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ABSTRACT 

 There are several objectives that have been addressed in this thesis. Under a broader 

heading, the methods that have been explored and applied are density functional theory (DFT), ab 

initio metadynamics and ab initio molecular dynamics (AIMD). These methods have been 

employed to analyze structural phase transitions, electronic, vibrational and transport properties of 

selected materials at high pressure. All the materials that have been considered in this thesis have 

been studied experimentally by various research groups. Using theoretical methods and the 

sophisticated computational tools mentioned above, the aim of this thesis is to predict as well 

explain the experimental observations, thus bridging the gap between experiment and theory. The 

thesis has been divided as follows.  

The first project that has been discussed is on the structural phase transition of aluminium 

triiodide (AlI3). Experimentally, no structural phase transition was reported for crystalline AlI3 at 

high pressure in spite of getting certain subtle results which hinted at a first order phase transition. 

Thus, in our study, we employed ab initio metadyanamics to scan the potential energy surface 

(PES) and find the energetically most stable configuration. Indeed, we found first order structural 

phase transition at approximately 1.3 GPa which was verified by the Raman spectra as well.  

The next project was to explore the structure of the superconducting phase of hydrogen 

sulfide (H2S) which was experimentally observed to have a high superconducting critical 

temperature of 203 K. However, the crystal structure of the superconducting phase has been 

ambiguous and has been proposed to be a metastable phase. Therefore, in our study, we performed 

ab initio metadyanamics to search for metastable phases. At 80 GPa and 80 K, a metastable 

structure was found. This metastable structure on further ab initio molecular dynamics (AIMD) at 
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200 GPa and 200 K resulted in a modulated structure whose X-Ray diffraction (XRD) pattern 

matched excellently with that obtained experimentally. Analysis of the electron-phonon 

interactions on this modulated structure gave superconducting critical temperatures close to the 

value obtained experimentally.  

The third project is based on the electron-phonon interaction and subsequent calculation of 

superconducting properties of an experimentally synthesized polyhydride of iron, FeH5. The 

structure was found to have hydrogen in the atomic form, which has long since been proposed to 

be a criterion for high temperature superconductivity. First principles theoretical calculations 

revealed FeH5 to be a superconductor at high pressure albeit with a low critical temperature of 51 

K at 130 GPa, confirming a hypothesis that the superconductivity of any material is sensitive to 

several factors that have been discussed in the chapter.  

The final project deals with the study of structural, electronic and transport properties of 

glass and molten basalt (igneous rock). This material is amorphous and abundant in the Earth’s 

mantle. Although several experimental and theoretical studies have been performed on materials 

that mimic basalt, there is still a lot to be unravelled regarding its structural and transport properties 

at the mantle conditions. A clear understanding of the structure and transport properties of basalt 

can explain in depth about the thermochemical evolution of the Earth and origin of life. In the 

study reported in this thesis, ab initio molecular dynamics simulations were performed on an 

amorphous model basalt structure (containing the most abundant chemical species, Si, Al, Ca, Mg 

and O) at the mantle conditions over a range of high pressures. The results that have been reported 

here are in very good agreement with earlier experimental and theoretical results, confirming that 

the model basalt considered is indeed a good approximation and can be further improved by 

considering the minor occurring elements (Na, K, etc.) for future research.  
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CHAPTER 1 

INTRODUCTION AND THEORETICAL METHODS 

 
 

The discovery of novel materials is often a result of industrial, societal, economic and 

logistic needs. Therefore, it has become the norm to fabricate new materials by tweaking the 

intrinsic parameters of the conventional materials by controlling them during the synthesis, for 

example, manipulating the chemical composition and dimensionality of the system. Another 

method is by varying the external parameters which often give rise to completely new, otherwise 

unknown structures with absolutely different properties (electronic, optical, etc.) compared to the 

same materials at ambient conditions. Some of these external parameters are extreme pressures and 

temperatures, application of electric and magnetic fields and so on. Of the abovementioned external 

factors which can bring about significant changes in materials, the thermodynamic variable, 

pressure, has the potential to vastly change structural and other dependant properties. Starting from 

influencing the interatomic electrostatic interactions to modifying the microstructure, application 

of pressure enables the formation of new materials not prevalent at ambient conditions. In the last 

few decades, this has helped high pressure researchers not only to synthesize new materials but 

also understand the underlying science and contribute further to the dissemination of scientific 

knowledge [1-12]. To mention explicitly, how pressure gives rise to new structures, it is imperative 

to briefly discuss some established results obtained from high pressure research. Firstly, on exerting 

pressure, the interatomic distances and hence the bonding patterns change. The energetic stability 

also changes, often being responsible for structural phase transition. The thermodynamic work 

(PΔV) if increased considerably, can contribute to the overcoming of energy barriers and help the 

system attain a new thermodynamically stable configuration, in other words form a new structure. 

The most common example is that of the compression of graphite into diamond. Similarly, on 
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compressing hexagonal boron nitride, cubic boron nitride is formed [13]. Several industrially 

applicable properties also emerge at high pressures, e.g. occurrence of superconductivity in 

insulating materials when compressed, extreme hardness and high energy density. Secondly, owing 

to the limitations of our conventional knowledge of rules of chemistry at ambient conditions, 

certain stoichiometry are not conceived of. However, apart from modifying the potential energy 

surface, pressure can also alter the compositional landscape. For instance, the occurrence of 

unusual stoichiometry of NaCl3 [14], etc. were previously unheard of. Thirdly, as previously stated, 

the PΔV term, i.e. the thermodynamic work is capable of interfering with inter and intra-atomic 

interactions, leading to unprecedented chemical bonds and properties. Surprisingly, even noble 

gases have been shown to undergo chemical reactions theoretically, with other elements such as 

Li, Mg and Ni [15-17]. These discoveries question the conventional concepts in chemistry on the 

formation and stability of chemical bonds, the mechanism of how atoms and molecules reorganize 

at short and long ranges, and how kinetics and thermodynamics govern material stability. Lastly, 

even if the material doesn’t undergo structural phase transition or the stoichiometry remains 

constant, the applied pressure reduces the interatomic distances, altering interatomic interactions 

and in turn modifying electronic properties. This is one of the most common areas of high pressure 

research. The conversion of an insulator to a semi-conductor, then to a metal and eventually to a 

superconductor has been observed several times. Some of the best examples showing this trait are 

of H2S [18], Silane [19], etc.  This property can have huge industrial impact. Recently developed 

structure searching methods based on accurate first-principles energetic calculations have enabled 

the theoretical design of high-pressure materials. The effective collaboration between 

experimentalists and theoreticians has greatly expedited materials discovery at high pressures [20]. 

Experimentally, high pressure can be applied by the use of Diamond Anvil Cells (DAC) which 

generate static pressure. The other dynamic method of generating pressure is by imparting shock 
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waves to the system in concern. The diamond anvil cell is one of the most widely used devices to 

generate extremely high pressures. Apart from extreme compression, DAC enables the in situ 

measurement of X-ray diffraction (XRD), Raman and infrared spectroscopy. The efficiency of 

DACs has been increasing steadily over the years, until recently when pressures of more than 1TPa 

have also been achieved [21]. But such extreme conditions are difficult to attain and sustain. 

Another disadvantage of using diamond anvil cells is the very low size of the sample that has to be 

used. But these shortcomings may be bypassed with the use of theoretical techniques by the help 

of simulating high pressure scenarios on a computer. First-principles density functional theory 

(DFT) [22-23] revolutionized the way materials are studied today. Not only can one simulate 

previously unknown materials but can also study their various properties. This is the tool that has 

been used in our research too. Extremely high pressure which is a feat to achieve in the 

experimental facility, can very easily be simulated on a computer by varying the size of the system 

(unit cell) being studied. The total energy can be minimized for different structures as a function 

of pressure, thus allowing the investigation of pressure-induced structural phase transitions. Energy 

calculations using DFT precisely distinguish the relative stabilities of competing phases within the 

resolution of a few meV. These calculations can therefore provide a more deep insight and further 

assist in understanding experimental observations; for example, in the determination of the actual 

phase stability and the assignment of electronic and vibrational excitation modes. In the last a few 

years, remarkable progress has been made in the development of first-principles crystal-structure 

searching methods, leading to several successful high-pressure discoveries [20]. Structure-

searching methods combined with reliable DFT calculations can explore complicated free-energy 

surfaces to seek the global energy minimum corresponding to the most stable ground-state 

structure. Just by the knowledge of the chemical composition, these computational methods can 

identify the thermodynamically stable structures of materials under pressure enabling the theory to 
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have a predictive power that can be beneficial for experimentalists. Several efficient global 

optimization schemes for predicting the correct and stable structures have been developed. These 

codes that are frequently used in high-pressure research include methods designed to overcome 

energy barriers such as simulated annealing [24], minima hopping [25], ab initio molecular 

dynamics [26-27], metadynamics algorithms [28] and global minimization methods such as 

random sampling [29], genetic algorithms [30–33] and so on. Some of these methods will be 

discussed in details in the following sections.  

 High pressure has been one of the primary tools to give rise to new superconductors. In 

conventional superconductors, the superconductivity arises by the exchange of phonons between 

two electrons. The application of pressure on metals, for example, elemental metals [34-35] like 

Ca, Cs, Y, Fe, etc. generate new structures which are superconducting. Some non-metallic elements 

like B, O, Si, etc. lose their insulating or semiconducting properties and turn into superconductors 

under high pressures [34].  Similarly, superconducting properties of some novel materials under 

high pressures will be discussed in detail in the later chapters of this thesis.  

 In this thesis, some of the above mentioned theoretical techniques have been used to study 

the structural phase transitions of materials at high pressures and determining their electronic, 

thermodynamic, and other properties. The works that have been reported in this thesis are (i) 

verifying the structural phase transition of AlI3 at high pressure using ab initio metadynamics 

method and reporting of a new phase after approximately 2 GPa, (ii) theoretically determining the 

superconducting phase of hydrogen sulfide (H2S) at high pressure inspired by the experimental 

discovery of high temperature superconductivity in compressed H2S [18]. This project was also 

carried out using ab initio metadynamics as well as ab initio molecular dynamics (AIMD), (iii) 

superconductivity in FeH5. This theoretical study followed the experimental finding of a new 

stoichiometry of iron polyhydride [36] at high pressure. Given the tendency of covalent hydrides 
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to show high temperature superconductivity, hence this material was investigated for high critical 

temperature (Tc) superconductivity, and the last project reported is (iv) determining the structural 

phase transition and transport properties of Basalt at the deep mantle conditions. For this project 

AIMD has been extensively used to simulate the basalt system over large time scales.  

 While studying any material, the underlying science is that of the atoms which consist of 

electrons and nuclei. Therefore, it is necessary to treat the particles, namely electrons and nuclei in 

a quantum mechanical manner. Small systems have been successfully studied using the 

Schrödinger equation. But it becomes cumbersome when treating bigger systems with many atoms. 

Therefore, several approximate numerical solutions have been introduced over the years to solve 

many body problems. One of the methods is using first-principles methods, i.e. a method which 

does not require any input parameter obtained from experiments. One such method, density 

functional theory, is discussed henceforth, starting from the initial approximations to the final 

implementation of the method.  

 

1.1 Schrödinger Equation and Born-Oppenheimer Approximation  

 

Over the past few decades, DFT has been one of the most successful and popular quantum 

mechanical approaches to solve many body problems. It has applications in physics and chemistry 

in a conventional manner as well as in interdisciplinary fields, for example biology and mineralogy. 

Superconductivity, magnetic properties, bond characteristics, and other properties have been 

studied using DFT as the tool. To explain the basis of DFT, we will tread a step back to the 

Schrödinger equation. From quantum mechanics we know that all the information of a system is 

stored in the wavefunction. The wavefunction itself is determined from the Schrödinger equation 

(Eq. 1.1) as follows, 
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                                                      (
−ℏ2

2𝑚
𝛻2 + 𝑉(𝑟 ))𝜓(𝑟 ) = 𝐸𝜓 .                                                   (1.1)        

This is for a single particle which is subjected to the external potential V(𝑟 ). Hence, with the proper 

form of V(𝑟 ), the wavefunction can be found out from Eq. (1.1) and subsequently all other 

observables can be computed, taking the expectation values with respect to the wavefunction. This 

is fairly straightforward to calculate. The challenge arises when there are more than one particle. 

The Schrödinger equation then reads as  

[∑ (
−ℏ2

2𝑚
 𝛻𝑖

2 + 𝑉(𝑟 𝒊))
𝑁

𝑖
+ ∑ 𝑈(𝑟 𝑖, 𝑟 𝑗)

𝑖≠𝑗

 ] 𝜓(𝑟 1, 𝑟 2, … 𝑟 𝑁) = 𝐸𝜓(𝑟 1, 𝑟 2, … 𝑟 𝑁) ,       (1.2) 

where N is the total number of particles and 𝑈(𝑟 𝑖, 𝑟 𝑗) is the Coulombic electron-electron interaction 

as shown in Eq. (1.3). 

𝑈(𝑟 𝑖, 𝑟 𝑗) =
𝑒2

|𝑟 𝑖 − 𝑟 𝑗|
 .                                                               (1.3) 

 

Since the denominator in Eq. (1.3) can’t be separated algebraically to convert it into a single particle 

problem, the new strategy, DFT was introduced. In this theory the many body problem with the 

electron-electron interaction term, 𝑈(𝑟 𝑖, 𝑟 𝑗), is mapped onto a single body problem without the 

𝑈(𝑟 𝑖, 𝑟 𝑗) term. For a system of N interacting electrons and M nuclei, the Hamiltonian is written as,  

�̂� = −
1

2
∑𝛻𝑖

2 +
1

2
∑∑

1

|𝑟 𝑖 − 𝑟 𝑗|

𝑁

𝑗≠𝑖

𝑁

𝑖=1

−
1

2
∑

1

𝑀𝐴
𝛻𝐴

2 − ∑ ∑
𝑍𝐴

𝑟𝑖𝐴
+

𝑀

𝐴=1

𝑁

𝑖=1

𝑀

𝐴=1

𝑁

𝑖=1

1

2
∑ ∑

𝑍𝐴𝑍𝐵

|�⃗� 𝐴 − �⃗� 𝐵|

𝑀

𝐵≠𝐴

𝑀

𝐴=1

 .  (1.4) 

This equation is expressed in atomic units (a.u.) ( Hartree is the unit of the energy and ħ = 1, e = 1, 

and me = 1 ). The first two terms in Eq. (1.4) correspond to the kinetic energy and Coulomb 

interaction potential of the electrons, respectively. The next two terms are the kinetic energy of the 
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nuclei and Coulomb interaction between the electrons and nuclei respectively. The last term 

represents the Coulomb interaction potential of the nuclei. In principle, all the properties of a 

system can be obtained by solving the many-body Schrödinger equation. Practically, a full quantum 

mechanical treatment is only solvable for the simplest of systems, e.g. hydrogen atom. In liquids 

or crystals, the total number of electrons and nuclei is of the order of 1023. The motion of one 

particle affects other particles, modifying the Coulomb potential and experiencing a force and 

therefore the other particles too have to move in order to maintain equilibrium in the structure. 

Thus, in a system with more than one atom, the motions of all the particles are correlated. With the 

increment in the number of degrees of freedom, the correlation between all the particles also 

increases. In order to study such systems, the motions of the electrons are decoupled from that of 

the nuclei following the Born-Oppenheimer (BO) approximation, a method introduced by Max 

Born and J. Robert Oppenheimer in 1927 [37]. The BO approximation is also known as the 

‘adiabatic approximation’ in describing electronic structures. This approximation is based on the 

fact that the mass of the electrons is much lesser than that of the nuclei and their velocities are 

consequently much larger than that of the nuclei. Using this concept, the movement of the electrons 

and nuclei can be separated. For a particular configuration of the nuclei, one can thereby describe 

the electronic structure separately and allow the electrons to relax to optimal eigenstates before the 

nuclei move to the next arrangement. Mathematically, the Hamiltonian for the electrons in Eq. (1.4) 

becomes:   

𝐻�̂� = −
1

2
∑𝛻𝑖

2 − ∑ ∑
𝑍𝐴

𝑟𝑖𝐴
+

1

2

𝑀

𝐴=1

𝑁

𝑖=1

𝑁

𝑖=1

∑∑
1

|𝑟 𝑖 − 𝑟 𝑗|

𝑁

𝑗≠𝑖

 .

𝑁

𝑖=1

                              (1.5) 

 

Within the BO approximation, for a given nuclear configuration, the kinetic energy of the nuclear 

Coulomb potential can be considered to be constant. The electrons can now be considered as 
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moving in an external potential (Vext) due to Coulomb interactions between the electrons and the 

nuclei. This simplified Hamiltonian depends only parametrically on the coordinates of the nuclei. 

The total energy of a poly-atomic system at a given spatial configuration is the sum of the total 

energy of the electronic many-body system and the classical inter-nuclei Coulomb repulsion: 

𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑒 + 𝐸𝑖𝑜𝑛 .                                                           (1.6) 

 

1.2 Density functional theory  

 

In DFT, the total electronic energy of a system rather than being a function of the spatial 

coordinates is just a functional of the electron density. DFT achieved great success in electronic 

structure calculations of atoms, molecules and condensed matter since the last few decades. Its 

concept has its foundations in the Thomas-Fermi theory introduced in 1927, which formulated the 

equation of the total energy of a many-electron system as a density-based expression [38-40]. 

Eventually in the 1960s, DFT was formalized by Kohn and Hohenberg [22-23]. Within the realm 

of computational materials science, ab initio DFT calculations enable the prediction and 

calculation of the characteristics of materials, based on quantum mechanical considerations, 

without requiring higher order parameters such as fundamental material properties. In 

contemporary DFT techniques, the electronic structures are determined by using a potential acting 

on the system’s electrons. This potential is the sum of external potentials, determined solely by the 

structure and the elemental composition of the system, and an effective potential, which represents 

electron-electron interactions. Thus, a problem for a representative super-cell of a material 

with n electrons can be studied as a set of n one-electron Schrödinger like equations, which are also 

known as Kohn–Sham equations, hence reducing the problem to a single body problem. 

 

https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Kohn%E2%80%93Sham_equations
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1.2.1 Hohenberg–Kohn Theorem 

 

The Hohenberg-Kohn (HK) theorem, introduced in 1964, states that the external potential 

𝑉𝑒𝑥𝑡(𝑟 ) is (to within a constant) a unique functional of ρ(𝑟 ) [22], assuming a non-degenerate ground 

state. In other words, the HK theorem demonstrates that the electron density uniquely determines 

the Hamiltonian operator and thus all the properties of the system. The proof is as follows. Let us 

assume that there are two external potentials 𝑉𝑒𝑥𝑡(𝑟 ) and 𝑉′
𝑒𝑥𝑡(𝑟 ) that differ by a constant and 

each gives the same density ρ(𝑟 ) for its ground state. We will have two Hamiltonians �̂� and �̂�′ 

whose ground-state densities are the same although the normalized wave functions 𝜓 and 𝜓′ will 

be different. Taking 𝜓′ as a trial wave function for the H problem,  

𝐸0 < ⟨𝜓′|�̂�|𝜓′⟩ = ⟨𝜓’|�̂�’|𝜓′⟩ + ⟨𝜓’|�̂� − �̂�’|𝜓′⟩ = 𝐸0
′  + ∫𝜌(𝑟 ) [𝑉𝑒𝑥𝑡(𝑟 ) − 𝑉′

𝑒𝑥𝑡(𝑟 )]𝑑𝑟  ,  

(1.7) 

where E0 and 𝐸0
′   are the ground-state energies for �̂� and �̂�′, respectively. Similarly, taking 𝜓 as 

the trial function for the �̂�′ problem,  

𝐸0
′ < ⟨𝜓|𝐻′̂|𝜓⟩ = ⟨𝜓|�̂�|𝜓⟩ + ⟨𝜓|𝐻′̂ − �̂�|𝜓⟩ = 𝐸0  + ∫𝜌(𝑟 ) [𝑉′

𝑒𝑥𝑡(𝑟 ) − 𝑉𝑒𝑥𝑡(𝑟 )]𝑑𝑟 .  

(1.8) 

Adding Eqs. (1.7) and (1.8), we obtain E0 + 𝐸0
′  < 𝐸0

′+ E0, which is a contradiction and therefore 

there cannot be two different 𝑉𝑒𝑥𝑡(𝑟 ) that give the same ρ(𝑟 ) for the ground state. Thus the first 

Hohenberg-Kohn theorem states that there is a one-to-one correspondence between the external 

potential 𝑉𝑒𝑥𝑡(𝑟 ) and the ground state density ρ(𝑟 ). A universal functional of the total energy as a 

function of density must exist. The second HK theorem is a proof of the fact that the exact ground 

state density minimizes this universal functional and the corresponding energy is the exact ground 
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state energy. In spite of extensive research to formulate an exact universal energy functional, 

researchers have not yet been able to come up with one.  

 

1.2.2 Kohn-Sham Formulation of DFT  

 

In 1965, Kohn and Sham [23] devised a practical scheme to calculate the total energy. This 

method is the basic procedure for DFT calculations. A model of non-interacting electrons moving 

in an effective local potential to reproduce the interacting electrons in the external potential was 

proposed. The electronic energy functional can be written as,  

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 [𝜌] =  𝐹[𝜌] + ∫ d𝑟 𝑉𝑒𝑥𝑡(𝑟 ). 𝜌(𝑟 ).                                      (1.9)           

          

𝑉𝑒𝑥𝑡 = ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

 .                                                               (1.10) 

In Eq. (1.9), F[ρ] contains all the kinetic energy terms and electron-electron interactions. If we 

separate out the Coulombic interaction, then 𝐹[𝜌] can be written as 

𝐹[𝜌] =
1

2
∫∫d𝑟 d𝑟 ′

𝜌(𝑟 )𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
+ 𝑇𝑆[𝜌] + 𝐸𝑥𝑐[𝜌] ,                                (1.11) 

where TS[ρ] is the kinetic energy functional of the non-interacting electrons and Exc[ρ] is the 

exchange correlation functional. Exc is simply the sum of the error made in using a non-interacting 

kinetic energy and the error made in treating the electron-electron interaction classically. The 

minimization of the electronic energy functional with respect to the electron density subject to the 

constraint, ∫ d𝑟 𝜌(𝑟 ) = 𝑁   leads to,  

𝑉𝑒𝑥𝑡  +
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌(𝑟 )
+ 

𝛿𝑇[𝜌]

𝛿𝜌(𝑟 )
+ ∫d𝑟 ′

𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
= 𝜇 ,                               (1.12) 
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where μ is a Lagrange multiplier. Considering the many-body wavefuntion to be a product of all 

the one electron wavefunctions φi, each electron wavefunction in the non-interacting system 

satisfies the one-electron Schrödinger equation, 

(−
1

2
𝛻2 + 𝑉𝑒𝑥𝑡(𝑟 ))𝜑𝑖(𝑟 ) = 휀𝑖𝜑𝑖(𝑟 ) .                                       (1.13) 

Kohn and Sham extrapolated this idea to the case of interacting electrons and derived the effective 

potential as                                      

𝑣𝑒𝑓𝑓  =  𝑉𝑒𝑥𝑡  +
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌(𝑟 )
+ ∫d𝑟 ′

𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
 .                                  (1.14) 

Hence analogous to Eq. (1.13), in the interacting electron system, the equation that each electron 

satisfies is  

(−
1

2
𝛻2 + 𝑣𝑒𝑓𝑓(𝜌))𝜙𝑖(𝑟 ) = 휀𝑖𝜙𝑖(𝑟 ) .                                        (1.15) 

Eq. (1.15) is known as the Kohn-Sham (KS) equation and veff depends only on the density. The 

Eqs. (1.14) and (1.15) are solved self-consistently keeping the total number of electrons constant 

as the constraint. Once the self-consistent cycles are over and the desired convergence is achieved, 

the eigenstates and eigenvalues obtained are referred to as the KS orbitals and KS energies, 

respectively. The ground-state electron density can then be calculated with KS orbitals using the 

following equation: 

𝜌(𝑟 ) = ∑|𝜙𝑖(𝑟 )|
2

𝑁

𝑖=1

.                                                          (1.16) 

The total energy in the KS scheme is then a sum of the kinetic energy, exchange-correlation energy, 

Hartree energy and energy due to the potential of the nuclei and it is given as:  
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𝐸𝑒[𝜌(𝑟 )] =  ∑휀𝑖

𝑜𝑐𝑐

− 
1

2
∬

𝜌(𝑟 )𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
d𝑟 d𝑟 ′ + 𝐸𝑥𝑐[𝜌(𝑟 )] − ∫𝜌(𝑟 )𝑉𝑥𝑐(𝑟 )d𝑟  .    (1.17) 

The schematic diagram (Fig. 1.1) shows how the original system consisting of interacting electrons 

is mapped onto a system with non-interacting quasi particles.   

 

Figure 1.1 Mapping of a many electron interacting system to a system of non-interacting quasi 

particles of Kohn Sham Density Functional Theory. This figure has been taken from Ref. [41]. 

 

1.2.3 Functional Forms of Exchange Correlations  

 

The major feat of DFT is that it mapped the problem of a system of interacting electrons to 

a system of non-interacting electrons. On making this assumption, the exchange electronic 

interaction and the difference in kinetic energy of the interacting and non-interacting electrons are 

collected into a common term, the exchange correlation (XC) energy. The exact form of the XC 

functional is unknown. This is one of the challenges of DFT which is still being tried to solve. Over 

the years, many approximations have been proposed for the XC functional Exc[ρ]. The first and the 
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simplest approximation that was introduced was the local-density approximation (LDA). The 

concept of LDA comes from the assumption that the electron density is constant at all points in 

space for a uniform electron gas. The exchange-correlation potential from the uniform electron gas 

is substituted as the XC potential at each point in the non-uniform real system as follows: 

𝑉𝑋𝐶 = 𝑉𝑋𝐶
𝑢𝑛𝑖𝑓𝑜𝑟𝑚[𝜌(𝑟 )] .                                              (1.18) 

Thus, the XC functional can be written as:  

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫𝜌(𝑟 )휀𝑋𝐶[𝜌(𝑟 )] d𝑟  ,                                             (1.19) 

where, 

휀𝑋𝐶[𝜌(𝑟 )] = 휀𝑋𝐶
𝐿𝐷𝐴[𝜌(𝑟 )] .                                                     (1.20)                                                  

The functional 휀𝑋𝐶[𝜌(𝑟 )] consists of two parts, i.e. the exchange, 휀𝑋 and the correlation, 휀𝐶 

energies. While the correlation part is determined numerically by Monte Carlo simulations for the 

homogeneous electron gas at a variety of electron densities [42], the exchange part is analytically 

[43] found to be  

휀𝑋 = −
3

4
(
3𝜌

𝜋
)

1
3
 .                                                              (1.21) 

Since LDA was derived from the uniform electron gas model, it was found to have its limitations 

in the regime of materials whose electron densities varied considerably (e.g. covalent materials) 

and was not slowly varying. Hence, as a consequence of the shortcomings of LDA, the Generalized 

Gradient Approximation (GGA) was developed [44-45] to incorporate the varying electron density. 

The GGA functionals include the dependency of spatial variation in the density. Therefore, GGA 

functional takes into consideration both the local density and the gradient of the electron density. 

The general GGA exchange-correlation functional is written as:  
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𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌] = ∫  휀𝑋𝐶[𝜌]

𝑉

𝐹𝑋𝐶[𝜌, 𝛻𝜌]𝜌(𝑟 )d𝑟  .                                      (1.22) 

FXC, is the enhancement factor that incorporates some modification in the energy density by 

including the exchange (FX) and correlation (EC) terms. FX is a function of the reduced density. 

The reduced density is given as: 

𝑠(𝑟 ) =
|𝛻𝜌(𝑟 )|

2𝑘𝑓𝜌(𝑟 )
 .                                                            (1.23) 

Here, the kf is the Fermi wave vector. The formalism of Perdew–Burke–Ernzerhof (PBE) was 

started with the GGA for correlation in the form: 

𝐸𝑐 = ∫𝜌(𝑟 ){휀𝐶
𝑢𝑛𝑖𝑓𝑜𝑟𝑚[𝜌] + 𝐻(𝑟𝑠, 𝜉, 𝑡)} d𝑟  ,                                (1.24) 

where 휀𝐶
𝑢𝑛𝑖𝑓𝑜𝑟𝑚[𝜌] is the correlation energy of the homogeneous electron gas, 𝐻(𝑟𝑠, 𝜉, 𝑡) is the 

correction term, the rs is the Seitz radius and is independent of Fx, and t is the dimensionless 

gradient term defined as:  

𝑡 =
|𝛁𝜌(𝑟 )|

2𝑔𝑘𝑠𝜌(𝑟 )
 ,                                                              (1.25) 

where, 

𝑔 =
[(1 + 𝜉)2/3 + (1 − 𝜉)2/3]

2
 ,                                             (1.26) 

ks is dependent on kf with and 𝑘𝑠 = (4𝑘𝑓/ 𝜋)1/2 while ξ is the degree of spin polarization. The 

GGA functionals have been improved over the years and have taken different forms. The most 

successful XC functional for electronic structure calculations is the PBE [46] functional. For the 

PBE functional, the enhancement factor and correlation term are: 

𝐹𝑋
𝑃𝐵𝐸 = 1 + 𝜅 − 

𝜅

1 +
𝜇𝑠2

𝜅

                                                     (1.27) 
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and  

𝐸𝐶
𝑃𝐵𝐸 = ∫𝜌(𝑟 ){휀𝐶

𝑢𝑛𝑖𝑓𝑜𝑟𝑚[𝜌] + 𝐻(𝑟𝑠, 𝜉, 𝑡)} d𝑟  .                                 (1.28) 

The empirical parameters obtained are μ ~ 0.2195 and κ ~ 0.804 by fitting Eq. (1.27) to various 

different systems. In the exchange energy of Eq. (1.28), the correction term 𝐻(𝑟𝑠, 𝜉, 𝑡) is written 

as:  

𝐻(𝑟𝑠, 𝜉, 𝑡) =  𝛾𝑔3 log (1 +
𝛾

𝛽
𝑡2

1 + 𝐴𝑡2

1 + 𝐴𝑡2 + 𝐴2𝑡4
).                           (1.29) 

Once again, from fitting Eq. (1.29) to different systems, β ~ 0.0667, γ ~ 0.031 and  

𝐴 = 
𝛽

𝛾
[exp(

−휀𝐶
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝛾𝑔3
) − 1]

−1

.                                           (1.30) 

The implementation of PBE has been demonstrated to be highly successful in solid state 

calculations involving elements, such as Si, C, O, etc. [47]. The PBE functional has quite 

successfully been able to reproduce most of the geometrical parameters and total energy and make 

major improvements over LDA.  

 

1.2.4 DFT+U  

 

The conventional LDA and GGA functionals are not always the most efficient while 

determining the electronic band structure and magnetic properties. While they are sufficient for 

many of the materials, but when it comes to elements with d and f electrons, the LDA and GGA 

functionals fail.  The main reason for the failure is that electrons in d and f orbitals are localized. 

These localized electrons have very strong inter-electron interactions so they cannot be treated as 

homogeneous electron gas due to the large gradients in the density and, moreover, the self-

interaction term does not get cancelled explicitly. An ad hoc approximation is considered to 
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overcome this problem. In 1991, Anisimov, et al. [48] proposed the LDA+U method. A 

modification is made in the one electron Hamiltonian. A Hubbard like parameter (U) is added to 

take care of the strong electron-electron interaction. The on-site U parameter describes the effective 

electron-electron interaction (Coulomb interaction) in a solid state environment. With a proper 

choice of the U parameter, a more accurate electronic band structure can be reproduced or 

predicted.   

 

1.2.5 Calculation of the Hubbard U parameter  

 

The U parameter is dependent on the atom and the electronic configuration. It is known that 

the spatial extent of the d and f wave function changes with an increasing number of 𝑑 and f 

electrons [49]. U is mathematically defined as the sum of the energy differences between two 

excited configurations, 𝑑𝑛+1, 𝑑𝑛−1 and the ground state 𝑑𝑛. The energy required for this reaction is   

 

𝑈 = 𝐸(𝑛𝑑 + 1) + 𝐸(𝑛𝑑 − 1) − 2𝐸(𝑛𝑑),                                    (1.31) 

where, 𝐸 is the Coulomb energy of the d orbital. The inter-electronic interactions of the d electrons 

are taken into account by adding a term, 𝐸𝑈 =
1

2
𝑈 ∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗 , in the Hamiltonian. Here, 𝑛𝑖𝑛𝑗 (n = 0 

or 1) represent the occupancies of the ith and jth localized d orbital. Therefore, the total energy of a 

system is written as  

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 + 𝐸𝑈 − 𝐸𝑑𝑐 .                                              (1.32) 

Since 𝐸𝐷𝐹𝑇 is contained in part of 𝐸𝑈 already, in order to avoid double counting their contribution, 

the energies of these orbitals should be removed. Hence, these overlaps are removed from the total 

energy by taking into account this term. The last term in Eq. (1.32) is the ‘double counted’ term 

which is equal to the on-site LDA contribution to the total energy. 𝐸𝑑𝑐 is expressed as the mean-
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field value of the Hubbard term U, thereby allowing one to write the mean value of 𝐸𝑑𝑐 and 

neglected orbital polarization effects as  

𝐸𝑑𝑐(𝑛𝑑) =
1

2
𝑈𝑁𝑑(𝑁𝑑 − 1) −

1

2
𝐽𝑁𝑑(𝑁𝑑 − 1),                             (1.33) 

where 𝑁𝑑 = ∑ 𝑛𝑖𝑖  is the total number of d electrons. The on-site exchange parameter 𝐽 can be 

determined by fitting the Eq. (1.33) for the electron-electron interaction to the result of constrained 

Local Spin-density Approximation LSDA calculations [49]. This new addition to the one electron 

Hamiltonian improves the results significantly.  

 

1.2.6 Periodic Boundary Conditions  

 

The total number of particles in a solid, including the nuclei and electrons, is of the order 

of Avogadro’s number (6.022 x 1023). The one-electron wave functions are supposed to extend for 

the whole systems, thus the basis sets needed for the expansion of the Kohn Sham orbitals should 

ideally be infinite. However, a crystal structure consists of repetitions of identical units which in 

turn consist of electrons and nuclei. This enables one to use Periodic Boundary Conditions (PBC) 

and Bloch’s Theorem [50]. We start with the periodicity of the potential and the eventual solution 

of the single particle Schrödinger equation in the presence of this potential taking the form of Bloch 

wave functions  

𝜓𝑛(�⃗� , 𝑟 ) = 𝑒𝑖�⃗� .�⃗⃗� 𝑢𝑛(�⃗� , 𝑟 ).                                                    (1.34) 

Since for any lattice vector R, 𝑢𝑛(�⃗� , 𝑟 ) =  𝑢𝑛(�⃗� , 𝑟 + �⃗� ) is a periodic function, the above equation 

above can be rewritten as  

𝜓𝑛(�⃗� , 𝑟 + �⃗� ) = 𝑒𝑖�⃗� .�⃗⃗� 𝜓𝑛(�⃗� , 𝑟 ).                                                    (1.35) 
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In the above equation, n is the band index, �⃗�  is the wave vector of the electron in the first BZ. On 

substituting ψj(�⃗� , 𝑟 + �⃗� ) into the KS equation, i.e. Eq. (1.15), a new set of eigen-equations are 

obtained for a given �⃗� . The computation is thus made much more plausible by considering one 

electron rather than the order of Avogadro’s number. The complete solution is given by simply 

multiplying a wave vector �⃗�  to the phase factor of the solutions in a single reciprocal unit cell. 

Electronic wave functions at k points close to each other have similar results. Therefore, only a 

finite number of k points in a small region of the reciprocal lattice are required to determine the 

total energy of a solid, decreasing the computation load.  

 

1.2.7 Plane Wave Basis Set  

 
In order to solve the Kohn Sham equations, it is necessary to expand the KS orbitals using 

a particular basis set. Thus it is imperative to find a proper basis set to represent the KS orbitals. 

There are various options to be used as basis sets [51-53]. They have their own advantages and 

disadvantages. For a system in which periodic boundary conditions can be applied, the reciprocal 

space representation is more efficient, thus a plane wave (PW) basis set is a more obvious choice. 

Plane waves are exact eigenfunctions of the homogenous electron gas. An advantage of using PW 

basis sets is that they are independent of the atom type or positions. They are also easy to transform 

from the real to reciprocal space through fast Fourier transform (FFT). Plane waves form complete 

basis sets composed of simple mathematical functions. The completeness of basis sets can be 

controlled easily by adjusting only the kinetic energy cut-off, Ecut. Using the PW basis set, the 

single particle KS orbital in Eq. (1.34) can be expanded as:  

𝜓𝑖(�⃗� , 𝑟 ) =  ∑𝑐𝑖,𝐺 +�⃗� 

𝐺 

(�⃗� )
1

√𝑉
𝑒𝑖(𝐺 +�⃗� )∙𝑟 ,                                         (1.36) 
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where 𝐺  is the reciprocal lattice vector and is the coefficient of the PW basis set. The sum is the 

overall wave vectors (spatial frequencies) with the correct periodicity. Each wave vector represents 

a point in the reciprocal-space, and each Fourier basis function is a plane wave propagating in that 

space. In principle, an infinite number of plane waves are needed for the expansion. In practice, 

the plane wave basis sets are truncated to include only PWs that have kinetic energies smaller than 

Ecut, where 

𝐸𝑐𝑢𝑡 = 
1

2
|�⃗� + 𝐺 |2.                                                         (1.37) 

     

1.2.8 The Pseudopotential Approximation  

 

The core electrons of an atom, which are located close to the nucleus are highly localized 

due to the strong Coulomb attraction between the nucleus and electrons. On the other hand, the 

valence electrons are much more delocalized compared to the core electrons. In order to consider 

the contribution of all the electrons, their wavefunctions have to be expanded over plane wave basis 

sets. This expansion of the core wavefunctions requires a large number of plane waves. The rapid 

oscillations of the valence states in the core region due to the orthogonality with the core electrons, 

require more plane waves with higher kinetic energy. Many of the various properties of a material 

depend on the bonding of the atoms with the neighbouring atoms. Only the valence electrons take 

part in the bonding and thus allowing one to approximate the core electron interaction and ionic 

potentials with a pseudopotential which acts on a set of pseudo wave functions, rather than on the 

true valence wavefunctions. Thus, a high energy cut-off is not required for the plane wave 

expansion. Lesser number of plane waves will be needed to construct the KS orbitals and hence 

reduce the computational cost. The (pseudo)potential and pseudo-wave function and the all-

electron counterpart must be identical outside the cut-off radius, rc. These requirements are shown 
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schematically in Fig. 1.2. With the pseudopotential approximation, only valence electrons outside 

rc are considered explicitly. The pseudo-wave functions in the core region are node-less. The cut-

off radius must be properly chosen such that there is no overlap between the neighbouring atoms 

in the core regions.  

 

Figure 1.2 All-electron valence wave function and electronic potential (dashed blue lines) plotted 

against distance, r, from the atomic nucleus. The corresponding pseudo-wave function and 

potential is plotted (solid red lines). This figure has been taken from 

http://en.wikipedia.org/wiki/Pseudopotential. 

 

 

In 1994, the all electron scheme called Projector Augmented Waves (PAW) was developed 

by Blöchl [54]. While it has the numerical advantages of pseudopotential methods but nevertheless 

retains the physics of all-electron calculations. The correct nodal behaviour of the valence-electron 

wave function is also represented. On adding all-electron partial waves to the total wave functions, 

the corresponding pseudo-waves need to be subtracted. Therefore, mathematically, the 

reconstructed all electron wave function is a sum of the pseudo-wave function outside the core 

http://en.wikipedia.org/wiki/Pseudopotential
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region and the all electron partial wave function inside the core region with the corresponding 

pseudo partial wave function in the core region subtracted. The reconstructed KS wave function 

can be written as 

𝜓𝑛(𝑟 ) = �̃�𝑛(𝑟 ) − ∑�̃�𝑛
𝛼(𝑟 ) + ∑𝜓𝑛

𝛼(𝑟 )

𝛼𝛼

.                                 (1.38) 

 

1.2.9 Self-consistent Field Cycle 

 

The ingredients needed to solve the KS equations have been described in the preceding 

sections. The method of solving the KS equations will be described now. The ground-state electron 

density and ground-state total energy can be solved self-consistently using the pseudopotential, 

PAW method. The general algorithm is illustrated in the flow chart in Fig. 1.3. An initial electron 

density, 𝜌(r) is constructed from superposition of the electron densities of non-interacting atoms in 

the system. Using the initial charge density, a set of KS equations including kinetic energy and Veff 

are constructed. At this point, the KS equations are solved at each specified and interpolated point 

in the Brillouin Zone. The wave functions that are used are described by a finite set of plane waves 

and are truncated at the kinetic energy cut-off, Ecut. On solving the KS equation, a new electron 

density and potential are constructed. If the initially guessed charge density and the newly 

calculated charge density are close to each other within a pre-set tolerance, it means that 

convergence has been achieved and further calculations are stopped. If convergence is not 

achieved, the new calculated charge density replaces the initial one and this self-consistent cycle 

keeps running until convergence is achieved. This self-consistent method of solving the KS 

equation has been illustrated in Fig. 1.3. The DFT calculations have been carried out using the 

software, VASP, the Vienna ab initio Simulation Package [55-58], and the PAW potentials. 
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Figure 1.3 Step by step procedure of the working of the KS self-consistent calculation. This figure 

has been taken from http://www.iue.tuwien.ac.at/phd/goes/dissse14.html. 

 

1.3 Molecular Dynamics  

 

As described above, in DFT the primary concern is the electronic motion with respect to the 

potential energy surface (PES). The motion of the nuclei is not described using DFT. To improve 

material simulation, it is necessary is to describe the motion of the nuclei on the PES as well. 

Different atomic configurations correspond to different points on the PES. Since, every atom 

contains both electrons and a nucleus, the nuclear motion and configuration is also needed to 

completely describe the PES. The atomic configuration with the lowest energy is called the 

http://www.iue.tuwien.ac.at/phd/goes/dissse14.html
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thermodynamic ground state and is the global minimum. The mechanism behind the structural 

evolution of materials is contributed by the nuclear configuration and dynamics due to thermal and 

quantum effects.  The method of molecular dynamics (MD) [27, 59-61] was used to study the 

movement of atoms on the PES at non zero temperature. Newtonian mechanics is employed to 

describe the motion of the nuclei which are treated as classical particles. MD simulations have been 

extensively used to investigate the structural, transport, and thermodynamic properties in materials 

science.  

Due to the importance of the nuclear motion, MD provides us with both the positions and 

velocities of the nuclei. The macroscopic properties can be derived from these parameters. The 

mathematical space of these quantities is called the phase space. During the evolution of a system 

in time, the system goes through a series of such phase space points, collectively called an 

ensemble. The concept of ensemble is brought forward by statistical mechanics, which relates the 

macroscopic and thermodynamic properties (temperature, pressure, etc.) to the microscopic 

properties of the system.  Using these fundamental thermodynamic quantities, further properties 

can be derived too. An ensemble has the same thermodynamic state but different microscopic 

states. The macroscopic thermodynamic properties are defined as an ensemble average, which is 

an average over a large number of micro states of the ensemble. Thus, an MD simulation generates 

a set of points in the phase space as a function of time according to the ensemble. The ergodic 

hypothesis states that the time average is equal to the ensemble average. The properties generated 

from the MD simulations are the time average of those respective quantities. In order to simulate 

real experimental conditions, any MD simulation needs to be performed under certain ensembles. 

The three commonly known ensembles are: microcanonical or NVE ensemble, canonical or NVT 

ensemble, and isothermal–isobaric or NPT ensemble. For each ensemble, the corresponding 

aforementioned thermodynamic variables are fixed during the MD simulation.  
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1.3.1 A Simple MD Program  

 

Before we move onto the description of how an MD program works, we will present a 

general flowchart of a typical MD simulation as shown in Fig. 1.4. The flowchart gives a schematic 

of the MD algorithm.  

 

 

Figure 1.4 Schematic diagram of a basic MD code. This figure has been adapted from 

https://en.wikipedia.org/wiki/Molecular_dynamics.  

 

As can be seen in the diagram in the first step, the initial positions and velocities at time t = 0 are 

defined. The initial velocities are set according to the Maxwellian distribution of equipartition 

relationship. Then the forces on each atom are calculated by taking the gradient of the electronic 

potential energy. Once the forces are obtained, one can integrate the Newton’s equation of motion 

to get the positions and velocities. There are various algorithms that are used in MD. The two 

https://en.wikipedia.org/wiki/Molecular_dynamics
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commonly used algorithms for integration are, the Velocity Verlet (VV) algorithm and the Verlet 

Leapfrog (VF) algorithm. Both schemes can simultaneously evolve the velocity and position with 

time. The equations of the VV algorithm are written as: 

𝑣 𝑛+1/2 = 𝑣 𝑛 +
𝑓 𝑛. ∆𝑡

2𝑚
                                                        (1.39) 

 

𝑟 𝑛+1= 𝑟 𝑛 + 𝑣 
𝑛+

1
2
. ∆𝑡                                                          (1.40) 

𝑣 𝑛+1 = 𝑣 𝑛+1/2 +
𝑓 𝑛+1. ∆𝑡

2𝑚
                                                  (1.41) 

The half-step velocity calculated from the force is used as the mean velocity between steps n and 

n + 1 to update the velocity and position. A similar approach is also used for the VF algorithm 

which also makes use of the half-step velocities. The velocity is given by,  

𝑣 𝑛+1/2 = 𝑣 𝑛−1 +
𝑓 𝑛. ∆𝑡

2𝑚
 .                                                   (1.42) 

The new position and velocity at the (n+1)th step is then given by, 

𝑟 𝑛+1= 𝑟 𝑛 + 𝑣 𝑛+1/2. ∆𝑡 ,                                                      (1.43) 

𝑣 𝑛+1 = 𝑣 𝑛+1/2 + 𝑣 𝑛−1/2 .                                                  (1.44) 

From MD, a time dependant trajectory of the atoms of the concerned system is determined from 

successive integration of the steps. The total time depends on the time required and set. Once the 

trajectory is obtained, exploiting the ergodic hypothesis, from the time average, many microscopic 

and macroscopic properties of the system are calculated. An MD calculation runs in a loop until 

the number of desired times steps in reached.  
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1.3.2 Ab initio Molecular Dynamics  

 

The nuclei of most atoms can be treated as classical point-like particles, and their motions 

can be studied by Newton’s laws; this forms the basis for classical MD. The forces on the atoms 

can be calculated quantum mechanically using the Hellmann-Feynman theorem, and this method 

is known as ab initio MD (AIMD). In AIMD the forces are calculated from the Hellmann-Feynman 

Theorem and is written as 

𝑭 = −
𝑑𝐸

𝑑�⃗� 
 ,                                                                    (1.45) 

where R is the nuclear spatial coordinate and the energy E can be obtained by solving the KS 

equations:  

𝐸 = ⟨𝜓|𝐻𝑒|𝜓⟩                                                                 (1.46) 

From Newton’s 2nd law and Eq. (1.45), one can get the Hellmann-Feynman force as: 

𝑭 = − ⟨𝜓|
𝜕𝐻

𝜕�⃗� 𝐼
|𝜓⟩ − ⟨

𝜕𝜓

𝜕�⃗� 𝐼
|𝐻|𝜓⟩ − ⟨𝜓|𝐻|

𝜕𝜓

𝜕�⃗� 𝐼
⟩ .                               (1.47) 

Since the ground state is the lowest energy state, it is the minimum point with respect to any 

variation of the wave function and thus the second and third terms vanish. This leads to an 

expression of the force on an ion, which is given by the expectation value of the gradient of the 

electronic Hamiltonian in the ground state. Once again, the AIMD simulations reported in this 

thesis were performed by using VASP.  

 

1.4 Metadynamics 

 

The science behind chemical reactions, phase transitions or protein folding was widely 

studied after the introduction of ab initio MD as discussed in the previous section. It bolstered the 
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predictive power of computational techniques by being able to identify possible new structures 

without any prior knowledge. However, standard MD is not efficient enough to simulate such 

processes due to the fact that many of the structural phase transitions are first order. In practice, 

such transitions are initiated by nucleation which start at the surface or structural defects. Due to 

the small systems used in simulations and mostly being perfect crystals, nucleation cannot be 

simulated. In reality, the structural defects occur naturally which pave the way for first order phase 

transitions reducing the transition barrier. But in computer simulations, the barrier which is high, 

requires a lot of energy to be crossed to the next global or local minimum. In order to overcome 

such high energy barriers, the system can be over pressurized and the contribution from the PV 

term increases the Gibb’s potential. But such over pressurization leads to mechanical instability 

[62] and can also skip some of the intermediate metastable phases, thus missing out on more details 

about intermediate structures. This shortcoming was solved by Laio and Parrinello [63]. The 

metadynamics method enables the system to cross high free-energy barriers. This method employs 

biased potentials and adds them to the original free energy to lower the energy barrier and promote 

crossing. The biased potential, which is usually represented by a Gaussian function, is constructed 

from a few order parameters called collective variables (CV). The underlying principle of the 

metadynamics is illustrated in Fig. 1.5. In the illustration, the PES of the system is represented by 

the black curve. In Fig. 1.5b, it has been shown how Gaussians are added into the well to eventually 

give rise to an energy ladder which allows the system to reach the top of the potential well and 

descend into the next well. To give a cursory idea of the Gaussians filling up the potential well, 

approximate representations of the Gaussians have been shown in Fig. 1.5b, rather than showing 

the whole profile of the function. The local minima correspond to metastable phases. Thus, once a 

potential valley is filled, the other valleys can be explored.  
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Figure 1.5 a) Underlying principle of the metadynamics method of crossing the energy barriers 

and b) Gaussians filling up a potential well to overcome the energy barrier (Courtesy Yansun 

Yao) 

 

Different order parameters are chosen for specific properties. For metadynamics, the model box 

edges, h = (a,b,c) are chosen to be the order parameters arranged in the form of a 3  3 matrix. The 

h matrix contains the freedom of the cell parameters, the 3 cell lengths, 3 angles and 3 global 

rotations. Out of the 9 independent degrees of freedom (DOF), the 3 global rotations can be avoided 

by freezing them and thereby reducing the number of DOF to 6. The 3 global rotations are removed 

by constructing an upper triangular form of the h matrix. The evolution of this set of order 

parameters is written as: 

𝒉𝑡+1 = 𝒉𝑡 + 𝛿ℎ
𝜙𝑡

|𝜙𝑡|
 .                                                        (1.48) 

𝜙𝑡 = −
𝜕𝐺𝑡

𝜕𝒉
 is the driving force, where G is the history-dependent Gibbs free energy. The Gibbs 

free energy is a function of the box edges, such that on varying the box edges, a thermodynamic 

state is reached. In order to avoid bringing the system to a state already traversed through, a 
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Gaussian function is added to the point already passed. Hence, the term history-dependent has been 

used. This history-dependent Gibbs potential is given as: 

𝐺𝑡(ℎ) = 𝐺(ℎ) + ∑ 𝑊𝑒
−
|𝒉−𝒉𝒕′|2

2𝛿ℎ2

𝑡′<𝑡

  .                                             (1.49) 

The force is then a sum of the thermodynamic forces. With the passage of time, this history-

dependent potential fills up the valley and pushes the system out of the local minimum into the 

next minimum, which can be local or global.  Each such minimum represents a phase which is 

either meta stable or the ground state. Thus, using metadynamics, one can traverse the whole energy 

contours, searching for the ground state configuration of the atoms. In the works presented in this 

thesis, the metadynamics simulations were carried out using the metadynamics code introduced by 

Martoňák et al. [64-65] interfaced with VASP.  

 

1.5 Superconductivity 

1.5.1 Qualitative Description of BCS Theory  

 

Superconductivity, the property of a material to have negligible electrical resistance, is a 

many-body phenomenon in which the quantum coherence effects are manifested at the 

macroscopic scale. The first successful theory of superconducting states was put forward by 

Bardeen, Cooper and Schrieffer (BCS) [66]. The underlying concept of the BCS theory is that 

electrons with opposite momenta and spins close to the Fermi level form a pair, known as Cooper 

pair [67]. The mechanism of the formation of Cooper pairs is as follows. When an electron moves 

through a lattice, there is a lattice distortion with the positive charges crowding more around the 

moving electron, thus increasing the net positive charge density in that particular region. This 

positive charge cloud attracts any other electron in close proximity. Thus, pairing of electrons is 
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caused by small attractive interactions resulting from coupling with lattice vibrations. This 

attractive interaction, is called the Electron Phonon Coupling (EPC). If the strength of EPC is more 

than that of electron-screened Coulomb repulsion, then the resultant interaction between the 

electrons is attractive and superconductivity occurs. Such pairs of electrons move in a single 

coherent motion, giving rise to ideally zero electrical resistance in the material.  This gives rise to 

the formation of bound-pairs of electrons, eventually stabilizing the system by a second order 

transition to superconducting states. The three major ingredients in the BCS theory are EPC, 

Coulomb repulsion, and the instability at the Fermi surface. Fig. 1.6 gives a schematic 

representation of electron-phonon coupling, according to BCS theory. 

 

 

Figure 1.6 (Left) Formation of Cooper pair. A passing electron attracts ions which attract another 

electron. (Right) The interaction of two electrons with momenta �⃗�  and �⃗� ' that are coupled via 

exchange of a phonon. This figure has been taken from Ref. [68].  

 

1.5.2 Superconducting Critical Temperature Tc from First Principles 

 
 

In the strong coupling regime, the Migdal-Eliashberg theory [69-72] is an extension of the 

BCS theory. This theory relates the superconducting critical temperature to the underlying 

microscopic phenomena. In the Migdal-Eliashberg theory, the extent of the attractive electron-

phonon interactions is quantified by the EPC parameter, λ. The electron-screened Coulomb 
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interaction, which is repulsive in nature is represented by the Coulomb pseudopotential, μ*. 

According to the Migdal-Eliashberg theory, the EPC is characterized for each phonon branch and 

every phonon frequency. These are determined by the lattice dynamics of the material. A 

comprehensive description of the superconducting state can be obtained from the Eliashberg 

spectral function α2F(ω) [73], 

                                               𝛼2𝐹(𝜔) =
1

2𝜋𝑁(휀𝐹)
∑

𝛾�⃗� 𝑗

𝜔�⃗� 𝑗

𝛿 (𝜔 − 𝜔𝑞𝑗
)

�⃗� 𝑗

𝑤(𝑞 ),                              (1.50) 

where 𝜔�⃗� 𝑗 is the phonon frequency of mode (𝑞 j) and w(𝑞 )  denotes the weight of phonon point 𝑞  

in the first BZ. 𝑁(휀𝐹) is the DOS at the Fermi level 휀𝐹. The phonon linewidth of mode (𝑞 j), is 

given by 

𝛾�⃗� 𝑗
= 2𝜋𝜔�⃗� 𝑗

∑∫
𝑑�⃗� 

𝛺𝐵𝑍
|𝑔

�⃗� 𝑛,�⃗� +�⃗� 𝑚

𝑗
|2𝛿(휀�⃗� 𝑛 − 휀𝐹)𝛿(휀�⃗� +�⃗� 𝑚 − 휀𝐹)

𝑛,𝑚

 ,                (1.51) 

where the volume integral is taken over the first BZ. The 휀�⃗� 𝑛 and 휀�⃗� +�⃗� 𝑚 are the Kohn- Sham 

eigenvalues with wavevectors �⃗�  and �⃗� +𝑞  in the nth and mth band. The 𝑔
�⃗� 𝑛,�⃗� +�⃗� 𝑚

𝑗
 is the electron-

phonon matrix element determined from the linearized self-consistent potential. 

The Eliashberg spectral function α2F(ω) provides with an understanding of which region 

of the vibrational frequency spectrum contributes to the total EPC of the system. This quantity can 

be measured by tunneling experiments. In theory, 𝛾�⃗� 𝑗
and α2F(ω) can be calculated from the EPC 

strength 𝜆�⃗� 𝑗
 of each phonon mode (𝑞 j) by 

𝜆�⃗� 𝑗
=

𝛾�⃗� 𝑗

𝜋ћ𝑁(휀𝐹)𝜔�⃗� 𝑗
2  .                                                        (1.52) 

The attractive interaction in the system is represented by the EPC parameter λ, which is a weighted 

average of α2F(ω) over the entire vibrational regime, 
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𝜆 = 2∫
𝛼2𝐹(𝜔)

𝜔

∞

0

𝑑𝜔 ≈  ∑𝜆�⃗� 𝑗
𝑤(𝑞 )

�⃗� 𝑗

 .                                  (1.53)  

 

In Eq. (1.53), λ is approximated by a weighted average of 𝜆�⃗� 𝑗 for all vibrational modes (𝑞 j) in the 

first BZ where 𝜆�⃗� 𝑗 is the EPC strength projected on each mode.  

Once the α2F(ω) and Coulomb pseudopotential μ* are known, the superconducting critical 

temperature, Tc can be calculated by solving the Eliashberg gap equations. However, this is a 

cumbersome calculation. Therefore, McMillan constructed a simplified equation relating Tc and 

α2F(ω), better known as the McMillan equation [74] in the field of superconductivity. The original 

form of the McMillan equation is 

𝑇𝑐 = 
𝜔𝐷

1.45
𝑒𝑥𝑝 (−

1.04(1 + 𝜆)

𝜆 − 𝜇∗(1 + 0.62𝜆)
) .                                 (1.54) 

 

Eq. (1.54) was found to work well for materials with λ < 1.0 but not for larger values of λ. Allen 

and Dynes introduced a successful modification of the McMillan equation [75-76], and this 

equation, known as the Allen-Dynes modification of the McMillan equation is given as follows, 

 

 𝑇𝑐 = 
𝜔𝑙𝑜𝑔

1.2
exp (−

1.04(1 + 𝜆)

𝜆 − 𝜇∗(1 + 0.62𝜆)
) ,                               (1.55) 

where 𝜔𝑙𝑜𝑔 is the logarithmic average of phonon frequency, 

 𝜔𝑙𝑜𝑔 = exp [
2

𝜆
∫

𝑑𝜔

𝜔

∞

0

𝛼2𝐹(𝜔)𝑙𝑛𝜔].                                      (1.56) 

The Allen-Dynes modification of the McMillan equation Eq. (1.54) is widely used equation for the 

estimation of Tc for materials that have an EPC parameter greater than one.  
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In order to calculate Tc from Eq. 1.55, λ and 𝜔𝑙𝑜𝑔, can be obtained quite conveniently from 

the knowledge of α2F(ω) (Eqs. (1.52) and (1.55)). The remaining term, i.e. the Coulomb 

pseudopotential μ*, is approximated from a rescaled Coulomb repulsion parameter μ to include 

retardation effects [77] as follows: 

𝜇∗ =
𝜇

[1 + 𝜇 ln(𝑇𝐹/𝜃𝐷)]
 ,                                                    (1.57) 

where 𝑇𝐹 and 𝜃𝐷 are the Fermi and Debye temperatures. The Coulomb repulsion parameter μ 

depends on the configuration of nuclei and is difficult to evaluate from first principles [78]. Thus 

an empirical value of μ* between 0.10-0.13 is commonly used [79]. If the value of μ is not known, 

an approximate upper limit on μ* can be calculated by setting μ to infinity [80, 81], and form 

elementary algebra, one can get the expression of μ* as, 

𝜇∗ =
1

ln(𝑇𝐹/𝜃𝐷)
                                                              (1.58) 

The Debye temperature can be calculated from the semi-empirical equation [81] 

 

𝜃𝐷 = 1.4
ћ

𝑘𝐵

√< 𝜔2 > ,                                                   (1.59) 

where <ω2> is defined as  

< 𝜔2 >=
2

𝜆
∫ 𝑑𝜔

∞

0

𝜔𝛼2𝐹(𝜔)                                               (1.60) 

In this thesis, the superconducting properties of selected high-pressure materials have been 

investigated using the Migdal-Eliashberg theory. The Tc of these materials was estimated using the 

Allen-Dynes modification of the McMillan equation Eq. (1.55). The vibrational frequency 𝜔�⃗� 𝑗, 

EPC strength 𝜆�⃗� 𝑗, and Eliashberg spectral function α2F(ω) were determined within the framework 
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of density functional perturbation theory (DFPT) using the electronic structure package Quantum 

ESPRESSO [82]. 

 

1.6 Post Processing Methods 

 

There are several dynamical properties that can be obtained from the trajectories gotten 

from the MD simulations. Some of these properties are the autocorrelation function, mean squared 

displacement, and pair correlation function, which can be calculated from the trajectory. Other 

properties such as diffusion coefficient and coefficient of viscosity can be further computed from 

the mean squared displacement and autocorrelation function, respectively.  

 

1.6.1 Time-correlation Functions  

 

The dynamics of a system can be described by the time correlation function. Time 

correlation function describes the cause-and-effect relationship between two time-dependent 

properties with the evolution of time. A time-correlation function, also known as the Green-Kubo 

relation, is ideally independent of the time origin and is defined as:  

𝐶(𝑡) =  lim
𝜏→∞

1

𝜏
∫ 𝐴(𝑡0)𝐵(𝑡0 + 𝑡)𝑑𝑡 =  〈𝐴(𝑡0)𝐵(𝑡0 + 𝑡)〉

𝜏

0

.                         (1.61) 

The 〈… 〉 term is the ensemble average, and A and B are the dynamic variables of interest (e.g., 

stress tensor, velocity, etc.). When A and B are the same variables, then C is called an auto-

correlation function. The auto-correlation function measures the extent to which A(t0+t) is 

correlated to the initial value A at the beginning of the simulation. The value of correlation, C, 

plotted as a function of time starts at a certain value and then decays to a lower value. This decay 

is due to the interaction with the surroundings. One example of a time-dependent correlation 

function is the stress autocorrelation function (SACF) as the stress is a direct manifestation of the 
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dynamics. For SACF, the A(t) in Eq. (1.61) is replaced with the stress tensor. At a chosen time 

origin t0, the components of the stress tensor are PXX(t0), PYY(t0), PZZ(t0), PXY(t0), PYZ(t0) and PZX(t0). 

Since the stress in an equilibrium system exhibits periodic oscillations, the correlation Eq. (1.61) 

is expanded over a range of time. The process is then restarted to calculate another SACF, starting 

at a new time origin. In this way, one can compute a series of time frames and that can remove the 

erroneous dependence on the time origins. In our work, the SACF, C(t)  is calculated as  

𝐶(𝑡) =  lim
𝜏→∞

1

𝜏
∫ 〈𝑃(0)𝑃(𝑡)〉𝑑𝑡                                                 (1.62)

𝜏

0
  

Since the stress in system is related to the force, the study of SACF can reveal interactions 

in a system. From SACF one can obtain other important dynamical properties of the system. 

Assuming that the SACF decays to zero, we can calculate the coefficient of viscosity, η, from 

numerical integration: 

𝜂 =
𝑉

𝑘𝐵𝑇
lim
𝜏→∞

1

𝜏
∫ 〈𝑃(0)𝑃(𝑡)〉𝑑𝑡

𝜏

0

 ,                                          (1.63) 

where V is the volume of the system, T is the absolute temperature and kB is the Boltzmann constant. 

Although, here the focus is on the viscosity, first-principles calculations is plausible for other 

transport coefficients too such as the thermal conductivity, chemical inter-diffusion coefficients, 

etc. all of which contribute to the attenuation of sound in fluids. 

 

1.6.2 Mean Squared Displacement  

 

From an MD trajectory, it is possible to obtain information on how far an individual particle 

moves by calculating the mean squared displacement (MSD). MSD is defined as the square of the 

distance a particle has moved from its starting point within a time interval, t: 

𝑀𝑆𝐷 = 〈|𝑟 (𝑡) − 𝑟 (0)|2〉                                                       (1.63) 
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For a liquid, the plot of MSD against time is linear with a finite slope. It is possible to get the 

diffusion coefficient, D, from this slope. As propounded by Albert Einstein, the MSD is related to 

the diffusion coefficient of an ‘N’ dimensional system as follows:  

𝐷 =
1

2𝑁

𝑑

𝑑𝑡
〈|𝑟 (𝑡) − 𝑟 (0)|2〉                                                   (1.64) 

where N = 1,2 or 3.  

1.6.3 Pair Correlation Function  

 

Pair correlation function, also called radial distribution function (RDF), g(r) gives an 

estimate as to how the density varies as a function of the distance from a reference particle. Thus, 

it represents how atoms are radially packed around each other. It is one of the quantities that can 

be directly compared with experimental data. The RDF is defined as,  

𝑔𝛼𝛽(𝑟) =
𝑑𝑛𝛼𝛽(𝑟)

4𝜋𝑟2𝑑𝑟 𝜌𝛼
 ,                                                         (1.65) 

where 𝜌𝛼 =
𝑁𝛼

𝑉
 is the number density of the particles of type α. V is the volume of the system. In 

Eq. (1.65), 𝑑𝑛𝛼𝛽(𝑟) is the number of β atoms around α atoms within a radial distance of r and r + 

dr. The RDF is plotted with respect to the radial distance, r. The position of the first peak indicates 

the distance of the nearest neighbour from the reference atom. In between r = 0 and the first peak, 

the RDF is equal to 0. This is a consequence of the ‘hard sphere radius’ of the atom, disabling the 

pair of atoms from approaching very close. The long-range interactions can also be determined 

from the peaks which are located at larger values of the radial distance. The peaks of a solid are 

always sharp whereas for a liquid, they are much broader due to the randomness. An example of 

the radial distribution function is given in Fig. 1.7. In Fig. 1.7b, the first peak in the RDF 

corresponds to the nearest neighbours while the broader second peak represents the more loosely 

packed second nearest neighbours. 
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Figure 1.7 (a) Typical RDF of a liquid system. (b) Schematic diagram of a two-dimensional fluid 

and its corresponding RDF. This figure is adopted from Ref. [83].  

 

1.7 Description of the Thesis 

 

 The aim of this thesis work is to predict and find out the various properties of novel 

materials using computational techniques. All the materials that have been discussed in this thesis 

were subjected to high pressure to discover any new phases with new characteristics. We have 

primarily studied structural phase transitions of crystalline as well as amorphous substances at high 

pressures and their thermodynamic, electronic and superconducting properties. The structural 

relaxations, molecular dynamics and electronic properties calculations were carried out using the 

Vienna ab initio Simulation Package (VASP). The phonons using linear response, vibrational 

properties and superconducting properties were determined using Quantum ESPRESSO.  
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 Chapter 2 presents the results of a first order structural phase transition of aluminium 

triiodide (AlI3) on compression, otherwise not reported in a recent experimental study. A high 

pressure monoclinic phase is predicted to exist above 1.3 GPa accompanied with a coordination 

change of aluminium. The coordination change resulted in the transformation from the ambient 

pressure 4-coordinated primitive monoclinic phase with space group P21/c to the monoclinic 6-

coordinated structure with space group C2/m. Infrared effective charge intensities and Raman 

scattering tensors were obtained to characterize its spectroscopic properties. First-principles 

metadynamics simulations were employed to reconstruct this phase transition and provide the 

mechanism details for energetically favourable path from the ambient pressure P21/c structure to 

the predicted C2/m structure.  

 Chapter 3 presents the results of an extremely relevant and debated contemporary topic. In 

2015, the superconducting phase of hydrogen sulfide (H2S) was discovered at a pressure close to 

200 GPa with a critical temperature of 203 K. Due to the lack of knowledge of the exact atomic 

structure which was responsible for this phase, many studies, both experimental and theoretical 

were carried out. In our study, we employed metadynamics at various high pressures and different 

temperatures to study the transition pathway and to find the desired structure. As expected, the 

compression pathway was responsible for different metastable structures. Out of the different 

structures we found, we reported a new structure whose simulated X-Ray diffraction (XRD) pattern 

matched well with the experimental finding. Further, superconductivity calculations were also 

carried out on this new structure whose results are consistent with that observed in experiment.     

 Chapter 4 deals with the superconductivity of the newly synthesized material, FeH5 at 130 

GPa and 200 GPa.  The atomic nature of hydrogen in this structure sparked the interest to study the 

superconductivity as a high superconducting critical temperature was expected. But, contrary to 

the expectation, the critical temperature was not as high and a theory was put forward for our 
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observation. The theoretical conjecture that has been put forward in this chapter relates the phonon 

dispersion spectrum and the superconducting properties.  

 Chapter 5 presents an extensive study of Basalt at lower mantle conditions. In this chapter, 

we study both the glass and melt form of Basalt. Using ab initio molecular dynamics, the basalt 

was subjected to computational simulations at various high pressures. The phase transition, 

coordination change of the atoms and the transitions of the bulk modulus, density, velocity of 

sound, diffusion coefficient have been reported. Indeed, similar to other silicate glasses and melts, 

basalt also showed structural phase transitions at the similar pressure regions. The Si-O and Al-O 

coordination numbers increased as expected from 4 to 6. Various thermodynamic and transport 

properties have been reported for the different pressures.   

 Chapter 6 is an overall summary of the work that I carried out for my doctoral studies. It 

also addresses the prospective work that can be undertaken in the future.  

Most of the work presented in this thesis has now been published in peer-reviewed journals 

or submitted for publication. The references are as follows:  

1) Arnab Majumdar, Dennis D. Klug, and Yansun Yao, High Pressure Structural Changes in 

Aluminium Triiodide: A First Principles Study, J. Chem. Phys. 144, 124507 (2016). 

2) Arnab Majumdar, John S. Tse, and Yansun Yao, Modulated Structure Calculated for 

Superconducting Hydrogen Sulfide, Angew. Chem. Int. Ed., 56, 11390 (2017). 

3) Arnab Majumdar, John S. Tse, and Yansun Yao, Superconductivity in FeH5, Phys. Rev. B 96, 

201107 (2017). 

4) Arnab Majumdar, John S. Tse, and Yansun Yao, Transformation and Superconductivity from 

a Molecular to Modulated Structure of Hydrogen Sulfide at High Pressure (Submitted).     

http://scitation.aip.org/search?value1=Yansun+Yao&option1=author&option912=resultCategory&value912=ResearchPublicationContent
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A few other studies have also been published in which I contributed as a secondary author. These 

papers although have not been added as chapters in this thesis, but have been listed below to give 

an essence to the readers about the focus of our research group and the techniques and class of 

materials studied. 

 Michael J. Greschner, Meng Zhang, Arnab Majumdar, Hanyu Liu, Feg Peng, John S. Tse, and 

Yansun Yao,  A New Allotrope of Nitrogen as High-Energy Density Material, J. Phys. Chem. 

A, 120, 2920 (2016). 

 Shuangshuang Zhu, Feng Peng, Hanyu Liu, Arnab Majumdar, Tao Gao, and Yansun Yao, 

Stable Calcium Nitrides at Ambient and High Pressures, Inorg. Chem., 55, 7550 (2016). 

 Yansun Yao, Elissaios Stavrou, Alexander Goncharov, Arnab Majumdar, Hui Wang, Vitali  

        Prakapenka, Albert Epshteyn, and Andrew Purdy, High-pressure Phase Transition of Alkali  

        Metal−Transition Metal Deuteride Li2PdD2, J. Chem. Phys, 146, 234506 (2017).  

 Adebayo A. Adeleke, Michael J. Greschner, Arnab Majumdar, Biao Wan, Hanyu Liu, Zhiping 

Li, Huiyang Gou, and Yansun Yao, New single-bonded high-pressure allotrope of nitrogen, 

Phys. Rev. B 96, 224104 (2017).  

 

 

 

 

 

 

 

 

http://pubs.acs.org/author/Yao%2C+Yansun
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CHAPTER 2 

STRUCTURAL CHANGES IN ALUMINIUM TRIIODIDE UNDER HIGH PRESSURE: A 

FIRST PRINCIPLES STUDY 

A similar version of this chapter has been published as a research article in the Journal of Chemical 

Physics. The reference is as follows. 

 Arnab Majumdar, Dennis D. Klug, and Yansun Yao, “High Pressure Structural Changes in 

Aluminium Triiodide: A First Principles Study”, J. Chem. Phys. 144, 124507 (2016). 

 

It has always been interesting to study the various properties of materials at extreme 

conditions like extreme temperatures and pressures. The reason for this interest lies in the fact that 

under different conditions, materials often show drastically different properties than what they 

possess at ambient conditions. On exerting pressure, mechanical work is done on the system (PΔV) 

which increases the enthalpy of the system. This additional energy is capable of overcoming energy 

barriers (bond energy) and leading to breaking of existing bonds and rearranging the atoms to new 

positions. Thus, structural phase transition occurs under high pressure. Therefore, high pressure 

i.e. a large amount of compression, leads to instability and further phase transition to a new 

structure. This new structure might have completely different electronic, optical, thermal, etc. 

properties owing to the new atomic arrangements. Even today it is not always possible to reach 

very high pressures experimentally but the compression process can be simulated on a computer 

quite easily. In this chapter the structural phase transition of the material that we have studied in 

detail is Aluminium triiodide (AlI3). The ambient condition AlI3 has been compressed and the 

compressed structure was subjected to ab initio metadynamics simulations to study the change in 

enthalpy if any, thus confirming structural phase transition of AlI3 at high pressures.  To confirm 

http://scitation.aip.org/search?value1=Yansun+Yao&option1=author&option912=resultCategory&value912=ResearchPublicationContent
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our findings, the Raman activity was also calculated. Furthermore, the electronic structures were 

studied too, to see how the electronic properties change with pressure. 

 

2.1 Introduction 

 

Metal halides are a subject of interest as they offer a wide range of applications for example 

in the battery industry, solar cells, etc. Aluminum halides have gained recent attention due to the 

interest in studies of its structure both in the gas phase and in the solid form under high pressure 

[84-85].  Due to its wide range of applications, widespread research in the domain of aluminium 

halides has been conducted. Some of these applications include the use of aluminium bromide in 

water treatment, the usage of Aluminium bromide and chloride as catalysts in Friedel-Crafts 

Alkylation reactions and so on [86]. The introduction of the gas-phase electron diffraction (GED), 

gave way for gaseous aluminium halides to be extensively studied [84, 87-89]. Similar to other 

metal halides, aluminium halides have numerous applications too. For example, aluminium 

triiodide (AlI3) is used in the first stages of the synthesis of AlN, a ceramic material with high 

thermal conductivity [90-91].  

In the gaseous phase, the structures of aluminium halides are difficult to decipher by GED 

due to the presence of both monomeric and dimeric species. Intuitively, one can understand the 

structure of aluminium halides by the electronegativity of the halogens and the cation-to-anion 

radius ratio [85]. For example, the smaller anionic radii of fluorine and chlorine (1.15 Å and 1.67 

Å) give way to the formation of 6 coordinated AlX6 octahedrons in solid AlF3 and AlCl3 [92-93]. 

Bromine and iodine, on the other hand, have larger anionic radii (1.82 Å and 2.06 Å), which only 

enable the formation of 4 fold coordinated AlX4 tetrahedrons in solid AlBr3 and AlI3 [92-93]. As 

already pointed out, in the vapor phase, aluminium halides can exist either as monomers (AlF3), or 
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dimers (Al2Cl6, Al2Br6, and Al2I6), which decompose into monomers at high temperatures (AlCl3, 

AlBr3, and AlI3) [84]. Both AlI3 and AlBr3 exist as molecular solids at ambient conditions [94-95]. 

They both contain double-bridged dimers, which can be viewed as pairs of AlX4 tetrahedrons 

connected through a common shared edge (Fig. 2.1). In the rest of the chapter, in all the diagrams 

showing crystal structures, the pink spheres are Al atoms while the brown spheres denote I atoms. 

In the solid state, the halogen atoms are close-packed, forming a (distorted) hexagonal close packed 

(HCP) lattice as in AlBr3 or a (distorted) face centered cubic (FCC) lattice as in AlI3. In both the 

cases Al occupies 1/6 of the tetrahedral voids. Yao et al. suggested that on being compressed (ca. 

0.4 GPa), AlBr3 would transform from the dimer-based molecular crystal to a polymeric phase. In 

this phase transition the sp3 bonded AlBr4 tetrahedra would rearrange into extended arrays of AlBr6 

octahedrons [96]. At ambient conditions, AlI3 crystallizes into a monoclinic structure (SG: P121/c1 

(14)) with four formula units per unit cell [94]. In this structure, sharing of a common edge between 

two AlI4 tetrahedrons gives rise to Al2I6 dimers. The bridging bonds are longer than the terminal 

Al-I bonds. A thorough inspection of this structure shows that the distorted FCC sublattice is 

formed by the iodine atoms, with cell distances and angles at near-to-ideal cubic values. Yet, AlBr3 

crystallizes in the same structure type, with the Br atoms forming a distorted HCP sublattice [95].  

                                             

Figure 2.1 P21/c dimer structure of Al2I6 at ambient pressure. The bond angles and lengths indicated 

are those of the gas phase.  
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In this chapter, we report the investigation of crystalline AlI3 at high pressure.  Owing to 

the chemical similarity of iodine and bromine, a similar trend of high-pressure phase transitions 

like AlBr3 may be expected for AlI3 as well. Density functional based structural predictions, 

phonon and Raman spectra calculations along with first principles metadynamics simulations have 

been carried out to characterize the structural changes in AlI3 under high pressure. In an experiment 

carried out by Stavrou et al. [85], the researchers suggested that an isostructural rearrangement of 

the monoclinically distorted FCC lattice of I atoms at ambient pressure to a standard FCC is 

possibly occurring in AlI3 under high pressure. But the experimental equation of states indicates a 

sudden unexplained volume drop near 5 GPa that could probably have its explanation originating 

from the re-coordination of Al in the FCC lattice. This possible phase transition has been verified 

by us in this study. The Raman spectrum calculated also vouches for phase transition as will be 

discussed in section 2.3.1.  

 

2.2 Computational Method 

 

All the calculations in this study were done within the framework of Density Functional 

Theory (DFT) [97] by solving the Kohn-Sham equations [23]. The Vienna ab initio Simulation 

Package (VASP) [55] was employed to optimize the structures and obtain the enthalpies, pressure-

volume relation, and hence the equation of state of AlI3. For the pseudopotentials, the projector-

augmented-plane wave (PAW) [54, 98] potentials were used. The Al and I potentials were 

considered with valence states of 3s23p1 and 5s25p5 utilizing the Perdew-Burke-Ernzerhof [46] 

exchange correlational functional and an energy cutoff of 240.3 eV. The Brillouin zone was 

sampled by using a 6×6×6 Monkhorst Pack k-point mesh [99]. Mechanical stability of the predicted 

structure was determined by phonon calculations using a finite displacement approach through a 
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combination of VASP and PHON [100] programs. These calculations were done with a 2×4×4 

supercell and a 2×2×1 k-point mesh to obtain accurate interatomic forces. In order to study the 

phase transition, metadynamics [64-65] simulations were carried out in supercells with 8 AlI3 units 

with a 2 × 2 × 2 k-point mesh for Brillouin zone sampling. Each metastep consisted of a molecular 

dynamics (MD) simulation using VASP and the canonical (NVT) ensemble for a simulation time 

of 0.4 ps. Calculations of the Born effective charges for infrared activity were obtained with the 

ABINIT code [101] employing density functional perturbation theory (DFPT) from second-order 

derivatives of the energy. Calculations of the Raman spectrum and Raman tensors were obtained 

with DFPT [102] using Troullier-Martins-type pseudopotentials [103] with an 8 × 8 × 8 k-point 

mesh sampling [99] of the Brillouin zone from the evaluation of the third-order derivatives of the 

energy. 

 

2.3 Results  

2.3.1 Structural Phase Transition 

 

In order to compare which structure is energetically the most stable, different metal trihalide 

AX3 structures have been considered in the present study as the candidate structures for AlI3 at 

high pressure. These include the structures of GaX3, BiX3 [104-105], InX3 [106-107], and BX3 

[108-110], as well as the predicted structures using the ‘random search method’ [111]. At 1 atm 

(ambient pressure), the experimentally known P21/c structure was found to be the most 

thermodynamically stable structure (Fig. 2.2). This structure consists of a distorted FCC lattice of 

iodine, which was also confirmed by Stavrou et al. [85] As expected for an FCC lattice, in Ref. 

[85], the authors reported that the iodine atoms are arranged in an ABCABC layer stacking, 

whereas the aluminium atoms occupy 1/6 of the tetrahedral sites and bond with adjacent iodine 
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atoms to form Al2I6 dimers. The aluminium atoms are 4-fold co-ordinated evident in the figure in 

which the dimers can be visualized as two AlI4 tetrahedrons bonded along a common edge.  With 

the same formula unit assignment, the same AlI3 material with a hexagonal close-packed lattice of 

iodine (in the same P21/c space group) was also examined, which is the structure adopted by solid 

AlBr3. This was done for confirmation and comparison of the energies of the two different 

structures with different iodine atom layer stacking. The two types of close-packed lattices (FCC 

and HCP) were found to have very similar energies, with the FCC slightly more favorable by a few 

meV/AlI3. This similarity arises due to the very similar atomic density. Candidate structures 

consisting of Al2I6 dimers with other sequences of close-packing all have very similar calculated 

energies at 1 atm. 

 

Figure 2.2 P21/c dimer structure of AlI3 at ambient pressure. The pink spheres are Al atoms while 

the brown spheres denote I atoms. 

 

Stavrou et al. [85] did not report any first-order phase transition of AlI3 up to 50 GPa and 

rather suggested a second order continuous transition to an undistorted FCC lattice for the iodine 

atoms from the x-ray diffraction experiment. However, in our study, we identified a phase 
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transition at approximately 1.3 GPa. On reaching this pressure, a monoclinic C2/m 6-fold 

coordinated structure, isostructural to solid AlCl3 [112], was discovered to be more stable (Fig. 

2.3). 

 

Figure 2.3 Polymerized C2/m structure of AlI3 at 2.4 GPa. The pink spheres are Al atoms while the 

brown spheres denote I atoms. 

 

 In the C2/m structure, i.e., after the structural phase transition from the P21/c structure, the 

FCC lattice of iodine is retained but the aluminium atoms are now displaced to the octahedral sites. 

Due to the large size ratio of aluminium and iodine atoms, the iodine atoms dominate the x-ray 

diffraction (XRD) pattern. Since, both before and after the phase transition, the iodine atoms 

maintain the FCC sublattice, the x-ray diffraction patterns are similar, due to the fact that the 

diffraction patterns are mostly contributed by the iodine atoms. Therefore, from the XRD, no 

discernible profile difference was observed in the structures of AlI3 at ambient and high pressures. 

However, a distinct discontinuity in the measured pressure-volume curve at approximately 4.3 

GPa, indicate some structural changes. Using the predicted C2/m structure as the high-pressure 
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phase, the discontinuity in volume can be well reproduced (Fig. 2.4), corroborating the theory of a 

4-fold to 6-fold re-coordination of Al atoms.  

 

Figure 2.4 Calculated pressure-volume equations of state for the P21/c and C2/m structures 

compared with the experimental values. Experimental data were reported in Ref. [85]. 

 

Energetically, the enthalpy of the 6-fold C2/m structure becomes considerably lower than 

that of the ambient 4-fold structure as the pressure is increased beyond the transition point (Fig. 

2.5). For example, at 20 GPa, the C2/m structure is more stable than the P21/c structure by ~1 

eV/AlI3. Given such a large energy deficiency, it is therefore unlikely that the 4-fold structure can 

be retained to 50 GPa. During the phase transition, the iodine atoms retain the FCC arrangement 

but the aluminum atoms are expected to convert from their 4-fold coordinated environment to 6-

fold coordination and then occupy the octahedral sites as shown in Figs. 2.6a and 2.6b, and the 

FCC sublattice of the iodine atoms is highlighted in red. On compressing the material, the 

coordination number increases as inter-atomic distances decrease, leading to a loss of the sp3 
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hybridization. The d orbitals of aluminium contributing towards the formation of 6-fold 

coordination. The 6-coordinated structures with the hexagonal close-packing of the iodine atoms 

are also energetically competitive to the FCC arrangement of the iodine atoms (Fig. 2.5), but they 

were found to have distinctly different diffraction patterns which were not observed in the 

experiment.  

 

Figure 2.5 Enthalpy vs Pressure curve for the various structures of AlI3. The 6-fold co-ordinated 

C2/m structure (blue open circle) is one of the most energetically competitive structures.        
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Figure 2.6 a) P21/c structure showing the tetrahedral position occupation of Al and b) C2/m 

structure showing the 6-fold co-ordination of Al in the octahedral position  

 

From the present calculations, a volume drop of 9 percent after the phase transition is 

observed. After the transition to a C2/m structure the diffraction patterns from before and after the 

structural phase transition remain similar as the monoclinic angle approaches the high pressure 

value of 109.3˚ at 13.5 GPa from its calculated value of 144.6˚ at 5.3 GPa.  The phonon band 

structures at approximately 20 GPa were calculated for all the structures and the C2/m (6-fold FCC)  

structure is shown to be dynamically stable  (Fig. 2.7) providing a further support for the predicted 

P21/c → C2/m transition.  
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Figure 2.7 Phonon dispersion curve for the C2/m structure at 20 GPa.  

 

The calculated phonon frequencies, Born effective charges for infrared activity and the 

Raman tensors for the C2/m structure provide additional predictions for experimental 

characterization of the predicted phase transition. Although both the P21/c and C2/m are monoclinic 

structures with a group-subgroup relationship, the P21/c structure will have essentially twice the 

number of vibrational modes including the three acoustic modes. All of the non-acoustic modes 

will be either infrared or Raman active for both of these structures.   There are, for example at 4.8 

GPa, 12 predicted Raman bands for the C2/m structure with the highest frequency Raman peak at 

293 cm-1 and the strongest Raman peak at 149 cm-1 with its scattering intensity about 20 times 

greater for a randomly oriented powder sample than the next strongest Raman band at 104 cm-1. 

There are infrared active modes up to about 365 cm-1 predicted with the strongest infrared bands at 

about 254 and 365 cm-1. The P21/c structure in contrast will have its strongest Raman band at about 
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140 cm-1 at ambient pressure and is predicted to have many more infrared active modes as a result 

of the increased number of spectroscopically active modes for this symmetry. Table A1 (appendix) 

lists the calculated Born effective charges and Raman intensities for the predicted high-pressure 

C2/m structure at 4.8 GPa.  

The pressure-induced phase transitions were simulated by employing metadynamics 

algorithms combined with ab initio molecular dynamics to examine the potential energy surface of 

AlI3. The temperature was set to 300 K for the simulation along with several pressure conditions. 

The initial P21/c structure was taken as the starting structure and on running metadynamics 

simulation, the system was seen to be proceeding to nearby energy minima in potential energy 

surface along the low-energy pathway. This enabled the direct simulation of pressure-induced 

structural transformations of AlI3 treading along all the pathways via several intermediate 

structures. The metadynamics simulation employed a Gaussian height of 225 kbar Å3 and width of 

(15 kbar Å3)1/2. The simulation revealed a distinct phase transition at 22 GPa and 300 K (Fig. 2.8). 

The system was over pressurized to accelerate the phase transition. At the beginning of the 

simulation, the system undergoes primarily thermal vibrations, where the enthalpy stays nearly 

constant (metasteps 1-78).  
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Figure 2.8 Metadynamics simulation at 22 GPa and 300 K showing the evolution of the enthalpy 

starting from P21/c structure and ending at the C2/m structure. Enthalpy evolutions for the 

simulation cells that are taken directly from the simulation (triangle symbols) and after the 

structural optimization (sphere symbols). 

 

At the 78th metastep, the AlI3 dimers start to polymerize in the unit cell (Fig. 2.9b) which causes a 

sharp decrease in enthalpy. By the 110th metastep the polymerization process comes to an end. 

There is another further enthalpy drop, and results in a largely-distorted 6-fold FCC structure (Fig. 

2.9c). After another intermediate phase between the 122nd and 149th metastep (Fig. 2.9d), 

stabilization of the enthalpy was obtained at the 150th step with the C2/m structure formed (Fig. 

2.9e). The enthalpy evolution in this phase transition shows a stepwise path (Fig. 2.8), where the 

plateau regions represent a progressive transformation from the dimer-based structure to the 

polymeric structure with distinct intermediate phases. In Fig. 2.9, the face-centered cubes are 

highlighted to emphasize that the FCC lattice of iodine are retained, where the 4-fold to 6-fold 
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conversion of the Al atoms is clear. Moreover, a systematic exploration of the potential energy 

surface at different P-T conditions using metadynamics revealed that the 6-fold structure with the 

HCP packing of the iodine atoms [104-105] is also a plausible structure of AlI3 at high pressure, as 

seen in the equation of state (Fig. 2.5). This configuration was obtained at several pressures (14 

and 26 GPa) starting from the P21/c structure. The initial pressure-temperature conditions 

employed for the simulation or experiment can reach either HCP or FCC iodine atom structures 

due to the closeness in energy of these two structures in the free-energy surface. However, from 

experimental results [85], it is clear that the 6-fold fcc structure is the one consistent with the 

observed high-pressure form of AlI3.  
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Figure 2.9 Low-energy pathway for the P21/c to C2/m structural transformation revealed in 

metadynamics simulation at 22 GPa and 300 K. (a) Original P21/c structure showing dimers. (b) 

The 90th metastep showing where the dimers cease to exist. (c) and (d) The 117th to 143rd steps 

showing the formation of the 6-fold coordination of Al in the FCC lattice of the iodine atoms.(e) 

The 182nd metastep, after relaxation, showing the full transformation to 6-fold co-ordination of 

the Al atoms.  
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2.3.2 Electronic Properties 

 

AlI3 in the ambient condition (P21/c) is a semiconductor with a band gap of approximately 2.2 eV.  

On compression, the calculated band gap gradually decreases as shown in Fig. 2.10. The electronic 

band structure of the C2/m 6-fold co-ordinated structure is shown is Fig 2.11a and 2.11b for 10 and 

53 GPa respectively. As evident from both Figs. 2.10 and 2.11, AlI3 becomes metallic at around 

50 GPa.  

 

Figure 2.10 Bandgap vs Pressure using PBE XC functional. AlI3 metalizes at approximately 50 

GPa.  
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Figure 2.11 Electronic band structure of C2/m AlI3 at a) 10 GPa and b) 53 GPa. 

 

2.4 Conclusion 

 

In order to explore for and identify phase transitions, density functional based structural 

predictions, phonon and Raman spectra calculations were performed along with first-principles 

metadynamics simulations on crystalline AlI3 at pressures higher than the ambient pressure. As 

expected, the calculations predicted a clear structural metamorphosis under pressure to a stable 

face-centered monoclinic structure. Although, previously a single primitive monoclinic structure 

was taken into account to interpret experimental pressure dependent results, our study suggests that 

pressure induces a reconstructive phase transition from a P21/c primitive monoclinic structure to 

the face-centered monoclinic C2/m phase. The face-centered cubic lattice of the iodine atoms was 

maintained however, the aluminium atoms underwent an increase in co-ordination from four in the 

P21/c ambient pressure structure to six under high pressure.  The predicted monoclinic C2/m 

structure at high pressure was determined to be dynamically stable from its calculated phonon 

dispersion relations and should be identifiable also from its predicted Raman or infrared spectrum.  

The very close energy of hexagonal close packing and face centred cubic close packing for iodine 
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atoms can be reached with metadynamics simulations employing different starting pressures but 

only the diffraction patterns for FCC packing  have been observed experimentally, thus allowing 

us to conclude unambiguously about the crystal structure and space group of the compressed solid 

aluminium triiodide. This work was published and can be found in reference [113]. 
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CHAPTER 3 

PHASE TRANSITION AND SUPERCONDUCTIVITY OF HYDROGEN SULFIDE AT 

HIGH PRESSURE 

A similar version of this chapter has been published as a research article Angewandte Chemie 

International Edition. The reference is as follows. 

 Arnab Majumdar, John S. Tse, and Yansun Yao, “Modulated Structure Calculated for Superconducting 

Hydrogen Sulfide”, Angew. Chem. Int. Ed., 56, 11390 (2017).  

 

Superconductors give rise to electrical currents without loss and are used for applications 

like magnets in medical imaging. Other applications like large scale usage in electrical power 

generation and transmission, however, are limited as it is required to cool materials below a critical 

temperature Tc. Thus, the search for novel superconductors with higher Tc is still a very widely 

studied discipline. In the words of Vitaly L. Ginzburg in his autobiography ‘On Superconductivity 

and Superfluidity: A Scientific Autobiography’, high temperature and room temperature 

superconductivity, and metallic hydrogen were listed amongst the top three problems of the day 

that needed to be solved. Even after more than a decade, the pursuit is not yet over. The high 

phonon frequency modes of the light elements are responsible for enhancing electron-phonon 

coupling and elevating the critical temperature. It has been well established that under the influence 

of high pressures, many insulators and semiconductors will become metallic. Many experiments 

and theoretical studies have been performed on compressing hydrogen-rich materials. Since 

metallization is a precursor to superconductivity, it is convenient to deal with hydrides since it is 

expected that due to their electron densities, the metallization pressures will be reduced compared 

to pure hydrogen. In this chapter, one such hydride, compressed hydrogen sulfide (highly 

controversial topic currently) has been studied extensively for superconductivity at high pressure.  
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3.1 Introduction 

 

The theory that was suggested by Ashcroft [79] that compressed metallic hydrogen-

dominant alloys can be excellent superconductors paved the way for numerous theoretical 

predictions and extensive experimental investigations. In a dramatic breakthrough made in 2014, 

an unexpectedly high Tc of 203 K was observed in hydrogen sulfide (H2S) compressed to 200 GPa 

[18]. The mechanism for such a high Tc, albeit unclear, is likely to be phonon-mediated from the 

isotope effect. Initially, this superconducting phase was assumed to be one of the theoretically 

predicted structures of the high-pressure polymorphs of H2S [114]. From theoretical calculations 

carried out later on, it was brought to attention that H2S is not thermodynamically stable at the 

experimental conditions and should dissociate into H3S + S or other hydrogen rich species [115]. 

For the sulfur hydride systems with H3S stoichiometry, from the Tc calculations based on the BCS 

theory [66] hexagonal R3m and cubic Im-3m structures were thought to be possible candidates of 

the superconducting phase [115]. An unusual observation was the subtle variations in the measured 

Tc with applied pressure suggesting that more than one structural phase may be responsible for the 

superconductivity. To justify this observation, the self-alloying “Magneli” phases was proposed to 

model the continual growth of microscopic regions of H2S and (superconducting) H3S in the bulk 

crystal with varying pressure [116]. Experimentally, it was found that the pressure-induced 

structural changes depended strongly on the sample preparation procedure and compression 

sequences. Distinctively different XRD patterns were reported at similar pressure and temperature 

(following different thermodynamic paths) [117-120]. The measured diffraction patterns were 

assigned to mixtures of many theoretically predicted dissociated HxS phases of various 

compositions. An exception is the simultaneous conductivity and diffraction measurements 

performed by Einaga et al. [119]. Following a P-T path similar to the previous superconductivity 
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studies, Einaga et al. took an H2S sample in the diamond anvil cell that was first brought to 100 K 

at ambient pressure and compressed to 150 GPa; then further cooled to ~ 10 K and eventually the 

temperature was raised [119].  In this manner, they observed a similar trend of the Tc and obtained 

much simpler diffraction patterns which were assigned to the Im-3m H3S structure and high 

pressure β-Po elemental sulphur.  A drawback of this assignment is that the observed intensity ratio 

of the H3S and S phases in the diffraction pattern does not support the 2:1 ratio for the dissociation 

products of 3H2S  2H3S + S [121].  From the inspection of the experimental pattern, the amount 

of S in the sample is substantially smaller. Goncharov et al. reported a very similar diffraction 

pattern of a reaction product synthesized directly from elemental sulfur and molecular hydrogen at 

140 GPa but followed a different P-T path [120]. An observation is that the diffraction patterns of 

both the proposed Im-3m H3S phases always show two weak peaks situated on either side of the 

strong lowest angle Bragg reflection with similar d-spacings and relative intensities. Guigue et al. 

performed a direct synthesis from the elements but were able to identify only an orthorhombic 

Cccm structure up to 160 GPa and challenged the hypothesis based on the R3m and Im-3m 

structures [122]. In view of the synthetic pathways and very different starting S:H stoichiometry,  

these weak reflections are unlikely to be just sulphur impurities.  This raises the possibility that the 

observed products may be metastable and not the thermodynamic H3S ground states as predicted 

by ab initio structural search. In this study, we took a different approach to explore possible 

structure(s) for the superconducting phase.  Noting that the occurrence of metastable structures are 

not uncommon in experiments, in particular, at low temperature when there is not sufficient energy 

to overcome the activation barrier of bond breaking [121], we performed metadynamics 

simulations to explore energetically accessible metastable structures.  
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In this work, ab initio metadynamics calculations are performed at a broader P–T regime 

to trace the transformation pathway from the low-pressure molecular phase to the high pressure 

modulated structure have been reported. In particular, a stoichiometric Pc structure was identified. 

This structure was further studied for dynamical stability and superconducting critical 

temperatures, Tc following the observed trend of the long-sought ‘low-Tc phase’. It has been shown 

from theoretical calculations that the Pc structure becomes dynamically unstable above 150 GPa, 

with softening of the transverse acoustic phonon modes near the boundary of the Brillouin zone. 

The phonon softening bolsters a reconstruction of the supercell along the y-axis leading to a 1:3 

modulation of the original unit cell. The Tc of the modulated structure at high pressure is shown to 

be comparable to the measured Tc for the ‘high-Tc phase’ found experimentally. Therefore, in this 

chapter, the Pc structure is justified to be the underlying structure along the experimental 

compression path which is metastable and shows excellent Tc trends.  

 

3.2 Computational Details 

 

The new structures of H2S at high-pressures were obtained using the metadynamics method 

[64] combined with the projector augmented plane-wave (PAW) method [98] as implemented in 

the Vienna ab initio Simulation Package (VASP) [55]. We employed the Generalized Gradient 

Approximation (GGA) for the exchange-correlation functional parameterized by Perdew–Burke–

Ernzerhof (PBE) [46]. A kinetic energy cut-off of 280 eV was used for grid integration and for 

sampling the Brillouin zone (BZ) for which a (16 × 16 × 16) Monkhorst Pack (MP) grid [99] was 

considered. The metadynamics simulations were carried out in the pressure range of 80 – 200 GPa, 

and in the temperature range of 80 – 200K, starting from simulation supercells with various sizes. 

The scaled components of the edge vectors of the simulation supercells were used as collective 

variables [123-124]. First principles molecular dynamics (FPMD) simulations were performed 
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using the VASP program, employing an isothermal-isobaric (NPT) ensemble with Langevin 

dynamics as well as using an isothermal-isochoric (NVT) ensemble. Topological analysis of the 

charge density was carried out using quantum theory of atoms-in-molecules method introduced by 

Bader [125-126]. Phonon calculations were performed using the Quantum ESPRESSO package 

[82] with norm-conserving pseudopotentials and an energy cut-off of 80 Ry. Individual phonon 

matrices were calculated on a 4 × 2 × 2 q-point mesh with an 8 × 8 × 8 k-point mesh for BZ sample. 

The electron-phonon coupling (EPC) parameter and logarithmic average of the phonon frequencies 

obtained between 100 to 130 GPa have been calculated within the framework of the Bardeen-

Cooper-Schrieffer (BCS) theory [66]. 

 

3.3 Results and Discussion 

3.3.1 Structural Analysis 

 

Metadynamics simulations were carried out at three temperatures (80 K, 200 K and 300 K) 

at 80, 100, 150, 190, and 200 GPa. The theoretically predicted Pmc21 structure of H2S was used as 

the initial structure, i.e., structure precursor, in the simulation. Previously, the Pmc21 structure (Fig. 

3.1a) was calculated to be the lowest enthalpy phase for H2S between 65 and 80 GPa [114].  
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Figure 3.1 The Pmc21 structure optimized at 80 GPa. Big (yellow) and small (white) spheres 

represent S and H atoms, respectively. 

 

In the metadynamics simulations, several new structures of H2S were identified at different 

P-T regions. The first thing that one notices from the simulations is that the structural morphologies 

of the metastable phases identified along the 80 K, 200 K and 300 K isotherms at 80 GPa, 150 GPa 

and 190 GPa are very different (Fig. 3.2) although they start from the same precursor structure. 

This is a clear result of the changes in the potential energy surfaces of compressed H2S at different 

P–T points.  At 80 GPa and 80 K, the polymeric Pmc21 structure transforms to a monoclinic 

structure, with a Pc space group, composed of zigzag S-H-S chains and H3S molecules. In this 

structure, valence electrons are partially transformed from the H3S molecules to the S-H-S chains 

forming nominally SH and H3S
+ ions. The electrostatic attractions between the SH and H3S

+ lead 

to the stabilization of this structure. In comparison, on increasing the temperature to 200 K, the 

extended chain structure is not formed. The morphology that H2S now takes up is a molecular 

crystal consisting of H2S-HSH molecules. The H2S-HSH is a polar molecule in which one H2S is 

cationic and the other moiety is anionic. At 300 K, longer, zigzag molecules are seen in the solid 

(outlined by the red dash box).  
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Figure 3.2 Different crystal structures of H2S obtained from the different metadynamics 

simulations carried out various different pressures and temperatures, starting from the Pmc21 

crystal structure. Big (yellow) and small (white) spheres represent S and H atoms, respectively.  

 

Clearly, reducing the temperature enhances the intermolecular interactions in the solid 

which drives the crystal structure to a higher dimensionality, from a 0D molecule to a linear chain 

structure. Similar changes of the dimensionality can also be expected when the pressure is 

increased. At 150 GPa and 80 K, no molecular species can sustain in the structure in which only 

linear S-H chains are observed. At 200 K, the H2S-HSH molecules formed at the same temperature 
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but low pressure (80 GPa) are now linked to form a 3D extended framework. At 300 K, traces of 

the dimerized H2S-HSH units can still be discerned but the molecular units are more densely 

packed. At 190 GPa and 80 K, a 3D framework with S-H-S linkages is formed. The structure is 

stabilized by the electron-deficient multicenter S-H-S interactions when neighboring sulfur atoms 

are linked by a common hydrogen atom. In the linkage, electrons are delocalized leading to a 

metallic state. A similar morphology is observed at 200 K. However, at 300K, a 3D framework 

built solely of S atoms is formed. In this structure, the S atoms are directly bonded to each other 

rather than bypassing a hydrogen atom.  

One interesting structure that was obtained at 100 GPa and 80 K was a new low-enthalpy 

structure with the C2 space group (Fig. 3.3).  

 

Figure 3.3 C2 structure obtained from metadynamics at 100 GPa and 80 K.  

 

The C2 structure enters the phase diagram initially as metastable but it becomes 

progressively more stable as the pressure increases. The enthalpy of the C2 structure becomes 

lower than the Pmc21 structure near 90 GPa, and by 160 GPa, it is degenerate with the enthalpies 

of the P-1 and Cmca structures. The latter two structures were previously established lowest-

enthalpy structures of H2S in this pressure region. Thus, we consider the C2 structure as another 
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candidate for the ground-state structure of H2S at high pressure, which is linked to the precursor 

Pmc21 structure through a low-energy transition path. Interestingly, in the C2 structure the S atoms 

form diatomic pairs similar to that in disulfide groups. The neighboring S-S pairs are bridged by H 

atoms which extend in one-dimension to form infinite [-S-H-S-]∞ chains, with the rest of the H 

atoms intercalated in between. Extended chain structures immediately indicate an electron 

delocalization, which, not surprisingly, yields a metallic ground state for the C2 structure. Even 

though the C2 structure was identified, and the structure itself is an interesting topic, it may not be 

the primary contributor to the high Tc. Previous experimental and theoretical studies suggest that 

H2S decomposes in the Mbar region to several S-H compounds, which are responsible for the 

sudden rise of superconductivity [117-119]. The considered decomposition products include H3S, 

H5S2, H4S3, HS2, and heterogeneous H-S mixtures. Among which, a cubic structure of H3S (Im-

3m), made of two interpenetrating SH3 perovskite sub-lattices, has been featured prominently. The 

explanation for the experimental XRD and Tc based on the Im-3m structure is generally acceptable 

[127]. On the other hand, ambiguity still remains in this interpretation; in particular with respect to 

the difficulty of locating the hydrogen atoms by x-ray diffraction could not be resolved. The 

hydrogen positions in the Im-3m structure were not conclusive. A strong evidence for discrepancy 

appeared in the experiment by Einaga et al. [119], where the measured volumes of H2S and D2S 

are constantly larger (~ 3%) than the theoretical estimate using the Im-3m structure, indicating the 

composition of hydrogen in the compound may be different. Moreover, the decomposition of 

3H2S→ 2H3S + S implies that the XRD intensity ratio of H3S and S should be close to 2:1, but this 

was not always the case in previous experiments [121]. Thus, there could be other interpretations 

of the decomposition processes and the experimental XRD patterns.  

The instability of H2S was confirmed by the metadynamics simulation, which indeed 

showed a tendency of dissociation of H2S in the Mbar region. Remarkably, it was revealed that 
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H2S could in fact be self-ionized into a (SH)δ−(H3S)δ+ structure without losing the basic body-

centered cubic (BCC) motif. This structure was identified at 80 GPa and 80 K, and characterised 

as a monoclinic structure with the Pc space group (Fig. 3.2). In Fig. 3.4, the drops in the enthalpy 

with respect to metasteps during the metadynamics simulation gives way to the structural phase 

transformation from Pmc21 to Pc, indicating the transformation to a more energetically stable 

structure.  

 

Figure 3.4 Metadynamics simulation at 80 GPa and 80 K showing the evolution of the enthalpy 

starting from Pmc21 structure and ending at the Pc structure. 

 

In the Pc structure the S atoms form a distorted BCC lattice. Three H atoms are bonded to 

each body-center S and form a positively charged H3S molecule. The other H atoms are located 

between corner S atoms, forming extended, negatively charged (SH)∞ chains. Bader Charge 

Analysis revealed that the amount of charge transfer to the S-H chain is about δ=0.41e−/SH 

(calculated at 80 GPa), which is also responsible for the electrical conductivity. A particularly 

interesting feature of this structure is the asymmetric S-H-S bond lengths, which could be 
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associated with the quantum effects of hydrogen, analogous to the O-H-O bond in ice X [128]. The 

calculated distinct S-H lengths are 1.46 and 1.60 Å, respectively, at 80 GPa. The self-ionized Pc 

structure still maintains the H2S composition. Its volume is also larger than pure H3S at the same 

pressure which could yield a better volume comparison to the experiment. We note that the 

dissociation process of H2S discovered here is apparently analogous to that of H2O, i.e., 2H2O → 

H3O
+ + OH−. The dissociation of H2O is a rare event at ambient conditions but not uncommon at 

high pressures. The H2S itself, was also suggested to dissociate dynamically, in a short time period, 

to SH− and H3S
+ species into the high-pressure phase V (around 35 GPa) [129]. The Pc structure 

on the other hand is dynamically and mechanically stable as shown by the absence of imaginary 

frequencies in the calculated phonon dispersions (Fig. 3.5b). The enthalpy of this structure, 

however, is higher than stoichiometric H2S structures with regular H-S bonding (Fig. 3.5a), 

indicating that it is metastable.  

          

Figure 3.5 a) Enthalpy vs pressure for different H2S structures, with the P2/c structure as the zero-

enthalpy reference. b) Phonon dispersion relation for the Pc structure calculated at 120 GPa. 

On the face of it, a higher enthalpy may strike as a manifestation of dissociation, which is 

nevertheless not unexpected, but the dynamic behavior of the structure, in particular the motions 

of the hydrogen atoms, are rather critical to the superconductivity. It has been shown in sample 
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hydrides that strong electron-phonon coupling is often associated with the lattice instability, where 

enhanced atomic vibrations couple strongly with the perturbed electrons [130-131]. 

To examine the dynamic behavior of the (SH)δ−(H3S)δ+ structure under pressure, FPMD 

simulations were carried out on a model structure at 200 GPa and 200 K, in both NPT and NVT 

ensembles. The model structure was constructed in an ideal 4×4×4 bcc supercell of sulfur, with all 

lattice distortions removed to mimic the experimental conditions. The hydrogen positions in the 

BCC lattice were adopted from those in the Pc structure (the fractional coordination). The 

dynamics of the model structure has been examined from visualization of the atomic trajectories. 

Fig. 3.6a shows the equilibrated trajectories over 20 ps collected in the NVT simulation. In this 

ensemble, the volume and shape of the supercell were fixed, and the S atoms are found to vibrate 

about the ideal BCC lattice points. The H atoms, on the other hand, show a high degree of mobility 

and undergo rapid diffusions in the cell. It appears that the H atoms from the SH− and H3S
+ species 

are no longer distinguishable under dynamic conditions. All H atoms form a coherent group and 

move about the lattice in a mobile but ordered manner. The structure factor derived from the NVT 

trajectories shows a close resemblance to a BCC lattice with slight thermal distortions. The model 

structure remains stable and does not transform to any other structures during the simulation time, 

which is normally expected for an NVT simulation. The NPT simulation, in which all degrees of 

freedom of the model structure are allowed to change, reveals a subtle deformation of the bcc 

lattice. The plot of the temporal atomic positions shown in Fig. 3.6b shows that under dynamical 

conditions, a quarter of the unit cells in the supercell undergo tetragonal distortions (shown in 

green), while the others maintain the cubic form (shown in blue). In the equilibrated structure, 

tetragonal unit cells are aligned in slabs and alternate with cubic regions in a 1:3 ratio, forming a 

modulated structure with a quadrupled period. 
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Figure 3.6 Thermal trajectories of the model structure at 200 GPa and 200 K over 20 ps, in a) NVT 

and b) NPT ensemble. The S atoms are colored yellow. The H atoms initially belonging to the [-S-

H-S-] chain are colored red and H3S molecules are colored white.  

 

Compared with fixed-cell structure, the atomic mobility in the modulated structure is 

generally reduced which could be understood from the energy equipartition among a greater degree 

of freedom in the NPT ensemble. However, in the tetragonal region, the mobility of hydrogen is 

actually enhanced, which is visibly larger than that in the cubic region. These ‘hot regions’ are 

most probably responsible for the transport properties of the modulated structure. Significantly, the 

modulated structure discovered here bears similarities to the previously proposed Magnéli phases 
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of hydrogen sulphide systems [116]. In the Magnéli phases, slab-like H2S and H3S regions stack 

alternatively and form long-periodic modulated crystals. The difference, however, is that the 

modulated model discovered here still maintains the H2S stoichiometry while the successive 

Magnéli phases must imply gradual loss of S which again would result in a volume mismatch to 

the experiment. This point is already exemplified in Ref. [116], where the theoretical results of 

Magnéli phases at a lower pressure (150 GPa) had to be used to compare with the experimental 

data at high pressure (173 GPa). Moreover, the Magnéli phases as variable composition mixtures 

do not match the observed XRD pattern, and therefore at this point they only serve as hypothetical 

models. 

A key justification for predicted structures is that they should match the experimental XRD 

pattern of the high-Tc phase. The matching has been carried out numerous times by different groups 

using theoretical structures with various stoichiometry. A generally accepted interpretation, for 

example, as shown recently by Einaga et al. [119], is that the experimental XRD pattern of the 

high-Tc phase corresponds to a mixture of H3S (BCC structure) and S (β-Po structure), in which 

the H3S component is responsible for the high Tc. Here, we demonstrate that the XRD pattern can 

be sufficiently interpreted by the modulated structure of H2S, without introducing the assumption 

of the decomposition 2H2S → H3S + S. Since the tetragonal-cubic modulation only represent a 

motif, several trial structures were generated using different tetragonal to cubic ratios in the 

supercell, from 1:9 to 9:1. In Fig. 3.7, the constructions are exemplified by three structures with 

the ratios of 1:3, 1:5, and 1:9, where the tetragonal and cubic regions are colored in red and yellow, 

respectively. For convenience, the H atoms are removed from the cells since their contribution to 

the XRD pattern is negligible. 
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Figure 3.7 The simulated XRD pattern using a 1:3 modulated structure and experimental patterns. 

Modulated structures with 1:3, 1:5, and 1:9 ratios are shown. The tetragonal and cubic regions are 

in red and yellow respectively. The experimental XRD is adopted from Ref. [119]. 

 

From the trials, we found that the 1:3 realization fits remarkably well with the experimental 

XRD pattern (obtained at 173 GPa and 13 K) (Fig. 3.7). Significantly, the ratio here is same as that 

found in the FPMD calculations and unlikely to be just a mere coincidence. The 1:3 structure has 

the P4/mmm space group. The structural parameters used for matching the experimental XRD are, 

a = 3.06 Å, c = 11.91 Å, with S atoms located at 1c: 0.5, 0.5, 0.0; 1d: 0.5, 0.5, 0.5; 2h: 0.5, 0.5, 

0.7727; 2g: 0.0, 0.0, 0.6363, and 2g: 0.0, 0.0, 0.0909. Specifically, the weak peak around 9.8 is 

from the (103) reflection, which overlaps with a peak from the gasket. The broad band centered on 

11.1 contains two peaks, (110) and (111). The weak peak near 12.6 is from (105) and overlaps 

with a peak from phase IV of S. The peak around 14.2 is (106), which was previously interpreted 

as a peak from the β-Po structure of S. The broad band centered on 19.1 contains three peaks, 
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(213), (214), and (215). This band was previously interpreted as combined H3S and β-Po peaks. 

The three peaks above 22 are (220), (300), and (310), respectively. In view of the comparison 

between the simulated and experimental XRD, the peaks have outstanding agreements not only in 

the 2θ positions but also in relative intensities.  

 

3.3.2 Superconducting Properties 

 

 To understand how the Pc structure evolves to the modulated (SH)δ− (H3S)δ+ structure at 

high pressure, the mechanical and electronic properties of this structure were investigated at 

selected pressures between 80 to 180 GPa. At 80 GPa, the Pc structure turned out to be a 

semiconductor with a band gap of about 0.3 eV (Fig. 3.8a). The calculated electronic density of 

states (DOS) shows the S-H-S chains are the main contributors compared to the H3S cations near 

the Fermi level (Fig. 3.8b). The small band gap is due to the asymmetrical S-H-S bonds along the 

chain. In the conduction band (consisting of S-H antibonding states), both the chain and the cation 

S atoms contribute almost equally. At 100 GPa, the band gap closes with the lowest-energy 

conduction band crossing the Fermi level forming an electron-pocket near the Γ point. Therefore, 

the Pc structure becomes metallic at the onset of 100 GPa. 
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Figure 3.8 (a) Evolution of the electronic band structure of the Pc structure near the Fermi level at 

80, 100 and 120 GPa using PBE XC functional. (b) Electronic band structure and projected DOS 

of the Pc structure at 80 GPa. The black curve represents the total DOS of the H2S system. The red 

curve indicates the DOS of the H atoms belonging to the S-H-S chain while the blue curve indicates 

the DOS of the H atoms of the H3S cations.  

 

 The delocalization of the electrons in the Pc structure upon increasing pressure made the 

structure unstable starting at 150 GPa as revealed by the softening of acoustic phonon branches. At 

180 GPa, the acoustic vibrational bands become imaginary at about one-quarter of the phonon 
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vectors from the Γ → Y and C → Y symmetry directions (Fig. 3.9a). The appearance of the 

imaginary modes at the particular points mentioned above hints that the Pc structure may 

reconstruct to a supercell close to the 1:3 ratio along the Y-direction as found in the NPT MD 

calculations. Thus, the formation of the 1:3 modulated structure in this pressure range cannot be a 

mere coincidence. It is a result of the intrinsic instability of the H2S structure. From the projected 

vibrational DOS (Fig. 3.9b), it can be seen that the imaginary phonon modes mainly arise due to 

the large amplitude motions of the H and S atoms in the S-H-S chains. 

 

Figure 3.9 (a) Total and atom projected vibrational density of states of the Pc structure at 160 GPa. 

(b) Phonon dispersion of the Pc structure curve at 180 GPa. 

 

The instability revealed in the electronic structure of H2S is corroborated by the results of 

FPMD simulations performed on a model with the S and H atoms in the Pc structure in a NVT 

ensemble. At 120 GPa, all of the H atoms in the Pc structure vibrate about the respective atomic 

sites and the basic zigzag chain and H3S molecules is maintained. However, when the pressure is 

increased to 160 GPa, the motions of the H atoms become highly mobile making it difficult to 

identify the chain and the molecule. From Fig. 3.10, it is quite obvious that there are collaborative 
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hopping motions between different H sites. The high-mobility motions of the H atoms substantially 

softened the vibrational modes and change the long-range order in the structure.  

 

Figure 3.10 Temporal positions of the S and H atoms indicated by different colours at different 

slices from molecular dynamics simulation (see text) showing the rapid hopping motion of the 

hydrogen atoms at 160 GPa.  

 

It is should be noted that in the NVT calculation the simulation cell is kept fixed so the S 

atoms are more or less staying at the lattice sites. If the unit cell vectors are allowed to evolve, a 

modulation of the supercell will occur following the soft phonon modes. Experimentally, 

superconductivity was observed in compressed H2S at pressures as low as 110 GPa. Referred to as 

the ‘low-Tc phase’, this superconducting phase is achieved by cold compressing (at around 100 K) 

the H2S sample to high pressures [18, 119]. The Tc of the ‘low-Tc phase’ ranges between 33 and 

150 K when the pressure is increased from 110 to 200 GPa. Experimentally, little is known about 

the chemical composition and structure of this phase. The theoretical results presented above show 

unambiguously that there is a direct connection between the low-pressure polymeric structure 

(Pmc21) and high-pressure modulated structure via the intermediate Pc structure. If there is a clear 
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connection between the Pmc21, Pc  and the modulated structure, the question that one asks is 

whether the Pc structure in this pressure region is superconductive and, if so, would the Tc also 

agree with the experimental observations for the ‘low-Tc phase’? For this purpose, the 

superconducting properties of the Pc structure in the stable pressure range were investigated using 

the phonon-mediated strong coupling Migdal-Eliashberg methodology [69-71] based on the BCS 

theory [66]. 

The electronic band structures of the Pc structure (Fig. 3.8a) reveals the simultaneous 

occurrence of curve (dispersive) and flat (diffusive) bands near the B symmetry point and close to 

the Fermi level. This is a favorable condition for strong-electron coupling [132-133]. The electron-

phonon Eliashberg spectral function α2F(ω) and integrated EPC parameter λ calculated at 120 GPa 

have been shown in Fig. 3.11a. From the figure, the strength of the EPC in the Pc structure is 

weighted more heavily in the low-frequency region where the primary contribution is by the S-H-

S vibrations within the zigzag chains. At 120 GPa, the value of λ estimated by integrating α2F(ω) 

is about 1.6. To this integrated value of 1.6 of the λ, more than 80% is contributed by the low-

frequency vibrations below 1000 cm-1. The high-frequency S-H vibrations of the H3S molecules 

(above 2000 cm-1), on the other hand, have very insignificant contribution to the EPC. Up to 1500 

cm-1 there is strong coupling of H and S vibrational modes. The bands from approximately 500 to 

1500 cm-1 can be attributed to S-H-S bending modes. From the EPC distribution, it is reasonable 

to suggest that the superconductivity of the Pc structure mainly arises in the S-H-S chains, rather 

than in the H3S molecules. This also agrees with the band structure of the Pc structure in which the 

electronic states around the Fermi level are primarily occupied by the S-H-S chains (Fig. 3.8b). 
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The Tc, ωlog and λ for the Pc structure at 100, 110, 120, and 130 GPa were estimated using 

a nominal value of 0.1 for the Coulomb pseudopotential μ* (Table 3.1) making use of the Allen-

Dynes modification of the McMillan equation [76]. The calculated Tc of the Pc structure is 

remarkably in very good agreement with the experimentally observed Tc in the ‘low-Tc phase’, 

from the compression of H2S at low temperatures [18]. The Tc remains almost constant on 

increasing the pressure from 100 to 130 GPa as the λ increases but the ωlog decreases. Significantly, 

the characteristic ωlog is found to decrease with pressure in this pressure range. 

 

 

 

 

 

 

Table 3.1 The calculated , 
log

(K) and T
c
(K) for the Pc structure. 

 

At higher pressures, the S-H stretch and H-S-H bent vibrations mix more efficiently in the 

mid-frequency region which enhances the EPC strength λ. Moreover, the electronic density of 

states at the Fermi level also increases slightly with the pressure as the metallicity increases in the 

structure. However, overall, the Tc of the Pc structure remains almost constant at 42 K due to the 

decreasing ωlog factor. The estimated Tc of the high pressure Pc structures are comparable to the 

reported theoretical values for HxS species like H5S2 and Magnéli phases [116, 133] and the Cmca 

H2S phase [134].  

 

P (GPa)  
log

(K) T
c
 (K) 

    

100 1.49 380 42 

110 1.56 356 42 

120 1.64 344 42 

130 1.75 332 43 
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Figure 3.11 (a) The Eliashberg phonon spectral function α2F(ω) and the electron-phonon integral 

λ(ω)  of the Pc structure calculated at 120 GPa. (b) Tc phase diagram of various HxS species. The 

red squares represent the value of Tc for the Pc structure reported in this work in the pressure range 

of 100 to 130 GPa. The shaded red region indicates the range of values of Tc at 200 GPa for the 

modulated 1:3 structure, calculated for the range of EPC parameter (λ) from 1.0 to 2.0. The open 

symbols denote experimental results. 



81 
 

We now shift the discussion to the 1:3 modulated structure. In this structure, the body-

centered tetragonal and body-centered cubic unit cells are aligned along the Y-direction and 

alternate in a 1:3 ratio, forming a modulated structure with quadrupled period. In the 1:3 modulated 

structure, the H atoms undergo rapid diffusion, and the mobility is much higher in the tetragonal 

region than in the cubic region. The high mobility of the fluxional motion of the H atoms assists 

the phonons to pair electrons as per the BCS theory [66], whereas the large amplitude of these 

motions leads to the crossing of the Fermi level by the conduction bands. It is computationally not 

feasible to compute the strength of the electron-phonon coupling on such a large and dynamic 

structure. However, according to conventional BCS theory of superconductivity, only electronic 

levels (occupied and unoccupied) situated within a few meV at the vicinity of the Fermi surface 

are responsible for electron-phonon process. Molecular dynamics calculations presented above 

show the H atoms of the H3S moieties (not participated in the S-H-S linkages) are very mobile. 

Therefore, fluxional motions of these H may strongly alter the temporal electronic band structure 

near the Fermi level. To test this hypothesis, we computed the electronic structure of a model where 

all the atoms of the proposed 1:3 structure were fixed except one H atom closet to the S atom of 

the nearby SH rectangular meandering chain was allowed to move from its equilibrium position. 

The band structures within 500 meV of the Fermi level at displacements of 0.0, 0.1 and 0.25 Å 

have been compared in Fig. 3.12a. The results clearly show that an electron pocket is formed along 

the  Z direction when the H atom was displaced. The large amplitude motion of the H led to 

temporal fluctuations of the unoccupied electron band at the Fermi level. The simultaneous 

occurrence of steep and flat bands near the  point sets up a favorable condition for electron pairing 

through dynamic vibration of the Fermi level [132-133]. This is an indication of strong electron-

phonon coupling. Without the fixed atomic positions, we can only make an order-of-magnitude 
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estimation of the Tc for the modulated structure. NPT FPMD simulation was carried out on the 

modulated structure at 200 GPa and 200 K for 20 ps, and then the vibrational density of states 

(vDOS) was calculated using the single-particle velocity autocorrelation function obtained from 

the atom trajectories, which captures both harmonic and anharmonic vibrations.  

 

Figure 3.12 a) Band structures of the model structure with a single H atom in the SH chain displaced 

by 0 b (top), 0.10 b (middle), and 0.25 b (bottom). b) Total and projected vibrational density of 

states obtained from the trajectories shown in Fig. 3.6. 

 

From the frequency distribution (vDOS) (Fig. 3.12b), the Debye temperature Θ from the 

harmonic approximation [135] for the 1:3 modulated structure was calculated to have a value of 
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1853 K. Due to the structural modulation, large unit cell and fluxional motion of the H atoms, it is 

not realistic to compute the λ explicitly. Therefore, several values of  between 1.0 and 2.0 were 

selected at equal intervals, which are within the reasonable range for the  predicted for H2S and 

H3S. The estimated values of Tc at 200 GPa, calculated using the McMillan equation [74] are given 

in Table 3.2.  

 

λ Tc (K) 

1.0 107 

1.1 123 

1.2 137 

1.3 151 

1.4 163 

1.5 175 

1.6 185 

1.7 195 

1.8 204 

1.9 213 

2.0 221 

 

Table 3.2. The estimated values of the critical temperatures of the modulated 1:3 structure 

corresponding to different EPC parameters (* = 0.1).   

 

The estimated Tc for  1.5 from 180-220K are obviously comparable with the 

experimental values for the ‘high-Tc phase’. But, this estimation should be taken with caution since 
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this is only an order of magnitude approximation. Fig. 3.11b represents the phase diagram of the 

Tc for the Pc structure of H2S and the comparison to other structures.  

 

3.4 Conclusion 

 

A modulated structure constructed from meandering SH chains and H3S units is found from 

compressing a low pressure crystalline phase of solid H2S using First-Principles metadynamics and 

molecular dynamics calculations under the experimental conditions, i.e. at 200K to 200 GPa.  The 

calculated diffraction pattern matches well with experiment, particularly, reproduced the weak 

diffraction features previously attributed to sulphur impurities.  This structural model conserved 

the elemental S:H atom ratio and need not to invoke the formation of a number of intermediate 

crystalline phases with different S-H stoichimetries.  The hydrogen atoms are found to be highly 

mobile.  Band structure calculations show the large amplitude H motions affect the temporal 

topology of the Fermi surface leading strong electron-phonon coupling. The structure is a strong 

contender for the high Tc superconducting phase. 

 In a previous study by Li et al. [114], the polymeric Pmc21 structure, with a calculated 

diffraction pattern in good agreement with experiment, was proposed to be the most energetically 

stable structure of H2S between 65 and 80 GPa. We therefore chose this structure as the precursor 

for the metadynamics calculations. Metadynamics simulations were carried out at 80, 100, 150, 

190 and 200 GPa at 80K, 200K and 300K. In the case of 80 GPa and 80 K a distorted monoclinic 

Pc structure was obtained, a structure which had remarkable similarity to a structure already 

predicted by Gordon et al. [121].  

The electronic band structure of the new crystal structure, Pc (acquired from metadynamics 

calculations) has been discussed in detail in this paper. Following the identification of the Pc 
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structure to be the prospective superconducting state, the electronic structure evolution, lattice 

dynamics, and electron-phonon coupling of this distorted monoclinic (Pc) and modulated structure 

have been studied at 100,110,120 and 130 GPa using density functional perturbation theory. The 

critical temperature was found to remain almost constant over the pressure range for the Pc 

structure at 42 K. As for the modulated 1:3 structure, a cursory calculation of the Tc from the Debye 

temperature gave values which match closely with those gotten from experiments.  Therefore, no 

assumption of SH species with different stoichiometry is needed in this study. The 1:2 ratio 

between the number of sulfur and hydrogen atoms is sufficient for the description of the 

superconducting phase. The XRD and estimate of the Tc values calculated for the structures 

discussed in this chapter indicate that there is a very strong possibility that the Pc and modulated 

structures were the metastable structures synthesized in experiments. Some parts of this work has 

been published and can be found in Ref. [136].  
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CHAPTER 4 

SUPERCONDUCTIVITY IN FeH5 AT HIGH PRESSURES 

A similar version of this chapter has been published as a research article in Physical Review B. 

The reference is as follows. 

 Arnab Majumdar, John S. Tse, and Yansun Yao, “Superconductivity in FeH5”, Phys. Rev. B 96, 201107 

(2017). 

 

 

As highlighted in the previous chapter, high-temperature superconductivity at temperatures 

close to the room temperature is one of the most important and actively pursued frontiers in 

condensed matter physics. Pressure, is a thermodynamic parameter that can manipulate structures 

and properties. Therefore, the application of pressure on different materials and the subsequent 

changes or appearance of novel properties is widely studied. For example, under high pressures, 

bond lengths change leading to changes in electronic structures and eventual conversion to new 

phases otherwise unknown earlier. Since, high-temperature superconductivity promises to be one 

of the primary forerunners to tackle the global energy crisis, it is studied extensively with the hope 

of being applied soon. In this chapter, one such hydrogen rich material, e.g., FeH5 is investigated 

for high temperature superconductivity under high pressure.  

 

4.1 Introduction 

 

It was predicted by Ashcroft [137] that monoatomic solid hydrogen will become a 

superconductor with a high critical temperature (Tc) at a very high pressure. The reason behind this 

statement was based on several substantial scientifically rigorous arguments. Firstly, the vibrational 

frequency of the hydrogen atoms will be very high and secondly the Debye temperature associated 
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with the vibration modes will also be very high. These parameters, i.e. increased vibrational 

frequency and Debye temperature in turn lead to a strong electron-phonon coupling, thus enhancing 

superconducting potential. Although metallic hydrogen is theoretically a high-temperature 

conventional superconductor with an electron-phonon coupling strength parameter (λ ≈ 2), 

however, current estimation shows that metallization of pure hydrogen may require a pressure over 

500 GPa [138]. The metallization of hydrogen under compression has been reported in several 

experiments, but the conclusion is not unanimous and superconductivity was never observed [139-

141]. The theory that main group polyhydrides with high hydrogen content are precursors for “pre-

compressed” hydrogen was proposed by Ashcroft [79]. In these hydrides, the heavier elements 

enhance intermolecular interactions between the hydrogen species, inducing band overlapping 

and/or molecular dissociation, thereby lowering the metallization pressures compared to pure 

hydrogen. The Debye temperatures of these hydrides are also high which is another requirement 

for high Tc, and the heavy elements give rise to low frequency phonons which in turn enhance the 

λ as well. Several theoretical calculations done for covalent hydrides, based on the Bardeen-

Cooper-Schrieffer (BCS) theory of superconductivity support this suggestion [11]. Among these 

studies, H3S [115], CaH6 [142], YH6 [143], LaH10 and YH10 [144], and rare earth (Sc, La, Pr, etc.) 

hydrides [145] have been calculated to possess a Tc higher than 200 K. Recently, H2S was 

compressed to 200 GPa and a Tc of 203 K was observed [18]. As discussed in the previous chapter, 

there is still no completely unambiguously determined structure of superconducting hydrogen 

sulfide at high pressure [119, 121,122, 136]. This lack of a confirmed knowledge of the exact 

crystal structure of various materials at high pressure, creates a lacuna in the proper understanding 

of the structural features and the superconducting mechanism of crystals. In this chapter, this is one 

of the gaps that we tried to bridge.  
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Recently, a FeH5 polyhydride [36] was experimentally synthesized at 130 GPa by Pépin et 

al. by directly reacting Fe with molecular hydrogen in a diamond anvil cell with laser heating. The 

crystal structure of FeH5 is tetragonal with I4/mmm space group with a long c – axis. The positions 

of the Fe atoms were determined from the x-ray diffraction pattern while the H atom positions were 

predicted from theoretical calculations. Since the shortest H…H separation in this structure is 1.31 

Å (as compared to 0.73 Å in molecular H2), therefore from a cursory examination, it can be 

concluded that the structure of FeH5 has an atomic form of hydrogen. The absence of the hydrogen 

atoms in the molecular form and their arrangement in the form of puckered hexagonal layers is 

reminiscent of the puckered hexagonal ring structure of metallic hydrogen [146]. The new insight 

led to the speculation of potential superconductivity in FeH5, which is verified from first principles 

electron-phonon calculations. In the subsequent sections, the structure of FeH5 will be elucidated. 

This is followed by a discussion on the results of electron-phonon coupling calculations.  

 

4.2 Computational Method 

 

First principles electron-phonon calculations were performed at 130 and 200 GPa. The 

calculations were performed with the electronic package Quantum ESPRESSO [82]. Ultrasoft 

(PBE) pseudopotentials [46] for Fe and H were used with an energy cut-off of 80 Ry. Individual 

phonon matrices were calculated on a 4 × 4 × 2 q-point mesh with a 12 × 12 × 2 k-point mesh for 

Brillouin zone sampling. The electron-phonon coupling (EPC) parameter and logarithmic average 

of the phonon frequencies obtained for the abovementioned pressures were calculated within the 

framework of the Bardeen-Cooper-Schrieffer (BCS) theory [66]. The possibility of a high spin 

state at 130 GPa was also checked for, using GGA+U (Ueff = U – J = 8.62 eV, determined from 

linear response theory [147]) and HSE06 hybrid functional [148].  
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4.3 Results and Discussion 

4.3.1 Crystal and Electronic Structure 

 

The ‘effective added electron’ (EAE) introduced in Ref. [142] has been proven to be a 

powerful empirical concept to interpret the structure of hydrogen-rich polyhyrides. The basic 

concept on which this tool is used is that the electronegativity of molecular hydrogen is similar to 

that of group 13 and 14 elements [142, 149]. Other hydrides, for example, SrHn and MgHn have 

been successfully described by the EAE concept [150-151]. Electron doping has also been 

proposed as an effective approach to metallize hydrogen [152]. On being compressed to high 

pressures, metal atoms have the tendency to lose their valence electrons (donor) which are 

eventually accepted by the H2, a process which is analogous to the formation of Zintl-Klemen 

compounds [149]. When the number of donated electrons exceeds that of receptor H2, the donated 

electrons are transferred to the antibonding orbital of H2, leading to complete dissociation of the 

molecules into hydrides (H-). On increasing the number of H2 electron acceptor, the formation of 

mixed hydride and polymeric-H (e.g. H-cages) moieties is expected. The structural motif of the 

high pressure forms of solid hydrogen start to emerge when the hydrogen concentration is increased 

considerably. Previously, this concept had been applied to describe the structural evolution and 

morphology of hydrogen-rich Ca [142] and Sr [149] hydrides at high pressure. It is expected that 

the Fe atom is likely to be in the divalent state (vide supra) and two valence electrons from each 

atom will be available for charge transfer for iron hydrides at high pressures. In the unit cell of 

FeH5 [36], there are 4 Fe and 20 H atoms (or 10 H2). Eight valence electrons from the Fe atoms can 

be transferred to and shared by 10 H2. Thus, it is obvious to assume that 4 H2 molecules will accept 

these electrons and completely dissociate leaving 6 H2-like molecules. As speculated, indeed in 

FeH5 there are 8 monoatomic H atoms (4c (0, ½, 0) and 4e (0, 0, 0.4095)) with a minimum H…H 
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distance of 1.55 Å. On studying the remaining 12 hydrogen atoms located in 8g (0, ½, 0.185) and 

4c (0, 0, 0.230), it is found that they are linked with a shorter H…H distance of 1.31 Å forming 

two independent graphene-like puckered hexagonal honeycomb layers (Fig. 4.1a). The electron 

localization function [153] shows (Fig. 4.1b) that there are weak electron localization (0.6) between 

H atoms forming the honeycomb layer.  

 

Figure 4.1a) Structure of FeH5 showing the puckered hexagonal honeycomb layers. b) Plot of the 

electron localization function with the weak H…H “bonds” of the honeycomb layer highlighted. 

c) Structure of the high pressure Cmca atomic phase of metallic hydrogen [146].  
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A similar puckered hexagonal honeycomb layer has been predicted in the metallic and 

superconducting Cmca phase of solid hydrogen stable at pressures over 350 GPa [146] (Fig. 4.1c). 

The oxidation number of FeH5 was computed following the procedure described previously [154] 

in order to validate the valence state of the Fe atom.  The population of the Fe 3d orbital is computed 

from the projection of the converged total wave onto the atomic Fe d-wave function generated from 

the construction of the pseudopotential. Fe is found to be in the Fe(II) oxidation state with 

significant back donation to the Fe atomic orbitals from the surrounding H- anions.  

Cudazzo et al. theoretically predicted that the Cmca phase of solid hydrogen with a 

puckered hexagonal honeycomb structure is a high temperature superconductor at high pressure, 

with Tc = 242 K at 450 GPa [155]. In this structure, the H-H distance is very short at 1.10 Å. The 

puckered hydrogen layer seen in the Cmca phase of hydrogen is similar to that observed in FeH5 

(Fig. 4.1c). The shortest and longest H…H distance in the puckered hexagon of the 

abovementioned high-pressure phase of hydrogen were calculated to be 0.85 and 0.95 Å. This 

raised the concern that FeH5 having a similar structural morphology, although with a longer H…H 

separation, may also be a potential superconductor. The electronic band structure that was 

determined in the experimental study [36] revealed that FeH5 is indeed a metal (Fig. 4.2). The 

occurrence of steep and flat bands in the vicinity of the Fermi level hints towards possible 

superconductivity as the presence of flat and steep bands close to the Fermi level is a good indicator 

of superconductivity as pointed out in Ref. [132]. This further propelled us to determine if FeH5 

has superconducting properties at high pressure and has been discussed next in section 4.3.2. 
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Figure 4.2. (Left) Electronic Density of States of FeH5 at 147 GPa. (Right) Electronic band 

structure. This figure has been taken from Ref. [157]. 

 

4.3.2 Phonons and Superconductivity 

 

Results of the phonon calculations have been summarized in Fig. 4.3. FeH5 is seen to be 

stable at 130 GPa from the phonon band structure. The localized band due to the H...H stretch 

vibrations at 2250 cm-1, is clearly separated from the translational and librational (bending) modes 

(Figs. 4.3a and 4.3b). Therefore, there is no strong mixing between the stretch and bent vibrations, 

which is a key ingredient for large electron-phonon coupling [73], making use of the entire 

vibrational spectrum, such as in high Tc superconducting polyhydrides H3S, CaH6, etc. On the 

contrary, for FeH5, there is a broad distribution of the translational and librational modes of the 

hydrogen atoms from 0 to 2100 cm-1. This broad distribution of electron-phonon interactions is 

reflected in the calculated Eliashberg spectral function, α2F(ω) as well (Fig. 4.3c).  
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Figure 4.3. Calculated phonon (a) band structure, (b) total and projected vibrational density of 

states and (c) the Eliashberg spectral function of FeH5 at 130 GPa.  

 

The electron-phonon coupling constant (λ) was 1.13 at 130 GPa and the logarithmic average 

phonon frequency ωln was calculated to be 426 cm-1 (614 K, or 52.9 meV). Employing the Allen-

Dynes equation [76] with a Coulomb repulsion parameter μ* = 0.1, the estimated superconducting 

critical temperature was found to be approximately 51 K. Therefore, FeH5 is indeed 

superconductive. However, the calculated Tc is much lower than expected and not close to the value 

predicted for the pure metallic hydrogen Cmca phase. From Fig. 4.3, it is evident that phonon 

modes below 650 cm-1 contribute the most to the electron-phonon coupling interactions. This value 

of 650 cm-1 is close to the cut-off frequency of the translational vibrations of the Fe atoms and 

dominated by the translations and librations of the H atoms in the puckered hexagonal honeycomb 

layers (8g and 4e). Compared to the contribution from the H atoms in the puckered hexagonal 

honeycomb layers, there is relatively small contribution from the monoatomic hydrogen (Fig. 4.4).  
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Figure 4.4. Vibrational density of states of FeH5 projected into contributions from H-atoms at 

different Wyckoff positions. 

 

A lower critical temperature in FeH5 as compared to pure solid hydrogen and recently 

predicted high Tc polyhydrides (e.g. LaHx, YHx, etc.) [144] is not surprising. Firstly, H-H stretch 

and bent vibrations are well separated and Figs. 4.3b and 4.4 showing that these modes did not mix 

well. The area under the spectral function A = ∫ 𝛼
∞

0

2
𝐹(𝜔)𝑑𝜔 [73] is equal to 47 meV-1 which is 

much smaller than most high Tc hydrides, such as that in H3S (118.5 meV-1). Secondly, the optimum 

frequency estimated from the relationship ωopt ≈ 7kBTc of 375 cm-1 (44 meV) is far from the 

logarithmic average frequency ωln of 426 cm-1 (vide infra). In a recent study [156] it was shown 

that for polyhydrides with high Tc, a good mixing of the bent and stretched modes is an essential 

characteristic for ωopt to match well with ωln. For FeH5 at 130 GPa, the vibrational spectrum is not 

optimal for efficient electron-phonon coupling due to the relatively large H…H distance of 1.31 Å. 

Thus, FeH5 structure is compressed to 200 GPa to reduce the H…H contact in order to increase the 
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mixing of the stretch and bent vibrations. On compressing to 200 GPa, the H…H distance 

decreased to 1.27 Å but the H...H stretch frequency increased to 2500 cm-1 (Fig. 4.5).  

 
 

Figure 4.5. Phonon dispersion curve of FeH5 at 200 GPa. 

 

Although the overall phonon spectrum is shifted to higher energy the electron-phonon 

coupling parameter (λ) got reduced to 1.10, resulting in a lower Tc of 48K. In fact, our results are 

in very good agreement with the theoretical results obtained by Kvashnin et al. [157]. Firstly in 

Ref. [157], the authors also found a critical temperature close to ours and moreover the critical 

temperature decreased with increment in pressure. As the pressure is increased, the H...H stretch 

frequency increases and gets separated more from the bent modes therefore reducing the electron-

phonon coupling over the entire spectrum. Instead of raising the average frequency ωln, it decreases 

to 600 K. The λ for 130 and 200 GPa have been compared in Fig 4.6. In addition, the electronic 

density of states at the Fermi level at 130 GPa was calculated to be 21.0 states/eV/f.u, which is 

higher than 19.5states/eV/f.u at 200 GPa. The results are testimony to the theory that the electron-

phonon coupling in FeH5 is determined by a very sensitive balance of the mixing of stretch and 
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bent vibrations and not simply by taking into consideration the higher magnitude of the cut-off 

frequency of the stretch modes.  

 

Figure 4.6. A comparison of integrated electron-phonon coupling parameter (λ) of FeH5 at 130 and 

200 GPa. 

 

4.4 Conclusion 

 

There are two important conclusions that can be drawn from the predicted 

superconductivity in FeH5. Firstly, FeH5 is the first high-pressure polyhydride consisting of atomic 

hydrogen in which the structure is unambiguously determined. The puckered nature of the 

hydrogen layers is very similar to that of the hydrogen atoms of the solid high pressure Cmca phase. 

From recent theoretical analysis by Tanaka et al. [156], the functional derivative of the Eliashberg 

functions of predicted high Tc metal polyhydrides established that this structural trait is an  essential 

characteristic that utilizes most of the vibrational modes in superconducting hydrogen dominant 

polyhydrides, in their phonon band structures. Our results presented here are in good agreement 
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with the above suggestion in accordance with Ref. [156]. Thus, we have illustrated a clear path for 

a systematic design and engineering of potential high Tc hydrogen-rich superconductors. This work 

has been published and can be found in Ref. [158]. 
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CHAPTER 5 

CHANGE IN THE STRUCTURE AND PROPERTIES OF MOLTEN AND GLASS 

BASALT AT HIGH PRESSURES 

 
 

The physical properties of constituent minerals in magma are responsible for the magmatic 

processes and the origin and stability of deep mantle melts and glasses. Amongst these, the most 

important ones are the silicate and aluminosilicate materials. SiO2 (silica) is most abundant in 

silicates that account for the major portion of the Earth’s mantle, including basaltic magma. 

Basaltic magma is the most common type of magma that erupts on Earth and other terrestrial 

planets. It is made up mainly of SiO2 (49.97%), Al2O3 (15.99%), CaO (9.62%), and roughly equal 

amounts of FeO and MgO (~7%). It plays a primary role in the properties of minerals and melts at 

mantle conditions. Both experimental and theoretical studies have been carried out extensively on 

these types of materials. The results of these studies suggest that as pressure increases, the 

coordination between the cations and anions increases as well. These structural changes are 

responsible for rapid initial melt densification on compression thereby making basaltic (fine-

grained volcanic rock) melts possibly buoyantly stable at various depths. Silicate liquids play an 

integral part at all stages of deep Earth evolution, ranging from formation of the different layers of 

the Earth billions of years ago to present-day volcanic activity. In order to model this multi-billion 

year process, one requires knowledge of the structural changes and compression mechanisms that 

take place in liquid and glass silicates and aluminosilicates at the extremely high pressures and 

temperatures within the interiors of the Earth. In recent years, structural and density information 

for silica glass were obtained up to very high pressures, which paved the way for getting data on 

the molten state too. The SiO2 reference system holds great importance for understanding the 
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density, compressibility, and various other properties of the more complex silicate melt 

compositions that can be found in the deep interior of the Earth. In this study, we performed ab 

initio molecular dynamics calculations to mimic the mantle conditions. The glass structure of basalt 

was simulated at a temperature of 300 K while the molten state was studied setting a temperature 

of 2200 K. Structural changes, compressibility and transport properties have been reported in this 

chapter.  

 
5.1 Introduction  

 
Basalt is defined as a fine-grained igneous rock which is commonly seen in lava flow and 

is the most abundant type of rock that underlies the Earth’s surface. It generally contains 49.97 % 

of Silica (SiO2), 15.99 % of Alumina (Al2O3), 9.62 % of CaO, 6.84 % of MgO and 7.24 % of FeO 

as the major components [159]. TiO2, MnO, Fe2O3, Na2O, K2O and P2O5 are also present in small 

concentrations. The majority of the Earth's ocean basins are underlain by basalt. Although basalt is 

much less common on continents and is predominantly found along ocean basins, lava flows and 

flood basalts underlie some of Earth's land surface too. The basalt found on Earth is formed in three 

different kinds of regions. They are oceanic divergent boundaries, oceanic hotspots and mantle 

plumes, and hotspots beneath continents.  Oceanic divergent boundaries are locations above rising 

convection currents where plates move away from each other. This process gives rise to mid ocean 

ridges and a deep fissure opens up. The extremely hot mantle materials underneath rise up through 

this fissure as magma. The second type of region is the oceanic hotspot which is basically 

postulated to be a narrow stream of hot mantle rising from the Earth’s core mantle boundary. Basalt 

production at these locations starts with an eruption on the ocean floor. Repeated eruptions can 

build the volcanic cone larger until it attains enough height and becomes an island. All the Hawaiian 

Islands were built up from basalt eruptions on the sea floor. The last kind of region is continental 
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plumes which are fissures or channels leading the basaltic material on to the Earth’s continental 

surface. Silicate and aluminosilicate glasses and melts (components of basalt) have been at the 

forefront of research in the geo-physical/chemical community as they comprise the major portion 

on and beneath the surface of the Earth, lunar crusts and meteorites [160]. The addition of alkali or 

alkaline-earth cations (Li, Na, K, Ca, and Mg) brings about several changes in their properties, 

manifesting their importance in fields such as bioactive glasses, laser optics for initiating fusion 

reactions, thick-film packaging, optical discs, medical and dental implants, etc. [161-163] The 

experimental determination of structural properties of these materials at the mantle conditions is 

quite challenging [164-165]. Owing to the assumption that the glass (quenched melt) structure is 

similar to that of the melt at/near the glass transition, therefore to work around the experimental 

challenges, researchers study the corresponding glass phases and draw parallels with the properties 

that are characteristic of the relevant mantle melts [166-170]. Liquid silica is one of the most 

abundant components of geophysically important melts (magmas). In spite of the mantle mostly 

being solid, there are several studies which hint at the early stages of the Earth’s mantle to be 

mostly molten [171-175]. At the core mantle boundary (~ 135 GPa, 4000 K and 2890 Km below 

the surface of the Earth), it has been proposed that partial melts exist [160, 174]. Knowledge of 

silicate and aluminosilicate liquids over the large range of pressure and temperature in the Earth’s 

mantle is crucial to understand in order to better explain magma generation and transport, as well 

as the chemical and thermal evolution of Earth [176-177]. Recent models of a crystallizing magma 

ocean have shown the importance of the Earth’s earliest evolution of some basic properties of 

silicate liquids at high pressure, including the density contrast with respect to coexisting solids 

[178]. It is very important to understand the origin and fate of the melts at various depths as they 

can give a lot of information, e.g. the density determines whether the melt will rise or sink and the 

diffusivity and viscosity are determining factors of the rate of cooling and transport of magma.  
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 Despite a deep interest in understanding the structure and various properties of glasses and 

melts at mantle conditions and several studies, both experimental [166, 168, 170, 179-183] and 

theoretical [184-191] studies being available in literature, a clear and unambiguous explanation of 

the structural and density changes is yet to be put forward. In all the theoretical and experimental 

studies, it has been found that amorphous silicates and aluminosilicates (both glass and melt) 

undergo coordination changes on being subjected to pressure. Both silicon and aluminium with 

respect to oxygen atoms transform from a tetrahedral structure to an octahedral local environment. 

However, a rather exact pressure and temperature magnitude is not known for the onset of the 

structural changes. Scientists have been interested in fathoming whether four fold and six fold 

coordinated Al and Si atoms can exist simultaneously during the structural transition. Another 

intriguing hypothesis is the co-existence of five-fold coordination as an intermediate state along 

with the tetrahedrons and octahedrons [192]. This is important as the presence of five-fold 

coordinated Si and Al atoms has been proposed to be responsible for affecting the mobility. 

The variation of density as a function of pressure is significant to model the earth’s interior. 

The density profile can shed light on the solid–liquid density crossover, chemical stratification, etc. 

However, experimental data even on the density of melts and glasses at lower mantle conditions 

are limited rendering the comparison of melts and glasses difficult. As previously stated, density 

contrasts between silicate liquids and solid mantle essentially determine the stability and mobility 

of melt at depth [174, 193]. Structural metamorphosis on being compressed can influence the melt 

density, and other properties including the melt viscosity and element partitioning. Thus, reliable 

results (experimental and theoretical) are essential. The transport properties e.g. viscosity of 

aluminosilicate melts is one of the key factors that determines the dynamics of our planet and other 

celestial objects with similar rock formation that on Earth. It affects the equilibration between 

sinking metals and the surrounding silicate melts after an impact and strongly influences the 
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cooling time of the magma ocean of the early Earth gradually giving rise to solid rocks [194-195]. 

Some of the experimental and theoretical studies that have reported transport properties of silicate 

melts can be found in Refs. [196-202] 

Due to the similarity in composition to natural magma, structural and transport properties 

of silicate and aluminosilicate glasses and melts have been a very interesting topic of research [203-

206]. To have a more fundamental and detailed mechanism of structural change and transport of 

natural magma, besides difficult experimentation at the conditions of deep interior, first principles 

computation is performed on compositionally simple systems. Natural melts represent multi-

component systems consisting of CaO, MgO, Fe, Fe2O3, Na2O, K2O, Al2O3, TiO2 and SiO2. Certain 

minerals such as diopside (CaMgSi2O6) and anorthite (CaAl2Si2O8) (melt and glass) have been 

studied both experimentally and theoretically [207-211], together giving a comprehensive 

explanation of structural changes and transport properties associated with densification. 

In this chapter, a basalt system consisting of CaO, MgO, Al2O3 and SiO2 has been subjected 

to AIMD simulations. The glass system was studied at 300 K and at pressures ranging from 0 to 

80 GPa. Similarly, the melt system was studied at a similar pressure range as that of the glass and 

2200 K. The main goal of this chapter is to unravel the structural transition, i.e. coordination and 

bond length changes, and relating the structural properties to the density, bulk velocity of sound 

and the transport properties of both glass and molten basalt at conditions mimicking that of the 

deep mantle region.  
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5.2 Glass 

5.2.1 Computational Method 

 

Ab initio Molecular dynamics simulation was carried out on a model basaltic glass system. 

Constant volume and constant temperature (NVT) canonical ensemble was employed along with 

Nosé thermostat [211]. The simulations were carried using the VASP program [55-57]. The 

electron orbitals were expanded in the plane wave (PAW) basis set and the PBE [46] functional 

was used. The kinetic energy cut-off of the plane wave was 400 eV. The interatomic forces are 

computed for all the time steps from a fully self-consistent solution of the electronic structure to 

the Born-Oppenheimer surface, within the finite temperature formulation of density functional 

theory. The stoichiometry of the basaltic material studied was Ca22Mg14Al16Si44O148. A cubic 

supercell with a total of 244 atoms was considered. Owing to the large size of the unit cell and 

computational limitations, we ran all the simulations using just one k-point (Γ) to sample the 

Brillouin Zone. For this glass system, simulations were performed at approximately 0, 4, 8, 12, 14, 

25, 36, 47, 58, 68 and 79 GPa and 300 K. The time step that was used for the integration of the 

equation of motions was chosen to be 1.0 fs. All AIMD simulations were performed for at least 50 

ps.  

 

5.2.2 Results and Discussion 

5.2.2.1 Convergence 

 

In order to compute reliable equilibrium properties, MD simulations ran for more than 

50000 fs. But before we could perform any analysis on the trajectory of the atoms stored, we 

checked the convergence of our calculations. As already mentioned, calculations were performed 

in the NVT ensemble; therefore, the volume was constant. It is necessary to check for convergence 
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of the temperature, pressure and energy. Fig. 5.1 shows the plots of the temporal evolution of these 

quantities at 4 GPa. It can be seen from the pressure and energy graphs, that approximately after 

10000 fs, the calculation has converged. Therefore, the first 10000 steps were removed and all 

subsequent calculations were done using the remaining number of steps. This is good practice to 

see if the values are converging to the numbers desired. For example in Fig. 5.1a, it can be 

confirmed that the temperature is indeed very closely oscillating about 300 K giving an average of 

300 K. Similarly for pressure (Fig. 5.1b), the isotropic stress has converged to an average value of 

4 GPa after approximately 10000 fs.  

 

 

Figure 5.1 a) Temperature vs time, b) Pressure vs time, and c) Energy vs time to confirm the 

convergence of the calculations of basalt glass at 4 GPa and 300 K in an NVT ensemble.  
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5.2.2.2 Structural Transformation 

 
We will show that there are several transitions by studying the structures of the basaltic 

glass. From Fig. 5.2a, it is evident that the Si atoms are 4 fold coordinated with oxygen atoms at 

ambient pressure forming SiO4 tetrahedrons. When compressed, the coordination number remains 

4 until 15 GPa. Above 15 GPa, the average coordination number increases at the cost of the four 

fold coordination. As shown in Fig. 5.2c, there is a mixture of five and six fold coordination. This 

mixed coordination is observed until 47 GPa at which the remaining four fold coordination is 

gradually replaced by six fold coordination. Above 47 GPa, the predominant number of nearest 

oxygen neighbours of silicon is six. This indicates the completion of the gradual structural 

transition of the glass from four to six fold coordination. The coordination change with pressure is 

shown in a separate section later on.  
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- 

Figure 5.2 a-f) Snapshots of the structure of Basalt glass at 0, 14, 36, 47, 68 and 79 GPa 

respectively. The blue sphere are Si and the red spheres are O. The structural transition of the Si-

O coordination has been shown with increasing pressure.  
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The structural change with respect to the aluminium and oxygen bonding has been shown 

in Fig. 5.3. For aluminium, like other aluminosilicate glasses [207], the change of coordination 

from 4 to 5 occurs in a very narrow pressure range. As can be seen in the sequential diagram below 

(Fig. 5.3a-f), that by 15 GPa, the four fold coordination drops sharply and Al atoms become mostly 

six-fold coordinated with oxygen atoms. This six-fold coordination, however doesn’t change 

rapidly and gives rise to AlO6 octahedrons within a small pressure window. A small concentration 

of five-fold coordinated aluminium atoms can be seen between 15 and 69 GPa. At around ~70 GPa, 

a considerable amount of seven fold coordination can be seen, hinting that at greater pressures, 

transition to even higher coordination may occur.  
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Figure 5.3 a-f) Snapshots of the structure of Basalt glass at 0, 14, 36, 47, 68 and 79 GPa 

respectively. The blue spheres are Al and the red spheres are O. The structural transition of the Al-

O coordination has been shown with increasing pressure. 
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5.2.2.3 Radial Distribution Function 

 

A closer examination of the nearest neighbor structure is revealed in the plots of the Radial 

Distribution Function (RDF). The calculated RDF displays well-defined sharp first peak for all 

cation–anion pairs. The RDF of Si-O are plotted in Fig. 5.4a for all the pressure points at which 

simulations were performed. The nature of the RDF matched extremely well with those in Refs. 

168 and 214 for the case of SiO2 glass. The first peak represents the nearest neighbor distance and 

the area underneath a peak of the RDF provides the information of the coordination number. The 

cation-oxygen bond length is a characteristic parameter of the network structure of amorphous 

silicate and aluminosilicate materials. In this case the Si-O bond length is shifted to a lower value 

from ambient to 15 GPa and the reverse trend is observed at higher pressures. The Si-O bond length 

of the basalt melt at ambient pressure is 1.63 Å and decreases to 1.61 Å by 15 GPa where the four 

fold coordination of the Si atoms is still dominant (vide infra). This is to be expected as, with 

compression, the bonds are shortened. However, once the structural change to high Si-O 

coordination commences, the bond length increases to accommodate more neighboring oxygen 

atoms. At 25 GPa and higher pressure, when the transition from SiO4 to SiO6 is largely completed, 

the silicon-oxygen distance is 1.66 Å. Then it decreases gradually with increasing pressure as the 

material gets compressed and there is no drastic change in the coordination. The nearest neighbour 

Si-O distances are plotted in Fig. 5.4b and compared with the results from other studies [191, 207 

and 214]. The trend of the values that we obtained from our MD simulations are in very good 

agreement with other silica glasses. Anorthite (CaAl2Si2O8) glass has also been considered for 

comparison as it an aluminosilicate containing calcium thus mimicking our system to a good extent. 

In essence, the initial dip in the bond length till 15 GPa is due to compression, followed by an 

increase in the bond length (till 25 GPa) which signifies coordination change or structural 



110 
 

transition. Increase in coordination number is always marked by an increase in the bond length. 

From 25 to 70 GPa, the Si-O distance remains almost unchanged. At higher pressures there is 

another dip which is once again due to the reduction in the volume of the octahedron structure.  

 
Figure 5.4 a) The RDF of Si-O at increasing pressure and b) Si-O bond length vs pressure for basalt 

glass.  

Fig. 5.5a shows the RDF for Al-O. At 0 GPa, the Al-O bond length is 1.75 Å and shifts to 

a higher value at 15 GPa. This is expected and will become even much clearer in the next section 

when the coordination numbers are plotted as a function of the pressure. The above trend is similar 

to that observed for Si-O bonds, i.e. on compression from 0 to 15 GPa, the tetrahedron polyhedral 

almost disappear accompanied by the emergence of five and six fold coordination. From 0 to 15 
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GPa, there is a rapid fall in the four fold coordination but the five-fold coordination is mainly 

present. To fit in more nearest neighbours, the Al-O bond length increases to approximately 1.81 

Å. However once the transition to the octahedron (AlO6) phase was completed, the bond length 

decreased to 1.75 Å once again due to decrease in volume. One would expect the bond length to 

decrease on further compression. On the contrary, we notice that even at 58, 68 and 79 GPa, the 

bond length remained almost constant at 1.75 Å. Even at the emergence of seven-fold coordination 

(vide infra). The nature of the evolution of the Al-O bond length is illustrated in Fig. 5.5b.  

 
 

Figure 5.5 a) The RDF of Al-O at increasing pressure of basalt glass and b) Al-O Bond Length vs 

Pressure of basalt glass.  
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From Fig. 5.6a and b, it is evident that unlike Al and Si, the bond length between calcium 

and oxygen keeps decreasing with pressure. Specifically, after 20 GPa, the bond length falls much 

faster. Once again this trend is in agreement with the results obtained by Ghosh et al. [207]. The 

average Ca-O bond length at ambient pressure is 2.29 Å and it remains almost constant up to 20 

GPa. Above 20 GPa, Ca-O distance starts decreasing with pressure. Although, both for anorthite 

glass [207] and our work the MD simulations were performed at 300 K, it can be noted that for Si, 

Al and Ca, there is consistently a 0.5-1 Å difference in the bond lengths. This is possibly due to the 

fact that different approaches have been used to interpret the bond lengths from the RDF. 

Therefore, the difference is approximately constant and the trend gives useful information about 

the coordination environment. Notably, in crystalline anorthite, Ca maintains a distorted polyhedral 

surrounding with seven nearest-neighbor oxygens that have an average bond distance of 2.49 Å 

[215].  
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Figure 5.6 a) RDF of Ca-O with increasing pressure and b) Change in Ca-O bond length with 

increasing pressure for basalt glass.  

Similar to Ca, the bond length of magnesium and oxygen atoms in the glass structure also 

almost constant until approximately 25 GPa and then starts to decrease owing to the compression. 

After around 25 GPa, the Mg-O bond length falls steeply and attains a comparatively stable value 

of roughly 1.89 Å. This trend and the bond lengths match well with the Mg-O bond lengths found 

for diopside melt in a theoretical study by Sun et al. [208]. The Mg-O bond length in our basalt 

system has been compared to that of diopside (CaMgSi2O6). Hence, chemical formula wise, it is 



114 
 

close to basalt and suitable for comparison. Unlike Si and Al, the bond lengths of Ca and Mg with 

oxygen are much longer due to the larger ionic radii.  

 

Figure 5.7 a) RDF of Mg-O with increasing pressure and b) Change in Mg-O bond length with 

increasing pressure for basalt glass.  

 

5.2.2.4 Coordination Number 

 

It is believed that in silica and alumina, the glass structure is largely controlled by cation–

anion bonding so the structural changes due to pressure, temperature and composition can be better 
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characterized in terms of coordination environments consisting of different cations and anions. As 

pressure rises, the calculated mean Si–O coordination increases relatively gradually initially from 

fourfold (at zero pressure) to six fold at high pressure in a remarkably similar way for the basaltic 

compositions studied in Ref. 165. It is essential to study coordination change of the cations with 

respect to oxygen atoms to better understand the structural, thermal and transport properties. 

Densification at lower pressures is attributed to the flexibility of the silicate network but has a limit 

because eventually atoms are so closely packed that further compression involves bond shortening 

and coordination changes. Structural transformations are due to the increased stability of the higher 

cation-anion coordination at high pressures. The evolution of the coordination number of silicon 

atoms with respect to oxygen atoms is shown in Fig. 5.8a. The basaltic glass like most other silicate 

glasses has four fold Si coordination with oxygen at ambient pressure. With the onset of 

densification, from approximately 15 GPa, there is clearly a mixed four and five-fold coordination. 

This is apparent in Fig. 5.2, where the structural change of the unit cell was shown at consistent 

pressure intervals. The coordination number increment from four keeps happening smoothly up 

until 40 GPa, after which it becomes a mix of five and six fold coordination which is somewhat 

similar to silicate glass [216]. At higher pressures, above 50 GPa, the transformation from four fold 

(tetrahedron) to six fold (octahedron) coordination is largely completed. The average coordination 

has been plotted in Fig. 5.8b. The increment of the value from 4 to 6 is rapid between 0 and 15 GPa 

and above 15 GPa the increment is more slow. This increase in the coordination number will 

manifest its effects on other further properties (density, compressibility, etc.) too as will be seen in 

the following sections.  
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Figure 5.8 a) Coordination percentage vs pressure of Si atoms with respect to O atoms, b) Average 

Si-O coordination number vs pressure compared with other works dealing with silicate glasses.  

 

The aluminium coordination number change with respect to oxygen atoms is much sharper 

compared to Si atoms, as is evident in Fig. 5.9a. For alumina or aluminosilicate materials, at 

ambient pressure, there is a mixture of both four and five-fold coordination of Al atoms with O 

atomns. The Al-O bond is not only longer than the Si-O bond, but weaker too. In several studies, 

continuous breaking and reforming of Al-O bonds has been observed. This leads to an undulation 
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in the usual increment or decrement of the five-fold coordination of the Al atoms. By 15 GPa, the 

four fold coordination has almost vanished and the five-fold coordination becomes dominant. This 

is in agreement with the literature for aluminosilicate liquids [218]. Above approximately 50 GPa, 

seven coordination can also be seen to be arising and by 80 GPa, it comprises a considerable 

percentage of the coordination.   

 
Figure 5.9 a) Coordination percentage vs pressure of Al atoms with respect to O atoms, b) Average 

coordination number of Al atoms vs pressure of basalt glass.   
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5.2.2.5 Equation of State (EOS) 

 

The pressure-volume relation of basaltic melt is shown in Fig. 5.10. The points are fitted 

using the 4th order Birch Murnaghan (BM) equation of state which takes the form of Eq. (5.1).  

 

𝑃 = 3𝐾0𝑓𝐸(1 + 2𝑓𝐸)
5

2⁄ [1 +
3

2
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(𝐾0𝐾
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9
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K0 is the zero pressure bulk modulus, 𝐾′ is the pressure derivative of the bulk modulus, 𝐾′′ is the 

second derivative of the bulk modulus with respect to pressure and fE is the Eulerian strain and is 

given by, 

𝑓𝐸 =

[(
𝑉
𝑉0

)

2
3
− 1]

2
 .                                                             (5.2) 

The fit results are as follows. The ambient pressure volume (V0) is 3111 Å3, bulk modulus (K0) is 

equal to 25.1 GPa and the pressure derivative of the bulk modulus is 5.0.  

 
 

Figure 5.10 P-V curve of basalt glass fit with 4th order BM EOS fit.  
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Common EOS fits such as the Birch-Murnaghan or Vinet are of limited theoretical validity 

for glasses and melts, where densification occurs for a large part through configurational changes. 

However, they are useful for interpolation between data but extrapolations far beyond the 

experimental data are often erroneous. Below and above 15 GPa, the compression mechanisms are 

different. For pressures below 15 GPa, the volume falls sharply and this decrement becomes slower 

at higher pressures. This structural change is a gradual and continuous one.  

Density measurements of amorphous material are key for constraining the density contrast 

in planetary interiors. Such information is extremely valuable to understand the internal dynamics 

and reproduce the thermo-chemical evolution and history of the different layers of the Earth and 

other rocky planets. As expected, from Fig. 5.11, the density of the basalt glass increases with 

pressure. Similar to the P-V curve, the increase in the density between 0 and 15 GPa 

(approximately) is much more rapid than at pressures above 15 GPa. This value is in agreement 

with both experimental and theoretical studies of silica [170, 191]. At higher pressures, the increase 

in the density is rather sluggish owing to high compaction, with an overall almost two-fold increase 

in the density within the pressure range of 0 to 80 GPa. In the investigated range of pressure points, 

no inversion of density was noted for the basalt glass either. From Fig. 5.11, it can be seen that the 

density obtained from our calculations is in excellent agreement with the density calculated in the 

simulations performed by Ghosh et al. for anorthite glass [207].                                                                                                         
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Figure 5.11 Change in density with pressure of the glass structures. 

From the BM fit, the first order numerical derivative of the pressure with respect to the 

volume can be obtained. The pressure derivative is related to the bulk modulus via.  

𝐾 = −𝑉
𝑑𝑃

𝑑𝑉
 .                                                                  (5.3) 

The pressure interval where the pressure-volume curve is steep, the bulk modulus has a smaller 

magnitude. This is intuitive as at lower pressure the material can be compressed more, the isotropic 

compressibility is more. Bulk modulus is the inverse of compressibility. Between 0 and 15 GPa, 

the volume drop is very high and therefore the bulk modulus is low and the first derivative of the 

bulk modulus with respect to pressure (K') is 5.0451. In terms of bulk modulus, this pressure 

domain is characterized by bulk modulus values ranging between 25 and 422 GPa (Fig. 5.12).  
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Figure 5.12 Bulk modulus as a function of pressure of basalt glass.  

Despite excellent agreement in the equilibrium bulk modulus compared to the study by 

Ghosh et al. [207] for anorthite glass, the experimental (Ponitzsch et al. [212]) zero-pressure bulk 

modulus derived from ultrasonic measurements (4–10 MHz) is larger than that of the present study. 

The acoustic velocity is frequency dependent as found from ultrasonic measurements of silicate 

liquids [219]. The ultrasonic wave velocity values are higher, resulting in higher bulk modulus. 

This similar disparity has also been reported in the study of GeO2 glass by Smith et al. [220] and 

SiO2 glass by Zha et al. [221] 

The velocity of sound at bulk is calculated from the formula,  

𝑣 = √
𝐾

𝜌
 ,                                                                     (5.4) 

where K is the isothermal bulk modulus and ρ is the density. The bulk acoustic velocity increases 

linearly with pressure. From Fig. 5.13, one can see that the values obtained from our MD study is 

in very good agreement with magnitudes obtained from other MD studies.   
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Figure 5.13 Pressure evolution of the velocity of sound of basalt glass.   

 

 Similar to the pressure vs density curve in Fig. 5.11, the bulk acoustic velocity rises steeply 

till 15 GPa (approximately) and eventually the curve becomes more flat at higher pressures. The 

rapid densification at lower pressures brings the molecules closer and makes it easier for them to 

vibrate and transfer energy longitudinally, thus making acoustic velocity higher too.  

 

5.2.2.6 Electronic Properties 

 

 The electronic density of states (DOS) was determined for the basalt glass at all calculated 

pressures. Throughout the compression process, no transition to the metallic state was observed. 

Fig. 5.14 a-d shows the DOS at various pressure points. In fact, on the contrary, the band gap 

increases gradually from 2.90 eV at 0 GPa to 3.27 eV at 68 GPa.  
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Figure 5.14 a-d) Electronic DOS of basalt glass at 0, 25, 47 and 68 GPa, calculated using PBE XC 

functional. 

 

5.3 Melt  

5.3.1 Computational Method 

 

Same as basalt glass, ab initio MD simulation was performed on a model basaltic melt 

system. Constant volume and constant temperature (NVT) canonical ensemble was employed on a 

well equilibrated liquid generated from the melting of the solid along with Nosé thermostat [211]. 

The simulations were carried out using the VASP [55-57] program. The electron orbitals were 

expanded in the plane wave (PAW) basis set and the PBE [46] functional was used. The kinetic 
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energy cut-off of the plane wave was 400 eV. The stoichiometry of the basaltic material studied 

was Ca22Mg14Al16Si44O148. The total number of atoms in the cubic unit cell was 244. Owing to the 

large size of the unit cell and computational limitations, we ran all the simulations using just one 

k-point (Γ) to sample the Brillouin Zone. For this glass system, simulations were performed at 0, 

18, 23, 30, 38, 50, 62, 68 and 82 GPa and 2200 K, similar to the experimental conditions. The time 

step that was used for the integration of the equation of motions was chosen to be 2.0 fs. All AIMD 

simulations were performed for at least 50 ps.  

5.3.2 Results and Discussion 

5.3.2.1 Convergence 

 

Similar to basalt glass, in order to compute reliable equilibrium properties of basalt melt, 

MD simulations ran for more than 50000 fs. But before performing any analysis on the trajectory 

of the atoms stored, we checked the convergence of our calculations. As already mentioned, 

calculations were performed in the NVT ensemble; therefore, the volume was constant. It is 

necessary to check for convergence of the temperature, pressure and energy. Fig. 5.15 shows the 

plots of the temporal evolution of these quantities at 0 GPa. It can be seen from the pressure and 

energy graphs, that approximately after 10000 fs, the calculation has converged. Therefore, the 

first 10000 steps were removed and all subsequent calculations were done using the remaining 

number of steps. This measure and care was taken for all the pressure points at which the molten 

structure of basalt was simulated. For example in Fig. 5.15a, it can be confirmed that the 

temperature is indeed very closely oscillating about 2200 K giving an average of 2200 K. Similarly 

for pressure (Fig. 5.15b), the isotropic stress has converged to an average value of 0 GPa after 

approximately 10000 fs.  
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Figure 5.15 a) Temperature vs time, b) Pressure vs time, and c) Total energy vs time to confirm the 

convergence of the calculations of molten basalt at 0 GPa and 2200 K in an NVT ensemble.  

 

5.3.2.2 Structural Transformation 

 
We will show that there are several structural transitions from study of the structures 

transformation of the basaltic melt. The similarities between high pressure silicon and oxygen 

coordination for glass and melt are striking and this will be discussed in a later section. From Fig. 

5.16a, it is evident that the Si atoms are 4 fold coordinated with oxygen atoms at ambient pressure 

forming SiO4 tetrahedrons. When compressed, the coordination number remains 4 until 18 GPa. 

Above 18 GPa, the coordination number increases at the cost of the four fold coordination. As 
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shown in Fig. 5.16c, there is a mixture of four, five and six fold coordination. This mixed 

coordination is observed until 38 GPa at which the four fold coordination is gradually replaced by 

six fold coordination. Above 38 GPa, the predominant number of nearest oxygen neighbours of 

silicon is six. This indicates the completion of the gradual structural transition of the melt from 

four to six fold coordination.  
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Figure 5.16 a-f) Snapshots of the structure of molten Basalt at 0, 18, 23, 38, 50 and 68 GPa 

respectively. The blue sphere are Si and the red spheres are O. The structural transition of the Si-

O coordination has been shown with increasing pressure.  
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The structural change with respect to the aluminium and oxygen bonding is shown in Fig. 

5.17. For aluminium, like other aluminosilicate melts [207, 219], the change of coordination from 

4 to 5 again occurs within a very narrow pressure range. As can be seen in the sequential diagram 

below (Fig. 5.17a-f), that by 18 GPa, the four fold coordination drops sharply and Al atoms become 

mostly five-fold coordinated with oxygen atoms. This five-fold coordination, however doesn’t 

change rapidly and gives rise to AlO6 octahedrons within a small pressure window. Rather, even 

at 50 GPa, an equal mixture of five and six oxygen coordinated Al atoms are observed. Above 50 

GPa, the number of nearest oxygen neighbours of aluminium gradually increases to six. At around 

~70 GPa, traces of seven fold coordination can also detected, hinting that at greater pressures, 

transition to even higher coordination may occur.  
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Figure 5.17 a-f) Snapshots of the structure of molten Basalt at 0, 18, 23, 38, 50, and 68 GPa 

respectively. The purple sphere are Al and the red spheres are O. The structural transition of the 

Al-O coordination has been shown with increasing pressure. 
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5.3.2.3 Radial Distribution  

 

The RDFs of Si-O for molten basalt are plotted in Fig. 5.18a for all the pressure points at 

which simulations were performed. The nature of the RDF matched extremely well with those in 

literature as well as with our glass system. In this case the Si-O bond length is seen to shift to a 

lower value up to approximately 18 GPa and then starts to shift to higher values. The peak position 

gradually shifts to the left after 38 GPa. The Si-O bond length of the basalt melt at ambient pressure 

is 1.62 Å which decreases to 1.60 Å by 18 GPa and the four fold coordination of the Si atoms is 

still dominant. The same explanation as that for glass holds for this case as well. With compression, 

the bonds gets more squeezed. However, once the structural change commences, and higher 

coordination sets in, the bond length increases to accommodate more neighboring atoms, in this 

case oxygen. From 50 GPa onwards, when the transition from SiO4 to SiO6 is complete, the silicon-

oxygen bond length is 1.65 Å. It further decreases gradually with increase in pressure. The first 

peak of the pair distribution function of Fig. 5.18a is the Si-O bond length. The nearest neighbour 

Si-O distances have been plotted in Fig. 5.18b and compared with the data from other studies [165, 

168, 208 and 214]. The trend of the values that we obtained from MD simulations is in very good 

agreement with other silicate melts. In summary, the initial dip in the bond length till 20 GPa is 

due to compression, followed by an increase in the bond length (till 50 GPa) which signifies 

coordination change or structural transition, i.e. since the number of nearest neighbors (in this case 

oxygen) increases, the oxygen atoms spread out more at greater bond lengths to fit in more O atoms. 

At higher pressures there is another dip which is once again due to the reduction in the volume of 

the octahedron structure.  
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Figure 5.18 a) The RDF of Si-O at increasing pressure and b) Si-O bond length vs pressure for 

molten basalt.  

Fig. 5.19a shows the RDF for Al-O. At 0 GPa, the Al-O bond length is 1.75 Å and at 18 

GPa, the peak shifts to a higher value. From 0 to 18 GPa, there is a rapid drop in the four fold 

coordination but the five-fold coordination is maintained. To fit in more nearest neighbours, the 

Al-O bond length increases to approximately 1.77 Å. However once the transition to the octahedron 

(AlO6) phase is almost complete, the bond length decreases to 1.75 Å once again due to decrease 

in volume. One would expect the bond length to decrease on further compression. However, we 

notice that even at 68 and 82 GPa, the bond length remains almost constant at 1.75 Å. This is 

probably due to the rise of seven fold coordination as has been shown in the next section. The 
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nature of the evolution of the Al-O bond length has been illustrated in Fig. 5.19b, which agrees 

very closely with another study on alumina melt by Verma et al. [213].  

 
 

Figure 5.19 a) The RDF of Al-O at increasing pressure and b) Al-O bond length vs pressure of 

molten basalt. 

 

From Fig. 5.20a and b, it is evident that unlike Al and Si, the bond length between calcium 

and oxygen keeps decreasing with pressure. The same trend was seen for the glass as well. 

Specifically, after 30 GPa, the bond length falls much faster. The average Ca-O bond length at 

ambient pressure is 2.29 Å and it remains almost constant up to 30 GPa. Above 23 GPa, Ca-O 

distance starts decreasing with pressure.  For a better understanding, we compared our result with 
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that obtained by Sun et al. [208] as illustrated in Fig. 5.20b. From their MD calculations for molten 

diopside, the results matched extremely well with ours.  

 

Figure 5.20 a) RDF of Ca-O with increasing pressure and b) Change in Ca-O bond length with 

increasing pressure basalt melt.  

 Similar to Ca, the bond lengths of magnesium and oxygen atoms in the glass structure are 

also almost constant till 23 GPa. Then it starts to decrease owing to the compression. After around 

23 GPa, the Mg-O bond length falls steeply and attains a comparatively stable value of roughly 
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1.89 Å. This trend and the bond lengths match well with the Mg-O bond lengths found for diopside 

melt by Sun et al. [208] and our results for the glass.  

 

Figure 5.21 a) RDF of Mg-O with increasing pressure and b) Change in Mg-O bond length with 

increasing pressure of basalt melt.   

 

5.3.2.4 Coordination Number 

 

The melt structure is largely controlled by cation–anion bonding so the structural changes 

due to pressure, temperature and composition can be better understood in terms of coordination 
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environments consisting of different cations and anions. As pressure rises, the calculated mean Si–

O coordination increases relatively gradually initially from fourfold (at zero pressure) to six fold 

at high pressure in a remarkably similar way for the basaltic compositions studied in Ref. 165. The 

evolution of the coordination number of silicon atoms with respect to oxygen atoms has been 

shown in Fig. 5.22a. The basaltic melt like most other silicate melts has four fold coordination of 

silicon atoms at ambient pressure. With the onset of significant densification at 18 GPa, there is 

clearly a mixed four and five fold coordination. This was apparent in Fig. 5.16, where the structural 

change of the unit cell was shown at consistent pressure intervals. Although, we have no pressure 

points between 0 and 18 GPa, it is safe to assume that the four fold coordination dominates upto 

around 15 GPa. This can be justified from Fig. 5.22b in which we can see that for both experiments 

(NMR) and MD simulations, the average coordination remains very close to 4 for silica and silicate 

melts, within 0 and 15 GPa, indicating that the higher coordinations do not set in before 15 GPa. 

This has been found in the theoretical calculations as well which shows the individual percentage 

of the different coordination. The drop in the four fold coordination is sudden at approximately 18 

GPa and then the coordination number increment keeps happening smoothly up until 38 GPa, after 

which it becomes a mix of five and six fold coordination which is somewhat similar to what we 

obtained for the glass structure. At higher pressures, that is after 50 GPa, the transformation from 

four fold (tetrahedron) to six fold (octahedron) coordination gets completed. For Silicon, this 

increase in coordination is possible as with increase in pressure and in turn energy, the d orbitals 

of the Si atoms also participate in bonding. The average coordination has been plotted in Fig. 5.22b. 

The increment of the value from 4 to 6 is once again marked by two distinct regions. From 0 to 23 

GPa, the coordination increases rapidly while it slows down after 23 GPa.  
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Figure 5.22 a) Coordination percentage vs pressure of Si atoms with respect to O atoms and b) 

Average Si-O coordination number vs pressure compared with other works. 

 

The aluminium coordination number with respect to oxygen atoms is much sharper as is 

evident in Fig. 5.23a. By 20 GPa, the four fold coordination almost vanishes and gives rise to the 

intermediate five-fold coordination. Once again, this is in agreement with the literature for 

aluminosilicate liquids [218]. At 50 GPa, there is an almost equal concentration of five and six 

coordinated Al atoms. Eventually at very high pressures above 70 GPa, seven fold coordination 
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surfaces. The rapid increase in the density between 0 and 18 GPa can be attributed to the rapid 

increase in Al coordination.  

 

Figure 5.23 a) Coordination percentage vs pressure of Al atoms with respect to O atoms and b) 

Average coordination number of Al atoms vs pressure.  
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5.3.2.5 Equation of State 

 

The pressure-volume relation of basaltic melt is shown in Fig. 5.24. The points are fitted 

using the 4th order Birch Murnaghan (BM) equation of state (Eq. 5.1). All the points could not be 

fit using Eq. 5.1. Therefore two different fits (blue and red lines in Fig. 5.24) were used with the 

discontinuity being at approximately 30 GPa. The fit parameters are as follows. For the curve from 

0 to 30 GPa, the ambient pressure volume (V0) is 3120 Å3, bulk modulus (K0) is equal to 46 GPa 

and the pressure derivative of the bulk modulus is 3.2. From 30 GPa to 82 GPa, the pressure 

derivative of the bulk modulus is 5.2. Below and above 23 GPa, the compression mechanisms are 

different. For pressures below 23 GPa, the volume falls sharply and the decrement becomes slower 

at higher pressures. The structural change however is gradual and continuous. 

 

Figure 5.24 P-V curve of molten basalt fit with 4th order Birch- Murnaghan EOS fit. The two 

different curves are due to two different 4th order BM EOS fits. 

 

The nature of the change of volume is reflected in the most of the other properties as well. 

This has been discussed next. From Fig. 5.25, the density of the molten basalt is seen to be 
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increasing which is not unexpected. Similar to the P-V curve, the increase in the density between 

0 and 23 GPa is much more rapid than pressures above 23 GPa. In the investigated range of pressure 

points, no inversion of density was noted for the basalt melt either. From Fig. 5.25, it can be seen 

that the density obtained from our calculations is in excellent agreement with the density calculated 

in the simulations performed by Bajgain et al. for molten basalt [218].   

  

Figure 5.25 Change in density of the basaltic melt with pressure compared with other silicate melts. 

 

Density of the relevant melt at high pressure and high temperature conditions, and finally 

the structures and coordination changes of such melts with pressure, influence the thermal, 

physical, and transport properties of melts with depth help to evaluate the density contrast between 

the solids and liquid that are present at great depth within the early Earth’s mantle. Interestingly, a 

similar analysis has been postulated for silica from the observed glass behaviour [217]. Over the 

0–60 GPa range, silica melt first transforms to a densified melt (equivalent of the quartz to coesite 

transition but smoothed over a larger pressure range), then Si–O coordination number increases 

from 4 to 6, after which silica melt has a stishovite-like behaviour. 
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From the 4th order BM fit, the first order numerical derivative of the pressure with respect 

to the volume can be obtained. Using the following formula (Eq. 5.3), the bulk modulus was 

obtained. Same as the glass structure, the pressure range where the pressure volume curve is steep, 

and the bulk modulus has a smaller value. This is expected as at lower pressure the material can be 

compressed more, the isotropic compressibility is more as the bulk modulus is simply the inverse 

of compressibility. At 23 GPa, there is a slight discontinuity due to the two different BM fits used 

for the low and high pressure regions.  

 

Figure 5.26 Bulk modulus of the melt as a function of pressure. 

 

The velocity of sound at bulk is calculated from Eq. 5.4. As evident from Fig. 5.27, above 

23 GPa, there is an increase in the velocity. This increase can be explained mathematically. At high 

pressures, i.e. above 23 GPa, both the bulk modulus and density increase. But the density as seen 

from Fig. 5.27 flattens down compare to that in the lower pressure region. Thus the bulk modulus 

increases more rapidly than the density which leads to high velocity of sound. Compared to other 

studies as illustrated in the plot of Fig. 5.27 and the system in the glass state as discusses in the 
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previous sections, the increase of the velocity is much steeper between 0 and 23 GPa and becomes 

more slow at higher pressures.  

 

Figure 5.27 Pressure evolution of the velocity of sound in molten basalt. 

 

5.3.2.6 Electronic Properties 

 

 The electronic density of states (DOS) was determined for the molten basalt at all the 

pressure points. Throughout the compression process, no transition to the metallic state was 

observed. Fig. 5.12 a-d shows the DOS at various pressure points. In fact, on the contrary, the band 

gap increases gradually from 1.52 eV at 0 GPa to 3.60 eV at 68 GPa.  
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 Figure 5.28 a-d) Electronic DOS of basalt melt at 0, 23, 50 and 68 GPa, calculated using PBE 

XC functional.  

 

5.3.3 Diffusion and Viscosity of the Melt 

  

  The study of molten silicates is crucial to understand the cooling and crystallization of the 

Earth’s early magma ocean as well as the present day mantle dynamics [224-225]. Diffusivity is 

unique compared to other transport properties such as viscosity with regards to the fact that 

diffusion coefficient can refer to a specific component or species rather than to the bulk melt. In 

order to understand the geological implications of the basaltic melt at the upper mantle condition, 

it is necessary to study this transport property, i.e. diffusion. In this section, the diffusion and 
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viscosity of the molten basalt at 2200 K as a function of pressure has been discussed. From Fig. 

5.29, it is apparent that the MSD of the Mg atoms has the highest slope in the linear region, denoting 

that the magnesium atoms diffuse the most at 0 GPa and 2200 K. Consistent with literature [226], 

silicon has comparatively the least steep MSD, thereby diffusing the least. The predicted diffusivity 

sequence is Mg > Ca > Al > O > Si. Our results at 0 GPa and 2200 K show that Mg is the fastest 

species, whereas Si is the slowest species with DMg/DSi= 1.83. The predicted ordering of DMg > DCa 

> DAl ≈ DO> DSi somewhat agrees with the measured order for the melt with composition 20CaO-

20Al2O3-60SiO2(wt %) at 1 GPa and 1773 K [210]. As temperature decreases, the mechanisms 

become increasingly sensitive to local structural environments and different species see different 

local potentials. Mg and Ca atoms, being relatively weakly bonded to O atoms compared to 

bonding between Si (or Al) and O atoms, can move easily in open space available at large volumes. 

Consistently, in MgSiO3liquid, Mg was also predicted to be the fastest species [227]. Since, the 

Ca-O and Mg-O bonds are much weaker than the Al-O and Si-O bonds, they get broken at much 

higher rates. Generally diffusion is inhibited on compression. If one considers atoms and ions as 

hard spheres, pressure suppresses the proportion of “free volume” in the structure (referred to as 

the ionic porosity) [228-229] and makes diffusion more difficult. For depolymerized melts, the 

negative pressure effect is also associated with the polymerization of melt structure, by converting 

non-bridging oxygen (NBO, oxygen atom bonded with a single network-forming cation) to 

bridging oxygen (oxygen atom shared by two neighboring network-forming units) [182]. The 

calculated self-diffusivities depend on temperature along with pressure. Quite intuitively, they 

show the normal trend that the diffusivity decreases monotonically with pressure. As temperature 

is decreased, the pressure dependence becomes stronger and vice versa. This can be attributed to 

bond breaking with increasing temperature, facilitating higher diffusion.   
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Figure 5.29 Mean Squared Displacement of the different elements in the Basaltic melt at 0 GPa. 

 

 Once the individual diffusion coefficients are determined for all the species, the average is 

taken to get a rough estimate of the overall diffusion coefficient of the bulk melt. Fig. 5.30 shows 

the mean squared displacement of the bulk melt at 0 GPa. Till close to 1 ps, the ballistic regime 

dominates and the diffusion is proportional to t2
 and is non-linear as collision is almost negligible 

in this regime of the MD study. Once, the curve becomes linear, the slope is calculated and using 

Eq. (1.64), the diffusion coefficient (D) is calculated.  
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Figure 5.30 Net Mean Squared Displacement of the Basaltic melt at 0 GPa. The red line is the best 

linear fit and the slope is calculated to compute the diffusion coefficient further. 

 

The dependence of D on pressure is shown in Fig. 5.31 and 5.32. The drop at approximately 23 

GPa insinuates a structural transition, i.e. change in coordination number. This pressure point 

matches well with the transition point shown in the EOS in the previous section. At this pressure, 

both the Si and Al atoms start losing the four fold coordination and start becoming octahedrally 

coordinated. At 62 GPa, there is another significant drop in the order of magnitude, possibly 

originating from the further increment of coordination where it starts to show traces of 7 fold 

coordination for both Al and Si. From Fig. 5.31, it can be noted that for all the species, the diffusion 

coefficient decreases at 18 GPa. As for Al, Ca and Mg, at 50 GPa, the diffusion coefficient rises 

again before it starts decreasing. However, for Si and O, the diffusion coefficient rises at 62 GPa 

and then starts to plummet when compressed.  
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Figure 5.31 Diffusion coefficient of the individual species as a function of pressure at 2200 K.  

 

Figure 5.32 Diffusion coefficient vs pressure of basalt melt at 2200 K.  

In order to compute the coefficient of viscosity using Eq. (1.63), the diagonal (xx,yy and 

zz) and off-diagonal (xy, yz and zx) stress tensors should oscillate around the desired pressure and 

zero pressure respectively.  This ensures that the pressure applied is isotropic. Therefore, all the 
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stress tensors of molten basalt were checked to confirm that in our MD calculations the pressure 

was always isotropic. Fig. 5.33 shows the diagonal and off-diagonal stress tensors for molten basalt 

at 30 GPa. 
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Figure 5.33 Stress tensors of molten basalt at 30 GPa of the a) diagonal and b) off-diagonal 

components. 

 

 Once the isotropy of the stress tensors is established, the stress autocorrelation function 

(SACF) is calculated and from Eq. (1.63) the coefficient of viscosity is computed. In Fig. 5.34, the 

average of all the SACF (off-diagonal and difference of diagonal) is shown for 0 GPa. After 

approximately 8 ps, the SACF decays to and oscillates about zero. Taking the area under the curve 

and choosing 8 ps as the cutoff, and using Eq. (1.63), the coefficient of viscosity (η) is found to 

have an average value of 48 mPa.s. In the same way, the η for the other pressure points is also 

calculated. Due to the oscillatory profile of the SACF around zero, we calculated the η with 

different cutoff values and included the deviations from the average value in the error bars. The 

deviation is generally seen to be approximately within 10-15% of the average value.  
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Figure 5.34 Stress auto correlation function vs time for molten basalt at 0 GPa. In the inset, the 

oscillation around 0 is shown.  

 

 The coefficient of viscosity at different pressures were calculated using different time 

origins and cutoff times, to confirm the convergence within the error bar. Usually, if the curves do 

not become roughly flat (converge) and show undulations, the simulations are run for longer 

periods of time to allow the SACF to decay to zero. In Fig. 5.35, the η is seen to converge 

approximately after 8 ps for the different pressures (0, 38 and 62 GPa). It is the converged values 

that have been reported.  
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Figure 5.35 Convergence of the coefficient of viscosity with respect to time at selected pressure 

points.  

 

 Molten aluminosilicates are responsible for many of the igneous processes in the mantle. 

The density contrast of the molten aluminosilicate with the surrounding mantle determines the 

buoyancy of the melt which is a deciding factor in whether the basaltic magma will rise or sink. 

Similarly, the viscosity of the melt can influence several factors too, e.g. mineral fractionation and 

crystallization, thermal transport, etc. The shear viscosity of the melt is dependent on several 

factors that include the effect of composition, pressure, and temperature. In our study, the effect of 

pressure has been studied on the viscosity at 2200 K. The coefficients of viscosity for the molten 

basalt is shown in Fig. 5.36. At 0 GPa, the coefficient of viscosity is 49 mPa.s. It rises to 105 mPa.s 

by 50 GPa and then drops to 80 mPa.s by 80 GPa.  
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Figure 5.36 Coefficient of viscosity vs pressure of molten basalt at 2200 K.  

 

Similar to other aluminosilicate melts that have been studied, even in our study we see a 

slight drop in the coefficient of viscosity till 18 GPa, which in literature is referred to as the 

anomalous behaviour of viscosity on compression [230]. Above 18 GPa, the viscosity rises steadily 

up to 50 GPa. Above 50 GPa, within a considerably large error bar, the coefficient of viscosity 

decreases contrary to other studies on silicate melts [231]. Between 0 and 18 GPa, the coordination 

of both Si and Al increase above 4. Specifically for aluminium, within a very narrow range (as 

described earlier), the coordination predominantly becomes five. This is contrary with the structure 

of silicate crystals in which fivefold coordination occurs rarely. Thus silicate or aluminosilicate 

liquid structures cannot be considered to be a somewhat disordered version of crystalline structure. 

The predominance of fivefold coordination at intermediate compressed region has the following 

consequences. Firstly, it contributes to the gradual change in the mean Si–O and Al-O coordination 

number and the density with increasing pressure. Secondly, fivefold coordination has been 

proposed by Angell et al. as a key ingredient for facilitating diffusion and viscous flow [192]. Even 
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experimentally, diopside melt shows an initial decrease in viscosity with increasing pressure, 

consistent with the growth of fivefold coordination [232]. Ideally, a polymerized network 

aluminosilicate liquid should have four coordinated aluminium and silicon atoms, and 2 

coordinated oxygen atoms. In such a melt system, all the oxygen atoms act as bridging oxygen 

(BO) atoms. Such systems have very high viscosity owing to the high activation barrier. On 

increasing the pressure, the coordination of the aluminium atoms increases to five very rapidly, 

weakening the Al-O bond, thus increasing the mobility of the atoms. However, Yarger et al. [233] 

suggested that the bond angle changes of tetrahedral aluminosilicate network can also be a factor 

responsible for the decrease of the viscosity with compression. Although pure silica melts have 

been observed to have high viscosity, the addition of alkali and alkali earth elements act as network 

modifiers which reduce the viscosity drastically [233]. The inclusion of alkali and alkali earth 

elements (Na, Ca, Mg, etc.) breaks the Si-O and Al-O linkages, giving rise to non-bridging oxygen 

(NBO) atoms. Previous studies have shown that the viscous flow in aluminosilicate melts is 

dependent on the oxygen exchange between polymeric units [234-235]. Presence of the non-

bridging oxygen atoms destroys the tetrahedral network structure resulting in the lowering of the 

activation energy for oxygen exchange. The low activation energy facilitates higher mobility, i.e. 

lower viscosity. In this study, between 0 and 18 GPa, the decrease in the viscosity can be attributed 

to the rapid increase in the aluminium coordination with oxygen. Interestingly, in our study, we 

found that the viscosity once again drops after 50 GPa. We have already seen that above 50 GPa, 

aluminium starts showing seven fold coordination, thus weakening the Al-O bond further. 

Furthermore, on compression, the alkaline and alkaline earth metals in our system, i.e. Ca and Mg, 

also attain higher coordination, thus giving rise to more NBO and lowering the viscosity further.  
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Fig. 5.37 shows the transition in the polyhedral structures for Si and Al. It is apparent that five-fold 

coordination and eventually even seven-fold coordination of the Si and Al atoms is the reason 

behind the anomalous viscosity.  

 

 

Figure 5.37 a) Polyhedra of Si-O linkages showing the transition from 0 GPa to 79 GPa via 30 GPa 

and 50 GPa and b) Polyhedra of Al-O linkages showing the transition from 0 GPa to 79 GPa via 

30 GPa and 50 GPa. 
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5.4 Comparison of the Glass and Molten Basalt and Geological Implication 

 

 Considering the similarity in the structural changes in compressed silicate glasses and melts 

at conditions similar to that of the Earth’s lower mantle [236], we studied both basalt glass and 

melt. This is to confirm if the glass structure can be used to determine melt properties as it is 

difficult to experimentally compress and study the various properties of melt. From Fig. 5.38, it 

can be seen that all the intrinsic properties, i.e. density, bulk modulus and bulk acoustic velocity 

are almost overlapping. Therefore, the model basalt glass is a good representative of its molten 

counterpart. Our results show that the melt is more compressible than the glass. At lower pressures, 

the glass is around 5% denser than the melt. But, the density contrast keeps decreasing with 

increasing pressure (Fig. 5.38b). At pressures close to 80 GPa, the densities of the glass and melt 

are very similar. In several studies concerning silicate and alumina melts [213, 222], density 

crossover has been predicted at pressures of around 90 GPa. At this pressure, the liquid becomes 

denser than the solid, a feature that is relevant in the dynamics of the magma in the Earth’s interior. 

In this study, the small density contrast insinuates at density crossovers in the mantle. Thus the 

negative buoyancy of the melt makes it plausible to be trapped in the lower mantle, which 

eventually effects the dynamics of the melt accumulation and circulation in the deeper parts of the 

mantle. This can perhaps even explain the seismic discontinuities. Due to the density crossover 

between liquid and solid phases, the mantle is fractionated. Similarly, the possibility of density 

crossover between basaltic magma and olivine was first suggested by Stolper et al. [237]  
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Figure 5.38 Comparison of glass and molten basalt at 2200 K. a) volume vs pressure, b) density vs 

pressure, c) bulk modulus vs pressure and d) bulk velocity of sound vs pressure.  

 The probable density crossover can also be inferred from the cation-anion bond lengths in 

the glass and melt. In Fig. 5.39, it can be clearly seen that the bond lengths are greater for the melt 

at lower pressures. This is due to the greater volume of the melt. However, at higher pressures, the 

bond lengths almost coincide, confirming that the volume and density of both the glass and melt 

become almost equal, thus the densities becoming almost equal. 
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Figure 5.39 Comparison of bond lengths as a function of pressure of glass and molten basalt at 

2200 K.  Open and closed shapes denote glass and melt respectively.  

 

Although the glass and melt show similar density profiles, the glass structure has a different 

trend of aluminium coordination number change compared to that of the melt. This is perhaps 

because, the glass structure even at ambient conditions has a significant amount of five-fold 

coordinated aluminium. Since, the pentahedral Al-O structure has weak bonding, on slight 

compression, the bonds break and form octahedral structures. From Fig. 5.40, the trend of the 

silicon coordination for both the melt and glass is similar, although the glass structure shows 

slightly more rapid transition to five-fold coordination.  
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Figure 5.40 Comparison of the average coordination of silicon and aluminium with oxygen. The 

red squares represent Si while the blue squares represent Al. Open and closed shapes denote glass 

and melt respectively.  

 

 One of the very few pioneering works which explores the structural changes of molten 

basalt at the deep mantle conditions is by Sanloup et al. [165]. In the previous sections, we have 

compared our results with the density, Si-O distance and Si-O coordination number obtained in the 

study by Sanloup et al. [165]. Our calculations slightly underestimate the density, Si-O bond length 

and Si-O coordination compared to the experimental results (Figs. 5.18, 5.22 and 5.25). This is 

probably due to the difference in composition, i.e. in our model basalt system, we have not 

considered other components such as Fe-O, Na2O, K2O, etc.  But, since the trends are same, it 

allows us to draw certain geological inferences that have been discussed in Ref. [165]. Owing to 

the already discussed density crossover, a layered magma ocean can be expected to exist at the 

lower mantle. This magma ocean is separated from another upper magma ocean by a solid 

crystalline layer.  
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 As pressure decreases, the melt density decreases too and the magma is pushed upwards. 

But, the other factor that determines the motion of the magma is the viscosity. Thus a more reliable 

parameter to understand the magmatic dynamics is the melt mobility (Δρ/η), where Δρ is the 

density contrast between the melt and its surroundings. The melt mobility is therefore largely 

influenced by temperature, pressure and composition. The depth at which the viscosity becomes 

least, the melt mobility becomes maximum which is ~20 times higher than the value near the 

surface. Increased melt mobility implies that the flow resistance is reduced drastically. A more 

rigorous understanding of the distribution of the melt mobility will unravel the long standing 

geophysical mysteries surrounding the origin of large igneous regions [238], nature of the 

asthenosphere and low-velocity zone, etc. [239]   

 

5.5 Summary 

 

Earlier, classical MD calculations on silicate melts were performed using semi-empirical 

force fields [240]. The transition to ab initio MD is fairly recent and paved the way to many 

theoretical studies of silicates. Most of the studies have been limited to rather simple systems, e.g. 

pure silica. The advancement has been gradual with the inclusion of more components that are 

similar to natural magma, by considering binary to ternary systems. Although these silicate and 

aluminosilicate systems were good approximations to describe basaltic systems, however, the lack 

of other significant components (occurring in natural basalt) showed some discrepancy in the MD 

results. Recently, model basalt and mid-ocean ridge basalt (MORB) have been studied using 

AIMD. In this chapter, we investigated the structural, thermodynamic, elastic, electronic and 

transport properties of both glass and molten model basalt. Owing to the experimental difficulty in 

studying melts at high pressure, the study of the corresponding glass structure helps (within a 
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certain error range) to draw parallels between the glass and melt. The present study of basalt glass 

and melt over a wide pressure range enables us to better understand and explain the pressure 

response of various structural and physical properties, such as bond distances, coordination, 

density, elasticity, etc., obtained from first principles MD simulations. The structural changes on 

being compressed, occur continuously and is characteristically similar to that seen in molten and 

glass silicates. For both the glass and melt, the considered pressure range can be broadly classified 

into two regions: an initial accelerated region interval where changes are rapid, and comparatively 

slower changes thereafter. For the glass at 300 K, the effect of pressure on the Si environment 

appears to remain almost unchanged in the 0–15 GPa interval, despite continuous increase in 

density. This compression regime can be attributed to changes in the network topology and oxygen 

coordination around the other cations, specifically aluminium. On the other hand, for the melt, the 

environment around the Si atoms does change significantly compared to the glass. The absence of 

this trait in the melt system signals kinetic hindrance in the cold-compressed glass. It is, therefore, 

likely that the characteristics of the molten basalt that we studied will resemble more closely to that 

of actual melts. 

 The calculated diffusion coefficient and coefficient of viscosity show one to two orders of 

variation in magnitude over the investigate pressure range. Since aluminium has more tendency to 

be seven fold coordinated compared to silicon, thus aluminium has more network forming 

possibility. The presence of odd cation–anion coordination (Si and Al) species and the inclusion of 

network modifying species (Ca and Mg) are likely to lower the viscosity, thus explaining the 

dynamical anomalies. On including network modifiers, the bond breaking and formation gets 

facilitated more, rendering the oxygen atoms more mobile. This decreases the overall viscosity of 

the melt. In fact, this can even be verified from the coefficients of diffusion of the different species 

as shown in Fig. 5.35. From 0 to 18 GPa, the diffusion coefficients of Si and Al tend to increase, 
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which is the same pressure range after which the five fold coordination starts to appear. Similarly, 

after 50 GPa and 80 GPa respectively, the diffusion coefficients of Ca and Mg suddenly increase 

noticeably, possibly resulting in the decrease in the coefficient of viscosity.  As stated and 

illustrated in the previous sections, our data matches quite well with that of both silicate and 

aluminosilicate glasses and melts obtained from experiments. 

 Further studying the structural and transport properties of simulated glasses and melts with 

compositional variance of Si and Al will help us better constrain the trend obtained from 

simulations enabling us to make more rigorous comparison with existing experimental data. Our 

results will hopefully contribute to the better understanding of the origin, stability and mobility of 

magmatic and partial melts in the present day mantle as well as he mantle in the early stages of the 

Earth. 
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CHAPTER 6 

GENERAL SUMMARY 

 

 The general aim of this thesis is to theoretically investigate and predict structural transitions 

and various properties of selected materials at high pressure. The theoretical calculations are 

performed using ab initio methods. The ab initio methods includes density functional theory 

(DFT), molecular dynamics (MD) and metadynamics. These tools have been used to study 

structural phase transitions, thermodynamic, electronic, vibrational and transport properties of the 

selected materials.  

 In Chapter 1, the theoretical methods are discussed, establishing the fundamental theory behind 

the computational tools that are employed for all the calculations.  

 Chapter 2 describes the application of ab initio metadynamics method to describe a first order 

structural phase transition in aluminium triiodide (AlI3) at high pressure, which was not reported 

experimentally. The results are verified by Raman spectra. The conclusion of the chapter is that ab 

initio metadynamics method is a very powerful tool to scan the potential energy surface and search 

for locally (metastable) or globally (ground state) configurations.  

  In Chapter 3, ab initio metadynamics and molecular dynamics are applied to describe the 

structural phase transition in superconducting hydrogen sulfide (H2S) at high pressure. Our 

theoretical findings corroborate the experimental results. Moreover, in this chapter, ab initio 

techniques have also been used to determine superconducting properties, which also matched 

excellently with experimental results. This work is the only work available in literature that 

successfully and unambiguously describes the high pressure structure as well as the electronic 

properties of the superconducting phase of H2S simultaneously, while other theoretical studies are 
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unable to bridge the gap between theory and experiment by describing both the structure and 

superconductivity of H2S.  

 Chapter 4 deals with the ab initio technique to find the superconducting properties of a newly 

synthesized polyhydride of iron (FeH5) at high pressure. In this chapter, FeH5 is found to have low 

superconducting critical temperature, although it has atomic hydrogen rings, an ingredient 

proposed to be key for high temperature superconductivity. We describe other delicate factors 

which determine the superconducting critical temperature, thus providing an effective pathway to 

synthesizing high temperature hydride superconductors.  

 Lastly, Chapter 5, is a geophysical topic, that deals with the structural changes and transport 

properties of basaltic material at mantle conditions, i.e. high pressure and temperature. Basalt is an 

aluminosilicate material containing other components (MgO, CaO, etc.). Both the amorphous glass 

and melt structures of basalt were studied by employing ab initio molecular dynamics. The 

structural and transport properties obtained agree quite well with other experimental and theoretical 

studies on silicates and aluminosilicate. From our results we have described the fate of the basaltic 

magma at different depths beneath the surface of the Earth and also the anomalous viscosity of 

basalt when compressed. A well rounded and connected explanation is given in this chapter, 

making links between the radial distribution function, bond lengths, coordination numbers, 

densities, elastic properties and transport properties. The results give a better understanding of the 

thermochemical and compositional evolution of the Earth ad can help solve geophysical problems.  
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APPENDIX A 

Supplementary Data for Chapter 2 

  

Mode symmetry and 

frequency (cm-1) 

Born effective 

charge (e) 

Raman Tensors 

 

 Bg       57         -0.000000000       0.000591090       0.000000000 

        0.000591090      -0.000000000      -0.000857925 

        0.000000000      -0.000857925      -0.000000000 

  Ag      62          0.000917225      -0.000000000       0.000546853 

       -0.000000000      -0.000379414       0.000000000 

        0.000546853       0.000000000      -0.000288564 

  Bu     76 0.582  

  Bg     84        -0.000000000      -0.000356454       0.000000000 

      -0.000356454      -0.000000000       0.000450308 

       0.000000000       0.000450308       0.000000000 

  Au    94 1.471  

  Bu    95 1.176  

  Ag    98          0.001405799       0.000000000      -0.000646347 

        0.000000000       0.002487649       0.000000000 

       -0.000646347       0.000000000      -0.001248360 

  Bg    99         -0.000000000       0.000056637       0.000000000 

        0.000056637      -0.000000000       0.001263687 

        0.000000000       0.001263687       0.000000000 

  Ag    104         -0.001933596       0.000000000      -0.001295203 

        0.000000000      -0.001653264       0.000000000 

       -0.001295203       0.000000000       0.002036924 

  Bg    116         -0.000000000      -0.001841896      -0.000000000 

       -0.001841896       0.000000000       0.000583977 

       -0.000000000       0.000583977      -0.000000000 

  Ag    119         -0.002501825       0.000000000       0.000225807 

        0.000000000       0.001452588      -0.000000000 

        0.000225807      -0.000000000       0.000682402 

  Bu    122 0.818  

  Au    128 0.636  

  Au    140 0.647  

  Ag    149       0.006269211      -0.000000000      -0.000311400 

      -0.000000000       0.006500436       0.000000000 

    -0.000311400       0.000000000       0.013375048 
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  Bg    243            0.000000000      -0.000175317      -0.000000000 

         -0.000175317       0.000000000       0.000171560 

         -0.000000000       0.000171560       0.000000000 

  Bu    254 5.245  

  Au    255 5.238  

  Ag    292            0.000098407       0.000000000       0.000959569 

          0.000000000      -0.000561436      -0.000000000 

          0.000959569      -0.000000000      -0.000580645 

  Bg    293           -0.000000000       0.000128338      -0.000000000 

          0.000128338      -0.000000000      -0.000977968 

         -0.000000000      -0.000977968      -0.000000000 

  Bu    365 3.972  

 

TABLE A1 Predicted Infrared and Raman activity for C2/m AlI3 at 4.8 GPa obtained from DFPT 

calculations. 
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