
University of Leipzig
Faculty of Mathematics and Computer Science

Institute of Computer Science
Department of Natural Language Processing

Scalability of Topic Map Systems
Topic Map Services in a Distributed Environment

Master Thesis

Marcel Hoyer
October 2011

Thesis Supervisors

Prof. Dr. Gerhard Heyer
Institute of Computer Science

University of Leipzig

Dr. Lutz Maicher
Institute of Computer Science

University of Leipzig

Abstract

The purpose of this thesis was to find approaches solving major perfor-
mance and scalability issues for Topic Maps-related data access and the merg-
ing process. Especially regarding the management of multiple, heterogeneous
topic maps with different sizes and structures. Hence the scope of the re-
search was mainly focused on the Maiana web application with its underlying
MaJorToM and TMQL4J back-end.

In the first instance the actual problems were determined by profiling the
application runtime, creating benchmarks and discussing the current archi-
tecture of the Maiana stack. By presenting different distribution technolo-
gies afterwards the issues around a single-process instance, slow data access
and concurrent request handling were investigated to determine possible so-
lutions. Next to technological aspects (i. e. frameworks or applications) this
discussion included fundamental reflection of design patterns for distributed
environments that indicated requirements for changes in the use of the Topic
Maps API and data flow between components. With the development of the
JSON Topic Maps Query Result format and simple query-focused interfaces
the essential concept for an prototypical implementation was established. To
concentrate on scalability for query processing basic principles and benefits of
message-oriented middleware were presented. Those were used in combination
with previous results to create a distributed Topic Maps query service and to
present ideas about optimizing virtual merging of topic maps.

Finally this work gave multiple insights to improve the architecture and
performance of Topic Maps-related applications by depicting concrete bottle-
necks and providing prototypical implementations that show the feasibility of
the approaches. But it also pointed out remaining performance issues in the
persisting data layer.

Acknowledgements

I would like to thank Lutz Maicher and the whole Topic Maps Lab team for the
discussions and brainstorming sessions around Topic Maps and always being
receptive to questions and ideas. Especially, in no particular order: Benjamin
Bock, Daniel Seifarth, Michael Prilop, Peter Scholz, Sven Krosse and Uta
Schulze. It was (and partially is) a pleasure to work with the Topic Maps Lab
team.

Moreover, many thanks to my family and friends for all their patience and
helping me to stay the course. Special thanks to Alexander Groß for cross-
reading this thesis and Ronja May for inspiring me at recreation time.

ii

Contents

List of Figures v

List of Tables vi

List of Listings vii

List of Abbreviations viii

1 Introduction 1
1.1 Scope and Environment . 1

1.1.1 Maiana, RTM and MaJorToM 1
1.1.2 Architecture of Maiana 2

1.2 The Problems . 3
1.2.1 Maiana as Single-Process Instance 3
1.2.2 Concurrent Requests and Stateful Services 4
1.2.3 Performance Issues of MaJorToM and Maiana 5
1.2.4 Provisional, but Inefficient Solutions 7

1.3 Solutions in the Remaining Chapters 7

2 Possible Approaches 9
2.1 Technological Overview . 9
2.2 Distributed Database Back-Ends 9

2.2.1 MaJorToM Database Benchmarks 10
2.2.2 TMDM-Based Relational Models for Topic Maps Persis-

tence . 11
2.2.3 Optimizing Database Back-Ends 12
2.2.4 Alternatives . 13

2.3 RPC to Cross Process Boundaries 14
2.3.1 TMoR – A Prototype Implementation Based on TMAPI

Using RMI . 15
2.3.2 Performance Measurement for TMoR 17
2.3.3 Why TMoR Is Not the Solution 19

2.4 RESTful and Web Service Approach 20

iii

2.4.1 A TMDM-Based Data Transfer Structure 20
2.4.2 TMQL to Request Data 22
2.4.3 Query Results with JTMQR 23
2.4.4 Web Service . 26
2.4.5 Summary . 27

3 Message-Oriented Querying Service 29
3.1 Technological Overview . 30

3.1.1 Message-Oriented Middleware 30
3.1.2 Available Solutions . 31
3.1.3 Principles of Message-Oriented Middleware 31

3.2 Implementation Details . 35
3.2.1 The Service Contracts 36
3.2.2 The Service Implementation 38

3.3 Benchmarks . 41
3.4 Summary . 42

3.4.1 Extensibility Ideas . 43
3.4.2 Limitations and Known Issues of The Current Solution . 44

4 Outlook 45
4.1 Message-Oriented Approaches for Merging Topic Maps 45
4.2 Merge Registry Service . 47
4.3 Distributed TMQL Processing on Merged Topic Maps 51
4.4 Combining Presented Approaches 54

5 Conclusion 57

Bibliography 59

A Appendix 62
A.1 MT-DB Log Report (Before Optimization) 62
A.2 MT-DB Log Report (After Optimization) 66
A.3 MaJorToM PostgreSQL Mapping for Simple TMAPI Calls . . . 69
A.4 JTMQR 2.0 Schema . 71
A.5 Application Context Configuration for TMQS 71
A.6 TMQL Expression Tree Sample 72

iv

List of Figures

1.1 Screenshot of Maianas Initial Ontology View Page 2
1.2 Architectural Chart of Maiana 3
1.3 CPU Usage and Memory Consumption Profile of Maiana 5

2.1 TMoR Architecture . 17
2.2 Misuse of TMAPI/TMDM as Intermediat Layer 19
2.3 TMDM in a Nutshell . 21

3.1 AMQP Message With Header and Payload 32
3.2 AMQP Queue With Two Consumers 33
3.3 AMQP Exchange . 34
3.4 Topic Maps Query Service Architecture 35
3.5 Topic Maps Query Service Dependencies 39
3.6 Topic Maps Query Service Scaled-out 42

4.1 Hatana Architecture . 46
4.2 Merge Registry Service – Query Phase 50
4.3 Data Required for Sub Querying 52
4.4 Sample of Distributed Sub Querying 53
4.5 Topic Maps Query Service With Sub Query Support 54

v

List of Tables

1.1 Profiling of Maiana . 6

2.1 Benchmarking of Topic Maps Engines 10
2.2 Benchmarking of TMoR TMAPI Bridge 18

3.1 Benchmarking of TMQS . 41

A.1 SQL Statements for createTopic(type) 69
A.2 SQL Statements for createTopic() 70

vi

List of Listings

2.1 Sample Queries for Benchmarking TMQL 11
2.2 The Contract for ConstructDTO Data Structure 15
2.3 Excerpt of The TopicMapService Interface 16
2.4 Retrieving the IDs of All Topics 22
2.5 Sample of A Serialized JTMQR 1.0 Document 24
2.6 Sample of A Serialized JTMQR 2.0 Document 25
2.7 Sample for USE JTMQR Statement 26
2.8 Retrieving The IDs of All Topics Using TMQL 26
3.1 Sample of An AMQP Consumer And Producer 34
3.2 Topic Maps Query Service Contracts 37
3.3 Implementation of The Topic Maps Query Service 38
3.4 Interface Definition for The QueryActionHandler Implementation . 40
3.5 Console Host for The Topic Maps Query Service 40
4.1 Merge Registry Service Contracts 48
4.2 Submitted List of Topics for MRS Registration 48
4.3 Storage of Topic Map References in MRS 49
4.4 Merge Registry in MRS . 49
A.1 JSON Schema of JTMQR 2.0 71
A.2 Spring Configuration for TMQS Application Context 71
A.3 Sample TMQL for Expression Trees 72
A.4 Textual Representation of An Expression Tree 73

vii

List of Abbreviations

Abbreviation Description

AJAX Asynchronous JavaScript and XML
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
BSON Binary JSON
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CTM Compact Topic Map Syntax
DBA Database Administrator
DBMS Database Management System
DSL Digital Subscriber Line
DTO Data Transfer Object
FIFO First In, First Out
GbE Gigabit Ethernet
HTTP Hypertext Transfer Protocol
IPC Inter-process Communication
ISO International Organization for Standardization
JAX Java API for XML
JDBC Java Database Connectivity
JLI Java Live Integration
JMS Java Message Service
JRMP Java Remote Method Protocol
JSON JavaScript Object Notation
JTMQR JTM Query Result
JTM JSON Topic Map
LAN Local Area Network
LTM Linear Topic Map
MOM Message-Oriented Middleware
MRS Merge Registry Service
MSMQ Microsoft Message Queuing
RDF Resource Description Framework
REST Representational State Transfer
RMI Remote Method Invocation

viii

RPC Remote Procedure Call
RTM Ruby Topic Maps
RoR Ruby on Rails
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
TAO Topics, Associations, and Occurrences
TCP Transmission Control Protocol
TMAPIX TMAPI Extensions
TMAPI Topic Maps API
TMCL Topic Maps Constraint Language
TMDM Topic Maps Data Model
TMIP Topic Map Interaction Protocol
TMQL Topic Maps Query Language
TMQS Topic Maps Query Service
TMoR Topic Maps over RMI
URI Unified Resource Identifier
VDSL Very-high-bitrate DSL
WAN Wide Area Network
WCF Windows Communication Foundation
WSDL Web Service Description Language
WS Web Service
XML Extensible Markup Language
XTM XML Topic Maps

ix

x

Chapter 1

Introduction

1.1 Scope and Environment

1.1.1 Maiana, RTM and MaJorToM

Maiana is a web application created by the Topic Maps Lab to explore and
share topic maps. It enables a user to upload topic maps in common file
formats (e. g. CTM, XTM, JTM). Uploaded maps can then be browsed by
navigating from topic to topic, exploring all attached properties, names and
occurrences, and related associations.

The application is an show case and testing platform for many of the tech-
nologies the Topic Maps Lab has developed. One essential component of this
set is MaJorToM, a Java-based Topic Maps engine that manages accessing the
elementary entities of topic maps, so called constructs. Additional modules
and their functional extension for the MaJorToM core are:

Hatana
virtual merging of segregated maps

TMQL4J, SesameTM
querying maps with TMQL or SPARQL

TMAPIX
importing, exporting of topic maps

JLI
integration of legacy data stores like Excel or relational databases

TMCL
validating topic maps against a Topic Maps schema

To demonstrate cross-platform capabilities and integration flexibility, Ma-
iana was implemented on top of the Ruby Topic Maps framework (RTM) using
the rapid application development framework Ruby on Rails in combination

1

Figure 1.1: Screenshot of Maianas initial Ontology view page.

with some helpful Ruby Gems1. This decision in turn required the use of
JRuby as the runtime for the web application to enable the integration of the
underlying, Java-based components created by the Topic Maps Lab.

1.1.2 Architecture of Maiana

RTM provides a unified accessibility layer wrapping TMAPI-based Topic Maps
engines like MaJorToM. In turn, Maiana consumes the functionalities provided
by the RTM framework. The system’s architecture is depicted in Figure 1.2.

This diagram can be categorized as classic N-tier architecture2. Maiana
as the Ruby on Rails application represents the front-end tier. RTM imple-
ments the business logic layer that in turn consumes the functionalities of the
data access layer, played by MaJorToM with in-memory store (or any other
TMAPI-based back-end technology). For desktop applications it is common
practice to create those kinds of architectures. But looking at large web-
oriented, highly scalable services like Twitter or Facebook different application
layouts are necessary. The main aspects on those architectures are focused on

1Ruby Gems are packages to compose or extend functionality of Ruby application. For
instance, Rails is the most popular Ruby Gem.

2The detailed architecture of Maiana is more complex. E. g. it uses an additional MySQL
database for Ruby on Rails related model data (users, query storage, etc.)

2

Ruby on Rails

Web application

Java-based

Components

TopicMaps
Engine

(Act. MaJorToM)

Maiana

Ruby Topic Maps

Framework

HatanaTMQLSesame
Connector

JLITMCLSearch

TMAPI

HatanaTMQL4JSesameMT-JLI
TMCL

Validator
Search

JavaTMAPI

Figure 1.2: Simplified architectural chart of Maiana and the underlying com-
ponents.

distributing the data and service entry points across a set of machines to reach
high throughput even under high load and the ability to manage large sets of
data. The possibility to attach additional load-balanced worker nodes3 to a
running system, creates very flexible and extensible services.

1.2 The Problems

1.2.1 Maiana as Single-Process Instance

Due to the straight-forward implementation of the N-tier architecture, the flex-
ibility in scaling data-oriented applications like Maiana is limited. It appears
in particular when analyzing the runtime process: even with the encapsulated
components and layers of the current architecture, one Maiana instance is
started as single, monolithic Java process. Thus it has to manage all objects
for the Ruby on Rails front-end, the RTM middle tier and the MaJorToM in-
memory back-end. This results in heavy resource consumption with almost no
means to solve any performance bottlenecks. Finally, the only way to enhance

3Node means computation unit e. g. a process or even a whole server.

3

the systems performance is to scale up. Therefore, it requires more and more
hardware resources to achieve reliability.

Besides the resource issues, the monolithic process has other disadvantages
too. As of now, it is not possible to replace or even restart separate parts of
Maiana when new features are released involving one of the underlying compo-
nents. This becomes even more apparent, as bugs or not handled exceptions
occur in one of the modules. These might crash the whole system. Thus,
Maianas online service will become unavailable until a restart is triggered –
either automatically or manually.

By now MaJorToM offers a simple solution to separate at least some work-
load. When using the MaJorToM store implementations for databases (Post-
greSQL or Redis) instead of the in-memory store, the data tier can be moved
to a different server or a separate process on the same machine. Due to the
internals of MaJorToM and the use of TMAPI, other performance issues will
arise when fetching data from such persisting store. Those problems will be
discussed in Section 1.2.4 and Section 2.2.1.

1.2.2 Concurrent Requests and Stateful Services

Web applications like Maiana must be able to handle several clients simul-
taneously, even with a growing number of users and a higher probability of
concurrent requests. Typically, web servers support those requirements by
providing automatic process forking or application pooling. Hence a request
should not block the whole web server, otherwise a user might receive a 503
HTTP error.

This behavior can be achieved for Maiana too, by hosting the JRuby-
based Ruby on Rails application within an application server like Glassfish or
Tomcat.4 Hence multiple instances of Maiana are spawned as the number of
requests grows. Referring to Section 1.1.2, the current version of Maiana does
not use a centralized data storage (like MaJorToM DB or Redis) for the Topic
Maps-related data.5 Because the whole back-end runs in-memory, another
architectural problem appears referring to [Fow02]. In fact the application
runs as stateful service, holding all information in the RAM. This is the root
cause for a chain of problems that will be discussed in the upcoming sections.

Furthermore, inspecting the implementation and runtime performance of
Maiana, another issue occurs. Rendering a single topic page for complex and
large topic maps can take up some seconds due to the time-consuming data
collection process in the background. The problem is the result of the syn-

4By time of writing Maiana is already hosted inside a Glassfish domain to enhance the
reliability.

5The performances of current persisting back-end stores for MaJorToM are too slow.
Hence the only appropriate configuration for hosting Maiana is the use of the in-memory
store.

4

chronous approach for preparing the content for the views. Using a dynamic
AJAX-based front-end could increase the performance perceived by the user,
as the basic page layout with initial low-cost information can be provided to
the client fast, whereas more expensive to generate content will be received
later through dynamic updates of partials of the page. This approach in turn
enables the optimization of the servers load balance, as the asynchronism can
be used internally for accessing the underlying back-end.

1.2.3 Performance Issues of MaJorToM and Maiana

With the growing list of users and uploaded topic maps, some performance
issues occurred from time to time while monitoring the resources of the pro-
duction instance of Maiana. The underlying MaJorToM was unable or disap-
pointingly slow to manage large topic maps like the Mondial with high numbers
of topics and associations (TAO > 100000) in memory. Figure 1.3 shows the
import durations, CPU loads and memory consumptions for some sample topic
maps as result of a profiling session on Maiana.

Figure 1.3: CPU usage and memory consumption profile of Maiana

5

The Bootstrapping section on the left side can be ignored as it represents
the startup phase of Maiana. After initialization, three sample topic maps
were loaded sequentially to measure the memory consumption and CPU load.
E. g. loading the Mondial topic map from the 10 MB large mondial.xtm took
~ 2 seconds and increases the used memory consumption by ~ 45 MB. A
detailed list of all measurement values related to this chart can be found in
Table 1.1.

Topic Map
∑

T
∑

A
∑

O
∑

TAOs Raw size∗ ∆ Heap Duration

Pokemon 198 287 785 1270 36 kB 7 MB 0.15 s
Mondial 5973 16010 9647 31630 540 kB 45 MB 2.1 s
CrunchDB 62242 45568 106310 214120 19.3 MB 250 MB 15.5 s
∗ Estimated sum over all strings of all locators, names and occurrences.

Table 1.1: Results of profiling the loading of Topic Maps with Maiana.∑
T = Topics,

∑
A = Associations,

∑
O = Occurrences.

Looking at the stripped-down raw data6 of i. e. the Mondial topic map and
comparing its numbers of topics, associations and occurrences (TAO) with the
final memory consumption and CPU load shows performance issues. With
even larger topic maps (> 100000 TAOs) like the CrunchBaseDB topic map, the
server requires more and more resources.

Those resource problems can easily be temporarily mitigated by limiting
the file size of uploads in Maiana (20 MB as of time of writing), which actually
is not a favorable solution. But the problem still exists, as there is no limitation
for the overall amount of topic maps. Hence the memory footprint for the
increasing number of maps will fill the memory more and more. So even
with the given powerful resources of the current production server7, the web
application came to its limits.

Another noticeable performance problem of Maiana is the blocking of the
web application, mentioned above. If a topic map is uploaded and opened
for the first time, MaJorToM has to convert its contents from the physical
file to the in-memory representation. E. g. for a medium-sized topic map,
like Mondial, loading results in a 2.1 seconds blocking process, during which
other HTTP requests to Maiana could not be handled immediately. Thinking
of larger maps or higher numbers of users and maps, the user experience of
Maiana will be reduced dramatically.

6XTM is an XML format to serialize and export topic maps. Hence it needs space for
the wrapping markup to describe the actual data (occurrence values, names and locators).
E. g. compared to its original 10 MB file size, the extracted pure string values from the
mondial.xtm only require 540 kB of memory.

7Six-core AMD Opteron 2427, 32 GB memory

6

1.2.4 Provisional, but Inefficient Solutions

The previously mentioned issues might lead to solutions such as concurrent
processing of web requests in a multi-threaded or multi-instance environment
(e. g. using application servers like Glassfish or Tomcat). But this results
in other questions that further complicate matters: How to synchronize the
in-memory data across instance boundaries? How to manage concurrent read-
/write access on the same data entities?

Even with a threaded or multi-instance solution, the physical resources
on servers limit the growth of Maiana, especially when trying to remove the
upload limit. Hence scale-up is not the solution. An approach is required to
be able to scale-out Topic Maps services horizontally across multiple machines
with support for load balancing.

1.3 Solutions in the Remaining Chapters

The following sections will highlight advantages and disadvantages of different
technologies that support distributed architectures. With the presentation
of prototypical implementations, approaches for solving the scalability issues
related to concurrent requests and asynchronous processing will be discussed
afterwards.

To limit the scope of this work, concrete performance problems referring
Maiana are in focus. Hence the solutions are explicitly concerning with read-
only, concurrent access to Topic Maps data, while assuming an environment
like Maiana where multiple heterogeneous topic maps need to be managed.

7

8

Chapter 2

Possible Approaches

“Never underestimate the bandwidth of a station wagon full of tapes
hurtling down the highway.” – Andrew S. Tanenbaum.

2.1 Technological Overview

To find solutions for the problems mentioned in Section 1.2 different application
architectures and patterns are required. Thinking of common distribution
solutions and referring to [Fow02] and [HW03] in general, possible approaches
are:

• Distributing database back-ends
• Remote Procedure Calls (RPC)
• Service-oriented architecture (Web Services with SOAP, WSDL)
• RESTful solutions over HTTP
• Message-oriented systems

In [HW03] File Transfer is also mentioned to be a solution for sharing
information between different nodes. While taking the benchmark results for
importing serialized topic maps (see Section 2.2.1) in account, this approach
seems not to be applicable for a Maiana like scenario and will therefore not be
discussed.

The following sections will provide additional information about upper dis-
tribution technologies.

2.2 Distributed Database Back-Ends

Like Ontopia and other Topic Maps engines, MaJorToM can be configured
to use databases as the persisting back-end for entire topic maps with all
constructs and properties. Thus an easy way for solving the scalability issue

9

is to apply approved distribution mechanisms of databases e. g. clustering
or the master-slave replication principle. Thereby the Topic Maps-providing
business layer can be instantiated multiple times, on different nodes, accessing
the data tier of a database slave concurrently. Best results should be reached
by creating a scenario where each topic map provider is the one and only,
exclusively connected client to its own database slave that is in sync with the
master database. In combination with an application server as mentioned in
Section 1.2.2, Maiana could be instantiated multiple times, where each process
has dedicated access to the same datasets across synchronized sources.

Referring to Section 2.3.3 and the following section, Topic Maps engine im-
plementations with database support like MaJorToM-DB still have consider-
able deficiencies in performance comparing to pure in-memory solutions. This
issue is mainly based on the internal use of TMAPI as the upcoming sections
will show. 1

2.2.1 MaJorToM Database Benchmarks

Highlighting the impact for real world scenarios the benchmark results in Table
2.1 show the time consumption for some typical operations in Topic Maps-
related environments.

Operation MT-InMem MT-Redis MT-DB∗ TinyTiM Ontopia

. CreateTopics 0.87 s 1.42 s 19 min 0.05 s 1.01 s

. CreateTopics w/ Name 0.13 s 3.39 s 16 min 0.08 s 0.08 s

. CreateTopics w/ N+O 0.23 s 5.59 s 22 min 0.07 s 0.09 s
/ ReadAllTopics ≤ 0.01 s 0.06 s 0.02 s ≤ 0.01 s ≤ 0.01 s
/ ReadTopicsByType 0.81 s 0.01 s 0.06 s ≤ 0.01 s ≤ 0.01 s
/ ReadOccByType ≤ 0.01 s 0.19 s 0.10 s ≤ 0.01 s ≤ 0.01 s

. ImportTopicMap∗∗ 0.50 s 6.93 s 26 min 0.15 s 0.12 s
/ ReadImportedTopics ≤ 0.01 s ≤ 0.01 s 0.06 s ≤ 0.01 s ≤ 0.01 s
/ TMQLTuples 0.06 s 0.10 s 1.44 s 0.01 s 0.01 s
/ TMQLOccCountFilter 0.32 s 0.42 s 22.41 s 0.29 s 0.27 s
∗ MaJorToM-DB supports specialized importers bypassing the TMAPI and TMAPIX
layer for direct conversion of topic map files into the underlying relational database
structure. This speeds up the loading by a factor of 10.

∗∗ The same pokemon.ltm topic map as in Section 1.2.3

Table 2.1: Durations for different operations in Topic Maps engines

The upper part in Table 2.1 represents the performance for simple TMAPI-
based access on Topic Maps engines. The CreateTopics operation invokes the
TopicMap.createTopic() method 1000 times in a loop. No other constructs were

1Attempts to run Maiana with a database-enabled Ontopia back-end resulted in bad
performance too.

10

created. Furthermore, the two operations CreateTopics w/ Name and w/ N+O
are creating another 1000 new topics each with an additional single name and
accordingly an additional single occurrence. The ReadAllTopics test case uses
the TopicMap.getTopics() method to return the set of all previously generated
topics. ReadTopicsByType and ReadOccByType in turn are addressing the
index capabilities of TMAPI.

The lower part of the benchmark result table starts with an empty topic
map. It covers results that are more related to scenarios, found in applications
like Maiana. The initial import of a serialized topic map using TMAPIX is
represented by ImportTopicMaps. The invocation of ReadImportedTopics is
equivalent to ReadAllTopics, but operates on the previously initialized topic
map containing all constructs of the Pokemon. The last two TMQL measure-
ments reflect the efficiency of TMQL4J on top of the underlying Topic Maps
engines. The following statements were executed against the Pokemon topic
map.

1 # TMQLTuples
2 "Pokemon" << atomify << character i s t i c s
3 (. ,
4 fn:best-label (.) ,
5 fn:best-identifier(. , "true"),
6 . >> instances)
7

8 # TMQLOccurrenceCountFilter
9 tm:subject >> instances
10 [fn:count(. >> character i s t i c s tm:occurrence) > 4]

Listing 2.1: Sample queries for benchmarking TMQL on Pokemon topic map

The benchmarks show large differences between in-memory solutions and
the MaJorToM database approach. The following section explains why.

2.2.2 TMDM-Based Relational Models for Topic Maps
Persistence

The main problem of the MaJorToM database back-end is the almost 1:1
mapping of the object-oriented TMDM (Topic Maps Data Model [TMD08])
structure to the underlying relational database schema. Thus the access on
Topic Maps constructs to create, read or modify, ends up in short, but very
frequent invocation of statements against the database. E. g. by analyzing the
log file for a single TMAPI call TopicMap.createTopic(), 7 statements (4 INSERT
and 3 SELECT) are issued internally while processing the method. With each
statement lasting 2-3 ms, the atomic feature of creating a topic takes around
20 ms. Furthermore, the measured CPU times are just covering the internal
database operations and do not include latencies for TCP connections or the

11

JDBC stack.2

Even worse is the situation for the creation of a typed topic with TopicMap
.createTopic(type). The modified call now produces 21 requests against the
database with a nearly linear impact on the duration (about 70 ms in sum).2
Thinking of more complex processes, like the import of topic maps from disk,
explains the outstandingly poor performances for MaJorToM-DB as depicted
in Table 2.1. Referring to [Tan02] and the mismatch between latency and
throughput, this scenario emphasizes the suboptimal ratio by mapping TMAPI
straight forward to SQL statements. In Section 2.3.3 this issue will occur again
but in a different environment.

2.2.3 Optimizing Database Back-Ends

Given the database-based setup of Maiana, the first attempt to improve the
runtime was to inspect the behavior of the persistent back-end of MaJorToM.
Profiling the Maiana process and analyzing the log files of PostgreSQL3 made
it possible to determine the origin of some bottlenecks (see Appendix Appendix
A.1 and Appendix A.2). To fix those issues two common DBA techniques were
applied:

• Optimizing the slowest queries itself
• Adding indexes to database relations

In addition MaJorToM provides specialized importers for the database
store. Bypassing the TMAPIX-based loaders, topic map files are pushed di-
rectly to the relational database. Those fixes partially improve the perfor-
mance of the back-end. But altogether, the speed of MaJorToM-DB still does
not fulfill the requirements to provide a pleasant user experience for Maiana.

Another approach was introduced with [KK10]. Kuribara and Kimura
provided a method to optimize the retrieval of Topic Maps constructs using
their extended Topic Maps database TOME. In TOME, entities are stored in
the object-oriented database db4o to represent the Topic Maps data structure
as described in the TMDM. They assume to use the tolog query language
to extract data from the TOME back-end. The paper is focused on “the
search for topic objects referred by a specific association with a particular
topic, specified in the query”. Compared to the power of remaining tolog
syntax and/or TMQL, this seems to be an unnecessarily small subset of the
possibilities those languages actually have.

2See Appendix A.3 for a complete list of triggered SQL statements.
3Log analysis was done by enabling the logging feature of PostgreSQL for long duration

queries and using the log analyzer tool pgFouine and the query analyzer of PostgreSQL
pgAdmin.

12

Furthermore, the fixes for MaJorToM and the optimization attempts for
TOME targeted a very specific part of a more complex system without re-
garding the requirement for distribution. Hence the scope for optimization
should not be focused on single aspects – especially for real world scenarios
as with Maiana. Thus these modifications may only provide improvements for
the short term.

2.2.4 Alternatives

Once again referring to Table 2.1 in Section 2.2.1, the column for MaJor-
ToM Redis presents a good alternative for a persistent back-end store. The
throughput is much higher compared to MaJorToM-DB and acceptable when
compared to the in-memory solutions. This results from the simplicity and
efficiency of Redis. Its goals are fast and high frequent data access as it is
required by today’s Internet services like Twitter or Facebook. From a techno-
logical perspective this performance is the result of a simple low-level protocol
and an in-memory command queuing strategy to encapsulate slow disk IO
operations. Another advantage is the possibility to distribute Redis across dif-
ferent machines easily. This enables multiple clients to access the distributed
data concurrently. With regard to all these features, MaJorToM combined
with the Redis store seems to be a good solution that is available at the time
of writing. Hence this setup will be the base for the approaches presented in
the upcoming chapters.

Though there might be even better solutions for the back-end question.
For instance, the issue described in Section 2.2.2 still is not solved with the
Redis approach: the current implementation of the store is still wrapped by the
TMAPI layer that induces a higher communication and management overhead
as actually needed. For instance, looking at Topic Maps constructs from an
entity or domain perspective it might be more effective to transfer the data
between database and Topic Maps engine (and obviously the connected Topic
Maps clients) as serialized objects representing the whole topic entities with all
its child entities, instead of normalizing all constructs into separate tables. An
ideal solution should only require a single request to receive the whole entity
of a Topic Maps construct.

Thus another, but untested alternative for the back-end choice can be the
use of a document-oriented database like MongoDB. It allows to persist struc-
tured documents, e. g. whole topic maps, using the binary JSON-equivalent
BSON as exchange format. Compared to Redis it also supports sharding and
replication of the persisted documents.

13

2.3 RPC to Cross Process Boundaries

“First Law of Distributed Object Design:
Don’t distribute your objects!” – Martin Fowler [Fow02, p. 89]

With Remote Procedure Call or Remote Invocation applications are expos-
ing methods to be invoked by remote instances. Thus a communication across
process and even system boundaries can be achieved – so called IPC (inter-
process communication). Common implementations can be found in CORBA,
.NET Remoting or Java RMI.

As shown in Section 2.2.2, using the TMAPI definitions as contract for
distributed approaches seems to be not the best solution. To give a sample
proof, an attempt using RPC is shown in Section 2.3.1. This prototype was
realized to get first impressions on:

• the feasibility of mapping TMAPI directly into a distributed system,
• the effort required for the implementation,
• the latency overhead compared to in-memory or persistent back-ends

As MaJorToM is implemented with the Java framework a corresponding
prototype implementation was built on top of this technology. Java RMI is the
Remote Method Invocation component of the Java framework. It supports an
object-oriented way for describing skeletons of the server side and stubs for the
client side by defining interfaces (see [WRW96] for more details). This allows
a fast and straight-forward implementation of distributed systems. Therefore,
this technique was used to realize a spike4 on exposing TMAPI over TCP:
TMoR – Topic Maps over RMI. The exchanged data between server and client
is serialized and transmitted using the Java Remote Method Protocol (JRMP).

4A prototype implementation in agile development to evaluate the feasibility of an ap-
proach.

14

2.3.1 TMoR – A Prototype Implementation Based on
TMAPI Using RMI

To implement a distributed system using RMI, interfaces extending java.rmi.
Remote needs to be declared following the so-called Contract First principle. In
this straight-forward solution, all interfaces of the full TMAPI were combined
into a single interface. When designing an remote interface in RMI, it is not
allowed to specify multiple operations with the same name. But many methods
in TMAPI are overloaded (e. g. org.tmapi.core.Topic.createTopic()). Hence
a redefinition of the contract for the TMoR (Topic Maps over RMI) service
was necessary where each overloaded method appears disambiguated. The
introduction of a segregated interface can be seen as facade for TMAPI and
provides a clean and decoupled architecture – even in the scope of prototyping.
Therefore, the original TMAPI sources can be kept unchanged and do not
require modifications for each interface declaration to extend these with the
java.rmi.Remote interface.

1 public inter face ConstructDTO extends Serializable {
2 String getId();
3

4 String getType ();
5 void setType(String type);
6

7 String getValue ();
8 void setValue(String value);
9

10 String getDatatype ();
11 void setDatatype(String value);
12 }

Listing 2.2: The contract for ConstructDTO data structure.

Due to the fact that only one interface (TopicMapService) exists in TMoR,
the TMAPI constructs were almost fully flattened and integrated into the
contract. Each construct is represented by an ID string as it is provided
by the underlying Topic Maps engine with org.tmapi.core.Construct.getId().
In turn, all construct property getter and setter methods (e. g. Construct.
getParent, Topic.getNames, etc.) were represented by a corresponding method
that takes the construct ID as first argument. Listing 2.3 shows an excerpt of
the contract.

15

1 package de.topicmapslab.tmor.contracts;
2 import org.tmapi.core .*;
3 import java.rmi.Remote;
4

5 public inter face TopicMapService extends Remote {
6 // Mapping of Construct
7 public ConstructDTO getParentOfConstruct(String constructId);
8 public String getTopicMapOfConstruct(String constructId);
9 public void remove(String constructId);
10 ...
11

12 // Mapping of Topic
13 public String [] getSubjectIdentifiers(String topicId);
14 public void addSubjectIdentifier(String topicId ,
15 String locator);
16 public void removeSubjectIdentifier(String topicId ,
17 String locator);
18 public ConstructDTO createName(String topicId ,
19 String typeId ,
20 String value ,
21 String [] scope);
22 public ConstructDTO [] getNames(String topicId ,
23 String typeId);
24 ...
25

26 // Mapping of TopicMapSystem
27 public String getTopicMapByLocator(String topicMapSystemId ,
28 String locator);
29 public String [] getTopicMapLocators(String topicMapSystemId);
30 public String createTopicMap(String topicMapSystemId ,
31 String locator);
32 ...

Listing 2.3: Excerpt of the TopicMapService interface.

To de/serialize the different construct types one lightweight remote data
type class ConstructDTO was defined. This Data Transfer Object only contains
the ID, the type of a serialized construct and two optional fields for org.tmapi
.core.Name and org.tmapi.core.DatatypeAware like constructs.

On the client side the whole TMAPI was implemented as facade for TMoR.
Hence each TMAPI call from the client application was transparently con-
verted into a corresponding RPC invocation on the TopicMapService stub. The
server side skeleton in turn calls methods on the implemented TopicMapService
runtime, that is transforming the requests into TMAPI calls against the under-
lying server side Topic Maps engine. Therefore, client and server side need to
map between the real/virtual TMAPI objects and the flattened TopicMapService
interface using an implementation of the Mapper<From, To> interface. Figure 2.1
shows the schematic relations and the data flow between the client and server
side.

16

Figure 2.1: Topic Maps over RMI (TMoR) Architecture.

Next to the TMoR interface definition and its straight forward implemen-
tation a hosting runtime is required that generates the skeleton and expose the
service. Furthermore, the client side stubs need to be generated and must be
accessible by the consuming application.

To simplify and decouple the hosting and stubbing process the Spring Re-
moting framework was used. This decision on the other hand allows to easily
host the same TMoR service instance over multiple remote technologies: RMI,
HTTP Invoker, Hessian or Burlap protocol, JAX-RPC, JAX-WS and JMS.
A similar procedure to expose services can be found in the Microsoft Windows
Communication Foundation (WCF) of the Microsoft .NET Framework.

Due to potential platform or infrastructure issues (like integration of het-
erogeneous systems or firewall restrictions), the classical communication over
RMI that uses the binary Java Remote Method Protocol (JRMP) might end
up in limited flexibility. Therefore, by choosing the Spring Remoting frame-
work as underlying infrastructure, the publishing of the service with different
formats and protocols will be available. Referring the upcoming benchmark
results, endpoints for RMI and HTTP Invoker were used to get information
about the overhead when using the TMoR service bridge.

2.3.2 Performance Measurement for TMoR

As mentioned in the previous section, the TMoR prototype is prepared for
hosting a TMAPI-based service over RMI and/or HTTP using the Spring
Remoting framework. To compare the performance of this distributed scenario
with the results in Section 2.2.1 the same operations were used. The server

17

side TMoR service is accessing a MaJorToM in-memory and a MaJorToM
Redis instance. To show the relation between the duration and the physical
distance of the communicating nodes, the tests were executed with enabled
RMI protocol5 in three different environments6:

Local
Server and client are running on the same machine

LAN
Server and client are in the same local network (GbE)

WAN
Server and client are connected over a WAN (VDSL 25)

MaJorToM-InMemory MaJorToM-Redis
Operation Local LAN WAN Local LAN WAN Requ.

. CreateTopics 2.77 s 4.92 s 53.29 s 3.96 s 6.11 s 51.86 s 2000

. CreateTopics w/ Name 2.91 s 5.15 s 80.10 s 5.14 s 7.38 s 82.44 s 2000

. CreateTopics w/ N+O 3.86 s 7.08 s 107.29 s 8.54 s 10.43 s 111.87 s 3000
/ ReadAllTopics 0.64 s 0.56 s 0.56 s 0.33 s 0.16 s 0.15 s 1
/ ReadTopicsByType 1.36 s 1.51 s 1.64 s 0.10 s 0.26 s 0.37 s 2
/ ReadOccByType 0.28 s 0.20 s 0.29 s 0.81 s 0.77 s 0.82 s 2

. ImportTopicMap∗ 9.17 s 15.83 s 4.67 min 11.97 s 25.78 s 4.74 min ~ 6400
/ ReadImportedTopics 0.05 s 0.05 s 0.27 s 0.02 s 0.03 s 0.25 s 1
/ TMQLTuples 0.15 s 0.23 s 0.44 s 0.15 s 0.26 s 0.46 s ~ 160
/ TMQLOccCountFilter 0.78 s 1.25 s 6.16 s 1.09 s 1.92 s 6.59 s ~ 320
∗ The same pokemon.ltm topic map as in Section 1.2.3

Table 2.2: Durations for different operations with TMoR

Comparing the measurements of Table 2.2 with Table 2.1 in Section 2.2.1
the latencies for all operations using the TMoR bridge are obviously visible.
But focusing only on the TMoR benchmarks the underlying remote connection
has a higher impact on some operation as for others. All modifying operations
(.) like CreateTopics or ImportTopicMap are lasting increasingly longer the
slower the connection7 gets. In turn the operations to read lists of constructs
(/), transmitting only one or two requests are almost as fast as the in-process
benchmark setup in Table 2.1. Those divergences are related to the different
number of requests an operation requires in the given test cases. This empha-
sizes the need for a different distribution-oriented contract for a Topic Maps
service.

5Referring [Gre08] the performance of the Spring’s HttpInvoker protocol is similar to
RMI. Thus the benchmarks for TMoR are representative for both protocols.

6For LAN and WAN the service is running on the same machine as in Section 2.2.1. On
the other hand the used client has nearly the same hardware configuration.

7Slow connection means smaller bandwidth and a higher distance between the commu-
nicating components.

18

2.3.3 Why TMoR Is Not the Solution

Even though the TMoR solution (with MaJorToM in-memory) is performing
better than the MaJorToM Database back-end, it still has architectural de-
ficiencies and performance bottlenecks. In addition the benchmarks for the
TMoR prototype were performed in a segregated environment where only one
client was communicating with one server. How does a single service han-
dle concurrent requests from multiple clients? When instantiating the service
multiple times: how should those distributed TMoR instances be managed
respecting load balancing, request routing and data synchronization between
the worker nodes? Extending the prototypical solution based on Java RMI
or the Spring Remoting framework will require heavy implementation steps to
fulfill those needs. In conclusion this approach is still not satisfying at all.

Accordingly, the presented way of separating the consuming client process
from the data tier only addresses the “one single process” problem referring
Section 1.2.1. Looking at the RMI approach from the Maiana perspective the
monolithic system can be split into two processes by introducing TMoR. But
the management for all topic map resources will then still be bound to a single
process – the remote back-end service that seems to be the new bottleneck for
concurrent accessibility and resource limitations.

Figure 2.2: TMoR in combination with MaJorToM: misuse of TMAPI or
TMDM as intermediate layer for every component.

One might argue to use MaJorToM Redis in combination with TMoR.
This setup will then address the issue of concurrent access and the resource
limitations. But as shown in Figure 2.2 the glue between each layer still is
TMAPI or a similar contract (in fact the TMoR Service interface or any other

19

TMDM-based interface). Referring to “A fine-grained interface doesn’t work
well when it’s remote.” [Fow02, p. 89], TMAPI seems not to be the best choice
in Topic Maps engines for:

• directly exposing distributed interfaces
• mapping each property call to a database query
• using a TMDM-based relational schema for storing Topic Maps data

Therefore, it seems to be necessary to think about alternative, non TMAPI-
centric solutions. Nevertheless, TMAPI has its right to exist and can be im-
plemented by a Topic Maps engine internally to support access to TMDM
data structures in an object-oriented style. But distributed Topic Maps so-
lutions need to reduce the number of requests drastically e. g. by using a
domain driven approach. Thus serialized DTOs are submitted over the wire
once instead of requesting each property as separate remote call. A possible
domain-oriented view on the TMDM can be found in Section 2.4.1.

2.4 RESTful and Web Service Approach
In Section 2.3 the prototype TMoR was introduced to show the feasibility
and performance of remote Topic Maps systems. With the conclusion that
TMAPI seems not to be the right basis for distributing the access on Topic
Maps engines, alternatives are required. To embed those new ideas into a
more common scenario, nowadays technologies will be used in the upcoming
sections. As there are overlapping similarities for possible solutions using the
RESTful or web service approach, the following sub sections will cover the
basics for both technologies.

2.4.1 A TMDM-Based Data Transfer Structure

In Section 2.3.3 a workaround for more efficient data-oriented communication
was mentioned. Trying to submit serialized domain objects instead of asking
the remote service for every tiny property will reduce the amount of trans-
mitted requests and therefore eliminate the pricey latencies. The Topic Maps
Data Model – TMDM ([TMD08]) is the more or less core specification for
Topic Maps-related solutions like the TMAPI, that in turn is the basis for
Topic Maps engine implementations. Thus the given data structures of topic
maps needs to be analyzed to find a possible solution for a domain-oriented
view. Figure 2.3 visualizes the relations between the constructs described in
the TMDM. Moreover it tries to inherently show a possible approach on how
the constructs might be seen as entities in a domain-oriented perspective.

Starting with the topmost element TopicMap, the underlying relations to
Association and Topic are drawn as bold connectors, meaning those child col-
lections are essential parts of a Topic Maps construct and need to be serialized

20

Common PropsVariant

variants

Name

names

Occurrence

occurrences

Topic Role

roles

Association

type

type

typetype

associations

topics

reifier

reifier

scope

reifier

scope scope

reifier

reifier

scope

player

reifier

SubjectIdentifiers

SubjectLocators

Value Datatype

Value

Id

ItemIdentifiers

Datatype

Value

types

instances

subtypes

supertypes

TopicMap
Locator

Figure 2.3: Topic Maps Data Model (TMDM) in a nutshell.

when requesting a whole topic map. In turn each Topic contains underlying
lists of Occurrence, Name and Variant, whereas each Association is made of Role
items. On the other hand all slim arrows in the diagram represent construct
references instead of fully serialized objects. Those references can simply be
construct IDs or in the context of TMDM an item identifier (or subject iden-
tifier/locator in the special case of topics).

Robert Cernys proposal [Cer10] for the exchange format JSON Topic Maps
(JTM) almost fulfills the upper idea about serializing Topic Maps constructs.
Compared to other formats like XTM or CTM, JTM allows the direct serial-
ization of all types of Topic Maps constructs. Thus the root element must not
be TopicMap.

All in all, this method of serializing Topic Maps data results in a good bal-

21

ance between transmitted data size and corresponding request quantity when
trying to extract information out of topic maps. For sure this approach might
not match within all scenarios. For example, retrieving all fully serialized top-
ics of a huge topic map8 might lead to a large data stream for a single GetTopics
request. Especially when thinking in an TMAPI-based manner for accessing
Topic Maps data the Listing 2.4 gives a sample where possible problems can
occur.

1 TopicMap remoteTopicMap = remoteTopicMapSystem.getTopicMap(x);
2

3 for (Topic topic : remoteTopicMap.getTopics ())
4 {
5 System.out.println(topic.getId ());
6 }

Listing 2.4: Retrieving the IDs of all topics.

The main purpose of this sample is to retrieve a list of construct IDs for each
topic of a remote topic map. But the invocation of remoteTopicMap.getTopics
() would to fetch a fully serialized list of all topics, containing all identifiers,
names, variants and occurrences. In fact the call of remoteTopicMapSystem.
getTopicMap() in line 1 already triggers a complete transmission of the whole
topic map, when thinking of a thoughtless, straight forward implementation
of a RESTful system using the upper serialization idea. Thus the possibilities
about serialization of topic map partials is nothing worth if the interface to ad-
dress just the essential information does not exist. That’s where TMQL comes
into play. The following section shows how to collect fragments (e. g. just
single properties of constructs) of topic maps without moving large datasets
between nodes.

2.4.2 TMQL to Request Data

Different data stores like relational databases or XML databases offer query
languages to collect specific data from large data sets. The most commonly
known one might be SQL (or XPath for XML-related querying). Those lan-
guages allow the creation of statements to request a well defined sub set from
the whole data store. This includes filtering, grouping, mapping (projection)
and aggregation. Hence it is possible to extract complex, relational parts of
all record sets or actually simple aggregated values over multiple rows. The
advantage of these query languages is the way the required data is transmitted
between the requesting client side and the data provider (i. e. DBMS). It is

8E. g. the full War Diary topic map contains 2109 topics, 12033 associations and 43752
occurrences. Serialization to JTM creates a file sized 11 MB. Considering just the serializa-
tion of the topics as references should reduce the data size drastically.

22

possible to define a single statement that – submitted once – will return all
requested data in a bulk transmission. Compared to the already questioned
object-oriented approach like TMAPI, this reduces the request-response traf-
fic from potentially hundreds to just one single invocation. Thinking of dis-
tributed environments the use of a query language should solve the issue of
latency between communicating systems.

With the Topic Maps Query Language (TMQL), a query language for Topic
Maps data structures is going to fill the gap. The development of the syntax is
specified in the ISO 18048 standard, that is part of the Topic Maps standards
family. An implementation can be found in TMQL4J that is developed by
the Topic Maps Lab and the underlying component required for the TMQL
feature of Maiana. Hence TMQL4J will be in focus for upcoming discussions
and implementations in this work.

Next to TMQL, other solutions try to support a query-oriented access to
Topic Maps engines. Referring to [Gar05] tolog is an earlier attempt to query
topic maps using a Prolog like syntax. An implementation can be found in the
Ontopia Topic Maps suite. On the other hand with [Ahm09] an approach to
use SPARQL as query interface was introduced.

2.4.3 Query Results with JTMQR

In Section 2.4.1 the need and solutions for topic map serialization in distributed
environments was discussed. A possible format to export TMDM constructs
can be found in the previously mentioned JSON Topic Maps by Robert Cerny
([Cer10]). Under the aspect of TMQL, the support of fragmented serialization
of Topic Maps constructs in JTM is an essential feature to enable the creation of
response messages of query results. Furthermore, TMQL allows statements not
only returning Topic Maps constructs, but single value types9 and projected
lists (tuples). Hence a different or extended format for serializing those query
results is needed. In [Bar05] Robert Barta presents an approach for serializing
TMQL query results for the Topic Maps Interaction Protocol (TMIP) using
an XML-based data structure. To combine the given features of XTM Tuple
Sequence Encoding with the compactness of JTM the JTM Query Results
format (JTMQR) was developed for upcoming Topic Maps Query Services.
It removes the noisiness of XML and still supports the serialization of tuples,
value types, Topic Maps constructs and arrays.

The Listing 2.5 shows an excerpt of an JSON document reflecting a query
result set for a given TMQL query sample. The initial version 1.0 of JTMQR
was defined using explicit hash keys ("s", "i", "n", etc.) as a more or less
direct mapping of the XTM Tuple Sequence Encoding elements to JSON.
But as JSON inherently supports data typing and due to the noisiness of the

9Compared to the complex data types (any Topic Maps construct) described in the
TMDM, value types are simple data types like String, Integer or Float.

23

1 // possible result for TMQL query:
2 // tm:subject >> instances (
3 // . ,
4 // . >> characteristics tm:name ,
5 // fn:count(. >> characteristics))
6

7 { "version":"1.0",
8 "metadata": {"columns":3, "rows":20, "aliases":[]},
9 "seq":[
10 {"t":[
11 {"i": // each topic is serialized with JTM
12 { "version":"1.1",
13 "prefixes":{"tmdm":"http ://psi.top .../ model/"},
14 "item_type":"topic",
15 "subject_identifiers":[..],
16 "instance_of":[..],
17 "names":[..]}},
18 {"s":"Foo"},
19 {"n":1}
20]},
21 {"t":[
22 {"i": /*JTM*/ },
23 {"s":"Zoo"},
24 {"n":2}
25]},
26 ...
27],
28 "ordered": true }

Listing 2.5: Sample of a serialized JTMQR 1.0 document.

first version 1.0, a stripped-down, cleaner version was released afterwards as
JTMQR 2.0.10 Listing 2.6 shows the corresponding JSON document with the
new syntax. Appendix A.4 provides the JSON schema definition for JTMQR
2.0.

With the introducing metadata field some information about the generated
rows and columns are provided to the consumer. Furthermore, the current
TMQL4J implementation has an TMQL extension to enable the definition of
column headers within the query, that in turn will be serialized to the aliases
field. The tuples field wraps the index ordered array of tuples, where each
entry contains all values (columns) for a single result row. Each value in a
tuple can be of any JSON value type: string, number or boolean – or a fully
serialized JTM fragment.

10See http://code.google.com/p/tmql/wiki/JTMQR to find the full specification with a
concrete list of changes.

24

1 // possible result for TMQL query:
2 // tm:subject >> instances (
3 // . ,
4 // . >> characteristics tm:name ,
5 // fn:count(. >> characteristics))
6

7 { "version":"2.0",
8 "metadata": {"columns":3, "rows":20, "aliases":[]},
9 "tuples":[
10 [{"jtm": { // each topic is serialized with JTM
11 "version":"1.1",
12 "prefixes":{"tmdm":"http ://psi.top .../ model/"},
13 "item_type":"topic",
14 "subject_identifiers":[..],
15 "instance_of":[..],
16 "names":[..]}},
17 "Foo",
18 1
19],
20 [{"jtm": /*JTM*/ },
21 "Zoo",
22 2
23],
24 ...
25],
26 "ordered": true }

Listing 2.6: Sample of a serialized JTMQR 2.0 document.

25

TMQL4J 3.1.0 already supports JTMQR by introducing the USE JTMQR
statement. To get the results of a query returned as plain JSON serialized
string, the TMQL statement only requires an additional USE JTMQR statement
as shown in Listing 2.7.

1 tm:subject >> instances
2 USE JTMQR

Listing 2.7: Sample to show the use of USE JTMQR statement.

Using TMQL to specify the request and JTMQR (or the XTM Tuple Se-
quence Encoding) as format for the response seems to be the best solution for
the required needs. It allows precise extraction of information out of a topic
map and a compact, fast way of result retrieval. Referring Listing 2.4 the
task of getting a list of construct IDs for all topics of a topic map can now be
achieved with an equivalent TMQL request as in Listing 2.8. The benefit on
applying this approach is the concrete retrieval of the distinct data without
transferring unnecessary overhead of fully serialized construct structures.

1 tm:subject >> instances (. >> id)

Listing 2.8: Retrieving the IDs of all topics using TMQL.

Next to a pure TMQL-based solution with a single query operation, ad-
ditional extensions of the remote service are possible. For instance, provid-
ing a RESTful interface to directly address concrete entity resources in a
topic map (e. g. GetOccurrenceValuesOfTopic(‘‘si:http://test’’)). But this
approach might create performance issues, if the developer of a data consum-
ing client application uses the service in a wrong purpose. Exposing almost
every resource of a topic map in a TMAPI fashioned style can lead to the
problems already discussed in Section 2.3.3. Hence it is the developers job to
correctly utilize the service. Otherwise, the client application will not perform
well or – even worse – the server application can slow down, not providing
the data as fast as it should. But this problem of misuse can also apply to a
query-only TMQL approach without the RESTful extensions.

2.4.4 Web Service

As already mentioned in the introduction of Section 2.4, the upper paragraphs
already discussed the underlying basis for a possible service interface to provide
access to topic maps stored in a distributed environment. On the level of inter-
face definition and by ignoring the specific protocol definitions, a RESTful ser-
vice can be seen as a specialized Web Service with predefined operations (GET,

26

POST, PUT, DELETE) and a given resource addressing schema. From a contract-
first perspective well defined resource-oriented interfaces can be used for web
and RESTful services in the same manner. It actually only requires a mapping
description between REST (HTTP verbs and resource location paths) and the
corresponding service operations – similar to the routing specifications in Ruby
on Rails. Hence there seems to be only little effort required to publish a REST-
ful service as a SOAP-oriented version and vice versa. Using frameworks like
Spring Remoting framework or the Microsoft .NET Windows Communication
Foundation, it might require just some configuration to expose a single service
implementation for different technologies.

In addition RESTful services are very lightweight for different aspects com-
pared to SOAP. The communication protocol does not include such heavy
headers and wrapping XML structures. Furthermore, the fixed set of service
operations (GET, POST, PUT, DELETE) result in fast, optimized RESTful services
components on top of back-end systems. Within the scope that topic maps
are plain and well structured resources, the RESTful approach seems to be
the most efficient solution compared to the web service-oriented approach.
But the possibilities to host the same service implementation with multiple
technologies improves the integration capabilities over different heterogeneous
systems.

2.4.5 Summary

The basic idea in this section, to use TMQL as request and JTMQR as response
message type of a query operation, seems to be a balanced alternative for
creating the core access to remote systems. It enables a specific and dedicated
way to extract concrete data from topic maps. Thus it can also be applied
to the RMI solution in Section 2.3 to reduce the amount of request when
implementing a TMDM-like data access.11

But another issue to provide a high available and scalable system was not
touched: the need for concurrent and asynchronous requesting of Topic Maps
data. The previously mentioned technologies like RESTful/Web service or
RPC do not automatically cover these requirements as the underlying archi-
tecture is built on a request-response model. Therefore, the following chapter
Chapter 3 introduces a new architectural solution that addresses these needs
in its core.

11Moreover, TMQL might include the possibility for distributed query handling by using
a MapReduce-like approach by dissecting the query tree into sub queries. See Section 4.3.

27

28

Chapter 3

Message-Oriented Querying
Service

In Chapter 2 the needs and an attempt to break the TMAPI-braced view on
Topic Maps engines were shown. Thus TMQL was nominated to become the
core operation for a Topic Maps service interface using serialization formats
like JTM and JTMQR for the query and data exchange. The chapter also
introduced communication technologies that may expose the services around
TMQL. Hence a RESTful service like TMIP can already be used to accomplish
the call for efficient remote systems.

But this thesis is focusing on scalability features for distributed systems.
With Maiana as Topic Maps data consuming web application, a high quantity
of requests might hit a future TMQL service. As queries against Topic Maps
stores can last between milliseconds and minutes1, neither the requested service
nor the client application should block. This leads to the requirement for
asynchronous access to Topic Maps information, that in turn should provide
concurrent querying. As Maianas core purpose is to host many topic maps
of different sizes in a Social Web like way the underlying back-end needs to
distribute the data, but should provide a fast, balanced access layer.

These claims can already be achieved by using the presented technologies
and approaches from Chapter 2. With more or less effort a RESTful or sim-
ple TMQL service can provide powerful access to topic maps. But referring
Maianas requirements, a message-oriented approach might fit better into this
scenario. Section 3.1.1 will show pros and cons for such solution.

1Next to the pure processing time for a TMQL query additional resources are needed. For
instance, the creation and the exchange of the result message takes time. See “Evaluation”
section in [Bar05].

29

3.1 Technological Overview

3.1.1 Message-Oriented Middleware

Given by the name, message-oriented middleware (MOM) is all about systems
that are used to let participants communicate in distributed environments us-
ing messages. These systems include dedicated soft- and/or hardware compo-
nents to handle the transmission of messages. In addition MOM is based on
message centric architectures and patterns that constitute the basics for clean
interfaces and the ability to create cross-platform applications with less effort.

The main purpose of such middleware component is to provide reliable and
high scalable services to allow communication between multiple partners in a
heterogeneous, remote environment. In addition features for routing, persis-
tence, transaction, failure handling and transformation are parts of message-
oriented middleware.

Compared to other distribution technologies like REST or Web Services,
MOM has advantages, when it comes to scalability requirements. It is highly
optimized for a high message throughput and inherently supports load bal-
ancing. Depending on standards and concrete MOM implementations, the
message-oriented approach also supports the following features:

• simple interoperability between participants by providing an simple API
• cross-platform integration of different applications
• flexible extensibility of runtime systems as additional worker nodes can

be attached ad hoc
• persistence of messages
• support for transactional processing
• secure communication with encryption, authentication and authorization

Before applying an additional component to a software architecture the de-
ficiencies also has to be checked. A message-oriented solution needs a dedicated
middleware in the runtime environment that requires administration (configu-
ration and maintenance) and possibly can produce failures affecting the whole
system. Without question, transmitting messages via MOM also creates ad-
ditional latencies between the communicating participants and needs further
resources like memory and processor use. But the advantages for scalability
possibilities constitute a solution using an extra component.

To develop message-oriented solutions some standards already exist, which
specify a set of features and an API. The common ones are the Advanced
Message Queuing Protocol (AMQP) and Java Message Service (JMS). Due
to a more generic definition of an message-oriented architecture and therefore
better interoperability support, AMQP was chosen for the research in this
thesis.

30

3.1.2 Available Solutions

A number of products exist to create message-oriented applications. The well-
established ones are Apache ActiveMQ/Qpid, IBM Websphere MQ, Microsoft
MSMQ or RabbitMQ. Each of those support multiple features and provide
different APIs to access the messaging functionalities.

In the scope of this thesis the MOM to be chosen should be free (preferably
open source), well-documented and easy to install and maintain. As Maiana
is a Ruby on Rails application using Java-based back-ends another aspect for
selecting the right product was the support of client libraries for Java and
Ruby. A first attempt using ActiveMQ did not satisfy referring the specified
needs – especially the given Ruby client. Instead the more recent competitor
RabbitMQ fulfills the requirements and has some further advantages:

• Leading implementation of AMQP specification.
• Easy installation process compared to others: download, extract and

run. No initial configuration required for a default setup.
• Support of many client libraries in different programming languages.
• Written in Erlang – a functional programming language with focus on

concurrency and message passing as communication paradigm between
processes.

• Different benchmarks accomplished a throughput of 10k messages per
second.

• Provides an additional simple web front-end for queue management and
monitoring.

But the nomination of RabbitMQ should not be seen as final decision. For
this thesis the development of a prototype with the need for a message-oriented
middleware is in focus. Hence the available products should be evaluated in
detail if a more concrete implementation of a distributed Topic Maps system
will be the result of this work.

3.1.3 Principles of Message-Oriented Middleware

Different standards and implementations of message-oriented middleware pro-
vide specific feature lists and naming conventions. The following explanations
are focused on the namings in the scope of RabbitMQ and AMQP.

Message Broker

The central component of a MOM solution is the so-called message broker. It
manages the infrastructure and transmission of the messages. In distributed
environments multiple connected message brokers can be instantiated to en-
hance reliability and scalability.

31

Producers and Consumers

The participating clients in a message-oriented system (connected to the mes-
sage broker) are the producers and consumers. While consumers are listing on
queues for incoming messages, a producer is creating and sending messages to
an exchange point. Consumers will be notified about new, incoming messages
by the MOM. From a conceptual perspective, a client can be a consumer and
producer in one instance. This allows to reproduce a request-response behav-
ior as it is commonly known for web service operations. But the basic idea
for message-oriented architectures is to create decoupled, independent compo-
nents that either provide or react on messages. This concept is a key element
to create concurrent, asynchronous and scalable services.

Messages

Messages are the wrapping hull of data that is send between the participating
parties in a remote environment. In the scope of AMQP and obviously most
other standards or protocols like JMS, SOAP or HTTP, a message consists
of a header with additional information as key-value pairs and a the actual
payload.

Figure 3.1: An AMQP message with header and payload.

The payload in AMQP is a simple byte stream and must not match any
concrete data structure. Hence the message format between consumer and
producer can be defined by the individual needs. In general a plain, platform-
related, binary serialization of objects, simple string messages or the use of
today’s formats like JSON, BSON or XML are possible ways to exchange
data.

Headers

The headers of messages can be compared to those of the HTTP or SOAP
protocol. They contain properties, like the routing key, priority, delivery type
or expiration of the message, that is relevant for the message broker itself.

32

Further meta information that is relevant for the consumer can also be specified
in this section. This includes i. e. a message correlation id, reply information
or custom meta data.

Queues

Each message sent by a producer won’t be forwarded directly to its recipient,
but stored in a queue. Those reflect the so called FIFO (First In, First Out)
principle, where incoming messages are collected and released (received by
the consumer) keeping the chronological order. This is the basis for an easy
asynchronous, load balanced exchange of messages, as multiple consumers can
listen to the same queue while sharing the workload in a round-robin fashioned
way.

Figure 3.2: A worker queue with two consumers.

In addition AMQP specifies different properties for a queue to enable fea-
tures like durability, exclusive use or auto-delete if no more consumers are
connected. The message broker manages the life cycle of the queues to assure
their functionality.

Exchanges, Bindings and Routing

RabbitMQ encapsulates the queues with further abstraction elements – the
so-called exchanges. Instead of sending messages directly to queues the pro-
ducer submits to an exchange that works like a delivery service point, where
the message broker is dispatching the message header and forwarding the mes-
sage to its addressed destination queues. The configuration for this routing is
defined with a so called binding between a queue and an exchange. Thus the
header of an incoming message has to match the routing key and the queue
name to be forwarded correctly.

33

Figure 3.3: An exchange bound to two queues.

Depending on the routing key configuration, four different kinds of ex-
changes can be created.

Fanout exchange
The routing key will be ignored for this kind of exchange. Thus all
connected queues will receive the message.

Direct exchange
If the producer submits a message with routing key foo only exchanges
exactly matching foo will be supplied.

Topic exchange
Works similar to the direct exchange, but allows consumers to listen to
routing keys using wildcards. E. g. a consumer listening to foo.* will
receive message sent to foo.bar and foo.zoo.

Headers exchange
The most flexible exchange type that enables routing by comparing pos-
sibly all (not only the routing key) header values with a predefined rule
set.

1 require ’amqp’
2 AMQP.start (:host => ’localhost ’) do
3 # create channel , exchange , queue and bind
4 channel = AMQP:: Channel.new
5 exchange = channel.fanout(’X-name’)
6 queue = channel.queue(’Q-name’).bind(exchange)
7

8 queue.subscribe do |header , msg| # consume
9 p header , msg
10 end
11

12 exchange.publish(’Hello World’) # produce
13 end

Listing 3.1: Sample of an AMQP consumer and producer.

From a developers perspective, connecting to a message broker like Rab-
bitMQ that implements the AMQP standard can be achieved easily. Different

34

libraries for almost every platform and programming language are available.
E. g. Listing 3.1 shows a sample implementation on how to create a consumer
and producer addressing the same queue and exchange. The sample is based
on the AMQP gem2 for Ruby. The upcoming implementation of the Topic
Maps Query Service will use the Java libraries shipped with RabbitMQ.

Creation and management of queues, exchanges and bindings can also be
done using the web front-end of RabbitMQ.

3.2 Implementation Details

Referring Section 3.1 the flexibility in defining message flows and the included
load balancing feature of message-oriented middleware are the base for the
development of a possible solution for a TMQL-based Topic Maps service.
Figure 3.4 shows the architectural overview for the prototype implementation
of a Topic Maps Query Service (TMQS) that will be described in detail in the
following sections.

Client

C

Client

C

Client

(E. g. Maiana)

Reply
Queue

X

CP

Client
ClientTopicMaps

QueryService

PC

TMQS
Queue

X

Query Service

w/ Back End

Client Side

Message Broker

TMQL JTMQR

TopicMapsEngine

w/ TMQL4J

Figure 3.4: Message-oriented approach for the Topic Maps Query Service.

The main purpose of this prototype is to proof the feasibility of a message-
oriented solution to achieve:

2See https://github.com/ruby-amqp/amqp

35

https://github.com/ruby-amqp/amqp

Scalability
by starting multiple TMQS worker processes in parallel as needed.

Extensibility
by providing flat, easy-to-implement contracts that allow different imple-
mentations against the same interfaces (e. g. to provide a simple caching
layer or an autogenous routing component).

Flexibility
due to the features of the underlying message broker. For instance, the
routing capabilities may be used to realize the sharding or fragmentation
of the Topic Maps stores for multiple TMQL service instances.

The three main layers in Figure 3.4 build up a possible scenario for a Topic
Maps-data-consuming application. The upper tier represents the consumer
side where multiple clients (e. g. multiple Maiana instances, TMQL Console,
etc.) can connect to the centered message broker (i. e. RabbitMQ). To query
the underlying Topic Maps Query Service a corresponding message addressing
a related TMQS queue has to be published to a message brokers exchange.
For simplicity the further explanations are based on a single fanout queue for
the query service (but multiple reply queues for the connected clients).

In turn, the bottom tier represents the actual service with its underlying
Topic Maps engine that provides the data. By now each service is hosted
in a separate console application.3 Hence it allows a simple scaling of the
whole service by starting multiple processes on either one single machine or
distributed over multiple nodes. This flexibility allows fast reaction to achieve
optimal load balancing to corresponding query traffic.

3.2.1 The Service Contracts

The prototype implementation for this approach combines the achievements
of the previous sections. Thus the starting point for the development was a
lightweight contract, defining the service interface. It describes a single oper-
ation named query requiring a QueryMessage object as single parameter. This
message type encapsulates the actual query and the targeted topic map using
the topicMapLocator field. It is good practice to extract operation arguments
and the return value into a separate data structure to provide better exten-
sibility of the service interface and its data definitions. On the other hand
the method returns an instance of IResultSet as direct result of the processed
query.4

This contract does not constitute the message-oriented approach. It instead
represents the core element for concrete implementations that focus on specific

3Hosting the Topic Maps Query Service as background service or inside an application
server can be an option for later productive environments.

4IResultSet is part of TMQL4J – the TMQL engine implementation from the Topic
Maps Lab.

36

1 public inter face TopicMapQueryService {
2 IResultSet query(QueryMessage queryMessage);
3 }
4

5 public f i n a l c la s s QueryMessage {
6 public String topicMapLocator;
7 public String value;
8 }

Listing 3.2: Contracts describing the Topic Maps Query Service and the
structure of the incoming query message.

TMQS-related features. For instance, a query caching layer or specialized
TMQL runners which are optimized for specific domains or distinctive types
of topic maps (e. g. very large vs. tiny, strongly vs. loosely linked maps). Due
to the encapsulation by using a contract, a concrete implementation of Topic-
MapQueryService can furthermore be used for other technologies as presented
earlier. Hence a RESTful, Web service or RMI-based solution can instantiate
the upcoming TopicMapQueryServiceImpl component and expose its operations.

37

3.2.2 The Service Implementation

With the simplicity of the contract, the implementation of the Topic Maps
Query Service is straight forward as Listing 3.3 shows. Strictly speaking it is
just a composing implementation, connecting an already instantiated TMAPI-
based implementation of a Topic Maps engine with the existing TMQL4J to get
the results for the requested query when the query operation is invoked.

1 public c la s s TopicMapQueryServiceImpl
2 implements TopicMapQueryService {
3

4 private TMQLRuntimeFactory tmqlRuntimeFactory;
5 private TopicMapSystem tms;
6

7 public TopicMapQueryServiceImpl(TopicMapSystem tms) {
8 th is .tms = tms;
9 tmqlRuntimeFactory = TMQLRuntimeFactory.newFactory ();
10 }
11

12 public IResultSet query(QueryMessage msg) {
13 String mapLocator = msg.topicMapLocator;
14 TopicMap map = tms.getTopicMap(mapLocator);
15 ITMQLRuntime runtime = tmqlRuntimeFactory.newRuntime ();
16

17 return runtime.run(map , msg.value).getResults ();
18 }
19 }

Listing 3.3: Implementation of the Topic Maps Query Service.

The more complex details are addressing the hosting component of the
Topic Maps Query Service. To connect to the RabbitMQ message broker, the
provided Java client libraries were used. But it requires some wiring between
the participating components (Topic Maps Query Service, TMQL4J, TMAPI-
based Topic Maps engine and the RabbitMQ client API). Furthermore, the
extensibility of the service had be considered when designing the application.5
Hence gaining a loose coupling, one essential design pattern for this solution
was the Dependency Inversion Principle. This in turn allows the use of an
Inversion of Control container (IoC) to automatically instantiate all required
components for the application context to finally host the Topic Maps Query
Service. As the underlying development platform is Java a common imple-
mentation of an IoC container can be found in the Spring Framework. The
following figure shows the dependencies between all components of the final
Topic Maps Query Service.

5Possible extensions for the Topic Maps Query Service might be additional operations
on the Topic Maps data (RESTful access, import/export) or administrative features like
caching, security etc.

38

TopicMap
QueryService

TMAPI
TopicMapSystem

TopicMap
QueryServiceImpl

TMQL4J
Runtime

TwoWay
ActionHandler

Query
ActionHandler

RabbitMQ

Connection

RabbitMQ

Channel

TMQS
Consumer

ReplyingJSON
Consumer

Autobinding
Consumer

RabbitMQ

DefaultConsumer

QueryService
Host

Interface

Class

Spring Bean

External Components

Dependency

Generalization

Figure 3.5: Dependencies of the Topic Maps Query Service components.

Besides the TopicMapQueryServiceImpl and its underlying TopicMapQueryService
contract, helper classes were implemented to enable an easy wiring of the
standalone service component with the RabbitMQ client library inside of an
hosting console application. All required class instances are configured and
managed as so-called Spring Beans. The BeanFactory of the Spring Framework
can initialize an Application Context from configurations described in .xml
files. By using this declarative way and following the Dependency Injection
pattern, makes it easier to stick together all components.

A future TMQS client has to initialize a reply channel (a separate, exclusive
queue) and should provide the generated queue name6 to the service with each
request message. In turn the Topic Maps Query Service itself works as request-
response service. Hence the query operation is two-way as it receives the query
message and returns the converted results of the TMQL4J runtime to the
requesting client. To map between the request-response behavior of the Topic
MapQueryServiceImpl and the message-oriented access layer the QueryServiceHost
needs to implement:

• a consumer that listens on the query request queue
• a producer that publishes the result on the clients private reply queue

The generic ReplyingJSONConsumer is an implementation that combines these
two functionalities. Therefore, it requires the injection of an object imple-
menting the TwoWayActionHandler interface (like the QueryActionHandler) and an
instance of a RabbitMQ Channel.

6The message broker creates a unique name for exclusive, auto-generated message queues.

39

The TMQSConsumer is not a concrete implementation, but represents a bean
instance of a ReplyingJSONConsumer defined within the ApplicationContext.xml
. Due to the composition-based approach it does not need any concrete
specialization of the base class. As the TMQSConsumer instantiates a Replying
JSONConsumer it needs the already discussed TwoWayActionHandler instance and a
RabbitMQ Channel object. Consequently the setup of the whole service host
converges at this point to the so-called composition root.

1 public inter face TwoWayActionHandler <TIn , TOut > {
2 public TOut handle(TIn msg) throws Exception;
3 public Class <TIn > getRequestMessageType ();
4 public Class <TOut > getReplyMessageType ();
5 }

Listing 3.4: Interface definition for the QueryActionHandler implementation.

As the ReplyingJSONConsumer needs a TwoWayActionHandler an implementa-
tion of this interface had to be developed. One concrete descendant of the
handler declaration is the QueryActionHandler that implements the generic in-
terface with concrete types for TIn (=QueryMessage) and TOut (=byte[]). Its con-
structor expects a TopicMapQueryService implementation to be injected when a
new instance will be created. Furthermore, the handle method must be imple-
mented which finally should extract the relevant information from the incoming
QueryMessage and invokes the responsible query method at the already injected
TopicMapsQueryServiceImpl instance.

The final console application creates the hosting environment by load-
ing the ApplicationContext.xml using the FileSystemXmlApplicationContext class
from the Spring Framework. The static main method allows a single argument
to use different .xml files to be used for instantiation. Therefore, multiple bean
configurations can be set up to allow a flexible hosting of the same service on
different nodes in different environments. The full beans configuration of the
application context can be found in Appendix A.5.

1 public c la s s Server {
2 public s ta t i c void main(String [] args) {
3 String contextFile = "ApplicationContext.xml";
4 i f (args.length > 0) contextFile = args [0];
5

6 AbstractApplicationContext ctx =
7 new FileSystemXmlApplicationContext(contextFile);
8 ctx.registerShutdownHook ();
9 }
10 }

Listing 3.5: Console application host for the Topic Maps Query Service.

40

3.3 Benchmarks

By now the message-oriented Topic Maps Query Service solution only supports
the TMQL-based query operation. Therefore, only the two TMQL operations
TMQLTuples and TMQLOccCountFilter were benchmarked.

Compared to the previous benchmarks in Sections 2.2.1 and 2.3.2 the num-
ber of processes increased with each setup by one. Due to the requirement of
the additional message broker component the final list of processes contains:

• Benchmarking client application
• RabbitMQ message broker
• Topic Maps Query Service (with instantiated MaJorToM and TMQL4J)
• Redis Server (for the MaJorToM-Redis test case)

All service components shared the same machine for each environment
(local, LAN, WAN). Only the benchmarking client application was executed on
different nodes except for test cases in the local environment.

MaJorToM-InMemory MaJorToM-Redis
Operation Local LAN WAN Local LAN WAN Requests

/ TMQLTuples 0.07 s 0.08 s 0.10 s 0.12 s 0.13 s 0.15 s 1
/ TMQLOccCountFilter 0.35 s 0.34 s 0.41 s 0.45 s 0.46 s 0.52 s 1
∗ The same pokemon.ltm topic map as in Section 1.2.3 and Section 2.3.2

Table 3.1: Durations for different query operations with TMQS

Referring Table 2.1 a single query obviously takes longer in distributed
environments compared to its standalone in-process competitor. This was
already expected and visible when discussing the benchmark results of Table
2.2 in Section 2.3.2. The latencies of the message-oriented approach now are
related to two phase transmissions (client – message broker – TMQS) and
possible internal durations of the message broker. But the results for TMQS
show that the querying is faster as its preceding TMoR approach – especially
for the LAN or WAN environment. This is the result of the reduction of
number of requests needed to get the final query response. The idea behind
the TMoR prototype was the almost direct mapping of the TMAPI to an
remote contract without a segregated query operation. This in turn required
an instance of TMQL4J to be initialized on the client side. Therefore, it is
parsed and executed locally. Hence each step in the query tree results in one
or more remote TMAPI calls using the actual TMoR interfaces. In short: one
TMQL query results in one or more TMAPI calls depending on the query
statement and the underlying size of the topic map.

With the Topic Maps Query Service the instance of TMQL4J is now located
on the server side. Thus a query is passed to the service as-is and only needs a

41

single request-response pair to be executed. The actual data retrieval against
the queried topic map finally results in multiple TMAPI calls which are invoked
in-process.

The previous benchmark setup did not cover the possibilities of concurrent
querying. To emphasize the scalability features an additional scenario with
multiple simultaneous requesting clients was created using an additional server
machine.

Benchmark Client

Test Server II

RabbitMQ
Test Server I

8x Concurrent
Benchmark
Processes

4x TMQS
Instances

4x TMQS
Instances

Figure 3.6: Scalability Scenario for Topic Maps Query Service

Extending the number of TMQS processes will increase the amount of
possible concurrently running TMQL queries. Figure 3.6 shows a configuration
where two quad core servers are hosting one TMQS process per core. This in
turn enables eight long lasting TMQL queries to be executed concurrently.
As the actual workload is about processing the TMQL query, the overhead
for routing the incoming query requests to the final worker process can be
ignored. For a further extension of this scenario it only needs the following
steps to enhance the service capabilities:

• Attach an additional server machine to the the same network
• Run the required TMQS console instances

3.4 Summary

With the prototype implementation of the Topic Maps Query Service and
its benchmarking results the advantages of a message-oriented approach were

42

shown in this chapter. The use of a middleware tier that supports asynchronous
communication and load balancing out of the box allows the configuration of
a highly flexible and scalable system.

3.4.1 Extensibility Ideas

As already mentioned in previous sections, one possible extension to enhance
the scalability and to show its flexibility can be the implementation of a caching
layer. Referring the given architecture it needs an additional implementation of
the TwoWayActionHandler interface to provide a specialized action handler that
internally will not execute the TMQL query, but for instance uses a simple
in-memory key value store7 to realize caching. If the cache does not already
contains an entry for the incoming request message, it in turn will forward
the query to an responsible exchange point where consumers with an original
TopicMapQueryService implementation are listening to.

This example can be used to emphasize the flexibility of a message-oriented
middleware. Hence the whole implementation, configuration and execution
of the additional caching layer can be realized without shutting down the
already running productive system with a bunch of Topic Maps Query Service
processes. In fact the newly created caching nodes can be added silently.

Another idea will benefit from the routing feature provided by an AMQP-
based middle tier. It can be used to configure a weighted load balancing.
Focusing on the underlying Topic Maps data it therefore can be possible to
group multiple maps to segregated domains. With the use of the AMQP rout-
ing features those domains can then be used to configure dynamic forwarding
of query request messages to appropriate worker processes as needed. For ex-
ample: Two queues named important and background might be established in
the message broker whereas seven TMQS worker nodes are listening to the
important queue, but only one is behind the background queue. Hence the load
balancing can be controlled by the number of attached processes to the differ-
ent queues. A list of queued query requests in the important queue will now
have more CPU time resources (by a factor of seven) compared to queries in
the background queue.

Thinking of the more complex routing options for topic and headers ex-
change types, this method has even more potential to precisely adjust load
balancing.

7A key value pair for the caching store might be the combination of the hashed query
(plus the requested topic map locator) and its JTMQR result.

43

3.4.2 Limitations and Known Issues of The Current So-
lution

The given solution in this chapter was focusing on issues for read-only oper-
ations. Even if TMQL allows the execution of ADD or UPDATE statements, the
current spike does not care about possible sync problems that may occur where
such queries are submitted. In fact there is no transaction management that
should prevent inconsistent states of the underlying Topic Maps data. Thus it
may lead to an instable system, where single worker nodes may fail. Modifying
TMQL queries should therefore be prohibited.

Additionally there is currently no handling of lost connections or any other
exception management for the TMQS workers. The main purpose of the pre-
sented solution was to proof feasibility and the performance benefits of such
an approach.

Next to the known issues about missing query filtering and failure handling,
other structural problems exist. The bottom data tier of the whole system still
can be the bottleneck when concerning about an possible increase of concurrent
queries or the overall data volume of the underlying topic maps. As the query
processing worker nodes can be instantiated multiple times, they all have to
access the same data source. Hence it requires a unique data provider for
all nodes or a distributed solution. Due to a missing synchronization feature
between multiple distributed TMQS worker instances an in-memory TMAPI-
based Topic Maps engine can therefore not be used as back-end. Referring
Table 2.1 the MaJorToM Redis back-end seems to be the only existing choice
for this problem. While it is acceptable fast for reading operations, it also
supports the distributed access to its databases. But in the scope of this
thesis, a measurement for a real world scenario using this integrated approach
was not performed.

44

Chapter 4

Outlook

The previous chapters addressed the accessibility layer for Topic Maps-based
back-ends. Hence the attempt to find solutions was made from a top view per-
spective highlighting distribution technologies for remote access. But focusing
on internals of Topic Maps engines in general the message-oriented approach
can be used to solve other problems.

4.1 Message-Oriented Approaches for Merging
Topic Maps

In fact one primary challenge in the Topic Maps world is the way to implement
the merging feature. Hence referring the TMDM, topics with same identifiers
are defined to be the same1 which enables to cross the boundaries of a single
topic map. The complexity of detecting merging topics in two topic maps is
similar to sort algorithms, as lists of topic identifiers has to be compared with
the items in the opposing lists. In a straight forward implementation each
topic of one topic map has to be compared with all topics of another topic
map.

Two basic approaches for realizing the merging rules within TMAPI-based
Topic Maps engines are commonly possible:

Static Merging
With the merge initiation of two topic maps the comparison and merging
process runs until all merging nodes are found. Hence a single merged
topic map is the result.

Ad Hoc or Virtual Merging
The invocation of the merging process does not automatically look up

1In addition to the topic equality rules, reifiable constructs are defined to be the same
too, if their values and the reifying topic are equal. But for simplicity this rule will be
ignored for further discussions.

45

overlapping topics. Instead the merging happens dynamically when ac-
cessing single topics of the virtually merged topic map.

Both approaches have pros and cons. The static merging requires initial
processing time and additional memory resources. Referring the read-only
TMQS use case, a full merging of the whole topic maps might not be necessary
if only e. g. 5% of information is in question for later querying tasks. In
addition static merging has bad support for dynamic modifications in topic
map sources. Thus it needs some effort to track changes in underlying maps
that might effect the merged result. The advantage for such a solution is the
responsiveness. It should be as fast as accessing a standard map – obviously
the merged map is a topic map.

In turn, a virtually merged mapping needs more resources when accessing
the topic map subjects in realtime. The lookup for matching items happens
live while reading entities of a map. Introducing a caching layer should reduce
occurring latencies.

Figure 4.1: Architectural Schema of Hatana.

With Hatana, the Topic Maps Lab provides one implementation for such an
ad hoc solution. Speaking in terms of Maiana, those virtual maps are so-called
containers that are used to manage references to “real” topic maps. Hatana
supports caching and implements the TMAPI. It therefore can be utilized as
source for other TMAPI-based components like TMQL4J. Ergo, each access
on a Topic Maps construct in such an virtual map results in a lookup across all
referenced sub topic maps (if the inspected construct is not already cached).

46

4.2 Merge Registry Service

Using either the static or virtual merging depends on the future use case and
the expected environment parameters. For instance:

• Are the source topic maps static or are they modified frequently?
• Will the given hardware provide sufficient resources for the Topic Maps

engines and the merging process?
• What is the absolute size (TAO) of the topic map sources?
• Which merging ratios (i. e. merged topics : overall number of topics) are

expected?

Thus it might be a good compromise to provide a hybrid approach that
supports best of both worlds.

Besides Hatana, one idea for Maianas container feature is initially based
on a static merging approach. But instead of creating new topic entities with
all merged sub constructs (associations, occurrences, names and variants), the
merging is only concentrated on the actual topic identifiers to prevent duplica-
tion of data. This method will keep the original source topic maps untouched
and will only persist the merge information (i. e. the references of the merging
topics). Furthermore, the merge process will run asynchronously in the back-
ground after a container was modified (i. e. adding or removing topic map
references). The use of message-oriented middleware fits in this scenario to
enable access to the merge information and to send notification about changes
in the source topic maps by the underlying Topic Maps engines.

47

1 public inter face MergeRegistryService
2 {
3 void registerTopicMap(String topicMapLocator ,
4 List <String[]> identifiers);
5 void unregisterTopicMap(String topicMapLocator);
6

7 int createContainer(String [] tmLocators);
8 void destroyContainer(int containerId);
9 bool isContainerMerging(int containerId);
10

11 MergedTopics findInContainer(int containerId ,
12 String [] identifiers);
13 }
14

15 public c la s s MergedTopics extends HashMap <String , String[]> {}

Listing 4.1: Contracts describing a possible MergeRegistryService and its
request result data structure.

The runtime implementation of a Merge Registry Service might define
methods as presented with MergeRegistryService interface in Listing 4.1 to han-
dle the following three core operation phases:

Topic map registration
This initial step is required to inform the Merge Registry Service about
related topic maps. As only the subject identifiers, subject locators and
item identifiers of topics are relevant for merging, simple lists of string
arrays containing the URIs cope with the needs. Hence not the full topic
map will be submitted for an registration, but a list of all topic identifiers
grouped by topic2. Listing 4.2 shows the JSON representation of a small
sample topic map tm_foo containing only the identifiers of two topics a
and b.

1 { "http :// example.org/tm_foo":[// topic map ’Foo’
2 ["si:a", "ii:x"], // topic ’a’
3 ["si:b"] // topic ’b’
4]}

Listing 4.2: Submitted list of topic identifiers for registration in Merge Registry
Service.

All registered topic maps and their containing topic identifiers are stored
in a key-value store using the topic maps locator URI as key. Listing 4.3
depicts the structure in a JSON sample.

2To distinguish between the identifier types all representations need to be prefixed with
corresponding abbreviations as defined for the JTM format: si:, sl: or ii:.

48

1 { "http :// example.org/tm_foo":[
2 ["si:a", "ii:x"], // topic ’a’
3 ["si:b"] // topic ’b’
4],
5 "http :// example.org/tm_bar":[
6 ["si:a", "si:b"] // bridging topic ’a’ and ’b’
7 ["si:c"] // topic ’c’
8]}

Listing 4.3: Storage of topic map references and their topic identifier lists in
Merge Registry Service.

Container management
By defining a container using references to the previously registered Topic
Maps (i. e. tm_foo and tm_bar) the merging can start asynchronously in
the background. Within the merge process the provided findInContainer
method already enables the lookup of partially merged topic identi-
fier lists. This feature in turn can be used to include intermediate
data for queries against containers that are currently merging. Invok-
ing isContainerMerged can be used to get the current merging status of a
container for front-end notification.
The structure for the internal storage of the merge information can be
realized as key-value dictionary too. Given a unified list of the topic
identifiers of all topic maps that are referenced in the container, each
identifier will be used as key addressing an array of the merged topic
identifiers. Listing 4.4 shows a possible structure to store container ref-
erences and the resulting merge index.

1 { "merged_foo_and_bar":{
2 "references":[
3 "http :// example.org/tm_foo",
4 "http :// example.org/tm_bar"],
5 "merged_index":[
6 "si:a":["si:a", "ii:x", "si:b"],
7 "ii:x":["si:a", "ii:x", "si:b"],
8 "si:b":["si:a", "ii:x", "si:b"],
9 "si:c":["si:c"]
10]},
11 "empty_container":{
12 "references":[],
13 "merged_index":[]
14 }}

Listing 4.4: JSON representation of container definitions and the actual merge
registry in the Merge Registry Service.

49

Query transformation
For the remaining functionality a specialized TMQL engine needs to
be implemented. It should use the merge knowledge, provided by the
Merge Registry Service if queries were executed targeting containers.
Internally the query will then be translated by replacing the involved
topic identifiers in the query string with the list of merged identifiers.
Those modified statements in turn can be used to query all affected topic
maps concurrently using the distributed TopicMapsQueryService. Finally
the returned results have to be merged again before creating the JTMQR
response message for the client. Figure 4.2 shows a possible workflow of
a query operation that uses a container as data source.

Client

TMQS

query(Q)

TMQL
Transformer

JTMQR
Merger

MergeRegistry
Service

�ndInContainer()

query(Q t1,t2..tn)
topicIDs

JTMQR 1,2..n

JTMQR merged

Figure 4.2: Workflow of query processing for the Merge Registry Service.

As already shown with TMQS in Section 3.2, a distributed configura-
tion of multiple concurrent working MergeRegistryService nodes using message-
oriented middleware seems to be a possible way to enable load balanced scal-
ability for the merge and query process.

50

4.3 Distributed TMQL Processing on Merged
Topic Maps

As the querying against containers requires the merge information, it can ben-
efit from the previous idea of extracting the merge process into a separate
service. Assuming all service nodes have access to the same shared Topic
Maps data, internal parts of the query process can be parallelized too.

The most common way to implement a query language processor is to
follow the ideas of compilers. It requires initial lexical analysis and parsing
to achieve a stage where the binding to an actual processing component can
be established. In fact TMQL4J follows this path and internally produces a
so called expression tree that provides a hierarchical structure (see ParserTree
Impl class) reflecting the canonicalized query statement. After the tree was
built an interpreter walks along the tree, retrieving the requested data from
the underlying topic map for each tree node to finally create the IResultSet
instance. A sample tree for a TMQL query can be found in Appendix A.6.

After inspecting the internals of TMQL4J, the entry point to create a
custom expression tree interpreter was found in the ParserTreeImpl. This en-
ables the distribution of parted sub query trees by developing a specialized
IExpressionInterpreter.

Referring Appendix A.6, the new interpreter should be focused on tree
nodes like Anchor and Step that are actually related to sets of topics. Hence
these nodes require a lookup in the Merge Registry Service to find matching
merge information about the same subject in different maps. If a topic occurs
in multiple maps, a parallel sub querying on lower parts of the query expression
tree can be triggered. The method of spawning sub query process can is as
recursive way to distribute the workload.

Each sub query worker obviously needs information about the current state
of the query process. In fact a serialized representation of the query expression
tree with the possibility to address the current node in progress are required.3
In turn, the child processors can now execute the sub queries using this infor-
mation and the required access to topic maps and the merge data.

3For rapid prototyping the whole query can simply be submitted as full statement to be
lexed and parsed again in the sub query node.

51

Figure 4.3: Data required for Sub Querying: the Query Expression Tree itself,
a pointer to address the sub query entry point and possible intermediate results
of previous sub queries.

In addition, already achieved intermediate results and global information
(e. g. prefixes defined in the statement) should be accessible to sub processes
handling query fragments. Literally the proposed data structure for sub queries
requires additional fields to provide the intermediate results. Depending on the
complexity of the queries and the – more important – size of a container and
its referenced topic maps the intermediate results can grow quickly. Hence it
might be useful to share those temporary information with specialized infras-
tructure like Redis instead of pushing those data as message overhead between
the multiple query processor nodes each time.

The distribution of sub queries furthermore requires correlation manage-
ment in the parent nodes to track the dependencies between a sub query and
its origin. Using a concept of tasks might be helpful to gain asynchronous
behavior for the multiple sub queries, similar to the MapReduce approach. In
detail, stacks can be used to keep the knowledge about running jobs. If the list
of tasks is cleared, the distribution of sub queries becomes synchronized. Hence
the prepared result of all sub queries can be returned to the parent requesting
node – that finally is the client. But before returning any results to the parent
node, the sub results may need to be processed. This includes merging, filter-
ing, aggregation or simply bypassing all sub results to the parent. Figure 4.4
depicts the message flow for a sample query.

All in all, such architecture requires query nodes to be implemented as
root and sub query processors in a single component. Due to its asynchronous
approach this enables instances to manage sub queries from different root nodes
while waiting for other processes to complete tasks of another query. Hence
an inherent load balancing can be achieved easily by using message-oriented
middleware as central distribution infrastructure.

As this proposal is just an theoretical idea there is no concrete implemen-
tation of a prototype available at time of writing.

52

TMQS
Queue

Client

TMQS 1

TMQS 3

TMQS 2

JTMQR TMQL

SQ1-3

SQ1-2
Result

SQ1-2

SQ1-2-2

SQ1-2-2
Result

SQ1-3
Result

SQ1-1
Result

SQ1-1

SQ1-2-1
Result

SQ1-2-1

Figure 4.4: Sample of sub querying with extended Topic Maps Query Service
instances. The initial TMQL statement from the client will be divided into three
sub queries SQ1-1, SQ1-2, SQ1-3 and distributed to the three TMQS nodes4. In
turn TMQS 2 receives SQ1-2 and will divide it again into SQ1-2-1 and SQ1-2-2.
After all results were sent back the initial root TMQS 1 the final JTMQR response
message will be created and returned to the client.

53

4.4 Combining Presented Approaches

The Topic Maps Query Service with an extension to support distributed sub
querying now fits into a larger scenario as shown in Figure 4.5. This configu-
ration can be built upon multiple instances of Merge Registry Service and ele-
mentary Topic Maps Management Services next to the TMQS workers. With
the use of Redis (for topic maps data persistence and the additional merge in-
formation) a sharable persisting basis is necessary to provide all services with
the same consistent data.

Redis

TopicMap

QueryService

CreateContainer

DestroyContainer

AddTopicMap

RemoveTopicMap

TMQL

Query

MergeRegistry
Service

TopicMap
Management

Service

GraphDB

ImportTopicMap

ExportTopicMap

GetTopics

...

FindInContainer

JTMQR

Figure 4.5: Architectural schema of a distributed Topic Maps Query Service
supporting partial sub querying.

54

The given arrangement of services is a flexible system with support of easy
scalability as it is build on a message-oriented architecture with well-defined
message contracts for communication. Sticking all mentioned approaches to-
gether, an ideal workflow sequence for such a system will then consist of the
following three phases:

Manage Topic Maps
Suppling shared topic maps data using an import service to enable the
upload of topic maps in common data formats (XTM, LTM, JTM, etc.).
Those can be accessed afterwards from clients directly using RESTful
operations. Using JTM or XTM fragments as serialization format enables
the partial access to the content of the maps.

Manage Containers
Create (and delete) virtual merge containers that allow adding and re-
moving references to previously imported maps. Each change in a con-
tainer may automatically trigger an update in the merged virtually in a
background process. This task extracts and saves the significant merge
information into a shared data store (e. g. a graph database). The
merging can be processed in parallel as described in Section 4.2.

Querying Maps and Containers
A set of query services are consuming queues that can be filled with
query request messages from clients (as shown in Section 3.2). A query
can either address a single map or a virtual container. For containers
the specialized processor described in previous Section 4.3 can produce
sub queries in a distributed manner.

This certainly needs some tweaks and finally is not implemented by now,
but can be seen as basis for a robust and flexible solution.

55

56

Chapter 5

Conclusion

Using message-oriented middleware provides a flexible environment to create
scalable systems. The underlying concept of queues, producers and consumers
enforces a component-oriented thinking using contract-first principles when de-
signing the architecture for an data intensive service application like Maiana.
Message brokers like RabbitMQ are easy to configure and enable cross-platform
access to a messaging system by providing different client libraries for develop-
ers. This thesis showed how to use these concepts to improve computationally
intensive operations in Topic Maps applications. In the first place the data
extraction by running queries against topic maps can be parallelized and there-
fore be scaled. This can be achieved by exposing multiple Topic Maps Query
Service worker processes on one or more machines that are connected to the
same message broker queue listening for query request messages. The next
idle worker will receive and process the request until the queue is empty.

Based on this technique of distributing decoupled query units, other fea-
tures of the Topic Maps world can be solved. In fact the Outlook chapter
presented approaches to handle the Topic Maps merging problem. By extract-
ing the actual process into a dedicated Merge Registry Service, the search
for merging topics can be executed concurrently. Furthermore, it shows that
already found results can be used immediately while the merging is still in
progress.

Attaching more machines to the existing network to enable spawning of
new worker processes, is a typical scale-out procedure. Looking at today’s
cloud computing services those loosely coupled worker implementations are the
basis when thinking of a bigger, global idea. Hence a dynamically workload-
dependent scaling of a such a service seems to be feasible.

At the moment of writing, the underlying TMAPI-based back-end bindings
(using the RTM libraries) of Maiana were already replaced with a TMQL-based
access layer. Even though not all features of Maiana can be realized using a
pure TMQL solution by now, a first step to decouple the monolithic TMAPI
stack and to enable flexibility and scalability was made.

57

Furthermore, this work depicted essential conceptual issues in the scope of
service-oriented architectures. Distributed systems need a different point of
view when thinking of interfaces and data transmission. For instance, TMAPI
should not be used as contract for remote operations. The interface is more or
less reflecting a data structure and defines methods to access elementary Topic
Maps data. Anyway, TMAPI is still a good choice for internal atomic Topic
Maps features in the scope of a single client-side process. Additionally the
JTMQR data structure was developed in this work to enable the transport of
TMQL results back to the client. It is wrapping the JSON Topic Maps format
to allow submission of single Topic Maps constructs.

Finally, the discussed approaches do not represent a generic solution for all
Topic Maps-related performance issues. They mainly target the scalability and
concurrency problems that actually occur within the Maiana web application.
This thesis assumed that many heterogeneous, independent topic maps coexist
in the same environment, whereas multiple consumers need read access to
fragments of those data pools. In fact not all performance issues could be
solved within this thesis. The bottom layer, responsible for persisting and
sharing the raw Topic Maps data is still based on the Topic Maps Data Model
(see [TMD08]). Using such relational normalization, the retrieval of constructs
requires multiple database queries. Hence a renewal of the data layer is needed
to complete the concept of distribution. Nevertheless, the prototypes presented
in this thesis used MaJorToM-Redis, as it represents a persisting Topic Maps
back-end with acceptable performance.

Overall, the results of this work can be seen as basic concept for further
implementations that efficiently use a message-oriented architecture to create
scalable Topic Maps services.

58

Bibliography

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
Clouds : A Berkeley View of Cloud Computing Cloud Computing
: An Old Idea Whose Time Has (Finally) Come. Computing,
pages 07–013, 2009.

[Ahm09] Kal Ahmed. Making Topic Maps SPARQL. In Proceedings of the
TMRA 2009 - Linked Topic Maps, 2009.

[Bar05] Robert A Barta. TMIP, A RESTful Topic Maps Interaction Pro-
tocol. In Extreme Markup Languages, 2005.

[Bar09] Getting started with AMQP and RabbitMQ. http://www.
infoq.com/articles/AMQP-RabbitMQ, 2009. [Online; accessed 8-
February-2011].

[BDHM08] Khalid Belhajjame, Mathieu D’Aquin, Peter Haase, and Paolo
Missier, editors. First International Workshop on Semantic Meta-
data Management and Applications, SeMMA 2008, Located at the
Fifth European Semantic Web Conference (ESWC 2008), Tenerife,
Spain, June 2nd, 2008. Proceedings, volume 346 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2008.

[Cer10] Robert Cerny. JSON Topic Maps 1.1. http://www.
cerny-online.com/jtm/1.1/, 2010. [Online; accessed 24-March-
2011].

[DS10] Haig Djambazian and Rob Sladek. Case Study of Scientific Data
Processing on a Cloud Using Hadoop. Data Processing, pages 400–
415, 2010.

[EML05] Proceedings of the Extreme Markup Languages 2005 Conference,
1-5 August 2005, Montr{é}al, Quebec, Canada, 2005.

59

http://www.infoq.com/articles/AMQP-RabbitMQ
http://www.infoq.com/articles/AMQP-RabbitMQ
http://www.cerny-online.com/jtm/1.1/
http://www.cerny-online.com/jtm/1.1/

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, UNIVERSITY
OF CALIFORNIA, IRVINE, 2000.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[Gar05] Lars Marius Garshol. tolog - A Topic Maps Query Language. In
Lutz Maicher and Jack Park, editors, Proceedings of the TMRA
2005, volume 3873 of Lecture Notes in Computer Science, pages
183–196. Springer, 2005.

[GB06] Lars Marius Garshol and Dmitry Bogachev. TM / XML – Topic
Maps Fragments in XML, 2006.

[Gre08] Daniel Gredler. Java Remoting: Protocol Bench-
marks. http://daniel.gredler.net/2008/01/07/
java-remoting-protocol-benchmarks/, 2008. [Online; ac-
cessed 15-July-2011].

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Professional, 2003.

[KHK10] Yuuki Kuribara, Takeshi Hosoya, and Masaomi Kimura. TOME:
The Topic Maps Database Extended. In Proceedings of SEATUC
Symposium, pages 245–248, 2010.

[KK10] Yuki Kuribara and Masaomi Kimura. Inquiry Optimization Tech-
nique for a Topic Map Database. In Proceedings of TMRA 2010 -
Information wants to be a Topic Map, pages 53–62, 2010.

[LK09] Hyun Jung La and Soo Dong Kim. A Systematic Process for
Developing High Quality SaaS Cloud Services *. Development,
pages 278–289, 2009.

[MP06] Lutz Maicher and Jack Park, editors. Charting the Topic Maps Re-
search and Applications Landscape, First International Workshop
on Topic Maps Research and Applications, TMRA 2005, Leipzig,
Germany, October 6-7, 2005, Revised Selected Papers, volume
3873 of Lecture Notes in Computer Science. Springer, 2006.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Programmers. Pragmatic
Bookshelf, first edition, May 2007.

60

http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/
http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/

[SR08] Silvia Stefanova and Tore Risch. Viewing and Querying Topic
Maps in terms of RDF. In Khalid Belhajjame, Mathieu D’Aquin,
Peter Haase, and Paolo Missier, editors, SeMMA, volume 346 of
CEUR Workshop Proceedings, pages 69–83. CEUR-WS.org, 2008.

[Tan02] Andrew S. Tanenbaum. Computer Networks (4th Edition). Pren-
tice Hall, 2002.

[TMD08] Topic Maps – Data Model. http://www.isotopicmaps.org/sam/
sam-model/, 2008. [Online; accessed 3-April-2011].

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object
Model for the Java System A Distributed Object Model for the
Java TM System. In Proceedings of the USENIX 1996, number
June, 1996.

[ZL08] Jiangong Zhang and Xiaohui Long. Performance of Compressed
Inverted List Caching in Search Engines. Byte, pages 387–396,
2008.

61

http://www.isotopicmaps.org/sam/sam-model/
http://www.isotopicmaps.org/sam/sam-model/

pgFouine: PostgreSQL log analysis report

Overall statistics | Queries by type | Queries that took up the most time (N) | Slowest queries | Most frequent queries (N) | Slowest queries (N)

Normalized reports are marked with a "(N)".

Generated on 2010-10-25 15:48

Parsed C:\Program Files (x86)\PostgreSQL\8.4\data\pg_log\postgresql-2010-10-25.log (16,115 lines) in 30s

Log from 2010-10-25 15:46:31 to 2010-10-25 15:47:39

Overall statistics ^

Number of unique normalized queries: 40

Number of queries: 4,007

Total query duration: 5.8s

First query: 2010-10-25 15:46:31

Last query: 2010-10-25 15:47:39

Query peak: 1,112 queries/s at 2010-10-25 15:46:40

Queries by type ^

Type Count Percentage

SELECT 3,851 96.1

INSERT 150 3.7

Queries that took up the most time (N) ^

Rank
Total

duration

Times

executed
Av. duration (s) Query

1 2.2s 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

2 0.7s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_scope = 0;

Show examples

3 0.6s 0.01 SELECT id, id_parent FROM roles WHERE id_player = 0;

Show examples

4 0.4s 0.00 SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 0 AND

r.id_locator = l.id;

Show examples

5 0.4s 0.00 SELECT id FROM names WHERE id_parent = 0;

Show examples

6 0.3s 0.00 SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers AS r WHERE id_topicmap = 0 AND

reference = '' AND l.id = r.id_locator AND r.id_topic = t.id;

Show examples

7 0.3s 0.00 SELECT id FROM roles WHERE id_parent = 0;

Show examples

8 0.3s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_identifiers AS r, topics AS t WHERE r.id_topic = 0

AND r.id_locator = l.id AND t.id = r.id_topic;

Show examples

241

369

104

109

206

112

59

155

Appendix A

Appendix

A.1 MaJorToM PostgreSQL Log Analysis Re-
port (Before Optimization)

See also: MaJorToM issue 68

http://code.google.com/p/majortom/issues/detail?id=68

9 0.2s 0.00 SELECT DISTINCT id_theme FROM rel_themes WHERE id_scope = 0;

Show examples

10 0.2s 0.00 SELECT id FROM occurrences WHERE id_parent = 0;

Show examples

11 0.1s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_type = 0;

Show examples

12 0.0s 0.01 SELECT id, id_parent FROM roles WHERE id_player = 0 AND id_type = 0;

Show examples

13 0.0s 0.00 SELECT id_scope FROM names WHERE id_topicmap = 0;

Show examples

14 0.0s 0.00 WITH iis AS (SELECT id_construct FROM rel_item_identifiers, locators WHERE id = id_locator AND

reference = '')SELECT id, id_parent, 0 AS other, '' AS type FROM topics WHERE id IN (SELECT

id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM

associations WHERE id IN (SELECT id_construct FROM iis)AND id_topicmap = 0 UNION SELECT id,

id_parent, 0 AS other, '' AS type FROM names WHERE id IN (SELECT id_construct FROM iis) AND

id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM occurrences WHERE id IN (

SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT v.id, v.id_parent, n.id_parent, '' AS type

FROM variants AS v, names AS n WHERE v.id IN (SELECT id_construct FROM iis) AND v.id_parent = n.id

AND v.id_topicmap = 0UNION SELECT id, id_parent, 0 AS other, '' AS type FROM roles WHERE id IN (

SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, 0 AS id_parent, 0 AS other, '' AS

type FROM topicmaps WHERE id IN (SELECT id_construct FROM iis);

Show examples

15 0.0s 0.00 INSERT INTO locators (reference) SELECT '' WHERE NOT EXISTS (SELECT id FROM locators WHERE

reference = '') RETURNING *;

Show examples

16 0.0s 0.03 SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type AND

id_instance IN (SELECT id FROM topics AS t WHERE t.id = id_instance);

17 0.0s 0.00 SELECT

n.nspname,c.relname,a.attname,a.atttypid,a.attnotnull,a.atttypmod,a.attlen,a.attnum,pg_catalog.pg_get_expr(def.adbin,

def.adrelid) AS adsrc,dsc.description,t.typbasetype,t.typtype FROM pg_catalog.pg_namespace n JOIN

pg_catalog.pg_class c ON (c.relnamespace = n.oid) JOIN pg_catalog.pg_attribute a ON (a.attrelid=c.oid) JOIN

pg_catalog.pg_type t ON (a.atttypid = t.oid) LEFT JOIN pg_catalog.pg_attrdef def ON (a.attrelid=def.adrelid

AND a.attnum = def.adnum) LEFT JOIN pg_catalog.pg_description dsc ON (c.oid=dsc.objoid AND a.attnum =

dsc.objsubid) LEFT JOIN pg_catalog.pg_class dc ON (dc.oid=dsc.classoid AND dc.relname='') LEFT JOIN

pg_catalog.pg_namespace dn ON (dc.relnamespace=dn.oid AND dn.nspname='') WHERE a.attnum > 0 AND NOT

a.attisdropped AND c.relname LIKE '' ORDER BY nspname,relname,attnum;

Show examples

18 0.0s 0.00 SELECT id FROM roles WHERE id_parent = 0 AND id_type = 0;

Show examples

19 0.0s 0.00 SELECT DISTINCT value FROM literals WHERE id = 0;

Show examples

20 0.0s 0.01 SELECT DISTINCT id_type FROM occurrences WHERE id_topicmap = 73060;

Slowest queries ^

Rank Duration (s) Query

1 0.03 SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type AND id_instance IN (

SELECT id FROM topics AS t WHERE t.id = id_instance);

2 0.02 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73459;

3 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73441;

4 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73184;

5 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73329;

6 0.01 SELECT id, id_parent FROM roles WHERE id_player = 73097 AND id_type = 73165;

7 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73423;

8 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73314;

9 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73338;

10 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73168;

11 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73166;

12 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73283;

13 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73386;

14 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73382;

15 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73289;

16 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73251;

17 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73261;

18 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73263;

19 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73266;

20 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73485;

Most frequent queries (N) ^

Rank
Times

executed

Total

duration
Av. duration (s) Query

1 0.2s 0.00 SELECT DISTINCT id_theme FROM rel_themes WHERE id_scope = 0;

Show examples

2 0.7s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_scope = 0;

Show examples

3 2.2s 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

4 0.4s 0.00 SELECT id FROM names WHERE id_parent = 0;

Show examples

1,984

103

51

8

22

6

146

1

52

4

92

1

1,984

369

241

206

5 0.3s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_identifiers AS r, topics AS t WHERE r.id_topic = 0

AND r.id_locator = l.id AND t.id = r.id_topic;

Show examples

6 0.0s 0.00 INSERT INTO locators (reference) SELECT '' WHERE NOT EXISTS (SELECT id FROM locators WHERE

reference = '') RETURNING *;

Show examples

7 0.3s 0.00 SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers AS r WHERE id_topicmap = 0 AND

reference = '' AND l.id = r.id_locator AND r.id_topic = t.id;

Show examples

8 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_locators AS r , topics AS t WHERE r.id_topic = 0

AND r.id_locator = l.id AND t.id = r.id_topic;

Show examples

9 0.4s 0.00 SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 0 AND

r.id_locator = l.id;

Show examples

10 0.6s 0.01 SELECT id, id_parent FROM roles WHERE id_player = 0;

Show examples

11 0.2s 0.00 SELECT id FROM occurrences WHERE id_parent = 0;

Show examples

12 0.0s 0.00 SELECT DISTINCT value FROM literals WHERE id = 0;

Show examples

13 0.3s 0.00 SELECT id FROM roles WHERE id_parent = 0;

Show examples

14 0.0s 0.00 SELECT

n.nspname,c.relname,a.attname,a.atttypid,a.attnotnull,a.atttypmod,a.attlen,a.attnum,pg_catalog.pg_get_expr(def.adbin,

def.adrelid) AS adsrc,dsc.description,t.typbasetype,t.typtype FROM pg_catalog.pg_namespace n JOIN

pg_catalog.pg_class c ON (c.relnamespace = n.oid) JOIN pg_catalog.pg_attribute a ON (a.attrelid=c.oid) JOIN

pg_catalog.pg_type t ON (a.atttypid = t.oid) LEFT JOIN pg_catalog.pg_attrdef def ON (a.attrelid=def.adrelid

AND a.attnum = def.adnum) LEFT JOIN pg_catalog.pg_description dsc ON (c.oid=dsc.objoid AND a.attnum =

dsc.objsubid) LEFT JOIN pg_catalog.pg_class dc ON (dc.oid=dsc.classoid AND dc.relname='') LEFT JOIN

pg_catalog.pg_namespace dn ON (dc.relnamespace=dn.oid AND dn.nspname='') WHERE a.attnum > 0 AND NOT

a.attisdropped AND c.relname LIKE '' ORDER BY nspname,relname,attnum;

Show examples

15 0.1s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_type = 0;

Show examples

16 0.0s 0.00 SELECT id_reifier FROM reifiables WHERE id = 0;

Show examples

17 0.0s 0.00 SELECT id_scope FROM names WHERE id_topicmap = 0;

Show examples

18 0.0s 0.01 SELECT id, id_parent FROM roles WHERE id_player = 0 AND id_type = 0;

Show examples

19 0.0s 0.00 WITH iis AS (SELECT id_construct FROM rel_item_identifiers, locators WHERE id = id_locator AND

reference = '')SELECT id, id_parent, 0 AS other, '' AS type FROM topics WHERE id IN (SELECT

id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM

associations WHERE id IN (SELECT id_construct FROM iis)AND id_topicmap = 0 UNION SELECT id,

id_parent, 0 AS other, '' AS type FROM names WHERE id IN (SELECT id_construct FROM iis) AND

id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM occurrences WHERE id IN (

SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT v.id, v.id_parent, n.id_parent, '' AS type

FROM variants AS v, names AS n WHERE v.id IN (SELECT id_construct FROM iis) AND v.id_parent = n.id

AND v.id_topicmap = 0UNION SELECT id, id_parent, 0 AS other, '' AS type FROM roles WHERE id IN (

SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, 0 AS id_parent, 0 AS other, '' AS

type FROM topicmaps WHERE id IN (SELECT id_construct FROM iis);

Show examples

20 0.0s 0.00 SELECT id FROM roles WHERE id_parent = 0 AND id_type = 0;

Show examples

Slowest queries (N) ^

Rank Av. duration (s)
Times

executed

Total

duration
Query

1 0.03 0.0s SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type

AND id_instance IN (SELECT id FROM topics AS t WHERE t.id = id_instance);

2 0.01 2.2s SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

3 0.01 0.0s SELECT id, id_parent FROM roles WHERE id_player = 0 AND id_type = 0;

Show examples

4 0.01 0.6s SELECT id, id_parent FROM roles WHERE id_player = 0;

Show examples

5 0.01 0.0s SELECT DISTINCT id_type FROM occurrences WHERE id_topicmap = 73060;

6 0.00 0.3s SELECT id FROM roles WHERE id_parent = 0;

Show examples

7 0.00 0.0s WITH iis AS (SELECT id_construct FROM rel_item_identifiers, locators WHERE id = id_locator AND

reference = '')SELECT id, id_parent, 0 AS other, '' AS type FROM topics WHERE id IN (SELECT

id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM

associations WHERE id IN (SELECT id_construct FROM iis)AND id_topicmap = 0 UNION SELECT id,

id_parent, 0 AS other, '' AS type FROM names WHERE id IN (SELECT id_construct FROM iis) AND

id_topicmap = 0 UNION SELECT id, id_parent, 0 AS other, '' AS type FROM occurrences WHERE id IN (

SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT v.id, v.id_parent, n.id_parent, '' AS

type FROM variants AS v, names AS n WHERE v.id IN (SELECT id_construct FROM iis) AND v.id_parent

= n.id AND v.id_topicmap = 0UNION SELECT id, id_parent, 0 AS other, '' AS type FROM roles WHERE id IN

(SELECT id_construct FROM iis) AND id_topicmap = 0 UNION SELECT id, 0 AS id_parent, 0 AS other, '' AS

type FROM topicmaps WHERE id IN (SELECT id_construct FROM iis);

Show examples

8 0.00 0.0s SELECT id FROM roles WHERE id_parent = 0 AND id_type = 0;

Show examples

155

146

112

111

109

104

103

92

59

52

51

37

22

8

6

4

1

241

8

104

1

59

6

4

9 0.00 0.0s SELECT DISTINCT id_type FROM roles WHERE id_topicmap = 73060;

10 0.00 0.0s SELECT DISTINCT id_type FROM associations WHERE id_topicmap = 73060;

11 0.00 0.4s SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 0 AND

r.id_locator = l.id;

Show examples

12 0.00 0.0s SELECT id FROM topics WHERE id_topicmap = 73060;

13 0.00 0.3s SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers AS r WHERE id_topicmap = 0 AND

reference = '' AND l.id = r.id_locator AND r.id_topic = t.id;

Show examples

14 0.00 0.0s SELECT NULL AS TABLE_CAT, n.nspname AS TABLE_SCHEM, c.relname AS TABLE_NAME, CASE n.nspname ~ '' OR

n.nspname = '' WHEN true THEN CASE WHEN n.nspname = '' OR n.nspname = '' THEN CASE c.relkind WHEN ''

THEN '' WHEN '' THEN '' WHEN '' THEN '' ELSE NULL END WHEN n.nspname = '' THEN CASE c.relkind

WHEN '' THEN '' WHEN '' THEN '' ELSE NULL END ELSE CASE c.relkind WHEN '' THEN '' WHEN '' THEN ''

ELSE NULL END END WHEN false THEN CASE c.relkind WHEN '' THEN '' WHEN '' THEN '' WHEN '' THEN

'' WHEN '' THEN '' ELSE NULL END ELSE NULL END AS TABLE_TYPE, d.description AS REMARKS FROM

pg_catalog.pg_namespace n, pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_description d ON (c.oid = d.objoid

AND d.objsubid = 0) LEFT JOIN pg_catalog.pg_class dc ON (d.classoid=dc.oid AND dc.relname='') LEFT JOIN

pg_catalog.pg_namespace dn ON (dn.oid=dc.relnamespace AND dn.nspname='') WHERE c.relnamespace = n.oid AND

(false OR (c.relkind = '' AND n.nspname !~ '' AND n.nspname <> '')) ORDER BY

TABLE_TYPE,TABLE_SCHEM,TABLE_NAME;

Show examples

15 0.00 0.0s SELECT DISTINCT id_type FROM names WHERE id_topicmap = 73060;

16 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM variants WHERE

id_topicmap = 73060) OR id_scope IN (SELECT id_scope FROM names WHERE id_topicmap = 73060 AND id

IN (SELECT id_parent FROM variants));

17 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM names WHERE id_topicmap =

73060);

18 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM associations WHERE

id_topicmap = 73060);

19 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM occurrences WHERE

id_topicmap = 73060);

20 0.00 0.0s SELECT id FROM associations WHERE id_topicmap = 73060;

Report generated by pgFouine 1.2. pgFouine is free software.

1

1

109

1

112

2

1

1

1

1

1

1

pgFouine: PostgreSQL log analysis report

Overall statistics | Queries by type | Queries that took up the most time (N) | Slowest queries | Most frequent queries (N) | Slowest queries (N)

Normalized reports are marked with a "(N)".

Generated on 2010-10-25 15:43
Parsed C:\Program Files (x86)\PostgreSQL\8.4\data\pg_log\postgresql-2010-10-25.log (16,339 lines) in 30s
Log from 2010-10-25 15:41:16 to 2010-10-25 15:42:47

Overall statistics ^

Number of unique normalized queries: 52

Number of queries: 4,058
Total query duration: 2.8s
First query: 2010-10-25 15:41:16
Last query: 2010-10-25 15:42:47
Query peak: 1,984 queries/s at 2010-10-25 15:41:34

Queries by type ^

Type Count Percentage

SELECT 3,887 95.8

INSERT 160 3.9

Queries that took up the most time (N) ^

Rank
Total

duration
Times

executed
Av. duration (s) Query

1 2.3s 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

2 0.2s 0.00 SELECT id FROM occurrences WHERE id_parent = 0;

Show examples

3 0.1s 0.00 SELECT DISTINCT id_theme FROM rel_themes WHERE id_scope = 0;

Show examples

4 0.1s 0.00 SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers AS r WHERE id_topicmap = 0 AND

reference = '' AND l.id = r.id_locator AND r.id_topic = t.id;

Show examples

5 0.1s 0.01 WITH ids AS (SELECT id FROM reifiables WHERE id_reifier = 0)SELECT id, id_parent, 0 AS other, '' AS type

FROM associations WHERE id IN (SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, '' AS type

FROM names WHERE id IN (SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, '' AS type FROM

occurrences WHERE id IN (SELECT id FROM ids) UNION SELECT v.id, v.id_parent, n.id_parent, '' AS type FROM

variants AS v, names AS n WHERE v.id IN (SELECT id FROM ids) AND v.id_parent = n.id UNION SELECT id,

id_parent, 0 AS other, '' AS type FROM roles WHERE id IN (SELECT id FROM ids) UNION SELECT id, 0 AS

id_parent, 0 AS other, '' AS type FROM topicmaps WHERE id IN (SELECT id FROM ids);

Show examples

6 0.0s 0.00 SELECT id_scope FROM names WHERE id_topicmap = 0;

Show examples

7 0.0s 0.03 SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type AND

id_instance IN (SELECT id FROM topics AS t WHERE t.id = id_instance);

8 0.0s 0.00 SELECT

n.nspname,c.relname,a.attname,a.atttypid,a.attnotnull,a.atttypmod,a.attlen,a.attnum,pg_catalog.pg_get_expr(def.adbin,

def.adrelid) AS adsrc,dsc.description,t.typbasetype,t.typtype FROM pg_catalog.pg_namespace n JOIN

pg_catalog.pg_class c ON (c.relnamespace = n.oid) JOIN pg_catalog.pg_attribute a ON (a.attrelid=c.oid) JOIN

pg_catalog.pg_type t ON (a.atttypid = t.oid) LEFT JOIN pg_catalog.pg_attrdef def ON (a.attrelid=def.adrelid AND

a.attnum = def.adnum) LEFT JOIN pg_catalog.pg_description dsc ON (c.oid=dsc.objoid AND a.attnum = dsc.objsubid)

LEFT JOIN pg_catalog.pg_class dc ON (dc.oid=dsc.classoid AND dc.relname='') LEFT JOIN pg_catalog.pg_namespace dn

ON (dc.relnamespace=dn.oid AND dn.nspname='') WHERE a.attnum > 0 AND NOT a.attisdropped AND c.relname LIKE ''

ORDER BY nspname,relname,attnum;

Show examples

9 0.0s 0.00 INSERT INTO locators (reference) SELECT '' WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =

'') RETURNING *;

Show examples

10 0.0s 0.00 SELECT DISTINCT value FROM literals WHERE id = 0;

Show examples

11 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_identifiers AS r, topics AS t WHERE r.id_topic = 0 AND

r.id_locator = l.id AND t.id = r.id_topic;

Show examples

12 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_scope = 0;

Show examples

13 0.0s 0.01 SELECT DISTINCT id_type FROM roles WHERE id_topicmap = 73060;

14 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0;

Show examples

243

103

1,987

116

5

22

1

52

156

92

156

369

1

207

A.2 MaJorToM PostgreSQL Log Analysis Re-
port (After Optimization)

15 0.0s 0.00 SELECT id FROM roles WHERE id_parent = 0;

Show examples

16 0.0s 0.00 SELECT id_reifier FROM reifiables WHERE id = 0;

Show examples

17 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 0 AND

r.id_locator = l.id;

Show examples

18 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_locators AS r , topics AS t WHERE r.id_topic = 0 AND

r.id_locator = l.id AND t.id = r.id_topic;

Show examples

19 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_type = 0;

Show examples

20 0.0s 0.00 INSERT INTO topicmaps (id_base_locator) SELECT id FROM locators WHERE reference = '' AND NOT EXISTS (

SELECT tm.id FROM topicmaps AS tm, locators AS l WHERE l.reference LIKE '' AND l.id = tm.id_base_locator)

RETURNING *;

Show examples

Slowest queries ^

Rank Duration (s) Query

1 0.03 SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type AND id_instance IN (SELECT id

FROM topics AS t WHERE t.id = id_instance);

2 0.02 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73331;

3 0.02 WITH ids AS (SELECT id FROM reifiables WHERE id_reifier = 73222)SELECT id, id_parent, 0 AS other, 'a' AS type FROM

associations WHERE id IN (SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, 'n' AS type FROM names WHERE id IN (

SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, 'o' AS type FROM occurrences WHERE id IN (SELECT id FROM ids)

UNION SELECT v.id, v.id_parent, n.id_parent, 'v' AS type FROM variants AS v, names AS n WHERE v.id IN (SELECT id FROM ids) AND

v.id_parent = n.id UNION SELECT id, id_parent, 0 AS other, 'r' AS type FROM roles WHERE id IN (SELECT id FROM ids) UNION SELECT

id, 0 AS id_parent, 0 AS other, 'tm' AS type FROM topicmaps WHERE id IN (SELECT id FROM ids);

4 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73400;

5 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73249;

6 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73355;

7 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73151;

8 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73223;

9 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73294;

10 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73423;

11 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73067;

12 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73068;

13 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73069;

14 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73383;

15 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73361;

16 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73075;

17 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73352;

18 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73406;

19 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73356;

20 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 73182;

Most frequent queries (N) ^

Rank
Times

executed
Total

duration
Av. duration (s) Query

1 0.1s 0.00 SELECT DISTINCT id_theme FROM rel_themes WHERE id_scope = 0;

Show examples

2 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_scope = 0;

Show examples

3 2.3s 0.01 SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

4 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0;

Show examples

5 0.0s 0.00 INSERT INTO locators (reference) SELECT '' WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =

'') RETURNING *;

Show examples

6 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_identifiers AS r, topics AS t WHERE r.id_topic = 0 AND

r.id_locator = l.id AND t.id = r.id_topic;

Show examples

7 0.1s 0.00 SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers AS r WHERE id_topicmap = 0 AND

reference = '' AND l.id = r.id_locator AND r.id_topic = t.id;

Show examples

8 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_subject_locators AS r , topics AS t WHERE r.id_topic = 0 AND

r.id_locator = l.id AND t.id = r.id_topic;

Show examples

9 0.0s 0.00 SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 0 AND

r.id_locator = l.id;

Show examples

10 0.0s 0.00 SELECT id, id_parent FROM roles WHERE id_player = 0;

Show examples

11 0.2s 0.00 SELECT id FROM occurrences WHERE id_parent = 0;

Show examples

12 0.0s 0.00 SELECT DISTINCT value FROM literals WHERE id = 0;

Show examples

13 0.0s 0.00 SELECT id FROM roles WHERE id_parent = 0;

Show examples

59

40

109

111

51

2

1,987

369

243

207

156

156

116

111

109

104

103

92

59

14 0.0s 0.00 SELECT

n.nspname,c.relname,a.attname,a.atttypid,a.attnotnull,a.atttypmod,a.attlen,a.attnum,pg_catalog.pg_get_expr(def.adbin,

def.adrelid) AS adsrc,dsc.description,t.typbasetype,t.typtype FROM pg_catalog.pg_namespace n JOIN

pg_catalog.pg_class c ON (c.relnamespace = n.oid) JOIN pg_catalog.pg_attribute a ON (a.attrelid=c.oid) JOIN

pg_catalog.pg_type t ON (a.atttypid = t.oid) LEFT JOIN pg_catalog.pg_attrdef def ON (a.attrelid=def.adrelid AND

a.attnum = def.adnum) LEFT JOIN pg_catalog.pg_description dsc ON (c.oid=dsc.objoid AND a.attnum = dsc.objsubid)

LEFT JOIN pg_catalog.pg_class dc ON (dc.oid=dsc.classoid AND dc.relname='') LEFT JOIN pg_catalog.pg_namespace dn

ON (dc.relnamespace=dn.oid AND dn.nspname='') WHERE a.attnum > 0 AND NOT a.attisdropped AND c.relname LIKE ''

ORDER BY nspname,relname,attnum;

Show examples

15 0.0s 0.00 SELECT id FROM names WHERE id_parent = 0 AND id_type = 0;

Show examples

16 0.0s 0.00 SELECT id_reifier FROM reifiables WHERE id = 0;

Show examples

17 0.0s 0.00 SELECT id_scope FROM names WHERE id_topicmap = 0;

Show examples

18 0.0s 0.00 SELECT id, id_parent FROM roles WHERE id_player = 0 AND id_type = 0;

Show examples

19 0.0s 0.00 SELECT id_player FROM roles WHERE id = 0;

Show examples

20 0.0s 0.00 SELECT DISTINCT id_scope FROM scopeables WHERE id = 0;

Show examples

Slowest queries (N) ^

Rank Av. duration (s)
Times

executed

Total

duration
Query

1 0.03 0.0s SELECT DISTINCT id_type FROM rel_instance_of, topics WHERE id_topicmap = 73060 AND id = id_type AND

id_instance IN (SELECT id FROM topics AS t WHERE t.id = id_instance);

2 0.01 0.1s WITH ids AS (SELECT id FROM reifiables WHERE id_reifier = 0)SELECT id, id_parent, 0 AS other, '' AS

type FROM associations WHERE id IN (SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, '' AS

type FROM names WHERE id IN (SELECT id FROM ids) UNION SELECT id, id_parent, 0 AS other, '' AS type

FROM occurrences WHERE id IN (SELECT id FROM ids) UNION SELECT v.id, v.id_parent, n.id_parent, '' AS type

FROM variants AS v, names AS n WHERE v.id IN (SELECT id FROM ids) AND v.id_parent = n.id UNION SELECT

id, id_parent, 0 AS other, '' AS type FROM roles WHERE id IN (SELECT id FROM ids) UNION SELECT id, 0 AS

id_parent, 0 AS other, '' AS type FROM topicmaps WHERE id IN (SELECT id FROM ids);

Show examples

3 0.01 2.3s SELECT id_type FROM typeables AS ty, topics AS t WHERE ty.id = 0;

Show examples

4 0.01 0.0s SELECT DISTINCT id_type FROM roles WHERE id_topicmap = 73060;

5 0.00 0.0s SELECT DISTINCT id_type FROM associations WHERE id_topicmap = 73060;

6 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM variants WHERE id_topicmap =

73060) OR id_scope IN (SELECT id_scope FROM names WHERE id_topicmap = 73060 AND id IN (SELECT

id_parent FROM variants));

7 0.00 0.0s SELECT id FROM associations WHERE id_topicmap = 73060 AND id_scope IN (SELECT id_scope FROM rel_themes

WHERE id_theme = 73222);

8 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM associations WHERE id_topicmap

= 73060);

9 0.00 0.0s SELECT id, id_parent FROM names WHERE id_topicmap = 73060 AND id_type = 73222;

10 0.00 0.0s SELECT id FROM associations WHERE id_topicmap = 73060;

11 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM names WHERE id_topicmap =

73060);

12 0.00 0.0s SELECT id, id_parent FROM occurrences WHERE id_topicmap = 73060 AND id_scope IN (SELECT id_scope FROM

rel_themes WHERE id_theme = 73222);

13 0.00 0.0s SELECT id, id_parent FROM names WHERE id_topicmap = 73060 AND id_scope IN (SELECT id_scope FROM

rel_themes WHERE id_theme = 73222);

14 0.00 0.0s SELECT DISTINCT id_type FROM occurrences WHERE id_topicmap = 73060;

15 0.00 0.0s SELECT DISTINCT id_type FROM names WHERE id_topicmap = 73060;

16 0.00 0.0s SELECT id FROM associations WHERE id_topicmap = 73060 AND id_type = 73222;

17 0.00 0.0s SELECT id_theme FROM rel_themes WHERE id_scope IN (SELECT id_scope FROM occurrences WHERE id_topicmap

= 73060);

18 0.00 0.2s SELECT id FROM occurrences WHERE id_parent = 0;

Show examples

19 0.00 0.0s SELECT id_scope FROM names WHERE id_topicmap = 0;

Show examples

20 0.00 0.0s INSERT INTO topicmaps (id_base_locator) SELECT id FROM locators WHERE reference = '' AND NOT EXISTS (

SELECT tm.id FROM topicmaps AS tm, locators AS l WHERE l.reference LIKE '' AND l.id = tm.id_base_locator)

RETURNING *;

Show examples

Report generated by pgFouine 1.2. pgFouine is free software.

52

51

40

22

10

8

7

1

5

243

1

1

1

1

1

1

1

1

1

1

1

1

1

1

103

22

2

A.3 MaJorToM PostgreSQL Mapping for Sim-
ple TMAPI Calls

Duration PostgreSQL statement

3 ms INSERT INTO locators (reference) SELECT ’http://topic-map-under-test/bar’ WHERE NOT EXISTS
(SELECT id FROM locators WHERE reference = ’http://topic-map-under-test/bar’) RETURNING *

3 ms INSERT INTO topics(id_topicmap, id_parent) VALUES (13434,13434) RETURNING *
1 ms INSERT INTO locators (reference) SELECT ’http://topic-map-under-test/bar’ WHERE NOT EXISTS

(SELECT id FROM locators WHERE reference = ’http://topic-map-under-test/bar’)
2 ms INSERT INTO rel_item_identifiers(id_construct, id_locator) SELECT 13437 , id FROM locators

WHERE reference LIKE ’http://topic-map-under-test/bar’
4 ms INSERT INTO rel_instance_of(id_instance, id_type) SELECT 13437,13436 WHERE NOT EXISTS (

SELECT id_instance, id_type FROM rel_instance_of WHERE id_instance = 13437 AND id_type =
13436)

4 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/type-
instance’ WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/type-instance’) RETURNING *

4 ms SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers as r WHERE id_topicmap = 13434
AND reference = ’http://psi.topicmaps.org/iso13250/model/type-instance’ AND l.id = r.id_locator AND
r.id_topic = t.id

3 ms INSERT INTO topics(id_topicmap, id_parent) VALUES (13434,13434) RETURNING *
2 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/type-

instance’ WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/type-instance’)

2 ms INSERT INTO rel_subject_identifiers(id_topic, id_locator) SELECT 13438 , id FROM locators WHERE
reference LIKE ’http://psi.topicmaps.org/iso13250/model/type-instance’

4 ms INSERT INTO associations(id_topicmap, id_parent, id_type) VALUES (13438,13438,13438) RETURN-
ING *

6 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/type-
instance’ WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/type-instance’) RETURNING *

5 ms SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers as r WHERE id_topicmap =
13434 AND reference = ’http://psi.topicmaps.org/iso13250/model/instance’ AND l.id = r.id_locator AND
r.id_topic = t.id

4 ms INSERT INTO topics(id_topicmap, id_parent) VALUES (13434,13434) RETURNING *
2 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/instance’

WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/instance’)

1 ms INSERT INTO rel_subject_identifiers(id_topic, id_locator) SELECT 13440 , id FROM locators WHERE
reference LIKE ’http://psi.topicmaps.org/iso13250/model/instance’

1 ms INSERT INTO roles(id_topicmap, id_parent, id_type, id_player) VALUES (13434,13439,13440,13437)
RETURNING *

3 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/type’
WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/type’) RETURNING *

5 ms SELECT t.id FROM topics AS t, locators AS l, rel_subject_identifiers as r WHERE id_topicmap =
13434 AND reference = ’http://psi.topicmaps.org/iso13250/model/type’ AND l.id = r.id_locator AND
r.id_topic = t.id

4 ms INSERT INTO topics(id_topicmap, id_parent) VALUES (13434,13434) RETURNING *
1 ms INSERT INTO locators (reference) SELECT ’http://psi.topicmaps.org/iso13250/model/type’

WHERE NOT EXISTS (SELECT id FROM locators WHERE reference =
’http://psi.topicmaps.org/iso13250/model/type’)

3 ms INSERT INTO rel_subject_identifiers(id_topic, id_locator) SELECT 13442 , id FROM locators WHERE
reference LIKE ’http://psi.topicmaps.org/iso13250/model/type’

1 ms INSERT INTO roles(id_topicmap, id_parent, id_type, id_player) VALUES (13434,13439,13442,13436)
RETURNING *

Table A.1: Count and duration of SQL statements for invocation of
TopicMap.createTopic(type) against TMAPI-based database back-end

69

Duration PostgreSQL statement

3 ms INSERT INTO locators (reference) SELECT ’http://topic-map-under-test/foo’ WHERE NOT EXISTS
(SELECT id FROM locators WHERE reference = ’http://topic-map-under-test/foo’) RETURNING *

3 ms INSERT INTO topics(id_topicmap, id_parent) VALUES (13434,13434) RETURNING *
2 ms INSERT INTO locators (reference) SELECT ’http://topic-map-under-test/foo’ WHERE NOT EXISTS

(SELECT id FROM locators WHERE reference = ’http://topic-map-under-test/foo’)
2 ms INSERT INTO rel_item_identifiers(id_construct, id_locator) SELECT 13436 , id FROM locators

WHERE reference LIKE ’http://topic-map-under-test/foo’
3 ms SELECT l.id,reference FROM locators AS l, rel_subject_identifiers AS r, topics AS t WHERE r.id_topic

= 13436 AND r.id_locator = l.id AND t.id = r.id_topic
4 ms SELECT l.id,reference FROM locators AS l, rel_subject_locators AS r , topics AS t WHERE r.id_topic

= 13436 AND r.id_locator = l.id AND t.id = r.id_topic
3 ms SELECT l.id,reference FROM locators AS l, rel_item_identifiers AS r WHERE r.id_construct = 13436

AND r.id_locator = l.id

Table A.2: Count and duration of SQL statements for invocation of
TopicMap.createTopic() against TMAPI-based database back-end

70

A.4 JTMQR 2.0 Schema

1 {
2 "$schema" : "http ://json -schema.org/draft -03/ schema#" ,
3 "id" : "http :// code.google.com/p/tmql/wiki/JTMQR2_0#" ,
4

5 "type" : "object" ,
6 "title" : "A JTMQR 2.0 document" ,
7 "properties" : {
8 "version" : { "type" : "string" , "required" : true , "pattern" : "2.0" } ,
9 "metadata" : { "type" : "object" , "required" : true , "properties" : {
10 "columns" : { "type" : "integer" , "required" : true , "minimum" : 0 } ,
11 "rows" : { "type" : "integer" , "required" : true , "minimum" : 0 } ,
12 "headers" : { "type" : "array" , "required" : true ,
13 "items" : { "type" : ["string" , "null"] }
14 }
15 }} ,
16 "tuples" : { "type" : "array" , "required" : true ,
17 "items" : { "type" : "array" ,
18 "items" : { [
19 "type" : [
20 "string" ,
21 "number" ,
22 "boolean" ,
23 "null" ,
24 {"type" : "object" , "properties" : {
25 "jtm" : { "required" : true , "type" : [
26 "object"
27 // As for JTM 1.x no schema definitions are available
28 // the type of "jtm" property was set to "object" to enable
29 // validation passing. Otherwise the following references
30 // to JTM schemas MAY work.
31 // {"$ref" : "http ://www.cerny -online.com/jtm /1.0/#"} ,
32 // {"$ref" : "http ://www.cerny -online.com/jtm /1.1/#"}
33] }
34 }}
35]
36] }
37 }
38 } ,
39 "ordered" : { "type" : "boolean" , "optional" : true}
40 }
41 }

Listing A.1: JSON Schema of JTMQR 2.0.

A.5 Application Context Configuration for the
Topic Maps Query Service

1 <?xml version="1.0" encoding="UTF-8"?>
2 <beans xmlns="http://www.springframework.org/schema/beans"
3 xmlns :x s i="http://www.w3.org /2001/ XMLSchema-instance"
4 xs i : s chemaLocat ion="http://www.springframework.org/schema/beans
5 http: //www.springframework.org/schema/beans/spring-beans-3 .0.xsd">
6

7 <! -- Topic Map System -->
8 <bean id="topicMapSystemFactory"
9 c l a s s="org.tmapi.core.TopicMapSystemFactory"
10 factory−method="newInstance"/>
11 <bean id="topicMapSystem" c l a s s="org.tmapi.core.TopicMapSystem"
12 factory−bean="topicMapSystemFactory"

71

13 factory−method="newTopicMapSystem"/>
14

15 <! -- Topic Map Query Service -->
16 <bean id="topicMapQueryService"
17 c l a s s="de.topicmapslab.remoting.tmqs.TopicMapQueryServiceImpl">
18 <constructor−arg name="topicMapSystem"
19 r e f="topicMapSystem" />
20 </bean>
21

22 <! -- RabbitMQ configuration -->
23 <bean id="rabbitmqConnectionFactory"
24 c l a s s="com.rabbitmq.client.ConnectionFactory">
25 <! --<property name="Host" value="localhost" />-->
26 <! --<property name="Username" value="guest" />-->
27 <! --<property name="Password" value="guest" />-->
28 </bean>
29

30 <bean id="rabbitmqConnection"
31 c l a s s="com.rabbitmq.client.Connection"
32 factory−bean="rabbitmqConnectionFactory"
33 factory−method="newConnection"
34 destroy−method="close" />
35

36 <bean id="tmqsChannel"
37 c l a s s="com.rabbitmq.client.AMQP.Channel"
38 factory−bean="rabbitmqConnection"
39 factory−method="createChannel"/>
40

41 <! -- TMQS Consumer -->
42 <bean id="tmqsConsumer"
43 c l a s s="de.topicmapslab.remoting.rabbitmq.ReplyingJsonConsumer">
44 <constructor−arg name="channel" r e f="tmqsChannel" />
45 <constructor−arg name="handler">
46 <bean id="queryActionHandler"
47 c l a s s="de.topicmapslab.remoting.adapters.QueryActionHandler">
48 <constructor−arg r e f="topicMapQueryService" />
49 </bean>
50 </constructor−arg>
51 <constructor−arg name="queueName" value="tmlab:tmqs:query" />
52 <constructor−arg name="exchangeName" value="tmlab:tmqs:query" />
53 <constructor−arg name="exchangeType" value="fanout" />
54 <constructor−arg name="routingKey" value="" />
55 </bean>
56 </beans>

Listing A.2: Spring configuration for TMQS application context.

A.6 TMQL Expression Tree Sample

Using the TMQL Console1 or the TMQL Canonizer2 one can produce the tex-
tual representation of an TMQL4J expression tree for given TMQL statements.
For instance, the expression tree3 of the following sample query:

1 # Find all pokemons weighting more than 200 lbs
2 %prefix p http: // testmap/pokemon /%23
3

1see https://github.com/mhoyer/tmql-console
2see http://canonizer.topicmapslab.de/
3The output is based on TMQL4J version 3.1.0 and required some cleaning. Hence it

does not entirely match the original output.

72

4 p:pokemon >> instances
5 [. >> character i s t i c s p:weight > 200]

Listing A.3: Sample query to demonstrate TMQL expression tree generation

1 QueryExpression(%p r e f i x p http :// testmap/pokemon/%23
2 | p : Pokemon >> in s t an c e s
3 | [. >> c h a r a c t e r i s t i c s p : weight > 200])
4 + EnvironmentClause(%p r e f i x p http :// testmap/pokemon/%23)
5 | + P r e f i xD i r e c t i v e (%p r e f i x p http :// testmap/pokemon/%23)
6 + PathExpress ion (p : Pokemon >> in s t an c e s
7 | [. >> c h a r a c t e r i s t i c s p : weight > 200])
8 + Post f i xedExpre s s i on (p : Pokemon >> in s t an c e s
9 | [. >> c h a r a c t e r i s t i c s p : weight > 200])
10 + SimpleContent (p : Pokemon >> in s t an c e s
11 | [. >> c h a r a c t e r i s t i c s p : weight > 200])
12 + Anchor(p : Pokemon)
13 + Navigat ion(>> in s t an c e s [. >> c h a r a c t e r i s t i c s p : weight > 200])
14 + StepDe f i n i t i on(>> in s t an c e s [. >> c h a r a c t e r i s t i c s p : weight > 200])
15 + Step(>> in s t an c e s)
16 + F i l t e r P o s t f i x ([. >> c h a r a c t e r i s t i c s p : weight > 200])
17 + BooleanExpress ion (. >> c h a r a c t e r i s t i c s p : weight > 200)
18 + BooleanPr imit ive (. >> c h a r a c t e r i s t i c s p : weight > 200)
19 + Exis t sC lause (. >> c h a r a c t e r i s t i c s p : weight > 200)
20 + Content (. >> c h a r a c t e r i s t i c s p : weight > 200)
21 + QueryExpression (. >> c h a r a c t e r i s t i c s p : weight > 200)
22 + PathExpress ion (. >> c h a r a c t e r i s t i c s p : weight > 200)
23 + Post f i xedExpre s s i on (. >> c h a r a c t e r i s t i c s p : weight > 200)
24 + TupleExpress ion (. >> c h a r a c t e r i s t i c s p : weight > 200)
25 + Al iasValueExpress ion (. >> c h a r a c t e r i s t i c s p : weight > 200)
26 + ValueExpress ion (. >> c h a r a c t e r i s t i c s p : weight > 200)
27 + ValueExpress ion (. >> c h a r a c t e r i s t i c s p : weight)
28 | + Content (. >> c h a r a c t e r i s t i c s p : weight)
29 | + QueryExpression (. >> c h a r a c t e r i s t i c s p : weight)
30 | + PathExpress ion (. >> c h a r a c t e r i s t i c s p : weight)
31 | + Pos t f i xedExpre s s i on (. >> c h a r a c t e r i s t i c s p : weight)
32 | + SimpleContent (. >> c h a r a c t e r i s t i c s p : weight)
33 | + Anchor (.)
34 | + Navigat ion(>> c h a r a c t e r i s t i c s p : weight)
35 | + S t epDe f i n i t i on(>> c h a r a c t e r i s t i c s p : weight)
36 | + Step(>> c h a r a c t e r i s t i c s p : weight)
37 | + Anchor(p : weight)
38 + ValueExpress ion (200)
39 + Content (200)
40 + QueryExpression (200)
41 + PathExpress ion (200)
42 + Post f i xedExpre s s i on (200)
43 + SimpleContent (200)
44 + Anchor(200)

Listing A.4: Textual representation of an expression tree.

73

74

Declaration

I declare that the submitted work has been completed by me the undersigned
and that I have not used any other than permitted reference sources or mate-
rials nor engaged in any plagiarism. All references and other sources used by
me have been appropriately acknowledged in the work. I further declare that
the work has not been submitted for the purpose of academic examination,
either in its original or similar form, anywhere else.

Leipzig, 24th October 2011 Signature

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Scope and Environment
	Maiana, RTM and MaJorToM
	Architecture of Maiana

	The Problems
	Maiana as Single-Process Instance
	Concurrent Requests and Stateful Services
	Performance Issues of MaJorToM and Maiana
	Provisional, but Inefficient Solutions

	Solutions in the Remaining Chapters

	Possible Approaches
	Technological Overview
	Distributed Database Back-Ends
	MaJorToM Database Benchmarks
	TMDM-Based Relational Models for Topic Maps Persistence
	Optimizing Database Back-Ends
	Alternatives

	RPC to Cross Process Boundaries
	TMoR – A Prototype Implementation Based on TMAPI Using RMI
	Performance Measurement for TMoR
	Why TMoR Is Not the Solution

	RESTful and Web Service Approach
	A TMDM-Based Data Transfer Structure
	TMQL to Request Data
	Query Results with JTMQR
	Web Service
	Summary

	Message-Oriented Querying Service
	Technological Overview
	Message-Oriented Middleware
	Available Solutions
	Principles of Message-Oriented Middleware

	Implementation Details
	The Service Contracts
	The Service Implementation

	Benchmarks
	Summary
	Extensibility Ideas
	Limitations and Known Issues of The Current Solution

	Outlook
	Message-Oriented Approaches for Merging Topic Maps
	Merge Registry Service
	Distributed TMQL Processing on Merged Topic Maps
	Combining Presented Approaches

	Conclusion
	Bibliography
	Appendix
	MT-DB Log Report (Before Optimization)
	MT-DB Log Report (After Optimization)
	MaJorToM PostgreSQL Mapping for Simple TMAPI Calls
	JTMQR 2.0 Schema
	Application Context Configuration for TMQS
	TMQL Expression Tree Sample

