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ABSTRACT 

The cardinal symptom of heart failure with preserved ejection fraction (HFpEF) is exercise 

intolerance, which is associated with fatigue and reduced quality of life. HFpEF patients exhibit 

skeletal muscle dysfunction related to reduced peak oxygen uptake (peak V̇O2p). Prior heavy 

exercise speeds pulmonary oxygen uptake (V̇O2p) kinetics in older adults and in HF patients with 

reduced ejection fraction (HFrEF), presumably through increased oxygen delivery to the 

exercising muscle. We tested the hypothesis that prior heavy exercise would not speed V̇O2p on-

kinetics in patients with HFpEF, suggesting HFpEF exercise intolerance stems primarily from 

muscle dysfunction. Eight HFpEF patients, 4 high-fit (CTL-HF), and 5 low-fit age-matched 

controls (CTL-LF) underwent echocardiography and peak exercise testing (cycle ergometer). 

Subjects performed 3 separate repetitions of 2 exercise transitions: MOD1, transition from rest to 

4-min moderate intensity cycling (work rate corresponding to 90% ventilatory threshold); and 

MOD2, MOD1 preceded by 2-min of heavy cycling (∆50% intensity; halfway between ventilatory 

threshold and peak) and 5-min of inter-transition rest. V̇O2p (breath-by-breath gas exchange), heart 

rate (HR, ECG), stroke volume (SV, ModelFlow), cardiac output (CO, calculated), total peripheral 

resistance (TPR, calculated), and tissue oxygenation of the vastus lateralis (TOI, near-infrared 

spectroscopy) on-kinetics were measured. V̇O2p, HR, and CO data were linearly interpolated, time-

aligned, averaged into 5-s time bins, and curve-fitted using a monoexponential equation. ∆SV, 

∆TPR, and ∆TOI were calculated from baseline at 15s, 30s, and end-exercise to represent time-

course changes. Analysis included repeated measures ANOVA, and SNK post-hoc, break-down 

analyses, and non-parametric testing where appropriate. Significance was P<0.05. HFpEF V̇O2p 

on-kinetics were slower than CTL-HF but similar to CTL-LF, pooled across conditions (P=0.008). 

MOD2 V̇O2p on-kinetics were faster compared to MOD1, pooled across groups (P=0.039). CTL-

HF had a greater reduction in TPR across all time points compared to HFpEF (all P<0.038) and at 

30s and end-exercise compared to CTL-LF (all P<0.032), pooled across conditions. HFpEF 

patients and CTL-LF had decreased TOI at 15-30s (all P≤0.024) in MOD1. By visual inspection, 

HFpEF TOI remained depressed while CTL-LF TOI increased to baseline levels, with no group 

difference at end-exercise (P=0.086) in MOD1. CTL-HF TOI increased at 15-30s (all P≤0.024) 

and decreased toward baseline levels. All groups had slower HR on-kinetics in MOD2 compared 

to MOD1 (P=0.001). TOI showed a greater reduction in MOD2 than MOD1 in HFpEF at 30s 
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(P=0.033) and CTL-HF throughout MOD2 (all P<0.05). The results of this study indicate that 

HFpEF patients have impaired V̇O2p on-kinetics and a speeding response of V̇O2p on-kinetics to 

prior exercise, suggesting O2 delivery may be an important rate-limiting factor of V̇O2p on-kinetics 

in HFpEF. 
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CHAPTER ONE: LITERATURE REVIEW 

1.1 Background 

Heart failure (HF) is defined by the American Heart Association and American College of 

Cardiology Foundation as “a complex clinical syndrome that results from any structural or 

functional impairment of ventricular filling or ejection of blood” (59, 105). HF is associated with 

increased morbidity and mortality rates and thus places a heavy economic burden on Canada’s 

healthcare system (43, 44). Between 2012 and 2030, HF prevalence is expected to increase by 46% 

in America (67). Recently, two phenotypes of HF have been identified: heart failure with reduced 

ejection fraction (EF ≤ 35%; termed HFrEF), and heart failure with preserved ejection fraction (EF 

≥ 45%; termed HFpEF). The incidence of HF is roughly 50% HFrEF and 50% HFpEF, although 

these vary depending on world location (17, 74). HFrEF, previously known as systolic HF, 

typically arises from volume overload. In most cases, HFrEF can be managed with heart 

transplantation being curative (98), and survival rates have improved over time (2, 9, 78, 85, 96, 

97, 106). Conversely, effective treatment strategies for HFrEF have proven ineffective for 

improving survival in HFpEF (previously referred to as diastolic HF) and survival rates continue 

to decline (43). Many HF patients exhibit both systolic and diastolic dysfunction (105) and it is 

therefore the EF that determines HF phenotype. Phenotype differentiation is crucial for appropriate 

clinical treatment and management of HF, therefore phenotype-specific pathophysiology must 

continue to be scrupulously assessed. However, as many of the classic signs and symptoms of HF 

can be observed in other chronic diseases (e.g., pulmonary hypertension, chronic lung disease, 

renal insufficiency, cirrhosis (101)), HFpEF diagnosis can be difficult due to the preserved ejection 

fraction. HFpEF, generally caused by pressure overload or chronic systemic inflammation, has 

only recently been commonly accepted as a distinct type of HF and diagnosed as more than 

diastolic dysfunction. Coincidentally, HFpEF is the fastest growing type of HF and is mostly found 

in older adults, particularly older women (41, 43). 

1.2 Introduction  

HF, independent of phenotype, causes significant economic burden to Canada’s healthcare 

system and directly costs over $2.8 billion per annum (44). Expenses include emergency 

hospitalization, clinic visits, medications, surgeries, and rehabilitation. HFrEF has some effective 

neurohormonal (19, 77, 104, 107) and cardiac resynchronization (98) therapies that improve 
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prognosis, mortality rates, and quality of life. Unfortunately, these same therapies have failed to 

improve mortality rates in patients with HFpEF (6, 7, 61, 71, 86, 91), further illustrating the stark 

physiological differences between phenotypes. The mortality rate for HFpEF is 25% within 3 years 

from diagnosis (adjusted for age, gender, etiology, hypertension, diabetes, and atrial fibrillation) 

(64). Accordingly, our current understanding of HFpEF pathophysiology must be improved for 

future HFpEF therapies to be successfully designed. Exercise therapy coupled with caloric 

restriction has been proven to improve exercise tolerance and body composition in patients with 

HFpEF (50). As exercise intolerance is the cardinal symptom of HF, and cardiorespiratory fitness 

is correlated with mortality (70), the mechanisms behind exercise intolerance in HFpEF should be 

revealed. Recently, focus has turned to investigating peripheral mechanisms of exercise 

intolerance in HFpEF patients as opposed to central, as seen in HFrEF. 

The current thesis was specifically designed to investigate the integrative cardiovascular 

physiology in HFpEF during exercise. The following is a review of the most updated literature 

concerning the clinical presentation and pathophysiology of HFpEF, pulmonary oxygen uptake 

(V̇O2p) on-kinetics in healthy young and older adults and in HFrEF, the effects of priming exercise 

in healthy older adults, and other physiological responses to the onset of exercise such as the on-

kinetics of cardiac output, heart rate, stroke volume, total peripheral resistance (TPR), and muscle 

tissue oxygenation (TOI). 

1.3 HFpEF Clinical Diagnosis and Presentation 

Historically, the Framingham criteria (63) have functioned well for early and accurate 

diagnosis of congestive HF. The Framingham criteria consists of well-documented signs and 

symptoms, both of major (paroxysmal nocturnal dyspnea, neck vein distention, rales, increased 

cardiac size on chest radiography, hepatojugular reflux, to name a few) and minor importance 

(bilateral ankle edema, nocturnal cough, dyspnea on ordinary exertion, to name a few) in a clinical 

diagnosis for HF, regardless of phenotype (63). As these criteria do not account for EF, more 

sophisticated criteria have been proposed by multiple agencies (e.g., European Society of 

Cardiology, American College of Cardiology Foundation/American Heart Association), however 

powered trials validating these criteria are still needed (101). Generally, four requirements exist: 

1. symptoms of HF, 2. signs of HF, 3. preserved EF (≥45%) and left ventricle not dilated, and 4. 

relevant structural heart disease and/or diastolic dysfunction (101). Clinicians must also ensure the 
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signs and symptoms of HF cannot be explained by pulmonary hypertension, chronic lung disease, 

renal insufficiency, cirrhosis, etc., (101).  

The clinical presentation of HFpEF differs substantially to HFrEF (71). Compared to 

HFrEF, patients with HFpEF tend to be older, more obese, are more likely to have hypertension, 

diabetes, and atrial fibrillation, and less likely to have coronary artery disease (71). Population 

studies and meta-analyses indicate the gender distribution in HFpEF is roughly equal (16), or 

female dominant (55-70% female) (17, 18, 46, 74, 92). Accordingly, females are more likely to 

develop HFpEF than HFrEF (16). Noncardiac comorbidities are also common, although 

potentially not more common in HFpEF than HFrEF, and include chronic lung disease, anemia, 

chronic kidney disease, and cancer, all of which contribute to morbidity and mortality in HFpEF 

(3, 18, 71, 84). For example, renal dysfunction alone can affect the morphology of the left ventricle 

(62), diabetes further increases the risk of hospitalization in HFpEF and further reduces exercise 

capacity (57), and atrial fibrillation (history or current) increases the risk of stroke (73).  

Echocardiography is a pivotal tool in diagnosing and determining prognosis in HFpEF 

(101). The most common measure of left ventricular end-diastolic pressure and stiffness is E/é 

(early-diastole pulse-wave velocity divided by early-diastole tissue-wave velocity), which is a key 

indicator of diastolic function. E/é >15 indicates increased end-diastolic pressure, leading to 

HFpEF diagnosis in patients with HF symptoms (101). Left ventricular size and dimension in 

HFpEF are highly varied; in a large sample size, a 10-15% increase from healthy controls and 

hypertensive controls was found, but did not preclude a significant portion of individuals having 

normal or slightly reduced left ventricular diastolic diameter, even when adjusted for age, gender, 

body size, and race (62). Left ventricular hypertrophy is well-documented in HFpEF (20, 26), 

although often not present (20). Further, indices of left ventricular hypertrophy (relative left 

ventricular wall thickness, end-diastolic volume/mass ratio) were also seen in hypertensive 

controls, with no difference between groups (62). Valvular function should also be assessed, as 

leaky or sclerotic valves can lead to fluid overload in the cardiac chambers (101). Increased left 

atrial size and stiffness are commonly present in HFpEF (101). Diastolic dysfunction is related to 

increased serum levels of B-type natriuretic peptide (BNP), but this is also common with a reduced 

ejection fraction (17). However, N-terminal pro-BNP >220 pg/mL or BNP levels >200 pg/mL 
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coupled with echocardiogram-indicated diastolic dysfunction aids to yield a HFpEF diagnosis 

(101).  

1.4 HFpEF Pathophysiology 

Exact mechanisms underpinning HFpEF development are varied, but a primary cause of 

the characteristic peripheral dysfunction in HFpEF is thought to be chronic systemic inflammation 

(58, 76, 93). Suggested contributors to chronic systemic inflammation by Shah et al. (93) include 

aging and common comorbidities, such as metabolic syndrome (obesity (84% of patients) (37), 

arterial hypertension (60-80%) (29), type 2 diabetes mellitus (20-45%) (29)), chronic obstructive 

pulmonary disease (76), and renal insufficiency (93). Some biomarkers of systemic inflammation 

(i.e., soluble interleukin 1 receptor-like 1, C-reactive protein, and growth differentiation factor 15) 

were recently observed to be higher in HFpEF compared to HFrEF (87). Systemic inflammation 

has multi-organ effects that disrupt resting and exercise physiology (93). Of focus for the current 

thesis were the role of cardiac function (cardiac output, heart rate, and stroke volume on-kinetics), 

vascular function (TPR on-kinetics), and skeletal muscle function (V̇O2p and TOI on-kinetics). 

Initially proposed by Paulus and Tschöpe in 2013 (76), Shah et al. (93) summarize a 

signalling cascade beginning with coronary microvascular endothelial dysfunction (33, 76). 

Macrophages infiltrate the myocardium, which induces reactive interstitial fibrosis (102), in turn 

leading to disrupted communication between adjacent endothelial and myocardial cells (33). The 

alteration of intercellular signalling causes increased activation of myofibroblasts that propagate 

an inflammatory response. Nitric oxide bioavailability and protein kinase G activity are reduced 

in the coronary microvascular endothelium due to chronic systemic inflammation (76). Through 

cross-talk between the endothelium and cardiomyocytes (58), low protein kinase G activity 

increases resting tension in the myocardium due to hypophosphorylation of titin, leading to 

myocardial hypertrophy (76). The resulting stiff cardiomyocytes and fibrosis contribute to a stiff 

left ventricle in diastole, propagating HF development. This proposed paradigm is different from 

previously assumed increased afterload on the heart that favours stiffening of the myocardium, 

and is supported by similar tissue remodeling in all cardiac chambers instead of only the left 

ventricle (76). These details are important to differentiate the HF phenotypes; HFpEF development 

entails stiffening and fibrosis of cardiomyocytes, whereas HFrEF development may progress 

secondary to the loss of cardiomyocytes (76). 
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1.5 Current HFpEF Therapies 

Current HFpEF therapy is dictated by the unique clinical presentation phenotype (e.g., lung 

congestion, chronotropic incompetence, pulmonary hypertension, skeletal muscle weakness, atrial 

fibrillation, or a combination thereof) and any predisposing comorbidities (metabolic syndrome or 

any of its constituents, arterial hypertension, renal dysfunction, coronary artery disease, or a 

combination thereof) (93). Therapies will depend on the specific combination of the above factors, 

and can include exercise training, caloric restriction, diuretics (e.g., spironolactone, or loop 

diuretics in diabetes), statins, anti-hypertensives (e.g., sacubitril), angiotensin-converting enzyme 

inhibitors, rate adaptive atrial pacing (chronotropic incompetence only), revascularization 

(coronary artery disease only), pulmonary vasodilators, cardioversion (atrial fibrillation only), 

anticoagulation (atrial fibrillation only) and ultrafiltration (renal dysfunction only) (93). Although 

large neurohormonal outcome-focused trials have failed to yield clinical benefit similar to the 

success found in HFrEF (29, 71), this may be due to the heterogeneity of the HFpEF sample; the 

therapy must be specific to the predisposition/presentation combination (29, 54, 93). The process 

of “phenomapping” patients with HFpEF, i.e., categorizing very large datasets of patients with 

significant heterogeneity of clinical presentation into smaller, homogeneous subgroups, is 

underway (92) and presents a promising future avenue for determining ideal therapies for a unique 

patient with HFpEF.  

1.6 HFpEF Exercise Physiology 

Normal cardiovascular physiology at rest does not support the assumption that reserve 

capacity exists for times of physiological stress, the most common of which is physical activity 

(10). Understanding exercise physiology in HFpEF yields critical insights into the complex clinical 

syndrome of HFpEF and what limits functional capacity in these patients (10). Exercise intolerance 

in HFpEF is not completely understood, but significant limitations to exercise tolerance have been 

documented, covering the full O2-cascade spectrum from cardiac and hemodynamics to metabolic 

inefficiencies (11). Although not precluding the significance of cardiac reserve and vascular 

reserve dysfunction (12, 14, 31, 53, 54), a focus of study has brought supportive evidence to 

suggest peripheral limitations (e.g., microvascular O2 delivery and O2 utilization in the skeletal 

muscle) play a larger role in limiting exercise tolerance in HFpEF compared to healthy controls 

(8, 38, 39, 42, 51, 52, 66) and HFrEF (43). Notably, exercise training in HFpEF increased peak 
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V̇O2p, ventilatory threshold, and self-reported quality of life without any improvements in left 

ventricular morphology or neuroendocrine function (52). Molina et al. (66) recently reported 

invasive measurements of mitochondrial proteins (porin expression and mitofusin content – 

regulate mitochondria quality control) and oxidative enzyme activity (citrate synthase) to be 

markedly reduced (46%, 54%, and 29% lower, respectively) in HFpEF compared to controls. 

Further, the indices of mitochondria content (porin expression) and quality (mitofusins) were 

positively correlated with peak V̇O2p and 6-min walk distance (indices of aerobic capacity and 

exercise tolerance). These findings therefore suggest that adverse changes in mitochondrial 

function may be related to V̇O2p abnormalities observed in patients with HFpEF. Interestingly, 

Mettauer et al. (65) assessed V̇O2p and muscle biopsies and reported the same deficiency in 

mitochondrial intrinsic oxidative capacity and regulation in patients with HFrEF and sedentary 

matched controls. In comparison, physically active controls had markedly greater muscle oxidative 

capacity and regulation of oxidative phosphorylation, suggesting that deconditioning has a 

separate role in limiting physiology than disease-mediated limitations (65). Indeed, the only 

differences found between the patients with HFrEF and sedentary adults was reduced V̇O2p, citrate 

synthase levels, creatine kinase levels, and lactate dehydrogenase levels (65). The latter two 

substrates are usually indices of fewer type II muscle fibers, which was not found in these subjects, 

leading the authors to suggest the creatine kinase and lactate dehydrogenase levels may be key in 

the pathophysiology of exercise intolerance in HFrEF.  

V̇O2p is the rate of O2 the body consumes per minute, which is used to aerobically generate 

adenosine triphosphate (ATP), the body’s energy currency. Peak V̇O2p is thus the maximal amount 

of O2 the body can use per minute during exercise. The Fick principle estimates that V̇O2 = cardiac 

output × arterial-venous oxygen content difference (AVO2Diff) (79). Cardiac output is the volume 

of blood pumped from the left ventricle per minute and is the product of stroke volume and heart 

rate (75). Arterial-venous O2 content difference (AVO2Diff) represents O2 extraction at the muscle 

(43). Severe exercise intolerance is objectively measured through reduced peak V̇O2p as measured 

at the mouth during whole body exercise (32). Peak V̇O2p is a strong indicator of disease prognosis 

(79, 80) and a low peak V̇O2p is associated with reduced quality of life (41). HFpEF patients have 

peak V̇O2p values 40% lower compared to healthy older adults (41). In healthy men, V̇O2p at 

maximal exercise increases 7.7-fold; this is a result of a 3.1-fold increase in cardiac output and a 

2.5-fold increase in AVO2Diff (45). Thus, limitations to exercise tolerance can be differentiated 
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into central (affecting cardiac output) and peripheral (AVO2Diff) factors. AVO2Diff adaptation 

from rest to maximal exercise was reported to be the strongest independent predictor of peak V̇O2p 

in HFpEF patients compared to controls (39), and HFpEF patients have lower maximal cardiac 

output compared to controls (43). 

Cardiac properties are dictated, in part, by the sympatho-vagal balance (i.e., autonomic 

control of heart rate and contractility), afterload (i.e., the forces that oppose ejection of blood from 

the left ventricle; ideally measured by effective arterial elastance (Ea)), and preload (amount of 

myocardial shortening during a contraction; determined by the magnitude of stretching of the 

ventricular cardiomyocytes prior to contraction as a result of blood accumulation; ideally measured 

by left ventricular end-diastolic volume) (10). Cardiac function can be globally characterized by 

its ability to eject blood (systolic function; myocardial contraction), and fill with blood (diastolic 

function; myocardial relaxation). Increased sympathetic tone enhances contractility, chronotropy 

(rate), and lusitropy (relaxation) of the heart, and peripherally increases venous return through 

vasoconstriction of the capacitance vessels (10). Conversely, increased parasympathetic tone 

reduces heart rate (10).  

HFpEF patients often exhibit mild systolic dysfunction at rest and decreased systolic 

reserve, i.e., an impaired ability to increase contractility during exercise (10). HFpEF patients 

typically have decreased diastolic reserve stemming from the impaired ability of the ventricle to 

relax during diastole, thereby decreasing the pressure gradient from atria to ventricle, lowering 

suction and ultimately filling (10). This is seen with decreased ventricular compliance, lower end-

diastolic volumes, and increased left ventricular filling pressures (10). Chronotropic incompetence 

is often observed in patients with HFpEF as a result of sinus node dysfunction and/or atrial 

fibrillation (10), and decreases the ability to rapidly increase heart rate in response to exercise. 

When pooled together, these impaired cardiac properties decrease cardiac output reserve. In 

addition to the above listed factors, there is commonly tissue ischemia during exercise as a result 

of coronary artery disease (although more common in HFrEF), consequently reducing contractility 

(10).  

During large muscle mass exercise, such as cycling, patients with HFpEF typically have 

lower maximal exercise cardiac output and heart rate (43). Interestingly, there is contradicting 

evidence on whether stroke volume is decreased (28, 53) or similar (8, 39) compared to healthy 
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controls, as is the case with end-diastolic volume (decreased (39, 53); similar (28)), and AVO2Diff 

(decreased (8, 28, 39); similar (1, 53)). Likewise, end-systolic volume has been shown the be both 

increased (28) or similar (39, 53) to healthy controls. Mean arterial pressure (MAP) has been 

similar to healthy controls (43).  

Chronic increases in sympathetic activity to the periphery has significant effects on cardiac 

function. HF patients in general have increased sympathetic tone which enhances vasoconstriction 

at rest and impairs vasodilation of the arterioles in response to exercise, thus increasing afterload 

on the heart and reducing venous return, ultimately lowering maximal stroke volume and cardiac 

output (10). Vascular dysfunction in HFpEF is in part caused by the above mentioned sympathetic 

tone, but also endothelial dysfunction caused by chronic systemic inflammation that is prominent 

in HFpEF (10, 76, 93). Additionally, arterial stiffening is also common in HFpEF, further 

increasing afterload on the heart, increasing cardiac metabolic demand during exercise, and 

reducing diastolic and systolic reserve (48). Interestingly, 16 weeks of endurance exercise training 

in HFpEF patients did not improve vascular function, as measured by arterial flow-mediated 

dilation and arterial stiffness, despite increased peak V̇O2p (51). This suggests that vascular 

function, although typically impaired in HFpEF, may not be a critical determinant of exercise 

intolerance in this disease. Albeit, only the vascular response to an increase in flow was studied, 

and other factors may cause an appropriate vasodilatory response to exercise.  

The primary determinant of the severe exercise intolerance in HFpEF patients may not be 

related to cardiac dysfunction, but rather peripheral factors (41, 43). Despite evidence showing 

lower maximal cardiac output in HFpEF patients compared to controls (43), Haykowsky et al. (39) 

reported that peripheral O2 utilization may play a greater role in HFpEF, as compared to HFrEF, 

in which cardiac dysfunction plays the dominant role in exercise intolerance. Likely coupled with 

vascular and autonomic dysfunction, patients with HFpEF have lower AVO2Diff reserve (10), as 

evidenced by the following: persons with HFpEF characteristically have reduced microvascular 

endothelial function, muscle dysfunction, reduced leg lean mass, and more intermuscular adipose 

tissue (40–43). In particular, HFpEF exercise intolerance may be particularly limited by muscle 

dysfunction in the form of lower muscle quality (40, 42), lower ratio of oxidative to glycolytic 

muscle fiber type (41, 43), lower oxidative enzymes (41, 43) and lower muscle capillary density 

(41, 43). Indeed, peak V̇O2p was not only correlated with percent leg lean mass but  the  slope of  
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the relationship of peak V̇O2p and percent leg lean mass was significantly lower in HFpEF 

compared to controls (40). Although evidence supporting various hemodynamic and peripheral 

limitations is growing, the specific mechanisms causing exercise intolerance in HFpEF remains 

inadequately understood.  

1.7 Introduction to V̇O2p On-Kinetics 

Patients with HFpEF have a substantial reduction in peak V̇O2p, which causes the 

traditional exercise intensity domains of moderate, heavy, and severe to be compressed in HFpEF, 

making daily life more challenging. For example, performing activities of daily living that would 

have previously been of moderate intensity (e.g., carrying groceries, making a bed, walking 

upstairs, etc.) now reside within the heavy intensity domain (47). This extra effort can compromise 

the ability of patients with HFpEF to perform daily activities and could potentially reduce their 

quality of life.  

Transport of O2 and its delivery to the working cells is a key component of V̇O2p. V̇O2p on-

kinetics is the change in rate of V̇O2p. In a step-transition from rest to exercise (a “square-wave” 

transition), ATP demand increases instantaneously (80). Ideally, this demand would be met via 

aerobic metabolism (i.e., using O2 to generate ATP); however, V̇O2p increases exponentially rather 

than instantaneously (80). The resultant O2 deficit requires ATP to be supplied anaerobically, 

thereby increasing metabolic perturbations (lower pH, increased intracellular and systemic lactate 

concentration, increased ADP concentration, etc.) and contributing to fatigue. V̇O2p on-kinetics 

during moderate intensity exercise has three phases: phase I, also known as the time delay (TD), 

is a rapid increase in V̇O2p related to a sudden increase in cardiac output and pulmonary perfusion 

(not related to skeletal muscle O2 uptake); phase I amplitude is greatest when beginning from rest 

(15, 56, 80, 103).  Phase II, also known as the primary or fundamental component, reflects the 

exponential rise in skeletal muscle O2 uptake (35, 60, 80, 82, 99). Phase III, also known as steady-

state when the target exercise intensity is below the ventilatory threshold, occurs when O2 demand 

is met by aerobic metabolism (15). Phase II V̇O2p on-kinetics are determined by the following 

monoexponential equation:  𝑌 𝑡  =  𝑌 𝑏  +  𝐴 •  [1 –  𝑒– 𝑡 − 𝑇𝐷 /𝜏], where Y (t) is the V̇O2p 

(ml/kg/min) at time point (t) from exercise onset, Y (b) is the V̇O2p (ml/kg/min) at the pre-exercise 

transition baseline, A is the change in amplitude (ml/kg/min) of V̇O2p at the end of the TD to 
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steady-state exercise V̇O2p, tau (τ) is the time constant (s) and represents the rate of V̇O2p increase 

in phase II, and TD (s) represents the time delay that is phase I. 

Speeding phase II V̇O2p on-kinetics would decrease the O2 deficit, ultimately decreasing 

fatigue and increasing exercise tolerance (80). The speed of phase II pulmonary V̇O2p on-kinetics 

is assessed primarily via a time constant “tau” (τ) during square-wave transitions and reflects 

muscle V̇O2 (60, 99). The time constant is the time from rest to 63% of the steady-state V̇O2p (80). 

Phase II V̇O2p on-kinetics are quite fast in young healthy adults (τ ~ 19-28 s (23, 69, 89)), slower 

in older healthy adults (τ ~ 38-50 s (23, 81, 89)), and very slow in individuals with HFrEF (τ ~ 49-

80 s (15, 49)). In diseased states, phase II V̇O2p on-kinetics may have great value in prognosis, 

more so than above-mentioned peak V̇O2p (80). Indeed, a faster mean response time (τ + TD) in 

V̇O2p was associated with increased survival rate in patients with HFrEF (88). To the best of our 

knowledge, phase II V̇O2p on-kinetics during the on-transition to exercise have not been assessed 

in HFpEF. Using phase II V̇O2p on-kinetics for prognosis in HF has several advantages over peak 

V̇O2p; for example, kinetics testing is less time consuming, less demanding, and less dependent on 

motivation, all of which are more attractive to patients with HF (88).  

1.8 Priming Effects of Heavy Intensity Exercise on V̇O2p On-Kinetics 

The characteristic V̇O2p on-kinetics response during exercise differs greatly between the 

three common exercise intensity domains: moderate, heavy, and severe (80). The moderate 

intensity domain represents exercise below the individual’s ventilatory threshold. The ventilatory 

threshold, or gas exchange threshold, is the intensity at which the ratio between carbon dioxide 

production (V̇CO2p) and V̇O2p increases, indicating that the rate of V̇CO2p increase surpasses the 

rate of V̇O2p increase (4). It is also the point at which ventilation increases at a faster rate than 

V̇O2p (4). The heavy intensity exercise domain includes exercise above the individual’s ventilatory 

threshold and below the respiratory compensation point. The respiratory compensation point 

occurs when ventilation, previously closely coupled to V̇CO2p, rises more rapidly than V̇CO2p (4). 

The severe intensity domain is exercise above the respiratory compensation point, and exercise in 

this domain is soon limited by extreme fatigue (80). 

During a square-wave transition from rest or easy warm-up to moderate intensity exercise, 

phase II V̇O2p on-kinetics rises exponentially and rapidly achieves steady-state or plateau (Fig 1-

1) (80). During a square-wave transition to heavy intensity exercise, V̇O2p on-kinetics rises 
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exponentially at first, but the achievement of steady-state is delayed by an additional, less rapid 

increase in V̇O2p called the slow component (Fig 1-1) (80). This slow component is exaggerated 

when transitioning to severe intensity exercise, and steady-state is not achieved at all as exercise 

is rapidly limited by extreme fatigue (Fig 1-1) (80). 

Prior heavy exercise (or “priming” exercise) can speed V̇O2p on-kinetics during subsequent 

heavy exercise in young healthy adults (34). A “priming” effect occurs when the V̇O2p on-kinetics 

are faster (80). Possible mechanisms behind this speeding or “priming” effect have been reviewed 

by Poole & Jones (80), and are dichotomized as falling within either the O2 delivery or O2 

utilization domain. Beginning with O2 delivery, an increase in muscle temperature from the 

heightened energy output and a decrease in muscle and blood pH from the elevated anaerobic 

lactic metabolism may contribute to speeding of V̇O2p on-kinetics, both of which cause a rightward 

shift in the oxygen dissociation curve (80). However, a rise in temperature alone does not seem to 

account for priming in V̇O2p on-kinetics as studies using passive warming of the primary muscle 

groups or core temperature had no effect on V̇O2p on-kinetics (80). Acidosis-mediated increases 

in muscle perfusion remain plausible explanations and increased muscle oxygenation has been 

observed following prior heavy exercise (80). Increases in heart rate, cardiac output, and muscle 

blood flow also result from prior heavy-intensity exercise (80), however these seem less likely 

explanations as speeded bulk O2 delivery is generally not associated with speeded phase II V̇O2p 

on-kinetics (80). In terms of O2 utilization-dependent effects, elevated activity of the pyruvate  

dehydrogenase complex coupled with speeding of phase II V̇O2p on-kinetics has been 

demonstrated following priming exercise in young adults (36, 80). Finally, it is entirely plausible 

that prior exercise speeds V̇O2p on-kinetics via a coupled effect of increased muscle O2 delivery 

and increase O2 utilization (80). In any case, the mechanism(s) behind priming exercise have yet 

to be fully understood.  

In addition to priming V̇O2p on-kinetics, Rossiter et al. (83) measured phosphocreatine 

kinetics in the muscle via magnetic resonance spectroscopy in young adults and observed priming 

effects as the decrement in phosphocreatine during exercise was attenuated, indicating increased 

oxidative phosphorylation. Since then, several studies, originating from Scheuermann et al. (89), 

have demonstrated that phase II V̇O2p on-kinetics can be accelerated in older adults during a 

transition to moderate intensity exercise as a result of prior heavy exercise (24, 68, 81, 89). With 
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prior heavy intensity exercise, priming effects at the onset of subsequent moderate exercise were 

not observed in young healthy adults (34, 89), until recently, although it was a small effect and 

seen only in those with slower baseline phase II V̇O2p on-kinetics (68). It is hypothesized that the 

priming effects are a result of increased O2 delivery and muscle perfusion when moderate exercise 

is performed shortly (~6 minutes) after heavy exercise (24, 34), indicating that  muscle O2 

perfusion may be a more prominent rate limitation during moderate exercise in older adults 

compared to their younger counterparts. The distribution of blood flow within the exercising limb 

or muscle, not bulk conduit blood flow, may be a primary cause for slower phase II V̇O2p on-

kinetics in older adults, and speeding of V̇O2p on-kinetics following priming exercise (22–25, 30, 

34). This effect may occur via vasodilation, by increased sheer stress on the arterial wall (15).  

Indeed, Murias et al. (68) reported that in young adults, a heavy exercise “warm-up” improves 

local muscle O2 perfusion during subsequent moderate exercise, possibly contributing to the slight 

speeding of phase II V̇O2p on-kinetics. De Roia et al. (81) provided evidence that the prior bout of 

heavy intensity exercise allowed enhanced matching of local muscle O2 delivery to O2 utilization 

in older adults, thus speeding phase II V̇O2p on-kinetics in the subsequent moderate intensity 

exercise bout. The effect of a heavy intensity “warm-up” on V̇O2p on-kinetics has not been studied 

in any HF population. However, Bowen et al. (15) performed a moderate-intensity “warm-up” 

protocol (6 min on, 6 min recovery, 6 min on) in HFrEF using the same moderate-intensity exercise 

in lieu of heavy intensity priming. The second bout of moderate intensity exercise was reported to 

be significantly faster than the first bout (τV̇O2p 41 ± 16 s vs. 49 ± 19 s, respectively), suggesting 

muscle function (e.g., potentially enhanced O2 extraction or decreased oxidative phosphorylation 

inertia) can be improved by an acute increase in local muscle O2 perfusion in HFrEF (which is also 

supported by the simultaneously collected muscle deoxygenation data from near-infrared 

spectroscopy (NIRS)) (15). Likewise, Sperandio et al. (95) reported slower phase II V̇O2p on-

kinetics in HFrEF compared to controls, yet an exaggerated O2 delivery response (i.e., overshoot 

in deoxygenated hemoglobin at exercise onset). As mentioned above, individuals with HFpEF 

exhibit muscle dysfunction and reduced microvascular endothelial function (41, 43). The question 

remains if these patients would benefit from increased muscle blood flow, or if their exercise 

limitation is within muscle mitochondrial O2 utilization itself. This information would improve 

upon our poor understanding of HFpEF pathophysiology, and thus may aid in treatment 

development to improve exercise intolerance and declining survival rates in this population. 
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1.9 Role of Muscle Oxygenation on V̇O2p On-Kinetics 

 Muscle oxygenation, determined by the tissue oxygenation index (TOI), can be measured 

using NIRS and has been successfully measured in HF patients in several recent studies (15, 72, 

100), and has demonstrated test-retest reliability (72). Bowen et al. (15) used a monoexponential 

curve fit to analyse TOI on-kinetics in HFrEF patients. The authors demonstrated that prior 

moderate intensity exercise (a surrogate for priming exercise in HFrEF) increased resting baseline 

TOI, had a smaller compensatory “overshoot” in the TOI response (analogous to classic 

deoxygenation overshoot), increased end-exercise steady state TOI, but slowed τTOI. These data 

were interpreted as low resting skeletal muscle oxygenation in HFrEF, and that prior moderate 

intensity “priming” exercise caused an increase in muscle oxygenation throughout the subsequent 

exercise on-transient in healthier patients (15). As well, the increased muscle oxygenation was 

associated with priming of phase II V̇O2p on-kinetics in these patients, while those patients with 

markedly slower τV̇O2p exhibited slowed muscle oxygenation on-kinetics (15). The latter response 

demonstrates a skeletal muscle limitation independent of muscle O2 perfusion in HFrEF, that 

which may be regulated by disease severity (15). Spee et al. (94) also reported tissue saturation 

index (TSI; also known as TOI) in HFrEF patients during moderate intensity exercise. A similar 

TSI profile was exhibited in these patients that suggested an impairment in O2 delivery rather than 

utilization: at exercise onset, TSI drops rapidly below baseline to a minimum value and transiently 

increases until end-exercise (although usually not surpassing baseline levels) (94).  

1.10 Cardiac Output and Heart Rate On-Kinetics 

Cardiac output on-kinetics slow with age such that an increase in cardiac output for a given 

V̇O2p is attenuated compared to young healthy controls (25). Using continuous non-invasive blood 

pressure (NIBP) measurements, an algorithm (ModelFlow method) exists to estimate beat-by-beat 

cardiac output. ModelFlow cardiac output (cardiac outputMF) on-kinetics during moderate intensity 

exercise are typically twice as fast as phase II V̇O2p on-kinetics in young healthy men, and can 

account for the V̇O2p phase I amplitude or TD (56). Cardiac outputMF on-kinetics are typically not 

improved following heavy intensity exercise in healthy older adults (81). In HFrEF patients (EF 

<35%), cardiac output on-kinetics were markedly slower compared to myocardial infarction 

patients with EF above 35% (63 ± 13 vs. 50 ± 12 s) (55). Cardiac output on-kinetics (radial pulse 

contour analysis) were estimated in HFrEF during moderate-intensity exercise and yielded an 
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average time constant of 62 ± 25 s, with no comparison to healthy controls (49). The authors did 

however couple the cardiac output data with V̇O2p on-kinetics, and determined that, due to the 

sameness between the two signals, V̇O2p was likely limited by convective O2 delivery and not 

utilization in their HFrEF patients (49). Indeed, Spee et al. (94) reported a significant correlation 

between cardiac output and V̇O2p on-kinetics in HFrEF patients. Cardiac output τ and TOI 

(minimum value) were correlated in patients with relatively slow cardiac output on-kinetics, 

suggesting central hemodynamics (cardiac output) may limit muscle oxygenation (TOI) during 

moderate intensity exercise in HFrEF, ultimately limiting V̇O2p on-kinetics (94). Further, the 

authors confirmed their hypothesis that in HFrEF patients with delayed cardiac output increase, 

there is a compensatory increase in O2 extraction at the active muscle (94). To our knowledge, the 

effect of priming on cardiac output on-kinetics has not been assessed in a HF population, but such 

information would enhance our understanding of key limitations to V̇O2p on-kinetics and thus 

exercise tolerance in the HF population.  

Heart rate on-kinetics are classically slower in older versus younger adults (5, 21, 23, 27, 

89), attributed to, at least in part, slowing of vagal withdrawal with age and decreased beta-

adrenergic responsiveness (90). In older adults, heart rate on-kinetics should approximate cardiac 

output on-kinetics during moderate intensity exercise (25). Priming exercise causes heart rate on-

kinetics to adapt differently in young and older adults (24); while both groups tend to increase pre-

transition heart rate and decrease heart rate amplitude, τ slows in young adults only following 

priming exercise, equalizing the post-priming heart rate τ between young and older adults. These 

observations are interpreted as suggesting a similar increase in muscle O2 delivery (assumed by 

the elevated baseline heart rate) following priming exercise in both young and older adults, but no 

speeding of heart rate adaptation. In HFrEF patients, heart rate on-kinetics are slower than V̇O2p 

on-kinetics without priming and were not speeded by prior moderate intensity (“priming” 

surrogate) exercise (15), suggesting that cardiac output kinetics had minimal impact on limiting 

V̇O2p on-kinetics in those HFrEF patients.  

1.11 TPR On-Kinetics 

In young healthy men, TPR decreased rapidly at the onset of moderate intensity exercise, 

and remained markedly reduced for the duration of the 5-minute exercise protocol, achieving 

steady-state within 1-2 minutes of start. (56). De Roia et al. (81) estimated TPR on-kinetics in 
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healthy older adults before and after priming exercise. Before priming exercise, τTPR (effective τ; 

i.e., τ + TD) was exceptionally faster than V̇O2p effective τ (9 ± 6 vs. 39 ± 7 s). After priming, TPR 

effective τ was not significantly speeded (8 ± 4 s), but V̇O2p effective τ decreased (36 ± 4 s). These 

results indicate that systemic vascular resistance (i.e., TPR) does not hinder V̇O2p on-kinetics in 

older adults, and priming exercise does not enhance TPR on-kinetics. Tomczak et al. (98) reported 

systemic vascular resistance in HFrEF patients at rest, during steady-state moderate intensity 

exercise, and at peak exercise, all before and after cardiac resynchronization therapy. Resting 

systemic vascular resistance was not significantly reduced, but both steady-state exercise and peak 

exercise systemic vascular resistance values were markedly reduced following therapy, indicating 

a coupling between the ventricular and vascular function (98). While TPR on-kinetics have not 

been studied in HFpEF (to our knowledge), HFpEF patients tend to have higher resting TPR and 

a lower reduction in TPR during exercise compared to controls with non-cardiac related dyspnea 

(13).  

1.12 Purpose, Outcomes, and Hypotheses 

Cardiopulmonary dynamics, particularly V̇O2p, provide a holistic understanding of key 

limitations to exercise; better understanding of peripheral limitations to V̇O2p in HFpEF is required 

for disease characterization and treatment. Phase II V̇O2p on-kinetics illustrate the efficiency of 

exercising muscle metabolism; by studying the physiological components affecting V̇O2p 

(globally, a factor may be considered either O2 delivery (convective or diffusive) or O2 utilization), 

one may determine the rate-limiting factor for V̇O2p on-kinetics, which, in the diseased state, 

should then be targeted with treatment to improve exercise tolerance and quality of life. The rate-

limiting factor for V̇O2p varies between populations; active young adults are typically limited by 

O2 utilization; older adults tend to be limited by microvascular muscle O2 delivery; and HFrEF 

patients are commonly limited by either bulk O2 delivery (i.e., slow cardiac output and/or vascular 

on-kinetics) or microvascular muscle O2 delivery, or a combination of both. The rate-limiting 

factor for V̇O2p in HFpEF is still debated and cardiopulmonary dynamics and effects of priming in 

these patients have not been investigated. 

1.12.1 Purpose 

The objectives of this study were twofold; the primary objective was to compare phase II 

V̇O2p on-kinetics in patients with HFpEF to their healthy high-fit and low-fit counterparts. The 
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secondary objective was to determine if prior “priming” heavy exercise improves phase II V̇O2p 

on-kinetics during moderate-intensity exercise in HFpEF compared to high-fit and low-fit age-

matched controls. Priming exercise is thought to increase bulk and/or microvascular O2 delivery 

to exercising muscles. If priming exercise were to speed phase II V̇O2p on-kinetics in HFpEF, this 

would suggest that local muscle O2 delivery was a potential key contributing rate-limiting factor 

in this disease. Measurement of cardiac, vascular and microvascular function (i.e., factors that 

determine O2 delivery) will enable further understanding of how priming exercise may/may not 

alter phase II V̇O2p in HFpEF compared to controls. Given emerging evidence that peripheral 

factors may be the primary cause for impaired exercise capacity in HFpEF, our muscle 

oxygenation (TOI) measurement may be key in providing insight into the microvascular role of 

aerobic impairment in HFpEF. Specifically, if TOI were to demonstrate an “overshoot” following 

an initial reduction at exercise onset, this would suggest that diffusive O2 delivery may be limiting 

phase II V̇O2p on-kinetics. If there were to be no subsequent overshoot in TOI, this would suggest 

that O2 utilization in the muscle cell may limit phase II V̇O2p on-kinetics. If the TOI response 

profiles are different between no priming and after priming, this would suggest a locus shift in the 

rate-limiting factor of phase II V̇O2p on-kinetics.  

1.12.2 Primary Outcome 

The primary outcome was phase II V̇O2p on-kinetics (τ) during the transition to moderate 

intensity exercise before and after heavy intensity (“priming”) exercise.  

1.12.3 Secondary Outcomes 

Secondary outcomes were cardiac output τ, heart rate τ, and the remaining on-kinetics 

parameters (pre-transition baseline, TD, amplitude change, and steady-state) for V̇O2p, cardiac 

output, and heart rate, all during moderate intensity exercise before and after heavy intensity 

(“priming”) exercise. Additional outcomes were time course changes of stroke volume, TPR, and 

TOI during moderate exercise before and after priming exercise.  

1.12.4 Primary Hypotheses 

1) We hypothesized that patients with HFpEF would have slower phase II V̇O2p on-kinetics 

than their healthy high-fit and low-fit counterparts. 
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2) We hypothesized that prior heavy exercise would improve phase II V̇O2p on-kinetics in 

the healthy high-fit and low-fit age-matched controls but not in the HFpEF group because of their 

intrinsic severe muscle dysfunction and reduced oxidative capacity.  

1.12.5 Secondary Hypotheses 

1) We hypothesized that HFpEF patients would have similar cardiac output and heart rate 

on-kinetics and stroke volume time course changes to high-fit and low-fit control subjects, slower 

and smaller TPR reduction compared to controls, and a smaller change in TOI after the onset of 

exercise compared to controls, indicating reduced O2 extraction and thus utilization.  

2) We hypothesized that in HFpEF patients, priming exercise would not improve cardiac 

output on-kinetics, heart rate on-kinetics, stroke volume time course changes, or TOI time course 

changes (as reflecting muscle oxygen extraction) but would speed and increase the reduction in 

TPR, and would lower TOI at exercise onset, indicating an increase in microvascular O2 delivery. 

We also hypothesized the high-fit and low-fit control subjects would have no speeding of cardiac 

output on-kinetics, heart rate on-kinetics, or TPR time course changes as consistent with previous 

reports, no change in stroke volume time course changes as inferred from previous cardiac output 

data, but a more rapid reduction in TOI with a smaller transient increase following the initial 

reduction (indicative of increased O2 delivery, thus transferring the rate-limiting step to O2 

utilization).   
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Fig 1-1. Exercise Intensity Domains. Figure from Poole & Jones (80) without permission. 

Briefly, the V̇O2 responses differ between moderate, heavy, and severe exercise intensities. 

Notably, a steady-state is rapidly achieved in moderate exercise, whereas heavy and severe 

exercise have a delay (termed the slow-component). Steady-state V̇O2 is reached sooner during 

heavy exercise vs. severe or extreme. Exercise at extreme exercise intensities are halted prior to 

reaching V̇O2 max due to extreme fatigue and therefore do not display a plateau. CP, critical 

power (the highest V̇O2 that can be sustained for a long period, above which is the “severe” 

intensity domain (80)); GET, gas-exchange threshold (otherwise known as the ventilatory 

threshold, above which is the “heavy” intensity domain until CP (80)); V̇O2, oxygen uptake; V̇O2 

max, maximum oxygen uptake.  

/ 
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CHAPTER TWO: MANUSCRIPT 

2.1 Introduction 

The cardinal symptom of heart failure (HF), regardless of phenotype, is severe exercise intolerance 

(50), which is consequently associated with premature fatigue and reduced quality of life (19, 21). 

Related to exercise intolerance in patients with HF and preserved ejection fraction (HFpEF) is 

muscle dysfunction in the form of reduced oxidative enzymes (19, 32), reduced volume density 

and surface density (i.e., fewer cristae) of mitochondria (19, 32), lower slow twitch to fast twitch 

muscle fiber ratio (19, 21), reduced muscle fiber capillary density (19, 21), and increased 

intermuscular adipose tissue (19, 21). Severe exercise intolerance can be objectively measured 

using peak pulmonary oxygen uptake (peak V̇O2p), which is ~40% lower in patients with HFpEF 

compared to their healthy counterparts (19). Indeed, peak V̇O2p indexed to lean muscle mass 

remains lower in HFpEF patients compared to controls (18). Further, training-induced increases 

in peak V̇O2p, indexed to increases in percent lean leg mass, are attenuated in HFpEF compared to 

controls (18). The latter indicates impaired muscle quality in HFpEF (21). Arterial-venous O2 

content difference (AVO2Diff; common index of O2 extraction by active skeletal muscle tissue) 

has been reported to be the strongest independent predictor of peak V̇O2p in HFpEF (17), and 

accounts for reduced peak V̇O2p in HFpEF compared to controls in the absence of group 

differences in stroke volume or cardiac output (5). The predominant role of muscle dysfunction in 

HFpEF is further highlighted by training-related increases in peak V̇O2p being attributed to 

increased AVO2Diff, not cardiac morphology or neuroendocrine improvements (26). It is thus 

apparent that peripheral impairments significantly limit V̇O2p in HFpEF; however, there is 

controversy on whether the primary limitation lies within microvascular O2 delivery (perfusion or 

diffusion), or within O2 utilization in the mitochondria, or a tandem between both. Given the prior 

reports of peripherally-mediated limitations to exercise in patients with HFpEF, it may follow that 

the rate of pulmonary O2 uptake (V̇O2p on-kinetics) would be impaired in patients with HFpEF – 

however, this has not been studied. Without this information, we are limited in our understanding 

of key factors truly limiting exercise tolerance in this population. Further, the role of 

deconditioning should be separated from disease-specific physiological impairments. Indeed, 

Mettauer et al. (31) found that patients with HF and reduced ejection fraction (HFrEF) had 

similarly reduced mitochondrial intrinsic oxidative capacity (via muscle biopsy) to sedentary 
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matched controls, while active controls exhibited far greater mitochondrial intrinsic oxidative 

capacity. However, despite the similarities in muscle oxidative capacity, whole body V̇O2p was 

still greater in sedentary controls than HFrEF, suggesting potential delivery limitations in HFrEF 

that further exacerbate exercise impairment in addition to muscle dysfunction (31).  

Prior heavy exercise (“priming”; above the ventilatory threshold) may increase O2 delivery 

during subsequent moderate intensity exercise (below the ventilatory threshold), leaving V̇O2p on-

kinetics more-so under the control of oxidative metabolism in the mitochondria. In older adults, 

V̇O2p on-kinetics are acutely improved in moderate exercise when closely preceded by priming 

heavy exercise, likely due to increased blood perfusion to the active muscles, thus maximizing 

convective O2 delivery (9, 37). A decrease in muscle oxygenation (via tissue oxygenation index; 

TOI) measured by near-infrared spectroscopy (NIRS) may indicate increased local muscle 

diffusive O2 delivery (7). Patients with HFrEF with relatively normal V̇O2p on-kinetics exhibit 

increased muscle O2 delivery after priming exercise, while HFrEF patients with abnormally slow 

V̇O2p on-kinetics show a decrease in muscle O2 delivery following priming (7). The latter suggests 

that as disease severity worsens, intrinsic muscle dysfunction limits O2 uptake to a greater degree 

(7). As the primary peripheral limitation of V̇O2p in HFpEF is unclear (microvascular O2 delivery 

or O2 utilization), priming exercise may maximize convective and/or diffusive O2 delivery in 

HFpEF patients, thus revealing the possible role of O2 utilization on limiting V̇O2p on-kinetics in 

the HFpEF population. Further, V̇O2p on-kinetics predicts survival better than peak V̇O2p in HFrEF 

patients (39), therefore similar data on HFpEF should be obtained. 

The objectives of this study were twofold; the primary objective was to compare V̇O2p on-

kinetics in patients with HFpEF to healthy age-matched low-fit and high-fit controls. The 

secondary objective was to determine if prior “priming” heavy exercise improves V̇O2p on-kinetics 

during moderate-intensity exercise in HFpEF compared to low-fit and high-fit controls. Our 

primary hypothesis was that patients with HFpEF would have slower V̇O2p on-kinetics than their 

healthy low-fit and high-fit counterparts. Our secondary hypothesis was that prior heavy exercise 

would improve V̇O2p on-kinetics in the healthy high-fit and low-fit controls but not in the HFpEF 

group, because of their intrinsic severe muscle dysfunction and reduced oxidative capacity. Such 

a finding would suggest that the primary limitation to aerobic exercise in HFpEF may be due to 

muscle O2 utilization. 
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2.2 Methods 

2.2.1 Subjects 

The study subjects included 8 patients with HFpEF and 9 healthy age- and sex-matched 

controls, the latter of which were split into groups of 4 high-fit and 5 low-fit controls based on 

peak V̇O2p score, similar to Mettauer et al. (31). The split between high-fit and low-fit controls 

facilitated the assessment of the effect of deconditioning in the absence of disease on exercise 

physiology (31). Subjects were clinically stable and able to perform cycle ergometry. Healthy 

controls required an EF > 50%, no systolic or diastolic dysfunction, and no known cardiovascular 

disease for study inclusion. A cardiologist adjudicated the HFpEF diagnosis for the patient group 

based on HF signs and symptoms, EF, and diastolic function (30). Exclusion criteria for all subjects 

included a pacemaker or implantable cardioverter-defibrillator, a change in medication 

prescription within the last 3 months, an inability to perform brief cycle ergometry, and respiratory 

disease or impairment. Patients with HFpEF were cleared to participate in the study by a 

cardiologist prior to study commencement and on each day of exercise testing. In addition, a 

cardiologist supervised peak V̇O2p tests for HFpEF patients and control subjects and all square-

wave exercise protocols for the HFpEF group. Written informed consent was obtained prior to 

study commencement and ethical approval for this study was obtained by the University of 

Saskatchewan Research Ethics Board. 

2.2.2 Study Design 

The study is a parallel group, quasi-experimental design. Subjects underwent the same six 

tests: a resting echocardiogram; a muscle density assessment; a peak V̇O2p test; a moderate-

intensity, control square-wave exercise protocol (MOD1); and an experimental square-wave 

exercise protocol (MOD2) involving a bout of heavy intensity exercise prior to a moderate 

intensity square-wave exercise protocol. Both MOD1 and MOD2 protocols were repeated three 

times each. Subjects reported to the laboratory after consuming only a light meal and abstaining 

from heavy exercise and consuming caffeine during the previous 12 hours before the test. Similar 

to Scheuermann et al. (40), and to condense visits to the laboratory, subjects performed one 

repetition of MOD1 followed by one repetition of MOD2 during the same visit, with a 30-min 

minimum break between the protocols, for a total of 2 exercise protocols per visit. All exercise 

protocols were performed on an upright, electronically braked cycle ergometer (Ergoline 800S, 
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SensorMedics, Yorba Linda, CA). The square-wave exercise protocols were similar to prior 

reports (36), but with a modification to the exercise duration and commencing exercise from rest 

(not an exercise 20 W baseline, for example) in order to accommodate the severe exercise 

intolerance of patients with HFpEF. Our procedure also served to maximize the amplitude of the 

V̇O2p response to square-wave exercise so as to improve the confidence of our V̇O2p kinetic 

parameter estimates (28). We have previously employed similar protocol modifications in patients 

with HF (45), as have others (7).   

2.2.3 Echocardiography 

A resting echocardiogram was performed on the first day of testing by the same trained 

sonographer. Parameters collected included end-diastolic volume, end-systolic volume, stroke 

volume, ejection fraction (EF), left atrial volume index, left atrial diameter, left ventricular early 

diastolic filling measured by early mitral inflow velocity (E), left ventricular late diastolic filling 

measured by late mitral inflow velocity (A), E/A ratio (an index of diastolic filling and ventricle 

recoil), myocardial diastolic motion velocity (eˈ), estimated left ventricular filling pressure (E/eˈ), 

left ventricular mass index, posterior wall thickness, and left ventricular diastolic score (grade I, 

II, or III). 

2.2.4 Peak Exercise Testing 

A peak exercise test to volitional fatigue was completed following the echocardiogram. 

Subjects sat quietly on the electronically-braked cycle ergometer (Ergoline 800S, SensorMedics, 

Yorba Linda, CA) for 5-min to obtain resting baseline data before the test. There was no warm-up 

in either group due to anticipation of early fatigue in the HFpEF patients. HFpEF patients pedaled 

at 60 rpm during a 10 W/min ramp protocol until exhaustion or failure to maintain 50 rpm. Control 

subjects completed the same peak exercise protocol but at 20-25 W/min, depending on their 

estimated fitness. Subjects were provided with standard verbal checkups at regular intervals by the 

investigator. A 12-lead electrocardiogram monitored heart rate and brachial blood pressure 

(Tango+ Stress Blood Pressure, SunTech Medical Inc., Morrisville, NC, USA) was taken before 

and after the test. Breath-by-breath gas exchange and ventilation were measured. Peak V̇O2p and 

corresponding gas exchange and ventilation parameters were determined as the highest 30-s values 

within the last 1-min of exercise. Data from this test were used to determine each subject’s work 

rates approximating 90% ventilatory threshold (moderate-intensity) and the half-way point 
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between the ventilatory threshold and peak exercise (Δ50%, heavy-intensity) and were 

subsequently used for the MOD1 and MOD2 square-wave protocols. The ventilatory threshold 

was identified as the V̇O2p at which CO2 production (V̇CO2p) increased at a greater rate than the 

increase in V̇O2p described by Beaver et al. (2). This point coincides with a rise in the minute 

ventilation/V̇O2p ratio while the minute ventilation/CO2 ratio remains stable. The peak test also 

served as medical screening with a cardiologist present and monitoring the 12-lead ECG. 

2.2.5 Moderate-Intensity Exercise V̇O2p On-Kinetics Protocol (MOD1) 

The control square-wave exercise protocol (MOD1; Fig 2-1) began with subjects sitting 

quietly on the electronically-braked cycle ergometer for 5-min followed by verbal instruction to 

begin pedaling (at 60 rpm) for 4-min of moderate intensity exercise. Subjects were specifically 

coached on obtaining a pedaling rate of 60 rpm as fast as possible and on strictly maintaining the 

target pedaling rate. Following exercise, subjects were instructed to stop and sit quietly for 5-min 

of recovery (data not reported here). Brachial blood pressure was measured before and after 

MOD1.  

2.2.6 Heavy-Intensity “Priming” Exercise on Subsequent Moderate-Intensity Exercise V̇O2p On-

Kinetics Protocol (MOD2) 

Similar to MOD1, the experimental square-wave exercise protocol (MOD2; Fig 2-1) began 

with subjects sitting quietly on the electronically-braked cycle ergometer for 5-min followed by 

verbal instruction to begin pedaling (60 rpm) for 2-min of heavy intensity exercise. At 2-min, 

subjects were instructed to stop and sit quietly for 5-min of recovery (data not reported here) until 

verbal instruction to resume pedaling (60 rpm) for 4-min of moderate intensity exercise. Subjects 

were specifically coached on obtaining a pedaling rate of 60 rpm as fast as possible and on strictly 

maintaining the target pedaling rate. Following exercise, subjects were instructed to stop and sit 

quietly for 5-min of recovery (data not reported here). Brachial blood pressure was measured 

before and after MOD2.  

2.2.7 Outcome Measurements 

The primary outcome was phase II V̇O2p on-kinetics during the transition from rest to 

moderate exercise, as measured by breath-by-breath gas exchange analysis at the mouth. 

Secondary outcomes included continuous measurement of heart rate, model flow stroke volume 
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(stroke volumeMF), cardiac output (from heart rate and stroke volumeMF), mean arterial pressure 

(MAP), total peripheral resistance (TPR; from MAP and cardiac output), and TOI (NIRS). 

2.2.8 V̇O2p 

V̇O2p was measured using breath-by-breath gas exchange analysis (SensorMedics Vmax 

Encore, VIASYS Healthcare Respiratory Technologies, Yorba Linda, CA). The metabolic cart 

sampled continuously to yield breath-by-breath data, and allowed real-time monitoring of V̇O2p, 

V̇CO2p, and respiratory exchange ratio. Prior to each test, the gas analysing system was calibrated 

using known gas concentrations of O2 (16%) and carbon dioxide (4%), and flow volume was 

calibrated using a 3L syringe across a range of expected breathing frequencies. 

2.2.9 Heart Rate 

Beat-by-beat heart rate was measured continuously throughout each session using a 12-lead 

ECG during the V̇O2p peak test and 3-lead ECG for both MOD1 and MOD2 protocols (Bio Amp, 

ADInstruments, New South Wales, Australia) using a lead II configuration. 

2.2.10 Stroke VolumeMF and Cardiac OutputMF 

Stoke volumeMF was estimated from blood pressure waveforms recorded from a finger 

plethysmograph (Human NIBP, ADInstruments, New South Wales, Australia) (22). The finger 

cuff was instrumented on a middle phalanx of the left hand. The left arm and hand was secured on 

a custom padded table adjacent to the cycle ergometer, allowing the subject to maintain a restful 

and still position of their NIBP-instrumented arm. The model flow approach for stroke volume 

estimation has been previously described (48) and used in a similar exercise protocol (37). Briefly, 

the model uses beat-by-beat MAP, age, sex, and body surface area to estimate stroke volume. We 

understand that absolute stroke volume values may not be reliable using the model flow estimation 

as this method assumes aortic compliance, which in any given individual may differ substantially 

from the algorithm. As such, we used this method to account for relative changes from baseline, 

in lieu of not having an echocardiographic calibration value. We calibrated the NIBP system using 

resting blood pressure values obtained with an automated stress blood pressure system (Tango+ 

Stress Blood Pressure, SunTech Medical Inc., Morrisville, NC, USA). Beat-by-beat cardiac 

outputMF was calculated from time-aligned stroke volumeMF and heart rate.  
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2.2.11 MAP and TPR 

Beat-by-beat MAP was measured and monitored real-time during testing using finger 

plethysmography (Human NIBP, ADInstruments, New South Wales, Australia) (22). Brachial 

blood pressure of the right arm was taken before and after the protocols for offline calibration of 

the NIBP signal. Beat-by-beat TPR was estimated from time-aligned MAP and calculated cardiac 

output using the following equation: TPR = 8 • MAP −  mean right atrial pressure /cardiac output, where mean right atrial pressure was assumed to be zero. TPR was expressed in 

relative units of force/second, dyn·s/cm5.  

2.2.12 Hemoglobin On-Kinetics 

Continuous-wave near-infrared spectroscopy (NIRO-200NX, Hamamatsu Photonics K.K., 

Hamamatsu City, Shizuoka Pref., Japan) was used to assess the hemoglobin O2 content of the right 

vastus lateralis during cycling. This technique is based on the modified Lambert-Beer law; the 

proximal diode emits light into the tissue at three wavelengths (735, 810, and 850 nm), which are 

absorbed differently by hemoglobin depending on the O2 content. The second diode measures the 

returning light wavelengths, and the amount of light absorbed by HHb and O2Hb are separately 

calculated by the NIRS system (incorporating all three wavelengths for both HHb and O2Hb). The 

NIRS signals represent the average O2 saturation of hemoglobin in the directly underlying vascular 

bed (small arteries, arterioles, capillaries, venules, and small veins) and of myoglobin in the muscle 

fibers (15). The greatest contribution to the NIRS signals are capillaries (15). Five signals are 

gained from this measure: HHb, O2Hb, total hemoglobin (CHb), TOI, and normalized total 

hemoglobin index (nTHI). All five signals are relative to an initial value set equal to zero, 

determined during a period of rest with no bodily movement. A pair of non-stick electrodes placed 

on the skin surface of the vastus lateralis of the right leg recorded signals of O2 content in the 

muscle and was monitored live on a computer screen during testing. To maintain measure 

consistency between testing sessions, anthropometric measures and anatomical landmarks were 

used to ensure consistent electrode placement. The light emitting diodes were secured to the skin 

surface using adhesive tape. The inter-diode surface distance was consistently 5 cm, as ensured by 

a NIRO-200 black diode holder. As a general rule, the penetration depth of the NIR light is half 

that of the inter-diode distance, resulting in a relatively small and superficial volume of skeletal 

muscle tissue being assessed (15). A black cloth blocked room light from penetrating the 
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measurement area, and an elastic bandage held everything securely in place. This technique was 

successfully used in HF patients to assess muscle O2 delivery at rest, during the progressive 

transition to steady-state moderate intensity exercise (41), maximal exercise, and during 

suprasystolic cuff ischemia to the muscle in question (49). Prior to each test, the NIRS system ran 

for 2-5 minutes before commencing baseline recordings to obtain a steady signal, and all channels 

were zeroed immediately prior to commencing the 5-minute resting baseline.  

TOI and nTHI represent the O2 saturation of tissue hemoglobin and the relative concentration 

of total tissue hemoglobin, respectively (35). They are calculated as TOI = ∆O2Hb/∆CHb and nTHI 

= ∆CHb(t)/∆CHb(0), where ∆CHb(t) is the ∆CHb at the timepoint in question and ∆CHb(0) is the 

∆CHb immediately following system zeroing. Thus, nTHI represents the ratio of the current value 

to the initial value of total hemoglobin.  

At exercise onset, we observed a sudden and substantial reduction in both HHb and O2Hb in 

all subjects, with a large portion of subjects’ HHb remaining below baseline. Similar observations 

have been reported using a NIRO200 system (7), whose authors opted to use TOI as it was far 

more reproducible and allowed confidence in interpretation over the HHb signal, which was likely 

more sensitive to changes in arterial or venous capacitance (38, 43). We therefore opted to use the 

same variable (TOI) for hemoglobin data analysis.  

2.2.13 Peripheral Quantitative Computed Tomography 

For demographic purposes, subjects underwent imaging of the right plantar flexors using 

an XCT 2000 peripheral quantitative computed tomography (pQCT) device (Stratec 

Medizintechnik GmbH, Pforzheim, Germany). The scanner was factory calibrated against the 

European Forearm Phantom for a single energy. For the present investigation, the pQCT scanner 

measured subcutaneous adipose and lean tissue with hydroxyapatite equivalent volumetric 

densities of 0 mg/cm3 and 60 mg/cm3, respectively (14). The same technician performed all scans 

and visually inspected images for movement artifact, and repeated the scan if required. Cross-

sectional scans were taken at the 38% and 66% sites of the tibia (i.e., measured from the medial 

malleolus of the tibia to the medial condyle). The 66% site represents the preferential site to 

evaluate plantar flexor lean tissue. However, the scanner can only fit a calf diameter of 40 cm; due 

to some subjects having larger leg mass, a scan at 38% (naturally smaller diameter) was also taken 

to ensure each subject had muscle quality and subcutaneous adipose data to report.  
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2.2.14 Data Acquisition and Processing 

Absolute V̇O2p was exported from the collection system as a text file in breath-by-breath 

format. Heart rate, blood pressure, and TOI were recorded and integrated through a data acquisition 

hardware system that sampled at 1 kHz/s (Powerlab 16/30, ADInstruments, New South Wales, 

Australia) and was analyzed offline using compatible software (LabChart 7.0, ADInstruments, 

New South Wales, Australia). The NIBP signal was calibrated in LabChart to yield SBP, MAP, 

and DBP using resting brachial blood pressure values (Tango+ Stress Blood Pressure, SunTech 

Medical Inc., Morrisville, NC, USA). Premature beats were removed from LabChart data for 

analyses.  Heart rate, MAP, and TOI data were exported from LabChart as a text file. Using the 

exported MAP signal, beat-by-beat stroke volumeMF analysis (ModelFlow method (48)) was 

conducted offline with an emulator program (DOSBox x86, version 0.74, DOSBox Inc.) in order 

to run the BeatScope® Easy software (FMS, Finapres Medical Systems BV, Arnhem, The 

Netherlands). The resulting beat-by-beat stroke volumeMF was multiplied by the ECG-recorded 

heart rate to yield cardiac outputMF. 

pQCT data were analyzed with the open source program BoneJ (version 1.3.11) and has 

been shown to be precise in our laboratory (14) for muscle area, density, and subcutaneous adipose 

tissue.  The program’s analysis of soft tissue uses a 7 × 7 median filter to reduce motion artifact 

and uses tissue density thresholds (selected by user) to binarize the image (14). The thresholds 

used for muscle (41 to 139 mg/cm3) and subcutaneous adipose (-40 to 40 mg/cm3) were consistent 

with those validated (14). Muscle quality was assessed using muscle density (mg/cm3, i.e., the 

denser, the less inter- and intramuscular fat, therefore, the higher the quality). Note that muscle 

area included intermuscular adipose tissue, and muscle density was calculated as muscle content 

(mg/cm) divided by muscle area (cm2) (14). Subcutaneous adipose tissue was determined by the 

total limb area minus the area of tissues greater than the subcutaneous adipose-muscle boundary 

(14). 

2.2.15 Curve Fitting 

A mono-exponential curve fit was used for determining V̇O2p on-kinetics. First, abhorrent 

breaths were filtered from the breath-by-breath data. All three repetitions were linearly interpolated 

to 1-s intervals, time aligned, and averaged to 5-s time bins. The repetitions were then 

superimposed to yield a single averaged signal per subject. This single dataset was curve-fitted 
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using the analysis software Origin (OriginLab Corporation, Northampton, Massachusetts, USA) 

with the following equation: 𝑌 𝑡  =  𝑌 𝑏  +  𝐴 •  [  –  𝑒– 𝑡 − 𝑇𝐷 /𝜏], where Y (t) was the 

V̇O2p (ml/kg/min) at time point (t) from exercise onset, Y (b) was the V̇O2p (ml/kg/min) at baseline, 

A was the change in amplitude (ml/kg/min) of V̇O2p at the end of the time delay to steady-state 

exercise V̇O2p, τ (or tau) was the time constant (s) and represents the rate of V̇O2p increase, and 

TD was the time delay (s) which represents the cardiodynamic phase: a brief pause between the 

start of exercise and the start of the exponential increase of V̇O2p, believed to be caused by the  

increase in pulmonary blood flow without a change  in arterial or venous O2 content (36). The 

speed of the cardiodynamic phase is likely due to the sudden increase in cardiac output, attributed 

to vagal withdrawal and active muscle pumping (36). For consistency, the window to commence 

curve-fitting was set at 25 s for each subject. This approach was similar to the optimal method (20s 

set TD) defined by Benson et al. (3) but was adapted to 25s as the dataset showed a consistently 

longer TD of at least 25s. The best fit was determined by minimizing the residual sum of squares. 

The same process was repeated for heart rate and cardiac output on-kinetics - however, curve 

fitting was commenced at exercise onset (time 0). 

The variability and occasional non-exponential response in stroke volumeMF, TPR, and 

TOI did not facilitate reliable curve-fitting. Therefore, we opted to analyse the time course changes 

of these variables as delta values from a baseline (normalized to zero). Upon visual inspection of 

the data, three time points were chosen to best represent the nature of each physiological response: 

15s after baseline (11-15s average) and 30s after baseline (26-30s average) to represent acute 

adjustments to exercise, and end-exercise (211-240s average) to represent the end-exercise value. 

2.2.16 Statistical Analysis 

Normality and homogeneity checks determined whether the data were normally distributed 

and had homogeneity of variance between the three groups. One-way ANOVAs assessed group 

differences in demographic data, including peak exercise and ventilatory threshold V̇O2p, heart 

rate, and work rate, echocardiographic data, and calf muscle and adipose data. 

For V̇O2p, cardiac outputMF, and heart rate on-kinetics data, omnibus group × condition 

repeated measures ANOVAs (3 × 2) were conducted separately for each on-kinetics parameter 

(i.e., τ, pre-transition baseline, total amplitude, and steady state). When significant effects were 

detected, one-way ANOVAs were conducted to assess group differences separately by MOD1 and 
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MOD2 with Student-Newman Keuls (SNK) post-hoc, while paired t-tests assessed changes from 

MOD1 to MOD2 within a group. Nonparametric equivalent tests (independent samples Kruskal-

Wallis one-way ANOVA) were used where the assumption of homogeneity of variances was 

violated. 

Omnibus group × time × condition repeated measures ANOVAs (3 × 4 × 2) were 

performed for ∆stroke volumeMF, ∆TPR, and ∆TOI. Four timepoints (0, 15s, 30s, and end-

exercise) were used within each condition. Where the assumption of sphericity was not met, the 

Greenhouse-Geisser correction value was used. When significant effects were detected, one-way 

repeated measures ANOVAs (4 timepoints), split by group assessed time-course changes within a 

group in either MOD1 or MOD2, one-way ANOVAs with SNK post-hoc were performed to assess 

group differences at a time point, and paired t-tests assessed changes from MOD1 to MOD2 within 

a group. Where Levene’s test was significant, Kruskal-Wallis tests were employed. 

The significance level was set a priori at P<0.05 for all analyses. Data analyses were 

conducted using SPSS 16.0 statistical software (SPSS Inc., Chicago, IL, USA). Data are presented 

as means ± standard deviation (SD) in tables and text, and means ± standard error of the mean 

(SEM) in figures. 

2.3 Results 

2.3.1 Subject Demographics  

Groups were of similar age, height, weight, and resting blood pressure (Table 2-1). BMI 

tended to be greater in the HFpEF group, but was not significantly different (Table 2-1). Due to 

our control group median split, our high-fit group consisted of all male subjects, while the low-fit 

and HFpEF groups included 3 and 2 female subjects, respectively. Patient cardiac-related 

medications are listed in Table 2-1. All echocardiographic parameters passed Levene’s test except 

E, A, and E/eˈ where Kruskal-Wallis was used, and are detailed in Table 2-1. Further, measurement 

of A and by extension E/A estimation could not be performed in two patients, and diastolic score 

could not be determined in a third patient, each due to difficulties with their respective assessments. 

There were no group differences in muscle density, muscle area, or subcutaneous adipose area at 

the 38% or 66% site of the leg (Table 2-1). Note that two HFpEF patients could not fit their leg far 

enough into the scanner to obtain a 66% site scan, so they were excluded from this analysis.  
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2.3.2 Peak Exercise Testing 

Peak exercise and ventilatory threshold data are reported in Table 2-1. Notably, peak V̇O2p 

was greater in high-fit controls compared to HFpEF and low-fit controls (P<0.001). Peak heart 

rate was lower in patients with HFpEF compared to both control groups (P=0.003), and HFpEF 

achieved a lower percent-predicted heart rate compared to both control groups (P=0.002). 

Ventilatory threshold heart rate was different between HFpEF (lower heart rate) and high-fit 

(higher heart rate) controls (P=0.032). Work rate at ventilatory threshold was different between all 

three groups; lowest in HFpEF and highest in high-fit controls (P=0.001).  

2.3.3 V̇O2p On-Transient Kinetics 

The omnibus ANOVA for τV̇O2p yielded significant main effects of priming (P=0.039) 

and group (P=0.008), but not for the condition × group interaction in phase II τV̇O2p (P=0.334; 

Fig 2-2 and Table 2-2). SNK revealed that high-fit controls (25 ± 6 s) had faster phase II τV̇O2p 

compared to HFpEF (45 ± 15 s) and low-fit controls (50 ± 19 s; P=0.008), pooled across 

conditions. τV̇O2p was faster in MOD2 (37 ± 14 s) compared to MOD1 (47 ± 19 s), pooled across 

groups.  

V̇O2p baseline had a main effect of priming (P=0.001), but no effect of group (P=0.283) or 

condition × group interaction (P=0.715; Fig 2-2). Pooled across groups, V̇O2p baseline was 

elevated after priming (0.344 ± 0.066 L/min) compared to MOD1 (0.308 ± 0.059 L/min). 

Total V̇O2p amplitude change had a main effect of group (P=0.003) but no effect of priming 

(P=0.920) or condition × group interaction (P=0.458; Fig 2-2 and Table 2-2). SNK revealed that 

high-fit controls (0.830 ± 0.199 L/min) had greater amplitude change compared to HFpEF (0.461 

± 0.128 L/min) and low-fit controls (0.575 ± 0.088 L/min; P=0.003), pooled across conditions. 

Finally, steady-state V̇O2p had a difference between groups (P=0.014), but no effect of 

priming (P=0.060), or condition × group interaction (P=0.396; Fig 2-2 and Table 2-2). SNK 

indicated that high-fit controls (1.181 ± 0.237 L/min) had an elevated steady-state V̇O2p compared 

to HFpEF (0.797 ± 0.183 L/min) and low-fit controls (0.866 ± 0.123 L/min; P=0.014), pooled 

across conditions. To illustrate the trend toward priming (P=0.060), MOD2 steady-state (0.925 ± 

0.242 L/min) was greater than MOD1 (0.890 ± 0.236 L/min) pooled across groups, although not 

statistically significant.  
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2.3.4 Cardiac OutputMF On-Transient Kinetics 

The omnibus ANOVAs for cardiac outputMF τ, baseline, amplitude change, and steady-

state yielded no group × condition interactions (all P>0.05), main effects of group (all P>0.05), or 

main effects of priming (all P>0.05; Fig 2-3).  

2.3.5 Heart Rate On-Transient Kinetics 

The omnibus ANOVA for heart rate τ yielded a main effect of priming (P=0.001), but not 

a condition × group interaction (P=0.195) or effect of group (P=0.192; Fig 2-4). MOD2 heart rate 

τ (44 ± 27 s) was slower than MOD1 τ (34 ± 21 s), pooled across groups. 

Heart rate baseline had no group × condition interaction (P=0.975), main effect of group 

(P=0.626), or priming (P=0.755). MOD1 heart rate baseline was 73 ± 14 beats/min in HFpEF, 78 

± 12 beats/min in low-fit controls, and 79 ± 15 beats/min in high-fit controls. MOD2 heart rate 

baseline was 72 ± 14 beats/min in HFpEF, 78 ± 9 beats/min in low-fit controls, and 79 ± 12 

beats/min in high-fit controls. 

Heart rate amplitude change had no group × condition interaction (P=0.116), main effect 

of group (P=0.280), or priming (P=0.340; Fig 2-4).  

Heart rate steady-state had a group × condition interaction (P=0.043), but no effect of group 

(P=0.283), or priming (P=0.487; Fig 2-4). To investigate the interaction, one-way ANOVAs and 

paired t-tests were conducted. One-way ANOVAs revealed no group effect in MOD1 (P=0.507) 

or MOD2 (P=0.132). Paired t-tests also revealed no effect of priming in HFpEF (P=0.129), low-

fit (P=0.130), or high-fit controls (P=0.912).  

2.3.6 Stroke volumeMF On-Transient Time Course Changes 

Mauchly’s Test of Sphericity was significant, so degrees of freedom values were adjusted 

with a Greenhouse-Geisser epsilon correction factor. The omnibus ANOVA revealed a time × 

condition interaction (P=0.012), but no group × time × condition interaction (P=0.579), group × 

time interaction (P=0.288), group × condition interaction (P=0.412), or main effect of group 

(P=0.372; Fig 2-5).  

A follow-up two-way (4 × 2) repeated measures ANOVA revealed a time × condition 

interaction (P=0.003). In MOD1, stroke volumeMF was significantly increased from baseline at 
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15s, 30s, and end-exercise (all P<0.001), pooled across groups. In MOD2, stroke volumeMF was 

similarly increased from baseline at 15s (P=0.002), 30s (P=0.016), and end-exercise (P=0.021), 

pooled across groups. Using paired t-tests pooled across groups, ∆stroke volumeMF at 15s 

(P=0.005), 30s (P=0.008), and end-exercise (P=0.004) were all reduced following priming 

compared to MOD1 (Fig 2-5).  

2.3.7 TPR On-Transient Time Course Changes 

Mauchly’s Test of Sphericity was significant, so degrees of freedom values were adjusted 

with a Greenhouse-Geisser epsilon correction factor. The omnibus ANOVA for ∆TPR revealed a 

group × time interaction (P=0.004), but no group × time × condition interaction (P=0.554), group 

× condition interaction (P=0.734), time × condition interaction (P=0.287), or main effect of 

priming (P=0.279; Fig 2-6).  

One-way ANOVAs at 15s, 30s, and end-exercise pooled across conditions were conducted 

with SNK post-hoc. Levene’s test was significant at 15s and 30s, so Kruskal-Wallis one-way 

ANOVAs were conducted for 15s and 30s. At 15s, high-fit controls had greater negative ∆TPR 

compared to patients with HFpEF (Kruskal-Wallis P=0.038). At 30s, high-fit controls had greater 

negative ∆TPR compared to patients with HFpEF and low-fit controls (Kruskal-Wallis P=0.032). 

At end-exercise, high-fit controls had greater negative ∆TPR compared to patients with HFpEF 

and low-fit controls (P=0.013).  

One-way repeated measures ANOVAs, split by group, were conducted to evaluate each 

groups’ time course changes in TPR from baseline, pooled across conditions. There was an effect 

of time in patients with HFpEF (P<0.001), where ∆TPR at 15s (P<0.001), 30s (P=0.003), and end-

exercise (P=0.001) was significantly lower than the baseline reference. A time effect in low-fit 

controls (P=0.016) revealed that TPR was significantly reduced from baseline at 15s (P=0.023) 

and 30s (P=0.048) but not at end-exercise (P=0.208). As well, ∆TPR was more negative at 15s 

compared to 30s in low-fit controls (P=0.042). A time effect in high-fit controls (P=0.019) 

consisted of end-exercise having greater negative ∆TPR compared to 15s (P=0.029).  

2.3.8 TOI On-Transient Time Course Changes 
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Mauchly’s Test of Sphericity was significant, so degrees of freedom values were adjusted 

with a Greenhouse-Geisser epsilon correction factor. The omnibus ANOVA for ∆TOI revealed a 

group × time × condition interaction (P=0.045; Fig 2-7).  

One-way repeated measures ANOVAs, split by group in MOD1 revealed a main effect of 

time effect in HFpEF (P=0.045) and low-fit controls (P=0.001), but not high-fit controls 

(P=0.078). However, MOD1 pairwise comparisons revealed no inter-timepoint differences in 

HFpEF (all P>0.05) or low-fit controls (all P>0.05). MOD2 repeated measures ANOVA revealed 

a main effect of time in HFpEF (P=0.034) and low-fit controls (P<0.001), but not high-fit controls 

(P=0.076). MOD2 pairwise comparisons revealed no inter-timepoint differences in HFpEF (all 

P>0.05), but a difference between baseline and 15s ∆TOI in low-fit controls (P=0.050; Fig 2-7).  

Paired t-tests assessed within-group condition effects. In HFpEF, there was no difference 

in ∆TOI between MOD1 and MOD2 at 15s (P=0.065) and end-exercise (P=0.053), but a greater 

negative ∆TOI at 30s was present after priming (P=0.033). Neither 15s (P=0.557), 30s (P=0.566), 

nor end-exercise (P=0.060) presented any priming effects in low-fit controls. High-fit controls 

exhibited priming effects at all three timepoints; ∆TOI at 15s, 30s, and end-exercise all went from 

positive change to negative change (P=0.030, P=0.031, and P=0.023, respectively; Fig 2-7).  

One-way ANOVAs between groups were significant in MOD1 at 15s (P<0.001) and 30s 

(P=0.024) but not end-exercise (P=0.086). SNK revealed that high-fit controls had greater (and 

positive) ∆TOI compared to both groups at 15s and compared to low-fit controls only at 30s. There 

were no between-group effects in MOD2 at 15s (P=0.051), 30s (P=0.354), or end-exercise 

(P=0.724; Fig 2-7). 

2.4 Discussion 

2.4.1 Summary of Results 

This study examined 1) V̇O2p on-kinetics in patients with HFpEF compared to their high-

fit and low-fit non-diseased counterparts, and 2) the effects of priming exercise on V̇O2p on-

kinetics during moderate-intensity exercise in patients with HFpEF compared to their high-fit and 

low-fit non-diseased counterparts. The primary findings of this study were 1) high-fit controls had 

faster τV̇O2p compared to patients with HFpEF and low-fit controls pooled across conditions, and 

2) priming exercise improved phase II τV̇O2p pooled across groups.  
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The finding of faster V̇O2p on-kinetics in high-fit controls compared to patients and low-fit 

controls is supported by a greater change in amplitude and a greater steady-state V̇O2p in high-fit 

controls compared to patients with HFpEF and low-fit controls. Our measures of peripheral 

physiology also support this finding. Specifically, high-fit controls demonstrated a greater 

reduction in TPR at early onset of exercise (15-30s) and at steady-state exercise compared to 

patients with HFpEF, and compared to low-fit controls at 30s and at steady-state exercise. Further, 

TPR in HFpEF decreased at exercise onset and plateaued at 15s, without further significant 

reduction. High-fit controls had a continual decrease in TPR until steady-state exercise. TPR in 

low-fit controls was lowest at 15s following exercise onset and was not different from baseline at 

steady-state exercise, indicating a subsequent rise in TPR after 15s. High-fit controls had a greater 

and positive change in TOI (i.e., increase) at early exercise onset compared to patients with HFpEF 

and low-fit controls before priming. However, there was no difference between groups at steady-

state exercise before priming.  

The priming effect of speeding V̇O2p on-kinetics coincides with an increased baseline V̇O2p 

following priming in our subjects, but was not supported by cardiac data in any group: heart rate τ 

was slower following priming; priming exercise decreased ∆stroke volumeMF at early onset of 

exercise (15-30s) and end-exercise (final 30s of steady-state exercise); and no difference between 

groups in cardiac outputMF kinetics was detected. Our TOI data demonstrate a group difference in 

muscle O2 delivery despite no group difference in τV̇O2p after priming exercise. TOI was further 

reduced following priming in patients with HFpEF at 30s only. While low-fit controls exhibited 

no effects of priming in TOI, we observed a shift from positive change from baseline TOI to 

negative change from baseline TOI at 15s, 30s, and steady-state exercise in high-fit controls. 

Despite this, there were no group differences following priming exercise.  

Cumulatively, our findings suggest that peripheral factors (TPR and TOI) may have played 

a larger role than cardiac factors (cardiac output, heart rate, stroke volume) in limiting phase II 

V̇O2p on-kinetics in patients with HFpEF compared to high-fit controls. Further, the faster phase 

II V̇O2p on-kinetics following priming may be explained by improved O2 extraction (i.e., O2 

diffusion) early in exercise in patients with HFpEF and increased O2 extraction throughout the 

exercise bout in high-fit controls, with no priming effect in low-fit controls. The latter effects of 

priming exercise suggest an impairment of microvascular diffusive O2 delivery in patients with 
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HFpEF and high-fit controls, and a potential limitation of O2 utilization in low-fit controls. Thus, 

our primary hypothesis was partially confirmed as phase II V̇O2p on-kinetics were slower in 

patients with HFpEF and low-fit controls compared to high-fit controls. Our secondary hypothesis 

was not confirmed as there was no difference between groups in the priming effects on phase II 

V̇O2p on-kinetics, suggesting all study groups demonstrated speeding of phase II V̇O2p on-kinetics. 

The observed speeding in V̇O2p kinetics, coupled with our priming effects on TOI data, suggest 

there was an improvement in diffusive O2 delivery in patients with HFpEF following priming 

exercise. The latter would suggest a rate-limitation of O2 delivery rather than utilization may be 

key in the control of phase II V̇O2p on-kinetics in this patient group.  

2.4.2 V̇O2p On-Kinetics in HFpEF 

We characterized, for the first time, phase II V̇O2p on-kinetics in patients with HFpEF 

during large muscle mass exercise, thus furthering our understanding of key limitations to exercise 

intolerance in the HFpEF population. In previous reports concerning patients with HFrEF, V̇O2p 

on-kinetics were 42-62% slower than controls matched for age (8, 25, 42), sex, physical activity 

level (42), and BMI (25). Slower V̇O2p on-kinetics in HFrEF has previously been attributed to slow 

cardiac output on-kinetics (8, 25, 27, 29, 39, 42, 45), reduced left ventricular ejection fraction (44), 

and reduced muscle microvascular O2 delivery during exercise (7, 42). Our patients with HFpEF 

had 80% slower τV̇O2p compared to high-fit controls, which is consistent with the reduced peak 

V̇O2p that we observed and the extensively reported muscle dysfunction in this population (5, 17, 

18, 20, 21, 26). Interestingly, HFpEF and low-fit controls showed similar V̇O2p on-kinetics, 

suggesting a powerful role of fitness compared to disease on V̇O2p on-kinetics. Indeed, Mettauer 

et al. (31) also observed strikingly similar muscle mitochondrial oxidative capacity and regulation 

between patients with HFrEF and sedentary matched controls, but both groups were markedly 

reduced compared to active controls. Our high-fit controls had faster V̇O2p on-kinetics (25 ± 6 s) 

and our low-fit controls were similar (50 ± 19 s) compared to previously reported values in a 

similar age group (58 ± 21 s) (12). However, those subjects had an active pre-transition baseline 

while our older adults started from rest, which may account for the faster V̇O2p on-kinetics in our 

high-fit controls (23).  

2.4.3 Effect of Priming Exercise on V̇O2p On-Kinetics in HFpEF 
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Our second novel finding was the speeding of τV̇O2p with priming exercise in our three 

study groups. Speeding of V̇O2p on-kinetics following priming exercise has been previously shown 

in older sedentary adults with similar age and peak V̇O2p to our high-fit controls (37). Further, 

priming of V̇O2p was, in part, attributed to improved diffusive O2 delivery (via muscle NIRS data) 

(37). Although V̇O2p kinetics in patients with HFpEF have not been studied, HFrEF patients 

exhibited positive effects of “priming” (moderate intensity exercise) on subsequent V̇O2p on-

kinetics (7). That prior study also showed an attenuated “overshoot” in TOI levels following 

priming exercise, suggesting better matching between O2 delivery and utilization and supporting 

the hypothesis that O2 delivery may play a significant part in the control of V̇O2p on-kinetics in 

older adults and patients with HFrEF (7). Our TOI data suggest that HFpEF and HFrEF may be 

similar in this regard, as O2 extraction may have been increased during early exercise following 

priming in our patients with HFpEF, and coupled with the faster τV̇O2p, our data suggest that the 

faster V̇O2p on-kinetics in our HFpEF group may have been secondary to increased microvascular 

diffusive O2 delivery, rather that increased O2 utilization ability. 

V̇O2p amplitude change represents the magnitude of O2 requirement for a given work rate. 

High-fit controls had greater amplitude change in V̇O2p than low-fit controls and patients with 

HFpEF. In contrast to other reports (36), there was no observed amplitude modulation from 

priming. Steady-state V̇O2p was greater in high-fit controls compared to both groups. The above 

findings support the faster τV̇O2p in high-fit controls over the remaining two groups.  

In healthy adults, phase II V̇O2p on-kinetics are typically independent of O2 delivery and 

are thus under the primary control of O2 utilization ability (36). However, age and disease may 

shift this relationship into a “O2 delivery dependent zone” (36). Therefore, if τV̇O2p were to 

improve following priming exercise, the source of improvement would likely be in the delivery of 

O2 in our study groups. The mechanism accounting for improved O2 delivery may be identified as 

related to cardiac, vascular, and/or microvascular changes.  

2.4.4 Do Cardiac Factors Modulate V̇O2p On-Kinetics in HFpEF? 

Kemps et al. (25) reported cardiac output on-kinetics in patients with HFrEF (62 ± 25 s) 

and by comparison appear to be markedly slower than our observation of cardiac output on-

kinetics in patients with HFpEF (46 ± 49 s). In the current study, cardiac outputMF on-kinetics data 

did not support any indication of functional differences between HFpEF and high-fit and low-fit 
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control groups. That cardiac outputMF was not observed to be affected by priming exercise is 

consistent with previous findings (37). In HFpEF, cardiac output on-kinetics have not been 

previously reported, but cardiac outputMF reserve may not be reduced in well-compensated patients 

with HFpEF (5), and is consistent with our cardiac output on-kinetics data showing no difference 

between HFpEF and healthy high-fit or low-fit controls. That cardiac output did not speed 

following heavy exercise in patients with HFpEF also suggests that cardiac output may not have 

been a likely key source of increased O2 delivery (i.e., convective delivery) that underpinned the 

effect of priming in τV̇O2p across the study groups. Therefore, it seems unlikely that cardiac factors 

modulated V̇O2p On-Kinetics in our patients with HFpEF.  

2.4.5 Cardiac Responses to Square-Wave and Priming Exercise in HFpEF 

Heart rate τ was slower following priming exercise in our groups and a similar response to 

priming exercise has been reported in young adults (9). There was no difference in baseline heart 

rate in our patients with HFpEF following priming, nor in amplitude change, and therefore the 

slowing of heart rate τ in HFpEF patients cannot be explained by these parameters. Our patients 

with HFpEF (37 ± 27 s) and low-fit controls (39 ± 15 s) had similar heart rate τ compared to older 

adults reported by DeLorey et al. (47 ± 24 and 42 ± 9 s (9, 10)). Heart rate kinetics in our high-fit 

controls (18 ± 6 s) tended to be faster than previously reported values in young healthy adults (23 

± 12 and 26 ± 7 s) (9, 10). The lack of statistical difference between our high-fit control group and 

the remaining groups may be due to elevated variance in heart rate responses in our low-fit control 

and HFpEF groups. Older adults revealed no statistical effect on heart rate τ from a control 

condition to priming (47 ± 24 vs. 51 ± 31) (9), which contrasts our finding of slowed heart rate τ 

following priming (Fig 2-4). We suggest that in our subjects, priming exercise may have increased 

stroke volumeMF and cardiac output was maintained, thus facilitating slower heart rate adaptation 

to square-wave exercise. Alternatively, an elevated pre-transition heart rate following priming 

exercise (16, 24), although not detected, may have facilitated the slower heart rate on-kinetics (23) 

because of a shift in the autonomic control of heart rate (34). 

Coupling the lack of cardiac output inter-group difference with the effect of priming on 

heart rate τ in all groups, stroke volumeMF on-kinetics may be assumed to be similar between 

groups. As the variability in the stroke volumeMF signal did not lend itself to reliable curve-fitting, 

time course changes were assessed using delta values, and supported our assumption by not 
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yielding any group differences. Our lack of group differences contrasts with Borlaug et al. (6) who 

demonstrated impaired contractility reserve during peak exercise in patients with HFpEF 

compared to hypertensive and normal controls, and with Kitzman et al. (26) who reported reduced 

stroke volume reserve in patients with HFpEF. Our lower level of exercise intensity compared to 

the peak exercise performed in Borlaug et al. (6) and Kitzman et al. (26) may account for the 

discrepancy between our inter-group findings.   

Interestingly, all three groups demonstrated a lower ∆stroke volumeMF following prior 

heavy exercise. Thus, the increase in stroke volumeMF at exercise onset was attenuated following 

priming. This may be due to elevated pre-transition baseline stroke volumeMF as a result of prior 

heavy exercise, thus reducing the overall stroke volumeMF response. Coupled with our cardiac 

output and heart rate on-kinetics data, we suggest our HFpEF patients had increased baseline stroke 

volume and decreased heart rate following priming exercise, thereby maintaining cardiac output. 

This may be due to a salutary decrease in TPR following priming exercise thus increasing venous 

return and ventricular preload. This would explain the discrepancy between our data and 

previously reported impaired stroke volume reserve (6, 26), as the previously reported patients 

with HFpEF performed maximal exercise testing; perhaps the priming exercise, followed by a 

brief recovery period, allowed time for peripheral vasodilation. The similar stroke volumeMF 

between our groups may also be due to the recruited HFpEF phenotype, as Bhella et al. (5) reported 

no difference in peak stroke volume, stroke work, or cardiac output between HFpEF patients and 

healthy controls. Cumulatively, we suggest that cardiac output control was altered following 

priming exercise such that baseline stroke volume was elevated, thus allowing heart rate kinetics 

to slow to maintain cardiac output.  

2.4.6 TPR Responses to Square-Wave and Priming Exercise in HFpEF 

∆TPR was markedly less in patients with HFpEF compared to high-fit controls throughout 

the entire exercise bout. A smaller ∆TPR indicates a greater absolute TPR at the respectively time 

point, suggesting vascular dysfunction when responding to exercise, and  consistent with previous 

reports in HFpEF (6, 11, 21). Like our patients with HFpEF, TPR in our low-fit controls was also 

reduced compared to high-fit controls at 30s and end-exercise. Potential mechanisms for the 

impaired vascular response in HFpEF may be related to impaired endothelial function (6), or 

exaggerated muscle sympathetic nerve activity in patients with HFpEF (46, 47). No priming effects 
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were observed with TPR, but extrapolating from the change in group differences from MOD1 to 

MOD2 at 15s, both HFpEF (-433 ± 176 vs. -353 ± 112 dyn·s/cm5) and high-fit controls (-901 ± 

403 vs. -728 ± 352 dyn·s/cm5) may have exhibited less change in TPR following priming exercise. 

The latter suggests a reduced pre-transition baseline TPR following priming in these groups. The 

suspected improvements in TPR following priming, particularly in high-fit controls, may be 

associated with the apparent priming of τV̇O2p. In particular, priming may have improved the 

adaptation of TPR in patients with HFpEF, thus facilitating an increase in convective O2 delivery 

and subsequently τV̇O2p. An alternative explanation for the differences in ∆TPR is the differences 

in absolute work rate during the transition to moderate-intensity exercise. A lower absolute work 

rate would result in a smaller amplitude in TPR response, and as the HFpEF group had a 

significantly lower absolute work rate compared to high-fit controls, this may explain the 

significant difference in ∆TPR. However, patients with HFpEF had lower absolute work rate but 

were exercising at similar relative exercise intensities, and as patients with HFpEF typically 

present with exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction, the 

alternative explanation seems less likely.   

2.4.7 Role of Muscle Oxygenation on V̇O2p On-Kinetics in HFpEF 

Muscle oxygenation (TOI) during moderate intensity exercise (without priming) in patients 

with HFrEF tends to demonstrate a substantial “overshoot” (i.e., a rapid transient decrease in 

muscle TOI below steady-state at the onset of exercise, and instead of plateauing and remaining 

depressed and suggesting adequate muscle oxygenation, a transient increase in TOI back toward 

baseline levels occurs), indicating a slower rate of muscle oxygenation relative to V̇O2p on-kinetics 

(7). In our patients with HFpEF (and low-fit controls), we observed no such overshoot before 

priming (i.e., TOI decreased and plateaued with no subsequent increase until after exercise), 

indicating sufficient muscle diffusive O2 delivery and thus a potential source of limitation in the 

utilization ability of O2 that adversely affects V̇O2p on-kinetics (1, 4, 41). However, our patients 

with HFpEF exhibited an effect of priming at 30s into exercise where TOI was further reduced 

following priming exercise, suggesting greater O2 extraction ability by the exercising muscle. This 

finding may coincide with the priming effect on τV̇O2p, suggesting the increased O2 extraction in 

the HFpEF group facilitated the speeding of τV̇O2p. Similarly, patients with HFrEF demonstrate 

an attenuated TOI overshoot following priming exercise (indicating increased diffusive O2 
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delivery and greater matching between O2 delivery and utilization) (7), and this interpretation of 

the TOI profile has been described in previous reports (1, 4, 33). Although not described elsewhere, 

we observed an increase in TOI above baseline at exercise onset in high-fit controls, and this may 

indicate a mismatch between O2 delivery and utilization; delivery is rapidly and efficiently 

elevated while V̇O2p is slower to adapt to square-wave exercise. This hypothesis is similar to what 

has been observed in young adults, where the rate-limiting step in V̇O2p on-kinetics is likely not 

secondary to O2 delivery, but rather regulated by intracellular O2 transport or metabolic function 

(9). However, following priming exercise, high-fit controls demonstrated a transient decrease in 

TOI at the onset of exercise, with a slight increase toward baseline by end-exercise. The latter 

suggests that high-fit older adults may have sufficient convective O2 delivery but limited O2 

extraction, and following priming exercise, O2 extraction at the muscle may be improved. This 

observation may be mediated by fitness as no priming response was observed in low-fit controls; 

indeed, low-fit controls exhibited a TOI profile indicative of impaired O2 delivery (33) in both 

MOD1 and MOD2 conditions. Following priming in our patients with HFpEF, the initial (30s) 

decrease in TOI was greater, suggesting a more rapid TOI response, indicative that the limitation 

of V̇O2p on-kinetics may shift towards diffusive O2 delivery. However, there was no difference in 

TOI at end-exercise (i.e., no transient increase toward baseline) in HFpEF from MOD1 to MOD2, 

suggesting the potential source of slowing in V̇O2p on-kinetics shifts to O2 utilization ability once 

O2 delivery is normalized to the demand. Taken with the priming effect on τV̇O2p, it is likely that 

diffusive O2 delivery may be a preliminary limitation (early exercise) to V̇O2p on-kinetics in these 

patients, however with time and warm-up, O2 delivery may improve and thus transfer the control 

of V̇O2p to O2 utilization ability in patients with HFpEF. The latter hypothesis is supported by prior 

work reporting muscle dysfunction in HFpEF (18–21, 32). Specifically, aerobic enzymes (32), 

mitochondrial content and quality (32), muscle quality (20), capillary density (20, 21), and slow-

to-fast twitch fibre ratio (20, 21) have all been shown to be reduced in HFpEF. These markers 

suggest lower oxidative function and capacity in HFpEF skeletal muscles, consistent with our 

interpretation of the TOI data, suggesting O2 utilization may be a key rate-limiting factor in V̇O2p 

on-kinetics once O2 diffusion reaches homeostasis. 

2.4.8 Subject Demographics 
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Patients with HFpEF demonstrated lower peak V̇O2p compared to high-fit but not low-fit 

controls, suggesting that lack of disease does not preclude significant deconditioning. Peak heart 

rate, percent-predicted heart rate, and ventilatory threshold heart rate were lower in HFpEF 

patients. HFpEF patients also exhibited signs of concentric hypertrophy and increased ventricular 

filling pressures at rest, and diastolic dysfunction as indicated by diastolic score (Table 2-1, 

echocardiographic data) – observations that are typical for patients with HFpEF. The muscle and 

adipose data from the right calf are in support with previously reported skeletal muscle quality 

measured on the thigh using magnetic resonance imaging (20); however, increased intermuscular 

adipose area and percent intermuscular fat in HFpEF compared to controls was also reported (20), 

but not confirmed for our pQCT measure. As such, we could not detect muscle quality differences 

between groups with our measure.  

2.5 Limitations 

There are a few limitations to this study. First, although healthy controls were initially sex-

matched to our patient group, our subsequent high-fit/low-fit split caused a discrepancy in sex 

between the two control groups, and therefore HFpEF and high-fit groups as well. Fortunately, the 

primary outcome, VȮ2p on-kinetics, has been demonstrated to be independent of sex (13). 

However, as many other variables are affected by sex (e.g., peak V̇O2p, skeletal muscle and 

adiposity), we cannot preclude this inter-group sex difference as a limitation. Second, our patient 

group was heterogeneous in fitness and disease severity, ranging from NYHA class I-III. This 

substantially increased the variance in the patient group (usually markedly greater than both 

controls groups), thus the frequent use of Kruskal-Wallis P-values to minimize type I error. The 

inflated variance increased our risk of type II error, and may have obscured some intergroup 

differences. Finally, we did not account for subcutaneous adipose for the NIRS measurement. 

Although no threshold is recognized, Grassi and Quaresima (15) suggest that a skin and adiposity 

layer > 2 cm would render the signal meaningless if the goal is to investigate skeletal muscle. We 

recognize that this is a limitation to our TOI data, however, from careful inspection of our data and 

additional pilot testing, we believe our data is representative of skeletal muscle oxygenation levels.   

2.6 Conclusion 

Cumulatively, our data suggest that O2 delivery, particularly microvascular delivery and 

O2 extraction, may be a key rate-limiting factor for V̇O2p on-kinetics in patients with HFpEF. Our 
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data suggest that peripheral limitations (vascular function and O2 extraction) play a leading role in 

determining exercise intolerance in patients with HFpEF, similar to patients with HFrEF whose 

major limitation seems to be bulk and/or microvascular O2 delivery to the exercising muscle. 
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2.8 List of Abbreviations 

A - left ventricular late diastolic filling measured by late mitral inflow velocity 

AVO2Diff – arterial-venous oxygen content difference 

cHb – total concentration of hemoglobin; measured by near infrared spectroscopy 

E - left ventricular early diastolic filling measured by early mitral inflow velocity 

eˈ - myocardial diastolic motion velocity 

E/eˈ - estimated left ventricular filling pressure 

E/A - index of diastolic filling and ventricle recoil 

EF – ejection fraction 

EDV – end-diastolic volume 

ESV – end-systolic volume 

HF – heart failure 

HFpEF – heart failure with preserved ejection fraction 

HFrEF – heart failure with reduced ejection fraction 

HHb – concentration of deoxygenated hemoglobin and myoglobin; measured by near infrared 

spectroscopy 

MOD1 – exercise protocol 1: moderate intensity cycling 

MOD2 – exercise protocol 2: heavy intensity & moderate intensity cycling 

nTHI – normalized tissue hemoglobin index; percentage change in the amount of initial 

hemoglobin; measured by near infrared spectroscopy 

O2 - oxygen 

O2Hb – concentration of oxygenated hemoglobin and myoglobin; measured by near infrared 

spectroscopy 
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RER – respiratory exchange ratio 

τ – tau; time constant; time to reach 63% of the overall amplitude increase from rest to steady-state 

exercise 

TOI – tissue oxygenation index; O2 saturation level; measure by near infrared spectroscopy 

V̇CO2p – carbon dioxide production; measured by breath-by-breath CO2 expired at the mouth 

V̇O2p – pulmonary O2 uptake; the sum of all the O2 used by the body cells, as measured by breath-

by-breath gas exchange at the mouth 

WR – work rate 
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Table 2-1. Subject Characteristics 

 
HFpEF 

Low-Fit 

Control 

High-Fit 

Control 
P-Value 

Sex (m, f) 
 

6, 2 2, 3 4, 0 
 

Age (years) 
 

68 ± 10 68 ± 5 68 ± 10 0.996 

Height (cm) 
 

169 ± 12 171 ± 11 175 ± 6 0.692 

Weight (kg) 
 

90 ± 18 74 ± 4 84 ± 13 0.142 

BMI (kg/m2) 
 

31.5 ± 5.1 25.5 ± 3.0 27.4 ± 3.5 0.064 

Resting SBP 

(mmHg) 

 
121 ± 17 121 ± 9 124 ± 5 0.936 

Resting DBP 

(mmHg) 

 
70 ± 9 75 ± 11 81 ± 6 0.155 

Peak VO2p 

(mL/kg/min) 

15.8 ± 5.9 19.9 ± 1.4 30.5 ± 5.6* 0.001 

 

Heart Rate 

(beats/min) 

117 ± 16* 139 ± 8 151 ± 16 0.001 

 

Work Rate 

(Watts) 

88 ± 41 115 ± 17 207 ± 50* 0.003 

 

% Predicted 

VO2p † 

68 ± 23 86 ± 9 135 ± 12* 0.008KW 

 

% Predicted 

Heart Rate † 

72 ± 7* 84 ± 5 91 ± 10 0.002 

 RER 1.11 ± 0.12 1.23 ± 0.07 1.19 ± 0.08 0.127 

Ventilatory 

Threshold 

VO2p 

(mL/kg/min) 

9.1 ± 2.2* 12.9 ± 2.0 ¥ 16.3 ± 2.6 <0.001 

 

Heart Rate 

(beats/min) 

90 ± 10* 104 ± 6 ¥ 109 ± 17 0.001 

 

Work Rate 

(Watts) 

38 ± 21 ¥ 66 ± 12 92 ± 21 0.032 

Moderate WR 

(W) 

 
24 ± 16 ¥ 39 ± 11 58 ± 14 0.007 

Heavy WR (W) 
 

63 ± 32 89 ± 44 148 ± 32* 0.001 

 38% Site Muscle Area 

(cm3) 

44.0 ± 14.5 33.5 ± 4.4 45.5 ± 8.2 0.211 

 
Muscle Density 

(mg/cm3) 

68.5 ± 6.2 71.8 ± 2.9 72.2 ± 3.8 0.565KW 

 
Subcutaneous 

Adipose Area 

(cm3) 

18.6 ± 15.7 19.5 ± 7.9 12.2 ± 4.6 0.624 

 66% Site Muscle Area 

(cm3) 

71.4 ± 10.9 68.7 ± 3.4 76.1 ± 12.3 0.519 

 

Muscle Density 

(mg/cm3) 
68.3 ± 4.5 71.4 ± 2.3 69.2 ± 3.4 0.388 
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Subcutaneous 

Adipose Area 

(cm3) 

27.7 ± 18.9 26.7 ± 11.0 16.9 ± 7.1 0.479 

Echocardiography EF (%) 61 ± 9 65 ± 4 68 ± 4 0.278  
End-Diastolic 

Volume 

 (mL) 

110 ± 32 85 ± 17 122 ± 16 0.119 

 
End-Systolic 

Volume 

 (mL) 

42 ± 12 29 ± 5 42 ± 8 0.09 

 
Stroke Volume 

(mL) 

68 ± 24 56 ± 13 80 ± 9 0.204 

 Left Atrial 

Volume Index 

(mL/m2) 

46 ± 20 24 ± 3 31 ± 3 0.040ǂ 

 
Left Atrial 

Diameter 

 (cm) 

4.55 ± 0.72* 3.56 ± 0.38 3.67 ± 0.12 0.012 

 

E (cm/s) 94.6 ± 40.1 69.8 ± 16.1 57.9 ± 7.2 0.287KW  
A (cm/s) 73.9 ± 31.5 80.7 ± 10.8 71.2 ± 14.7 0.654KW  
E/A 1.19 ± 0.44 0.89 ± 0.35 0.84 ± 0.25 0.303 

 eˈ (cm/s) 6.95 ± 1.12 7.54 ± 1.38 7.83 ± 2.12 0.588 

 E/eˈ 13.9 ± 6.3 9.3 ± 1.6 7.7 ± 1.3 0.119KW  
Left 

Ventricular 

Mass  (index; 

g/m2) 

103 ± 13* 71 ± 9 84 ± 10 0.001 

 
Posterior Wall 

Thickness 

(cm) 

1.15 ± 0.16* 0.86 ± 0.11 0.92 ± 0.13 0.006 

 Diastolic Score 

(Grade I/II/III) 

2/3/0 1/0/0 0/0/0  

Medications  

(# patients) 

Anti-

Arrhythmia 

2 
  

 
Anti-

Coagulant 

4 
   

 
Anti-

Hypertensives 

1 
   

 
ACE-Inhibitor 5 

   

 
ARB 2 

   

 
Aspirin 5 

   

 Beta Blocker 7 
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Calcium 

Channel 

 Blocker 

3 
   

 Digoxin 1 
   

 Diuretic 3 
   

 Loop-Diuretic 3 
   

 Statin 7 
   

 Thyroid 3 
   

Values are means ± standard deviations. Bolded P-values are significant. *Significantly different 

from both groups. ¥Significantly different from high-fit controls. KWIndicates a Kruskal-Wallis 

P-value. †Percent of the peak value obtained to the predicted peak value based on demographics. 

ǂANOVA P-value, however SNK post-hoc testing revealed no difference between groups. A, left 

ventricular late diastolic filling; ACE, angiotensin converting enzyme; ARB, angiotensin 

receptor blocker; BMI, body mass index; E, left ventricular early diastolic filling; eˈ, myocardial 

diastolic motion (i.e., relaxation velocity); E/eˈ, estimate of left ventricular filling pressure; EF, 

ejection fraction; HFpEF, heart failure with preserved ejection fraction group; MOD1, moderate 

exercise transition without prior heavy exercise; MOD2, moderate exercise transition following 

prior heavy exercise; RER, respiratory exchange ratio; VO2p, pulmonary oxygen uptake; WR, 

work rate.   
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Table 2-2. V̇O2p On-Kinetics 

 
HFpEF Low-Fit Control High-Fit Control P-Value 

Tau (s) 45 ± 15 50 ± 19 25 ± 6* 0.008 

Amplitude (L/min) 0.461 ± 0.128 0.575 ± 0.877 0.830 ± 0.199* 0.003 

Steady-State (L/min) 0.797 ± 0.183 0.866 ± 0.123 1.181 ± 0.237* 0.014 

Values are means ± standard deviations. Bolded P-values are significant. *Significantly different 

from both groups, pooled across conditions. HFpEF, heart failure with preserved ejection 

fraction group; MOD1, moderate exercise transition without prior heavy exercise; MOD2, 

moderate exercise transition following prior heavy exercise; V̇O2p, pulmonary oxygen uptake.  
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Fig 2-1. MOD1 and MOD2 Exercise Protocols 
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Fig 2-2. V̇O2p On-Kinetics. A. MOD1 example curve-fits from representative subjects within each 

group. B. MOD2 example curve-fits from representative subjects within each group. C. V̇O2p tau 

(time constant) during MOD1 and MOD2 in each group. D. V̇O2p total amplitude change during 

MOD1 and MOD2 in each group. E. V̇O2p steady-state during MOD1 and MOD2 in each group. 

Panels C-E values are means ± SEM. HFpEF, heart failure with preserved ejection fraction; MOD, 

moderate exercise transition without prior heavy exercise; MOD2, moderate exercise transition 

following prior heavy exercise; V̇O2p, pulmonary oxygen uptake. *Significantly different from 

remaining groups, pooled across conditions (P<0.05). ǂSignificantly different from MOD1, pooled 

across groups (P<0.05). 
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Fig 2-3. Cardiac OutputMF On-Kinetics. A. MOD1 example curve-fits from representative 

subjects within each group. B. MOD2 example curve-fits from representative subjects within each 

group. C. Cardiac outputMF tau (time constant) during MOD1 and MOD2 in each group. D. Cardiac 

outputMF total amplitude change during MOD1 and MOD2 in each group. E. Cardiac outputMF 

steady-state during MOD1 and MOD2 in each group. Panels C-E values are means ± SEM. 

HFpEF, heart failure with preserved ejection fraction group; MOD1, moderate exercise transition 

without prior heavy exercise; MOD2, moderate exercise transition following prior heavy exercise. 

 A. MOD1 B. MOD2 

 

 

 

High-Fit 

Control 

  

Low-Fit 

Control 

  

HFpEF 

  

 

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

-60 -30 0 30 60 90 120 150 180 210 240

4

6

8

10

L
/m
in

Time

Group P=0.245 

Priming P=0.695 

Interaction P=0.965 

Group P=0.904 

Priming P=0.112 

Interaction P=0.661 

Group P=0.780 

Priming P=0.237 

Interaction P=0.568 



71 

 

 

Fig 2-4. Heart Rate On-Kinetics. A. MOD1 example curve-fits from representative subjects 

within each group. B. MOD2 example curve-fits from representative subjects within each group. 

C. Heart rate tau (time constant) during MOD1 and MOD2 in each group. D. Heart rate total 

amplitude change during MOD1 and MOD2 in each group. E. Heart rate steady-state during 

MOD1 and MOD2 in each group. Panels C-E values are means ± SEM. HFpEF, heart failure with 

preserved ejection fraction; MOD, moderate exercise transition without prior heavy exercise; 

MOD2, moderate exercise transition following prior heavy exercise. ǂSignificantly different from 

MOD1, pooled across groups (P<0.05). 
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Fig 2-5. ΔStroke VolumeMF Time Course Changes. ΔStroke volumeMF (from baseline) at 15s, 

30s, and end-exercise in MOD1 and MOD2, pooled across groups. Values are means ± SEM. 

MOD1, moderate exercise transition without prior heavy exercise; MOD2, moderate exercise 

transition following prior heavy exercise. ǂMOD2 significantly less than MOD1 (P<0.05). All 

time-points were significantly different from baseline (all P<0.05). 
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Fig 2-6. ΔTPR Time Course Changes. ΔTPR (from baseline) at 15s, 30s, and end-exercise 

between groups, pooled across conditions. Values are means ± SEM. Control-HF, high-fit control 

group; Control-LF, low-fit control group; HFpEF, heart failure with preserved ejection fraction 

group; TPR, total peripheral resistance. *Control-HF had a significantly greater change than 

remaining groups at this time point (P<0.05). §Control-HF had a significantly greater change than 

HFpEF group at this time point (P<0.05). 
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Fig 2-7. ΔTOI Time Course Changes. A. MOD1 ΔTOI (from baseline) at 15s, 30s, and end-exercise between groups. B. MOD2 ΔTOI 

(from baseline) at 15s, 30s, and end-exercise between groups. Values are means ± SEM. Control-HF, high-fit control group; Control-

LF, low-fit control group; HFpEF, heart failure with preserved ejection fraction group; MOD1, moderate exercise transition without 

prior heavy exercise; MOD2, moderate exercise transition following prior heavy exercise; TOI, tissue oxygenation index. *Control-HF 

had a significantly greater change than remaining groups at this time point (P<0.05). §Control-HF had a significantly greater change 

than control-LF group at this time point (P<0.05). ¥Control-HF group had a significantly different change than MOD1 at this time point 

(P<0.05). ƗHFpEF group had a significantly greater change than MOD1 at this time point (P<0.05). 
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CHAPTER THREE: DISCUSSION 

3.1 Main Findings 

We characterized, for the first time, phase II V̇O2p on-kinetics in patients with HFpEF compared 

to healthy high-fit and low-fit control subjects, and V̇O2p on-kinetics following a bout of prior 

heavy exercise. We found that phase II V̇O2p on-kinetics were slower in patients with HFpEF and 

low-fit controls compared to high-fit controls, pooled across conditions. This novel finding is not 

supported with any difference between groups in cardiac factors (cardiac output, heart rate, stroke 

volume), and did coincide with decreased exercise onset and steady-state TPR in high-fit controls 

compared to patients with HFpEF and low-fit controls when pooled across conditions. HFpEF 

patients and low-fit controls had decreased TOI at early onset of exercise and HFpEF patients 

maintained the minimum TOI value through until end-exercise, while TOI in low-fit controls 

increased toward near-baseline values. Conversely, TOI increased in high-fit controls at the onset 

of exercise and decreased toward near-baseline by end-exercise. 

While no group difference was observed, all groups demonstrated speeding of phase II 

τV̇O2p following priming exercise. This pooled effect was partnered with a concomitantly slower 

τ heart rate following priming exercise (also pooled across groups), and a reduction in ∆stroke 

volume within the first 15-30 s of exercise and at steady-state exercise in all three groups. Priming 

had no effect on ∆TPR. TOI exhibited priming effects in patients with HFpEF and high-fit controls 

at early and end-exercise with a greater reduction in TOI. The greater reduction in TOI may 

indicate increased O2 extraction at the muscle, however, TOI in patients with HFpEF did not 

display an “overshoot”, suggesting a limitation in O2 utilization towards the end of exercise. 

Cumulatively, our findings suggest that peripheral factors (TPR and TOI) may have played 

a more significant role than cardiac factors (cardiac output, heart rate, stroke volume) in limiting 

phase II V̇O2p on-kinetics in HFpEF when compared to high-fit controls. Additionally, increased 

microvascular muscle O2 delivery following priming exercise (i.e., TOI condition effects in high-

fit controls and HFpEF patients) may represent a key factor in the speeding of phase II τV̇O2p on-

kinetics. Our data thus suggest a rate-limitation of local muscle O2 perfusion on phase II V̇O2p in 

all groups. Therefore, our primary hypothesis was partially confirmed as patients with HFpEF did 

indeed have slower phase II V̇O2p on-kinetics compared to high-fit controls. However, our 

secondary hypothesis was not supported as priming exercise improved phase II V̇O2p on-kinetics 
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in all groups, suggesting that patients with HFpEF may present with a significant deficit in local 

muscle O2 delivery that limits V̇O2p on-kinetics. Our measures of the integrative physiologic 

responses (cardiac kinetics, vascular, and muscle oxygenation time-course changes) to square-

wave exercise indicate that vascular function and muscle oxygenation may limit V̇O2p on-kinetics 

in patients with HFpEF, and that muscle oxygenation may improve with priming exercise, thus 

coinciding with our observation of a speeding in V̇O2p on-kinetics following priming exercise.  

3.2 HFpEF Study Group Characteristics 

3.2.1 Exercise V̇O2p 

Patients with HFpEF had lower peak V̇O2p compared to the high-fit controls but not low-

fit controls. This is similar to findings reported by Mettauer et al. (17) where the muscle oxidative 

capacity (measured via muscle biopsy) was the same between patients with HFrEF and sedentary 

matched controls, but reduced compared to active controls. Our data combined with Mettauer’s 

study suggests that lack of disease alone does not preclude significant deconditioning. By design, 

peak V̇O2p was higher in high-fit compared to low-fit controls. Percent predicted peak V̇O2p was 

not different between patients with HFpEF and low-fit controls. Conversely, at submaximal 

exercise (ventilatory threshold), V̇O2p was not only greatest in high-fit controls, but also different 

between patients with HFpEF and low-fit controls, suggesting greater aerobic fitness in the low-

fit controls compared to HFpEF.  

3.2.2 Exercise Heart Rate 

Heart rate was lower at maximal exercise in patients with HFpEF compared to all controls, 

and patients were additionally unable to achieve their percent-predicted maximum heart rate. At 

submaximal exercise, patients with HFpEF reached a lower heart rate compared only to high-fit 

controls, continuing a trend of surprising similarity between the low-fit controls and HFpEF 

patients. The globally observed dysfunction in heart rate may be explained by medications (7/8 

patients using beta-blockers) as all medications were taken as normal on testing days. However, 

heart rate during submaximal (moderate) exercise in HFpEF was inconsistent; while ventilatory 

threshold heart rate was markedly reduced in patients with HFpEF compared to both control 

groups, neither MOD1 nor MOD2 yielded a difference between groups in steady-state heart rate. 

This may be due to the same heart rate being achieved at ventilatory threshold and MOD1 steady-
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state (90 ±10 vs. 90 ± 12 bpm, respectively) in patients with HFpEF, while both high-fit and low-

fit control groups achieved an average of 88% and 94% of their ventilatory threshold heart rate 

during MOD1, respectively.  

3.2.3 Resting Cardiac Morphology and Function 

Regarding cardiac structure, patients with HFpEF had greater left atrial diameter, left 

ventricular mass (indexed to body surface area), and thicker posterior walls compared to both 

control groups, similar to previously reported (10); these findings are consistent with  concentric 

hypertrophy (increased mass and wall thickness) and increased left ventricular filling pressure 

(dilated left atrial diameter as a result of blood pooling in this chamber from reduced pressure 

difference between the left atrium and ventricle). Similar left ventricular mass (although not 

indexed) and left atrial diameter have been reported  in HFpEF (11), although left ventricular mass 

index in the current HFpEF study group was greater than commonly reported (21). End-diastolic 

volume in our patients with HFpEF was also greater compared to a large sample of HFpEF patients 

(110 ± 32 vs. ~81-85 mL) (21) and other reports (110 ± 32 vs. ~75 mL) (10). However, end-

diastolic volume in HFpEF was not different from either control group, whereas a difference in 

end-diastolic volume between patients with HFpEF and controls was previously reported (~75 ml 

vs. 87 mL). End-systolic volume was similar between our patients with HFpEF and a previously 

reported sample (42 ± 12 vs. ~31-36 mL) (10, 21), as well as similar to our control subjects; 

however, a difference between HFpEF and control end-systolic volume has also been observed 

(~32 vs. 43 mL). An explanation for the heterogeneous data on cardiac morphology across the 

literature plays favour with the theory of HFpEF being a heterogeneous “umbrella-type” 

syndrome, with many sub-phenotypes (depending on clinical presentation and comorbidities) and 

therefore varying treatment requirements.  

Besides an elevated diastolic dysfunction score in patients with HFpEF compared to both 

control groups, cardiac function (stroke volume, EF, E (left ventricular early diastolic filling), A 

(left ventricular late diastolic filling), and E/A (index of diastolic filling and ventricle recoil)) 

displayed no differences between groups as detected using resting echocardiography. This is not 

unexpected as many resting values have previously been normal in patients with HFpEF (10). 

Resting stroke volume was less in our patient group compared to commonly reported values (68 ± 

24 vs. ~80-90 mL) (21), and greater in our HFpEF group compared to another report (68 ± 24 vs. 
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~43 mL at rest) (10), though similar compared to controls as also previously shown (1). Resting 

EF in our patients with HFpEF was directly comparable to that commonly observed in a large 

sample (61 ± 9 vs. 61 ± 7 %) (21), as well as others (10, 15, 16), with no difference from healthy 

controls (1, 11). While E was on the low end of previously reported values (94.6 ± 40.1 vs. ~93-

118 cm/s), A was markedly lower (73.9 ± 31.5 vs. ~81-93 cm/s) (21). HFpEF E/A has previously 

been shown as similar to hypertensive controls (1.1 ± 0.7 vs. 0.8 ± 0.3) (16), with values 

comparable to ours (16, 21). Cumulatively, cardiac morphology and function in our HFpEF study 

group were comparable to several other HFpEF studies (1, 10, 11, 15, 16, 21). 

3.2.4 Skeletal Muscle Quality and Adiposity 

Our muscle and adipose data from the right calf are consistent with previously reported 

skeletal muscle quality variables similar to those we report, but measured on the thigh using 

magnetic resonance imaging (11); however, the latter study still reported skeletal muscle 

abnormalities in the form of increased intermuscular adipose area and percent intermuscular fat in 

HFpEF patients compared to controls (11). Further, area of and percent intermuscular adipose were 

found to be independent predictors of peak V̇O2p in HFpEF, suggesting that abnormal skeletal 

muscle adiposity/composition plays a significant role in reducing exercise capacity in HFpEF (11). 

Intermuscular and intramuscular adipose were not reported in the current study as these variables 

have not been validated using pQCT. We were therefore unable to detect differences in muscle 

quality between groups as these key variables that have previously been assessed (11) are not were 

not measurable with our pQCT scanner.  

3.3 Expanding our Knowledge about HFpEF Pathophysiology 

3.3.1 V̇O2p On-Kinetics and Muscle Oxygenation 

To our knowledge, neither V̇O2p on-kinetics nor muscle oxygenation via TOI (i.e., TOI on-

kinetics) have been assessed in patients with HFpEF, which has thus far contributed, in part, to our 

limited understanding of the rate-limiting physiological processes accounting for the exercise 

intolerance that is hallmark in this population. Studies in patients with HFrEF have more reporting 

with muscle TOI measurements (6, 19). As previously described, a rapid transient decrease in 

muscle TOI below steady-state at the onset of exercise followed by a transient increase in TOI 

back toward baseline levels (TOI “overshoot”; similar to observed MOD1 low-fit controls) reflects 
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a limitation in muscle diffusive O2 delivery, while a slow decrease in TOI below steady-state with 

no subsequent rise in TOI (similar to the TOI trend we observed in our HFpEF patient group) 

indicates a limitation in V̇O2p on-kinetics that may be related to muscle O2 utilization (3, 4, 6, 19). 

Our combined TOI and V̇O2p data in patients with HFpEF suggest that muscle O2 delivery may be 

a preliminary limitation to V̇O2p on-kinetics during the early exercise transient, but that O2 

utilization (i.e., what occurs to the O2 once it arrives at the exercising muscle fiber) may become 

the rate-limiting step in V̇O2p on-kinetics towards steady-state exercise. Following priming in our 

patients with HFpEF, the initial (30s) decrease in TOI was greater, suggesting a more rapid TOI 

response, indicative that muscle O2 diffusion may have increased. However, the sustained plateau 

below baseline levels was present before and after priming, suggesting a limitation of O2 utilization 

once O2 delivery is normalized to demand. Taken with priming of τV̇O2p, it seems possible that 

improved O2 delivery can speed τV̇O2p during the on-transient to exercise, but O2 utilization may 

become the rate-limiting factor in steady-state V̇O2p in these patients.   

The high-fit control group TOI profile during MOD1 that demonstrated an initial increase 

in TOI at exercise onset is a fairly unique finding; Niemeijer et al. (19) reported two HFrEF patients 

with similar TOI profiles, but attributed it to excess subcutaneous adiposity and excluded those 

patients from analyses. Excess adiposity was not evident in our sample, especially our high-fit 

control group. Therefore, an alternative explanation could be that the interrogated tissue in the 4 

subjects was being perfused but was not highly active at exercise onset. However, this is unlikely 

as the group was homogeneous in fitness and in TOI response profiles. The most likely explanation 

it that high-fit controls had O2 delivery in excess of O2 demand in exercising muscles during the 

onset of exercise.  

Raw baseline TOI values were not analyzed in the present study; however, these values 

may give an indication behind any priming effects on TOI time-course change and potentially 

τV̇O2p (4). Indeed, Benson et al. (4) concluded that lower pre-exercise blood flow distribution 

would exaggerate the fall in TOI during exercise onset for any given muscle V̇O2. Therefore, if 

priming exercise elevated baseline TOI levels in our subjects, this may have contributed to 

speeding of τV̇O2p if ∆TOI remained unchanged (as the case in low-fit controls) or facilitated a 

smaller TOI “overshoot”, which was not observed in our high-fit control and HFpEF groups. It 

may then be possible that faster τV̇O2p in high-fit controls and patients with HFpEF was not wholly 
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attributed to better muscle oxygenation following priming exercise. Even so, multiple factors 

affect TOI responses (muscle V̇O2, muscle O2 delivery, PO2 gradient from the capillary to inside 

the muscle fiber, and muscle O2 diffusion capacity as determined by the capillary-to-fiber ratio), 

and as such, interpreting TOI signals in the context of the O2 delivery or O2 utilization argument 

is speculative at best.  

3.3.2 O2 Delivery on V̇O2p: Cardiac Output On-Kinetics, Heart Rate On-Kinetics, and TPR 

That cardiac output and heart rate on-kinetics during moderate intensity exercise in patients 

with HFpEF were comparable to healthy high-fit and low-fit controls should not be surprising. 

Indeed, resting cardiac function is generally observed to be similar between patients with HFpEF 

and healthy controls (10), depending on disease severity.  

Conversely, TPR has previously been shown to be increased in patients with HFpEF both 

at rest and during maximal exercise (5), even compared to hypertensive controls (5). This 

dysfunction is generally related to the microvasculature (5) and not conduit arteries (14) in patients 

with HFpEF. We demonstrated this detrimental (or would-be detriment in healthy subjects) 

vascular response to exercise in our patients with HFpEF. However, priming exercise did not 

improve TPR in any group and thus may not be associated with the overall faster V̇O2p on-kinetics 

in our study groups, suggesting that increased O2 delivery at the diffusion rather than perfusion 

level (20) (as partially supported by early-exercise TOI data following priming) better accounts 

for the priming effects on V̇O2p on-kinetics. Taken together, the present study provides critical 

evidence to support the hypothesis that muscle dysfunction (i.e., O2 diffusion from capillary to 

muscle fiber) may limit V̇O2p on-kinetics and thus exercise tolerance in patients with HFpEF. Our 

interpretation is further supported by increasing evidence of muscle dysfunction in patients with 

HFpEF (e.g., reduced aerobic enzymes (18), mitochondrial content and quality (18), muscle 

quality (11), capillary density (11, 12), and slow-to-fast twitch fibre ratio (11, 12)). We extend 

these prior findings by demonstrating that prior heavy exercise may speed V̇O2p on-kinetics in 

patients with HFpEF, suggesting impaired O2 diffusion at the muscle bed that limits the ability to 

increase aerobic metabolism in the muscle. 

3.4 Clinical Relevance 

3.4.1 Impact of the Study Findings for Clinicians and Patients 
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V̇O2p on-kinetics has been increasingly studied in the HFrEF population (6, 22, 23) and, as 

patients generally don’t complete daily activities at their peak V̇O2p, assessment of the efficiency 

of cardiovascular dynamics during submaximal exercise may be more clinically meaningful (20). 

Our data support the clinical use of V̇O2p on-kinetics testing in patients with HFpEF as our patients 

did exhibit an abnormal V̇O2p on-kinetics response. However, we understand that proper 

measurement of V̇O2p on-kinetics requires multiple integrative physiology measurements, testing 

repetitions, and exhaustive post-processing. Therefore, despite the physiologically meaningful 

data we reported that may be useful for treatment development for patients with HFpEF, we also 

argue that our type of study design may be restrictive for “real-world” clinical use.  

Muscle tissue oxygenation physiology has been proposed for use as characterization of 

impairments in O2 delivery and/or utilization in patients with HFrEF (19). The current study 

demonstrates that NIRS can be used in patients with HFpEF (should adiposity allow) with 

confidence. TOI on-kinetics in patients with HFrEF have been proven reproducible with test-retest 

reliability (19). It would be interesting to advance along this path and observe how TOI responds 

to interventions and changes over time. In conjunction with other cardiopulmonary dynamics and 

V̇O2p on-kinetics, TOI on-kinetics may provide evidence for peripheral dysfunction in patients 

with HF. 

3.4.2 Cardiac Rehabilitation 

As clinicians are becoming more aware of HFpEF as a distinct diagnosis, several exercise 

training studies have reported both functional (peak V̇O2p, 6-min walk test distance), 

mental/emotional (perceived quality of life), and physiological improvements following 12+ 

weeks of regular exercise training (2, 7–9, 13, 15).  Exercise training in patients with HFrEF has 

been shown to improve both microvascular O2 delivery and O2 utilization (13). We propose that 

both V̇O2p and TOI on-kinetics can be monitored in patients with HFpEF undergoing exercise 

cardiac rehabilitation to objectively quantify the balance between O2 delivery and utilization in 

these patients.  

3.5 Future Directions 

Based on the results of the current study, future research should pursue two avenues:  
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1. Continue to quantify peripheral limitations in patients with HFpEF using V̇O2p on-kinetics. 

For example, measure V̇O2p on-kinetics during small muscle mass, single leg exercise (e.g., 

seated single-leg knee extension) that would have a relatively minimal impact on cardiac 

on-kinetics (i.e., “unload” the heart) to truly assess the limitations in the periphery on V̇O2p 

on-kinetics.  

2. Incorporate specific cardiac rehabilitation programs for patients with HFpEF that target 

muscle dysfunction and improve muscle O2 delivery and utilization. For example, design 

a cardiac rehabilitation (i.e., exercise training) study with V̇O2p on-kinetics as the primary 

outcome, accompanied by cardiac output on-kinetics, stroke volume on-kinetics, heart rate 

on-kinetics, TPR on-kinetics, and TOI on-kinetics to characterize the V̇O2p kinetic data.  

The first avenue of study may benefit the HFpEF population by contributing to the 

aggregated literature on HFpEF pathophysiology and the primary locations of physiological 

deficits that impair V̇O2p on-kinetics. By quantifying and understanding the central and peripheral 

limitations on V̇O2p on-kinetics, therapies targeting these limitations may be developed and trialed 

to improve morbidity and mortality rates, and quality of life. Specifically, exercise training 

programs have already been shown to be beneficial for physical function, mental well-being, and 

physiological factors in patients with HFpEF. These programs can be optimized if carefully 

planned experimental studies reveal key rate-limiting factors to exercise tolerance.  

3.6 Conclusion 

We conclude that patients with HFpEF may have a rate-limiting detriment in diffusive O2 

delivery in the exercising muscle bed that limits V̇O2p on-kinetics during moderate intensity 

exercise. Further, this limitation may be attenuated with acute priming exercise in patients with 

HFpEF, a finding that is consistent with V̇O2p on-kinetics speeding following priming exercise in 

patients with HFrEF. Therefore, treatment for patients with HFpEF should investigate methods to 

improve diffusive O2 delivery. Similarly, we argue that fit healthy control subjects have a primary 

limitation of O2 delivery that may be acutely improved through prior heavy exercise.   
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