for 

simulating N2O emissions from agricultural soils. This model has been extensively used to 

explore N2O emissions under various fertilizer and tillage practices; however, it has not been 

used to explore the effect of irrigation in the Canadian Prairie. As soil moisture is one of the 

most important driving factors of N2O emissions, the regional version of the model, the CDN-

DNDC model is used to investigate the effect of irrigation, to identify the opportunity of the 

irrigation management practices as a viable GHG mitigation technique. To validate the model 

for local conditions a field experiment was conducted by instrumenting two adjacent irrigated 

and non-irrigated fields located near Saskatoon, Saskatchewan, Canada during the 2012 and 

2013 growing seasons. Soil GHG emissions were manually sampled semiweekly using static 

vented chambers, and were complemented by automated measurements of soil moisture, soil 

temperature, and local meteorological variables. The model was validated by comparing the 

simulated soil moisture, soil temperature, and N2O emissions with field observations, 

confirming that the model is suitable to use under local conditions. This study found that, with 

the exception of its inferior ability to simulate the soil water and N2O emissions during the 

spring thaw period, the model is generally suitable for use in this region. A parameter 

sensitivity test identified the clay fraction as more sensitive than both the soil water holding 

characteristics and the soil hydraulic conductivity.  The findings of a long-term (11-yr) 

simulation  found that irrigation increased the total N2O emissions over the study period; 

however, once the increased crop yields are taken into consideration, the emission intensity is 

actually lower in the irrigated field as compared to non-irrigated field.  

Keywords: soil water, soil temperature, N2O emission , CDN-DNDC, irrigation.  
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4.2   INTRODUCTION   

One of the main sources of greenhouse gas (GHG) emissions at the global scale is 

agricultural production, accounting for 15-30% of the total anthropogenic emission, (IPCC 

2007; Tubiello et al. 2013). Among all trace GHGs (CO2, N2O, and CH4), N2O is particularly 

noted for its high global warming potential (GWP), which is 298 times more than that of 

carbon dioxide (IPCC, 2007). Hence, GHG mitigation strategies should focus on reduction of 

N2O emissions. Agricultural soil emission accounts for approximately 46-52% of the global 

anthropogenic N2O flux (Mosier et al., 1998; Olivier et al., 1998; Kroeze et al., 1999). The 

biological processes of nitrification and denitrification are the primary causes of N2O emissions 

from the soil, with denitrification playing the dominant role (Conrad 1996, Bockman and Olfs 

1998, Stevens and Laughlin 1998). These processes are influenced by nitrogen fertilizer, soil 

moisture, temperature, crop type, soil organic carbon (SOC) content, soil pH, tillage and soil 

texture (Dobbie et al., 1999; Stehfest and Bouwman, 2006; IPCC, 2007; Metay et al., 2007). 

Elevated soil moisture alleviates crop water stress but also enhances microbial activities, which 

in turn influence supplied mineral N, crop N uptake, and the abiotic soil conditions that control 

N2O emissions from soils; however, knowledge of how soil moisture can be managed to reduce 

emissions is scarce. 

The most common mitigation option for reducing N2O emission is improved fertilizer 

management (controlling the amount of fertilizer and timing of application) followed by 

improved tillage practices (IPCC 2001, Duke 2006). Although fertilizer application has been 

considered the primary cause of N2O emissions (Mosier 1994), the leading driver of the 

emission in N-rich soil is soil moisture (Weitz et al. 2001). During the growing season, high 
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magnitude pulses of N2O emission are commonly observed after precipitation events (Lemke, 

2007).  Major N losses often occur during the first week after applying N fertilizer, and 

additional N losses continue over the following three weeks (Inselbacher et al. 2011). For 

spring fertilizer application, higher emissions due to irrigation or precipitation can be observed 

for thirty days following fertilizer application (Wei et al. 2010).  Hence, in order to reduce N2O 

emission from spring fertilizer application; proper irrigation management can play a vital role 

to control soil moisture and emission flux.  

In order to reduce N2O emissions, it is critical to manage the water content of the 0-10 cm 

depth of soil. As soil moisture increases; more available NH4
+ is converted to NO3

- (an 

important form of nitrogen for plant uptake) through the nitrification process. This conversion 

is rapid when water filled pore space (WFPS) is 50-60% (Stevens et al., 1997). When soil 

moisture increases further, NO3
- can be converted into N2O, NO or N2 flux through the 

denitrification process, or NO3
- losses can occur through leaching. However, N loss can be 

minimized by controlling soil moisture through proper irrigation management. Varying the 

frequency and volume of irrigation applications can have a notable effect upon N2O emissions. 

Scheer et al., (2014) tested the DayCent model for simulating N2O emission from different 

irrigation treatments in a fertilized agricultural field (cotton-wheat rotation) in Australia. They 

observed that more frequently applied irrigation, of optimal volume, potentially reduced the 

N2O intensity. Goescherl (2013) applied full and deficit irrigation to a manure-amended corn 

field in Nebraska, and reported that different irrigation levels do not significantly alter N2O 

emissions on a daily basis; however, in the case of cumulative emission, full irrigation emits a 

greater amount than deficit irrigation. However, the effect of the irrigation upon soil moisture, 
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and specifically how irrigation management can be used as a GHG mitigating tool, has not yet 

been examined.   

To investigate irrigation management as a mitigation tool to reduce N2O emissions, 

process oriented GHG simulation models may be useful because these models simulate N2O 

emissions by considering soil biophysical processes like nitrification and denitrification as well 

as irrigation. There are various process-oriented GHG simulation models for North American 

agricultural fields, such as DeNitrification-DeComposition (DNDC), and Daily Century 

(DayCent). Parton et al. (1996 and 2001) and Del Grosso et al. (2000) investigated the accuracy 

of the DayCent model in a few regions in the USA. They found that this model accurately 

simulates annual mean trend of N2O emission but observed some dissimilarity between the 

daily measured and modeled emission. After development by Li et al. in 1992, the DNDC 

model has extensively been improved to investigate the effect of various treatments like 

fertilizer (Smith et al., 2002; Li Hu et al., 2012; Kröbel et al., 2011) and tillage (Smith et al., 

2008). With some site-specific modification, this model also has widely been used in many 

countries for both site and regional N2O emission from agricultural fields (Li 1995; Li et al. 

1996; Zhang et al. 2002; Xu-ri et al. 2003; Smith et al. 2004; Pathak et al. 2006). However, the 

DNDC model has not been used to evaluate the N2O emission from irrigated agricultural 

conditions.  

The purpose of this research is to investigate N2O emissions simulated by the DNDC 

model under irrigated and non-irrigated conditions in the Canadian Prairies. The results of this 

research demonstrate how the DNDC model can be used to estimate N2O emissions from 

irrigated and non-irrigated agricultural crops.  The study also identifies areas where the model 
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needs further improvements for application in the water management sector of Prairies 

agriculture. 

4.3   METHODOLOGY 

The first step in this research was to validate the DNDC model under local conditions 

using data from a two-year (2012 and 2013) field experiment in Saskatchewan, Canada. The 

required driving data and input parameters were collected from the experimental site. After 

validation, the sensitivity of the model to certain soil environmental parameters was examined.    

4.3.1 Experimental site and field data collection 

The field experiment was conducted in adjacently-located irrigated and non-irrigated 

fields, which were cropped to wheat in 2012 and canola during 2013. The test site is located 

approximately 70 km southwest (51.65N, 106.95W, elevation: 481.5. m.a.s.l.) of Saskatoon. 

The study area has a 30 years mean annual temperature 3.8°C and annual precipitation of 348.6 

mm. During the growing season (May to August) mean air temperature is 16.1°C and 

precipitation is 205 mm (Source: Environment Canada). The selected non-irrigated field (DL) 

had a wheat-canola crop rotation for the year 2012 and 2013; however, the crop rotation in the 

irrigated field was wheat-dry bean-canola. In order to match the examined crops between 

irrigated and non-irrigated fields, different irrigated fields were used in 2012 (IL12) and 2013 

(IL13) (Fig. 4.1). All required instruments (Table 4.1) were installed in the direction of crop 

rows (green box in Fig. 4.1) in order to reduce the disturbance related to normal cropping 

operations. All instruments and gas chambers were placed along a 125m transect located 

approximately at the middle of the center and side of the fields. In the irrigated field, all 
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chambers and instruments received irrigation water at the same time as all instruments were set 

along the direction of the center pivot sprinkler system. Due to the close location of these 

fields, all soil physicochemical properties were similar (Appendix A.1). 

 

Fig. 4.1. Experimental site, near Outlook, SK and beside South Saskatchewan River 
(51.65N, 106.95W) 

 Table 4.1. Instruments used in the field for continuous in situ measurements  

Instruments  Variables measured by the 
instrument  

Hukseflux NR01 four-component radiometer Hukseflux 
RA01 two-component radiometer 

Incoming and outgoing radiation  

R.M. Young 05103 Wind Monitor Wind speed and direction 
Rotronics HC2S3  
temperature and relative humidity probe 

Air T and RH 

Texas Electronics TE525  
tipping bucket rain gauge 

Rainfall and Irrigation 

Campbell Scientific CS650  
Time Domain Reflectometer (TDR) 

Soil VWC and T 

Campbell Scientific CS229 heat dissipation probe Soil water matric potential 
T-type thermocouples 
(home-built) 

Soil T 
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4.3.1.1 Soil moisture and temperature monitoring 

Continuous measurements of volumetric soil water and temperature at 10 cm depth were 

recorded at four different locations in each field using CS650 Time Domain Reflectometer 

(TDR) probes. In order to convert volumetric water content to water filled pore space (WFPS), 

the soil bulk density of each field was measured by the core sampling method. The WFPS at 

field capacity (FC) and permanent wilting point (PWP) was determined from in situ soil-water-

retention-curve, which was developed by using the recorded VWC and matric potential data. 

4.3.1.2 Direct measurement of N2O emission from fields 

In the field, N2O emissions were sampled using static acrylic chambers (22 × 45 × 10 

cm). Along each measurement transect, twenty chambers were installed in the direction of 

seeding at 6.25 m spacing.  After installing the chambers in the field just after seeding, all 

plants from inside the chambers were removed, and the disturbed plants surrounding each 

chamber were replanted. During semi-weekly sampling, the chamber was sealed using a lid and 

rubber gasket. The first sample was collected at fifteen minutes after closing the chamber, and 

the second and third samples were collected at thirty and forty-five minutes, respectively. An 

additional eight ambient air gas samples were collected from the outside of chamber just before 

and after sample collection to determine reference values. The samples were collected using a 

20 mL syringe with a 20 ga needle, which was evacuated into pre-vacuumed tubes containing 

desiccants to absorb any moisture in the sample for storage and transport from the field to the 

laboratory. In the laboratory, the gas samples were analyzed by gas chromatography (Bruker 

450 GC, Bruker Biosciences Corporation, USA) (Farrell and Elliott, 2007) to calculate the 

concentration of N2O, CO2, and CH4. From these analyzed raw data, the daily N2O fluxes were 



82 
 

determined by the Hutchinson and Mosier (1981) method. These daily emissions were used to 

evaluate the model for the study site. 

4.3.1.3 Meteorological data collection 

The DNDC model requires an input climate file containing daily values of the incoming 

solar radiation, maximum and minimum air temperature, relative humidity, precipitation, and 

wind speed for each day of the year. At the field site, all of these were measured and recorded 

on an half-hourly basis and were subsequently converted into daily format during post-

processing. The required instruments (Table 4.1) for these input variables were installed in each 

irrigated and non-irrigated field (Fig. 4.2). During 2013, standard rain gauges were also 

included in both fields at four different locations, and a Belfort (Belfort 3000; Belfort 

Instrument, Baltimore MD) weighing type precipitation gauge was also used to ensure the 

accuracy of rainfall. CR3000 micro-loggers (Campbell Scientific Inc., Canada) were used to 

sample all instruments at 5 sec intervals and to store mean or summed values of all data at 30-

minute intervals.  

 

Fig. 4.2. Instruments above soil ground in field 
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4.3.2 The DNDC model  

The DNDC model was initially developed by Li et al. in 1992 and was first used in the 

USA to simulate N2O emission from agricultural soil in 1995 (US EPA, 1995). The DNDC 

model consists of six different sub-models, namely: soil climate, plant growth, decomposition, 

denitrification, nitrification, and fermentation. The first three sub-models predict soil 

temperature, moisture, pH, redox potential (Eh), and substrate concentration (NH4
+, NO3

-, DOC 

(Dissolved organic carbon)). These stimulate the last three sub-models to predict emissions of 

carbon dioxide (CO2), methane (CH4), ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O) 

and dinitrogen (N2) from the plant-soil systems. The model has a good bridge between the C 

and N biogeochemical cycles and uses the information of soil moisture and temperature to 

predict N2O emission and other N related loss (Appendix A.2). After initial development, the 

DNDC model has undergone several developments for different regions and conditions (Saggar 

et al., 2004, Li et al., 2000; Stange et al., 2000, Kröbel et al., 2011, Han et al., 2014). Recently 

the DNDC model has been updated for local use for Canadian crops by coupling new routines 

of transpiration and potential evapotranspiration (PET) along with FAO crop coefficient 

modification and updated biomass growth curves for wheat and canola. This newly updated 

CDN-DNDC model (DNDC 9.5) was used in this research.     

4.3.3  Model parameterization  

The CDN-DNDC model requires a number of user-set parameters for simulating soil 

moisture, soil temperature, N2O emission and other N losses. Among these input parameters, 

most were obtained from field experiments, whereas some others were used as the model 

default value (Table 4.2).  The water-field-pore-space (WFPS) at field capacity (FC) and 
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permanent wilting point (PWP) was matched with the field observations by manually 

calibrating the model for the best simulation of soil moisture. The daily meteorological data file 

was prepared for 11 years from 2003 to 2013 to initialize the soil organic matter and nutrient 

pools in the model in an equilibrium condition so that the model stabilized the soil nitrogen and 

carbon. From 2003 to 2011 (the spin-up period), the meteorological data for Outlook was 

collected from Environment Canada’s website; and for 2012 and 2013, in situ measured 

meteorological data was used. During the spin-up period of the model, no irrigation was added. 

The irrigation was only added for the experimental period. The irrigation events were included 

in the form of rainfall in the climate file for both 2012 and 2013.  

The CDN-DNDC model quantifies soil moisture and temperature at different depths (1, 5, 

10, 20, 30, 40, and 50 cm) as well as N2O fluxes at daily time steps. Therefore, the measured 

daily N2O fluxes, soil moisture, and temperature from both irrigated and non-irrigated fields 

were employed to test the applicability of the CDN-DNDC model in the study area. The 

fertilizer application was performed on a split basis. The amount of fertilizer N applied in fall 

was 140 kg ha-1 and 78 kg ha-1 and in spring was 6 kg ha-1 and 12 kg ha-1 in irrigated and non-

irrigated field, respectively for the canola crop in 2013. During the spin-up period the time of 

application, amount, and type of fertilizer for wheat and canola was the same in both fields (i.e. 

for canola 78 kg N ha-1 fall fertilizer and 12 kg N ha-1 spring fertilizer and for wheat 78 kg N 

ha-1 fall fertilizer and 6 kg N ha-1 spring fertilizer).  

 

 



85 
 

4.3.4  Model sensitivity and evaluation  

The CDN-DNDC model simulates soil moisture and N2O emission in a comprehensive 

manner which includes the combined effects of weather, soil and farm management activities. 

The modeled soil moisture and emission will vary when any of the driving factors change. The 

model performance under varied input parameters was tested through a sensitivity analysis in 

order to determine which parameters have the greatest effect on the predicted N2O emission.  

Model validation differs from model sensitivity analysis because model validation 

includes a comparison of model output with observed data whereas the sensitivity analysis does 

not compare the field data. Simulated seasonal N2O flux, total N loss, and total water loss 

sensitivities were evaluated with CDN-DNDC for hydraulic conductivity (HC), porosity (P), 

soil organic carbon (SOC) and clay fraction (CF) (Table 4.3). These parameters were set to 

several values while all other model parameters and inputs were held constant at standard 

values. The baseline/default values of input parameter were the standard value, which was used 

in the validation test for the local climatic condition.  

 The model was evaluated using correlation of coefficient (R2) and root mean square error 

(RMSE). Root mean square error is considered as a best overall measure of model performance 

as it summarizes the mean difference in the units of observed and predicted values (Willmott 

1982). 

 

 



86 
 

Table 4.2. Soil and crop parameterization for the CDN-DNDC model 

Parameter type Value Note 

Wheat Canola 

Climate parameter  
Climate data type               
Total simulated year                    

 
5 
11 (Spin up period 9 years, 
validation period 2 years) 

In situ measured field data 
along with collected data 
from nearby meteorological 
station 

Soil parameter  
Soil Texture               
Bulk Density                    
Soil pH     
Hydraulic conductivity (HC)                
SOC at Surface             
Clay fraction              
Field capacity               
Wilting point 
Porosity 
Soil CEC 
Base saturation 
Bulk density (>50 cm) 
Initial N concentration 
(at surface) 
     Nitrate 
     Ammonium       

 
Loam 
1.16 
7.60 
0.02502* 
0.02* 
0.20* 
0.70 
0.35 
0.55 
0* 
0* 
1.78 

 
 

0.5* 
0.05* 

 
 

(g cm-3) 
 
(m ha-1) 
(kg C kg-1) 
 
WFPS 
WFPS 
(m3 m-3) 

 
 
(g cm-3) 

 
 
(mg N kg-1) 
 

Crop parameter  
Plant time         
Harvest time  
Ground Residue         
Maximum Yield   
Initial biomass *    
Biomass partitions      
C/N ratio         
Thermal degree days (TDD) 
Water requirement  
N fixation 
Optimum temp  

 
5 16 
8 28 
0.80 
1800 
12.50 
0.37/0.48 /0.15 
15/55/40 
1637 
270 
1* 
21 

 
5 16 
8 28 
0.80 
1700 
12.50 
0.28/0.51/0.21 
9/50/50 
1697 
120 
1 
21 

 
Month day 
Month day 
Leaves+stems in the field 
kg C ha-1 
 
Grain/(leaf+stem)/root 
Grain/(leaf+stem)/root 
°C 
kg water/kg dry matter 
 

°C 

Fertilizer parameter  
Fall fertilizer in preceding year  
Spring fertilizer  

 
140 (78) 
10 (6) 

 
140 (78) 
10 (12) 

 
Irrigated field (non-irrigated 
field) in kg N ha-1 

Irrigation parameter  
Amount of precipitation 
Amount of irrigation   

 
418.7 
76.45 

 
279.8 
141.3 

 
mm 
mm 

* = Default values 
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Table 4.3. Baseline and alternative values of input parameters for the sensitivity test 

Scenario  Descriptions  
Baseline of input parameters   HC (m/hr) 0.025000 (Test Default); P 0.55 (Test Default); SOC 

(kg C/kg) 0.02 (Test Default); and CF 0.20 (Test Default)    
Change in HC Decrease by 0.01(Test 2) and 0.02 (Test1) and increase by 0.01 

(Test 4) and 0.02 (Test 5) 
Change in porosity Decrease by 0.05 (Test 2)  and 0.1 (Test1)  and increase by 0.05 

(Test 4)  and 0.102 (Test 5) 
Change in SOC Decrease by 0.02 (Test 2)  and 0.04 (Test1)  and increase by 0.02 

(Test 4)  and 0.04 (Test 5) 
Change in CF Decrease by 0.2 (Test 2)  and 0.4 (Test1)  and increase by 0.2 

(Test 4)  and 0.402 (Test 5) 
 

After evaluation, the CDN-DNDC model was simulated for two different management 

scenarios (irrigated and non-irrigated) over 11 years to assess the long-term effect of fertilizer 

and irrigation management on N2O emission over wheat-canola crop rotation. Irrigation 

application was based on available soil moisture (ASM) within the upper 50 cm depth of soil. 

First, the CDN-DNDC model was simulated for the non-irrigation condition, then based on the 

simulated soil moisture, irrigation applications were prescribed to remove any moisture 

deficits. When the soil moisture declined below 50% of ASM, irrigation was applied (depth of 

each application was 10 mm). The application of N fertilizer (ammonium nitrate) was specified 

at 150 kg in the irrigated field and 100 kg in the non-irrigated field. This amount of fertilizer 

was applied in the spring (May 1st) of each simulation year.      

4.4   RESULTS AND DISCUSSION  

4.4.1 Validation of the model 

The validation of the CDN-DNDC model was performed with two different questions in 

mind: a) how well does the model predict the dynamics of soil moisture and temperature under 
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irrigated and non-irrigated situations; and b) how well does the N2O emission predicted by the 

model represent the observed local emission pattern?   

4.4.1.1 Simulation of soil moisture and temperature 

Figures 4.3-4.6 illustrate the magnitude and temporal patterns of the observed and 

modeled soil moisture and temperature in response to local rainfall and irrigation. In 2012, all 

sensors were placed in the field in the first week of June; hence, there is no measured soil 

moisture and temperature in the early season (Figs. 4.3 and 4.4). Missing values in measured 

soil moisture and temperature in 2013 (Figs. 4.5 and 4.6) indicate the period when all the 

sensors were removed from the fields for seeding and other field operations at the beginning of 

the season and re-installed after all operations. It should be noted that the TDR sensors are not 

suitable for measuring soil moisture when ice is present in the soil pores; therefore, these data 

have been excluded during the winter and pre-soil-thaw period.  
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Fig. 4.3. Soil water and temperature in non-irrigated field in 2012 (RF=Rainfall, WFPS= 
Water filled pore space) 

 

Fig. 4.4. Soil water and temperature in irrigated field in 2012 (RF=Rainfall, WFPS= 
Water filled pore space). Arrow shows the dates of each irrigation application 
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Early season soil moisture in both irrigated and the non-irrigated field was near FC (i.e. 

about 70% WFPS) at the beginning of both growing seasons; mainly caused by infiltrated 

snowmelt water. The 2012 growing season was especially wet due to above-normal rainfall. 

Consequently, soil moisture at 10 cm depth in both fields was near field capacity until the first 

week of July. Following this, soil moisture in the non-irrigated field decreased gradually, 

whereas the soil moisture in the irrigated field was above 50% WFPS due to additional 

irrigation. At the end of the season (27th of Oct) soil moisture in the non-irrigated field was 

around 30% and in the irrigated field around 50% WFPS. However, at the beginning of the 

season in 2013, both fields had around the same (68% WFPS) amount of soil moisture. The 

2013 growing season was drier, and a reduction in soil moisture in both fields began in the 

middle of June. After that, the soil moisture in the non-irrigated field declined slowly except for 

a few days, when there were large rainfall events. Soil moisture in the irrigated field was 

maintained between 70 and 50% WFPS during and after a few days of irrigation. At the fruit 

ripening stage (2nd week of August) soil moisture in the irrigated field was above 60% WFPS 

and was below 30% WFPS in the non-irrigated field. 

The ability of the model to match the observed soil moisture was variable. During the 

2012 growing season, modeled soil moisture was under-predicted during the early season and 

over-predicted during the late season. The irrigated, and non-irrigated field had the same 

temporal pattern of soil moisture until the irrigation event on 13th July. The model started 

reducing soil moisture from 70% WFPS on June 15th and reached 55% WFPS by June 24th with 

the association of the low amount of rainfall. Modeled soil moisture reached field capacity 

(70% WFPS) on 25th and 26th of June due to a big rainfall event and then followed a rapid 

reduction (near 40% WFPS) until 13th of July. After July 13th, soil moisture was above 60% in 
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the irrigated field due to additional irrigation on the field except for few days, and above 55% 

WFPS in the non-irrigated field. During the 2013 growing season, the model predicted soil 

moisture was similar to observed soil moisture. However, the amount of the modeled soil water 

in the non-irrigated field was higher than the measured soil water. In this year modeled soil 

moisture was around 70% WFPS in May and started to decline in June. However, due to 

rainfall, soil moisture was above 50% WFPS in June in both fields. Following this, soil 

moisture was maintained above 60% WFPS in the irrigated field due to applied irrigation, and 

it dropped below 50% WFPS in the non-irrigated field due to lack of rainfall.  

 

Fig. 4.5. Soil water and temperature in non-irrigated field in 2013 (RF=Rainfall, WFPS= 
Water filled pore space) 
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Fig. 4.6. Soil water and temperature in irrigated field in 2013 (RF=Rainfall, WFPS= 
Water filled pore space). Arrow shows the dates of each irrigation application 

Generally, the temporal pattern of soil moisture provided by the model was good and 

properly followed the observed trend; however, the magnitude of these fluctuations differed 

from the observed. The model tended to predict sharp changes in soil moisture associated with 

precipitation or irrigation events. However, actual soil moisture fluctuations related to 

precipitation events were more gradual. Later in both growing seasons, the model predicted that 

the non-irrigated field increased soil moisture following rainfall, whereas the observed soil 

moisture stayed approximately at the same level. Correlation between observed and modeled 

soil moisture was good in 2013 in both irrigated (R2 = 0.81 and RMSE = 0.04) and non-

irrigated field (R2 = 0.75 and RMSE = 0.10) and poor in 2012 in both irrigated (R2 = 0.11 and 

RMSE = 0.11) and non-irrigated (R2 = 0.10 and RMSE = 0.17) field. The model is incapable of 

increasing soil moisture from snow melt water in the same manner as the observed field 
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condition. Hence, at the 25 cm depth, there was a difference in simulated soil water between 

irrigated and non-irrigated field early in the season in 2013 (Appendix A.3), whereas measured 

soil water in both fields was similar.  

The DNDC model assumes homogeneous soil conditions for all depths, whereas in the 

study fields, the soil layers were observed to be heterogeneous (Appendix A.4). For example, 

the DNDC model has only one value of porosity for all depths; however, in field conditions, the 

bulk density generally increases with depth, decreasing the porosity. Because of the simple 

model structure, it has been demonstrated to be relatively insensitive to changes in the 

parameterized hydraulic conductivity of the soil (Krobel et al., 2010). The difference between 

the observed and modeled soil moisture in this study is likely due to a combined effect of all of 

the aforementioned factors. Similar reasons have contributed to differences between observed 

and simulated soil moisture throughout the literature. Zhang et al. (2002b) pointed out that the 

DNDC model estimated dynamics of soil water quite well in natural systems. However, 

problems occurred when the model was applied to systems under varying irrigation conditions. 

They concluded that the deviation of simulated soil moisture under different irrigation 

conditions may have resulted from poorly represented soil heterogeneity. They also observed 

that the simulations were better for deeper layers than for shallow layers, and their simulated 

average soil moisture of the whole soil profile (0-50 cm) was better than individual layers. Li et 

al. (2006a, 2006b) stated that the changes in the water discharge simulation of the DNDC 

model (through 90% decreased water conductivity for the discharge layer) yielded improved 

modeling results. Nevertheless, discrepancies still occurred between measurements and 

simulations. Beheydt et al. (2007) found that the DNDC model underestimated WFPS for the 

different investigated sites (in different agricultural fields in Belgium) in their study. Similarly, 



94 
 

Smith et al. (2008) observed that the DNDC model under-predicted soil water by 17% average 

relative error at the Elora research station in Ontario. They mentioned that the reason for this 

presumably originated from the tipping bucket hydraulic routines. With this model structure, 

water in the soil profile is quickly drained to field capacity following rainfall events. Krobel et 

al. (2010) used DNDC for modeling water dynamics in Northern China and found that neither 

the default nor the optimized DNDC was able to satisfactorily reproduce the soil water 

dynamics.  

The observed and modeled soil temperatures (at 10 cm depth) are shown in the middle 

panel of Fig.s 4.3-4.6. The 2012 field observations showed that the highest temperature 

occurred near mid-July and decreased afterward in both fields. During the growing season, soil 

temperature stayed between 14 to 22°C in both fields. However, the non-irrigated field had a 

slightly higher temperature compared to the irrigated field. In the case of 2013’s growing 

season, the lowest temperature was observed in July, and the highest temperature was recorded 

in the last week of August and the first week of September. In this year, soil temperature was 

between 14 to 20°C in both fields during the growing season. Although the air temperature was 

very similar in both fields, both years' field observations showed that irrigation slightly 

decreased the daily average soil temperature. 

The soil temperature simulated by the DNDC model is linked with air temperature, and 

the air temperature used to drive the model was the same for both fields. Hence, the CDN-

DNDC model predicted identical soil temperatures in both irrigated and non-irrigated fields. 

The model captured the observed seasonal trend of soil temperature. However, the shorter time-

scale dynamics of soil temperature were poorly represented by the model. Correlation between 
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observed and modeled soil temperature was good in 2012 in both irrigated (R2 = 0.54 and 

RMSE = 1.40) and non-irrigated (R2 = 0.51 and RMSE = 1.80) fields. During 2013, 

correlations were poor in both the irrigated (R2 = 0.24 and RMSE = 2.14) and non-irrigated (R2 

= 0.43 and RMSE = 1.64) fields. When the DNDC simulated and observed soil temperature 

was compared in Woodslee in Southern Ontario, Smith et al. (2008) found that it under-

predicted soil temperatures by 7% average relative error. Kariyapperuma (2011) found good 

agreement between measured and simulated soil temperature at 5 cm depth after spring thaw at 

the Elora research station in Ontario. However, they noticed that the simulated soil temperature 

in the deeper soil (greater than 5 cm depth) was higher than the measured soil temperature. 

Balashov et al. (2014) validated DNDC for soil temperature in the northwestern region of 

Russia and conclude that the efficiency in predicting seasonal dynamics of soil temperature is 

poor. 

4.4.1.2 Simulation of soil N2O emission  

The comparison of daily simulated and observed soil N2O emissions for the year 2012 

and 2013 are presented in Fig. 4.7 and 4.8. Emissions from both fields generally follow a 

similar pattern in which the largest emissions are observed following snowmelt and early 

season rainfall, followed by much lower late season fluxes. In 2012, emission measurement 

began on May 30th; hence, the emissions immediately following snowmelt were not recorded 

for this year. Owing to the greater amount of fall-applied N, emissions from the irrigated field 

were higher than the non-irrgated field. The largest observed daily emission in 2013 was 67 gN 

ha-1 day-1 in the irrigated field on April 28th. In 2012, both fields had the highest emission in the 

weeks following seeding. In 2013, early in the season emission was above 10 gN ha-1 day-1 and 
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later in the season was below 10 gN ha-1 day-1, with both fields experiencing fluxes of similar 

magnitude. The total emission measured during the growing season in 2012 was 539 and 141 

gN ha-1 from the irrigated and non-irrigated field, respectively. Whereas in 2013, total annual 

emission was 1147 gN ha-1 from the irrigated field and 983 gN ha-1 from the non-irrigated field. 

As the measurement of emission was started from May 30th in 2012, the emissions calculated 

using a similar time period for 2013 would be 609 and 842 gN ha-1 from the irrigated and non-

irrigated field, respectively. This results indicates that the N2O emission is highly variable from 

day to day and between chamber locations (error bars in Figs. 4.7 and 4.8). The details 

concerning the emission patterns, including the daily variation in emission along the transect, 

are explained in David (2014). David (2014) hyopthesises that (a) in the early season, both 

irrigated, and non-irrigated field experience high emissions due to wet soil conditions from 

snow-melt water or rainfall as well as high levels of soil nutrients (i.e. available N) from 

fertilizer and crop residue, and (b) later in the season, emissions are limited in the irrigated field 

by low nutrient levels and are limited in the non-irrigated by low moisture levels.   
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Fig. 4.7. Measured and simulated N2O emission in 2012 (a. Non-irrigated field, b. 
Irrigated field). Error bar in each measured point indicates the standard deviation of measured 
emission from 20 chambers in that day 
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Fig. 4.8. Measured and simulated N2O emission in 2013(a. Non-irrigated field, b. 
Irrigated field). Error bar in each measured point indicates the standard deviation of measured 
emission from 20 chambers in that day 
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The model predicted emissions from both irrigated and non-irrigated field which were 

similar in short-term fluctuations and the overall emission pattern. The model predicts higher 

emission in the irrigated field due to the higher amount of fall fertilizer. The model predicted 

the highest emissions after seeding in both growing season and the lowest emission in the late 

season except the spring emission from the non-irrigated field in 2013. In 2012, the highest 

simulated emission was 32 and 31 gN ha-1 day-1 in the irrigated and non-irrigated field, 

respectively on June 14th corresponding to 35 mm rainfall on June 13th. The total simulated 

emission in growing season in 2012 was 666 and 563 gN ha-1 from irrigated and non-irrigated 

field, respectively. In 2013, the highest predicted emission by the model was found on June 10th 

in irrigated field amounting to 25 gN ha-1 day-1, and on April 26th in the non-irrigated field 

amounting 26 gN ha-1 day-1. Total simulated emission in the growing season of 2013 was 717 

gN ha-1 from the irrigated field and 355 gN ha-1 from the non-irrigated field. When the high 

variability of field-measured N2O emissions are considered (error bars in Figures 4.7 and 4.8), 

it can be seen that the simulated emission often lies within the range of the measured emission.  

Notable exceptions include to the 2012 emissions from the non-irrigated field, and a few 

emission days in the irrigated field during July and August, 2013. In all cases, the model 

struggles to correctly match the measured emission during the spring thaw.        

Overall, the prediction of the temporal pattern of daily N2O fluxes by the model was 

adequate, particularly later in the growing season. The simulated emission pattern was more 

realistic in the irrigated field; however, the timing of the peak and magnitude was different 

between the observed and simulated daily fluxes. Fig. 4.7 and 4.8 clarify that, from the end of 

June to the end of the season, the difference between modeled and measured emission is small 

in the non-irrigated field and the irrigated field in 2012. The model tended to predict lower 
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emission at this time perhaps due to the lower amount of remaining N fertilizer in the soil and 

followed the same hypothesis of emission from irrigated and non-irrigated fields (David, 2014). 

There was a good correlation between measured vs. modeled daily fluxes in the irrigated field 

(R2=0.60 and RMSE=1.76 gN ha-1 day-1 in 2012, and R2=0.47 and RMSE=0.68 gN ha-1 day-1 in 

2013). However, there was a poor correlation between modeled and measured emissions in the 

non-irrigated field in both 2012 (R2=0.08 and RMSE=2.25 gN ha-1 day-1) and 2013 (R2=0.19 

and RMSE=1.76 gN ha-1 day-1). The difference of measured and simulated fluxes for both 

fields is likely related to the model’s limitation in the proper prediction of spring emission. An 

irregular N2O emission was found in Ontario, Canada by Kariyapperuma et al. (2011). They 

found a large discrepancy between simulated and observed fluxes regarding the magnitude and 

timing due to the soil’s freeze-thaw mechanism in that region.   

The measured and simulated available soil NH4 and NO3 at 0 to 60 cm depths after the 

growing season in 2013 were compared (Fig. 4.9). In 2013, the total available measured soil N 

(sum of NH4 and NO3) at the end of the growing season was higher in the non-irrigated field 

(55 kg N ha-1) than in the irrigated field (42 kg N ha-1). Similarly, the available soil N at the 

depth of 0 to 90 cm was 69 kg N ha-1 in irrigated field and 99 kg N ha-1 in the non-irrigated 

field. The values of available soil N provides some evidence for the hypothesis of N2O 

emission: i.e. the non-irrigated field could be rich in nutrient at the end of the season. In this 

case, the model also follows the same hypothesis. Hence, soil available N (NH4 and NO3) was 

49 kg N ha-1 in irrigated field and 73 kg N ha-1 in the non-irrigated field. Fig. 4.9 also showed 

that the model tended to predict an opposite trend to the measured soil NH4 and NO3 i.e. the 

model underestimated the NH4 and overestimated the NO3.   
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Fig. 4.9. Available soil nutrient at the end of the growing season at 0 to 60 cm depth 

Measured and simulated crop yield was compared in Table 4.4 for both the irrigated and 

non-irrigated field. The model input parameter for expected maximum yield, was kept the same 

in both irrigated and non-irrigated field, which was 4500 kg ha-1 for wheat and 4200 kg ha-1 for 

canola. The crop yield predicted by the model was lower than the actual production in the case 

of the irrigated condition in 2012 (wheat) and was higher than the actual production in the rest 

of the cases. Interestingly, the crop yield in 2012 was predicted to be the same in both the 

irrigated and non-irrigated field, as rainfall was high in this year.  

Table 4.4. Model predicted crop production 

Year 
Non-irri field  Non-irri field  Irrigated field  Irrigated field  
Measured  
(kg ha-1) 

Simulated  
(kg ha-1) 

Measured  
(kg ha-1) 

Simulated  
(kg ha-1) 

2012 2500 2713 3400 2713 
2013 2400 2465 3600 3978 
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4.4.2 Sensitivity test 

The sensitivities of CDN-DNDC-predicted soil moisture and N2O emissions to the 

adjustable soil parameters were examined by independently changing one parameter at a time 

while fixing all other input parameters. The results of the sensitivity test (Table 4.5) illustrate 

which parameters are expected to have the greatest effect on soil moisture and N2O emission, 

as well as reducing total N loss and improving crop yields.  

Regarding soil moisture, the CDN-DNDC model was very sensitive to soil porosity, 

which acted to decrease water leaching and increase the crop yield. Simulated water loss 

through leaching decreased from 16 mm at a porosity of 0.45 to 5.28 mm at a porosity of 0.65. 

However, this amount of water saving increased the simulated crop yield from 2988 kg ha-1 

(porosity = 0.45) to 3168 kg ha-1 (porosity = 0.65). The CDN-DNDC model is also sensitive to 

the specified clay fraction. Increasing the clay fraction increased leached water loss from 4 mm 

at CF 0.16 to 18 mm at CF 0.24 and decreased crop yield from 3310 kg ha-1 at CF 0.16 to 2965 

kg ha-1 at CF 0.24. Increases the SOC decreases the water loss through leaching from 16 mm at 

SOC 0.016 to 5 mm at SOC 0.024. Increasing SOC also increases crop yield from 2888 kg ha-1 

at SOC 0.016 to 3343 kg ha-1 at SOC 0.024. Although hydraulic conductivity is a key 

parameter to control the water movement between soil depths, the CDN-DNDC model proved 

to be insensitive to changes in this parameter with respect to crop production. However, the 

highest amount of water loss by leaching was found at lower HC.   
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Table 4.5. Sensitivity of the CDN-DNDC model to HC, porosity, CF, and SOC 

  

Water 
leaching  
(mm) 

Total N 
loss* 

(kg N 
ha-1yr-1) 

N leach 
(kg N 
ha-1yr-1) 

N2O 
emiss
ion 
(kg N 
ha-

1yr-1) 

Yield 
(kg ha-

1yr-1) 

R2 
(soil 
water 
at 10 
cm 
depth) 

R2 (N2O 
emission) 

HC 

Test 1 (0.005 m/hr) 20.21 12.64 6.64 0.71 3077.5 0.78 0.60 
Test 2 (0.015 m/hr) 20.21 12.64 6.64 0.71 3077.5 0.78 0.53 
Test Default (0.025 
m/hr) 10.24 11.27 6.65 0.65 3105 0.80 0.60 

Test 4 (0.035 m/hr) 11 11.6 6.97 0.65 3100 0.80 0.60 
Test 5 (0.045 m/hr) 11.52 11.94 7.31 0.65 3095 0.80 0.61 

Porosity 

Test 1 (0.45) 15.85 18.6 15.5 0.57 2987.5 0.82 0.41 
Test 2 (0.50) 16.08 15.91 11.48 0.69 3055 0.78 0.55 
Test Default (0.55) 10.24 11.27 6.65 0.65 3105 0.80 0.60 
Test 4 (0.60) 4.95 7.23 2.36 0.65 3150 0.80 0.62 
Test 5  (0.65) 5.28 6.92 1.36 0.66 3167.5 0.68 0.53 

Clay 
Fraction 

Test 1 (0.16) 3.89 9.15 4.6 0.66 3310 0.78 0.59 
Test 2 (0.18) 3.93 7.84 3.24 0.66 3237.5 0.79 0.59 
Test Default (0.20) 10.24 11.27 6.65 0.65 3105 0.80 0.60 
Test 4  (0.22) 17.19 13.04 8.57 0.63 3005 0.79 0.60 
Test 5 (0.24) 18.36 11.33 6.8 0.63 2965 0.80 0.60 

Soil 
organic 
carbon 
(SOC) 

Test 1 (0.016) 16.22 13.4 8.67 0.6 2887.5 0.79 0.61 
Test 2 (0.018) 13.93 12.9 8.31 0.62 2987.5 0.79 0.60 
Test Default (0.020) 10.24 11.27 6.65 0.65 3105 0.80 0.60 
Test 4  (0.022) 8.82 10.25 5.73 0.68 3212.5 0.80 0.59 
Test 5 (0.024) 5.16 7.76 3.35 0.69 3342.5 0.80 0.58 

*Total N loss = the sum of N leaching, N runoff, N2O flux, NO flux, N2 flux, and NH4 flux 

Soil N2O emissions were most sensitive to SOC, with emissions decreasing with a 

decreasing SOC (Table 4.5). Total soil N loss was sensitive to SOC followed by porosity. 

Neither soil N2O emission nor total N loss was substantively sensitive to HC and CF.  

4.4.3 Long-term management scenario 

The validation test showed that the CDN-DNDC model has the potential to predict the 

dynamics of soil moisture and temperature at 10 cm depths and daily N2O emissions under 
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different management and climate scenarios (irrigated and non-irrigated conditions). The 

validation experiment did identify model limitations concerning simulation of soil water, soil 

temperature, and N2O emission during the spring period. However, the model performance was 

deemed to be acceptable for irrigated conditions during the bulk of the growing season. As the 

purpose of this research is to investigate N2O emissions simulated by the DNDC model under 

irrigated and non-irrigated conditions in the Canadian Prairies, a long-term scenario by the 

CDN-DNDC model has been performed to identify differences in N2O emission from irrigated 

cropping systems. The aforementioned model deficiency concerning spring emissions should 

similarly affect the irrigated and non-irrigated systems, and would not be expected to introduce 

any bias.  To test the long-term impacts, two long-term (11 yr) alternative management 

scenarios were constructed on wheat-canola crop rotation: (1) an irrigated management system 

with a fertilizer application rate of 150 kg N ha −1yr−1, (2) a non-irrigated management system 

with an N fertilizer application rate of 100 kg N ha−1yr−1. The rest of the model’s driving 

variables (i.e., climate, soil and farm management) were kept constant for the observed values 

and model default data. The DNDC model was run for 11 yr with each of the scenarios with the 

past climate data (2003-2013).   

Nitrogen losses were dominated by nitrate leaching, N runoff, and NH3, N2O, and N2 

trace gas flux (Table 4.6). In this scenario, modeled nitrate leaching demonstrated large 

interannual variability corresponding to the amount of precipitation early in the season, 

resulting in extremely high values in some years. The long-term scenario test demonstrate a 

mean nitrate leaching 31.94 kg N ha–1 and 9.21 kg N ha–1 in the irrigated and non-irrigated 

management system. As the irrigated system had higher input water, water losses through 

leaching are also higher in the irrigated field than the non-irrigated field. Because of a higher 
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amount of fertilizer in the irrigated field, N2O emissions were greater in the irrigated field (a 

mean annual N2O flux of 0.93 kg N ha–1 and 0.65 kg N ha–1 in the irrigated and non-irrigated 

management system, respectively). Although, irrigated management system increased N2O 

emission, crop production was also high in the irrigated system. Hence, if the amount of crop 

yield is taken into consideration, then the emission was not large from the irrigated system.  

Hence, when the maximum nitrous oxide intensity, which is the amount of N2O emission per 

unit crop yield, was calculated it was found that this nitrous oxide intensity was 0.56 and 0.93 g 

N ha–1 in irrigated and non-irrigated field, respectively. The dry condition in the non-irrigated 

management system causes high NH4
+ in the field as conversion of NO3

- from NH4
+ is limited 

due to lack of sufficient soil water. Hence, N2O flux is found to be higher in the non-irrigated 

field in some years, because of having relatively high amount of rainfall.  From the literature, it 

is found that the DNDC model could over predict N2O flux under dry conditions (Frolking et 

al. 1998). In the present study, most of the N losses (i.e. total N loss or N leaching) occured due 

to the higher volume of precipitation after fertilizer application as well as early in the season.   
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Fig. 4.10. Long time effect on SOC under irrigated and non-irrigated condition 

 

Fig. 4.11. Long time effect on soil N2O emission under irrigated and non-irrigated 
condition 
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Table 4.6. Cumulative flux N trace gasses, and other N losses in kg N ha-1 yr-1 over 11-year simulations for an irrigated wheat–
canola compared to non-irrigated wheat-canola crop rotation system 

 

N 
uptake 

N2O 
flux 

NO3
- 

Leach 
NO 
flux 

N2 
flux 

NH3 
flux 

N 
runoff  

Total N 
loss Litter N Mineralization Water 

Leach 
Water 
runoff Yield  

kg N ha-1 yr-1 mm kg ha-1 

Irrigated management system 

Mean 179.42 0.93 31.94 0.29 0.25 3.38 2.88 39.67 68.19 75.84 22.20 24.05 3244 

Max  254.48 1.26 132.64 0.35 0.32 4.52 9.38 138.75 102.61 84.40 107.02 59.36 3960 

Min  78.79 0.82 0.00 0.20 0.17 2.20 0.11 3.20 35.18  70.60 0.00 2.53 2143 

Non-irrigated management system 

Mean 139.20 0.65 9.21 0.21 0.15 2.59 2.93 15.74 52.29 69.85 6.77 23.81 2550 

Max  254.47 1.04 35.88 0.27 0.23 3.79 8.25 42.85 101.66 81.8 26.54 59.36 3923 

Min  27.48 0.25 2.64 0.14 0.05 1.56 0.1 2.12 12.07 64.7 0 2.53 605 
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This simulation showed that there is the scope for increasing crop production and 

reducing N2O emissions and other N related losses through modified fertilizer and irrigation 

management. This simulation exercise suggests that irrigated wheat-canola rotations can 

increase crop yield sustainably. Future research should evaluate the economic and 

environmental costs and benefits of modified management options and examine how farmers 

can best be encouraged to adopt climate-friendly management strategies. 

4.4.4 Model application and extension 

There are some discrepancies in estimating N2O emission from the irrigated agricultural 

fields in Saskatchewan, mainly because of the cold winter climate. Modification of the model is 

still required to (i) improve the simulation of soil moisture, and soil temperature immiediately 

following the snow melt period, (ii) improve the simulation of N2O emissions from snow melt 

water earlier at the growing season, (iii) improve the simulation of soil temperature with 

irrigation. The development of this model with more detailed processes will further improve the 

model performance for irrigated condition in the study area. Once the model is accurately 

calibrated and validated after further modifications, it can be utilized for improving N2O 

emission estimates, identifying N2O mitigation strategies, identifying changes in C and N 

dynamics under long-term cropping system under irrigation, and identifying best fertilizer and 

irrigation management for this region. 

4.5    CONCLUSIONS  

The study indicates that the regional version (CDN-DNDC) of the DNDC model is 

capable of quantitatively capturing the major aspects of N2O emission from irrigated 
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agricultural fields in Western Canada. This model successfully simulated the soil water under 

irrigated condition in a fairly typical year (2013). The model also simulated the temporal 

pattern of the N2O emission for both irrigated and non-irrigated condition. However, there were 

some discrepancies between observed and simulated daily fluxes, soil moisture, and soil 

temperature, indicating that DNDC does not capture all processes occurring in the field, mainly 

during the spring thaw period. Further improvement of the CDN-DNDC model is required in 

order to investigate the influence of varying irrigation volume upon N2O emission.   
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5. SUMMARY AND CONCLUSIONS 

The question of how irrigation influences soil GHG emissions, and how it can be 

managed to reduce GHG emissions, is examined in this study. Specifically, this research 

examined the effects of irrigation on energy partitioning, crop microclimate, soil environment, 

and GHG (N2O) emission. Furthermore,  a regional version of the Denitrification-

Decomposition (CDN-DNDC) model was validated and used to predict GHG emissions 

occurring under irrigated conditions in the Canadian Prairies.   

5.1    SUMMARY  

Chapter 3 describes the effect of irrigation on surface energy flux, crop microclimate, soil 

environment, and soil GHG emission. The chapter explained the findings of a two-year 

experiment on adjacent fields, one irrigated and one non-irrigated, where continuous 

measurement of energy fluxes, meteorological data, canopy and soil temperatures, soil water 

status, were conducted, along with periodic chamber based GHG emissions measurements. 

These findings improve our understanding of how irrigation stimulates soil GHG emissions by 

changing the overall crop and soil environments.  

The latent and sensible heat fluxes were greatly influenced by irrigation, indicating that 

irrigation alters energy partitioning, causing the crop microclimate to evolve. The modification 

of crop microclimate due to irrigation is more noticeable at short time scales (hourly variations) 

than for long time scale (daily variations). Among all microclimatic parameters the variation in 

vapor pressure deficit (VPD) was high in both short and long time scale. The observations also 

showed that irrigation reduced the canopy temperature in the irrigated field. The modification 

of temperature and VPD helps to minimize the transpiration loss.    
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Soil GHG emissions are driven by soil moisture and temperature. As the variation in soil 

temperature between irrigated and non-irrigated fields at this site was minimal, this study 

identified soil moisture as the major factor in GHG emission in this region. The difference in 

soil moisture between irrigated and non-irrigated fields started at the end of June, however, soil 

N2O emission was virtually same in both fields in 2012 and 2013 at this time. In both fields, 

peak N2O emissions were observed during spring thaw due to abundant soil moisture from 

snow melt and the presence of fertilizer from fall applications. As most of the spring emission 

occurred before and within two weeks of seeding, managing the fall fertilizer provides a great 

opportunity to reduce GHG emission as well as N loss. Previous research has shown that 

avoiding the application of fertilizer in the fall (Lemke, 2007) and managing the timing of 

fertilizer applications (Roberts, 2007) are the best methods of reducing N2O emission. 

Therefore, proper management of fertilizer application and soil moisture control together will 

help to minimize GHG emission and maximize crop yield sustainably.  

In the agricultural fields of the Canadian Prairies, the prominent GHG is N2O in terms of 

amount emitted from the field and global warming potential. Field studies that evaluate 

mitigation strategies to control N2O emission from irrigated agricultural fields have a large time 

and cost requirement. Therefore, a GHG simulation model was used as a viable alternative in 

this research. The process-based GHG simulation model is able to simulate N2O emission for 

different management scenarios. Chapter 4 describes the use of a recently updated GHG 

simulation model, CDN-DNDC, to simulate soil moisture and temperature, crop yield, crop 

water and N uptake, and N2O emission.   

The CDN-DNDC model was validated to ensure its suitability for the research site. The 

validation test showed that the model adequately represented the temporal pattern of soil water, 
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temperature, and soil N2O emission. However, some discrepancies in the simulated soil water 

and N2O emission indicated that the model was limited in its consideration of all processes. The 

model had insufficient complexity to adequately simulate the springtime soil water, soil 

temperature, and soil N2O emission during the thaw period. Overall, this study found good 

agreement between measured and simulated soil water and soil N2O emission in 2013 and soil 

temperature in 2012. As described in chapter 3, irrigation alters the soil temperature but not by 

much. However, the CDN-DNDC model showed no effect on soil temperature due to irrigation 

(chapter 4). The sensitivity test indicated that the model was sensitive to porosity, clay fraction, 

and soil organic carbon. Hydraulic conductivity, a key parameter of soil water movement, was 

insensitive to soil water and N2O emission in the CDN-DNDC model.  

The validation test showed that the CDN-DNDC model was suitable for this region and 

for long-term simulations of N2O emission. Hence, a long-term CDN-DNDC scenario of a 

wheat-canola crop rotation was developed for irrigated and non-irrigated conditions. The long-

term scenario identified that irrigated cropping increased N2O emission. However, proper 

management of irrigation (for example - by scheduling irrigations to reduce the number of 

consecutive days when the soil water is above 60% WFPS) can help to reduce N2O emission 

compared to a non-irrigated cropping system and can maximize crop production significantly. 

In the long-term scenario, the result of simulated N2O emission in the individual year showed 

that without control, increasing the amount of input water in the field during the growing 

season can increase N loss through leaching and can decrease crop production. Irrigation 

increased crop water and N uptake and promoted uniformity of soil moisture, which ultimately 

helped to improve crop production and decrease N2O emission. The Canadian Prairie 

experiences unexpected weather patterns and variable climate from year to year. Hence, this 
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regional CDN-DNDC model will help to identify the total amount of emission and N loss 

corresponding to crop yield for different management strategies of irrigation. 

5.2    CONCLUSIONS 

The findings of this two year field experiment have established that irrigation markely 

influences energy flux partitioning, resulting in a unique microclimate for the irrigated field. A 

larger amount of the available radiation energy is consumed by evaporating the readily availabe 

water provided by the irrigation system. In the non-irrigated system, there is more energy 

available to warm the soil and canopy, resulting in much larger sensible heat exchange with the 

atmosphere. Although irrigation was responsible for maintaining constently high soil moisture 

contents through the growing season, the largest GHG emissions were found in the spring thaw 

period in both fields. Late season GHG emmissions were relatively small in both fields, and 

only exhibited a very minor influence of irrigation. 

The validation results of the research showed that the regional version of the DNDC 

model (CDN-DNDC) is suitable for use in the study region. However, the model has not been 

developed to accurately predict spring thaw N2O emission in the Canadian Prairies. The 

updated CDN-DNDC model predicted soil moisture persuasively for both non-irrigated and 

irrigated conditions. The model was also capable of predicting the N2O emission pattern with 

irrigation and rainfall with some distinction in emission magnitude. The model predicted that N 

loss occurred mainly through leaching which had not been measured in the field experiment 

during irrigation. The simulated soil water and N2O emissions were sensitive to soil organic 

carbon, clay fraction, and porosity. A long-term scenario showed that irrigation increases N2O 

emission as well as total N loss. However, by considering the yield corresponding to total N 
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loss, the relative N2O emission was not high. Although the mean annual N2O emission was 

higher in the irrigated field than the non-irrigated field, the mean annual nitrous oxide intensity 

in the irrigated field was actually lower than that in the non-irrigated field. Careful management 

of irrigation and fertilizer application can increase crop production in a sustainable manner to 

supply food for a growing population.      

5.3    RECOMMENDATIONS 

Energy fluxes, and crop and soil environments vary throughout the day. Hence, GHG 

emission will also vary at short time scales due to rapid changes in soil moisture and nutrients. 

In this research, GHG emission from soil was measured twice a week, sometimes just before or 

after irrigation, and sometimes a few days before and after irrigation. The measurement of short 

time fluctuations in GHG emission at different times in a day, and on consecutive days after 

irrigation is still needed for a clear understanding of soil GHG emission from an irrigated field.   

Although surface flux partitioning varied with irrigation, soil GHG emission did not vary 

significantly with irrigation when maximum fertilizer was applied in the previous year’s fall 

season. Correspondingly, during irrigation periods, there was a small difference in GHG 

emission between irrigated and non-irrigated conditions. To get a more accurate idea of how 

much GHG emission increased due to irrigation, similar studies should be carried out for spring 

fertilizer application rather than fall fertilizer application.  

In the field experiment, soil nutrients were measured at the end of the growing season to 

determine how much nutrient remained in the ground. However, frequent measurements of soil 

nutrient during the growing season allowed us to correlate changes in soil temperature and 
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water with available soil N at different stages of crop growth in this region. This procedure can 

help to determine the amount of irrigation water necessary to control GHG emission.  

Two years was not long enough to see the crop rotation effect on GHG emission in the 

irrigated field. As crop rotation is an alternative management practice to reduce GHG emission 

(Campbell et al. 2014), a multiyear experiment with different crop rotations could suggest how 

GHG emission could be further decreased.  

The validation test in chapter 4 showed that to measure net seasonal emission accurately, 

it was important to measure soil N2O emission daily. Therefore, in future, the CDN-DNDC 

model simulated N2O emission should be compared with the measured daily N2O emission, 

which can be done by using an automated chamber instead of a static chamber. Along with the 

field experiment, a laboratory experiment should conducted to measure N loss through 

leaching, because it was found that the CDN-DNDC model-simulated N loss through leaching 

was higher than the N loss in the form of N2O emission in the irrigated field. Further study with 

the CDN-DNDC model should be performed at a regional scale to estimate the total regional 

N2O emission for irrigated fields in the Canadian Prairies.  

This CDN-DNDC model should be updated for the Canadian Prairie spring thaw period 

because higher N2O emission occurred in the spring thaw. When the model can appropriately 

simulate the Prairie spring thaw, new mitigation options can be applied to reduce spring N2O 

emission.           
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APPENDIX  

Appendix A.1 

Soil physicochemical properties in both irrigated and non-irrigated field 

Table A.1.1. Soil physical properties of the sites 

Soil feature Non-irrigated field Irrigated field 
pH 7.05 7.22 
EC 270 664 
Bulk density 1.17 1.17 
Porosity 0.56 0.56 
Soil texture Loam 
VWC at FC 0.3353 0.4242 
VWC at PWP 0.2139 0.2519 

Table A.1.2. VWC and WFPS at FC and PWP based on crop-water-retention curve 
(VWC=volumetric water content, WFPS= water filled pore space, P= porosity) 

 FC  

WFPS = (VWC/P) 

PWP  

WFPS = (VWC/P) 

DL 2012 0.4531/0.56=0.81 0.2457/0.56=0.44 
DL 2013 0.3353/0.56=0.60 0.2139/0.56=0.38 
IL 2012 0.4984/0.56=0.89 0.2468/0.56=0.44 
IL 2013 0.4242/0.56=0.76 0.2519/0.56=0.45 
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Appendix A.2 

Subsections in the Denitrification-Decomposition (DNDC) model, adeopted from DNDC 

manual (Version 9.5) 

 

Fig. A.2.1. DNDC model subsections (the bridge between the C and N biogeochemical 

cycles) 
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Appendix A.3 

Comparison of observed soil moisture and temperature at 25 cm depth and simulated soil 

moisture and temperature at 30 cm depth. 

 

Fig. A.3.1. Measured and simulated soil moisture and temperature in 2012 in non-

irrigated field 
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 Fig. A.3.2. Measured and simulated soil moisture and temperature in 2012 in irrigated 

field         

Fig. A.3.3. Measured and simulated soil moisture and temperature in 2013 in non-

irrigated field 
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Fig. A.3.4. Measured and simulated soil moisture and temperature in 2013 in irrigated 

field 
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Appendix A.4 

Soil particle size and texture at the experimental sites  

Table A.4.1. Soil particle size and texture at the field sites. Values presented are the mean 

and standard deviation of the number of samples indicated (DL= non-irrigated field, IL12= 

irrigated field in 2012, IL13= irrigated field in 2013)  

Sites 
(name) 

Depth  Sand  Silt  Clay  n  Texture  

— cm — ————————— % —————————  

DL 0 - 15  45.9 ± 3.9  33.5 ± 5.0  20.6 ± 1.3  5  Loam  

15 - 30  50.6 ± 1.6  27.8 ± 1.8  21.6 ± 1.0  4  Loam  

30 - 60  41.5 ± 4.2  32.5 ± 3.8  26.1 ± 0.5  3  Loam  

60 - 90  65.2 ± 10.4  17.0 ± 6.7  17.8 ± 4.9  4  Sandy Loam  

90 -120  69.9 ± 21.4  15.8 ± 10.4  14.3 ± 11.1  3  Sandy Loam  

IL12 0 - 15  33.6 ± 5.8  47.7 ± 5.2  18.7 ± 1.4  4  Loam  

15 - 30  39.4 ± 7.6  41.0 ± 8.1  19.7 ± 1.5  4  Loam  

30 - 60  38.5 ± 3.1  36.6 ± 2.6  24.9 ± 1.5  4  Loam  

60 - 90  55.3 ± 17.0  23.5 ± 11.7  21.2 ± 5.4  4  Sandy Clay Loam  

90 -120  67.6 ± 16.8  16.2 ± 11.2  16.2 ± 6.0  4  Sandy Loam  

IL13 0 - 15  34.7 ± 4.7  45.3 ± 4.9  20.0 ± 0.9  5  Loam  

15 - 30  39.1 ± 4.7  40.3 ± 8.1  20.6 ± 1.3  5  Loam  

30 - 60  49.4 ± 21.5  28.9 ± 16.6  21.7 ± 5.3  3  Loam  

60 - 90  57.3 ± 20.7  23.4 ± 12.8  19.3 ± 11.9  4  Sandy Loam  

90 -120  81.7  8.8  9.5  1  Loamy Sand  
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