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Abstract

Recent advances in DNA sequencing technology have enabled entire genomes to be sequenced

quickly and accurately, resulting in an exponential increase in the number of organisms whose

genome sequences have been elucidated. While the genome sequence of a given organism rep-

resents an important starting point in understanding its physiology, the functions of the protein

products of many genes are still unknown; as such, computational methods for studying protein

function are becoming increasingly important. In addition, this wealth of genomic information has

created an unprecedented opportunity to compare the protein content of different organisms; among

other applications, this can enable us to improve taxonomic classifications, to develop more accu-

rate diagnostic tests for identifying particular bacteria, and to better understand protein content

relationships in both closely-related and distantly-related organisms.

This thesis describes the design, evaluation, and use of a program called Proteome Subtrac-

tion and Intersection (PSI) that uses an idea called genome subtraction for discovering protein-

phenotype relationships and for characterizing differences in protein content in groups of organisms.

PSI takes as input a set of proteomes, as well as a partitioning of that set into a subset of “in-

cluded” proteomes and a subset of “excluded” proteomes. Using reciprocal BLAST hits, PSI finds

orthologous relationships among all the proteins in the proteomes from the original set, and then

finds groups of orthologous proteins containing at least one orthologue from each of the proteomes

in the “included” subset, and none from any of the proteomes in the “excluded” subset.

PSI is first applied to finding protein-phenotype relationships. By identifying proteins that

are present in all sequenced isolates of the genus Lactobacillus, but not in the related bacterium

Pediococcus pentosaceus, proteins are discovered that are likely to be responsible for the difference

in cell shape between the lactobacilli and P. pentosaceus. In addition, proteins are identified that

may be responsible for resistance to the antibiotic gatifloxacin in some lactic acid bacteria.

This thesis also explores the use of PSI for comparing protein content in groups of organisms.

Based on the idea of genome subtraction, a novel metric is proposed for comparing the difference in

protein content between two organisms. This metric is then used to create a phylogenetic tree for a

large set of bacteria, which to the author’s knowledge represents the largest phylogenetic tree created

to date using protein content. In addition, PSI is used to find the proteomic cohesiveness of isolates

of several bacterial species in order to support or refute their current taxonomic classifications.

Overall, PSI is a versatile tool with many interesting applications, and should become more and

more valuable as additional genomic information becomes available.
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Chapter 1

Introduction

With the advent of modern sequencing techniques, the genomes of many organisms—from those

with small genomes, like bacteria, to those with much larger genomes, such as plants—can be readily

sequenced. As a result, hundreds of prokaryotic genomes have been sequenced to date, and more

and more eukaryotic genomes are becoming available. Large quantities of sequence information

provide the opportunity to perform interesting and useful comparisons of protein content in different

organisms. The purpose of this thesis is to describe, evaluate, and apply a program called Proteome

Subtraction and Intersection (PSI). PSI is based on an idea called “genome subtraction”, which

involves finding (using either computational or laboratory techniques) genetic regions that are

present in some organisms, but not others. PSI’s specific purpose is to find proteins that are

present in all of the organisms in one set of organisms, and none of the organisms in a second set.

The name of the program was chosen because doing this requires the subtraction and intersection

set operations. Two primary applications of PSI are described below.

First, PSI can help answer the question, “What protein or proteins are responsible for phenotype

X?” By finding proteins that are present in all of the organisms that exhibit phenotype X, but

in none of the organisms that do not exhibit phenotype X, PSI can narrow down the list of

proteins that could potentially cause this phenotype. Using this list, the amount of molecular

biology laboratory work required to identify the precise protein or proteins responsible for X can

be substantially reduced.

Second, PSI can provide novel insights concerning the protein content of groups of organisms.

This is a very general statement of this application, and there are many more specific applications

that fall under this category. For instance, PSI can be used to answer the question, “What proteins

does species A contain that are found in none of the other organisms of the same genus as A?” If

A is a bacterial species, then the resulting list of proteins may be useful for developing diagnostic

procedures that can differentiate species A from similar types of bacteria, perhaps by testing for

the presence or absence of the gene corresponding to one of these proteins. Such a gene could be

detected using the polymerase chain reaction (PCR) laboratory technique. PSI can also generate

data that is useful for performing whole-genome phylogenetic analyses by determining how many

proteins are present in one organism, but not another. This quantity reflects a genomic “distance”
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between these two organisms, and presumably reflects an evolutionary distance as well. If all

pairwise comparisons are performed among the organisms of interest, then a phylogenetic tree

can be constructed using these distances. Such a phylogenetic tree takes into account much more

information than traditional approaches to phylogenetics, which often just consider changes in one

gene sequence or a small set of sequences. In addition to these questions, PSI can address many

other problems that involve comparing the protein content in sets of organisms. Some of these

issues will be addressed in this thesis, while others will be discussed as possible future work.

This thesis describes the design and implementation of PSI, and evaluates the efficacy of PSI for

performing the aforementioned types of analyses. Given that much more sequence information is

available for prokaryotes than for eukaryotes, the analyses presented in this thesis are restricted to

prokaryotes (specifically bacteria). However, PSI could be applied to eukaryotes as well, although

there might be added difficulties when using PSI to analyze these more complex organisms. Some

of these potential difficulties are discussed in Section 6.3.

Background to the concepts presented in this thesis is given in Section 2. Section 3 summarizes

the goals of this research. Section 4 describes the design and implementation of PSI, as well as

the data and methods used to evaluate it. Section 5 presents the results. Finally, Section 6 gives

some concluding remarks, discusses some issues relating to the results, and suggests possibilities

for future work.
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Chapter 2

Background

This section describes the background material necessary to understand the content of this the-

sis. Section 2.1 gives a basic introduction to molecular biology. Section 2.2 contains a short history

of genome sequencing, as well as a discussion of the usefulness and the limitations of knowing an

organism’s genome sequence. Section 2.3 gives an introduction to online databases containing se-

quence information. Section 2.4 contains a short background on genetic mutations, while Section 2.5

discusses methods for determining the similarity of biological sequences. Section 2.6 reviews tech-

niques for searching sequence databases. A survey of orthologue detection methods can be found

in Section 2.7, and a short primer on the problem of determining protein-phenotype relationships

is given in Section 2.8. Section 2.9 contains an introduction to phylogenetics. Finally, Section 2.10

gives background material on graphs, and Section 2.11 describes disjoint-set data structures.

2.1 Molecular biology

Molecular biology is the study of molecules that are important to life, specifically DNA (deoxyri-

bonucleic acid), RNA (ribonucleic acid), and proteins. These three molecules are so inextricably

linked, and their importance to biology so fundamental, that the relationship among them is called

the central dogma of molecular biology. This section contains a short introduction to the structure

and function of these three types of molecules, and describes how they are related.

DNA molecules are long polymers made up of the four chemical constituents adenine, cytosine,

guanine, and thymine, which are abbreviated by the letters A, C, G, and T, respectively. Each of

these chemicals is called a nucleotide, which is often used interchangeably with the word base. RNA

is chemically very similar to DNA, and is also composed of repeating sequences of four building

blocks; three of them (A, C, and G) are analogues to those in DNA, while RNA contains uracil

(U) instead of thymine. Proteins are polymers consisting of sequences of 20 possible amino acid

residues, and constitute both the building blocks and the machinery of a cell—some proteins have

structural roles, while others perform the functions that a cell needs to survive, grow, and replicate.

DNA is the chemical that is passed down from generation to generation, and ultimately deter-

mines the characteristics of a given organism. DNA is used as a template for the synthesis of RNA;
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in turn, RNA is (usually) used as a template for the synthesis of proteins. The central dogma of

molecular biology summarizes very succinctly the relationship among these three types of molecules:

information flows from DNA to RNA to proteins. It should be noted that in special cases, other

paths of information flow are possible (RNA to DNA, for instance). Transcription is the process

by which RNA is synthesized using DNA as a template, while translation is the process by which

proteins are made using RNA as a template. The entire DNA complement of an organism is called

its genome, and the complement of proteins synthesized by an organism is called its proteome.

A gene is a segment of DNA that contains all of the information necessary for the synthesis of

an RNA molecule, and can be considered the basic unit of heredity [1]. The term genotype can have

slightly different meanings depending on the particular context, but usually refers to the presence

or absence of one or more genes, or the specific form of a given gene that is present in a particular

organism. Very generally, a genotype can be described as a genetic property of an organism. A

phenotype is an actual observable characteristic produced by a genotype; for example, a particular

bacterium might have a rod-like cell shape, while another may have a round cell shape. This

difference in cell shape (the phenotype) may be caused by differences in genotype—for instance,

one bacterium may contain a gene not found in the other; alternatively, the difference could be due

to the two bacteria expressing a different form (allele) of the same gene.

2.2 Genome sequencing

In 1977, Fred Sanger and colleagues used the plus and minus method [2] to determine the complete

genome sequence of bacteriophage φX174 [3]. Consisting of fewer than 6000 base pairs (bp), the

φX174 genome was the first complete genome sequence to be reported. At this time, sequencing

technology was rather primitive, making sequencing efforts expensive, laborious, and error-prone.

As a result, only very short genomes—those with lengths similar in magnitude to that of bacte-

riophage φX174—could be sequenced in a reasonable amount of time. With the advent of more

advanced sequencing techniques, such as the dideoxyribonucleotide chain-termination sequencing

method [4], DNA sequencing could be performed at a more rapid pace. This made it possible to

elucidate the sequences of several larger viral genomes, such as those of bacteriophage λ (which

consisted of 48502 bp) [5], vaccinia virus (191636 bp) [6], and variola (smallpox) virus (186102

bp) [7].

While the sequencing of these larger viral genomes was an impressive achievement, the lim-

itations of then-current sequencing technology put the genome sequences of non-viral organisms

largely out of reach. Even the smallest prokaryotic genomes are several times the size of the largest

viral genomes, and eukaryotic genomes can be orders of magnitude larger than that. However,

new and improved techniques for genome sequencing were soon introduced [8–11]. These methods
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enabled larger and larger genomes to be sequenced in a reasonable amount of time, and soon led to

several important milestones in genome sequencing. In 1995, the genome sequence of the bacterium

Haemophilus influenzae was reported, which represented the first published sequence of the genome

of a free-living organism [12]. This genome sequence consisted of nearly two million base pairs—far

larger than any of the viral genomes that had previously been reported. The sequencing of the

yeast Saccharomyces cerevisiae [13] in 1996 represented the first genome sequence of a eukaryotic

organism. Another important genome sequence was that of the animal model organism Drosophila

melanogaster [14], which was followed closely by the genome sequence of the plant model organism

Arabidopsis thaliana [15]. Completed in 2001, the sequencing of the human genome [16, 17] was

perhaps the biggest milestone of all in terms of human medical significance.

These sequencing efforts were very significant achievements. However, an organism’s genome

sequence does not tell us what genes are present, where those genes are physically located (such as on

chromosomes or plasmids), or the functions of the protein products of those genes. Thus, knowing an

organism’s genome sequence represents only a starting point in understanding its genetic properties.

Much work still needs to be done in order to enhance our understanding of the instructions that

guide the organism’s development, dictate the metabolic processes that it can perform, and allow

it to respond to its environment. It is difficult to overstate the value of gaining such knowledge;

among many other important applications, it could allow us to improve human health (say, by

discovering how viruses are able to evade the host’s immune response), to improve agricultural

yields (say, by engineering herbicide-resistant crops), and to facilitate industrial processes (say, by

using bacterial enzymes to catalyze chemical reactions).

2.3 Databases of genome and proteome sequences

Due to exponential increases in the number of sequenced genomes, central repositories are needed

so that these sequences can be easily organized and accessed. Part of the European Bioinformatics

Institute (EBI) website, Integr8 [18] is an online database that contains genome and proteome

sequences. As of June 4, 2009, Integr8 had available for download the genomes and proteomes for

830 bacterial isolates [19], 63 archaeal isolates [20], 1930 viral strains [21], and 96 eukaryotes [22].

Sequences are available for download in a number of formats—genome sequences can be retrieved in

FASTA or European Molecular Biology Laboratory (EMBL) format, while proteomes are available

in FASTA, UniProt, or extensible markup language (XML) format.

2.4 Genetic mutations

During evolution, many changes may occur to an organism’s genome due to errors in DNA repli-

cation. For instance, a single nucleotide may be substituted for another nucleotide; alternatively,
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a nucleotide may be added (an insertion) or omitted (a deletion). More large-scale changes also

can take place. For example, a translocation occurs when an entire segment of a chromosome is

removed and re-inserted into a different position in the same chromosome, or (in eukaryotes) into

a different chromosome. A reversal occurs when a segment of a chromosome is removed, and then

reinserted in the original place, but in reverse orientation. Another possible genetic change is gene

duplication, in which duplication of a gene occurs. After a gene duplication event, the original gene

often retains its original function, while the copy evolves to perform a new, but usually related,

function.

2.5 Similarity of DNA and protein sequences

For a given protein or DNA sequence from a specific organism, it is frequently of biological interest

to find other sequences from the same organism or from a different organism that are similar to

it. Two genes or proteins that are similar are generally assumed to be evolutionarily related. To

describe more precisely how two sequences may be related in an evolutionary sense, it is helpful to

introduce some terminology. Note that the following descriptions discuss similarity among proteins,

but are also valid when considering DNA sequences. A given protein is a homologue of another

protein if the two proteins are evolutionarily related. A paralogue is a more specific version of a

homologue, and refers to a protein that is related to another protein from the same organism by

virtue of a gene duplication event [23]. An orthologue is also a more specific version of a homologue,

and refers to a protein that is related to another protein from a different organism by virtue of both

proteins having evolved from a single ancestral protein. Orthology is a concept that is central to

this thesis.

An example of orthology is as follows. Suppose that the genome of organism A encodes protein

XA. Over time, the descendants of organism A diverge, eventually differentiating into two species

B and C. During this differentiation process, protein XA undergoes mutations, and the versions of

this protein present in organisms B and C can be denoted XB and XC , respectively. Despite these

mutations, XB and XC retain the same function as XA. As such, XB and XC are orthologues.

The most basic method for ascertaining the similarity of two protein sequences is to calcu-

late the optimal alignment of those sequences, and then determine the proportion of amino acid

residues that are either identical, or have similar biochemical properties. The alignment portion of

this procedure could involve either a global sequence alignment, in which the entirety of the two

sequences are aligned, or a local sequence alignment, in which only the most similar portions of the

sequences are aligned. The algorithms used to perform global alignment and local alignment both

use an algorithmic technique called dynamic programming, and were introduced by Needleman and

Wunsch [24] and Smith and Waterman [25], respectively.
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2.6 Database searching

While mathematically optimal, the dynamic programming method of aligning sequences is too slow

to be practical for comparing a sequence against a large database of other sequences. For this rea-

son, faster heuristic-based methods are required. Heuristic-based methods are not mathematically

optimal, but are much faster and often give satisfactory results. The first widely-used programs

used for searching sequence databases were the FASTP program [26] and its successor, FASTA [27].

Note that the FASTA program for sequence database searching should not be confused with the

FASTA file format for representing sequence information. The FASTP and FASTA programs allow

large databases to be searched using ordinary computers in seconds or minutes, compared to hours

or days for the dynamic programming methods.

Today, the most widely used database search tool is BLAST (“basic local alignment search

tool”) [28, 29], which provides greater specificity and similar sensitivity when compared with the

FASTA algorithm, and is also much faster. For protein sequences, BLAST first uses a sliding

window to find all the words (sequences of characters) of length three in the input sequence. For

each word w, a similarity matrix is used to find other three-letter words that are similar to w.

For each original word (from the query sequence), as well as the words that are similar to them,

the database is searched for that word. Each time a word is found, a “seed” is created, which is

extended in both directions. Put differently, an alignment is created between the query sequence

and the sequence in the database, originating at the seed and extending outward. During this

extension, the current score of the alignment is kept, as well as the maximum score achieved thus

far. The extension is terminated when the current score drops below the maximum score by a

certain amount, and the alignment that gave the maximum score is reported. BLAST outputs

statistical measures of significance for each match in the database, aiding the user in determining

whether a given match has biological meaning. The most commonly used statistical measure of

significance reported by BLAST is the E-value. The E-value represents, for a given sequence with

score S, the expected number of matches obtaining a score equal to or better than S that would

occur by chance given the size of the database. The smaller the E-value, the smaller the chance

that the match occurred simply by chance.

2.7 Orthologue detection

Several techniques have been proposed for identifying orthologous relationships among proteins.

As orthologue detection is a concept that is central to this thesis, these methods are explained in

some detail. Section 2.7.1 discusses a simple method for orthologue detection, while Section 2.7.2

describes a slightly more sophisticated one. Section 2.7.3 discusses clusters of orthologous groups
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(COGs), a popular orthologue database. Finally, Section 2.7.4 contains a brief overview of some

additional orthologue detection methods.

2.7.1 A simple method for orthologue detection

Perhaps the simplest possible approach to orthologue detection is to perform pairwise BLAST

searches between every possible pair of proteins, and to declare two proteins orthologues if one (or

both) of the matches has an E-value that is less than some threshold. Unfortunately, this method

is prone to identifying two proteins as orthologues even when they are not. To understand why,

consider the following hypothetical example.

The genomes of two closely related bacteria, O1 and O2, each encode a protein (P1 and P2,

respectively) that allows them to metabolize glucose. At some point, a gene duplication event occurs

in O1, and a duplicate gene encoding P1 is now present in O1’s genome. Denote these proteins P a
1

and P b
1 . Over time, P a

1 retains its original function, while P b
1 evolves to obtain a new function. Now,

P a
1 and P b

1 would be termed paralogues, while P a
1 and P2 would be termed orthologues. However,

P b
1 and P2 are not orthologues, since they have different functions. Now consider the situation

in which the relationships among these three proteins are not known in advance. If BLAST was

simply run using P b
1 as the query sequence against the database of proteins encoded by the genome

of O2, then P2 would likely be a very significant match (i.e., having a small E-value), leading to

the erroneous conclusion that P b
1 and P2 are orthologues.

2.7.2 Reciprocal BLAST hits

An improvement over the orthologue detection method described in Section 2.7.1 is called reciprocal

BLAST hits (RBH). The principle behind RBH is simple: two proteins P1 and P2 (from organisms

O1 and O2, respectively) are considered to be orthologues if and only if the following criteria are

met.

• P2 is the best hit (i.e., having the smallest E-value) when P1 is used as the query sequence

and the proteins in O2 are used as the database.

• P1 is the best hit when P2 is used as the query sequence and the proteins in O1 are used as

the database.

• The E-values reported for both comparisons are each less than some threshold.

Continuing with the example from Section 2.7.1, the following shows the RBH would correctly

determine the relationships among all three proteins. P a
1 would be the best BLAST hit when P2

is used as the query sequence against the database of proteins in O1, and P2 would be the best

BLAST hit when P a
1 is used as the query sequence against the database of proteins in O2. Thus, P a

1
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and P2 would be correctly identified as orthologues. However, while P2 would be the best BLAST

hit when P b
1 is used as the query sequence against the database of proteins in O2, P b

1 would not be

the best BLAST hit when P2 is used as the query sequence against the database of proteins in O1.

Thus, unlike the simpler method described in Section 2.7.1, RBH would not incorrectly identify P b
1

and P2 as orthologues.

2.7.3 Clusters of orthologous groups

One of the first significant attempts to study orthology among proteins from sequenced genomes

was performed by Tatusov et al. [23], who introduced the concept of COGs. At the time that the

first paper on COGs was published, the genomes for only seven free-living organisms (i.e., excluding

viruses) were available, although all five major phylogenetic lineages (gram-negative bacteria, gram-

positive bacteria, cyanobacteria, archaea, and eukaryotes) were represented.

The procedure used to construct the COGs was fairly simple: first, all possible pairwise BLAST

searches were performed between proteins from the seven organisms. For each protein from a given

organism, the best BLAST hit from each of the other six organisms was determined. These results

were encoded using a graph; vertices represented proteins, and directed edges were drawn from

one vertex to another if the second vertex was the best BLAST hit when the first was used as

a query sequence. For a more detailed description of graphs, see Section 2.10. Triangles in the

graph—where there was an edge between protein A and protein B, an edge between protein B and

protein C, and an edge between protein C and protein A—represented the smallest possible COGs.

The directionality of each of these edges was not important—a given edge could be going in either

direction (from protein A to protein B, or from protein B to protein A), or could be bidirectional

(both from protein A to protein B, and from protein B to protein A). Visual representations of

COGs do indicate the directionality of each edge, even though the directionality was not important

in constructing the COGs. It is also possible that cycles (other than triangles) could arise in the

graph. These were not considered COGs; a minimal COG was created only if a triangle pattern

occurred. After identifying triangles, these minimal COGs were then expanded by locating pairs of

COGs whose triangles shared a common side, and joining them. This process was repeated until

no more COGs could be joined together. A visual representation of COGs is shown in Figure 2.1.

While some of the procedure for constructing COGs was automated, a large amount of manual

curation was required [31]. In particular, a specific COG created using the automated procedure

may contain more than one protein from the same species (as in Figure 2.1 (C)), and thus splitting

up the COG may more accurately reflect orthologous relationships. COGs needing to be split up

were identified by manually inspecting the sequences or by performing multiple sequence alignments.

In the opposite situation, manual intervention was sometimes required to merge two COGs that

appeared to contain proteins that evolved from a single ancestral protein. A number of other
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Figure 2.1: A visual representation of clusters of orthologous groups (COGs). Vertices rep-
resenting proteins from the same species are the same color. Solid lines indicate bidirectional
edges, in which the first protein is the best hit when the second is the query sequence, and
vice versa. Broken lines indicate unidirectional edges, and the color of such an edge is the
same as that of the node corresponding to the query sequence. Note that this notation is
different from standard graph notation, in which arrows are used to indicate directionality.
Part (A) shows the smallest possible COG, which consists of three proteins arranged in a
triangle shape. This triangle shape is required for these proteins to be classified as a COG;
three proteins for which the similarity relationship is not transitive, as shown in part (B),
would not constitute a COG. Part (C) shows a more complex COG, with proteins from a few
different species, and two proteins (which are paralogues) from the same species (YBL076c
and YPL040c). Parts (A) and (C) were taken from Tatusov et al. [23], while part (B) was
created using GraphViz [30].
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manual curation procedures were performed in order to identify proteins missing from COGs and

to support or refute the orthology of certain groups of proteins.

Following the publication of the original paper on COGs, the COG database was subsequently

updated to include information from 21 complete genomes [32]. Even more recent updates have

incorporated information from additional genomes [33]. Another paper describes the creation of

clusters consisting exclusively of proteins from eukaryotes [34].

COGs have also been constructed from smaller sets of bacteria in order to compare their genomic

content. For instance, Makarova et al. [35] sequenced the genomes of nine different lactic acid

bacteria (LAB), which are bacteria characterized by their ability to ferment hexose sugars to form

lactic acid. Makarova et al. created COGs containing proteins only from these organisms, which

they called LaCOGs. They then compared the LaCOGs to previously-established COGs in order

to characterize the genomic content of these newly-sequenced species, and to determine how the

genomes of these LAB are related to each other and to the genomes of other bacteria. Another

example is arCOGs, which are clusters of orthologous groups for 41 archaeal genomes [36].

While COGs represent an important tool for understanding orthologous relationships among

proteins, they have a number of drawbacks that limit their usefulness for some applications. These

are as follows.

1. In creating the COGs, two proteins P1 and P2 (from organisms O1 and O2, respectively) were

connected with an edge if at least one of the following was true.

(a) P2 was the best hit (BeT, using the authors’ terminology) when the query sequence P1

was used to search the database of proteins encoded by O2 using BLAST.

(b) P1 was the BeT when the query sequence P2 was used to search the database of proteins

encoded by O1.

Thus, two proteins were connected with an edge if one was the BeT of the other, regardless

of the E-value of that hit. This could easily lead to spurious matches. For instance, suppose

that P2 was the BeT when P1 was used as the query sequence and the proteins encoded by

O2 were used as the database. This may lead one to believe that P1 and P2 are orthologous.

However, if the E-value for this match was relatively large—say, greater than 10−2—it is

possible that the two proteins were not actually related. To further illustrate this deficiency,

suppose there exist two sets of random proteins. If an arbitrary protein from one set was used

as a BLAST query against the other set, there must be a “best hit”, even if all of the proteins

in the two sets were entirely unrelated. If the sets were big enough, it is entirely plausible that

this would result in some spurious triangles, which would be designated as COGs. Therefore,

the use of BeTs for establishing the relatedness of proteins, and the corresponding lack of

11



E-value thresholds, could have created spurious COGs, or could have erroneously introduced

a given protein into an existing COG.

Furthermore, note that only one of the two conditions above must be true in order for an

edge to be drawn between two vertices. This is in contrast to the RBH method described

in Section 2.7.2. Thus, COGs could potentially suffer from the same problem as the method

described in Section 2.7.1. However, the fact that triangles were required to form a COG

should have compensated for the fact that the BLAST hits were not required to be bidirec-

tional. This, combined with the fact that the COGs were manually refined, suggests that

COGs should certainly be superior to the simple method described in Section 2.7.1.

2. The composition of the COGs is dependent on the order in which genomes were added to

the COGs [33]. Thus, if the 66 organisms whose proteins have been incorporated into COGs

had been added in a different order, then the total number of COGs, as well as the proteins

that were included in each of those COGs, could be different. While the authors analyzed

how the number of COGs varied depending on the order in which genomes were added [33],

they did not investigate how the actual composition of the COGs differed. If there was an

appreciable degree of variation, the status of a given COG as a reliable reflection of protein

orthology might be called into question.

Given the procedure for constructing COGs, it is unclear why the order in which the genomes

were added changes the number and composition of the COGs. Suppose that some genomes

were added using the automatic procedure (finding triangles in the graph and then joining

them), and then some manual curation was done, and then more genomes were added using

the automatic procedure, followed by more manual curation, and so on. In this case, it makes

sense that the number and composition of the COGs may differ depending on the order in

which the genomes were added. However, in their 2001 paper [33], Tatusov et al. tried 106

possible genome order permutations, and presented a graph showing the range in the number

of COGs that existed depending on the order in which the genomes were added. Clearly, with

so many permutations being examined, no manual curation could have been done. Given that

the automatic procedure for constructing COGs merely involved finding triangles and joining

those with a common side, it is unclear why the order would matter. It is also unclear why

all of the genomes could not be added at the same time.

3. While the initial construction of COGs was automated, a large amount of manual curation was

necessary [34]. Since genomes are being sequenced at an ever-increasing rate, continuing this

manual curation process becomes less and less feasible as more and more genome sequences

become available.

4. In 2003, when the most recent paper discussing updates to the COG database was pub-
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lished [34], the database contained 66 genomes. Despite the huge number of genomes that

have been sequenced since that time (see Section 2.3 for specific numbers), the COG website

still contained only 66 genomes as of Dec. 3, 2008 [37]. This is likely due in large part to the

weakness discussed in item #3—namely, the significant amount of manual labour necessary to

curate and refine COGs. The COG website claims that a large number of microbial genomes

(261) and a few eukaryotic genomes are due to be added. However, even these numbers pale

in comparison to the number of genomes that have been sequenced to date, and it is unclear

when the integration of these genomes into the COG database will actually be completed.

5. As another consequence of this manual curation process, it is essentially impossible for those

using COGs to determine how a particular COG was created. It is possible that a given

COG was constructed entirely using the automatic process; alternatively, it may have been

the result of an unknown amount of manual curation. As such, it is difficult to understand a

given COG’s relationship to related COGs, as well as to evaluate how well a given COG may

reflect actual orthologous relationships.

6. The percentage of proteins from a given organism that are represented in COGs is always quite

a bit less than 100%, making COGs inappropriate for some comparative genomics applications

in which all, or the vast majority, of the proteins from the organisms of interest need to be

considered. Table 2.1 shows the percentage of proteins that are represented in COGs for

ten prokaryotic and ten eukaryotic organisms. Considering just the organisms in Table 2.1,

the highest percentage of an organism’s proteome represented in COGs is 73%, which is the

case for four of the listed prokaryotes. Even for organisms with relatively small proteomes,

such as the lactic acid bacterium Lactobacillus acidophilus (1864 proteins), the raw number

of proteins not represented in COGs can be substantial (431 in this case). Table 2.1 shows

that eukaryotes generally have a smaller percentage of proteins represented in COGs than

do prokaryotes—if prokaryotes are considered in aggregate (1211 organisms, including both

bacteria and archaea), 69% of proteins are represented in COGs; the corresponding percentage

for eukaryotes (40 organisms) is just 33%. This lack of coverage makes COGs ill-suited for

analyses in which a complete comparison of the proteins in a set of organisms is required. Note

that all of the data in this paragraph were derived from the Integrated Microbial Genomes

(IMG) website [38–40].

As a side note, it is rather perplexing how IMG lists the percentage of proteins represented

in COGs for all 1284 (as of July 20, 2009) prokaryotes included in its database, given that

the COG database contains only 66 genomes. One possible explanation is that these values

were derived using the COGNITOR program, which is available at the COG website. The

COGNITOR program allows one to include an arbitrary protein P in an existing COG. If
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Table 2.1: Percentage of proteins from various prokaryotic and eukaryotic organisms that
are represented in COGs. Organisms were arbitrarily selected for inclusion in this table. All
information was obtained from the Integrated Microbial Genomes website [38–40].

Organism Proteins (#) Proteins represented in COGs (%)

Prokaryotes

Bacteroides coprocola M16, DSM 17136 4291 47

Campylobacter hominis ATCC BAA-381 1741 62

Ignicoccus hospitalis KIN4/I 1444 65

Lactobacillus acidophilus NCFM 1864 73

Mycobacterium bovis AF2122/97 3949 69

Neisseria gonorrhoeae NCCP11945 2674 58

Oceanibulbus indolifex HEL-45 4153 73

Pyrococcus abyssi GE5 1904 73

Vibrio cholerae 1587 3758 73

Xanthomonas campestris pv. campestris 4273 69

Eukaryotes

Arabidopsis thaliana 26735 36

Aspergillus niger 14086 39

Caenorhabditis elegans 20056 25

Danio rerio 37724 30

Drosophila melanogaster 14081 25

Gibberella zeae 11640 46

Homo sapiens 27727 22

Magnaporthe grisea 12832 36

Mus musculus 39625 15

Trypanosoma brucei 8772 29
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two or more proteins from different proteomes are represented in a given COG, and they

are each the best BLAST hit for P in those proteomes, then P is included in that COG.

Thus, the percentages listed on the IMG website could have been obtained by performing

this procedure with each protein in a given organism (if this organism was not one of the 66

included in the COG database), and determining the percentage of these proteins that fit into

an existing COG. Note that the purpose of this paragraph is to attempt to resolve an apparent

contradiction between the number of organisms currently represented in the COG database,

and the number of organisms for which IMG displays COG statistics. The documentation at

IMG does not actually state that the COGNITOR program was used to generate these data,

but this explanation seems plausible.

7. The COG website [37] has an unintuitive interface that is very difficult to use. In addition,

the online documentation is sparse and confusing, and there are no tutorials or examples that

allow the user to learn how to effectively obtain useful information from the COG database.

Furthermore, the website makes extensive use of abbreviations and one-letter codes, and the

same code is often used to refer to two things with entirely different meanings. For instance,

the website uses the letter “P” to refer to both a category of protein function (“inorganic ion

transport and metabolism”), and a specific clade (consisting of Mycoplasma genitalium and

Mycoplasma pneumoniae).

2.7.4 Other methods for orthologue detection

Besides the methods described in Sections 2.7.1, 2.7.2, and 2.7.3, a number of other techniques for

the identification of orthologues have been developed. This section briefly describes some of these.

A common problem encountered in orthologue identification is that gene loss among closely

related organisms may lead to two proteins being incorrectly classified as orthologues, when in fact

they are paralogues. For instance, suppose that organism O1’s genome encodes protein P1, and

a gene duplication event occurs, resulting in two proteins denoted P a
1 (which retains its original

function) and P b
1 (which gains a new function) in the genome of O1. Now suppose that O1’s distant

descendants, O2 and O3, encode proteins P a
2 and P a

3 , respectively (which are both orthologous to

P a
1 ), as well as P b

2 and P b
3 (which are both orthologous to P b

1 ). If, due to gene loss, organism O2

loses protein P a
2 and organism O3 loses protein P b

3 , then the remaining proteins—P b
2 and P a

3 —

would be incorrectly identified as orthologues by most orthologue detection techniques (such as

RBH). The Ortholuge method [41] attempts to address this issue by analyzing previously-predicted

orthologues for cases in which paralogues have been incorrectly identified as orthologues.

Another technique called OrthologID [42] uses a phylogenetic and parsimony-based approach

to identifying orthologues. While previous work had described methods for identifying orthologues

based on the manual inspection of trees, OrthologID was the first technique that enabled this
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procedure to be fully automated.

In addition to the orthologue detection techniques described above, other methods include

RIO [43], Orthostrapper [44], and INPARANOID [45, 46].

A comparison of several orthologue detection techniques was performed by Chen et al. [47], who

divided the different techniques into two groups: those that primarily use BLAST, and those

that primarily use phylogenetic/tree-based techniques. Their paper reports that the BLAST-

based methods and the tree-based methods each had characteristic strengths and weaknesses, with

BLAST-based methods tending to be more sensitive and tree-based methods tending to be more

specific. Thus, the choice of tool may depend on the relative importance of sensitivity versus

specificity for a user’s particular application. Of particular note is the authors’ evaluation of the

concordance of the orthologue classifications made by the various tools. Substantial disagreements

in the classifications made by the various techniques were discovered, which may be partly due to

the absence of a “gold standard” set of orthologues to which the output of a given tool can be

compared.

2.8 Determining protein-phenotype relationships

The wealth of information provided by genome sequencing efforts has contributed greatly to eluci-

dating the functions of the protein products of many genes. However, the genetic program encoded

by an organism’s genome is extremely complex, and even with the full genome sequences of hundreds

of species, much remains unknown about the regulation, function, and physiological significance of

many proteins. For instance, there are 4354 proteins in the human proteome (downloaded from

UniProtKB [18] on Apr. 30, 2007) that contain in their annotations one or more of the words

“putative”, “uncharacterized”, or “like”. (An example of a protein annotation containing “like”

is “Actin-like protein 6A”.) These words are generally used to describe proteins whose functions

are either completely unknown, or which can be only tentatively assigned based on similarity to

other proteins. As the aforementioned UniProtKB set contains 38009 proteins, uncharacterized

proteins constitute more than 10% of this set. The actual proportion of uncharacterized proteins is

probably greater than this, as some proteins with unknown functions may not contain any of these

“uncertainty words” in their annotations. When interpreting these data, it is important to note

that humans are one of the most intensively studied species (albeit also one of the most complex),

so one might expect other sequenced organisms to have an even greater deficit of protein charac-

terization. Indeed, this appears to be the case: the proteome of Streptococcus pyogenes serotype

M3, for instance, contains 1852 proteins, and 1387 of these are annotated as “putative”, “unchar-

acterized”, and/or “like”. For the better-characterized bacterium L. acidophilus NCFM, 752 out

of 1859 proteins are uncharacterized based on this criterion. Interestingly, even the extremely well-
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studied organism Escherichia coli K12 contains 99 uncharacterized proteins out of 3990 proteins in

its proteome.

Besides determining the function of a specific protein, there is also the complementary prob-

lem of determining, for a given phenotype, the protein or proteins responsible for causing that

phenotype. There are two main biological techniques for determining whether protein X indeed

creates phenotype Y . First, gene knock-out organisms can be created, in which an unrelated piece

of DNA is inserted in the middle of the gene encoding protein X, rendering its protein product

nonfunctional. If phenotype Y is no longer exhibited by that organism, then it becomes clear that

protein X causes that phenotype. In many cases, the situation is more complex, and X may be

part of an entire pathway of catalysis or protein–protein interactions that result in phenotype Y .

In this case, preventing the expression of X would still disrupt the phenotype, although it would be

incorrect to conclude that the phenotype is solely due to the presence of X. Second, it is possible

to create a gene knock-in organism, in which the gene encoding X is added to the genome of an

organism that normally does not contain it. If this organism acquires phenotype Y , then one can

conclude that protein X was responsible. However, if the organism does not acquire Y , then it does

not necessarily mean that X has nothing to do with Y —it may be the case that X is just one of

many proteins in a pathway responsible for Y , and the gene knock-in organism may not have the

rest of the elements of the pathway necessary to cause this phenotype.

2.9 Phylogenetics

Phylogenetics is the study of the evolutionary relatedness of different organisms. This section

outlines different techniques for studying phylogenetics. Specifically, Section 2.9.1 outlines both

traditional and modern approaches to phylogenetics, and Section 2.9.2 presents a survey of whole-

genome approaches.

2.9.1 Methods for studying phylogenetics

Historically, phylogenetic analyses have been performed using a diverse and often arbitrary selection

of morphological and phenotypic characteristics. For instance, a newly-isolated bacterium would

perhaps have been classified into one genus if the cells were round, and another genus if the cells

were rod-shaped. However, it is now considered doubtful that individual phenotypes—or even a

small collection of phenotypes—can be used to accurately infer evolutionary relationships [48]. This

has led to the development of more reliable and accurate approaches for studying phylogenetics and

classifying organisms.

Most modern phylogenetic analyses deduce evolutionary relationships using biomolecular se-

quences. The most popular approach to bacterial phylogenetics involves comparing 16S ribosomal

17



RNA (rRNA) gene sequences [48]. By comparing the similarity between the 16S rRNA gene se-

quences of two bacteria, their degree of evolutionary relatedness can be inferred. The 16S rRNA

gene is part of the prokaryotic ribosome, and has a number of qualities that make it ideally suited

for phylogenetic analysis: it is present in all prokaryotes; its function is always the same and is not

involved in environmental response, meaning that the gene does not experience different evolution-

ary pressures depending on the environment in which the bacterium lives; it is easy to sequence;

and different regions mutate at different rates, enabling both close and distant phylogenetic rela-

tionships to be analyzed. The 16S rRNA gene is present only in bacteria; however, portions of the

eukaryotic ribosome that are similar to it are often used when studying eukaryotes.

Another common technique is multi-locus sequence analysis (MLSA) [49, 50] which infers phylo-

genetic relationships by comparing the sequences of several housekeeping genes. Since this technique

takes several genes into account, rather than just a single gene, it is potentially more accurate.

Several software tools can be downloaded in order to visualize phylogenetic trees. A website

containing a list of these programs is http://bioinfo.unice.fr/biodiv/Tree editors.html.

There also exist web-based tools that enable phylogenetic trees to be manipulated; a prominent

example is the interactive tree of life (iTOL) website [51].

2.9.2 Whole genome approaches to phylogenetics

While 16S rRNA gene sequence analysis and MLSA have proved to be effective tools for phyloge-

netics, one deficiency inherent in these techniques is that the amount of information used is quite

small relative to the total amount of information present in an organism’s genome. As a result,

there has been increasing interest in using whole-genome characteristics in analyzing evolutionary

relationships.

One prominent example of a whole-genome similarity measure is the frequency of each possible

dinucleotide. These frequencies have been found to be similar in closely related organisms and

dissimilar in more distantly related organisms, and therefore constitute a “genomic signature” [52,

and references therein]. Even before many genomes were available, dinucleotide frequencies in

different organisms were characterized and compared using the sequence data available at the

time [52]. More recently, van Passel et al. [53] evaluated the use of this genome signature for

phylogenetics using a large number of prokaryotic genome sequences. Using a calculation called δ∗,

which represents the average difference in abundance for all dinucleotides in two genomes [54], they

showed that intraspecific distances are generally much smaller than interspecific (but intrageneric)

distances. For a given pair of organisms, they also observed an inverse relationship between δ∗ and

the percent identity of their 16S rRNA genes, although the strength of this relationship appeared

to be quite modest and in fact was not precisely quantified by the authors.

Many other whole-genomic approaches to taxonomy have been explored. A genome’s G-C
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content (the percentage that is composed of guanine or cytosine) has been found to be highly

similar in related species and less similar in more divergent species [55]. Similar patterns have been

discovered for codon usage [56, 57] and gene order [58]. A particularly interesting approach to

genomic phylogeny was introduced by Qi et al. [59, 60], who developed a program called CVTree

that ascertains phylogenetic distances by examining the short peptide composition of each proteome.

These methods, as well as a number of others, were reviewed by Coenye et al. [61].

Coenye and Vandamme [57] performed a comparison of some of these methods, and showed

that the phylogenetic trees derived from these characteristics are usually quite consistent with

each other, as well as with the tree derived from comparing 16S rRNA gene sequences. As these

comparisons were performed on a small, related group of bacteria, it remains unclear whether these

results generalize to all organisms or even to all bacteria.

Another approach to whole-genome phylogenetics—one that was also examined in the study

done by Coenye and colleagues—is the comparison of gene content, which involves identifying

orthologues in pairs of organisms, and then assigning a “distance” between each pair based on

the number of shared genes. This technique was originally proposed by Snel et al. [62], and has

subsequently been revisited with larger groups of organisms [63, 64]. Compared to other whole-

genome techniques for phylogenetics, this method seems particularly attractive, as differences in

gene content among organisms are readily explicable both in terms of their evolutionary mean-

ing (adaptation to environment) and the mechanisms behind them (gene duplication, gene loss,

horizontal gene transfer). In contrast, differences in G-C content, dinucleotide frequencies, and

peptide composition—while evidently containing a phylogenetic signal—have no obvious functional

or evolutionary interpretation. Since gene content comparisons have more appeal from an evolu-

tionary and functional perspective than other whole-genome methods, and give similar results [57],

there is a strong argument for using gene content comparisons as a supplement to sequence-based

approaches to phylogenetic analysis.

2.10 Graphs

Graphs are an extremely flexible data structure that allow the modelling of many types of problems.

An undirected graph G = (V,E) is composed of a set of vertices, denoted V , which are connected

by a set of edges, denoted E. (A set is simply an unordered collection of elements, none of which is

repeated). An example of an undirected graph is shown in Figure 2.2. This graph has five vertices

labeled a, b, c, d, and e, and has edges between a and b, a and c, a and d, b and c, and c and

d. Thus, V = {a, b, c, d, e} and E = {{a, b}, {a, c}, {a, d}, {b, c}, {c, d}}. Notice that E is a set, and

each element of E is itself a set. Since this is an undirected graph, there is no directionality to the

edges, and thus each edge is described by a set of vertices. This is appropriate because order is
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Figure 2.2: Graphical representation of the undirected graph G = (V,E), where
V = {a, b, c, d, e} and E = {{a, b}, {a, c}, {a, d}, {b, c}, {c, d}}.

irrelevant in a set—{a, b} is the same as {b, a}.

Graphs may also be directed. In this case, each edge is specified by an ordered pair rather than

a set, wherein the first element of the ordered pair indicates the originating vertex, and the second

element denotes the destination vertex. In a visual representation of a directed graph, an arrowhead

indicates the destination vertex. Suppose that there is a graph with the same vertices as above

(V = {a, b, c, d, e}), except now E = {(a, b), (b, a), (c, d), (d, e), (e, b), (e, c)}. A visual representation

of this graph is shown in Figure 2.3. Note that Figure 2.3 represents the standard notation for

representing directed graphs, which is different than the notation used for visually representing

COGs (see Section 2.7.3).

A graph may have one or more connected components. In order to describe a connected com-

ponent, the concept of a path must first be explained. A path is a sequence of vertices in which

each successive vertex is connected to the previous vertex by an edge. A connected component is

a set C ⊆ V such that there is a path from every vertex in C to every other vertex in C, and there

does not exist a vertex v ∈ (V − C) such that v is connected by an edge to a vertex in C.

Graphs provide a very natural way of modelling orthologous relationships among proteins. In

modelling orthology, each vertex represents a protein, and the presence of an edge between two

vertices indicates that the two proteins represented by those vertices are orthologues. Thus, the

connected components of such a graph represent groups of orthologous proteins.

An example of this concept is given in Figures 2.4 and 2.5. Suppose that orthology relationships

among the proteins in three different organisms have been determined. In Figures 2.4 and 2.5,

vertices representing proteins from the same organism are the same color. Since similarity between

two proteins from the same organism is not important, there are no edges between like-coloured

vertices. In Figure 2.4, it is difficult to identify the connected components using a quick visual

inspection, even though the graph is small (only 20 vertices, compared to the thousands of vertices

that would be present in a graph representing the proteins from even a small number of bacteria).
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Figure 2.3: Graphical representation of the directed graph G = (V,E), where
V = {a, b, c, d, e} and E = {(a, b), (b, a), (c, d), (d, e), (e, b), (e, c)}.

Figure 2.5 shows exactly the same graph, except that the vertices are arranged such that the

connected components can be identified easily by visual inspection. This example is designed to

give a sense of the fact that finding the connected components of a graph is not as trivial an

operation as it may seem (as just looking at Figure 2.5 might suggest), either for a machine or by

human visual inspection. The connected components of a graph can be identified using a depth-first

search (DFS), which runs in O(|V |+ |E|) time.

2.11 Disjoint-set data structures

Depending on the number of vertices and edges, DFS can be quite slow, meaning that the connected

components of a large graph could take a long time to compute. Another method for finding orthol-

ogous groups once orthologous relationships between pairs of proteins have been determined utilizes

a so-called disjoint-set data structure, which is sometimes called a union-find data structure [65].

Disjoint-set data structures can solve a problem equivalent to finding the connected components

of a graph because the problem of finding connected components is analogous to the problem of

finding disjoint sets (sets that have no elements in common).

A disjoint-set data structure maintains a set of disjoint sets S = {S1, S2, . . . , Sn} to which

members can be added [65]. Such data structures generally support three operations:

• make−set(x)—creates a new set having x as its only member,

• union(x, y)—forms a new set Sk = Si ∪Sj , where x ∈ Si and y ∈ Sj , and destroys the sets Si

and Sj (since all sets must be pairwise disjoint), and

• find−set(x)—find the set containing element x.
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Figure 2.4: An example of a graph for which it is difficult to find the connected components using
visual inspection.
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Figure 2.5: The same graph as in Figure 2.4, except the connected components are clearly shown
by reorganizing the layout of the graph. Each box contains one connected component.

Once the requisite sequence of union and make−set operations have been performed, finding the

orthologous groups is simply a matter of outputting each element of S.

For implementation purposes, each set has a representative element, and all elements of a given

set point to the representative element of that set. When two sets are joined using the union

operation, the pointer for each element of one of the sets (for efficiency, this is generally the smaller

set) are changed to point to the representative element of the other set.
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Chapter 3

Research Goal

The wealth of information provided by sequencing efforts, as well as the existence of bioinformat-

ics programs and techniques that facilitate the searching and analysis of large sequence databases,

enable organisms to be studied and compared on a genome-wide scale. This thesis, which takes

advantage of these sequencing efforts and bioinformatics techniques, has three main goals. The

first is to describe the design of a program called PSI, whose purpose is to identify orthologous

groups of proteins in sets of organisms, and then to find proteins that are present in some of those

organisms, but not others. This goal is described in more detail in Section 3.1. The second goal is

to explore the use of PSI for determining what proteins are responsible for a particular phenotype

(Section 3.2). Finally, Section 3.3 describes the third goal, which is to investigate the use of PSI

for characterizing differences in protein content among different sets of organisms.

3.1 Creating and analyzing the PSI program

This section of the thesis describes the creation of a program called PSI that can, in a very general

way, compare the protein content in arbitrary groups of organisms. The method for comparing

protein content uses an idea called genome subtraction, which involves “subtracting” the proteins

present in one set of organisms from those present in a second set. In other words, PSI identifies

proteins that are present in all of the organisms in one set of organisms, but none of the organisms

in a second set. For a more formal mathematical description of this operation, see Section 4.1.4.

Among the first to propose the idea of genome subtraction were Huynen et al. [66], who compared

the proteins in the pathogen Haemophilus influenzae to those in a benign strain of the bacterium

Escherichia Coli in an attempt to identify genes that might contribute to pathogenicity. It is also

possible to perform a “phyletic pattern search” using COGs [32]. However, the dearth of genomes

that have been incorporated into COGs, as well as the fact that the percentage of an organism’s

genome represented in COGs is usually substantially less than 100% (see Section 2.7.3), make COGs

unsuitable for performing genome subtraction. Another relevant utility is OrthoMCL [67], which

uses RBH to find orthologues, and then uses a Markov clustering algorithm to split apart large

groups of orthologues. It also allows the user to find orthologous groups that are present in one set
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of organisms, but not a second set. Compared to PSI, OrthoMCL implements a more sophisticated

orthologue detection technique; on the other hand, it is designed specifically for eukaryotes, rather

than prokaryotes, and is difficult to automate easily for large numbers of comparisons.

In addition to describing the design and implementation of PSI, one aspect of its computational

efficiency is analyzed. Specifically, the efficiency of DFS on a graph is compared to the use of a

disjoint-set data structure for finding orthologous groups of proteins.

3.2 Using PSI to identify protein-phenotype relationships

The biochemical techniques outlined in Section 2.8 for determining what protein(s) may be re-

sponsible for a given phenotype are time-consuming and expensive. In addition, a researcher may

initially have no idea what proteins are likely candidates for causing the phenotype of interest.

Even well-studied organisms contain dozens of uncharacterized proteins, and less well-studied or-

ganisms may contain hundreds or even thousands (see also Section 2.8); as such, it is not feasible

to create gene knock-in or gene knock-out organisms for every possible protein. Therefore, the

ability to narrow down the list of proteins that might be responsible for a given phenotype would

be extremely helpful in facilitating the identification of the correct protein or proteins. As stated

in Section 3.1, PSI has the ability to identify proteins that are present in one group of organisms

(in this case, those that exhibit the phenotype), but not in another group (those that do not ex-

hibit the phenotype). Proteins satisfying both of these criteria are good candidates for causing the

phenotype, and the number of these proteins should be substantially smaller than the total number

of proteins present in the organisms’ proteomes, significantly reducing the number of proteins that

must be tested in the laboratory in order to find the protein(s) responsible for the phenotype. In

order to test the ability of PSI to find the protein responsible for a given phenotype, a phenotype

for which the causative protein is known is selected, and then organisms that exhibit the phenotype

and organisms that do not exhibit the phenotype are identified. Then, PSI is used to find proteins

that are present in all of the organisms that have the phenotype, and in none of the organisms that

do not have the phenotype, to determine whether the correct protein can be identified.

3.3 Using PSI for phylogenetics and comparative genomics

While a large amount of analysis has been done in comparing pairs of organisms (and using this

information to construct phylogenetic trees or perform other types of comparative genomics), little

work has been done in comparing the genomes of larger groups of organisms. However, a recently

developed web server called EDGAR (efficient database framework for comparative genome analysis

using BLAST score ratios) [68] allows singlets (proteins occurring in only one organism of a given

set) and core proteomes (proteins occurring in all organisms in a given set) to be computed. EDGAR
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should prove very useful for answering many comparative genomics questions. However, it does

have limitations: first, comparisons can only be performed among organisms from the same genus;

second, the fact that it is a web server makes it unfeasible to perform hundreds or thousands of

comparisons, as some analyses may require. In contrast to EDGAR, PSI is not restricted to intra-

genus comparisons, and its stand-alone nature allows it to easily perform hundreds or thousands of

comparisons. PSI is also more flexible than EDGAR, as it can find proteins present in any number

of organisms that are not present in any number of other organisms, as opposed to only being able

to find singlets and core proteomes. (For completeness, it should also be noted that EDGAR can

perform functions not possible using PSI, such as the creation of synteny plots, which compare the

gene order in several genomes).

PSI has the potential to provide interesting data concerning the similarities and differences

in the gene content of individual organisms, of species, of genera, as well as of other arbitrary

groups of organisms. Two specific applications of PSI are explored that fall under the categories of

phylogenetics and comparative genomics.

First, PSI is used to find the number of unique proteins in pairs of bacteria. This information

is then used to calculate a proteomic distance for each pair of bacteria. Based on this information,

a phylogenetic tree is created, similar to the procedure performed by Snel et al. [62] (see also

Section 2.9.2). This tree encompasses 16 well-studied genera, and represents (to the author’s

knowledge) the largest phylogenetic tree created using protein content comparisons to date.

Second, PSI is used to study how well-defined bacterial species are from the perspective of

protein content. More specifically, two questions are asked: are the isolates of bacterial species X

similar to each other in terms of their protein content, and are the isolates of bacterial species X

distinct from other isolates of the same genus in terms of their protein content? Answering these

questions should provide insight into the quality of existing taxonomic classifications. Assuming

that current taxonomic classifications are sound, it is expected that isolates of a given species should

be very similar to each other (have many proteins in common), but be quite different from other

species (have many proteins not found in other isolates that are from a different species, but the

same genus).

Although only these two applications are studied in detail in this thesis, PSI should prove useful

for many other comparative genomics applications. Some of these applications are discussed in

Section 6.7.
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Chapter 4

Data and Methodology

This section describes the methodology used to perform the three main analyses done for this

thesis: the creation of the PSI program (Section 4.1), using PSI for the discovery of protein-

phenotype relationships (Section 4.2), and using PSI for applications related to phylogenetics and

comparing protein content in groups of organisms (Section 4.3).

4.1 Creating and analyzing the PSI program

This section describes the methodology used to create and analyze the PSI program. The algo-

rithm for orthologue detection is presented in Section 4.1.1. Section 4.1.2 describes a technique for

visualizing orthologous groups of proteins, while the design of a database containing information

necessary for this visualization is given in Section 4.1.3. Section 4.1.4 presents the procedure used

to find orthologues that are present in all of the organisms in one set of organisms, but none of

the organisms in a second set (the “genome subtraction”). Section 4.1.5 contains the methodology

for comparing the computational efficiency of two possible strategies for finding orthologous groups

of proteins. Finally, an analytical method for choosing appropriate E-value thresholds for PSI is

presented in Section 4.1.6.

4.1.1 Orthologue detection

Choice of orthologue detection method

In order for PSI to be able to identify proteins that are present in all of the organisms in one

set of organisms, but none of the organisms in another set, orthologous groups of proteins must

first be identified. As described in Section 2.7, many methods for detecting orthologues have

been developed. These methods have different strengths and weaknesses, and also have different

sensitivities and specificities [47]. Comparing these tools would be quite involved—tree-based tools

such as RIO [43], Orthostrapper [44], and OrthologID [42] use different parameters than do BLAST-

based methods such as RBH, COGs [23, 33, 34], and INPARANOID [45, 46]. In addition, some

of these tools give different types of outputs, making them even more difficult to compare [47].
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While it would be of interest to compare the behavior and efficacy of PSI when different orthologue

detection methods are used, such an analysis is beyond the scope of this thesis.

Given this, which method should be chosen for orthologue detection? Given their popularity

and the extensive manual curation procedures used to create them, COGs would seem like an ideal

choice. However, given the limitations described in Section 2.7.3—in particular, the limited number

of genomes for which they are available—COGs are not suitable. Some of the other methods that

have been described are fairly complex, which could make them complicated to analyze.

The orthologue detection method used for PSI is RBH, which was described in Section 2.7.2.

This method has the following advantages.

• RBH is a common and well-understood method that is often used as the basis for more

sophisticated approaches to orthologue detection.

• RBH involves only a single tunable parameter (the BLAST E-value threshold), making it

straightforward to analyze.

• Although RBH has been found to be less accurate than some other techniques when applied

to eukaryotic proteins, it is generally accurate for prokaryotic proteins [47], which are the

focus of this thesis.

• Compared to the other simple method of detecting orthologues described in Section 2.7.1,

RBH is more accurate, only slightly more complicated, and does not involve any additional

parameters.

Performing pairwise BLAST comparisons

Assume that there are nO organisms labeled O1, . . . , OnO
. The first step in identifying groups of

orthologous proteins is, for each pair of organisms Oi and Oj (1 ≤ i, j ≤ nO; i 6= j), and for each

protein Pk from organism Oi, to perform a BLAST search using Pk as the query sequence, and all of

the proteins in the proteome of Oj as the database. A more formal description of this procedure is

shown in Algorithm 4.1. The BioPerl module Bio::SearchIO is used to parse the BLAST output.

Creating a graph of orthologous proteins

As described earlier, graphs provide a very convenient way of modelling protein orthology. Each

protein in a given organism is represented by a vertex. Two vertices are connected with an edge if

their corresponding proteins satisfy the three criteria of RBH (see Section 2.7.2).

The Perl module Graph.pm implements the data structure for a graph, and allows one to easily

perform simple graph operations, such as adding and deleting vertices and edges, as well as more

complex operations, like determining various properties of a graph. The files created in step 7 of

Algorithm 4.1 are used to add the appropriate vertices to the graph (one corresponding to each
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Algorithm 4.1 Algorithm for performing BLAST queries for all possible pairs of proteins in all
possible pairs of organisms. The BioPerl module Bio::SearchIO is used to parse the output file
from BLAST (step 7).
1 Download the proteomes for O1, . . . , OnO

in FASTA format

2 Use the formatdb program to create a BLAST database of the proteins in each

organism’s proteome

3 For each organism Oi

4 For each protein Pk from Oi

5 For each organism Oj (j 6= i)

6 Use the blastp program to find the protein Pl that is the best hit when Pk is

used as a query sequence and the proteins in Oj are used as the database

7 Write the relevant information from the BLAST output file created in step 6

(query accession number, hit accession number, and E-value) to a tab-delimited file

protein), as well as the appropriate edges (when two proteins are predicted orthologues). As the

Graph.pm module allows attributes of edges to be stored, the E-value of a given comparison is

stored as an attribute of the corresponding edge. For each pair of proteins, there are in fact two

E-values: one from when the first protein is used as the query sequence, and one from when the

second is used. The larger of these two E-values is the one actually stored for a given edge. A more

formal description of this procedure is given in Algorithm 4.2.

It should be noted that this implementation of RBH does not attempt to handle ties in the

BLAST results. The hits in a BLAST report are sorted in order of ascending E-values; thus, the

first hit is the most significant one. In Algorithm 4.1, only the first BLAST hit is saved for a given

query protein Pk and database organism Oj ; second or subsequent proteins are ignored. However,

there could be more than one BLAST result that attains the smallest E-value. Perhaps the most

likely situation would be two or more hits having an E-value of 0.0. (It should also be noted that

two hits that each receive an E-value of 0.0 could potentially be differentiated on the basis of their

bit scores.) Ignoring all but the first BLAST hit for a given query protein could be problematic

for orthologue detection. Suppose that the query protein Pk from organism Oi is searched against

the database of proteins in the proteome of organism Oj , and that two proteins, denoted P 1
l and

P 2
l , each attain an E-value of 0.0. Also suppose that Pk is the sole best hit in Oi for both P 1

l

and P 2
l . The current implementation of RBH would declare Pk and P 1

l to be orthologues, but not

Pk and P 2
l . However, it would be just as reasonable to call Pk and P 2

l orthologues. As such, the

implementation of RBH described here does not handle this situation correctly; a better strategy

would declare both pairs of proteins (Pk and P 1
l , and Pk and P 2

l ) as orthologues. However, this

modification to the implementation is left as future work.

Once the graph has been created, groups of orthologues are identified by finding the connected
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Algorithm 4.2 Algorithm for creating a graph of orthologous proteins.
1 Read the file created in step 7 of Algorithm 4.1 and create a two-dimensional hash of best hits,

where the first dimension is a query accession, the second dimension is a hit accession, and the

value is the E-value for the hit between these two proteins

2 Choose an E-value threshold T

3 For each query protein Pk in the first dimension of the hash

4 Create a vertex Vk corresponding to Pk (unless Vk has already been created)

5 For each protein Pl, the best hit when Pk is used as the query sequence against one of the

organisms O1, . . . , OnO

6 Find the corresponding E-value Ekl

7 Create a vertex Vl corresponding to Pl (unless Vl has already been created)

8 Find Pm, the best hit when Pl is used as the query sequence against the organism

encoding Pk, and the corresponding E-value Elm

9 If Pm = Pk and Ekl < T and Elm < T

10 Create an edge between Vk and Vl labeled with the value max(Ekl, Elm)

components of the graph (see also Section 2.10). This is done using the connected components

method implemented by the Graph.pm Perl module.

4.1.2 Visualizing the groups of orthologues

In order to make the results reported by PSI user-friendly and visually pleasing, a visual represen-

tation of each group of orthologues is created. This is implemented using the graph visualization

tool GraphViz [30], which reads graphs in a text-based format called “dot”, and can output a visual

representation of that graph in a variety of possible formats (PDF, PNG, and so on). The graphs

created by PSI have vertices displaying the following information:

• the Swiss-Prot accession number of the protein,

• the organism that produces the protein,

• the length of the protein,

• a description of the protein,

• a list of keywords describing the protein, and

• a list of gene ontology (GO) terms [69].

A GO term is a standardized term describing a protein, and can fall into one of three categories:

“biological process”, “molecular function”, or “cellular localization”. Each vertex lists, for each GO
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term that applies to that protein, the accession number of the GO term, the description of the GO

term, and the category to which the GO term belongs. When PSI is applied to determining protein-

phenotype relationships, including the GO terms that describe each protein better enables the user

to peruse the candidate proteins and determine which proteins are most likely to be responsible for

the phenotype of interest.

In addition, each vertex is a clickable link that takes the user to the UniProt entry for the

corresponding protein, where the user can find additional information about the protein that is not

present in the vertex itself.

Each edge is labeled with the larger of the two E-values of the two BLAST comparisons (the

one in which the first protein is used as the query sequence and the proteome containing the second

protein is used as the database, and vice versa). Two vertices representing proteins from the same

organism are the same color, whereas vertices representing proteins from different organisms have

different colours.

An example of a file in dot format is given in Figure 4.1. This file corresponds to the graph

shown in Figure 5.10.

4.1.3 Database of protein information

The input to PSI consists in part of a number of proteomes structured as multi-sequence FASTA

files. This file format is chosen because it is the most widely used—and is also the most compact—

format for representing sequence information. However, these FASTA files do not contain all of

the information that is displayed inside the vertices in the visual representation of the groups

of orthologues (see Section 4.1.2); thus, some method must be chosen in order to obtain this

information. There are at least three possible solutions to this problem.

1. Accept a file format that does contain all of this information, such as UniProt format. This

option suffers from the fact that, depending upon where a particular proteome is downloaded

from, a sequence format containing all of the required information may not be available.

2. Use the accession numbers found in the FASTA file to look up sequence information on the

internet. For instance, given the accession number Q03BX3, information on this protein can

be found by downloading and parsing the HTML from the URL http://www.uniprot.org/

uniprot/Q03BX3. However, this would necessitate thousands of queries and would therefore

be quite slow, even if batch queries were used.

3. Create a relational database containing all protein sequences in Swiss-Prot and TrEMBL,

which contain manually annotated and automatically-annotated sequences, respectively [70],

and then query this database by a protein’s accession number when information about a

particular protein is needed.
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graph graph4437 {
Q03SD4_387344_taxid [style = filled fillcolor = gold label = "ID: Q03SD4\n

Organism: Lactobacillus brevis (strain ATCC 367 / JCM 1170)\n
Length: 342\n
Description: NADPH:quinone reductase related Zn-dependent oxidoreductase\n
Keywords: Complete proteome\n
GO:0008152 (Biological process = metabolic process)\n
GO:0008270 (Molecular role = zinc ion binding)\n
GO:0016491 (Molecular role = oxidoreductase activity)\n"
URL = "http://ca.expasy.org/uniprot/Q03SD4"];

Q03BX3_321967_taxid [style = filled fillcolor = cyan label = "ID: Q03BX3\n
Organism: Lactobacillus casei (strain ATCC 334)\n
Length: 340\n
Description: NADPH:quinone reductase related Zn-dependent oxidoreductase\n
Keywords: Complete proteome\n
GO:0008152 (Biological process = metabolic process)\n
GO:0008270 (Molecular role = zinc ion binding)\n
GO:0016491 (Molecular role = oxidoreductase activity)\n"
URL = "http://ca.expasy.org/uniprot/Q03BX3"];

Q03DD5_278197_taxid [style = filled fillcolor = darkseagreen label = "ID: Q03DD5\n
Organism: Pediococcus pentosaceus (strain ATCC 25745 / 183-1w)\n
Length: 345\n
Description: NADPH:quinone reductase related Zn-dependent oxidoreductase\n
Keywords: Complete proteome\nGO:0008152 (Biological process = metabolic process)\n
GO:0008270 (Molecular role = zinc ion binding)\n
GO:0016491 (Molecular role = oxidoreductase activity)\n"
URL = "http://ca.expasy.org/uniprot/Q03DD5"];

Q03SD4_387344_taxid--Q03BX3_321967_taxid [label = "1e-117" color = gold];
Q03SD4_387344_taxid--Q03DD5_278197_taxid [label = "1e-125" color = darkseagreen];
Q03BX3_321967_taxid--Q03DD5_278197_taxid [label = "1e-112" color = darkseagreen];

}

Figure 4.1: Example of a file using the dot format for specifying graphs. Each line that
specifies an element of the graph ends with a semicolon. There are six such lines in this
example; the first three, which denote vertices, are spread out over multiple physical lines.
The last three lines specify edges.
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The third option appears to be preferable, as accessing these data from a local database would be

faster and more reliable than from an external website. Its only disadvantage would be the storage

space needed for the database.

For these reasons, a structured query language (SQL) relational database is created using Post-

greSQL version 8.3.7. The first step in building this database is to create a database schema.

The database schema specifies four tables: “sequences”, “sequences keywords”, “go terms”, and

“sequences go terms”. The “sequences” table contains basic information about a protein, such as

its accession number, its length, its description, and so on. The “go terms” table consists of a list

of GO terms, and each entry includes the accession number of that GO term, its type (“molecular

role”, “cellular localization”, or “biological process”), and a description of the GO term. Since each

sequence can be described by more than one GO term, the table “sequences go terms” provides a

mapping between sequences and GO terms. Likewise, each sequence can also be described by zero

or more keywords, and the table “sequences keywords” provides a mapping between sequences and

keywords. Note that in contrast to GO terms, where each term has associated with it an accession

number, a description, and a type, there is no information associated with each keyword other than

the keyword itself. As such, there is no need to create a “keywords” table, and no such table is

included in the database schema. The schema for this database is given in Figure 4.2.

The second step in creating this database is to download all of the Swiss-Prot and TrEMBL

protein sequences. These were downloaded on October 18, 2008 in UniProt format. A Perl script

is written to parse these files, extract the relevant information from each record, and output the

SQL commands required to enter that information into the database. An example of a Swiss-Prot

record, given for the protein with accession number P81928, is given in Figure 4.3. The SQL

generated for this protein is shown in Figure 4.4. Part of Figure 4.4 shows the insertion of the GO

term with accession number GO:0007275 into the database. If this GO term is encountered again

for another protein, it is not inserted into the database again. However, another record would be

inserted into the “sequences go terms” table. This record would include the accession number of

the already-seen GO term, as well as the accession number of the new protein that is also described

by this GO term.

The Perl modules DBI (which provides a general interface for interacting with any type of

database) and DBD::Pg (which provides routines written specifically to interact with PostgreSQL

databases) are used to query the completed database.

4.1.4 Performing the genome subtraction

Mathematical set notation provides a convenient way of describing the concept of genome subtrac-

tion as used in this thesis. Let P1 denote the set of proteins encoded by the genome of organism

O1, P2 denote the set of proteins encoded by the genome of organism O2, and so on. The set of all
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CREATE TABLE sequences (
accession VARCHAR(40) PRIMARY KEY,
id VARCHAR(40),
type VARCHAR(7) NOT NULL CHECK (type IN (‘DNA’, ‘Protein’)),
length INTEGER NOT NULL,
molecular_weight NUMERIC,
sequence VARCHAR(100000) NOT NULL,
organism_name VARCHAR(2000),
organism_taxonomy VARCHAR(2000),
organism_taxid VARCHAR(8),
description VARCHAR(500) NOT NULL

);

CREATE TABLE sequences_keywords (
sequence_accession VARCHAR(40) REFERENCES sequences(accession),
keyword VARCHAR(200),

PRIMARY KEY (sequence_accession, keyword)
);

CREATE TABLE go_terms (
accession VARCHAR(20) PRIMARY KEY,
type VARCHAR(25) NOT NULL CHECK

(type IN (‘Molecular role’, ‘Cellular localization’, ‘Biological process’)),
description VARCHAR(200) NOT NULL

);

CREATE TABLE sequences_go_terms (
sequence_accession VARCHAR(40) REFERENCES sequences(accession),
go_accession VARCHAR(20) REFERENCES GO_terms(accession),

PRIMARY KEY (sequence_accession, go_accession)
);

Figure 4.2: SQL schema for the database of protein sequences.
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ID 140U_DROME Reviewed; 261 AA.
AC P81928; Q9VFM8;
DT 28-MAR-2003, integrated into UniProtKB/Swiss-Prot.
DT 28-MAR-2003, sequence version 2.
DT 22-JUL-2008, entry version 48.
DE RecName: Full=RPII140-upstream gene protein;
GN Name=140up; ORFNames=CG9852;
OS Drosophila melanogaster (Fruit fly).
OC Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC Ephydroidea; Drosophilidae; Drosophila; Sophophora.
OX NCBI_TaxID=7227;
CC -!- FUNCTION: Essential for viability.
CC -!- SUBCELLULAR LOCATION: Membrane; Multi-pass membrane protein
DR EMBL; M62975; AAD40352.2; -; Genomic_DNA.
DR EMBL; AE014297; AAF55023.1; -; Genomic_DNA.
DR EMBL; AY058577; AAL13806.1; -; mRNA.
DR PIR; JQ1024; JQ1024.
DR RefSeq; NP_476951.1; -.
DR UniGene; Dm.10056; -.
DR Ensembl; CG9852; Drosophila melanogaster.
DR GeneID; 41720; -.
DR KEGG; dme:Dmel_CG9852; -.
DR NMPDR; fig|7227.3.peg.12715; -.
DR FlyBase; FBgn0010340; 140up.
DR HOGENOM; P81928; -.
DR BioCyc; DMEL-XXX-02:DMEL-XXX-02-011545-MON; -.
DR ArrayExpress; P81928; -.
DR GermOnline; CG9852; Drosophila melanogaster.
DR GO; GO:0007275; P:multicellular organismal development; IMP:UniProtKB.
DR InterPro; IPR003397; Tim17_Tim22.
DR Pfam; PF02466; Tim17; 1.
PE 2: Evidence at transcript level;
KW Complete proteome; Membrane; Transmembrane.
FT CHAIN 1 261 RPII140-upstream gene protein.
FT /FTId=PRO_0000064352.
FT TRANSMEM 67 87 Potential.
FT TRANSMEM 131 151 Potential.
FT TRANSMEM 183 203 Potential.
FT CONFLICT 64 64 S -> F (in Ref. 1; AAD40352).
SQ SEQUENCE 261 AA; 29182 MW; 5DB78CF6CFC4435A CRC64;

MNFLWKGRRF LIAGILPTFE GAADEIVDKE NKTYKAFLAS KPPEETGLER LKQMFTIDEF
GSISSELNSV YQAGFLGFLI GAIYGGVTQS RVAYMNFMEN NQATAFKSHF DAKKKLQDQF
TVNFAKGGFK WGWRVGLFTT SYFGIITCMS VYRGKSSIYE YLAAGSITGS LYKVSLGLRG
MAAGGIIGGF LGGVAGVTSL LLMKASGTSM EEVRYWQYKW RLDRDENIQQ AFKKLTEDEN
PELFKAHDEK TSEHVSLDTI K

//

Figure 4.3: Swiss-Prot entry for the protein with accession number P81928. For brevity,
some lines have been removed.
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INSERT INTO
sequences

VALUES
(‘P81928’, ‘140U_DROME’, ‘Protein’, 261, 29182, ‘MNFLWKGRRFLI...’,
‘Drosophila melanogaster (Fruit fly)’, ‘Eukaryota; Metazoa; Arthropoda;
Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota;
Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilidae;
Drosophila; Sophophora’, ‘7227’,
‘RPII140-upstream gene protein’)

;

INSERT INTO
GO_terms

VALUES
(‘GO:0007275’, ‘Biological process’, ‘multicellular organismal development’)

;

INSERT INTO
sequences_GO_terms

VALUES
(‘P81928’, ‘GO:0007275’)

;

INSERT INTO
sequences_keywords

VALUES
(‘P81928’, ‘Complete proteome’)

;

INSERT INTO
sequences_keywords

VALUES
(‘P81928’, ‘Membrane’)

;

INSERT INTO
sequences_keywords

VALUES
(‘P81928’, ‘Transmembrane’)

;

Figure 4.4: SQL statements used to insert the information for the protein with accession
number P81928 into the database. For brevity, the amino acid sequence (“MNFLWKGR-
RFLI...”) has been truncated.
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proteins that are found in both O1 and O2 can be denoted using set notation as P1 ∩P2. To clarify

this explanation further, suppose that some orthologue detection procedure has been performed,

and two orthologous proteins have been identified. For instance, assume that O1 and O2 both

contain genes coding for cytochrome C oxidase, a protein involved in cellular respiration. Let a

represent this protein. Then all of the following are true.

• a ∈ P1

• a ∈ P2

• a ∈ P1 ∩ P2

In other words, if two proteins are orthologous in P1 and P2, then they are given the same desig-

nation (in this case, a). This does not necessarily mean that the proteins have identical sequences.

Note that this is a slight abuse of set notation, as the member, intersection, and union set operations

are defined not in terms of strict equality (the same protein from the same organism), but rather

in terms of an equivalence relation that deems two proteins to be “equal” if they are orthologues.

As a further example, suppose that protein b is expressed by organism O1, but does not have

an orthologue in the proteome of O2. Then the following is true.

• b ∈ P1

• b /∈ P2

• b /∈ P1 ∩ P2

More generally, the set of proteins that are found in all of the organisms O = {O1, O2, . . . , OnO
}

(with corresponding proteome sets P = {P1, P2, . . . , PnO
}) can be denoted as P1 ∩ P2 ∩ · · · ∩ PnO

.

Suppose that O is partitioned into two disjoint sets OI = {OI
1 , . . . , OI

nI
} and OE = {OE

1 , . . . , OE
nE
}

such that OI ∪ OE = O and OI ∩ OE = ∅. Therefore, nI +nE = nO. Also, let P I = {P I
1 , . . . , P I

nI
}

and PE = {PE
1 , . . . , PE

nE
} represent the sets of proteomes (with each proteome being a set of

proteins) corresponding to the sets of organisms OI and OE , respectively. The purpose of PSI is to

find the set Z of proteins that are present in all of the proteomes in P I (the “included” proteomes),

but present in none of the proteomes in PE (the “excluded” proteomes). Proteins in Z will be

called “candidate proteins”. Then

Z = (P I
1 ∩ P I

2 ∩ · · · ∩ P I
nI

)− (PE
1 ∪ PE

2 ∪ · · · ∪ PE
nE

) (4.1)

Z could alternatively be expressed as:

Z = (P I
1 ∩ P I

2 ∩ · · · ∩ P I
nI

) ∩ ∼ (PE
1 ∪ PE

2 ∪ · · · ∪ PE
nE

) (4.2)
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However, the form given in Equation 4.1 gives a more intuitive representation of genome subtraction,

since the idea of “subtraction” is suggested by the use of the set difference operator.

In the previous paragraph, the term “candidate protein” was used to refer to a protein that

is found in all of the proteomes in P I , but in none of the proteomes in PE . It is important

to understand that this term refers to a protein with a specific function that may be present in

a number of organisms, rather than a single protein from a particular organism. For instance,

suppose that one of the candidate proteins (proteins in Z) is cytochrome C oxidase. The term

“candidate protein” refers to cytochrome C oxidase as expressed by any of the organisms in OI ,

rather than one specific version of this protein from a single organism (say, the one expressed by

organism OI
4). On occasion, the term “candidate group” will be used when there is the need to refer

to specific proteins from individual organisms within that group of orthologues. For instance, one

could say, “In this candidate group, the protein from organism OI
4 is 300 amino acids in length.”

The members of a candidate group are the specific proteins from each organism in OI that are

collectively called a “candidate protein”.

Figure 4.5 gives a Venn diagram that illustrates the process of comparing the proteomes of

three organisms A, B, and C. PSI can be used to determine which proteins belong to each of the

coloured regions shown in this figure. For instance, one might wish to identify:

• proteins that are present only in the proteome of organism A (red area),

• proteins that are present in the proteomes of both organism A and organism B, but not

organism C (yellow area), and

• proteins that are present in the proteomes of all three organisms (white area).

In the last case, no proteomes are actually being “subtracted”, although the same concepts outlined

in this section nonetheless apply, with OI = {A,B, C} and OE = ∅. Which regions may be of

interest will, of course, depend on the specific biological question that is being considered.

4.1.5 Comparing methods for finding orthologous groups

Once pairwise orthologous relationships have been ascertained using RBH, there are two possible

ways to find groups of orthologous proteins. The first is to build a graph and then use DFS to

find the connected components (see Section 2.10), and the second is to use a disjoint-set data

structure (see Section 2.11). Conveniently, the graph.pm Perl module provides a method that

finds the connected components of a graph, and also allows the creation of a disjoint-set data

structure. Preliminary testing shows that finding orthologous groups by using DFS to determine

the connected components of a graph containing many thousands of vertices—as is done in this

thesis—takes a significant amount of computational time on an ordinary computer (from seconds

38



Figure 4.5: Venn diagram representing the sets of proteins found in the proteomes of three
organisms (A, B, and C), and the overlap between them. The complete top circle (consisting
of the colours red, yellow, pink, and white) represents the set of proteins in the proteome
of organism A, while the left circle (green, yellow, light blue, and white) and the right
circle (dark blue, light blue, pink, and white) represent the sets of proteins in the proteomes
of organisms B and C, respectively. Each individual color is labeled with an expression
indicating the set of proteins represented by the region with that color.

39



or minutes on graphs with a few thousand vertices and edges to hours on graphs with tens of

thousands of vertices and edges). This motivates an analysis that determines the fastest way to

find groups of orthologues. According to Cormen et al. [65], the use of a disjoint-set data structure

is generally faster if the connected components (or disjoint sets) need to be determined repeatedly

as elements are added to the data structure, whereas using DFS on a graph is usually preferable if

this information only needs to be determined once (after all of the elements have been added to the

data structure). However, casual testing suggests that, even when the connected components need

to be found only once for a given graph (as in this thesis), the use of the disjoint-set data structure

is still much faster.

In order to more rigorously determine the relative speed of building a graph and then using

DFS compared to using a disjoint-set data structure, the time taken for each of these two methods

is determined using different numbers of organisms. Specifically, tests are performed using the

proteins from two isolates of the genus Streptococcus, then for three Streptococcus isolates, and so

on, up to 20 Streptococcus isolates. Elapsed times are measured on an otherwise-quiescent Apple

iMac with a 2.4 GHz Intel Core 2 Duo processor and four GB of RAM. For each data structure and

for each number of Streptococcus isolates, measurements are made of both the time taken to build

the data structure itself (the graph or the disjoint-set data structure), as well as the time taken to

find the connected components using DFS (in the case of the graph) or to find the disjoint sets (in

the case of the disjoint-set data structure). Timings were performed in triplicate, and the average

of the three times was taken for a given test. The results of these tests are given in Section 5.1.1.

4.1.6 Analytical method for choosing E-value thresholds

The value chosen for the BLAST E-value threshold could have a substantial impact on the cor-

rectness of the results produced by PSI. If the threshold chosen is too stringent (small E-values),

then two proteins that are actually orthologues may not be identified as such. This could result in

both reduced sensitivity and reduced specificity when trying to determine the protein or proteins

responsible for a given phenotype. If these proteins are in two organisms that have the phenotype,

then they could be missed as possible candidates for causing the phenotype (reduced sensitivity).

Conversely, if one protein is found in an organism that has the phenotype and the other is found in

an organism that does not, then missing the orthology between these two proteins could result in the

protein from the organism having the phenotype being classified as a possible candidate for causing

the phenotype, when in fact it should not be (reduced specificity). Choosing an E-value threshold

on the opposite side of the spectrum—a very large (non-stringent) E-value threshold—could cause

two proteins that are not actually orthologues to erroneously be identified as such, which could also

result in both reduced sensitivity and reduced specificity. If the two proteins are from organisms

that both exhibit the phenotype, then incorrectly declaring them as orthologues could result in
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them being erroneously classified as candidate proteins (reduced specificity); conversely, if one of

the proteins is from an organism that exhibits the phenotype and one is from an organism that does

not, then a possible candidate for causing the phenotype could be missed (reduced sensitivity).

Thus, it is important to choose appropriate E-value thresholds, and there are two possible ways

to do this. The first is an analytical method, which considers the number of organisms that are

involved in a particular comparison, as well as the number of proteins in the proteome of each

organism. The second is an experimental method, using a range of different E-values for a specific

comparison to determine the E-values that seem to give good results. The first method is discussed

below. The second method is described in Section 4.2.2, where it is analyzed in the context of

protein-phenotype relationships, and in Section 4.3.1, where it is analyzed in the context of finding

the number of proteins in one organism, but not a second organism.

Suppose that the proteomes of no organisms are to be compared. Further suppose that the

number of proteins encoded by the organism with the largest proteome in a given comparison is

np. For each pair of organisms, there will be at most np × np = n2
p pairwise comparisons between

proteins. The number of pairs of organisms that must be compared (note that comparisons must

be performed in both directions) is no × (no − 1) ≈ n2
o. Thus, the total number of protein-protein

comparisons that must be performed will be bounded above by n2
pn

2
o. The expected number of

spurious matches M will be equal to the number of comparisons performed, multiplied by the

probability of a spurious match in each comparison. Let P be the probability of a spurious match.

Then

M = Pn2
pn

2
o

How can a value for P be derived? The E-value, simply denoted as E in this section, represents

for a particular match with raw score S the number of matches attaining a score better than or

equal to S that would occur at random given the size of the database. While E does not represent

a probability, P can be derived from it: since the probability of finding no random matches with a

score greater than or equal to S is e−E , where e is the base of the natural logarithm, the chance

of obtaining one or more such matches is P = 1 − e−E [71]. Since P is nearly equal to E when

E < 0.01, E can reasonably be used as a proxy for P . As such, the expected number of spurious

matches M can be written as:

M = En2
pn

2
o

By rearranging, an equation is obtained that expresses the E-value threshold that should be chosen

in terms of np, no, and M , where M represents the desired value for the expected number of

spurious matches:

E =
M

n2
pn

2
o

(4.3)
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For simplicity, it would be convenient to choose a single E-value threshold that is appropriate

for all comparisons done for this thesis. The bacterial species examined in this thesis that has

the largest genome, Burkholderia xenovorans, encodes 8951 ≈ 105 proteins. Thus, a conservative

value for np would be 105, and an upper bound for the greatest number of pairwise comparisons

that would take place between two bacteria is n2
p = 1010. Furthermore, the greatest number of

organisms used in a single comparison for this thesis is about 30. Then no = 30, and the number of

pairs of organisms is approximately n2
o = 900. The total number of pairwise protein comparisons

is therefore bounded above by n2
pn

2
o = 1010 × 900 ≈ 1013. If the expected number of matches that

should occur by chance in a given comparison should be one, which is an arbitrarily-chosen but

reasonable-sounding choice, then the E-value threshold should be chosen as follows:

E =
1

1010 × 103
= 10−13

In other words, the matches between two proteins (in both directions) must both have E-values

of less than 10−13 in order for the proteins to be considered orthologues, in addition to each being the

other’s best BLAST hit. This E-value threshold is rather conservative, given that most comparisons

involve fewer than 30 organisms, and that all of the bacterial proteomes in fact have fewer than

105 proteins. Therefore, the actual number of expected spurious matches for all comparisons is, in

fact, less than one.

It is interesting to note that the range of E-values that could potentially be chosen using this

analytical method is fairly narrow, regardless of the values of each variable in Equation 4.3. The

conservative estimate derived above represents one end of the scale, while at the other end of

the scale, one might have a comparison involving just two organisms, each having only about 2000

proteins. Assuming M = 1, this suggests an E-value threshold of 6.25×10−8. While this represents

a difference of over four orders of magnitude, the range of E-values that may be reported by BLAST

is far wider, ranging over more than 150 orders of magnitude. This suggests that the actual values

of no and np are not terribly important.

4.2 Using PSI to identify protein-phenotype relationships

This section presents the methodology used to analyze the application of PSI to determining protein-

phenotype relationships. Section 4.2.1 describes the use of PSI for determining the protein or

proteins responsible for the difference in cell shape between species of the genus Lactobacillus, and

the related bacterium Pediococcus pentosaceus. Section 4.2.2 describes an empirical investigation

of the effect of the E-value threshold on the results of the cell shape phenotype comparison, as

a complement to the analytical method given in Section 4.1.6. Section 4.2.3 describes the use of

PSI for determining proteins that could potentially be involved in the ability of some LAB, but

not others, to be resistant to the antibiotic gatifloxacin. Finally, the relationship between the
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number of organisms having and lacking the phenotype for a given comparison, and the number

of candidate proteins, is determined for two cases—one involving the aforementioned cell shape

phenotype, and the other involving a hypothetical phenotype present in Streptococcus isolates, but

not in Mycobacterium isolates (Section 4.2.4).

4.2.1 Identifying the protein responsible for cell shape in LAB

MreB is an actin-like protein that is involved in determining bacterial cell shape [72]. Bacteria that

contain this protein generally have rod-shaped cells, while those that lack this protein generally

have round cells. All of the Lactobacillus isolates that have been sequenced to date are rod-shaped,

while the related bacterium P. pentosaceus is round. See Table A.5 for a list of the 15 lactobacilli

(which represent all the lactobacilli that have been sequenced to date) used for this comparison, as

well as the number of proteins found in each. The specific Pediococcus isolate used is P. pentosaceus

ATCC 25745, which contains 1755 proteins. PSI is used to identify proteins that are present in all

15 of these lactobacilli, but not in P. pentosaceus, to determine whether it is able to discover MreB

as a candidate protein. An E-value threshold of 10−13 is used, as justified in Section 4.1.6. The

results of this analysis can be found in Section 5.2.1.

4.2.2 Evaluating the effect of the E-value threshold on the results of the

cell shape phenotype comparison

As a complement to the analytical method presented in Section 4.1.6 for choosing an appropriate E-

value threshold, this section describes an empirical analysis of the effect that the E-value threshold

has on the results of the cell shape phenotype comparison. In Section 4.2.1, this comparison

was performed using just one choice of E-value threshold; in this section, the same comparison is

performed using E-value thresholds between 100 and 10−180. Data were gathered for each power of

ten between these numbers (100, 10−1, 10−2, . . . , 10−199, 10−180). A lower limit of 10−180 was chosen

for the E-value thresholds because BLAST reports E-values smaller than 10−180 simply as 0.0. All

of the candidate proteins that are reported for any of these E-value thresholds are compiled. For

each of these candidate proteins, the range of E-values for which that protein is, in fact, reported

as a candidate protein is determined. Results are given in Section 5.2.2.

4.2.3 Identifying the protein(s) conferring gatifloxacin resistance in LAB

Gatifloxacin is an antibacterial drug belonging to the fluoroquinolone family of antibiotics. It works

by inhibiting DNA gyrase and DNA topoisomerase IV, which are enzymes involved in facilitating

gene expression and DNA replication [73]. Bacterial resistance to this antibiotic is usually asso-

ciated with point mutations in the genes encoding the target proteins, although other resistance
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mechanisms, such as efflux pumps, may also play a role. The goal in this section is to identify pro-

teins that might be responsible for gatifloxacin resistance in some LAB. Specifically, Lactobacillus

brevis and P. pentosaceus are known to be resistant to this antibiotic, whereas Lactobacillus casei

and Lactobacillus reuteri F275 are known to be susceptible [Monique Haakensen, personal commu-

nication]. PSI is used to identify proteins that are present in both L. brevis and P. pentosaceus, but

absent in both L. casei and L. reuteri. Unlike the cell shape phenotype discussed in Section 4.2.1,

the correct candidate proteins are not yet known. As before, an E-value threshold of 10−13 is used.

Some candidate proteins for gatifloxacin resistance are shown in Section 5.2.3.

4.2.4 Determining the relationship between the number of input organ-

isms and the number of candidate proteins

For the sake of efficiently finding the proteins responsible for the phenotype of interest, it is impor-

tant that PSI be able to produce a reasonably short list of candidate proteins. Recall that the set

of organisms having the phenotype and the set of organisms lacking the phenotype were denoted

by OI and OE , respectively, in Section 4.1.4. The values of |OI | and |OE |—the number of organ-

isms having and lacking the phenotype, respectively—are presumably important in determining the

number of candidate proteins that PSI returns. To investigate the relationship between the values

of |OI | and |OE | and the number of candidate proteins returned, two separate tests are performed.

Test 1—Cell shape phenotype

The first comparison uses as its basis the cell shape phenotype comparison described in Section 4.2.1,

which seeks to find the protein responsible for causing the cell shape of P. pentosaceus to be different

than that of 15 Lactobacillus isolates. To do this, proteins are found that are present in all 15 of

the lactobacilli, but not in P. pentosaceus; thus, |OI | = 15 and |OE | = 1. To determine the effect of

|OI | on the number of candidate proteins returned, |OI | is varied between one and 15, while |OE |

is kept constant (OE always contains just P. pentosaceus). In other words, for the first comparison

(|OI | = 1), PSI is used to determine the proteins that are present in one of the Lactobacillus

isolates, but not in P. pentosaceus, and the number of candidate proteins is recorded. For the

second comparison (|OI | = 2), PSI is used to determine the proteins that are present in both

proteomes of two Lactobacillus isolates, but not in P. pentosaceus, and the number of candidate

proteins is again recorded. This pattern continues until |OI | = 15. The Lactobacillus isolates are

added in the same order as they are listed in Table A.5; thus, the first comparison involves only

L. acidophilus; the second comparison involves both L. acidophilus and L. brevis, and so on. Note

that somewhat different results would be obtained if the lactobacilli were added in a different order.

Determining how the order in which the organisms are added affects the results is beyond the scope

of this thesis, but would make worthwhile future work.
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Test 2: Proteins in Streptococcus isolates that are not in Mycobacterium isolates

The previous investigation only examines how the number of candidate proteins varies with |OI |,

but it is also desirable to determine how this quantity varies with both |OI | and |OE |. Suppose that

the goal is to find the protein responsible for a hypothetical phenotype possessed by all isolates of the

genus Streptococcus, and none of the isolates of the genus Mycobacterium. The genera Streptococcus

and Mycobacterium were selected because each has many isolates sequenced from a variety of

species. There are 31 sequenced Streptococcus isolates and 14 sequenced Mycobacterium isolates;

thus, using all isolates, |OI | = 31 and |OE | = 14. However, in this section, the number of candidate

proteins is determined for each possible combination of |OI | and |OE |, where |OI |, |OE | ≥ 1. The

isolates are added in a manner analogous to that used in test 1. The results of both test 1 and test

2 are given in Section 5.2.4.

4.3 Using PSI for phylogenetics and comparative genomics

The second main application of PSI explored in this thesis involves analyzing phylogenetic rela-

tionships based on protein content, as well as comparing commonalities and differences in protein

content in different groups and classifications of bacteria. Section 4.3.1 discusses an empirical in-

vestigation into choosing appropriate E-value thresholds when finding the number of proteins found

in one organism, but not a second organism. The bacteria used for the comparisons performed in

Sections 4.3.3 and 4.3.4 are described in Section 4.3.2. Section 4.3.3 examines the application of

PSI to creating phylogenetic trees on the basis of protein content. Finally, PSI is used to deter-

mine whether different isolates from the same species are soundly clustered based on their protein

content—in other words, it is determined whether the isolates of a given genus are, in terms of

protein content, similar to each other, as well as distinct from other isolates of the same genus. The

methodology for this analysis is given in Section 4.3.4.

4.3.1 Evaluating the effect of the E-value threshold on numbers of unique

proteins

To get a sense of the impact that the choice of E-value threshold has on how many proteins are

reported to be in organism A but not organism B (or vice versa), pairs of organisms A and B are

selected, and the number of proteins in the proteome of organism A but not in organism B is deter-

mined using the same range of E-value thresholds as in Section 4.2.2 (100, 10−1, 10−2, . . . , 10−199,

10−180). As always, reciprocal best BLAST hits are required for two proteins to be declared ortho-

logues. Necessarily, the greater the E-value threshold, the fewer unique proteins will be reported.

At an E-value threshold of 100, for instance, many proteins will (sometimes spuriously) be identified
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Table 4.1: Comparisons performed for determining the effect of the E-value threshold on
the number of proteins found in one proteome, but not a second proteome.

# Proteins found in the proteome of... ...that are not found in the proteome of...

Intra-species comparisons

1a Pseudomonas putida GB-1 Pseudomonas putida KT2440

1b Xanthomonas campestris 8004 Xanthomonas campestris B100

1c Staphylococcus aureus COL Staphylococcus aureus JH1

Inter-species comparisons

2a Burkholderia mallei ATCC 23344 Burkholderia xenovorans LB400

2b Vibrio cholerae ATCC 39315 Vibrio fischeri ATCC 700601

2c Streptococcus thermophilus ATCC BAA-250 Streptococcus pyogenes MGAS2096

Inter-genus comparisons

3a Bacillus anthracis Ames ancestor Corynebacterium diphtheriae ATCC 700971

3b Mycobacterium tuberculosis ATCC 25177 Neisseria meningitidis 053442

3c Yersinia enterocolitica 8081 Clostridium tetani E88

as orthologues, resulting in relatively few unique proteins; conversely, at a threshold of 10−180, few

proteins will be identified as orthologues (even if they really are orthologues), resulting in many

proteins being reported as unique.

It is reasonable to expect that the relatedness of the organisms involved in a comparison would

affect the interaction between the E-value threshold and numbers of unique proteins reported. As

such, three different degrees of relatedness are considered—two isolates from the same species; two

isolates from the same genus but different species; and two isolates from different genera. These are

referred to, respectively, as intra-species, inter-species, and inter-genus comparisons. Three pairs of

organisms are selected for each of these three types of comparisons. The specific isolates used for

each comparison are selected arbitrarily. The comparisons performed are found in Table 4.1, and

the results are given in Section 5.3.1.

4.3.2 Bacteria used

The bacteria used for Sections 4.3.3 and 4.3.4 are found in Table 4.2. These genera were selected

on the basis of having two or more species that each had two or more isolates sequenced. All of the

bacterial proteomes were downloaded from Integr8 [18] on November 28, 2008. A more detailed list

of the bacteria used, including information on the genome size and the number of proteins in each

isolate, can be found in Appendix A.
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Table 4.2: Summary of bacteria used for the analyses described in Sections 4.3.3 and 4.3.4.
A detailed listing of the isolates from each genus can be found in the tables comprising
Appendix A.

Genus Isolates (#) Species (#)

Bacillus 16 10

Brucella 8 5

Burkholderia 19 10

Clostridium 19 10

Lactobacillus 15 12

Mycobacterium 14 11

Neisseria 6 2

Pseudomonas 15 7

Rhizobium 6 4

Rickettsia 11 9

Shigella 7 4

Staphylococcus 18 4

Streptococcus 31 9

Vibrio 8 5

Xanthomonas 8 3

Yersinia 12 3
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4.3.3 Phylogenetics based on protein content

As described in Section 2.9.1, phylogenetic analyses are typically done by comparing 16S rRNA

gene sequences or by MLSA. However, there has been increasing interest in using whole-genome

approaches to study phylogenetics, as then more information is taken into account than just a single

gene or a small number of genes. This section describes a variant of an analysis done by Snel et al.

[62] for using protein content to infer evolutionary relationships. As a measure of the proteomic

similarity between two organisms, Snel et al. [62] used the number of shared proteins between two

organisms divided by the number of proteins in the smaller proteome. In this section, a different

proteomic distance metric is proposed that fits within the framework of PSI, as obtaining data for

this metric involves genome subtraction. This metric is calculated as the average of the number of

proteins in bacterium A that are not in bacterium B, and the number of proteins in bacterium B

that are not in bacterium A. This will be called the average unique proteins (AUP) metric.

Using an E-value threshold of 10−13, as justified in Section 4.1.6, the number of proteins in

bacterium A but not bacterium B is determined for all pairs of bacteria in Table 4.2. The AUP

metric is then calculated for each pair. The unweighted pair group method with arithmetic mean

(UPGMA) is used to create a phylogenetic tree. These results are presented in Section 5.3.2.

4.3.4 Evaluating taxonomic classifications by determining how well species

are clustered based on protein content

The purpose of this section is to analyze the quality of current taxonomic classifications from a novel

perspective—specifically, by determining the level of cohesiveness in the protein content of a given

species. Evaluating the taxonomic classifications of different species by examining their protein

content could be conceptualized as a clustering problem. The general idea behind clustering is that

each element in a given cluster should be similar to other elements in the same cluster, but dissimilar

to elements from other clusters. In the context of taxonomy and protein content, the clustering of

a given species could be considered sound if two criteria are satisfied: first, the organisms of the

species are similar to each other (i.e., have a large core proteome); second, they are distinct from

other organisms (i.e., have many proteins found only in that species). To determine whether existing

taxonomic classifications fit these criteria, PSI will be used to answer the following questions.

• Is the number of proteins in the core proteome of a particular species having NI sequenced

isolates larger than the core proteome of NI randomly selected organisms from the same

genus?

• Is the number of proteins that are found in all NI isolates of a given species, but none of

the other organisms from the same genus, larger than the number of proteins found in NI

randomly selected isolates of that genus, but no others?
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Algorithm 4.3 Algorithm for determining whether a given species has a larger core proteome size
than randomly selected sets of isolates from the same genus.
1 From genus G, choose a species S having NI sequenced isolates, where NI ≥ 2

2 Determine the number of proteins CS in the core proteome of these NI isolates

3 R← ∅

4 Do until |R| = 25

5 Randomly choose, without replacement, NI isolates from genus G to form a set X

6 If all of the isolates in X are from the same species, go back to step 5

7 If X is equal to any of the sets in R, go back to step 5

8 R← R ∪ {X}

9 Determine the size of the core proteome of the isolates in X

10 Find the average core proteome size CR of all the sets in R, as well as their standard deviation.

11 Perform a t-test to determine whether CR is significantly different from CS .

The rationale behind asking these question is as follows. One would expect that the isolates

of a given species would have more proteins in their core proteome, and more unique proteins,

than randomly selected sets of isolates from the same genus. Thus, a “yes” answer to each of the

above questions would lend support to the species’ current taxonomic classification. In contrast,

“no” answers would suggest that the species does not fit the clustering criteria given above, and its

taxonomic classification may therefore warrant reexamination.

These questions are answered for each of the species from the genera listed in Table 4.2 that have

two or more isolates sequenced. As the methodology used to approach the two questions is somewhat

complex, it is presented in two different ways. The following paragraph contains a description of

the methodology, and Algorithm 4.3 conveys the same methodology using an algorithmic format.

Both of these descriptions apply only to answering the first question; however, the methodology

used to answer the second question is analogous, and is briefly described in the final paragraph of

this section.

Once again, let NI be the number of isolates that have been sequenced for a particular species.

First, a set of NI isolates from that genus is randomly selected. This set is examined to ensure

that all of its members are not from the same species (either the species being examined, or any

other species from that genus). For instance, when generating random sets of two organisms each

corresponding to the two Bacillus thuringiensis isolates (NI = 2), there should not be a random

set containing both B. thuringiensis isolates, nor should there be a random set containing two

Bacillus anthracis isolates. However, a random set containing one B. thuringiensis isolate and one

B. anthracis would be valid. If a random set is generated, but all of its members are from the same

species, then the set is discarded and another is generated in its place. PSI is then used to find

the size of the core proteome of this set of organisms. This procedure is then repeated 25 times;
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in other words, 25 random sets of NI organisms are constructed, and the size of the core proteome

is determined for each. The 25 sets are also checked to ensure that none of the sets are the same.

The reasons for choosing 25 random sets, rather than some other quantity, were:

• this number is large enough that the results will be statistically meaningful,

• the computational time to generate the results for 25 random sets was reasonable, and

• this number is not too much larger than the maximum number of random sets that could be

generated for some species (see below).

Some genera have too few sequenced isolates to enable 25 sets to be created. For instance, the

genus Neisseria has only six isolates sequenced in total, with two Neisseria gonorrhoeae isolates

and four Neisseria meningitidis isolates. With respect to generating random sets corresponding to

N. gonorrhoeae, the number of possible ways to choose two items from six is C(6, 2) = 15. However,

seven of these sets have both organisms from the same species, leaving just eight valid sets. Thus,

for N. gonorrhoeae, line 4 in Algorithm 4.3 would be changed to “Do until |R| = 8”. Similarly,

in generating random sets corresponding to N. meningitidis, the number of ways in which one can

choose four items from six is the same: C(6, 4) = 15. One of these sets (the one containing all

four N. meningitidis isolates) is invalid, leaving 14 sets. Besides these two Neisseria species, other

species for which fewer than 25 sets could be constructed are Brucella suis (24 sets), Rhizobium

leguminosarum (13 sets), Rhizobium etli (13 sets), and Shigella boydii (17 sets).

After finding the core proteome sizes of all 25 (or fewer for the aforementioned species) random

sets for a given species, a t-test is performed to determine whether the mean of the core proteome

sizes for the randomly-generated sets is different than the core proteome size of the NI isolates of

the species in question.

The approach to the second question is analogous to the procedure given above, except that

rather than finding proteins that are found in all members of a given set of organisms, proteins are

found that exist in all members of a given set, and in no other organisms from the same genus.

The results of all analyses described in this section are give in Section 5.3.3.
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Chapter 5

Results

This section of the thesis presents results concerning the creation of PSI (Section 5.1), the

use of PSI for determining protein-phenotype relationships (Section 5.2), and the use of PSI for

phylogenetics and protein content comparisons (Section 5.3). Note that most of the figures in this

section use scalable vector graphics, so the reader may zoom in to see the full detail of each figure

if this thesis is being read electronically.

5.1 Creating and analyzing the PSI program

This section consists of a single subsection, 5.1.1, which describes the results of comparing the

speed of two different methods for finding orthologous groups.

5.1.1 Comparing methods for finding orthologous groups

This section describes the results of tests determining the relative efficiency of two different methods

for finding orthologous groups once the orthologous relationships between pairs of proteins have

been determined (see Section 4.1.5 for full methodology). The first method was to build a graph,

and then find the connected components of the graph; the second method was to build a disjoint-set

data structure, and then find the disjoint sets. It was first verified that both methods gave the

same results. Two aspects of their speed were then examined: the time taken to build the data

structure, and the time taken to actually find the connected components (for the graph method) or

the disjoint sets (for the disjoint-set data structure method). The results of these comparisons are

found in Figure 5.1, which compares the time taken to build each data structure when the proteins

from between two and 20 Streptococcus isolates were used, and Figure 5.2, which compares the time

needed to find the orthologous groups once the data structures have been created.

Figure 5.1 shows that the time taken to build the two data structures were similar, with the

disjoint-set data structure taking slightly longer to create than the graph when there were many

Streptococcus isolates. However, the substantive difference can be seen in Figure 5.2, which shows

that the disjoint-set data structure was much faster at finding the orthologous groups (by finding

the disjoint sets) than the graph data structure (by finding the connected components). In fact, the
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Figure 5.1: Time taken to build the graph data structure or the disjoint-set data structure when
finding orthologous groups for between two and 20 Streptococcus isolates.

time needed for the disjoint-set data structure to find the actual disjoint sets once the data structure

had been created was rather trivial; when 20 Streptococcus isolates were used, this operation took

just three seconds (note that the plot for the disjoint-set data structure in Figure 5.2 is largely

indistinguishable from the x-axis). This was in stark contrast to the time needed to find the

connected components of the graph, which took over nine hours. Thus, a disjoint-set data structure

proved to be a far better choice than a graph, as it took only slightly longer to build, and was able

to output the orthologous groups far more quickly.

The fact that a disjoint-set data structure works well for PSI is likely due to the fact that

(to use graph terminology) an application of PSI always has many connected components (groups

of orthologous proteins) and few vertices in each connected component (each orthologous group

contains a fairly small number of proteins). For instance, when 20 Streptococcus isolates were

used, there were 39241 vertices (proteins) and 6645 connected components (orthologous groups),

for an average of just 5.9 vertices per connected component. This means that the number of union

operations that need to be performed when building the disjoint-set data structure, as well as

the time taken to perform each union operation, would be relatively small. (See Section 2.11 for

background on the union operation, as well as the other operations involved in building a disjoint-set

data structure.) To reinforce this idea, suppose that another problem also involves 39241 vertices,

but ends up with just 100 connected components after all the union operations have been done. In

this case, many union operations would need to be performed, and each union operation would be
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Figure 5.2: Time taken to find the connected components of the graph, or to find the disjoint
sets in the disjoint-set data structure, when finding orthologous groups for between two and 20
Streptococcus isolates. Note that the plot for the disjoint-set data structure is difficult to distinguish
from the x-axis.

fairly time consuming, since the existing disjoint sets would be very large. As the union operation

is the most computationally expensive procedure when building a disjoint-set data structure, the

fact that an application of PSI will have many connected components and therefore require few

union operations makes a disjoint-set data structure ideally suited for it.

While it is easy to understand why the disjoint-set data structure performs well, it is more

puzzling why DFS on a graph performs so poorly. DFS should take O(|V |+ |E|) time, which is the

same as the time complexity needed to build the graph itself. Thus, it is difficult to understand

why building the graph took just minutes for 20 Streptococcus isolates, but finding the connected

components took hours. The code for the graph.pm module may provide clues, but unfortunately

it contains no internal documentation, and also makes use of other modules for performing the

traversal, making it difficult to determine why finding the connected components is so inefficient.

Determining the cause of this inefficiency would make worthwhile future work.

The time complexity of a disjoint-set data structure is difficult to express directly in terms of

|V | and |E|; however, it can be expressed in terms of the number of make-set, union, and find-set

operations. Using a linked-list implementation of a disjoint-set data structure, a sequence of m

make-set, union, and/or find-set operations, where |V | of these are make-set operations, has a time

complexity of O(m + |V | log |V |) [65]. Most importantly, in PSI the number of find-set operations
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will be exactly |V |, which compares favourably to the O(|V | + |E|) ≈ O(|V |2) time taken to find

the connected components of the graph.

5.2 Using PSI to identify protein-phenotype relationships

This section describes the results of using PSI to identify protein-phenotype relationships. In

Section 5.2.1, the results of using PSI for finding the protein or proteins responsible for the difference

in cell shape between Lactobacillus isolates and P. pentosaceus are presented. An analysis of how

the choice of E-value threshold affects the results of the cell shape phenotype comparison is given

in Section 5.2.2. Section 5.2.3 identifies candidate proteins that may be responsible for resistance

to the antibiotic gatifloxacin in some LAB. Finally, Section 5.2.4 examines the relationship between

the number of input organisms and the number of candidate proteins for two different test cases.

5.2.1 Identifying the protein responsible for cell shape in LAB

As described in Section 4.2.1, PSI was used to find proteins present in all 15 Lactobacillus isolates,

but not in P. pentosaceus. The total number of proteins in all organisms was 32456, while the

number of orthologous protein groups created by the orthologue detection procedure described in

Section 4.1.1 was 8792. The number of candidate groups—groups containing proteins from all of

the Lactobacillus isolates, but none from P. pentosaceus—was just nine. With the exception of

one, each of these candidate groups contained exactly one protein from each Lactobacillus isolate.

The remaining candidate group, which contained uncharacterized proteins, had two proteins from

both strains of L. casei, and thus contained a total of 17 proteins rather than 15.

Table 5.1 shows the accession number and description of the protein from Lactobacillus gasseri

for each of these candidate groups. Proteins from L. gasseri were chosen as representatives for each

candidate group because, for some candidate groups, the description of the protein from this species

was more informative than the descriptions of the proteins from other species. For instance, for one

candidate group, the description of the protein from L. gasseri was “Lon-like protease with PDZ

domain”, whereas the description of the protein from L. acidophilus from the same candidate group

was “Putative uncharacterized protein”. Subsequently, a given candidate group will be referred to

by the accession number of the L. gasseri protein from that group.

There are two proteins in Table 5.1 that appear most likely to be responsible for the difference

in cell shape—Q042L8 (“Actin-like ATPase for cell morphogenesis”) and Q042N8 (“Rod shape-

determining protein MreB”). The descriptions of these two proteins both appear to be very good

matches for the phenotype being examined. It may be tempting to conclude that proteins in the

Q042N8 candidate group may be more likely to be responsible for the rod shape of Lactobacillus

species than proteins in the Q042L8 candidate group, since “Rod shape-determining protein MreB”
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Table 5.1: Accession number and description of the protein from Lactobacillus gasseri
for each of the nine candidate groups that result when finding proteins present in all 15
Lactobacillus isolates, but not Pediococcus pentosaceus.

Accession number Description Proteins in candidate

group (#)

Q040U1 Effector of nucleoid occlusion Noc 15

Q042L8 Actin-like ATPase for cell morphogenesis 15

Q046W3 Predicted secreted protein 15

Q042M6 Putative uncharacterized protein 17

Q043A5 Orotate phosphoribosyltransferase 15

Q042Q3 Cell division protein sepF 15

Q045N9 Predicted hydrocarbon binding protein 15

Q042S7 Lon-like protease with PDZ domain 15

Q042N8 Rod shape-determining protein MreB 15

explicitly mentions a rod shape, whereas “Actin-like ATPase for cell morphogenesis” is less specific.

However, examining the descriptions of other proteins in both candidate groups dispels this notion.

In the Q042N8 candidate group, the protein from L. brevis (for instance) is described as “Actin-like

ATPase for cell morphogenesis”, and in the Q042L8 candidate group, the protein from Lactobacillus

plantarum (for instance) is described as “Cell shape determining protein MreB”. It therefore seems

reasonable to suggest that proteins in both groups may be involved in determining cell shape. It

should also be noted that, while the presence of the MreB (or MreB-like) proteins are the likeliest

explanation for the rod-like shape of these Lactobacillus isolates, it is also possible that the cell

division protein sepF plays a role, since cell shape is determined during cell division. Furthermore,

some of the other proteins listed in Table 5.1 could also play a role in determining cell shape.

However, there are likely other phenotypic differences between the lactobacilli and P. pentosaceus

besides cell shape, and some of the proteins in Table 5.1 could be responsible for these differences.

Of particular note is the fact that this procedure was able to identify the MreB (or MreB-like)

proteins regardless of their annotation. Some of the proteins in the two MreB-containing groups

contained very specific annotations, such as “Rod shape-determining protein MreB”. For other

proteins, the annotation mentioned cell shape, but did not specifically call the protein MreB (“Cell

shape determining protein”). Furthermore, the degree to which PSI was able to narrow down the

list of possible candidate proteins was quite impressive: of 8792 groups of orthologues, only nine

contained proteins from all of the Lactobacillus isolates, but not P. pentosaceus. Clearly, searching

through nine candidate proteins for the one most likely to cause the phenotype of interest is much

better than having to search through hundreds or thousands of proteins.
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In solving this problem, it was assumed that the presence of a protein (or proteins) induces a

rod-like cell shape, whereas the absence of this protein results in a round cell shape. Because of

this assumption, PSI was used to find proteins that are present in all of the lactobacilli, but not in

P. pentosaceus. Had the opposite assumption been made—that the presence of a protein induces

a round cell shape, while its absence results in a rod-like cell shape—then PSI would have been

used to look for proteins found in P. pentosaceus, but in none of the lactobacilli. This would likely

have been unsuccessful, although laboratory experiments would be necessary to confirm that none

of the proteins found in P. pentosaceus (but not the lactobacilli) are involved in determining its

round cell shape. Biochemical knowledge, or even just intuition, can therefore be very helpful in

choosing (to use the notation of Section 4.1.4) which organisms should be in OI and which should

be in OE . In the absence of a priori knowledge or intuition, the best strategy would be to try both

possibilities.

The full graph for the candidate group containing Q042N8 is shown in Figure 5.3, while a

larger view of a portion of this graph is given in Figure 5.4. Figure 5.4 illustrates the features

of the visualizations produced by PSI, as described in Section 4.1.2. Note that in Figure 5.3, the

vertices representing proteins from the two L. reuteri isolates do not contain the information that

the other vertices do. The two L. reuteri proteomes were downloaded from IMG [38–40], rather

than EBI, and the IMG proteomes do not contain Swiss-Prot/TrEMBL accession numbers. These

proteomes were downloaded from IMG rather than EBI because the strain designations at EBI

were ambiguous, and an application of PSI not described in this thesis required the precise strains

to be identified for this species.

5.2.2 Evaluating the effect of the E-value threshold on the results of the

cell shape phenotype comparison

Using the methodology described in Section 4.2.2, it was determined how the E-value threshold

affects the results of the cell shape phenotype comparison. The first question was: how does the

number of candidate proteins change with the choice of E-value threshold? A plot showing this

relationship is given in Figure 5.5 for E-value thresholds ranging from 100 to 10−180. The plot

shows that the number of candidate proteins decreased fairly steadily as the E-value threshold was

decreased, from between nine and twelve at high E-value thresholds (100 to 10−27) to between one

and two at low E-value thresholds (10−134 to 10−171). No candidate proteins were reported when

E-value thresholds of less than 10−171 were used.

It may initially seem strange that, as the E-value threshold was decreased, there were local

oscillations in the number of candidate groups. For instance, there were four candidate groups

when an E-value threshold of 10−120 was used, three candidate groups when E-value thresholds

between 10−121 and 10−123 were used, and four candidate groups when a threshold of 10−124 was
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Figure 5.3: Complete graph for one of the candidate groups containing the cell shape-determining
protein MreB. Each vertex represents a protein, and edges between vertices denote orthologous
relationships between proteins. If this thesis is being read electronically, the reader may zoom in
on the figure so the details can be viewed.
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Figure 5.4: A smaller section of the graph shown in Figure 5.3.

used. Such oscillations can be attributed to vagaries in the BLAST E-values between proteins in

pairs of lactobacilli, or between a protein from a Lactobacillus isolate and one from P. pentosaceus.

It is important to understand that decreasing the E-value threshold can either increase or decrease

the number of candidate groups. An orthologous group that was previously a candidate group

would no longer be a candidate group if a decrease in the E-value threshold causes a protein from

a particular Lactobacillus isolate to no longer be in that group. Conversely, an orthologous group

that was not previously a candidate group may become one if a decrease in the E-value threshold

causes a protein from P. pentosaceus to no longer be in that group.

All of the candidate proteins that were reported for at least one choice of E-value threshold

were then compiled. There were 45 such proteins. For each candidate group x, the range of E-

value thresholds for which x was reported as a candidate group was determined; these data are

depicted in Figure 5.6. In Figure 5.6, each candidate group is identified using the accession number

of the protein from Lactobacillus helveticus in that group. The choice of organism was arbitrary;

the candidate groups could have been labeled with the accession numbers from any of the other

lactobacilli. Table 5.2 gives the description of the protein corresponding to each accession number.

Figure 5.6 shows that many of the 45 candidate groups were reported as such for only a very

small range of E-value thresholds. In fact, 29 of the 45 candidate groups were reported for a range

of E-value thresholds spanning less than ten orders of magnitude. It should be noted again that,

although a range of, say, 10−35 to 10−40 actually constitutes a seemingly large range of six orders of
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Figure 5.5: Relationship between the E-value threshold and the number of candidate groups for the
cell shape phenotype comparison. The best-fit line was calculated with gnuplot using least squares.

magnitude, it actually represents a narrow range relative to the possible E-values that BLAST can

report. Given that these 29 candidate groups were reported over such a narrow range of E-value

thresholds, it begs the question as to whether these candidate groups should be considered spurious.

An analysis of some of these candidate groups suggests that they should.

For instance, consider the candidate group corresponding to the L. helveticus protein with

accession number A8YWH1, which was only reported as a candidate group for E-value thresholds

ranging from 10−35 to 10−38. In this range, the group containing A8YWH1 had one protein from

each Lactobacillus isolate, but no proteins from P. pentosaceus (this is true by definition, because

it was a candidate group). When an E-value threshold of 10−34 was used, the group containing

A8YWH1 (which was no longer a candidate group) contained all of the same proteins as when

thresholds between 10−35 and 10−38 were used, but also contained a protein from P. pentosaceus.

At an E-value threshold of 10−39, the A8YWH1 group contained proteins from just six Lactobacillus

isolates. The graph containing A8YWH1 produced when the threshold was set at 10−34 illustrates

why A8YWH1 was part of a candidate group when the E-value threshold was between 10−35 and

10−38, but not otherwise. This graph is given in Figure 5.7. The second vertex from the left

represents a protein from P. pentosaceus. This vertex had only one incident edge, with an E-value

of 4 × 10−35, which is greater than 10−35 but less than 10−34, thus explaining the absence of this

group as a candidate group when the E-value threshold was 10−34. As stated earlier, the group

containing A8YWH1 had only six total proteins when the E-value threshold was set to 10−39. The
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Figure 5.6: Plot representing the range of E-value thresholds for which each candidate group
(reported for at least one choice of E-value threshold between 100 and 10−180) was, in fact,
reported as a candidate group for the cell shape phenotype comparison.
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Table 5.2: Description corresponding to the accession number of the protein from Lacto-
bacillus helveticus from each of the 45 candidate groups reported using any E-value threshold
between 100 and 10−180 for the cell shape phenotype comparison.

Accession Description

A8YTB9 Cation efflux protein
A8YTF8 Putative uncharacterized protein
A8YTH0 ABC transporter, ATP-binding protein
A8YTH1 Putative DNA binding protein
A8YTJ1 UPF0297 protein lhv 0439
A8YTR5 Putative uncharacterized protein
A8YTT9 SsrA-binding protein
A8YTU9 Putative uncharacterized protein
A8YU16 Uracil permease
A8YU73 UTP-glucose-1-phosphate uridylyltransferase
A8YUB5 Putative transcriptional regulator
A8YUD7 Putative uncharacterized protein
A8YUG2 Protein-tyrosine phosphatase
A8YUI8 Putative esterase
A8YUK4 Cell shape determining protein
A8YUK6 Putative uncharacterized protein
A8YUL1 Putative uncharacterized protein
A8YUN0 Rod shape determining protein
A8YUP3 Cell division protein sepF
A8YUQ8 UPF0356 protein lhv 0877
A8YUR2 Putative uncharacterized protein
A8YUR4 Phosphopantetheine adenylyltransferase
A8YUR5 Putative uncharacterized protein
A8YUW1 Dihydrofolate reductase
A8YV26 Putative reductase
A8YV55 Protein crcB homolog
A8YVX3 Putative alkaline shock protein
A8YW01 Orotate phosphoribosyltransferase
A8YW75 Putative permease
A8YWA5 tRNA delta(2)-isopentenylpyrophosphate transferase
A8YWH1 Putative ABC transporter
A8YWK6 Putative response regulator
A8YWN5 Putative extracellular protein
A8YWP4 Glutamine ABC transporter ATP binding protein
A8YWT4 Putative sugar kinase
A8YWW9 Putative uncharacterized protein
A8YX97 Putative uncharacterized protein
A8YXA1 Putative uncharacterized protein
A8YXA4 Putative membrane protein
A8YXC4 Sensor protein
A8YXD4 Chromosome partitioning protein
A8YXD6 Chromosome partitioning protein
A8YXF0 Hydrolase of alpha-beta family
A8YXG3 Xanthine permease
A8YXI2 Holo-[acyl-carrier-protein] synthase
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reason for this can be seen by examining Figure 5.7. There appears to be two distinct portions of the

graph, with the ten left-most vertices constituting one portion and the six right-most vertices (which

include A8YWH1) constituting the other portion. The two portions of the graph are connected

by just three edges—two edges connected to the leftmost vertex of the right-hand group, and the

other edge connected to the second-to-leftmost vertex of that group. The smallest E-value of any

of these three edges is 3 × 10−39, explaining why, when an E-value threshold of 10−39 was used,

the A8YWH1 group contained only six proteins—the same six proteins as the right-hand portion

of this graph.

Given this, should the group of proteins containing A8YWH1 for E-value thresholds between

10−35 and 10−38 be considered promising? In other words, is it likely that this group really contains

proteins that somehow differentiate the lactobacilli from P. pentosaceus? The answer appears to

be no. The protein from P. pentosaceus exhibited strong homology to the protein from L. reuteri,

with an E-value of 4 × 10−35. Furthermore, when a large E-value threshold was chosen, such as

10−1, the graph containing A8YWH1 revealed that the P. pentosaceus protein exhibited homology

to many of the other Lactobacillus proteins from this group, with E-values ranging from 8× 10−11

to 10−33 (graph not shown). It is extremely unlikely that all of these matches would be spurious.

Another example of a group of proteins that was only reported as a candidate group for a very

small range of E-value thresholds was represented by the L. helveticus protein with accession number

A8YTB9. This group, which contained cation efflux proteins, was only reported as a candidate

group when an E-value threshold of 100 was used. This likely indicates that this is not a true

candidate group. At an E-value threshold of 100, proteins from all 15 lactobacilli were represented

in this group, but no proteins from P. pentosaceus were identified as orthologues of any of these

proteins. However, when the E-value threshold was decreased to 10−1, there were no proteins from

Lactobacillus sakei present in the group containing A8YTB9. The graph obtained when an E-value

threshold of 100 was used is shown in Figure 5.8. Besides illustrating the fact that this is spurious

candidate group (the L. Sakei proteins in the bottom-right corner are obviously unrelated to the

large group of proteins in the middle of the graph), this graph illustrates the value of graphically

visualizing orthologous relationships. Described in terms similar to those that were used to describe

Figure 5.7, this graph has three portions—the bottom-right portion, described above; the middle

portion; and the left-hand portion, which was only in the same connected component as the middle

portion by virtue of a bridge through a protein from Lactobacillus salivarius, which is strongly

homologous (having low E-values) to other proteins from the left-hand portion of the graph, but

is weakly related (having relatively high E-values, ranging from 3× 10−7 to 2.4× 100) to proteins

from the middle portion. Also, note that except for L. salivarius, each of the organisms having a

protein in the left portion of the graph also has a protein present in the middle portion. These pairs

of proteins (a protein from the left portion, and a protein from the same organism in the middle
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ID: Q03HJ8

Organism: Pediococcus pentosaceus (strain ATCC 25745 / 183-1w)

Length: 327

Description: Permease of the drug/metabolite transporter (DMT) superfamily

Keywords: Complete proteome

GO:0016020 (Cellular localization = membrane)

ID: Q03SV7

Organism: Lactobacillus brevis (strain ATCC 367 / JCM 1170)

Length: 343

Description: Permease of the drug/metabolite transporter (DMT) superfamily

Keywords: Complete proteome

GO:0016020 (Cellular localization = membrane)

2e-65

ID: Q03DH0

Organism: Pediococcus pentosaceus (strain ATCC 25745 / 183-1w)

Length: 405

Description: Permease of the major facilitator superfamily

Keywords: Complete proteome

GO:0005215 (Molecular role = transporter activity)

GO:0006810 (Biological process = transport)

GO:0016021 (Cellular localization = integral to membrane)

ID: Q03N75

Organism: Lactobacillus brevis (strain ATCC 367 / JCM 1170)

Length: 418

Description: Permease of the major facilitator superfamily

Keywords: Cell membrane, Complete proteome

GO:0015520 (Molecular role = tetracycline:hydrogen antiporter activity)

GO:0015904 (Biological process = tetracycline transport)

GO:0016021 (Cellular localization = integral to membrane)

GO:0046677 (Biological process = response to antibiotic)

3e-65

Figure 5.9: Two candidate groups for gatifloxacin resistance.

portion) are likely paralogues—both involved somehow in cation efflux, but perhaps in slightly

different capacities. It is also possible that there was once a protein in L. salivarius that was

orthologous to the proteins in the middle portion, but is no longer present due to gene loss. This

example illustrates how inferences can be obtained from these graphs that could not be gleaned

using, say, a simple list of the orthologues present in a given group.

5.2.3 Identifying the protein(s) conferring gatifloxacin resistance in LAB

Section 4.2.3 described the methodology used to find proteins that may be responsible for gati-

floxacin resistance in the LAB L. brevis and P. pentosaceus: PSI was used to find proteins that are

found in the proteomes of these two organisms, but not in L. casei or L. reuteri F275, which do

not exhibit gatifloxacin resistance. When this analysis was performed, 84 candidate groups were

found. Two of the most promising are shown in Figure 5.9. Both groups shown in Figure 5.9

contain proteins annotated as drug transporters, which are not likely to be specific to gatifloxacin,

but would nonetheless be good candidates for resistance to any antibiotic. As such, these proteins

are ideal candidates for gene knockout experiments, which could determine whether they contribute

to gatifloxacin resistance in L. brevis and P. pentosaceus.

An interesting group of proteins, which was not a candidate group, is shown in Figure 5.10. This

group contained proteins annotated as quinone reductases; as gatifloxacin belongs to the quinone

family of antibiotics, this would initially seem like a promising group; as stated, however, this was

not a candidate group, since it contained a protein from L. casei, which does not exhibit resistance

to gatifloxacin. Thus, this protein cannot (solely) be responsible for gatifloxacin resistance.

There are a number of possible explanations for the existence of this noncandidate group.

• The proteins in this group may actually have nothing to do with gatifloxacin resistance. For

instance, they may confer resistance to some other antibiotics in the quinone family, but not

gatifloxacin.
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ID: Q03SD4

Organism: Lactobacillus brevis (strain ATCC 367 / JCM 1170)

Length: 342

Description: NADPH:quinone reductase related Zn-dependent oxidoreductase

Keywords: Complete proteome

GO:0008152 (Biological process = metabolic process)

GO:0008270 (Molecular role = zinc ion binding)

GO:0016491 (Molecular role = oxidoreductase activity)

ID: Q03BX3

Organism: Lactobacillus casei (strain ATCC 334)

Length: 340

Description: NADPH:quinone reductase related Zn-dependent oxidoreductase

Keywords: Complete proteome

GO:0008152 (Biological process = metabolic process)

GO:0008270 (Molecular role = zinc ion binding)

GO:0016491 (Molecular role = oxidoreductase activity)

1e-117

ID: Q03DD5

Organism: Pediococcus pentosaceus (strain ATCC 25745 / 183-1w)

Length: 345

Description: NADPH:quinone reductase related Zn-dependent oxidoreductase

Keywords: Complete proteome

GO:0008152 (Biological process = metabolic process)

GO:0008270 (Molecular role = zinc ion binding)

GO:0016491 (Molecular role = oxidoreductase activity)

1e-125

1e-112

Figure 5.10: A noncandidate group for gatifloxacin resistance.
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• The proteins from L. brevis and P. pentosaceus from this group are responsible for gatifloxacin

resistance, but the protein is rendered ineffective in L. casei due to point mutations in the

gene coding for this protein, or due to some other factors unique to L. casei.

• Resistance to gatifloxacin is dependent on these proteins interacting with other proteins,

which are present in L. brevis and P. pentosaceus, but not L. casei. These other proteins

could potentially be found in one or more of the 84 candidate groups.

• Orthologues were detected incorrectly, and the protein from L. casei is not actually ortholo-

gous to the proteins from L. brevis and P. pentosaceus. This explanation is unlikely, however,

since the E-values were all very small (less than or equal to 10−112).

Based on these data, it remains unclear which protein(s) may be responsible for gatifloxacin

resistance in L. brevis and P. pentosaceus, although the proteins shown in Figure 5.9 are certainly

promising candidates. If gene-knockout experiments were performed on the genes that encode the

most promising candidate proteins, and none of these proteins were found to confer gatifloxacin

resistance, then it would be necessary to resort to other candidate proteins, such as those having

completely unknown functions. An example of such a group is given in Figure 5.11. It is also

possible that resistance in L. brevis and P. pentosaceus is primarily due to point mutations in

DNA gyrase and DNA topoisomerase IV (the targets of gatifloxacin), rather than the presence of

resistance proteins. A final possibility is that L. brevis and P. pentosaceus do not have the same

mechanism of resistance. (See Section 6.4.3 for a more general discussion of the ability or inability

of PSI to provide correct results in situations where the cause of the phenotype is not the same in

all organisms being examined.)

5.2.4 Determining the relationship between the number of input organ-

isms and the number of candidate proteins

As described in Section 4.2.4, two tests were performed to evaluate the impact of the number of

organisms used in a particular PSI comparison on the number of candidate groups returned. The

results of these tests are given in the following two sections.

Test 1: Cell shape phenotype

The relationship between the number of lactobacilli involved in a cell shape phenotype comparison

and the number of candidate proteins returned is shown in Figure 5.12. This plot shows that

the number of candidate proteins decreased rapidly as the number of lactobacilli was increased.

When just one Lactobacillus isolate was used, the number of candidate proteins was very large

(975), making this procedure essentially useless in narrowing down the list of proteins that may be

responsible for the difference in cell shape between the lactobacilli and P. pentosaceus. However, the
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ID: Q03D78

Organism: Pediococcus pentosaceus (strain ATCC 25745 / 183-1w)

Length: 306

Description: Putative uncharacterized protein

Keywords: Complete proteome

(No GO terms)

ID: Q03TR2

Organism: Lactobacillus brevis (strain ATCC 367 / JCM 1170)

Length: 324

Description: Putative uncharacterized protein

Keywords: Complete proteome

(No GO terms)

2e-15

Figure 5.11: A candidate group for gatifloxacin resistance containing uncharacterized proteins.
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Figure 5.12: Relationship between the number of lactobacilli used in the cell shape phenotype
comparison and the number of candidate groups.

number of candidate proteins dropped to just 117 when a second Lactobacillus isolate was added,

and was less than 40 when seven or more lactobacilli were used. These data suggest that, even

with a relatively small number of organisms (less than ten), PSI can successfully generate a list of

candidate proteins small enough that they can be examined easily. On the other hand, if laboratory

testing was required, then there would still be value in using the greatest number of organisms

possible; for instance, using 14 lactobacilli instead of 13 resulted in 11 fewer candidate proteins,

which could reduce the laboratory work needed to determine the correct protein(s) significantly.

Test 2: Proteins in Streptococcus isolates that are not in Mycobacterium isolates

In the second test, it was determined how the number of organisms used affects the number of

candidate proteins when PSI was used to find proteins found in all Streptococcus isolates, but no

Mycobacterium isolates. This relationship is depicted in Figure 5.13.

There are two important observations to be made regarding Figure 5.13. First, when the number

of mycobacteria in the comparison was held constant, changing the number of streptococci had a

very large effect on the number of candidate proteins when the number of streptococci was already

small (fewer than five). On the other hand, when the number of streptococci was greater than five,

the reduction in the number of candidate proteins when more Streptococcus isolates were added
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Figure 5.13: Relationship between the number of Streptococcus and Mycobacterium species used,
and the number of candidate proteins, when using PSI to find groups of proteins present in all of
the streptococci, but none of the mycobacteria.

was much smaller. Second, when the number of Streptococcus isolates was held constant, adding

additional Mycobacterium isolates had a fairly small impact on the number of candidate proteins.

This was irrespective of the number of Mycobacterium isolates that had already been added, as well

as of the number of Streptococcus isolates. However, the impact of adding additional Mycobacterium

isolates appeared to be somewhat greater when there were few Streptococcus isolates compared to

when there were many. For instance, when only one Streptococcus isolate was used, the number

of candidate proteins ranged from 1509 when just one Mycobacterium isolate was used to 1319

when all 14 were used. In comparison, when five Streptococcus isolates were used, the number of

candidate proteins when different numbers of mycobacteria were used ranged from 576 to 468—a

smaller difference.

As a consequence of these two observations, Figure 5.13 provides insight into the relative impor-

tance of adding additional streptococci compared to adding additional mycobacteria—specifically,

that adding additional Streptococcus isolates had a greater effect on the number of candidate groups

than adding additional Mycobacterium isolates, especially when the current number of streptococci

was relatively small. To generalize these results, suppose that the user of PSI is trying to find the

protein responsible for a particular phenotype, and that the user must perform a literature search

to identify organisms that do or do not exhibit the phenotype. These results suggest that the

user should concentrate primarily on finding organisms that do exhibit the phenotype, rather than

those that do not, since the former seems to reduce the number of candidate groups more quickly
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than the latter. However, these results show that it is still beneficial to include a few organisms

that do not exhibit the phenotype, as well. It should be stressed that generalizing these results

may not be justified based on a single experiment, and additional data are necessary to determine

whether adding organisms that exhibit the phenotype always has a greater effect on reducing the

number of candidate groups than adding organisms that do not exhibit the phenotype. Note that

the evolutionary relatedness of the organisms in each category could also play a significant role. If

all of the organisms in one of the two sets (those that exhibit the phenotype, and those that do not)

were very closely related, then adding more closely related organisms to that same set would likely

have little effect on reducing the number of candidate groups; conversely, adding a more distantly

related organism would likely have a much greater effect. However, adding an organism that is

closely related to those in one set to the other set would likely substantially reduce the number of

candidate groups, as most proteins in the newly added organism would be orthologous to proteins

in the other set, and thus would not be candidate proteins.

5.3 Using PSI for phylogenetics and comparative genomics

In this section, the results of applying PSI to selected phylogenetics and comparative genomics

problems are reported. Section 5.3.1 describes the results of determining the effect of the E-value

threshold on the number of proteins found to be in one organism, but not a second organism.

Section 5.3.2 discusses the use of PSI for creating a large phylogenetic tree based on similarities

in the protein content of pairs of bacteria. Finally, Section 5.3.3 gives the results of using PSI

to determine how cohesive isolates of the same species are compared to randomly selected sets of

isolates from the same genus.

5.3.1 Evaluating the effect of the E-value threshold on numbers of unique

proteins

As described in Section 4.3.1, the effect of the E-value threshold on the number of proteins found

to be in one organism, but not a second organism, was determined for three different degrees of

relatedness: two organisms from the same species; two organisms from the same genus, but different

species; and two organisms from different genera. The results of these comparisons are described

below.

Intra-species comparisons

A scatterplot illustrating the relationship between the E-value threshold and the number of unique

proteins for the intra-species comparisons is given in Figure 5.14. Note that the purpose of this

figure is to give three separate examples of how the number of proteins that are reported to be in
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Figure 5.14: The relationship between the E-value threshold and the number of unique proteins
reported for pairs of isolates from the same species. See Table 4.1 for the organisms involved in each
comparison.

one isolate but not another isolate of the same species varied with the E-value threshold. Thus, the

three plots are not meant to be compared with one another. The differences between plots can be

partially attributed to the proteome size of each species. For instance, the two Pseudomonas putida

isolates have very large proteomes (5396 in strain GB-1 and 5313 in strain KT2440), whereas the

Xanthomonas campestris proteomes are smaller (4239 proteins in strain 8004 and 4410 proteins

in strain B100), and the Staphylococcus aureus proteomes are smaller yet (2679 proteins in strain

COL and 2761 proteins in strain JH1). Thus, one might expect the Pseudomonas isolates to have

the largest variation, which is consistent with the figure.

As can be seen, the number of unique proteins differed substantially depending on the E-value

threshold for all three comparisons. With respect to proteins found in P. putida GB-1 but not

in P. putida KT2440 (comparison 1a), the number of unique proteins reported ranged from 3882

when using an E-value threshold of 10−180 to 1075 when using an E-value threshold of 100. That

this range is very wide highlights the importance of choosing an appropriate E-value threshold.

A closer look at the plot for P. putida revealed that it can be divided into two distinct sections.

The first section of the plot ranged from an E-value threshold of 10−180 to an E-value threshold of

approximately 10−30, in which there was a nearly perfectly linear decrease in the number of unique

proteins as the E-value was increased. The second section ranged from E-value thresholds between

10−29 and 100. Like the first section, the number of unique proteins decreased as the E-value was
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Figure 5.15: The relationship between the E-value threshold and the number of unique proteins
reported for pairs of isolates from the same genus, but different species. See Table 4.1 for the
organisms involved in each comparison.

increased, although the slope was much smaller. In other words, compared to the first section,

increasing the E-value in this region seemed to result in smaller decreases in the number of unique

proteins.

The plots for X. campestris (comparison 1b) and S. aureus (comparison 1c) showed the same

general trend as that for P. putida, with a nearly constant slope between E-value thresholds of

10−180 and 10−30, and a smaller slope between thresholds of 10−29 and 100. Curiously, while

there were many more unique proteins in the X. campestris comparison than in the S. aureus

comparison at very stringent E-value thresholds, the number of unique proteins at non-stringent

E-value thresholds was nearly the same for these two comparisons. This would seem to reflect the

fact that the two S. aureus strains are more closely related to each other than the two X. campestris

strains are to each other.

Inter-species comparisons

A scatterplot depicting the relationship between the E-value threshold and the number of unique

proteins for the inter-species (but intra-genus) comparisons is given in Figure 5.15. The plots were

similar to those in Figure 5.14; the only exception was that the slope of the line at high E-value

thresholds (10−29 and above) did not appear to level off as much as it did in the intra-species

comparisons.
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Inter-genus comparisons

A scatterplot depicting the relationship between the E-value threshold and the number of unique

proteins for the three inter-genus comparisons is given in Figure 5.16. All three plots appeared

distinctly different than both the intra-species plots and the inter-species plots. The first and

second sections of the plot exhibited essentially the opposite trend compared to both the intra-

species and inter-species comparisons. The intra-species and inter-species comparisons showed a

relatively steep slope between E-value thresholds of approximately 10−180 to 10−30, and then a

more gradual slope between thresholds of approximately 10−29 to 100. In contrast, the inter-genus

plots had a very gradual slope between thresholds of 10−180 to 10−50, and then a steeper slope

between thresholds of 10−49 and 100.

The relative evolutionary relatedness of the organisms in each comparison type likely accounts

for the differences between the intra-species/inter-species comparisons and the inter-genus compar-

isons. For the intra-species and inter-species comparisons, orthologous proteins would have under-

gone few mutations compared to the inter-genus comparisons, and such proteins should therefore

attain small E-values when one is used as a query to BLAST against a database containing the

other protein. Thus, one would expect relatively few changes in the number of unique proteins

at larger E-value thresholds, since few true orthologues would attain such large E-values. This

trend is reflected in the intra-species and inter-species comparisons shown in Figures 5.14 and 5.15.

Conversely, for the inter-genus comparisons, the organisms in each pair were more evolutionarily

distant from each other than the pairs in either of the other two comparison types. Given this,

orthologues would have undergone many mutations (relative to orthologues in the other two com-

parison types), resulting in larger E-values. Thus, most orthologues should get relatively large

E-values, and therefore the number of unique proteins should change more quickly at large E-value

thresholds rather than at small ones. This trend holds for all comparisons shown in Figure 5.16.

The purpose of this section was to assist in choosing an appropriate E-value threshold for

analyzing the number of unique proteins in pairs of bacteria. In Section 4.1.6, an equation was

presented that related the E-value threshold that should be chosen to the number of proteins in

the organisms’ proteomes, the number of organisms involved in a particular comparison, and the

desired value for the expected number of spurious matches. In that section, it was argued that an

E-value threshold of 10−13 was appropriate for most comparisons. This value is in good agreement

with a value that might be chosen in the basis of Figures 5.14, 5.15, and 5.16. With respect to

Figures 5.14, and 5.15, it would seem reasonable to choose an E-value threshold between 10−29

and 100, as the number of unique proteins changed quite slowly as the E-value threshold was

varied within this range. It is encouraging that 10−13 falls nearly in the middle (logarithmically)

of this range. With respect to Figure 5.16, a small E-value (say, less than 10−50) would likely

result in most actual orthologues being missed, as most changes in the number of unique proteins
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Figure 5.16: The relationship between the E-value threshold and the number of unique proteins
reported for pairs of isolates from different genera. See Table 4.1 for the organisms involved in each
comparison.

occurred between E-value thresholds of 10−49 and 100. Having narrowed down the range of E-value

thresholds that might be chosen based on Figure 5.16, it remains difficult to justify a more precise

E-value threshold within this range. Given that a threshold of 10−13 is justifiable based on the

intra-species and inter-species comparisons, and seems to be within an appropriate range for the

inter-genus comparisons, it could be argued that 10−13 is an appropriate threshold for any pairwise

comparison, especially because it is also supported by the analytical approach from Section 4.1.6.

However, it would make interesting future work to investigate the possibility of varying the E-value

threshold depending on the evolutionary relatedness of the organisms being considered.

5.3.2 Phylogenetics based on protein content

The phylogenetic tree that was created as described in Section 4.3.3 is shown in Figure 5.17.

This tree was created by using as a distance metric the average of the number of proteins found

in organism A but not organism B, and vice versa. The tree appeared to be relatively con-

sistent with current taxonomic classifications, with isolates from most genera clustered together.

However, there were some exceptions: Mycobacterium leprae was isolated from the rest of the

mycobacteria, and, in fact, was deemed to be more closely related to the genus Rickettsia. Thir-

teen of the 19 Clostridium isolates clustered together, including the botulinum, perfringens, tetani,

and novyi species. Three other Clostridium isolates—Clostridium phytofermentans, Clostridium
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Figure 5.17: Phylogenetic tree created using the AUP distance metric, and UPGMA as the linkage
method. Organisms from the same species have identical colours. If this thesis is being read electronically,
the reader may zoom in on the figure so the details can be viewed.
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acetobutylicum, and Clostridium kluyveri—appeared together near isolates of the Bacillus genus.

The remaining Clostridium isolates—Clostridium beijerinckii, Clostridium difficile, and Clostrid-

ium thermocellum—did not appear to be closely related to any of the other isolates, suggesting

that they may be more closely related to taxonomic groups not included in this tree. The final

genus that was split up was Lactobacillus, with L. plantarum and the two L. casei isolates being

separated from the other lactobacilli.

5.3.3 Evaluating taxonomic classifications by determining how well species

are clustered based on protein content

Results from the analysis described in Section 4.3.4 are given in Tables 5.3 and 5.4. From a protein

content perspective, the classification of a set of organisms into a single species could be described

as “good” if two criteria are met: the organisms are very similar to each other (i.e., have a large

core proteome), and are distinct from other organisms (i.e., have many proteins not found in other

organisms of the same genus). These two criteria were investigated by comparing the core proteome

and the number of unique proteins in a given species to randomly-generated sets of isolates from

the same genus. This was done for each species from the genera listed in Table 4.2 that had two or

more isolates sequenced.

As an example of reading Tables 5.3 and 5.4, consider the first row of Table 5.3, which con-

tains B. anthracis. There were 4941 proteins found in all three sequenced isolates of B. anthracis.

However, when sets of three Bacillus isolates were randomly chosen as described in Section 4.3.4,

the average core proteome size was just 2123. According to a two-tailed t-test, the P-value for this

comparison was less than 0.001, indicating that the difference in core proteome size between the

three B. anthracis isolates, and randomly chosen sets of three Bacillus isolates, was highly statisti-

cally significant. In fact, none of the 25 randomly-generated sets contained a larger core proteome

than the set of B. anthracis isolates. Therefore, B. anthracis satisfied the first criterion specified

in Section 4.3.4—the three B. anthracis isolates had more similar protein content than randomly-

chosen sets of three Bacillus isolates. B. anthracis also satisfied the second criterion, which stated

that species should be distinct from other isolates of the same genus. Table 5.3 shows that the

B. anthracis isolates contained 168 proteins not found in any other Bacillus isolate, compared to

an average of just one unique protein for the 25 randomly-generated sets (P < 0.001). None of

the 25 randomly-generated sets contained more unique proteins than the three B. anthracis iso-

lates. Overall, the fact that B. anthracis satisfied both criteria suggests that its current taxonomic

classification is sound.

As another example, consider Rhizobium leguminosarum. There were 3678 proteins in its core

proteome, compared to an average of 3386 for randomly selected sets of two Rhizobium isolates. This

difference was statistically significant; however, two of the 13 random sets of two Rhizobium isolates
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Table 5.3: Results of experiments concerning clustering of protein content. The meanings
of the column headings, as well as other details regarding the table, can be found below the
table. See Table 5.4 for the continuation of this table.

Species Core proteomes Unique proteins

Species name NI NC
A NC

R PC NC
> NU

A NU
R PU NU

>

Bacillus anthracis 3 4941 2123 ** 0/25 168 1 ** 0/25

Bacillus cereus 4 2881 1840 ** 0/25 2 0 – 0/25

Bacillus thuringiensis 2 4255 2864 ** 5/25 4 7 n.s. 7/25

Brucella abortus 3 2699 2603 ** 6/25 2 1 * 4/25

Brucella suis 2 3025 2760 ** 2/24 5 4 n.s. 5/24

Burkholderia ambifaria 2 5609 3798 ** 1/25 198 17 ** 0/25

Burkholderia cenocepacia 3 5908 3352 ** 0/25 168 0 ** 0/25

Burkholderia mallei 4 3623 3086 ** 1/25 18 0 – 0/25

Burkholderia pseudomallei 4 4972 3086 ** 0/25 45 0 – 0/25

Clostridium botulinum 8 1514 763 ** 0/25 10 0 – 0/25

Clostridium perfringens 3 2110 1085 ** 0/25 298 0 ** 0/25

Lactobacillus casei 2 2355 959 ** 0/25 593 5 ** 0/25

Lactobacillus delbrueckii 2 1372 959 ** 0/25 222 5 ** 0/25

Lactobacillus reuteri 2 1402 959 ** 0/25 120 5 ** 0/25

Mycobacterium bovis 2 3822 2577 ** 1/25 36 38 n.s. 3/25

Mycobacterium tuberculosis 3 3724 2118 ** 0/25 26 17 n.s. 3/25

Neisseria gonorrhoeae 2 1795 1560 ** 0/8 229 3 ** 0/8

Neisseria meningitidis 4 1547 1426 ** 0/14 75 4 ** 0/14

Column heading abbreviations are as follows: NI , number of sequenced isolates from the species in
the first column; NC

A , actual size of the core proteome of all the sequenced isolates of that species;
NC

R , average core proteome size of the randomly-generated sets; P C , probability that the average core
proteome size of the randomly-generated sets is different than the actual size of the core proteome of
the sequenced isolates of this species; NC

> , number of random sets (out of the total number of random
sets) having a core proteome larger than that of the species from the first column; NU

A , actual number
of proteins found in all isolates of the species from the first column, but no other isolates from the same
genus (“unique proteins”); NU

R , average number of unique proteins for the randomly-generated sets; P U ,
probability that the average number of unique proteins in the randomly-generated sets is different than
the actual number of unique proteins in the sequenced isolates of this species; NU

> , number of random sets
(out of the total number of random sets) having more unique proteins than the species from the first column.

In some cases, all of the random sets corresponding to a particular species had zero unique proteins. No
P-value could be computed for these because the standard deviation of these values was zero. In these
situations, the P U column contains a dash character (–). The averages in both column NC

R and column NU
R

are rounded to the nearest whole number. For certain rows, column NU
R shows a value of 0; in some cases,

this value is exact, while in other situations, it is due to rounding. If due to rounding, then the standard
deviation of the random sets is non-zero, and column P U contains a P-value. For columns P C and P U ,
“n.s.” means “not significant”, a single asterisk indicates a P-value of less than 0.05, and a double asterisk
indicates a P-value of less than 0.001.
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Table 5.4: Results of experiments concerning clustering of protein content (continued). For
the meanings of each column, see Figure 5.3.

Species Core proteomes Unique proteins

Species name NI NC
A NC

R PC NC
> NU

A NU
R PU NU

>

Pseudomonas aeruginosa 3 4959 2877 ** 0/25 571 1 ** 0/25

Pseudomonas fluorescens 2 4206 3199 ** 0/25 142 6 ** 0/25

Pseudomonas putida 4 3799 2592 ** 0/25 69 0 ** 0/25

Pseudomonas syringae 3 3894 2877 ** 0/25 290 1 ** 0/25

Rhizobium etli 2 4700 3386 ** 0/13 251 88 ** 1/13

Rhizobium leguminosarum 2 3678 3386 * 2/13 99 88 n.s. 5/13

Rickettsia bellii 2 1277 850 ** 0/25 219 1 ** 0/25

Rickettsia rickettsii 2 1221 850 ** 0/25 93 1 ** 0/25

Shigella boydii 2 3170 2989 ** 2/17 95 12 ** 0/17

Shigella flexneri 3 3255 2770 ** 0/25 130 6 ** 0/25

Staphylococcus aureus 14 1917 1486 ** 0/25 157 0 ** 0/25

Staphylococcus epidermidis 2 2080 1798 ** 0/25 131 0 ** 0/25

Streptococcus agalactiae 3 1688 1019 ** 0/25 156 0 – 0/25

Streptococcus pneumoniae 6 1543 922 ** 0/25 150 0 – 0/25

Streptococcus pyogenes 13 1348 811 ** 0/25 49 0 – 0/25

Streptococcus suis 2 1971 1087 ** 0/25 336 0 ** 0/25

Streptococcus thermophilus 3 1359 1019 ** 0/25 145 0 – 0/25

Vibrio cholerae 2 3384 2764 ** 1/25 425 20 ** 0/25

Vibrio fischeri 2 3380 2764 ** 1/25 447 20 ** 0/25

Vibrio vulnificus 2 3882 2764 ** 0/25 321 20 ** 0/25

Xanthomonas campestris 4 3376 2818 ** 0/25 49 4 ** 0/25

Xanthomonas oryzae 3 3276 2915 ** 5/25 299 0 ** 0/25

Yersinia pestis 7 2986 2717 ** 4/25 21 0 ** 0/25

Yersinia pseudotuberculosis 4 3424 3003 ** 0/25 21 0 ** 0/25
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did have core proteomes containing more than 3678 proteins. The two Rhizobium leguminosarum

isolates had 99 proteins found in both of those isolates, but in no other Rhizobium isolate. However,

the average for the random sets was 88—a difference that was not statistically significant. Moreover,

five of the 13 random sets had more than 99 unique proteins. This may indicate that the taxonomy

of Rhizobium leguminosarum, or of the entire Rhizobium genus, may need to be revised.

Tables 5.3 and 5.4 show that the isolates of most species had both larger core proteomes and

a greater number of unique proteins than the isolates in the corresponding randomly-generated

sets. However, there were some exceptions. For instance, Bacillus cereus had a much larger core

proteome than the randomly generated sets, but had just two unique proteins—greater than the

average number of unique proteins in the randomly-generated sets, none of which had any unique

proteins, but much less than the number of unique proteins possessed by other species having four

(or more) sequenced isolates. Burkholderia mallei, also with four sequenced isolates, had 18 unique

proteins; other species having more than four sequenced isolates were: Clostridium botulinum (10

unique proteins), N. meningitidis (75), P. putida (69), S. aureus (157), Streptococcus pneumoniae

(150), S. pyogenes (49), X. campestris (49), Yersinia pestis (21), and Yersinia pseudotuberculosis

(21). This may indicate that the taxonomic classification of B. cereus should be reexamined.

Another example was Bacillus thuringiensis, which had a larger core proteome than the random

sets, but actually had fewer unique proteins than the average number of unique proteins in the

random sets. In addition, the B. thuringiensis isolates had fewer unique proteins than seven of the

25 corresponding random sets.

Further examination of Tables 5.3 and 5.4 showed that all species satisfied the criterion that

species should have proteomes that are similar to each other, as all of the P-values in column

PC were significant at the 5% level. However, the same cannot be said of the unique proteins

criterion. Several species, in addition to those already mentioned in the previous paragraph, had

either a statistically insignificant difference in unique proteins compared to the random sets, or had

very few unique proteins compared to most other species. Brucella abortus, B. suis, B. mallei, C.

botulinum, Mycobacterium bovis, Mycobacterium tuberculosis, Y. pestis, and Y. pseudotuberculosis

all fell within this category.
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Chapter 6

Conclusions and Discussion

This section provides discussion concerning selected aspects of PSI and suggests possibilities

for future work. Section 6.1 provides an overview of PSI, reviews the major contributions of this

thesis, gives some concluding remarks, and comments on the general applicability of PSI now

and in the future. Section 6.2 proposes as future work a comparison between BLAST and other

methods for protein database searching. Modifications to PSI that could make it more efficacious

for eukaryotic organisms are suggested in Section 6.3. Section 6.4 discusses the utility of PSI in

identifying protein-phenotype relationships for proteins involved in different types of biochemical

pathways. Section 6.5 contains a comparison of the AUP metric with the proteomic distance metric

proposed by Snel et al., and also suggests possibilities for future work concerning the application

of protein content comparisons to phylogenetics. The efficacy of PSI when applied to incomplete

datasets is discussed in Section 6.6. Section 6.7 describes several ways in which PSI could be used

that were not analyzed in detail in this thesis. Finally, Section 6.8 discusses the nature of the

author’s collaboration with Monique Haakensen, who is currently completing her Ph.D. thesis.

6.1 Conclusion

This thesis describes the foundation, design, and implementation of a program called PSI that

facilitates the discovery of proteins that are found in one set of organisms, but not a second set.

Two broad applications of PSI were identified and analyzed: determining protein-phenotype rela-

tionships, and comparing the protein content in different groups of organisms. In addition to the

creation of PSI, this thesis has made several contributions:

• a method for visualizing orthologous relationships among proteins,

• a demonstration that PSI was useful in identifying the protein responsible for the difference

in cell shape between P. pentosaceus and Lactobacillus isolates,

• the identification of several proteins that could be responsible for gatifloxacin resistance in

the LAB P. pentosaceus and L. brevis,

• analytical and empirical methods for identifying appropriate E-value thresholds for PSI,
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• a novel metric for measuring differences in protein content in pairs of organisms,

• the largest phylogenetic tree created to date (to the author’s knowledge) based on protein

content,

• a technique for assessing how well different species are clustered based on protein content,

and

• a list of species whose taxonomic classifications may warrant reexamination based on the

protein content clustering analysis.

In conclusion, PSI is an extremely useful tool for addressing many comparative genomics ques-

tions and for discovering protein-phenotype relationships. Besides those analyzed in this thesis,

PSI has a number of additional applications. For instance, it could be used for measuring the gen-

eral diversity of protein content in different organisms, comparing intra-species with inter-species

proteomic diversity, comparing the metabolism and physiology of different genera, characterizing

the impact of environment on protein content, and even tracking evolution on a fine-grained scale.

A more detailed description of these proposed applications can be found in Section 6.7.

Due to its generality, the number of possible applications for PSI is extremely large, and there

likely are many applications for PSI beyond those analyzed or suggested in this thesis. Perhaps

the most exciting aspect of PSI, as well as other tools that utilize genomic sequence information, is

that its usefulness will only continue to increase as more and more sequence information becomes

available. Despite advances in sequencing technology, the number of species whose genomes have

been sequenced to date is likely just a tiny fraction of the number of species that currently exist

on Earth [74]. Even so, much progress has been made in learning about the genetic and molecular

properties of the organisms whose genomes have been sequenced. While the prospect of elucidating

the complete genome sequences of a substantial portion of extant species is still a long way off, it

is certainly a tantalizing proposition. Using programs like PSI, much profound knowledge could

be gained—for instance, the number of proteins comprising the entire protein universe could be

estimated; the uniqueness in the protein content of each species could be quantified; the set of

proteins that are absolutely necessary for life could be identified; and evolutionary relationships

could be delineated more accurately. Thus, tools like PSI will become even more valuable in the

future for learning about protein function and for understanding the molecular relationships among

different organisms.

6.2 Comparing methods for protein database searching

Section 5.1.1 reported the results of comparing the efficiency of DFS on a graph with that of a

disjoint-set data structure for finding orthologous groups of proteins. This operation had to be
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performed after orthologous relationships between pairs of proteins had been ascertained using

RBH. Another aspect of PSI’s efficiency that could be examined concerns the BLAST comparisons

themselves. Price et al. [75] developed FastBLAST, which attempts to provide faster database

searches than BLAST by using known protein families from sources like the Pfam [76, 77] and

protein analysis through evolutionary relationships (PANTHER) [78, 79] databases, as well as ad-

hoc families that capture homology relationships not found in these databases. More specifically,

for a given query sequence, FastBLAST finds the best hits in a database by inspecting only the

protein families that the query sequence belongs to, rather than all of the proteins in the database.

Since a given protein will likely belong to only a few families, this strategy substantially reduces

the number of comparisons that must be performed. FastBLAST may miss some homologues that

ordinary BLAST discovers if a particular database protein is not in the same family (in any of the

protein family databases) as the query protein. However, the authors of FastBLAST show that

such misses are rare, with FastBLAST finding about 98% of the matches that BLAST discovers.

Despite the straightforward concept behind FastBLAST, comparing BLAST with FastBLAST

would likely prove to be quite involved. Unlike BLAST, FastBLAST requires a substantial amount

of preprocessing to be done before the actual database searches can be performed. Thus, the speed

of a database search using BLAST could not be compared directly with a database search using

FastBLAST, as the time taken to perform the preprocessing steps that FastBLAST requires would

also have to be taken into account. These preprocessing steps are as follows:

1. The input FASTA files must be processed so that the headers conform to the requirements

of some of the external programs that FastBLAST uses.

2. A program employing hidden Markov models (HMMs) called FastHMM must be utilized in

order to determine the protein family or families to which each database sequence belongs.

3. Alignments of the query sequences against other proteins from the same family must be

created.

A fair comparison of BLAST with FastBLAST would have to balance the time that FastBLAST

saves doing the actual database searches with the extra time spent performing these preprocessing

steps. Note that FastBLAST requires a fourth preprocessing step, which is the creation of indexed

databases from multi-FASTA files. However, BLAST also requires this step, so it is not included

in the above list.

Another complication is that, due to having a number of fixed costs related to processing

the protein families [75], FastBLAST’s efficiency decreases with smaller databases. The creators

of FastBLAST showed that it exhibited increased efficiency over BLAST when using “nr”, the

nonredundant GenBank database; however, it would likely be less efficient for situations in which

many smaller databases are needed (such as PSI, which uses a separate database for each organism’s
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proteome). Thus, the sizes of the protein databases would also need to be taken into account.

Despite these complexities, comparing BLAST with FastBLAST would certainly make worthwhile

future work, as it could clarify which problems would be better suited to BLAST, and which would

be better suited to FastBLAST.

Yet another method that could be explored for quickly finding homology relationships is CD-

HIT [80], which uses a technique called “short word filtering” for quickly clustering similar se-

quences. Unlike FastBLAST, whose results should be very similar to that of BLAST, the results

of using CD-HIT could be quite different. Thus, unlike FastBLAST, which could be compared to

BLAST solely in terms of efficiency, an analysis of CD-HIT would require both its speed and its

functionality to be compared to those of BLAST.

6.3 PSI and eukaryotic proteomes

In this thesis, PSI was evaluated entirely using prokaryotic proteomes (and more specifically, bac-

terial proteomes). While the general idea behind PSI should apply equally well to eukaryotes, some

modifications may be necessary in order for maximize PSI’s efficacy when applied to these more

complex organisms. For instance, a new E-value threshold might be appropriate in order to reflect

the larger proteome sizes of eukaryotes. In Section 4.1.6, an upper limit on proteome sizes of 105

(which is larger than the largest bacterial proteome) was used in order to derive an appropriate

E-value threshold. This number would have to be revised when considering eukaryotes, as many eu-

karyotes have proteomes containing more than 105 proteins. The human proteome and the mouse

proteome, for instance, each contain around 30000 proteins [81]. Thus, selecting a new E-value

threshold based on the size of eukaryotic proteomes would be necessary.

Perhaps the most important issue that would need to be addressed before PSI could be applied

to eukaryotes is orthologue detection. Orthologue detection is a fundamental part of PSI, and

this procedure is more difficult for eukaryotes than it is for prokaryotes [47]. There are several

reasons for this: eukaryotic genomes are much larger; gene duplications are more frequent than

in prokaryotes; alternative splicing can occur, in which a single gene can code for more than one

protein; eukaryotes are often diploid (have two sets of chromosomes) or polyploid (have more than

two sets of chromosomes); and their proteins generally have a more complex architecture, often

containing functional domains that are present in many different proteins. To address this added

difficulty, future work could involve modifying PSI to use one of the orthologue detection techniques

that have been specifically designed to address the problems inherent in predicting orthologues in

eukaryotes. As these methods are more sophisticated, this could also result in improved orthologue

detection for prokaryotes as well.
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6.4 Identifying protein-phenotype relationships in different

types of biochemical pathways

Sections 5.2.1 and 5.2.3 presented the results of using PSI for (respectively) finding the protein(s)

responsible for giving lactobacilli rod-shaped cells, and for finding protein(s) responsible for gati-

floxacin resistance in the two LAB L. brevis and P. pentosaceus. The rod-like shape of Lactobacillus

cells appears to be caused by one or both of the MreB-like proteins, while the nature of gatifloxacin

resistance in the aforementioned bacteria remains uncertain.

It is interesting to consider how well PSI would work for phenotypes that arise from different,

and perhaps more complicated, types of biochemical pathways. There are several possible situa-

tions, each of which would differ in the ability of PSI to correctly identify the protein or proteins

responsible for the phenotype of interest.

6.4.1 One protein directly causes the phenotype of interest

In the first possible situation, there is only one protein responsible for the phenotype of interest,

and the presence of the protein itself (rather than the product of some reaction catalyzed by that

protein) causes the phenotype. For instance, suppose there exists a hypothetical protein that causes

a bacterium to appear blue under ultraviolet light. PSI should work very well in situations such

as this. By identifying proteins that are found in bacteria that appear blue under ultraviolet light,

but that are absent from bacteria that do not exhibit this property, PSI should be successful in

identifying the correct protein. Note that the difference in cell shape between Lactobacillus isolates

and P. pentosaceus almost fits this category. However, the results given in Section 5.2.1 suggest

that the situation is a little more complicated, as two MreB-like proteins were identified as being

present in all of the lactobacilli, but not P. pentosaceus. In addition, other proteins were identified

that could potentially contribute to cell shape, such as sepF. As such, while it is possible that

just a single protein is responsible for the difference in cell shape between the lactobacilli and P.

pentosaceus (as in the hypothetical ultraviolet light example given above), it is also possible that

the situation is more complex.

6.4.2 One protein catalyzes the synthesis of a molecule causing the phe-

notype of interest

Some phenotypes are caused not by proteins, but by other molecules. Suppose that a given phe-

notype is caused by molecule B, which can only be synthesized from molecule A. Further, this

synthesis must be catalyzed by an enzyme denoted αβ. For the sake of this example, assume that

A is a ubiquitous cellular metabolite present in all organisms; otherwise, the presence or absence
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of other proteins may affect the availability of molecule A, making the situation more complicated.

All of the organisms that exhibit this phenotype should have protein αβ, while all those that do

not should lack this protein; as such, PSI should be successful in this situation, as the presence

or absence of αβ dictates the presence or absence of molecule B, which in turns determines the

presence or absence of the phenotype.

6.4.3 Two proteins catalyze the synthesis of a molecule causing the phe-

notype of interest

Suppose, in contrast to the previous situation, that molecule B can be synthesized from two different

ubiquitous cellular metabolites, denoted A1 and A2. Also, suppose that the reactions A1 → B and

A2 → B are catalyzed by two nonorthologous proteins denoted α1β and α2β. PSI may or may

not be able to identify these proteins as being responsible for the phenotype induced by molecule

B. If all of the organisms that exhibit the phenotype produce B from A1 using protein α1β, then

PSI would be able to identify α1β as the protein responsible. Similarly, PSI could identify α2β

as the protein responsible if all of the organisms that exhibit the phenotype produce B from A2.

However, if some of the organisms exhibiting the phenotype produce B from A1, and others produce

B from A2, then PSI would be able to identify neither α1β nor α2β. This is because the organisms

synthesizing B from A1 would not contain α2β, and the organisms synthesizing B from A2 would

not contain α1β, and thus neither protein would be found in all of the organisms exhibiting the

phenotype.

Note that this type of problem would occur for any situation in which a phenotype has more

than one cause, not just those that involve the catalysis of metabolites. For instance, one protein

could cause resistance to a given antibiotic by pumping it out of the cell, whereas another protein

could cause resistance by destroying the antibiotic. If some of the organisms in a given comparison

are resistant because of the first protein, and some are resistant because of the second, then neither

protein would be identified by PSI as causing resistance to the antibiotic, as PSI requires that

candidate proteins be present in all organisms exhibiting the phenotype.

6.4.4 The phenotype of interest is part of a long biochemical pathway

The situation would become more complicated if the molecule causing the phenotype was the end

product of a longer or more complicated biochemical pathway. For example, suppose that a given

organism encodes enzymes αβ, βγ, and γδ, which catalyze the chemical reactions A→ B, B → C,

and C → D, respectively. Further, suppose that the actual phenotype of interest is caused by

molecule D. Ideally, PSI would be able to identify all three proteins as being involved with the

creation of this phenotype. In an ideal situation, all of the organisms that do not exhibit the

phenotype would contain none of the aforementioned proteins. However, molecules B and C may
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also have important biochemical roles, and may be synthesized as an end product by one or more

of the organisms not exhibiting the phenotype of interest. If this is the case, αβ and βγ would

not be identified by PSI. However, γδ would still be identified, as this protein would be expressed

by all of the organisms that exhibit the phenotype, and none of the organisms that do not. This

result would probably be satisfactory to most users, as γδ is the protein most directly responsible

for the phenotype of interest, since it catalyzes the creation of the molecule that actually produces

the phenotype.

6.5 Proteomic distance metrics

As described in Section 4.3.3, Snel et al. [62] used the number of shared proteins between two

organisms divided by the number of proteins in the smaller proteome as a metric for determining

the proteomic distance between two organisms. In this thesis, an alternative metric, AUP, was

proposed, which is calculated by taking the average of the number of proteins in bacterium A that

are not in bacterium B, and the number of proteins in bacterium B that are not in bacterium A.

This new metric was proposed because it fits well within the scope of “genome subtraction”, in

which proteins are found that are present in all of the organisms in one set of organisms, but in none

of the organisms in a second set. In the case of pairwise comparisons, each set contains just one

organism. This metric was used to create a phylogenetic tree of the bacteria listed in Figure 4.2.

This phylogenetic tree (see Figure 5.17) appeared to be relatively consistent with current taxonomic

classifications, with most isolates of the same species clustering together. However, a more in-depth

analysis would be needed to determine how this metric compares with the one proposed by Snel

et al.. This section discusses two possible levels at which proteomic distance metrics could be

compared—on the level of individual pairwise comparisons (Section 6.5.1), and on the level of

phylogenetic trees created using the distance metrics (Section 6.5.2). In addition, Section 6.5.3

discusses finding the correlation between proteomic distance metrics and 16S rRNA gene percent

identities for pairs of bacteria.

6.5.1 Comparing proteomic distance metrics at the level of individual

pairwise comparisons

The first way in which the proteomic distance metrics can be compared is by looking at pairwise

comparisons. For instance, consider the question of whether Rickettsia typhi ATCC VR-144 is more

closely related to L. gasseri ATCC 33323 or to Burkholderia vietnamiensis LMG 2248. The number

of proteins that are common to both R. typhi and L. gasseri is 260, while the number common to

both R. typhi and B. vietnamiensis is 437. R. typhi, with 837 proteins, has the smaller proteome

in each of these comparisons, so the values of Snel et al.’s metric for these two comparisons are
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Table 6.1: Comparison of the distance metric of Snel et al. with the AUP metric. See below the table
for an explanation of the column headings.

Reference organism Comparison organism 1 S1 A1 Comparison organism 2 S2 A2

R. typhi L. gasseri 0.31 1005.5 B. vietnamiensis 0.52 3686
V. cholerae Y. pestis 0.43 2223.5 B. ambifaria 0.34 3903.5
L. acidophilus S. pyogenes 0.37 1188.5 R. etli 0.26 3403
R. etli B. ambifaria 0.31 4424 S. pyogenes 0.27 3398.5

Column heading abbreviations are as follows: S1, similarity between the reference organism and comparison organism 1
according to Snel et al.’s metric; A1, similarity between the same organisms according to the AUP metric; S2, similarity
between the reference organism and comparison organism 2 according to Snel et al.’s metric; A2, similarity between
the same organisms according to the AUP metric. Note that for Snel et al.’s metric, larger numbers indicate greater
similarity, whereas for the AUP metric, smaller numbers indicate greater similarity. To enable the table to fit on the page,
strain names are omitted. The full designation of the organisms in the table, as well as the number of proteins found
in the proteome of each, are Rickettsia typhi ATCC VR-144 (837 proteins), L. gasseri ATCC 33323 (1694 proteins),
Burkholderia vietnamiensis LMG 22486 (7409 proteins), Vibrio cholerae ATCC 39315 (3784 proteins), Yersinia pestis
91001 (4013 proteins), Burkholderia ambifaria ATCC BAA-244 (6607 proteins), Lactobacillus acidophilus NCFM (1859
proteins), Streptococcus pyogenes MGAS2096 (1886 proteins), and Rhizobium etli ATCC 51251 (5921 proteins).

260/837 = 0.31 and 437/837 = 0.52, respectively.

Does the fact that R. typhi shares more proteins with B. vietnamiensis imply that R. typhi

is more closely related to B. vietnamiensis than it is to L. gasseri? This is unclear; however,

a plausible explanation for the disparity in these two numbers is the size of the proteome of L.

gasseri (1694 proteins) compared to that of B. vietnamiensis (7409 proteins)—because the latter

bacterium’s proteome is so much larger, it has more “opportunities” for containing proteins that

are orthologous to proteins in R. typhi. In this case, Snel et al.’s metric seems like it is being

influenced more by proteome sizes than by actual proteomic similarity. In fact, the extremely large

proteome of B. vietnamiensis would perhaps suggest that R. typhi, whose proteome contains just

837 proteins, is more distant evolutionarily to B. vietnamiensis than it is to L. gasseri.

In contrast, the AUP metric produces quite different results for the above example. The number

of proteins in R. typhi that are not in L. gasseri is 577, while the number of proteins in L. gasseri

that are not in R. typhi is 1434, giving an average of 1005.5. On the other hand, the number of

proteins in R. typhi that are not in B. vietnamiensis is 400, while the number of proteins in B.

vietnamiensis that are not in R. typhi is 6972, giving an average of 3686. Contrary to the method

of Snel et al., this suggests that R. typhi is more closely related to L. gasseri than it is to B.

vietnamiensis, a result that seems more consistent with intuition.

Table 6.1 gives three additional examples, and also reiterates the above example. The first row

of the table (not including the row containing the column headings) is the same as the example

given above, in which Snel et al.’s metric is inconsistent with the AUP metric, with the former

metric suggesting that R. typhi is more similar to B. vietnamiensis than it is to L. gasseri, and

the latter metric suggesting the opposite. The next two rows of the table show examples where

the two metrics agree. The second row shows that the metrics agree that Vibrio cholerae ATCC

39315 is more similar to Y. pestis 91001 than it is to Burkholderia ambifaria ATCC BAA-244,
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and the third row shows that they agree that L. acidophilus NCFM is more similar to S. pyogenes

MGAS2096 than it is to R. etli ATCC 51251. The fourth row of the table gives another example

where the two metrics are discordant: in contrast to Snel et al.’s metric, the AUP metric suggests

that R. etli ATCC 51251 is more similar to S. pyogenes MGAS2096 than it is to B. ambifaria

ATCC BAA-244. In this case, Snel et al.’s method seems more in agreement with intuition, as

it seems more likely that R. etli, having a fairly large proteome (5921 proteins), would be more

similar to another organism with a large proteome (B. ambifaria, with 6607 proteins) than one

with a small proteome (S. pyogenes, with just 1886 proteins).

In summary, Table 6.1 gives two examples where the two metrics agree, one example where the

AUP metric seems to give more intuitive results, and one example where Snel et al.’s metric seems

to give more intuitive results. Note that this analysis dealt only with whether the results agree with

intuition, and a more rigorous analysis would be needed to compare the results of both metrics with,

say, 16S rRNA gene percent identity. Overall, additional investigation will be necessary in order

to analyze these metrics further and to elucidate the most appropriate method for determining the

proteomic similarity (or distance) between two organisms.

6.5.2 Comparing proteomic distance metrics at the level of phylogenetic

trees

Section 6.5.1 discussed differences between Snel et al.’s metric and the AUP metric for a few

specific pairwise comparisons, and suggested that more work needs to be done in order to establish

the strengths and weaknesses of each of these metrics, as well as to explore other metrics that

might provide a more accurate measure of the proteomic similarity of two organisms. It would

also be interesting to compare the two distance metrics (as well as other possible metrics) on a

broader scale, by comparing the phylogenetic trees that result from these metrics. The tree given

in Figure 5.17 seems plausible, with most isolates from the same genus clustering together. Future

work could involve constructing a phylogenetic tree using the same organisms, but using Snel et al.’s

distance metric, and then comparing the two trees. It would also be worthwhile to compare the

two trees to a tree created using 16S rRNA gene percent identities.

6.5.3 Comparing proteomic distance metrics with 16S rRNA gene per-

cent identities

As examining changes in the 16S rRNA gene is the standard method for performing phylogenetic

analyses, it would be of interest to determine how well different proteomic distance metrics correlate

with percent identities between the 16S rRNA genes in pairs of organisms. The thesis of Monique

Haakensen (see also Section 6.8) examines the correlation between the AUP metric and 16S rRNA
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gene percent identity for intra-genus pairwise comparisons. It was found that, for some genera,

the correlation between the AUP metric and the percent identity of the 16S rRNA genes was

reasonable (values of R2 between 0.47 and 0.81), whereas other genera had very low R2 values

(close to zero). Further investigation would be necessary in order to elucidate the reasons for the

different correlations among the genera; examining the amount of horizontal gene transfer that

occurs in different genera would seem like a reasonable starting point. It would also be interesting

to find the correlation of Snel et al.’s metric with 16S rRNA gene percent identities.

6.6 PSI and incomplete datasets

Despite the accelerating pace of genome sequencing, only partial sequence information is available

for some organisms. This could be the result of researchers sequencing only certain genes or other

genomic regions that are of interest to them, rather than an entire genome. In addition, some

organisms are studied primarily using complementary DNA (cDNA) or expressed sequence tag

(EST) libraries, which do not necessarily represent all of the genes in a genome; furthermore, ESTs

do not usually encode entire proteins.

In general, PSI would be expected to have limited usefulness for organisms lacking a complete

proteome. The goal of PSI is to identify proteins that are present in one set of organisms, but

not a second set. If one or more of these organisms have incomplete proteomes, then the absence

of a specific protein in a particular organism could be due to incomplete sequence information,

or because its genome actually does not encode that protein. PSI could not distinguish between

these two possibilities, potentially leading to erroneous results. However, as more genomes become

sequenced, partial sequence information should become less of an issue.

6.7 Other comparative genomics applications

Besides the applications already examined or discussed in this thesis, the versatile nature of PSI

means that it should be useful for addressing many other issues concerning the protein content in

groups of organisms. A list of some of these applications is given in this section. This list should

not, however, be considered complete; there are likely many other potential applications of PSI not

mentioned in this thesis.

6.7.1 Measuring diversity of protein content

PSI could be used to determine, for each protein in a given organism, whether it is unique to that

organism, unique to its species, unique to its genus, or non-unique (found in other genera). This

would constitute a general characterization of the amount of protein uniqueness and redundancy
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in the universe of bacterial proteins. PSI could also be used to find the total number of distinct

proteins present in a given species or genus, which would provide additional insight into the diversity

of protein content in different groups of organisms.

6.7.2 Measuring intra-species versus inter-species protein diversity

PSI would be useful in determining whether, within a given genus, the number of proteins found

in organism A but not in organism B is always smaller if A and B are from the same species

than if they are from different species. This represents another possible method for evaluating the

quality of phylogenetic classifications—if organism A from species X has more proteins not found

in organism B (from species X) than organism C (from species Y ), then it could indicate the need

to revisit the taxonomic classifications of these organisms. Situations like this could also be a result

of differences in the rate of changes to protein content compared to the rate of changes to the

16S rRNA gene. As such, this could also provide insight into the relative rates of protein content

evolution versus evolution of the 16S rRNA gene.

6.7.3 Comparing the protein content of different genera

PSI could be used to answer the question, “What kinds of proteins are found in all of the isolates

in genus A, but in none of the isolates of genus B?” Examining such differences in protein content

would allow the metabolism and physiology of different genera to be compared, and could also be

useful for evaluating the impact of environment on protein content. For instance, a possible study

could involve comparing the protein content in pairs of genera that exist in similar environments,

as well as in pairs that exist in disparate environments. One might expect that pairs of genera

inhabiting similar environments would have more similar protein content than those that inhabit

disparate environments. By comparing protein content differences with evolutionary differences,

the impact of environment on protein content could be characterized.

6.7.4 Tracking evolution

Given recent technological developments in sequencing technologies, it is reasonable to assume that,

at some point in the future, sequencing a bacterium will require only a nominal investment of time

and money. The following methodology involving PSI would enable tracking of the evolution of a

particular species. First, a single bacterium from the species would be sequenced. Then, a sample

of its descendants would periodically be sequenced (say, every few weeks or months). PSI would

be used to compare the protein content in these organisms, which would give a fine-grained look

at what proteins were acquired or lost over these time periods. If the organisms were under some

type of environmental stress, it would allow monitoring of the evolutionary response to the stress
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at the protein level. Another interesting idea would be to subject some of the bacteria to a change

of conditions, such as different growth media, antibiotics, and so on, and then to track the proteins

gained or lost.

6.8 Nature of collaboration

The work described in this thesis has been applied in the Ph.D. thesis of Monique Haakensen.

Specifically, I used the technique described in Section 4.3.3 to create a phylogenetic tree of the

15 sequenced Lactobacillus isolates and P. pentosaceus. This tree was relatively consistent with

those made using the 16S rRNA gene, and supported her contention that these organisms merit a

new taxonomic classification. Regarding the analysis described in Section 6.5.3, PSI was used to

generate the “unique proteins” data, and Ms. Haakensen determined the 16S rRNA gene percent

identities and performed the actual correlation analysis. Her thesis also discusses the application of

PSI to finding protein-phenotype relationships and to finding core proteomes. Some of the figures

created for this thesis were also included in Ms. Haakensen’s thesis.

I am responsible for all of the figures and writing in this thesis; however, Ms. Haakensen was

extremely helpful in suggesting ideas and assisting with biological interpretations. Specifically,

she suggested the cell shape phenotype and the gatifloxacin resistance phenotype as test cases for

using PSI for identifying protein-phenotype relationships, and also assisted with making graphical

representations of phylogenetic trees.
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Appendix A

Complete list of organisms used

These tables list the isolates used for some of the analyses described in Sections 4.2 and 4.3.
Some strain designations have been removed or shortened to save space. For instance, the full
description of the bacterium listed in Table A.3 as “Burkholderia thailandensis E264 / ATCC
700388” is actually “B. thailandensis (strain E264 / ATCC 700388 / DSM 13276 / CIP 106301)”.
The name of each organism is accompanied by its taxonomic ID, the number of proteins in its
proteome, and its genome size.
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Table A.1: Complete list of Bacillus isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
326423 B. amyloliquefaciens FZB42 3692 3,918,589
261594 B. anthracis Ames ancestor 5590 5,227,419
198094 B. anthracis Ames, isolate Porton 5313 5,227,293
260799 B. anthracis Sterne 5288 5,228,663
222523 B. cereus ATCC 10987 5821 5,224,283
226900 B. cereus ATCC 14579 / DSM 31 5240 5,411,809
288681 B. cereus ZK / E33L 5638 5,300,915
315749 B. cereus subsp. cytotoxis, strain NVH 391-98 3840 4,087,024
66692 B. clausii KSM-K16 4082 4,303,871
272558 B. halodurans C-125 / ATCC BAA-125 4006 4,202,352
279010 B. licheniformis DSM 13 / ATCC 14580 4162 4,222,597
315750 B. pumilus SAFR-032 3675 3,704,465
224308 B. subtilis 168 4112 4,215,606
412694 B. thuringiensis Al Hakam 4792 5,257,091
281309 B. thuringiensis konkukian, strain 97-27 5169 5,237,682
315730 B. weihenstephanensis KBAB4 5650 5,262,775

Table A.2: Complete list of Brucella isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
262698 B. abortus biovar 1, strain 9-941 3077 3,286,445
359391 B. abortus 2308 3022 3,278,307
430066 B. abortus S19 2993 3,283,936
483179 B. canis ATCC 23365 / NCTC 10854 3238 3,312,769
224914 B. melitensis NCTC 10094 / ATCC 23456 / 16M 3178 3,294,931
444178 B. ovis ATCC 25840 / 63/290 / NCTC 10512 2820 3,275,590
204722 B. suis biovar 1, strain 1330 3256 3,315,175
470137 B. suis ATCC 23445 / NCTC 10510 3214 3,324,607

Table A.3: Complete list of Burkholderia isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
339670 B. ambifaria AMMD / ATCC BAA-244 6607 7,484,986
398577 B. ambifaria MC40-6 6690 7,340,944
331271 B. cenocepacia AU 1054 6450 7,279,116
331272 B. cenocepacia HI2424 6898 7,537,983
406425 B. cenocepacia MC0-3 6986 7,971,389
216591 B. cepacia J2315 / LMG 16656 6993 7,963,121
243160 B. mallei ATCC 23344 4797 5,835,527
412022 B. mallei NCTC 10229 5309 5,742,303
320389 B. mallei NCTC 10247 5619 5,848,380
320388 B. mallei SAVP1 4981 5,232,401
391038 B. phymatum DSM 17167 / STM815 7461 6,176,561
398527 B. phytofirmans DSM 17436 / PsJN 7197 8,093,536
357348 B. pseudomallei 1106a 7138 7,089,249
320372 B. pseudomallei 1710b 6329 7,308,054
320373 B. pseudomallei 668 7215 7,040,403
272560 B. pseudomallei K96243 5717 7,247,547
271848 B. thailandensis E264 / ATCC 700388 5561 6,723,972
269482 B. vietnamiensis R1808 / G4 / LMG 22486 7409 7,305,580
266265 B. xenovorans LB400 8591 9,731,138
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Table A.4: Complete list of Clostridium isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
272562 C. acetobutylicum DSM 792 / JCM 1419 3847 3,940,880
290402 C. beijerinckii ATCC 51743 / NCIMB 8052 5003 6,000,632
441770 C. botulinum ATCC 19397 / Type A 3547 3,863,450
508767 C. botulinum Alaska E43 / type E3 3255 3,659,644
508765 C. botulinum Eklund 17B / type B 3525 3,800,327
441771 C. botulinum ATCC 3502, substrain Los Alamos 3401 3,760,560
413999 C. botulinum ATCC 3502, substrain Sanger 3590 3,886,916
441772 C. botulinum Langeland / NCTC 10281 / Type F 3657 3,995,387
498214 C. botulinum Loch Maree / Type A3 3982 3,992,906
498213 C. botulinum Okra / Type B1 3850 3,958,233
272563 C. difficile 630 3712 4,290,252
431943 C. kluyveri ATCC 8527 / DSM 555 3828 3,964,618
386415 C. novyi NT 2305 2,547,720
195102 C. perfringens 13 / Type A 2721 3,031,430
195103 C. perfringens ATCC 13124 / NCTC 8237 2873 3,256,683
289380 C. perfringens SM101 / Type A 2568 2,897,393
357809 C. phytofermentans ATCC 700394 3891 4,847,594
212717 C. tetani Massachusetts / E88 2414 2,799,251
203119 C. thermocellum ATCC 27405 / DSM 1237 3102 3,843,301

Table A.5: Complete list of Lactobacillus isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
272621 L. acidophilus NCFM 1859 1,993,560
387344 L. brevis ATCC 367 / JCM 1170 2201 2,291,220
321967 L. casei ATCC 334 2708 2,895,264
543734 L. casei BL23 2999 3,079,196
390333 L. delbrueckii ATCC 11842 1519 1,864,998
321956 L. delbrueckii ATCC BAA-365 1682 1,856,951
334390 L. fermentum IFO 3956 / LMG 18251 1818 2,098,685
324831 L. gasseri ATCC 33323 / DSM 20243 1694 1,894,360
405566 L. helveticus DPC 4571 1580 2,080,931
257314 L. johnsonii NCC 533 1809 1,992,676
220668 L. plantarum WCFS1 / ATCC BAA-793 3051 3,308,274
349123 L. reuteri 100-23 1972 2,174,299
299033 L. reuteri F275 1939 1,999,618
314315 L. sakei subsp. sakei, strain 23K 1872 1,884,661
362948 L. salivarius subsp. salivarius, strain UCC118 1998 1,827,111
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Table A.6: Complete list of Mycobacterium isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
36809 M. abscessus ATCC 19977 / DSM 44196 4939 5,067,172
243243 M. avium 104 5040 5,475,491
233413 M. bovis AF2122/97 / ATCC BAA-935 3911 4,345,492
410289 M. bovis BCG / Pasteur 1173P2 3891 4,374,522
350054 M. gilvum ATCC 700033 / PYR-GCK 5499 5,619,607
272631 M. leprae TN 1603 3,268,203
216594 M. marinum ATCC BAA-535 / M 5418 6,636,827
262316 M. paratuberculosis ATCC BAA-968 / K-10 4316 4,829,781
246196 M. smegmatis ATCC 700084 / mc(2)155) 6597 6,988,209
419947 M. tuberculosis ATCC 25177 / H37Ra 3990 6,988,209
83332 M. tuberculosis ATCC 25618 / H37Rv 3949 6,988,209
83331 M. tuberculosis Oshkosh / CDC 1551 4196 4,403,837
362242 M. ulcerans Agy99 4206 5,631,606
350058 M. vanbaalenii DSM 7251 / PYR-1 5902 6,491,865

Table A.7: Complete list of Neisseria isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
242231 N. gonorrhoeae ATCC 700825 / FA 1090 1963 2,153,922
521006 N. gonorrhoeae NCCP11945 2595 2,232,025
272831 N. meningitidis serogroup C, strain ATCC 700532 1865 2,194,961
374833 N. meningitidis serogroup C, strain 053442 1998 2,153,416
122587 N. meningitidis serogroup A, strain Z2491 1887 2,184,406
122586 N. meningitidis serogroup B, strain MC58 2001 2,272,360

Table A.8: Complete list of Pseudomonas isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
208964 P. aeruginosa LMG 12228 / ATCC 15692 5558 6,264,404
381754 P. aeruginosa PA7 6246 6,588,339
208963 P. aeruginosa UCBPP-PA14 5886 6,537,648
384676 P. entomophila L48 5126 5,888,780
220664 P. fluorescens Pf-5 / ATCC BAA-477 6137 7,074,893
205922 P. fluorescens PfO-1 5728 6,438,405
399739 P. mendocina ymp 4563 5,072,807
351746 P. putida F1 / ATCC 700007 5245 5,959,964
76869 P. putida GB-1 5396 6,078,430
160488 P. putida KT2440 5313 6,181,863
390235 P. putida W619 5179 5,774,330
379731 P. stutzeri A1501 4093 4,567,418
264730 P. syringae 1448A 5044 5,928,787
205918 P. syringae pathovar syringae, strain B728a 5071 6,093,698
223283 P. syringae tomato, strain DC3000 5424 6,397,126
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Table A.9: Complete list of Rhizobium isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
347834 R. etli CFN 42 / ATCC 51251 5921 4,381,608
491916 R. etli CIAT 652 6050 4,513,324
395492 R. leguminosarum bv. trifolii WSM2304 4320 4,537,948
216596 R. leguminosarum bv. viciae, strain 3841 7109 5,057,142
266835 R. loti MAFF303099 7255 7,036,071
266834 R. meliloti 1021 6168 3,654,135

Table A.10: Complete list of Rickettsia isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
293614 R. akari Hartford 1257 1,231,060
391896 R. bellii OSU 85-389 1443 1,528,980
336407 R. bellii RML369-C 1400 1,522,076
293613 R. canadensis McKiel 1091 1,159,772
272944 R. conorii ATCC VR-613 / Malish 7 1372 1,268,755
315456 R. felis ATCC VR-1525 / URRWXCal2 1428 1,485,148
416276 R. massiliae Mtu5 969 1,360,898
272947 R. prowazekii Madrid E 834 1,111,523
452659 R. rickettsii Iowa 1384 1,268,175
392021 R. rickettsii Sheila Smith 1345 1,257,710
257363 R. typhi Wilmington / ATCC VR-144 837 1,111,496

Table A.11: Complete list of Shigella isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
344609 S. boydii serovar 18, strain CDC 3083-94 4140 4,615,997
300268 S. boydii serovar 4, strain Sb227 3937 4,519,823
300267 S. dysenteriae serovar 1, strain Sd97 / Sd197 3890 4,369,232
198215 S. flexneri serovar 2a, strain ATCC 700930 3786 4,599,354
198214 S. flexneri serovar 2a, strain 301 4102 4,607,203
373384 S. flexneri serovar 5b, strain 8401 3867 4,574,284
300269 S. sonnei Ss046 4053 4,825,265
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Table A.12: Complete list of Staphylococcus isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
93062 S. aureus COL 2679 2,809,422
359787 S. aureus JH1 2761 2,906,507
359786 S. aureus JH9 2708 2,906,700
282458 S. aureus MRSA252 2639 2,902,619
282459 S. aureus MSSA476 2602 2,799,802
196620 S. aureus MW2 2660 2,820,462
418127 S. aureus Mu3 / ATCC 700698 2684 2,880,168
158878 S. aureus Mu50 / ATCC 700699 2714 2,878,529
158879 S. aureus N315 2580 2,814,816
93061 S. aureus NCTC 8325 2890 2,821,361
426430 S. aureus Newman 2578 2,878,897
451516 S. aureus USA300 / TCH1516 2688 2,872,915
451515 S. aureus USA300 2607 2,872,769
273036 S. aureus bovine RF122 / ET3-1 / RF122 2513 2,742,531
176280 S. epidermidis ATCC 12228 2461 2,499,279
176279 S. epidermidis ATCC 35984 / RP62A 2492 2,616,530
279808 S. haemolyticus JCSC1435 2640 2,685,015
342451 S. saprophyticus ATCC 15305 2404 2,516,575
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Table A.13: Complete list of Streptococcus isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
211110 S. agalactiae serovar III, strain NEM316 1999 2,211,485
205921 S. agalactiae serovar Ia, strain ATCC 27591 1983 2,127,839
208435 S. agalactiae serovar V, strain ATCC BAA-611 2105 2,160,267
552526 S. equi MGCS10565 1861 2,024,171
467705 S. gordonii ATCC 35105 / CH1 2050 2,196,662
210007 S. mutans serovar c, strain ATCC 700610 1951 2,030,921
512566 S. pneumoniae serovar 19F, strain G54 2106 2,078,953
373153 S. pneumoniae serovar 2, strain NCTC 7466 1918 2,046,115
171101 S. pneumoniae ATCC BAA-255 / R6 2030 2,038,615
516950 S. pneumoniae CGSP14 2193 2,209,198
487214 S. pneumoniae Hungary19A-6 2152 2,245,615
170187 S. pneumoniae TIGR4 / ATCC BAA-334 2109 2,160,842
370553 S. pyogenes serovar M12, strain MGAS2096 1886 1,860,355
370551 S. pyogenes serovar M12, strain MGAS9429 1868 1,836,467
370552 S. pyogenes serovar M2, strain MGAS10270 1964 1,928,252
370554 S. pyogenes serovar M4, strain MGAS10750 1964 1,937,111
160491 S. pyogenes serovar M5, strain Manfredo 1736 1,841,271
293653 S. pyogenes serovar M1, strain ATCC BAA-947 1840 1,838,554
160490 S. pyogenes serovar M1, strain ATCC 700294 1691 1,852,441
186103 S. pyogenes serovar M18, strain MGAS8232 1835 1,895,017
319701 S. pyogenes serovar M28, strain MGAS6180 1884 1,897,573
198466 S. pyogenes serovar M3, strain ATCC BAA-595 1858 1,900,521
193567 S. pyogenes serovar M3, strain SSI-1 1852 1,894,275
286636 S. pyogenes serovar M6, strain ATCC BAA-946) 1879 1,899,877
471876 S. pyogenes NZ131 1700 1,815,785
388919 S. sanguinis SK36 2269 2,388,435
391295 S. suis 05ZYH33 2179 2,096,309
391296 S. suis 98HAH33 2179 2,095,698
264199 S. thermophilus ATCC BAA-250 / LMG 18311 1577 1,796,846
322159 S. thermophilus ATCC BAA-491 / LMD-9 1704 1,856,368
299768 S. thermophilus CNRZ 1066 1590 1,796,226

Table A.14: Complete list of Vibrio isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
243277 V. cholerae serovar O1, strain ATCC 39315 3784 4,033,464
345073 V. cholerae serovar O1, strain ATCC 39541 3772 4,132,319
312309 V. fischeri ATCC 700601 / ES114 3814 4,227,869
388396 V. fischeri MJ11 4034 4,323,877
338187 V. harveyi ATCC BAA-1116 / BB120 5608 5,969,369
223926 V. parahaemolyticus RIMD 2210633 4821 5,165,770
216895 V. vulnificus CMCP6 4473 5,126,797
196600 V. vulnificus YJ016 4990 5,211,578
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Table A.15: Complete list of Xanthomonas isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
190486 X. axonopodis pathovar citri, strain 306 4354 5,175,554
314565 X. campestris pathovar campestris, strain 8004 4239 5,148,708
340 X. campestris pathovar campestris, strain B100 4410 5,079,002
456327 X. campestris pathovar vesicatoria, strain 85-10 4628 5,178,466
190485 X. campestris campestris, strain ATCC 33913 4127 5,076,188
342109 X. oryzae pathovar oryzae, strain MAFF 311018 4204 4,940,217
360094 X. oryzae pathovar oryzae, strain PXO99A 4587 5,240,075
291331 X. oryzae oryzae, strain KXO85 / KACC10331 4380 4,941,439

Table A.16: Complete list of Yersinia isolates used.
TaxID Isolate Proteins (#) Genome size (bp)
393305 Y. enterocolitica serovar O:8, strain 8081 4021 4,615,899
229193 Y. pestis biovar Mediaevalis, strain 91001 4013 4,595,065
187410 Y. pestis biovar Mediaevalis, strain KIM5 3968 4,600,755
214092 Y. pestis biovar Orientalis, strain CO-92 3908 4,653,728
386656 Y. pestis Pestoides F 3942 4,517,345
360102 Y. pestis bv., strain Antiqua 4135 4,702,289
349746 Y. pestis bv. Antiqua, strain Angola 3821 4,504,254
377628 Y. pestis bv. Antiqua, strain Nepal516 3946 4,534,590
273123 Y. pseudotuberculosis serovar I, strain IP32953 4016 4,744,671
502801 Y. pseudotuberculosis serovar IB, strain PB1/+ 4213 4,695,619
349747 Y. pseudotuberculosis serovar O:1b, strain IP 31758 4305 4,723,306
502800 Y. pseudotuberculosis serovar O:3, strain YPIII 4171 4,689,441
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