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1 Introduction

Walking through the world, a human being is surrounded by a lot of objects, and their sensations

continuously assail him. Nevertheless, the sensations are seldom disordered. Moreover, they get

structured and are abstracted and classified. Thus, the human being conceptualizes its surrounding

and builds a mental model of the world. In the digital society, a huge amount of knowledge is shared

and automatically computed – often in real time. This process is sped up if the underlying models

of the knowledge are shared and machine-readable, because they help to understand the shared

knowledge. A data structure which describes the model of a specific domain of interest is called

an ontology. As they model the meaning of things, ontologies represent a semantic technology.

If more and more objects (often called entities) are observed, these entities can be grouped together

to different concepts with a set of attributes, which define the characteristics of each concept. Ad-

ditionally, concepts can be related to each other. For instance, paleontologists have been discovered

many fossils in the last centuries. The more fossils – which represent the entities of the paleon-

tological domain – are excavated, the easier it is to group the fossils and define families, genera,

and species. The fact that a defined family is a subfamily of another one exemplarily represents a

relation between concepts of the given domain. Nevertheless, the experts might be disagree with

the concept definitions or the relations between concepts. This is the case for paleontologists. At

least two different ontologies are established within the discipline: [Ben06], a Linnaean taxonomy,

as well as [WDO04], a cladistic systematics. Consequently, an ontology models the knowledge of

a specific domain under a particular perspective. Ideally, this model is consistent and up to date.

In addition to ontology application in scientific context, ontologies are used in enterprise applica-

tions as well. For instance, the oil and gas industry uses an ontology to model their vocabulary

and thus their business domain. The ontology mediates the information exchange between off-

shore platforms (field data assessment) and onshore participants (operators and vendors), see

[Obe14, KSVS08]. Thus, the ontology serves as a conceptualization of a world’s segment.

The previous assumptions implicitly set forth the main characteristics and the importance of on-

tologies. In short, an ontology can be defined as a ”formal, explicit specification of a shared

conceptualisation” [SBF98]. As such, it is machine-readable and can be used for varying communi-

cation and translation tasks within a given domain. For example, communication between software

developers is facilitated when it is based on a shared ontology. Furthermore, translation tasks, or

more formally the mapping of one ontology to another, is a key requirement in data integration. A

mapping is useful in order to integrate an ontology to a different one, for example. This might be

the case when one company buys into another one and their product catalogues shall be merged.

A mapping consists of a source and target ontology as well as of a set of correspondences. A

correspondence associates a concept of the source ontology to a concept of the target one. It is

commonly assumed that the association is meaningful, i.e., both concepts denote the same or very

similar things. Determining correspondences is a complex task. On one side, an ontology may con-

tain hundreds of thousands concepts and consequently, an automatic processing is recommended.

On the other side, an ontology describes such a very specific domain that this might be mastered
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1 Introduction

only by experts. But the following consideration illustrates that a pure manual matching is im-

practical. Let 3,000 concepts be in the source and in the target ontology, respectively. Assuming

an n-to-m mapping, n ·m comparisons has to be considered in order to compare each concept of

the source ontology with each concept of the target ontology. Thus, 9 million comparisons are nec-

essary. Assume that an expert needs 5 seconds in order to determine whether two given concepts

are equal, one concept is a more general term for the other one, or both concepts have nothing in

common. Then the expert’s evaluation would take about 1.5 years of uninterrupted work. This

implicates that a mapping task cannot be done manually. Rather, it has to be made automatic or

at least semi-automatic with seldom user interaction. However, strategies have to be established

which take account of the very domain specific language.

There are a lot of techniques for automatically determining the correspondence set. For example,

the similarity between two concepts can be calculated based on the similarity of their names or

with the help of an intermediary ontology to which target and source ontology are anchored.

Furthermore, correspondences are enriched by semantic relation types. A semantic relation type

is the kind of relation which holds between the concepts of a correspondence. Those strategies

may use linguistic knowledge, e.g., information about the structure of words (left eye and right

eye are both specialisations of eye), or they use a background knowledge resource for denoting

the type (hypothalamus is a part of the brain). It depends on the framework which relation types

are denoted. Some differ only between three types (equal, less general, more general) whereby

some frameworks differentiate more fine-grained between is-a, has-a, inverse is-a, and part-of. The

first two are kinds of less general, the latter are specializations of more general. Additionally, the

relation related-to is introduced for concepts which are only loosely connected.

This thesis focuses on ontology mappings within the biomedical domain. Mappings within this

domain are useful, e.g., for a study in comparative anatomy where two anatomical ontologies are

connected to each other. However, the denotation of semantic relation types (called semantic

enrichment) between two concepts is often ignored. Thus, this thesis establishes and evaluates

an enrichment approach for biomedical mappings. Two steps are necessary for this approach.

First, suitable background knowledge has to be extracted and prepared in such a way that it can

be integrated into a repository. That repository will be accessed during the enrichment process.

Second, the integration of the systems GOMMA and STROMA has to be implemented. GOMMA

is a mapping tool which determines a set of correspondences from two input ontologies. STROMA

is a system for semantic enrichment of a given mapping. Thus, a GOMMA mapping is committed

to STROMA and the types denoted by STROMA are eventually written to it. Finally, the enriched

mappings are evaluated. As it will be seen, semantic enrichment within the biomedical domain

is not equivalent to less specialised mappings, like a mapping between clothing categories. Well-

established linguistic strategies within the latter domain fail if they are applied to biomedical

mappings. Other linguistic strategies might be useful. Furthermore, background knowledge seems

to play a more crucial role. The results are better for a higher weight of background knowledge

regarding the sum of the other strategies’ weight.

The thesis is structured as follows. In chapter 2 the theoretical background is set forth. It concen-

trates on the role of ontologies within computer science. The most formal part is section 2.1 where

the conception of an ontology is defined as a logical theory. That procedure has two advantages.

First, the definition precisely describes the basic idea of an ontology. Thus, the philosophical basics

2



1 Introduction

lead to a more insightful understanding of ontologies. Second and as a consequence of the first,

that definition may evoke a sense for problems and weak points of ontologies. The next section

2.2 introduces two common representations of ontologies, namely as directed graph and with the

help of the knowledge representation language OWL. After shortly pointing out advantages of

ontologies in business applications (section 2.3), in section 2.4 the matching task is explained and

important techniques for matching are presented.

Chapter 3 gives on overview about the used systems for enriching a biomedical mapping. GOMMA

(section 3.1) is a powerful infrastructure which executes a matching task. Besides that it is ap-

plicable for the analysis of ontology evolution. After generating a mapping with GOMMA, that

mapping is input for STROMA, which is described in section 3.2. STROMA is an enrichment tool

which denotes a mapping with semantic relation type information.

The additional implementations which are necessary for the semantic enrichment of GOMMA

mappings are set forth in chapter 4. At first, section 4.1 deals with the integration of UMLS

into the repository. An interim evaluation of the integration is part of this section. Subsequently,

GOMET is introduced in section 4.2. GOMET is an implementation for connecting GOMMA with

STROMA.

The evaluation of GOMET takes place in chapter 5. The independent and dependent variables

as well as evaluations measures are defined in section 5.1. The next section 5.2 presents the

experimental tests. Two mappings are discussed in more detail. Furthermore, problems with

further mappings are outlined. Eventually, section 5.3 discusses the results and shows potential

improvements of enrichment strategies for biomedical mappings. An overall conclusion is given in

chapter 6.
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2 Ontologies within Information Technology

This chapter sets forth important theoretical concepts as well as software tools based on these

concepts which are essential part of the present thesis. The most fundamental theoretical concept

is the notion of an ontology, which is introduced first. Subsequently, the concept of connecting two

ontologies via detecting conceptual correspondences (which is called matching) is defined.

The information scientific notion of an ontology derives its origin from the same-named philosoph-

ical discipline of investigating the nature of being. This section provides a formal (information

scientific) definition of ’ontology’ in order to target two things: first, getting an insight into the

philosophical dimension of ontological models, and second, understanding the important role of

ontologies within information technology.1 More precisely, in information science ontologies are

used for describing a domain of interest, i.e., a specific part of the real world. Section 2.1 elucidates

which formal assumptions underlie this possibility of description. The next section 2.2 outlines

some representation possibilities. Section 2.3 sketches common application fields of ontologies and

advantages of ontological models. Finally, ontologies are put into context of the topic of this thesis.

Hence, in section 2.4 the notion of ontology matching is explained.

2.1 Basics of Ontologies

An ontology describes a specific domain of interest, or to put it another way: an ontology specifies

a conceptualization of said domain which contains domain specific entities and their relations

to each other. Such a conceptualization has two characteristics. First, it is formulated as an

explicit specification, i.e., not a mental one in someone’s mind, [Gru93, GOS09]. Second, the

conceptualization is formally specified, i.e., the ontology specification has to be machine-readable,

[Bor97, GOS09]. Furthermore, the conceptualization itself has to be a shared one [Bor97, UG96,

GOS09], meaning that the users of the ontology agree on the (linguistic or symbolic) primitives

the conceptualization is built on. That last point guarantees successful interoperability.

The following paragraphs give accurate and formal definitions of the previously mentioned aspects.

Together they provide a definition of ’ontology’, following [GOS09], but with a different running

example taken from the biomedical domain. The basics of the current example are described as

follows: Let M be an infinite set of mice m1, . . .mn. It is possible to know the anatomy of each

mouse. The aim is the design of a mouse anatomy ontology.2 The basic ontological entities are the

anatomical parts of each mouse like its outer ear, blood plasma, or cardiac muscle tissue. Possible

relationships between these entities are part-of, like blood plasma is part of blood, and is-a, like

blood is a body fluid or substance.

1Note that also that within information technology the term ’ontology’ is used in a variety of readings. An
overview about this term is given in [GG95].

2Such an ontology has been developed by Hayamizu et al. as part of the Gene Expression Database Project and
is accessible at http://www.informatics.jax.org/searches/AMA form.shtml.
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2 Ontologies within Information Technology

Conceptualization As defined in definition 2.2 according to [GOS09, 6-7], a conceptualization C

consists of a set of domain entities (called universe of discourse D), e.g. blood plasma of mouse

mi, cardiac muscle tissue of mouse mj (with i, j ∈ {1, . . . , n}). For instance, be n = 3 and the

only anatomical parts of a mouse are its eyes and legs, then (assuming that each mouse is a typical

one) |D| = 3 ·2+3 ·4 = 18, i.e. the universe of discourse contains 18 elements since there are three

mice with two eyes and four legs.

Furthermore C contains a set of possible worlds W . The notion of possible worlds is a well-

established concept within formal semantics and a premise of intensional approaches (for an intro-

duction see [FH11]). Besides the state of affairs in the world we live in, there exist other worlds

which are more or less similar to our particular world. For example, in one world people say that

lips are part of the mouth, but in another world lips are categorized as something different, hence

they are not regarded as part of the mouth.

Finally, C has to specify which relation holds between the domain entities of D in a given world.

In the example: Are lips categorized as part of the mouth? The mapping from a particular world

to its state of affairs concerning a particular relation (called extensional) is done by a conceptual

relation ρ as it is defined in definition 2.1 according to [GOS09, 6]. Note that an extensional

relation models a specific world state regarding D, i.e., it states which ”concrete” entities within

D participate to the relation itself.

Definition 2.1. Let D be the universe of discourse and W the set of all possible worlds.

Then a conceptual relation (also called intensional relation) ρn of arity n on 〈D,W 〉 is a total

function ρn : W → 2D
n

from the set W into the set of all n-ary (extensional) relations on D.

[GOS09]

Definition 2.2. A conceptualization is a triple C = (D,W,ℜ) with

• D a universe of discourse,

• W a set of possible worlds,

• ℜ a set of conceptual relations on the domain space 〈D,W 〉. [GOS09]

It is important to note that blood plasma, blood, outer ear, . . . are unary relations and that there

is a difference between the entity (part of the extension of these words) and the word itself (whose

extension depends on the chosen world). Consequently, depending on the world blood, or every

other name for an anatomical part of a mouse, can mean something different from world to world.

Hence, it would be helpful to identify each element of the universe of discourse, i.e. the anatomical

parts of each mouse, with an identification number. Let api (i ∈ N) be such an identification

number for each anatomical part. That yields the following (anatomical) conceptualization of

mice:

• D = {ap1, ap2, ap3, ap4, . . . , apm}

• W = {w1, w2, . . .}

• ℜ = {anatomicalPart1, blood1, outerEar1, bloodPlasma1, . . . , part-of2, is-a2}, whereby the con-

ceptual relations can be defined in the following way:

5



2 Ontologies within Information Technology

– ∀w ∈ W : anatomicalPart1(w) = D

– blood1(w1) = blood1(w3) = blood1(w5) = . . . = {ap1, ap11, ap111, ap1111, . . .}

blood1(w2) = blood1(w4) = blood1(w6) = . . . = {ap2, ap22, ap222, ap2222, . . .}

. . .

– part-of2(w1) = {(ap1, ap42), (ap1, ap105), . . .}
...

– is-a2(w1) = {(ap1, ap2), (ap1, ap26), . . .}
...

This conceptualization only categorizes anatomical parts of mice. In world w1, ap1 is the blood

of a specific mouse. In world w2, ap2 is the blood of a different mouse; but it is not explicitly

mentioned above what is the property of ap2 in w2. It is merely depicted that is-a2 holds between

ap1 and ap2 in w1.

Formal, Explicit Specification The paragraph above sets forth the conceptualization C of our

domain of interest. But this conceptualization has to be made explicit in order to apply or com-

municate it. A language L commits to C if L provides a vocabulary V such that the elements of

V represent a certain conceptual relation of ℜ in the intended way. In order to make sure that

the words in V mean the right thing, C can be intensionally specified. Hence, meaning postulates

(axioms) constrain L in a suitable way. For example, is-a2 is a transitive relation whereby part-of2

is not transitive in general.3 Both relations are asymmetric, but only is-a2 is irreflexive since a

human (an unborn child), for example, is part of a human (its mother). Consequently, it is possible

to say which models fit better to the intended conceptualization than others, i.e. the result is ”an

approximate specification of a conceptualization” [GOS09, 8]. Moreover, because the specification

has to be formal, natural language is excluded and hence a logical language is chosen for L.

These aspects are formalized in definition 2.3 as the definition of an ontological commitment, after

[GOS09, 10]. In the running example, the ontological commitment makes sure that the language

symbol blood is mapped to the conceptual relation blood1, part-of to part-of2, and so on. Figure

2.1 illustrates the set of facts. Real world phenomena are perceived and conceptualized. A good

ontology captures the intended models whereby a bad ontology is not able to represent the given

conceptualization. Thus, an ontology builds on an extract of the real world, which is conceptualized

mentally and has to be represented by a formal language in order to enable communication about

and application of this perceived real world domain of interest.

Definition 2.3. Let L be a first-order logical language with vocabularyV and C = (D,W,ℜ)

a conceptualization. An ontological commitment (also called intensional first order structure)

for L is a tuple K = (C, I), where I (called intensional interpretation function) is a total

function I : V → D∪ℜ that maps each vocabulary symbol of V to either an element of D or

an intensional relation belonging to the set ℜ. [GOS09]

3Transitivity of parthood is frequently discussed in literature, see [Gui09] and cited literature there. Two
counterexamples against transitivity are depicted in the following:

• (Berlin, Germany), (Germany, United Nations) ∈ part-of2, but: Berlin is no part of the United Nations.

• (heart, musician), (musician, orchestra) ∈ part-of2, but: the heart is not a part of the orchestra.

6



2 Ontologies within Information Technology

Figure 2.1: Overview about the connection of phenomena occurring in the real world, their con-
ceptualization and explicit representation as an ontology. [GOS09, 9]

Ontology The concept of an intended model is introduced in definition 2.4 according to [GOS09,

10-11]. It connects the intensional with the extensional conception of meaning. An intended model

is a model of the world which is compatible with the ontological commitment and thus, with the

conceptualization provided by the experts. Finally, an ontology can be defined as a logical theory,

see definition 2.5 (after [GOS09, 11]).

Definition 2.4. Let R be a set of relations on D, C = (D,W,ℜ) a conceptualization, L a

first-order logical language with vocabulary V and ontological commitment K = (C, I). A

model M = (S, I), with S = (D,R) and I : V → D ∪R, is called an intended model of L

according to K iff

1. ∀ constant symbol c ∈ V : I(c) = I(c),

2. ∃w ∈ W ∀ predicate symbol v ∈ V ∃ρ ∈ ℜ : I(v) = ρ ∧ I(v) = ρ(w)

The set IK(L) of all models of L that are compatible with K is called the set of intended

models of L according to K. [GOS09]

Definition 2.5. Let C be a conceptualization, and L a logical language with vocabulary V

and ontological commitment K. An ontology OK for C with vocabulary V and ontological

commitment K is a logical theory consisting of a set of formulas of L, designed so that the

set of its models approximates as well as possible the set of intended models of L according

to K. [GOS09]

7



2 Ontologies within Information Technology

For the running example, an ontology O0 is created which consists of a set of formulae. is-a2

constitutes a partial order4 whereby part-of2 is a strict (partial) order5 – if transitivity and ir-

reflexivity within the biomedical domain is assumed, see formulae o3.ii, o4.ii.6 It seems to be

doubtful whether formulae like o1.iv should be specified as taxonomic information since a) it is

result of the research process and too specific and concrete to be a meaning postulate, and b) this

information is encoded in the is-a2 relation.

o1 Taxonomic Information:

i blood(x) → anatomicalPart(x)

ii outerEar(x) → anatomicalPart(x)

iii bodyFluid(x) → anatomicalPart(x)

iv blood(x) → bodyFluid(x)
...

o2 Domains and Ranges:

i isa(x, y) → anatomicalPart(x) ∧ anatomicalPart(y)

ii partOf(x, y) → anatomicalPart(x) ∧ anatomicalPart(y)

o4 Antisymmetry and Reflexivity:

i isa(x, y) ∧ isa(y, x) → x = y

ii isa(x, x)

o3 Asymmetry and Irreflexivity:

i partOf(x, y) → ¬partOf(y, x)

ii ¬partOf(x, x)

o4 Transitivity:

i isa(x, y) ∧ isa(y, z) → isa(x, z)

ii partOf(x, y) ∧ partOf(y, z) → partOf(x, z)

o5 Disjointness:

i isa(x, y) → ¬(partOf(x, y) ∨ partOf(y, x))
4A (non-strict) partial order is a binary relation which is reflexive, antisymmetric, and transitive. Reflexivity

holds because by saying Some x is a x. it is meant that some entity with property X is an element of the set of
all entities which have property X. Obviously, this is true. In the case of antisymmetricity, it is assumed that all
entities x ∈ X have property Y (i.e., are part of Y ), and all entities y ∈ Y have property X (i.e., are part of X).
But this can only be possible if X and Y are the same property. Similar arguments hold for transitivity. But is-a2

is not total since, for example, there is no order between the properties bone and blood (totality would require that
bone is blood or blood is a bone holds).

5A strict partial order is an irreflexive, transitive, and asymmetric binary relation. It might be questionable
to what extent it can be assumed that part-of2 is irreflexive (counterexample: A matryoshka doll is part of a
matryoshka doll., A human is part of human, namely when a woman is pregnant.) and transitive. But it is obvious
that part-of2 is not symmetric.

6Examples for the relation characteristics:

(ir-)reflexive anti-/asymmetric transitive

is-a2 An ear is an ear. If the ear bone is an auditory bone, and A mouse is a mammal, and

the auditory bone is an ear bone, then a mammal is a vertebrate.

ear bone and auditory bone are the same. Thus, a mouse is a vertebrate.

part-of2 An ear is no part An ear is part of the face, but An ear is part of the face, and

of the ear. the face is no part of the ear. the face is part of the head.

Thus, an ear is part of the head.

8



2 Ontologies within Information Technology

Figure 2.2: Semiotic triangle as it is revised in [GOS09, 16]. Context and ontological commitment
disambiguate the sign.

Shared Conceptualization Since conceptualizations are mental representations of the world, it is

necessary to communicate by examples what the primitives of the chosen language L mean. For

example, how it can be guaranteed that two different humans share the same understanding of

the part-of relation whilst taking into account ontology O0 with its specification in o1-o5? Such

humans can explain to each other how a world state must be designed such that the relation holds

by means of an example of the actual world.7 Hence it is necessary that the primitives are well-

founded, i.e., the users of an ontology agree on their meaning. As a result, good approximations

of conceptualizations can be shared and enable large-scale interoperability. These aspects are

illustrated within the semiotic triangle [OR89], in figure 2.2 modified by [GOS09]. A sign is an

element of V, a thing is a concrete object of the current world, and a concept is a part of the

conceptualization which is invoked by the sign. Ideally, the same concept is evoked in the listener’s

mind as the speaker has intended to use it. Context and an ontological commitment make sure

that this is guaranteed.

Summary The previous paragraphs define an ontology as a shared conceptualization which is

explicitly and formally specified. The definition itself is formally stated. The aim of this procedure

is to give an philosophical overview and thus a deeper understanding of ontologies in order to

recognise the complexity and potentially problematic aspects of ontologies. For example, there are

a lot of mapping processes – the reality is mapped to our perception, our perception is mapped

to a cognitive conceptualization, a conceptualization has to be made explicit, etc. – and it has to

be made sure that no important information is lost or mistakenly modified. One main problem is

that eventually predicate names are chosen by resorting to natural language and thus ambiguity

and vagueness become part of an ontology.

2.2 Representation of Ontologies

Besides the definition of an ontology as logical theory which might be a less practical way, an

ontology can be described by means of a directed (acyclic) graph O = 〈C,R,A〉 [Gro14]. It consists

of a set of concepts C as vertices and a set of relations R (the directed edges) among these concepts.

7Maybe part-of2 is a more or less ”well-founded” relation. But assume in another ontology there is the relation
cooperatesWith2: in one reading, this relation holds when two humans share the same goal; in another reading,
these two humans have also to act to achieve this goal [GOS09].
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Figure 2.3: Graphical Representation of an Ontology. The concepts are Wikipedia categories.
Dashed edges represent part-of and normal edges is-a relations.

Furthermore, a set A contains attributes which specify the given concepts, e.g. the ID (or accession

number), the preferred label of the concept, synonyms, or a definition. A relation r ∈ R between

two concepts c1, c2 is a triple 〈c1, t, c2〉 meaning that a relation of type t ∈ T holds between c1 and

c2. For example, blood plasma is part of the blood, thus 〈blood plasma, part-of, blood〉. An ontology

graph is acyclic iff it contains neither i) symmetric relations, ii) reflexive relations, nor iii) inverse

relations of already given ones. Since it is assumed that T consists of part-of and is-a, their inverse

counterparts are has-a and inverse-isa. A symmetric relation is e.g. related-to or is-synonym-of.

Although is-a is reflexive, in the ontologies used in this thesis, the edge from a concept to itself

is not drawn as it represents only trivial knowledge. Hence, only directed graphs are considered

which are acyclic. An example is given in figure 2.3. The root concept is Human anatomy. The

relations 〈Limbs, part-of,Human anatomy〉 and 〈Lower limbs, is-a,Limbs〉 are elements of R.

Furthermore, an ontology (especially within the context of the semantic web) can be described

by using an ontology markup language whose syntax is XML-based. Some examples are RDF

(Resource Description Framework)8, RDFS (Resource Description Framework Schema)9, an ex-

tension of RDF, and OWL (Web Ontology Language)10, which is based on the previous ones

(for an introduction to these markup languages compare [GPFLC04, 199ff.]). An extract of an

OWL ontology, the NCIt (National Cancer Institute Thesaurus)11, is depicted in listing 2.1. After

declaring the XML version and the document type (line 1-3), the RDF root node begins which

contains the specification of namespaces (xmlns). General information of the ontology are given

within owl:Ontology (line 9-12): the ontology documentation (rds:comment), and the ontology

version (owl:versionInfo). Binary relations are described by owl:ObjectProperty (line 15-24) which

contains a label and domain and range of the relation. The latter are concepts (called classes in

OWL) and are marked with owl:Class (line 25-52). If there is more than one rdfs:label within a

class, these labels represents different synonyms. The hierarchic structure of the concepts (is-a

8http://www.w3.org/RDF/
9http://www.w3.org/TR/rdf-schema/

10http://www.w3.org/TR/owl2-overview/
11The cited version can be downloaded from OAEI (Ontology Alignment Evaluation Initiative) 2013,

http://oaei.ontologymatching.org/2013/ within the large biomedical ontology track. The current NCIt is online
accessible via http://cbiit.nci.nih.gov/evs-download/thesaurus-downloads.
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relations) are determined by rdfs:subClassOf which means that the current concept is a subclass

of the given rdf:resource. As can be seen in line 44ff, there are concepts with no parent concept;

hence, NCIt has different root nodes (anatomy kind, biological process kind, . . . ) which are disjoint

to each other.

1 <?xml ve r s i on=” 1 .0 ”?>

2 < !DOCTYPE rdf:RDF [ [ . . . ]

3 ]>

4 <rdf:RDF xmlns=” ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#”

5 xml :base=” ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl ”

6 xmlns:Thesaurus=” ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#”

7 [ . . . ]>

8

9 <owl :Ontology rd f : abou t=” ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl ”>

10 <rdfs :comment>NCI Thesaurus , [ . . . ]</ rdfs :comment>

11 <ow l : v e r s i o n I n f o>08.05 d</ ow l : v e r s i o n I n f o>

12 </ owl :Ontology>

13

14 [ . . . ]

15 [< !−− Object P r ope r t i e s −−> ]

16

17 < !−− ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#

Anatomic Structur e I s Phys i ca l Par t Of −−>

18 <owl :ObjectProperty

r d f : abou t=”&Thesaurus ; Anatomic Structur e I s Phys i ca l Par t Of ”>

19 < r d f s : l a b e l>Anatomic Structur e I s Phys i ca l Par t Of</ r d f s : l a b e l>

20 <rd f s :domain r d f : r e s o u r c e=”&Thesaurus ; Anatomy Kind”/>

21 <r d f s : r a n g e r d f : r e s o u r c e=”&Thesaurus ; Anatomy Kind”/>

22 </ owl :ObjectProperty>

23

24 [ . . . ]

25 [< !−− Clas s es −−> ]

26

27 [ . . . ]

28 < !−− ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#A−007 −−>

29 <owl :C las s r d f : abou t=”&Thesaurus ;A−007”>

30 < r d f s : l a b e l xml : lang=”en”>A−007</ r d f s : l a b e l>

31 < r d f s : l a b e l xml : lang=”en”>Aryl Hydrazone A−007 Gel</ r d f s : l a b e l>

32 <r d f s : s ubC l a s sO f r d f : r e s o u r c e=”&Thesaurus ; Immunostimulant ”/>

33 </ owl :C las s>

34

35 [ . . . ]

36 < !−− ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#Immunostimulant −−>

37 <owl :C las s r d f : abou t=”&Thesaurus ; Immunostimulant ”>

38 < r d f s : l a b e l xml : lang=”en”>Immunostimulant</ r d f s : l a b e l>

39 <r d f s : s ubC l a s sO f r d f : r e s o u r c e=”&Thesaurus ; B i o l og i c a l Re spon s e Mod i f i e r ”/>

40 </ owl :C las s>

41

42 [ . . . ]

43 < !−− ht tp : // ncicb . nc i . nih . gov/xml/owl /EVS/Thesaurus . owl#Anatomy Kind −−>

44 <owl :C las s r d f : abou t=”&Thesaurus ; Anatomy Kind”>

45 < r d f s : l a b e l xml : lang=”en”>Anatomy Kind</ r d f s : l a b e l>

46 <ow l : d i s j o i n tWi th r d f : r e s o u r c e=”&Thesaurus ; B i o l og i c a l P r oc e s s K ind ”/>

47 <ow l : d i s j o i n tWi th r d f : r e s o u r c e=”&Thesaurus ; Chemicals and Drugs Kind”/>

48 <ow l : d i s j o i n tWi th r d f : r e s o u r c e=”&Thesaurus ; Chemotherapy Regimen Kind”/>

49 <ow l : d i s j o i n tWi th
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r d f : r e s o u r c e=”&Thesaurus ; D iagnos t i c and Prognos t i c Factor s Kind ”/>

50 <ow l : d i s j o i n tWi th r d f : r e s o u r c e=”&Thesaurus ; EO Anatomy Kind”/>

51 [ . . . ]

52 </ owl :C las s>

53 </rdf:RDF>

Listing 2.1: Describing an ontology with OWL: extract from the NCIt.

2.3 Application of Ontologies and their Benefits

In the previous subsection, it has been stated that an ontology is an explicit and formal specification

of a shared conceptualization [SBF98]. Although this represents the philosophical core of each

ontology design pattern, in current scientific research ontologies are applied for varying tasks

(natural language processing, knowledge management, e-commerce, the Semantic Web, etc.) and

in different communities (knowledge engineering, databases and software engineering) [GPFLC04].

Consequently, there are various types and categorizations of ontologies. For example, one can

distinguish between lightweight and heavyweight ontologies [GPFLC04, 8]. The first one is more

or a less a taxonomy, i.e., it describes concepts and their relationship to each other. The latter

adds axioms and constraints to such taxonomies in order to yield a more fine grained definition of

the used terms.

Ontologies may be characterized by two dimensions: i) the richness of their internal structure, and

ii) the subject of their conceptualization [GPFLC04]. The first dimension is frequently discussed

within literature [GOS09, LM01, UG04]. Ontologies are characterized along a continuum as it

is depicted in figure 2.4. From left to right the ontology type becomes more formal and can

express more meaning aspects. For example, a thesaurus is a vocabulary with additional semantic

information between the vocabulary terms (e.g., synonym relations) but lack an explicit hierarchy

of the terms. A formal taxonomy is a strict subclass hierarchy, which enables inheritance.

Figure 2.4: Dimension 1 for categorizing ontologies. From left to right the amount of specified
meaning as well as the degree of formality increases. [GOS09, p.13]
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The second dimension for categorizing ontologies is the subject of their conceptualization. The

following types are taken from [GPFLC04, 29-34]:

Knowledge representation ontology ”captures the representation primitives used to formalize

knowledge under a given [. . . ] [knowledge representation] paradigm”.

General/ Common ontology ”represent[s] the common sense knowledge reusable across domains”.

Top-level/ Upper-level ontology ”describe[s] very general concepts and provide[s] general notions

under which all root terms in existing ontologies should be linked”.

Domain ontology ”provide[s] vocabularies about concepts within a domain and their relationship”

and is ”reusable in [. . . ] [the] given specific domain (medical, pharmaceutical, engineering,

law [. . . ] )”.

Task ontology ”describe[s] the vocabulary related to a generic task or activity (like diagnosing,

scheduling, selling, etc.)”.

Domain-task ontology is ”reusable in a given domain, but not across domains. [. . . ] [It is]

application-independent.”

Method ontology ”give[s] definitions of the relevant concepts and relations applied to specify a

reasoning process so as to achieve a particular task”.

Application ontology ”contain[s] all the definitions needed to model the knowledge required for a

particular application”.

The ontologies used within this thesis are lightweight ontologies with a more formal but not logically

defined internal structure. They can be located near ’formal is-a hierarchy’ at dimension 1. In

dimension 2, they represent domain ontologies from the biomedical domain. Ontologies within

the medical domain are of concern since they enable sharing, transmitting, as well as annotating

patient or experiment data. For these purposes it is necessary that the communicated concepts

are unambiguous. Common ontologies within this area are UMLS (Unified Medical Language

System)12, NCIt13, SNOMED CT (Systematized Nomenclature of Human and Veterinary Medicine

Clinical Terms)14, MA (Adult Mouse Anatomy Ontology)15, and FMA (Foundational Model of

Anatomy)16.

Each knowledge and technique is confronted at some time with the question whether and how

it can be successfully integrated into the methods of current companies and task forces. The

above characterized types of ontologies are not only applied for scientifc research but are also of

considerable use for enterprise applications. [UG04] introduces four main use cases for ontology

application:

Neutral authoring The basic idea is that a company uses a huge amount of non-interoperable tools

and software. Hence, the company desings a neutral ontology for their own use and then, the

terminoly of each target system can be computed/ translated from the company ontology.

12http://www.nlm.nih.gov/research/umls/
13https://ncit.nci.nih.gov/ncitbrowser/
14http://www.ihtsdo.org/snomed-ct
15http://www.informatics.jax.org/searches/AMA form.shtml
16http://sig.biostr.washington.edu/projects/fm/
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Ontology-based specification Ontologies are used in the process of software engineering as a

knowledge representation (specification) and within software development – knwon as ontology-

driven software engineering [HS06, WC12].

Common access to information The basic situation is similar to neutral authoring, i.e., there are

different (legacy) software systems with varying terminology. An ontology Oc is designed

which is used as a connector between source ontology Os and target ontology Ot. Hence, the

source format is translated from Os to Oc and then from Oc to Ot.

Ontology-based search An ontology can describe the categories within an information repository

and thus represents an indexing mechanism.

Another study of ontologies in enterprise applications is situated in the SAP Research [Obe14].

Eight characterizing technological features are attributed to an ontology, which determine its im-

portant role for enterprise application. Some of these features and application scenarios have been

already discussed above, some are new aspects which provide further arguments why ontological

modeling is a valuable semantic technology for solving business problems. [Obe14, 475ff] identifies

the following features characterizing an ontology:

Conceptual Modeling Similar to an ER model (Entity-Relationship model) or an UML (Unified

Modeling Language) diagram, an ontology models a domain of interest in an intuitive way

that facilitates communication between different agents. The model contains classes/ con-

cepts, properties/ relations, instances/ objects, rules and axioms.

Flexibility An ontology is flexible regarding the conceptual model, i.e., ”classes, properties, rules

& axioms as well as instances [. . . ] can be managed at run time of an application” [Obe14,

475]. Main tools for this purpose are a suitable API (Application Programming Interface),

automated evolution strategies, and dynamic direct programming.

Direct Interaction User-friendly interfaces can be graphical (tree-based), wiki-like, or based on

(controlled) natural language.

Reuse A shared conceptualization simplifies that an ontology is applied to multiple applications of

the modeled domain. There are three levels of reusing: individual (only one person benefits),

community (a particular group or company frequently uses the ontology), world (an online

ontology can be accessed by anybody).

Best Practices In order to simplify the ontology design process and build different ontologies

on the same basis, abstract aspects of ontology are predefined within the best practices i)

foundational ontologies, ii) ontology design patterns, iii) quality criteria.

Web Compliance Web compliance is achieved by standards due to recommendations of the W3C

(World Wide Web Consortium)17. Thus, publications of ontologies are formulated in RDF

and OWL; querying is enabled by SPARQL (SPARQL Protocol and RDF Query Language)18;

annotations of web resources can be done with ontologies.

Formality [Obe14] accepts only logical language for describing ontology and distinguishes between

logic programming languages (like F-Logic), description logics (like OWL-DL), and first-order

logics.

17http://www.w3.org/0
18http://www.w3.org/TR/sparql11-overview/
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Reasoning An ontology with a formal internal structure enables reasoning such as subsumption

checking (identifies super- and subclass relations), consistency checking, instance classifica-

tion, and instance retrieval (queries for an instance).

These features are profitably involved in the following enterprise applications [Obe14, 478ff]:

Creating New Business Scenarios [Obe14, 479] defines a business scenario as a description of

”future business circumstances based on past and present trends, uncertainties, and assump-

tions.” Hence, web compliance and reuse together with the conceptual model of a domain

enables that new markets are accessed.

Increased Productivity of Information Workers This aspect is achieved due to more efficient ac-

cess (visualization, interaction) to required data.

Improved Enterprise Information Management Ontologies are used to manage information within

an organization, e.g., making data for decision making available. Hence, knowledge out of

varying resources has to be combined and should be flexibly accessed. This is similar to the

above mentioned application scenario ”Common Access to Information”.

Increased Productivity of Software Engineering Main aspects within this ambition are quality

improvement, cost and time reduction, and the development of semantic web services.

The previous lines show that ontologies are a powerful tool for modeling knowledge of a domain

of interest. Benefits are mainly the improvement of communication and interoperationality on

several layers (human user vs. domain data, knowledge from different sources but out of the same

domain etc.). Nevertheless, creating an ontology, integrating the new system and introducing it to

the employees can be very expensive and it has to be well investigated whether costs and benefits

define a good ratio.

2.4 Relating Ontologies: Matching

This subsection gives an introduction to an use case which is important for dealing with ontologies,

namely aligning two ontologies as it is required, for instance, in a lot of the above describe scenarios.

The alignment takes place between the concepts of an ontology. Furthermore, the instances of a

concept are called entities (or individuals) and are not considered in the following.

2.4.1 The Idea behind Matching

Given two ontologies O1 and O2 it might be asked whether theses ontologies conceptualize the

same objects, i.e., whether there is a correspondence from one concept c1 of O1 to a similar

concept c2 of O2. For example, two ontologies which both conceptualize anatomical entities will

very likely share a set of concepts and namely entities which are part of both ontologies like blood

or lower extremity. Finding a set of correspondences is achieved by identifying identical concepts

or subsumption relations (one ontology may only contain extremity and thus lower extremity is

subsumed under extremity). In practical this is an important issue as ontologies share a huge

amount of heterogeneity on the syntactic level (different ontology languages), terminological level

(different names for the same entity), conceptual level (different conceptualization approaches of

the same domain), semiotic level (different interpretations of the same entity by different people)
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[ES07, Stu11], whereby the crucial heterogeneity for this section is of semantic nature, i.e., on the

terminological and conceptual level. There are a lot of ontologies which conceptualize the same

domain of interest but with different concept labels. A common example, see [SE13], says that an

e-commerce company acquires another one. Hence, their ontologies describing their product data

has to combined in order to yield an integrated ontology.

This (semi-automatic) process of determining similar, ”matching” concepts between two ontolo-

gies is called matching and can be defined according to [ES07, SE13] as follows (ignoring further

parameters like an input alignment):

Definition 2.6. The matching process can be seen as a function f(O1, O2) which takes two

ontologies O1, O2 as input parameters and returns an alignment A between these ontologies.

In turn an alignment (also called mapping, especially to point out that the alignment is directed,

see [ES07, 42f]) is a set of correspondences between entities of O1 and O2. The interesting part is

the definition of a correspondence in definition 2.7 after [ES07, SE13, AR13, Gro14]. Let O be an

ontology, note that c ∈ O means that c is a concept within O.

Definition 2.7. Given two ontologies O1 (source ontology) and O2 (target ontology), a set

of alignment relations P , a confidence structure over Ξ, a set of methods M , and set of status

types S. Then a correspondence a is a 7-tuple

〈id, c1, c2, r, ξ,m, s〉

such that

• id is an identifier for a,

• source concept c1 ∈ O1, target concept c2 ∈ O2,

• r ∈ P ,

• ξ ∈ Ξ is the strength of a,

• m is the method of determining ξ,

• s is the status of a,

• relation r holds between c1, c2 with confidence ξ.

In the following, the confidence value ξ is a value from [0, 1] where a value of 1 (0) indicates a true

match (false match); and P contains exactly equal, is-a, inverse is-a, has-a, part-of, related-to,

although in most accounts only ’≡’ (equivalence), ’⊑’ (less general), and ’⊒’ (more general) are

considered as relations [SHB+09]. If the correspondence was created manually (m = manual),

normally ξ = 1. S consists of handled, to verify, i.e., s ∈ S specifies whether an automatically

created correspondence has already been checked by an expert (handled), or not (to verify). An

alignment where each correspondence has been verified is called reference alignment (or perfect

mapping, benchmark, or gold standard). Depending on the context and what information is

important to consider, a correspondence a is given only as 5-tuple 〈id, c1, c2, r, ξ〉, or triple 〈c1, r, c2〉

(with changed sequence of elements) – or in some other form.

The strength ξ of a correspondence a is calculated by means of the similarity function σ between
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the two concepts c1, c2 of a. The definition 2.8 captures the above described characteristics of ξ,

slightly modified with respect to [ES07, 74]. ξ is considered as a value of the image of σ and thus,

ranges from 0 (positiveness) up to 1 (maximality).

Definition 2.8. Given a set of concepts O, a similarity σ : O × O → R is a function from a

pair of concepts to a real number expressing the similarity between two objects such that

∀c, c′ ∈ O : σ(c, c′) ≥ 0 (positiveness)

∀c, c′, c̄ ∈ O : σ(c, c′) ≤ σ(c̄, c̄) = 1 (maximality)

∀c, c′ ∈ O : σ(c, c′) = σ(c′, c) (symmetry)

[ES07]

Nevertheless, it might also be possible to determine the dissimilarity δ as a measure of the difference

between two concepts, and then define ξ as 1 − δ, given that δ is normalized, i.e., 0 ≤ δ ≤ 1.

Dissimilarity as well as distance, as a stricter notion of dissimilarity, are defined in the following

way (after [ES07, 73f]):

Definition 2.9. Given a set of concepts O, a distance δ : O × O → R is a function from a

pair of concepts to a real number such that

∀c, c′ ∈ O : δ(c, c′) ≥ 0 (positiveness)

∀c ∈ O : δ(c, c) = 0 (minimality)

∀c, c′ ∈ O : δ(c, c′) = δ(c′, c) (symmetry)

∀c, c′ ∈ O : δ(c, c′) = 0 iff c = c′ (definiteness)

∀c, c′, c̄ ∈ O : δ(c, c′) + δ(c′, c̄) ≥ δ(c, c̄) (triangular inequality)

If at least the function satisfies positiveness, minimality, and symmetry it is called dissimilar-

ity. [ES07]

An alignment is total if each concept of the source ontology is mapped to at least one target

concept, as defined in definition 2.10 after [ES07, 48f]. This is important in all cases where one

ontology is translated into another. A total alignment makes sure that there is a translation for

each concept in the source ontology.

Definition 2.10. Given two ontologies O1 and O2, an alignment A over O1 and O2 is called

total alignment from O1 to O2 iff

∀c1 ∈ O1∃c2 ∈ O2∃r ∈ P : 〈c1, r, c2〉 ∈ A

[ES07]

Furthermore, it is not necessarily the case that the alignment is a one-to-one alignment where

a source concept cannot have more than one target concept, and vice versa. There are cases

of ”complex matches” [DH05] which means that the resulting alignment is one-to-many and

many-to-one, respectively.19 For instance, O1 contains the concepts upper extremity and lower

19A many-to-many alignment is very untypical and occurs extremely seldom [RB01].
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extremity whereas O2 contains the concept extremity and no further specification of it. Hence,

〈lower extremity, is-a, extremity〉 and 〈upper extremity, is-a, extremity〉 are part of the (many-to-

one) alignment. Normally, complex matches only occur for relations which are not equal. As-

sume that 〈c1, equal, c2〉 and 〈c′1, equal, c2〉 are part of the alignment between O1, O2 such that

c1, c
′

1 ∈ O1, c1 6= c′1, c2 ∈ O2. Due to commutativity and transitivity of equal it can be inferred

that 〈c1, equal, c′1〉 which means that O1 is redundant and contains the same concept twice.

An example for a matching graph is given later in this thesis in figure 5.5. It is a mapping between

a flat ontology as the source and an extract of the Wikipedia category tree as the target.

2.4.2 Techniques for Matching

The following lines introduce important techniques and measurements in order to determine the

similarity or dissimilarity of two concepts. These are essential part of varying matching processes.

The classification of these techniques follows [ES07, 74-116]. In most cases, different strategies are

applied during the matching in order to yield best results.

Name-based Techniques The basic assumption of name-based techniques is that the more similar

two concept names or labels are, the more similar the underlying concepts are. This assumption is

challenged by i) synonyms, that means two concepts are very similar or constitute the same concept

but are named with very dissimilar labels, e.g. breasts/ mammary glands ; ii) polysemy/ ambiguity,

i.e., two concepts are named the same but denote very different things, like mouse (pointing device

of computers vs. a small rodent). Acronyms for instance may challenge name-based techniques

as they combine the synonym as well as the polysemy problem, e.g. ICD may be the acronym

of international statistical classification of diseases and related health problems (synonyms) but it

may also stand for implantable cardioverter-defibrillator (polysemy).

After normalization of the concept labels (e.g., converting each alphabetic character to lower case)

different techniques are applied to a pair of such labels 〈l1, l2〉. In the simplest case one defines the

similarity as 1 if l1 and l2 are identical, else as 0. This can be expanded by considering substrings,

i.e., the longer a common substring of l1, l2 is, the more similar the concepts are. For instance,

l1 = dna and l2 = rna share the substring na which is 67% of each label. Hence, l1 and l2 are

assumed to denote similar concepts. This technique can be refined by n-gram similarity which

compares the shared n-grams of l1, l2
20

More complex measures are the edit distance, which counts the costs for the operations that are

necessary to apply to label l1 in order to obtain l2, and cosine similarity, where l1 and l2 are

represented as vectors (for example, over the containing morphems) and then the cosine between

these vectors defines the similarity measure. Furthermore, path information may be added to a

label l, i.e., each label of a concept which is a node on the path from the root to the current concept

of l is concatenated to l. The idea is that the path contains information which might be helpful

for determining the similarity of the current treated concepts.

In addition, linguistic methods may positively influence the matching task. Thus, tokenization,

lemmatization, and stopword elimination clean up the labels. External resources as lexicons or

thesauri deliver further information on which the matching will be grounded.

20An n-gram is a substring of a word w of length n. For instance, given w = $$dna$$ where $ marks beginning
and end of the word, w consists of the following 3-grams (trigram): $$d, $dn, dna, na$, a$$.
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Structure-based Techniques Structure-based techniques cover the processing of the internal and

the relational structure of a concept [ES07, 92ff]. Internal structure-relevant aspects are the set of

properties which may be assigned to the concept, the range and values, respectively, cardinality

and multiplicity as well as such characteristics like transitivity or symmetry of these properties.

For instance, consider data types. Ontology O1 terms a concept title whereby the same concept is

labelled name in ontology O2. Although, these two terms are not very similar from a name-based

technique, they both share the same data type, namely ’string’. Hence, this can be a (potential)

further hint that they denote the same concept. [ES07] point out that internal structure-based

techniques (except name-based techniques) are mostly used to eliminate correspondences which are

incorrect, or they are applied in combination with other techniques. Nevertheless, the advantage

of these techniques is that they are easy to implement and efficient.

Relational structure-based techniques take into account other concepts to which the current consid-

ered concept is related. Common and well-studied relations are taxonomic (is-a) and mereological

(part-of ) ones.

Extensional Techniques If the ontology contains instances, i.e. concrete objects, extensional

techniques can be applied. For example, if a set of instances is subsumed in ontology O1 under

concept c1 and under concept c2 in ontology O2, then it can be assumed that c1 and c2 correspond

to each other.

Semantic Techniques The last class of mapping techniqunes categorised by [ES07] are semantic

ones. Matching with an external ontology, i.e. background knowledge, is subsumed under theses

approaches. Thereby, the domain ontology O1 as well as the target ontology O2 are mapped

(”anchored”) to an external ontology Oex. Then concepts of O1, O2 are related via their anchor

in Oex. For example, brainO1
is mapped to brainOex

, and headO2
is anchored to headOex

. Since

〈brainOex
, part-of, headOex

〉 holds in Oex, it is concluded that 〈brainO1
, part-of, headO2

〉 holds.

Deductive techniques, for example, check whether a correspondence leads to an inconsistent align-

ment. This requires a set of axioms which already contains some (true) correspondences. If a

correspondence can be deduced from these axioms, this correspondence is valid concerning the

axioms. Otherwise, the correspondence leads to inconsistency.
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3 Mapping and Enrichment Tools

The previous chapter sets up the background of the ontology matching system GOMMA (Generic

Ontology Matching and Mapping Management). Furthermore, STROMA (Semantic Refinement

of Ontology Mappings) is introduced, which refines a given mapping by adding a semantic relation

type to each correspondence.

3.1 Short Introduction to GOMMA

It is rarely the case, especially within the life sciences, that a designed ontology is accepted without

modifications for a long period of time. Rather, ontologies are updated frequently, e.g. the gene

ontology consortium1 daily publishes a new ontology version, whereas a new version of NCIt is

created every month. Nevertheless, the new version only partly differs from the previous one. For

instance, a concept is added or deleted, two concepts are merged to a new one, or a concept is

split up. In order to model the version management of ontologies, a timestamp t is added to the

definition of an ontology O of version v – resulting in a quadruplet Ov = 〈Cv, Av, Rv, t〉 with Cv/

Av/ Rv as the set of concepts/ attributes/ relations of version v at time t [Gro14, 59].

3.1.1 Basic Architecture

That ontologies change from version to version is called ontology evolution. GOMMA [KGHR11] is

an infrastructure which analyzes such evolutions.2 Its structure is depicted in figure 3.1. GOMMA

contains three layers: the repository level, the functional component level, and the tool level. The

first layer manages the data, i.e. the ontology, mapping, and entity source versions, respectively.

The key assumption is that versioning is linear, which means that a specific version is preceded

by at most one version and succeeded by at most one version, resulting in a ”chain” of versions.

Hence, GOMMA stores a concept (or entity) and additionally its life time, i.e. at which time tstart

it was added to the ontology and since which time tend it has been no longer valid. Due to this

information, it is easily calculate which information is relevant and valid for building an ontology

version at time t.

The second level represents the three functionalities of GOMMA and their APIs. First, the match

function determines an alignment between two given ontologies. Various similarity and distance

measures are taken into account, see ”Techniques behind Matching” in subsection 2.4.2. Second,

the DIFF function determines an evolution mapping according to which it can be inferred which

elements have changed (addition, deletion, split, merge) from one version to another. Third, the

evolution function analyzes the whole history of an ontology (not only two succeeding ontologies

as it is be done by DIFF) and may allow statements about which parts of an ontology are stable

over time, i.e., which subgraph of the ontology seldom changes, and which parts are subject to

frequent changes.

1http://geneontology.org/
2http://dbs.uni-leipzig.de/de/gomma
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3 Mapping and Enrichment Tools

Figure 3.1: Overview of the GOMMA infrastructure with its three levels, its functional components
on the middle level, and the data management system [KGHR11, 5].

At the third layer, the top level, tools are embedded which enable an elaborate access to GOMMA.

The ontologymatcher, for instance, determines correspondences between two ontologies, and OnEX

visualises the changes within one ontology.

3.1.2 The GOMMA Format of Mappings

GOMMA returns a mapping in XML format. An example is given in listing 3.1. The opening

mapping tag (see line 2) contains attributes which specify the mapping such as its name and its

class (e.g. ontology mapping or annotation mapping). The threshold θ is stated in line 3 as the

value of minConfidence. Further meta information is given in line 4 to 6 regarding the source

ontology and in line 7 to 9 regarding the target ontology (e.g., their name and version). After that

the correspondence set is indicated. A correspondence is given in line 12 to 19. The confidence

vale ξ is given as confidence the attribute of the opening tag. The attribute corr type will be setted

with the semantic relation type. As a correspondence may be one-to-many or many-to-one, there

are tags for introducing the set of source and target concepts, respectively (line 13/ 15 and 16/

18). Between these tags the concept, called object, is stated (line 14 and 17, respectively). The ID

of the object is given as the accession. Further correspondences are omitted.

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <mapping baseName=”AnatomicalEntity@AdultMouseAnatomyOntology−HealthEntity@

NCIThesaurus MA NCIT gomma NameSyn 0 . 8 ”

versionName=”AnatomicalEntity@AdultMouseAnatomyOntology [2007−01]−HealthEntity@

NCIThesaurus [2006−02] MA NCIT gomma NameSyn 0 . 8 ” timestamp=”2007−1−1”

i s i n s tance map=” f a l s e ” mapping class=”ontology mapping ”

mapping type=” co r r e sponds to ” mapping tool=”GOMMA”

mapping method=”MA NCIT gomma NameSyn 0 . 8 ”>

3 <metadata minConfidence=” 0 .8 ” minSupport=”1”>

4 <domain sources>

5 <sour ce ob j ect type=”AnatomicalEntity ” name=”AdultMouseAnatomyOntology ”

timestamp=”2007−01−01 ” ve r s i on=”2007−01” i s o n t o l o g y=”yes ”

s t r u c t u r a l t y p e=” d i r e c t e d a c y c l i c ” u r l=”” />

6 </domain sources>
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7 <r ange s ou r c e s>

8 <sour ce ob j ect type=”Heal thEnti ty ” name=”NCIThesaurus” timestamp=”2006−02−01 ”

ve r s i on=”2006−02” i s o n t o l o g y=”yes ” s t r u c t u r a l t y p e=” d i r e c t e d a c y c l i c ” u r l=””

/>

9 </ r ange s ou r c e s>

10 </metadata>

11 <cor r espondences>

12 <correspondence support=”2” con f idence=” 1 .0 ” user checked=”0” co r r type=”N/A”>

13 <domain objects>

14 <ob j e c t a c c e s s i on=”MA:0000280” ob j ect type=”AnatomicalEntity ”

source name=”AdultMouseAnatomyOntology ” />

15 </ domain objects>

16 <r ange ob j e c t s>

17 <ob j e c t a c c e s s i on=” ht tp : //human . owl#NCI C12784” obj ect type=”Heal thEnti ty ”

source name=”NCIThesaurus” />

18 </ r ange ob j e c t s>

19 </ correspondence>

20 [ . . . ]

21 </ cor r espondences>

22 </mapping>

Listing 3.1: Extract of a GOMMA mapping file.

3.2 Short Introduction to STROMA

The following lines are an introduction to STROMA as it is presented in [Arn15, AR14, AR13].

STROMA is a tool for determining semantic relation types within an a priori given ontology

mapping. For each correspondence of the mapping it is calculated due to linguistic methods and

background knowledge which type (is-a, for instance) this correspondence has. STROMA evaluates

its type denotation by means of a gold standard which has been committed as further input.

3.2.1 Basic Architecture

STROMA pursues a two level approach, i.e., in the first and previous step a common match tool,

like GOMMA, determines a set of correspondences as the match result, possibly by means of

background knowledge. This set is input for STROMA, which computes in the second step the

enriched mapping. The overall workflow is depicted in figure 3.2.

type abbreviation explanation example

equal 0 c1, c2 are synonyms 〈cardiac chamber, chamber of heart〉

is-a 1 c1 is a hyponym of c2 〈heart,muscular organ〉

inverse is-a 2 c1 is a hyperonym of c2 〈muscular organ, heart〉

has-a 3 c1 is holonym c2 〈heart, cardiac chamber〉

part-of 4 c1 is meronym of c1 〈cardiac chamber, heart〉

related 5 c1 is a cohyponym of c2 〈leucocyte, erythrocytes〉

Table 3.1: The possibly semantic relation types between concept c1 and c2 in STROMA.
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3 Mapping and Enrichment Tools

Figure 3.2: Basic workflow and components of STROMA, after [Arn15, 11].

The second step is divided into two parts: i) type detection, and ii) selection. Within type detection

at least one of six type detection strategies (compound strategy, background knowledge, itemization

strategy, structure strategy, multiple linkage strategy, word frequency strategy) is applied to each

correspondence. If more than one strategy is used, the single results have to be aggregated in order

to yield exactly one type (type computation), see below.

Furthermore, there are two post-processing control modules (verification, selection) which check

whether a correspondence with its assigned type is valid.

STROMA assigns a relation type t to a mapping correspondence out of five different types plus

the label undecided. Each type is abbreviated by a natural number. The types of a correspon-

dence 〈c1, c2〉 are depicted in table 3.1. The types are defined by common linguistic relations of

hyperonymy, meronymy, and synonymy. Each non-symmetric relation type has an inverse type:

is-a and inverse is-a as well as has-a and part-of.

3.2.2 Strategies for Semantic Type Detection

STROMA uses six strategies [Arn15, 13ff][AR15, 10ff] in order to determine the semantic type of

a correspondence. The strategies and the types which they are able to detect are listed in table 3.2

and described briefly in the following. Note that since is-a and part-of are no symmetric relations,

their inverse counterpart is named inverse is-a and has-a and is subsumed in the table under is-a

reps. part-of. If a strategy cannot return a type of the correspondence because e.g. the strategy

cannot be applied to this correspondence, a strategy returns undecided. STROMA enables to set a

default value instead, namely equal, because matching tools normally connect concepts which are

equal. This setting is called undecided-as-default . Contrarily, if undecided is returned as it is, the

setting is called undecided-as-false.
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denoted types

strategy weight equal is-a part-of related

compound strategy 1.0 – X – –

background knowledge 0.9 X X X X

itemization strategy 1.0 X X – –

structure strategy 0.7 – X X –

multiple linkage strategy 0.8 X X – –

word frequency strategy 0.6 X X – –

Table 3.2: STROMA strategies, their weight and denoted types.[AR14, 11].

Each strategy has a specific weight, see table 3.2, which is important for determining the overall

result type. After all strategies have returned a type, for each returned type all weights of those

strategies are summed up which have ”voted” for this type. The type with the highest weight is

stored as the semantic type of the current correspondence.3

Compound Strategy A compound consists of a head h, which carries the main meaning, and

some modifier m, which slightly ”restricts” the denotation of h.4 For example, hand joint is a

compound with h = joint and m = hand, hence it is a specific joint, namely that of a hand. If a

correspondence is given which relates the compound to its head (or the head to the compound),

the compound strategy returns is-a and inverse is-a, respectively, as the semantic type of this

correspondence, e.g. 〈hand joint, is-a, joint〉.5

Background Knowledge The background knowledge resources are stored in SemRep (Semantic

Repository) [AR15]. Given a correspondence from STROMA SemRep calculates the semantic type

of this correspondence referring to varying knowledge sources like WordNet, UMLS, or informa-

tion extracted from Wikipedia. The background knowledge is modelled as a graph where nodes

represent a concept(-label) and edges symbolize that there is a relation of a specific type (is-a, . . . )

between the nodes of the edge. Since background knowledge is a powerful strategy, each relation

type is a possible outcome. Furthermore, background knowledge helps to determine relation types

between concepts where linguistic or structural strategies fails, e.g. 〈serum, part-of, blood〉. Never-

theless, background knowledge fails if the concept is not entailed in SemRep or if there is no edge

between the two concepts under consideration. The SemRep result of querying for the relation

between serum and blood is depicted in figure 3.3. Three paths with one or two edges between the

concepts are found. A path is represented by a relation and the source of this relation, which is

WordNet in all cases of the example. Besides the path, the type as well as the confidence value for

this relation is shown.

3Note that i) undecided is returned iff no strategy has determined a type other than undecided ; ii) if two types
have the same weight, the most prominent relation type (according to the hierarchy equal > is-a > inverse is-a >

part-of > has-a > related) is returned.
4There are exceptions to that generalisation, e.g. bitter-sweet.
5Relating the compound to its modifier the resulting type is not deterministic predictable:

〈hand joint, part-of, hand〉 vs. 〈bookstore, has-a, book〉 vs. 〈headline, ?, head〉, see discussion in [Arn13, 17f].
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Path: serum [IS A | WORDNET] body fluid [INVERSE IS A | WORDNET] blood

Type: RELATED

Conf: 0.74916225

---------------------------------------------------------------------

Path: serum [EQUAL | WORDNET] blood serum [PART OF | WORDNET] blood

Type: PART OF

Conf: 0.8848987799999999

---------------------------------------------------------------------

Path: serum [PART OF | WORDNET] blood

Type: PART OF

Conf: 0.9341999999999999

Figure 3.3: Example of a SemRep query to the relation type between serum and blood.

Itemization Strategy Itemization is understood as a list of terms, e.g. body fluid or substance

(MA:0002450), head and neck (MA:0000006), or Fever, Sweat, and Hot Flashes (NCIt:C115213).

The itemization strategy maps the itemization to its item set, i.e., a set of the terms which make

up the itemization. In the NCIt example the corresponding item set is {Fever, Sweat,Hot Flashes}.

If at least one concept is an itemization, the following reducing steps are applied in exactly that

order (note that a single-term concept is an item set with exactly one element) [AR15, 14f]:

1. Intra-Synonym Removal:

In each item set I replace the items i1, i2 ∈ I by i1 if i1 and i2 are synonyms.

2. Intra-Hyponym Removal:

In each item set I remove an item i1 ∈ I for which there exists a hypernym6 i2 ∈ I.

3. Inter-Synonym Removal:

Remove each item i1 ∈ I1 and i2 ∈ I2 if i1 and i2 are synonyms.

4. Inter-Hyponym Removal:

Remove each item i2 ∈ I2 if there exists a hypernym i1 ∈ I1 and vice versa.

For instance, let I1 be the set {temperature, fever, cold sweat}, I2 the set {fever, sweat, hot flashes}.

Since temperature and fever are synonyms, I1 is reduced to I1 = {temperature, cold sweat} (intra-

synonym removal). The second removal rule is not applied as there are no intra-item set hyponyms.

Inter-synonym removal leads to I1 = {cold sweat} and I2 = {sweat, hot flashes}. Finally, inter-

hyponym removal sets I1 = ∅ because sweat is a hypernym of cold sweat.

After reducing the item sets the semantic type is determined along the following rules – the fourth

case returns the type which is determined by the background knowledge strategy7:

• I1 = ∅ ∧ I2 = ∅ ⇒ type: equal

• I1 = ∅ ∧ I2 6= ∅ ⇒ type: is-a

• I1 6= ∅ ∧ I2 = ∅ ⇒ type: inverse is-a

• |I1| = 1 ∧ |I2| = 1 ⇒ apply background knowledge strategy

• |I1| > 1 ∨ |I2| > 1 ⇒ type: undecided
6A word w is an hypernym of a word w̄ if the denotation of w entails the denotation of w̄, e.g.: mammal is a

hypernym of human.
7No other strategy is possible as the only expected types are part-of and has-a, respectively. (inverse) is-a is

excluded because that would presuppose a hypernym but all hypernym relations have already been eliminated.
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Structure Strategy The structure strategy takes account of the path of two concepts. Assume

that ci and c̄n are the relevant concepts. Then the path from their parent node to theirselves is

ci−1.ci and c̄n−1.c̄n, respectively. Knowing the type of the relation from one node to the parent of

the other one allows inference to the type of the correspondence under consideration. For example,

if ci equals c̄i−1, the conclusion is that c̄i is a ci. The argument is that child and parent node are

in an is-a relation and hence 〈c̄i, is-a, c̄i−1〉. As 〈ci, equals, c̄i−1〉, it holds that 〈c̄i, is-a, ci〉.

Multiple Linkage Strategy If one concept c ∈ O1 is mapped to multiple concepts k1, k2, . . . kn ∈

O2, it can be (heuristically) assumed that c is more general than k1, k2, . . . kn ∈ O2 and hence is-a

(e.g. 〈k1, is-a, c〉) or inverse is-a (e.g. 〈c, inverse is-a, k1〉) is returned.

Word Frequency Strategy Given a corpus a word can be assigned a frequency, which means

the absolute number of occurrences within the corpus. Heuristically it is assumed that the more

frequent a word is the more general is its meaning. Be w< a less frequent word and w> a more

frequent one. If a correspondence between w< and w> is given the word frequency strategy returns

is-a and inverse is-a for a correspondence between w> and w<, respectively.

3.2.3 Post-processing: Control Type Computation

As mentioned earlier there are two modules which check whether the determined type is valid,

or not. Type verification applies immediately after each computation of a correspondence. As

the strategies above (except structure strategy) do not take the concept path into account, this

verificator reconsiders whether the type assignment is still correct if path information is available.

Otherwise the verificator changes the type. For instance, let p1 be arm.elbow.joint the first concept

path and p2 be arm.elbow joint the second one. Considering only the leafs joint, elbow joint the

type inverse is-a is computed. But obviously the leaf joint denote the joint of the elbow. Hence,

the verificator would change the type to equal.

Within the selection module, which is executed after type detection for all correspondences is

finished, correspondences are filtered out for which there is not enough evidence that they might

be correct. In order to achieve this a threshold θ is implement such that all correspondences

with a confidence value ξ equal or greater θ are surely maintained within the mapping. All other

correspondences with a value lower θ are removed if and only if their relation type is undecided, or

their mapping lack linguistically motivated evidence.
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4 Semantic Enrichment of GOMMA

Mappings

This chapter deals with the aspects of implementing a tool, called GOMET (Gomma Mapping

Enrichment Tool), which enables the semantic enrichment of a GOMMA mapping by means of

STROMA. Firstly, since STROMA has been applied to generic real life ontologies like ontologies

on clothing, its biomedical background knowledge stored in SemRep contains only a small number

of specific concepts and their relations within the biomedical domain. Hence, it was necessary to

integrate further background knowledge to SemRep, in concrete words: SemRep was expanded

by UMLS. The expansion enabled STROMA to apply the background knowledge strategy for

semantic type denotation for more valid results. Secondly, the actual implementation of GOMET

is introduced.

4.1 UMLS as Background Knowledge Source

The following paragraphs outline the integration of UMLS concepts and relations into SemRep.

Therefore, subsection 4.1.1 gives an overview about the structure and intention of UMLS. In

subsection 4.1.2 the extraction of relevant data from UMLS is described. Finally, a brief evaluation

of the expanded SemRep system is presented, subsection 4.1.3.

4.1.1 Overview about UMLS

UMLS is a project of the U.S. National Library of Medicine which seeks to unify different sources of

biomedical and health data in order to achieve interoperability between computer systems. UMLS

consists of three knowledge sources: i) Metathesaurus: a database which combines the muli-lingual

vocabularies of different ontologies, e.g. MeSH (Medical Subject Headings), SNOMED CT. Hence,

it stores concepts and the relations among them. ii) Semantic Network1: as each concept within

concepts (CUIs) 2,930,638

concept names (AUIs) 11,399,740

distinct concept names (SUIs) 9,487,373

distinct normalized concept names (LUIs) 8,487,373

sources 168

languages 21

Table 4.1: General statistics of the UMLS 2013AB. The numbers denote the count.

1http://semanticnetwork.nlm.nih.gov/
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Figure 4.1: ER model of the basic notions of the UMLS metathesaurus. Only the identifier at-
tributes are depicted to ensure a good readability.

the metathesaurus is categorized by a semantic type, the semantic network consists of a set of

all such types as well as a set of relationships between these types. iii) SPECIALIST Lexicon

and Lexical Tools2: a tool set for natural language processing, especially developed for mediating

between everyday natural language and biomedical terminology. The metathsaurus is the core of

UMLS and generated by use of the semantic network and the lexical tools.

UMLS is updated twice a year. The release version which underlies this thesis is the second one of

2013 (2013AB). Table 4.1 gives a short overview about the UMLS data: There are approximately

3 million concepts in 10 million different spellings extracted from 168 sources of 21 languages. The

main part of UMLS is English (75% of all names are English ones).

The most basic unit of UMLS is an ”atom”, i.e. the ouccurence o of a particular string s of

a particular concept c within a particular source vocabulary v. A unique identifier AUI (Atom

Unique Identifier) is assigned to that occurence. Each string s is assigned a unique identifier SUI

(String Unique Identifier). Two concept strings are different if they vary in their character sets,

thus respecting lower vs. upper case, punctuation etc. Note that s can be ambigous – cf. the

example of ICD in subsection 2.4.2; whereas it is always clear which concept is represented by o

since o is a contextualized string. The concept which is denoted by o is uniquely identified by its

CUI (Concept Unique Identifier). Obviously, a CUI can be associated with more than one AUI but

one AUI is associated with exactly one CUI. An LUI (Lexical Unique Identifier) captures different

linguistic variants of two or more strings. Similar to an SUI it can be associated with more than

one CUI. Figure 4.1 shows an ER model of these circumstances. Note that only CUIs are language

independent. AUIs, SUIs, and LUIs are language sensitive due to the source they are extracted

from.

In figure 4.2 an example of the UMLS structure is depicted. Two concepts are shown with a set

of LUIs. The LUI L0003792 is part of both concepts. Thus, that LUI denotes an ambiguous

word, namely arm. The first reading is the default reading. It denotes a body part. The second

reading describes a treatment plan within a clinical study. In this context, arm is a shortening

of protocol treatment arm. As each AUI is contextualized, the AUI sets of LUI L0003792 for SUI

S00155710 are distinct. The sets of SUIs for the same LUI only have to differ. It is possible that

their intersection is not empty – like in this case for S00155710.

2http://lexsrv3.nlm.nih.gov/Specialist/Home/index.html
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Figure 4.2: UMLS example: LUI L0003792 occurs in both concepts. It denotes an ambiguous word.

REL count % definition

SIB 22,624,718 39.0% has sibling

RO 15,065,527 26.0% has relation other than synonymous to

SY 5,320,366 9.2% source asserted synonymy

CHD 4,392,763 7.6% has child

PAR 4,392,763 7.6% has parent

RB 1,700,628 2.9% has broader relation to

RN 1,700,628 2.9% has narrower relation to

RQ 1,615,330 2.8% related (possibly synonymous) to

AQ 606,008 1.0% allowed qualifier

QB 606,008 1.0% can be qualified by

Σ 58,024,739 100%

Table 4.2: The relation types of REL and their count.
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Two AUIs can be connected via an explicit mentioned relationship or via an implicit (synonym)

relation. The last one can be inferred as two AUIs are connected to the same CUI. The former one is

explicitly stored in the database and may be non-synonym. Two CUIs are always explicitly related.

The most relevant tables within the UMLS database for the current purpose are MRCONSO and

MRREL. MRCONSO contains a record for each AUI. It specifies among others the language, CUI,

LUI, SUI, the vocabulary source, and the actual string of an atom. MRREL stores the relations

between two CUIs and AUI, respectively. Besides the identifiers and other attributes it contains

the name of the relationship (REL) which describes the basic nature of a relation, see table 4.2.

Most of the 58 million relations (65%) are either the sibling relation or an other (not specified

relation) than synonymy. Note that symmetric relations are counted twice, e.g., 〈a, SY, b〉 as well

as 〈b, SY, a〉 are stored. Furthermore, MRREL contains a more specific relationship label (RELA).

Exemplary values are isa, inverse isa, translation of, ingredient of. Out of the 58 million relations

within MRREL around half (28 million) are described further by a RELA value unequal null.

There are 652 different types of RELA. Most of them appear in less than 1% of all cases.

There are 684 different pairings of REL and RELA (ignoring the cases where RELA is null). As

there are 10 REL and 652 RELA types, up to 10 · 652 = 6520 possible pairings could be expected.

But only 10% of these pairings appears. Obviously, this is due to the meaning of REL and RELA.

For instance RO (denoting a relation other than synonymy) and same as (denoting something like

synonymy) are not compatible to each other.

4.1.2 Relation Extraction from UMLS

For this thesis UMLS is given within a MySQL database.

Figure 4.3: Workflow of the integration

of relations from UMLS ta-

bles to SemRep.

Thus, the data are accessed via JDBC (Java Database

Connectivity) queries and are filtered in Java. Two

ways are implemented how to extract the relevant rela-

tions for SemRep. First, all relations are relevant whose

relation label RELA in MRREL can be reliably associ-

ated with a semantic type of STROMA. These relations

are selected from the UMLS database by SQL. For in-

stance, used for matches equal. However, most relation

types, like biological process has result anatomy, do not

correspond to a STROMA relation type since they are

too fine-grained. Exception to this first case are rela-

tions which link concepts or concept names which are

taken from different languages than English. Thus, al-

though translation of is an equal relation, such rela-

tions are not integrated into SemRep since only English-

language ontologies are considered. Consequently, seven

relation types are chosen, as they are listed in table 4.3.

Second, an equal relation between two concept strings

is extracted if the concepts strings are mapped to the

same CUI. Thus, the SQL query select distinct CUIs

and the associated concept strings. In Java they are grouped by the CUI. The resulting equal

relations are filtered. That procedure returns relations which have not been extracted by the first

30



4 Semantic Enrichment of GOMMA Mappings

procedure, for example 〈menstruation disturbances, equal, periods problems〉. In the following, this

set of relations is abbreviated identical CUIs. The workflow is depicted in figure 4.3.

The attribute REL is not used for extracting relations of UMLS for SemRep. That method has two

reasons: On the one hand, the REL values are too general. It is unclear to which STROMA relation

type they should be mapped. For example, given a child relation CHD between two concepts it

can be mapped in some cases to is-a in other cases to part-of. Even worse is the case for RO

relations, see table 4.2. As RO denotes that the relation is not synonymy, it is absolutely unclear

to which STROMA type the relation has to be mapped. On the other hand, the REL values may

represent unwanted relations. The SY relation consists to 45% of the RELA translation of and

has translation of which should not be part of the background knowledge for an English-language

task. These problems with REL lead to the consequence that it seems to be more appropriate to

choose the RELA column in order to specify the relations that should be integrated to SemRep.

Additionally, that method can be combined – as it maximally covers a half of all UMLS relations

– with the extraction of equal relations between concept strings with the same CUI.

Each relation is transformed into the format of SemRep, namely s :: o :: t where s is the subject, o

the object, and t the type of the relation. t is a natural number taken from table 3.1. For example,

fever :: disease :: 1 which says that fever is a disease.

In order to achieve a good performance of SemRep it is recommended that it contains as much

relations as possible but not more relations than necessary. Hence, the extracted relations are

filtered which results in more ”useful” and ”cleaned” data. The filter techniques are described in

the following. These techniques are rules whose order of application is important. The result of

the filter is shown in table 4.3. At first, the first part of techniques are listed which lead to the

deletion of the whole relation:

ENG A priori only English concept names are considered as only English-language ontologies are

taken into account.

LONG ”Long” relations, i.e., relations with more than 200 characters in their SemRep format, are

deleted. Due to their size these relations contain complex n-word concept names and thus,

cannot be effectively computed by SemRep. Example:

〈4-alpha-D-{(1->4)-alpha-D-glucano}trehalose trehalohydrolase activity, is-a,

hydrolase activity, hydrolyzing O-glycosyl compounds〉

UNIT All relations are deleted which enclose at least one concept which contains a unit like ml or

milligram. Units are rather part of instances than of concepts. Thus, such relations are not

relevant and may be excluded. Example:

〈anadrol 50 50mg tablet, equal, oxymetholone 50 mg oral tablet〉

BRACE Relations with ’{’ or ’}’ as part of the concept name are not relevant. They are deleted.

Example: see LONG.

CONJ SemRep cannot handle complex concept names containing a conjunction. Thus, such rela-

tions are deleted. Example:

〈vestibulocochlear nerve and its branches, is-a, vestibulocochlear nerve structure〉

PUNC Relations with special punctuation (’;’, ’ + ’, ’<’, . . . ) are deleted to, as they imply too

complex concept names or instances of a concept. Example:

〈alprostadil 500mcg/mL injection, is-a, prostaglandin E>1<preparation〉.
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PATT The last types of relations which are deleted during the postprocessing are such ones which

match a further pattern. The crucial point is that the patterns are context-sensitive and it is

not possible to check whether a particular substring is part of the relation. Thus, they have

to be implemented as regular expressions. For instance, as ’:’ is part of each relation due to

the STROMA format definition, the deletion of correspondences with a double dot as part

of a concept name is handled by PATT. Example:

〈hla c*03:15 antigen, equal, hla cw*0315 antigen〉

Secondly, the following techniques do not cause deletion but lead to modification of the relation

string. Obviously, it is more effective to apply them after the first block of deleting rules. The

reason is that it is unnecessary to modify a relation which is later deleted anyway.

LOW All relations are transformed to lower case. This part of the normalization.

BRACK Brackets of sort ’[’, ’(’, ’]’, ’)’ (including their content) are deleted as they contain addi-

tional information and hamper a good performance of SemRep. Example:

〈biotin-[pyruvate-carboxylase] ligase activity, is-a, biotin-protein ligase activity〉

ADD Additional fragments, which starts with ’-’, are deleted. Such fragments are not part of the

concept name as they contain domain information, for instance. Example:

〈microbiology - prostatic fluid culture mycoplasma, is-a, prostatic fluid culture〉

HYPH All hyphens are replaced by a blank character. This part of the normalization.

NORM All sequences of two or more blank characters are reduced to a single one. This part of

the normalization and may be necessary due to one of the previous modification rules.

Now further rules are applied, which again delete whole relations. It is necessary that they are

taking place after the previous modification rules because these rules establish the context for the

adequate application of the following deleting rules.

X X After the modifications, as described above, this rule applies which deletes all relations with

now identical subject and object. This may be caused by deleting brackets or additions.

TRANS If the relation is extracted as identical CUIs relations are excluded which can be inferred

due to transitivity, e.g. given 〈a, equal, b〉, 〈a, equal, c〉, 〈b, equal, c〉 the last relation is deleted

since the equality between b and c can be inferred given the first two relations.

SYM All symmetric relation types (same as, related to, identical CUIs, . . . ) are checked in the

following way: if both 〈a, t, b〉 and 〈b, t, a〉 are in place, then the second one is deleted.

4.1.3 Interim Evaluation of Integrating UMLS to SemRep

All in all, more than 2.5 million relations are integrated to SemRep. Nearly 45% of them are based

on the RELA attribute. That are 9% of all relations in UMLS with a RELA attribute not null

(assuming that symmetric relations are only counted once and non-symmetric relations, e.g. isa,

are not counted within their inverse relation, inverse isa). All other relations which are based on

RELA are either too specific or useless for the given task. The second extraction way leads to

a huge amount of relations. Thus, approximately 55% of all new SemRep relations link concept

names due to their identical CUI (identical CUIs). These results are shown in figure 4.3. For each

32



4 Semantic Enrichment of GOMMA Mappings

UMLS relation STROMA relation count after filter % after filter

0. identical CUIs equal 1,497,789 22%

1. has expanded form equal 68,882 16%

2. same as equal 28,627 18%

3. used for equal 11,895 91%

4. is a is-a 1,012,798 38%

5. has physical part

of anatomic structure part-of 1,996 26%

6. part of part-of 75,492 45%

7. related to related-to 2,463 21%

Σ 2,699,942

Table 4.3: The extracted relations from UMLS. Line 0 represents the relations due to extraction
way one, lines 1-7 due to RELA.

relation their corresponding STROMA type as well as the number of relations after filtering are

depicted. The last column states the ratio between relations after and before filtering.

In average the ratio of the filter is 34.6% (standard deviation: 23.3%). Generally, the symmetric re-

lations identical CUIs, same as, related to show a lot of deleted relations due to the SYM technique

which does not apply to other relations. Two relations step out of line: First, has expanded form

has astonishingly a lot of relations which are filtered out (84%). Table 4.4 shows which deletion rules

apply to how many relations. Additionally, it is depicted how many relations of has expanded form

are affected by each deletion rule, and how many relations of all relations which are deleted by

a specific rule are deleted within has expanded form. Most relations are deleted because of the

PUNC technique but there are other relation types where much more relations (relatively and ab-

solutely) are deleted due to this rule. As it can be seen within has expanded form the most amount

of BRACE (86%), LONG (71%), and PATT (81%) application take place. That the LONG rule

applies such frequently is suggested by the semantics of this relation type because a short term is

mapped to a long one as the latter is the expanded form of the former.

deletion rule count ratio within relation ratio of deletion type

BRACE 786 0% 86%

CONJ 77,520 22% 45%

LONG 45,871 13% 71%

PATT 50,020 14% 81%

PUNC 156,862 45% 40%

UNIT 1,304 0% 6%

X X 15,580 4% 17%

Table 4.4: The has expanded form relation type which has been extracted for integration to Sem-
Rep with the deleting rules that apply to its relations.
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deletion rule count ratio within relation ratio of deletion type

CONJ 62 6% 0%

PATT 2 0% 0%

PUNC 1004 91% 0%

UNIT 21 2% 0%

X X 13 1% 0%

Table 4.5: The used for relation type which has been extracted for integration to SemRep with the
deleting rules that apply to its relations.

Second, consider the relation type used for which is most stable against deletion. As it is depicted

in table 4.3, after filtering still 91% of the original relation set remains. Thus, only 9% of its

relations are deleted. Table 4.5 show the same kind of data analogue to has expanded form. Only

one deletion rule is mainly applied, namely PUNC. Furthermore, the executed deletions do not

make a substantial contribution to the overall deletion number per technique (all ratios are ap-

proximately 0%). Besides this descriptive evaluation of deletion rules no further analysis has been

undertaken. Some interpretation of the correlation between deletion rules and relation type might

be enlightening to a certain degree. Nevertheless, we leave this open for further investigations as

it goes beyond the scope of this work.

Problematic for a reasoning task is the fact that language is ambiguous, for example due to short-

ening a term within a given context. This leads to relations which seems to be wrong without

context. Such relations, which are not true in general, as background knowledge may mislead

the SemRep algorithms when computing the relation type between two given concepts. There

is no way to identify the misleading relations by means of their structure – i.e. without using

SemRep or another background knowledge tool. Nevertheless, anticipating the evaluation of the

mapping enrichment in chapter 5, it has not been found any evidence that such relations actually

misled the type detection. Eventually, one example of such relations is taken from used for. Given

〈vein, equal, uterine vein〉, 〈uterus, equal, uterine vein〉, generally it should be concluded thatvein

is equal to uterus. Obviously, vein and uterus should not be in an equal relation. The overall

explanation of this strange behaviour is that used for may not be a symmetric relation and it is

an oversimplification to interpret it as an equal relation.

Figure 4.4 gives an overview about the proportion of relation types which are imported into Sem-

Rep. Most of them represent an equal relation, among other things, because a lot of a data is

extracted by means of identical CUIs which leads only to equal relations. One fifth is a set of is-a

relations, and the rest constitutes part-of. Although related-to was also extracted, these relations

are not imported to SemRep as SemRep do not store this kind of relation type directly but only

indirectly via the relation two concepts have according to a third shared parent concept. For

instance, 〈mammal, is-a, vertebrate〉 and 〈bird, is-a, vertebrate〉, hence 〈mammal, related-to, bird〉.

Comparing the extracted UMLS relations with the already given relations from Wikipedia it is

observed that there are no relations within the intersection of both relation sets. Hence, all relations

from UMLS has not been integrated to SemRep before.

[AR15] presents a diseases mapping for his evaluation. A comparison of his results with the results

after integrating the UMLS background knowledge to SemRep shows a slight improvement in the
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Figure 4.4: Ratio of the extracted UMLS relations. 76.0% represent equal relations, 20.4% is-a
relations, 3.6% part-of relations, and 0.1% are related-to relations.

recall for non-trivial types (from 65.9 to 70.7) and hence a greater f-measure (46.4 instead of 44.2).

Even better results can be achieved for deactivating the node degree heuristic and allowing a

maximal path length of three, see section 5.1. In the non-trivial case this leads to a recall of 73.2,

a precision of 60.0 as well as an f-measure of 65.9. For trivial correspondences holds that the recall

amounts to 94.3, the precision to 96.8, and the f-measure to 95.5. Hence, most values significantly

increased, except the trivial precision, which remains constant. This should be kept in mind for

the discussion of mapping enrichment in the biomedical domain.

4.2 GOMET: Extending GOMMA Mappings

Semantic mapping as such and especially within the biomedical domain is rarely realized [SHB+09,

SE13]. As describe above, STROMA is an enrichment tool, i.e., it takes an already generated

mapping as input and enriches each correspondence with an appropriate semantic type information.

Main purpose of this thesis is the development of a tool, called GOMET, which takes a GOMMA

mapping as input and returns the by STROMA enriched mapping.

Figure 4.5 shows the UML model of GOMET. Only public methods and constructors are de-

picted. Further mapping types (instead of GOMMA) may be added by implementing a further

specialisation of Parser and an own ReparsingPointX.

First, the class GometProcess manages the overall workflow. Three files are expected as being given

(their location is specified within a properties file), namely the original mapping file which is the

output of GOMMA and contains the correspondences as well as an ID resolution file for source and

target ontology, respectively. These latter files are necessary since the mapping file encodes concepts

by means of IDs and hence, the ID resolution files resolve each ID to the name of the concept plus

its parent and grandparent concept (if existing). The ID resolution files are used to initialize the

ID resolver, represented by class IDResolver. After initializing StromaInputGenerator the original

mapping is parsed and transformed to the STROMA input format. Now, STROMA enriches the

given correspondences. Finally, the semantic type information is added to each correspondence

of the original mapping (ReparsingPointGomma) and a copy of the original mapping with this
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Figure 4.5: Structure of GOMET. Depicted are only public methods.

information is stored as the enriched mapping. The overall workflow of GOMET is shown in figure

4.6. The input and output format of STROMA data stands for the particular files.

Second, the IDResolution class loads the ID resolution files to working memory. Each line of the

files must be in the format ID <tabulator> concept (sub-)path. Furthermore, this class provides

two methods which return the associated concept path to a given ID of the source and target

ontology, respectively.

Third, each correspondence, which is extracted from the original mapping file via parsing, has to

Figure 4.6: The workflow of GOMET. Depicted are input and output files as well as intermediate
files of STROMA.
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be represented within the STROMA input format, namely - source path <-> target path: score.

This is realized by StromaInputGenerator, which is initialized with the above mentioned property

file where it is specified whether preprocessing of source and target path should take place, if so

whether preprocessing should be logged, and finally where to store the generated STROMA input

file. The method addToStromaInput(.,.,.) adds a correspondence consisting of a source concept

(called subject), a target concept (called object), and the score of this correspondence (i.e., the

similarity value) to said file. close() tells this class all correspondences within the original mapping

file are parsed and getCountCorresp() returns the number of correspondences which are added to

the STROMA input file.

Fourth, the class Preprocessing provides a set of methods which are applied in order to normalize

the given data for STROMA. It is a more heuristic aspect of GOMET and can be activated or

deactivated on the source/ target path level but not on the level of the whole correspondence. The

former level consists of the following preprocessing steps (obligatory):

’ ’to’ ’ Replacing every occurrence of underscore (’ ’) by a blank character (’ ’).

LOW Converting all characters to lower case.

’/’to’.’ Changing the node delimiter in the paths from ’/’ to ’.’.

The concept level contains then following preprocessing steps. Note that these are the actual

heuristic component and are optional:

GEN Leave out the apostrophe in Anglo-Saxon genitives, like huntington’s disease is normalized

to huntington s disease.3

XofY As of -construction are a challenge for STROMA it seems a good approach to normalize

constructions like X of (the) Y to Y X, for instance digit of the hand to hand digit.

ROM It has been often observed in the data that Roman numbers as a numeration of anatomical

parts can be deleted as they do not restrict the meaning. For example, in the correspondence

- nerve.cranial nerve.trochlear iv nerve <-> nerve.cranial nerve.trochlear nerve: 0.8108108

the Roman number ’IV’ in the source concept denotes the fact that the trochlear nerve is

the fourth cranial nerve, in other words, the fourth cranial nerve is called trochlear nerve.

Consequently, the given concepts interrelate by equal. Deleting the Roman number simplifies

the computation.

Fifth, the class ParserGomma is an extension of the abstract Parser class. ParserGomma handles the

parsing of the original mapping which is given as GOMMA output. The parsing is done by using

a SAX parser4. After successfully parsing a correspondence the ID of source and target concept is

resolved and then the correspondence is added to the STROMA input file.

Sixth, ReparsingPointGomma adds the semantic type for each correspondence as the value of the

attribute corr type to the GOMMA mapping file. corr type is undecided if STROMA could not

calculate a type. corr type is null if the current correspondence is not part of the STROMA output

file, i.e., for instance, STROMA deleted this correspondence due to low confidence.

3The genitive treatment should be expanded by different possibilities, e.g. deleting the whole genitive marker,
huntington disease, depending on the standards in the source and target ontology. This is motivated by the fact
that STROMA returns equal if two concept names are identical.

4http://www.saxproject.org/
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This chapter presents an evaluation of the enrichment process of GOMMAmappings in the biomed-

ical domain. At first, the parameters are described which span the space for the evaluation. The

second part of this chapter shows the results of testing GOMET. Finally, benefits and problems of

a semantic enrichment are discussed.

5.1 Parametrizing the Evaluation

This section consists of two parts. In subsection 5.1.1 the independent and dependent variables of

the experiment are introduced. A short overview to the statistical evaluation measures is given in

subsection 5.1.2.

5.1.1 Independent and Dependent Variables

Independent Variables The evaluation is based on six independent variables. One, as it is a

parameter of GOMET, has already been introduced in section 4.2, namely that preprocessing

can be activated or deactivated (prepr). Two other variables are characteristics of SemRep: the

maximal path length maxPath and the measurement of node degree degree. The former one defines

an upper limit of edges (relations) between two concepts in order to determine their relationship.

For instance, a maximal path length of three allows only two intermediate concepts, i.e. three

relations, between two given concepts. All paths with more than three edges are not considered

for detection of the semantic relation type. The latter one, the node degree heuristic, specifies

whether a node n1 with more outgoing edges than a node n2 should be interpreted as being more

specific than n2. It is used whenever there is no path between the given nodes and returns an

is-a relation.1 The fourth and fifth independent variables are settings of STROMA: (de-)activate

undecided-as-default (undec), see subsection 3.2.2, and changing the weights of the strategies for

semantic type detection (weightBK). The standard setting of the weights is depicted in table 3.2.

Besides that setting, high and low weight of background knowledge are tested.2 Finally, the amount

of background knowledge is alternated (identCUIs). This is achieve by parametrizing whether the

enrichment takes place including identical CUIs relations, or not. The independent variables and

their values are depicted in table 5.1. ’on’/ ’off’ may be abbreviated as ’X’/ ’–’. As there are five

variables with two possible values and one with three values, there are 25 · 3 = 96 experimental

conditions.

The motivation for these variables is the following. The utility of prepr is obvious: It is assumed

that a reasonable preprocessing influences the results positively as the ontologies differ in less

unimportant aspects like case sensitivity or printing of ”gaps” between words as blank character or

1Actually, the node degree heuristic is not a boolean variable but declares a factor φ such that 〈n1, is-a, n2〉 if
g(n1) ≥ φ · g(n2) where g(x) return the number of outgoing edges for node x.

2high weight: background knowledge of weight 0.9, all others of 0.2; low weight: all like standard, except
background knowledge which has weight 0.1.
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independent variable abbreviation values

preprocessing prepr {on, off}

undecided-as-default undec {on, off}

maximal path length maxPath {2, 3}

node degree heuristic degree {on, off}

identical CUIs are used identCUIs {on, off}

weight of background knowledge weightBK {s(tandard), h(igh), l(ow)}

Table 5.1: Independent variables of the evaluation.

underscore. Activating undec seems to be an improvement of the mapping as well since it should

be a good guess to specify a relation as undecided if no information is available. There are two

aspects for determining the value of maxPath. On the one hand, the longer the maximal path is

allowed to be, the greater the probability that a relation between two concepts is detected. But

on the other hand, the longer the maximal path is allowed to be, the greater the probability that

an incorrect relation is determined. Furthermore, mostly ”short” relations are preferred above

”longer” ones, which (combined with the fact that the search space grows exponentially with

the maximal path length) leads to only two reasonable settings, namely maxPath ∈ {2, 3}. A

variable with an unknown influence on the results is degree, i.e., is the node degree heuristic, which

returns is-a if applicable, a good approach within the biomedical domain? The last two parameters

concern the role of background knowledge: How much background knowledge is needed for the best

results, and which weighting is optimal? It seems reasonable that background knowledge improves

the enrichment. To toggle only between activating and deactivating identical CUIs, is exemplary

for this issue. The question is how much weight STROMA should attribute to the background

knowledge comparing to the other (e.g. linguistic) strategies of type detection.

Dependent Variables Seven dependent variables are measured. The first dependent variable is

the duration (in seconds) of executing the type detection for all correspondences by STROMA,

which is the most time-consuming part for GOMET. Further variables ground on the distinction

between non-trivial types (all types but equal) and the trivial type (equal). For both types recall,

precision, and f-measure are calculated. Their definition is given in definition 5.1, see [MKSW99].

In the following, trivial precision, recall, and f-measure are abbreviated tP, tR, tF, respectively.

Their non-trivial variants are shortened to ntP, ntR, ntF. The term reference means a (manually

created) set which contains correspondences and their real relation type. This is the set of all

true non-trivial or trivial correspondences between two ontologies. Such a reference is called gold

standard. However, in some cases the design of such a gold standard is very expensive as it can

only be done by experts. A solution might be a silver standard which is based on the mapping

and assigns the relation type only to correspondences of this mapping. Hence, d is always zero.

However, silver standards might lead to a overestimated recall when the mapping is executed and

evaluated to it. The term hypothesis refers to the set of correspondences which are assigned a

trivial or non-trivial type.

39



5 Evaluation and Discussion

Definition 5.1. Let n be the total number of correspondences within the reference mapping,

m the total number of correspondences in the hypothesis, c the number of correspondences

with a correct assigned relation type, s the number of correspondences with an incorrect

assigned relation type, d the number of (deleted) correspondences that are contained by the

reference mapping but not by the hypothesis, and i the number of (inserted) correspondences

which are contained by the hypothesis but not by the reference mapping. Then the following

holds:

Precision P =
c

m
=

c

c+ s+ i
(5.1)

Recall R =
c

n
=

c

c+ s+ d
(5.2)

F-measure F =
2PR

P +R
(5.3)

[MKSW99]

5.1.2 Evaluation Measures

All dependent variables are interval scaled. For each of them the arithmetic mean as a measure

of central tendency and the standard deviation as a measure of variability are calculated. Their

definitions are given in definition 5.2 according to [BS10, 25, 30f]. The arithmetic mean (often

only mean) characterizes the center of a distribution. The standard deviation states how different

the values within a distribution are. It denotes a representative deviation from the center.

Definition 5.2. Let X be an attribute and n be its number of values. The arithmetic mean

x̄ as well as the standard deviation s of the distribution of X are defined as follows:

x̄ =
Σn

i=1xi

n
(5.4)

s =

√

Σn
i=1(xi − x̄)2

n− 1
(5.5)

[BS10]

If a variable X is normally distributed, the interval [x̄ − s; x̄ + s] contains approximately 68%

of all values of X [BS10, 70ff]. Approximately 95% of all values are located within the interval

[x̄ − 2s; x̄ + 2s]. Based on a short analysis of the distribution of the dependent variables, the

assumption of normally distributed dependent variables has been shown to be valid. Thus, ”best”

results regarding a dependent variable Vdep are defined as all results whose value of Vdep is greater

than the mean plus one standard deviation of this distribution.

As the effect of the independent variables on the dependent ones are evaluated, the correlation

coefficient between these is pairwise computed. A correlation coefficient r describes the linear

correlation between two variables. r is element of the interval [−1; 1] whereby r = 0 denotes no

correlation, r = −1 denotes a perfect negative correlation, and r = 1 describes a perfect positive

correlation [BS10, 157]. For instance, age and the achieved score of students in a test are gathered.

A correlation r of 0.9 would be interpreted that the older a student, the better his results. r = −0.9
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would mean that means that the younger the student, the better his results. Furthermore, when

r was 0.4 instead of 0.9, one would have to state that the correlation is less obvious, i.e., that the

variables age and score were more loosely connected.

Except weightBK , all independent variables are dichotomous. weightBK represents an ordinally

scaled variable. All dependent variables are interval based. The correlation coefficient between

dichotomous and interval based variables is computed by the point-biserial correlation [BS10, 171ff],

see definition 5.3. It basically divides the dependent variable values into two groups according to

the independent variable and compares their means. The correlation coefficient between maxPath

and the dependent variables is calculated according to Spearman’s rank correlation, see [BS10,

178ff]. Another coefficient is used in this case because maxPath is no dichotomous variable but

ordinally scaled. The dependent variables are mapped to a ranking as proposed in [BS10, 174].

Definition 5.3. Let non, noff be the number of results for the dichotomous independent

variable Vindep with value ’on’ and ’off’, respectively. Let x̄on and x̄off be the mean of the

interval based dependent variable Vdep grouped by Vindep, and sVdep
be the standard deviation

for all values of Vdep. It follows that the total sample size n is the sum of non and noff. Then,

the point-biserial correlation coefficient rpb is defined as follows:

rpb =
x̄on − x̄off

sVdep

·

√

non · noff

n · (n− 1)
(5.6)

[BS10]

Finally, the semantic relation types is-a, inverse is-a, part-of, has-a, and related are classified as

non-trivial ones. A correspondences which is denoted with such a type is called a non-trivial cor-

respondence. Contrarily, a correspondence denoted with equal is named a trivial correspondence.

5.2 Testing GOMET

This section deals with three test cases of GOMET. First, in subsection 5.2.1 a manually designed

mapping is introduced and evaluated. It contains a lot of non-trivial correspondences and maps

MA-to-Wikipedia categories. Second, a real world case from the OAEI3 is enriched, namely MA-

to-NCIt. This mapping contains only less non-trivial correspondences, see subsection 5.2.2. Third,

subsection 5.2.3 gives an overview of further mappings while pointing out the difficulty to identify

an appropriate test case for GOMET.

5.2.1 A Small but Rich Mapping: MA-to-Wikipedia

The Mapping The source ontology is of a flat type, i.e., it represents a list of 64 MA concepts.

These concepts, for example cardiovascular system endothelium (MA:0000717), are more specific

than the concepts of the target ontology.

The target ontology, an extract of the Wikipedia category tree, consists of 50 concepts which are

subconcepts of Human anatomy. Note that the category tree is actually not a tree within the graph-

theoretic sense as more than one path between two nodes is possible. The Wikipedia subgraph

has been manually revised, i.e. some concepts, like Neckwear, are deleted as they represent neither

3http://oaei.ontologymatching.org/
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Figure 5.1: Subgraph of the extracted Wikipedia category graph. Arrows pointing from a category
to its subcategory. Dotted arrows symbolize is-a relations, solid arrows part-of.

an is-a or part-of relation to the superior concept Human anatomy. Additionally, concepts are

deleted which lead to multiple paths between the root and a concept node. This is shown in figure

5.1 by the concept Facial features. The reason for this latter procedure is that STROMA cannot

handle multiple paths (multiple inheritance has to be resolved).

As the matching is executed between a highly specific and more general ontology, it is expected

that more than one source concept is aligned with the same target concept, like brainstem and

hindbrain are both mapped to brain. Hence, a complex mapping is required. This is one reason

for the chosen selection strategy MaxDelta [Gro14, 43] [DR02]. Main advantage of the MaxDelta

selection is that it allows more than one correspondence to be detected between two concepts,

namely all correspondence which have a confidence value ξ greater equal the greatest value for

this correspondence minus δ. For δ = 0 all correspondences of a particular concept pair have the

same confidence value, which is the maximum. Furthermore, three alignment conditions for the

MaxDelta selection are tested: 1 : n, n : 1, 1 : 1. The condition 1 : 1 is the most restricted one

where a correspondence must contain the best mapping partner for both sides, source and target.

For the other parameters a calculated match has to be the best match only for one side, source or

target. This yields complex mappings.

In addition, GOMMA creates mappings for a varying (overall) confidence value θ, i.e., correspon-

dences with a confidence value less than θ are excluded. Figure 5.2 shows the size of the mappings

depending on θ and parameters for MaxDelta. For θ ≥ 0.8 all mappings share the same eight

correspondences with ξ = 1.0. All of these correspondences relate identical concept names, except

〈cardiovascular system, circulatory system〉. Considering the overlap between correspondence sets

of a particular threshold group, it is mentionable that for θ = 0.2 in alignment condition 1 : n

about 33% of its correspondences are unique which means that they are not detected by one of the

others; and 30% are unique for n : 1. For θ = 0.4, approximately 28% (11%, respectively) of the

detected correspondences are unique within 1 : n (n : 1, respectively). In 1 : 1 there are no unique

correspondences in any group.

The creation of mappings varying in threshold θ aims to figure out how many reasonable non-trivial

correspondences can be detected with small θ. The idea behind this method is that non-trivial

correspondences are more likely to occur in mappings with small θ since concepts of such cor-
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Figure 5.2: Number of correspondences for different MaxDelta strategies (δ = 0.05) for MA-to-
Wikipedia. The values are grouped by different thresholds.

respondences have more non-identical strings and therefore these correspondences have a lower

confidence value than trivial ones. Nevertheless, the lower θ the more unreasonable and invalid

concept alignments are represented within the mapping. A powerful STROMA would then de-

clare the type of this invalid correspondences as undecided, and assign a true relation type to the

correspondences which are actual ones.

Duration The maxPath influences the execution time of STROMA. For a maximal path length

of 2 STROMA calculates the relation types within approximately one second. A maximal path

length of 3 leads to a mean execuation of four seconds.

Standard Setting As a baseline of the evaluation the standard settings of STROMA are pre-

sumed, i.e., undec=on, maxPath=2, degree=on, identCUIs=on, weightBK=s. Note that there is no

preprocessing since the optional preprocessing rules apply for no concept name in this case. For

this baseline, each mapping which results from different θ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and different

MaxDelta strategies (with δ = 0.05) is evaluated. In all 15 cases4 all trivial correspondences are

denoted (tR: 100.0) and the precision tP increases with θ which means that less non-trivial cor-

respondences are erroneously assigned equal (73.3 ≤ tP ≤ 100). For θ = 0.8 and greater, only

trivial correspondences appear in the mapping which are the same for each MaxDelta strategy,

see figure 5.2. Table 5.2 shows the results of the 1 : n mapping for different thresholds. Effective

measures take as population those correspondences which are detected by GOMMA for a specific θ.

Overall measures define the population as the set of all possible correspondences (hence including

those which are not part of the mapping generated by GOMMA). The mapping size is depicted as

’count’. The results are similar for 1 : 1 and n : 1. For θ = 0.4 the effective values (i.e. the values

with respect to mapping generated by GOMMA) are at the lowest rate. The reason might be that

at this point, a significant set of valid correspondences are filtered out while wrongly-typed corre-

spondences are still part of the mapping. The last set of correspondence is reduced if θ increases

4Five values for θ, three MaxDelta strategies and exactly one setting (the standard setting) of the independent
variables lead to 15 cases.
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recall precision f

θ effective overall effective overall effective overall count

0.2 50.0 43.1 55.0 45.8 52.4 44.4 64

0.4 47.5 37.2 52.8 46.3 50.0 41.2 57

0.6 60.0 11.7 75.0 75.0 66.7 20.2 20

Table 5.2: Recall, precision, and f-measure as well as the size of the mapping for non-trivial corre-
spondences for 1 : n and different thresholds θ.

to 0.6. However, the overall values, especially the recall, show that the greater θ, the more valid

correspondence are a priori filtered out. Thus, it seems to be the best approach to look at the

set of correspondences for θ = 0.2 and determine how the independent variables have to be set in

order to gain higher recall and precision.

Optimization In the following, independent variable values are changed with respect to the above

defined baseline, see figure 5.3. It can be concluded that undec and identCUIs only affect the trivial

recall and precision. Deactivating undec and enriching the mapping with the additional knowledge

due to identical UMLS CUIs leads to more valid types which are calculated for the correspondences.

Contrarily, weightBK only influences the results for non-trivial correspondences. For a high weight

the results become better. maxPath=3 has a positive impact on all independent variables. De-

activating the node degree heuristic has a complex influence. It significantly decreases the trivial

precision but increases the non-trivial one. The reason is that there are less correspondences which

are assigned an is-a relation due to different node degrees of the concepts. Since no path between

the concepts exists in SemRep, those relations are now returned as undecided and as undec is

activated in STROMA, they are denoted as equal relations. However, the correspondences are

wrongly-typed equal relations and thus the precision of the trivial correspondences decreases.

As a consequence of these observations the best results might be expected for undec=off, max-

Path=3, degree=off, identCUIs=on, weightBK=h. These settings results in a very good enrichment

with the following values:5

trivial recall = 100.0

trivial precision = 92.3

trivial f-measure = 96.0

non-trivial recall = 70.7

non-trivial precision = 80.6

non-trivial f-measure = 75.3

In particular, more non-trivial correspondences with a higher precision are denoted as it can be

seen in figure 5.4. But also the relation type detection of trivial types is improved.

What about the hypothesis that all correspondences with relation type undecided should be inter-

preted as wrong correspondences? On the one side, there are 11 correspondences in the mapping

which are wrong correspondences, like 〈hand joint, head and neck joints〉. Only 3 of these cor-

respondences are typed as undecided. On the other side, there are 7 correspondence typed as

undecided. Besides the 3 wrong ones, all other correspondences are expected to be part-of rela-

5Similar results are gained for 1 : 1 (tR=100, tP=91.7, tF=95.7, ntR=72.4, ntP=84.0, ntF=77.8) and n : 1
(tR=100, tP=91.7, tF=95.7, ntR=69.7, ntP=82.1, ntF=75.4) mapping with θ = 0.2.
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Figure 5.3: One-factorial optimization of the baseline. The baseline results, depicted in light gray,
can be improved or worsen when changing exactly one parameter (dark gray bars).

Figure 5.4: Measure for MA-to-Wikipedia mapping (θ = 0.2, 1 : n). The baseline results are
depicted in light gray, the optimal setting, called ”best”, as dark gray bars.
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Figure 5.5: Enriched mapping of the correspondence subset from MA-to-Wikipedia. Green lines
represent correct correspondences, orange lines represent wrong or falsely-typed corre-
spondences. The first number in the gray boxes denotes the relation type (a question
mark stands for undecided) and the second number the confidence value. The selection
does not reflect the proportions in the whole correspondence set.

tions. Consequently, no generalisation can be made about undecided correspondences. They might

be correct or they might be wrong correspondences.

Finally, looking at the confidence value of all falsely and correctly-typed correspondences, re-

spectively, yields a ”low” significance difference. The confidence value mean of the falsely type

correspondences amounts to 0.46 (standard deviation: 0.12). The mean for the correctly assigned

correspondence values is 0.63 (standard deviation: 0.21). Nevertheless, the difference is named

”low” as the maximum of the confidence values for all wrongly-typed correspondences is quite high

(ξmax = 0.76), and the minimum of all confidence values for the correctly-typed correspondences is

quite low (ξ′min = 0.24). Consequently, the confidence value is no exact measurement for wrongly

and correctly-typed correspondences as well.

Finally, a subset of the enriched correspondence set is given in figure 5.5. Not that this subset

is not representative for the whole set. Rather the correspondences are selected in order to view

multifaceted correspondences. For example, there are two undecided correspondences. The first

one, 〈Endocrine pancreas,Endocrine system〉 is a correct correspondence. But the second one is

not a true one as there is no semantic relation between lower arm and lower limbs. Furthermore,

〈carotid artery, head and neck arteries〉 is a correspondence with a very low ξ but nevertheless it is

a true correspondence. Additionally, the alignment of Liver and Upper limbs is wrong, there is no

relation at all. However, mapping Outer ear to Ear is correct but the calculated typed (has-a) is

wrong. All in all, it can be seen that one concept of the target domain may be aligned to two (or

more) concepts in the source domain. The inverse case occurred only once (not depicted) when

Liver is mapped to Upper limbs as well as to Lower limbs (both correspondences are wrong).
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5.2.2 A Real World Case: MA-to-NCIt

The Mapping This test case is taken from the OAEI 20136 and enriches an alignment between

MA and the human anatomy part of NCIt. The source ontology (MA) consists of 2,737 concepts,

the target ontology (part of the NCIt) of 3,306 concepts. With strong settings regarding the

acceptance of a correspondence (1 : 1, θ = 0.8, MaxDelta with δ = 0), GOMMA detected 1,264

correspondences. These are the input of GOMET and STROMA, varying the independent variables

as outlined in section 5.1. The calculation of precision, recall, and f-measure is based on a silver

standard, as the manual creation of a gold standard without expert knowledge would have been a

difficult undertaking.7 Furthermore, the evaluation is focused on GOMET and not on GOMMA

which means that a reliable mapping is presumed to be present.

Although the mapping is imbalanced concerning the distribution of trivial and non-trivial relation

types (there are only 21 non-trivial correspondence in the silver standard), the evaluation took place

on this mapping in order to see how STROMA copes with such a huge mapping of the biomedical

domain (each trivial correspondence has to be assigned equal independent of the number of non-

trivial relations). Subsequently, the settings are relaxed and samples are taken to see whether the

results for the strong settings can be generalised. Thus, the evaluation of the real world case starts

with the presentation of the results for the strong setting.

Duration The average duration of processing the correspondence set with STROMA amounts

35.96 s (standard deviation: 23.25 s) over all conditions. There is a strong positive correlation

of 0.94 with maxPath. As expected the processing with maxPath = 2 is faster (mean: 14.20 s,

deviation: 1.07 s) than with maxPath = 3 (mean: 57.71 s, deviation: 11.16 s).

Mean and Correlations The average recall, precision, and f-measure are given in table 5.3. Trivial

relations types are denoted mostly correctly. More than one half of all non-trivial types are

detected. However, a non-trivial relation type is assigned to a correspondence with a low precision.

As will be seen later, the results are much better in the optimal condition, i.e., the best setting for

the independent variables.

The correlations between independent and dependent variables are shown in table 5.4. A positive

correlation between a dependent and a dichotomous variable means that activating the dichotomous

one improves the result for the dependent one. Additionally, setting the dichotomous variable to

’off’ increases the value of the dependent variable, if a negative correlation is notated in the table.

The results show that a high value for background knowledge positively influences the results

on the trivial as well as on the non-trivial side. An unexpected result is that the non-trivial

recall precision f

non-trivial 55.37 (9.36) 14.02 (3.85) 22.08 (5.07)

trivial 91.14 (4.12) 99.63 (0.48) 95.16 (2.20)

Table 5.3: Average recall, precision, and f-measure for non-trivial and trivial correspondence types
from the MA-to-NCIt mapping. A number in brackets stands for the standard deviation.

6http://oaei.ontologymatching.org/2013/anatomy/index.html
7The same holds for the manually assignment of relation type to each correspondence. Hence, the matching

task is executed with those strong settings in order to hold the correspondence set small.
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prepr undec maxPath degree identCUIs weightBK

tR ↑ ⇈ – – ↑ ↑

tP – ↓ – – ↓ –

tF ↑ ⇈ – – ↑ –

ntR – – – – � ↑

ntP – – – � – ⇈

ntF – – – � – ⇈

Table 5.4: Correlation matrix for the MA-to-NCIt mapping. Single arrow: weak correlation, dou-
ble arrow: strong correlation. Upward arrow: positive correlation, downward arrow:
negative correlation.

recall decreases if further background knowledge, namely the identical CUI set, is integrated to

SemRep. The same holds for the trivial precision. But further background knowledge positively

affects the trivial recall. undec only influences the results of trivial relations since this parameter, if

activated, changes each undecided to equal. As a result of this, it increases the number of denoted

equal correspondences (recall), but simultaneously converts actual non-trivial undecided relations

to equal and hence decreases the precision. prepr as another independent variable which only affects

the trivial side leads to a better recall (if activated). This is the motivation of the preprocessing

step: normalising the concept names such that only conventional differences, like gaps between

words as underscore or as blank character, disappear. Contrarily, the node degree heuristic only

influences the non-trivial precision because it returns is-a, if no relation type could be determined

by SemRep and both concepts are part of SemRep but with a different number of outgoing nodes.

Since the deactivation of degree results in a higher precision, this heuristic seems to be wrong for

the biomedical domain. Finally, maxPath does not correlate with any precision or recall.

Best Results There are 22 cases in which the non-trivial f-measure is greater than the mean

plus one standard deviation. In 14 of these cases preprocessing, a maximal path length of 2, and

a height weight of background knowledge are used (independently of each other). In all of the

22 best cases, degree is off. One half uses the undecided-as-default strategy. In most cases (14

of 22) the additional knowledge from identical CUIs is deactivated. A low weight of background

knowledge never appears for these best cases regarding non-trivial f-measure.

In 16 cases the trivial f-measure is greater than its mean plus one standard deviation. These

cases yield similar results like those described above – with three exceptions: In all cases undec

is activated, and there are significantly more cases where i) the node degree heuristic and ii)

identical CUI knowledge is used.

The best test cases regarding trivial and non-trivial f-measure share exactly seven conditions. Only

one of them (condition 2) is one of the best four results in both charts. For illustration, these values

are depicted in table 5.5. The part above shows the best results concerning ntF, the part below

shows the best results concerning tF. The last columns show which is the setting of the independent

variables to achieve these results.

To summarize, the following setting of independent variables gain the best results: prepr=on,

undec=on, maxPath=2, degree=off, identCUIs=on, weightBK=h.
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non-trivial independent variables

id ntF ntR ntP prepr undec maxPath degree identCUIs weightBK

2 31.3 47.6 23.3 X X 2 – X h

72 31.3 47.6 23.3 X – 2 – X h

37 31.1 66.7 20.3 X X 2 – – h

55 31.1 66.7 20.3 X – 2 – – h

trivial independent variables

id tF tR tP prepr undec maxPath degree identCUIs weightBK

2 98.3 97.4 99.2 X X 2 – X h

97 98.3 97.9 98.8 X X 2 – X h

5 98.1 96.9 99.3 X X 3 – X h

20 98.1 97 99.2 – X 2 – X h

Table 5.5: The best four results regarding non-trivial (above) and trivial (below) f-measure. Col-
umn ’id’ refers to the evaluation of this mapping within the depicted condition.

Relax the Settings As explained in the preliminary lines of this test case, the attempt has been

made to relax the strong settings which lead to the correspondence set evaluated above. Thus, the

threshold θ is reduced to 0.6. This yields a set S0.6 of 163 correspondences.

The determined types by STROMA for the strong and the weakened setting are shown in figure 5.6.

In the stronger case approximately 85% of the correspondences are assigned equal, 10% are denoted

as undecided. Other relation types represent only 5%. These circumstances change when looking at

the correspondences with a confidence value ξ between 0.6 and 0.8. 62% of the correspondences are

returned as undecided, 22% as is-a, 10% as inverse is-a and 6% are assigned to another type. There

are no denoted equal relations at all. The question arises what are the benefits of such a weakened

GOMMA setting. A sample of 36 correspondences is extracted from the STROMA output of S0.6

and checked whether the assigned relation types are correct. The result is given in table 5.6. It

is shown which STROMA assigned type corresponds to which actual type and how often this is

STROMA type actual type number of occurrence

undecided – 11 (28%)

undecided equal 9 (25%)

undecided other 6 (17%)

is-a is-a 5 (14%)

is-a equal 3 (8%)

inverse is-a – 1 (3%)

has-a has-a 1 (3%)

Table 5.6: Evaluation of the sample from S0.6.
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Figure 5.6: Assigned types by STROMA for MA-to-NCIt mapping (δ = 0). Left: denoted types
for θ = 0.8. Right: denoted types for ξ between 0.6 and 0.8.

the case. ’–’ means that there is no relation between the two correspondence concepts at all, thus

the correspondence should be deleted. ’other ’ subsumes all types except those that are explicitly

mentioned for this STROMA type. There 12 wrong correspondences and 6 correspondences with a

correct assigned type. All other relations are undecided or have a wrongly assigned type. Because

one of the most important questions concerns the treatment of the correspondences whose relation

type is determined as undecided, two possibilities for that treatment are being focussed on. On

the one hand, all undecided correspondences could be deleted. As a consequence, 16 actual and 11

wrong correspondences are thrown away. Only one wrong and 3 wrongly-typed but 10 correctly-

typed correspondences are kept. On the other hand, undecided could be interpreted as equal. This

leads to the case that 12 wrong and 9 wrongly-typed but 15 correctly-typed correspondences are

kept. Consequently, the first option is characterised by a better precision but a lower recall than

the second one. Such a cautious procedure might be the better way because it yields a smaller but

more meaningful data set.

5.2.3 Further Mappings

The OAEI provides further mapping task within the biomedical domain, namely the large biomed-

ical ontology track8. It contains mappings between FMA, NCIt, and SNOMED CT. The gold

standards for the mappings are already given such that it can easily be seen that there are only a

few non-trivial correspondences which are expected after the matching task.9 An analysis of the ref-

erence mapping of FMA to SNOMED, which consists of the greatest ratio of non-trivial correspon-

dences compared to the other mappings, revealed that the non-trivial correspondences are mostly

of the same structural type: 〈X, is-a, X structure〉 or 〈X, is-a, structure of X〉. Nevertheless, there

are also occurrences of correspondences like 〈X, equal, X structure〉 and 〈X, equal, structure of X〉.

8http://oaei.ontologymatching.org/2013/largebio/index.html
9FMA-to-NCIt contains 1.4% non-trivial correspondences, SNOMED CT to NCIt 3.0%, and FMA to SNOMED

CT 7.5% in the reference mapping. The specific type (is-a vs. has-a) is not given.
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Similar to structure are set and group. Testing STROMA for these mappings revealed that such

constructions are very hard to handle for STROMA. The reason is that the concept names can

become large, as Structure of deep branch of ulnar nerve, contain one or more of ’s, which are

tricky for STROMA, and a preprocessing like inverse structure of X by omitting of and deleting

structure fails. Such a preprocessing destroys the clue for determining the relation type between

the concepts as the relation type seems to be arbitrary. Other reference mappings show analogue

problems.

These problems (complex constructions and only a few non-trivial relation types) lead to the as-

sessment that none of those mappings constitutes a good test case for GOMET. All in all, the

requirements for a reasonable test mapping for GOMET are very strict since they are the com-

bination of the requirements for an appropriate mapping for GOMMA as well as for STROMA.

This means that a given mapping M should consists of ontologies where a correspondence between

two concepts can be identified via string-based techniques. Hence, the concept labels under con-

sideration (or their given synonyms within one ontology) should be similar. Furthermore, such

corresponding concepts should be not only synonyms but should also be related via non-trivial re-

lations. However, STROMA should be able to enrich the correspondences, i.e. the concept labels

have to be more simple than complex and the concepts should be part of SemRep. Besides these

challenges, the evaluation requires a gold or silver standard. In the optimal way such a standard is

a prior given. Its manual design would take much time as a specialist knowledge in the biomedical

domain is required.

5.3 Focussing Benefits and Problems

Aim of this thesis is to establish a connection between GOMMA, a tool which generates ontology

mappings within the biomedical domain, and STROMA, a tool which enriches a given mapping

concerning the relation type of each single correspondence. This connection is programmatically

realized by GOMET. Theoretical issues which should be discussed in the context of that connection

focus on the prerequisites of a valid type detection. In the previous section the experimental results

are presented. This section poses an interpretation of these results.

First, the question arises whether a general pattern can be identified which leads to a wrong type

detection. This can be affirmed. For example, there are ”universal concepts”, like they are discussed

by [Arn15], which interfere the type computation. Such a concept is for example thing. Especially

in the case of a biomedical mapping, part constitutes also a universal concept. For instance, as

thorax skin is a part, namely of the body, and thorax is a part of the body as well, SemRep calculates

a related relation instead of the expected part-of relation. Additionally, background knowledge

can be misleading. Since the relation 〈outer ear, has-a, ear〉 has been extracted from WordNet,

the relation type has-a is returned to STROMA for the concepts outer ear and ear (confidence

value: 0.93). However, the correct relation type (part-of ) only achieves a confidence value of

0.80 and is ignored. As a consequence, semantic enrichment in the biomedical domain requires a

detection of specific universal concepts (part, anatomy, . . . ) and potentially the exclusion of very

common knowledge sources. It is an interesting starting point for future work to analyze knowledge

sources for their suitability within a specific domain. WordNet, for example, may contain ”sloppy”

relations.

Another issue which leads to errors by the type detection goes back to the pragmatical usage

of language. When somebody is talking about the heart and says that he has seen a human
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with an unusual small chamber last week, it is clear that in this context chamber refers to the

heart chamber; thus, 〈chamber, equals, heart chamber〉. Such relations are part of the background

knowledge. Since UMLS contains the equality of urinary bladder and bladder, and WordNet

contains the hypernym-relation between bladder and gall bladder it is returned that gall bladder is

a urinary bladder, 〈gall bladder, is-a, urinary bladder〉. Such wrongly-typed correspondences can

be excluded by looking at the structure of the involved words. Let X , Y be a string. It might

be rarely the case that an X bladder is a Y bladder if Y is not a substring of X . However, for

some cases it might be useful to have such pragmatic relations. Thus, trying to delete them would

be a bad approach. Referring to a part of the eye, lens and crystalline lens are synonyms. In

the case of the correspondence 〈lens, crystalline lens〉 the compound as well as the word frequency

strategy of STROMA vote for a inverse is-a relation. Only a high weight of background knowledge

(assuming that the equal relation is part of SemRep) can lead to a correctly-typed correspondence.

Summarizing, pragmatic relations are necessary and useful when the concepts under consideration

are subject and object of such a relations. But as soon as they are involved in a complex inference,

they will lead to a wrongly-typed correspondence probably.

Similar to those pragmatic relations are correspondences where one concept name is only a short-

ened form of the other one, like 〈trapezium, trapezial bone〉 or, more like a modifier-head construc-

tion, 〈arteriole smooth muscle, arteriole smooth muscle tissue〉. In such a case the two concepts

stand in an equal relation to each other. Specific pattern like muscle vs. muscle tissue may be

recognized independently of STROMA such that there is another heuristic which may be useful

if at least one of the concepts is not part of SemRep. Considering such heuristic which can be

applied even if one concept is not part of the background knowledge, is a reasonable thought as

background knowledge always tends to be incomplete.

Another more linguistic heuristic concerns the equivalence of suffixes. The concepts large intes-

tine muscularis mucosa and large intestinal muscularis mucosa denote the same thing. How-

ever, they differ only in a small substring. The second concept label contains intestinal in-

stead of intestine like the first one. Further (reduced) examples are 〈ovary X, ovarian X〉 and

〈X interosseus Y,X interosseous Y〉. Establishing such a heuristic in STROMA may further im-

prove the results in the absence of these concepts in SemRep.

A last linguistic heuristic which is proposed for future preinvestigations handles permutations. For

example, 〈eye anterior segment, anterior eye segment〉 consists of the concept but with slightly

different labels: the single words are permuted. In such a case, equal should be returned by this

method.

Some further heuristics for STROMA were introduced. Their scope has still to be evaluated.

However, if it becomes clear that the heuristics are valid, they might be integrated into STROMA.

The integration of different strategies is the core of STROMA which makes it as powerful and

flexible as it is.

Second, in order to summarize the influence of the independent variables to the quality of the

enriched mapping, it can be stated that although maxPath=3 returned better results it is recom-

mended to use this setting only for small mappings. The reason lies in the correlation of maxPath

with the execution time of STROMA. As the number of paths which have to be checked in the

background knowledge repository exponentially increases with the maximal path length, the ex-

ecution time increases considerably. Furthermore, the node degree heuristic seems to fail within

the biomedical domain. Mainly, that is because of the huge amount of part-of relations instead

of is-a in the domain of interest. All in all, background knowledge seems to be more important
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than the other strategies of STROMA. The reason might be that the other strategies are not sen-

sitive enough for the special structure of specialized terminology of the biomedical domain. For

example, in modifier-head constructions like thorax skin no relation can be determined between

compound and modifier in the common language. However, there are hints in the data that this

might be different in the biomedical domain. In this domain language a part-of relation often

occurs, 〈thorax skin, part-of, thorax〉.

Third, regarding to undecided typed correspondences, the evaluation has shown the following. In

the MA-to-Wiki as well as in the MA-to-NCIt mapping, at least 25% of all undecided correspon-

dences are wrong correspondences, i.e., they are erroneously determined by GOMMA. Although

not all wrong correspondences are assigned undecided, it is reasonable to exclude the undecided

ones from the mapping. First, this eliminates some wrong correspondences. Second, it is not

possible to assign a default type to them because there is no default type at all. If the matching is

executed with a low threshold more and more non-trivial correspondences appear in the mapping

and thus undecided may be a true is-a or part-of. In MA-to-Wiki, either undecided identifies a

wrong correspondence or a part-of relation.

Fourth, it was decided to test different thresholds. A complete evaluation is only possible for

mapping MA-to-Wiki as the MA-to-NCIt lacks an overall reference mapping containing semantic

relation type information. Thus, it holds that the higher the threshold, the more correctly-typed

correspondences are returned by STROMA, and the number of wrong and wrongly-typed corre-

spondences decreases. The best threshold seems to be θ = 0.6 as for 0.6 ≤ ξ < 0.8 a lot of

correspondences are typed correctly (83%) and only a few false correspondences stay in the re-

sulting correspondence set (assuming that undecided correspondences are deleted). There are no

correspondences with 0.8 ≤ ξ < 1.0. For ξ between 0.4 and 0.6 there are already 35% of wrongly-

typed correspondences. Further tests should be run in order to provide more evidence for this

threshold account.

Summarizing the results for GOMMA, lowering θ leads to more non-trivial correspondences within

the mapping. Although this procedure increases the recall for true correspondences and especially,

the recall for true non-trivial ones, the precision decreases since more and more wrong correspon-

dences are determined. It would be a preferable result to state that typically, no relation type, i.e.,

undecided, is assigned to wrong correspondences. But the evaluation shows that the currently used

STROMA strategies do not provide such a result. However, θ = 0.6 seems to be the best setting

for a mapping which contains many non-trivial types while maintaining a high precision. In this

case, undecided correspondences have to be deleted. A lower threshold may be tested as soon as

STROMA will have been successfully optimized for biomedical data sets.

53



6 Conclusion

This thesis establishes a connection between GOMMA and STROMA – both are tools of ontology

processing. Consequently, a new workflow of denoting a set of correspondences with five semantic

relation types has been implemented. Such a rich denotation is scarcely discussed within the

literature. The evaluation of the denotation shows that trivial correspondences are easy to recognize

(tF > 90). The challenge is the denotation of non-trivial types ( 30 < ntF < 70).

A prerequisite of the implemented workflow is the extraction of semantic relations between con-

cepts. These relations represent additional background knowledge for the enrichment tool STROMA

and are integrated to the repository SemRep which is accessed by this tool. Thus, STROMA is

able to calculate a semantic type more precisely. UMLS was chosen as a biomedical knowledge

source because it subsumes many different ontologies of this domain and thus, it represents a rich

resource. Nevertheless, only a small set of relations met the requirements which are imposed to

SemRep relations. Further studies may analyze whether there is an appropriate way to integrate

the missing relations as well.

The connection of GOMMA with STROMA allows the semantic enrichment of a biomedical map-

ping. As a consequence, this thesis enlightens two subjects of research. First, STROMA had

been tested with general ontologies, which models common sense knowledge. Within this thesis,

STROMA was applied to domain ontologies. Studies have shown that overall, STROMA was able

to treat such ontologies as well. However, some strategies for the enrichment process are based on

assumption which are misleading in the biomedical domain. Consequently, further strategies are

suggested in this thesis which might improve the type denotation. These strategies may lead to

an optimization of STROMA for biomedical data sets. A more thorough analysis will review their

scope, also beyond the biomedical domain. Second, the established connection may lead to deeper

investigations about advantages of semantic enrichment in the biomedical domain as an enriched

mapping is returned. Despite heterogeneity of source and target ontology, such a mapping results

in an improved interoperability at a finer level of granularity. The utilization of semantically rich

correspondences in the biomedical domain is a worthwhile focus for future research.
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