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Abstract
Jakob Runge

CARBON a Web application and a RESTful API for argumentation
This thesis documents the development of Collaborative Argumentation Brought Online
(CARBON). Collaborative Argumentation Brought Online (CARBON) aims to make
abstract dialectical frameworks (ADFs) available via HTTP by providing a RESTful
API and a JavaScript heavy application, that allows to use ADFs in a wiki context on
top of that API. The thesis summarizes basic concepts of abstract argumentation using
examples of Dung argumentation frameworks (AFs), bipolar argumentation frameworks
(BAFs) and abstract dialectical frameworks (ADFs). The advantages of using Haskell as
a programming language for server side software are demonstrated by discussing central
concepts of functional programming and how these influenced the design or our solutions
and simplified the creation of a RESTful API. It is described, how argumentation can
be embedded in a wiki, and how a mapping between wiki articles and statements can be
established to enable users to create new content while still being able to work with ADFs.
To simplify the creation of acceptance conditions, a custom approach to proof standards is
presented that allows to translate a bipolar argumentation framework (BAF) with proof
standards into a ADF.
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CHAPTER 1
Introduction

To document the development of Collaborative Argumentation Brought Online (CAR-
BON), this chapter starts of with the motivation for our work, describing how a concrete
problem emerges from that, and what the resulting requirements for CARBON are. In the
following chapter we will describe the concept of abstract argumentation, by discussing
Dung argumentation frameworks (AFs), bipolar argumentation frameworks (BAFs) and
abstract dialectical frameworks (ADFs). We will also describe core concepts of the Haskell
programming language, which lay the grounds upon which CARBON is designed and
implemented. In addition we will recall the concept of Representational State Transfer
(REST), which is a central part both, for the API provided by CARBON, and for the
web application build on top of that API. Afterwards we describe how CARBON embeds
abstract argumentation in a wiki, and we introduce a combination of BAFs and proof
standards, to simplify the task of entering the necessary informations into the system.
Following that we turn towards the design of our RESTful API and what the existing
software parts are that our solution relies on. We describe in detail how data is stored and
handled, and afterwards turn towards the implementation of a domain specific language
(DSL) that allows us to work with and store this data independent from a certain database
or storage layer. Towards the end of this thesis we discuss the implementation of elected
algorithms involved in the solution, which include the calculation of acceptance conditions
for individual statements and the integration of user defined ADFs into already existing
frameworks. Finally the thesis will close with a discussion of related works and an outlook
towards future work that could be based on CARBON. CARBON is open source software,
and released under the GPL General Public License Version 3. The full source code can be
found in a git repository at sourceforge1, and the version used with this thesis is tagged
‘v.1.0’. Of course CARBON is constructed upon several existing software libraries, all of
which are open source as well. A complete overview of these libraries, their versions and
licenses can be found in appendix C.

1 https://sourceforge.net/projects/carbon-adf/
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2 1 Introduction

1.1 Motivation
Argumentation has been a growing topic in AI in the last decades, and with the realization
of projects such as ArguBlogging and the growing specification and use of the Argument
Interchange Format (AIF), argumentation becomes more important and interesting in a
networked context. Motivated by this trend, CARBON delivers another web application
and API to bring argumentation to the web. The software Dialectical Models Encoding
(DIAMOND)1, which is an implementation of ADFs, is a pure command line tool. Building
a web application around DIAMOND would facilitate the visualization of ADFs as graphs
and would enable users to discover the functionality of ADFs in a playful manner. We
also consider abstract argumentation as a potentially helpful tool for decision making in
collaborative environments, and therefore wanted to enable users of a typical collaborative
platform, the wiki, to take advantages of abstract argumentation.

1.2 Problem description
Coming from the motivation, we can now formulate a full problem. We conclude that there
is a need for more services that supply abstract argumentation on the web. Specifically it
is helpful for DIAMOND to be integrated in a solution that can visualize ADFs as graphs
and enables clients to explore these. As a collaborative platform the functionality of a wiki
will need to be expanded, to integrate abstract argumentation. These objectives can be
solved by creating a web server, that on the one hand supports the typical wiki tasks, and
on the other hand understands abstract argumentation, specifically ADFs well enough to
solve some helper tasks for diamond, such as to construct input data and work with the
returned outputs.

1.3 Requirements
Based upon the problem description we can now derive the requirements that arise. To
supply the wiki context it is necessary for the server, to store data in a permanent, reliable
manner. Also articles in wikis are typically versionized which means, that the server must
also support articles in different versions and enable clients to view different versions. To
prevent abuse and track authorship, CARBON shall have a simple form of user management,
that allows authentication by password as well as some form of registration with the system.
This also means, that clients accessing the service will have different roles, of either not
being logged in, or being authenticated against the system, so that they are known as
distinct users. For administration cases the additional role of an admin user will need
to be introduced. In this wiki context, abstract dialectical frameworks (ADFs) shall be
embedded, which makes it necessary to invent a way of extending the typical wiki setup.
To allow visualization of ADFs as graphs, CARBON must supply a way of drawing these,
and it is necessary that CARBON has a uniform representation of the argumentation data.
To work together with DIAMOND, CARBON needs to produce valid input data, and must
parse the according output correctly. When bringing ADFs to the web, CARBON must no
focus solely on the presentation in a browser, but shall also be usable as a service for other

1 https://isysrv.informatik.uni-leipzig.de/diamond
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software. Therefore it is necessary to deliver an API that can easily be understood, and
shall, in particular, follow the Representational State Transfer (REST) style constraints
described in the background section. Since there is a separation between the API and the
presentation anyway, it makes sense to design the presentation layer as a web application,
that shall be implemented in JavaScript. These requirements also advise that CARBON
makes use of a configuration file, which is typical for server side applications, especially in
the Linux world, and allows for more flexible setups. It would also be a useful feature, to
design the server side program so that it works in a stateless which makes updates and
restarts easy, and also makes it possible to scale with growing load, should the need arise,
by running multiple instances of CARBON.





CHAPTER 2
Background

In this chapter we will focus on the preliminaries and the basics that form the foundation
for the work on CARBON. We will start by recalling the definition of argumentation
frameworks (AFs), to introduce bipolar argumentation frameworks (BAFs) on top of that,
and than turn to the concept of abstract dialectical frameworks (ADFs), to explain how
argumentation is processed within CARBON. In addition this section describes a selection
of concepts popular in functional programming, namely the Haskell language, which has
been used to implement CARBON, so that many of these concepts are involved in design
decisions. At the end of this chapter, we recall the concept of Representational State
Transfer (REST), which provides the basic guidelines for the API design of CARBON.

2.1 Dung argumentation frameworks
In the last decades, argumentation frameworks (AFs) have been a popular topic in AI and
non monotonic reasoning. The basic idea behind argumentation frameworks is to abstract
away from a concrete scenario towards graph structures from which additional knowledge
can be evaluated that will also hold for the original scenarios. The typical argumentation
frameworks (AFs) after Dung (1995) [Dun95; Rah09b, ch. 2] are comprised of a tuple (A,R),
where A denotes the set of arguments/statements, and R ⊆ A × A denotes the attack
relations between these arguments. Thus, an argument 𝑎 ∈ A attacks another argument
𝑏 ∈ A iff (𝑎,𝑏) ∈ R.

2.1.1 Example
As an example for Dung AFs, let us consider the popular party game Mafia, that was
invented by Dimma Davidoff in 19861, but is believed to be known since before 19702.

Mafia has been described as ‘a game between informed minority and uninformed major-
ity’[Yao08][ch. 1], and a single instance of the game consists of several rounds, where each
round is divided into two phases, day and night. In the night phase, the informed minority
chooses a player to be eliminated from the game, with the intend to have only players
from the minority remain at the end of the game. In the day phase, all players discuss

1 http://web.archive.org/web/19990302082118/http://members.theglobe.com/mafia_rules/
2 https://www.princeton.edu/~sucharit/~mafia/history.htm
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to decide on a player to be eliminated, but while the minority knows all its members,
the majority doesn’t, and so the minority can partake in the discussion to undermine
the majority’s intent. A complete description of the game rules can also be found at
http://www.eblong.com/zarf/werewolf.html, where the Werewolf themed adaptation
of the game is described. Let us now look at a concrete example:

The first night just passed, and Bob was eliminated by the minority. In the following
day phase, Mallory starts the discussion by accusing Alice of being a member of the
minority, because Alice was eyeballing other players just before the night. Alice, to her
defense, says, that she way only eyeballing others to see if any player would behave
suspicious. Carol says, that Mallory’s argument is just a straw man to appear as a part
of the majority, claiming that Mallory would belong to the minority.

To abstract from this example, we identify Mallory, Alice and Carol as our set of
arguments A = {𝑚,𝑎,𝑐}, and their arguments against each other as attack relations
R = {(𝑚,𝑎),(𝑎,𝑚),(𝑐,𝑚)}.

F𝐴𝐹 = ({𝑚,𝑎,𝑐},{(𝑚,𝑎),(𝑎,𝑚),(𝑐,𝑚)})
(2.1)

(a) Dung argumentation framework

m ac

(b) The according graph

Figure 2.1: Representation of our example

2.1.2 Extensions
To obtain results from an argumentation framework, some notions are defined by Dung:

defense: A set of arguments 𝐸 ⊆ A defends an argument 𝑎 ∈ A, iff ∀(𝑏,𝑎) ∈ R there is a
𝑐 ∈ 𝐸, so that (𝑐,𝑏) ∈ R.

acceptable: An argument 𝑎 ∈ A is called acceptable with respect to 𝐸 ⊆ A, iff 𝑎 is defended
by 𝐸.

conflict-free: A set of arguments 𝐸 ⊆ A is called conflict-free, iff ∀𝑎,𝑏 ∈ 𝐸, (𝑎,𝑏) /∈ R. The
set of conflict-free sets in our example would be {∅,{𝑐},{𝑚},{𝑎},{𝑐,𝑎}}.

admissible: A set of arguments 𝐸 ⊆ A is called admissible, iff it is conflict-free and ∀𝑎 ∈ 𝐸,
a is acceptable with respect to 𝐸. For our example the set of admissible sets is
{∅,{𝑐},{𝑐,𝑎}}.

These notions are than used to define computable sets of arguments, called extensions.
Some more popular extensions are:

complete: An extension 𝐸 is called a complete extension of A, iff 𝐸 is admissible and
@𝑎 ∈ A ∖ 𝐸, so that 𝑎 is acceptable with respect to 𝐸. This means, that every
acceptable argument with respect to 𝐸 must be an element of 𝐸. For our example
the complete extension is {{𝑐,𝑎}}.

http://www.eblong.com/zarf/werewolf.html
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preferred: An extension 𝐸 is called a preferred extension of A, iff 𝐸 is maximal among the
admissible sets extensions with respect to set inclusion. In the example this means,
that the preferred extension turns out to be the same as the complete extension,
{{𝑐,𝑎}}.

stable: An extension 𝐸 is called a stable extension of A, iff 𝐸 is conflict-free and ∀𝑏 ∈ A∖𝐸
there is an 𝑎 ∈ 𝐸, so that (𝑎,𝑏) ∈ R. This means, that a stable extensions is defended
against all arguments not in the extension. For the example the stable extension is
{∅,{𝑐,𝑎}}.

grounded: An extension 𝐸 is called the grounded extension of A, iff 𝐸 is minimal among
the complete extensions with respect to set inclusion. The grounded extension of our
example is {{𝑐,𝑎}}.

2.2 Bipolar argumentation frameworks
The focus of Dung-style AFs on attack relations only has been perceived as insufficient,
so that different approaches emerged that aim to enrich the original concept. BAFs add
a second type of relations that express support between arguments. In the paper ‘On
the bipolarity in argumentation frameworks’[Amg04], different applications for bipolar
argumentation are mentioned, and the concept is motivated further by stating, that the
‘distinction between positive and negative preferences is supported by studies in cognitive
psychology which have shown that these two types of preferences are independent and
processed separately in the mind’.

In [Rah09b][ch. 4], the following definition for BAFs is given:

An abstract bipolar argumentation framework (BAF) ⟨A,R𝑎𝑡𝑡,R𝑠𝑢𝑝⟩ consists of:
a set A of arguments, a binary relation R𝑎𝑡𝑡 on A called the attack relation and
another binary relation R𝑠𝑢𝑝 on A called the support relation. These binary
relations must verify the following consistency constraint: R𝑎𝑡𝑡 ∩ R𝑠𝑢𝑝 = ∅.

2.2.1 Example
Using this definition for BAFs, we can now translate our example for Dung AFs into a
BAF. To do this, it becomes necessary to identify the arguments and their relations slightly
different, or otherwise we would obtain a trivial BAF where R𝑠𝑢𝑝 = ∅, and A,R𝑎𝑡𝑡 being
directly translated from the Dung AF.

Table 2.1: Interpretation of our example for BAFs

Argument Content
𝑎 Alice belongs to the minority.
𝑒 Alice was eyeballing others.
𝑎 Alice belongs to the majority.
𝑒 Alice has just looking for others.

𝑚 Mallory belongs to the majority.
𝑠 Mallory’s argument is a straw man.

Based on this new interpretation, we can now construct a BAF:
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F𝐵𝐴𝐹 = ⟨{𝑎,𝑒,𝑎,𝑒,𝑚,𝑠},{(𝑎,𝑎),(𝑎,𝑎),(𝑠,𝑚)},{(𝑒,𝑎),(𝑒,𝑎)}⟩ (2.2)

(a) bipolar argumentation framework

𝑎

𝑒

𝑎

𝑒

𝑚

𝑠

(b) The according graph

Figure 2.2: Representation of our example

2.2.2 Extensions
Following the definitions from [Rah09b][ch. 4] it now becomes necessary to redefine some
notions and extensions. We now distinguish between different kinds of attacks in addition
to the new notion of support:

support: Given 𝑎,𝑐 ∈ A, 𝑎 supports 𝑐, iff either (𝑎,𝑐) ∈ R𝑠𝑢𝑝 or ∃𝑏 ∈ A.(𝑎,𝑏) ∈ R𝑠𝑢𝑝 and 𝑏
supports 𝑐. The intuition behind support is, that there must be a path of support
relations between 𝑎 and 𝑐.

direct attack: Direct attacks work just like attacks in typical Dung AFs, where an argument
𝑎 ∈ A attacks an argument 𝑏 ∈ A, iff (𝑎,𝑏) ∈ R𝑎𝑡𝑡.

support attack: Given 𝑎,𝑏,𝑐 ∈ A, 𝑎 support attacks 𝑐, iff 𝑎 supports 𝑏, and (𝑏,𝑐) ∈ R𝑎𝑡𝑡.
set support: Given S ⊆ A,𝑏 ∈ A, S set supports 𝑏, iff ∃𝑎 ∈ S, so that 𝑎 supports 𝑏.
set attack: Given S ⊆ A,𝑏 ∈ A, S set attacks 𝑏, iff there ∃𝑎 ∈ S, so that either (𝑎,𝑏) ∈ R𝑎𝑡𝑡,

or ∃𝑐 ∈ A, so that 𝑎 supports 𝑐 and (𝑐,𝑏) ∈ R𝑎𝑡𝑡.
defense: For BAFs there exist more elaborate concepts for defense as well, but for our

overview of BAFs we’ll stick to the notion from Dung AFs, where arguments are
defended, iff all direct attacking arguments are attacked. For our example, this means,
that 𝑎 defends itself against {𝑎,𝑒}, even though 𝑒 set attacks 𝑎.

In contrast to [Rah09b][ch. 4], which describes different variants of admissible and preferred
extensions, we will focus on single variants as examples to show that the extensions known
from Dung AFs can also be generalized for BAFs.

+conflict-free: A set S ∈ A is called +conflict-free, iff @𝑎,𝑏 ∈ S, so that 𝑎 set attacks 𝑏. For
our example, some +conflict-free sets are: {∅, {𝑎}, {𝑎,𝑒,𝑚}}.

d-admissible: A set S ∈ A is d-admissible, iff S is +conflict-free, and all elements of S are
defended. Some d-admissible sets would be: {∅, {𝑎,𝑒}, {𝑎,𝑒,𝑠}}.

d-preferred: A set S is d-preferred, iff it is maximal with respect to set inclusion among
the d-admissible sets. The d-preferred sets of F𝐵𝐴𝐹 are: {{𝑎,𝑒,𝑠},{𝑎,𝑒,𝑠}}.
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stable: A stable extension is given, iff a set S is +conflict-free, and ∀𝑎 ∈ S∖A, S set-attacks
𝑎. For F𝐵𝐴𝐹 , the stable sets are the same as the d-preferred ones.

2.3 Abstract dialectical frameworks
Similar to BAFs, abstract dialectical frameworks (ADFs) expand the concept of argumen-
tation frameworks, but in contrast to BAFs a wider variety of relations between arguments
are possible.

For instance, ADFs allow to express that an argument supports another one, that two
arguments – none of which is strong enough individually – may jointly attack a third
one, what the effects of combining attacking and supporting arguments are, and the
like. [Bre13]

ADFs were first introduced in [Bre10] with the slogan ‘ abstract dialectical frameworks
= dependency graphs + acceptance conditions ’. An ADF is a tuple 𝐷 = (𝑆,𝐿,𝐶), where 𝑆
is our set of statements (arguments), 𝐿 ⊆ 𝑆 × 𝑆 are the dependency relations between the
statements, and 𝐶 are the acceptance conditions. Given a statement 𝑎 ∈ 𝑆, we describe
the parents of 𝑎 as 𝑝𝑎𝑟(𝑎) = 𝑏|(𝑏,𝑎) ∈ 𝐿. Based on the parents function, we can now define
the set of acceptance conditions 𝐶 = {𝐶𝑠|𝑠 ∈ 𝑆}, where 𝐶𝑠 : 2𝑝𝑎𝑟(𝑠) → {𝑡,𝑓}. This way,
each statement 𝑠 ∈ 𝑆 has an acceptance condition 𝐶𝑠, that maps every selection of parent
statements 𝑝𝑎𝑟(𝑠) to a truth value1.

2.3.1 Propositional formula ADFs
In [Ell12, p. 27], based on the observation, that the dependency relations and the acceptance
conditions can be replaced by propositional formulas, a different definition of ADFs, the
propositional formula ADFs (pForm-ADFs) are established.

A pForm-ADF is a pair 𝐷 = (𝑆, 𝐴𝐶), where
• 𝑆 is a set of statements
• 𝐴𝐶 = {𝐴𝐶𝑠}𝑠∈𝑆 is the set of acceptance conditions, where each statement

has exactly one associated condition.
[Ell12, Def. 3.1.6]

Where, of course, 𝐴𝐶𝑠 is a propositional formula. CARBON makes use of pForm-ADFs
exclusively, because DIAMOND has a native syntax for them, and they are simpler to
generate for CARBON than other formats.

2.3.2 Example
We can now abstract our instance of the Mafia game as a pForm-ADF, and will enhance
our interpretation from table 2.1 to do so.

1 In contrast to [Bre10], which used {𝑖𝑛,𝑜𝑢𝑡}, we adopt the notion of truth values used in [Bre13].
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Table 2.2: Interpretation of our example for pForm-ADFs:

Argument Propositional formula Content
𝑎 𝑒 ∨ ¬𝑎 Alice belongs to the minority.
𝑒 ⊤ Alice was eyeballing others.
𝑒 ⊤ Alice has just looking for others.
𝑎 𝑒 ∨ ¬𝑎 Alice belongs to the majority.

𝑚 ¬𝑠 Mallory belongs to the majority.
𝑠 ⊤ Mallory’s argument is a straw man.

F𝐴𝐷𝐹 = ({𝑎,𝑒,𝑎,𝑒,𝑚,𝑠}, (2.3)
{𝐴𝐶𝑎 = 𝑒 ∨ ¬𝑎, 𝐴𝐶𝑒 = ⊤, 𝐴𝐶𝑎 = 𝑒 ∨ ¬𝑎, 𝐴𝐶𝑒 = ⊤, 𝐴𝐶𝑚 = ¬𝑠, 𝐴𝐶𝑠 = ⊤}) (2.4)

(a) Propositional formula ADF

𝑎(𝑒 ∨ ¬𝑎)

𝑒(⊤)

𝑎(𝑒 ∨ ¬𝑎)

𝑒(⊤)

𝑚(¬𝑠)

𝑠(⊤)
(b) The according graph

Figure 2.3: Representation of our example

Note, that while {𝑎} was defended and +conflict-free in our BAF example, the according
acceptance condition 𝐴𝐶𝑎(∅) = 𝑓 would not hold true without any parents.

2.3.3 Bipolar abstract dialectical frameworks
An interesting property of F𝐴𝐷𝐹 is, that all its relations can be categorized into either
supporting or attacking relations. This is done by the following distinction:

Let 𝐷 = (𝑆,𝐿,𝐶) be an ADF. A link (𝑟,𝑠) ∈ 𝐿 is
1. supporting iff for no 𝑅 ⊆ 𝑝𝑎𝑟(𝑠) we have that 𝐶𝑠(𝑅) = 𝑖𝑛 and 𝐶𝑠(𝑅 ∪

{𝑟}) = 𝑜𝑢𝑡,
2. attacking if for no 𝑅 ⊆ 𝑝𝑎𝑟(𝑠) we have that 𝐶𝑠(𝑅) = 𝑜𝑢𝑡 and 𝐶𝑠(𝑅∪{𝑟}) =

𝑖𝑛.
[Bre10, Def. 5]1

1 Note that we use the current labelings with {𝑡,𝑓,𝑢} from [Bre13] rather than the legacy {𝑖𝑛,𝑜𝑢𝑡,𝑢𝑑𝑒𝑐}.
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Following this definition, F𝐴𝐷𝐹 belongs to the subset of bipolar abstract dialectical frame-
works (BADFs), and its notation is in the form of a propositional formula BADF (pForm-
BADF). This also highlights the relation of ADFs to the formerly introduced BAFs.

2.3.4 Models
Since ADFs can also be used to represent normal logic programs, as displayed in [Bre10],
there are no extensions for ADFs, but rather models with certain properties that preserve the
same semantics. Given a subset 𝑀 ⊆ 𝑆, 𝑆 is called a model, iff ∀𝑠 ∈ 𝑆.𝐶𝑠(𝑀 ∩ 𝑝𝑎𝑟(𝑠)) = 𝑡
holds. This means, that a model must satisfy the acceptance conditions of all statements
in an ADF. A model 𝑀 ⊆ 𝑆 is called free, iff ∀𝑠 ∈ 𝑀.𝐶𝑠(𝑀 ∩ 𝑝𝑎𝑟(𝑠)) = 𝑡, that is, the
acceptance conditions of all statements in the model must hold true, given a set of all
statements in the model that are also parents. While [Bre10] originally defined some models
only for BADFs, [Bre13] generalizes models from BADFs to ADFs, and corrects unintended
results.

2.3.5 Proof standards
[Bre10] mentions, that the concept of proof standards is widely used in literature on legal
reasoning, and also states, that ‘ in everyday reasoning proof standards play an essential
role: in situations involving risk we obviously apply higher standards than in cases where
there is not much to loose.’ While [Bre10] defines formal constraints, that build on top
of four different argument types introduced in [Far95], namely valid, strong, credible and
weak arguments, CARBON takes a different approach, where the degree of certainty,
that users believe a statement has, is basically encoded as a level 𝑙 ∈ N. The handling
of proof standards in CARBON is further described in chapter 3, which explains, how
argumentation, and proof standards in particular can be embedded in a web application.

2.4 The Haskell programming language
CARBON makes use of the Haskell programming language for its server part implementa-
tion. Therefore it makes sense to discuss some of the more special features that are either
provided by functional programming languages in general, or by Haskell in special. A short
introduction to Haskell is given by ‘Learn you a Haskell for Great Good’1. For a more
thorough book on Haskell ‘Real World Haskell’2 is a good source. On the official website3,
Haskell is described as follows:

Haskell is an advanced purely-functional programming language. An open-
source product of more than twenty years of cutting-edge research, it allows
rapid development of robust, concise, correct software. With strong support
for integration with other languages, built-in concurrency and parallelism,
debuggers, profilers, rich libraries and an active community, Haskell makes it
easier to produce flexible, maintainable, high-quality software.

1 http://learnyouahaskell.com/
2 http://realworldhaskell.org/
3 http://www.haskell.org/haskellwiki/Haskell

http://learnyouahaskell.com/
http://realworldhaskell.org/
http://www.haskell.org/haskellwiki/Haskell
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When writing about Haskell this usually includes the Haskell Platform along with it,
which is known as ‘a comprehensive, robust development environment for programming in
Haskell’1, that not only includes a big collection of useful libraries, but also the Haskell
specific package and build tool Cabal and the Glasgow Haskell Compiler (GHC).

2.4.1 Pure Code
In contrast to imperative programming languages, which have the Turing Machine as
their theoretical background, functional programming languages build on the concept
of the lambda calculus and the mathematical notion of functions as their theoretical
background. Coming from that mathematical background, it is a typical tendency for
functional programming languages to avoid state or mutable data. The Haskell Wiki2
describes this concept as follows:

Purely functional programs typically operate on immutable data. Instead of
altering existing values, altered copies are created and the original is preserved.
Since the unchanged parts of the structure cannot be modified, they can often
be shared between the old and new copies, which saves memory.

The concept of immutable data can also be described as referential transparency, which,
due to the deterministic nature of pure code, allows for equational reasoning. An example
is given by the following transformation:

𝑔 = ℎ(𝑓(𝑥),𝑓(𝑥)) ≡ 𝑦 = 𝑓(𝑥), 𝑔 = ℎ(𝑦,𝑦) (2.5)

The main difference between this mathematical notation, and the Haskell notation is,
that function application in Haskell is written as 𝑓 𝑥 instead of 𝑓(𝑥), and that a Haskell
program may posses different efficiency in both cases. Such transformation allow for easy
refactoring, because pure code guarantees, that it is impossible to introduce any unwanted
side effects this way. In addition to its benefit for refactoring this also makes it easier to
reuse code trough out the program. Another example for such a refactoring transformation
would be a pipeline of functions chained together:

𝑃 = 𝑓 · 𝑔 · ℎ · 𝑖 ≡ 𝑥 = 𝑔 · ℎ, 𝑃 = 𝑓 · 𝑥 · 𝑖 (2.6)

In this case, we can, due to the law of associativity for function composition, replace 𝑔 · ℎ
by a more efficient function 𝑥, should the need arise, or to expand to functionality of such
a pipeline, by grouping composed functions and replacing them with others.

2.4.2 Lazy evaluation
While most programming languages have a pattern of evaluation that executes one computa-
tion after another, in the order of the instructions in the program code, Haskell makes use of
a strategy known as lazy evaluation. This means, that the calculation of computations is de-
ferred as long as they are not required by other computations. Thereby it is possible to avoid

1 http://www.haskell.org/platform/contents.html
2 http://www.haskell.org/haskellwiki/Functional_programming#Immutable_data

http://www.haskell.org/platform/contents.html
http://www.haskell.org/haskellwiki/Functional_programming#Immutable_data
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unnecessary calculations, should they not be required by later code, and it also becomes
possible to define infinite data structures, that are only evaluated as far as necessary. The
downside of this approach is, that it becomes possible to introduce endless recursive loops un-
willingly, and that debugging can be more difficult once it becomes necessary to track down
an error that is only discovered upon evaluation of a bigger computation. An example of
this is given by the following two programs, the first written in C, and the second in Haskell:

1 #include <stdio.h>
2

3 #define LIMIT 100
4

5 int main(){
6 int fibs[LIMIT];
7 fibs[0] = 0;
8 fibs[1] = 1;
9 for(int i = 2; i < LIMIT; i++)

10 fibs[i] = fibs[i-1] + fibs[i-2];
11 for(int i = 0; i < LIMIT; i++)
12 printf("Fib(%i)=%i\n", i, fibs[i]);
13 return 0;
14 }

Listing 2.1: Fibs.c

1 module Fibs where
2

3 limit = 100 :: Int
4

5 fibs = 0:1:zipWith (+) fibs (tail fibs)
6

7 outputs = zipWith (\i f -> "Fib(" ++ show i ++ ")=" ++ show f) [0..] fibs
8

9 main = mapM_ putStrLn $ take limit outputs
Listing 2.2: Fibs.hs

In the C program from listing 2.1, a fixed size array structure is computed for later use,
and it is necessary to know the size of the array beforehand. In the Haskell program from
listing 2.2 however, the list fibs is of potentially infinite length, which is the same for the
list outputs of strings. The use of for loops in the C code is also a typical case of state as
used in imperative languages, which is avoided in the Haskell code by using the infinite list
[0..] to generate the indices necessary for the output.

2.4.3 Static type system
In contrast to other programming languages, Haskell has a static type system, that is
based on System F [Gir03, p. 81]. This allows a Haskell Compiler to check data types at
compile time and thereby eliminate whole classes of typical errors. For example the often
problematic null pointer exception cannot be found in typical Haskell programs, as long
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as no unsafe language extensions such as the foreign function interface (FFI)1 are used.
In addition to giving safety guarantees for the code, the type system delivers important
information about the code, that make refactoring a lot simpler. Once code is changed, it
will not compile until all types match again, which makes it exceptionally hard to miss
parts that do not fit together well. Since Haskell has a clean separation between pure and
impure code, looking at the type also gives quick information about how refactoring can
be attempted, and what the code can possibly do.

2.4.4 Monads
Monads make it possible, to put computations into sequence and introduce side effects.
With pure code being lazy evaluated, the order of evaluation is usually not decided by the
declaration, but by the demands of the running program code. This turns out to be a
problem when a program needs to perform operations that introduce side effects. Input
and output operations, for example have side effects by their very nature. The order of read
and write accesses to files is of vital importance for the outcome of the operation, and is
by no means deterministic in the sense of pure code. To solve this problem, Haskell makes
use of the concept of monads, that is introduced in the Haskell 2010 report as follows:

‘The term monad comes from a branch of mathematics known as category
theory. From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract data type.’
[Mar10, p. 107]

When working with more complex programming languages, it is common practice, to
make use of type variables2 to abstract a special case and work with a more general case
instead. A typical example for this are lists, where it is enough to work on a list structure
without knowing the type contained in the list, in order to figure out its length. This is
well demonstrated by the listing below, which hides the Haskell implementation of the
length function in order to define it anew. Sure enough, running the main function prints
out 11.

1 module List where
2

3 import Prelude hiding (length)
4

5 length :: [a] -> Int
6 length [] = 0
7 length (x:xs) = 1 + length xs
8

9 main = print $ length [5..15]
Listing 2.3: List.hs

With monads, the concept of type variables is taken one step further, from simple type
variables to type constructors. The definition of the monad typeclass therefore looks as

1 The FFI allows connecting Haskell to libraries written in another language such as C.
2 This abstraction is also known as templates in C++, Java and similar languages.
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follows:
1 class Monad m where
2 (>>=) :: m a -> (a -> m b) -> m b
3 return :: a -> m a

Listing 2.4: The Monad typeclass

From its definition, we only known, that every monad supports the two operations >>=,
called ‘bind’, and return. The bind operation allows us to sequence two computations, by
using the result a from a monad as the parameter to a function that produces a monad
with a potentially different return type b. Using the return function, we can lift any value
into the context of a monad. To understand this definition further, let us look at monads
by the example of the state monad, that provides a notion of mutable state for pure code,
which, by definition, must be deterministic.

The state monad: Since the problem of sequencing file access operations has already been
mentioned, let us suppose that we have some code that needs to open a lot of different
files in some order, and we would like to keep track of which files need to be closed again.
In particular we want to close all files in reverse order as they where opened.

1 module FileState where
2

3 import Control.Monad
4

5 data FileState a = FS [FilePath] a
6

7 instance Monad FileState where
8 (FS fs x) >>= f = let (FS fs' y) = f x
9 in FS (fs' ++ fs) y

10 return a = FS [] a
Listing 2.5: FileState.hs:1-10

In line 5, the FileState data type is defined, with its constructor FS, that carries a list of
FilePaths and a type variable. As we can see from the Monad instance for FileState, the
bind operator uses the given function f to produce an intermediate state, so that the two
lists of FilePath can be concatenated and the resulting FileState is constructed. The return
function builds on top of the idea, that pure code does not open any files, and therefore
the FileState is constructed with an empty list.

12 printState :: FileState a -> IO ()
13 printState (FS [] _) = putStrLn "No files there to close."
14 printState (FS files _) = mapM_ putStrLn ("Closing files:" : files)
15

16 addState :: FilePath -> FileState ()
17 addState f = FS [f] ()

Listing 2.6: FileState.hs:12-17

printState and addState are two example functions for working with the state. addState



16 2 Background

can be used to add a new file to the state, which corresponds to the idea of logging which
files are open, and printState takes a FileState into the IO monad to list all of its files.
In a real world program we could replace both these functions with more sophisticated
structures, that would allow us to open files or connect trough a network, knowing, that
all these operations will be cleaned of.

19 main = printState $ do
20 -- We open a first file:
21 addState "/tmp/foo.log"
22 -- Some computations, and more files:
23 mapM_ (addState . ("/etc/" ++)) ["group", "passwd", "shadow"]

Listing 2.7: FileState.hs:19-23

With the main function we get an example of how using Haskells do notation makes it
possible to get blocks of instructions similar to imperative programming languages, with
the difference, that we could implement the context ourselves. This introduction of a
custom context by the programmer is also the reason, that monads have been described as
‘programmable semicolons’[OSu08, ch. 14], because the introduced context is ‘executed’
just where the typical semicolons from C or Java would separate instructions. To finish
this example, we can confirm the working of the code by its output:

$ runhaskell FileState.hs
Closing files:
/etc/shadow
/etc/passed
/etc/group
/tmp/foo.log

Note that it the notion of a state monad is not inconsistent with the concept of pure code.
The state monad merely simulates the existence of a state for pure code, but still depends
on a given start state to deliver a result outside the monad. Given a defined start state,
every computation inside the state monad is deterministic, and the same start state will
always lead to the same result. As a last note, consider that the notion of a monad may
even be generalized to a stack of monads where each monad may introduce a different
effect for a computation, such as state, automatic checks for failures or the iteration over
different structures. The generalization of a monad to a part of such a monad stack goes
by the name of a monad transformer in the Haskell world.

2.4.5 Monoids
Just like in mathematics, in abstract algebra, Haskell also has monoids, and since the
implementation of CARBON makes use of them in a bigger scale, it makes sense to discuss
them here. In abstract algebra, a monoid is defined as a set S and a binary operation ·, for
which two axioms must hold:

1. The binary operation · must obey the law of associativity for all elements 𝑎,𝑏,𝑐 ∈ S:

𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐 (2.7)



2.4 The Haskell programming language 17

2. There must be an identity element 𝑒 ∈ S, such that for all elements 𝑎 ∈ S:

𝑒 · 𝑎 = 𝑎 · 𝑒 = 𝑎 (2.8)

In math a typical example for a monoid would be the set N0 with the binary operation +
and 0 as the identity element. In Haskell a typical example for a monoid would be a list
structure, with the empty list being the identity element and the concatenation operator
++ as the binary operation. In CARBON, the monoid structure is used for most data types,
where an empty instance is defined and used, and the binary operation is understood as
overwriting fields in a data structure. However it is important not to overwrite fields with
empty content like that in the empty instance, so that the empty instance still works as a
neutral element. In Haskell the monoid type class is defined in the module Data.Monoid
and looks like this:

1 class Monoid a where
2 mempty :: a
3 mappend :: a -> a -> a

Listing 2.8: Data.Monoid

2.4.6 Generalized algebraic data types
CARBON comes with its own embedded domain specific language (EDSL), that is used to
model requests against a back end used for data storage. When writing domain specific
languages (DSLs) in Haskell, the two typical ways are to either embed the language in a
shallow way, by defining the necessary operators and functions directly in Haskell, or to
embed it deeper by using generalized algebraic data types (GADTs)1. The second option
allows to perform transformations on the DSL at run time in addition to the usual type
checking2. To better understand GADTs, its helpful to recall what hands the algebraic
nature to algebraic data types (ADTs). It is possible to understand types as sets of possible
values/instances, the type Bool for example has two instances, True and False, and we
could easily write {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} instead of Bool. If we now look at the Either type, which
uses type variables, we can see that the number of instances grows:

1 data Either a b = Left a
2 | Right b

Listing 2.9: Data.Either

With the type signature of Either Bool Bool we have already got 4 possible instances,
which is the reason why Either is also called a sum type. When it comes to tuples, which
are also called product types, we easily obtain multiplication, where (Either Bool Bool,
Either Bool Bool) has 16 possible instances. Coming from this, we can already see that
algebraic data types (ADTs) are composite types. The Glasgow Haskell Compiler (GHC)
user guide describes GADTs:

1 In literature and other programming languages GADTs are also known as phantom types.
2 http://www.haskell.org/haskellwiki/EDSL

http://www.haskell.org/haskellwiki/EDSL
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‘Generalised Algebraic Data Types generalise ordinary algebraic data types by
allowing constructors to have richer return types.’
[Tea13, Ch. 7.4.7]

As an example let us have a look at an example for a simple computation:
1 {-# LANGUAGE GADTs #-}
2 module GADTExample where
3

4 data Comp a where
5 ANumber :: Int -> Comp Int
6 AString :: String -> Comp String
7 NumberToString :: Comp Int -> Comp String
8 Add :: Comp Int -> Comp Int -> Comp Int
9 Concat :: Comp String -> Comp String -> Comp String

10 Fold :: (x -> x -> x) -> [Comp x] -> Comp x
Listing 2.10: GADTExample.hs

In this example the Comp data type is declared, which depends on a type variable a. The
lines 5-10 each define one constructor for Comp, and except for the Fold constructor they
all define the type variable a. The two constructors ANumber and AString both take a
standard Haskell type to create a Comp of that type. The constructor NumberToString
is goes one step further by requiring a Comp Int as a parameter to construct a Comp
String, which picks up the possibility for recursive types, that are also possible with simple
ADTs. The constructors Add and Concat take this theme even a step further by taking two
parameters, which must both be Comps of the same type. The most general constructor is
Fold, which accepts a binary function X × X → X, and a list of Comps of the same type
as the functions parameters, to create a Comp x with a variable type. From looking at
the constructors we can see, that there are only a few ways to build a Comp at all. Of
course there are the possibilities of passing the empty list to the Fold constructor, or using
infinite recursion with the Add constructor, but these will either lead to an infinite loop
in the case of recursion, or, due to the simple type of Fold, lead to a run time exception1.
Beside this unintended possibilities, there are two simple ways to construct a Comp, which
are using either ANumber or AString. Knowing this, we can already infer when Add or
Concat can be used, or that there is a way to construct a Comp String from a Comp Int,
but not the other way around. The names of our constructors already hint at the intended
semantics for the simple DSL that is created with this example, but to be sure, let us look
at the compute function, which works on Comps of any type:

12 compute :: Comp a -> a
13 compute (ANumber x) = x
14 compute (AString s) = s
15 compute (NumberToString n) = show $ compute n
16 compute (Add x y) = compute x + compute y
17 compute (Concat x y) = compute x ++ compute y

1 Note that by making certain that Fold has at least a single value, this problem can be avoided.
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18 compute (Fold f xs) = foldl1 f $ map compute xs
Listing 2.11: GADTExample.hs

The compute function performs pattern matching on constructors, and from its type
signature we can already see that it takes a Comp a as its input and produces a simple a
from that. To do so, compute has two base cases, which match the constructors ANumber
and AString. The other 4 possible cases of compute only evaluate a single step of the Comp,
and rely on recursion to traverse and evaluate the tree structure of Comp. To round this
example off, let us have a look at two examples for a Comp String, task1 and task2 :

20 task1 = Concat (AString "2 + 3 = ") (NumberToString (Add (ANumber 2) (ANumber 3))
)

21 task2 = Concat (AString "Sum [1..5] = ") (NumberToString (Fold (+) $ map ANumber
[1..5]))

22

23 main = mapM_ (putStrLn . compute) [task1, task2]
Listing 2.12: GADTExample.hs

For both tasks, the type annotations are omitted, but they can be inferred easily, because
their topmost constructors are Concat. This also demonstrates how the Haskell type system
is utilized to check the syntax of our DSL, which fosters confidence in the correctness of
the code, since invalid task structures would throw compile time errors. The output of the
whole example looks as expected:

$ runhaskell GADTExample.hs
2 + 3 = 5
Sum [1..5] = 15

The definition of the Fold constructor introduces even more flexibility in this DSL, because
custom binary functions can be given to it, and we could easily replace the + in task2 by
a * to get a product instead of a sum.

2.5 Representational State Transfer
The term REST was introduced by Roy T. Fielding in his dissertation, where he describes
REST as an ‘architectural style for distributed hypermedia systems’ [Fie00b, Ch. 5]. An
architecture satisfying the constraints given by this style is said to be RESTful. The
definition of REST influenced the design of HTTP 1.1 as well as the notion of Uniform
Resource Identifiers (URIs) [Ber96; Fie99]. Besides influencing the design of HTTP, the
2014 tutorial ‘RESTful Web Services: Principles, Patterns, Emerging Technologies’ gives
an additional motivation to use RESTful architectures:

‘advocates of Representational State Transfer (REST) have come to believe that
their ideas explaining why the World Wide Web works are just as applicable
to solve enterprise application integration problems and to radically simplify
the plumbing required to implement a Service-Oriented Architecture (SOA).’
[Pau14, p. 1]
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Following this motivation, CARBON presents a RESTful API that makes it possible to
easily build applications on top of it, which is also directly put to use by the web application
part that is part of CARBON.

On page 85 [Fie00b], Fielding describes a constraint graph which has different constraints
as its edges and architecture names as nodes, where the most constrained node is the
REST architecture. We will not discuss the whole constraint graph here, but shall instead
focus on some of the core constraints:

1 2 3 4 REST

0

cacheable

sta
tel

ess

layered

code on demand

uniform interface

Figure 2.4: A simplified constraint graph
Just like the original constraint graph, the simplified version also starts with the null archi-
tecture, which has no constraints to it applied. For all other nodes, the constraints of all
edges leading to them must be satisfied. This means, that an architecture can only be of
type 3, iff it satisfies the layered, stateless and cacheable constraints. Taking this graph as
a base, we can now recall some of the REST constraints in order:

2.5.1 Cacheable
In a RESTful architecture, responses must indicate whether they may be cached or not, so
that caching is possible and can be used to reduce server load.

2.5.2 Stateless
The stateless constraint implies that no client dependent state may be stored on the server,
and that all data about a client necessary to process a request is given in a single request.
The session is entirely managed by the client except for authentication data, which may be
stored on the server in a persistent manner. The stateless nature of a RESTful architecture
makes it possible to scale the server-side easily and allows for intermediate cache servers.
For example if all state used by a RESTful service is stored in a database, such a service
can easily run in multiple instances operating on the same database, which distributes the
load across several machines.

2.5.3 Layered System
In a layered system a client cannot necessarily tell whether the corresponding server is an
endpoint or is build on top of other services. For example it is common practice, to setup
a Varnish1 cache server to encapsulate a slower running service, such as big PHP scripts
to reduce load times[Wub09]. Another example of a layered system is an authentication
server, that limits access to distinct services, but can appear as the same server to a client.

1 https://www.varnish-cache.org

https://www.varnish-cache.org
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2.5.4 Code on demand
Code on demand ‘is only an optional constraint within REST’ [Fie00a, p. 123], and it
allows a server to extend the clients functionality by supplying program code itself. A
typical way to achieve this for web services is to embed JavaScript, which allows the client
to have different behavior depending on the server. Code on demand also makes it easy to
upgrade the functionality of clients, because updates need only be supplied on the server
side, and clients can automatically request and use these.

2.5.5 Uniform Interface
The uniform interface is one of the most basic constraints for a RESTful architecture. It
implies the distinction between clients and servers and thereby also causes a separation
of concerns. HTTP is a typical example of such a uniform interface, where the GET,
POST, PUT and DELETE methods can be used for Create, Read, Update and Delete
(CRUD) semantics. In addition HTTP has a typical separation of concerns, where servers
generate and distribute content and clients process it further, for example by rendering it
on a screen in the case of a web browser or by filling databases with the retrieved data in
the case of search engines. Typical hallmarks of a uniform interface in the REST sense
are conceptual resources that are identified by single requests using Uniform Resource
Identifiers (URIs) instead of working on whole databases, the manipulation of resources
trough their representations, which is easily performed in the case of HTTP by the use of
the according methods and parameters, and messages being self-descriptive in the sense
that they specify their syntax by the use of an Internet media type.





CHAPTER 3
Embedding ADFs in a wiki context

When discussing the task of bringing abstract argumentation to the web, we have to face the
question of how this can be realized and in what kind of framework we want argumentation
to be embedded. The example of ArguBlogging[Sna12a] shows, how argumentation can be
added to existing web services, namely blogs, by the use of a Bookmarklet. A Bookmarklet
is essentially a piece of JavaScript that can be run on a web page by clicking a Bookmark
in the browser1.

Instead of using blogs, as already hinted in the introduction, CARBON builds on the
collaborative nature of wikis, and embeds argumentation into the concept. In contrast to
ArguBlogging this is not realized via a Bookmarklet, but by implementing a completely
new system. The basic building blocks of a wiki are single articles, whereas the abstract
argumentation builds upon single statements. Therefore an obvious way to extend the
wiki design with argumentation is to extend articles with information that is normally
associated with statements. Since we choose ADFs for argumentation in CARBON, this
strongly suggests, that articles need to have associated acceptance conditions. Acceptance
conditions can be added to articles in two ways:

1. A proof standard for an article can be given, which is, together with attack and
support relations from other articles, than used to construct an acceptance condition.

2. An acceptance condition can be specified as a propositional formula by a user. In
this case CARBON can only infer which articles are related to a given article by its
acceptance condition, but cannot figure out whether a given relation is of attacking
or supporting nature. In particular [Ell12, p. 57] shows that the attack link decision
problem is coNP-complete.

In addition to enhancing articles with acceptance conditions, CARBON provides a concept
called discussions, that allows to group several articles in order to visualize them as a
graph and calculate extensions for them. Discussions in CARBON are, however, not only

1 A feature introduced in Netscape Navigator 4.0 in 1997.
Compare http://web.archive.org/web/20020611183734/http://developer.netscape.com/docs/
manuals/communicator/jsguide/misc.htm#1005712.
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understood as a way for users to collect and visualize articles, but are meant to support a
group of users in making a decision about a given subject. To make this possible, each
discussion has a title and description of its own, and it is possible for users to vote among
the extensions of the ADF described by a discussion in order to decide what they together
consider as the best outcome when considering conflicting information. To keep users from
modifying the contents of a discussion without end, it is possible to add a deadline to a
discussion, so that the set of articles contained cannot be changed after a while, and the
extensions can no longer change.

3.1 Proof standards
One way to add acceptance conditions to articles is, as described, for users to enter
propositional formulas for each article. This method, however can proof cumbersome,
because it implies that each time a new relation between two articles arises, a user would
have to carefully edit the corresponding formula. To circumvent this problem, CARBON
provides a notion of proof standards, together with attack and support relations. In
CARBON, proof standards are used to label how certain the users are of the correctness of
information given in an article. In addition to a proof standard, an article can be attacked
or supported by various other articles. When we consider only a set of articles of a shared
proof standard, the incoming attack and support relations for such an article work just like
in bipolar argumentation frameworks[Rah09b, ch. 4], where it is enough if a single article
has at least as many supports as attack with respect to a set, to be defended. However,
once more than a single proof standard is considered, higher proof standards break lower
ones. This means, that a single attack from a higher proof standard is enough to render
all lower level supports meaningless, and a single support from a higher proof standard
is enough to render attacks from lower level meaningless as well. Of course, the question
might arise, why users would choose to specify attacks or supports from articles with a
weaker proof standard to such with a higher one, but even tough these relations do not
have an immediate effect on the acceptance condition of an article, there are good reasons
to do so:

1. Setting relations between articles makes it possible for CARBON to present related
information to a client, which may be of interest even if the proof standard of such
articles is a lower one.

2. The referenced article may be edited, and its proof standard may change in later
versions. In such a case a different acceptance condition may be the result, if other
relations are considered by the algorithm.

3.1.1 Formalization of proof standards for CARBON
Let us now formalize our concept of proof standards for CARBON. Since proof standards
are understood as an ordered set of labels, we can easily assign them to a subset of N. We
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write a complete instance of such a framework 𝐹𝑐𝑎𝑟 as follows:

𝐹𝑐𝑎𝑟 = (S,R𝑎𝑡𝑡,R𝑠𝑢𝑝,𝑃 ) (3.1)
R𝑎𝑡𝑡,R𝑠𝑢𝑝 ⊆ S × S (3.2)

𝑃 : S → N (3.3)

The typical set of statements is given as S, with R𝑎𝑡𝑡 and R𝑠𝑢𝑝 being the sets of attack and
support relations. The function 𝑃 is a mapping from the set of statements S to the natural
numbers N, which represent our set of proof standards. To work with this representation, we
need a translation from our representation given as 𝐹𝑐𝑎𝑟 to a propositional formula BADF
(pForm-BADF). To define this translation, let us first consider a simplified translation
function T𝑛, that only translates our representation for a single proof standard given as
𝑛 ∈ N:

T𝑛∈N : (S,R𝑎𝑡𝑡,R𝑠𝑢𝑝,𝑃 ) → (S𝑛,{C𝑠|𝑠 ∈ S𝑛}) (3.4)

The set of statements in the pForm-BADF created by T𝑛 can easily be calculated by
restricting the original set to all elements that belong to a given proof standard 𝑛:

S𝑛 = {𝑠|𝑠 ∈ S,𝑃 (𝑠) = 𝑛} (3.5)

Now that the statements are filtered, we need to construct the acceptance condition C𝑠 for
each statement 𝑠 ∈ S𝑛 by taking into account the attack and support relations. To do this,
we define the function 𝑎𝑐𝑐𝑠, which provides us with all possible subsets of S𝑛, where the
statement 𝑠 can be accepted:

𝑎𝑐𝑐𝑠 : S𝑛 → A,A ⊆ 2S𝑛 (3.6)
𝑎𝑐𝑐𝑠(S𝑛) = {𝑡|𝑡 ⊆ S𝑛,|{𝑢|𝑢 ∈ 𝑡,(𝑢,𝑠) ∈ R𝑎𝑡𝑡}| ≤ |{𝑢|𝑢 ∈ 𝑡,(𝑢,𝑠) ∈ R𝑠𝑢𝑝}|} (3.7)

Of course, using 𝑎𝑐𝑐𝑠, we can define a complementary function, 𝑖𝑛𝑎𝑠, which delivers all
sets for which we do not want 𝑠 to be accepted:

𝑖𝑛𝑎𝑠(S𝑛) = 2S𝑛 ∖ 𝑎𝑐𝑐𝑠(S𝑛) (3.8)

Given these two functions, we can now define the acceptance condition C𝑠 with more ease:

C𝑠 =
⋁︁

𝑥∈𝑎𝑐𝑐𝑠(S𝑛)

⎛⎝⋀︁
𝑦∈𝑥

𝑦 ∧ ¬
⋀︁

𝑧∈2S𝑛∖𝑥

𝑧

⎞⎠ ∨
⋁︁

𝑥∈𝑖𝑛𝑎𝑠(S𝑛)

(︃
¬
⋀︁
𝑦∈𝑥

𝑦

)︃
(3.9)

The intuition behind this formula is, that a statement is accepted, when either one of
its acceptable sets is met, or none of the sets that render it unacceptable. Now, that
the definition of T𝑛 is complete, we can generalize our translation further to make it
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independent from a single proof standard.

T : (S,R𝑎𝑡𝑡,R𝑠𝑢𝑝,𝑃 ) → (S,{C𝑠|𝑠 ∈ S}) (3.10)

The generalized translation function T does not need to restrict the set of statements to a
certain proof standard, like T𝑛 does, so that we can focus solely on the construction of the
acceptance conditions C𝑠. To enable us to define generalized acceptance conditions based
on the ones specific for a single proof standard, we address the acceptance condition for a
single standard by the function C𝑛:

C𝑛(𝑠 ∈ S) =
{︂

X𝑠 (_,X) = T𝑛(S,R𝑎𝑡𝑡,R𝑠𝑢𝑝,𝑃 ), 𝑃 (𝑠) = 𝑛
⊥ otherwise (3.11)

We than define the generalized acceptance conditions by reusing the previous definitions as
follows:

C𝑠 =
∞⋁︁

𝑛=1

⎛⎝(C𝑛(𝑠)) ∧
∞⋀︁

𝑚=𝑛+1
¬

⋀︁
𝑧∈𝑖𝑛𝑎𝑠(S𝑚)

𝑧

⎞⎠ (3.12)

The intuition behind this definition is, that for each proof standard, we take the acceptance
condition, and accept it unless we have a case, where a higher proof standard is not
accepted. While we use ∞ in our definition for the generation of acceptance conditions, the
actual application will always use a subset of N to represent proof standards, so that the
corresponding algorithm for this definition terminates. Note that our definition of C𝑛(𝑠)
provides ⊥ in cases where 𝑠 does not belong to the proof standard 𝑛, which fits together
with the disjunction as the top level operator of C𝑠, because instead of making the whole
formula true, it does not change the outcome.
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The RESTful API

In this section we will describe how the API that CARBON provides is structured, and in
particular why we call it a RESTful API. To do this, we discuss the central style constraints
displayed in figure 2.4 in the background section.

4.1 Cacheable
The cacheable constraint requires that the API provides possibilities for caching, which are
in part already supported by HTTP. Of course, all static files included in CARBON allow
caching. The static files can be found in the files/ directory, and include:

/ the root document, that the web root maps to.
files/img/ the directory that contains all image files.
files/css/ the stylesheet directory.

files/js/ the whole code for the JavaScript web application.
In addition parts of the dynamic content can be cacheable, which namely include all
versionized content that is not the newest version of a version chain. Since the main
data representation that clients handle are Items, this affects the major part of all data.
However, the newest version of an Item cannot be cached completely, as it still may get
a deletion datum added, which is also the case if a newer version is written. The User
data representation however cannot be cached, because it can be modified by clients at all
time, and is not under version control. The root document is actually loaded into RAM
once CARBON is started, or if any of the files it is composed of changes while the server
program runs. Keeping the root document in RAM also increases the speed of delivering it
to the client.

4.2 Stateless
The stateless constraint specifies, that all data necessary must be given along with the
request, so that the server can operate in a stateless fashion. It is only allowed to keep
state in files or databases, but not within the server program itself, and CARBON adheres
this rule precisely. Indeed the deterministic nature of pure code in Haskell makes it quite
simple to implement a stateless server. There is one special case for CARBON, when
calculating extensions for an ADF by using DIAMOND, where the execution of DIAMOND
can lead to long running requests, but this does not introduce extra state. Not only does
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this constraint allow to distribute different CARBON instances over several servers that
access a common database, but it also simplifies debugging, by allowing us to compile and
restart the server without recreating several steps in the web application, because we could
simply resend a certain HTTP request.

4.3 Layered System
Basing our API on top of HTTP obviously introduces a layered structure already, which is
found in the distinction between clients and a server program. However, CARBON also
aims to make it possible to easily build on top of it, by providing all dynamic data as
JavaScript Object Notation (JSON) and therefore lowering the burden for other programs to
use it. A different case of using HTTP in a layered system can be found in our development
setup, where we used nginx1 as a reverse proxy to add Transport Layer Security (TLS) to
CARBON.

4.4 Code on demand
The code on demand constraint is satisfied despite its optional nature, because one of
the requirements was to build a web application on top of CARBON, so that it became
necessary to provide clients with JavaScript code.

4.5 Uniform Interface
To compose a uniform interface, CARBON delivers all data in JSON format, which is
independent of its currently used back end. By using an Internet media type, and stating
whether they are cacheable, resources and elements become self-descriptive. Elements
deliver data on where to find related elements by the resources that belong to their
respective Ids. Since changes to such elements are only done onto an element directly, the
interface consists of a single layer, and the interface has a uniform structure in total.

1 http://nginx.org/en/: ‘nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy
server, written by Igor Sysoev.’

http://nginx.org/en/


CHAPTER 5
The technology stack

From its technical design, CARBON is a system consisting of several parts. The main
distinction lies between the client side, implemented as a web application, and the server
side, which provides the RESTful API. The following diagram gives an overview about
the software libraries used to implement CARBON, and where they are used within the
system:
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Figure 5.1: Diagram of the technology stack

5.1 Client side
Let us now focus on the client side implementation, the web application part of CARBON.
The client side application is initially loaded in a browser by a client, and consists of a
HTML document that contains bigger parts of JavaScript and CSS. The web application is
designed to communicate with the server side via the RESTful API using only asynchronous
requests once it is initially loaded. By using JavaScript Object Notation (JSON) as the
exchange format between both sides, the client application profits from the JavaScript
native representation, while only data but not information regarding its representation
needs to be exchanged between server and client, thus keeping the network load low. The
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web application is organized following the Model-View-* pattern, where the controller is
omitted or, in parts, replaced by server functionality. This pattern is directly supported
by the backbone.js (C.4) library, which supplies definitions for models, views, collections
and a router. With modern web applications the router often becomes a central part
that assists the web application in routing users through the application in a similar
way to links on typical web sites, which also provides the possibility to make use of the
browsers address bar and back/forward buttons from within the application. Just like
backbone.js, bigger parts of the web application also rely on jQuery (C.1), which is a
popular JavaScript library that aims to make tasks like manipulating the DOM and using
AJAX requests easier. In particular, the client side implementation relies on the jQuery
cookie (C.2) and jQuery autoresize (C.3) plugins, to ease the manipulation of cookies
in the browser and to adjust the size of certain inputs with the <textarea> tag. The
manipulation of cookies if of extra importance, because CARBON relies on them solely
as the method of authentication. To further make the code shorter and more readable,
the web application makes use of underscore.js (C.5), which is also a dependency for
backbone.js. Underscore.js brings the map and fold/reduce style known from functional
languages to JavaScript and provides many additional functions that are missing in the
standard JavaScript environment, such as set operations and advanced sorting facilities.
Since the main concern of the web application is providing a GUI and dealing with user
interactions, CARBON also makes use of some libraries that are specifically built to aid the
rendering of websites. One of the most popular examples is the Bootstrap (C.9) front-end
framework, that provides different helpful building blocks together with a tested standard
layout, so that the web application obtains a modern look, while the implementation must
not worry about different browsers/devices and the resulting CSS problems. To extant
Bootstrap even further, CARBON makes use of the bootstrap-datepicker.js (C.10) library,
that provides a datepicker based on Bootstrap. The wiki context incorporated in CARBON
makes it necessary that the system enables clients to write articles. For such articles it is
typical that wikis do not require users to know HTML, but instead provide a simplified
syntax that is than translated into HTML. CARBON solves this problem by the use of
marked.js (C.6), which allows the web application to render content written in markdown
syntax1. Since the content is only rendered on the client side, and cannot contain HTML
itself, it becomes fairly easy to prevent cross site scripting attacks by simply escaping
the according tags, so that no HTML can be supplied by the server side for articles, and
all article content is rendered by the client. Another benefit of rendering articles on the
client side is, that users get a live presentation of their content while creating it, without
bothering the server to compute their HTML. The probably most involved part of the
GUI is the presentation of graphs for Discussions. To achieve this, the web application
relies on springy.js (C.8), which is a force directed graph layout algorithm, that makes it
possible to calculate a graph layout only from the graphs own structure, so that no node
positions must be synchronized with the server and between different clients. Additional
aid for drawing is given by raphael.js (C.7), which is a vector graphic library that makes it

1 http://daringfireball.net/projects/markdown/syntax

http://daringfireball.net/projects/markdown/syntax
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easy to build and manipulate svg in the browser.

5.2 Server side
The server side of CARBON is written in the Haskell programming language, and has
to cope with various tasks. To allow for interaction with the client side, the server must
provide the RESTful API, and to do this, it relies on the Happstack project (C.12).
The Happstack library provides a complete HTTP-Server together with functions for
routing, query parameters, dealing with client responses, cookie handling and providing
static files. In particular, Happstack provides a monad and a corresponding monad
transformer that makes it easy to write code depending on client requests while handling
the implicit state given by a configuration file and the database connection. To deal with
the frequent encoding and decoding issues created by the usage of JSON in the RESTful
API, CARBON relies on the library Aeson (C.13), which describes itself as ‘a JSON parsing
and encoding library optimized for ease of use and high performance.’1. The Haskell
Database Connectivity (HDBC) library provides CARBON with the means to access the
PostgreSQL (C.17) database that is used for persistent storage of mutable data. ‘HDBC
provides an abstraction layer between Haskell programs and SQL relational databases’
2, which brings the benefit that it uses the static type system of Haskell to infer how
different basic types must be escaped and parsed when converting between their Haskell
and SQL representations. This feature makes sure that the common problem of SQL
injection attack can only occur if there is a problem with the central escaping mechanism,
and does not depend on code provided by programmers that only rely on the library.
Of course, another central part for the server is the interaction with DIAMOND (C.16),
which means, that the server needs methods to parse both, the input for DIAMOND and
the output given by DIAMOND. To allow the creation of readable and fast parser code,
CARBON makes use of Parsec (C.15), a parser combinator that is quite popular and
has inspired similar implementations in different other programming languages, such as
JavaScript, Ruby, Python or C++3. To coordinate concurrent requests, Happstack makes
use of Software Transactional Memory (STM) [Dis06; Har05], and CARBON uses the
same implementation to coordinate parallel executions of DIAMOND. Relying on Software
Transactional Memory (STM) allows CARBON to benefit from implicit locking algorithms
rather than having to declare custom mutexes to coordinate different concurrent threads.
The STM implementation provided by Haskell makes it especially easy to write composable
memory transactions by using the according monad.

1 http://hackage.haskell.org/package/aeson-0.6.0.2
2 http://hackage.haskell.org/package/HDBC
3 http://www.haskell.org/haskellwiki/Parsec#Parsec_clones_in_other_languages

http://hackage.haskell.org/package/aeson-0.6.0.2
http://hackage.haskell.org/package/HDBC
http://www.haskell.org/haskellwiki/Parsec#Parsec_clones_in_other_languages


CHAPTER 6
Data stored by CARBON

This chapter describes how different informations are represented and handled within
our solution. The Unified Modeling Language (UML) class diagrams used are a direct
translation of the representation implemented in Haskell on the server side. The web
application uses a translation of the Haskell representation to JSON, and uses its own
set of models and views on top on that. The database layout is derived from the Haskell
implementation by the use of pgModeler1. PgModeler also generated the Entity-relationship
(ER) diagram that can be found in appendix A. Except for the User data type all of the
following data types implement the Monoid type class described in the background section
(2.4.5). This makes it easy for the server side part of CARBON to update and merge
different instances of the same type. In particular, since the Item type honors the monoid
instances of its encapsulated types, it also allows merging of complete Item tree structures.
This mechanism proved to be particularly useful in conjunction with the CRUD semantics
used with the RESTful API.

1 The PostgreSQL Database Modeler, to be found at http://www.pgmodeler.com.br/.
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6.1 User

OpenBrain.Data.User::User
{ immu tab le }

+userId: UserId
+username: String
+userhash: Hash
+usersalt: Salt
+userCreation: Timestamp
+lastLogin: Timestamp
+isAdmin: Bool
+profile: Maybe ArticleId
+session: Maybe SessionKey

GHC.Show::Show a

GHC.Classes::Eq a

GHC.Classes::Ord a

Data.Aeson.Types.Class::ToJSON a

Figure 6.1: UML diagram of the User data type

In order to create or manipulate content within the system, a client needs to log in as a
User . This allows for a simple form of access control, by distinguishing between simple
users and admins. Having clients log in as users also allows to track which content is
added or changed, and thereby introduce versioning of content. Authentication of clients is
handled via username and password, where the passwords are saved as salted hashes1 in
the database. Users can have an article associated, which will be displayed as their profile
in the web application. The session field is used only if a client is logged in, to check the
validity of requests by comparing it with the clients cookie.

1 Currently SHA2 512 bit hashes are used.
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6.2 Item

«leaf»
Carbon.Data.Item::Item

{ immu tab le }
+itemId: Id
Linked information:
+description: Maybe Description
+article: Maybe Article
+condition: Maybe (AcceptanceCondition leaf)
+relation: Maybe Relation
+relations: [Item Id]
+discussion: Maybe (Discussion (Item leaf))
+resultSet: Maybe ResultSet
Keeping track of versions:
+creation: Timestamp
+deletion: Maybe Timestamp
+parents: [ Id]
+children: [Id]
+commitMessage: String
+commitAuthor: Id

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::ToJSON

Carbon.Data.Logic.Exp::VarContainer

GHC.Base::Functor

Data.Monoid::Monoid

Carbon.Data.Common::Insertable

Data.Aeson.Types.Class::FromJSON

Figure 6.2: UML diagram of the Item data type

The Item is the most central data type of CARBON. Its structure is derived from two
main requirements:

1. All data except for users shall have versioning.
2. Some notions like that of a Description or a Relation shall be applied to different

data.

Usually an Item is defined by its linked information. For example an Item carrying an
Article is required to also have a Description and is thereafter said to be an Article. A
more thorough documentation of these predicates on Items can be found in appendix B.
Besides deciding how a given Item can be used the predicates also allow to check if an
Item is OK to be handled at all by means of the itemIsSane predicate. Besides its linked
information, an Item also carries with it information used for versioning. The two obvious
fields for this are creation and deletion, so that for each version of an Item it is known
when the change occurred by its creation. Each time an Item gets modified, its deletion is
set to the actual Timestamp and a new Item is created, that links to the new data while
carrying the commitAuthor and a usually auto generated commitMessage. The parents
and children fields are simply used to track the tree of versions that each Item will have.
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6.3 Description

Carbon.Data.Description::Description
{ immu tab le }

+descriptionId: Maybe Id
+headline: Headline
+summary: Summary

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

Data.Monoid::Monoid
Carbon.Data.Common::Insertable

GHC.Read::Read

Data.Aeson.Types.Class::ToJSON

Figure 6.3: UML diagram of the Description data type

A Description is composed from a headline and a summary, both of which are strings.
Together with the predicates in appendix B this implies, that all sane Items are Descriptions
and thereby have a summary and a headline. This approach makes sure that valuable
information about every item can be displayed to a client, be it an Article, a Discussion or
a Relation.

6.4 Article

Carbon.Data.Article::Article
{ immu tab le }

+articleId: Maybe Id
+content: Content

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

Data.Monoid::Monoid

Carbon.Data.Common::Insertable

GHC.Read::ReadData.Aeson.Types.Class::ToJSON

Figure 6.4: UML diagram of the Article data type

An Article is a single page of versionized content that can be edited by clients. The wiki
like functionality of CARBON is build out of Articles, whereas Articles are used as single
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arguments inside Discussions.

6.5 AcceptanceCondition

«leaf»
Carbon.Data.AcceptanceCondition::AcceptanceCondition

{ immu tab le }
+acceptanceCondition: Maybe Id
+proofStandard: Maybe ProofStandard
+formula: Exp leaf

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::ToJSON

Carbon.Data.Logic.Exp::VarContainer

GHC.Base::FunctorData.Monoid::Monoid

Carbon.Data.Common::Insertable

Data.Aeson.Types.Class::FromJSON

Figure 6.5: UML diagram of the AcceptanceCondition data type

Every argument in a Discussion must have an AcceptanceCondition, so that the Discussion
can be transformed to an instance for DIAMOND. Whenever an AcceptanceCondition is
necessary, there are two ways to retrieve it. Either a Client specifies a formula explicitly, or
a proofstandard is set for an argument. In case of an explicit formula, the proofstandard
is set to Nothing, to note that the formula is not inferred by a proofstandard. In case of
a proofstandard, every change to the discussion an argument is contained in triggers a
recalculation of the formula from the proofstandard. This (re-)calculation is described in
detail in section 8.2. The proofstandard itself is basically an enum useful to decide if one
argument can be trusted more than another.
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6.6 Relation

Carbon.Data.Relation::Relation
{ immu tab le }

+relationId: Maybe Id
+source: ItemId
+target: I temId
+relationType: RelationType

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

GHC.Read::Read

Data.Aeson.Types.Class::ToJSON
Carbon.Data.Common::Insertable

Data.Monoid::Monoid

Figure 6.6: UML diagram of the Relation data type

A Relation represents a directed edge in an ADF, between two arguments. Relations can
be created in two different fashions. Either a client indicates that a Relation of type attack
or support exists between two arguments, or a custom type Relation is inferred from a
custom formula being specified. Work on Relations is described in more detail in section
8.3. In addition to AcceptanceConditions it is necessary to have explicit Relations, so that
they can be presented to a client and it is easier to manipulate them directly. CARBON
distinguishes between three RelationTypes:

Attack: This is a typical Dung-style attack between two arguments.
Support: This indicates that one argument defends another. Basically the number of

Supporting arguments must be higher than that of the attacking ones for an argument
to be acceptable.

Custom: The relation between two arguments is set to custom whenever the existence of a
Relation is implied by a custom formula in an AcceptanceCondition.
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6.7 Discussion

«item»
Carbon.Data.Discussion::Discussion

{ immu tab le }
+discussionId: Maybe Id
+arguments: Either (Set item) (Set ItemId)
+deadline: Maybe Timestamp
+participants: Set UserId
+evaluation: EvaluationState

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

Data.Monoid::Monoid

Carbon.Data.Common::Insertable
Data.Aeson.Types.Class::ToJSON

Figure 6.7: UML diagram of the Discussion data type

A Discussion collects a set of Articles as arguments, which can than be evaluated as an
ADF by DIAMOND. Every User that manipulates a Discussion becomes a participant.
Once a Discussion is evaluated, a ResultSet is added to its Item, so that all participants
can vote on the outcomes and thereby decide on the outcome of a Discussion. A Discussion
can also have a deadline, which is understood as a time after which modification of the
Discussion is no longer possible. The motivation behind the deadline is to force users to
stop changing the argumentation at once, so that final Results exist on which voting is
possible. For more information on how evaluation of Discussions takes place see section
8.4.
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6.8 ResultSet

Carbon.Data.ResultSet::ResultSet
{ immu tab le }

+resultSetId: Maybe ResultSetId
+setCreation: Timestamp
+results: [Result]
+voters: [(UserId, Voted)]

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

GHC.Read::Read

Data.Aeson.Types.Class::ToJSON
Carbon.Data.Common::Insertable

Data.Monoid::Monoid

Figure 6.8: UML diagram of the ResultSet data type

A ResultSet is produced every time a Discussion is evaluated with the help of DIAMOND.
In addition to a collection of Results, the ResultSet carries a list of voters. The list of
voters is the same as the list of participants in the Discussion at the time it was evaluated,
but additionally tracks whether a voter has already voted or can still vote.

6.9 Result

Carbon.Data.Result::Result
{ immu tab le }

+resultId: Maybe Id
+resultType: [ResultType]
+items: Set (ResultState, Id)
+votes: Votes

GHC.Show::Show

GHC.Classes::Eq

GHC.Classes::Ord

Data.Aeson.Types.Class::FromJSON

GHC.Read::Read

Data.Aeson.Types.Class::ToJSON
Carbon.Data.Common::Insertable

Data.Monoid::Monoid

Figure 6.9: UML diagram of the Result data type
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Each Result captures a set of ItemIds together with the typical labels used by ADFs,
{In,Udec,Out}, where the label is represented by the type ResultState. In addition to this
set of items, a Result also has a list of ResultTypes, which note from what extensions in
the ADF a Result comes. While it would be possible to compute with models a Result is
involved with by using set inclusion and deduce this from the definition of the respective
models, we choose another, more flexible method. Since CARBON already has all Results
for each of their models loaded in RAM, it is a simple task to find identical Results and
merge their model names. This approach is more flexible, should different or additional
models be introduced later, due to the fact, that it only operates on model names rather
than relying on detailed knowledge about individual models. A Result also carries a count
of votes, to represent its popularity in comparison to other Results in the ResultSet.





CHAPTER 7
Implementing a DSL for the back end

During the development of CARBON different reasons arose to implement a DSL in order
to separate the server-side back end from the RESTful API. For debugging, it is a lot
easier to have a separation of concerns between the back end, which is only concerned with
storing and providing data, and the rest of the server. In addition it as suspected, and
later proved, to be helpful, if the back end could be exchanged easily should problems with
an implementation arise. Lastly, the implementation of a specific DSL makes it possible to
compose complex queries out of simpler ones, and execute such queries as complete ACID1

transactions.

7.1 Composing GADTs by using monads
To embed the DSL in CARBON, we made use of GADTs as described in the background
section, but while the tasks in listing 2.12 look similar to lisp code, we wanted to embed the
DSL a bit further, and found, that the typical concept for code composition in Haskell, the
monad, can be applied to GADTs, allowing us to write back end transactions in the typical
do-notation style. To compose arbitrary queries in the DSL, we use two constructors:

1 Backend𝜆 :: BackendDSL p -> (p -> BackendDSL r) -> BackendDSL r
2 Nop :: r -> BackendDSL r

Listing 7.1: BackendDSL composition constructors

By recalling the definition of the monad typeclass, given in listing 2.4, we see that the
type signatures of these constructors are specializations of the according monad functions,
which already produces the actual instance implementation:

1 instance Monad BackendDSL where
2 (>>=) = Backend𝜆
3 return = Nop

Listing 7.2: BackendDSL Monad

Let us now consider an example for the flexibility we gain from this approach:

1 Atomicity, Consistency, Isolation, Durability (ACID) - common guarantees for database transactions.
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5 foo, bar, baz :: BackendDSL Int -> BackendDSL Int
6 foo x = Backend𝜆 x (Nop . (+ 6))
7 bar x = do
8 y <- x
9 return $ y + 6

10 baz = liftM (+ 6)
Listing 7.3: BackendDSL Example

The three functions foo,bar,baz share the same type signature and are different means of
expressing the function 𝑓(𝑥) = 𝑥 + 6 in the back end DSL. While foo simply composes
the existing constructors provided by the GADT, bar is a demonstration of the usual
do-notation often encountered in Haskell code, and baz provides a short version that could
be used to lift the pure function +6 into any monad.

7.2 Ram only
The first approach to data storage in CARBON was to keep everything in volatile memory,
and make use of Haskells STM implementation to compose transactions and execute them
on sets of variables directly. While this made it possible to get some fast test results from
our first prototypes of Haskell server side implementations, it became a problem, once the
need for persistent storage grew, and we had to change the implementation to get a back
end that allows for program restarts.

7.3 Flat files
Coming from the ram only approach, the simplest thing appeared to implement a synchro-
nization from ram to flat files. This was first implemented by reading some files into ram
at start up, and writing all changes back into files, once its existing ram representation
changed. However, as the server grew, we discovered, that a growing functionality of the
back end was similar to transactions in a relational database, up to a point, that it made
no longer sense to reimplement custom functions similar to typical SQL.

7.4 MySQL
The similarities to SQL motivated us to exchange the back end from flat files to a popular
relational database, MySQL. In addition we already had useful experience from work in
typical Linux, Apache, MySQL, PHP (LAMP) setups, which made MySQL the natural
choice. For this implementation, we used the HDBC library (C.14), that makes use of
the according C library for MySQL. Sadly, a harder problem arose, that neither the C
library nor HDBC handled correctly: The Haskell run-time comes with lightweight threads,
similar to the implementations of go or Erlang, that put a significantly lower burden on the
system than standard POSIX threads do. These threads are used throughout the server
code to handle client requests, and also query the database. To control these threads, the
Haskell run-time makes use of signals that allow one thread to continue while another is
blocked by IO operations. It appeared, that neither the C library nor HDBC mask these
signals accordingly, so that the MySQL connection got terminated every time the run-time
decided to switch between two threads. This problem was especially hard to reproduce,
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because it does not occur in simpler test cases, where only one thread executes the same
queries. To fix this problem, there where two possible solutions:

1. We could write a handler function to execute MySQL queries, that keeps the Haskell
run-time from changing threads. This concept is called bound threads, and is
sometimes used when working with the foreign function interface (FFI) to perform
IO heavy work that needs fast reactions from the run-time. The problem with this
approach is, that it introduces performance burdens for the server side code, and
should not be something the server code has to deal with, as the masking of signals
should either be done in the HDBC library, or in the C library. Newer versions of
the HDBC library come with a function withRTSSignalsBlocked1, but also describe,
that this is a problem stemming from the C library.

2. The alternative solution was to exchange MySQL for a different database. PostgreSQL
was the candidate of choice at this point, and would only need slight adjustments,
because it also uses SQL.

7.5 PostgreSQL
PostgreSQL is the current back end for CARBON, and we make use of pgModeler2 to
construct the ER diagram (A) and the database schema with all its constraints. It turned
out that the HDBC library binding for PostgreSQL has no problems with signals, and that
PostgreSQL comes with some additional features that could be put to use. Even tough
PostgreSQL is currently the only back end implemented in CARBON, there exist means
to specify the back end that should be used in the config file, and it would be easy to add
additional back ends. In particular, the back end system could be used to introduce proxy
back ends, which could, for example, log transactions while forwarding to a different back
end to perform the actual work.

1 http://hackage.haskell.org/package/HDBC-mysql-0.6.6.1/docs/Database-HDBC-MySQL.html
2 http://www.pgmodeler.com.br/

http://hackage.haskell.org/package/HDBC-mysql-0.6.6.1/docs/Database-HDBC-MySQL.html
http://www.pgmodeler.com.br/




CHAPTER 8
Algorithms developed for CARBON

To realize CARBON it was necessary to develop specific algorithms for some problems, which
are mostly concerned with logic necessary to handle pForm-ADFs. This section describes
our custom algorithms and starts with our type declaration to represent propositional
formulas. Afterwards the function autoCondition is described, which implements our
translation T to map from proof standards and bipolar relations to pForm-BADFs.

8.1 Representing propositional formulas in CARBON
Propositional formulas in CARBON are represented using the ADT Exp a, which carries a
type variable to represent the type of its variables. Having an exchangeable variable type
allows us to use database ids as well as strings for formulas, which makes it possible to
work with ids in the algorithms, but still present string names to DIAMOND and the user.

22 data Exp a = Var a
23 | And (Exp a) (Exp a)
24 | Or (Exp a) (Exp a)
25 | Neg (Exp a)
26 | Const Bool
27 deriving (Eq, Ord)

Listing 8.1: Carbon.Data.Logic.Exp

Using foldl, we can generalize the And and Or constructors to work on lists:
63 and' = foldl And $ Const True
64 or' = foldl Or $ Const False

Listing 8.2: Carbon.Data.Logic.Exp

8.2 Calculating acceptance conditions
The calculation of acceptance conditions for arguments is performed by the two functions
autoCondition and mkFormula in the module Carbon.Backend.Logic, where autoCondition
makes sure that all arguments have acceptance conditions, and mkFormula is used to
calculate the condition if a proof standard is given instead of a custom condition set by a
client.
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8.2.1 The work of autoCondition
In general autoCondition distinguishes three cases:

1 autoCondition :: Item Id -> BackendDSL (Item Id)
2 autoCondition item
3 | Maybe.isNothing $ condition item = do
4 let p = mempty :: ProofStandard
5 c = mempty :: AcceptanceCondition Id
6 autoCondition $ item <+ c <+ p

Listing 8.3: Carbon.Backend.Logic:autoCondition, case 1

In this case autoCondition was called with a newly created Item, that does not have an
AutoCondition. Therefore an empty condition is created and added to the item, which is
than used to call autoCondition again.

7 | Maybe.isJust . proofStandard $ getC item = do
8 let rels = Maybe.mapMaybe relation $ relations item
9 incomming = filter ((itemId item ==) . target) rels

10 sourceIds = map source incomming
11 (sourceErrors, sourceItems) <- liftM Either.partitionEithers $ mapM GetItem

sourceIds
12 unless (null sourceErrors) $ -- Exception for errors
13 let problem = "Could not fetch items in Carbon.Backend.Logic:autoCondition"

:sourceErrors
14 in error $ unlines problem
15 let getProofStandard = mkGetProofStandard sourceItems
16 newExp = mkFormula (getP item) incomming getProofStandard
17 return $ item <+ getC item <+ newExp

Listing 8.4: Carbon.Backend.Logic:autoCondition, case 2

The guard in line 7 makes sure that in this case the item has a ProofStandard. Therefore we
can just gather a bit more information on the item from the database, so that mkFormula
can be used to calculate a condition which is than written into the item.

18 | otherwise = do
19 let incomming = filter ((==) (itemId item) . target . getR) $ relations item
20 notCustom = filter ((/=) RelationCustom . relationType . getR) incomming
21 setCustom = map (\i -> i <+ getR i <+ RelationCustom) notCustom :: [Item

Id]
22 (errs, _) <- liftM Either.partitionEithers $ mapM SetItem setCustom
23 unless (null errs) $
24 let problem = "Could not set items in Carbon.Bakend.Logic:autoCondition":

errs
25 in error $ unlines problem
26 return item

Listing 8.5: Carbon.Backend.Logic:autoCondition, case 3

If the AcceptanceCondition has no proof standard set, but a formula, it is clear, that the
formula was set by a client. In this case autoCondition just makes sure, that all incoming
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relations to the argument are of type Custom, so that the nature of the relations is visible
to clients.

8.2.2 How mkFormula proceeds

1 mkFormula :: ProofStandard -> [Relation] -> (ItemId -> ProofStandard) -> Exp
ItemId

2 mkFormula itemProofStandard incomming getProofStandard =
3 let incomming' = filter ((itemProofStandard <=) . getProofStandard . source)

incomming
4 rFilter r = filter $ (r ==) . relationType
5 attacks = rFilter RelationAttack incomming'
6 supports = rFilter RelationSupport incomming'

Listing 8.6: Carbon.Backend.Logic:mkFormula

When looking at the type signature of mkFormula in line 1, we notice that it takes a
ProofStandard, a list of Relations, and a function that maps ItemIds to ProofStandards.
This is enough to calculate the acceptance condition for an Item based on its proof standard.
In line 3, the list if incoming relations, incoming is filtered to created a list incoming’ that
only contains relations where the source has a higher or equal ProofStandard than the one
given by itemProofStandard. This is useful, because arguments with lower proof standards
cannot effect the acceptance of arguments with a higher proof standard, as they cannot
attack it successfully, and their support will never outweigh an attack from a higher proof
standard. The lines 4-6 are used to separate the incoming relations into attacking and
supporting ones.

7 asPairs = do -- :: [(Set Relation, Set Relation)]
8 let hasP p = filter $ (p ==) . getProofStandard . source
9 p <- [minBound ..] :: [ProofStandard]

10 let as = hasP p attacks
11 ss = hasP p supports
12 return (Set.fromList as, Set.fromList ss)

Listing 8.7: Carbon.Backend.Logic:mkFormula

asPairs is constructed so that mkFormula can iterate over pairs of attacking and supporting
relations, while taking for granted that they belong to the same ProofStandard.

13 conditions = do -- :: [Exp ItemId]
14 let body = map (Var . source) . Set.toList
15 nBody = map Neg . body

Listing 8.8: Carbon.Backend.Logic:mkFormula

The next task is to generate a list of all possible cases where we want to accept an argument.
To help with this, we also define the two functions body, nbody, which aid building the
positive and negative bodies.

16 (attackSet, supportSet):breakers <- List.init $ List.tails asPairs
17 let breakList = map (Neg . Var . source) . Set.toList . Set.unions $ map

fst breakers
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18 guard . not $ Set.null attackSet && Set.null supportSet
19 attackSet' <- powerset' attackSet
20 guard . not $ Set.null attackSet'

Listing 8.9: Carbon.Backend.Logic:mkFormula

This part iterates all tuples of attacks and supports for each proof standard from line 16
on. Note that the list breakers is comprised of all such tuples from higher proof standards
due to the way that List.init . List.tails works. breakers gets its name from the nature,
that its elements are suited to deny an acceptance condition. To exploit this fact, the
breakList is created from all attack relations in breakers in line 17. Afterwards we iterate
over the power set of all attack relations, if there are attack and support relations given,
while making sure that we skip empty elements of that power set.

13 let canDefend = Set.size attackSet' < Set.size supportSet
14 if canDefend
15 then do
16 supportSet' <- powerset' supportSet
17 guard $ Set.size supportSet' >= Set.size attackSet'
18 let notAttack = Set.difference attackSet attackSet'
19 if null breakList
20 then return . and' $ body attackSet' ++ body supportSet' ++ nBody

notAttack
21 else do
22 breaker <- breakList
23 return . and' $ body attackSet' ++ body supportSet' ++ nBody

notAttack ++ [breaker]
24 else if null breakList
25 then return . and' $ nBody attackSet'
26 else do
27 breaker <- breakList
28 return . and' $ nBody attackSet' ++ [breaker]

Listing 8.10: Carbon.Backend.Logic:mkFormula

Now mkFormula has to deal with 4 cases determined by two conditions. The first condition
being whether it is possible to defend the attackSet’, and the second being if the breakList
is empty. When the attackSet’ can be defended, mkFormula generates all supportSet’s
from the power set of supportSet, that have more elements than the current attackSet’. If
the breakList is not empty, a single element from it is enough to deny the acceptance, so
that for each of its entries a separate condition is generated.

1 in null conditions ? (Const True, simplify $ or' conditions)
Listing 8.11: Carbon.Backend.Logic:mkFormula

The last line of mkFormula simply checks if there are any conditions at all, which are than
joined into a disjunction, or if the argument can just be accepted. The function simplify is
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used to reduce some obvious cases like 𝑎𝑛𝑑(𝑐(𝑡),𝑥) to 𝑥.
8.3 The function fitInstance
CARBON allows a user to upload an ADF instance to a Discussion. The necessary
adjustment to a Discussion that arises from such an upload is performed by the function
fitInstance in the module Carbon.Backend.Logic. There are three basic changes that
fitInstance has to deal with:

8.3.1 Adding missing nodes
The first step to perform in fitInstance is to add missing arguments. For the user all
arguments are identified by their name, rather than their id in the database. Since names for
arguments are saved as the headline in the Description of an Item, a set of current headlines,
𝑎𝑟𝑔𝑠, is computed. Now the sub function addMissingNodes uses 𝑎𝑟𝑔𝑠 and the set of variable
names 𝑛𝑎𝑚𝑒𝑠(𝑖) to compute the set of missing arguments as 𝑛𝑒𝑤𝐻𝑒𝑎𝑑𝑠 = 𝑛𝑎𝑚𝑒𝑠(𝑖) ∖𝑎𝑟𝑔𝑠,
which are than added to the Discussion.

8.3.2 Calculating possible relations
The next step is to calculate the set of possible relations, 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑠, in a Discussion
so that by using the set difference with the current relations, the relations that should
be added or removed can be computed. Since Relations link between Ids rather than
headlines, a map from headlines to ids, the ℎ𝑇𝑜𝐼𝑑𝑀𝑎𝑝 is created. With this map the
possible relations can be computed by simply using each id in the map as the target of a
relation and each variable in its acceptance condition as a source.

8.3.3 Adding and Removing relations
From the current Discussion, a set of current relations, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑠 can be projected, so
that it is possible to calculate the sets of relations that should be added to the discussion
as well as those that should be removed:

𝑎𝑑𝑑𝑅𝑒𝑙𝑠 = 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑠 ∖ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑠 (8.1)
𝑑𝑒𝑙𝑅𝑒𝑙𝑠 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑠 ∖ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑠 (8.2)

After adjusting the Discussion to the new relations, fitInstance finishes with saving the
newly generated data.

8.4 Evaluation of discussions
The evaluation of Discussions is performed with the help of DIAMOND and implemented
in the module Carbon.Data.Logic.Evaluation. The entry point for the evaluation module is
the run function, which takes the Config loaded by CARBON, a FilePath and a String as
the content that should be evaluated by DIAMOND. Evaluation happens in the following
basic steps:

1. Writing the content for DIAMOND in a file at the given FilePath
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2. Calling DIAMOND concurrently for each ResultType specified in the Config1

3. Parsing the output of DIAMOND in each concurrent thread
4. Gathering the parsed outputs to return a combined result

For the concurrent evaluation, CARBON uses a shared state that is comprised of STM
transactional variables. The shared state keeps track of the running threads and their
results. Now the run function, after initializing the shared state and writing the content
for DIAMOND to the given FilePath, starts threads for each ResultType specified in the
configuration file. Afterwards the run function starts an additional watchDog thread, which
sleeps for 10 seconds before stopping all threads that have not already finished. On the
one hand the watchdog thread was necessary to ensure that CARBON can give a reply
to the client starting the evaluation before a HTTP timeout, and on the other hand we
have experienced cases where DIAMOND would not finish in reasonable time. After the
watchdog is started by run, STM is used to wake up run as soon as all worker threads
have finished their work, so that the results can be gathered and returned.

1 The configuration file is defined in Carbon.Config and defines a mapping from each requested ResultType
to a list of parameters for DIAMOND.



CHAPTER 9
Discussion

In this thesis we explained and documented the design and implementation of Collaborative
Argumentation Brought Online (CARBON). In doing so we described the situation before
our solution, which motivated our work. From this motivation, we drew our problem
description, that identified a need for more services that supply abstract argumentation
to the web. We also set out to create a web interface for DIAMOND, and to provide a
RESTful API that would enable future creations on top of it. To achieve this we found a
way of integrating ADFs in the concept of a wiki. We could make the concept of abstract
argumentation even more accessible by introducing a conversion from BAFs with proof
standards to ADFs, that makes it possible for users to only specify how certain some
arguments are (proof standards), and if they support or attack each other, while CARBON
can still work on the basis of ADFs. To realize our solution, we could draw on some specific
features of the Haskell programming language. Namely we realized our own DSL, which
made it possible to abstract from a concrete realization of data storage and still operate
with composable transactions. In addition using Haskell also enforced an implementation
style that fits a RESTful API very well by avoiding state where possible.
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CHAPTER 10
Related work

While there are already a number of tools that allow to work with argumentation struc-
tures both via a polished GUI, and by integration into other programs, the number of
applications that bring argumentation to the web is rather small. This can change trough
the introduction of the growing Argument Interchange Format (AIF) as well as trough
projects like ArguBlogging. While ArguBlogging builds an argumentative structure on top
of blogs, and already delivers integration with a World Wide Argument Web (WWAW),
CARBON is build on top of a wiki like structure, and integration into a WWAW or usage
of an AIF are seen as possible future works.

10.1 The Argument Interchange Format
The paper ‘Towards an argument interchange format’[Che06] proposes a core ontology for
an AIF that abides by the following principles:

Machine readable syntax: An AIF should focus on being machine readable rather than
being used by humans.

Explicit, machine processable semantics: Different tools should be able to work with an
AIF independent of special, tool dependent, implicit knowledge.

Unified abstract model, multiple reifications: The proposed model is abstract and lacks a
realization. It is expected that multiple reifications can exist.

Extensibility: Only a core concept together with possibilities to extend it is defined.

This work is extended by ‘Laying the foundations for a World Wide Argument Web’[Rah07],
which provides a reification that makes use of RDF and RDFS to represent argumentation
structures in the semantic web. The article ‘AIF+: Dialogue in the Argument Interchange
Format’[Ree08] extends the works on an AIF by means to represent dialogic argumentation,
a feature that is used by ArguBlogging. Finally the article ‘The Argument Interchange For-
mat’[Rah09a] summarizes a core of the AIF and gives an overview of different applications
that are either already implementing the AIF or could benefit from its usage. The parallel
between the development of an AIF and the construction of CARBON lies in the fact that
both have a focus on interchanging argumentation structures in a networked context. This
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implies that it could be of great benefit for CARBON to make it capable of using AIF,
which is further discussed in section 11.

10.2 ArguBlogging
ArguBlogging, as described in the ‘Implementing ArguBlogging’[Sna12a] uses the AIF and
allows users to capture the argumentative structure between different blog posts and their
responses, so that this structure becomes more obvious than the implicit one given by
hyperlinks. To achieve this, ArguBlogging provides a Bookmarklet1, which enables users
to select text on a website, mark if they agree or disagree with it, and post their reason to
a blogging platform. ArguBlogging builds on the works of [Rah07; Ree08] to become part
of a WWAW.

10.3 Argumentation in Haskell
‘Tools for the implementation of argumentation models’[Gij13a] presents, that ‘functional
programming allows to realize structured argumentation models in such a way that the
implementation is sufficiently close to the mathematical definitions to serve as specifications
in their own right’[Gij13a, .p 47] by using Haskell as the example. Additional upsides of
using Haskell are the possibility of verifying (parts of) the implementation in a Theorem
prover like Agda2, or to deliver the documentation for the code with the code trough
the use of literal programming. In ‘Haskell gets Argumentative’[Gij13b] the example of
Carneades is used for this approach, and by using a domain-specific language, the task of
using Carneades becomes easier in a programming environment. This strong formalization
can also be helpful to enable exchange between different programs, like the AIF, except,
that it tackles the problem form a different angle, starting with a formal definition rather
than an ontology.

10.4 ASPARTIX
The Answer Set Programming Argumentation Reasoning Tool (ASPARTIX) is ‘ a tool for
computing acceptable extensions for a broad range of formalizations of Dung’s argumenta-
tion framework and generalizations thereof. ’[Egl08] It’s relation to AFs is therefore similar
to that of DIAMOND towards ADFs. This implies, that CARBON could also have been
build on top of ASPARTIX rather than DIAMOND. Tough DIAMOND was the candidate
of choice from our motivation on, it appears to be possible that CARBON could also make
use of ASPARTIX in the future, should a situation arise, that demands more involvement
with AFs rather than ADFs.

10.5 TOAST
The Online Argument Structures Tool (TOAST) presents itself trough a web form3, and
via an API, and is an implementation of the ASPIC+ framework, that was described in

1 www.bookmarklets.com/about/
2 Agda is a dependently typed functional programming language as well as a proof assistant. Its source

can be found at http://hackage.haskell.org/package/Agda.
3 http://www.arg.dundee.ac.uk/toast/

www.bookmarklets.com/about/
http://hackage.haskell.org/package/Agda
http://www.arg.dundee.ac.uk/toast/
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[Pra10].

TOAST accepts a knowledge base and rule set with associated preference and
contrariness information, and returns both textual and visual commentaries on
the acceptability of arguments in the derived abstract framework. [Sna12b]

TOAST is an example of a service with a focus on a single task, and thereby leads to
considerations of possible improvements on CARBON, as discussed in the following chapter
(11.3.1), regarding the monolithic structure of CARBON.





CHAPTER 11
Future work

Based on our work on CARBON, different opportunities for future works become available
and can be pursued. In this chapter, we will first describe possible improvements in the web
application part, that sets the limits for the actions that users can perform. Afterwards,
we focus on possible paths to increase the possibilities for using CARBON, by either
integrating it with the AIF, or integrating it further with existing Haskell solutions in the
field. Finally there are some improvements possible on the actual implementation, that
also need consideration.

11.1 Additional features for user interaction
While the web application can react faster than individual page loads, and even comes
with features like the presentation of argument graphs, that allows a specialized kind of
interaction not possible with the standard HTML5 page elements, there is still room left for
some improvements. Even though the web application displays graphs, there is currently no
good way to save or print such graphs, as they are only created with the help of JavaScript,
and are not in a format that would support such things. In addition CARBON makes it
possible to have commit messages for changes to any data stored in the back end, but the
web app currently does not take advantage of this, and instead uses fixed commit messages
depending on the task performed rather than the users intent. An improvement upon this
would be, to let the user simulate some changes in the web application only, and once the
user wants to save these changes to the server, the web application should summarize all
changes, let the user specify a commit message, and send them to the server in a single
request. Finally the web application could support even more user interaction. While users
can already engage in common discussions, it would be helpful, if they could also vote over
acceptance conditions, proof standards or relations between their arguments in general.
Currently CARBON relies on its users to figure out the correct structure of arguments
and their relations by themselves, but it appears logical, that this can also be a topic of
discussion between users. Since our solution also presents an API it is also feasible to
create entirely new services that make us of it as seen fit.
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11.2 Integrating CARBON with the AIF
As a web service and application with a focus on argumentation, it would be very interesting
to have CARBON become part of a WWAW. To achieve this, it is necessary to find an
adoption of the AIF for ADFs, and to implement it in CARBON or related tools. It would
also be interesting to see if current AIF representations could be transferred into such an
adoption and if this could be used to apply ADFs to a wider domain, while still preserving
the original semantics.

11.2.1 Integrating with argumentation in Haskell
With works like [Gij13a; Gij13b] making use of the Haskell language with a special focus
on argumentation, it appears an interesting target, to investigate works on argumentation
based on a Haskell background further, and, if possible make our works on CARBON
available to integrate with current solutions. This would strengthen the existing supply of
Haskell code for argumentation, and, as shown by [Gij13b], could make argumentation in
programming environments easier to use.

11.2.2 Detection of relation types between arguments
Currently, CARBON relies entirely on its users to specify the types relations between
arguments have, and once an acceptance condition is set directly rather than by specifying
a proof standard and attack or support relations, CARBON no longer has any information
about these relation types. These relation types could be discovered by solving the attack
link problem for given ADFs. But since [Ell12][p. 57] has shown that this problem is
coNP-complete, we didn’t approach this problem in our current implementation. It may,
however, be possible, that the problem can be solved at for many or some of the ADFs
entered in CARBON, so that it would be an interesting challenge to see what is possible
within a reasonable effort.

11.3 Possible improvements to the implementation
With CARBON being close to 10.000 lines of code, different bugs are expected to show up,
despite our choice for a programming language that helps avoiding such. These bugs will,
of course, be a concern in the future, and shall be patched when they become apparent.
Despite these errors, there are some parts about CARBON that can be improved. A small
example is given by our Item data representation which currently implements versioning
as a parent-child relation ship, that is stored in the database up to any possible length.
It would be helpful, to implement a garbage collection that checks for such relations over
a certain length or age, and removes items accordingly, so that the version history kept
by CARBON can be configured to grow only as large as intended. A bigger example of a
possible improvement is given in the following subsection:

11.3.1 Breaking the monolithic structure of CARBON
Despite its separation into a Web Application and a server side API, CARBON currently
has to manage several different tasks. We consider it a good idea to split CARBON into
several smaller parts that focus on different tasks but work together well. This would make
upgrades easier and, because there would be several programs, rather than one, code could
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be easier to maintain and reason about. In case of such a separation, all parts could make
their methods available via a RESTful API for other tasks to use. Possible parts would be:

• A wiki that encapsulates the content and makes it possible to refer to specific
arguments and outcomes of discussions.

• An argumentation engine, that makes it simple to identify central arguments from
a wiki, and group such arguments according to topic. This part could also become
a part of a WWAW trough implementing the AIF. Having a central service for
argumentation with ADFs would also make it possible to discover related arguments
or topics, a feature, that is currently missing in CARBON.

• A discussion service, that allows clients to group arguments, and evaluate them just
like discussions in CARBON currently are. Such a service would also handle the
results and votes on them.

• A presentation service, that serves a web application, and has a focus on presentation
features. This would make the presentation less entangled with the rest of CARBON,
and could also serve as a model on how to build clients for such a family of services.

• A DIAMOND service, which only focuses on the evaluation of ADFs via DIAMOND.
This would be mostly a simple job scheduler, but could also give detailed load
statistics, which are currently obscured by CARBON. Since evaluation of bigger
ADFs with DIAMOND could take time longer than the usual timeout, having such a
service could also mitigate the current need for a watchdog function in CARBON,
that makes sure DIAMOND terminates correctly, or is terminated after a timeout.





Acronyms

Acronyms
Notation Description

ACID Atomicity, Consistency, Isolation, Durability

ADF abstract dialectical framework

ADT algebraic data type

AF argumentation framework

AIF Argument Interchange Format

ASPARTIX Answer Set Programming Argumentation Reasoning Tool

BADF bipolar abstract dialectical framework

BAF bipolar argumentation framework

CARBON Collaborative Argumentation Brought Online

CRUD Create, Read, Update and Delete

DIAMOND Dialectical Models Encoding

DSL domain specific language

EDSL embedded domain specific language

ER Entity-relationship

FFI foreign function interface

GADT generalized algebraic data type

GHC Glasgow Haskell Compiler

HDBC Haskell Database Connectivity

JSON JavaScript Object Notation
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Notation Description

LAMP Linux, Apache, MySQL, PHP

pForm-ADF propositional formula ADF

pForm-BADF propositional formula BADF

REST Representational State Transfer

STM Software Transactional Memory

TLS Transport Layer Security

TOAST The Online Argument Structures Tool

UML Unified Modeling Language

URI Uniform Resource Identifier

WWAW World Wide Argument Web
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APPENDIX A
The database layout

The database layout as derived from the data described in chapter 6. The database layout
was created with the software pgModeler, which also generated the following ER diagram:
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(n)

(1)

rel_items_acceptanceconditions

(n)

(1)
rel_items_discussions

(n)

(1)

rel_items_resultsets

(n)

(1)

rel_item_family_items

public.users
userid 	integer «	pk	nn	»
username 	character	varying(255) «	uq	nn	»
hash 	character	varying(128) «	nn	»
salt 	character	varying(255) «	nn	»
creationtime	timestamp «	nn	»
lastlogin 	timestamp «	nn	»
isadmin 	boolean «	nn	»
profile 	integer
sessionkey 	character	varying(255)

public.descriptions
descriptionid	integer «	pk	nn	»
headline 	character	varying(255) «	nn	»
summary 	character	varying(255) «	nn	»

public.articles
articleid	integer «	pk	nn	»
content 	text «	nn	»

public.acceptanceconditions
acceptanceconditionid	integer «	pk	nn	»
proofstandard 	smallint
formula 	text «	nn	»

	 relations
relationid 	integer «	pk	nn	»
source 	integer «	fk	nn	»
target 	integer «	fk	nn	»
relationtype	smallint «	nn	»

public.discussions
discussionid	integer «	pk	nn	»
deadline 	timestamp
evaluation 	smallint «	nn	»

public.discussion_arguments
discussionid	integer «	fk	nn	»
itemid 	integer «	fk	nn	»

public.discussion_participants
discussionid	integer «	fk	nn	»
userid 	integer «	fk	nn	»

public.resultsets
resultsetid	integer «	pk	nn	»
setcreation 	timestamp «	nn	»

public.results
resultid 	integer «	pk	nn	»
resulttype	character	varying(255) «	nn	»
votes 	integer «	nn	»

	 results_items
resultid 	integer «	fk	nn	»
resultstate	smallint «	nn	»
itemid 	integer «	fk	nn	»

public.resultset_results
resultsetid	integer «	fk	nn	»
resultid 	integer «	fk	nn	»

public.resultset_voters
resultsetid	integer «	fk	nn	»
userid 	integer «	fk	nn	»
voted 	boolean «	nn	»

public.items
itemid 	integer «	pk	nn	»
descriptionid 	integer «	fk	»
articleid 	integer «	fk	»
acceptanceconditionid	integer «	fk	»
relationid 	integer «	fk	»
discussionid 	integer «	fk	»
resultsetid 	integer «	fk	»
creation 	timestamp «	nn	»
deletion 	timestamp
commitmessage 	character	varying(255) «	nn	»
commitauthor 	integer «	fk	nn	»

public.item_family
parent	integer «	fk	nn	»
child 	integer «	fk	nn	»

1



APPENDIX B
Predicate dependencies of Carbon.Data.Item

Carbon.Data.Item::Item

itemIsDescription

itemIsArticle

itemIsCondition

itemIsRelation

itemIsDiscussion

itemIsResult

itemIsSane

Predicates that can be applied to the data type described in section 6.2. Arrows mean
that it is necessary that the targeted predicate holds, for the source predicate to hold. If a
predicate has more than one arrow to other items, these should be read as an or.
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APPENDIX C
Software libraries used to implement CARBON

This appendix holds a list of software libraries used in CARBON together with short
descriptions, so that it becomes easier to track which licenses are used for which parts of
the software, and that the authors and sources of the respective libraries can be found.

C.1
Title: jQuery JavaScript Library v1.9.1

Author: jQuery Foundation, Inc. and other contributors
Year: 2013-02-04
URL: http://jquery.com

License: MIT

C.2
Title: jQuery Cookie plugin

Author: Klaus Hartl
Year: 2010
URL: https://github.com/carhartl/jquery-cookie

License: MIT

C.3
Title: jQuery autoResize

Author: James Padolsey
Year: 2011-09-24
URL: https://github.com/alexbardas/jQuery.fn.autoResize

License: WTFPL - http://www.wtfpl.net/txt/copying/
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C.4
Title: Backbone.js 1.0.0

Author: Jeremy Ashkenas, DocumentCloud,
and Investigative Reporters & Editors

Year: 2013
URL: http://backbonejs.org

License: MIT

C.5
Title: Underscore.js 1.4.4

Author: Jeremy Ashkenas, DocumentCloud Inc.
Year: 2013
URL: http://underscorejs.org

License: MIT

C.6
Title: marked - A markdown parser

Author: Christopher Jeffrey
Year: 2012
URL: https://github.com/chjj/marked

License: MIT

C.7
Title: Raphaël 2.1.2 - JavaScript Vector Library

Author: Dmitry Baranovskiy
Year: 2008
URL: http://raphaeljs.com

License: MIT http://raphaeljs.com/license.html

C.8
Title: Springy v.2.3.0

- A force directed graph layout algorithm for JavaScript
Author: Dennis Hotson

Year: 2013
URL: http://getspringy.com

License: MIT

C.9
Title: Bootstrap V.2.3.2

Author: Twitter, Inc.
Year: 2012
URL: http://getbootstrap.com/2.3.2/

License: Apache license V.2.0

http://backbonejs.org
http://underscorejs.org
https://github.com/chjj/marked
http://raphaeljs.com
http://raphaeljs.com/license.html
http://getspringy.com
http://getbootstrap.com/2.3.2/
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C.10
Title: Datepicker for Bootstrap

Author: Stefan Petre
Year: 2012
URL: http://www.eyecon.ro/bootstrap-datepicker/

License: Apache license V.2.0

C.11
Title: The Haskell Platform

Author: The Haskell Community
Year: 2013
URL: http://www.haskell.org/platform/

License: BSD

C.12
Title: Happstack

Author: SeeReason Partners, LLC
Year: 2013
URL: http://happstack.com

License: BSD3

C.13
Title: Aeson

Author: Bryan O’Sullivan
Year: 2011
URL: https://github.com/bos/aeson

http://hackage.haskell.org/package/aeson
License: BSD3

C.14
Title: HDBC

Author: John Goerzen
Year: 2011
URL: https://github.com/hdbc/hdbc

http://hackage.haskell.org/package/HDBC
License: BSD3

http://www.eyecon.ro/bootstrap-datepicker/
http://www.haskell.org/platform/
http://happstack.com
https://github.com/bos/aeson
http://hackage.haskell.org/package/aeson
https://github.com/hdbc/hdbc
http://hackage.haskell.org/package/HDBC
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C.15
Title: Parsec 3.0.0

Author: Daan Leijen, Erik Meijer[Lei01]
Year: 2001
URL: http://legacy.cs.uu.nl/daan/parsec.html

http://www.haskell.org/haskellwiki/Parsec
License: BSD style

C.16
Title: Dialectical Models Encoding (DIAMOND) 1.0.0

Author: Stefan Ellmauthaler, Joerg Puehrer, Hannes Straß
Year: 2014
URL: https://isysrv.informatik.uni-leipzig.de/diamond

http://sourceforge.net/projects/diamond-adf/
License: GNU GPL v.3

C.17
Title: PostgreSQL

Author: Michael Stonebraker
the PostgreSQL global Development Group

Year: 2014
URL: http://www.postgresql.org

License: PostgreSQL License (similar to MIT)

http://legacy.cs.uu.nl/daan/parsec.html
http://www.haskell.org/haskellwiki/Parsec
https://isysrv.informatik.uni-leipzig.de/diamond
http://sourceforge.net/projects/diamond-adf/
http://www.postgresql.org


APPENDIX D
Screenshots of the web application

Figure D.1: A new article is created to reflect the statement that ‘Alice is part of the
minority’.

Figure D.2: Viewing a single article in the web application. It is the one that was created in
D.1.
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Figure D.3: This view pages the recently created articles and also makes it possible for users
to create new articles.

1 % Translation of our example ADF:
2

3 s(a).
4 s(e).
5 s(b).
6 s(f).
7 s(m).
8 s(s).
9

10 ac(a,or(e,neg(b))).
11 ac(b,or(f,neg(a))).
12 ac(e,c(v)).
13 ac(f,c(v)).
14 ac(m,neg(s)).
15 ac(s,c(v)).

Listing D.1: The file my.adf, which is a direct translation of F𝐴𝐷𝐹 from 2.3(a). Since
DIAMOND cannot process 𝑎 or ¬𝑎, we choose to use the next character from the alphabet
instead.

Figure D.4: A new discussion is created, based on the code listed in D.1.
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Figure D.5: The discussion created by D.4 is displayed and the list of articles contained in
that discussion is displayed.

Figure D.6: The discussion created by D.4 is displayed and the statements are displayed as
a graph.
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Figure D.7: A list of participants belonging to a discussion is being displayed.

Figure D.8: The ADF instance for every discussion can be viewed, downloaded or extended
by additional uploads.



81

Figure D.9: After evaluation, a discussion is displayed in the results tab. We can see a list of
results for several evaluated discussions.

Figure D.10: Some of the models for our discussion created by D.4 are displayed. Users can
vote on these results to express their preferences.





Eigenständigkeitserklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der
angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche oder
sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung auch
nachträglich zur Aberkennung des Abschlusses führen kann.
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