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Abstract This work presents a thorough examination and expansion of the NIF ecosystem.
Both core use cases of NIF, as a format for NLP tool integration, as well as a corpus pivot format,
are addressed. NLP tool integration is extended with a new wrapper for the OpenNLP framework
including a NIF parser, as well as a CoNLL converter to convert the widely used CoNLL format
to NIF. Tools are examined for scalability and data quality. On the corpus side, a large range of
diverse existing corpora are converted into NIF. The complete contribution of corpora presented
in this work adds up to 841,106,737 triples. Data quality is a special focus, validating the corpora
to guarantee correctness using SPARQL test cases. Finally, an industry use case is presented in
Unicode Text Segmentation, where abbreviation lists are extracted from Linked Data and their
impact on sentence boundary detection is measured using the converted corpora and NLP tools.
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1 Introduction

1.1 Motivation
The Semantic Web as a movement to evolve the unstructured web of documents, largely limited to
the consumption by humans, into a web of structured data, open to humans as well as machines,
has made huge gains since its initial proposal1 in 2001. Linked Open Data (LOD)2 was established
as a concept 5 years later and has since been realized in over 1000 datasets3 producing a cloud of
interconnected open datasets, containing structured knowledge to be explored by machines and
humans alike. Many of these datasets are sourced from already structured data, databases and
collections of semi-structured documents, like XML files of various formats. To accomplish the
vision of the Semantic Web and truly evolve the web of documents, the huge amount of knowledge
contained in unstructured natural language text has to be made accessible. Knowledge in this
sense does not mean mere information, it implies information that is structured according to
a formal conceptualization of its domain and accessible to computer systems. Aware of these
needs, one part of the Semantic Web research community4 started to apply techniques of Natural
Language Processing (NLP) to facilitate the necessary knowledge extraction tasks. Besides the
benefit Semantic Web researchers gain by using NLP, advantages are not a one way street.

The NLP Interchange format [10] presents one avenue to facilitate interoperability between
NLP tools, corpora and the Linked Open Data cloud by formally specifying a way to address
and annotate arbitrary strings, publish these annotations and infer new knowledge using an
ontology. It presents a way to build rich NLP pipelines and can serve as glue between previously
incompatible NLP output formats. Using the Linked Open Data cloud, NIF promotes the growth
of knowledge in the web of data as well as the quality of NLP results by supporting access to
existing linguistic data in the cloud. Although these benefits are already established by the
adoption of NIF and are being realized in EU-funded projects like LIDER5, the ecosystem is in
need of expansion, both in the quantity of tools and data available, as well as in the quality of
existing components.

1.2 Structure
This work addresses these needs of growing and evaluating NIF components. First, a comprehensive
introduction to NIF will be presented in Section 3, following the ISWC paper “Integrating NLP
using Linked Data” [10], which I co-authored. Then the importance of NIF as a pivot format
between corpora and NLP tools will be reinforced by presenting the conversion of important
NLP corpora into NIF, contributing significantly to the LOD cloud. The conversion of four
corpora will be shown, two of them based on existing structured data, two of them converted from
semi-structured sources. They will be thoroughly validated in Section 5, following, extending
and evaluating the procedure shown in [13], another paper I co-authored. The correctness
specification of the NIF format will be addressed, as well as the feasibility and scalability of
the validation procedure itself. The NLP tool part of the NIF ecosystem will be expanded in
Section 6. A wrapper to integrate the well-known Apache OpenNLP6 framework into NIF will

1http://www.cs.umd.edu/~golbeck/LBSC690/SemanticWeb.html
2http://www.w3.org/DesignIssues/LinkedData.html
3http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
4Indicated by the success of workshops like NLP & DBpedia on the International Semantic Web
Conference - http://iswc2014.semanticweb.org/workshops_and_tutorials#acceptedworkshop

5http://lider-project.eu/
6https://opennlp.apache.org/
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be implemented, as well as a parser to use NIF annotations in OpenNLP. The software was
be evaluated for scalability and tested for correctness demonstrating a roundtrip from text to
NIF to text. Finally, an industry use case combining corpora, NLP tools and external linked
open data will be demonstrated in 7. The basic NLP problem of sentence boundary detection
and the positive impact of abbreviation lists extracted from linked open data will be examined,
executed and evaluated, using the tools developed in this work, proving its positive contribution
and pointing to further needs in the fields of NLP and the Semantic Web.

1.3 Use Cases
NIF can serve a number of use cases in the fields of NLP and the Semantic Web. As both, NLP tool
output formats, as well as formats to represent NLP annotations are plentiful and heterogeneous,
NIF can serve as a pivot format. The concept of the NLP pivot format can be attributed to [18],
where the Linguistic Annotation Framework (LAF) is presented as a possible pivot format. Such
a format allows for representation of arbitrary annotations, so that, if implemented in a number
of tools, they share a common format for exchange. This procedure significantly reduces the
development overhead for integration tasks spanning annotations from multiple tools and corpora.
NLP tools would only need to support the pivot format, instead of supporting the wide array of
possible formats that are commonly used. Similar to LAF, NIF presents a standard format to
express annotations of arbitrary strings in a stand-off way, but does so openly7 and based on
Semantic Web technologies.

Using NIF as a pivot format by converting corpora into NIF and writing wrappers so that
NIF input can be consumed and put out by NLP tools opens up further use cases. Statistical
models used by NLP tools for text annotation can be trained by using open NIF corpora as a
gold standard. Evaluation of NLP tool performance is a similar and equally important use case
also founded on open corpora. More generally, NIF wrappers facilitate use of NLP annotations
produced by one tools in conjunction with other NLP tools, allowing them to interoperate and
possibly increasing the quality by exploiting strengths of different tools for specific tasks.

NIF’s linked data nature allows easily publishing the resulting annotation data in a machine-
readable way. Because strings can be uniquely identified using the NIF URI schemes, third
parties can add their own annotations, with NIF enabling a natural merge of the annotations.
Altogether, NIF furthers extensible architectures consisting of diverse NLP tools based on a
shared interoperable data model.

2 Foundations
2.1 The Semantic Web
2.1.1 RDF
RDF is a set of specifications developed by the World Wide Web Consortium (W3C) as a data
model that can be used to formally describe resources. A resource can be anything that can be
uniquely identified, ranging from digital documents to abstract concepts. Resources are identified
by URIs, Uniform Resource Identifiers,8, distinct strings with uniform syntax. URIs can be
classified into URLs (Uniform Resource Locator) and URNs (Uniform Resource Name). URLs
additionally describe the primary method of access to the resource, most of them describing web
documents, like http://site.nlp2rdf.org/, that can be visited to gain more information.

7LAF is an ISO standard and thus not open
8RFC3986 Uniform Resource Identifier (URI) http://tools.ietf.org/html/rfc3986\#section-1.1

6



In the RDF data model, resources are described by statements in the form of “subject predicate
object” which are called triples. These statements can be understood as metadata, “data about
data” and in the context of RDF “data describing Web resources” [15]. The subject is the resource
that is described by the statement, uniquely identified by its URI. The object is the content of the
statement, the meta datum itself, like the name of the author of a web site or its publishing date.
The predicate constitutes the semantic link between the subject and the object and describes the
meaning of the link between subject and object. Using the example of the name of the author of
a web site, the triple describing it could look like this:
1 <http :// site. nlp2rdf .org > author " Sebastian Hellmann " .

The subject of the triple is http://site.nlp2rdf.org, its object is the string “Sebastian
Hellmann” and the predicate is “author”. Assuming that there was no predicate, one could not
ascribe a specific meaning to the datum “Sebastian Hellmann”, as one would not know the kind
of relation between subject and object. Thus, the predicate is what assigns the meaning to the
statement.

In the RDF data model, the difference between data and metadata is fluent. The author can
be expressed as a simple literal that contains the author’s name, as seen in the example, but it
can also be another resource, like a web page containing further information.
1 <http :// site. nlp2rdf .org > author <http :// aksw.org/ SebastianHellmann > .
2 <http :// aksw.org/ SebastianHellmann > name " Sebastian Hellmann " .

This process of linking and creating resources explicitly describing their relations creates a
labeled, directed graph. As explained, the semantic information is in the predicates. Although
simple strings like “author” are already meaningful to humans, they still are ambiguous and could
be misinterpreted. Is the object of the statement with the predicate “author” a mere string of
characters or does it describe a person? How is the relation of being an author defined? Does
it entail further information that could be valuable? Especially machines that could otherwise
automatically interpret the data cannot automatically resolve this ambiguity, although being
able to automatically answer these questions would be beneficial. Thus, in the RDF data model,
the predicates also have URIs that can be looked up for further information and are then called
properties.
1 <http :// nlp2rdf .org > <http :// purl.org/dc/ terms /author > <http :// aksw.org/

SebastianHellmann .html > .
2 <http :// aksw.org/ SebastianHellmann .html > <http :// purl.org/dc/ terms /name > "

Sebastian Hellmann " .

The additional benefit is, that sets of properties can be defined and documented by institutions
or developers, like Dublin Core9 in the example above. They can then reused by other users,
increasing interoperability and reducing the work necessary for formal definition.

These sets of properties and associated classes of things needed to create and interpret RDF
triples are called vocabularies or ontologies. A vocabulary or ontology is a set of entity classes and
properties that models a conceptualization of a specific domain, allowing its formal representation
with RDF as well as its automatic interpretation by machines. Classes divide a domain in a
set of abstract objects while individual resources can instantiate a number of classes. Subclass
relations allow for more complex hierarchies of inheritance. Properties specify the meaning of the
link between different resources (their relation) and serve as predicates of RDF triples. A large
number of these vocabularies already exist and can be reused.

RDF itself is only a data model, independent of the concrete serialization, that can be realized
using different formats, like RDF/XML, N3, Turtle or JSON-LD. All serializations contain the
same information but differ in readability, size and ease of parsing.

9http://dublincore.org/
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2.1.2 Linked Data
Linked Data is defined by a set of best practices for publication and linking of structured data on
the web[3]. It describes machine-readable data published on the world wide web with explicitly
defined meaning that link further data. The result is a Web of Data, a machine-readable, semantic
network of structured data in contrast to the unstructured HTML document web. In [2] Tim
Berners-Lee defined the following rules of Linked Data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL)

4. Include links to other URIs. so that they can discover more things.

Linked Data extends the demands of RDF as a data model by specifying HTTP as the access
layer of choice and requiring the openness of the resource to be regarded of high quality.

2.2 Natural Language Processing (NLP)
Natural language processing is a field of computer science researching how natural human language
can be processed, analyzed, understood and generated by computers. Major tasks in NLP involve
basic analysis of text, like sentence boundary detection, tokenization and part of speech tagging
but also more sophisticated techniques like named entity recognition, dependency parsing or
morphological analysis. More complicated tasks often depend on basic analysis. Therefore NLP
tools often work in pipelines, making the output of one tool the input of another.

Natural language corpora, collections of texts in different domains (like newspaper texts or
literary prose), play an important role in NLP. The texts these corpora contain are usually
annotated by humans marking certain features, like sentence and word borders or part of speech
tags. Using these texts, NLP tools can be trained by letting them learn statistical features of
these annotations that can later be used on unannotated text. Corpora can also be used to
evaluate NLP tool quality, by checking if the output of the tool corresponds to the annotation in
the corpus.

2.2.1 Text annotation
Text annotation in the field of NLP is the task of adding notes that describe certain features of
a text - annotations - to the text itself. This can be done manually, for example by a linguist
identifying and marking the part of speech of the words of a sentence, or automatically, by
specific NLP tools. The representation and storage of these annotations is realized in a number
of different ways. Major distinctions are:

• In-text annotation versus stand-off annotation, i.e. if the annotations are marked up in the
text itself or in a different file.

• Identification of the annotated string.

For example, the annotated string can be identified by counting all characters of the text
and denoting the starting character number and the ending character number of the string, a
practice used in the NLP Interchange Format described in Section 3. A different way is to mark
up identifiers in the text itself and refer to them, as used in GATE XML and shown in Listing 1.
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1 <GateDocument >
2 <TextWithNodes >
3 <node id="0"/>This <node id="5"/>word <node id="9"/>is annotated .<node id="23"

/>
4 </ TextWithNodes >
5 <AnnotationSet >
6 <Annotation Type="POS" StartNode ="5" EndNode ="9">
7 <Feature >
8 <Name >POS </Name >
9 <Value >NN </ Value >

10 </ Feature >
11 </ Annotation >
12 </ AnnotationSet >
13 </ GateDocument >

Listing 1: Example text identification using XML elements in the text

Flat file based annotation formats like ConLL split up sentences in tokens, displaying one word
and its annotations per line. A more in-depth description will follow in Section 4.2.

2.2.2 Sentence Boundary Detection
Sentence boundary detection is a basic NLP problem concerned with determining and annotating
beginning and end of a sentence. The procedure is basic to NLP because many advanced NLP
techniques like POS tagging or dependency parsing require single sentences as input. In general,
there are three major approaches to sentence boundary detection:

Rule-based sentence boundary detection uses a number of heuristics that describe the surface
form of a sentence. In the most simple of cases, an English sentence can be described as “a
string of characters, starting with an upper case letter and ending with sentence punctuation”,
for example expressed by a regular expression like [A-Z].*?(.|!|?). However, there can be
sentences that start with lower case letters and words like abbreviations or dates and numbers,
can contain periods. In the Brown corpus that was converted in 4.1, 10.21% of periods occur
at the end of abbreviations. However, the percentage of periods ending abbreviations can be
much higher. In the Wall Street Journal part of the ACL/DCI corpus, 27.05% of periods end
abbreviations10. To prevent large decreases in precision, abbreviation dictionaries can be used to
alleviate this problem. Thus, lists of abbreviations are often used in addition and the number of
rules employed is much more complex than in this very simple case. If abbreviation lists are used,
the rule based detector itself is not changed but if the last word of the sentence is found in a
precompiled abbreviation dictionary, the sentence is not considered to be finished and the next
“sentence” is concatenated to it, thus making punctuation ending an abbreviation an exception to
the rule. This approach will be explained in more detail in Section 7.1.

Supervised machine learning approaches employ training a software on a text annotated with
sentence boundaries as a gold-standard before they can be used on general text. The sentence
detection component included OpenNLP framework, for example, uses supervised Maximum
Entropy learning as shown in [22], reporting a precision of 97% using the Brown corpus.

Lastly, unsupervised machine learning approaches can be trained on unannotated corpora.
One of the most notable systems of this kind is Punkt [12], which identifies abbreviations by
regarding them as collocations of the abbreviated word and the following period, using likelihood
rations to detect them. They achieve a system that is not only domain independent but also
largely language independent and features a small error rate, reporting 99.13% precision and
98.64% recall on the brown corpus. However, it has to be trained on large amounts of text to
work properly.
10Percentages according to [12]
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3 NIF 2.0

The NLP Interchange Format is an RDF/OWL based format created to facilitate interoperability
between different NLP tools. Its current version 2.0 was first presented in [10], a paper I co-
authored. A large number of NLP tools is currently available, enabling the application of diverse
NLP algorithms for equally diverse tasks. The tools themselves accomplish similar tasks, however,
they often are not compatible regarding their input and output formats. Most tools contain
support for a number of standard formats, like ConLL or various flavours of XML11. However,
chaining them together freely, using the tokenization algorithm of one tool, comparing it to the
tokenization of another tool, processing the outcome with another is an interesting use case
without native support in the tools. They also have their particular strengths and weaknesses,
working better or worse for particular use cases or languages. NIF serves as an interoperability
layer, wrapping NLP tools by converting their output into a common format and merging the
different annotations into a single file. For this merge to work, all that is necessary is assigning
the same URI to the same string annotated by different frameworks. Because annotations in NIF
are RDF triples, annotations from different tools will naturally merge using the assigned URI as
identifier. Figure 3.1 shows an example of this merge process.

Figure 3.1: Different annotations by different tools on the same string naturally merge
with NIF

Recently, NIF is also increasingly used as a corpus format ([10], [25]). This is done to further
facilitate interoperability by integrating source data used by NLP tools for training and evaluation
tasks into the NIF ecosystem, but also because NIF provides a way to annotate arbitrary strings
and publish them via LOD. NIF achieves this by implementing a URI scheme for identifying and
addressing elements in (hyper-)text and an ontology for describing common NLP terms. The
following description largely follows [10].

11for example GateXML, TEI XML or GrAF
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3.1 URI Schemes
NIF was developed to allow NLP tools to exchange text annotations in RDF. This requires a
way to make text strings referenceable by URIs to be able to use them as resources of RDF
statements. An algorithm to create a URI for a specific string contained in a document is called
a URI scheme. This scheme needs a number of parameters to create a URI, namely:

• the URI of the document itself, in the following addressed as prefix

• the character indices of beginning and end of the string to address

• a separator between the prefix and string position identifier

Character indices in NIF are counted offset based, as shown in figure 3.2, starting at zero
before the first character and counting the gaps between the characters incrementally until after
the last character of the referenced string.

Figure 3.2: Offset based string counting counts the gaps between characters

The canonical URI scheme of NIF is based on RFC 514712, which provides a standardization
of fragment identifiers for the media type text/plain. Of course, most textual documents found
on the web don’t have this media type, but rather text/html or application/xhtml+xml. To
be able to uniformly address strings in textual documents, NIF regards them as text/plain
documents, thereby including markup characters. The typical example for the use of the stan-
dard NIF URI scheme is the first occurrence of the string “Semantic Web” in the document
(26610 characters) http://www.w3.org/DesignIssues/LinkedData.html. It can be adressed
as http://www.w3.org/DesignIssues/LinkedData.html#char=1206,1218 according to RFC
5147, using the separator # and character offsets to identify the string. The whole document
could in turn be addressed by http://persistence.uni-leipzig.org/nlp2rdf/examples/
doc/LinkedData.txt#char=0,26610. This procedure also describes how to realize web annota-
tion using the NIF URI scheme, by simply appending the character offsets of the string to be
annotated to the web page URL. Because the document being annotated is not changed in the
process of annotation, NIF functions as stand-off annotation format.

For purposes of web services or in applications involving database storage of the strings, the
prefix can be a generated URN or a custom identifier, allowing shorter identifiers that are more
uniform and therefore easier to handle. Because the focus of NLP web services lies in the processed
text or annotations transferred, the generated RDF does not have to include resolvable resources
that are mainly useful for republishing the annotations.

To publish the annotations themselves as Linked Data, additional attention has to be given to
the URIs. Most of the time, the domains of the web pages annotated are not controlled by the
annotating party themselves. Thus, using the URI scheme described will lead to resolvable URIs,
but they won’t contain the annotation but the original document. Using our example, a part of
speech annotation for the string “Semantic Web” may look like this:
12URI Fragment Identifiers for the text/plain Media Type http://tools.ietf.org/html/rfc5147
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1 <http :// www.w3.org/ DesignIssues / LinkedData .html#char =1206 ,1218 > nif: oliaLink <
http :// purl.org/olia/penn.owl#NNP >.

The annotation states that the string has the part of speech “proper noun”. But to be able
to access it as Linked Data, it needs a URI controlled by the annotating party. This can be
achieved in different ways. The first would be a web service, that takes the original NIF URI
as a parameter and returns the annotation resource, like in the case of the NIF Brown corpus
introduced in 4.1. Resulting URIs are quite long, but the structure is easy to understand. The
following example shows how a NIF web service URI for annotation of the example would look
like.

1 http :// example.org/service.php?t=url&f=text&i=http ://www.w3.org/
DesignIssues/LinkedData.html#char =1206 ,1218

The first part is the URI of the web service, shown in red. What follows is a query denoting
the NIF input parameters, as explained in Section 6.1, here shown in blue. The input parameter
(-i) is the URI of the web site that contains the string to annotate, marked in green. Finally, the
fragment containing the strings position via start and end offsets (black) is added, completing
the reference. Accessing this resource will then return the annotation of the string in question.

A different way would be using own prefix URIs and only referencing the original resources or
relevant parts thereof via properties like nif:sourceUrl or nif:wasConvertedFrom.

3.2 NIF Core Ontology
The NIF Core Ontology13 serves as the structural basis of every NIF-conformant resource. It
provides classes and properties to describe arbitrary strings as well as documents, parts thereof
and their mutual relations. It also includes complementary inference and validation models
to extend the potential usefulness of the ontology while keeping it small enough to be easily
understood. Figure 3.3 provides an overview over the ontology. The central class is nif:String,
the class of all words consisting of Unicode characters. Strings offer properties to describe their
content (the Unicode character string itself, via nif:anchorOf) and their position according
to other strings with text indices (via nif:beginIndex and nif:endIndex) as well as various
semantic information, like part of speech tags, sentiment values or word stems.

Subclasses of nif:String include the nif:Context, which contains the whole document’s text
string and can be used to calculate the offsets of the individual substrings of the document. It also
serves as a means of persisting the annotated text itself, should it either be changed in the original
web resource or not be online as resource on the web any more. All substrings of the document link
to the relevant Context element via nif:referenceContext. Such substrings can be categorized
into classes such as nif:Sentence or nif:Word. A classification like that is important to to be
able to interface with existing NLP tools, that often do tokenization and sentence boundary
detection as a basic step in the pipeline. Words and Sentences can be connected with additional
properties to indicate that, for example, a Word is part of a Sentence, or is followed by another
Word. These properties are necessary to keep track of the original ordering of the text for text
traversal and similar tasks that rely on accessing one string at a time in their original order.

Because NIF is RDF-based, a NIF representation of a document is necessarily a graph. Thus,
there is no “beginning”, as in a flat file or XML tree, where child elements of a root node can
be parsed in order. An access point is presented by the nif:Context resource that contains
the original document text, but if the individual string resources are to be consumed in order,

13http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core\#
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with all their annotations and their original tokenization, only the string offsets can be used to
order the strings. This especially applies for consecutive words in a sentence. Thus, properties
like nif:nextSentence, nif:firstWord and nif:nextWord can be used for easy traversal of the
individual strings of a document. This provides a less tedious way to parse the text in its original
ordering than sorting character offset pairs.

Figure 3.3: Class diagram of the NIF Core Ontology

3.3 OLiA
The Ontologies of Linguistic Annotation [5] are a number of modular ontologies, aiming to map
strings commonly used in linguistic annotations to ontological entities. While NIF aims to provide
syntactic interoperability between NLP tools and relevant corpora, OLiA provides a component
of semantic interoperability by mapping the disparate annotation terms used by different tools
and corpora to entities of a common reference model. It was originally developed in a project on
“Sustainability of Linguistic Resources”14 which had the goal of creating accessible dissemination
and storage of linguistic corpora of heterogeneous provenance, size, text type, linguistic theories,
language and annotation.

Differences in annotation terminology range from minor differences in the choice of tag names
to more fundamental variations. For each of these different annotation schemes, OLiA provides an
14http://nachhalt.sfb632.uni-potsdam.de/owl/ontologies-background.html
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Annotation Model, as well as a Linking Model to the common Reference Model. The Annotation
Model formalizes the annotations of the annotation scheme and provides OWL resources for the
tags. These include the tag string as well as membership information to a descriptive owl:class,
which is linked to a class of the Reference Model via rdfs:subClassOf using the Linking Model.
Additionally, rdfs:comments exist for further details on use and meaning of the tags. For example,
the OLiA mapping of the Penn Treebank[16] tag “NN” used to annotate common nouns can be
found in listing 2. The first resource belongs to the annotation model, describing the tag via
the hasTag property as well as the part of speech it encodes. The second resource belongs to
the linking model, defining the specific part of speech as used in the corpus as a subclass of a
matching part of speech in the OLiA reference model. Finally, the third resource belongs to the
reference model.

1 # annotation model : penn.owl
2 <http :// purl.org/olia/penn.owl#NN >
3 a <http :// purl.org/olia/penn.owl# CommonNoun > ;
4 olia_system : hasTag "NN"^^ xsd: string ;
5 rdfs: comment "Noun singular or mass"^^ xsd: string .

7 # linking model : penn -link.owl
8 <http :// purl.org/olia/penn.owl# CommonNoun >
9 rdfs: subClassOf <http :// purl.org/olia/olia.owl# CommonNoun > .

11 # reference model : olia.owl
12 <http :// purl.org/olia/olia.owl# CommonNoun >
13 rdfs: comment "A common noun is a noun that signifies a non - specific member of

a group ."^^ xsd: string ;
14 rdfs: subClassOf <http :// purl.org/olia/olia.owl#Noun > .

Listing 2: Example mapping of the Penn tag “NN” to an entity of the reference model

In practice, aggregations of different corpora and tool outputs can thus be queried for links to
this reference model. This allows, for example, to aggregate the output of an NLP tool that uses
the Penn Treebank tagset15 and a corpus that uses the Stuttgart-Tübingen tagset (STTS)16 and
query it for all words of the type “adjective”. Although they will be tagged with “JJ” according
to the Penn tagset and with “ADJA” and “ADJD” according to the STTS tagset, they can be
retrieved by querying words of rdf:type olia:Adjective using OLiA.

With regard to these properties, OLiA plays an important part in the NIF ecosystem to provide
semantic interoperability between annotations of different tools that would otherwise not be
interoperable.

3.4 NERD
Like morpho-syntactic annotations that are handled differently by different tools, Named Entity
types identified by Named Entity Recognition (NER) algorithms may also be different and have to
be mapped to a common class to make them interoperable. Named Entity types are pre-defined
categories, such as persons, locations or organizations, used to classify text elements. What is
considered as Named Entity type depends on the annotation tool. DBpedia Spotlight [17], for
example, supports the manual selection of types based on the DBpedia ontology17, featuring 31
broader categories, such as person, place, organisation, event or work and 254 more granular
types, such as politician, populated place, sports team, film festival or song. Other tools, such as
the OpenNLP name finder tool with its pre-trained models, are limited to less granular categories,

15http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
16http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/tagsets/stts-table.html
17http://downloads.dbpedia.org/3.9/dbpedia_3.9.owl
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like date, location, money, organization, percentage, person and time for the English model18.
Similar to the POS tag example given in the previous section, the types themselves can also be
expressed with different strings.

The Named Entity and Disambiguation (NERD) ontology [24, 23] is a set of manual mappings
between different taxonomies of named entity types, developed to solve this issue. It is composed
of two parts, the NERD core, which is a list of 10 classes representing named entity types including
a number of owl:equivalentClass references to equivalent types used by different NER tools
and frameworks and the NERD inferred axioms, that provide granular rdfs:subClassOf relations
between different fine grained entity types and core classes. Listing 3 shows an example mapping
for the type “Person”, which also shows the differences between the frameworks as different letter
case.
1 nerd: Person
2 a owl: Class ;
3 rdfs: subClassOf nerd: Thing ;
4 owl: equivalentClass
5 opencalais : Person , semitags : person ,
6 saplo : Person , zemanta : person ,
7 extractiv : PERSON , yahoo : person ,
8 alchemyapi : Person , wikimeta :PERS , dbpedia : Person .

10 nerd: Ambassador
11 rdfs: subClassOf
12 nerd: Person ,
13 extractiv : AMBASSADOR .

Listing 3: NERD core mappings for the named entity type “Person”

NERD thus provides the possibility of including interoperable Named Entity tags in NIF
annotations by linking the relevant NERD class via the NIF property itsrdf:taClassRef.

4 Conversion of corpora into NIF
The usefulness of the NIF ecosystem depends on the availability of wrapped tools as well as
corpora available in NIF. Before beginning this work, only few NIF corpora existed, which are
presented in Section 4.5, all of them for named entity recognition and all of them relatively small,
measuring from 2000 to 13000 triples. To expand the NIF ecosystem and evaluate its capability of
acting as a corpus pivot format and to scalably validate and parse NIF datasets, more and larger
NLP corpora were needed. Because a large number of corpora already are available, the task
was to convert a few of them into NIF 2.0. The choice of which corpus to convert was defined
in a number of criteria elicited from several discussions with Sebastian Hellmann and the wider
NLP2RDF community:

• The license had to be open, as the finished corpus was to be re-published as Linked Data
to enable other users of NIF to test their tools and re-use the data

• Annotation had to be of high quality to be able to serve as a gold standard. Corpora with
automatic annotation without intellectual overview were not used because their precision
is limited by the tools used to generate the annotations.

• Larger size corpora where preferred to evaluate the scalability of NIF. The heterogeneity
of the data typically grows with larger size, which provides an additional challenge to
conversion as well as the chance to show the adequacy of the format for real world big data.

18http://opennlp.sourceforge.net/models-1.5/
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• The annotations of the corpora chosen should be varied, spanning a number of different
NLP tasks, like POS tagging and Named Entity Recognition.

For sentence detection and POS tagging, the Brown corpus qualified for the purpose. Its main
benefit lies in its open availability on one hand and its prominence as one of the most well-known
corpora on the other hand. It will be described in Section 4.1. For named entity recognition
evaluation, English Wikipedia abstracts (Section 4.3 were extracted. This dataset did not exist
as a corpus before, but it is open, available and can serve as a source for a number of interesting
experiments and thus qualified for conversion to NIF. The Wikilinks corpus (Section 4.4) was
converted because of its massive size as well as the “messy” web data it contains. For named entity
recognition training, corpora were already created by the community. They will be introduced in
Section 4.5. Finally, to define how to represent dependency trees in NIF and provide a converter
for the widely used CoNLL 2009 corpus format, the Tiger corpus was used and will be presented in
Section 4.2. The complete contribution of corpora presented in this work adds up to 841,106,737
triples.

Generally, the development of the conversion algorithms was divided into two parts, a general
data analysis and conversion implementation phase which will be presented separately for the
corpora, followed by a data-test driven debugging and validation phase to find errors of the
algorithms that produce incorrect data and ensure corpus correctness, presented in Section 5.

4.1 Brown corpus
The Brown Corpus [7] is a general corpus published in 1964 containing around 1 million words
in 500 English texts from various sources, like newspapers texts on diverse topics, non-fiction
and fiction books as well as government documents. It was manually annotated with word and
sentence boundaries, as well as word class. Word class of annotations encompass:

• Part of speech, such as noun (common and proper), verb, adjective etc.

• Function words such as determiner, conjunctions etc.

• certain words of interest such as not and forms of to be.

• punctuation marks

• inflectional morphemes, such as noun plural, verb tense and adjective comparison

• special tags to mark foreign or cited words.

A more granular explanation to be found in the Brown corpus manual19. Annotations are
expressed as tags, markers that consist of a number of upper case letters and stand for an
individual category of words. For example, nouns that are either singular or don’t have a plural,
so called "mass nouns", are annotated with the tag "NN".

Source corpus format The format of the Brown corpus used for conversion was XML according
to TEI20. Documents of the Brown corpus in TEI-XML can be parted into a teiHeader element
containing metadata like title and source of the document and a text element containing the text
itself. Figure 4.1 shows a sample of the original XML as well as NIF resources extracted from it.

19http://clu.uni.no/icame/brown/bcm.html\#bc5
20Text Encoding Initiative
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Figure 4.1: Original TEI corpus elements and according NIF resources, as well as links
between NIF resources

The text contains a body element which in turn contains a number of paragraphs with
sentences and words in individual elements. Word elements contain a text node that represents
the words they annotate. Tags are found in type attributes of the word elements.

One of the problems of the format is, that, due to the non-standoff annotation, it is impossible
to extract the original text of the document before it was annotated and added to the corpus.
The extraction of the text of the nodes leads to an enclosure of every elements’ text content with
whitespaces. Therefore, punctuation is also seperated from the rest of the text via a whitespace,
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which does not reflect standard text. This can be alleviated with a set of rules specific to
punctuation, so that whitespaces in front of punctuation marks are eliminated. This would
implies directly changing the text of the corpus, which is problematic because of licensing on one
hand - transfering into another format and changing the content of the data are very different, the
last of which forbidden by the Brown license. On the other hand, it would be hard to document,
as it would have to be explicitly stated in some kind of added documentation, although the
semantically annotated data is supposed to stand on its own. Even though the conversion to NIF
already implies changes to the text, because the source text was annotated in a non-standoff way,
no special rules for punctuation marks where introduced for these reasons.

Target NIF format For each of the 500 original XML documents, one nif:Context resource
containing the whole document text as well as the link to the source corpus was established.
For every sentence element, a new nif:Sentence resource containing the sentence string in its
nif:anchorOf predicate and linking to the context via nif:referenceContext was established.
Similarly, for every word element, a new nif:Word resource was established. Each nif:Word
resource links to its nif:Sentence as well as to the resource that represents the following word
in the sentence. It also contains a nif:oliaLink for the POS-tag and the string of the word
with nif:anchorOf. Finally, every sentence links to every word it contains. This results in two
possible ways to iterate over all words of a sentence: 1. Getting all words linked via nif:word by
a sentence element and 2. Getting only the first word of the sentence and then traversing via the
nif:nextWord predicates.

The consistent use of nif:anchorOf properties in every sentence and word resource introduces
some redundancy because the complete document string can be found in the nif:Context, the
sentence strings are repeated in the nif:Sentences and the word strings again in the nif:Words.
NIF suggests this procedure; every resource of the type nif:String that does not have the type
nif:Context should have a nif:anchorOf property triple containing the string it represents.
But through nif:referenceContext and the string offsets of the strings, the strings could easily
be extracted as substrings of the reference context string. Having them redundantly available
via nif:anchorOf is just convenient. The Brown corpus being a stable and established resource,
nif:anchorOf could be dropped to lower the footprint of the final NIF corpus. As seen in table 1,
this would lower the overall size compared to full NIF by 9,7%. The benefits of this relatively
small reduction in size will in most use cases be outweighed by the usefulness of having the strings
the resources annotate directly available for further processing. Not addressing the words at all
and only annotating sentences is an interesting use case. Words and their part of speech may
not be interesting to some use cases, like sentence boundary detection training and evaluation.
The resulting corpus would be valid NIF and 94,8% smaller than the full NIF corpus, making it
easier to parse, saving system memory and online bandwidth. This demonstrates that publishing
different extractions and parts of corpora for different use cases might be beneficial for the users.
However, this extraction be achieved by a simple SPARQL query executed by the users themselves.
In contrast, adding the NIF properties for easier traversal of sentences and words, like nif:word
to link sentences to words they contain, or nif:nextSentence to traverse sentences in order,
nearly doubles the size of the corpus, making use of these properties ambivalent in terms of return
of investment.

NIF conversion implementation For NIF conversion, a custom Java converter was written.
Because the documents that comprise the corpus are relatively small in size, a DOM21 parser was
used, because the XML documents that comprise the corpus are on average only 56.8 KB in size.
21Document Object Model
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Corpus Version File Size Number of Triples

TEI-XML 28 MB -

NIF 2.0 - only sentence resources, no anchorOf 26.8 MB 346,610

NIF 2.0 - only sentence resources, including an-
chorOf

28.7 MB 403,795

NIF 2.0 - sentence and word resources, no ancho-
rOf

504.4 MB 8,473,806

NIF 2.0 - sentence and word resources, including
anchorOf

553.4 MB 9,692,019

NIF 2.0 - complete, including nif:sentence,
nif:word, nif:nextSentence and nif:nextWord

1.145 MB 14,335,131

Table 1: Size comparison between different NIF Turtle versions of the Brown corpus

Such small XML documents can be easily handled by a DOM parser without performance issues
and simply do not merit the implementation of a SAX parser. The documents were iteratively
read and parsed into DOM Document objects. All sentence elements where added to a NodeList
that was iterated over. The text content of the sentence elements was extracted and concatenated
in a document text string, as well as added to a Sentence object that also holds the strings start
and end offsets. To determine the start offset of the first sentence, its position in the document
string was used. End offsets were computed by adding the string length of sentences. Words were
treated the same, adding them to a list of Word objects in the respective Sentence object. After
parsing the XML into Java objects, they were iterated over and written to disk as NIF in the
Turtle format by inserting the objects’ data into Turtle string templates that could be written
by a BufferedWriter. The final corpus features 14,335,131 triples, denoting 57,185 sentences
containing 1,161,028 words.

4.2 Tiger ConLL dependency corpus
ConLL is a family of formats used for the shared tasks of the yearly Conference on Computational
Natural Language learning22. The shared tasks are challenges for NLP researchers and change
from year to year, typically following current trends and developments in NLP technology. Part
of the task usually is a number of data files containing training and evaluation data used to
benchmark the solutions presented by different algorithms. These files have a common format
that, because of the prestigious conference, became a commonly used file format in NLP. Because
of the shared nature of the tasks, there is also a lot of high quality, annotated data available in a
number of languages that otherwise may be either strictly licensed or hard to obtain. This large
acceptance and wide adoptation are reasons to develop a component for conversion of ConLL
data to NIF.

ConLL files are flat files containing a number of lines with tab separated values. Each line
contains one word of a sentence in the first field and associated annotations in the other fields.
22urlhttp://ifarm.nl/signll/conll/
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Sentences are ended by empty lines. Annotations themselves differ significantly based on the
task presented. For example, the ConLL 2009 shared task was on dependency parsing. A short
description23 of the contained fields can be found in table 2.

As one of the most important German corpora featuring a research license, the Tiger Treebank [4]
was also released in the ConLL format24 and can serve as an example resource for transformation
of ConLL files to NIF.

Conversion implementation Again, a converter was written for the ConLL format. Because
there is a large number of ConLL files available and the convertert can thus be reused instead of
providing a static conversion like in the case of Brown and Wikipedia Abstracts, the converter
for this corpus supports NIF API parameters according to the NIF Public API specification25.
Its needed parameters are either an input file or an input text, as well as the input type (file
or direct) and input format (only text). An additional parameter tagset that is not included
in the NIF API parameters was added. It allows specifying the name of the tagset used to
annotate the corpus for OLiA linking of POS tags contained in the corpus. The tagset name
has to be one of the tagsets included in OLiA and implemented in the NIF vocabularymodule26.
After accepting the parameters, the converter creates a Jena OntModel as well as an initial
nif:Context resource, that will contain the whole document content (all sentences concatenated)
in its nif:isString property. It then consumes the input file or string line by line, adding all
lines to an ArrayList<String> until a empty line comes up, that signals the end of the sentence,
so that the List contains exactly one sentence. The elements of the ArrayList are then processed
into a List of ConLLWords by splitting the strings via split(”\t”) and adding the resulting array
elements to ConLLWord objects. ConLLWords contain the information from all fields of the original
file in variables, so that they can be accessed easier. They also contain start and end offsets in
regard to the document string. During this process, the sentence string is also being built.

Special attention is given to punctuation and parenthesis. Because ConLL encodes one token
per line, the original string can not be recreated properly. If every token was treated the same,
one had to assume that after each token, a whitespace would follow. However, this is not true
for special characters like punctuation or parenthesis, because there is no whitespace in front
of punctuation and closing parenthesis and no whitespace after opening parenthesis. This was
addressed by checking if the words belong to these characters with two regular expressions,
presented in the following listing.
1 ([\\.!? ,;:) ]| ’+)
2 ([(]| ‘+)

The first expression checks for characters that should not have a leading whitespace, like
punctuation, commas, colons or chains of single quotes. The second one checks if the character us
an opening parenthesis or a chain of opening quotes, which should not have trailing whitespaces.
In all other cases, tokens will be appended by whitespaces automatically.

After building the sentence string and the word objects, a Jena Individual was created for
the sentence and each of the words, adding the Individuals to the Jena model and links to the
word resources via nif:word to the sentence resource. The Individuals also get to link to the
nif:Context resource. The word individuals received additional properties according to the
23Full format documentation here: http://ufal.mff.cuni.cz/conll2009-st/task-description.html
24http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/download/

tigercorpus-2.2.conll09.tar.gz
25http://persistence.uni-leipzig.org/nlp2rdf/specification/api.html
26https://github.com/NLP2RDF/software/tree/master/java-maven/vocabularymodule/OLiA/src/

main/java/org/nlp2rdf/vm/olia/models
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Field Content description Comments

ID unique identifier of the word

FORM word form

LEMMA Lemma / base form of the word "–" for punctuation, equals FORM
for proper nouns

PLEMMA predicted LEMMA based on independently trained tag-
ger, always "_" in Tiger corpus

POS Part of speech Tagset depends on corpus, STTS for
Tiger

PPOS predicted POS based on independently trained tag-
ger, always "_" in Tiger corpus

FEAT morphological features in Tiger corpus case, number, gender
divided by "|"

PFEAT predicted FEAT based on independently trained tag-
ger, always "_" in Tiger corpus

HEAD head of the phrase ID of the phrase head, 0 for root
node

PHEAD predicted HEAD based on independently trained tag-
ger, always "_" in Tiger corpus

DEPREL type of dependency relation to
HEAD

"–" for punctuation

PDEPREL predicted DEPREL based on independently trained tag-
ger, always "_" in Tiger corpus

FILLPRED Y for lines where PRED should be
filled

always "_" in Tiger corpus

PRED rolesets of semantic predicates in this
sentence

always "_" in Tiger corpus

APREDs columns of argument labels for se-
mantic predicates in textual order

always "_" in Tiger corpus

Table 2: Description of the ConLL 2009 format and its realization in the Tiger corpus
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available data in the ConLL file including nif:lemma and nif:posTag, as well as nif:oliaLink
and nif:oliaCategory using the configured tagset. The dependency tree is also parsed and its
information added to word resources via nif:dependency that points from the governing phrase
to the dependent phrase. An additional property nif:dependencyRelationType was introduced,
that contains the content of the ConLL DEPREL field. The properties retrieved by parsing the
dependency tree were then added to their respective words. This steps concludes the parse of the
sentence. The sentence string is added to contextString and the next set of lines is consumed.

After the whole ConLL document is parsed, the contextString is added to the nif:Context
resource via nif:isString and its length is set as the end offset of the document string. The
final model is then put out either via System.out or written to a file in the configured format.
Listing 4 gives an example of the resulting NIF data.

1 <http :// example .org/ tiger_conll #char =29 ,32 >
2 a nif: String , nif: RFC5147String , nif:Word ,

nif: Phrase ;
3 nif: anchorOf "ein" ;
4 nif: beginIndex "29" ;
5 nif: dependencyRelationType "NK" ;
6 nif: endIndex "32" ;
7 nif: lemma "ein" ;
8 nif: oliaCategory olia: Article , olia: PronounOrDeterminer ,

olia: Determiner ;
9 nif: oliaLink <http :// purl.org/olia/stts.owl#ART > ;

10 nif: posTag "ART" ;
11 nif: referenceContext <http :// example .org/ tiger_conll #char =0 ,55 >

;
12 nif: sentence <http :// example .org/ tiger_conll #char =0 ,55 >

.

14 <http :// example .org/ tiger_conll #char =33 ,43 >
15 a nif: String , nif:Word , nif: RFC5147String ,

nif: Phrase ;
16 nif: anchorOf "prä chtiger " ;
17 nif: beginIndex "33" ;
18 nif: dependencyRelationType "NK" ;
19 nif: endIndex "43" ;
20 nif: lemma "prä chtig " ;
21 nif: oliaCategory olia: Adjective , olia: AttributiveAdjective

;
22 nif: oliaLink <http :// purl.org/olia/stts.owl#ADJA > ;
23 nif: posTag "ADJA" ;
24 nif: referenceContext <http :// example .org/ tiger_conll #char =0 ,55 >

;
25 nif: sentence <http :// example .org/ tiger_conll #char =0 ,55 >

.

27 <http :// example .org/ tiger_conll #char =44 ,52 >
28 a nif: RFC5147String , nif:Word , nif: String ,

nif: Phrase ;
29 nif: anchorOf " Diktator " ;
30 nif: beginIndex "44" ;
31 nif: dependency <http :// example .org/ tiger_conll #char =33 ,43 >

, <http :// example .org/ tiger_conll #char =29 ,32 > ;
32 nif: dependencyRelationType "PD" ;
33 nif: endIndex "52" ;
34 nif: lemma " Diktator " ;
35 nif: oliaCategory olia: CommonNoun , olia:Noun ;
36 nif: oliaLink <http :// purl.org/olia/stts.owl#NN > ;
37 nif: posTag "NN" ;
38 nif: referenceContext <http :// example .org/ tiger_conll #char =0 ,55 >

;
39 nif: sentence <http :// example .org/ tiger_conll #char =0 ,55 >

.

Listing 4: Example resource of the Tiger corpus
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Tiger corpus example To evaluate the converter, the Tiger Treebank was converted into NIF.
The 50,472 sentences and 888,238 words of the corpus were transformed into NIF in 14:03 minutes.
Memory consumption was very high, needing over 5.7 GB memory to process the 60 MB ConLL
file (figure 4.2). The final corpus features 17,428,613 triples.

Figure 4.2: Memory consumption of the Tiger corpus conversion process

4.3 Wikipedia abstract corpus
Wikipedia is the most important and comprehensive source of open, encyclopedic knowledge.
The English Wikipedia alone features over 4.280.000 entities described by basic data points, so
called info boxes, as well as natural language texts. Besides the Wikipedia web site, Wikipedia
data is available via a PHP API as well as complete XML dumps. However, web site and API
access are officially limited to one request per second, prohibiting a naive web scraping approach
to obtain the data. Even after downloading the XML dump files, consuming and processing them
is a complicated task further hindering large-scale data extraction. To alleviate these issues, the
DBpedia project [1] has been extracting, mapping, converting and publishing Wikipedia data
since 2007, establishing the LOD cloud and becoming its center in the process. The main focus
of the DBpedia extraction lies in mapping of info boxes, templates and other easily identified
structured data found in Wikipedia articles to properties of an ontology, that is build in the
process in a bottom up way. Article texts and the data they may contain are not especially
focused, although they are the largest part of most articles in terms of time spent on writing,
informational content and size. Only the text of the first introductory section, up until the first
heading after the main article heading, of the articles is extracted and contained in the DBpedia,
calling them abstract. Links inside the articles are only extracted as an unordered bag, showing
only an unspecified relation between the linking and the linked articles, but not where in the
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text the linked article was mentioned or which relation applies between the articles. As the
links are set by the contributors to Wikipedia themselves, they represent entities intellectually
disambiguated by URL. This property makes extracting the abstracts including the links and
their exact position in the text an interesting opportunity to create a corpus usable for, among
other cases, NER and NEL algorithm evaluation. In fact, Wikipedia abstracts are already widely
used for training purposes.

Furthermore, the abstracts represent a special form of text that lends itself to be used for more
sophisticated tasks, like open relation extraction. The articles have an encyclopaedic style [20],
describing the topical entities by relating them to other entities often explicitly linked in the text.
Following the official Wikipedia guidelines on article style and writing27, the first sentence usually
tries to put the article in a larger context. Therefore Wikipedia abstracts can be understood as
“Is-A”-corpus, defining an entity in relation to a broader class of related entities or an overarching
topic. This interesting property is exemplified by the fact that by clicking the first link in a
Wikipedia article, one will eventually reach the article on “Philosophy” for 94,5% of all articles28.
The encyclopedic style also suggests that anaphers29 appearing as subject of a sentence reference
the topic of the article, easing coreference resolution. Due to the topical restriction and the
Wikipedia guidelines on entity linking, it is also a reasonable assumption that words appearing
in article texts linked on their first occurrence and reappearing unlinked later represent the
same entity. Programmatically exploiting these properties strongly hinges on link extraction and
support the high value of the corpus in spe.

Conversion implementation Because Wikipedia data is only obtainable as a very large XML
dump with a proprietary structure, and other ways of extraction like web scraping are too slow, a
processing pipeline had to be used to access the data. The main hindrance is, that raw Wikipedia
articles are written in Wiki markup30, a special syntax and keywords that are used to format
Wikipedia articles and add further data. Besides common syntax, like for example representing
a ==Heading==, it also features calls to external LUA scripts and templates, making it a very
tedious and wikipedia language-specific task to implement a tool to render Wikipedia articles
just like Mediawiki31 does. Therefore a local Mediawiki instance as mirror of the Wikipedia is
installed and configured as first part of the extraction pipeline, tasked with rendering the Wiki
markup to plain text.

Figure 4.3 shows the data flow of the pipeline used. Central to the extraction was the DBpedia
extraction framework32 an open source framework to load and convert Wikipedia data to LOD
written in Scala. It provides tools and documentation for necessary tasks, such as the import of
the Wikipedia dump into the local Mediawiki’s database as well as the extraction itself.

For the extraction of abstracts, the framework uses Mediawiki’s API. For every page to extract
data from, an HTTP request is made to the locally hosted API, using the TextExtracts33

extension with the parameters exintro and explaintext. This way, the plain text of the first
section as rendered by Mediawiki, without any markup can be obtained Because this makes
it impossible to extract the links, a new extractor class was written for the corpus conversion,
27Wikipedia Manual of Style, Lead section, Opening paragraph: http://en.wikipedia.org/wiki/

Wikipedia:MOSBEGIN\#Opening_paragraph
28Data compiled by Wikipedia user “Ilmari_Karonen” using English Wikipedia articles from 26 May

2011: http://en.wikipedia.org/wiki/User:Ilmari_Karonen/First_link
29like pronouns or synonyms, hyponyms, hypernyms or holonyms
30http://en.wikipedia.org/wiki/Help:Wiki_markup
31Wikipedia’s software, http://www.mediawiki.org/
32https://github.com/dbpedia/extraction-framework
33http://www.mediawiki.org/wiki/Extension:TextExtracts

24



Figure 4.3: Data flow diagram showing the data conversion process

that uses a different API. This AbstractLinkExtractor uses the standard Mediawiki API with
the parameters action=parse and section=0 to obtain the complete HTML source of the first
section of each article. Running this framework using this extractor and the local Mediawiki
mirror produced a 30GB file in ntriples format, containing triples of the following form.
1 <$DBpediaUri > <http :// dbpedia .org/ ontology /abstract > " $htmlAbstract ".

These triples present an intermediary data format that only serves for further extraction
of HTML abstracts and the respective DBpedia URI. The $htmlAbstract literal containing
the HTML text was then split into relevant paragraph elements, which were parsed with a
SAX-style34 parser.

Opposite to DOM-style parsers that have to parse to whole document before allowing operations
on it, SAX-parsers operate by sequentially parsing the documents, reporting events such as
encountering the start or end of an element as well as its element name. This is less memory
intensive than DOM-parsers. Because the whole HTML string had to be parsed anyway to obtain
the whole text, the loss of DOM functions like access to specific elements could be disregarded.
No attention had to be paid to the validity of the HTML either, because Mediawiki HTML is
already valid because of the Mediawiki’s software correctness.

All child element of the relevant paragraphs where traversed by the parser. If a #text element
was encountered, its content was appended to the abstract string. If an a element with attribute
href was encountered, a Link object was created, containing the start and end offsets of the
#text child element of the a element, as well as the link text itself and the linked URL. Other
elements were skipped to exclude tables and spans containing various other information not
representable as plain text. Special consideration was given to Mediawiki specific elements used
for visual styling. For example kbd elements where not skipped, because they are used to style
the text they contain as if it was a keyboard letter. Thus they contain important content easily
34Simple API for XML

25



representable as text. After completely parsing the paragraphs, the resulting strings where
concatenated to the abstract string, the Link objects created where aggregated. Using simple
string processing, the resulting data was written to disk in NIF 2.0 serialized in the turtle format
before consuming the next line. This streaming procedure allows for the small memory footprint
needed when processing large amounts of textual data on consumer hardware, like in this case.

Target NIF format A nif:Context resource was established for each article, containing the
article abstract in the nif:isString property, as well as the string offsets denoting its length and
the URL of the source Wikipedia page. For each link, another resource was created, containing the
link text in the nif:anchorOf property, its position in the string of the referenced nif:Context
resource, as well as the URL of the linked resource via the property itsrdf:taIdentRef. Thereby,
the identity of the literal string of the link text and the resource linked is made explicit, leading
to the mentioned disambiguation of the link text by URL. An example resource can be found in
listing 5.
1 <http :// dbpedia .org/ resource / Pizza / abstract #char =0 ,112 >
2 a nif: String , nif: Context , nif: RFC5147String ;
3 nif: isString """ Pizza ([’ pittsa ]) is an oven - baked flat bread typically

topped with a tomato sauce , cheese and various toppings ."""^^ xsd: string ;
4 nif: beginIndex "0"^^ xsd: nonNegativeInteger ;
5 nif: endIndex "112"^^ xsd: nonNegativeInteger ;
6 nif: sourceUrl <http :// en. wikipedia .org/wiki/Pizza > .

8 <http :// dbpedia .org/ resource / abstract #char =24 ,28 >
9 a nif: String , nif: RFC5147String ;

10 nif: referenceContext <http :// dbpedia .org/ resource / Pizza / abstract #char =0 ,112 >
;

11 nif: anchorOf """oven"""^^ xsd: string ;
12 nif: beginIndex "24"^^ xsd: nonNegativeInteger ;
13 nif: endIndex "28"^^ xsd: nonNegativeInteger ;
14 a nif:Word , nif: Phrase ;
15 itsrdf : taIdentRef <http :// dbpedia .org/ resource /Oven > .

17 <http :// dbpedia .org/ resource / abstract #char =40 ,45 >
18 a nif: String , nif: RFC5147String ;
19 nif: referenceContext <http :// dbpedia .org/ resource / Pizza / abstract #char =0 ,112 >

;
20 nif: anchorOf """ bread """^^ xsd: string ;
21 nif: beginIndex "40"^^ xsd: nonNegativeInteger ;
22 nif: endIndex "45"^^ xsd: nonNegativeInteger ;
23 a nif:Word , nif: Phrase ;
24 itsrdf : taIdentRef <http :// dbpedia .org/ resource /Bread > .

Listing 5: Example resource of the abstract corpus

The final corpus contains 4,285,608 nif:Context resources, one for every Wikipedia article
contained in the dump. It is published in form of 86 dump files, each containing around 50000
entities, ranging from 97 to 290 MB in size to a total of 15.7 GB, counting 276,326,693 triples.

Validation Due to the size of the data and the diversity of the HTML that had to be processed,
a special effort was made to validate the data. Validation was 3-fold:

1. The Raptor RDF syntax parsing and serializing utility 2.0.1335 (raptor2-utils) was used to
make sure the turtle files are syntactically correct.
Raptor is a widely used RDF parsing tool implemented in c, that is capable of parsing and
converting most RDF serializations, as well as counting triples. It was run for every of the
86 corpus files, ensuring that no errors were returned, considering the RDF valid after this
step.

35http://librdf.org/raptor/
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2. The GNU tools iconv36 together with wc37 was used to make sure the files only contain valid
unicode codepoints. This was necessary because the data of the English Wikipedia contains
citations from other languages, articles about international topics and IPA sequences
denoting phonology, that also heavily rely on unicode for presentation.
Iconv is typically used to convert text files from one format to another. However, starting
it with the -c parameter makes it discard inconvertible (thus wrongly encoded) characters.
Doing a character count before and after the iconv execution and comparing the number of
characters would show that characters where dropped. This procedure again was run in a
script on all files of the corpus, considering the unicode characters valid after this step.

3. RDFUnit38 was used to ensure adherence to the NIF 2.0 standard. For an exhausting
explanation of this process, see Section 5.

4.4 Wikilinks corpus
The Wikilinks corpus [26] is a coreference resolution corpus of very large scale. Coreference
resolution is the task of connecting expressions, also known as mentions, to individual entities they
refer to. The Wikilinks corpus contains over 40 million mentions and the respective Wikipedia
entities (around 3 million) they refer to, as well as the surrounding text. Data was derived from
a web crawl of over 10 million web pages that link to Wikipedia somewhere in the text. Mentions
as well as links were aggregated together with the pages’ source in the corpus I used39, resulting
in a corpus of over 180GB compressed size.

The corpus surpasses most free corpora in size by far and serves as a very good test bed for
measuring scalability of RDF as well as performance of NER Disambiguation tools in a noisy and
multi-domain environment. The authors of these pages being human, the coreference resolution
was done manually by linking a certain word or phrase to a relevant Wikipedia page. This fact
should result in the links being of relatively high quality. The corpus can be used for NER to
disambiguate between entities, as the meaning of the text fragments is captured in the Wikipedia
link set by the owner of the website. It also spans multiple domains, as the crawled websites are
heterogeneous by nature. Furthermore, the links target the English Wikipedia and can be used
to obtain corresponding links to the DBpedia, thus allowing seamless creation of a Linked Data
NER corpus.

Source corpus format The corpus is divided into around 3 million items, consisting of the
website URI of the crawled sites and a number of mentions, including the English Wikipedia link,
the hyperlink anchor text, its byte offset and in most cases a context string, i.e. suffix and prefix
around the anchor of variable length. Furthermore, every item has the complete DOM of the web
page attached. Items can thus be understood as representing the document, while mentions are
specific instances of phrases in the document. The corpus is distributed in the Apache Thrift40

format and includes some methods for easy access of specific fields of the corpus data.

Conversion to NIF and Hosting as Linked Data. 15% of the items did not contain any
mention with context strings and where therefore omitted. The rest of the items were converted
36http://www.gnu.org/savannah-checkouts/gnu/libiconv/documentation/libiconv-1.13/iconv.1.

html
37https://www.gnu.org/software/coreutils/manual/html_node/wc-invocation.html
38http://aksw.org/Projects/RDFUnit.html
39https://code.google.com/p/wiki-link/wiki/ExpandedDataset
40https://thrift.apache.org/
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into one nif:Context resource per item. Every mention was converted into a nif:Phrase
resource, referring to the context via nif:referenceContext, as usual. The entitiy the mention
links was added via itsrdf:taIdentRef. The DBpedia ontology classes of the entity were
extracted from DBpedia and added via itsrdf:taClassRef, as well as NERD ontology classes to
ease mapping in a number of NER tools. In addition, the coarse grained NE class was identified by
using the class of the entity that is a direct subclass of owl:Thing. For example, a Lighthouse is a
dbo:Building, which is a subclass of dbo:ArchitecturalStructure which in turn is a subclass
of dbo:Place which is a direct subclass of owl:Thing and thus the top level concept we want to
extract. These classes equivalent NERD classes where annotated using nif:taNerdCoreClassRef.
The direct surrounding text of each mention was extracted and converted into a nif:Snippet
resource. Mentions link the Snippet resources via nif:wasConvertedFrom. In turn, the Snippet
resources use nif:wasConvertedFrom to link the original resource, adding the Xpath of the
HTML element they where extracted from by adding an &xpath= parameter and the relevant
Xpath to the URI.

Every converted item was aggregated into one Turtle file. Filenames where computed
using the MD 5 hashcode of the URI denoting the files two parent folder names and its
filename. To make the documents Linked Data, they where assigned URIs of the form:41

http://wiki-link.nlp2rdf.org/api.php?uri=$websiteURI#char=0,. A PHP script extracts
the URI, computes the MD 5 hash and redirects the browser via HTTP 303 response to the file
itself.
1 <http :// example .org/ wikilinks #char =0 ,520 >
2 a nif: String , nif: Context , nif: RFC5147String ;
3 nif: isString """ English : Cana Island Light north of Baileys Harbor , Wisconsin

, USA.
4 [...] """^^ xsd: string ;
5 nif: beginIndex "0"^^ xsd: nonNegativeInteger ;
6 nif: endIndex "520"^^ xsd: nonNegativeInteger ;
7 nif: sourceUrl <http :// example .org/ source .html > .

9 <http :// example .org/ wikilinks #char =0 ,68 >
10 a nif: String , nif: RFC5147String , nif: Snippet ;
11 nif: referenceContext <http :// example .org/ wikilinks #char =0 ,520 > ;
12 nif: beginIndex "0"^^ xsd: nonNegativeInteger ;
13 nif: endIndex "68"^^ xsd: nonNegativeInteger ;
14 nif: wasConvertedFrom <http :// example .org/ source .html& xpath =/ html/body/div [3] >

.

16 <http :// example .org/ wikilinks #char =9 ,26 >
17 a nif: String , nif: RFC5147String ;
18 nif: referenceContext <http :// example .org/ wikilinks #char =0 ,520 > ;
19 nif: anchorOf """Cana Island Light """^^ xsd: string ;
20 nif: beginIndex "9"^^ xsd: nonNegativeInteger ;
21 nif: endIndex "26"^^ xsd: nonNegativeInteger ;
22 nif: wasConvertedFrom <http :// example .org/ wikilinks #char =0 ,68 > ;
23 a nif: Phrase ;
24 itsrdf : taClassRef <http :// dbpedia .org/ ontology / Lighthouse > ;
25 nif: taNerdCoreClassRef <http :// nerd. eurecom .fr/ ontology #Location > ;
26 itsrdf : taClassRef <http :// nerd. eurecom .fr/ ontology # Lighthouse > ;
27 itsrdf : taClassRef <http :// dbpedia .org/ ontology /Building > ;
28 itsrdf : taClassRef <http :// dbpedia .org/ ontology / ArchitecturalStructure > ;
29 itsrdf : taClassRef <http :// dbpedia .org/ ontology /Place > ;
30 itsrdf : taClassRef <http :// nerd. eurecom .fr/ ontology #Location > ;
31 itsrdf : taIdentRef <http :// dbpedia .org/ resource / Cana_Island_Light > .

Listing 6: Example resource of the Wikilinks corpus

The corpus resulted in 10.626.762 files hosted in an Apache2 file systemhttp://wiki-link.
nlp2rdf.org/ containing 533.016.300 triples and 31.542.468 million links to DBpedia in 12GB
41e.g.http://wiki-link.nlp2rdf.org/api.php?uri=http://phish.net/song/on-green-

dolphin-street/history\#char=0,
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gzipped turtle dumps (79 GB uncompressed). Listing6 shows the format of an example resource.

4.5 Other NIF corpora
Besides the corpora converted and released for this work, five other NIF corpora have been
developed. In [27], three corpora have been used for evaluation of three Named Entitiy Disam-
biguation tools. One of the corpora was an early version of the NIF Wikilinks corpus presented
in 4.4 that did not contain the surrounding text of the mention. The other two corpora were
already well known NERD corpora, DBpedia Spotlight and KORE50. The authors used NIF
as a corpus pivot format, converting the non-NIF corpora into NIF for easier processing and
comparability. Instead of three parsers for the different corpus formats, only one parser was
needed. The converted resources could also be published, allowing easier replication of the results
and creating a valuable resource for other researchers.

The DBpedia Spotlight corpus first presented in [17] contains 60 sentences from ten New York
Times articles in seven different categories, from business to fashion. Specific words in the article
texts were manually annotated with links to relevant DBpedia entites. Overall, there are 249
annotated DBpedia entities. The corpus was converted by the authors of [27] into NIF and
published as a turtle file42. Every original article was converted into one nif:Context as well as
a number of nif:Sentences and one nif:Phrase resource for every entity annotated string. The
corpus contains 3425 triples and 325 links to DBpedia using the itsrdf:taIdentRef property.

KORE50 is a corpus created for the AIDA43 project, which also aims to map natural language
strings to canonical entities. The KORE50 corpus [11] is an openly licensed subset of the larger
AIDA corpus and contains 50 hand-crafted sentences from different domains with ambiguous
mentions and DBpedia entity links. The format is a CoNLL 2003 style TSV format. The corpus
was also converted by the authors of [27] and also published as a turtle file44. Every sentence
was converted into a nif:Context resource, linking a common nif:Context resource using
nif:broaderContext. This concept was used in the early iteration of the NIF Wikilinks corpus
but is not considered valid NIF any more. Thus, a corrected version of the corpus following the
structure of the DBpedia Spotlight NIF corpus was published later45. The corpus contains 1410
triples and 144 links to DBpedia using the itsrdf:taIdentRef property.

Three further NERD corpora have been released in [25], called News-100, Reuters-128 and
RSS-500. News-100 contains 100 German news articles containing the homonym Golf, which
can refer to a car model, a gulf or a sport. Reuters-128 is based on a subset of the Reuters
21578 corpus46 corpus, that consists of Reuters news documents from 1987. Entity links where
automatically annotated using FOX [19] and manually corrected by two scientists. RSS-500 is
based on a list of 1,457 RSS feeds initially compiled by [8]. Feeds include a range of international
newspapers as well as a larg number of topics. The complete corpus contains 11.7 million sentences
of which 500 have been selected for manual annotation.

For all corpora, documents were manually annotated with links to DBpedia entities via
itsrdf:taIdentRef. In addition, the DBpedia version of the linked entities was denoted using
the itsrdf:taSource property and a string describing the version, "DBpedia_en_3.9" for English
corpora and "DBpedia_de_3.9" for the German corpus. The corpora were published as Turtle

42http://www.yovisto.com/labs/ner-benchmarks/data/dbpedia-spotlight-nif.ttl
43AIDA: Accurate Online Disambiguation of Named Entities in Text and Tables, http://www.mpi-

inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/
44http://www.yovisto.com/labs/ner-benchmarks/data/kore50-nif.ttl
45http://www.yovisto.com/labs/ner-benchmarks/data/kore50-nif-2014-11-03.ttl
46http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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files on github47. They contain 12289 (News-100), 6967 (Reuters-128) and 10038 (RSS-500)
triples, featuring 1547, 650 and 524 DBpedia links respectively.

5 Validation of NIF corpora
Being designed as an interchange format, the NIF ecosystem depends on all instances of NIF
application to comply with the standard. Because production of NIF-conform corpora is not
trivial and especially large corpora can be heterogeneous in data and structure, formal validation
is crucial. At the time of writing, the best tool to exhaustively validate a corpus using a test-
driven approach was RDFUnit, which will be introduced in the following section. Following the
introduction, test case implementation for NIF will be addressed in 5.2, before the tests will be
used for the validation of the converted corpora, described in 5.3.

RDFUnit has been applied for validating NIF corpora before in [13], a paper I co-authored.
The tests run in this thesis provide a deeper insight into the procedure and expand the tests
by including more and larger datasets, as well as including a scalability test not contained in
[13]. All tests were completely redone for this work, as both, the RDFUnit version as well as the
corpora have changed.

5.1 RDFUnit
RDFUnit [14] is a Java framework for test-driven evaluation of Linked Data quality. It uses test
cases containing two SPARQL queries each, which test if a dataset is in accordance to the axioms
of its ontology. The queries the tests contain query for constraint violations as well as for the
prevalence of the violations, if applicable.

1 # Violation Query | # Prevalence Query
2 SELECT DISTINCT ?s WHERE { | select count ( distinct ?s) WHERE {
3 ?s dbo: birthDate ?v1. | ?s dbo: birthDate ?v1 .
4 ?s dbo: deathDate ?v2. | ?s dbo: deathDate ?v2 . }
5 FILTER ( ?v1 > ?v2 ) } |

Because the ontology already provides criteria for data correctness, most of the testing SPARQL
queries can be generated automatically from the ontology, using a pattern based approach as well
as derivation from OWL axioms themselves. For example, tests for domain and range restrictions
of properties, type as well as cardinality restrictions can be automatically tested. In addition
manual tests can be defined to specifically test for other criteria. These manual tests can be
used to formalize correctness criteria that are either too complex to be derived from the ontology
or that relate directly to data expressed by specific instances in the dataset. For example, one
of the NIF tests uses the SPARQL SUBSTR48 function to make sure that the nif:anchorOf
string of each nif:String resource (that is not a nif:Context) equals the part of the respective
nif:referenceContext’s string indicated by begin and end offset of said string. RDFUnit is able
to either test dataset in a database, using a SPARQL-endpoint, or datasets dump files directly
on the system. Besides the name and location of the data, the system needs the names of the
schemas being tested against. It tries to locate and download the schemas using LOV49 and
automatically generates tests from the ontologies. It also tries to find manual tests in its test
library before running the tests on the dataset.

47https://github.com/AKSW/n3-collection/
48substring
49Linked Open Vocabularies: http://lov.okfn.org/dataset/lov/
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5.2 Test Case Implementation for NIF
By running the existing RDFUnit Test Auto Generators (TAG) on the NIF ontology, 199 test
cases were automatically generated. The RDFUnit Suite, at the time of writing, does not provide
full OWL coverage and thus, complex owl:Restrictions cannot be handled yet. In the frame
of the examined ontology, RDFUnit did not produce test cases for unions of (owl:unionOf)
restrictions with owl:allValuesFrom, owl:someValuesFrom and owl:hasSelf. NIF further has
defined semantic constraints that can not be captured. For example, the strings found in the
nif:isString property of the nif:Context are referred by other nif:String resources and
must match their referred offsets. The constrains are largely expressed in natural language text
in the rdfs:comment properties of the NIF ontology file, as well as further documentation and
specification documents. Formalizing the constraints is a complicated knowledge extraction task
in itself. With NIF, the developers know how the data is supposed to be structured. It is however
not clear what errors can occur when the data is produced, which in turn makes it hard to check
for these errors. Writing test cases is thus not a straightforward task because the knowledge of
the desired output has to be transferred from the developers mind into a set of applicable tests.
Furthermore, evaluating the coverage of the tests in terms of test-case adequacy, i.e how many of
all possible errors are discovered by the test suite, is complicated, because of the heterogeneous
nature of the data processed.

In [13], 10 legacy tests from a previous NIF validator were being used. Later, two tests were
merged into one, leaving 9 tests. I was involved in debugging the tests for that work. However,
during the testing procedure for this thesis, 2 new tests relating to newl< discovered correctness
constraints were implemented. In the following, the correctness criteria beyond the ontology
definitions will be presented, as well as selected test cases to demonstrate the formalization
procedure. The additional test cases will be described in more detail, because they exemplify the
mentioned difficulty of the task.

Besides ontological criteria, NIF imposes the following constraints. Constraints marked with *
were discovered during this work. Constraints marked with + were debugged and edited during
this work.

1. + a nif:anchorOf string must match the substring of the nif:isString from nif:beginIndex
to nif:endIndex

2. the old namespace shall not be used

3. the nif:beginIndex of a nif:Context must be equal to zero (0)

4. + the length of nif:isString inside a nif:Context must be equal to the resource’s
nif:endIndex

5. the RFC of the URI scheme (RFC5147) must be spelled correctly

6. every nif:String that is not a nif:Context must have a nif:referenceContext

7. nif:Context must have a type that is a subclass of nif:CString

8. nif:CString is abstract and may not be serialized without another subclass

9. * the length of a string must not be zero

10. * the nif:endIndex of a nif:String must not be larger than the nif:endIndex of the
nif:referenceContext
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The most important test is test 1. As stand-off annotation format, the correctness of the
annotation strings’ offsets in reference to the document text is the most crucial information. It is
used to pinpoint the position of the annotated string in the text itself, as well as in the URI’s
char fragment, allowing for the merge of multiple annotations. The original test case for this
constraint in [13] was:

1 SELECT DISTINCT ?s WHERE {
2 ?s nif: anchorOf ? anchorOf ; nif: beginIndex ? beginIndex ;
3 nif: endIndex ? endIndex ;
4 nif: referenceContext [ nif: isString ? referenceString ] .
5 BIND ( SUBSTR (? referenceString ,
6 ? beginIndex , (? endIndex - ? beginIndex ) ) AS ?test ) .
7 FILTER (str (? test) != str (? anchorOf )) . }

However, this test is incorrect for what it tries to test. As specified in [9], SPARQL treats
the first character of a string as 1, while NIF counts offsets and thus begins with zero. The test
has to correct for this and increment the ?beginIndex in the SUBSTR function. During testing
of an early version of the Wikipedia abstracts corpus, this test failed sometimes, because the
Virtuoso 7 implementation of the SUBSTR could not return a valid result for strings of length
zero. Thus, constraint 9 was introduced and incorporated into an own test case. To keep test 1
from failing because of insufficient string length, a filter condition was added. However, during
comparative in-memory and SPARQL-endpoint validation (see Section 5.3), another error was
discovered. Substrings in Virtuoso 7 SPARQL queries must not be longer than the the length of
the string in question. So for the string "My favourite actress is Natalie Portman" with a length of
39 characters and trying to select the string "Portman" with offsets 32 and 39 using the function

1 SUBSTR ("My favourite actress is Natalie Portman " ,33 ,8)

with a string length that’s too long results in an error using Virtuoso 7. The SPARQL
implementation of the RIOT framework used by RDFUnit for in-memory validation of dataset
files is robust against this error. Robustness in this case means, that a substring that is "correct"
will be returned, even if its nif:endIndex is larger than the length of the string. So one could
not find it using the data file validation. The datasets tested in [13] also did not contain this
error, but in the Wikipedia abstracts corpus, there where 17 strings that had nif:endIndexes
larger than the string length of the nif:referenceContext.

Accounting for these errors, text case 1 was extended and two additional test cases introduced:

1 SELECT DISTINCT ?s WHERE {
2 ?s nif: anchorOf ? anchorOf ; nif: beginIndex ? beginIndex ;
3 nif: endIndex ? endIndex ;
4 nif: referenceContext ? context .
5 ? context nif: isString ? referenceString .
6 FILTER (xsd: integer (? endIndex ) <=xsd: integer (? contextEnd ))
7 FILTER (( xsd: integer (? endIndex ) - xsd: integer (? beginIndex )) >0)
8 FILTER ( substr (? isString , xsd: integer (? beginIndex )+1 , (xsd: integer (?

endIndex ) - xsd: integer (? beginIndex )) ) != str (? anchorOf )) .}

The FILTER in Line 6 filters case 10, the FILTER in Line 7 filters case 9. The BIND statement
was abolished and instead included in the FILTER because BIND is executed at the end of the
query, before the filtering. To be able to filter the results that are then evaluated using the
problematic SUBSTR function, BIND could not be used because it returned the mentioned BAD
SUBRANGE error.

Finally, the new tests could be implemented. To test case 9, the nif:beginIndex and
nif:endIndex of every nif:String including subclasses are selected and substracted to test if
they describe a string of length zero. Type casts to xsd:integer are necessary, because Virtuoso
may misinterpret the values as strings, thus making comparison fail.
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1 SELECT DISTINCT ?s WHERE {
2 ? resource rdf:type/rdfs: subClassOf * nif: String ;
3 nif: beginIndex ? beginIndex ;
4 nif: endIndex ? endIndex .
5 FILTER (( xsd: integer (? endIndex ) - xsd: integer (? beginIndex ))=0)}

To test case 10, nif:endIndex and nif:referenceContext of a resource are selected. The
respective nif:Context resource’s nif:endIndex is queried and tested against the other resources
nif:endIndex. If the context nif:endIndex is smaller than the nif:endIndex of the referring
resource, the erroneous resource is part of the results.
1 SELECT DISTINCT ?s WHERE {
2 ? resource nif: endIndex ? endIndex ;
3 nif: referenceContext ? context .
4 FILTER EXISTS {
5 ? context nif: endIndex ? contextEnd .
6 FILTER (xsd: integer (? contextEnd )<xsd: integer (? endIndex ))
7 }

5.3 Validation of collected corpora
For each corpus, correctness and accordance to the NIF format had to be ensured. For this
purpose, RDFUnit was used to iteratively validate the corpora, analyze the errors, pinpoint the
source of error in the conversion algorithms, regenerate the data and validate it again until no
errors are found. This paradigm is called "test-driven evaluation of linked data quality" [14] but
may also be called test-driven data development in the context of this work, as the data contained
in the corpora is actively shaped and developed in a process that is motivated by test outputs.
Contrary to the evaluation of an already established data source on the web, the data being
tested in this work is transient as long it does not test correctly. This is procedurally analogous
to test-driven development, where tests are written first and their failure to execute successfully
motivates the implementation of new methods, guaranteeing the accordance of software features to
already formalized standards. Similarly, tests that formalize NIF already exist, as described in 5.2
and their failure to execute successfully can be used to correct errors in conversion algorithms.
Table 3 presents a complete replication and expansion of the evaluation of corpora presented in
[13], adding 4 corpora. Please note that the table does not present the final state of evaluation
but a snapshot of a late development stage. The final corpora all evaluate without error.

Methodology RDFUnit was run for every single corpus. The small corpora KORE, Spotlight,
and the N3 corpora where validated using the in-memory validation of dump files RDFUnit
provides. The larger corpora converted for this work where validated with both, the in-memory
validation as well as the SPARQL endpoint validation. For this purpose, the datasets were loaded
in an open-source edition of Virtuoso server (version 7.0)50. The results of the dataset evaluation
are provided in table 3. Table 4

Due to its size, only one of the 109 Wikilinks corpus dump files was loaded and validated.
This can be justified by the even distribution of errors throughout the corpus, as it is very
heterogeneous in nature and does not contain any topical clusters. Furthermore, the corpus was
converted using a custom algorithm, so any systematic error of the conversion algorithm can also
be identified using only a subset of converted data. The design of NIF as a general conversion and
interoperability format is robust against any smaller fluctuations, such as string content of the
converted documents, making a complete validation a nice feature of the corpus but not strictly

50http://virtuoso.openlinksw.com
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Dataset Size SC FL ER AErrors MErrors

Wikipedia abstracts 276M 208 1 2 0 17

Tiger 17.4M 209 0 0 0 0

Brown 13.1M 207 2 0 0 1,196,783

Wikilinks 4.9M 208 1 0 0 85,804

News-100 13K 209 0 0 0 0

RSS-500 10K 209 0 0 0 0

Reuters-128 7K 209 0 0 0 0

Spotlight 3K 207 2 0 0 70

KORE50 2K 199 10 0 501 0

KORE50 corrected 2K 209 0 0 0 0

Table 3: Overview of the NLP datasets test execution. Columns denote size in triples
count, the number of successful test cases (SC), failed (FL) and did not complete
due to an error (ER). Additionally, the total number of the individual violations
from automated test cases (AErrors) and manual test cases (MErrors).

necessary. In contrast, the complete Wikipedia abstracts corpus was validated to function as a
scalability benchmark.

Contrary to the validation presented in [13], the errors of the test case checking if nif:beginIndex
and nif:endIndex have rdfs:range xsd:nonNegativeInteger were excluded from the results.
These errors are the result of Virtuoso not correctly implementing this datatype, so tests testing
for it always fail in Virtuoso triple stores. Using the in-memory validation, the tests don’t fail.
Therefore, I deem these results not meaningful and exclude them from the table to not obscure
analysis of more interesting cases.

Error analysis Excluding KORE50 that was based on a former version of NIF and thus had
systematic errors of a different nature, as explained in 4.5, the main source of error was a
violation of constraint 1.51 This was the case for the Brown corpus, the Wikilinks corpus and the
Spotlight corpus, for different reasons. In case of the Brown and the Wikilinks, quotation marks
in the text were not properly treated. Generally, nif:anchorOf strings are encased by triple
quotation marks to enable arbitrary strings in the literals. Yet, in case of the tested version of
the Brown corpus, quotation marks were escaped by \ to ensure a valid turtle string. This results
in a string that is, in turtle, per quotation mark one character longer, due to the escaping \ being
counted as character. When one imports such a turtle file into Virtuoso, the escape characters
are removed, resulting in shorter strings that don’t match the test. Besides violating constraint 1,

51As defined in 5.2: a nif:anchorOf string must match the substring of the nif:isString from
nif:beginIndex to nif:endIndex

34



Dataset Size Dump Eval Endpoint Eval
Time Import time Eval time

Wikipedia abstracts 276M 427m 7.60s 19m 44s 42m 7.02s

Tiger 17.4M 16m 50.525s 1m 12s 16m 59.561s

Brown 13.1M 16m 43.68s 40s 16m 23.238s

Wikilinks 4.9M 14m 40.920s 36s 15m 16.363

News-100 13K 22.74s 652 ms 15m 3.70s

Table 4: Overview of the NLP datasets validation time

it also violates constraint 4.52 The solution for Brown was, not to escape the quotation marks, as
they can be contained in triple quotation marks.

Wikilinks presents a special case, because its size as well as data source amount to completely
arbitrary and highly heterogeneous strings that have to be represented. In some cases, the literals
end in a quotation mark, resulting in 4 quotation marks terminating the literal, which causes
turtle validators like rapper to throw a syntax error. In other cases, the strings will contain
triple quotation marks, prompting the same error. The string may contain escape characters
as well, serving as another source of errors, if they end the strings and thus escape one of the
enclosing quotation marks. This problem is hard to address and is impossible to resolve without
changing the original string. The solution selected was removing all instances of \ and replacing
all instances of quotation marks with double ’.

The Spotlight corpus showed errors in the same text, that showed a systematic failure of the
conversion algorithm to count the last period of a sentence as character, producing nif:Sentence
resources with a nif:endIndex one character too small. The error was manually corrected,
because the problem was not extensive enough to merit a scripted correction and the source code
was not available.

The Wikipedia Abstracts corpus produced the most interesting errors so far. The failure of the
test for constaint 1 to execute, prompted by the error of the Virtuoso SUBSTR function described
in 5.2, was analyzed and resulted in discovery of constraints 953 and 1054. It is notable that
the very small number of cases affected (6.152 × 10−6%) could never have been discovered using
manual testing methods or other, less formalized testing procedures.

Another example is the discovery of the <kbd> element in the abstract texts, that was already
mentioned in 4.3. It has pure styling functionality, yet was dropped due to SAX-parser being
configured to skip non-link elements by default. This resulted in Link resources that again had
strings of length 0, thus presenting no meaningful NIF string that could be discovered using
RDFUnit.

All error sources, empty strings as well as strings whose nif:endIndex is larger than the one
of the nif:referenceContext, were addressed by corrections of the conversion algorithm.

Because lots of datasets of different sizes were available now, the chance was used to evaluate
52the length of nif:isString inside a nif:Context must be equal to the resource’s nif:endIndex
53the length of a string must not be zero
54the nif:endIndex of a nif:String must not be larger than the nif:endIndex of the

nif:referenceContext
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the runtime of RDFUnit. The results, as presented in table 4 can be used to derive general hints
on when to use the in-memory validation and when a local SPARQL endpoint is faster. Runtime
values are direct results of the previous validation. Generally, in-memory validation of dataset
dumps is a quick and easy way to use RDFUnit. No other software needs to be installed and
set up, the software is easily build and executed on a specific dataset file with the NIF schema.
Larger datasets profit from a triple store, like the massive difference between runtimes of the
Wikipedia abstract corpus validation shows - in-memory validation takes 7 times longer than the
combined triple store evaluation. Incidentally, the selection of tested datasets seems to contain the
turning point between the two ways of validation, i.e. the point where in-memory validation and
combined SPARQL validation time (import+validation) take the same time to execute. Datasets
larger than the Tiger corpus will most likely be quicker to validate using a database.

However, databases provide additional benefits over data dump evaluation. They allow to easily
run the testing SPARQL query against the data to specifically check which resources are faulty
for which reasons. Alternatives for dump files are rather sparse, containing tools like Twinkle55

or Jena ARQ Command line56, running grep over the data for various patterns or inspecting the
datasets manually using editors, like vim. However, tools to statically query RDF files are slow
for repeated queries on larger datasets, because they have to parse the data for every query. Still,
for many small datasets, debugging the file directly is preferable.

Another benefit of direct validation is the correctness of testing. It was already mentioned that
most errors found in [13] resulted from the datatype xsd:nonNegativeInteger not being correctly
implemented in Virtuoso. These errors are absent in direct validation. Some automatically
generated test cases’ queries also crashed Virtuoso by somehow filling the complete memory
(16GB) of the test machine. These were cases using a Group by() Having() construct for
filtering results. Because the query itself is relatively general in these cases, it seems that Virtuoso
tried to load the complete result set into memory, prompting a crash in case of the very large
Wikipedia abstracts dataset. This error was absent in direct validation as well, because it was
done one file at a time, thus lowering the memory footprint of these queries.

6 Implementation and scalability of NIF tools
6.1 OpenNLP NIF Wrapper
The implementation of the OpenNLP wrapper follows the reference wrapper implementation of
the Stanford Core NLP tools57 using Java and Apache Jena. It allows annotating texts using
OpenNLP models, generating NIF output. Sentence boundary detection, tokenization and part
of speech tagging are implemented and can be applied to 6 languages (Danish, German, English,
Dutch, Portuguese and Swedish). In accordance to the reference implementation, the wrapper
can be called via the command line to annotate text input locally, or set up as a web service.
Furthermore, the wrapper class serves as Java API to generally add OpenNLP spans to NIF Jena
models, providing NIF RDF output to developers using OpenNLP.

General Architecture and parameters In general, NIF wrappers consist of three Java classes.
One class represents the wrapper itself and offers methods for textual input, annotation using the
respective NLP tool’s functions, like tokenization or POS-tagging, and conversion of the annotated
55A GUI tool to SPARQL query RDF files: http://www.ldodds.com/projects/twinkle/
56A CLI query, parse and process RDF files and endpoints: https://jena.apache.org/documentation/

query/cmds.html
57src/main/java/org/nlp2rdf/implementation/stanfordcorenlp
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text into NIF. This wrapper class is usually called either via a CLI class, that allows use of the
wrapper via the command line of a Unix terminal and offers a number of NIF parameters, or via
a web service class, that can be used to deploy the wrapper as a web service implementing the
same parameters.

A core set of NIF parameters is specified in the NIF public API specification58. It contains a set
of mandatory parameters every NIF implementation must implement. Table 5 lists the core, as
well as the OpenNLP specific parameters. Additional parameters can be implemented according
to the needs of the specific implementations. In case of the OpenNLP wrapper, such additional
parameters are modelFolder, which describes the location of the pretrained statistical models
OpenNLP needs to operate, and language, which describes the input language and thereby serves
to choose the correct pretrained models in the specified location. The language parameter accepts
a 2 letter ISO 639-1 code, in compliance with the models OpenNLP distributes59. However, a
more granular and interoperable approach is needed for language specification. Language URIs,
for example using lexvo60, are preferable to reduce ambiguousness of language identification.

Parameter shorthand function

NIF core parameters

input -i Input depending on informat and intype, usually a
string to be annotated

informat -f Format of the input, usually text or turtle

intype -t The type of the input; direct, url or file (only CLI)

outformat -o The RDF serialization format of the output; default
turtle

urischeme -u The URI scheme NIF should use; default
RFC5147String

prefix -p The URI prefix of the NIF resources created in the
annotation process

OpenNLP wrapper specific parameters

language - Language of the pretrained OpenNLP models to choose
as ISO 639-1 (2 letters) language code

modelFolder - folder the pretrained OpenNLP models are found in

Table 5: NIF core parameters and extensions for OpenNLP

The OpenNLPWrapper class is instantiated with three mandatory arguments. The NIF context
resource as Jena Individual, an instance of NIFParameters holding the aforementioned parameters
and a Jena OntModel that is later filled with the annotated resources. The constructor of the
58http://persistence.uni-leipzig.org/nlp2rdf/specification/api.html
59http://opennlp.sourceforge.net/models-1.5/
60http://www.lexvo.org/
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wrapper makes sure the parameters are complete and correct, checking for the existence of the
model folder as well as the model files according to the language parameter.

The main method of the wrapper is processText(), that also expexts the context resource
as Jena Individual as well as the NIFParameters. The method handles the annotations and
fills the Jena OntModel with the annotated resources. First, the sentences are annotated using
the sentence boundary detection model. The model is loaded and run on the input text using
sentPosDetect(), producing an array of OpenNLP Span objects, which contain start and end
offsets in relation to a covered text.

These are converted into a List of Jena Individuals using the method addSpans(). addSpans()
simply iterates over the array of Spans, creating new NIF resources using their start and end
offsets to extract the anchor text from the document text, adding the essential NIF properties like
nif:beginIndex, nif:endIndex, nif:referenceContext, nif:anchorOf as well as the ontology
class of the resource that is referenced via one argument of the method. In this way, addSpans()
provides an easy way to generally convert OpenNLP Span objects, which are ubiquitous in
OpenNLP, into NIF resources of a Jena model and thus allows OpenNLP developers to use the
wrapper class as a NIF API.

After sentence detection, tokenization and POS tagging are executed in a similar way. The
tokenization and pos tagging models are loaded and used to instantiate OpenNLP POSTagger
and Tokenizer classes. Then the list of sentence individuals previously created is iterated
over. The sentence strings are used as input for the tokenizer and POS tagger, annotating the
individual words of the sentences. Again, a list of Jena Individuals is created using addSpans(),
representing the individual Word resources. Each list of words is again iterated to add the POS
tags. Because all Jena Individuals are part of the Jena OntModel, it is filled now and can be
processed further or put out.

Usage via command line interface The wrapper can be used via the command line, using
the OpenNLPWrapperCLI class. This class only contains a main() method and serves to
accept and parse parameters, check their validity and accept and preprocess the input text. A
NIF ParameterParser is used to parse the input paramters. Besides the standard parameters,
implementation specific paramters like modelFolder and language are added here. If any
mandatory parameters are missing, the parser either logs an error or tries to use a default value.

Using the input, a Jena OntModel is created that either contains the existing NIF data in
case of turtle input, or an initial nif:Context resource itself containing the document text. The
algorithm then iterates over the nif:Context resources, initializing a new Annotator for each
and executing the annotators processText() method. After annotation, the model is written to
disk in the chosen format or simply put out on the console.

Usage as web service The OpenNLPWS class can be used to deploy the annotator as a
RESTful web service. The class extends the standard NIFServlet class which in turn extends the
Java HttpServlet class. NIFServlet provides the necessary doGet() and doPost() methods the
handle HTTP requests as well as returning the annotated text. So the OpenNLP implementation
only has to overwrite the init() method to add the specific necessary input parameters and the
execute() method that handles the annotation. The execute() method itself works like the
main() of the CLI class, except not having to handle parameter parsing. The web service can be
easily deployed using the Maven Jetty plugin61 and the command mvn jetty:run.

61http://www.eclipse.org/jetty/
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6.2 OpenNLP NIF parser
Besides wrapping OpenNLP annotators for them to produce NIF output, NIF input into OpenNLP
is another use case that has a number of interesting applications. For one, it OpenNLP to be easily
trained on arbitrary NIF corpus data and thus allows a wide range of possible inputs without
conversion problems. At the time of writing, the OpenNLP framework solves this problem by
providing a number of corpus converters for different corpus formats. The overhead produced by
the need of writing a converter for every single corpus format can be reduced by using a pivot
format, as stated in 1.3. Besides training, working with annotations created by other NLP tools
in OpenNLP is another interesting use case at the core of NIF functionality. Finally, a NIF parser
in general is an important missing step towards a full round-trip that shows the feasibility of NIF
as an input format for NLP processing.

NIF parser implementation The NIF parsers are implemented according to OpenNLP code
conventions and integrate into the OpenNLP framework. Three parsers have been created, able
to parse sentences into SentenceSamples, named entity annotations into NameSamples and POS
tags into POSSamples from NIF sources. All parsers employ a factory class that serves for parser
initialization and extends native OpenNLP StreamFactories. These factories implement the
NIF API parameters, parse them and initialize the Jena OntModel. They also read the input NIF
files and create the specific NIF parsers.

All NIF OpenNLP parsers are OpenNLP ObjectStreams. However, as the RDF model is a
graph and thus cannot simply be streamed, the whole model is parsed into memory first and
the specific resources are simply read from the in-memory model. Although this conforms with
the OpenNLP conventions, a true streaming solution would be preferable to have a smaller
impact on memory consumption and scale better. Resources streamed are in each case of type
nif:Sentence, because besides sentences themselves, OpenNLP POSSample and NameSample
objects expect annotated sentences.

NIF parser usage example A nice example according to the training use case is reading
OpenNLP SentenceSamples from a NIF file and using them to train a model:
1 // create a JENA model
2 Model model = ModelFactory . createDefaultModel ();
3 // read the NIF file
4 model .read(new BufferedReader (new FileReader (" corpusFile ")),null ," TURTLE ");
5 // create a new stream that reads the all sentences from context resources
6 TypedRDFResourceStream res = new TypedRDFResourceStream (model , NIFOntClasses .

Context . getOntClass ( model ));
7 // create a SampleStream from the NIF corpus
8 ObjectStream < SentenceSample > sampleStream = new NIFSentenceSampleStream (res);
9 // train the model

10 char [] eos = ".?!". toCharArray ();
11 SentenceDetectorFactory sdFactory = SentenceDetectorFactory . create (null , "en",

true , null , eos);
12 SentenceModel sentmodel = SentenceDetectorME . train ("en",sampleStream , sdFactory

, null );

Evaluation To assess the performance of the Parser, the NIF version of the Tiger corpus
converted in 4.2 was parsed via the OpenNLP parser, producing a list of SentenceSamples that
where then simply put on via System.out. The results can be seen in Figures 6.1 and 6.2. Figures
where created using Java VisualVM62. In all evaluation figures using VisualVM, the used heap
is shown in the lower part of the diagram, confined by the lower line, while the maximum heap
62http://visualvm.java.net/
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Figure 6.1: Heap size diagram of parsing sentences from the NIF TIGER corpus - Standard
Jena model, 4 GB memory - finished in 5:30m

size is shown in the top part, confined by the upper line. The first test seen in figure 6.1 was
started using the standard JAVA VM settings with 4 GB of memory. You can see that, after 2
minutes and 30 seconds, the HeapSpace consumption pattern changes, as the garbage collection
activity is raised due to a maxed out heap. This increase garbage collection activity significantly
decreases runtime. A second test (figure 6.2) was made, increasing the maximum HeapSize to
6 GB. Accordingly, the memory consumption pattern stayed stable and the whole corpus was
parsed in half the time.

Taking into account that the NIF version of the Tiger corpus is one rather large corpus file,
featuring 17,428,613 triples with 50,472 sentences in one very large context resource, the runtime is
very appropriate for regular use. However, memory consumption is a large hindrance to scalability.
While the original Tiger ConLL corpus was 60 MB in size, the NIF conversion already was 917.8
MB, over 15 times larger. Parsing it into a Jena model increased the memory needed to at least
3857.8 MB. This suggests that NIF corpora can only be feasibly used for small corpora and that
the convenience of using Jena models in corpus conversion and consumption creates prohibitive
memory consumption for work with larger corpora, like the Wikipedia Abstract corpus converted
in 4.3.

It has to be noted that in these experiments, the whole RDF graph is parsed into memory.
This serves as a convenient implementation also used in the reference NIF implementation of
the Stanford Core NLP annotation. Most resources and small texts should be able to be parsed
using this procedure. For larger corpora Apache Jena TDB can serve as a way to keep the
Jena dependence and dramatically decrease runtime while reducing memory consumption by
preprocessing, indexing and more specific queries.

Apache Jena TDB63 is a RDF storage and query component for Jena in form of an indexed

63http://jena.apache.org/documentation/tdb/

40



Figure 6.2: Heap size diagram of parsing sentences from the NIF TIGER corpus - Standard
Jena model, 6 GB memory - finished in 2:49m

Figure 6.3: Heap size diagram of parsing sentences from the NIF TIGER corpus - TDB
version - finished in 0:21m
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RDF store materialized in the file system. It is not a fully featured triple store. The advantage
of TDB is that, for single user, single process access to a dataset, it provides a quick way to
use an indexed version of a dataset, thus providing reduced query times and less overhead than
in-memory representations of RDF graphs. The disadvantage compared to triple stores like
virtuoso is, that it does not provide ACID64.

Creating a TDB dataset from a NIF corpus can be done via the command line tool tdbloader
that comes with Jena TDB. The TDB representation of the NIF Tiger corpus is 1.6 GB large.
To read the sentences from this version of the dataset, only a specific query for resources that
have the type nif:Sentence has to be done, so only part of the corpus is consumed. This shows
in a vastly improved runtime of 21 seconds and less then half the memory consumed (1629 MB).
The diagram for this test can be seen in figure 6.3.

6.2.1 Creating NIF annotations via OpenNLP

Using NIF for its designated purpose of converting NLP tool output into RDF, this section
will evaluate the performance of the implemented OpenNLP wrapper in comparison to the
existing reference implementation of Stanford Core NLP tools. Testing was done using a 6.5 MB
file containing English text for the first test and a 13 MB file containing the same text twice.
There were 25902 and 51804 sentences respectively. Both annotators were set to detect sentence
boundaries, tokenize and annotate part of speech. See table 6 for a comparative overview of the
results.

(a) OpenNLP - completed in 3:26m (b) Stanford - completed in 11:30m

Figure 6.4: Annotation using OpenNLP and Stanford Core NLP for sentence detection,
tokenization and POS tagging - 6.5 MB corpus size

64corruption may occur when using multiple JVMs
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(a) OpenNLP - 4GB HeapSpace full after 4:20m (b) Stanford - 4GB HeapSpace full after 7:05m

Figure 6.5: Annotation using OpenNLP and Stanford Core NLP for sentence detection,
tokenization and POS tagging - 13 MB corpus size

Both tools successfully annotate the small test file. The large difference in runtime is due to
the different runtime of the annotators and can not be attributed to wrapper implementation.
File size and number of triples are different due to the OpenNLP implementation not adding
nif:nextWord and nif:previousWord properties. Trying to annotate the larger test file caused
the annotators to crash because of a full HeapSpace. Figures 6.4 and 6.5 show a closer examination
via VisualVM.

OpenNLP Stanford Core NLP

6.5 MB test file

Runtime 3:26m 11:30m

Triples produced 13,772,917 17,282,490

Filesize 760 MB 1084 MB

13 MB test file

Runtime 4:20m 7:05m

Triples produced - (HeapSpace full) - (HeapSpace full)

Filesize - (HeapSpace full) - (HeapSpace full)

Table 6: Results of annotation tests of OpenNLP and Stanford Core NLP wrappers

The figure first and foremost shows the different ways the annotators use to create and populate
the Jena models. The Stanford Core NLP (figure 6.4b) implementation does the annotation
step first. In this step, the memory consumption is stable and, other than total runtime, shows
no significant difference between the small and the large file. The wrapper then populates the
Jena model, shown by the significant increase in memory consumption, before writing it to
disk. On the other hand, the OpenNLP wrapper annotates and adds to the model sentence by
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sentence before writing the complete model to disk, shown by the relatively smooth increase
in memory consumption (figure 6.4a). Due to the large memory overhead already diagnosed
in the previous section, both approaches run out of HeapSpace during the larger test. Both
implementations use a Jena OntModel. This is a reasonable choice as it enables inference on
the annotations and provides a complete serialization of the model, including class and property
definition axioms in the final RDF. However, these capabilities might come with increased memory
consumption further complicating the task. To test this, the OpenNLP wrapper was rewritten
to use a standard Jena RDF Model instead and then again tested for the small and large files.
See figure 6.6. The comparison shows that there is no significant difference between the two
implementations regarding memory consumption or runtime.

A solution for the lacking scalability in regard to file size would be a stream based approach,
parsing and annotating sentence by sentence, writing the annotated resources to disk until the
corpus is fully consumed. This procedure was employed with success for the Wikipedia Abstract
corpus. However, it is hard to realize for texts that can not be divided into smaller logical units
and thus have only one large nif:Context resource. As the length of the Context string is unclear
until the file is fully consumed with a stream based approach, the end offset of the Context
resource stays unknown as well. As long as the end offset is unknown, so is the final URI of the
Context resource. However, all other strings, like sentences or words, refer to that resource via
nif:referenceContext, which is not possible with knowing the URI. This means that, after
having written the resources to disk and being done with the Context resource, the other string
resources would have to be read again, adding a correct nif:referenceCorpus property with
the Context URI as object. It is very likely that this procedure would only make sense for large
corpora, which are a minority of the use cases at the moment. For this reason, the in-memory
variant was kept.

(a) OpenNLP - 6.5 MB file, Jena OntModel -
completed in 3:26m

(b) OpenNLP - 6.5 MB file, Jena RDFModel -
completed in 3:21m

Figure 6.6: Comparison between OpenNLP annotation memory consumption and runtime
using Jena OntModel and Jena RDFModel
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6.2.2 Round-trip combining both resources

To demonstrate the feasibility of a full round-trip from text to NIF annotations and back to text,
the Wrapper and the Parser where used in a combined JUnit test. It first reads a test document65

into a string using a Stringbuilder. This string will serve as the "original" which the end result
will be tested against. The test then runs the OpenNLP wrapper with the English sentence
boundary detection model, transforming the string into a NIF model. This model is then written
into another String in the turtle format via a StringWriter. This serves as input for the Parser,
that reads the NIF turtle string, extracts the sentences’ nif:isString property and concatenates
them over the set of sentences. This serves as our output string that is finally compared to the
input. The test results in two equal strings, proving the correctness of our round-trip and in turn
the correctness of both, the annotation and the parse of the annotated strings.

7 Interoperability and In-Use
7.1 The Unicode Text Segmentation use case
The Unicode Localization Interoperability Technical Committee66 (ULI) is an institution that
aims to ensure the interoperable interchange of interoperable localization assets. Among these
assets are segmentation rules, rules that defines how to segment text into smaller logical units,
such as words and sentences. These rules are then published as Unicode Standard Annexes making
them part of the Unicode standard. The Unicode Standard Annex 29 [6], section 5 presents
the following rules for sentence boundary segmentation that are valid for most Indo-European
languages.

1. Break at the start and end of text

2. Do not break between carriage return and line feed. These are control characters that mark
up line breaks. Different combinations are used in different operating systems, with both
of them being used together in Windows.

3. Break after paragraph separators, like carriage return, line feed or the paragraph separator
character.

4. Don’t break after terminators like the period, if they are directly followed by a number
of lower case letters, a number or if they are between upper case letters. These might
be abbreviations. Don’t break after terminators like the period, if they are followed by a
comma, a colon or semicolon.

5. Break after sentence terminators, such as full stops, question marks and exclamation marks.
An exhaustive list of what Unicode characters are sentence terminators is found in an
auxiliary file to the Annex document67.

6. Don’t break otherwise.

While a large number of cases is covered by these general rules, the ULI committee started to
collect exceptions from these rules, i.e. tokens that, if found at a sentence boundary, signify that
this boundary was most likely erroneously detected. In most cases, these tokens are abbreviations,
65English, one sentence per line, no special formatting
66http://uli.unicode.org
67http://www.unicode.org/Public/UCD/latest/ucd/auxiliary/SentenceBreakProperty.txt
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defines as a number of characters ending on a sentence terminator, thus leading to incorrect
sentence boundaries. The following listing shows an example of such an exception68.

1 The quick brown Mr. |Fox jumped over the lazy dog.|

Listing 7: Example of erroneous sentence boundary detection. Boundaries marked up
with red pipes.

In the example, Mr. is found to end the sentence, according to the rules above. The issue
is with rule 4, that does not break the sentence at some abbreviations like Y.M.C.A or i.e.
and numbers, like 1.000, but not strings like Mr., Ph.D. or St.. Special cases like company
names ending with sentence terminators, such as yahoo! are also not included. This motivated
the collection of lists of abbreviations, defined as strings of characters ending with a sentence
terminator, as described. However, because Unicode is an international standard, these lists
should be collected for as many languages as possible. Linked Open Data and especially the
DBpedia, containing structured knowledge extracted from 119 Wikipedia language versions,
provides a very appropriate, accessible and open source of this data.

The task therefore was to (1) extract multilingual abbreviation lists from DBpedia and (2) test
the extracted abbreviations against a corpus to find out if the precision of the sentence boundary
detection algorithm can be increased using these abbreviations.

7.2 Obtaining abbreviation lists from LOD
Abbreviation lists were obtained by using the open and multilingual knowledge base DBpedia.
There is a number of advantages this approach has in favour of pre-compiled lists or using classical
dictionaries as only data source:

• DBpedia as a resource derived from Wikipedia is a free and open data source that leverages
the crowd as a means to ensure comprehensiveness and quality of the data

• Using those resources provides a solid base of relevant (as per Wikipedia standards) data
for free

• The approach is inherently multilingual, as the DBpedia exists for 119 languages

• Additional information besides the abbreviation string is provided and can be used for
disambiguation

The data flow of the extraction process is shown in 7.1
In the DBpedia, like in the Wikipedia, redirect links serve to link alternative names of resources

to a meaning resource or to a disambiguation resource, that links different meanings of the string
in question. Meaning resources can be understood as those that directly contain more information
about the abbreviation, like its full entry name (that is the full string it abbreviates) in form of
its rdfs:label; its type, represented by rdf:type; its Wikipedia categories (dcterms:subject)
as well as its equivalent in other languages (owl:sameAs). Disambiguation resources contain
a number of http://dbpedia.org/ontology/wikiPageDisambiguates properties that in turn
link meaning resources.

To extract abbreviations from the DBpedia, the redirects for each language were downloaded
in a dumpfile69 and triples whose subject ends with a sentence terminator character (period, an
68Segmentation according to the demo implementation here: http://unicode.org/cldr/utility/

breaks.jsp
69like http://downloads.dbpedia.org/3.9/en/redirects_en.ttl.bz2 for the English language
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Figure 7.1: Data flow diagram showing the extraction of rich abbreviation data from
DBpedia

exclamation or question mark) were extracted into a single file using a simple regular expression.
The resulting file consisted (for the English language) of 46625 lines of this form:
1 <http :// dbpedia .org/ resource /A.I.> <http :// dbpedia .org/ ontology /

wikiPageRedirects > <http :// dbpedia .org/ resource /AI >.

The abbreviation resource itself is the subject, a resource either containing a disambiguation
resource or a meaning resource as the object of the triple. A number of the resulting resources
had to be discarded to not unnecessarily enlarge the final list of abbreviations. For example,
most strings containing one or more whitespaces are proper names like “Apple Computer Co.” or
“Monsters Inc.” were discarded. Only the last part of the string is a valid abbreviation and often
already covered in itself. Resources ending with ellipsis where also discarded.

To obtain more data on the abbreviation, additional DBpedia data for each language was
imported into a local Virtuoso triple store. Official DBpedia endpoints where not used, because
only a fraction of languages for which DBpedia data exists have own endpoints. Each abbreviation
resource was then queried via the Virtuoso SPARQL endpoint to either get the information of the
linked meaning resource, or all URIs the disambiguation resource links, to get their meanings and
associated information in a second step. The abbreviations, the full names and abbreviation URIs
where than compiled in .tsv files. Furthermore, every language’s abbreviations where converted
into a lexicon according to the Lemon Ontology. An example of this modeling can be found in
listing 8.
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1 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en >
2 a lemon : Lexicon ;
3 lemon : language "en" ;
4 lemon : entry <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.> ,
5 [...] .

7 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.>
8 lemon :form <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#form > ;
9 lemon : sense <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#sense1 >,

10 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#sense2 >,
11 [...]
12 a lemon : LexicalEntry .

14 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#form >
15 lemon : writtenRep "A.I."@en ;
16 a lemon : LexicalForm .

18 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#sense1 >
19 lemon : definition [
20 lemon : value " Aromatase inhibitor "@en
21 ] ;
22 rdfs: label " Aromatase inhibitor " ;
23 dcterms : subject <http :// dbpedia .org/ resource / Category : Aromatase_inhibitors >

;
24 owl: sameAs <http :// pl. dbpedia .org/ resource / Inhibitory_aromatazy > ,
25 [...] ;
26 lemon : reference <http :// dbpedia .org/ resource / Aromatase_inhibitor > ;
27 a lemon : LexicalSense .

29 <http :// nlp. dbpedia .org/ abbrevbase / lexicon /en/ entry /A.I.#sense2 >
30 lemon : definition [
31 lemon : value " Amnesty International "@en
32 ] ;
33 rdf:type <http :// schema .org/ Organization >,
34 <http :// dbpedia .org/ ontology /Non - ProfitOrganisation >,
35 <http :// dbpedia .org/ ontology / Organisation > ;
36 rdfs: label " Amnesty International " ;
37 dcterms : subject <http :// dbpedia .org/ resource / Category : Erasmus_Prize_winners >,
38 <http :// dbpedia .org/ resource / Category :

International_human_rights_organizations > ;
39 owl: sameAs <http :// cs. dbpedia .org/ resource / Amnesty_International > ,
40 [...];
41 lemon : reference <http :// dbpedia .org/ resource / Amnesty_International > ;
42 a lemon : LexicalSense .

Listing 8: Example resource of the abbrevbase

Structurally, every language is one lemon:Lexicon, linking all its abbreviations via lemon:entry.
Every abbreviation is a lemon:lexicalEntry resource linking the abbreviation string itself as its
lemon:form. Every entry is linking to a number of lemon:lexicalSense resources containing
the abbreviation meanings i.e. the full name, the rdf:types and dcterms:subjects and a link
to the respective DBpedia page. This knowledge base makes it possible to tackle a number of use
cases:

• querying for every abbreviation of a distinct language, thus obtaining the abbreviation
dictionaries of the single languages for text processing in a specific language

• querying for the meanings of a single abbreviation for disambiguation purposes

• querying only abbreviations of a certain type, like organizations or place names

• querying abbreviations by category, using the Wikipedia category system to restrict the
abbreviations by topic.

The last two use cases are especially interesting with regard to NLP techniques. Texts differ
in grammatical and lexical structure depending on their type or domain. One example of this
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heterogeneity is mentioned in 2.2.2 and becomes apparent by the significantly different percentage
of abbreviations used in the Brown (10%) and the Wall Street Journal (47%) corpus. Thus, it
may be helpful to use domain-adjusted models and dictionaries to process the texts. The inclusion
of types and categories for abbreviation implies that domain specific abbreviation dictionaries are
just subsets of the complete dictionary that can easily be retrieved by SPARQL queries.

The extraction was run against all DBpedia languages, yielding 22,859 abbreviations with 78,197
meanings. Depending on the language, a large number of different concepts can be abbreviated
using the same abbreviation, thus leading to a large number of meanings per abbreviation.
Another reason for this imbalance is that the data is retrieved from Wikipedia and abbreviations
can be freely added, thus possibly introducing a large number of “exotic” abbreviations not widely
in use.

The number of abbreviations retrieved per language strongly depends on the size of the
Wikipedia edition for that language. While the larger Wikipedias, like English, Spanish, French
or German provide a decent number of abbreviations, there is a long tail of languages where
no abbreviations could be extracted at all. Figure 7.2 shows the number of abbreviations and
meanings per language in a linear scale, visualizing the long tail. No abbreviations could be
extracted for 19 languages, 55 languages have under 10 abbreviations, 95 languages have under
100 abbreviations.

Figure 7.2: Abbreviations per language, linear scale

There are two major reasons for this long tail. First, the abbreviations may not be in the
source data, i.e. the Wikipedia edition for that language. The Wikipedia language edition might
not be large enough to have entries for abbreviations or local Wikipedia criteria might exclude
abbreviations from notability. The languages that did not have abbreviations on average only had
32543.5 articles70 and a very limited number of contributors, reinforcing this point. Second, the
concept of an abbreviation defined as a string of characters ending with a sentence terminator may
not exist in that language. Most East-Asian languages are for example fundamentally different
from Indo-European languages regarding the existence of punctuation. “Chinese” Wikipedias for
example (comprised of the three Wikipedias zh, zh-yue, zh-min-nan, containing around 850,000
articles) contained only 12 abbreviations in total, although the Wikipedia should be large enough
to harbour much more.

70according to http://meta.wikimedia.org/wiki/List_of_Wikipedias
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Still, a good coverage could be achieved for the European languages. Figure 7.3 provides the
abbreviations and meanings for all official EU languages in a logarithmic scale for added resolution.
The long tail is much less pronounced, but still visible. On average there are 668 abbreviations per
EU language, with the median being 153. Only Maltese contains no abbreviations. So the data is
still skewed to the right but due to the higher average size of EU language Wikipedia editions
and the bias of our abbreviation rule towards Indo-European languages, much less so. This is
especially important because the European languages cover over 1.3 billion of native speakers.

Figure 7.3: Abbreviations per language, only EU languages, logarithmic scale

Interestingly, most abbreviations follow a pattern: They are often chains of upper case letters
followed by periods. Of the English abbreviation entries, 41.7% follow this pattern, 53.6% of
German entries and 66.0% of Dutch abbreviation entries can also be expressed by this rule. A
possible application of this connection will be presented in Section 7.3.

A major caveat of extracting lexical information from the DBpedia is, that case information for
first letters of article names gets lost due to the MediaWiki software. All Wikipedia articles begin
with an upper case letter, which is attributed to a technical restriction of the MediaWiki itself71.
No reason is given for this restriction. The workaround used is a template called {{Lowercase
title}}, that, if added to the article, displays the title correctly. However, this template is not
mapped in the current version of the DBpedia and may only be used in a later version. For
this reason, all abbreviations extracted begin with upper case letters. This severely restricts the
usability of the extracted abbreviations, because case information is an important part of lexical
data. This point and its practical consequences will be expanded upon in the following section.

7.3 Corpus-based evaluation of sentence boundary detection algorithms
In this section, the experiment run to prove the feasibility of using abbreviations as exceptions
to improve sentence boundary detection quality will be described and results presented. The
methodology used can be seen in figure 7.4.
71https://en.wikipedia.org/wiki/Wikipedia:Naming_conventions_\%28technical_restrictions\

%29\#Lowercase_first_letter
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Figure 7.4: Data flow diagram showing the data conversion process

The abbreviations extracted in Section 7.2 provide one input, while both the Brown as well as
the first 5000 sentences of the Tiger corpus converted in 4 will provide the second input. Sentences
of the corpus will be parsed using the parser presented in 6.2. A subset of these sentences will be
used to train an OpenNLP sentence detector using the OpenNLP wrapper presented in Section 6.1.
This sentence detector and the Unicode rule-based sentence detector shall be run against the test
corpus, one time with and one time without using abbreviation lists.

The International Components for Unicode (ICU)72 Java implementation of the Unicode
sentence break rules will be used as implementation for the rule-based detector. The ICU project
is a set of open source libraries for Java and C/C++ developed by IBM. It provides Unicode
and globalization support like formatting according to locale data, time calculations, Unicode
support and text boundaries, such as words, sentences and paragraphs in larger parts of text. In
regards to sentence boundary detection, it relies on the Unicode sentence boundary specification,
as described in 7.1. When the abbreviations are used, the last word of each detected sentence is
compared to the abbreviation list. If it is found in the list, the sentence is concatenated with the
next sentence and the procedure is repeated. Thus, every abbreviation is regarded as exception
to the detection rules.

At this point, the problem with missing case information using DBpedia data becomes apparent
again. Simple string identity means that abbreviations where case information is important, like
in the case of z.B. (zum Beispiel; in example) in German, can not be found in the list, because
all abbreviations start with upper case letters. To alleviate the issue, all abbreviations in the
list where simply transformed to lower case and the last word of the supposed sentence was

72http://site.icu-project.org/
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transformed to lower case, prior to checking, too. Although there was no significant difference in
correctness between the two approaches (literal identity and lower case transformation), the test
data was too limited regarding domain, amount of languages and total amount of text, to make a
recommendation in this case.

Evaluation results Table 7 shows the evaluation results for both corpora using no abbreviation
list as baseline, an abbreviation list manually compiled by ULI (1233 english resp. 2052 german
entries) and the abbreviation lists extracted from DBpedia (6536 english resp. 1134 german
entries).

Algorithm Abbreviation
list

Precision Recall

NIF Brown corpus

ICU - 83.78% 96.53%

ICU ULI 92.89% 99.74%
ICU DBpedia 85.68% 94.98%

OpenNLP - 82.86% 83.56%

OpenNLP ULI 83.25% 83.76%

OpenNLP DBpedia 83.39% 81.64%

NIF Tiger corpus - first 5000 sentences

ICU - 84.97% 74.02%

ICU ULI 84.87% 73.42%

ICU DBpedia 84.97% 74.02%

OpenNLP - 87.65% 75.92%
OpenNLP ULI 87.35% 75.22%

OpenNLP DBpedia 87.65% 75.92%

Table 7: Results for sentence boundary detection algorithms for Brown and the first 5000
sentences of the Tiger corpus using different abbreviation lists

As expected, using abbreviations as exceptions to rule-based sentence boundary detectors can
provide a very effective way to increase precision. Especially the ICU detector gains significantly
in precision and recall on the English Brown corpus. The maximum entropy implementation of
Brown is less affected by the abbreviation lists but can still gain by the inclusion.

However, the results are less clear for the Tiger corpus. Both algorithms find nearly no
abbreviations and in case of the ULI abbreviation list, false detection of abbreviations even causes
less precise boundary detection. For example, the ULI abbreviation list contains abbreviations
like “Haft.” or “eng.”, although these represent a regular noun and a regular adjective that can
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occur at the end of a sentence and are thus not abbreviations.
In general, the part of the Tiger corpus analyzed is not well suited to test abbreviation lists,

because it does not contain many abbreviations. In fact, only one example (“K.o.-Tropfen-Bande”)
can be found, which does not present a common abbreviation.

Regarding the quality of the different abbreviation lists, the lists extracted from DBpedia
are of lower quality than lists that are manually curated or extracted from higher quality, for
example linguistic, sources. Although the absolute number of abbreviations that can be extracted
is sufficiently large and data is available for a large number of languages, they have less of a
positive impact on the sentence boundary detection algorithms. The better score of the OpenNLP
boundary detector on the Tiger corpus with the DBpedia list can be explained because the
DBpedia list did not contain any ambiguous abbreviations that can be confused for regular words,
like the ULI list did. However, some important German abbreviations, like “z.B.” (such as) are
not in the list. Others, like “bspw.” (for example) are contained in the list, but start upper case
due to the Wikipedia casing constraints mentioned before and thus cannot be used effectively.

Additional properties of DBpedia abbreviations, like their categories that could be used to
compile domain specific abbreviation lists could not be tested, because the test data is too
sparse and the definition of a textual domain in terms of DBpedia categories is unclear. Typical
sub-domains of corpora are newspaper texts in various topics, like sports or economy, as well
as very specific domains, like scientific papers or government documents. In the second case,
DBpedia data is too sparse, as abbreviations in the scientific domain are very specific and not
well reflected in the Wikipedia. In case of newspaper texts, one could build a custom abbreviation
list limited to only those abbreviations which have a category whose transitive closure of the
skos:broader relationship, which denotes a broader category, connects them with a category
relevant to the text domain. Additionally, a core list of most common abbreviations (like “Mr.”,
“etc.”) would have to be used.

This can be achieved by processing multi-domain corpora and examining them for the number
of abbreviation occurrences. Abbreviations can be ranked by occurrence or impact on boundary
detection quality, and thus be used to compile abbreviation dictionary fragments containing only
the most important abbreviations per language. Figure 7.5 shows a typical power law distribution
of abbreviation impact on sentence boundary detection precision and recall, demonstrating that
a small core of abbreviations contributes most of the quality gains reported. Extracted from
multi-domain corpora, these are likely candidates for a common core of abbreviations used
throughout different text types in one language.

Limitations Evaluation is limited by the corpora used. Comparing the evaluation results with
similar evaluations using the Brown corpus, like [21] or [12] shows a significantly lower precision
and recall in the evaluation executed here. Error analysis shows, that sentences not ending with
a sentence terminator in the Brown corpus as well as the Tiger corpus are plenty. These are
mostly headlines of texts and paragraphs that usually end with a paragraph mark which usually
is also used by the boundary detectors. However, they are not included in the NIF corpora. In
the Brown corpus, this is a gap in the conversion, as there are paragraph annotations in the
TEI/XML source. In the Tiger CoNLL corpus, paragraphs are not annotated and can thus not
be converted, leading to a lot of errors in detecting sentences that are not terminated.

As the Tiger example shows, another limitation is obtaining enough suitable corpora to evaluate
the abbreviations in multiple languages. Trained statistical models for the machine learning
sentence boundary detection algorithms only exist for a limited amount of languages and are
domain dependent, increasing the need for more corpus data to train them. NIF alleviates
some of these limitations by providing an interfacing format that supports corpora as well as
NLP components, allowing integration of data and tools from many different sources. This
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inspired GERBIL73, the General Entity Annotator Benchmark, that leverages NIF to provide an
interoperable evaluation framework for named entity recognition tools.

7.4 Gerbil
GERBIL [28] was developed because many researchers in NLP work at solving the same tasks
at the same time, publishing proof of their progress using evaluations of their tools against the
state-of-the-art and standard corpora. However, results vary and cannot be directly compared, as
the intricacies of data preparation, corpus formats, tool versions and evaluation measures result
in differences between the analyses. As a result, it is not quite clear which tool is best suited
for a specific task or type of text or represents the state-of-the-art. Preparing the evaluation
experiments, finding and formatting test data and setting up an evaluation pipelines has to be
redone over and over again, which means a large overhead to researchers. Finally, tuning ones
one tools is much easier if the performance can be reliably assessed against other state-of-the-art
software. To help scientific progress and open up evaluation of NLP tools in an interoperable and
comparable way, Gerbil was developed.

GERBIL allows the comparison of annotators on multiple datasets with uniform evaluation
measures. It provides an easy web-based platform that is used to publish, persist and view
evaluation results, which can also be used to add URLS of own services that abide by the
NIF standard. Corpora in NIF can be added in the same way. Natively, GERBIL contains 9
annotators and 11 datasets for evaluation, providing a solid state-of-the-art. The ease of expansion,
comparability and interoperability using NIF as a pivot format contribute to usage incentives and
enable a broader base for testing NLP tools. Especially in regard to multilinguality, the GERBIL
approach may fill the gaps that this evaluation had to leave unfilled.

8 Discussion and Future Work
Discussion. This work presented a thorough examination and expansion of the NIF ecosystem.
Besides the original use case as format for NLP tool integration, NIF was identified as a possible
corpus pivot format and accordingly, a large range of diverse existing corpora where converted into
NIF. The complete contribution of corpora presented in this work adds up to 841,106,737 triples.
The converted corpora were thoroughly validated to ensure data quality. RDFUnit presents an
adequate and scalable solution for this purpose, easily extensible by the means of SPARQL test
cases. Although writing these tests can pose unexpected problems, as discussed in Section 5.2,
it is not the main obstacle for test-driven data development. Specifying correctness criteria of
heterogeneous datasets, especially for NIF that contains arbitrary strings, proves to be the main
hurdle for data quality.

A set of RDFUnit test cases, together with tests automatically generated from the original
ontology, presents a formal specification of data quality. At the point of testing it with RDFUnit,
this data already is result of a chain of tools. The source data might have been a structured data
corpus, but it might also have been unstructured strings with few annotations. Some features
of the data might cause problems with the conversion. It could, for example, contain escape
characters incompatible with the serialization format. The data is then converted or annotated
with a tool trying to address these errors, but there may be bugs or unexpected results. Now the
output of this tool has to comply with the specification of the RDFUnit test cases, addressing
errors in programming or source data quality that might not have existed when the specification
was developed.
73http://aksw.org/Projects/GERBIL.html
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This is in contrast to test-driven software development, where the test is written first and the
implementation of the feature allowing the test to validate comes second. Formalizing exhaustive
correctness criteria in RDFUnit implies writing tests for all possible shortcomings of the input
data. The incomplete state of NIF RDFUnit tests before expansion in this work shows that
correctness specification coverage can not be guaranteed.

However, the refinement of the criteria based on expansive data testing, the correction of
erroneous test cases and the expansion of the evaluation presented in [13] with more, larger
datasets provide an important contribution to the NIF ecosystem and again prove the RDFUnit
approach as an important part of state-of-the-art data development.

Besides the contributed corpora, this work also addressed the core of NIF with the imple-
mentation of a NIF Wrapper for the OpenNLP framework that also contains a parser for NIF,
allowing the native use of NIF annotations in OpenNLP-based tools. A CoNLL converter was
also implemented, allowing automatic conversion of a large number of evaluation datasets into
NIF.

The implemented tools, as well as the reference implementation where thoroughly evaluated.
This raised the problem of memory consumption of the tools implemented using the existing
Jena-based NIF framework. In general, the memory overhead using Jena models is large and
sometimes prohibitive for processing large corpora. Although this is not the standard case,
solutions like using TDB or streaming already converted resources to reduce the Jena models’
size were proposed but their implementation was outside this works focus.

Finally, an industry use case was addressed by extracting abbreviation lists from linked data,
using them to increase sentence boundary detection quality. NIF acted as moderator between
evaluation and training corpora as well as the NLP tools itself, not unlike in GERBIL, but much
less sophisticated.

The abbreviation extraction from DBpedia proved to be complicated in practice. Because
the official SPARQL endpoint of DBpedia does not contain all the relevant data, the datasets
themselves had to be downloaded and processed. However, it is not clearly documented which
dataset files contain which properties, so one has to guess which of the 49 files are needed. After
processing, it quickly became clear that the quality of DBpedia multilingual, lexical data is not
really adequate for the use case at hand. The evaluation using two of the larger abbreviation
lists, English and German, showed that even if there is a significant amount of data available,
which is the case for most official EU languages, sentence boundary detection quality can only
be slightly improved using these lists. Looking at the power law distribution of abbreviation
impact on precision and recall, a small list of abbreviations should be enough to account for a
large improvement of quality, as seen when the manually compiled ULI list is used.

The main problem here is, of course, that Wikipedia does not try to be a dictionary. Trivial
abbreviations like “z.b.” in German are not often not included because they generally don’t fulfil
Wikipedia’s relevance criteria for encyclopedic articles. In contrast, Wiktionary provides an open,
crowd-sourced dictionary. Its data conversion, DBnary74, now is a very high-quality resource but
was not available during the collaboration with ULI. In fact, using DBnary, the complicated data
extraction is reduced to a number of SPARQL queries, because the SPARQL endpoint contains
all 13 languages extracted in DBnary. Being a dictionary, casing information is also contained in
DBnary, eliminating this shortcoming of DBpedia data. One of the steps to further this use case
is therefore integrating DBnary data.

This use case not only showed the strengths of NIF to ease the burden of tool and data integration
many NLP developers have to face. It also showed the real world value of contributions made by
this work, tying together a very broad scaled effort of NIF development into a tangible application.

74http://kaiko.getalp.org/dbnary
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This “burden of development” is hard to evaluate without asking developers. From my
perspective, having implemented all these tools and having converted the data, developing NIF
itself is not easy, spawning non-obvious problems and gaps, suffering under poor documentation
and scalability issues. The existing Jena implementation has to be reworked, as shown in the tool
evaluation. RDFUnit eases NIF data creation significantly, though. However, NIF developers are
not the target group of the project, NLP developers in general are. In turn, implementing the use
case was relatively easy to do with NIF. Adding further corpora for evaluation, for example in
other languages, or training the statistical tools on new corpus data, for example from a different
domain, are two of the tasks that would be time consuming without NIF and only took a minor
part in the implementation of the use case.

Future work. Besides solving some problems, this thesis also brought up many new ones
that have to be addressed in the future. Ensuring scalability of NIF and improving the already
implemented wrappers to provide a less resource-intensive framework will of course be on the
agenda. Compliance with other projects is another important point. Integration of the OpenNLP
wrapper directly into the Apache OpenNLP project is a mainly bureaucratic task that can
help disseminate NIF and provide the OpenNLP community with interoperable RDF output.
Providing a Python implementation could open up the large number of Python NLP libraries,
such as NLTK75 and gensim76.

Finally, projects like GERBIL that constitute rich, open, interoperable tool chains, producing
machine-readable and persistent Linked Data output to address substantial needs of the NLP
community shall be the constant long-term goal in expanding the NIF ecosystem.
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