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Chapter 1

Introduction

Argumentation and reasoning have been an area of research in such disciplines as phi-
losophy, logic and artificial intelligence for quite some time now. In the area of AI,
knowledge needed for reasoning can be represented using different kinds of representa-
tion systems. The natural problem posed by this fact is that of possible incompatibility
between heterogeneous systems as far as communication between them is concerned.
This imposes a limitation on the possibility of extending smaller knowledge bases to
larger ones. In order to facilitate a common platform for exchange across the systems
unified formalisms for the different approaches to knowledge representation are required.

This was the motivation for Dung [11] to propose in his 1995 paper an approach that
later came to be known as an abstract argumentation framework. Roughly speaking,
Dung’s arguments are abstract entities which are related to each other by the means of
conflicts between them. An intuitive graphical representation of Dung style framework
is a graph whose nodes stand for arguments and whose edges stand for conflicts.

A framework postulated this way is on one hand too general to be used on its own,
but on the other hand it is general enough as to allow for varied extensions increas-
ing its expressiveness, which indeed have been proposed. They include value-based
argumentation frameworks by Bench-Capon et al. [6], preference-based argumenta-
tion frameworks by Amgoud and Cayrol [1] and bipolar argumentation frameworks by
Brewka and Woltran [7], to name a few.

The present thesis is concerned with yet another variation of Dung’s framework:
the concept of splitting. It was developed by Baumann [4] with one of the underlying
purposes being that the computation time in frameworks which have been split into
two parts and then computed separately may show some improvement in comparison to
their variant without splitting. It was one of the main tasks of my work to develop an
efficient algorithm for the splitting operation based on the theoretical framework given
in [4]. On the other hand I hoped to confirm the expectation that splitting can indeed
make a computation perform better.

In order to confirm (or disprove) the expectation of an improvement in runtime if
splitting is applied to a framework I designed and developed an application which is the
main topic of this thesis. The present work is structured as follows. Chapter 2 describes
briefly the theoretical foundations of argumentation frameworks and argumentation se-
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CHAPTER 1. INTRODUCTION 2

mantics. Chapter 3 gives the required introduction to the field of splitting. Chapter 4
deals with the different aspects of the developed software. I will describe the graphical
user interface as well as the functionality offered by it. Here belongs also the implemen-
tation of various algorithms, i.e. three algorithms borrowed from Modgil and Caminada
[15] used for computation of labellings, Tarjan’s algorithm for computing of strongly
connected components as well as an algorithm for splitting which I developed based on
the procedures described in [4]. Some general internal structure of the application is
also given. Next, Chapter 5 presents the results of an experimental performance evalu-
ation made on a total of 100 randomly generated frameworks. And finally, Chapter 6
concludes.

Remark As mentioned above, the present thesis is based on and accompanies an appli-
cation which I developed as partial requirement for the Bachelor’s degree. The software
- a .jar executable plus a folder containing 3rd party libraries - is available upon re-
quest. A DVD-ROM containing application, libraries, Java source files and Javadoc
documentation is attached with the paper version of the thesis.

Remark In process of the experimental evaluation presented in Chapter 5 100 files
containing framework data were created. They can be read by any .net extension
(Pajek) supporting software. These are also available upon request.

Remark All images representing argumentation frameworks given in the thesis were
created using the built-in image export function of the developed application. The two
diagrams in Chapter 4 were made with the open source software Dia. All screen shots
were made with the Windows Print Screen Key.



Chapter 2

Argumentation Frameworks

2.1 Theoretical Foundations

In this section I will provide some basic definitions and reasoning on which the entire
thesis is grounded. First of all, we need to start with the notion of an argumentation
framework as defined by Dung in [11]:

Definition 2.1 An argumentation framework AF = (A,R) is a pair where A is a set
of arguments, and R ⊆ (A× A) is a binary relation on A called attack relation.

It is quite intuitive to represent an argumentation framework as a directed graph
in which nodes correspond to arguments and edges constitute the attack relation. For
convenience, I will refer to the latter simply as attacks. Fig. 2.1 shows a simple argu-
mentation framework with two arguments (0 and 1) and an attack from 0 to 1. In other
words our framework can be formally written as AF2.1 = ({0, 1}, {(0, 1)}).

Fig. 2.1: AF2.1

The above example is very general and may therefore represent many different situ-
ations. We can put it into a specific context by assigning propositions to its arguments.
Given that we currently experience a wave of popular anti-governmental uprisings in
North Africa and the Middle East, argument 1 could mean: “The Libyan protests of
2011 are peaceful popular uprising.”, and argument 0 could mean: “The Libyan protests
are neither peaceful nor popular because on footages we can see only a fistful of militants
with heavy weaponry.”. In our discourse argument 0 attacks argument 1 as no peaceful
protester would carry an anti-aircraft rocket launcher on his or her shoulder.

Having defined the notion of an argumentation framework, we can see that not every
argument can be accepted by a rational agent. Rather, the status of each argument is
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CHAPTER 2. ARGUMENTATION FRAMEWORKS 4

subject to evaluation. It is understandable that not every set of arbitrarily chosen
arguments can be seen as justified. In AF2.1, we either accept argument 0 or argument
1. We cannot hold both statements as true at the same time because we cannot believe
that a protest is both peaceful and violent. We have also to keep in mind that our
information may be incomplete and/or uncertain. There could be some other arguments
that could contribute to our discourse, but so far we have to deal with what there is,
i.e. the arguments 0 and 1.

2.2 Acceptability of Arguments

Undeniably, one of the main concerns regarding argumentation are the conditions under
which an argument can be accepted by a reasoning agent. The most general specification
of a set of arguments that can be accepted is given by the notion of a conflict-free set.
It is outlined in the following definition:

Definition 2.2 Given an argumentation framework AF = (A,R), a set S ⊆ A is
conflict-free, iff @a, b ∈ S s.t. (a, b) ∈ R.

In other words, given any two arguments, one being a source and the other being a
target of an attack in R, we cannot accept them both at the same time. In AF2.1 there
exist three conflict-free sets: ∅, {0} and {1}. We can either accept the argument that
the Libyan uprising is peaceful and popular or that it is neither peaceful nor popular.
We have also the option of accepting neither of the two arguments. However, if our
framework were looking like the one in Fig. 2.2, there would exist six conflict-free sets:
∅, {0}, {2}, {3}, {0, 2}, {2, 3}.

Fig. 2.2: AF2.2

Further, it is reasonable for a rational agent to require that a set of arguments
fulfills additional conditions in order to be accepted. The most basic of them being that
every member of the set is also defended by it. By defense we mean that whenever an
argument is a target of an attack the agent is able to counterattack the attacker. In
AF2.1 it seems quite unnatural to accept the statement that the Libyan protests are
peaceful and popular (argument 1) since it is attacked by another statement (argument
0), and is not defended by any other argument. In [11] the requirement is formally given
in two steps by defining first the notion of acceptability of an argument, and then on its
basis defining the notion of admissibility of a set:

Definition 2.3 Given an argumentation framework AF = (A,R), an argument a ∈ A
is acceptable w.r.t. a set S ⊆ A iff ∀b ∈ A holds that if bRa then ∃c ∈ S s.t. cRb.
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The concept of admissibility can then be formulated as follows:

Definition 2.4 Given an argumentation framework AF = (A,R), a set S ⊆ A is
admissible iff S is conflict-free and ∀a ∈ S holds that a is acceptable w.r.t. S.

Example For the framework AF2.2 it means that the singleton containing just the
argument 0 is not an admissible set since 0 is not an acceptable argument w.r.t. {0},
i.e. 0 is attacked by 3 but there is no attack from 0 to 3. Also the set {0, 2} is not an
admissible set because there is no attack from either 0 or 2 to the argument 3. All the
other conflict-free sets are also admissible sets of AF2.2.

On the basis of this theoretical framework we can now introduce two approaches
to status evaluation of arguments commonly identified in literature as argumentation
semantics.

2.3 Argumentation Semantics

Argumentation semantics comes usually as two approaches - extension-based and labelling-
based. Depending on the approach, a semantics specifies how to extract from an argu-
mentation framework (AF) a set of extensions or a set of labellings, where:

Definition 2.5 [2] An extension E of an argumentation framework AF = (A,R) is an
admissible subset of A.

Definition 2.6 [2] Given a set LAB of predefined labels, a labelling L of an argumen-
tation framework AF = (A,R) is a total function L : A→ LAB.

One of the simplest sets of predefined labels is the one containing three labels: IN,
OUT and UNDEC.1 We could specify a semantics which would assign the label IN to
every argument that is not attacked, the label OUT to every argument that is attacked
by an argument with an IN label, and the label UNDEC to any other argument. A
labelling specified by our semantics is a triple: L = (in, out, undec), where in, out and
undec are sets containing all arguments labelled IN, OUT or UNDEC respectively.
For AF2.2 there exists exactly one such labelling, with in = {2, 3}, out = {0} and
undec = {1}.

The extension-based approach can be simulated by the labelling-based approach by
defining a semantics for the latter which would assign the label IN to every argument
belonging to an extension, and the label OUT to every other argument. It is obvious that
the labelling approach is more expressive than the extension approach as a simulation in
the other direction is simply not possible. That was a reason for choosing the labelling
approach over the extension approach for implementation.

As it is indirectly stated in Def. 2.5, specification of a semantics may lead to more
than one extension or labelling. Since there can exist more than one admissible sets

1I will be using the abbreviation UNDEC for UNDECIDED throughout the thesis.
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for an AF, there can exist several extensions corresponding to these sets. And we
know that every extension can be simulated by an appropriate assignment of labels in
the labelling-approach. On the other hand, a particular semantics may prescribe no
extension/labelling for an AF. It is the case when no argument fulfills the conditions
defined by the semantics.

In his original paper Dung [11] mentioned four types of semantics considered nowa-
days “traditional” or “classical”: grounded, preferred, stable and complete. Since then
many other proposals have been introduced in the literature, often with the purpose
of overcoming some shortcomings of the traditional approach. They include for exam-
ple the semi-stable [8] and the ideal semantics [12]. Nonetheless, the present thesis
is concerned primarily with the classical semantics, and precisely with the grounded,
preferred and stable semantics. The reason for this is that my implementation of split-
ting for argumentation frameworks is based on a paper by Baumann [4] which provides
proofs for the above mentioned approaches. Other important works will be included in
future editions of the software.

As mentioned above, we will be dealing with the labelling-based approach to seman-
tics. The algorithms used for computation of grounded, preferred and stable labellings
are presented in Chapter 4. However, some introduction to the area of extensions is
required in order to understand better the reasoning behind the splitting concept as
described in [4]. Therefore, the reminder of this section provides terminological infor-
mation about the respective extensions. All of them are grounded in the notion of a
complete extension given below:

Definition 2.7 [11] A complete extension of an argumentation framework AF, denoted
as CE(AF), is an admissible set which includes all arguments that are acceptable w.r.t.
it.

Example Consider AF2.3 in Fig. 2.3. Its admissible sets are ∅, {3}, {4}, {2, 3}, {3, 4}
and {2, 3, 4}. However, ∅ is not a complete extension as the initial arguments2 3 and 4
are acceptable w.r.t. it, but not contained in it. Alike, {3} is not a complete extension
as it defends the argument 2 by attacking the argument 1, but does not contain 2. The
admissible set {3, 4} is not a complete extension for the same reason. Again, argument
3 is acceptable w.r.t. the singleton {4}, but not contained in it. And {2, 3} does not
contain 4 as well. So, in case of Fig. 2.3 we have one complete extension: {2, 3, 4}.

Note that the status of an argument may change dynamically. Take for instance the
case of ∅. It is true that it does not constitute a complete extension because 3 and 4
do not belong to it. However, if we accepted these two arguments and obtained the set
{3, 4}, we would see that it is not a complete extension either - due to the missing of
argument 2 which is acceptable w.r.t. {3, 4}. Nevertheless, the condition for rejection
of ∅ as a complete extension by stating that it does not include 3 and 4 is a sufficient
one.

2By initial argument we mean an argument which is not attacked.
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Fig. 2.3: AF2.3

Now we can define the three extensions in question:

Definition 2.8 [11] The grounded extension of an argumentation framework AF, de-
noted as GE(AF), is the least complete extension w.r.t. set inclusion.

Definition 2.9 [11] A preferred extension of an argumentation framework AF, denoted
as PE(AF), is a maximal complete extension w.r.t. set inclusion.

Definition 2.10 [9] A stable extension of an argumentation framework AF, denoted as
SE(AF), is a complete extension that attacks all arguments not belonging to itself.

All three extensions are the same for the framework in Fig. 2.3: {2, 3, 4} since there
is only one complete extension for this AF. This kind of argumentation frameworks is
defined by Dung as well-founded :

Definition 2.11 [11] An argumentation framework is well-founded if there exists no
infinite sequence of arguments a0, a1, ..., an, ... s.t., for each i, ai+1 attacks ai.

Theorem 2.12 [11] Every well-founded argumentation framework has exactly one ex-
tension which is grounded, preferred and stable.

It is easy to see that AF2.3 contains no cycles, i.e. fulfills the condition in Def. 2.11,
and is therefore a well-founded argumentation framework.

Consider the following framework.

Fig. 2.4: AF2.4

Here the grounded extension is the set {0}, the preferred the set {0, 1}, and no stable
extension exists. There is an infinite sequence of arguments - precisely 1, 3, 1, 3, 1, ... -
and the framework is not well-founded. However, we have to pay attention to the fact
that Dung’s definition does not say anything about frameworks containing cycles.

In order to keep this section self contained the following features of the three exten-
sions are noted [11]. Some of them are derivable from their respective definitions:
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1. Every argumentation framework possesses exactly one grounded extension;

2. Every argumentation framework possesses at least one preferred extension;

3. Every stable extension is a preferred extension, but not vice versa;

4. Not every argumentation framework possesses a stable extension.

For the labelling-approach, proposed first by Pollock [16], corresponding definitions
of grounded, preferred and stable labellings exist. But first, like in the case of extensions,
we need to define the notion of a complete labelling. Since we will focus solely on
labellings as triples (in, out, undec)3, the definition, originated by Caminada and Gabbay
[9], assumes that an argument is assigned just to one of the three labels. For the purpose
of defining a complete labelling we need to extend further our theoretical framework by
introducing the notion of a legal label :

Definition 2.13 [15] Let L be a labelling for an argumentation framework AF = (A,
R). We say that a ∈ A is:

1. legally IN iff a ∈ in(L) and ∀b : bRa holds that b ∈ out(L)

2. legally OUT iff a ∈ out(L) and ∃b : bRa and b ∈ in(L)

3. legally UNDEC iff a ∈ undec(L) and ∃b : bRa and b /∈ out(L), and @b : bRa and
b ∈ in(L)

In other words, an argument is legally IN in a labelling if and only if all its attackers
are labelled OUT. Thus, we can see that the set of arguments being legally IN in a
labelling corresponds to the set of arguments constituting an extension in the extension-
based approach. This is stated explicitly by the following theorem:

Theorem 2.14 [15] Let AF = (A, R) be an argumentation framework, and E ⊆ A.
For s ∈ {complete, grounded, preferred, stable}:

E is an s extension of AF iff there exists an s labelling L with in(L) = E.

For an argument to be legally OUT there must be at least one among its attackers
that is assigned the label IN. And lastly, an argument is legally UNDEC, which means
that there is no sufficient ground neither to accept it nor to reject it, if it is attacked by
at least one UNDEC -argument and by no IN -argument.

Next, we need to specify the conditions under which an argument is considered
illegal :

Definition 2.15 [15] For a labelling L and lab ∈ {IN,OUT, UNDEC}, an argument
a is said to be illegally lab iff a ∈ lab(L), and it is not legally lab.

3This allows us to refer to a labelling in terms of its components as (in(L), out(L), undec(L)).
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Now, we are ready to define the complete labelling :

Definition 2.16 [9] Let AF = (A, R) be an argumentation framework. A complete
labelling is a labelling that does not contain any arguments that are illegally IN, illegally
OUT, or illegally UNDEC.

Given the complete labelling we define grounded, preferred and stable labellings as
follows:

Definition 2.17 [15] Let L be a complete labelling. Then:

1. L is a grounded labelling iff there does not exist a complete labelling L’ s.t. in(L′) ⊂
in(L)

2. L is a preferred labelling iff there does not exist a complete labelling L’ s.t. in(L) ⊂
in(L′)

3. L is a stable labelling iff undec(L) = ∅

Computation of labellings is described in detail in Chapter 4. Here we will shortly
demonstrate the introduced concepts for the framework AF2.4. The analysis of the
framework shows that argument 1 will always be labeled IN as no attackers for it exist.
Alike, argument 2 will always be labeled UNDEC. 2 cannot be IN because then due to
the self-loop it would have to be OUT. 2 cannot be OUT either since then as the only
OUT -attacker of itself it would have to be labeled IN. Therefore it has to be UNDEC.
The status of 3 and 1 is more complicated. We know that 3 is being attacked by an
UNDEC argument. Therefore 3 can never be assigned the label IN. However, it can
be either OUT or UNDEC. If 3 is labeled OUT then 1 has to be labeled IN. If 3 is
labeled UNDEC then 1 also has to be labeled UNDEC. In effect, there exist 2 complete
labellings for this AF: ({0},∅, {1, 2, 3}) and ({0, 1}, {3}, {2}). According to the given
definitions we can see that the first complete labelling is the grounded labelling since
its in set is minimal. The second complete labelling is the preferred labelling since its
in set is maximal. The stable labelling does not exist because argument 2 is always
labeled UNDEC which makes the undec set not empty.

At the end of this introductory Chapter it is worth mentioning that all the semantics
in question have some drawbacks. For the grounded semantics it is the limitation posed
by so-called floating defeat. A floating defeat takes place in frameworks with no initial
nodes (i.e. those that are not attacked by any argument). The grounded semantics treats
all arguments as provisionally defeated (= UNDEC in the labelling-based approach).
However, a more appropriate way to deal with this kind of frameworks would be to
apply some kind of differentiation of the justification status of every single argument.
Consider the framework in Fig. 2.5. The grounded extension, as well as the grounded
labelling, is an empty set. Nonetheless, we can see that the argument 2 is never in the
extension as it is attacked either by 0 or by 1, one of which should be in the extension
each time. On the other hand, the argument 3 does always belong to the extension as
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it is attacked by 2 which never belongs to the extension. [3, p. 172] This insufficiency
of the grounded semantics is solved in the preferred and stable semantics.

Fig. 2.5: AF2.5 (floating defeat)

There are argumentation frameworks where no stable extension (labelling) exists.
For instance, the AF2.4 is such a framework. As it is argued by Baroni et al. in [3,
p. 168], the non-existence of an extension entails that all arguments are not justified.
But then again, the argument 0 in AF2.4 has no defeaters and should therefore be
classified as undefeated. The preferred semantics takes care of this problem as it treats
correctly cases like AF2.4 by rightly assigning the accepted status to 0.

Yet another problematic issue for the stable and preferred semantics, as Pollock
[16, p. 393] has pointed out, is that there is inconsistency in both semantics as to the
way they treat frameworks with odd-length cycles and even-length cycles. The stable
semantics is notorious in its uniform treatment of frameworks with odd-length cycles,
for which it produces no stable extension. However, once we have an even-length cycle,
the extensions exist. In this matter, the preferred semantics also fails to treat odd and
even cycles the same way. For odd-length cycles it produces an empty extension and
a labelling in which all elements are assigned the label UNDEC. The problem arising
from this fact - called the witnesses problem - is detailed in Baroni et al. [3].



Chapter 3

Splitting Argumentation
Frameworks

After the introduction into the area of formal argumentation we can proceed to the
main topic of the thesis. In 1994 Lifschitz and Turner [14] showed the splitting of a logic
program. The authors stated that it works especially well for programs with negation as
failure as well. A year later, Dung in his paper [11] pointed out that argumentation can
be viewed as a special form of logic programming with negation as failure. The natural
link one can establish would be to develop a procedure for splitting an argumentation
framework. Such a procedure is presented in Baumann [4]. In this chapter I will present
briefly the theoretical framework of splitting as given in [4]. An extensive description
of the algorithms developed in the process of implementation is given in Chapter 4.

3.1 Theoretical Foundations

The general idea of splitting is grounded in a thought that we could be able to obtain
better computational performance if the framework in question is first split into two
parts which are then computed separately. At the end, the outputs of both computations
(i.e. a partial extension or a partial labelling) will be combined, thus producing the
required result. The following definition formalizes the concept:

Definition 3.1 [4] Let AF1 = (A1, R1) and AF2 = (A2, R2) be argumentation frame-
works s.t. A1 ∩A2 = ∅. Let R3 ⊆ A1×A2. We call the tuple (AF1, AF2, R3) a splitting
of the argumentation framework AF0 = (A1 ∪ A2, R1 ∪R2 ∪R3).

As stated in the above definition, in order to split an argumentation framework
certain conditions have to be fulfilled. The first one being that the splitting divides the
set of arguments into two disjoint sets. The second being that all attacks lying between
the two sets (R3) have to have their source in the first set (A1) and their target in the
second set (A2).

Having established the requirement of a single direction, we need to specify the
treatment of arguments on both sides of the attacks in R3. In the labelling-based

11
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approach there are three possible states for an argument: IN, OUT or UNDEC. While
computing a labelling prescribed by a particular semantics we are concerned with the
immediate environment of every single argument. This means that we decide the status
of an argument based on the acceptability status of its attackers. Speaking in general
terms, we need to decide what kind of impact the splitting will have on the set A2.
What will happen if the attacker is in the in, out or undec set?4

Lets take a look at the situation when the attacker is an element of the in set. Assume
that our framework looks like the one in Fig. 3.1. If we split it to be AF1 = ({0},∅),
AF2 = ({1, 2}, {(1, 2)}) and the singleton R3 = {(0, 1)} we will obtain as the unique
grounded, stable and preferred labelling 5

• ({0},∅,∅) for AF1

• ({1}, {2},∅) for AF2

Fig. 3.1: AF3.1

The IN -attacker in question is here the argument 0. After applying the union oper-
ation to both outputs we get ({0, 1}, {2},∅) as the grounded, preferred and stable la-
belling. However, the grounded, preferred and stable labelling of AF3.1 is ({0, 2}, {1},∅).
In the end, we cannot reconstruct the original labellings. It is because the splitting did
not consider the attack (0, 1) ∈ R3. This attack changes the acceptability status of
argument 1 to OUT as it is attacked by argument 0 which is IN. So, in case when the
attacker belongs to the in set there exists a problem of incorrectly assigning acceptability
status to arguments it attacks. So, it is inappropriate to disregard the internal structure
when splitting the framework. This insufficiency can be corrected by the notion of a
reduct :

Definition 3.2 [4] Let AF = (A,R) be an argumentation framework, A′ a set disjoint
from A, S ⊆ A′ and L ⊆ A′ × A. The (S, L)-reduct of AF , denoted as AF S,L, is the
argumentation framework

AF S,L = (AS,L, RS,L)

where AS,L = {a ∈ A| 6 ∃b s.t. b ∈ S and (b, a) ∈ L}, RS,L = {(a, b) ∈ R|a, b ∈ AS,L}.
4I adopt this approach since we are dealing with labellings in this thesis. However, this differentiation

corresponds closely to Baumann’s extension-based approach. Arguments labeled OUT correspond to
Baumann’s “arguments that are attacked by the extension”. Arguments labeled UNDEC correspond
to Baumann’s “arguments that are not in the extension and are not attacked by the extension”.
Arguments labeled IN correspond naturally to the extension. See also Def. 2.13.

5Note that AF3.1 is well-defined and therefore the three labellings are the same.
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We apply this definition to AF2 by setting S = E1, where E1 is the extension of AF1.
In effect, all arguments that are attacked by R3 and which sources are in the extension
(i.e. the in set) are removed from AF2:

AF
E1={0},R3={(0,1)}
2 = (AE1,R3

2 , RE1,R3

2 ) = ({2},∅)

The union of labellings ({0},∅,∅) (for AF1) and ({2},∅,∅) (for AFE1,R3

2 ) recon-
structs the original extension. Note that it does not reconstruct the entire labelling as
argument 1 is removed by reduct. Clearly, in the case when the source of an attack is
labeled IN, by applying reduct we will remove only arguments that would have been
labeled OUT.6 No element of an extension will be removed by this operation.

Consider that reduct cannot be applied when the attacker is in the out set. By
removing the target of the attack we could render the extension wrong as some of the
removed arguments could have been in it (i.e. in the in set as is stated in Theorem
2.14).

The last scenario to check out is the one in which the attacker is assigned the label
UNDEC. By definition, no argument attacked by an UNDEC argument can be IN. So,
it has to be either OUT or UNDEC. Here we see that removing such an argument does
not affect the extension.

Consider again the argumentation framework given in Fig. 3.1. By adding a self-
loop around argument 0 we guarantee that 0 will always (i.e. in any labelling) belong
to the undec set. As 0 is the sole attacker of 1, 1 also has to be labeled UNDEC. The
same applies to argument 2 being attacked by only one argument which is UNDEC.
Thus we obtain as the grounded and preferred labelling the triple (∅,∅, {0, 1, 2}) and
no stable labelling exists. However, if we split the framework on the attack line between
the arguments 0 and 1, we obtain:

• The grounded and preferred labelling (∅,∅, {0}) and no stable labelling for AF1;

• The grounded, preferred and stable labelling ({1}, {2},∅) for AF2

The union will produce ({1}, {2}, {0}) as the grounded and the preferred labelling, and
no stable labelling.7 This result lies far away from the expected (∅,∅, {0, 1, 2}). An
intuitive solution to the problem is given in [4] where it is proposed to introduce a
self-loop around the argument being attacked by an UNDEC argument. To make the
section self contained we present the two definitions given there on which the idea is
based:

Definition 3.3 [4] Let AF = (A,R) be an argumentation framework, E an extension
of AF . The set of arguments undefined w.r.t. E is

6It is because by definition no argument which is attacked by an IN -argument can belong to the
undec set.

7Depending on the implementation it may be necessary to insert additional code to ensure that
no partial stable labelling is being generated. If not implemented correctly it could give rise to the
problem of claiming the existence of a labelling while none actually exists. In this particular case, we
could be creating a labelling ({1}, {2},∅) as union of the stable labelling for AF2 with the non-existing
labelling for AF1.
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UE = {a ∈ A|a 6∈ E, 6 ∃b ∈ E s.t. (b, a) ∈ R}.

In other words, an argument undefined with respect to an extension is one that is
neither in the extension nor attacked by the extension. This definition resembles what
we have said about the undecided arguments in previous chapter. If an argument a is
in the extension it is labeled IN. If a is attacked by an argument in the extension (i.e.
belonging to the in set), it has to be labeled OUT. So, if a is neither in the extension
(i.e. a is IN ) nor attacked by the extension (i.e. a is OUT ) it has to be UNDEC.
It follows that the notion of an undefined argument corresponds to the notion of an
undecided argument.

Now, we can modify the framework AF2:

Definition 3.4 [4] Let AF = (A,R) be an argumentation framework, A′ a set disjoint
from A, S ⊆ A′ and L ⊆ A′ ×A. The (S, L)-modification of AF, denoted modS,L(AF ),
is the framework

modS,L(AF ) = (A,R ∪ {(b, b)}|a ∈ S, (a, b) ∈ L).

Taking the argumentation framework in Fig. 3.1 (containing also a self-loop around
argument 0) as an example, we search for all undefined arguments w.r.t. an extension
of AF1 = ({0},∅). In our example it will always be 0. Next, we apply the operation of
modification to our AF2:

modS=UE1
={0},R3={(0,1)}(AF2) = ({1, 2}, {(1, 2), (1, 1)}).

With a self-loop added to argument 1 we obtain the labelling (∅,∅, {1, 2}) for the
grounded and preferred semantics and no labelling for the stable semantics. Thus the
union renders the expected labelling (∅,∅, {0, 1, 2}) for the grounded and preferred
semantics and no labelling for the stable semantics.

The operation of modification applied to the framework 3.1 gives the correct results.
However, the idea of splitting is to compute the modification of reduct of an argumen-
tation framework since we need to take into consideration both operations. So the right
way to proceed is to compute:

modUE1
,R3(AF

E1,R3

2 ) ([4]).

Remark It is noteworthy that the application of splitting, although removing some of
the arguments, allows for the actual reconstruction of the entire labelling. From what
is observed above, by assigning all arguments removed by the operation of reduct to the
out set we obtain a labelling in which all arguments are accounted for.

3.2 Strongly Connected Components in Splitting

As pointed out by Baumann in [4] there are many possible ways to split an argumen-
tation framework. Actually, we can do it anywhere as long as the condition of single
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direction for R3 is fulfilled. In the developed application it gave rise to a double approach
which is presented in Chapter 4.

In order to ensure that splitting takes place “at a right place” we need to follow the
internal structure of the directed graph that underlies each framework. An intuitive
way would be to look for any kind of ordering which would give a hierarchical picture
of the graph. Baumann [4] is doing it by searching for the set of strongly connected
components (SCCs).

In graph theory, a strongly connected component (SCC) of a directed graph is a
maximal subgraph in which there is a path from each vertex to every other vertex.
By contracting each SCC to a single vertex we obtain a directed acyclic graph, i.e. a
directed graph that contains no cycles. A directed acyclic graph induces a partial order
on the set of vertices thus giving us the required hierarchy. As stated in [4, 5], based
on this order any SCC-decomposition can be easily transformed into a splitting. The
most obvious is to partition the graph into initial SCCs (i.e. those that are not attacked
by any other SCC) and the non-initial SCCs. The union of vertices of all initial SCCs
can then be taken as the set A1 and the union of vertices of all non-initial SCCs would
constitute the set A2.

Example The directed graph in Fig. 3.2 with 13 vertices has 6 SCCs: {0, 1}, {2, 3, 4},
{5, 6, 7, 8}, {9}, {10}, {11, 12}. Splitting is possible on any of the edges joining any two
SCCs: (0, 6), (5, 2), (9, 7), (8, 10) or (10, 11). If the splitting is performed on

• the edge (0, 6) then A1 = {0, 1} and A2 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

• the edge (8, 10) then A1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and A2 = {10, 11, 12}

• the edges {(5, 2), (8, 10)} then A1 = {0, 1, 5, 6, 7, 8, 9} and A2 = {2, 3, 4, 10, 11, 12}.

Fig. 3.2: SCCs of a directed graph

The developed software covers two types of splitting. The first one, which can be
called initial splitting, divides the graph into the initial and the non-initial SCCs. It
corresponds to the splitting on the edges {(0, 6), (9, 7)} in Fig. 3.2. The other kind
of splitting, which can be called iterative splitting or optimized splitting, is based on
arbitrarily chosen cardinality constraints in determining how deep into the partial order
we can go. The procedure is described in Chapter 4. Here I just want to mention that
the splitting performed by it corresponds to splitting on the edges {(5, 2), (8, 10)} in
Fig. 3.2.



Chapter 4

The Application (v. 1.0)

This chapter presents the implementation of concepts described in two previous chap-
ters. They were put together to produce a standalone application written in the Java
programming language. The current version is 1.0.

The application does not require an installation. However, it may be necessary to
install or update the Java Runtime Environment (JRE) which is available on-line at no
charge.

The distribution format is zip. The zipped file has the size of 1.3 MB. It contains
a .jar executable named AAF and a folder containing third party Java libraries (see
remark). In order to use it one has to extract the zip file and then navigate to the
executable AAF.jar. A double mouse click should be enough to run the application.
Note that the AAF file has to be located on the same hierarchical level as the libraries
folder.

Remark The application makes use of the Java Universal Network/Graph Framework
[13] and the Apache Commons project’s [10] libraries.

The chapter is organized as follows. The first section deals with the most important
features of the graphical user interface including the functionality contained in menus,
the control panel and the graph display area. The second and third sections are con-
cerned with algorithms for computing labellings and splitting. And the last section talks
briefly about the package and class structure of the application.

4.1 Graphical User Interface

The GUI was designed to be as simple and user friendly as possible. As presented in
Fig. 4.1, it consists of four main components. On the top there is a menu with four
items. On the left is the control panel. On the right there is the display. And finally on
the bottom there is a field for outputs.

16
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Fig. 4.1: Graphical User Interface

Menu

The File drop-down menu provides the following functionality:

• New Framework : Creates an empty framework which is yet to be populated. The
user will see an empty white sheet in the display area.

• Open Framework...: Opens an existing file with framework data. The supported
formats include so far *.net8 and *.aaf 9. Specification of both formats can be
found in the help menu.

• Discard Framework : Deletes the current framework. The user will see an empty
grey sheet in the display area.

• Save Framework : Saves the current framework into a file with the extension aaf
or net. As a *.net file does not contain the information about coordinates the
file size is much smaller than an *.aaf file with data of the same argumentation
framework.

• Export Image: With this function the current framework can be saved as gif, jpg
or png image.

8It is a subset of the well-known Pajek format. It specifies arguments (without coordinates) and
attacks. Since no coordinates are given an FR layout is applied when a file with this extension is
loaded.

9It is a file format containing not only specification of arguments and attacks but also the coordinates
of arguments; courtesy of Jochen Tiepmar.
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• Generate Random Framework... (Fig. 4.2): Gives the possibility of creating a
random AF by specifying number of arguments and attacks. User input is then
checked in two ways. On one hand, any missing input or input containing other
characters than numbers is signaled by a corresponding information at the bottom
of the input dialog. On the other hand, a check as to the allowable number of
attacks for the given number of arguments is performed, e.g. as self-loops are
permitted, for n arguments up to n2 attacks are possible.

Fig. 4.2: Random framework generator dialog

• Exit : If no arguments are detected in the display area the application will exit.
If there are arguments detected a dialog window will appear asking the user to
confirm the exit commando.

Next to the File menu there is a drop-down menu Options. It allows currently to
activate / deactivate the display of argument and attack names.

The menu Framework comprises of two parts. The first one allows for change of
layouts. At present implemented are the circle layout, Fruchterman-Rheingold layout,
Isom layout, Kamada-Kawai layout and the spring layout. The second part contains
three modes for graph manipulation. These are:

• editing mode: Gives the possibility of directly inserting arguments and attacks to
the graph. Can also be activated by clicking on the display area and typing the
letter e.

• picking mode: Enables the user to directionally rearrange a subset of arguments.
Can also be activated by clicking on the display area and typing the letter p.

• transforming mode: Encompasses several operations like zooming, panning and
rotating of the graph. Can also be activated by clicking on the display area and
typing the letter t.

The menu item Help contains everything that is needed in order to be able to
use the software. All instructions regarding the operations on the graph, file format
specifications and explanations for reading of the outputs are given here.
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Control Panel

The control panel is divided into two sub-panels. The first one is named Labellings (Fig.
4.3), the other one is named Splitting (Fig. 4.4).

The Labellings sub-panel was designed with the purpose of testing and comparing
runtimes. It contains three semantics buttons for computing grounded, preferred and
stable labellings. Further, two more options are given which implement two variants
of splitting. The first variant corresponds to procedure compute A1(SCC(AF )) in Alg.
4. By selecting the radio button splitting and then pressing one of the semantics but-
tons a corresponding set of labellings is computed by applying the splitting algorithm.
Analogously, if optimal splitting is selected we obtain a set of labellings by applying the
optimized variant of the splitting algorithm. This second variant of splitting corresponds
to procedure optimize A1(SCC(AF ), A1) in Alg. 4.

If any of the semantics buttons is pressed without any radio button selected the
computation will proceed without splitting the framework.

Fig. 4.3: Control Panel: Labellings Fig. 4.4: Control Panel: Splitting

The result of a computation is shown in one of the rows below the buttons area. As
the names suggest, TIME w/o and TIME w/ will output the time (in ms) of a com-
putation without splitting or with splitting (either regular or optimized) respectively.
The runtime values can then be compared directly by checking the both outputs.

After performing a computation you will see a forward slash and an integer right be-
hind the runtime value. This integer indicates the number of runs of the main algorithm.
Taking the framework of 10 arguments and 100 attacks as example, the computation of
preferred labellings will take around 260,000 ms and 9,864,101 steps. So, the output in
the field TIME w/ will read “260000/9864101”.

The sub-panel Splitting was designed to give a visualization of splitting processes.
So, by pressing the button SCCs we color the framework graph in accordance with
its internal structure, i.e. each SCC is marked in a different color. The second row
buttons, SPLIT and SPLIT OPT allow the user to show on the graph how the regular
splitting or the optimized splitting would look like if it were applied. The set R3, i.e.
the attacks which lie between the two sets, is shown in gray. Additionally, we can shift
the partitioned arguments. By clicking shift we move the initial arguments (set A1)
to the right and the non-initial arguments (set A2) to the left. The operation can be
reverted by pressing the shift back button. Each time a splitting is visualized the number
of initial arguments, the number of non-initial arguments and the number of attacks
between the two sets are printed in the three fields at the bottom of the sub-panel.
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Display and Output Area

Finally, the display area is set to contain the graphical representation of an argumen-
tation framework. It is equipped with scroll bars which will be automatically adjusted
when the framework is resized or moved. It supports a collection of mouse and keyboard
operations. These include:

Fig. 4.5: Graph operations

The output area located below the display area shows the result of the last operation
executed. When computing a labelling, strongly connected components or a splitting,
the situation on display will be mirrored by a textual output of results.

When computing a labelling, the color of arguments contains the following informa-
tion10:

• (a) indicates the default color of an argument. Red is also used to indicate the
special case of a non-existing stable labelling.

• (b) indicates that an argument belongs to the in set of a particular labelling.

10Note that in cases where more than one labelling exists the coloring of arguments and attacks refers
only to the last labelling.
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(a) (b) (c) (d) (e) (f)

Fig. 4.6: Argument coloring

• (c) indicates that an argument belongs to the out set of a particular labelling.

• (d) indicates that an argument belongs to the undec set of a particular labelling.

• (e) indicates that an argument was removed in the process of the reduct operation.
In argumentation frameworks where no stable labelling exists it is possible that
some of the arguments are marked like this and not in the default red color. This
is not a bug. It is caused by the fact that partitioning of the AF may result in one
subset (specifically A1) containing no UNDEC arguments. That means that the
non-existence of a labelling is not detected at this stage. In such situation, the
operations of reduct and modification will take place. In effect, some arguments
will be removed. Only when the fact that there is no stable labelling is detected
early (i.e. for set A1) the entire framework will have the default color.

• (f) indicates an argument with a self-loop added during the operation of modifica-
tion. Note that the argument has to be either OUT or UNDEC. It cannot be IN
since it has to be attacked by an UNDEC argument in order to receive a self-loop.

For attacks there are three possible colors. The default is black. The attacks on
which splitting took place are indicated in gray. If an attack is marked red it means
that it was removed during a reduct operation.

4.2 Algorithms I: Labelling

The application implements three of the classical semantics mentioned by Dung: grounded,
preferred and stable. It is based on labelling algorithms given by Modgil and Caminada
in [15]. In what follows I will describe their working.

4.2.1 Computing the Grounded Labelling

The grounded labelling (Lgr) is generated as follows: all arguments which are not at-
tacked are assigned the label IN. The next step is to assign the label OUT to all those
arguments that are attacked by at least one of the arguments just labeled IN. We con-
tinue assigning the label IN to any argument having all of its attackers labeled OUT.
The iteration stops when no further assignment can be made. The set undec(Lgr) is
the set of arguments from A which were not labeled during the iteration. The exact
procedure is given in Alg. 1.
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Algorithm 1: Computation of Grounded Labelling

input : L0 = (in(L) = ∅, out(L) = ∅, undec(L) = ∅)
1.1 repeat
1.2 in(Li+1) = in(Li) ∪ {x|x is not labelled in Li, and ∀y : if (y, x) ∈ R then

y ∈ out(Li)
1.3 out(Li+1) = out(Li) ∪ {x|x is not labelled in Li, and ∃y : if (y, x) ∈ R and

y ∈ in(Li)}
1.4 until Li+1 = Li

1.5 return Lgr = (in(Li), out(Li), A− (in(Li) ∪ out(Li)))

Fig. 4.8 shows the grounded labelling of the framework AF4.7 given in Fig. 4.7. The
in set is marked orange, the out set is marked green, and the undec set is marked blue.

We start the computation with an empty labelling. In first step we look for ar-
guments that are not attacked. In AF4.7 there is only one such argument: 6. So, 6
is labeled IN. Next, we label OUT all arguments having at least one attacker that is
labeled IN. It applies only to argument 5. The labelling contains at this stage two argu-
ments: L1 = ({6}, {5},∅). We then proceed by assigning the label IN to all arguments
whose attackers are all marked as OUT. It is the argument 7 which is attacked only by
5. Then, there is only one argument having all of its attackers assigned the label OUT :
8. The labelling L2 = ({6, 7}, {5, 8},∅). At this moment there are no more arguments
that can be labeled either IN or OUT. So, the Lgr = ({6, 7}, {5, 8}, {0, 1, 9}).

Fig. 4.7: AF4.7 Fig. 4.8: AF4.7 (grounded labelling)

It is worth noting that the algorithm runs in polynomial time. According to the tests
done during the phase of performance evaluation the runtime for grounded semantics
was very short. For instance, for frameworks with 1000 arguments and 2000 attacks it
was as low as 40 ms.

4.2.2 Computing Preferred Labellings

In order to present the algorithms for preferred and stable labellings we need to introduce
the notion of being super-illegally IN :

Definition 4.1 [15] Given an AF = (A,R) and a labelling L, an argument a ∈ A is
super-illegally IN in L iff it is illegally IN in L and ∃b : (b, a) ∈ R and b is legally IN or
UNDEC in L.

The algorithm for computing all preferred labellings (Alg.2) starts by assigning to all
arguments the label IN (labelling LIN), and initializing an empty set in which candidate
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labellings are to be stored. Then, by way of the main procedure find labellings arguments
that are illegally IN in LIN are identified. To each of these arguments a procedure called
transition step is applied, by which the label of the given argument is changed from IN
to OUT. If such an argument whose label has been changed from IN to OUT or if any
argument(s) it attacks is illegally OUT, it will be relabeled as UNDEC. Thus we have
obtained a new labelling which contains one less IN -argument. Then the entire process
repeats again by passing any new labelling onto the main procedure, and the process
continues until an acceptance or rejection condition is met. A labelling which does
not have any argument which is illegally IN will be added to the candidate labellings,
unless at any previous stage in the recursion it is detected that a better labelling has been
found, i.e. a labelling with a larger in-set is already contained in candidate labellings.
If such a labelling with a larger cardinality of the in-set exists, the current labelling will
not be processed.

Algorithm 2: Computation of Preferred Labellings

input : LIN = (in(LIN ) = A, out(LIN ) = ∅, undec(LIN ) = ∅)

2.1 candidate labellings := ∅
2.2 find labellings(LIN )

2.3 PROCEDURE find labellings(L)
2.4 begin
2.5 if ∃L′ ∈ candidate labellings : in(L) ⊂ in(L′) then return;
2.6 if L does not contain an argument illegally IN then
2.7 foreach L′ ∈ candidate labellings do
2.8 if in(L′) ⊂ in(L) then
2.9 candidate labellings := candidate labellings− {L′}

2.10 end

2.11 end
2.12 candidate labellings := candidate labellings ∪ {L}
2.13 return;

2.14 else
2.15 if L has an argument that is super-illegally IN then
2.16 x := some argument that is super-illegally IN in L
2.17 find labellings(transition step(L, x))

2.18 else
2.19 foreach x that is illegally IN in L do
2.20 find labellings(transition step(L, x))
2.21 end

2.22 end

2.23 end

2.24 end

In order to avoid the situation in which incomplete labellings are being generated
by any incorrect assignment of labels, the algorithm is designed to always extract first
those arguments that are super-illegally IN, i.e. arguments having at least one attacker
legally IN or UNDEC, whenever we try to extract arguments that are illegally IN.
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An example of a framework where this requirement is needed is given in [15, p. 128]
and reproduced in Fig 3.1. Assuming no differentiation was made between arguments
illegally IN and super-illegally IN. There would be two possible runs for the algorithm
as both 1 and 2 are illegally IN (both are attacked by an argument that is labeled IN :
0 and 1 respectively). The first possibility is to first select the argument 1 and then
the argument 2. This run results in a complete labelling. However, the run starting
with 2 does not. It relabels 2 from IN to OUT. Then, in the next recursion step,
it relabels 1 from IN to OUT and 2 from OUT to UNDEC. So, we get a labelling
L = ({0}, {1}, {2}) which is illegally UNDEC since 2 is attacked by an OUT argument.
As stated in Def. 2.16 a complete labelling is not allowed to have any arguments that
are illegally UNDEC.

Turning back to our framework in Fig. 4.7, it possesses two preferred labellings given
in Figs. 4.9 and 4.10.

Fig. 4.9: AF4.7 (preferred labelling 1) Fig. 4.10: AF4.7 (preferred labelling 2)

4.2.3 Computing Stable Labellings

The algorithm for computing all stable labellings is obtained by rewriting line 2.5 of the
algorithm for preferred labellings to read “if undec(L) 6= ∅ then return”. If the set of
arguments labeled UNDEC in a labelling is not empty, i.e. it violates the requirement
for a stable labelling, the labelling will not be further processed.

According to the instruction in [15] we can also skip the lines 2.7 to 2.11 which
compare the in sets of candidate labellings with those of the already computed labellings.

In the framework AF4.7 there exists no stable labelling. This is clear even from the
look at the two preferred labellings in previous subsection.11 Both have an argument
which is labeled UNDEC. However, the algorithm for computing preferred labellings
after modification of the line 2.5 will not allow for generation of a labelling containing
any UNDEC element.

Fig. 4.11: AF4.7 (no stable labelling exists)

11We have said in Chapter 2 that a stable labelling is also a preferred labelling.
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4.3 Algorithms II: Splitting

This section contains two algorithms. Due to the requirement of single directionality, we
need to find the strongly connected components of an argumentation framework prior
to splitting it. Undoubtedly, one of the most known and most efficient ones is the
algorithm proposed by Tarjan in 1972 [17]. The introduction of splitting brings an
additional computational overhead in form of time needed for dividing the framework.
That is why it is especially important for us to use an efficient algorithm and Tarjan’s
with its linear complexity is a good choice.

The other algorithm was developed based on the procedures and definitions given in
[4]. It is concerned with the problem of splitting of an argumentation framework.

4.3.1 Tarjan’s Algorithm for Computing SCCs

The set of strongly connected components as presented in Tarjan’s paper is computed
by means of depth-first search (Alg. 3). We start by initializing variables index and
lowlink to −1 for every argument of the framework. index will number the arguments
consecutively in the order in which they are discovered by the algorithm. lowlink will be
updated during computation and will always be smaller or equal to the index value for
a particular argument. At the end of the computation all the arguments of a SCC will
have the same lowlink value which is equal to the index of the first discovered argument
of the SCC. Arguments which have been visited during the search but have not yet been
placed in a SCC are stored on a stack.

Starting with an arbitrary argument, we push it on the stack. Then, if any of the
arguments it attacks has not yet been visited (i.e. its index = −1), we apply the
algorithm to that argument. When the algorithm identifies an argument as having its
index = lowlink (i.e. an SCC was found), that argument and all the arguments on top
of it are removed from the stack and added to the set SCC(AF ) as a strongly connected
component.

Example The algorithm of Tarjan finds six strongly connected components for the
argumentation framework AF4.7 (each receiving a different color):

SCC(AF4.7) = {{0, 1}, {5}, {6}, {7}, {8}, {9}}

Fig. 4.12: AF4.7 (the strongly connected components)
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Algorithm 3: Computation of SCCs

input : an argumentation framework AF = (A,R)
output : set of strongly connected components (SCC(AF ))

3.1 foreach x ∈ A do index(x) := lowlink(x) := −1
3.2 SCC(AF ) := ∅
3.3 stack := ∅
3.4 counter := 0
3.5 while index(x) = −1 do compute SCCs(x)
3.6 print SCC(AF )

3.7 PROCEDURE compute SCCs(a)
3.8 begin
3.9 push a on the stack

3.10 index(a) = counter
3.11 lowlink(a) = index(a)
3.12 counter = counter + 1
3.13 foreach (a, b) ∈ R do
3.14 if index(b) = −1 then
3.15 compute SCCs(b)
3.16 lowlink(a) = min(lowlink(a), lowlink(b))

3.17 else if b on stack then
3.18 lowlink(a) = min(lowlink(a), index(b))
3.19 end

3.20 end
3.21 if lowlink(a) = index(a) then
3.22 SCC = ∅
3.23 repeat
3.24 pop argument c from stack
3.25 add c to SCC

3.26 until c = a
3.27 add SCC to SCC(AF )

3.28 end

3.29 end

4.3.2 The Splitting Algorithm

Our splitting algorithm consists of two parts: The first part (Algorithm 4) is executed
prior to the first call of a labelling algorithm for a semantics and computes AF1, AF2

and the set R3. The second part (Algorithm 5) is executed after receiving an extension
from the labelling algorithm. The tuple AF2 is then modified in accordance with the
extension.

The first task is set to look for all the initial arguments (A1) of our framework (AF ).
We use the set of strongly connected components returned by the Tarjan algorithm. The
algorithm starts by introducing a Boolean variable scc attacked which will be initialized
to false for every SCC in SCC(AF ). Given an SCC, once an argument in this SCC is
attacked by some argument in another SCC, the variable will be set to true and the
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execution of the algorithm for this SCC stops. Then the algorithm starts processing
the next SCC. Only if scc attacked remains false, which means that the corresponding
SCC is not attacked, will all the arguments of this SCC be added to A1.

The splitting operation described above may result in subframeworks which differ a
lot in size. We also provide a possibility to equalize the cardinalities along the partial
ordering dictated by SCC(AF ).12 The algorithm, called optimize, accepts the already
computed arguments of A1 and adds new ones under certain conditions. The first cri-
terion used is the cardinality of A1. Since the addition of new arguments relies on the
partial order, it may not always be possible. Therefore, choosing 45% as a starting con-
dition for equalization was an attempt to optimally equalize the numbers of arguments
on the one hand, and on the other not to slow down the splitting process unnecessarily.
Another condition limits the number of arguments added to A1 by imposing a relative
restriction on the added SCC’s cardinality, i.e. if |SCC| + |A1| > |A| ∗ 60%, the SCC
will not be accepted. The algorithm runs recursively until no further arguments can be
added (i.e. when |optimal set| = |A1|).

On the basis of the set A1 we can then compute the sets R1, A2, R2 as well as
the set of attacks along which the framework is split (R3). The pseudo code for these
operations is not included here due to their obvious simplicity.

The processing of the tuple AF1 by a labelling algorithm may return an extension
as part of a labelling, if it exists. This extension (E1) will in turn be used for modifying
AF2 in the second part of the splitting algorithm. We start with the set A′

2 which is A2

minus all the arguments in A2 that are attacked by E1, and we call it the modified set
of A2.

Next we apply the second algorithm on E1, starting with an empty set, in order to
compute a reduced set of undefined arguments (UE1). Note that we are not concerned
with all the undefined arguments as stated in Def. 3.3, but only with those that are
sources of an attack in R3. Whenever an argument is a source of an attack in R3, if it
neither is an element of the extension E1 nor is attacked by E1, it will be added to the
set UE1 .

We then proceed to the final step in the modification of AF2. Given UE1 , for every
argument of A′

2 which is attacked by UE1 , a loop is added. By this addition, we have
modified the set R2. We call this modified set R′

2, and now we can define AF ′
2 as

the tuple (A′
2, R

′
2). With the given definition, AF ′

2 is to be processed by a labelling
algorithm.

12The motivation behind this kind of splitting was that we expected a better performance in com-
parison with the initial splitting. However, as indicated in the experimental evaluation (Chapter 5) the
results do not show a significant improvement. A reason for this is that equalization of sets poses an
additional computational overhead to the already existing overhead of initial splitting.
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Algorithm 4: Computation of Splitting, part 1

input : set of strongly connected components (SCC(AF ))
output : A1, R1, A2, R2, R3

4.1 PROCEDURE compute A1(SCC(AF ))
4.2 begin
4.3 foreach SCC ∈ SCC(AF ) do
4.4 scc attacked := false
4.5 loop:
4.6 foreach a ∈ SCC do
4.7 foreach b s.t. (b, a) ∈ R do
4.8 if b /∈ SCC then
4.9 scc attacked = true

4.10 break loop;

4.11 end

4.12 end

4.13 end
4.14 if scc attacked = false then add SCC to A1

4.15 end
4.16 return A1

4.17 end

4.18 PROCEDURE optimize(SCC(AF ), A1)
4.19 begin
4.20 optimal set := A1

4.21 illegal attacks := false
4.22 foreach SCC ∈ SCC(AF ) do
4.23 if |A1| < |A| ∗ 0.45 then
4.24 pick an a ∈ SCC
4.25 if a /∈ A1 and |A1|+ |SCC| < |A| ∗ 0.6 then
4.26 illegal attacks = false
4.27 loop:
4.28 foreach a ∈ SCC do
4.29 foreach (b, a) ∈ R do
4.30 if b /∈ A1 and b /∈ SCC then
4.31 illegal attacks = true
4.32 break loop;

4.33 end

4.34 end

4.35 end
4.36 if illegal attacks = false then add SCC to A1

4.37 end

4.38 end

4.39 end
4.40 if |A1| < |A| ∗ 0.45 and |optimal set| 6= |A1| then
4.41 optimize(SCC(AF ), A1)
4.42 end
4.43 return A1

4.44 end
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Algorithm 5: Computation of Splitting, part 2

input : an extension of AF1 (E1), A2, R1, R2, R3

output: AF ′
2 = (A′

2, R
′
2)

5.1 compute modified A2(E1, A2, R3)
5.2 compute UE1(E1, R1, R3)
5.3 compute modified R2(UE1 , R2, R3)

5.4 PROCEDURE compute modified A2(E1, A2, R3)
5.5 begin
5.6 A′

2 := A2

5.7 foreach a ∈ E1 do
5.8 foreach (a, b) ∈ R3 do
5.9 if b ∈ A′

2 then remove b from A′
2

5.10 end

5.11 end
5.12 return A′

2

5.13 end

5.14 PROCEDURE compute UE1(E1, R1, R3)
5.15 begin
5.16 UE1 := ∅
5.17 foreach (a, b) ∈ R3 do
5.18 if a /∈ E1 and 6 ∃c ∈ E1 s.t. (c, a) ∈ R1 then add a to UE1

5.19 end
5.20 return UE1

5.21 end

5.22 PROCEDURE compute modified R2(UE1 , R2, R3)
5.23 begin
5.24 R′

2 := R2 − {(x, y)|(x, y) ∈ R2 and (x /∈ A′
2 or y /∈ A′

2)}
5.25 foreach a ∈ UE1 do
5.26 foreach (a, b) ∈ R3 do add (b, b) to R′

2

5.27 end
5.28 return R′

2

5.29 end

The application of splitting to framework AF4.7 renders the following sets (Fig. 4.15):

• AF1 = ({0, 1, 6, 9}, {(0, 1), (1, 0), (6, 9)}) (brown)

• AF2 = ({5, 7, 8}, {(5, 7), (7, 8)}) (blue)

• R3 = {(1, 5), (6, 5), (9, 8)} (gray)

The result of computing the grounded labelling is given in Fig. 4.16. Several things
have changed compared with the original framework, as shown in Fig. 4.8:
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Fig. 4.13: AF4.7 (with splitting indicated) Fig. 4.14: AF4.7 (gr. lab. with spl.)

• Argument 5 was removed as is signaled by white background and red edging. It
is due to the fact that 5 is attacked by the extension (argument 6) which requires
application of the reduct operation.

• Attack (5, 7) was removed as signaled by its red coloring.

• Argument 8 received a self-loop. It is because argument 9 is undefined. 13

Note that 5 does not have a self-loop although it is attacked by the undefined argu-
ment 1. It has to do with the order of applying both reduct and modification. Because
reduct was used prior to modification we removed 5 before it could receive a self-loop.

To keep the section complete the splitting results for the preferred semantics are
included below.

Fig. 4.15: AF4.7 (with splitting indicated) Fig. 4.16: AF4.7 (gr. lab. with spl.)

4.4 Java Source Structure

The software was written in the Java programming language. One of the advantages of
the language is that it allows for good modularization. The present project was divided
into four packages, each of which has a different functionality. In the following sections
I will describe shortly the structure of the program.

A general overview of dependencies between the packages is given in Fig. 4.17.

13Note that 8 is also attacked by the IN argument 7 which does not have any influence on 8 as 7
does not belong to AF1.
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Fig. 4.17: Package Diagram

The package “Panel” represents the graphical user interface. As such it is associated
with any external communication that a user can perform. The communication is con-
cerned with importing and saving a file with framework data or exporting a framework
image, etc. All this is organized by the package “IO”. All computations are executed
by the user via the GUI, hence the association with the package “Computations”. Seen
from the side of visualization, representation of a framework is dependent on the data
received via “IO” as well as any user interaction on the panel. Any computation is de-
pendent on the data represented graphically on the display (Package “Visualization”).14

Package “Panel”

The Java package Panel contains three classes:

• Main.java

• FrameworkPanel.java

• HelpInstructions.java

Main.java is the class responsible for the startup of the application. It contains only
one method which creates an instance of the FrameworkPanel class. A FrameworkPanel
initializes the user interface and menus. It also keeps the memory of settings saved in the
previous session by extending the java.util.Observable Interface. The class has several
internal listener classes for the purpose of notifying various parts of the GUI of user
initiated events like change of modes or layouts, and any kind of mouse, keyboard or
button actions like for instance the computation of a labelling.

The class HelpInstructions as the name already suggests provides all the help related
materials like the operation of the graph or the way of reading graphical and printed
results.

14I decided upon this approach as splitting entails many operations directly on the graph. Hence
most of information requests about arguments and attacks, adding and deleting nodes and edges, is
performed by querying the graph directly.
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Package “Visualization”

Here the most important elements of the graphic representation are located:

• Argument.java

• Attack.java

• Labelling.java

• FrameworkViewer.java

This part of the application was a novel one as it goes away from the fundamen-
tal Java libraries and ventures into the world of third party libraries which provide
extended opportunities at the cost of time spent to learn a usually different concep-
tual approach. Most of the code of the FrameworkViewer class implements JUNG and
Apache Commons functionality.

FrameworkViewer is the class steering the appearance on the display. It is responsi-
ble for creating arguments and attacks with help of org.apache.commons.collections15’s
argument / attack factories. The graph format used is an instance of JUNG Direct-
edSparseGraph class. An Apache Commons transformer dynamically translates an ar-
gument into its Point2D location. Yet another transformer (the ArrowDrawPaintTrans-
former) dynamically maps an attack into an arrow color or an argument into a fill color.
JUNG’s various renderers control for example the way an argument’s label is displayed.

The two components of a graph - the argument and the attack - are characterized
as follows. An arguments is identified by its name. Beyond that, each arguments has
its

• lowlink and index number used for computing strongly connected components,

• fill and draw color responsible for its appearance,

• location coordinates specifying where on the display area it lies at a particular
moment.

For an attack there is a name and the color. There is no need to save its source and
target since those can be easily queried using methods provided by JUNG.

Package “IO”

Package “IO” contains classes responsible for external communication:

• FrameworkFileFilter.java

• FrameworkFileSelector.java

• FrameworkImageFilter.java
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• RandomFrameworkDialog.java

FrameworkFileFilter and FrameworkFileSelector guide the user in selecting, opening,
saving or discarding files with framework data. The filter is exclusively filtering out
only those files that have an appropriate extension, i.e. .net or .aaf. The same does the
FrameworkImageFilter to framework images exported from the editor. It indicates the
supported formats which at present consist of .png, .jpg and .gif.

The RandomFrameworkDialog is the dialog windows that opens when in the File
menu the command “Generate Random Framework” is chosen (see Fig. 4.2).

Package “Computations”

This package is the main component of the application. Algorithms for computation
of strongly connected components, the splitting algorithm, and the three semantics
algorithms are all located here:

• StronglyConnectedComponent.java

• Splitting.java

• GroundedSemantics.java

• PreferredSemantics.java

• StableSemantics.java

Since the working of these classes were presented in Chapter 2, here I am attaching
only the class diagram indicating the connections between them (Fig. 4.18). For clarity,
class attributes and methods are omitted.

Fig. 4.18: Class Diagram
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Computation with splitting: The class StronglyConnectedComponent.java receives
its input directly from the package “Visualization”. After finding the set of SCCs
the splitting takes place. With the first part of splitting computed we can execute a
semantics algorithm.

Computation without splitting: Any semantics execution depends directly on the
inputs from the “Visualization” package.



Chapter 5

Experimental Evaluation

Our evaluation15 of the runtime for grounded, preferred and stable semantics is based
on the sampling of 100 randomly generated frameworks. The tests were performed
on a Samsung P510 notebook with a Pentium Dual Core Processor, CPU speed: 2.0
GHz, CPU Caches: 32 KB (L1) and 1024 KB (L2), RAM: 2 GB. We focused in our
experiments on frameworks where the number of attacks (n) exceeds the number of
arguments (m) by a factor between 1.5 and 3.

The reasons for this restriction are as follows. First of all, even leaving execution
times aside16, by further increasing the number of attacks the probability of generating
frameworks consisting of a single SCC grows, thus rendering the experiment inconclusive
as splitting has no effect on AFs with a single SCC. For example, initial tests showed
that if 500 or more attacks (n) are given for 100 arguments (m), then almost all of
the randomly generated frameworks will consist of only a single SCC and no effect of
splitting is to be expected.

Second, an even stronger limitation lies in the fact that we are bound to limit
the number of attacks even more due to long execution time required for computing
labellings in AFs when the number of attacks exceeds far too much the number of argu-
ments. It is especially true of those frameworks which already contain large number of
arguments since the larger the number of arguments is the longer it takes to compute
labellings. For example, our preliminary testing showed that for AFs with 100 argu-
ments, if 200 attacks are specified, the percentage of frameworks with runtime over 3
min for preferred semantics without splitting was about 70%.17

On the other hand, choosing an n smaller than m would not lead to significant
differences in execution time between AFs with and without splitting as execution times
tend to be fast under such conditions anyway.

With the above limitations in mind, a total of 100 examples were collected, with

15The evaluation presented here is an extended version of Section 4 (“Experimental Results”) given
in [5].

16For example, our preliminary testing showed that for AFs with 100 arguments, if 200 attacks
are specified, the percentage of frameworks with runtime over 3 min for preferred semantics without
splitting was about 70%.

17Out of 15 tests only 4 had runtime under 3 min.

35



CHAPTER 5. EXPERIMENTAL EVALUATION 36

20 examples extracted from each of the following m/n combinations: 10/30, 50/100,
100/175, 200/375 and 500/750. A brief description of the results obtained will be pre-
sented below together with a tabular summary of statistical data for each combination.
Each table contains average-runtime results (in milliseconds) and gain-in-time results
(in %)18 for the grounded, preferred and stable semantics. Under “average runtime”, the
first column contains results from executing without splitting, the second from execut-
ing with non-optimized splitting and the third from executing with optimized splitting.
Under “gain in time”, minimal, maximal and average gain results, each in relation to
non-optimized and optimized splitting, are distinguished.

The 10/30 combination was the only case in which we experienced no runtime that
was over 3 min.19 Thanks to the low number of arguments we were given a possibility of
structural analysis. Although 20 examples is a small sample size, we were able to distin-
guish 4 characteristics based on the structure of the framework and the corresponding
difference in runtime between executions without and with splitting. The analysis below
applies to the preferred and stable semantics as the execution of the grounded semantics
did not show any difference.

First, in 3 cases out of 20 a single SCC was generated. As splitting has no effect on
AFs consisting of a single SCC, there was no runtime improvement for all 3 semantics.
However, no noticeable runtime delay in relation to the splitting process was recorded
either.

Second, 3 further examples had the form of a single argument SCC attacking a large
SCC (A). Here we recorded no improvement or only a slight improvement in the runtime
when splitting was applied: 0-20%.

An example:

Fig. 5.1: Framework structure A (SCC {4} attacks the rest of the framework)

Third, yet 3 further cases consisted of a single argument SCC with a self-loop at-
tacking a large SCC (B). The only difference regarding the single argument between
this form and the previous one was that we now had a loop attack. However in terms of
runtime the gap was significant. In the second case it was between 68-71% for preferred
semantics and between 99-100% for stable semantics.

An example:

18For convenience, in the presented data we use “0 ms” to mean “close to 0 ms” and “100%” to
mean “close to 100%”.

19It comes as no surprise since the computation of preferred labellings for an AF with 10 arguments
and 100 attacks takes around 260,000 ms
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Fig. 5.2: Framework structure B (SCC {2} attacks the rest of the framework)

And last, 11 of the random AFs had the form of a larger SCC attacking a single
argument SCC (C1), a single argument SCC with a self-loop (C2) or two SCCs (C3); or
the form of two SCCs, with at least one attack each, attacking the rest of the framework
(C4). The difference in execution without and with splitting ranged here between 80-
99% for preferred semantics and between 59-100% for stable semantics.

Examples:

Fig. 5.3: Framework structure C1 (SCC {0} is attacked by the rest of the framework)

Fig. 5.4: Framework structure C2 (SCC {3} is attacked by the rest of the framework)

Fig. 5.5: Framework structure C3 (SCC {0, 2, 3, 4, 8} attacks {5} and {1, 6, 7, 9})



CHAPTER 5. EXPERIMENTAL EVALUATION 38

Fig. 5.6: Framework structure C4 (SCCs {0} and {3, 9} attack the rest of the framework)

The limited data suggest that splitting can render computation significantly faster
for frameworks with certain characteristics. It seems that the most relevant are those
AFs having one or more SCCs, each with at least one attack (i.e. a single argument
SCC with a loop or an SCC with at least 2 arguments), attacking one or more SCCs
whose structure in itself is not relevant.

An additional test on an AF of 10 arguments, of which 9 constituted an SCC with
81 attacks and all 9 attacked the 10th argument (Fig. 5.8), recorded a 90% runtime
difference for both preferred and stable semantics. Alike, 90% gain was obtained after
adding a self-loop to the SCC being attacked (Fig. 5.7). These additional results lie
nicely within the ranges of the previously obtained 80-99% and 59-100% respectively.

Fig. 5.7: 90% gain for preferred and stable Fig. 5.8: 90% gain for preferred and stable

A further test of a single argument with a self-loop attacking each argument of an
SCC with 9 arguments and 81 attacks (Fig. 5.9) showed a 90% runtime difference for
preferred semantics and 100% for stable semantics. The performance was evidently
better than the previously obtained result for preferred semantics (68-71%). Having
removed the loop attack (Fig. 5.10) we obtained a runtime of 1 ms for preferred and
stable semantics, both with and without splitting. Again, these results are also in
compliance with the ones obtained in the sample test using 20 examples.

In general we obtained an average acceleration of 60% for both types of splitting
in comparison to an execution without splitting. It is partly due to the fact that
for the 10/30 combination both non-optimized splitting and optimized splitting usually
overlap, which in turn is a result of the existence of large SCCs that limits the possibility
of having different splittings. In no case was the execution with splitting slower than
the one without.
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Fig. 5.9: 90% gain for pref., 100% for stable Fig. 5.10: 0% gain for preferred and stable

Tab. 5.1: Evaluation results for 10 arguments and 30 attacks

m = 10 average runtime (in ms) gain in time (in %)
n = 30 w/o spl. w/ spl. opt. spl. min min/op max max/op avg avg/op
grounded 1 1 1 0 0 0 0 0 0
pref. 3871 886 890 0 0 99 99 60 61
stable 1040 267 262 0 0 100 100 59 60

The runtimes for the 50/100 combination were very diversified: from 1 ms (for
stable) and 2 ms (for preferred semantics) to 381,512 ms (preferred)20 and 4,456 ms
(stable). The grounded labelling was computed at the speed of 1-3 ms in each case,
no improvement nor delay was recorded for executions with splitting in comparison to
those without.

In 9 out of the 20 cases, the computation time for preferred and stable labellings
without and with splitting was very short (below 20 ms). No significant difference was
observed. The time gain for these cases was given as 0%, which had a negative effect on
the average gain in time as shown in Table 5.2: it dropped to only 26-29%. Note that
the maximal gain in time for both semantics was at 99%.

For the stable semantics we observed dramatic improvements in cases where no
labellings existed. Through splitting of the framework, the time needed to find the first
argument of the undec set, hence breaking the execution of the labelling algorithm,
was at times very short. In 8 out of 15 cases where no labelling existed, the execution
times lay below 20 ms which as mentioned above had 0% gain. Among the remaining
7 cases, 2 recorded an improvement of 99%, the rest between 17-75%. In none of the 20
examples was the execution without splitting faster than the one with splitting. Neither
significant improvement nor delay was found for optimized splitting as compared to
regular splitting.

Tab. 5.2: Evaluation results for 50 arguments and 100 attacks

m = 50 average runtime (in ms) gain in time (in %)
n = 100 w/o spl. w/ spl. opt. spl. min min/op max max/op avg avg/op
grounded 2 2 2 0 0 0 0 0 0
pref. 35860 23237 23352 0 0 99 99 29 26
stable 663 487 480 0 0 99 99 29 29

20This example had already been included in the data before the imposition of the 3-minute limit,
and so this is the only example with a runtime above 3 mins.
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Some 40% of the frameworks generated with 100 arguments and 175 attacks had a
computation time of at least 3 min for the preferred semantics without splitting. They
were not taken into consideration for the reason stated at the beginning of this section.
In the collected examples, the runtimes varied from around 20 ms to slightly below
40,000 ms. No stable labelling existed in 19 out of the 20 examples. In 9 out of these 19
examples, we obtained an improvement of 90-100% for the stable semantics and 0-50%
for the remaining 10. No slow down due to the process of splitting was noticeable.

Here, for the first time, we recorded a significant improvement in runtime when the
optimized version of splitting was applied. It was 13% for the preferred semantics and
5% for the stable semantics, both of which were better than the non-optimized variant.
On average, an execution with splitting was better than one without splitting by 56-69%
for the preferred semantics and by 60-65% for the stable semantics.

Tab. 5.3: Evaluation results for 100 arguments and 175 attacks

m = 100 average runtime (in ms) gain in time (in %)
n = 175 w/o spl. w/ spl. opt. spl. min min/op max max/op avg avg/op
grounded 2 2 2 0 0 0 0 0 0
pref. 8335 3701 2502 0 0 93 99 56 69
stable 499 297 262 0 0 100 99 60 65

The computation time for preferred and stable labellings without splitting in frame-
works of 200 arguments and 375 attacks was in general above 15 ms, thus making a more
precise comparison possible. All the generated AFs showed a runtime improvement of
at least 14% (pref.) and 26% (stable) when the execution with splitting is compared to
the execution without splitting. Here too the gain in time reached in some cases 99%
for the preferred labellings and 96% for the stable labellings.

With an average runtime of 3 ms for the grounded semantics, no difference between
execution without and with splitting was found. The computation of stable labellings
with applied splitting took on average 56% less time than that without. For the preferred
semantics, the gain was somewhat less, it was 45% with optimized splitting and 47%
with non-optimized splitting.

Tab. 5.4: Evaluation results for 200 arguments and 375 attacks

m = 200 average runtime (in ms) gain in time (in %)
n = 375 w/o spl. w/ spl. opt. spl. min min/op max max/op avg avg/op
grounded 3 3 3 0 0 0 0 0 0
pref. 9333 6531 6296 14 16 99 98 47 45
stable 352 236 222 26 26 96 93 56 56

It was relatively comfortable testing the 500/750 combination since only about 20%
of the randomly generated frameworks had a runtime above 3 min for preferred la-
bellings without splitting. The execution time was quite steady. The lowest runtime
for preferred semantics without splitting was 53 ms and 58 ms for stable semantics
without splitting. The absence of drastic highs and lows was mirrored in all the average
runtimes for preferred semantics, which were much lower than the average runtimes
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measured for 200/375. Here we observed also a steady improvement after splitting was
applied. The lowest of which was 35% for preferred semantics and 33% for stable. The
upper range was also less drastic with up to 86% for preferred and 97% for stable. The
average differences were quite high with 57-61% for preferred labellings and 62-66% for
stable. There was a drop in efficiency for the optimized type of splitting as compared to
the non-optimized type (by 4% for both preferred and stable labellings). However, in
AFs with a runtime above 700 ms, the optimized type ran faster than the one without
optimization. In no case though was an execution with splitting slower than the one
without splitting.

While in frameworks with 200 arguments and lower the grounded semantics did
not perform worse after splitting, here we observed a visible slowdown. There was an
average loss of 2% in the case of the non-optimized variant and an average loss of 36%
in the case of the optimized variant.

Tab. 5.5: Evaluation results for 500 arguments and 750 attacks

m = 500 average runtime (in ms) gain in time (in %)
n = 750 w/o spl. w/ spl. opt. spl. min min/op max max/op avg avg/op
grounded 10 10 13 -12 -60 15 -15 -2 -36
pref. 2785 1697 1168 36 35 86 78 61 57
stable 232 120 99 33 47 97 89 66 62
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Conclusion

Based on our evaluations of 100 randomly generated AFs, we have made the following
observations:

1. Among the 100 AFs, we observed an average improvement by 50-51% and by
54% for preferred and stable semantics respectively. The data contained some
inconclusive examples which had “marred” the results to some extent.

2. No instance, neither for preferred semantics nor for stable, was found in which the
execution with splitting lasted longer than the one without. This shows that the
additional overhead introduced by splitting is negligible.

3. The optimized type of splitting did better than the non-optimized type in cases
when the AF without splitting had a relatively long runtime. When the runtime
was relatively short, the type without optimization usually performed better. The
reason for that is probably the additional overhead introduced by the optimization
process. On the other hand, this would also suggest that factors other than the size
of the two sets after the partition may play an important role in the performance
of splitting. Our expectation is that this factor is the internal structure we talk
about in point 5.

4. Splitting may significantly improve runtime for stable semantics in frameworks
where no stable labellings exist. By splitting the framework, we were able to
complete the execution of the algorithm a lot faster because it took less time to
find a labelling with the undec set that was not empty.

5. It seems that there exist certain regularities between the structure of frameworks
and the corresponding runtime. Having an SCC with at least one attack (or
several SCCs with at least one attack each) attacking the rest of the framework
can improve runtime significantly. We especially hope that this will greatly affect
computation of large frameworks with large SCCs, which so far we were unable
to test due to the required long computation time.

The largest argumentation framework tested contained 500 arguments and 750 at-
tacks. It would be interesting to test whether the results can be translated into frame-
works of much larger sizes. That would however require a much faster processor to test

42
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on. Some frameworks with just 100 arguments and 200 attacks run for over 30 mins.
without conclusion (for preferred semantics). Those runs had to be stopped and were
therefore not tested.
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