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ABSTRACT 

Hox proteins are evolutionarily conserved transcription factors that control important 

developmental pathways in morphogenesis of the embryo. The Hoxa2 gene is expressed 

in the developing central nervous system in rhombomeres 2 to 7 and affects cellular 

differentiation. Few target genes of Hoxa2 protein have been identified so far and its 

mechanisms of regulating gene expression remain elusive. Previous work in our 

laboratory isolated Hoxa2 protein binding sequences from the E18 mouse spinal cord 

and hindbrain tissues using chromatin immunoprecipitation (ChIP). All isolated DNA 

fragments contain conserved GATG motifs. Sequence analysis revealed that one 

fragment belongs to the high temperature requirement factor A 3 (HtrA3) gene and 

another fragment belongs to the Dual specificity tyrosine kinase 4 (Dyrk4) gene. In this 

study, direct binding of Hoxa2 protein to the HtrA3 and Dyrk4 fragments was confirmed 

by electrophoretic mobility shift assays (EMSA). Site-directed mutagenesis and EMSA 

studies revealed that Hoxa2 protein binds to the multiple GATG motifs within these 

fragments. HtrA3 fragment also repressed luciferase gene expression in transient 

transfection and luciferase assays. Mutation of the DNA fragment showed that the 

repressive activity was affected by the GATG motifs, suggesting Hoxa2 protein 

regulated gene expression by binding to the GATG motif in the cis-regulatory element. 

In contrast to the inhibitory activity of Hoxa2 protein, a Hoxa2-VP16 fusion protein 

(Hoxa2 fused with an activation domain of a virion protein from herpes simplex virus) 

transactivates the luciferase expression by binding to GATG sites. RT-PCR and 

immunohistochemistry analysis revealed an upregulation of HtrA3 expression in Hoxa2-

/- mice. This observation correlates with the inhibitory role of Hoxa2 protein acting upon 

the HtrA3 fragment in luciferase assays. Our data suggest that HtrA3 is a direct in vivo 
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downstream target of Hoxa2 protein and support the activity regulation model in which 

Hox proteins selectively regulate target genes through occupation of multiple monomer 

binding sites. 
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1. INTRODUCTION 

 

Hox genes were first identified in Drosophila, where they play a key 

developmental role in specifying different body segments (Akin and Nazarali, 2005). 

The critical roles of Hox genes are conserved in animals (Peifer and Wieschaus, 1990; 

McGinnis and Krumlauf, 1992; Rijli et al., 1998; Akin and Nazarali, 2005). The murine 

Hoxa2 gene and its paralog Hoxb2 are homologs of the Drosophila proboscipedia gene. 

Hoxa2 is expressed in the neural tube and neural crest cells (during embryogenesis), 

which contribute to the formation of the second brachial arch, as well as tissues and 

organs derived from it (Prince and Lumsden, 1994b; Davenne et al., 1999a; Hao et al., 

1999; Barrow et al., 2000; Grammatopoulos et al., 2000). The anterior expression 

boundary of Hoxa2 is located at the rhombomere (r) 1/2 interface within the neural tube 

(Davenne et al., 1999a; Barrow et al., 2000) (Figure 2). Hoxa2 expression is initiated 

within the ventral mantle region at embryonic day 10 (E10) and extends from the 

hindbrain caudally throughout the spinal cord. 

Disruption of Hoxa2 gene causes patterning defects of the hindbrain at its most 

anterior domain of expression, resulting in the absence of the r1/2 boundary and an 

alteration of the r2/3 border (Gavalas et al., 1998; Davenne et al., 1999a; Barrow et al., 

2000). Additionally, defects of the branchial arch derivatives, such as cleft palate 

(Gendron-Maguire et al., 1993; Barrow and Capecchi, 1999; Nazarali et al., 2000), are 

observed in Hoxa2 mutant mice. This evidence suggests that Hoxa2 protein is also 

involved in the cell differentiation process. Hoxa2 protein is further shown to promote 

the formation of cartilage and prevent ossification during craniofacial development 
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(Kanzler et al., 1998; Grammatopoulos et al., 2000; Plant et al., 2000; Trainor and 

Krumlauf, 2001; Creuzet et al., 2002). More recently, Grosschedl and his colleagues 

(Dobreva et al., 2006) reported that SATB2, a member of the nuclear matrix-attachment 

region (MAR) protein family, functioned as a molecular joint in a transcriptional 

network regulating craniofacial patterning and osteoblast differentiation, partially, if not 

exclusively, through directly inhibiting Hoxa2 expression. This finding suggested a 

molecular mechanism that influences patterning and differentiation process during bone 

formation (Ellies and Krumlauf, 2006).  

Many genes may work together with Hoxa2 in specifying early development of the 

hindbrain. For example, Hoxa2 and MDK1/EphA7 showed coinciding spatial and 

temporal patterns of expression within the hindbrain (Taneja et al., 1996). In later stages 

of development, the expression of Hoxa2 was directed by an enhancer sequence located 

at the 3′  end of Hoxa2 containing a 10 bp Hox/Pbx binding element, which was 

activated by Hoxa2 in the presence of cofactors Pbx1a and Prep1 (Frasch et al., 1995; 

Ren et al., 2002; Lampe et al., 2004). Co-expression of Hoxa2, Hoxd1 and Pax6 was 

found in the diencephalon. Hoxa2, in coordination with Hoxd1 and Pax6, may play a 

role in specifying the cytoarchitechture of the developing diencephalon (Wolf et al., 

2001). 

Hoxa2 expression is controlled by the transcription factor Krox20 (Nonchev et al., 

1996; Tumpel et al., 2002a). Krox20 governs the role of Hoxa2 in early anteroposterior 

patterning through 5′ cranial neural crest enhancer region. However, Hoxa2 expression 

in neural crest cell of the second branchial arch is regulated by multiple cis-regulatory 

elements in the regulatory region. For instance, mutation or deletion of one element in 
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the regulatory region abolishes expression in cranial neural crest cells but not in the 

hindbrain, which means that Hoxa2 gene is differently regulated in different regions. It 

also reveals mechanisms on how neural crest cells can lead to development of various 

tissues and respond to the environment through which they migrate (Trainor, 2003). 

Another regulator of Hoxa2 gene is SATB2 (Dobreva et al., 2006). SATB2 inhibits 

Hoxa2 gene expression during skeletal development. Interestingly, SATB2 represses 

Hoxa2 gene expression through a distinct cis-regulatory element at the 3′ of the gene. 

Hence, it is suggested that distinct cis-regulatory elements account for regulation of the 

Hoxa2 gene expression in neural crest and osteoblast cells.  

The regulation of Hoxa2 gene expression has been well studied, however, very few 

target genes of Hoxa2 protein has been identified so far. In order to illustrate the 

pathways through which Hoxa2 protein function, a former Ph.D student in our lab 

employed chromatin immunoprecipitation (ChIP) to isolate new downstream target 

genes of Hoxa2 protein from E18 hindbrain and spinal cord tissue (Akin Z, Ph.D Thesis, 

University of Saskatchewan, 2004). Seven clones were obtained and sequenced. BLAST 

query of these sequences identified two potential target genes, the murine homolog of 

the human dual specificity tyrosine kinase 4 (Dyrk4) gene and high temperature 

requirement factor A 3 (HtrA3) gene.  

1.1 Hypothesis   

The hypothesis to be tested is that Hoxa2 protein will bind to specific target 

sequences in dual specificity tyrosine kinase 4 (Dyrk4) gene and high temperature 

requirement factor A 3 (HtrA3) gene and inhibit their transcription.  
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1.2 Objectives   

(1) Expression and purification of Hoxa2 protein in bacteria using Glutathione S-

transferase (GST) gene fusion system. 

(2) Examination of DNA-Protein interactions using electrophoretic mobility shift 

assays (EMSA). In this experiment the mutant and wild-type oligonucleotide probes will 

be designed according to the putative target sequences. 

(3) Based on the information obtained from step (2), the Dyrk4 and HtrA3 

sequences will be mutated in specific sites and transient transfection experiments will be 

conducted to examine the cis-regulatory effect of Hoxa2 protein on Dyrk4 and HtrA3 

wild-type and mutant sequences. 
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2. LITERATURE REVIEW 

 
2.1 Homeobox Genes 

Homeotic genes were first identified in Drosophila (Akin and Nazarali, 2005), 

where they influenced segmental identity (McGinnis and Krumlauf, 1992). A 

homeobox is a 180 base pair (bp) DNA sequence that encodes a conserved 60 amino 

acid motif called homeodomain (Gehring et al., 1994). Hox genes is a subgroup of 

homeobox genes and generally function as transcription regulators that govern 

various aspects of morphogenesis and cell differentiation (McGinnis and Krumlauf, 

1992). In Drosophila, a single homeotic complex (HOM-C) consists of two clusters 

[the Bithorax (BX-C) and Antennapedia (ANT-C) cluster] located on chromosome 3 

(Kaufman et al., 1990). In mice and humans, the Hox complex includes 39 genes 

located on different chromosomes as four separate clusters named Hox a, b, c and d 

(Krumlauf, 1993; Akin and Nazarali, 2005). These genes are classified into 13 

paralog groups based on their homology to Drosophila HOM-C. During early 

embryonic development in the mouse all Hox genes are expressed in central nervous 

system and adjacent mesoderm. Expression of the Hox genes is limited within the 

mouse hindbrain at early stages of development. The hindbrain is divided into 

metameric units referred to as rhombomeres (r) and the anterior boundaries of Hox 

expression coincide with that of the rhombomeric boundaries (Figure 2.1) (Lumsden 

and Krumlauf, 1996; Rijli et al., 1998). General colinearity exists among the 

expression pattern of Hox genes, particularly in the developing spinal cord (Figure 

2.2). Thus, the 3′ anterior Hox genes have rostral expression restriction in the 
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hindbrain (Figure 2.1) and the expression extends through the spinal cord to varying 

extents. The 5′ Hox groups (5-13) generally present anterior boundaries of 

expression restricted to domains within the spinal cord (Figure 2.2) (Akin and 

Nazarali, 2005). The expression of Hox genes in the developing spinal cord 

represents a role for Hox genes in spinal cord patterning. Hox genes play an 

important role in central nervous system development, especially in determining 

neuronal organization within the hindbrain (Lumsden and Krumlauf, 1996; Studer et 

al., 1996; Rijli et al., 1998; Pasqualetti and Rijli, 2001; Pattyn et al., 2003) and the 

spinal cord (Carpenter, 2002). 
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Figure.2.1 Schematic diagram of Hox gene expression patterns in the rhombomeres. 
Dash lines represent the interface between different rhombomeres. Dashed bars 
indicate transient expression of Hoxa1 and Hoxb1. Light grey bars represent lower 
lever of expression and dark grey bars represent higher expression. The above figure 
is taken from Akin and Nazarali (2005) with kind permission from Springer Science 
and Business Media: Cellular and Molecular Neurobiology，Hox Genes and Their 
Candidate Downstream Targets in the Developing Central Nervous System, 25, 697-
741, figure 2.  
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Figure 2.2  Hox gene expression in the spinal cord 
Schematic drawing of Hox gene expression pattern in the developing murine spinal 
cord at E 12.5. Genes are grouped based on their anterior boundary limit. Spinal 
cord was represented by separated region according to the vertebrae (cervical, 
thoracic, lumbar, sacral, caudal). The different shades of grey represent was used to 
represent paralog members. The above figure is taken from Akin and Nazarali (2005) 
with kind permission from Springer Science and Business Media: Cellular and 
Molecular Neurobiology，Hox Genes and Their Candidate Downstream Targets in 
the Developing Central Nervous System, 25，697 – 741, figure 3.   
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2.2 Structure of Antennapedia Homeodomain  

The most common class of homeodomain is the Antp class of homeodomain, 

classified based on its similarity to the homeodomain in Drosophila Antennapedia. 

This class of homeodomain proteins is characterized by a conserved helix-turn-helix 

motif (Gehring et al., 1994). The structure of the Antp homeodomain was 

determined by nuclear magnetic resonance (NMR) spectroscopy (Qian et al., 1989; 

Billeter et al., 1990). The structure consists of three α helical regions and a more 

disordered and flexible fourth helix extended following the third helix. The three 

helical regions are folded in a globular structure. A conserved hexapeptide motif 

precedes the first helix in Antp homeodomain and is reported to be involved in 

protein-protein interactions (Sprules et al., 2000; Sprules et al., 2003). The first two 

helices are present anti-parallelly. The second and third helix form the helix-turn-

helix motif which is conserved among many Hox transcription factor family. The 

fourth helix is perpendicularly aligned to the first two helices (Gehring et al., 1990). 

In vitro DNA-binding studies found that proteins encoded by the class I homeobox 

(Antp) genes recognized a 5′-TAAT-3′ (β strand) core motif with varying flanking 

sequences (Kalionis and O'Farrell, 1993; Gehring et al., 1994; Kumar and Nazarali, 

2001). NMR spectroscopy analysis of the Antp homeodomain protein-DNA 

complex showed that the third helix (recognition helix) binds to the major groove of 

the DNA having the TAAT motif. The N-terminal flexible arm forms additional 

connections to the bases in the minor groove. The loop connecting the first and 

second helices is associated with the DNA backbone. The recognition helix is 

responsible for the specific DNA-binding with the TAAT motif. For instance, in the 
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recognition helix, the conserved Gln-50, Ile-47 and Met-54 are critical to 

establishing contacts with bases within the target sequence (Gehring et al., 1994; 

Kumar and Nazarali, 2001). These residues are also reported to function in the 

binding of DNA by Hoxb1 within the Hoxb1-Pbx1-DNA complex, as determined by 

X-ray crystallography (Piper et al., 1999).  

 

2.3 DNA-binding of Hox Proteins 

Although it is well recognized that Hox transcriptional factors govern body 

patterning along the anteroposterior body axis during animal development, it is not 

fully known how Hox proteins exert such function in vivo. Inconsistency exists 

between the high developmental specificity and low DNA-binding specificity of 

Hox proteins. Two models, selective binding model and activity regulation model 

(Nasiadka et al., 2000), have been proposed so far to elucidate how Hox proteins 

select the appropriate target genes. 

The selective binding model suggests that cofactors work together with Hox 

proteins and direct Hox proteins to different binding sequences by raising their 

DNA-binding specificity. Consistent with this model are the extradenticle (Exd/Pbx) 

family of the homoeodomain proteins have been identified as cofactors and have 

crucial impact on the diversity of Hox function (Peifer and Wieschaus, 1990; 

Rauskolb et al., 1993; Van Dijk et al., 1993; van Dijk and Murre, 1994). For 

instance, the selective binding of Hoxb1 to r4 enhancer is determined by the 

interaction of Pbx and Hoxb1 (Berthelsen et al., 1998). In luciferase assays, 

cotransfection of Pbx with Hoxb1 greatly increases its regulatory activity through r4 

enhancer elements (Di Rocco et al., 1997). Furthermore, additional cofactors other 
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than Pbx, Prep and Meis exist (Berthelsen et al., 1999; Jacobs et al., 1999). The 

presence of Prep1 in ternary Prep1–Pbx–HOXB1 complex greatly increases the 

transcriptional activity of Pbx/HOXB1 complex, although Prep1 does not need to 

bind to the DNA (Figure 2.3). Meis1 was shown to function in a trimeric complex 

involving Hoxb1. But different from Prep1, it enhances the regulatory activity of 

Hoxb1 in a DNA-binding manner (Figure 2.4). Evidence shows that Exd/Pbx 

proteins can interact with Hox proteins and increase their DNA-binding affinity on a 

specific DNA site (Chan et al., 1994; Chang et al., 1995; Popperl et al., 1995; 

Neuteboom and Murre, 1997). A bipartite 10 pb Hox-PBC consensus binding site, 5′  

TGATNNAT [G/T] [G/A] 3′ , has been defined in which the first half site is for PBC 

binding and the second half site is for Hox binding (Popperl et al., 1995; Chan et al., 

1997). A Pbx/Hoxa2 composite site [(T/A) GAT (T/G) GA (T/A) G] was identified 

in Hoxa2 gene and the Pbx was found to significantly contribute to the 

autoregulation of Hoxa2 gene through this site in COS-7 cells (Lampe et al., 2004).  
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Figure 2.3 Hox, Pbx and Prep interaction on the b1-ARE 
Interaction between HOXB1 and Pbx on the b1-ARE enhancer results in the 
activation of Hoxb1 transcription. This transcription is dependent on the DNA-
binding of both Hox and Pbx proteins, not Meis/Prep. Reprinted by permission from 
Macmillan Publishers Ltd: [EMBO Journal], (Berthelsen, J., Zappavigna, V., Ferretti, 
E., Mavilio, F., and Blasi, F. The novel homeoprotein Prep1 modulates Pbx-Hox 
protein cooperativity. 17, 1434-1445), copyright (1998).  
http://www.nature.com/emboj/index.html  
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Figure 2.4 Trimeric interactions of homeobox proteins on enhancers 
Complexes of Hox/Pbx and Meis proteins results in the activation of various 
enhancer. This activity is denpendent on the DNA-binding of Meis. This figure is 
taken from Jacobs Y, Schnabel CA, Cleary ML (1999) with kind permission from 
Molecular and Celluar Biology: Trimeric Association of Hox and TALE 
Homeodomain Proteins Mediates Hoxb2 Hindbrain Enhancer Activity, figure 8. 
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The activity regulation model proposes that cofactors (e.g. Pbx) affect the 

transcriptional activity of Hox protein through the sequence which they are already 

bound, instead of influencing DNA-binding affinity (Biggin and McGinnis, 1997). 

The low DNA-binding specificity means that Hox protein can bind to many sites 

across the genome; however, they will remain in a neutral state and not exert an 

independent influence until a cofactor appears. In favor of this model, the 

homeodomain in the Hox protein Deformed (Dfd) has an inhibitory affect on the 

Dfd activation function (Li et al., 1999). Thus, Dfd binds to the regulatory region of 

a variety of genes via its homeodomain, however; it does not activate transcription 

because of the inhibitory activity of its homeodomain (Figure 2.5). The suppression 

mechanism of homeodomain remains unclear and it has been proposed to be 

mediated by a masking factor. The interaction between Exd/Pbx and Dfd 

homeodomain releases the Dfd activation capacity (Figure 2.5). Additional evidence 

supporting activity regulation model is that the Dfd-VP16 fusion protein can 

regulate same downstream target genes of Dfd in the absence of Exd/Pbx in embryos 

(Li et al., 1999). VP16 is a virion protein from herpes simplex virus. It has a strong 

77-aa activation domain and is joined with the Hox protein to isolate Hox protein 

downstream target genes. The rationale of this approach is that Hox-VP16 

(activation domain) fusion protein can function and affect the expression of Hox 

protein target genes (or more genes in some cases) without indispensable or 

unknown cofactors (Li and McGinnis, 1999; Li et al., 1999).  

Although some of the supporting evidence of these two models is contradictory, 

they are not mutually exclusive. The disparities could be due to the differences in 
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experimental methods. These two models might work under different circumstances 

and further research is needed to clarify the differences.  
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Figure 2.5 The activity regulation model for Dfd protein 
A hypothesized masking factor inhibits the transcriptional activity of Dfd protein. 
The binding between Dfd and Exd releases the activation domain function. 
Reprinted by permission from Macmillan Publishers Ltd: [EMBO Journal], (Li, X., 
Murre, C., and McGinnis, W. Activity regulation of a Hox protein and a role for the 
homeodomain in inhibiting transcriptional activation. 18, 198-211), copyright (1999).   
http://www.nature.com/emboj/index.html  
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2.4 Hoxa2 gene 

The Hoxa2 gene and its paralog Hoxb2 are homologs of the Drosophila 

proboscipedia gene. They belong to the most 3′  paralogous group of the Hox gene 

family (Figure 2.6). Hoxa2 gene is expressed during embryogenesis in the neural 

tube and neural crest cells, which contribute to formation of the second brachial arch, 

as well as other tissues derived from it (Prince and Lumsden, 1994b; Davenne et al., 

1999a; Hao et al., 1999; Barrow et al., 2000; Grammatopoulos et al., 2000). The 

anterior expression boundary of Hoxa2 gene is located at the interface of 

rhombomere (r) 1 and 2 within the neural tube (Davenne et al., 1999a; Barrow et al., 

2000). Hoxa2 gene expression is initiated within the ventral mantle region at 

embryonic day 10 (E10) and extends from the hindbrain caudally throughout the 

spinal cord.  Hoxa2 protein is found within the dorsal horn (Hao et al., 1999) and 

may potentially contribute to both anterior-posterior (A-P) positioning as well as 

dorsal-ventral (D-V) patterning (Hao et al., 1999). Hoxa2 protein is also involved in 

the patterning of cranial neural crest cells (Trainor and Krumlauf, 2001; Tumpel et 

al., 2002b; Creuzet et al., 2005). Hoxa2 gene is expressed in subsets of premigratory 

and migratory crest cells populating the second and more caudal branchial arches 

(Prince and Lumsden, 1994a; Nonchev et al., 1996; Mallo and Brandlin, 1997). 

Interestingly, Hoxa2 transcripts are detected in r2, however, Hoxa2 gene is  not 

expressed in the neural crest until these cells start to migrate from r2 to the first 

branchial arch (Prince and Lumsden, 1994b).  
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Figure 2.6 Schematic representation of Hox gene clusters 
The 39 murine Hox genes are present on four separate chromosomal clusters (Hox a, 
Hox b, Hox c, Hox d). The above figure is taken from Akin and Nazarali (2005) 
with kind permission from Springer Science and Business Media: Cellular and 
Molecular Neurobiology，Hox Genes and Their Candidate Downstream Targets in 
the Developing Central Nervous System, 25，697 – 741, figure 1. 

 

Studies using haploinsufficient Hoxa2 mutant mice revealed a dose-dependent 

mechanism of development within the hindbrain and branchial arches (Ohnemus et 

al., 2001). For instance, the branchial arches, in particular the second arch, are 

highly sensitive to a reduction in Hoxa2 protein activity. In contrast, the anterior 

hindbrain is not affected at all even with an extreme decline in Hoxa2 protein levels. 

Therefore, general anterior-posterior and dorsal-ventral patterning of the CNS is 
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maintained even at low levels of Hoxa2 protein activity, which is possibly due to 

functional redundancy between anterior Hox genes or the presence of parallel 

pathways in segmental regulation (Ohnemus et al., 2001). However, differential 

sensitivity to Hoxa2 gene inactivation between specific neuronal subtypes has been 

observed at the molecular level, which when considered with previous studies of 

neuronal expression suggests Hoxa2 gene involvement in the specification of 

neuronal phenotypes (Davenne et al., 1999a; Hao et al., 1999; Ohnemus et al., 2001). 

 

2.5 Dyrk Kinase family 

One of the largest protein superfamilies is the family of protein kinases that are 

mostly identified from eukaryotic sources. Protein kinases amplify extracellular and 

intracellular signals and thus play important regulatory roles in diverse cellular 

processes, such as metabolism, transcription, cell cycle progression, apoptosis, and 

neuronal development (Karin and Hunter, 1995; Johnson and Lapadat, 2002). 

Protein kinases function by transferring phosphate from ATP to a serine, threonine 

or tyrosine hydroxyl group on a protein substrate, thereby influencing the the protein 

conformation and, as a result, downstream signaling pathways (Johnson and Lewis, 

2001; Huse and Kuriyan, 2002; Lu et al., 2002). The protein kinases are related 

according to their homologous kinase domains (also known as catalytic domains), 

which consist of 250-300 amino acid residues (Hanks et al., 1988; Hanks and Quinn, 

1991). Based on the amino acid sequence similarity of their kinase domains, this 

superfamily of protein kinases can be further divided into the phylogenetically 

related subfamilies (Hanks and Hunter, 1995). 
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Dyrk1 has been identified independently by three research groups. First, its 

yeast homolog (Yak1) was identified as a functional antagonist of the Ras/PKA 

pathway (Garrett and Broach, 1989; Garrett et al., 1991). Second, its Drosophila 

homolog (mnb) has been identified by positional cloning of the minibrain (mnb) 

mutations, which exhibit specific behavioural defects and a reduced number of 

neurons in distinct areas of the brain (Tejedor et al., 1995). Third, rat Dyrk1 was 

cloned from a rat brain cDNA library and identified as a dual-specificity protein 

kinase (Kentrup et al., 1996). Subsequently, six additional mammalian Dyrk-related 

kinases were identified, namely Dyrk1B, Dyrk1C, Dyrk2, Dyrk3, Dyrk4 and 

Dyrk4B (Becker et al., 1998). 

The acronym “Dyrk” (Dual-specificity Yak-related kinase) refers to the unusual 

ability of these kinases to phosphorylate serine/threonine and tyrosine residue and to 

the sequence similarity with the protein kinase Yak1. Like Dyrk1 and Mnb, 

recombinant Yak1 is autophosphorylated on tyrosine residues, and is thus 

recognized as the yeast homolog of the Dyrk family (Kassis et al., 2000). Based on 

the function of the conserved tyrosine residues in the activation loop, “Dyrk” can 

alternatively be interpreted as “dual–specificity tyrosine-phosphorylation regulated 

kinase”. One thing to note is that tyrosine phosphorylation has been only found to 

occur from autophosphorylation catalyzed by Dyrk itself (Kentrup et al., 1996; 

Kassis et al., 2000). DNA sequences of many Dyrk family kinases are listed (Table 

2.1).  Benefiting from the genome sequencing project, many studies have been 

carried out in model organisms such as fruit fly, eelworm, yeast, rat and mouse. 
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These studies have greatly elucidated the function of Dyrk family. In mammals, 

study has been mainly focused on Dyrk1A and Dyrk1B. 
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Table 2.1  Dyrk family and Dyrk-related kinases 
Gene product Species  Accession No. Reference 
DYRK1A Homo sapiens NM_001396 (Guimera et al., 

1996; Shindoh et 
al., 1996; Song et 
al., 1996) 

DYRK1B Homo sapiens NM_004714 a 

DYRK2 Homo sapiens NM_006482 a 

DYRK3 Homo sapiens NM_001004023 a 

DYRK4 Homo sapiens NM_003845 a 

DYRK5 Homo sapiens AF327561 a 

Dyrk1a Mus musculus NM_007890 a 

Dyrk1b Mus musculus Y18280 a 

Dyrk1c Mus musculus U49952 a 

Dyrk2 Mus musculus AY399074  a 

Dyrk3 Mus musculus NM_145508 a 

Dyrk4 Mus musculus NM_207210 a 

Mnb Drosophila melanogaster X70798 (Tejedor et al., 
1995) 

dDYRK2 Drosophila melanogaster NP_995711 (Lochhead et al., 
2003) 

Yak1 Saccharomyces cerevisiae X16056 (Garrett and 
Broach, 1989) 

YakA Dictyostelium discoideum  AF045453 a 

Pom1 Schizosaccharomyces 
pombe 

Z50142 a 

Mbk-2 Caenorhabditis elegans AY090019 a 

Mbk-1 Caenorhabditis elegans AY064464 a 

Hipk1 Homo sapiens NM_198268 a 

Hipk2 Homo sapiens AF207702 a 

Hipk3 Homo sapiens NM_005734 a 

 

a Sequences have been identified from genome sequencing projects. 
The above table is adapted from Becker and Joost, 1999 
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2.5.1 Dyrk1A/mnb in mammals 

Dyrk1A is considered as one of the candidate genes in Down syndrome (DS). 

Down syndrome is a major genetic cause of mental retardation. The brain of Down 

syndrome patients presents diverse macroscopic and microscopic alterations such as 

reduction in the size of brain, decreased neuronal number/density, abnormal 

neuronal differentiation processes and precocious Alzheimer-like neurodegeneration 

(Becker et al., 1991; Korenberg et al., 1994). Although the molecular bases of all 

these alterations remain unknown, Down syndrome is generally caused by the 

trisomy of chromosome 21(HC21). A Down syndrome Critical Region (DSCR) has 

been identified and suggested to be responsible for the etiology of Down syndrome 

(Rahmani et al., 1989). Dyrk1A gene is mapped to the Down syndrome Critical 

Region (Guimera et al., 1996; Song et al., 1996). In mice, Dyrk1A/mnb is mapped to 

chromosome 16 (Song et al., 1997). 

The structural and functional similarity between Drosophila mnb and vertebrate 

Dyrk1A makes the fly an attractive model for genetic and functional analysis. Mnb 

is distinctly expressed in central nervous system (CNS) of Drosophila throughout 

development. In embryo Mnb protein is present in the CNS but not in the peripheral 

nervous system (PNS). During post-embryonic development, mnb is preferentially 

expressed in the proliferative centers of the CNS, the tissue where adult neurons are 

generated. In the adult brain, mnb is expressed in several neuropile areas. In contrast 

to the preferential expression in the Drosophila brain, Northern and RT-PCR 

analysis indicated that Dyrk1A mRNA is ubiquitously expressed in different tissues 

and in most brain regions of rodents and humans (Guimera et al., 1996; Song et al., 

1996; Guimera et al., 1999; Okui et al., 1999). In situ hybridization of rodent brain 
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sections shows preferential expression in brain, particularlly in the olfactory bulb, 

cerebellum, cortex, hippocampus and the hypothalamus (Song et al., 1996; Guimera 

et al., 1999). Dyrk1A immunostaining partially contrasts with the in situ 

hybridization results since protein expression is high not only in the  olfactory bulb 

and  cerebellum, but also in the spinal cord and most motor nuclei of midbrain and 

brain stem (Marti et al., 2003). For the developmental pattern of expression, Western 

and Northern blot analyses also show different results. The levels of Dyrk1A protein 

are high during development, but gradually decrease to very low levels during 

postnatal stages, whereas mRNA levels do not vary as much (Okui et al., 1999).  

The pattern of Dyrk1A expression during vertebrate brain development is more 

complex than Drosophila. Two waves of expression have been observed. In early 

embryos, it is expressed before the onset of neurogenesis in the three general 

locations where neuronal precursors originate: neuroepithelia of the neural tube, 

neural crest, and cranial placodes (Hammerle et al., 2002). A second wave of 

Dyrk1A expression has been found in chick embryonic brain (Hammerle et al., 

2003a). This takes place in the CNS of intermediate and late vertebrate embryos. 

The Dyrk1A expression appears to be limited to neurons since no consistent 

expression was detected in astroglial or oligodendroglial cells (Galceran et al., 2003). 

The beginning of Dyrk1A expression in these neurons seems to precede the onset of 

dendritic tree differentiation (Hammerle et al., 2003a).  

A great deal of knowledge about the function of Dryk1A comes from the study 

carried out in Drosophila mnb mutants. These mutants exhibit a reduced brain size, 

especially in optic lobes and central brain hemispheres. This appears to be due to a 
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decrease in the number of cells generated during the proliferative processes of post-

embryonic development compared to wild-type flies. Mnb is expressed in 

proliferative centers of the larval brain and its loss of function causes alterations in 

the arrangement of neuroblasts in these centers (Tejedor et al., 1995). Altogether, 

these data suggest the involvement of mnb in neurogenesis. During pupal stages mnb 

mutants exhibit an increased number of degenerating neurons in the optic lobe. 

Although this could account for a decrease in the number of neurons, it cannot be 

ruled out that loss of neurons may be a consequence of alterations in neuronal 

differentiation. In addition, mnb mutants exhibit behavioral defects, such as the poor 

visual pattern fixation and  poor odor-discrimination learning (Tejedor et al., 1995). 

Dyrk1A-/- mice show a large reduction in the embryo size, which appears to be 

due to a developmental delay (Fotaki et al., 2002). The brain of Dyrk1A-/- mice 

exhibit a reduced number of postmitotic neurons, but the early embryonic lethality 

precludes the analysis of phenotypic alterations in cell proliferations and 

neurogenesis (Fotaki et al., 2002). Nevertheless, haploinsufficient Dyrk1A+/- mice 

are viable and exhibit a significant reduction in brain size. This size reduction seems 

to be region-specific since it is more prominent in midbrain and hindbrain than in the 

forebrain, and in ventral (hypothalamus, pons, medulla oblongata) than in dorsal 

(neocortex and cerebellum) directions (Fotaki et al., 2002). Surprisingly, these 

changes do not seem to correlate with the developmental pattern of Dyrk1A 

expression found by other researchers (Song et al., 1996; Hammerle et al., 2002). 

Despite the brain size reduction, most brain regions of Dyrk1A+/- mice lack clear 

changes in neuronal components and cytoarchitecture. Thus, the reduced brain size 
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could be explained by a decrease in the neuropile areas rather than by a decline of 

neuronal number.  

The identification of physiological substrates of Dyrk1A is necessary for 

understanding its biological function. In addition to its autophosphorylation ability 

on tyrosine residue, Dyrk1A phosphorylates serine and threonine residues in 

substrate peptides or proteins (Himpel et al., 2000). Several putative substrates of 

Dyrk1A have been identified (Table 2.2). Four of them are transcription factors 

(FKHR, CREB, STAT3, GLi1), which exhibit increased activity after 

phosphorylation. All of these factors play key roles in cell development. Different 

mechanisms have been described by which Dyrk1A modulates the activity of these 

transcription factors.  

FKHR is an important regulator of cell survival and proliferation. Dyrk1A 

phosphorylates FKHR specifically on Ser-329, an in vivo phosphorylation site that is 

conserved in related homologues (FKHR-L1 and AFX) (Woods et al., 2001) 

However, stimulation of FKHR-dependent promoter activity was found to be 

independent of Dyrk1A kinase activity (von Groote-Bidlingmaier et al., 2003). This 

observation suggests that Dyrk1A may act as a scaffolding protein and ascribes a 

potential function to its non-catalytic domain. This situation is also observed when 

Dyrk1A interacts with other non-substrate partners. CREB is a transcription factor 

that plays a role in neuronal development and differentiation, e.g. synaptic plasticity. 

Yang et al. (2001) reported that Dyrk1A/mnb directly phosphorylates CREB and 

thereby promotes neuronal differentiation of the hippocampal progenitor cell line, 

H19-7. STAT3 is a downstream effector of cytokines such as interleukin-6 (IL-6), 
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leukemia inhibitory factor (LIF), or oncostatin M, and in many systems controls 

genes that determine the regulation from cell growth to differentiation. STAT3 is 

phosphorylated by Dyrk1A on Ser-727 in the transactivation domain (Matsuo et al., 

2001; Wiechmann et al., 2003). Phosphorylation of Ser-727 is known to modulate 

the transcriptional activity of STAT3. GLi proteins are key downstream signaling 

components of the hedgehog signaling pathway, which controls cell proliferation 

and pattern formation. GLi1-dependent promoter activity is enhanced by Dyrk1A in 

part through retaining GLi1 in the nucleus, but also by stimulating GLi1 

transcriptional activity directly (Mao et al., 2002). In all these cases, further work is 

required to define the detailed role of Dyrk1A in transcriptional regulation.  
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Table 2.2 Substrate and binding partners of Dyrk1A 

a phosphorylation site (n.d., not determined); b Co-IP, co-immunoprecipitation; RNAi, RNA interference;Y2H, yeast two -hybrid system; c co-
transfection of Dyrk1A causes enhanced activity in reporter gene assays;d co-transfection of Dyrk1A causes enhanced phosphorylation. The 
above table is adapted from Galceran et al., 2003 

Substrate 
 

Interaction Substrate or interacting 
protein 

Evidence  P-sitea Evidenceb 

Effect References 

Forkhead in 
rhabdomyosarcoma (FKHR) 

In vitro Ser-329 Co-IP Stimulation of nuclear export Woods et al. 2001a; 
Von Groote-Bidlingmaier et 
al. 2003 

Signal transducer and 
activator of transcription 3 
(STAT3) 

In vivod Ser-727 N/A N/A Matsue et al. 2001; 
Wiechmann et al. 2003  

cAMP responsive element 
binding protein (CREB) 

In vitro 
In vivod 

Ser-133 Y2H, Co-IP Stimulation of transcriptionc Yang et al. 2001 

Glioma-associated oncogene 
(GLi1) 

In vitro n.d. N/A Stimulation of transcriptionc Mao et al. 2002 

Adenovirus E1A oncoprotein - n.d. Pull down 
assay 

E1A stimulates activity of Dyrk1A Zhang et al.2001 

Elf2Bε (eukaryotic initiation 
factor 2B epsilon) 

In vitro Ser-539 N/A Priming phosphorylation for GSK3 Woods et al. 2001b 

tau In vitro Thr-212 N/A Priming phosphorylation for GSK3 Woods et al. 2001b 

Cyclin L2 In vitro  
In vivod 

n.d. Pull down 
assay 

Translocate to site of transcription/pre-
mRNA processing.  

de Graaf et al., 2004 

Glycogen synthase  In vivod Ser-640 N/A Inactivate  glycogen synthase Skurat and Dietrich 2004 
phytanoyl-CoA  
alpha-hydroxylase-associated 
protein 1 (PAHX-AP1) 

N/A n.d. Y2H, Co-IP Translocate Dyrk1A from nucleus to the 
cytoplasm 

Bescond and Rahmani, 2005 

Androgen receptor-interacting 
protein 4 ( Arip4) 

N/A n.d. Y2H, Co-IP Synergistically activate androgen receptor- 
and glucocorticoid receptor-dependent 
transcription 

Sitz et al., 2004 

Ras, B-Raf, and MEK1 N/A n.d. Co-IP Prolong the kinetics of ERK activation Kelly and Rahmani 2005 
Dynamin  In vitro n.d. Pulldown 

assay 
 Regulation of protein/protein interaction  Cheng-Hwang et al. 2002; 

Huang et al. 2004 
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Cyclin L2 is a nuclear factor and contains a N-terminal cyclin domain and a C-

terminal arginine/serine-rich domain, which is a hallmark of many proteins involved in 

pre-mRNA processing (Dickinson et al., 2002). The phosphorylation of Cyclin L2 by 

Dyrk1A indicates that Dyrk1A may regulate mRNA splicing (de Graaf et al., 2004). 

Glycogen synthase is a key enzyme in the regulation of glycogen synthesis by 

insulin and controlled by multisite phosphorylation. Several Dyrks (Dyrk1A, 1B, Dyrk2) 

were found to phosphorylate glycogen synthase at Ser-640 and inactivate the enzyme 

activity in muscle (Skurat and Dietrich, 2004). This may represent a new pathway for 

regulation of glycogen synthase. Interestingly, high level expression of Dyrk1B was 

observed in skeleton muscle (Deng et al., 2004). Most information so far indicates 

Dyrk1B assists cell arrest in G0/G1, and subsequently mediate transition from growth to 

differentiation and survival of myoblasts. This function of phosphorylating glycogen 

synthase may be involved in its regulatory activity in the cell cycle. 

Three cytoplasmic proteins have been shown to be in vitro-substrates of Dyrk1A: 

the protein-synthesis initiation factor eIF2Bε, the microtubule-associated protein tau and 

dynamin 1. Tau and eIF2Bε phosphorylation by Dyrk1A creates recognition sites for 

subsequent phosphorylation by glycogen synthase kinase 3. The phosphorylation of 

dynamin 1 by Dyrk1A modulates its capacity to interact with components of the 

endocytotic apparatus (Chen-Hwang et al., 2002). Interestingly, Dyrk1A and dynamin1 

colocalize in the growing dendritic tree of differentiating neurons. This finding suggests 

that phosphorylation of dynamin1 by Dyrk1A may be related to the molecular processes 

underlying neuronal differentiation (Hammerle et al., 2003a). This fits with recent 

evidence indicating that a fraction of the Dyrk1A molecule is located outside the 
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nucleus (Hammerle et al., 2003a; Marti et al., 2003). It is likely that new putative 

substrates of Dyrk1A will be identified and the task will be to determine which of them 

is the key mediator on cell differentiation and proliferation.  

Several other interaction partners of Dyrk1A are identified. Skurat and Dietrich 

(2004) reported that the C-terminus of Dyrk1A interacts with a brain specific protein, 

phytanoyl-CoA α-hydroxylase-associated protein 1 (PAHX-AP1, also named PHYHIP) 

which is known to interact with phytanoyl-CoA α-hydroxylase (PAHX, also named 

PHYH), a Refsum disease gene product (Bescond and Rahmani, 2005). Dyrk1A and 

PAHX-AP1 are both expressed in similar regions of the brain that are known to be 

affected in Down syndrome patients. Interestingly, PAHX-AP1 is located to cytoplasm 

and in the presence of PAHX-AP1, Dyrk1A is re-localized to cytoplasm and can no 

longer phosphorylate the nuclear factor CREB. These observations suggest PAHX-AP1 

and Dyrk1A may together contribute to the neurological abnormalities in Down 

syndrome.  

Arip4 (androgen receptor-interacting protein 4) is a SNF2-like steroid hormone 

receptor cofactor. It contains chromatin remodeling activity, interacts with the androgen 

receptor (AR), and modulates androgen-mediated transactivation (Rouleau et al., 2002). 

In general, SNF2-like proteins are believed to modify the structure of chromatin in a 

noncovalent manner through rearrangement of nucleosomes and are able to render 

condensed chromatin accessible to sequence-specific transcription factors (Becker and 

Horz, 2002; Lusser and Kadonaga, 2003). Arip4 is an interacting partner of Dyrk1A 

(Sitz et al., 2004). Transactivation assays show that either Dyrk1A or Arip4 alone has an 

activating effect on androgen receptor- and glucocorticoid receptor-mediated 
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transactivation, and Dyrk1A and Arip4 together act synergistically (Sitz et al., 2004). 

However, these effects are independent of the kinase activity of Dyrk1A.  

Kelly and Rahmani report another effect of Dyrk1A which is independent of its 

kinase activity (Kelly and Rahmani, 2005). Dyrk1A overexpression potentiates NGF-

mediated PC12 neuronal differentiation by upregulating the Ras/MAP kinase signaling 

pathway. Further investigation shows that Dyrk1A prolongs the kinetics of ERK 

activation by interacting with Ras, B-Raf, and MEK1 to facilitate the formation of a 

Ras/B-Raf/MEK1 multiprotein complex. These data indicate that Dyrk1A may play a 

critical role in steroid hormone signaling or Ras-dependent transducing signals and 

suggest that overexpression of Dyrk1A may contribute to the neurological abnormalities 

observed in Down syndrome patients. 

In summary the available information demonstrates that Dyrk1A plays important 

roles in neurogenesis and neuronal differentiation during brain development. Among the 

genes of the Down syndrome Critical Region, the consideration of Dyrk1A as a 

candidate gene for mental retardation is relatively well supported by the phenotype of 

transgenic mice that overexpress it and by the analysis of its neuro-developmental roles 

(Hammerle et al., 2003b).  

 

2.5.2 Dyrk1B/Mirk in mammals 

The full-length cDNA sequence of Dyrk1B was first cloned with the use of RACE 

(rapid amplification of cDNA ends) technique with the help of a homology-based PCR 

cloning (Leder et al., 1999). Three splicing variants of Dyrk1B were identified in mouse 

(Leder et al., 2003). The amino acid sequences of Dyrk1A and Dyrk1B are 84% 

identical in the N-terminal domain and the catalytic domain, but show no extended 
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sequence similarity in the C-terminal region. Both Dyrk1A and Dyrk1B contain PEST 

regions that are believed to determine a rapid turnover of proteins (Rogers et al., 1986). 

Dyrk1B contains all motifs characteristic for the Dyrk family of protein kinases. Like 

Dyrk1A, the sequence of Dyrk1B comprises a bipartite nuclear localization motif. 

Dyrk1B is also designated by the acronym Mirk (minibrain-related kinase). Dyrk1B is 

expressed at low levels in normal tissue, being found at high levels only in skeletal 

muscle and testes (Leder et al., 1999; Lee et al., 2000). Ten-fold elevated levels of 

Dyrk1B protein are found within a subset of colon cancers compared to paired normal 

tissue. Increased expression of Dyrk1B is also observed in lung carcinomas, ovarian 

carcinomas and melanomas, suggesting that Dyrk1B is often upregulated in tumor tissue. 

So far most of the research has focused on determining its role in carcinoma cell and 

muscle development. The main function of Dyrk1B/Mirk is to assist cell arrest in G0/G1 

and regulate the transition from growth to differentiation in skeletal muscle tissue (Deng 

et al., 2005). 

Until now, two upstream pathways were found to regulate Dyrk1B/Mirk. 

Dyrk1B/Mirk is down-regulated by the activation of the Ras-MEK-Erk pathway (Lee et 

al., 2000). Removal of serum mitogens and blocking any residual Erk activation from 

autocrine growth factors elevates Dyrk1B levels 20-fold, whereas activation of erks with 

IGF-I reduces Dyrk1B levels to those observed in cells cultured in serum containing 

medium, leading to cell proliferation. Dyrk1B is induced by members of the Rho-family 

in myoblasts, and Dyrk1B is active in skeletal muscle differentiation (Deng et al., 2003). 

The Rho family of small GTPases regulate numerous signaling pathways that control 
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the organization of the cytoskeleton, transcription factor activity, and differentiation of 

skeletal myoblasts (Charrasse et al., 2003).  

Several proteins have been found to be substrates of or to interact with Dyrk1B 

(Table 2.3). Five potential targets are identified so far. These include hepatocyte nuclear 

factor 1α (HNF1α), cyclin-dependent kinase (CDK) inhibitor p27kip1, Cyclin D1, Class 

II histone deacetylases (HDACs) and CDK inhibitor p21cip1. DCoHm (dimerization 

cofactor of hepatocyte nuclear factor 1α (HNF1α) from muscle), a novel member of the 

DCoH family with 78% amino acid identity to DCoH, was identified as a Dyrk1B-

binding protein. Dyrk1B, DCoHm, and HNF1α form a complex which enhances HNF1α 

transcriptional activity. In many colon carcinomas Dyrk1B and DCoH are co-expressed 

and may function as an activating complex for HNF1α to induce ectopic gene 

expression (Lim et al., 2002a). The expression of some of these genes may contribute to 

the ability of cell lines with stably overexpressed Dyrk1B protein to maintain serum-free 

proliferation (Lim et al., 2002a).  
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Table 2.3 Substrate and binding partners of Dyrk1B/Mirk 
Substrate 

 
Interaction  Substrate or 

interacting protein 
Evidence  P-sitea Evidenceb 

Effect References 

Dimerization cofactor 
of hepatocyte nuclear 
factor 1 α (DcoHm) 

N/A n.d. Co-IP 
Y2H 
GST Pull-down assay 

Mirk, DcoHm form 
activating complex for 
HNF1 α  

(Lim et al., 2002a) 

hepatocyte nuclear 
factor 1 α (HNF1 α) 

In vitro  Ser-247 GST Pull-down Activate function of 
HNF1 α 

(Lim et al., 2002a) 

P38 MAP kinase N/A n.d. Co-IP 
 

Inhibition of 
transcriptionc 

(Lim et al., 2002b) 

Ran-binding protein M 
(RanBPM) 
 

N/A n.d. Co-IP Y2H 
GST Pull-down assay 
Invivo cross linking  

Inhibit Dyrk1B/Mirk (Zou et al., 2003) 

p27kip1 In vitro  
in vivo d 

Ser-10 immunohistochemistry 
RNAi 

Stabilize p27kip in G0 (Deng et al., 2004) 

Cyclin D1 In vitro  
in vivo d  

Thr-288 Co-IP RNAi 
 

Stimulation of nuclear 
export 

(Zou et al., 2004) 

Class II histone 
deacetylases (HDACs) 

In vitro  Ser-279 N/A Stimulation of nuclear 
export 

(Deng et al., 2005) 

p21cip1 In vivo Ser-153 N/A Stimulation of nuclear 
export 

(Mercer et al., 2005) 

 

a phosphorylation site (n.d., not determined); b Co-IP, co-immunoprecipitation; RNAi, RNA interference;Y2H, yeast two hybrid 
system; c co-transfection of Dyrk1B causes reduced activity in reporter gene assays;d co-transfection of Dyrk1B causes enhanced 
phosphorylation 

34 
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p27kip1 is an inhibitor of CDK and acts as a brake on the proliferation program 

(Deng et al., 2004). Elevated levels of p27kip1 block the cell in G0/G1 until mitogenic 

signals activate G1 cyclins and initiate proliferation. Phosphorylation of p27kip1 at Ser-10 

during G0 by Dyrk1B stabilizes p27kip1 and maintains p27kip1 within the nucleus where it 

can bind to CDK2 (Deng et al., 2004). Dyrk1B phosphorylation of p27kip1 may assist 

differentiating myoblasts to arrest in G0 by stabilizing p27kip1. In contrast to the role of 

p27kip1 to block CDK pathway, D-type cyclins , D1, D2 and D3 facilitate the import of 

CDK4 into the nucleus (Diehl and Sherr, 1997) and assemble combinatorially with 

CDK4 or CDK6 into complexes that phosphorylate the retinoblastoma protein, releasing 

factors needed for the progression into S phase. Cyclin D1 is translocated into the 

cytoplasm during S phase where it is destroyed by the proteasome following 

phosphorylation. Therefore, phosphorylation by Dyrk1B can increase the turnover of 

cyclin D1 and assist cell arrest in G0/G1. Thus, Dyrk1B has the function of both 

stabilizing a CDK inhibitor and destabilizing a G1 cyclin to assist cells to remain 

arrested in G0 (Zou et al., 2004). 

Dyrk1B is essential for the transcription of myogenin and induces myogenin 

transcription through indirect activation of the MEF2 transcription factor. Myogenin is a 

member of a family of myogenic regulatory genes, which includes myoD, myf5 and mrf4. 

These genes encode a set of transcription factors, which are essential for muscle 

development. Expression of myogenin is restricted to cells of skeletal muscle origin. 

Deacetylation of histones by histone deacetylases results in chromatin condensation and 

transcriptional repression. Dyrk1B relieves the inhibition of MEF2 by phosphorylating 

the class II histone deacetylases on a conserved serine within the highly conserved 
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nuclear localization sequence which reduces the nuclear localization of histone 

deacetylases (Deng et al., 2005).  

Dyrk1B phosphorylates p21cip1 within its nuclear localization domain at Ser-153 

causing a portion of the typically nuclear p21cip1 to localize in the cytoplasm (Mercer et 

al., 2005). Translocation to the cytoplasm enables p21cip1 to block apoptosis through 

inhibitory interaction with pro-apoptotic molecules (Mercer et al., 2005). Dyrk1B/Mirk 

mediates survival during the differentiation of myoblasts. 

All of the evidence suggests that Dyrk1B/Mirk assist cell arrest in G0/G1, to 

subsequently mediate transition from growth to differentiation and survival of myoblasts. 

This seems to be a common role of some members in Dyrk family. As mentioned before, 

both YakA and Yak1 regulate the transition from growth to differentiation. In 

myogenesis, Mirk is dramatically up-regulated when myoblasts are induced to 

differentiate, while depletion of endogenous Dyrk1B/Mirk by RNAi blocks myotube 

formation (Deng et al., 2005). 

Some studies have been performed on Dyrk2, 3 and 4 in this family, although 

Dyrk1A and 1B are the major focus of researchers. Dyrk2 was found to be a candidate 

oncogene with high level expression in lung and gut cancer tumors (Miller et al., 2003; 

Koon et al., 2004; Gorringe et al., 2005). High level expression of Dyrk3 was observed 

in erythroid cells and testes, suggesting that Dyrk3 play a role in erythroid development 

(Zhang et al., 2005). The human DYRK4 gene has been found to be implicated in 

neuronal differentiation in retinoic acid induced postmitotic neurons, although the 

mechanism through which this occurs has not been studied (Leypoldt et al., 2001). 

Retinoic acid is known to play an important role in neurogenesis in embryonic CNS and 
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the developing spinal cord. Interestingly, Hox genes are known to be transactivated by 

retinoic acid in vivo (Akin and Nazarali, 2005). 

 

2.5.3 Other Dyrk family members 

Some studies have been performed on Dyrk genes in other model organisms such 

as Caenorhabditis elegans (Pellettieri et al., 2003; Raich et al., 2003), 

Schizosaccharomyces pombe (Bahler and Pringle, 1998; Bahler and Nurse, 2001), 

Saccharomyces cerevisiae (Garrett et al., 1991; Smith et al., 1998; Kassis et al., 2000; 

Griffioen et al., 2001; Moriya et al., 2001; Martin et al., 2004), and Dictyostelium 

discoideum  (Clarke and Gomer, 1995; Reymond et al., 1995; Parent and Devreotes, 

1996; Souza et al., 1998; Souza et al., 1999; van Es et al., 2001; Taminato et al., 2002). 

Dyrk family members exhibit similar functions in these model organisms, assisting or 

inducing life cycle arrest in cells and further regulating the transition from growth to 

differentiation.  

 

2.6 HtrA3 gene 

HtrA is a highly conserved family of serine proteases found in species ranging 

from bacteria to human (Clausen et al., 2002). The HtrA family is characteristic of the 

combination of a catalytic domain with at least one C-terminal PDZ (present in PSD-95, 

Dlg, and ZO-1/2) domain (Clausen et al., 2002; Schlieker et al., 2004). HtrA was 

initially identified in E. coli by two phenotypes of null mutants. These mutants failed to 

degrade misfolded proteins in the periplasm (Strauch and Beckwith, 1988), resulting in 

the family’s first name DegP. The discovery that the mutants did not grow at 

temperatures above 42°C led to the family name of HtrA (High Temperature 
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Requirement Factor A) (Lipinska et al., 1988). It was later shown that bacterial HtrA 

had a molecular chaperon activity at low temperatures and a serine protease activity that 

digested misfolded proteins at high temperatures (Spiess et al., 1999). 

Human or mouse genome contains four HtrA genes, named HtrA1, 2, 3, and 4. 

HtrA2 protein has a mitochondrial localization signal and a transmembrane domain in 

the N-terminal region and is localized in mitochondria as a membrane protein with the 

protease domain believed to be protruding into the intermembrane space (Suzuki et al., 

2001; Li et al., 2002). It was recently reported that a protease-deficient mutation of 

HtrA2 causes hereditary neuromuscular degeneration disease (Mnd2) in mouse (Jones et 

al., 2003), suggesting possible roles of HtrA2 in mitochondrial protein quality control 

akin to that of bacterial HtrAs. HtrA2 has also been reported to induce apoptosis in 

caspase-dependent and -independent manners (Suzuki et al., 2001; Martins et al., 2002).  

There are two alternatively spliced variants of HtrA3 mRNA (long and short forms) 

(Nie et al., 2003a). The protein sequence of the short form is identical to that of the 

sequence of the long form except that it does not have the PDZ domain (Nie et al., 

2003a). HtrA3 was discovered initially as a pregnancy-related serine protease that is up-

regulated dramatically during mouse placental development (Nie et al., 2003b); HtrA3 is 

selectively expressed at the maternal-fetal interface during placentation in the mouse 

(Nie et al., 2006b). More recently, human HTRA3 is found to exert a similar function in 

human placentation (Nie et al., 2006a). 

Research findings show that HtrA1 and HtrA3 are expressed mostly in the same 

embryonic organ but exhibit complementary expression patterns in various tissues 

(Tocharus et al., 2004). As HtrA1 and HtrA3 share a high degree of domain homologies, 
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they also share a functional similarity (Nie et al., 2003a). Both HtrA1 and HtrA3 are 

inhibitors of transforming growth factor-β (TGF-β) signaling and bind to various 

superfamily members (including TGF-β1, BMP2, BMP4) (Oka et al., 2004; Tocharus et 

al., 2004). HtrA1 and HtrA3 exhibit similar substrate specificity toward β-casein and 

certain extracellular matrix (ECM) proteoglycans (Tocharus et al., 2004). Both HtrA1 

and HtrA3 act as tumor suppressors. HTRA1 and HTRA3 mRNA and protein levels 

decrease with increasing grades of human endometrial cancer (Bowden et al., 2006). 

They are both upregulated in the arthritic cartilage (Tocharus et al., 2004). Their 

protease activity and the ability to degrade extracellular matrix proteins (including 

cartilage) account for their role in both tumor suppression and arthritis (Baldi et al., 

2002; Chien et al., 2004; Tsuchiya et al., 2005; Bowden et al., 2006; Grau et al., 2006). 

Interestingly, the Hoxa2 regulatory binding element found in this study is partially 

conserved in both genes. However, whether the regulatory role of Hoxa2 protein on 

HtrA3 is conserved in HtrA1 remains to be demonstrated.  

 

2.7 BMP signaling in craniofacial development 

TGF-β (Transforming Growth Factor beta) superfamily members are major 

regulators of a broad range of developmental events occurring from pre-gastrula embryo 

to adult (Whitman and Raftery, 2005). The family includes BMPs, TGF-βs, activins, 

inhibins, and myostatin (Massague, 1998; Piek and Roberts, 2001). Given the fact that 

HtrA1 and HtrA3 (potential targets of Hoxa2 protein) act as inhibitors of transforming 

growth factor-β (TGF-β) signaling and bind to at least TGF-β1, BMP2 and BMP4 (Oka 

et al., 2004; Tocharus et al., 2004), it would be of great importance to identify the 

possible development process(es) which might involve all these factors. One such event 
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is craniofacial skeletogenesis. A great deal of literature demonstrates that Hoxa2, TGF-

β1, and BMP2, and BMP4 are all involved in this process (Gendron-Maguire et al., 

1993; Wan and Cao, 2005; Kanaan and Kanaan, 2006). The knowledge of these factors 

and their roles in craniofacial development would help us illustrate the potential 

signaling pathway(s) Hoxa2 gene may be involved in. 

BMPs (Bone Morphogenetic Proteins) induce the formation of bone and cartilage 

(Nie et al., 2006c). The presence of BMPs was originally implicated from the work of 

Urist in which he revealed bone autoinduction by bone matrix (Urist, 1965). Later, a 

number of BMPs were isolated and cloned (Wozney et al., 1988). BMPs are currently 

recognized as multifunctional growth factors that are essential for gastrulation, 

organogenesis and embryonic and postnatal growth. BMPs are also involved in 

craniofacial development. The BMP signaling pathway is involved in a number of 

developmental processes and is critical for the formation of various craniofacial 

elements such as cranial neural crest, facial primordia, tooth, lip and palate. Members of 

the BMP family are referred to as either BMPs, osteogenic proteins, cartilage-derived 

morphogenetic protein, or growth and differentiation factor (GDF) (Wan and Cao, 2005; 

Nie et al., 2006c). These members are classified into subfamilies based on their 

sequence similarity. So far, more than 20 members have been identified in the BMP 

family (Kishigami and Mishina, 2005).  

BMPs mainly function through BMP receptor type I and type II (BMPRI and 

BMPRII). Three type I (ALK2, ALK3 or BMPRIA and ALK6 or BMPRIB) and three 

type II receptors (BRII, ActRIIA and ActRIIB) have been identified (Nohe et al., 2004; 

Kanaan and Kanaan, 2006). In general, the type I receptors are the high-affinity binding 
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receptors, whereas the type II receptors bind BMPs with lower affinity. Binding of BMP 

ligand and receptor results in phosphorylation of downstream Smad proteins and 

triggers the intracellular signal cascade (Kanaan and Kanaan, 2006). The BMP signal 

activates Smad1, Smad5 and Smad8, which individually can form a heterodimeric 

complex with Smad4. This complex is further translocated to the nucleus where it 

activates transcription of target genes (Nohe et al., 2004). The Smad pathway is a well-

characterized BMP signaling pathway. However, BMPs also initiate non-Smad 

interacellular signaling pathways. BMPs activate the MAPK family signaling molecules, 

i.e., ERK1/2, p38, and stress-activated protein kinase/Jun N-terminal kinase (Nakamura 

et al., 1999; Hassel et al., 2003; Nohe et al., 2004). Activated MAPK molecules lead to 

activation of alkaline phosphatase and stimulation of osteocalcin expression in 

osteoblastic cells (Guicheux et al., 2003). 

BMPs are associated with the formation, migration, and differentiation of neural 

crest cells (NCCs) (Tzahor et al., 2003; Glavic et al., 2004). The neural crest is a 

pluripotent population of cells that is produced in the dorsal neural tube as a result of 

inductive interactions between the neural plate and the surface ectoderm (Olsen et al., 

2000). After neurulation, NCCs delaminate and migrate along defined pathways to 

differentiate into a variety of cells and tissues. NCCs originating from the anterior neural 

tube (forebrain, midbrain, and anterior hindbrain), referred to as the cranial neural crest 

cells (CNCCs), populate the facial region and the first and second branchial arches. 

These cells eventually differentiate into bone, cartilage, cranial ganglia, and connective 

tissue of the head and neck. 



 

 42

The BMP signaling has been recognized as a patterning signal for the neural crest. 

BMP4 and BMP7 are detected in the ectoderm and can induce non-neural ectoderm to 

form neural crest cells (Liem et al., 1995). BMP4 is responsible for the maintenance of a 

number of dorsal neural tube genes such as Msx1, Msx2 and Slug (Trainor et al., 2003; 

Tribulo et al., 2003) and a gradient of BMP seems crucial for proper patterning of the 

neural plate and neural crest (Tribulo et al., 2003). Furthermore, BMP signaling is also 

essential for migration of CNCCs to the facial primordia (Kanzler et al., 2000; Knecht 

and Bronner-Fraser, 2002; Tribulo et al., 2003). Blockage of BMP2/BMP4 in mouse 

cranial neural crest results in depletion of CNCCs from the targeted areas; as an 

outcome, the branchial arches populated by NCCs are hypomorphic and their skeletal 

and neural derivatives fail to develop (Kanzler et al., 2000). During early craniofacial 

development, BMP4, BMP2 and BMP7 are prominently expressed (Francis-West et al., 

1994; Bennett et al., 1995; Francis-West et al., 1998). Later, BMP4 is also expressed in 

the mesenchyme of facial primordia. Ectopic application of recombinant BMP2 or 

BMP4 protein can activate the expression of Msx genes at sites where Msx expression 

does not occur (Barlow and Francis-West, 1997). This signaling cascade is associated 

with altered expression of Fgf4 and Shh and can cause abnormal development of the 

facial primordia (Barlow and Francis-West, 1997). 

BMP signaling is involved in determination, migration, condensation, proliferation, 

differentiation and apoptosis of skeletal cells (Nie et al., 2006c). BMP signaling is 

conserved in craniofacial skeletons regulating both the endochondral and 

intramembranous bone formation. It is crucial for the formation of skeletogenic 

precursor cells in the neural crest and their migration to the programmed destinations 
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(Kanzler et al., 2000). Overexpression of BMP or application of BMP proteins changes 

the skeletal patterning, resulting in altered size and morphology of the skeleton in both 

the face and limb (Duprez et al., 1996; Barlow and Francis-West, 1997). Moreover, 

interruption of BMP signaling in mouse cranial neural crest shows multiple defects in 

craniofacial skeletons (Dudas et al., 2004). These data demonstrate a patterning role of 

BMPs in craniofacial skeletogenesis. 

After early development, BMPs maintain their expression in the skeletons and 

skeletal growth centres and play an important role. The cranial sutures are critical 

growth sites for the calvarias. Premature fusion of these sutures leads to a pathologic 

condition, known as craniosynostosis. The BMP signal is an important player in 

regulating the sutural morphogenesis and function (Kim et al., 1998; Holleville et al., 

2003). Both BMP2 and BMP4 are present in the osteogenic fronts of cranial sutures 

(Kim et al., 1998). Application of BMP4 protein increases the tissue volume in the 

suture and induces the expression of Msx genes (Kim et al., 1998). 

The crucial roles of BMP signaling in skeletogenesis have improved our 

knowledge in skeletal tissue regeneration and engineering. Application of BMP proteins, 

BMP-induced or BMP-expressing stem cells, or BMP gene transfer techniques have 

significantly progressed the regeneration process of bone and cartilage (Lieberman et al., 

1998; Lieberman et al., 1999; Suzuki et al., 2002; Chang et al., 2004).  

 

2.8 TGF-β1 and skeletogenesis 

Transforming Growth Factor β1 (TGF-β1) exerts its functions in both 

embryogenesis and adult organism. TGF-β1 regulates cell proliferation, differentiation, 

motility and apoptosis. Although TGF-β2 and -3 are detectable, TGF-β1 is the most 
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abundant growth factor in human bone (Hering et al., 2001). Similar to BMPs, TGF-β1 

can initiate both Smad and non-Smad interacellular signaling pathways (Kanaan and 

Kanaan, 2006). 

TGF-β1 is a prototypic multifunctional cytokine, which regulates a wide range of 

biological processes including cell proliferation, migration, differentiation, apoptosis, 

and extracellular matrix deposition. Interleukin (IL)-13 which is a major inducer of 

fibrosis in many chronic infectious and autoimmune diseases induces TGF-β1 (Kanaan 

and Kanaan, 2006). TGF-β1 plays a role in craniofacial skeletal development. TGF-β 

promotes neural crest cell proliferation and extracellular matrix production (Ito et al., 

2002). During the epithelial-mesenchymal interaction, TGF-β1 together with BMP-2/4, 

Msx-1 and tenascin mainly control these interactions (Hall and Miyake, 2000). 

 

2.9 Strategy Used To Identify Downstream Targets of Hox Factors 

To elucidate pathways through which Hox genes regulate development 

specification, we must first identify the downstream targets of homeobox proteins. 

Various strategies have been applied to identify homeobox protein targets (Pradel and 

White, 1998; Martinez and Amemiya, 2002). Each method has its advantages as well as 

shortcomings. The earliest and most common method for target gene isolation involves 

genetic screening and indicative gene expression pattern analyses (Pradel and White, 

1998). Thus, previously characterized genes are identified as targets based on a change 

in their expression pattern or phenotype in Hox mutants (Graba et al., 1997). This 

method may potentially identify regulators of Hox genes or parallel factors within the 

same developmental pathway. So it cannot preclude whether the Hox gene directly 

regulates the downstream target in question or if it is merely a downstream effector 
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within the Hox genetic pathway (reviewed in Mannervik, 1999). Subtractive 

hybridization, based on differential expression patterns to identify potential targets, is a 

useful method for identification of target genes. The method involves isolation of genes 

by an up-or downregulation of specific mRNAs in a cell system or in tissues where a 

particular Hox gene is activated at a specific developmental stage. However, it suffers 

the same drawbacks as it is difficult to determine whether the control by Hox protein is 

direct or indirect. Therefore, direct regulation of the potential targets and identification 

of the binding sites by a particular Hox protein still needs to be demonstrated by DNA-

binding analysis and Hox regulation of the target promoter in vivo. Chromatin 

immunoprecipitation has emerged as a very popular method to isolate target of 

transcription factors, since it facilitates the identification of a target in an in vivo context. 

It can also identify the likely DNA-binding site from multiple potential sites (Salsi and 

Zappavigna, 2006).  

Targets of Hox genes have been identified by various transfection assays using 

fusion proteins with GAL or VP16 activation domains (Mastick et al., 1995); 

(Friedman-Einat et al., 1996). This approach can be used as a random genetic screen of 

mouse genomic DNA fragments for the identification of target sequences (Mastick, 

1995; discussed in Pradel and White, 1998). Moreover, it can be used for investigating 

the transcription activation of Hox proteins on previously identified targets (Li et al., 

1999; Nasiadka et al., 2000). One limitation is that the presence of non-physiological 

concentrations of Hox proteins has been known to sometimes result in promiscuous 

DNA-binding (Ekker et al., 1994). Also, it has been reported that the use of Hoxa2-
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VP16 fusion protein in cell culture resulted in VP16-mediated squelching (Matis et al., 

2001). 

After the initial isolation of the core TAAT binding motif of Hox proteins, a 

candidate target gene can first be characterized based on the presence of a Hox binding 

site within its regulatory element. These targets can then be further analyzed for a 

regulatory requirement for a particular Hox protein by luciferase assays or by expression 

pattern analysis. For instance, the EphA7 gene was recently identified as a direct target 

of Hoxd13 and Hoxa13 (Salsi and Zappavigna, 2006). The promoter sequence of the 

EphA7 gene was first analyzed and multiple TAAT motifs were found. The actual direct 

binding site between these motifs and Hox proteins was identified and confirmed by 

ChIP, EMSAs and luciferase assays. As mentioned earlier, all of the above methods 

have advantages and limitations when applied individually. The findings are more 

indicative when multiple methods are used to characterize the target gene.  

The subtractive hybridization and the mutant screening methods have been applied 

to isolate downstream targets of Hoxa2 protein (Bobola et al., 2003; Kutejova et al., 

2005; Santagati et al., 2005). Several downstream targets have been identified, including 

Six, Ptx1 and Msx1 all of which function in cranial development. A Hoxa2/Pbx 

consensus binding site was also reported [(T/A) GAT (T/G) GA (T/A) G]. However, 

this site was deduced from the Pbx/Hox composite site and has only been tested for 

function in luciferase assays (Lampe et al., 2004). More experiments need to be 

conducted to determine its physiological importance.   

Although subtractive hybridization and the mutant screening methods were applied 

previously to isolate downstream targets of Hoxa2 protein (Bobola et al., 2003; 
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Kutejova et al., 2005; Santagati et al., 2005), there are no reports where ChIP has been 

used to identify Hoxa2 targets. In our laboratory, ChIP has been used to isolate Hoxa2 

targets from chromatin preparations in the mice spinal cord and hindbrain. Two 

potential targets: the high temperature requirement factor A3 (HtrA3) and the Dual 

specificity tyrosine kinase 4 (Dyrk4) genes were identified. In this study I have used 

various techniques to identify the binding site and address the physiological relevance of 

this regulation. Our findings provide additional evidence for the activity regulation 

model and contribute to the understanding of pathways through which Hoxa2 gene 

functions in regulating regional specification. 
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3. IDENTIFICATION AND CHARACTERIZATION OF Dyrk4 AS A PUTATIVE 
DOWNSTREAM TARGET OF Hoxa2 PROTEIN 

 

3.1 Abstract 

 
1. Currently very few Hoxa2 protein downstream target genes have been identified 

and little is known of the genetic pathways through which Hoxa2 protein regulates CNS 

development.  

2. Dual specificity tyrosine kinase 4 (Dyrk4) was isolated as a potential target gene of 

Hoxa2 protein in the developing CNS by chromatin immunoprecipitation. 

3. We found that Hoxa2 protein binds to a “CATCATG” site in the Dyrk4 sequence 

in vitro. 

4. A Hoxa2-VP16 fusion protein activates luciferase reporter expression in the 

presence of this specific binding site. 

5. Our results showed that Hoxa2 protein may regulate Dyrk4 expression in the 

developing CNS.  

KEY WORDS: Hoxa2, chromatin immunoprecipitation, Dyrk4, CNS, EMSA, 

transcription factor. 

 
3.2 Introduction 

Hox genes are conserved transcription factors that function to control embryonic 

morphogenesis (McGinnis and Krumlauf, 1992; Favier and Dolle, 1997; Prince, 2002). 

Vertebrate Hox genes are considered to specify the regional identity by regulating 



 

 49

common cellular processes such as cell death, adhesion, proliferation, and migration 

(Akin and Nazarali, 2005). It appears that many Hox genes are the ‘selector’ genes, 

which are at the top of a genetic hierarchy controlling development by regulating the 

transcription of ‘realizator’ genes and regulatory molecules (Andrew and Scott, 1992).  

The Hoxa2 gene and its paralog Hoxb2 are homologs of the Drosophila 

proboscipedia gene (Akin and Nazarali, 2005). Dominant expression of Hoxa2 gene 

during embryogenesis occurs in the neural tube and neural crest cells that contribute to 

the second brachial arch, as well as other tissues (Prince and Lumsden, 1994b; Gavalas 

et al., 1997; Hao et al., 1999; Barrow et al., 2000; Grammatopoulos et al., 2000). Within 

the neural tube, the anterior boundary of Hoxa2 gene expression is situated at the 

rhombomere (r) 1/2 interface (Davenne et al., 1999b; Barrow et al., 2000). Hoxa2 gene 

expression extends from the hindbrain caudally throughout the spinal cord, with 

expression beginning at first within the ventral mantle region at embryonic day 10 (E10). 

However, expression of Hoxa2 gene at E18.5 is predominantly found within the dorsal 

horn (Hao et al., 1999). Hence, Hoxa2 gene may potentially contribute to both 

anteroposterior (A-P) positioning as well as dorsoventral (D-V) patterning (Hao et al., 

1999). Although the anterior hindbrain is unaffected even by an extreme decline in 

Hoxa2 protein levels, at the molecular level differential sensitivity to Hoxa2 gene 

inactivation between specific neuronal subtypes has been observed (Ohnemus et al., 

2001). This evidence suggests that Hoxa2 gene might be involved in the specification of 

neuronal phenotypes within the CNS (Hao et al., 1999; Ohnemus et al., 2001). 

In order to decipher pathways through which Hox genes function in regulating 

regional specification, we need to identify the downstream targets of Hox transcription 
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factors. Several direct downstream target genes of the anteriorly expressed Hox genes 

have been isolated with regard to CNS development (Akin and Nazarali, 2005). Targets 

identified for the proboscipedia class of homeobox genes include: regulation of the 

homeobox Otx1 gene by Hoxb2 (Guazzi et al., 1998), regulation of Six2 by Hoxa2 

protein (Kutejova et al., 2005), and Hoxa2 gene expression autoregulation within the 

rhombomeres (Guazzi et al., 1998; Lampe et al., 2004; Kutejova et al., 2005). Various 

strategies have been utilized to identify targets of homeobox proteins in both vertebrates 

and Drosophila (Akin and Nazarali, 2005). In Drosophila, Gould et al. (1990) isolated 

in vivo targets of the Ubx homeotic protein by immunoprecipitation of chromosomal-

protein DNA complexes. This method has been successfully used in the murine system 

for the isolation of Hoxc8 (Tomotsune et al., 1993) and Hoxb5 (Safaei, 1997) candidate 

target genes. This technique is advantageous over other approaches in that it allows 

isolation of a target gene in vivo. Isolation of targets by immunoprecipitation also 

alleviates difficulties presented by promiscuous DNA-binding in vitro and allows for the 

identification of targets controlled by a Hox protein in conjunction with cofactors. We 

have employed the chromatin immunoprecipitation method to identify a downstream 

target gene regulated by Hoxa2 protein during the later stages of hindbrain and spinal 

cord development. Dyrk4, a member of the Dyrk (dual-specificity tyrosine-

phosphorylated regulated kinase) protein kinase family, was isolated as a target gene of 

Hoxa2 protein. 

 

3.3 Materials And Methods 

Plasmid Construction 
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The Hoxa2 gene expression vector pRSV-Hoxa2 was available (Nazarali et al., 

1992) and the plasmid pRG50 with the entire VP16 coding region was kindly provided 

by Dr. Vikram Misra of the Department of Veterinary Microbiology at the University of 

Saskatchewan (Akhova et al., 2005). The plasmid pRG50-Hoxa2/VP16 encodes Hoxa2 

fusion protein with a 77-aa VP16 activation domain. The Hoxa2 cDNA without the stop 

codon was amplified using forward primer 5′  CCCAAGCTTATGAATTACG 

AATTTGAG 3′  and backward primer 5′  GAAGATCTGTAATTCAGATGCTGTAG 

3′ . Then, the DNA encoding the N-terminal region (amino acid 1-412) of VP16 was 

replaced by the Hoxa2 PCR product to create the Hoxa2-VP16 fusion gene. To construct 

the recombinant protein expression vector, the Hoxa2 cDNA sequence (Nazarali et al., 

1992; Tan et al., 1992) was cloned into the pFLAG-2 vector and pGEX-KG vector at the 

EcoR I and Xho I sites downstream of the FLAG epitope and GST coding region 

respectively. The Dyrk4 sequence was amplified by PCR using primer: 5′  

ACGCGTCGACCCAGTCTGCTTAGACTC 3′  and 5′  CGCGGATCCCCATGATGC 

CTGGTT TT 3′ . The Dyrk4 PCR product was cloned into the pGL3-promoter plasmid 

at the Sal I and BamH I sites to generate pGL3-Dyrk. Mutagenesis of the putative Hoxa2 

protein response element localized at the end of Dyrk4 sequence was performed by PCR 

with the following mutant oligonucleotides: 5′ CGCGGATCCCCCCGCCGCCTGG 

TTTT 3′. The resulting PCR product was cloned into the pGL3-promoter plasmid at the 

Sal I and BamH I sites to generate pGL3-Dyrkdoublem. Mutations were confirmed by 

sequencing. Plasmids pRL-null and pRL-CMV were obtained from Promega (Promega, 

USA). The expression vector pCS2PBX was a gift from Dr. Mark Featherstone from 

McGill University (Shanmugam et al., 1999)  
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Protein Purification   

All chemicals were obtained from Sigma (Oakville, ON) unless otherwise 

specified. All enzymes were purchased from Invitrogen (Burlington, ON). Expression of 

recombinant FLAG-Hoxa2 protein was induced in XL1-Blue supercompetent E.coli 

(Stratagene, CA, USA) with isopropyl-ß-thiogalactoside (IPTG) and extracted as 

inclusion bodies from bacteria (Kumar and Nazarali, 2001). In brief, the protein from 

inclusion bodies was extracted by dissolution in equal volumes of HEMGN buffer 

containing [100 mM KCl, 25 mM HEPES (pH 7.6), 0.1 mM EDTA (pH 8.0), 12.5 mM 

MgCl2, 10% glycerol, 0.1% v/v Nonidet P-40, 0.1 mM PMSF, 0.1 mM sodium 

metabisulfite] and 8 M guanidine-HCl for 30 min at 4 oC. After centrifugation at 87,000 

g for 30 min (4oC), the supernatant was dialyzed against HEMGN with decreasing 

concentrations of guanidine-HCl (1 X in 1 M guanidine-HCl, 1 X in 0.1 M guanidine-

HCl, and 2 X in HEMGN alone). Insoluble material was removed by centrifugation and 

the supernatant used for subsequent purification by affinity chromatography with 

columns containing anti-FLAG M2 antibody affinity gel (Sigma, Oakville, ON). 

Purified recombinant Hoxa2 protein was eluted with 0.1 M glycine (pH 3.5) and then 

neutralized with 1 M Tris-HCl (pH 8.0).  

GST-tagged Hoxa2 protein was expressed in E .coli strain BL21-Codon Plus-

RIPL. Bacteria were cultured overnight in Luria-Bertani (LB) medium containing 100 

µg/ml ampicillin. The cultures were then diluted 1:100 with fresh pre-warmed LB and 

incubated at 37 °C with vigorous shaking (300 rpm). When the OD600 had reached a 

value between 0.6-1.0 (about 2 h), expression of the fusion protein was induced by 

adding IPTG to a final concentration of 0.1 mM. Uninduced cultures were also included 
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to compare protein expression. The culture was then incubated at 37 °C for an additional 

2 h and the cells were harvested by centrifugation (7000 rpm, 10 min, 4 °C). Cell pellets 

were resuspended in 50 µl of phosphate-buffered saline (PBS) per ml of bacterial culture, 

incubated in the presence of 0.1 mg/ml lysozyme, 1 mM PMSF  and 0.1% Triton X - 

100 (10 min, RT), and lysed by ultrasonication at 4 °C. Bacterial debris was then 

removed by centrifugation (14,000 rpm, 10 min, 4 °C) and the supernatant was collected 

for further purification. The bacterial proteins in the supernatant were analyzed by SDS–

PAGE. For purification of the GST–Hoxa2 fusion protein, clarified bacterial lysates 

were applied to a 50% slurry of glutathione–Sepharose 4B (Amersham Pharmacia) in 

PBS for 30 min with gentle rotation at room temperature. The beads were washed three 

times with cold PBS before the recombinant protein  was eluted (10 min, 4 °C) three 

times using 1 × volume of glutathione elution buffer (50 mM Tris–HCl, pH 8.0, 10 mM 

reduced glutathione). The yield of the Hoxa2 fusion proteins was estimated by 

measuring their absorbance at 280 nm. Purity of purified protein was analyzed on 10-

12% SDS-PAGE gels and identified by Western Blot analysis.  

 

Antibody Purification  

A 17-amino acid oligopeptide (J3 peptide) derived from Hoxa2 protein was 

previously used to generate Hoxa2 peptide specific polyclonal antiserum (B579) in 

rabbits (Hao et al., 1999). Antibody specific for Hoxa2 protein was purified from 

polyclonal antiserum (B579) using affinity chromatography. Recombinant FLAG-

Hoxa2 protein was conjugated to AffiGel-10 affinity support (BioRad Laboratories, CA, 

USA) in the coupling buffer [PBS containing 80 mM CaCl2] for 4 h at 4 oC. The 
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remaining active ester sites were blocked with 0.1 M Tris (pH 8.0). The J3 antiserum 

was inactivated at 56 oC for 30 min and then diluted 1: 2 in the washing buffer [50 mM 

Tris-HCl (pH 7.5)]. The column was washed alternately by washing buffer alone or 

washing buffer containing 0.5 M NaCl. Hoxa2- specific antibody was eluted with 0.1 M 

glycine and neutralized with 0.1 M triethylamine (pH 11.5). The antibody was dialyzed 

against 0.1 M HEPES (pH 8.0). Eluants were tested by electrophoresis on 12% SDS-

PAGE gels and western blot analysis. 

 

Chromatin Preparation and Immunoprecipitation  

Target DNA sequences of Hoxa2 protein were isolated from the E18 hindbrain 

and spinal cord chromatin preparations using a modified immunoprecipitation method 

(Tomotsune et al., 1993; Safaei, 1997).  Day eighteen (E18) gestational embryos were 

removed from CD-1 dams and staged as per Kaufman (1992) and Theiler (1989). The 

spinal cord and surrounding tissue were removed from the embryos and fixed by 

immersing in 4% paraformaldehyde. Chromatin was prepared from the tissues by 

homogenization in the binding buffer (Safaei et al., 1997). The chromatin-containing 

supernatant was digested with 10,000 units of HaeIII for 2 h at 37 oC, followed by 

DNase I (10 U) digestion for 5 min at 4 oC. The reactions were stopped with 2.5 mM 

EGTA. Hoxa2-DNA complexes were immunoprecipitated from the chromatin 

preparations by affinity chromatography with purified anti-Hoxa2 antibody conjugated 

to AffiGel-10 matrix. The column was washed three times with high salt buffer [0.1 mM 

NaH2PO4 (pH 7.5), 1 M NaCl] followed by low salt buffer [0.1 mM NaH2PO4 (pH 7.0)]. 

Target sequences were eluted with 3 M NaSCN and dialyzed against 10 mM Na H2PO4 
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(pH 7.0). Protein was removed by incubation with 0.1 mg/ml proteinase K in 10 mM 

Tris-HCL, 5 mM EDTA and 0.5% SDS for 16 h at 37oC. Samples were extracted with 

phenol-chloroform followed by passage through NAP-5 columns (Amersham Pharmacia 

Biotech, Canada). The resulting DNA was subcloned by blunt-end ligation into 

pBluescript SKII+ (Stratagene, CA, USA). E.coli DH5α cells were used for 

transformation with plasmids and subsequent plasmid DNA isolation. Target sequences 

were sequenced by the dideoxy-chain termination method (Sanger et al., 1977) using 

Sequenase-Version 2.0 (USB Corp., OH, USA) (DNA Technologies Unit, NRC-Plant 

Biotechnology Institute, Saskatoon, SK) 

 

Electrophoretic Mobility Shift Assay (EMSA)  

EMSA has been extensively used to in protein DNA-binding study. The 

following schematic drawing (Figure 3.1) represents the experimental procedures of 

EMSA and super shift gel electrophoresis assay. 

In this study, EMSA was performed using the isolated 103 base pairs (bp) 

fragment of Dyrk4 with nuclear extract and FLAG-Hoxa2 protein. Oligonucleotides 

were incubated with recombinant GST-Hoxa2 protein in buffer. Oligonucleotide probes 

used in this study were synthesized based on the sequence listed in Table 3.1. The 

probes were made double-stranded by annealing with equimolar amount of 

complementary DNA in 1 × annealing buffer (10 mM Tris-HCl, pH 7.5-8.0, 50 mM 

NaCl, 1 mM EDTA). Double-stranded probes (5 pmol) were then end-labeled by 

incubating with 10 U T4 polynucleotide kinase, 2.5 µl [γ-32P] ATP (10 Ci/µl, 3000 

Ci/mmol) in reaction buffer (25 µl total volume) for 30 min at 37 °C. The probes were 
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purified using a Qiaquick nucleotide removal kit. The DNA-binding reactions were 

performed for 30 min on ice with a volume of 20 µl containing 2µl GST or GST-Hoxa2 

protein where indicated, 105 cpm 32P-labeled probe, 1 µg poly [dI:dC], and 10 µl 2 × 

binding buffer (1 × buffer: 10 mM Hepes-KOH, pH 7.9, 10% glycerol, 50 mM KCl, 5 

mM MgCl2, 1 mM EDTA, 1 mM DTT).  

The anti-Hoxa2 polyclonal rabbit antiserum (B579) was used for supershift 

reactions, and non-immune rabbit antiserum was used in control reactions. Competition 

reactions were performed using 100 X concentration of unlabelled target sequence 

probes with Hoxa2 protein. A 100-fold excess of unlabeled competitor DNA, antibody 

or nonspecific serum was added 1h prior to adding the probes. The entire contents of 

each reaction were loaded on a 5% polyacrylamide (38:2) gel, pre-cooled to 4 °C in 1 × 

TGE buffer. Samples were subjected to electrophoresis for 40 min at 8 volts per 

centimeter. Gels were dried and exposed to x-ray film overnight at -70 °C.  

 

Nuclear Extract Preparation  

Nuclear extracts were prepared from spinal cord and hindbrain tissue of E18 

mice by the method described in Thompson et al. (1998). Briefly, embryonic hindbrain 

and spinal cord were homogenized in PBS (pH7.4), pelleted and resuspended in cell 

lysis buffer [10 mM HEPES (pH 7.0), 3 mM MgCl2, 40 mM KCl, 0.5 mM PMSF, 1 mM 

DTT, 5% glycerol, 1% protease inhibitor cocktail (Sigma, ON), and 0.2% Nonidet P-40]. 

Cells were lysed for 10 min at 4 oC and the nucleus pelleted by centrifugation in a 

microcentrifuge at 5,000 rpm for 5 min. Nuclei were resuspended in extraction buffer 

[20 mM HEPES (pH 7.9), 1.5 mM MgCl2, 0.42 M KCl, 0.2 mM EDTA, 1 mM DTT, 0.5 
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mM PMSF, 25% glycerol] and incubated for 1 hr at 4 oC on an orbitron shaker. The 

supernatant was collected after centrifugation and dialyzed against a solution of 20 mM 

HEPES (pH 7.9), 1.5 mM MgCl2, 0.42 M KCl, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM 

PMSF, and 20% glycerol. The DNA probe for the 103 bp isolated Dyrk4 fragment was 

produced by digesting with Xho I and Xba I and labeling with [α-32P]dATP using 

Klenow fragment of DNA polymerase I. Binding reactions with nuclear protein were 

performed in 30 μl of binding buffer [10 mM HEPES (pH 7.9), 1 mM MgCl2, 60 mM 

KCl, 0.5 mM EDTA, 1 mM DTT, 10% glycerol] with 2 μg of poly(dI-dC), and 50,000 

cpm of probe at room temperature for 20 min. 

 

DNase I Footprinting 

A modified protocol of Spiro and McMurray (1999) was utilized for thermal 

cycle sequencing of target sequences for footprinting assays. Forward and reverse 

primers for pBluescript SKII+ were labeled with γ-32P using T4 kinase in sequencing 

reactions. Template DNA was sequenced using universal primer (5′ GTAAAA 

CGACGGCCAGT 3′) and reverse primer (5′ GGAAACAGCTATGACCATG 3′), 2 U 

Taq DNA polymerase (Invitrogen) and dNTP/ddNTP mix (reaction mix A: 450 μM 

ddATP, 15 μM dATP, 50 μM each dCTP, dGTP,dTTP; reaction mix C: 125 μM ddCTP, 

15 μM dATP, 18 μM dCTP, 50 μM each dGTP, dTTP; reaction mix G: 125 μM ddGTP, 

15 μM dATP, 18 μM dGTP, 50 μM each dCTP, dGTP; reaction mix T: 300 μM ddTTP, 

15 μM dATP, 18 μM dTTP, 50 μM each dCTP, dGTP). Reactions were incubated for 2 

m at 95 oC followed by 20 cycles of 95 oC for 30 s, 58 oC for 15 s, and 72 oC for 40 s. 

Varying amounts of nuclear extract taken from E12, E18 and P1 mice were used in the 
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footprinting reactions. Protein was incubated with T4 kinase labeled γ-32P DNA probes 

(5 X 104 cpm) in 50 μl binding buffer [20% glycerol, 0.2 mM EDTA, 1 mM DTT, 20 

mM HEPES (pH 7.9), 60 mM KCl] with 2 μg of poly(dI-dC) at 4 oC overnight or at 

room temperature for 2 h. Samples were treated with 5 mM MgCl2 and 0.25 mM CaCl2 

for 2 min with 5 X 10-4 to 5 X 10-3 U of DNase I for control reactions and 2 X 10-3 to 8 

X 10-2 U for DNA-protein reactions. DNA fragments were precipitated with ethanol for 

several hours at –20 oC. The DNA pellets were then dissolved in formamide loading 

buffer (90% v/v deionized formamide, 0.025% w/v xylene cyanol, 0.025% w/v 

bromophenol blue). Reactions were visualized by electrophoresis on a 6% denaturing 

sequencing gel and exposed to Kodak X-OMAT film at –70 oC.  

 

Cell culture, transfection and luciferase activity assays  

COS-7 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal calf serum (Gibco), 100 UI/ml of penicillin and 100 µg/ml 

streptomycin. Transfections were performed using polyfect transfection reagent (Qiagen) 

in 6-well plates as per the manufacturer’s instructions. For internal control, 10 ng of 

pRL-CMV or 100 ng of pRL-null were used as indicated. In a typical transfection 

experiment 1.5 µg DNA was used, containing 100 ng of reporter plasmid (pGL3, pGL3-

Dyrk or pGL3-Dyrkdoublem), 200 ng of pRG-Hoxa2-VP16 or pRSV-Hoxa2, internal 

control, and pcDNA to complement. Cells were harvested 24-48 hr after transfection, 

lysed, and assayed for renilla and firefly luciferase expression as described in the 

manual included with Dual-Luciferase Reporter Assay System (Promega). 

3.4 Results 

Isolation of Dyrk4 as a putative downstream target gene of Hoxa2 protein using ChIP 
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Hoxa2-DNA complexes were isolated by immunoprecipitation from chromatin 

preparations from the hindbrain and spinal cord tissue of E18 embryos, and a 103 bp 

fragment was subcloned into the Sma I site of pBluescript SKII+. The 103 bp fragment 

(Figure 3.2) is present within the intronic segment of the Dyrk4 gene. 

 

Hoxa2 protein binds to a specific site in Dyrk4 sequence  

EMSAs were performed to confirm the direct binding of Hoxa2 protein to the 

isolated sequence. Incubation of the probe with the crude FLAG-Hoxa2-expressing 

bacterial extract results in the formation of a band-shift (lane 2, Figure 3.3). This shift 

complex represents the interaction between Hoxa2 protein and the sequence, as it can be 

supershifted by anti-Hoxa2 antibody (lane 4, Figure 3.3). This complex was also 

competed in the presence of 100-fold unlabeled probe (lane 6, Figure 3.3). A consistent 

result in the EMSA was observed when using nuclear extract from E18 embryos. 

However, instead of producing the supershift band, the addition of anti-Hoxa2 antibody 

abolished the interaction between Hoxa2 protein and the probe (lane 5, Figure 3.4). To 

identify the specific binding site in the isolated Dyrk4 sequence we performed DNase I 

footprinting. Nuclear extract isolated from E12 whole embryos was used for footprinting 

analysis due to high level of Hoxa2 gene expression at this stage of development. 

Protection from DNase I digestions was observed within the sequence 5′  

TACCGTAGTACC 3′  (Figure 3.5). Wild-type and mutant probes (Table 3.1) were 

incubated with GST-Hoxa2 protein in EMSA to further characterize the binding site. 

The “TAAT” site is known to bind to all Hox proteins in vitro (Kalionis and O'Farrell, 

1993; Gehring et al., 1994; Kumar and Nazarali, 2001). A probe with multiple “TAAT” 
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site, named Pctrl, was included as a positive control. The binding between GST-Hoxa2 

protein and the Pctrl (Figure 3.6, A) probe demonstrates the binding activity of GST-

Hoxa2 protein in vitro. Consistent with previous EMSA results, incubation of the probe 

Pdyrk482-521 results in the formation of a band-shift. This band is supershifted by the 

addition of anti-Hoxa2 antibody, which indicates the specific binding between GST-

Hoxa2 protein and the probe (Figure 3.6B, lane 2). This binding is competed by adding 

100-fold unlabeled probe (Figure 3.6B, lane 5). Mutant probes with the sequences 

“CGGCATG” and “CATCGGG” can still bind to the protein (Figure 3.6C, lane 3, 4), 

but the alteration of the two “TA” nucleotides simultaneously (CGGCGGG) results in 

the loss of the binding ability (Figure 3.6C, lane 5).  

 

Hoxa2-VP16 fusion protein activates transcription of luciferase expression through the 

specific binding site in the Dyrk4 fragment 

Transient transfection experiments were used to examine the effect of Hoxa2 

protein and Hoxa2-VP16 fusion protein on the Hoxa2 protein responsive element in 

isolated Dyrk4 sequence. Hox-VP16 fusion protein was previously used to examine the 

regulatory activity of Hox proteins on their responsive elements (Friedman-Einat et al., 

1996; Li et al., 1999; Nasiadka et al., 2000). The isolated Dyrk4 sequence is present 

within an intronic rather than a promoter region of Dyrk4. Hence, this sequence was 

subcloned into the pGL3-promoter vector, in which firefly luciferase expression is 

regulated by a SV40 minimal promoter. To avoid experimental variations caused by 

different transfection efficiencies, an internal control reporter containing renilla 

luciferase gene (pRL-CMV) was included in the cotransfection experiments. 
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Cotransfection of COS-7 cells with a Hoxa2 gene expression plasmid (pRSV-Hoxa2), 

pRL-CMV and Dyrk4 reporter plasmid (pGL3-Dyrk) was first performed. However, no 

responsive activity was observed with the overexpression of Hoxa2 protein (data not 

shown). Since Pbx is a common cofactor of Hox proteins and contribute to the binding 

specificity of Hox protein to target genes (Chan et al., 1994), a Pbx expression plasmid 

pCS2PBX was further added in the cotransfection experiments to test if the cofactor 

would significantly contribute to the influence of Hoxa2 protein on the Dryk4 fragment. 

No significant effects were observed (data not shown). The Hoxa2-VP16 fusion protein 

was then used in transient transfection experiments. Matis et al. (2001) have shown that 

the fusion protein between Hoxa2 protein and the VP16 activation domain inhibits 

transcription from the strong promoter/enhancer of cytomegalovirus (CMV) and Rous 

sarcoma virus (RSV). We did observe varying amounts of inhibition of the CMV 

promoter when using pRL-CMV plasmid as an internal control (data not shown). To 

avoid this problem, we replaced pRL-CMV with a promoterless vector, pRL-null, to 

stabilize the renilla luciferase level. An activation effect of Hoxa2-VP16 on the Dyrk4 

intronic sequence was observed (Figure 3.7). Mutations in the binding site significantly 

inhibit this activation (Figure 3.7). 

 

3.5 Discussion 

Several putative target sequences of Hoxa2 protein were isolated by chromatin 

immunoprecipitation (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004). Of 

these target sequences, one clone was identified by BLAST query (Altschul et al., 1990) 

of the Ensemble Mouse Genome Database (EBI/Sanger Institute) as the murine 
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homolog of the human Dual Specificity Tyrosine Kinase 4 (DYRK4) gene (Figure 3.2A. 

and B.). The Hoxa2 protein target sequence (Figure 3.2C.) is present within the intronic 

segment of the Dyrk4 gene. It is a member of the phosphorylation regulated kinase 

family (Becker et al., 1998). The analysis involves the use of a GeneWise or GenScan 

prediction followed by confirmation of the exons by comparison to protein, cDNA and 

EST databases (Ensemble, EBI/Sanger Institute).  

No specific in vivo binding site has previously been reported for Hoxa2 protein, 

although a consensus DNA-binding sequence has been reported for the Hox/Pbx 

complex. Here, for the first time, a specific binding site for Hoxa2 protein was identified. 

EMSA analysis shows recognition of the target sequence by recombinant Hoxa2 protein 

(Figure 3.3) and nuclear extract (Figure 3.4). Hoxa2 protein is involved in the formation 

of the DNA-protein complex as determined by supershift assays using anti-Hoxa2 

antibody. Both wild-type and mutant probes were used to test the specific Hoxa2 protein 

response element. DNase I Footprinting and EMSA results demonstrate that the core 

specific binding site is “CATCATG”. Mutations of both “AT” sites in the middle 

prevent the binding in EMSA, which is consistent with the previous suggestion of the 

importance of “AT” site in the Hox/Pbx consensus binding sequence (Chan and Mann, 

1996; Lampe et al., 2004); this site is different from the consensus Hox/Pbx or 

Hoxa2/Pbx site: “(T/A) GAT (T/G) GA (T/A) G” in which Pbx and Hox each binds to 

an overlapping half site respectively (Chan and Mann, 1996; Lampe et al., 2004). In our 

case Hoxa2 protein did bind to “GATG” site which is consistent with the half Hox 

binding in the Hox/Pbx consensus binding sequence (Figure 3.6). Interestingly, only 
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simultaneous mutations of the two “AT” residues abolished binding, suggesting GST-

Hoxa2 protein may bind to both “GATG” and “CATG” site.  

Transient transfection experiments were applied to address the activity of this 

Hoxa2 protein responsive element in COS-7 cells. Hoxa2 protein did not affect the 

reporter gene through the target sequence even with the presence of the Pbx cofactor 

(data not shown), which could be due to the lack of the other half of the Pbx binding site. 

Although many experiments (Chan et al., 1994; van Dijk and Murre, 1994; Chan and 

Mann, 1996; Mann and Chan, 1996; Neuteboom and Murre, 1997; Lampe et al., 2004) 

suggest the involvement of Pbx in regulatory functions of Hox family proteins on their 

targets, these do not exclude the involvement of other unknown cofactors (Li et al., 

1999). To bypass the needs of unknown cofactors, a Hoxa2-VP16 fusion protein was 

used in transient transfection assays. After using the fusion protein of Hoxa2 protein and 

the VP16 activation domain, an activation on the reporter gene expression was observed 

and the mutant oligonucleotide significantly decreased this activation. This indicates 

there may be unknown cofactors involved other than Pbx, because Hoxa2 protein alone 

cannot affect the reporter and neither can Pbx and Hoxa2 protein together. This could be 

due to the fact that Hoxa2 protein binds to the site, but is unable to initiate an effect. 

Fusion between Hoxa2 protein and a strong VP16 activation domain somehow bypasses 

the needs for cofactors and activates the reporter gene. The Hoxa2-VP16 fusion was 

reported to inhibit the CMV promoter (Matis et al., 2001). We observed various levels 

of inhibition in our experiments which led us to replace the CMV promoter renilla 

internal control with a promoterless renilla plasmid. 
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Dyrk family members exhibit similar functions in several model organisms.They 

assist or induce life cycle arrest in cells and regulate the transition from growth to 

differentiation. In mammalian cells, Dyrk1A plays important roles in the neurogenesis 

and neuronal differentiation during brain development and in learning/memory in 

adulthood (Galceran et al., 2003; Hammerle et al., 2003b). Among the genes of the 

Down syndrome Critical Region, the consideration of Dyrk1A as a candidate gene for 

mental retardation is relatively well supported by the phenotype of transgenic mice that 

overexpress it and by the analysis of its neurodevelopmental roles (Hammerle et al., 

2003b). Dyrk1B/Mirk assists cell arrest in G0/G1 and subsequently mediates transition 

from growth to differentiation and survival of myoblasts (Diehl and Sherr, 1997; Deng 

et al., 2004; Zou et al., 2004; Deng et al., 2005). Dyrk2 is a candidate oncogene with a 

high level of expression in lung and gut cancer tumors (Miller et al., 2003; Koon et al., 

2004; Gorringe et al., 2005). A high level of expression of Dyrk3 was observed in 

erythroid cells and testes, suggesting that Dyrk3 might play a role in erythroid 

development (Zhang et al., 2005). The human DYRK4 has been implicated in neuronal 

differentiation in retinoic acid induced postmitotic neurons, although the mechanism 

through which this occurs has not been investigated (Leypoldt et al., 2001). Retinoic 

acid is known to play an important role in neurogenesis in embryonic CNS and the 

developing spinal cord. Interestingly, Hox genes are known to be transactivated by 

retinoic acid in vivo (Boncinelli et al., 1991; Simeone et al., 1991; Conlon and Rossant, 

1992). Vyak, a Dyrk family member in chicken, was identified as a potential target of 

chicken Hoxa4 by ChIP in an unpublished observation (Shang et al., 2000), however, 

further experiments are necessary to test if there is a relationship between these two 
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families. Although the precise function of Dyrk4 has not been characterized, it may play 

a role in the phosphorylation of proteins such as its other family members (Gwack et al., 

2006). Our results show that Hoxa2 protein may be involved in the regulation of Dyrk4 

transcription in the developing CNS, where it may affect the activity of other 

transcription factors or signaling molecules involved in neuronal development pathways. 
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 3.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic drawing of EMSA A, procedures for EMSA B, additional 
procedures for super shift gel electrophoresis 
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Figure 3.2 Schematic representation of the murine Dyrk4 gene. 
The direction of transcription is indicated by the black arrow, exonic sequences are 
shown by closed black boxes, intronic sequences are represented by the black line 
running between the closed boxes, and UTRs by open boxes.  A 103 bp fragment was 
isolated by immunoprecipitation of Hoxa2-DNA complexes from chromatin (indicated 
by red boxes). Dyrk4, which is present on chromosome 6 in mouse, shows alignment 
with the Hoxa2 protein target sequence and encodes two overlapping transcripts.  Both 
transcripts have been predicted by the Ensemble analysis pipeline and show similarity 
with the human DYRK4 gene. A. This transcript is designated as Dyrk4, 
ENSMUSG00000030345 and consists of 14 exons spanning 31.49 kb.  B.  This gene 
transcript is designated as ENSMUST00000078521 and consists of 15 exons spanning 
45.82 kb.  C.  A 103 bp fragment was isolated by immunoprecipitation of Hoxa2 protein 
from chromatin preparations.  The sequence of immunoprecipitated fragment which is 
present in the intron of the mouse Dyrk4 homolog is indicated in grey. (Akin Z, Ph.D 
Thesis, University of Saskatchewan, 2004).  
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Figure 3.3 Binding of recombinant Hoxa2 protein to the 103 bp murine Dyrk4 intronic 
sequence . 
A. The target sequence was incubated with 10 μg of crude bacterial extract from FLAG-
Hoxa2 protein expressing E.coli (lane 2-4). The addition of anti-Hoxd1 antibody did not 
affect band-shift formation (S) (lane 3), while the addition of anti-Hoxa2 antibodies 
resulted in a supershift (SS) (lane 4). B. The band-shift formed with crude recombinant 
FLAG-Hoxa2 protein extract (lane 7), is inhibited by the addition of 100 X unlabeled 
target sequence to the binding reaction (lane 6).  Migration of the labeled unbound probe 
is shown in lanes 1 and 5. (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004) 
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Figure 3.4 In vitro DNA-binding of nuclear factors to the Dyrk4 intronic sequence. 
Lane 1: free probe (lane 1). Lanes 2, 3, and 4: probel with 15, 10 and 5 μg of nuclear 
extract respectively. Lane 5 and lane 6: probe with 4 μg and 2 μg of Hoxa2 protein anti-
serum respectively. Lane 7: 100-fold unlabeled probe was added to binding reactions 
with 15 μg nuclear extract. (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004) 
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Figure 3.5 DNase I footprinting analysis of isolated Dyrk4 sequence. Thermocycle 
sequencing was used as a DNA ladder for footprinting reactions (lanes 1-4, GATC 
respectively).  The probe was digested with increasing concentration of DNase I in the 
absence of protein (lanes 5 and 6).  Binding reactions using 20 μg of E12 nuclear extract 
were digested with increasing concentrations of DNase I (0.002-0.08 U) in lanes 7 –11, 
respectively. DNase I footprinting sites sequence is 5′ TACCGTAGTACC 3′, marked 
with bracket. (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004) 
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Figure 3.6 In vitro DNA-binding of GST-Hoxa2 protein to specific site in the Dyrk4 
intronic sequence. A: EMSA was used to examine the in vitro binding activity of Dyrk4 
with the recombinant Hoxa2 protein. Pctrl probe (see Table 3.1) was used as a positive 
control which is known to bind the homeobox domain in vitro. Lane 1, Free Pctrl probe; 
Lane 2, Pctrl probe + GST protein; Lane 3, Pctrl probe + recombinant Hoxa2 protein; 
Lane 4, Free Pdyrk482-521; Lane 5, Pdyrk482-521 + GST protein; Lane 6, Pdyrk482-
521 + recombinant Hoxa2 protein. Binding of recombinant Hoxa2 protein was observed 
when using Pdyrk482-521. No binding was observed when using Pdyrk544-583 (data 
not shown).  
B: Super shift (Lane 3, 6) and competition (Lane 5) experiments were carried out to 
verify the specificity of the binding between Pdyrk482-521 and recombinant Hoxa2 
protein. Lane 1, Free Pdyrk482-521; Lane 2, Pdyrk482-521 + recombinant Hoxa2 
protein; Lane 3, Pdyrk482-521 + recombinant Hoxa2 protein + Hoxa2 antibody; Lane 4, 
Pdyrk482-521 + GST; Lane 5, Pdyrk482-521 + 100-fold unlabeled probe + recombinant 
Hoxa2 protein; Lane 6, Pdyrk482-521+ recombinant Hoxa2 protein + nonimmune 
serum. The binding can be supershifted by the Hoxa2 antibody and the signal was 
inhibited by adding high amount of unlabeled probe. GST protein alone cannot bind to 
the probe.  
C: Probes with mutations in the “GATG” site in Dyrk4 sequence were included in 
EMSA analysis. Lane 1, Free probe Pdyrk482-521; Lane 2, Pdyrk482-521 +  
recombinant Hoxa2  protein; Lane 3, Pdyrkma482-521 + recombinant Hoxa2 protein; 
Lane 4, Pdyrkmb482-521 + recombinant Hoxa2  protein; Lane 5, Pdyrkdoublem + 
recombinant Hoxa2 protein.  
 

 

Super shift  

 1 2 3 4 5 6
 1    2    3     4     5 

A C B 
1 2 3 4 5 6



 

 72

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.7 The Hoxa2-VP16 protein induces activation on the responsive element in 
Dyrk4 in transient transfection experiments. pGL3-Dyrk and pGL3-Dyrkdoublem were 
transfected in COS-7 cell with pRG-Hoxa2-VP16 respectively. The relative luciferse 
activity obtained in the absence of pRG-Hoxa2-VP16 is set at 1. Values are expressed as 
fold activation over transfection of the reporter plasmid alone. Bars indicate the standard 
deviation of 4 independent experiments. “∗” indicates that the difference between bar 2 
and 4 was statistically significant (P<0.05) according to a two-tailed t-test. 
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Table 3.1 EMSA probes for Dyrk4  
 

Pctrl is designed based on published article (see Booth et al., 2007). Dyrk probes are 
designed based on isolated Dyrk sequence (Figure 3.2). 
 
 

 

Probe Name Sequence Note 
Pctrl CAAATTTTTAATTTTATTTAATTGTAATTAATTTTAAGTGG Positive 

control 
Pdyrk544-583 CTGTGGCTGCTGTTTCCAGGGACTTTGCCAGCCTGTGTCT  Negative 

control 
Pdyrk482-521 CCTCGTGAACATGGAGTGGCCATGATGCCTGGTTTTGTTC Dyrk4 
Pdyrkma482-
521 

CCTCGTGAACATGGAGTGGCCATGCCGCCTGGTTTTGTTC Dyrk4 mutant 

Pdyrkmb482-
521 

CCTCGTGAACATGGAGTGGCCCCGATGCCTGGTTTTGTTC Dyrk4 mutant 

Pdyrkdoublem CCTCGTGAACATGGAGTGGCCCCGCCGCCTGGTTTTGTTC Dyrk4 double 
mutant 
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4. HOXA2 PROTEIN REPRESSES THE EXPRESSION OF HTRA3, A NEW 
DOWNSTREAM TARGET GENE, VIA NOVEL BINDING SITES IN THE 

DEVELOPING MOUSE CENTRAL NERVOUS SYSTEM 

4.1 Abstract  

In this study, we have used chromatin immunoprecipitation (ChIP) to isolate 

Hoxa2 protein binding sequences from the E18 mouse spinal cord and hindbrain 

tissues. All isolated DNA fragments contain a conserved GATG motif and one 

fragment belongs to the high temperature requirement factor A 3 (HtrA3) gene. 

Direct binding of Hoxa2 protein to the HtrA3 fragment was confirmed by 

electrophoretic mobility shift assays (EMSA). Sequence analysis and EMSA 

revealed that Hoxa2 protein binds to the multiple GATG motifs within the HtrA3 

fragment. This fragment also repressed luciferase gene expression in transient 

transfection and luciferase assays. Mutation of the DNA fragment shows that this 

repressive activity was dependent on the GATG motifs, suggesting Hoxa2 protein 

regulates gene expression by binding to the GATG motif in the cis-regulatory 

element. In contrast to the inhibitory activity of Hoxa2 protein, a Hoxa2-VP16 

fusion protein transactivates the luciferase expression by binding to GATG sites. 

RT-PCR and immunohistochemistry analysis revealed an upregulation of HtrA3 

expression in Hoxa2-/- mice. This observation correlates with the inhibitory role of 

Hoxa2 protein on the HtrA3 fragment in luciferase assays. Our data suggest that 

HtrA3 is a direct in vivo downstream target of Hoxa2 protein and support the activity 

regulation model as the mechanism by which Hox proteins selectively regulate 

target genes. 
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Homeobox genes were first identified in Drosophila, where they play a key 

developmental role in specifying different segmentations (Akin and Nazarali, 2005). 

These genes possess a conserved 60-aa homeodomain motif. Homeodomain proteins 

generally function as transcription factors that govern various aspects of 

morphogenesis and cell differentiation (McGinnis and Krumlauf, 1992). In 

Drosophila, a single homeotic complex (HOM-C) comprised of two separate 

clusters [the Bithorax (BX-C) and Antennapedia (ANT-C) cluster] is located on 

chromosome 3. In mice and human, the Hom-C complex is comprised of 39 Hox 

genes that are arranged into four separate chromosomal clusters. Hox genes are 

arranged into 13 paralog groups based on their homology to Drosophila HOM-C 

(Akin and Nazarali, 2005). During early embryonic development in the mouse all 

Hox genes are expressed in central nervous system and adjacent mesoderm. The 

division of the hindbrain into metameric units referred to as rhombomeres (r), and 

the restricted expression of the Hox genes within the hindbrain, resembles that of the 

segmental organization of the Drosophila embryo by the HOM-C genes. Also, the 

expression of Hox genes in defined rostrocaudal domains in the developing spinal 

cord is indicative of a role for Hox genes in spinal cord patterning. Hox genes play 

an important role in central nervous system development, especially in determining 

neuronal organization within the hindbrain (Lumsden and Krumlauf, 1996; Studer et 

al., 1996; Rijli et al., 1998; Pasqualetti and Rijli, 2001; Pattyn et al., 2003) and the 

spinal cord (Carpenter, 2002). In order to decipher pathways through which Hox 

genes function in regulating regional specification, especially in the spinal cord and 

hindbrain, we need to identify the downstream targets of Hox transcription factors. 
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Various strategies have been utilized to identify targets of Hox proteins in both 

vertebrates and Drosophila (Akin and Nazarali, 2005). The availability of naturally 

occurring mutants and transgenics in Drosophila has allowed for significant 

delineation of the morphogenic pathways controlled by Hox genes. The earliest and 

most common method for the target gene isolation involves genetic screening and 

indicative gene expression pattern analyses (Pradel and White, 1998). Thus, 

previously characterized genes are identified as targets based on a change in their 

expression pattern in Hox mutants (Graba et al., 1997). Another method is 

subtractive hybridization, based on differential expression patterns to identify 

potential targets. This method enables isolation of target genes that are up or 

downregulated in specific mRNAs of a cell system or tissues where a particular Hox 

gene is activated at a specific developmental stage. One limitation shared by the 

above two methods is that the isolated genes may not be direct targets and instead 

are parallel factors within the same developmental pathway. In Drosophila, Gould et 

al. (1990) isolated in vivo targets of the Ubx homeotic protein by chromatin 

immunoprecipitation (ChIP). This method has been successfully used in the murine 

system for the isolation of target genes of Hoxc8 (Tomotsune et al., 1993) and 

Hoxb5 (Safaei, 1997). It has been increasingly recognized that the dynamic structure 

of chromatin plays a crucial role in the regulation of development (Hsieh and 

Fischer, 2005). The advantage of ChIP technique over other approaches is that it 

allows isolating direct targets or targets controlled by Hox proteins in conjunction 

with cofactors from accessible regions of native chromatin (Stevens et al., 2004; 

Akin and Nazarali, 2005).  
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The Hoxa2 gene and its paralog Hoxb2 are homologs of the Drosophila 

proboscipedia gene. A dominant expression of Hoxa2 gene during embryogenesis 

occurs in the neural tube and neural crest cells that contribute to the second brachial 

arch and other tissues (Prince and Lumsden, 1994b; Gavalas et al., 1997; Hao et al., 

1999; Barrow et al., 2000; Grammatopoulos et al., 2000). Within the neural tube, the 

anterior domain of Hoxa2 gene expression is situated at the r 1/2 boundary (Davenne 

et al., 1999b; Barrow et al., 2000) and evidence suggests that Hoxa2 gene may 

potentially contribute to both anteroposterior (A-P) positioning as well as 

dorsoventral (D-V) patterning (Davenne et al., 1999b; Hao et al., 1999; Barrow et al., 

2000; Ohnemus et al., 2001). Hoxa2 protein is also known to play a role in the 

patterning of cranial neural crest cells (Trainor and Krumlauf, 2001; Tumpel et al., 

2002b; Creuzet et al., 2005).  

Both the subtractive hybridization and the mutant screening methods have been 

used to isolate downstream targets of Hoxa2 protein (Bobola et al., 2003; Kutejova 

et al., 2005; Santagati et al., 2005), but no targets identified for Hoxa2 protein by 

ChIP have been reported. In this study, we have used ChIP to isolate Hoxa2 protein 

targets from chromatin preparations of mice spinal cord and hindbrain and indicated 

a fragment belonging to the high temperature requirement factor A 3 (HtrA3) gene 

was isolated. Hoxa2 protein binds to the conserved GATG binding sites in this 

HtrA3 fragment and acts to repress the expression of luciferase gene in transient 

transfection and luciferase assays. Mutations of GATG motifs in this cis-regulatory 

element were able to abolish its transcriptional activity. Upregulation of HtrA3 

expression in the spinal cord and hindbrain in Hoxa2-/- mice was shown to coincide 
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with the negative regulatory effect of Hoxa2 protein on the HtrA3 cis-regulatory 

element. Our results establish that HtrA3 is a direct downstream target gene of the 

Hoxa2 protein during embryo development and provide additional evidence for the 

activity regulation model in which Hox proteins exert a transcriptional effect 

through binding to multiple monomer binding sites.  

 

4.2 Experimental Procedures  

Plasmid Construction —  The HtrA3 sequence was amplified by PCR using the 

forward primer: 5′  ACGCGTCGACTGCAGCCCCCATCGGCAGCCC 3′  and the 

reverse primer 5′  CGCGGATCCCC CCCTTCCTAGATGGTGGTGTG 3′ . This 

PCR product was then subcloned into the pGL3-promoter plasmid at the Sal I and 

BamH I sites to generate pGL3-HtrA3. Mutagenesis of the putative Hoxa2 protein 

response elements localized at the two ends of HtrA3 sequence was performed by 

PCR amplification with the following primers: 5′  ACGCGTCGACTGCAGCC 

CCCAGCGGCAGCCC 3′  and 5′  CGCGGATCCC CCCCTTCCTCGCTGGTGGT 

GTG 3′. Mutated sites are underlined. Mutagenesis of the Hoxa2 protein response 

elements in the middle of HtrA3 fragment was conducted as described in the 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). Mutations 

were confirmed by DNA sequence analysis. The HtrA3 luciferase vector with the 

mutant Hoxa2 protein response elements was named pGL3-HtrA3mu. The plasmids 

pRL-null and pRL-CMV were obtained from Promega (Fisher Scientific, Nepean, 

ON). The expression vector pCS2PBX was a gift from Dr. Mark Featherstone, 

McGill University (Shanmugam et al., 1999). See section 3 for other plasmid 

construction.   
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Protein Purification — See section 3  

Antibody Purification —See section 3 

Chromatin Preparation and Immunoprecipitation — See section 3. 

Preparation of Nuclear Extracts — See Section 3 

Electrophoretic Mobility Shift Assay (EMSA) — See Section 3  

Cell Culture, Transfection and Luciferase Assays — See Section 3. 

RNA Isolation and RT-PCR Analyses — Embryonic and adult mouse tissues were 

removed and homogenized in TRIZOL Reagent (Sigma, Oakville, ON) for total 

RNA extraction according to the manufacturer’s instructions.  RNA was stored in 

ethanol at –70 oC, and dissolved in water immediately before use.  DNA digestion 

with 1 U DNase in 1 μg of total RNA sample was incubated at room temperature for 

15 min. The digestion was terminated by the addition of stop buffer (2.5 mM EDTA) 

and heating at 70 oC for 10 min.  Reverse transcription (RT) was performed in a 

volume of 20 μl using 1 μg of DNase I treated RNA and 200 U of Superscript II 

RNase H- Reverse Transcriptase (Invitrogen, Oakville, ON) and 2.5 μM of random 

nonamers (Sigma, Oakville, ON). Subsequent cDNA amplification was performed 

using 4 μl of RT product and 2 U Taq DNA polymerase (Invitrogen, ON). 

Amplification of a 612 bp fragment of the mouse β-actin transcript was performed 

by RT-PCR with 0.2 μM of primers 5′ GGCATCGGATGGACTCCG 3′ and 5′ 

GCTGGAAGGTGGACAGCGA 3′ (Remacle et al., 2002). A 429 bp fragment of 

HtrA3 was amplified using 0.5 μM of primers 5′ CCAACCCAGACTTTCCAGCG 

3′ and 5′ AGCTGAAATTAAGGGT CA 3′, corresponding to positions 1361-1770 

within the mouse HtrA3 the 9530081K03RIKEN sequence (NCBI Accession# 



 

 80

AK035194).  HtrA3 fragment amplification from RT reactions was performed using 

touchdown PCR as follows:  10 cycles of 95 oC for 45 sec, 68 oC for 1 min, and 76 

oC for 1 min, followed by 20 cycles of 94 oC for 45 sec, 62 oC for 1 min, and 76 oC 

for 1 min, and a final extension step at 78 oC for 10 min. PCR amplification of the 

HtrA3 fragment from the RT reactions was quantitated through imaging with a 

BioRad gel doc system followed by analysis using the pixel density function of the 

Quantity 1 program. This fragment was cloned and verified by sequencing.   

 

4.3 Results 

Hoxa2 Protein Binds to the HtrA3 Fragment — Hoxa2-DNA complexes were 

isolated by chromatin immunoprecipitation from the hindbrain and spinal cord of 

E18 embryos. Seven putative targets were isolated (Akin Z, Ph.D Thesis, University 

of Saskatchewan, 2004) and sequence analyses indicated that one of these sequences 

belongs to HtrA3 (Figure 4.1).   

EMSA was performed to evaluate the direct binding of Hoxa2 protein to the 

isolated HtrA3 sequence. Incubation of the radiolabeled probe with the E12 nuclear 

extracts produced a band-shift (Figure 4.2A, lane2). Co-incubation of probe with 

nuclear extracts and anti-Hoxa2 antibody resulted in a specific supershift band 

(Figure 4.2A, lane 3). To further investigate the specificity of the Hoxa2 protein 

binding, competition experiments were performed. The specific band can be 

competed using 100-fold unlabeled probe (Figure 4.2A, lane5). Incubation of probe 

with E18 nuclear extracts showed comparable results (Figure 4.2B). An interesting 

observation was the absence of the shift band after the addition of anti-Hoxa2 

antibody, which might be due to antibody blocking the interaction between Hoxa2 
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protein and the probe (Figure 4.2B, lane 5, 6). These results suggested that Hoxa2 

protein can bind to the isolated HtrA3 sequence.  

Hoxa2 Protein Binds to Specific Sites in the HtrA3 Fragment — GATG motif 

was highly conserved in the HtrA3 fragment (Figure 4.3A, C) and all other isolated 

sequences (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004). Since this is 

not the typical Hox or Hox/Pbx binding motif, it was interesting to test its Hoxa2 

protein binding specificity. In order to include all GATG motifs on the HtrA3 

fragment (Figure 4.3A), 4 pairs of wild-type and mutant probes with altered GATG 

motif (Table 4.1) were synthesized. The DNA-binding activity of GST-Hoxa2 

protein was tested by incubation with TAAT concatemer probe, which was known to 

bind Hox proteins in vitro (Kumar and Nazarali, 2001; Booth et al, 2007). 

Incubations of wild-type probes with GST-Hoxa2 protein resulted in a band-shift 

(Figure 4.4A and B, lane 2 and 7), which can be further shifted by Hoxa2 antibody 

(Figure 4.4A and B, lane 3 and 8) and competed by adding 100-fold unlabeled probe 

(Figure 4.4A and B, lane 4 and 9). Mutations in GATG motif of these probes 

eliminated the binding completely (Figure 4.4A and B, lane 5 and 10). These data 

indicated the specific binding of Hoxa2 protein to HtrA3 through GATG motifs.  

Hoxa2 Protein Affects Expression through GATG Motifs in the Cis-regulatory 

Element in Luciferase Assays — To further evaluate the regulatory capability of 

Hoxa2 protein through the HtrA3 fragment, Hoxa2 gene and Hoxa2-VP16 fusion 

were expressed in COS-7 cells and employed in Dual-Luciferase Reporter Assay 

System (Promega, ON). The HtrA3 fragment was cloned into the pGL3 promoter 

vector, in which firefly luciferase expression is controlled by a SV40 minimal 
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promoter. To avoid different transfection efficiencies caused by experimental 

variations, an internal control reporter containing renilla luciferase gene (pRL-CMV) 

was included in the co-transfection experiments. As shown in Figure 4.5A, Hoxa2 

protein inhibited the luciferase expression in presence of the HtrA3 fragment.  

To test if the inhibition was directly mediated by Hoxa2 protein binding to 

GATG motifs, we silenced all GATG motifs in the HtrA3 fragment and generated 

mutant vector pGL3-HtrA3mu. Transfection of Hoxa2 gene expression vector with 

pGL3-HtrA3mu significantly alleviated the inhibitory ability of Hoxa2 protein 

compared to the wild-type vector pGL3-HtrA3 (Figure 4.5A). On the other hand, in 

contrast to the inhibitory activity of Hoxa2 protein, the Hoxa2-VP16 fusion protein 

enhanced luciferase expression (Figure 4.5B). This enhanced luciferase expression 

was significantly decreased when the Hoxa2-VP16 expression vector was co-

transfected with pGL3-HtrA3mu (Figure 4.5B). These results suggested that the 

presence of GATG motifs were critical for transcriptional activates of Hoxa2 protein.  

A plasmid pCS2PBX, expressing Pbx cofactor, was also added in co-transfection 

experiments to investigate if this common cofactor would contribute to the 

regulatory activity of Hoxa2 protein. No significant effects were observed (data not 

shown). The reason may be a lack of the consensus Pbx/Hoxa2 binding site “(T/A) 

GAT (T/G) GA (T/A) G” in the HtrA3 fragment (Lampe et al., 2004). It implies that 

the regulatory function of Hoxa2 protein might be independent of the cofactor in 

some case.  

Matis et al (2001) showed that the Hoxa2-VP16 fusion protein inhibited 

transcription initiated by the strong promoter/enhancer of cytomegalovirus (CMV) 
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and Rous sarcoma virus (RSV). We also observed this phenomenon when the 

internal control plasmid pRL-CMV was used (data not shown). It leaded to 

luciferase activity fluctuation of the internal control. To solve this problem, we 

replaced pRL-CMV with a promoterless vector, pRL-null when the Hoxa2-VP16 

fusion protein was applied in luciferase assays (Figure 4.5B). As expected, the 

fluctuations of the renilla luciferase expression were no longer present due to the 

removal of the CMV promoter. 

Hoxa2 Protein Represses the Expression of HtrA3 in Developing Mice — HtrA3 

expression in wild-type and Hoxa2 -/- mice were assessed using RT-PCR. A 429 bp 

fragment spanning the 3′ end of exon 8, exon 9, and including a portion of the 3′ 

UTR was amplified (Figure 4.6A). Semiquantitation using density measurements of 

RT-PCR bands normalized to β-actin mRNA indicated that levels of HtrA3 

transcripts were significantly higher in mutant mice compared to wild-type mice 

(Figure 4.6B). This increase in the expression of HtrA3 in the absence of Hoxa2 

protein further suggested the negative regulatory effects of Hoxa2 protein on the 

HtrA3. 

 
4.4 Discussion 

Chromatin as a complex of DNA and protein plays a critical role during the 

course of transcription in eukaryotic cells. The dynamic structure of chromatin 

contributes to various aspects of transcription such as DNA-protein interaction, 

protein-protein interaction and molecular translocation. Using ChIP as a selection 

method, we have isolated Hoxa2-bound DNA from accessible regions of native 

chromatin from mice hindbrain and spinal cord. This allowed the identification of a 
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Hoxa2 protein target gene and further elucidated a likely mechanism by which 

Hoxa2 protein regulates gene expression. 

A major objective of this study was to identify a direct in vivo downstream target 

gene of Hoxa2 protein. Our investigations reveal a strong preference for binding of 

Hoxa2 protein to elements that contain GATG motif. This motif is highly repeated 

all isolated clones (Akin Z, Ph.D Thesis, University of Saskatchewann, 2005), one 

of which belongs to HtrA3. We used a combination of in vivo and in vitro methods 

to effectively demonstrate the functional relevance of the new Hoxa2 protein 

binding sites. EMSA using both nuclear extracts and recombinant protein 

demonstrate the direct binding of Hoxa2 protein to this cis-regulatory element 

through GATG motifs. Transient transfections and luciferase assays correlated the 

Hoxa2 protein regulatory activity to the integrity of the GATG sites. RT-PCR shows 

the up-regulation of HtrA3 expression in Hoxa2-/- mice, further supporting the 

regulatory role of Hoxa2 protein. 

Although it is well recognized that Hox transcriptional factors govern body 

patterning along the anteroposterior body axis during animal development, the 

mechanism by which Hox proteins exert such function in vivo is not clear. One 

reason is the inconsistency between the specific developmental role and the low 

DNA-binding specificity of Hox proteins. Two models so far have been proposed to 

explain how Hox proteins select the appropriate target genes: selective binding 

model and activity regulation model (Nasiadka et al., 2000). 

The selective binding model suggests that cofactors work together with Hox 

proteins and direct them to different binding sequences by raising their DNA-
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binding specificity. Consistent with this model is the extradenticle (Exd/Pbx) family 

of the homoeodomain proteins that have been identified as important cofactors that 

have a crucial impact on the diversity of Hox function (Peifer and Wieschaus, 1990; 

Rauskolb et al., 1993; Van Dijk et al., 1993; van Dijk and Murre, 1994). The 

evidence in support of this model includes Exd/Pbx proteins that interact with Hox 

proteins and increase their DNA-binding affinity on a specific DNA site (Chan et al., 

1994; Chang et al., 1995; Popperl et al., 1995; Neuteboom and Murre, 1997). A 

bipartite 10 bp Hox-PBC consensus binding site 5′  TGATNNAT [G/T] [G/A] 3′ , 

has been defined, in which the first half site is for PBC binding and the second half 

site is for Hox binding (Popperl et al., 1995; Chan et al., 1997). A Pbx/Hoxa2 

composite site [(T/A) GAT (T/G) GA (T/A) G] was identified in the Hoxa2 gene 

and the Pbx was found to significantly contribute to the autoregulation of Hoxa2 

gene through this site in COS-7 cells (Lampe et al., 2004).  

The activity regulation model argues that, instead of influencing DNA-binding 

affinity, cofactors (e.g. Pbx) affect the transcriptional activity of Hox protein through 

the sequence which they are already bound (Biggin and McGinnis, 1997). The low 

DNA-binding specificity indicates that Hox protein can bind to many sites across the 

genome; however, they will remain in a neutral state and not exert an independent 

influence until a cofactor appears. In favor of this model, the homeodomain in Hox 

protein Deformed (Dfd) was found to have an inhibitory affect on the Dfd activation 

function (Li et al., 1999). The interaction between Exd/Pbx and Dfd homeodomain 

releases the Dfd activation capacity. In addition, Dfd-VP16 fusion protein can 
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regulate many same downstream target genes of Dfd in Drosophila in the absence of 

Exd/Pbx (Li et al., 1999).  

In this study we provide further evidence for the activity regulation model. Our 

results show that Hoxa2 protein binds to a 4 bp core sequence GATG in the HtrA3 

and is able to repress reporter expression through these motifs in COS-7 cells. But a 

Hox/Pbx binding site was not found in the isolated HtrA3 fragment. Due to the small 

size of this core binding motif, the probability of its occurrence in the genome is 

high. However, only a small proportion of these motifs are likely to be bound by 

Hoxa2 protein in vivo, with even fewer functioning directly in gene regulation. In 

transient tranfection experiments, Hoxa2 protein can exert an inhibitory activity in 

the absence of the Pbx, in addition the presence of Pbx did not significantly 

contribute to or inhibit this activity of Hoxa2 protein. Taken together with the fact 

that Hoxa2-VP16 protein can reverse the role of Hoxa2 protein from a 

transcriptional inhibitor to a transactivator, we speculate the involvement of other 

unknown cofactors that are likely to contribute to the specific target selection and 

regulatory function of Hoxa2 protein. 

One thing worth noticing is that the GATGATG motif in the HtrA3 fragment is 

very similar to the published Pbx/Hoxa2 consensus binding site [(T/A) GAT (T/G) 

GA (T/A) G] (Lampe et al., 2004). It has two overlapping GATG motif and also 

carries the half Hoxa2 protein binding site GATGA in the Pbx/Hoxa2 consensus 

binding site. A similar motif also exists in the Dyrk4 gene and shown to bind to 

Hoxa2 protein (Chapter 3, Figure 3.6). Given the presence of multiple binding sites 

in HtrA3 fragment, it raises the question that if Hoxa2 protein can exert its function 
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through only one site. Interestingly, preliminary evidence shows Hoxa2 protein 

binds to this motif but cannot initiate a transcription regulatory effect in COS-7 cells 

(Chapter 3, Figure 3.7). Therefore, in this study Hoxa2 protein might function as a 

transcription repressor in COS-7 cells through occupation of multiple monomer 

binding sites in HtrA3 fragment. A similar mechanism for Hox protein has been 

observed previously (Galant et al., 2002; Stevens et al., 2004; McCabe and Innis, 

2005), where Hox proteins can directly regulate target genes in the absence of the 

cofactor Exd/Pbx, presumably through an additive effect of Hox proteins binding to 

multiple monomer binding sites (Galant et al., 2002).  

The Hox-VP16 fusion protein has been successfully used to isolate Hox protein 

targets (Friedman-Einat et al., 1996), and to investigate transcription activity of Hox 

protein on previously identified targets (Li et al., 1999; Nasiadka et al., 2000). One 

advantage is that the Hox-VP16 fusion protein can circumvent the needs of 

indispensable and unknown cofactors (Li and McGinnis, 1999; Li et al., 1999). The 

other advantage is that the target of the Hox-VP16 protein is limited by the binding 

specificity of Hox protein, therefore it mostly only affects known targets (in certain 

temporal and spatial circumstances) that Hox alone cannot affect (Li and McGinnis, 

1999; Li et al., 1999; Nasiadka et al., 2000). The fact that the Hoxa2-VP16 protein 

overturned the inhibition of Hoxa2 protein on reporter gene to a transactivation, 

along with the mutation analysis demonstrates the interaction between Hoxa2 

protein and GATG motifs in the cis-regulatory element. It is believed that the VP16 

activation domain fulfills its ability to activate transcription via multiple 

mechanisms and at multiple levels (Nasiadka et al., 2000). One mechanism is that 
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the VP16 activation domain interacts directly with multiple factors in the 

transcription machinery (Matis et al., 2001). Therefore, with high concentration of 

VP16 protein transcription factors and many other components can be sequestrated 

and depleted with overexpression of the VP16 activation domain, a phenomenon 

known as “squelching”. The Hoxa2-VP16 protein was reported to specifically 

inhibit the CMV and RSV promoter due to the squelching effect (Matis et al., 2001). 

We observed this phenomenon in our experiments when using pRL-CMV as the 

internal control plasmid and the variation in the levels of inhibition prevented our 

initial intention to utilize renilla luciferase to normalize transfection efficiency. 

Fortunately, this problem was solved by using the promoterless renilla plasmid, 

pRL-null, which apparently precluded the influence of VP16 domain on the CMV 

promoter. 

The DNA fragment characterized in this study acts as a repressor of HtrA3 gene 

expression. Since the cis-regulatory elements can extend several hundred kb from 

the transcription unit (Kleinjan and van Heyningen, 2005), it may also contribute to 

the regulation of neighboring genes. Interestingly, the specific genes flanking HtrA3 

are conserved in various species (chicken, rat and human). Also BLAST analysis 

shows that the target sequence from HtrA3 is partially conserved within chicken, rat 

and human.  

HtrA3 was discovered initially as a pregnancy-related serine protease that is up-

regulated dramatically during mouse placental development (Nie et al., 2003b); 

HtrA3 is selectively expressed at the maternal-fetal interface during placentation in 

the mouse (Nie et al., 2006b). Research findings show that HtrA1 and HtrA3 are 
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expressed mostly in the same embryonic organs but exhibit complementary 

expression patterns in various tissues (Tocharus et al., 2004). As HtrA1 and HtrA3 

share a high degree of domain homologies, they also share a functional similarity 

(Nie et al., 2003a). Both HtrA1 and HtrA3 are inhibitors of transforming growth 

factor-β (TGF-β) signaling and bind to its various superfamily members (Oka et al., 

2004; Tocharus et al., 2004). HtrA1 and HtrA3 also exhibit similar substrate 

specificity toward β-casein and certain extracellular matrix proteoglycans (Tocharus 

et al., 2004). Both HtrA1 and HtrA3 act as tumor suppressors. HTRA1 and HTRA3 

mRNA and protein levels decrease with increasing grades of human endometrial 

cancer (Bowden et al., 2006). They are both upregulated in the arthritic cartilage 

(Tocharus et al., 2004). Interestingly, Hoxa2 protein regulatory binding element 

found in this study is partially conserved in both genes. However, whether the 

regulatory role of Hoxa2 protein on HtrA3 is conserved in HtrA1 remains to be 

shown.  

The direct regulation of HtrA3 expression by Hoxa2 is intriguing; although, the 

tissue-specific role this regulation plays in vivo is unclear and needs further 

investigation. There are, however, a few clues that show both factors may be 

involved in the same processes during development. For instance, during 

craniofacial development, neural crest cells migrate into the branchial arches to form 

the skeletogenic elements (Trainor and Krumlauf, 2001). Hoxa2 plays an important 

role in regulating morphogenesis of the head skeletal derivatives. Evidence shows 

that Hoxa2 promotes the formation of cartilage and prevents ossification during 

craniofacial development (Kanzler et al., 1998; Grammatopoulos et al., 2000; Plant 
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et al., 2000; Trainor and Krumlauf, 2001; Creuzet et al., 2002). These capacities of 

Hoxa2 match with the function of HtrA1. HtrA1 is up-regulated in arthritis and is 

suggested to play a role in promoting degeneration of cartilage and contributing to 

ossification through its TGF-β inhibitory activity and protease activity (Tsuchiya et 

al., 2005). Given the striking structural and functional similarities between HtrA1 

and HtrA3, Hoxa2 protein may contribute to cartilage formation and inhibit bone 

formation by down-regulating HtrA3 or/and HtrA1 gene. It would be interesting to 

investigate this as a possible mechanism occurring during the craniofacial 

development.  

TGF signaling pathway is involved in determining the dorsoventral patterning in 

Xenopus, and the left-right symmetry within the murine system (Heasman, 1997; 

Whitman and Mercola, 2001). Several members of this superfamily have been 

implicated in determining neuronal phenotypes, neuronal proliferation and 

differentiation, as well as regulation of oligodendroglial differentiation and cell 

adhesion (Bottner et al., 2000). Hoxa2 gene also has been implicated in specification 

of neuronal phenotypes (Hao et al., 1999; Ohnemus et al., 2001) and 

oligodendroglial differentiation (Nicolay et al., 2004). It is possible that Hoxa2 

protein regulates the TGF signaling pathway via repression of HtrA3 in specific cell 

types at later stages of development. 

Using ChIP to identify Hoxa2-bound DNA and target genes has given insight into 

the nature of target sequences and mechanisms that are involved in regulation of 

gene expression by Hoxa2 in the context of native chromatin. Using HtrA3 as a 

direct target of Hoxa2 protein will allow us to thoroughly explore the domains of the 
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Hoxa2 protein that are necessary for its transcriptional effects, determine whether 

the addition of known cofactors will influence the ability of Hoxa2 protein to 

regulate expression via the cis-regulatory elements and explore the chromatin 

structure at a known direct target containing multiple requisite Hoxa2 protein 

binding sites. Moreover, the results of this study enhance our understanding of the 

regulatory pathway that may be controlled by Hoxa2 protein during development. 

Further studies will be needed to clearly define the regulatory role of Hoxa2 protein 

during embryo development.    
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4.5 Figures and Table 
 
 
 
 
 
Table 4.1 EMSA probes for HtrA3 
 

 
 
The altered sites in mutant probes and their corresponding sites in wild-type probes 
are underlined. The probes are designed based on the isolated HtrA3 sequence 
(Figure 4.1) 
 
 
 

 

 

 

 

 

 

Probe name Sequence Note 
Phtra286-314 5′  GCGAGTTCGTGGTGGCCATCGGCAGCCCC 3′   HtrA3 

wild-type
Phtram286-
314  

5′  GCGAGTTCGTGGTGGCCGTCGGCAGCCCC 3′   HtrA3 
mutant 

Phtra352-382 5′  GCACTGCCCAGCGGGATGGCAAGGAGCTGG 
3′  

HtrA3 
wild-type

Phtram352-
382 

5′  GCACTGCCCAGCGGGCCGGCAAGGAGCTGG 
3′  

HtrA3 
mutant 

Phtra406-436 5′  TATCCAGACCGATGCCATCATCAATGTGAG 
3′   

HtrA3 
wild-type

Phtram406-
436  

5′  TATCCAGACCGACGCCGTCAGCAATGTGAG 
3′   

HtrA3 
mutant 

Phtra488-508 5′  TATCATACAACACACCACCATCTAGGAAGG 
3′   

HtrA3 
wild-type

Phtram488-
508 

5′  TATCATACAACACACCACCACCTGGGAAGG 
3′   

HtrA3 
mutant 
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ACTAGACTCAAGGATATCAGAGGACAGACCCTGCCTGGATGCTCTGTACCTCCCCATGAC 
AGACATTTCCGGCCTCCTCAGATGAGCCTTGGTTCTGTGGACTCCAGCCTTAGTCTCAGC 
CAGCTGCTGGCCTGGCCTCGGGGCTGGGAATAGCCTCCTTCCTCTCCAGAAAGCAGCCTG 
CCAGGATCCCTGTCTGGTCTGAGCCTCAGTCCTCTCTCACACCCTTCTCCTTCCAGAAAA 
AGCTCCCTGTGTTGCTGCTGGGTCACTCAGCAGACCTGCGGCCTGGCGAGTTCGTGGTGG 
CCATCGGCAGCCCCTTTGCCCTGCAGAACACCGTGACAACGGGCATTGTCAGCACTGCCC 
AGCGGGATGGCAAGGAGCTGGGTCTCCGGGACTCAGACATGGACTATATCCAGACCGATG 
CCATCATCAATGTGAGTGCTGTGGGGAAGGCTGACCTCGGCAACTTCGGACCAGCTTGTG 
CCCTGTCCTATCATACAACACACCACCATCTAGGAAGGCCTTTGTTATCTCATGCAGAGC 
ATCCACCCACCCAGTGACTGTCTCCAGGGATGGGCCATCTTGGACAGTTGCAGAGATGAA 
GTGGCCCAGGCATACCCTTGGAAGGTCATAGCCTAACCTGCATAAGTTGTCACTTGACTA 
AGATTAAGGTTATATTGGATGGCACCATGACATTCTCACATCTCCAAGCCTGGGTGCCTT 
GGCATGTACCCCTATGCCTGCCATGACTGGTAGCCTGGTAGCTGGAGCCATTCATAGCTG 
TAGAGATGACACTGCCTGTCTTGCAACTGCCTAGCAAC 

 
 
Figure 4.1. Schematic representation of the murine HtrA3 gene. (A) Exonic 
sequences are indicated by closed black boxes, intronic sequences are represented by 
the black line running between the closed boxes, and the UTRs by open boxes. 
Schematic representation of the 27.74 kb HtrA3 genomic sequence present on mouse 
chromosome 5, direction of transcription is indicated by the black arrow. The 
isolated sequence displayed 99% identity with the 4th exonic and 5th intronic 
sequence (indicated by red box). (B) A 218 bp fragment was isolated by 
immunoprecipitation of Hoxa2 protein from chromatin preparations. The sequence 
of immunoprecipitated fragment which is present in the mouse HtrA3 homolog is 
indicated in grey. (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004) 
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Figure 4.2. Electrophoretic mobility shift assay (EMSA) for the isolated HtrA3 
sequence (218 bp). (A) EMSA analysis using E12 hindbrain and spinal cord nuclear 
extracts. Binding reactions for target sequences were performed with 4 µg of E12 
nuclear extracts (lane 2).  Migration of unbound target sequences can be observed in 
lane 1. The addition of anti-Hoxa2 polyclonal antiserum resulted in the formation of 
a supershift band (lane 3).  Incubation of binding reactions with non-immune rabbit 
serum did not affect shift formation (lane 4). Competition reactions using 100 X 
unlabelled probe resulted in inhibition of shift band formation (lane 5). (B) EMSA 
analysis using E18 hindbrain and spinal cord nuclear extracts. Binding reactions for 
the HtrA3 fragment were performed with 0, 2 and 5 µg of nuclear extracts (lanes 1, 2, 
and 3 respectively). Protein DNA complexes were unaffected by the addition of 
rabbit antiserum (lane 4), but shift bands were inhibited upon incubation with 2 and 
4 µg of anti-Hoxa2 antiserum (lanes 5 and 6); competition was performed at 25 X 
and 50 X unlabelled probe concentrations (lanes 7 and 8). (Akin Z, Ph.D Thesis, 
University of Saskatchewan, 2004) 
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Consensus Pbx/Hoxa2 site: 
 
T  G A T T G A T G G  
A            G         A C T  
                                  A 
C 
 
CGATGGCCACC  
GGATGGCAAGG 
TGATGATGGCATCG 
CCTAGATGGT 
 
Figure 4.3. Sequence analysis of the HtrA3 fragment. All sites are shown in a 5′  to 
3′ orientation. (A) Isolated HtrA3 sequence. The putative Hoxa2 protein binding 
sites carrying the core GATG motif are underlined. The altered base pairs in the 
GATG motif in luciferase assays are highlighted in red (right). (B) Consensus 
Pbx/Hoxa2 site (Lampe et al., 2004) (C) Alignment of all the region with GATG 
sites.  The highlighted sites are consistent with the half Hoxa2 protein binding site in 
B. 
 
 
 
 
 
 
 
 

> HtrA3  
5’CGTGGTGGCCATCGGCAGCCCCTTTGCCCTGCA
GAACACCGTGACAACGGGTATTGTCAGCACTGCC
CAGCGGGATGGCAAGGAGCTGGGTCTCCGGGACT
CAGACATGGACTATATCCAGACCGATGCCATCAT
CAATGTGAGTGCTGTGGGGAAGGCTGACCTCAGC
AACTTTGGACCAGCTTGTGCCCTGTCCTATCATAC
AACACACCACCATCTAGGAAGG 3’ 

CCAGCG 

GGCCGG 
CGACGCCGTCAGCA

CCAGCGAG 
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Figure 4.4. EMSA analysis of all the potential binding sites in HtrA3 sequence. 
Sequences of the probes are shown in Table 1. (A) Lane 1, Free probe Phtra286-314; 
Lane 2, Phtra286-314 + recombinant Hoxa2 protein; Lane 3, Phtra286-314 + 
recombinant Hoxa2 protein + Hoxa2 antibody; Lane 4, Phtra286-314 + 100-fold 
unlabeled probe + recombinant Hoxa2 protein; Lane 5, Phtram286-314 + recombinant 
Hoxa2 protein; Lane 6, Free probe Phtra352-382; Lane 7, Phtra352-382 + recombinant 
Hoxa2 protein; Lane 8, Phtra352-382 + recombinant Hoxa2 protein + Hoxa2 antibody; 
Lane 9, Phtra352-382 + 100-fold unlabeled probe + recombinant Hoxa2 protein; Lane 
10, Phtram352-382 + recombinant Hoxa2 protein. (B) Lane 1, Free probe Phtra406-436; 
Lane 2, Phtra406-436 + recombinant Hoxa2 protein; Lane 3, Phtra406-436 + 
recombinant Hoxa2 protein + Hoxa2 antibody; Lane 4, Phtra406-436 + 100-fold 
unlabeled probe + recombinant Hoxa2 protein; Lane 5, Phtram406-436 + recombinant 
Hoxa2 protein; Lane 6, Free probe Phtra488-508; Lane 7, Phtra488-508 + recombinant 
Hoxa2 protein; Lane 8, Phtra488-508 + recombinant Hoxa2 protein + Hoxa2 antibody; 
Lane 9, Phtra488-508 + 100-fold unlabeled probe + recombinant Hoxa2 protein; Lane 
10, Phtram488-508 + recombinant Hoxa2 protein. 
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Figure 4.5. Relative regulatory activity of Hoxa2 and the Hoxa2-VP16 proteins via 
Hoxa2 protein binding sites in HtrA3. (A) Relative luciferase activity assayed from 
COS-7 cells transfected with the Hoxa2 gene expression vector and the reporter 
constructs as indicated. (B) Relative luciferase activity assayed from COS-7 cells 
transfected with the Hoxa2-VP16 expression vector and the reporter constructs as 
indicated. For each combination of reporter vector plasmids, the relative luciferase 
activity obtained in the absence of Hox expression vector is set at 1. Values are 
expressed as fold activation over transfection of the reporter plasmid alone. Bars 
indicate the standard deviation of at least four independent experiments. “∗” indicates 
that the difference between Hoxa2/Hoxa2-VP16 activity on wild-type and mutant HtrA3 
fragment was significant according to t test with p < 0.05. 
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Figure 4.6. Hoxa2 protein inhibits HtrA3 transcription. (A) semiquantitative RT-PCR 
analysis of HtrA3 and control β actin mRNA from both Hoxa2-/- and wild-type hindbrain 
and spinal cord tissue. Three litters were analyzed by RT-PCR and combined for data 
analysis. (B) Quantification of A. Density measurements of HtrA3 RT-PCR were 
normalized to β actin amplified with 0.2 μM β actin primer, corresponding to samples 
observed in A. A one-tailed t-test shows that expression of HtrA3 in Hoxa2 -/- mice is 
significantly higher (*p < 0.05) than in Hoxa2 wild-type mice. Error bars represent SD, with 
an n = 4 for wild-type mice and n=7 for Hoxa2-/- mice. (Akin Z, Ph.D Thesis, University of 
Saskatchewan, 2005) 
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5. DISCUSSION AND FUTURE DIRECTIONS 
 
 
 

The homeobox genes were first identified in the fruit fly (Drosophila melanogaster) 

and have subsequently been identified in many other species, from insects to reptiles and 

mammals. Mutations to homeobox genes could easily result in visible phenotypic 

changes and it has been well recognized that Hox transcriptional factors control body 

segmentation along the anteroposterior body axis during development. However, it 

always has been difficult to demonstrate precisely how Hox proteins exert such function 

in vivo. One uncertainty is the discrepancy between the high developmental specificity 

and relatively loose DNA-binding specificity of Hox proteins. Two models so far have 

been proposed to explain how Hox proteins select the appropriate target genes; namely 

selective binding model and activity regulation model (Nasiadka et al., 2000). As 

mentioned ealier, in the selective binding model cofactors direct Hox proteins to their 

binding sites by increasing their DNA-binding specificity; while in the activity 

regulation model cofactors release the activation domain function of Hox proteins. 

These two different models are not mutually exclusive. Our results favors activity 

regulation model, however, no definite conclusion could be drawn regarding to model 

selection. 

Our experimental results indicate that HtrA3 is a direct downstream target of Hoxa2 

protein. Since high structural and functional similarities are shared by HtrA1 and -3, 

Hoxa2 protein might also play a role during the transcription of HtrA1. Both HtrA1 and 
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HtrA3 are found to inhibit TGF-β signaling and at least bind to TGF-β1, BMP-2 and 

BMP-4 (Oka et al., 2004; Tocharus et al., 2004). For example, HtrA1 is found to be up-

regulated in arthritis and is suggested to play a role in promoting degeneration of 

cartilage and contributing to ossification through its TGF-β inhibitory activity and 

protease activity (Tsuchiya et al., 2005). The TGF-β family members induce cellular 

responses mainly through Smad protein pathway, although they can also trigger MAPK 

signaling pathway (Nakamura et al., 1999; Hassel et al., 2003; Nohe et al., 2004). These 

findings indicate that there might be a connection between Hoxa2 protein and the TGF-β 

pathway, and that Hoxa2 protein might indirectly facilitate TGF-β signaling pathway by 

inhibiting HtrA. In fact, available literature indicates a linkage between Hox family 

members and TGF-β pathway. For instance, Hoxc8 (a member of the Hox family) was 

shown to repress BMP signaling pathway through interaction with Smad1 protein (Shi 

et al., 1999; Yang et al., 2000; Liu et al., 2004). Similar interaction exists between 

Hoxa9, Hoxa13, Hoxd13 and Smad proteins (Bai et al., 2000; Shi et al., 2001; Williams 

et al., 2005). All of these reports suggest that the connection between Hox and TGF-β 

pathway maybe universal and through multiple mechanisms.  

Hox family genes govern the body patterning along the anteroposterior body axis 

during animal development. The mutation of some Hox genes results in homeotic 

transformation of skeletal tissues. For instance, Hoxa2-/- mice were found to contain 

multiple cranial facial skeletal defects, including a cleft secondary palate and duplicated 

ossification centers of the middle ear bones (Gendron-Maguire et al., 1993; Rijli et al., 

1993). Skeletal elements defects can also be observed in Hoxc8, Hoxa11, Hoxa13 and 

Hoxd13 null mutant mice (Small and Potter, 1993; Akarsu et al., 1996; Mortlock et al., 
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1996; Yueh et al., 1998). Extensive studies have also shown that BMPs (BMP2, -3, -4, -

5, -6, -7) are important regulators during chondrogenesis and skeletogenesis throughout 

embryonic development (Nie et al., 2006c). A great deal of literature indicates that 

Hoxa2 protein and BMPs might be involved in the similar process (es). 

The palate development is a complex process. Formation of mammalian secondary 

palate can be divided into multiple steps including mesenchymal cell proliferation, 

palatal shelf outgrowth, elevation and fusion. Interruption of any above process could 

results in a cleft secondary palate (Nie et al., 2006c). The most common mechanism of 

cleft is the insufficiency of mesenchymal proliferation or failure of epithelial fusion (Nie 

et al., 2006c). Research in our laboratory has demonstrated that Hoxa2 protein plays a 

direct role in palatogenesis (Xia, W., M.Sc. Thesis, 2005). Hoxa2 protein might interact 

with this BMPs pathway through the downregulation of HtrA1/3 genes and mediate the 

palate shelves fusion, although further experiments are needed to verify this hypothesis. 

Considering the complexity of the vertebrate organism system, Hoxa2 protein might 

regulate palatogenesis through multiple pathways but it is also possible that only one of 

the many pathways contributes to palatogenesis. Similarly, the regulation of Hoxa2 

protein on HtrA1/-3 may also contribute to the development of other craniofacial 

elements such as ear, tooth, etc. There is evidence indicating the involvement of Hoxa2 

protein and BMPs during such processes (Li and Cao, 2006; Nie et al., 2006c). 
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6. CONCLUSION 

 

Hox genes are evolutionarily conserved genes encode transcription factors that 

control body segmentations along the anteroposterior axis during animal development. 

Hoxa2 gene is expressed in the developing central nervous system in rhombomeres 2-7 

and affects cellular differentiation. Hoxa2 gene is involved in the patterning of the 

cranial neural crest cells (Trainor and Krumlauf, 2001; Tumpel et al., 2002b; Creuzet et 

al., 2005)  and contributes to both anterior-posterior positioning as well as dorsal-ventral 

patterning (Hao et al., 1999). Disruption of Hoxa2 gene causes patterning defects of the 

hindbrain at its most anterior domain of expression, resulting in the absence of the r1/2 

boundary and an alteration of the r2/3 border (Gavalas et al., 1998; Davenne et al., 

1999a; Barrow et al., 2000). Additionally, defects of the branchial arch derivatives, such 

as cleft palate and duplicated ossification centers of the middle ear bones (Gendron-

Maguire et al., 1993; Barrow and Capecchi, 1999; Nazarali et al., 2000), are observed in 

Hoxa2 mutant mice. This evidence suggests that Hoxa2 gene is involved in the cell 

differentiation. Hoxa2 gene is further shown to promote the formation of cartilage and 

prevent ossification during craniofacial development (Kanzler et al., 1998; 

Grammatopoulos et al., 2000; Plant et al., 2000; Trainor and Krumlauf, 2001; Creuzet et 

al., 2002). Although the importance of Hoxa2 gene during development is well 

recognized, few target geness of Hoxa2 protein have been identified so far and 

mechanisms of how Hoxa2 transcription factor regulates developmental processes are 

still unclear.  

In our group chromatin immunoprecipitation (ChIP) was utilized by a former 

graduate student (Akin Z, Ph.D Thesis, University of Saskatchewan, 2004) to isolate 
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downstream target genes. Seven clones were obtained and sequenced from E18 

hindbrain and spinal cord chromatin. BLAST query of these sequences identified two 

potential target genes, the murine homolog of the human dual specificity tyrosine kinase 

4 (Dyrk4) gene and high temperature requirement factor A 3 (HtrA3) gene. In this study, 

by using EMSA I have demonstrated that Hoxa2 protein binds to HtrA3 and Dyrk4 

fragments through a core GATG motif. Using site-directed mutagenesis, transient 

transfection and luciferase assays I have shown that Hoxa2 protein inhibits the reporter 

expression through binding to multiple GATG motifs in the cis-regulatory element. A 

Hoxa2-VP16 fusion protein further confirmed this activity in transient transfection and 

luciferase assays. RT-PCR analysis revealed an in vitro/in vivo correlation of the 

inhibitory role of Hoxa2 protein on HtrA3.  

HtrA3 is a member of the HtrA family, which belongs to a family of serine 

proteases. HtrA3 was discovered initially as a pregnancy-related serine protease that is 

up-regulated dramatically during mouse placental development (Nie et al., 2003b). As 

HtrA1 and HtrA3 share a high degree of domain homologies, they also share a 

functional similarity (Nie et al., 2003a). Both HtrA1 and HtrA3 are inhibitors of 

transforming growth factor-β (TGF-β) signaling and bind to various superfamily 

members (at least TGF-β1, BMP-2, BMP-4) (Oka et al., 2004; Tocharus et al., 2004). 

BMPs and Hoxa2 protein are involved in many processes during development 

simultaneously. The finding that Hoxa2 protein inhibits HtrA3 gene expression implies 

that Hoxa2 protein might interact with BMP signaling pathway and control the 

development of craniofacial elements. 
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