
Improving Task Modelling to Support

the Co-Evolution of Information

Systems and Business Processes

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

David N. Paquette

©David N. Paquette, November 2005. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In business environments, information systems are required to change in response to

changes in business processes. We refer to this process as co-evolution: the process

of reciprocal change in a software system and the activities and goals of the system’s

users. This research focuses on improving task modelling techniques to support the

co-evolution of information systems and business processes.

We propose the Interaction Template approach to improve task modelling to

support co-evolution. Interaction Templates make the task modelling process less

tedious in both the design phase and the evolution phase of a system’s lifecycle. Our

approach adds data schemas and presentation components to task models, allow-

ing us to build task models that adapt to data elements and parameters. Binding

presentation components to task models allows us to generate user interface proto-

types from task models. The generated user interface prototypes improve task model

simulation and help make the effects of changes to business processes more clear.

This thesis describes a study of the seven year evolution of a real world informa-

tion system. Through this study, we gain a better understanding of how information

systems evolve in response to the evolution of an organization’s business processes.

This thesis presents the Interaction Template approach, as well as a notation for

specifying Interaction Templates. A prototype system supporting the Interaction

Template approach is provided, along with examples demonstrating the approach.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Kevin Schneider, for his helpful guidance

and support throughout my graduate studies. Many thanks also to the members of

the Software Research Lab: Jennifer Petrie, Nicole Stavness, Andrew Sutherland,

and Mark Watson for their helpful feedback, advice, and friendship.

iii

For my loving wife Jennifer.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Statement . 4
1.3 Approach . 4
1.4 Contributions . 5
1.5 Outline . 6

2 Related Work 8
2.1 Model Based Approaches . 8

2.1.1 Task Modelling . 9
2.2 Program Families . 20
2.3 Software Evolution . 21
2.4 Dynamic Systems . 23
2.5 Structured Documents . 24

2.5.1 DTD and XML Schema . 24
2.5.2 XML Path Language . 25
2.5.3 Transforming Structured Documents 25

2.6 Discussion . 26

3 Changing Business Processes 29
3.1 Business Process Overview . 29
3.2 Software Overview . 30
3.3 Change Scenarios . 31
3.4 Change Scenario Effects . 34
3.5 Summary . 39

4 Interaction Template Model 42
4.1 Interaction Templates . 42

v

4.2 Terminology . 43
4.2.1 Interaction Template Definition 44
4.2.2 Task Template . 45
4.2.3 Component Bindings . 47

4.3 Task Model Simulation Semantics . 48
4.3.1 Hierarchical Semantics . 49
4.3.2 Temporal Operator Semantics 50
4.3.3 Task Model Simulation . 52
4.3.4 Interaction Template Simulation 52

4.4 Summary . 53

5 Interaction Template Notation 54
5.1 Specifying ConcurTaskTrees with XML 55
5.2 Specifying Interaction Templates with XML 56

5.2.1 Template Element . 57
5.2.2 Component Element . 58
5.2.3 Parameter Element . 59
5.2.4 Schema Element . 60

5.3 Specifying Task Model Adaptation Logic 61
5.3.1 Referencing Parameter Values 61
5.3.2 Referencing Schema Values . 63
5.3.3 Boolean Expressions . 66
5.3.4 Loops . 68

5.4 Using Existing Interaction Templates 71
5.5 Binding to Presentation Components 73
5.6 Summary . 76

6 Modelling with Interaction Templates 78
6.1 Model-IT Overview . 78
6.2 Interaction Templates . 80
6.3 Task Model Simulation . 82

6.3.1 Basic Simulation . 82
6.3.2 Enhanced Simulation . 82

6.4 Prototype Limitations . 90
6.5 Summary . 90

7 Interaction Template Examples 92
7.1 Data Entry . 93

7.1.1 Entering Attributes . 95
7.1.2 Entering Sub-Elements . 100

7.2 Data Access . 104
7.2.1 Modify View . 106
7.2.2 Select Data . 108

7.3 Dialog Box . 109
7.4 Using Interaction Templates . 111

vi

7.4.1 CS1 Revisited . 115
7.5 Summary . 119

8 Conclusion 120
8.1 Summary . 120
8.2 Future Work . 123

8.2.1 Prototype Layout and Sketching 123
8.2.2 Multiple User Task Models . 124
8.2.3 Attaching Sample Data . 124
8.2.4 In-Depth Field Study . 125

8.3 Conclusion . 125

A ConcurTaskTree XSD 131

B Interaction Template XSD 132

C Enter Data Element Interaction Template 135

D Data Table Interaction Template 138

E Print Labels 141

vii

List of Tables

2.1 Example UAN description . 13

4.1 Temporal Operator Semantics . 51

5.1 Interaction Template parameter types 60

viii

List of Figures

2.1 A simple graph editing tool . 9
2.2 Example HTA description . 10
2.3 Example GOMS description . 11
2.4 ConcurTaskTrees notation . 14
2.5 Example CTT description . 16
2.6 Example State Transition Network 17
2.7 Basic CTT Simulator . 18
2.8 Dialogue Graph Editor . 20
2.9 PetShop simulator . 21

3.1 Lab Manager and Lab Assistant . 31
3.2 Impact of change scenarios on the lab software 35
3.3 “Sample Priorities” change scenario effects 36
3.4 “Identifying Outliers” change scenario effects 39

4.1 Task Simulation State Transition Network 49
4.2 Hierarchical task structure . 49

5.1 A simple ConcurTaskTree . 56
5.2 A ConcurTaskTree adapted to an XML Schema 70

6.1 Model-IT prototype . 79
6.2 Interaction Template Repository . 80
6.3 Inserting an Interaction Template . 81
6.4 Model-IT Basic Simulator . 83
6.5 “Enter String Value” IT example . 84
6.6 Enhanced Task Model Simulator prototype 89

7.1 Data Entry Examples . 93
7.2 Data Table Examples . 104
7.3 Example of a task tree that is added when AllowSort is true 107
7.4 Example of a task tree that is added when AllowColumnMove para-

meter is true . 108
7.5 Example of a dialog box . 110
7.6 Print Dialog Task Tree . 111
7.7 ‘Enter Data Element’ Interaction Template Use 112
7.8 ‘View Data Table’ Interaction Template Use 113
7.9 ‘Print Labels’ Interaction Template Use 113
7.10 Lab Assistant Interaction Templates example 114
7.11 Simple Lab Assistant Prototype Before CS1 115
7.12 ‘Enter Data Element’ Interaction Template after CS1 117
7.13 ‘View Data Table’ Interaction Template after CS1 117

ix

7.14 Simple Lab Assistant Prototype After CS1 118

x

List of Abbreviations

CTT ConcurTaskTrees
CTTE ConcurTaskTreesEnvironment
CUI Concrete User Interface
ETC Enabled Task Collection
ETS Enabled Task Set
FSR Field Service Representative
GOMS Goals Operators Methods and Selectors
GPS Global Positioning System
HTML Hypertext Markup Language
IT Interaction Template
ITDL Interaction Template Definition Language
PRS Plant Root Simulator
STN State Transition Network
WIMP Windows, Menus, Icons, and Pointing Devices
XML eXtensible Markup Language
XPath XML Path Language
XSL-FO XSL Formating Objects
XSL XML Style Sheet Language
XSLT XSL Transformations

xi

Chapter 1

Introduction

A business process is a set of one or more linked activities which collectively

realize a business goal, normally within the context of an organizational structure

defining functional roles and relationships [44]. Businesses use information systems to

support or automate many parts of the organizations’ business processes. As business

processes evolve, supporting information systems must also evolve in order to meet

new requirements. We refer to this process as co-evolution: the process of reciprocal

change in a software system and the activities and goals of the system’s users. Co-

evolution can occur in two directions: software systems changing in response to a

change in user’s activities and goals, or a user’s activities and goals changing in

response to a change in a software system.

Our research explores co-evolution in the direction of software systems changing

in response to changes in activities and goals. We focus on a specific type of software

system, information systems, where activities and goals are business processes. That

is, we are interested in how information systems must respond to changes in business

processes. Based on our focus, we define a co-evolution point as a specific change

that has occurred to an information system in response to a change in a business

1

process. We intend to support the co-evolution of information systems and business

processes by improving the process of adapting information systems to changes in

business processes.

We explore the use of model based approaches to support the co-evolution of

information systems and business processes. Model based approaches to interactive

system design are based on the specification and evaluation of interactive systems

using high-level models [36]. We focus on improving a specific task modelling no-

tation called ConcurTaskTrees. ConcurTaskTrees model systems in terms of goals

and activities, which allows us to model information systems in terms of the business

processes they support.

1.1 Motivation

Some small businesses, particularly knowledge-based and riskier innovative busi-

nesses, have business processes that are constantly evolving. These businesses find it

difficult to obtain information systems that meet their needs. Off-the-shelf software

promotes software reuse and helps businesses adopt best-practices. Unfortunately,

the initial cost of purchasing software can be substantial, and expensive and lengthy

customizations are often needed to adapt the software to accurately meet the busi-

ness’s needs. These costs, combined with constantly changing business processes,

can result in customization expenses that greatly exceed a small business’s means.

Alternatively, businesses can choose to build custom information systems. A custom

solution can lead to software that better meets the needs of the business. Unfor-

2

tunately, evolving business processes can lead to maintenance costs that are, again,

too large for small businesses.

Using task models, we are able to model information systems in terms of the

business processes they support. Task models provide an effective abstraction of in-

formation systems. The models focus on users and their activities and goals, which

can help developers design better systems. Task modelling also helps to ensure that

systems meet user’s requirements through early task model simulation, allowing users

to simulate the activities involved in a system to ensure their goals can be reached.

Unfortunately, task modelling can become tedious when modelling information sys-

tems of a significant size [29].

Task modelling can also be useful in the evolutionary phase of a system’s life-

cycle. When a business process changes, a system’s task model can be modified

in response to those changes, allowing developers to verify the changes with users.

However, model changes must be tediously performed by hand, making the process

inefficient. Many tasks must be added, deleted, moved, and/or renamed to corre-

spond to the business process changes. Furthermore, when a task model changes,

the effects on the system are unclear because there is no link between the model and

the implementation.

This research addresses some of the issues that are present when modelling in-

formation systems using task models. We hope to provide techniques that will make

task modelling less tedious in both the design phase and the evolution phase of a

system’s lifecycle by providing adaptable task templates for building task models.

Furthermore, we hope to make the effects of task model changes more clear to both

3

developers and users by binding presentation components to the tasks in a task

model. We believe that these improvements to task modelling will help to support

the co-evolution of information systems and business processes.

1.2 Thesis Statement

Building task models using adaptable task templates and binding presentation com-

ponents to tasks will improve the task modelling process and support the co-evolution

of information systems and business processes. Adaptable task templates allow task

models to adapt their behaviour based on data schemas and parameter values. Pro-

viding adaptability in task models can help to alleviate the tedious aspects of building

and evolving task models.

Binding presentation components to tasks will help to ensure a task model main-

tains its benefits throughout a system’s lifecycle. Binding presentation components

to tasks can be useful for developers by bridging the gap between a system’s task

model and a system’s implementation. Furthermore, component bindings can be

used to create user interface prototypes of a task model. These prototypes, involv-

ing concrete interface components, can help both users and developers to see how a

system will change in response to changes in business processes.

1.3 Approach

We begin with a study identifying real world examples of co-evolution points. In

this study, we explore how information systems must adapt as a result of changes in

4

business processes.

Next, we propose techniques that aim to make task modelling less tedious in both

the design phase and the evolution phase of a system’s lifecycle by using adaptable

task templates. These task templates represent reusable task model pieces that

are self-adaptive to data schemas and parameter values. In particular, we hope to

promote the reuse of task model pieces and their implementation using a concept we

refer to as Interaction Templates [29]. Interaction Templates are task model pieces

that model common interface interactions found in information systems.

We also propose an improvement to task model simulation. Our approach to task

model simulation involves high-fidelity user interface prototypes that are generated

from task models using concrete user interface components. The prototypes help

users and developers to understand how a system will change in response to changes

in business processes.

1.4 Contributions

Through the investigation of using task models to support the co-evolution of infor-

mation systems and business processes, we hope to provide the following contribu-

tions:

� a rigorous definition of Interaction Templates,

� a technique for building task models using Interaction Templates,

� a technique for composing user interface prototypes for task model simulation,

5

� a description of the semantics of task model simulation,

� a prototype system for building task models using Interaction Templates, and

� a prototype system for task model simulation using concrete user interface

components.

A case study of the seven year evolution of a real world information system, as

discussed in Chapter 3, will help us to understand how changes in business processes

can affect an organization’s information systems. The study will provide real world

examples of co-evolution points, and will be used to structure a new approach to task

modelling information systems. The approach will involve a technique for building

task models that are self-adaptive to data schemas and parameter values. An en-

hancement to task model simulation will also be proposed. The enhancement will

include user interface prototypes that are generated from task models.

1.5 Outline

Chapter 2 discusses previous research in the areas of model based approaches, soft-

ware evolution, program families, dynamic systems, and structured documents. A

case study exploring how changes in business processes can affect a business’s infor-

mation systems is discussed in Chapter 3. Chapter 4 describes Interaction Templates,

our approach to improving task models to support co-evolution. Chapter 5 outlines

a notation for Interaction Templates, while Chapter 6 describes a prototype that was

built to illustrate the approach. In Chapter 7, we demonstrate our approach using

6

several examples. Finally, Chapter 8 concludes with an overview of the research that

has been completed as well as possible directions for future work.

7

Chapter 2

Related Work

Model based approaches, and in particular task models, have been used to model

interactive systems that support business processes. This Chapter explores the ad-

vantages and weaknesses of several task modelling approaches. Research in the areas

of software evolution, program families, and autonomic systems have all explored is-

sues related to changing software over time. This Chapter gives an overview of

these areas and discusses their applicability to co-evolving information systems and

business processes. Finally, an overview of research into structured documents and

transforming structured documents is provided.

2.1 Model Based Approaches

Model based approaches to the development of interactive systems involve the spec-

ification and evaluation of interactive software systems at a more abstract level than

source code. Using high-level models to specify interactive systems can help design-

ers to focus on specifying the requirements and behaviour of the system rather than

immediately worrying about implementation details. Model based approaches also

have the benefit of early evaluation. High-level models can be evaluated before im-

8

plementation has begun, allowing for a refinement of the system specification with

less resources than if source code were involved in the change.

2.1.1 Task Modelling

Task models focus on describing interactive systems in terms of user goals and the

tasks required to reach those goals. Many model based approaches, such as ADEPT

[45], SUIDT [1], U-TEL/MOBI [42], and PetShop [27], acknowledge the importance

of task models. This section will describe some of the more successful task modelling

approaches that have been proposed. To illustrate each of the approaches, the simple

graph editing tool shown in Figure 2.1 will be modelled.

Figure 2.1: A simple graph editing tool

9

Hierarchical Task Analysis

One of the first approaches to task modelling, Hierarchical Task Analysis (HTA) [37],

dates back to the late 1960s. HTA is used to break down activities into different

levels. A HTA is represented with task names in numbered boxes. Although the

order of the numbers has no relevance, the numbers can be used to describe a plan

for reaching a specific user goal. Given the HTA shown in Figure 2.2 and the goal

of editing a graph to add an edge between two existing nodes, a plan would be as

follows:

0. Edit Graph

1. Load Graph

3. Add Edge

3.1 Select From Node

3.2 Select To Node

7. Save Graph

HTA is a very simplistic approach to task modelling. A hierarchical breakdown

of tasks is given, but the temporal relationships between tasks is not known. For

example, it is not possible to express concurrent tasks using HTA.

Figure 2.2: A HTA description of a simple graph editor

10

GOMS

Goals Operators Methods and Selectors (GOMS) [36, 37], another early approach to

task modelling, has been used with a great deal of success. GOMS takes a cognitive

approach to task modelling. It is a hierarchical description in which Goals, Opera-

tors, Methods and Selectors describe tasks. Goals are reached in terms of operators.

Operators are elementary perceptual, motor and cognitive acts [37]. Methods are

made up of sequences of subgoals and operators used to reach goals. Selection rules

are used when there is a choice between methods or operators. An example of a

GOMS specification is shown in Figure 2.3.

GOMS has been used successfully to predict task execution times. The main

drawbacks of GOMS are that it only considers sequential tasks and error-free exe-

cution.

Figure 2.3: A GOMS description of a simple graph editor

Several different versions of GOMS have been proposed. The simplest of these,

KLM-GOMS [6], uses only keystroke-level operators. KLM-GOMS does not use

goals, methods or selection rules. A KLM-GOMS description only lists the actions

a user must perform to reach a goal. The actions listed are keystrokes, mouse-

movements, and mouse-button presses. Other versions of GOMS include NGOMSL

11

[18] and CPM-GOMS [15]. “NGOMSL includes a more rigorous set of rules for

identifying the GOMS components and information such as the number of steps

in a method, how goals are set and terminated, and what information needs to be

remembered while performing the task” [36]. CPM-GOMS is an extension of GOMS

that does consider non-sequential tasks.

The GOMS approach has seen more interest in North America than in Europe.

In Europe, other techniques for task modelling have been developed and used more

widely [36].

User Action Notation

The User Action Notation (UAN), developed in the late 1980’s [37, 16], is a formal

textual language used to describe the behaviour of graphical user interfaces. A UAN

specification is made up of two parts.

The first part shows the task decomposition in terms of tasks and subtasks, as

well as the temporal relationships among asynchronous tasks [36]. An example of a

task decomposition is:

Task: Edit Graph

Load Graph(Add Node | Add Edge | Delete Node | Delete Edge | Move Node | Save

Graph) +

This expression is a description of the main task Edit Graph. The steps involved

in editing a graph are first Load Graph followed by one or more (specified by the

+ operator) of the tasks composing the expression (Add Node | Add Edge | Delete

12

Node | Delete Edge | Move Node | Save Graph). The | operator indicates a choice to

be made by the user.

The second part of a UAN specification is a table that describes user actions,

which are referred to as Primitive User Actions [16]. Each basic task is described in

a table that indicates the user action, the interface feedback and interface state for

each physical action performed by the user. An example is shown in Table 2.1.

Table 2.1: A UAN description of a simple graph editor

Task: Move Node
User Action Interface Feedback Interface State
∼ [node]Mv node! selected = node
∼ [x, y]∗ node>∼

node edges(node)>∼
M∧

In the first line, ∼[node] Mv indicates the mouse cursor (∼) has entered the

context of the node ([node]), a mouse button (M) was depressed (v), the node

was highlighted (node!), and the interface’s currently selected node was updated to

indicate that the highlighted node was selected (selected = node). In the second line,

∼[x,y]* indicates that the mouse was moved around on the screen, node> ∼ indicates

that the node followed the mouse movement, and node edges(node)>∼ indicates that

all edges attached to the node also followed the mouse movement. In the third line,

Mˆ indicates that the mouse button was released.

The UAN provides a very detailed textual description of the behaviour of a

graphical user interface. However, the level of description does not seem to be much

more abstract than source code, making the UAN a notation that does not fit well

with many other model based approaches.

13

ConcurTaskTrees

ConcurTaskTrees (CTT) is a graphical notation used to describe interactive systems

[37]. With CTT, tasks are arranged hierarchically, with more complex tasks broken

down into simpler sub-tasks. CTT includes a rich set of temporal operators that are

used to describe the relationship between tasks, as well as unary operators that are

used to identify optional and iterative tasks. A summary of the CTT Notation can

be seen in Figure 2.4.

Figure 2.4: Summary of the ConcurTaskTrees notation

CTT includes four types of tasks: abstraction, application, interaction, and user

tasks. An abstraction task is a high-level task that must be further broken down into

application, interaction, or user tasks. An application task is a task that is performed

by the system. An example of an application task is displaying data to the user.

An interaction task is any task where the user is interacting with the system, for

14

example, when a user enters data into a form. A user task refers to a cognitive task

performed by the user, for example when a user decides between two options.

Three unary operators can be applied to tasks in CTT. A task can be repeated

any number of times using the iterative operator, represented by an asterisk next

to the task. Using the optional operator, represented by square braces surrounding

a task, makes a task optional. Finally, for multi-user systems, a task in one user’s

task tree can be linked to a task in another user’s task tree by using the connection

operator. The connection operator is represented by adding a double-sided arrow

below a task.

In CTT, sibling tasks are tasks in the tree that share the same parent. Sibling

tasks can be related to each other using a set of eight available temporal operators,

as shown in Figure 2.4. A temporal operator describes the temporal relationship

between two neighbouring sibling tasks. The choice relationship identifies a choice

between two tasks, where one of the tasks must be performed, but not both. An order

independence relationship means that both the tasks must be performed, but the

order in which they are performed does not matter. Two tasks that can be performed

at the same time, without constraints, are related using the concurrency operator.

Two tasks that can be performed at the same time, but with communication between

the two, are related using the concurrent with information exchange operator. The

enabling operator is used to show when the completion of one task enables another

task. When one task enables another, as well as passes some information to the

task it is enabling, the enabling with information exchange operator is used. The

disabling operator is used to show that the first action of the second task disables

15

the first task. When the first action of the second task disables the first task, but the

last action of the second tasks re-enables the first task, the suspend/resume operator

is used. An example of a CTT model specifying the example graph editing program

is shown in Figure 2.5.

Figure 2.5: An example of a CTT model specifying a simple graph
editing program

Task Model Simulation One of the powerful features of CTT is the ability to

simulate task models at an early stage in the development process, allowing for a

simulation of the system before implementation has started. Simulation can help

to ensure the system that is built will match the user’s conceptual model as well

as help to evaluate the usability of a system at a very early stage. Several task

model simulators have been built for ConcurTaskTrees. First, we discuss the process

involved in simulating ConcurTaskTrees. Next, an overview of some of the task

model simulators that are available is given.

The Simulation Process Simulating a ConcurTaskTree involves simulating, in

some way, the performance of specific tasks in order to reach a pre-defined goal. In

16

a ConcurTaskTree, tasks are related to each other according to their temporal rela-

tions and hierarchical breakdown. Depending on what tasks have been performed,

some tasks are enabled and others are disabled. The first step in simulating Con-

curTaskTrees is to identify the sets of tasks that are logically enabled at the same

time. A set of tasks that are logically enabled at the same point in time is called an

enabled task set (ETS) [36]. Enabled tasks sets are identified according to the rules

laid out in [36]. The set of all enabled task sets for a specific task model is referred

to as an enabled task collection (ETC).

Having identified the enabled task collection for a task model, the next step is to

identify the effects of performing each task in each ETS. The result of this analysis is a

state transition network (STN). In this state transition network, each ETS is a state,

and transitions between enabled task sets occur when tasks are performed. The final

preparation step for simulation is to calculate the initial state. A simple example

illustrating a ConcurTaskTree and its STN is shown in Figure 2.6. A command-line

tool called TaskLib [24] can be used to extract the ETC, STN, and initial state from

a CTT. The details of TaskLib’s implementation can be found in [25].

Figure 2.6: A CTT (left) and its State Transition Network (right)

17

Once the ETC, STN, and initial state have all be identified, task model simulation

can be performed. This initial process is common to all ConcurTaskTree simulators.

The actual simulation involves the user navigating through the STN by simulating

the performance of tasks. As will be discussed shortly, the simulation of performing

a task is done differently in the various simulation tools that exist.

Simulation Tools

Basic Simulators The most basic simulators, such as the one shown in Figure

2.7, simply display the currently enabled tasks in a list. In these simple simulators,

double-clicking on a task simulates the performance of that task. When a task is

performed, the enabled tasks are updated accordingly. A basic task model simulator

can be found in ConcurTaskTreesEnvironment (CTTE) [35], a tool for both building

and simulating task models.

Figure 2.7: A simple ConcurTaskTrees task model simulator

Dialogue Graph Editor The Dialogue Graph Editor, a tool developed at the

University of Rostock, provides a more complex simulation than the basic simulator

found in CTTE. The Dialogue Graph Editor allows designers to create views and

18

assign tasks from a task model to those views. The views can later be used to

simulate the task model as shown in Figure 2.8. When simulating the task model,

views are represented as windows, elements (as well as tasks) inside the windows are

represented by buttons, and transitions between states are represented by navigation

between windows [13]. Views become visible when they are enabled, and invisible

when they are disabled. Likewise, buttons become enabled and disabled when their

associated tasks are enabled or disabled. Users can simulate the task model by

clicking buttons to perform tasks and navigate through windows to select between

available tasks.

The windows and buttons generated by Dialogue Graph Editor for simulation

purposes are considered to be abstract interface prototypes. However, clicking but-

tons to perform tasks does not seem to provide much of an advantage over the basic

simulators, and at times might be more confusing. For example, clicking a button

to simulate an interaction task that does not normally involve a button widget may

seem strange to end users. The key advantage in Dialogue Graph Editor is the ability

to organize tasks into a dialog. This requires an additional dialog model as well as

a mapping between the dialog model and task model.

PetShop The PetShop [27] environment offers a different approach to interac-

tive system simulation. In PetShop, ConcurTaskTrees are integrated with a Petrie

net based notation called ICO. The two models are integrated using scenarios, and

a mapping between a ConcurTaskTrees’ user tasks and a system model’s user ser-

vices. ICO specifications are used to simulate interactive systems in the PetShop

19

Figure 2.8: Simulator included in Dialogue Graph Editor [12]

environment using presentation objects that are manually implemented by system

developers. The PetShop approach allows task models to be used to better under-

stand and evaluate the system’s behaviour, while a more detailed system model is

used to model the dialogue and presentation parts of the system. The PetShop sim-

ulator, shown in Figure 2.9, provides a very detailed simulation of the system, but

relies on a very detailed system model as well as manually implemented presentation

objects.

2.2 Program Families

A program family is set of programs whose common properties are extensive enough

that it is advantageous to study the common properties before studying the specific

properties of the individual family members [32]. One method of designing and de-

veloping program families is module specification. In module specification a program

is divided into information hiding modules [33], each of which hides a design decision

that could change for the various family members. Developing new family members

is simplified when using module specification because changes in one module do not

20

Figure 2.9: Screenshot of the PetShop simulator [27]

affect the system as a whole. The concept of program families has been studied

extensively since the idea was originally introduced in 1976. The most recent version

of the topic that has seen considerable success in industry is Software Product Lines

[5] from the Software Engineering Institute at Carnegie Mellon.

When designing information systems to support business processes, selecting

modules that can hide the effects of possible business process changes will help to

support co-evolution.

2.3 Software Evolution

Software evolution includes any activities involved in ensuring that a software system

continues to meet the organization’s needs in an efficient, cost effective manner. Soft-

21

ware evolution is a broad area and can include activities ranging from early design

decisions to issues involved in managing unanticipated changes in an existing soft-

ware system. In contrast co-evolution emphasizes the complex relationship between

software systems and the activities and goals of users. In the direction of software

adapting to changes in users activities and goals, co-evolution can be considered a

subset of software evolution.

In general, software evolution research can be divided into two categories: antic-

ipatory and reactive [3]. Anticipatory methods of software evolution are based on

the belief that software change can be planned. Early planning for change can be

seen in many requirements engineering methods [17, 46, 28]. Anticipatory methods

focus on eliciting possible changes during requirements analysis as well as designing

and planning for the possible changes that have been identified.

Reactive methods are based on the belief that despite early efforts in require-

ments engineering and design, there will always be some changes that cannot be

anticipated. In reactive methods, the belief is that software change should only be

dealt with once the changes are needed. Reactive methods focus on formal meth-

ods for managing changes as they occur, and are discussed in workshops such as

Unanticipated Software Evolution [19].

We have taken an anticipatory view towards software evolution in trying to an-

ticipate and design for the types of changes that can occur when a business process

is changed. Our research focuses on a specific subset of software evolution, which we

have defined as co-evolution.

22

2.4 Dynamic Systems

Dynamic systems are either systems that can be changed at runtime, or systems

that can change their implementation without the need to recompile or reboot [26].

Dynamic systems can be classified as either open or closed. An open dynamic system

allows the functionality of the system to evolve and allows for adaptations to be

specified at runtime. Closed dynamic systems have all functionality and adaptation

logic specified at build-time.

Another classification of dynamic systems is adaptable and self-adaptive. An

adaptable system is one that provides a procedural or declarative interface by which

an external actor can specify the changes that are needed. Adaptable systems are a

type of open system. Self-adaptive systems are capable of adapting their behaviour

based on elements in the system’s deployment environment. Environment elements

are anything that is observable by the system. Some examples of observable infor-

mation are end-user input, external hardware, and internal data. A self-adaptive

system can be classified as either an open or closed system, depending on its ability

to change at runtime.

The approach we have taken to supporting the co-evolution of information sys-

tems and business processes involves both self-adaptive and adaptable components.

In particular, we aim to provide task models that are self-adaptive to data and para-

meter values, while providing techniques that allow developers to adapt task models

to changes in business processes that are not handled by the data and parameter

adaptability.

23

2.5 Structured Documents

The Extensible Markup Language (XML), a subset of Standard General Markup

Language (SGML), describes a class of data objects called XML documents and

partially describes the behavior of computer programs which process them [4]. XML

is a grammatical system that is used to create custom markup languages. While

every custom markup language contains custom tags that describe data objects,

every language must adhere to the underlying rules of XML. XML documents are

made up of entities, and every document begins with a ‘root’ entity. XML provides

a powerful and extensible mechanism for storing and exchanging data, which may

prove useful in co-evolving information systems and business processes.

2.5.1 DTD and XML Schema

A schema defines a custom language that is created with XML. A schema contains a

set of rules that defines the elements and attributes that are allowed or required in a

document. Currently, there are two schema definition languages available: Document

Type Definition (DTD) and XML Schema. DTDs contain rules for each and every

element and attribute that can appear in a document. XML Schema is a newer

schema language that provides several advantages over DTDs. XML Schemas are

written in XML, which means that the same parsers can be used to process both

XML Schemas and XML documents. Also, XML Schemas contain a notion of scope,

whereas all definitions in DTDs are global. In DTDs, no two elements can have the

24

same name, even if they appear in different contexts. XML Schemas also provides

more control over the type of information that can appear in an element or attribute.

2.5.2 XML Path Language

XML Path Language [9], XPath, is a powerful language used to navigate elements

and attributes in an XML document. Using path expressions, XPath selects nodes or

sets of nodes from an XML Document. Location paths are used to navigate through

an XML document’s hierarchical structure and select sets of nodes. Sets of nodes

can be filtered using predicates. Axes can be used to further specify target nodes

according to parent-child relationships. Finally, a set of functions is available to

provide string manipulation and other useful functions.

2.5.3 Transforming Structured Documents

Structured documents are often transformed from one structure to another. Struc-

tured document transformations are needed when presenting documents to users,

or when documents are shared across different systems. Several document trans-

formation languages have been proposed, including XSL [8], XT3D [20], and VXT

[39].

XSL

XSL, a style sheet language for XML documents, contains three parts: XSLT, XPath,

and XSL-FO. XSL Transformations (XSLT) is an XML based language for transform-

ing one XML document into another XML document for the purpose of presentation.

25

XML Path Language, XPath, is an expression language used by XSLT to refer to

portions of an XML document. Finally, XSL Formatting Objects (XSL-FO) is a vo-

cabulary for specifying formatting semantics in an XML document. While XSLT was

initially designed for the purposes of transforming XML documents to documents

containing formatting details expressed in XSL-FO, it has been used in more general

applications such as generating HTML web pages from XML documents. However,

XSLT is not a general purpose XML transformation language, as it was designed

specifically for the types of transformations that are needed when XSLT is used as

a part of XSL [8].

2.6 Discussion

Model based approaches to software development show promise in supporting the co-

evolution of information systems and business processes. In particular, the activity

and goal oriented task modelling approaches seem well suited to modelling infor-

mation systems in terms of business processes. We have reviewed several different

task modelling approaches. Hierarchical Task Analysis provides a useful hierarchical

breakdown of tasks, but it does not provide any mechanism for modelling the tempo-

ral relationships between tasks. As such, HTA does not seem like a good choice for

modelling complex information systems that support complex business processes.

The GOMS approach only considers sequential task execution, making it a poor

choice for our research. The User Action Notation (UAN) focuses on very detailed

descriptions of tasks, going as far as describing mouse movements and mouse button

26

presses. The UAN seems to be too detailed to model systems in terms of business

processes. The ConcurTaskTrees (CTT) notation, with its hierarchical breakdown

of tasks and temporal operators, seems to be the best choice for modelling infor-

mation systems that support business processes. The notation allows us to include

cognitive user tasks, tasks performed by the system, as well as tasks where the user

is interacting with the system.

The simulation capabilities of the ConcurTaskTrees notation allows designers to

validate a system design with users before the system is ever built. Simulation also

shows promise for validating changes to a system that must occur as the result

of a business process change. Most current task model simulation tools provide a

very abstract simulation of the tasks in the system. While some simulation tools,

such as PetShop, do provide simulation using concrete interface components, they

require separate and very detailed models, as well as requiring developers to write

code to build the simulated interfaces. Task model simulation involving concrete user

interface components without additional and complex models would allow developers

and users to more easily see how information systems would change in response to

changes in business processes.

We have seen how co-evolution relates to the traditional definition of software

evolution. We are focusing on co-evolution, a subset of software evolution, and have

taken an anticipatory view of software evolution. We have also reviewed work in the

area of dynamic systems, and seen how our research involves both adaptable and

self-adaptive components. Structured documents and their related technologies have

been studied, as these are used in our approach to task modelling.

27

The work of Parnas [32] has shown us the value of studying a family of programs

and structuring software into modules that hide the effects of possible changes. We

apply this approach in Chapter 3 by studying how changes in business processes

can affect information systems, and in Chapter 4 by proposing an approach to task

modelling that encapsulates the effects of some business process changes.

28

Chapter 3

Changing Business Processes

Supporting the co-evolution of information systems and business processes re-

quires an understanding of how business processes can change within an organi-

zational context. The business processes at Western Ag, a soil analysis lab, were

studied to help better understand how business processes can change, and how those

changes can affect the software that supports those business processes. Although the

software is small, the evolution of the custom software used by Western Ag makes it

an excellent example of an organization whose software has been affected by contin-

ually changing business processes. This chapter provides a brief overview of Western

Ag’s business processes and custom software, followed by a set of nine co-evolution

points that have occurred at Western Ag.

3.1 Business Process Overview

The goal of the soil analysis lab at Western Ag is to provide soil nutrient values and

pH/EC values to farmers. Initially, Field Service Representatives (FSRs) retrieve soil

samples from farmers’ fields. The soil is then shipped to the analysis lab, where it

is analyzed using the PRS�-probes. Analyzing soil samples using the PRS�-probes

29

begins by inserting the probes in the soil for a 24-hour burial. Over the burial time,

the membrane on the probes absorbs soil nutrients that are available to a plant

root. After the burial is completed, the probes are washed to remove all soil. The

washed probes are then immersed in a mild acid solution, causing the nutrients to

be transferred from the membrane to the solution. Finally, the solution is analyzed

using traditional methods. The results of the final analysis, nutrient values and

pH/EC values, are then sent to the FSRs via fax, email, and data files transferred

over an FTP server.

3.2 Software Overview

Western Ag uses a custom software solution to track samples through the analysis

process as well as to process the data generated from soil analysis. The software

has undergone two major changes since the lab first opened in 1997. The first major

change occurred in the fall of 2000, when the software was migrated from a Microsoft

Excel based solution to a custom built Microsoft Windows application. The next

major change came in the fall of 2002, which saw the addition of a central database

server to support multiple users located in remote labs across Western Canada. The

most recent version of the software, called the Lab Assistant and Lab Manager, was

built using Borland Delphi 4 with a central MySQL database server. Screenshots of

the Lab Manager and Lab Assistant can be seen in Figure 3.1. The Lab Manager

and Lab Assistant are made up of approximately 24,000 lines of Object Pascal source

code.

30

Figure 3.1: Lab Manager (left) and Lab Assistant (right) screenshots

3.3 Change Scenarios

A study of the lab software was conducted in order to identify how the changing

business processes of the soil-testing lab affected the software over the last seven

years. The goal of this study was to attempt to anticipate the types of changes

that can result from business process changes. Anticipating the types of changes

can help to specify modules that can minimize the effect of such changes. A key lab

employee who was involved in both of the major evolution points of the software was

interviewed to identify historical business process changes and how those changes

affected the software.

This section will outline some example business process changes that occurred

31

in the soil analysis lab. Example business process changes are described in terms of

change scenarios. A change scenario outlines a concrete change that has occurred

in the businesss process but does not discuss how the change will affect the soft-

ware used in the business. Change scenarios provided an effective mechanism for

communicating change between users and system designers.

CS1 - Sample Priorities:

On busy days, the number of samples that are waiting to be analyzed can exceed the

number of samples that can be processed in a single day. The lab has implemented

a method of prioritizing samples as “3 Day”, “7 Day”, and “No Rush”. Samples

marked “3 Day” must be processed as soon as possible. “7 Day” samples must be

completed in seven days, and therefore can wait up to four days after being received

to begin processing. Processing of samples marked “No Rush” can wait until all

samples with a higher priority rating have been processed.

CS2 - Method Blanks:

The lab has implemented a new quality control measure. A method blank must be

processed with every batch of samples that is analyzed. A method blank is a clean

PRS�-probe that is analyzed with the current batch of samples. Since the method

blank has not been buried in a soil sample, the analysis should return values that

are less than the detection limit for each nutrient that is tested. If the results of a

method blank are too high, the batch of probes used to test the soil has likely been

contaminated and the soil samples should be re-tested with a new set of probes.

CS3 - Remote Processing Labs:

As the number of soil samples begins to exceed the capacity of a single soil-testing lab,

32

Western Ag has decided to open a remote-processing lab in Southern Saskatchewan.

The remote-processing lab receives soil samples from nearby Field Service Represen-

tatives and performs the probe burial and probe cleaning steps of the soil analysis.

The clean probes are then shipped to the central analysis lab for the remainder of

the analysis process. The addition of a remote-processing lab increases the capacity

of the central analysis lab, as it does not have to deal with soil from samples that

have been processed by the remote lab.

CS4 - Sample Batching:

The lab no longer processes soil samples as individual samples. Many samples are

grouped together and processed as a batch of samples. Batches are given a Batch

ID, and samples within a batch are processed together as a group. Batching samples

together helps lab technicians to keep track of the samples currently being analyzed.

CS5 - Second Depth Samples:

Western Ag has started to occasionally test samples for farmers who grow winter

wheat. When a farmer wants to grow winter wheat, it is required that the field is

sampled at two different depths. A shallow sample is tested for all nutrients, while

the deeper (second-depth) sample is tested only for Nitrogen. When the results are

reported to the farmer, the Nitrogen values of both samples are added together.

CS6 - pH/EC Email:

In an attempt to cut down on long-distance fees and increase the efficiency of the

lab, Western Ag has decided to email pH/EC results rather than manually faxing

the results. pH/EC results are now emailed as a Microsoft Excel file.

CS7 - Sample Forecasting:

33

It is important for lab technicians to have an indication of the number of soil samples

to expect in a given week or month. Lab technicians have started to create summaries

of historical data to help identify expected numbers for given time periods.

CS8 - GPS Format:

Field Service Representatives reference soil sample locations using GPS coordinates.

While most reps use degree decimal format (eg. 42.45472°), some reps are now using

degree-minute-second format (eg. 42°27’17”). The lab is required to record and

report the locations in either of the two formats.

CS9 - Identifying Outliers:

Lab technicians have started to monitor the quality of soil sample data more closely

by checking the quality control data for outliers. An outlier is defined as a number

that is over two standard deviations from the mean value. If outliers are identified,

technicians are able to check certain portions of the analysis process for possible

errors.

3.4 Change Scenario Effects

The effects of the nine change scenarios on Western Ag’s lab software are discussed

in terms of three categories: changes in data, interface, and processing. Changes in

data are considered when changes were made to the underlying database schema.

Data schema changes are further divided into changes to existing database tables,

the addition of new database tables, and the deletion of existing database tables.

Changes in interface are considered whenever there has been a change to the user

34

interface of the software. Changes in processing are considered when a change has

occurred in the non-user interface specification portion of the source code, that is,

whenever the source code that processes data in the information system has changed.

Figure 3.2 shows a summary of the magnitude of impact each of the change sce-

narios had on the lab software. The rating used to summarize the magnitude of

impact of each change scenario is a relative rating based on the amount of develop-

ment time that was needed to implement each change. A minor impact corresponds

to less than a week of developer-hours to implement. A medium impact corresponds

to between one week and one month, while a major impact corresponds to a month

or more.

Figure 3.2: Impact of change scenarios on the lab software

CS1 - Sample Priorities:

Adding a priority rating to each soil sample caused a change to the existing ‘sample’

data element in the lab software. An enumerated ‘priority’ field, with possible values

‘3 Day’, ‘7 Day’, and ‘No Rush’, was added to the ‘sample’ data element. As shown

in Figure 3.3, the change also caused two small interface changes. A radiogroup

for selecting a sample’s priority rating was added to the soil sample entry form,

and a ‘priority’ column was added to the data table that displays the ‘sample’ data

35

elements. Small changes in data processing were also needed in the functions that

save ‘sample’ data elements to the database, as well as the functions that retrieve

the ‘sample’ data elements for viewing in the data table.

Figure 3.3: Changes in interface caused by the “Sample Priorities”
change scenario

CS2 - Method Blanks:

This change scenario resulted in changes in data, interface, and processing. A data

element called ‘mblk’ was added to the data model of the lab software. In the

interface, a method of adding a ‘mblk’ was added, as well as a data table to view all

method blanks that have been analyzed. Several changes in processing also occurred.

A function was added to ensure that a ‘mblk’ is analyzed with every batch of samples.

Functions were also added to store and retrieve the ‘mblk’ data elements.

CS3 - Remote Processing Labs:

Of all the change scenarios, the addition of remote processing labs had the greatest

impact on the lab software, as it was the main cause of the last major evolution

point in the lab software. Major changes in data were seen, and a central database

server was needed to handle concurrency due to multiple users. Two new data

elements, the ‘analysis lab’ and the ‘processing lab’, were added, corresponding to

the central analysis lab and remote processing lab respectively. The ‘sample’ data

element was changed to include a reference to the ‘processing lab’ that processed the

sample. The interface was changed significantly, as two separate interfaces were now

36

needed. One interface, the Lab Assistant, was built for the remote processing labs

that guides the remote processing labs through the pre-processing of soil samples. A

separate interface, the Lab Manager, was built for the central analysis lab. Changes

in processing were also seen in all functions that stored and retrieved data, because

not only did the data change, but its location and storage type also changed from a

local Microsoft Access database to a central MySQL database server.

CS4 - Sample Batching:

A ‘batchID’ field was added to the existing ‘sample’ data element. The interface

was changed in the sample entry screen. Since samples are no longer entered one

at a time, a listbox was added to display the current batch of samples. A button

was also added to allow lab technicians to specify when the batch of samples has

been completely entered. Changes in processing were needed when adding a batch

of samples to the database. A function was needed to retrieve a valid ‘batchID’

and assign it to the current batch. Several other minor interface changes were made

where a ‘batchID’ could be used to select a group of samples. Corresponding changes

in processing were also made to retrieve and save samples based on ‘batchID’.

CS5 - Second Depth Samples:

A boolean ‘N-Only’ field was added to the existing ‘sample’ data element. A ‘second

depth’ field was also added to the existing ‘sample’ data element. The ‘N-Only’ field

is set to true for the second depth sample, while the ‘second depth’ field of the first

sample is set to the unique id of the second depth sample. A change to the interface

was made to the sample entry screen. A checkbox was added to specify when a

sample is a second depth sample. When the checkbox is checked, a text-entry box

37

is activated. The unique id of the first sample is selected in the text-entry box. A

change in processing was made in the functions that save the ‘sample’ data elements

to the database. A change in processing was also made in the data export section of

the lab software. When sample data is exported, a function was added that checks

for second depth samples. When a second depth sample is found, the Nitrogen value

from the second depth sample is added to the first sample before the data is exported.

CS6 - pH/EC Email:

When sending data to Field Service Representatives, the software was changed such

that the pH/EC data was converted to Microsoft Excel format and emailed to the

Field Service Representatives instead of printed and manually faxed.

CS7 - Sample Forecasting:

In this change scenario, there is a requirement for a new view of the data that

already exists in the lab software, therefore no changes to the data have occurred.

There has, however, been a minor change in both interface and processing. First, the

interface was changed to include a status bar below the sample data table. Changes

in processing were made with the addition of functions to populate the status bar

with statistics such as the number of total samples currently shown in the data table.

Existing soil sample filtering functionality of the lab software provided the remainder

of the tools needed to generate the desired summaries.

CS8 - GPS Format:

GPS data is entered in the same way as before, therefore the interface does not change

in the sample entry form. A small function that converts the GPS coordinates into

decimal format if it was entered in degree-minute-second format was added to the

38

software, therefore the processing has changed when saving the sample data to the

database. A small interface change was made on the screen that displays sample data.

A button to toggle between the two GPS formats was added. Here, a function was

also added to convert from decimal degree format to degree-minute-second format

when needed.

CS9 - Identifying Outliers:

A quality control view, shown in Figure 3.4 was added to the software, where quality

control data is shown in a series of charts. The charts allow the lab technicians to

quickly identify outliers. As well, a change in processing was required and functions

were added to populate the charts and calculate standard deviation of quality control

data.

Figure 3.4: New view needed due to the “Identifying Outliers” change
scenario

3.5 Summary

This case study has shown us the impact of nine different business process changes

on the information systems used by Western Ag. The study has provided us with

39

real world examples of how business process changes can effect information systems.

We can use these examples to structure our approach to supporting co-evolution of

information systems and business processes. The examples also show that the ability

of information systems to quickly adapt to changes in business processes is important

to businesses.

We analyzed the impact of each of the nine change scenarios in terms of their im-

pact on the software system in three categories: data, interface, and processing. Our

analysis showed that almost all of the business process changes resulted in changes

to the system’s user interface. Furthermore, our analysis showed that changes in

data always leads to corresponding changes to the system’s user interface. Evidence

of such changes can be seen in CS1 - Sample Priorities, CS2 - Method Blanks, CS3 -

Remote Processing Lab, CS4 - Sample Batching, and CS5 - Second Depth Samples.

Each of these change scenarios resulted in changes in data and corresponding changes

to the system’s user interface. Changes in processing occurred, with varying degrees

of impact, in all of the nine changes scenarios.

We take a model based approach to supporting the co-evolution of information

systems and business processes. We use a task modelling approach to take advantage

of its focus on activities and goals. Using task modelling alone, we can model how the

activities performed in the information system will change. However, our case study

also showed how data elements and user interfaces also change. Data elements can be

modelled using data modelling techniques such as XML Schema. User interfaces are

best represented by user interface components as is the case in widely used graphical

user interface builders such as Visual Basic, Delphi, and Visual Studio. Combining

40

task models, data models, and user interface components in a way that can be quickly

modelled to show how information systems change in response to business process

changes would help developers co-evolve information systems and business processes.

In Chapter 4, we propose Interaction Templates, a template based approach

to task modelling that binds data models and user interface components to task

models. The Interaction Template approach will allow developers to quickly, and

more accurately, co-evolve information systems and business processes.

41

Chapter 4

Interaction Template Model

Chapter 3 showed us real world examples of how continually evolving business

processes can affect supporting information systems. In this Chapter, we introduce

the Interaction Template approach to task modelling. Using Interaction Templates,

we hope to improve task modelling to help support the co-evolution of information

systems and business processes.

We begin with an introduction of Interaction Templates. Next, we define the

terms used in the Interaction Template approach. We continue with a discussion

of the semantics of task models as they relate to task model simulation. Finally,

we conclude with an outline of the benefits of our approach. In Chapter 5, we will

introduce a notation, called the Interaction Template Definition Language, that we

use to specify Interaction Templates.

4.1 Interaction Templates

Task modelling, and the ConcurTaskTrees notation in particular, has been shown

to be useful when designing interactive systems [37]. Unfortunately, when using

ConcurTaskTrees, the task modelling process can be tedious because the models

42

become very large when modelling non-trivial systems. Our previous research [29]

has shown that when modelling information systems using ConcurTaskTrees, there

are often subtrees that repeat with only slight variations throughout the task model.

Furthermore, these repeating subtrees are often associated with common interface

interactions found in information systems. We have proposed Interaction Templates

[29] as a technique to ease task modelling of information systems by encapsulating

these common interface interactions.

Interaction Templates include a detailed and adaptable task model, an execu-

tion path (i.e. dialog), and a presentation component. An Interaction Template

is an adaptable subtree that can be inserted into a ConcurTaskTree and quickly

customized by setting parameter values and assigning data schemas. Inserting and

quickly customizing Interaction Templates reduces the need to repeatedly model sim-

ilar interactions in a system, and thus, can greatly reduce the time spent modelling

information systems.

An Interaction Template that has been inserted into a ConcurTaskTree can be

adapted by changing its parameter values or updating its data schemas. Therefore,

Interaction Templates can be used to adapt a system’s task model to changes in

business processes.

4.2 Terminology

In this section, we will introduce and define the terms used in the Interaction Tem-

plate approach.

43

4.2.1 Interaction Template Definition

An Interaction Template definition (IT definition) consists of a set of zero or more

parameters, a set of zero or more schemas, a set of zero or more components, and a

task template. That is,

IT definition ::= IT {parameter} {schema} {component} task template end IT

parameter ::= par name:type=value

schema ::= schema name

component ::= component name:type {event} {property}

event ::= event name

property ::= property name:type

The parameters and schemas are used within the task template to define an

adaptable task tree. A parameter corresponds to a variable of a specific type. A

default value can be assigned to a parameter in an IT definition, and can be manually

set when the Interaction Template is instantiated. A parameter’s value is used in

the adaptation logic of the Interaction Template’s task template.

A schema represents the description of a data element. In an IT definition,

a schema contains only a name. When an Interaction Template is instantiated,

the location of the schema’s data element description is specified. A data element

description contains the description of the structure of a data element. An example

of a data element description is a XML Schema. The data element description is

used in the adaptation logic of the task template.

A component defines a concrete user interface component, also referred to as a

44

presentation component, that implements some portion of the task tree defined by

the Interaction Template. A component includes a name, a type, a set of events,

and a set of behaviour modifying properties. The type specifies the name of the

object that implements the component. In order to customize the behaviour of the

component, the properties can be set within the task template. Events are bound to

specific tasks in the task template, defining a relationship between the user interac-

tions implemented in the component, and the template’s tasks.

A task template is a structure that defines the adaptation logic for an Interaction

Template’s task tree. That is, a task template defines how the template’s task tree

will adapt to the values assigned to parameters and to the data element descriptions

assigned to schemas.

4.2.2 Task Template

A task template is made up of either a case, a loop, an Interaction Template Use, or

a task. That is,

task template ::= case | loop | IT use | task

case ::= case {condition} end case

condition ::= condition expression {task template} end condition

loop ::= loop {element} {task template} end loop

IT use ::= IT use name {parameter assignment} {schema path}

parameter assignment ::= par name=value

schema path ::= schema path name=<path>

task ::= task name category {unary operator} {component binding} {task template}

45

end task

unary operator ::= optional | iterative

category ::= abstraction | system | interaction | user

A case is an adaptation logic structure that modifies a task tree’s structure. A

case defines a choice between a set of tasks based on the value of a parameter, or

the data element description of a schema. A case contains one or more conditions.

A condition contains an expression and one or more task templates. A condition

defines that the task templates will only be included in the task tree when the

expression evaluates to true. An expression is a boolean expression that can contain

references to parameter values and/or a schema’s data element descriptions.

A loop is an adaptation logic structure that repeats one or more task templates

for a given set of elements selected from a schema’s data element description. A

loop contains a set of one or more elements and a set of one or more task templates.

The set of task templates is repeated for each of the elements. The task templates

can contain references to the current element, allowing us to adapt tasks according

to the element ’s details. For example a loop could be used to repeat a task for each

of the attributes of a data element.

An Interaction Template use (IT use) is a reference to another IT definition. An

IT use consists of a name, a set of parameter assignments, and a set of schema paths.

The name specifies the name of the Interaction Template being inserted in to the

current template. The parameter assignments consist of name, value pairs to assign

values to the template’s parameters. The schema paths consist of name, path pairs

assigning paths to data elements for the templates schemas. An IT use is used to

46

instantiate the specified Interaction Template, using the parameter assignments and

schema paths, when the current template is instantiated.

A task defines a task in the Interaction Template’s task tree. A task contains a

name, a category, and two unary operators: optional and iterative.

The task’s name is a string specifying the name of the task. The name can

contain a reference to a parameter value, or to a specific section of the data element

description of a schema. That is, the name of a task can be adapted to parameters

and schemas. The task’s category specifies the category of the task (Interaction, Ab-

straction, System, or User). The two unary operators are boolean values. The unary

operators can contain a boolean expression in the same way as a condition’s expres-

sion. Therefore, a task’s unary operators can adapt to parameters and schemas.

A task may also contain other optional properties. A task may contain a temporal

operator specifying a temporal operator for the task. A task can also optionally

contain component bindings that define a relationship between a component and the

current task. A task can also contain a set of one or more task templates, defining

the task ’s child tasks.

4.2.3 Component Bindings

Component bindings define a relationship between tasks and presentation compo-

nents in a template. There are three types of component bindings: property bindings,

event bindings, and task bindings. That is,

component binding ::= property binding | event binding | task binding

property binding ::= bind prop component name.property name=parameter name

47

event binding ::= bind event component name.event name

task binding ::= bind task component name

Property bindings define a relationship between a parameter and a component ’s

property. A property binding is used to assign a parameter value to a component ’s

property. Event bindings define a relationship between a component ’s event and a

leaf task in the task tree. That is, when the event is fired by the component, a

specific task is performed in the task model. Task bindings defines a relationship

between a task and the component. That is, the interaction modelled by the task is

implemented by the component.

4.3 Task Model Simulation Semantics

In order to simulate a task model, we need to keep track of two bits of state infor-

mation for each task in the task tree. A task can be in one of four states: Disabled,

Enabled, Performing, or Performed. Figure 4.1 shows the different states a task can

be in during simulation, and the transitions that can occur between states. In this

state transition network, the transitions occur when messages are sent to a task. The

transition messages are sent by neighbouring siblings and parents as will be seen in

the following sections.

Any task that is currently enabled can be started, at which point its state changes

from enabled to performing. A non-iterative task that is in the performing state

changes to the performed state only when that task is completed. For an iterative

task, the task becomes enabled when the complete transition occurs. The complete

48

Figure 4.1: State transition network for tasks during task model sim-
ulation

transition occurs according to the hierarchical semantics of the task tree, as will be

discussed shortly.

4.3.1 Hierarchical Semantics

Figure 4.2: Hierarchical task structure of a ConcurTaskTree

The hierarchical structure of a task tree defines relationships between parent and

child tasks. The following rules summarize our interpretation of the hierarchical

semantics of the ConcurTaskTrees notation.

Enable When a task is enabled, its left-most child task is enabled.

Disable When a task is disabled, all of its children are disabled.

49

Complete A task is completed only once all of its non-optional sub-tasks have

been completed. Therefore, leaf tasks are completed immediately after they are

started.

4.3.2 Temporal Operator Semantics

Temporal operators define temporal relationships between sibling tasks in a task tree.

In task model simulation, this means that a state transition in one task can result

in a state transition in that task’s neighbouring siblings. The resulting transition, if

any, is defined by the task’s temporal operator. When a task receives a transition

message, it sends a transition message to its left and right siblings based on the

value of the tasks left and right temporal operators. Guards are used to ensure

that transition messages do not cause message loops. Table 4.1 summarizes our

interpretation of the semantics of the temporal operators in the ConcurTaskTrees

notation.

Rule 1, for example, describes the semantics of the >> (Enabling) temporal

operator. Rule 1 states that when the current task T receives a Complete message

and the task’s right temporal operator is >>, then an Enable message is sent to the

right sibling, RS, of task T.

Rule 9 makes use of a guard to ensure that messages do not cause infinite message

loops. Rule 9 states that when the current task T receives an Enable message, and

the task’s right temporal operator is ||| (Concurrent) and the Sender is not the task’s

right sibling (RS), then an Enable message is sent to RS.

50

T
a
b
le

4
.1

:
R

u
le

s
d
efi

n
in

g
th

e
se

m
an

ti
cs

of
te

m
p
or

al
op

er
at

or
s

in
th

e
C

on
cu

rT
as

k
T
re

e
n
ot

at
io

n
.

W
h
en

a
tr

an
si

ti
on

m
es

sa
ge

is
re

ce
iv

ed
b
y

a
ta

sk
,
tr

an
si

ti
on

m
es

sa
ge

s
ar

e
se

n
t
to

le
ft

an
d

ri
gh

t
si

b
li
n
g

ta
sk

s
b
as

ed
on

th
e

va
lu

es
of

te
m

p
or

al
op

er
at

or
s.

G
u
ar

d
s
ar

e
u
se

d
to

p
re

ve
n
t
tr

an
si

ti
on

m
es

sa
ge

s
fr

om
ca

u
si

n
g

lo
op

s.

R
u
le

M
e
ss

a
g
e

R
e
ce

iv
e
d

T
e
m

p
o
ra

l
O

p
e
ra

to
r

M
e
ss

a
g
e

S
e
n
t

C
u
rr

en
t

T
as

k
(T

)
R

ig
h
t

L
ef

t
G

u
ar

d
R

ig
h
t

S
ib

li
n
g

(R
S
)

L
ef

t
S
ib

li
n
g

(L
S
)

R
u
le

1
T

.C
om

p
le

te
(S

en
d
er

)
>

>
R

S
.E

n
ab

le
(T

)
R

u
le

2
T

.C
om

p
le

te
(S

en
d
er

)
[]
>

>
R

S
.E

n
ab

le
(T

)
R

u
le

3
T

.E
n
ab

le
(S

en
d
er

)
[]

S
en

d
er

6=
R

S
R

S
.E

n
ab

le
(T

)
R

u
le

4
T

.D
is

ab
le

(S
en

d
er

)
[]

S
en

d
er

6=
R

S
R

S
.D

is
ab

le
(T

)
R

u
le

5
T

.S
ta

rt
(S

en
d
er

)
[]

R
S
.D

is
ab

le
(T

)
R

u
le

6
T

.E
n
ab

le
(S

en
d
er

)
[]

S
en

d
er

6=
L
S

L
S
.E

n
ab

le
(T

)
R

u
le

7
T

.D
is

ab
le

(S
en

d
er

)
[]

S
en

d
er

6=
L
S

L
S
.D

is
ab

le
(T

)
R

u
le

8
T

.S
ta

rt
(S

en
d
er

)
[]

L
S
.D

is
ab

le
(T

)
R

u
le

9
T

.E
n
ab

le
(S

en
d
er

)
|||

S
en

d
er

6=
R

S
R

S
.E

n
ab

le
(T

)
R

u
le

10
T

.E
n
ab

le
(S

en
d
er

)
|||

S
en

d
er

6=
L
S

L
S
.E

n
ab

le
(T

)
R

u
le

11
T

.E
n
ab

le
(S

en
d
er

)
|[]
|

S
en

d
er

6=
R

S
R

S
.E

n
ab

le
(T

)
R

u
le

12
T

.E
n
ab

le
(S

en
d
er

)
|[]
|

S
en

d
er

6=
L
S

L
S
.E

n
ab

le
(T

)
R

u
le

13
T

.E
n
ab

le
(S

en
d
er

)
|=

|
S
en

d
er

6=
R

S
R

S
.E

n
ab

le
(T

)
R

u
le

14
T

.E
n
ab

le
(S

en
d
er

)
|=

|
S
en

d
er

6=
L
S

L
S
.E

n
ab

le
(T

)
R

u
le

15
T

.E
n
ab

le
(S

en
d
er

)
[>

R
S
.E

n
ab

le
(T

)
R

u
le

16
T

.S
ta

rt
(S

en
d
er

)
[>

L
S
.D

is
ab

le
(T

)
R

u
le

17
T

.E
n
ab

le
(S

en
d
er

)
|>

R
S
.E

n
ab

le
(T

)
R

u
le

18
T

.S
ta

rt
(S

en
d
er

)
|>

L
S
.D

is
ab

le
(T

)
R

u
le

19
T

.C
om

p
le

te
(S

en
d
er

)
|>

L
S
.E

n
ab

le
(T

)

51

4.3.3 Task Model Simulation

The first step involved in task model simulation is to calculate the set of tasks that

are initially enabled. The initially enabled tasks are calculated by enabling the root

task and following the rules we have outlined above. The task model simulation

process consists of simulating the performance of currently enabled leaf tasks, and

calculating the resulting enabled tasks according to the semantics of the task tree.

4.3.4 Interaction Template Simulation

Using current task modelling techniques, no link exists between a system’s imple-

mentation and a system’s task model. The effects of changes to a task model on a

system’s implementation are unclear. Binding presentation components to task mod-

els can be useful for developers by bridging the gap between a system’s task model

and a system’s implementation. The structure of the task model defines which user

interface components should be enabled at each point as the user progresses through

activities to reach specific goals.

Furthermore, component bindings can be used to create user interface prototypes

of a task model. When modelling with Interaction Templates, task model simulation

can be enhanced through the use of concrete user interface components. User in-

terface prototypes can be generated from the Interaction Templates found in a task

model. When a task model is being simulated, users can interact with concrete user

interface prototypes to perform specific tasks. These prototypes can help both users

and developers to see how a system will change in response to changes in business

52

processes. Since the prototypes involve concrete user interface components, some of

the implementation details are explicitly shown to the developer. The prototypes

resemblance to the system’s user interface also helps users visualize how they will

perform tasks in a new system. In Chapters 6 and 7, we will see how user interface

prototypes are generated and used in task model simulation.

4.4 Summary

In Chapter 5, we will introduce the Interaction Template Definition Language [31]

used to specify Interaction Templates. We will show how user interface prototypes

can be generated from task models in Chapter 6. In Chapter 7, we will illustrate

how Interaction Templates can be built to adapt to some of the changes that can

occur as a result of changes in business processes.

53

Chapter 5

Interaction Template Notation

In the previous Chapter, we introduced the Interaction Template approach to

task modelling and discussed its benefits in terms of supporting the co-evolution of

information systems and business processes. In this chapter, we introduce an XML

based notation for specifying Interaction Templates. In the next chapter, we will

introduce a prototype of a task model editor that supports the Interaction Template

approach.

We have developed a custom XML language for specifying Interaction Templates.

There are multiple benefits to using XML to specify Interaction Templates. The tree

structure of XML documents allows us to easily specify ConcurTaskTrees. Using

XML also allows us to make use of existing XML processing technologies such as

XPath, as we will see later in this Chapter. Our custom XML language is called

the Interaction Template Definition Language (ITDL) [31]. The notation is used

to specify Interaction Template definitions, that is, a set of parameters, a set of

schemas, a set of components, and a task template.

We begin by describing the XML language used to specify ConcurTaskTrees.

Then, we introduce the Interaction Template Definition Language.

54

5.1 Specifying ConcurTaskTrees with XML

The ITDL is based on an XML description of the Interaction Template’s task tree.

We use a modification of the XML language used by the ConcurTaskTreesEnviron-

ment (CTTE) [35]. In this section, we will explain each of the elements used to

specify ConcurTaskTrees. A complete XML Schema for the CTT elements can be

found in Appendix A. The ctt namespace is used to denote elements that describe

ConcurTaskTrees.

The root element for a ConcurTaskTree document is the <ctt:TaskModel> el-

ement. The <ctt:TaskModel> element contains a name attribute of type string

that specifies the model’s name, and a single <ctt:Task> element specifying the

model’s root task. A <ctt:Task> element contains four attributes: ID, Category,

Iterative, and Optional. The ID attribute is a string specifying the task’s name.

The Category attribute is a restricted string type specifying the task’s category.

The possible values for Category are Abstraction, Interaction, System, and User.

The Iterative and Optional attributes are boolean values specifying the task’s

iterative and optional operators respectively. Every <ctt:Task> element also con-

tains a <ctt:TemporalOperator> element, specifying the task’s temporal relation

with its right sibling. The <ctt:TemporalOperator> is a restricted string type with

possible values Choice, Order Independency, Concurrent, Concurrent with Informa-

tion Exchange, Disabling, Suspend-Resume, Enabling, and Enabling with Informa-

tion Exchange. The <ctt:TemporalOperator> element may also be empty when

the task does not have a right sibling, because no temporal operator is required in

55

this case. If a task has any children, it contains a <ctt:SubTasks> element. The

<ctt:SubTasks> element contains one <ctt:Task> element for each of the task’s

children, and the children are listed in order of left to right as they appear in the

task tree.

The following example shows a simple CTT where the root task has two abstract

child tasks. The two child tasks are related using the Choice temporal operator. The

graphical representation of this simple CTT is shown in Figure 5.1.

Figure 5.1: A simple ConcurTaskTree

<ctt:TaskModel name="Example Task Model">

<ctt:Task ID="Root Task" Category="Abstraction" Iterative="false" Optional="false">

<ctt:TemporalOperator></ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="Child 1" Category="Abstraction" Iterative="false" Optional="false">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

</ctt:Task>

<ctt:Task ID="Child 2" Category="Abstraction" Iterative="false" Optional="false">

<ctt:TemporalOperator></ctt:TemporalOperator>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</ctt:TaskModel>

5.2 Specifying Interaction Templates with XML

In this section, we will describe each of the elements of the Interaction Template

Definition Language. The it namespace is used to denote the elements that describe

56

the parameters and behaviour of Interaction Templates. A complete XML Schema

defining the Interaction Template elements can be found in Appendix B.

5.2.1 Template Element

The root element of an Interaction Template document is the <it:template> ele-

ment.

<xs:element name="template">

<xs:complexType>

<xs:sequence>

<xs:element name="description" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="component" type="it:component"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="parameter" type="it:parameter"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="schema" type="it:schema"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="task" type="ctt:Task"

minOccurs="1" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:element>

The <it:template> element contains a name attribute that specifies a name

that is meaningful to the template’s user. The <it:template> element is a complex

element containing the following elements:

� <it:description> is a simple string element that is required to occur once and

only once. This element contains a string describing the Interaction Template

and its intended use.

� <it:component> is an empty element specifying the name of a presentation

component that implements the interactions defined by the Interaction Tem-

plate.

57

� <it:parameter> is a complex element that defines one of the Interaction Tem-

plate’s parameters. This element occurs once for each of the template’s para-

meters.

� <it:schema> is an empty element that specifies any XML Schemas the Inter-

action Template requires. This element occurs once for each schema required

by the template.

� <ctt:Task> is a complex element describing the Interaction Template’s task

template. This element follows the ConcurTaskTree XML Schema Definition

as discussed above, but with modifications that allow us to specify the task’s

adaptation logic.

� <it:case> is a complex element that allows the template to select from a set

of tasks depending on the values of parameters and schemas.

The following example shows a skeleton Interaction Template document.

<it:template name="...">

<it:description>...</it:description>

<it:component name="..." />

<it:parameter name="..." type="...">

<it:value>...</it:value> ...

</it:parameter>

<it:schema name="..."/>

<ctt:Task ID="..." Category="..." Iterative="..." Optional="...">

<ctt:TemporalOperator>...</ctt:TemporalOperator>

<ctt:SubTasks>...</ctt:SubTasks>

</ctt:Task>

</it:template>

5.2.2 Component Element

An <it:template> element contains one <it:component> element for each presen-

tation component that implements the interaction modelled by a specific task in the

58

Interaction Template.

<xs:complexType name="component">

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="objectname" type="xs:string" use="required" />

</xs:complexType>

The name attribute indicates the name given to the current component. The

name is referred to within the template when specifying component bindings. The

objectname attribute indicates the name of the object that implements the presen-

tation component.

Components can be defined at the beginning of an Interaction Template, as is of-

ten the case when a single component implements all of the interaction encapsulated

within the template. Alternatively, components can be defined from within specific

tasks in the template. Defining components within tasks allows us to design tem-

plates that make use of a number of different components, and gives us the ability

to select different components depending on the structure of the resulting task tree.

We will discuss presentation components further in Section 5.5.

5.2.3 Parameter Element

The <it:parameter> elements define the Interaction Template’s parameters.

<xs:complexType name="parameter">

<xs:sequence>

<xs:element name="value" minOccurs="0" maxOccurs="1" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="type" type="it:parameterType" use="required"/>

</xs:complexType>

The <it:parameter> element has two attributes: name and type. The name

attribute is a string that specifies the name of the parameter. The name will be used

later in the Interaction Template specification to specify the template’s adaptive

59

behaviour. The type attribute is a restricted string specifying the parameter’s type.

Table 5.1 shows the possible parameter types for Interaction Templates.

The <it:parameter> element contains one <it:value> element. The <it:value>

element’s type is not restricted by the XML Schema shown above, but the value

should be the same type as is specified in the current <it:parameter> element’s

type attribute. If a value is specified for the <it:value> element, that value will

be the parameter’s default value. If no default value is specified, the user of the

Interaction Template will be required to specify a value when inserting the template

into a task tree.

Table 5.1: Interaction Template parameter types

Parameter Type Description
it:string Alphanumeric String
it:decimal Integer value
it:float Floating point value
it:boolean True or False

The following example specifies a boolean parameter called MyParam whose de-

fault value is false.

<it:parameter name="MyParam" type="it:boolean">

<it:value>false</it:value>

</it:parameter>

5.2.4 Schema Element

Interaction Templates can be designed to adapt to the structure of data elements.

Data elements are bound to Interaction Templates through XML Schemas that define

the structure of data elements. We will see how Interaction Templates can adapt to

data elements in section 5.3.

60

<xs:complexType name="schema">

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="path" type="xs:string" use="required"/>

</xs:complexType>

Each <it:schema> element defines a data element that is bound to the template.

This element contains a name attribute. The name attribute is a string specifying

the name that will be used to refer to the data element from within the template.

The <it:schema> element also contains a path attribute that remains empty until

the Interaction Template is inserted into a ConcurTaskTree. The path attribute is

used to specify the location of the data element that will be linked to the template.

5.3 Specifying Task Model Adaptation Logic

Within the context of an <it:template> element, the <ctt:Task> element is struc-

tured slightly differently than defined inside the ConcurTaskTree XML Schema dis-

cussed earlier. Certain commands are either embedded within the <ctt:Task>

element, or surrounding the <ctt:Task> element. When interpreted, these com-

mands transform the Interaction Template definition into a valid ConcurTaskTree

<ctt:Task> element. The structure of the resulting <ctt:Task> element can vary

depending on the parameter values and schemas that are specified, allowing for task

model adaptability to be defined inside the Interaction Template definition.

5.3.1 Referencing Parameter Values

The simplest form of adaptation comes in the form of referencing parameter val-

ues from within a <ctt:Task> element’s attributes and child elements. References

61

to parameter values can be inserted into any of the attributes or elements of the

<ctt:Task> element. These references, when interpreted, will result in attribute

and element values that are valid as defined by the CTT XML Schema. Parameter

values are referenced using the XML Path Language (XPath). XPath, as described

in Section 2.5.2, provides a method of navigating the elements and attributes in an

XML document. From anywhere within the <it:template> element, the XPath

expression shown in Expression 5.1 will select the text within the value element of

the <it:parameter> element whose name attribute equals ParamName:

ancestor::it:template/it:parameter[@name=“ParamName”]/it:value/text() (5.1)

First, ancestor::it:template selects the nearest ancestor element that is an

<it:template> element. Next, /it:parameter[@name="ParamName"] selects the

<it:parameter> element whose name attribute equals ParamName. Finally, /it:value

selects the <it:parameter> element’s <it:value> element, and /text() selects the

text inside that element. To simplify parameter references within Interaction Tem-

plates, we use $ParamName as a short form of Expression 5.1.

The following example shows how a boolean parameter called MyBool is referenced

to set the root task’s optional operator. While $MyBool is not a valid value for the

Optional attribute, the reference will be replaced with a valid boolean value when

it is interpreted.

<it:template name="Boolean Example">

...

<it:parameter name="MyBool" type="it:boolean">

<it:value>False</it:value>

</it:parameter>

...

62

<ctt:Task ID="Root Task" Category="Abstraction" Iterative="False" Optional="$MyBool">

<ctt:TemporalOperator></TemporalOperator>

...

</ctt:Task>

</it:template>

Since parameter references can be inserted into any of the attributes or elements

within the <ctt:Task> element, we must exercise caution when designing Interaction

Templates. Inserting parameter references into incorrect attributes or elements could

result in an invalid ConcurTaskTree. For example, inserting $MyBool in the Category

attribute above would result in an invalid value for the Category attribute. We have

chosen to assign the responsibility of ensuring the validity of the resulting tree to

the Interaction Template designer, as we did not want to impose design limitations

on our approach at the language level. Proper tool support could help to guide

Interaction Template designers in this respect.

5.3.2 Referencing Schema Values

When a template is inserted into a ConcurTaskTree, a valid XML Schema data

element must be specified for each of the <it:schema> elements in the template. A

data element’s path can be specified in one of two ways: as an XML Schema file

path, or as an XPath expression leading to an XML Schema element in an XML

Schema file linked elsewhere within the scope of the current template.

When linking to an XML Schema file, the path attribute is set to a string specify-

ing the location of the file. From within an <it:template> element, Expression 5.2

will select the filepath attribute of the <it:schema> element whose name attribute

equals SchemaName:

63

ancestor::it:template/it:schema[@name=“SchemaName”]/@path (5.2)

If the XML Schema file specified above is loaded and parsed, we can use XPath

expressions to select attributes and elements from the schema definition. For exam-

ple, Expression 5.3 will select the data element that is specified in an XML Schema

document.

/xs:schema/xs:element (5.3)

Within the context of an <it:template> element, we will use $SchemaName as

a shortcut to load and parse the file specified in the <it:schema> element whose

name attribute equals SchemaName. Also, since we are always interested in the data

element defined in the schema document, our shortcut will also execute Expression

5.3 to select the data element definition from the schema document.

When linking the <it:schema> to an element within an existing XML Schema

file, we simply set the path attribute to an XPath expression leading to the desired

element. In this case, the $SchemaName shortcut simply points to the specified XPath

expression.

To select different elements and attributes from XML Schemas, we can continue

XPath expressions from our shortcut reference. The expression $SchemaName/@name,

for example, will select the name of the root xs:element. Much like parameter refer-

ences, references to schema values can also be inserted into any of the <ctt:Task>

element’s attributes or elements.

64

The following example shows how the name of a task can be adapted to the name

of the data element described in an XML Schema document.

<it:template name="Enter Data Element">

...

<it:schema name="DataElement" path="" />

<ctt:Task ID="Enter $DataElement/@name" Category="Interaction" ... >

...

</ctt:Task>

</it:template>

If the <it:schema> element’s path attribute is set to lead to the XML Schema

document shown below, the ID of the template’s root task will become “Enter Per-

son” when the template is interpreted.

<xs:schema>

<xs:element name="Person">

<xs:complexType>

<xs:sequence>

<xs:element name="FirstName" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="LastName" type="xs:string"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Again, we must exercise caution to ensure the resulting task tree is valid when

designing Interaction Templates. This requires some knowledge of XML Schema,

and possibly some assumptions about the structure of the schema you are given.

We can also select a list of XML elements using XPath. For example, Expression

5.4 will select all of the <xs:element> elements that describe the data element’s

children. In the schema shown above, Expression 5.4 would select two <xs:element>

elements: “FirstName”, and “LastName”. Element lists can be used in Interaction

Template loops to adapt the structure of a task tree based on XML Schemas, as will

be discussed shortly.

65

$DataElement/xs:complexType/xs:sequence/xs:element (5.4)

5.3.3 Boolean Expressions

Boolean expressions can be inserted into the Optional and Iterative attributes of

the <ctt:Task> element, as well as the expression attribute of the <it:condition>

element. The expressions can be built using the following atoms: (,), and, or, not,

eq, ne, gt, lt, ge, le, true, and false. Parameter and schema references can be inserted

into the expressions. References will be interpreted before the expression is evaluated.

Expressions can be used to compare strings, integers, floats, and booleans. Boolean

expressions are identified by surrounding expr().

The following example shows how a boolean expression can be used inside the

root task’s Optional attribute. A parameter, called MyBool is negated inside the

expression. While the expression is not a valid value for the Optional attribute,

the expression will be evaluated and replaced with a valid boolean value when the

Interaction Template is interpreted.

<it:template name="Boolean Example">

...

<it:parameter name="MyBool" type="it:boolean">

<it:value>False</it:value>

</it:parameter>

...

<ctt:Task ID="Root Task" Category="Abstraction" Iterative="False" Optional="expr(not $MyBool)">

<ctt:TemporalOperator></TemporalOperator>

...

</ctt:Task>

</it:template>

66

Cases

The <it:case> element is used to select a specific task or subtask based on the

template’s parameter values.

<xs:complexType name="condition">

<xs:sequence>

<xs:element name="Task" type="ctt:Task"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SubTasks" type="ctt:SubTasks"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="foreach" type="it:foreach"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="var" type="it:var"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="bindevent" type="it:bindevent"

minOcuurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="expression" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="case">

<xs:sequence>

<xs:element name="condition" type="it:condition"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

The <it:case> element contains at least one <it:condition> element, and can

appear anywhere inside the <it:template> element after the description, compo-

nent, parameter, and schema elements. The <it:condition> defines a choice be-

tween different tasks or subtasks in the template. Any <ctt:Task>, <ctt:SubTasks>

or <it:foreach> element in a template can be surrounded by an <it:condition> el-

ement. The <it:condition> element contains an expression attribute that defines

when the condition should be chosen. When interpreted, the first <it:condition>

element whose expression attribute evaluates to true is chosen. The expressions

can contain references to parameter and schema values as described above.

The following <it:case> element describes a choice between three different tasks:

...

67

<it:case>

<it:condition expression="expr($Param1 eq true)">

<ctt:Task ID="Task Option 1" ...> ... </ctt:Task>

</it:condition>

<it:condition expression="expr($Param2 eq true)">

<ctt:Task ID="Task Option 2" ...> ... </ctt:Task>

</it:condition>

<it:condition expression="expr(true)">

<ctt:Task ID="Default Task Option" ...> ... </ctt:Task>

</it:condition>

</it:case>

...

In this example, we assume two boolean parameters named Param1 and Param2

have been defined. The task named “Task Option 1” is chosen if the Param1 pa-

rameter is equal to true. Otherwise, the task named “Task Option 2” is chosen if

Param2 is equal to true. If neither of the two parameters are true, then the task

named “Default Task Option” is chosen.

Using the <it:condition> and <it:case> elements, we can design Interaction

Templates that will result in different task tree structures depending on current

parameter and schema values.

5.3.4 Loops

Interaction Template loops are used to repeat <ctt:Task> elements for each element

in a specified list of XML elements. Loops are specified using the <it:foreach>

element.

<xs:complexType name="foreach">

<xs:sequence>

<xs:element name="Task" type="ctt:Task"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="foreach" type="it:foreach"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="var" type="it:var"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="bindevent" type="it:bindevent"

minOccurs="0" maxOccurs="unbounded"/>

68

</xs:sequence>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

The <it:foreach> element is a complex element containing a single value at-

tribute and a single <ctt:Task> child element. The value attribute is a string

containing a reference to a list of XML elements. As discussed earlier, element lists

can be selected using references to schemas. When interpreted, the child <ctt:Task>

element will be inserted into the resulting ConcurTaskTree once for each element in

the list of elements specified by the value attribute. The current element can be ref-

erenced simply by inserting $value in the attributes and elements of the <ctt:Task>

element. Like schema references, the reference to the current element can be navi-

gated by adding an XPath expression to the end of the $value shortcut.

Let us extend the example that was used to show how to reference values inside

a schema. We will now show how we can define the Interaction Template to build a

task tree to enter the data element containing a sequence of elements as described

in an XML Schema document.
<it:template name="Enter Data Element">

...

<it:schema name="DataElement" filepath="" />

<ctt:Task ID="Enter $DataElement/@name" Category="Interaction" ... >

<ctt:TemporalOperator></ctt:TemporalOperator>

<ctt:SubTasks>

<it:foreach value="$DataElement/xs:complexType/xs:sequence/xs:element">

<ctt:Task ID="Enter $value/@name" Category="Interaction" ... >

<ctt:TemporalOperator>Order Independence<ctt:TemporalOperator>

</ctt:Task>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:template>

If the <it:schema> element’s path attribute is set to the XML Schema shown

below, the ID of the template’s root task will become “Enter Person” when the

69

template is interpreted. Furthermore, the “Enter Person” task will have two child

tasks: “Enter FirstName” and “Enter LastName”. The two child tasks will be related

with the “Order Independence” temporal operator. The resulting ConcurTaskTree

is shown in Figure 5.2.

<xs:schema">

<xs:element name="Person">

<xs:complexType>

<xs:sequence>

<xs:element name="FirstName" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="LastName" type="xs:string"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.2: A ConcurTaskTree adapted to an XML Schema

In more complex <it:foreach> commands, it may be easier to express the tree

traversals by creating variables. Interaction Template variables can be inserted any-

where within a template by using the <it:var> element. The <it:var> element

contains two attributes: name and path. The name attribute is a string containing

the variable’s name. The path attribute is a string containing a parameter reference,

schema reference, or boolean expression. A variable is accessible to any of its par-

ent element’s descendants. The variable can be referenced by using the $VarName

shortcut in the same way as the current value is referenced within a <it:foreach>

element.

70

The following example shows how an <it:var> element can be used within the

“Enter Data Element” above. Inside the <it:foreach> element, a variable named

“ElementName” is declared, and it is set to refer to the current element’s name

attribute. The variable is then referenced from within the ID attribute of the loop’s

root task.

<it:template name="Enter Data Element">

...

<it:schema name="DataElement" filepath="" />

<ctt:Task ID="Enter $DataElement/@name" Category="Interaction" ... >

<ctt:TemporalOperator></ctt:TemporalOperator>

<ctt:SubTasks>

<it:foreach value="$DataElement/xs:complexType/xs:sequence/xs:element">

<it:var name="ElementName" path="$value/@name" />

<ctt:Task ID="Enter $ElementName" Category="Interaction" ... >

<ctt:TemporalOperator>Order Independence<ctt:TemporalOperator>

</ctt:Task>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:template>

5.4 Using Existing Interaction Templates

In some cases, it may be helpful to make use of existing Interaction Templates from

within a template. This allows us to make use of simpler templates to compose more

complex Interaction Templates. An existing template can be used by inserting the

<it:usetemplate> element in place of a task in the template’s task tree.

<xs:complexType name="usetemplate">

<xs:sequence>

<xs:element name="parameter" type="it:parameter"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="schema" type="it:schema"

minOccurs="=" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

71

The <it:usetemplate> element contains a name attribute that specifies the

name of the Interaction Template that is being used. This element also contains

<it:parameter> and <it:schema> child elements.

One <it:parameter> element exists for each <it:parameter> element in the

template that is being used. Each parameter’s <it:value> element will contain

the values for the given use of the template. Parameter and schema references can

be inserted into the <it:value> element, allowing the template to be flexible with

respect to parameter and schema values.

Likewise, an <it:schema> element exists for every <it:schema> element in the

template that is begin used. The schema’s path attribute is set to the location of

an XML Schema file. Alternatively, the path attribute can contain a reference to an

element within a schema file that is linked elsewhere.

The following example shows how the “Enter Data Element” template can be

made to use the very simple “Enter String” template.

<it:template name="Enter String">

...

<it:parameter name="StringName" type="it:string">

<it:value>it:var</it:var>

</it:parameter>

<ctt:Task ID="Enter $StringName" Category="Interaction" ... >

<ctt:TemporalOperator></ctt:TemporalOperator>

</ctt:Task>

</it:template>

<it:template name="Enter Data Element">

...

<it:schema name="DataElement" filepath="" />

<ctt:Task ID="Enter $DataElement/@name" Category="Interaction" ... >

<ctt:TemporalOperator></ctt:TemporalOperator>

<ctt:SubTasks>

<it:foreach value="$DataElement/xs:complexType/xs:sequence/xs:element">

<it:usetemplate name="Enter String">

<it:parameter name="StringName">

<it:value>$value/@name</it:value>

</it:parameter>

72

</it:usetemplate>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:template>

5.5 Binding to Presentation Components

We will now discuss how presentation components are bound to the tasks defined

in an Interaction Template. First, we will show how components are declared and

bound to specific subtrees in the template’s task tree. Next, we will show how

presentation component properties can be set from within an Interaction Template

definition. Finally, we will show how specific component events are bound to specific

tasks in the task tree.

Components are defined by the <it:component> elements as was discussed ear-

lier. Components are defined either at the beginning of the template, or inside the

tasks found in the Interaction Template definition. The location of the <it:component>

element affects the scope of the component inside the template. Components that

are defined at the beginning of the template are available to all tasks inside the tem-

plate. Components that are defined inside of a task are available only to descendants

of the task in which the <it:component> element appears.

Once a component is defined it can be bound to any task in which the component

is in scope. Components must be bound to the task that models the user interface

interaction provided by the component. The task might be a leaf task, or a task that

has many children. Components are bound to tasks using the <it:bindcomponent>

73

element. The <it:bindcomponent> element contains a single component attribute

specifying the name of one the components being bound to the current task. The

value of the component attribute must match the value of the name attribute of one

of the <it:component> elements that is currently in scope.

Presentation components have properties that affect their behaviour. These

properties can be set from within an Interaction Template definition using the

<it:setproperty> element. The <it:setproperty> element contains three at-

tributes: component, property, and value. The component attribute specifies the

name of the component whose property you wish to set. The value of the component

attribute must match the value of the name attribute of one of the <it:component>

elements that is currently in scope. The property specifies the name of the property

you wish to set. Finally, the value attribute specifies the value you wish to assign

to the property. The value attribute can contain a parameter reference, a schema

reference, or a boolean expression.

Finally, specific tasks must be bound to the event structure of the components

being modelled by the template. When defining an Interaction Template, we add

an <it:bindevent> to some of the basic task elements. Basic tasks are tasks that

are leaf nodes in the task tree. Leaf nodes are the only tasks that can be per-

formed in simulation. The <it:bindevent> element allows us to define how a pre-

sentation component’s behaviour is linked to specific tasks in the template’s task

tree. The <it:bindevent> element contains two string attributes: component and

event. The component attribute specifies the name of the component. The value

of the component attribute must match with the component attribute of one of the

74

<it:bindcomponent> elements of one of the ancestor tasks of the current task. The

event attribute specifies the name of the event you wish to bind to the current task.

In the simple example below, a TButton object is bound to an Interaction task

called “Cancel”. The <it:bindevent> element specifies that when the OnClick event

of the TButton object is fired, the “Cancel” task is performed. In this example, both

the component and the event are bound to the same task. It is possible, however,

for the component to be bound to a higher level task, and for several events to be

bound to different basic tasks.

...

<it:parameter name="AllowCancel" type="it:boolean>

<it:value>True</it:value>

</it:parameter>

...

<it:component name="CancelButton" objectname="TButton" />

<it:setproperty component="CancelButton" property="Enabled" value="$AllowCancel"/>

...

<ctt:Task ID="Cancel" Category="Interaction" Optional="True" Iterative="False">

<it:bindcomponent component="CancelButton" />

<it:bindevent component="CancelButton" event="OnClick">...</it:bindevent>

</ctt:Task>

...

The event binding may not always be a simple one to one mapping between

events and tasks. In some cases, the task that is performed when an event is fired

may depend on the current state of the presentation component, or on the values

of an event’s parameters. In this case, a small amount of code may be required to

decide on the name of the task that is being performed. Custom event code is defined

inside the <it:bindevent> element’s <it:taskname> child element. The code that

is defined in the <it:taskname> element will be executed when the event is fired.

The code, therefore, has access to the same variables, methods, and parameters as

any other code that would be written inside that specific event handler. The code

must follow the usual Object Pascal syntax, and must set the value of the TaskName

75

variable equal to the task that is being performed. This type of binding is commonly

found inside of Interaction Template loops.

The following example shows how the “OnSelect” event of the “TComboBox”

object is linked to all of the tasks generated by a <it:foreach> element. A single

line of code is executed when the “OnSelect” event is fired, that is, when an item in

the ComboBox is selected. The code simply sets the TaskName variable according

to the currently selected item.

...

<it:foreach value="$DataElement/xs:restriction/xs:enumeration/@value">

<ctt:Task ID="Select $value" Category="Interaction" Optional="True" Iterative="False">

<it:bindevent component="TComboBox" event="OnSelect">

<it:taskname>

TaskName := ‘Select ’ + Self.Text;

</it:taskname>

</it:bindevent>

</ctt:Task>

</it:foreach>

...

Using the <it:bindevent> element allows us to make use of any pre-built pre-

sentation component without manually coding any modifications to the component.

As defined inside the Interaction Template definition, an extension to the compo-

nent is generated by the Model-IT environment. The details of how prototypes are

generated from Interaction Template definitions will be discussed in Chapter 6.

5.6 Summary

We have introduced the Interaction Template Definition Language, our notation for

specifying Interaction Templates. We have shown how we use the notation to bind

data elements and interface components to task templates. We have also shown how

the notation is used to define a template’s adaptation logic. In the next Chapter,

76

we will introduce a prototype of a task modelling tool that supports the Interaction

Template approach.

77

Chapter 6

Modelling with Interaction Templates

In Chapter 4, we introduced the Interaction Template approach. In Chapter 5,

we outlined the Interaction Template Definition Language. In this Chapter, we in-

troduce a prototype of a task modelling tool that supports the Interaction Template

approach. The prototype system is named Model-IT, which stands for Modelling

with Interaction Templates. We begin with an overview of the Model-IT proto-

type. Next, we show how Interaction Templates can be inserted into task models

using Model-IT. Finally, we discuss how task models are simulated in the Model-IT

prototype.

In the next Chapter, we will illustrate the Interaction Template approach with

three Interaction Template examples, followed by an example of how the templates

can be used together to support the co-evolution of information systems and business

processes.

6.1 Model-IT Overview

The Model-IT prototype is a ConcurTaskTree editor that includes support for build-

ing task models using Interaction Templates. The prototype includes a direct manip-

78

ulation interface for editing ConcurTaskTrees. Model-IT was built using Borland’s

Delphi. The graphical ConcurTaskTrees representation was implemented in OpenGL

using GLScene, an OpenGL library for Delphi.

Figure 6.1: Model-IT, the prototype task model editor with Interac-
tion Template support

The Model-IT prototype allows users to add and delete tasks to a ConcurTask-

Tree. Tasks can be added either as children or as siblings of the currently selected

task. A task’s properties can be modified using the “Task Properties” menu, or by

clicking the controls on the toolbar. Task properties include a task’s name, category,

temporal operator, and unary operators. A slider allows the user to zoom in and

out of the task model, while a small overview shows the current context within the

overall model. The “Layout” menu can be used to layout the ConcurTaskTree nicely.

The Model-IT prototype is shown in Figure 6.1.

The Model-IT prototype provides users with the ability to insert Interaction

79

Templates into a task model. Also, the prototype provides two task model simulation

modes: basic and enhanced. We discuss these features in the following sections.

6.2 Interaction Templates

The Interaction Template Repository is a collection of Interaction Templates that is

made available to users of the Model-IT prototype. The repository is simply a folder

containing Interaction Template definition files. Interaction Templates can be added

or removed from the repository by adding and removing files in the respository folder.

When Model-IT is started, the files are loaded and the names of the templates are

listed in the “Insert Template” menu as shown in Figure 6.2.

Figure 6.2: Interaction Template Repository in Model-IT

To insert an Interaction Template into the task tree, the user first selects a

task, then selects an Interaction Template from the repository. When a template

is selected, the “Insert Interaction Template” window, as shown in Figure 6.3, is

displayed. The “Insert Interaction Template” window displays information about

the selected template. The template’s name and description are shown at the top of

the window. In the middle of the window, an example of the template’s resulting task

80

tree is shown. A sample of the generated user interface prototype for the template

can be seen by clicking the “User Interface Prototype” tab.

At the bottom of the “Insert Interaction Template” window, the user can set

values for the template’s parameters and schemas. Once the required parameters

and schemas have been set, the user can click “Insert” to add the template to the

ConcurTaskTree. At this point, the template is interpreted by Model-IT, and the

resulting task tree is added to the task that was initially selected. Inserting an

Interaction Template into a ConcurTaskTree is not much different than inserting a

task. The only difference is that some parameter values and schema paths must

be set. Subtrees that were added using an Interaction Template are identified by a

small “IT” icon to the left of the task’s icon.

Figure 6.3: Inserting an Interaction Template using Model-IT

81

6.3 Task Model Simulation

The Model-IT prototype includes two task model simulation modes: basic and en-

hanced. Basic simulation provides similar functionality as is provided in CTTE [35].

With enhanced simulation, users interact with concrete user interface components

to simulate tasks that are part of an Interaction Template.

6.3.1 Basic Simulation

The Model-IT prototype includes a basic task model simulator, shown in Figure 6.4.

The basic simulator implements the functionality discussed in Section 2.1.1. Enabled

tasks are calculated using the task model semantics defined in Section 4.3.

The currently enabled tasks are shown in two ways. First, enabled tasks are listed

in the simulation window. Secondly, enabled tasks are highlighted with a green

checkmark in the model view. Performing a task is simulated by either double-

clicking a task in the simulation window, or by selecting a task and clicking the

“Perform Task” button. When a task is performed, the enabled tasks are updated,

and the user can continue to the next task in the simulation.

6.3.2 Enhanced Simulation

We originally introduced the Enhanced Task Model Simulator in [31]. The simulator

has since been extended and incorporated into the Model-IT prototype. In the

Enhanced Task Model Simulator, user interface prototypes are generated from the

82

Figure 6.4: Basic task model simulator implemented in the Model-IT
Prototype

Interaction Templates that are used in a task model. Users are then able to interact

with the generated prototypes to simulate portions of the task model.

Generating User Interface Prototypes

In Section 5.5, we discussed how presentation components are bound to tasks using

the Interaction Template Definition Language. This section shows how high-level

user interface prototypes can be generated from task models that are built using

Interaction Templates.

In this example, we will consider a simple task model built using the “Enter String

Value” Interaction Template shown below. The “Enter String Value” template allows

users to enter a string value. The template contains a single parameter, “VarName”,

that refers to the name of the variable being entered. The template results in a single

task named “Enter VarName”.

83

<it:template name="Enter String Value"

xmlns:it="http://www.cs.usask.ca/ns/it"

xmlns:ctt="http://www.cs.usask.ca/ns/ctt">

<parameter name="VarName" type="string" value="var" />

<Task ID="Enter $VarName" Category="Interaction" Iterative="False" Optional="$Optional">

<it:component name="Enter$VarName" objectname="TLabeledEdit"/>

<it:setproperty component="Enter$VarName" property="EditLabel.Caption" value="$VarName"/>

<it:bindcomponent component="Enter$VarName"/>

<it:bindevent component="Enter$VarName" event="OnExit"> </it:bindevent>

</Task>

</it:template>

In this example, we will insert the “Enter String Value” Interaction Template

twice as a child of the task model’s root task. The first time, we will set the “Var-

Name” parameter to “Name”. The second time, we will set the “VarName” para-

meter to “Email”. Finally, we will set the temporal operator of the resulting “Enter

Name” task to “Enabling”. The resulting task tree, shown in Figure 6.5, specifies

that we first must perform the “Enter Name” task, then the “Enter Email” task.

Figure 6.5: ConcurTaskTree resulting from two instantiations of the
“Enter String Value” Interaction Template

Before we begin describing how user interface prototypes are generated, we will

give a brief introduction to the Delphi naming conventions that we used. The Delphi

environment uses the Object Pascal language. In Object Pascal, objects are grouped

in files called units. By convention, unit names begin with a “u”, and object names

begin with a “T”. In the Delphi environment, forms and presentation components

84

are all objects. To distinguish between form objects and component objects, form

object names begin with “Tfrm”.

To generate a user interface prototype from a task model, we begin by selecting

all of the subtrees that were inserted using Interaction Templates. In this example,

we select the “Enter Name” and “Enter Email” tasks.

Let us start with the “Enter Name” task. First, we retrieve all of the component

declarations in the subtree. For the “Enter Name” task, a single component dec-

laration is selected. The component’s name is “EnterName” and the component’s

objectname is “TLabeledEdit”. For each of the component declarations, a new unit

is generate. Each new unit contains a single object that inherits from the ITProto-

type object. Prototype behaviour such as communication with the Enhanced Task

Model Simulator is inherited from the ITPrototype object. We name the new unit

“uEnterName”, corresponding to the name of the component, and we save the unit

to a file called “uEnterName.pas”. Spaces must be removed from component names,

since unit and variable names cannot contain spaces. We name the object we are cre-

ating by appending ‘Tfrm’ to the component name, in this case “TfrmEnterName”.

A private variable is declared. The variable’s type is defined by the component’s

objectname attribute, and the variable is named according to the component’s name

attribute. In this case, the variable is named “EnterName” of type “TLabeledEdit”.

Inside the object’s constructor, the “EnterName” variable is initialized. First, the

object is created, and its parent is set to self. Next, any <it:setproperty> elements

for the current component are selected using Expression 6.1. In this example, the

following <it:setproperty> element is selected.

85

<it:setproperty component="EnterName" property="EditLabel.Caption" value="Name"/>

Each <it:setproperty> element results in a single line of code that is added to

the constructor. The line of code sets the specified property to the specified value.

Finally, the component is bound to tasks through its event structure by gener-

ating event handlers. All the <it:bindevent> elements for the current component

are selected using Expression 6.2. In this example, we select the <it:bindevent>

element shown below.

<it:bindevent component="EnterName" event="OnExit"> </it:bindevent>

A private procedure called “ComponentOnExit” is declared. In the procedure’s

implementation, a variable named “sTaskName” of type string is declared. The

value of this variable is then set to the current task. If custom code is specified in

the <it:bindevent> element’s <it:taskname> element, that code is inserted in place

of the code setting the “sTaskName” variable to the current task’s name. Finally,

“PerformTask” is called to send a message to the Enhanced Task Model Simulator.

The “PerformTask” procedure is inherited from the ITPrototype object.

//it:setproperty[@component=@name] (6.1)

//it:bindevent[@component=@name] (6.2)

The code resulting from the “Enter Name” Interaction Template instantiation is

shown below. Following the same prototype generation method, a similar unit would

also be generated for the “Enter Email” Interaction Template instantiation.

86

unit uEnterName;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ExtCtrls, InteractionTemplatePrototype;

type

TfrmEnterName = class(ITPrototype)

private

EnterName : TLabeledEdit;

procedure ComponentOnExit(Sender : TObject);

public

constructor Create(AOwner : TComponent);override;

end;

var

frmEnterName: TfrmEnterName;

implementation

{$R *.dfm}

procedure TfrmEnterName.ComponentOnExit(Sender: TObject);

var

sTaskName : String;

begin

sTaskName := ‘Enter Name’;

PerformTask(sTaskName);

end;

constructor TfrmEnterName.Create(AOwner: TComponent);

begin

inherited;

EnterName := TLabeledEdit.Create(Self);

EnterName.Parent := Self;

EnterName.EditLabel.Caption := ’Name’;

EnterName.OnExit := ComponentOnExit;

EnterName.AutoSize := True;

end;

end.

Once all of the required units have been generated, the following Delphi project

file is generated to link all the prototype elements together.

program UIPrototype;

uses

Forms,

Prototype in ‘Prototype.pas’,

InteractionTemplatePrototype in ‘InteractionTemplatePrototype.pas’,

EnterName in ‘EnterName.pas’,

EnterEmail in ‘EnterEmail.pas’,

SocketConnection in ‘SocketConnection.pas’;

{$R *.res}

87

begin

Application.Initialize;

Application.CreateForm(TfrmPrototype, frmPrototype);

Application.CreateForm(TfrmEnterName, frmEnterName);

Application.CreateForm(TfrmEnterEmail, frmEnterName);

Application.Run;

end.

The project is then compiled, resulting in an executable application. The result-

ing application is a user interface prototype that can communicate with the Enhanced

Task Model Simulator. The prototype can send messages to the simulator, telling

the simulator when to perform specific tasks. Additionally, the simulator can send

messages to the prototype, telling the prototype when to show and hide specific

components of the prototype.

Enhanced Task Model Simulator

Once a prototype has been generated, as discussed in the previous section, the En-

hanced Task Model Simulator begins simulation in the same way as the basic sim-

ulator. However, whenever a task is enabled, disabled, or completed, the simulator

checks to see if a component is bound to that task. Components are bound using

the <it:bindcomponent> element of the ITDL. If the task is being enabled and a

component is bound to that task, the simulator sends a message to the prototype

telling that component to show itself. If the task is being disabled or completed,

the simulator sends a message to the prototype telling that component to hide itself.

The current state of the prototype is dictated by the current state of the task model

simulation. That is, the components that are currently available to the user depend

on the currently enabled tasks in the task model.

In the ETMS, users can simulate performing tasks in the same way as in the basic

88

simulator. Alternatively, the user can interact with any of the components that are

currently visible in the prototype. When the user interacts with the prototype, the

generated event code in the prototype will send “PerformTask” messages back to

the simulator. When the simulator receives a “PerformTask” message, the specified

task is completed, and the enabled tasks will be updated.

Figure 6.6: A prototype of the Enhanced Task Model Simulator

Figure 6.6 shows Model-IT with the early example loaded. The ETMS is running,

along with the generated prototype. In the prototype window, we can see how the

user has started to enter a name into a concrete user interface component. When the

user is finished entering the name, the “Enter Name” task will be performed in the

simulator, and the “Enter Email” task will be enabled. When the “Enter Email” task

is enabled, a message will be sent to the prototype, and the “EnterEmail” component

will be shown.

While other task model simulators use abstract interface objects to simulate tasks,

concrete user interface components can be used to simulate Interaction Templates

89

that have been inserted into ConcurTaskTrees. Using the Enhanced Task Model

Simulator, users can interact with concrete user interface components to simulate

portions of a larger task model.

6.4 Prototype Limitations

The Model-IT prototype provides support for the Interaction Template approach, but

does have some limitations. The current version of the Model-IT prototype supports

a subset of the Interaction Template Definition Language. In particular, Interaction

Template variables and nested Interaction Template loops are not supported. More

time and research would allow for a more sophisticated ITDL interpreter that sup-

ports the complete language. We believe the level of Interaction Template support

currently implemented is sufficient to demonstrate the advantages of the approach.

6.5 Summary

In this Chapter, we introduced Model-IT, a prototype of a task model editor and

simulator that supports the Interaction Template approach. The prototype shows

how task models can be built using different Interaction Templates. We showed how

user interface prototypes can be generated from the Interaction Templates that were

used in a task model. We also showed how a task model can be simulated using the

genreated user interface prototypes. We showed, by example, how a user interface

prototype can be generated, and we described how communication can occur between

the task model simulator and the prototype.

90

In Chapter 7, we will illustrate our approach with three examples of complex In-

teraction Templates. The examples will be followed by an evaluation of the approach

involving a change scenario from Chapter 3.

91

Chapter 7

Interaction Template Examples

In Chapters 4 and 5, we introduced the Interaction Template approach to task

modelling, and a notation for specifying Interaction Templates. In Chapter 6, we

presented a prototype of a task model editor that includes support for the Interaction

Template approach.

In this Chapter, we illustrate our approach by introducing three Interaction Tem-

plate examples. First, the examples discuss the user interface interaction that each

template is designed to encapsulate. Next, each Interaction Template is specified us-

ing the Interaction Template Definition Language. We also show how presentation

components are bound to the Interaction Templates using the ITDL.

We have taken these examples from three common types of interface interac-

tions found in the information systems studied at Western Ag: a data entry form, a

data access form, and a dialog box. Throughout the examples, we discuss how each

Interaction Template is able to support co-evolution by adapting a task model to

specific changes. We conclude this Chapter with a look back at a change scenario

from Chapter 3. We use a specific change scenario to see how the Interaction Tem-

plates we have introduced can help us to co-evolve information systems and business

92

processes.

7.1 Data Entry

Data entry is a very common task in information systems. Figure 7.1 shows several

data entry forms found in the custom built information systems used at Western Ag.

Figure 7.1: Examples of data entry forms found in custom built soft-
ware at Western Ag

The following example shows how an Interaction Template can be designed to

create a ConcurTaskTree from an XML Schema defining the data that must be

entered. The tedious work of repeatedly modelling data entry tasks can be greatly

reduced by using the Data Entry Interaction Template. The template can also help

to ensure consistency among different data entry tasks within a system or even across

several systems within an organization.

This example also shows how an Interaction Template can help to more quickly

93

adapt a system in response to some business process changes. In Chapter 3, we saw

several different change scenarios that resulted in changes to the structure of data

elements. In particular, CS1 - Sample Priorities, CS3 - Remote Processing Labs,

CS4 - Sample Batching and CS5 - Second Depth Samples all resulted in changes to

existing data elements. This template’s adaptation logic allows the task model to

adapt to changes in the structure of a data element. In the above mentioned change

scenarios, the changes to existing data elements also had corresponding changes in

the system’s user interface. The presentation components that are bound to this

template’s tasks allow us to automatically generate a user interface prototype for

the data entry task. The generated prototypes help show how the system’s user

interface will change according to the change in the structure of a data element.

The Data Entry Interaction Template is named “Enter Data Element”. The

template requires a single schema named “DataElement”, and contains no parame-

ters. The schema is an XML Schema description of the data element that must be

entered. The template’s root task contains a reference to the data element’s name,

allowing the task to be identifiably associated with the data element assigned to the

template. For example, if the data element is named “Person”, then the template’s

root task would be named “Enter Person”.

There is no presentation component that implements the “Enter Data Element”

template’s root task. Instead, several different presentation components implement

each of the root task’s children. Therefore, in this Interaction Template, components

are declared at the same time as they are bound. This allows the template to

dynamically select the set of presentation components that implement the current

94

data entry task. The presentation component declarations and bindings will be

discussed as they appear in the template definition.

The root task’s children are generated from the schema using two Interaction

Template loops. The first loop adds a child task for each of the data element’s

attributes, denoted by <xs:attribute> in the schema. The second loop adds a

child for each of the data element’s child elements. As was discussed in Section

5.1, loops are implemented using the <it:foreach> element of the Interaction Tem-

plate Definition Language. The details of the template’s two loops are discussed

in the following sections. A complete implementation of the “Enter Data Element”

Interaction Template can be found in Appendix C.

7.1.1 Entering Attributes

Data elements described by XML Schema can contain a number of attributes. In

XML, attributes are the nodes that appear within an element’s opening tag. For ex-

ample, the element “<person name="Donald" age="57"></person>” contains two

attribute nodes: name and age. In this example, the name attribute is a string, and

the age attribute is an integer. The XML Schema defining the person element is as

follows:

<xs:element name="person">

<xs:complexType>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="age" type="xs:integer"/>

</xs:complexType>

</xs:element>

The first loop in the “Enter Data Element” template adds a task for each of the

data element’s attributes. We will refer to this loop as the attribute loop. The list

95

of attribute definitions is selected by referencing the XML Schema with the XPath

expression shown in Expression 7.1.

$DataElement/xs:complexType/xs:attribute (7.1)

If the data element contains no attributes, then Expression 7.1 does not return

any XML nodes, and no tasks are added to the tree. The structure of the task that is

added for each of the attributes is specified within the attribute loop. The structure

of the task depends on the attribute’s definition in the XML Schema. An Interaction

Template case statement is used to select the appropriate task structure. The case

statement, containing two conditions, is used to define the task tree’s adaptation

logic according to the attribute’s type.

The first condition tests whether or not the attribute’s type is one of the many

built-in data types of XML Schema. This test is accomplished using Expression 7.2,

which evaluates to true when the current attribute type is a built-in type.

expr(starts-with($value/@type,‘xs:’)) (7.2)

When the attribute’s type is a built-in data type, a single leaf task is added to the

tree. The task’s name contains a reference to the attribute’s name using Expression

7.3. The task’s optional operator is set according to the value of the use attribute

in the current attribute’s definition using Expression 7.4. The use attribute can be

set to either “optional” or “required”. When the use attribute is set to “optional”,

the task’s optional operator is set to true. Otherwise, the optional operator is set to

96

false.

$value/@name (7.3)

expr($value/@use = “optional”) (7.4)

The task’s temporal operator is set to Order Independence. The Order Indepen-

dence operator is used because the XML Schema contains no indication of the order

in which the attributes and the element should be entered.

Inside the task, a presentation component is declared and bound to the current

task. A “TLabeledEdit” presentation component is declared and named with a ref-

erence to the attribute’s name using Expression 7.3. A “TLabeledEdit” presentation

component is used to enter the attribute. When the “TLabeledEdit” component is

exited by pressing the Tab or Enter key, the “OnExit” event is fired. Therefore, the

component’s “OnExit” event is bound to the current task. The “EditLabel.Caption”

property of the “TLabeledEdit” component is set to the attribute’s name using Ex-

pression 7.3.

The next condition in the attribute loop’s case statement handles the case when

the attribute is not a built-in data type. The condition’s expression is set to true,

meaning that it is automatically selected if and only if the previous condition is not

selected. In this situation, the attribute is a custom type that is defined somewhere

in the current XML Schema file. The XML node that defines the type is selected

using Expression 7.5 and the result is assigned to an Interaction Template variable

97

named CurAttribute.

/xs:schema/xs:simpleType[@name = $value/@type] (7.5)

The following is an example XML node that might be selected by Expression 7.5.

<xs:simpleType name="agreementType">

<xs:restriction base="xs:string">

<xs:enumeration value="PRS Analysis"/>

<xs:enumeration value="PRS Lease"/>

<xs:enumeration value="In-House PRS Analysis"/>

<xs:enumeration value="Eluent Analysis"/>

</xs:restriction>

</xs:simpleType>

The current condition contains another Interaction Template case statement that

is used to adapt the task model’s structure and behaviour according to the node

selected by Expression 7.5. The first condition succeeds when the selected type is

an enumerated type, such as the one shown above. With enumerated types, the

attribute’s value is restricted to those defined in the <xs:enumeration> elements.

In this case, a task is added to the tree with a reference to the name of the attribute,

and the optional operator is set in the same manner as it was for built-in data

types. Additionally, an Interaction Template loop is used to add a child task to

the current attribute’s task for each of the enumeration options. The optional and

iterative operators of each of the tasks added by the loop are both set to false,

and the temporal operator is set to Choice. The task resulting from enumerated

type attributes specifies an interaction such that when entering the attribute, the

user must select one, and only one, of the possible values defined in the schema. The

possible values are selected using Expression 7.6, and each child task’s name contains

a reference to the current value using Expression 7.7.

98

$CurAttribute/xs:restriction/xs:enumeration/@value (7.6)

$value (7.7)

When entering an enumerated type attribute, a “TComboBox” component is

used. The “TComboBox” component allows the user to select from a set of options.

The “TComboBox” implements the interactions modelled by the entire subtree gen-

erated above. Therefore, before the Interaction Template loop, a “TComboBox”

component is declared and named with a reference to the attribute’s name. The

component is then bound to the current task. Finally, the component’s “OnSelect”

event is bound to the tasks that specify the options for the current attribute’s value.

To retrieve the currently selected value from the component’s state, a single line of

custom event code is required. The entire “TComboBox” declaration and binding is

as follows:

...

<it:component name="Enter_$value/@name" objectname="TComboBox"/>

<it:setproperty component="Enter_$value/@name" property="Items"

value="$CurAttribute/xs:restriction/xs:enumeration/@value"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnSelect">

<it:taskname>

TaskName := ‘Select ’ + Self.Text;

</it:taskname>

</it:bindevent>

...

If the selected attribute type is not an enumerated type, then a single leaf task

is added in the same way as for built-in data types. Again, a “TEdit” component

is declared and bound to the leaf task in the same way as it was for built-in data

types.

99

More adaptation logic could be defined according to the attribute’s type definition

by adding more conditions to the case statement. For the purposes of this example,

we will limit the attribute type adaptation logic to that which has been discussed so

far.

7.1.2 Entering Sub-Elements

Data elements described by XML Schema optionally contain a sequence of child

elements. In XML, a child element is an element that appears between an element’s

opening and closing tags. For example, the person element shown below has two

child elements: name and age. In this example, the name element is a string, and

the age element is an integer.

<person>

<name>Donald</name>

<age>57</age>

</person>

The XML Schema defining the person element above is as follows:

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="age" type="xs:integer"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

An Interaction Template loop is used to add a child task to the template’s root

task for each of the data element’s child elements. We refer to this loop as the child

element loop. A list of the XML nodes describing the child elements is selected using

the XPath expression shown in Expression 7.8. If the data element does not contain

100

a sequence of child elements, Expression 7.8 returns an empty list, and no tasks are

added to the tree.

$DataElement/xs:complexType/xs:sequence/xs:element (7.8)

The structure of the task that is added for each child element is specified within

the child element loop. The loop contains an Interaction Template case with three

conditions. The first condition tests if the element is a built-in data type. The ex-

pression used in this condition is the same as the expression used to test if attributes

are built-in data types, as shown in Expression 7.2. When the element’s type is a

built-in data type, Expression 5.2 evaluates to true, and a single leaf task is added to

the tree. The task’s name contains a reference to the element’s name using Expres-

sion 7.3. The task’s optional operator is set according to the value of the element’s

minOccurs attribute. If minOccurs is equal to 0, then the task of entering the cur-

rent child element is optional. The task’s optional operator is set using Expression

7.9. Additionally, the task’s iterative operator is set according to the value of the

element’s maxOccurs attribute. If maxOccurs is greater than 1, then the task of

entering the current child element is iterative. The task’s iterative operator is set

using Expression 7.10. The task’s temporal operator is set to Order Independence,

because the XML Schema contains no indication of the order in which attributes

and element should be entered. A “TEdit” component is declared and bound to the

task. The component’s name is set using a reference to the element’s name using

Expression 7.3. Finally, the component’s “OnExit” event is bound to the task.

101

expr($value/@minOccurs = 0) (7.9)

expr($value/@maxOccurs gt 1) (7.10)

The next two conditions are needed to handle the two cases that can occur when

the current child element is a custom data type. A child element can be either

a complex element or a simple element. A complex element is an element that

contains attributes and/or child elements, while a simple element is an element that

contains only text. To simplify the adaptation logic inside this Interaction Template,

a variable named “CurElement” is declared. The value of “CurElement” is assigned

using Expression 7.11, which selects the current element’s type definition from the

XML Schema file.

/xs:schema/xs:complexType[@name = $value/@type] | (7.11)

/xs:schema/xs:simpleType[@name = $value/@type]

Expression 7.12 is used to test if the current child element is a complex element.

When Expression 7.12 evaluates to true, the template simply reuses itself. The

“Enter Data Element” template is used, and the “DataElement” schema is set to

the current element. Reusing the “Enter Data Element” template allows detailed

task trees to be built for complex data types with little effort. The template is

referenced using the following ITDL statement.

<it:usetemplate name="Enter Data Element" >

<it:schema name="DataElement" path="$CurElement" />

</it:usetemplate>

102

$CurElement/name() = “xs:complexType” (7.12)

$CurElement/name() = “xs:simpleType” (7.13)

The next condition uses Expression 7.13 to test if the current child element is a

simple element. When Expression 7.13 evaluates to true, another Interaction Tem-

plate case statement is needed to adapt the tree’s structure and behaviour according

to the type’s definition in the XML Schema. This case statement is similar to the

case statement used when an attribute’s type is a simple type. The first condition

succeeds when the current child element is an enumerated type. In this case, a task

is added to the tree with a reference to the name of the element. The optional and

iterative operators are set in the same manner as they were for built-in data types.

Additionally, an Interaction Template loop is used to add a child task to the current

element’s task for each of the enumeration options. The optional and iterative oper-

ators for each of the tasks added by the loop are both set to false, and the temporal

operator is set to Choice.

As was the case with enumerated type attributes, a “TComboBox” component

is declared and bound to the current element’s task. The declaration, task binding,

and event binding are all the same as for enumerated type attributes.

If the current element’s type is not an enumerated type, then a single leaf task is

added in the same way as it was for built-in data types. Again, a “TEdit” component

is declared and bound to the task as it was for built-in data types.

103

7.2 Data Access

In information systems, users often access large amounts of data using data tables.

An informal analysis of one particular information system at Western Ag, the Lab

Assistant, shows that a large percentage of the tasks in the system involve viewing

data in or selecting data from data table components in some manner. Figure 7.2

shows some of the data tables found in the Lab Assistant software used at Western

Ag.

Figure 7.2: Examples of data tables from the Lab Assistant software
used at Western Ag

The following example shows how an Interaction Template can be designed to

encapsulate the common task of viewing and interacting with data in a data ta-

ble component. The template includes parameters that modify the structure and

behaviour of the resulting task tree. The parameters also modify the behaviour of

the Interaction Template’s presentation component. The resulting task tree includes

points specifically intended for manually adding tasks associated with the data in the

table, allowing the template’s user to customize the template for specific uses. The

104

template also allows the task tree to be easily adapted to changes in the structure

of data elements.

The Data Table Interaction Template is named “View Data Table”. The template

requires a single schema called “DataElement”. The “DataElement” schema must

be set to a data element that contains attributes and/or a sequence of child elements.

Since the template is using the “DataElement” to setup the data table’s columns, it

is important that the input data element only contains simple elements as children.

Any complex elements are treated as simple elements, which may result in the loss

of expected columns. Several behaviour modifying parameters are defined in this

template. Each parameter is discussed as it is referenced in the template’s definition.

The “View Data Table” template root task contains a reference to the data

element’s name, allowing the task to be identifiably associated with the data element

assigned to the template. For example, if the data element is named “Person”, then

the template’s root task is named “View Person Table”.

The template’s root task contains a number of child tasks that refer to the dif-

ferent interactions offered by the template. The three child tasks are called “Modify

View”, “Modify Data”, and “Select Data”. Each of these child tasks will be discussed

in detail in the following subsections.

The “View Data Table” template contains several Interaction Template loops

that are used to repeat a task for each of the columns in the data table. Expression

7.14 is used to select all the attributes and child elements of the specified data

element. The resulting list of nodes is assigned to an Interaction Template variable

named “Columns”. The “Columns” variable is used by the Interaction Template

105

loops found in the templates definition.

$DataElement/xs:complexType/xs:attribute | (7.14)

$DataElement/xs:complexType/xs:sequence/xs:element

7.2.1 Modify View

The “Modify View” task includes child tasks that model the interactions in which

the user modifies how the data is displayed in the data table. Such interactions

include sorting data and moving columns.

Interaction Template parameters are used to adapt the behaviour that is permit-

ted under the “Modify View” task. The “AllowSort” parameter, of type it:boolean,

specifies whether or not the user can sort the rows in the table according to the

values of a specified column. The “AllowSort” parameter’s default value is true. A

case statement is used to add the appropriate tasks to the tree when “AllowSort”

equals true. Expression 7.15 is used to accomplish this test. When “AllowSort” is

true, a task called “Sort By Column” is added to the tree. An Interaction Template

loop is then used to add a child task to “Sort By Column” for each of the data

element’s attributes and child elements. The added task’s temporal operator’s are

set to Choice, and each task contains two child tasks. The first task is an interaction

task where the user clicks on the current column to sort the rows, and the second is

an application task where the system sorts the rows by the specified column. These

two child tasks are related using the Enabling with Information Exchange operator.

106

expr($AllowSort = True) (7.15)

Figure 7.3: Example of a task tree that is added when AllowSort is
true

Another view modification task is the “Move Column” task. The “AllowColum-

nMove” parameter, of type it:boolean, specifies whether or not users are allowed

to move columns in the data table. The “AllowColumnMove” parameter’s default

value is true. A case statement is used to add the appropriate tasks when “Al-

lowColumnMove” is true. Expression 7.16 is used to accomplish this test. When

“AllowColumnMove” is true, a task called “Move Column” is added as a child of the

“ModifyView” task. Two tasks, “Select Column”, and “Select New Location”, are

added as children of the “Move Column” task. The “Select Column” task is related

to the “Select New Location” task using the Enabling with Information Exchange

temporal operator. Finally, an Interaction Template loop is used to add a child task

to the “Select Column” task for each of the columns in the data table.

expr($AllowColumnMove = True) (7.16)

107

Figure 7.4: Example of a task tree that is added when AllowColum-
nMove parameter is true

7.2.2 Select Data

The “Select Data” subtask of the “View Data Table” Interaction Template is a task

that models the selection of either a single row or a set of rows, and performing

an operation on the selected row(s). The resulting tree is structured in a way that

allows the developer to easily add different operations that the user can perform on

the rows.

First, an Interaction Template case statement is used to modify the structure of

the tree depending on whether or not the user is allowed to select multiple rows.

The row selection option is specified using the “MultiSelect” Interaction Template

parameter. This it:boolean type parameter, whose default value is true, is tested

using Expression 7.17.

When “MultiSelect” equals true, two children are added to the “Select Data”

task: “Select Rows” and “Perform Operation on Rows”. The “Select Rows” task is

an iterative interaction task, while “Perform Operation on Rows” is an abstraction

task. The “Suspend-Resume” temporal operator is used to define the relationship

between these two tasks. The resulting “Select Data” task defines an interaction

108

such that the user can select any number of rows from the table, then perform an

operation on those rows. While the operation is being performed, the user can not

select any new rows. When the operation is completed, the user is permitted to

select rows from the table.

expr($MultiSelect = True) (7.17)

When “MultiSelect” equals false, two children are added to the “Select Data”

task: “Select Row” and “Perform Operation on Row”. The “Select Row” task is an

interaction task, while “Perform Operation on Row” is an abstraction task. In this

case, the “Enabling with Information Exchange” temporal operator is used to define

the relationship between the two tasks. The resulting “Select Data” task defines an

interaction such that the user can select a single row from the table, then perform

an operation on that row.

To add tasks to the template, tasks can be added as children of either the “Per-

form Operation On Row” or the “Perform Operation on Rows” task. The example

in Section 7.4 will demonstrate the additions of custom tasks to the “View Data

Table” Interaction Template..

7.3 Dialog Box

Dialog boxes are user interface windows that display information and/or request

information from the user. Typically, they remain in focus until their function is

complete. Dialog boxes are often used to encapsulate common tasks, allowing for

109

reuse of existing code, and promoting consistency across systems. Some common

dialog boxes include those used to open and save files, as well as to set printing

options when printing documents.

Figure 7.5: A dialog box used in the Lab Manager and Lab Assistant
software

Figure 7.5 shows a dialog box, called Print Labels, used in the Lab Manager and

Lab Assistant software at Western Ag. The Print Labels dialog box receives a set of

data elements from the system, and displays a print preview of the labels. The user

is then able to specify several options for printing the labels. The user can set the

number of labels per data element. The pages can also be customized to maximize

the use of label sheets that are partially used. Specific labels can be set as used or

110

unused directly on the preview, and the dialog box will adjust the print preview and

print job accordingly.

The task tree resulting from the “Print Labels” Interaction Template is shown

in Figure 7.6. The complete ITDL implementation of the “Print Labels” Interaction

Template can be seen in Appendix E.

Figure 7.6: ConcurTaskTree resulting from the “Print Labels” Inter-
action Template

7.4 Using Interaction Templates

Task models can be built to describe information systems using Interaction Tem-

plates. In this example, we compose a task model describing a simplification of the

Lab Assistant software using the three Interaction Templates we introduced earlier

in this Chapter. We consider a simplification of the Lab Assistant that allows users

to enter soil samples, view soil samples in a data table, delete soil samples from a

data table, post soil sample data to farmers, and print soil sample labels.

The following is a simplified XML Schema of the soil sample data element that

is used throughout the Lab Assistant and Lab Manager software at Western Ag.

111

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="sample">

<xs:complexType>

<xs:sequence>

<xs:element name="sampleNo" type="xs:integer" minOccurs="1" maxOccurs="1"/>

<xs:element name="year" type="xs:year" minOccurs="1" maxOccurs="1"/>

<xs:element name="farmerID" type="xs:integer" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The root task of our Lab Assistant task model is named ‘Use Lab Assistant’. The

first child of the root task, shown in Figure 7.7, is inserted using the ‘Enter Data

Element’ Interaction Template. The root task’s second child, shown in Figure 7.8, is

inserted using the ‘View Data Table’ Interaction Template. With both of the tem-

plates, the ‘DataElement’ schema is set to the ‘sample’ data element shown above.

For the ‘View Data Table’ template, we set the ‘AllowSort’, ‘AllowColumnMove’,

and ‘MultiSelect’ parameters to true.

Figure 7.7: ‘Enter Data Element’ Interaction Template used for the
soil sample data element

Finally, we add three child tasks to the ‘View Data Table’ template’s ‘Perform

Operation On Row’ task: Delete Rows, Post Data to Farmer, and ‘Print sample

Labels’. For the purposes of keeping this example simple, the ‘Delete Rows’ and

‘Post Data to Farmer’ tasks are both modelled as abstract tasks and are not modelled

112

Figure 7.8: ‘View Data Table’ Interaction Template used for the soil
sample data element

Figure 7.9: ‘Print Labels’ Interaction Template used for the soil sam-
ple data element

in any more detail. The ‘Print sample Labels’ task, shown in Figure 7.9, is inserted

using the ‘Print Labels’ Interaction Template.

The task model of the Lab Assistant is shown in Figure 7.10. The model contains

48 tasks and was composed using the three Interaction Templates introduced earlier

in this Chapter. Of the 48 tasks in the model, only three of the tasks were inserted

manually. The task model contains detailed information about the soil sample data

element that was bound to the three template instantiations. This example shows

113

us that we are able to model a system at a significant level of detail in relatively few

steps as compared to building a task model without Interaction Templates. Using

the Interaction Template approach, we have made the task modelling process less

tedious during the design phase.

Figure 7.10: The Lab Assistant software modelled using the Interac-
tion Template approach

Using the Enhanced Task Model Simulator from Model-IT, we are able to interact

with a user interface prototype of the simple Lab Assistant. The prototype can be

seen in Figure 7.11. In the prototype, users are able to enter the details for a new

soil sample: the ‘sampleNo’, ‘farmerID’, and ‘year’. Users are also able to view

and interact with a data table that would display the soil samples in the system.

The prototype also allows users to interact with the print labels dialog box. As the

user interacts with the generated prototype, ‘PerformTask’ messages are sent to the

Enhanced Task Model Simulator in Model-IT. As tasks are enabled and disabled

114

in the task model simulator, messages controlling which interfaces components are

currently enabled are sent to the prototype.

Figure 7.11: A generated user interface prototype for the simplified
Lab Assistant software

Using the Interaction Template approach to modelling the Lab Assistant soft-

ware, we are able to build a task model in fewer steps than if we were building the

task model without using Interaction Templates. We are also able to generate user

interface prototypes that contain concrete user interface components. Furthermore,

users are able to perform tasks during task model simulation by interacting with the

user interface prototype.

7.4.1 CS1 Revisited

Let us reconsider the first change scenario from Chapter 3. Recall that in CS1

- Sample Priorities, the lab implemented a method of prioritizing samples as “3

115

Day”, “7 Day”, and “No Rush”. This change scenario resulted in minor changes in

data, interface, and processing. In the data, a “priority” element was added to the

“sample” data element. In this section, we show how we quickly adapt the system’s

task model and user interface prototype to this change in data.

First, we must model the change in data that has occurred as a result of this

change scenario. The following schema shows the addition of sample priorities in the

soil sample data schema.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="priority">

<xs:restriction base="xs:string">

<xs:enumeration value="3 Day"/>

<xs:enumeration value="7 Day"/>

<xs:enumeration value="No Rush"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="sample">

<xs:complexType>

<xs:sequence>

<xs:element name="sampleNo" type="xs:integer" minOccurs="1" maxOccurs="1"/>

<xs:element name="year" type="xs:year" minOccurs="1" maxOccurs="1"/>

<xs:element name="farmerID" type="xs:integer" minOccurs="1" maxOccurs="1"/>

<xs:element name="priority" type="priority" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

From the simple change to the XML Schema shown above, we can model the

changes to the Lab Assistant by simply applying the schema changes to the Interac-

tion Templates in the task model. Figures 7.12 and 7.13 show the resulting changes

in the Lab Assistant task model. The Interaction Templates are able to adapt to the

changes in the data that resulted from CS1 - Sample Priorities.

Furthermore, the generated user interface prototype is also able to adapt to

the changes that resulted from CS1 - Sample Priorities. Figure 7.14, shows the

116

Figure 7.12: ‘Enter Data Element’ Interaction Template after CS1

Figure 7.13: ‘View Data Table’ Interaction Template after CS1

Lab Assistant prototype that was generated after the changes are made to the task

model. In the prototype, a combo-box for selecting the sample’s priority is added.

A ‘priority’ column is also added to the data table component in the prototype. The

additions to the generated prototype allow both the system designers and the users

to see how the Lab Assistant’s user interface should change as a result of CS1 -

Sample Priorities.

Using the Interaction Template approach to task modelling, we are able to adapt

the Lab Assistant’s task model by modifying the data model that is bound to the

task model. We are also able to generate a prototype of the Lab Assistant’s user

117

Figure 7.14: A generated user interface prototype for the simplified
Lab Assistant software showing the change in the user interface that
resulted from CS1 - Sample Priorities

interface using the concrete user interface components that are bound to the task

model through Interaction Templates. Using our approach, designers and users can

make changes to an existing system’s task model, and interact with user interface

prototypes to validate changes. The binding of a data model to the task model

helps us to make change to a system’s task model, while the binding of concrete

user interface components to the task model allows us to generate user interface

prototypes. Also, the encapsulation of possible changes into the adaptation logic of

Interaction Templates improves the task modelling process by making it less tedious

in both the design phase and evolution phase of the software development lifecycle.

118

7.5 Summary

In this Chapter, we illustrated our approach with three examples of complex Inter-

action Templates. We showed how each template is specified using the Interaction

Template Definition Language, and discussed how each template is able to adapt to

specific types of changes in the structure of data elements and input parameters.

We modelled a simplification of the Lab Assistant software using the three In-

teraction Templates we defined earlier in the Chapter. Finally, we revisited CS1 -

Sample Priorities from Chapter 3 to show how the Interaction Template approach

supports the co-evolution of information systems and business processes.

In Chapter 8, we will conclude our research with a summary of our motivation

and contributions as well as an overview of directions for future work.

119

Chapter 8

Conclusion

This research focused on improving task modelling to support the co-evolution of

information systems and business processes. In this Chapter, we summarize our mo-

tivation and contributions. We also outline areas for future work, including improv-

ing our user interface prototypes by incorporating sketching and layout techniques,

supporting multiple user task models, and performing an in-depth field study using

the Interaction Template approach.

8.1 Summary

Businesses use information systems to support or automate many parts of their orga-

nization’s business processes. Some small businesses, particularly knowledge-based

and riskier innovative businesses, have business processes that are constantly evolv-

ing. As business processes evolve, supporting information systems must also evolve

in order to meet new requirements. As well, the introduction of a new information

system may result in changes to an organization’s business processes. We refer to

this process as co-evolution: the process of reciprocal change in a software system

and the activities and goals of the system’s users.

120

Our research explored how we can improve the task modelling process to sup-

port the co-evolution of information systems and business processes. In particular,

we investigated how building task models using adaptable task templates and bind-

ing presentation components to tasks would improve the task modelling process to

support co-evolution. This research has resulted in the following contributions:

� a rigorous definition of Interaction Templates,

� a technique for building task models using Interaction Templates,

� a technique for composing user interface prototypes for task model simulation,

� a description of the semantics of task model simulation,

� a prototype system for building task models using Interaction Templates, and

� a prototype system for task model simulation using concrete user interface

components.

In Chapter 2 - Related Work, we reviewed research in task modelling, software

evolution, program families, dynamic systems, and data modelling. In Chapter 3

- Changing Business Processes, a case study of the seven year evolution of a real

world information system provided insight into how changing business processes can

affect supporting information systems. The case study resulted in concrete change

scenarios, illustrating several real world co-evolution points.

In Chapter 4 - Interaction Template Model, we proposed the Interaction Tem-

plate approach that incorporates data modelling and user interface components into

121

task modelling. Incorporating data modelling allows us to provide task model adapt-

ability with respect to the structure of data elements. Incorporating user interface

components supports the automated generation of user interface prototypes. The

combination of the three allows us to build task models that can adapt to changes in

business processes and generate user interface prototypes for task model simulation.

Using user interface prototypes for simulation allows users and developers to see how

a system must change in response to a business process change.

In Chapter 4, we also outlined the operational semantics of ConcurTaskTrees.

These semantics clearly outline the meaning of temporal and unary operators, as

well as the semantics of the hierarchical structure of a task tree. Our outline of the

semantics of ConcurTaskTrees helped us to overcome ambiguities and inconsistencies

that are present in current literature describing ConcurTaskTree simulation.

In Chapter 5 - Interaction Template Definition Language, we defined an XML

based notation for specifying Interaction Templates. In Chapter 6 - Modelling With

Interaction Templates, we introduced our prototype system, Model-IT, a task model

editor with support for building task models using Interaction Templates. Our pro-

totype also generates simple user interface prototypes from task models, which allows

users to perform task model simulation using the generated prototypes.

We demonstrated our approach in Chapter 7 - Interaction Template Examples,

where we outlined the use of three Interaction Templates: Enter Data Element, View

Data Table, and Print Labels. The three examples illustrated how data elements and

presentation components are bound to task models through Interaction Templates.

Finally, we demonstrated how Interaction Templates can be used to build task models

122

that adapt to changes in business processes by modelling a simplified version of the

Lab Assistant software from Western Ag. We also re-visited one of the change

scenarios from Chapter 3, which we used to show how Interaction Templates can be

used to support the co-evolution of information systems and business processes.

8.2 Future Work

This research could benefit from some extensions and improvements that we would

like to pursue in the future. These include incorporating layout techniques and

sketching in the generated user interface prototypes, considering multiple user task

models, and performing a more in-depth case study using the Interaction Template

approach.

8.2.1 Prototype Layout and Sketching

We would like to incorporate layout techniques to produce more aesthetically pleas-

ing user interface prototypes. Currently, the generated user interface prototypes

consist of a set of presentation components that can be placed in specific locations

on the prototype screen. Each individual component is either shown or hidden, de-

pending on the state of the task model simulation. We would like to investigate how

automatically generated presentation components could be grouped into container

components when they are logically enabled at the same time.

Furthermore, we would like to allow designers to layer presentation components

with user interface sketches. We believe this would allow designers to create more

123

complete screen designs, which would be more meaningful to both designers and

users than our current prototypes.

8.2.2 Multiple User Task Models

Organizations often have complex business processes, some of which may involve

multiple users cooperating to reach particular goals. ConcurTaskTrees can be used to

build cooperative task models to describe systems involving multiple users [36]. Our

prototype could be extended to include support for cooperative ConcurTaskTrees.

We would like to extend our prototype to generate user interface prototypes for

each different type of user or role. Since communication between the simulator and

the generated prototypes is already implemented using TCP/IP sockets, each user’s

prototype could run on a different machine. Each prototype would then be able to

communicate with the central task model simulator, and the task model simulator

would communicate with each of the different prototypes. Multiple-user simulation

sessions using generated prototypes could be useful in validation and verification of

systems involving multiple users. Simulation using the prototypes would help us to

see how different user’s systems work together to accomplish business goals.

8.2.3 Attaching Sample Data

We have shown how we can build task models and user interface prototypes that

are adaptable to the structure of data elements. We believe that attaching sample

data to some of our user interface prototypes would help to give users a better

124

understanding of what the end system might look like. A prototype of a data table,

for example, might be more meaningful to end-users if the table component was

populated with some sample data.

8.2.4 In-Depth Field Study

We would like to evaluate the Interaction Template approach more thoroughly by

performing an in-depth and comprehensive field study. Such a field study would in-

volve designing and developing a real world information system using the Interaction

Template approach from the very beginning. Once the system has been implemented

and deployed, we would like to continue to follow the evolution of the system for a

significant period of time. Business process changes would be documented using our

change scenario approach we introduced in Chapter 3. Each change scenario would

be studied and we would use the Interaction Template approach to adapt the system

in response to the change scenarios.

An in-depth field study would be very beneficial in fully evaluating our approach

to improving task modelling to support the co-evolution of information systems and

business processes. Unfortunately, such a study would be lengthy and require signif-

icant resources.

8.3 Conclusion

Businesses require information systems that are able to quickly adapt to continually

changing business processes. This research has focused on improving existing task

125

modelling techniques to help developers to better respond to changes in system re-

quirements that result from changes in business processes. Through a study of the

seven year evolution of a real world information system, we gained a better under-

standing of how changing business processes affect supporting information systems.

We proposed the Interaction Template approach to improve task modelling to sup-

port the evolution of information systems and business processes. Our approach, by

adding data modelling and presentation components to task models, has allowed us

to provide adaptable building blocks for task modelling. Interaction Templates pro-

vide task model pieces that are adaptable to data elements and parameters. Binding

presentation components to task models allows us to generate user interface proto-

types from the Interaction Templates that are used in a task model. By re-visiting

one of the change scenarios from our case study, we demonstrated how the Interac-

tion Template approach is able to help developers to co-evolve information systems

and business processes.

126

References

[1] Mickaël Baron and Patrick Girard. SUIDT: A task model based GUI-Builder.
In TAMODIA, pages 64–71. INFOREC Printing House, 2002.

[2] Keith Bennett, Steven Golver, Xiang Li, and Stephen Rank. Designing software
for change: evolvable architectures. In Proceedings of the Principles of Software
Change and Evolution; SCE’99’, pages 65–69. ICSE’99, 1999.

[3] Keith H. Bennett and Vclav T. Rajlich. Software evolution: A roadmap. In
Proceedings IEEE International Conference on Software Maintenance, page 4.
IEEE, 2001.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois
Yergeau. Extensible markup language (XML) 1.0 (third edition). W3 Re-
comendation available at: http://www.w3.org/TR/2004/REC-xml-20040204 -
Accessed on November 3, 2005.

[5] Lisa Brownsword and Paul Clements. A case study in successful product line de-
velopment. Technical Report CMU/SEI-96-TR-016, Carnegie Mellon Software
Engineering Institute, 1996.

[6] Stuart K. Card, Thomas P Moran, and Allen Newell. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, 1985.

[7] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo, and Donghui Zhang. Storing
and querying multiversion XML documents using durable node numbers. In
The 2nd International Conference on Web Information Systems Engineering
(WISE), pages 232–, 2001.

[8] James Clark. XSL transformations (XSLT) 1.0. W3 Recomendation available
at: http://www.w3.org/TR/xslt - Accessed on November 3, 2005.

[9] James Clark and Steve DeRose. XML path language (XPATH). W3 Recomen-
dations available at: http://www.w3.org/TR/xpath - Accessed on November 3,
2005.

[10] Isabelle Comyn-Wattiau, Jacky Akoka, and Nadira Lammari. A framework for
database evolution management. In Second International Workshop on Unan-
ticipated Software Evolution, 2003.

[11] J. Cordy, C. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping
system for programming language dialects. Computer Languages, 16(1):97–107,
1991.

127

[12] Anke Dittmar and Peter Forbrig. Dialogue graph editor. http://wwwswt.-
informatik.uni-rostock.de/deutsch/Projekte/DialogGraphEditor/dialoggraph-
editor.html - Accessed on May 11, 2005.

[13] Anke Dittmar and Peter Forbrig. The influence of improved task models on
dialogues. In Fourth International Conference on Computer-Aided Design of
User Interfaces, pages 1–14, 2004.

[14] Pierre Dragicevic, David Navarre, Philippe Palanque, Amlie Schyn, and Rmi
Bastide. Very-High-Fidelity prototyping for both presentation and dialogue
parts of multimodal interactive systems. In Design, Specification and Verifica-
tion of Interactive Systems 2004 (EHCI-DSVIS’04), pages 61–88, 2004.

[15] W. Gray, B. John, and M. Atwood. Project ernestine: A validation of GOMS for
prediction and explanation of real-world task performance. Human-Computer
Interaction, 8(3):237–309, 1993.

[16] H. Rex Hartson, Jeffrey L. Brandenburg, and Deborah Hix. Different languages
for different development activities: behavioral representation techniques for
user interface design. pages 303–326, 1992.

[17] Kathryn L. Heninger. Specifying software requirements for complex systems:
new techniques and their application. pages 111–135, 2001.

[18] David Kieras. A guide to GOMS model usability evaluation using ngomsl.
In The Handbook of Human-Computer Interaction. North Holland, 2nd edition
edition, 1996.

[19] Gnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley. The first work-
shop on unanticipated software evolution. In First International Workshop on
Unanticipated Software Evolution, pages 1–15. ECOOP 2002, 2002.

[20] S. Krishnamurthi, K. E. Gray, and P. T. Graunke. Transformation-by-example
for XML. In Proceedings of the Second International Workshop on Practical
Aspects of Declarative Languages, pages 249–262. Springer-Verlag, 2000.

[21] M. M. Lehman. Laws of software evolution revisited. In Proceedings of the 5th
European Workshop on Software Process Technology, pages 108–124. Springer-
Verlag, 1996.

[22] M. M. Lehman and J. F. Ramil. An approach to a theory of software evolu-
tion. In Proceedings of the 4th international workshop on Principles of software
evolution, pages 70–74. ACM Press, 2002.

[23] Meir M. Lehman and Juan F. Ramil. Software evolution: background, theory,
practice. Inf. Process. Lett., 88(1-2):33–44, 2003.

[24] Kris Luyten and Tim Clerckx. TaskLib: a command
line processor and library for ConcurTaskTrees specifications.
http://www.edm.luc.ac.be/software/TaskLib/ - Accessed on May 11, 2005.

128

[25] Kris Luyten, Tim Clerckx, Karin Choninx, and Jean Vanderdockt. Derivation
of a dialog model from a task model by activity chain extraciton. In Design,
Specification and Verification of Interactive Systems 2003 (DSV-IS 2003), pages
191–205. Springer-Verlag, 2003.

[26] Finbar McGurren and Damien Conroy. X-Adapt: An architecture for dynamic
systems. In First International Workshop on Unanticipated Software Evolution,
pages 10–18, 2002.

[27] David Navarre, Philippe A. Palanque, Fabio Paternó, Carmen Santoro, and
Rmi Bastide. A Tool Suite for Integrating Task and System Models through
Scenarios. In DSV-IS ’01: Proceedings of the 8th International Workshop on In-
teractive Systems: Design, Specification, and Verification-Revised Papers, pages
88–113, London, UK, 2001. Springer-Verlag.

[28] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap.
In Proceedings of the Conference On the Future of Software Engineering, pages
35–46. ACM Press, 2000.

[29] David Paquette and Kevin A. Schneider. Interaction templates for construct-
ing user interfaces from task models. In Fourth International Conference on
Computer-Aided Design of User Interfaces, pages 223–235, 2004.

[30] David Paquette and Kevin A. Schneider. Interaction templates for constructing
user interfaces from task models. In Robert Jacob, Quentin Limbourg, and Jean
Vanderdonckt, editors, Computer-Aided Design of User Interfaces IV, pages
223–234. Kluwer Acedemic Publishers, 2005.

[31] David Paquette and Kevin A. Schneider. Task model simulation using interac-
tion templates. In Design, Specification, and Verification of Interactive Systems
2005 (DSVIS’05), pages 49–60, 2005.

[32] David L. Parnas. Designing software for ease of extension and contraction.
In Daniel M. Hoffman and David M. Weiss, editors, Software Fundamentals,
chapter 14, pages 267–290. Addison-Wesley, 2001.

[33] David L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. In Daniel M. Hoffman and David M. Weiss, editors, Software Fundamen-
tals, chapter 7, pages 137–155. Addison-Wesley, 2001.

[34] David L. Parnas. On the design and development of program families. In
Daniel M. Hoffman and David M. Weiss, editors, Software Fundamentals, chap-
ter 10, pages 191–213. Addison-Wesley, 2001.

[35] Fabio Paternó. ConcurTaskTreesEnvironment (CTTE). http://giove.cnuce.-
cnr.it/ctte.html - Accessed on November 3, 2005.

[36] Fabio Paternó. Model-Based Design and Evaluation of Interactive Applications.
Springer, 2000.

129

[37] Fabio Paternó. Task models in interactive software systems. In S. K. Chang,
editor, Handbook of Software Engineering and Knowledge Engineering. World
Scientific Publishing Co., 2001.

[38] Fabio Paternó. Tools for task modelling: Where we are, where we are headed. In
Costin Pribeanu and Jean Vanderdonckt, editors, First International Workshop
on Task Models and Diagrams for User Interface Design - TAMODIA 2002,
pages 10–17, 2002.

[39] E. Pietriga, J.Y. Vion-Dury, and V. Quint. VXT: a visual approach to XML
transformations. In Proceedings of the 2001 ACM Symposium on Document
engineering, pages 1–10. ACM Press, 2001.

[40] J. Roddick. A survey of schema versioning issues for database systems, 1995.

[41] Kevin A. Schneider and James R. Cordy. Abstract User Interfaces: A Model
and Notation to Support Plasticity in Interactive Systems. In Chris Johnson,
editor, DSV-IS, volume 2220 of Lecture Notes In Computer Science, pages 28–
48. Springer, 2001.

[42] R. Chung-Man Tam, David Maulsby, and Angel R. Puerta. U-TEL: A tool for
eliciting user task models from domain experts. In Intelligent User Interfaces,
pages 77–80, 1998.

[43] Holger Uhr. TOMBOLA: Simulation and user-specific presentation of exe-
cutable task models. In Proceedings of HCI International, volume 1, pages
263–267, 2003.

[44] WfMC. Workflow management coalition terminology and glossary, wfmc-tc-
1011, document status- issue 2.0. In Specifying Task Models. (Proceedings In-
teract97), pages 362–369. Chapman and Hall, June 1997.

[45] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and P. Markopoulos. Beyond
Hacking: A Model Based Approach to User Interface Design. In J.L. Alty,
D. Diaper, and S. Guest, editors, People and Computers VIII, Proceedings of
HCI’93, pages 217–231. Cambridge University Press, September 93.

[46] E Yu. Towards modelling and reasoning support for early- phase requirements
engineering. In 3rd International Symposium on Requirements Engineering,
pages 226–235, 1997.

130

Appendix A

ConcurTaskTree XSD

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.cs.usask.ca/ns/ctt.xsd"

xmlns:ctt="http://www.cs.usask.ca/ns/ctt.xsd">

<xs:simpleType name="TaskCategory">

<xs:restriction base="xs:string">

<xs:enumeration value="Abstraction"/>

<xs:enumeration value="Interaction"/>

<xs:enumeration value="System"/>

<xs:enumeration value="User"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="TemporalOperator">

<xs:restriction base="xs:string">

<xs:enumeration value="Choice"/>

<xs:enumeration value="Order Independency"/>

<xs:enumeration value="Concurrent"/>

<xs:enumeration value="Concurrent with Information Exchange"/>

<xs:enumeration value="Disabling"/>

<xs:enumeration value="Suspend-Resume"/>

<xs:enumeration value="Enabling"/>

<xs:enumeration value="Enabling with Information Exchange"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Task">

<xs:sequence>

<xs:element name="TemporalOperator" type="ctt:TemporalOperator"/>

<xs:element name="SubTasks" type="ctt:SubTasks"/>

</xs:sequence>

<xs:attribute name="ID" type="xs:string" use="required"/>

<xs:attribute name="Category" type="ctt:TaskCategory" use="required"/>

<xs:attribute name="Iterative" type="xs:boolean" use="required"/>

<xs:attribute name="Optional" type="xs:boolean" use="required"/>

</xs:complexType>

<xs:complexType name="SubTasks">

<xs:sequence>

<xs:element name="Task" type="ctt:Task"

minOccurs="2" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="TaskModel">

<xs:complexType>

<xs:sequence>

<xs:element name="Task" type="ctt:Task"/>

</xs:sequence>

<xs:attribute name="ModelName" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

131

Appendix B

Interaction Template XSD

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ctt="http://www.cs.usask.ca/ns/ctt.xsd"

targetNamespace="http://www.cs.usask.ca/ns/it" xmlns:it="http://www.cs.usask.ca/ns/it">

<xs:import namespace="http://www.cs.usask.ca/ns/ctt.xsd"

schemaLocation="http://www.cs.usask.ca/ns/ctt.xsd"/>

<xs:simpleType name="parameterType">

<xs:restriction base="xs:string">

<xs:enumeration value="string"/>

<xs:enumeration value="decimal"/>

<xs:enumeration value="float"/>

<xs:enumeration value="boolean"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="component">

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="objectname" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="setproperty">

<xs:attribute name="component" type="xs:string" use="required" />

<xs:attribute name="property" type="xs:string" use="required" />

<xs:attribute name="value" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="bindcomponent">

<xs:attribute name="component" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="bindevent">

<xs:sequence>

<xs:element name="taskname" type="xs:string"

minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="component" type="xs:string" use="required" />

<xs:attribute name="event" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="parameter">

<xs:sequence>

<xs:element name="value"

minOccurs="0" maxOccurs="1" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="type" type="it:parameterType" use="required"/>

</xs:complexType>

<xs:complexType name="schema">

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="path" type="xs:string" use="required"/>

</xs:complexType>

132

<xs:complexType name="foreach">

<xs:sequence>

<xs:element name="Task" type="ctt:Task"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="foreach" type="it:foreach"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="var" type="it:var"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="bindevent" type="it:bindevent"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="var">

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="path" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="condition">

<xs:sequence>

<xs:element name="Task" type="ctt:Task"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SubTasks" type="ctt:SubTasks"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="foreach" type="it:foreach"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="var" type="it:var"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="bindevent" type="it:bindevent"

minOcuurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="expression" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="case">

<xs:sequence>

<xs:element name="condition" type="it:condition"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="usetemplate">

<xs:sequence>

<xs:element name="parameter" type="it:parameter"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="schema" type="it:schema"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

<xs:element name="template">

<xs:complexType>

<xs:sequence>

<xs:element name="description" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="component" type="it:component"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="parameter" type="it:parameter"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="schema" type="it:schema"

133

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="task" type="ctt:Task"

minOccurs="1" maxOccurs="unbounded"/>

<xs:element name="case" type="it:case"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:schema>

134

Appendix C

Enter Data Element Interaction Tem-

plate

<?xml version="1.0" encoding="ISO-8859-1" ?>

<it:template name="Enter Data Element"

xmlns:it="http://www.cs.usask.ca/ns/it">

<it:description>

A template defining the interaction task of entering a data element. The

"DataElement" schema describes the task’s data element.

</it:description>

<it:schema name="DataElement" path="" />

<ctt:Task ID="Enter $DataElement/@name" Category="Interaction"

Iterative="False" Optional="False">

<ctt:SubTasks>

<it:foreach value="$DataElement/xs:complexType/xs:attribute">

<it:case>

<it:condition expression="expr(starts-with($value/@type,’xs:’))">

<ctt:Task ID="Enter $value/@name" Category="Interaction"

Iterative="False" Optional="expr($value/@use eq "optional")">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TLabeledEdit"/>

<it:setproperty component="Enter_$value/@name" property="EditLabel.Caption"

value="$value/@name"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnExit"></it:bindevent>

</ctt:Task>

</it:condition>

<it:condition expression="true()">

<it:var name="CurAttribute"

path="/xs:schema/xs:simpleType[@name = $value/@type]" />

<it:case>

<it:condition expression="$CurAttribute/xs:restriction/xs:enumeration/last() gt 0">

<ctt:Task ID="Select $value/@name" Category="Interaction"

Iterative="False" Optional="expr($value/@use eq "optional")">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TComboBox"/>

<it:setproperty component="Enter_$value/@name" property="Items"

value="$CurAttribute/xs:restriction/xs:enumeration/@value"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnSelect">

<it:taskname>

TaskName := ‘Select ’ + Self.Text;

</it:taskname>

</it:bindevent>

<ctt:SubTasks>

<it:foreach value="$CurAttribute/xs:restriction/xs:enumeration">

<ctt:Task ID="Select $value/@value" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

</ctt:Task>

135

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:condition>

<it:condition expression="true()">

<ctt:Task ID="Enter $value/@name" Category="Interaction"

Iterative="False" Optional="expr($value/@use eq "optional")">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TLabeledEdit"/>

<it:setproperty component="Enter_$value/@name" property="EditLabel.Caption"

value="$value/@name"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnExit"></it:bindevent>

</ctt:Task>

</it:condition>

</it:case>

</it:condition>

</it:case>

</it:foreach>

<it:foreach value="$DataElement/xs:complexType/xs:sequence/xs:element">

<it:var name="CurElement"

path="/xs:schema/xs:complexType[@name = $value/@type] |

/xs:schema/xs:simpleType[@name = $value/@type]" />

<it:case>

<it:condition expression="expr(starts-with($value/@type,’xs:’))">

<ctt:Task ID="Enter $value/@name" Category="Interaction"

Iterative="expr($value/@maxOccurs gt 1)"

Optional="expr($value/@minOccurs eq 0)">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TLabeledEdit"/>

<it:setproperty component="Enter_$value/@name" property="EditLabel.Caption"

value="$value/@name"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnExit"></it:bindevent>

</ctt:Task>

</it:condition>

<it:condition expression="$CurElement/name() eq "xs:complexType"">

<it:usetemplate name="Enter Data Element" >

<it:schema name="DataElement" path="$CurElement" />

</it:usetemplate>

</it:condition>

<it:condition expression="$CurElement/name() eq "xs:simpleType"">

<it:case>

<it:condition expression="$CurElement/xs:restriction/xs:enumeration/last() gt 0">

<ctt:Task ID="Select $value/@name" Category="Interaction"

Iterative="False" Optional="expr($value/@minOccurs eq 0)">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TComboBox"/>

<it:setproperty component="Enter_$value/@name" property="Items"

value="$CurElement/xs:restriction/xs:enumeration/@value"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnSelect">

<it:taskname>

TaskName := ‘Select ’ + Self.Text;

</it:taskname>

</it:bindevent>

<ctt:SubTasks>

136

<it:foreach value="$CurElement/xs:restriction/xs:enumeration">

<ctt:Task ID="Select $value/@value" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

</ctt:Task>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:condition>

<it:condition expression="true()">

<ctt:Task ID="Enter $value/@name" Category="Interaction"

Iterative="expr($value/@maxOccurs gt 1)"

Optional="expr($value/@minOccurs eq 0)">

<ctt:TemporalOperator>Order Independence</ctt:TemporalOperator>

<it:component name="Enter_$value/@name" objectname="TLabeledEdit"/>

<it:setproperty component="Enter_$value/@name" property="EditLabel.Caption"

value="$value/@name"/>

<it:bindcomponent component="Enter_$value/@name" />

<it:bindevent component="Enter_$value/@name" event="OnExit"></it:bindevent>

</ctt:Task>

</it:condition>

</it:case>

</it:condition>

</it:case>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:template>

137

Appendix D

Data Table Interaction Template

<?xml version="1.0" encoding="ISO-8859-1" ?>

<it:template name="Data Table"

xmlns:it="http://www.cs.usask.ca/ns/it">

<it:description>

A template defining the interaction task of viewing and manipulating data in table format. The

"DataElement" schema describes the data element that will be displayed in each row of the table.

</it:description>

<it:parameter name="AllowSort" type="it:boolean">

<it:value>True</it:value>

</it:parameter>

<it:parameter name="AllowColumnMove" type="it:boolean">

<it:value>True</it:value>

</it:parameter>

<it:parameter name="MultiSelect" type="it:boolean">

<it:value>True</it:value>

</it:parameter>

<it:schema name="DataElement" path="" />

<it:component name="View$DataElement/@name Table" type="TAdvStringGrid"/>

<it:var name="Columns" path="/$DataElement/xs:complexType/xs:attribute |

/$DataElement/xs:complexType/xs:sequence/xs:element" />

<it:setproperty component="View$DataElement/@name Table" property="ColumnHeaders"

value="$Columns/@name"/>

<it:setproperty component="View$DataElement/@name Table" property="AllowSort"

value="$AllowSort"/>

<it:setproperty component="View$DataElement/@name Table" property="MultiSelect"

value="MultiSelect"/>

<it:setproperty component="View$DataElement/@name Table" property="AllowColumnMove"

value="AllowColumnMove"/>

<ctt:Task ID="View $DataElement/@name" Category="Abstraction"

Iterative="False" Optional="False">

<it:bindcomponent component="View$DataElement/@name Table"/>

<ctt:SubTasks>

<ctt:Task ID="Modify Table View" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>

Concurrent With Info Exchange

</ctt:TemporalOperator>

<ctt:SubTasks>

<it:case>

<it:condition expression="$AllowSort">

<it:bindevent component="View$DataElement/@name Table" event="OnClickSort">

<it:taskname>

138

sTaskName := ‘Click ’ + Self.Cells[ACol,0] + ‘ Header’;

</it:taskname>

</it:bindevent>

<ctt:Task ID="Sort By Column" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<ctt:SubTasks>

<it:foreach value="$Columns">

<ctt:Task ID="Sort By $value/@name" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="Click $value/@name Header" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>

Enabling with Information Exchange

</ctt:TemporalOperator>

</ctt:Task>

<ctt:Task ID="Sort Rows By $value/@name" Category="System"

Iterative="False" Optional="False">

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

</it:condition>

</it:case>

<it:case>

<it:condition expression="$AllowColumnMove">

<it:bindevent component="View$DataElement/@name Table" event="OnColumnMove">

<it:taskname>

sTaskName := ‘Select ’ + Self.Cells[ACol,0] ;

</it:taskname>

</it:bindevent>

<ctt:Task ID="Move Column" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="Select Column" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>

Enabling With Information Exchange

</ctt:TemporalOperator>

<ctt:SubTasks>

<it:foreach value="$Columns">

<ctt:Task ID="Select $value/@name" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

</ctt:SubTasks>

</ctt:Task>

</it:foreach>

</ctt:SubTasks>

</ctt:Task>

<ctt:Task ID="Select New Location" Category="Interaction"

Iterative="False" Optional="False">

<it:bindevent component="View$DataElement/@name Table" event="OnColumnMoved">

</it:bindevent>

</ctt:Task>

</ctt:SubTasks>

139

</ctt:Task>

</it:condition>

</it:case>

</ctt:SubTasks>

<it:case>

<it:condtion expression="expr($MultiSelect = True)">

<ctt:Task ID="Select Rows" Category="Abstraction"

Iterative="True" Optional="False">

<it:bindevent component="View$DataElement/@name Table" event="OnSelectionChanged">

</it:bindevent>

<ctt:TemporalOperator>

Suspend-Resume

</ctt:TemporalOperator>

</ctt:Task>

<ctt:Task ID="Perform Operation On Row" Category="Abstraction"

Iterative="False" Optional="True">

</ctt:Task>

</it:condition>

<it:condtion expression="expr($MultiSelect = False)">

<ctt:Task ID="Select Row" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:SubTasks>

<ctt:Task ID="Click Row" Category="Interaction"

Iterative="True" Optional="False">

<it:bindevent component="View$DataElement/@name Table" event="OnSelectionChanged">

</it:bindevent>

<ctt:TemporalOperator>

Enabling With Information Exchange

</ctt:TemporalOperator>

</ctt:Task>

<ctt:Task ID="Perform Operation On Row" Category="Abstraction"

Iterative="False" Optional="True">

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</it:condition>

</it:case>

</ctt:SubTasks>

</ctt:Task>

</it:template>

140

Appendix E

Print Labels

<?xml version="1.0" encoding="ISO-8859-1" ?>

<it:template name="Print Labels"

xmlns:it="http://www.cs.usask.ca/ns/it">

<it:description>

A template defining the interaction task of printing labels for a series of data elements. The

"DataElement" schema describes the data element that will printed.

</it:description>

<it:schema name="DataElement" path="" />

<it:component name="PrintLabels" type="TPrintLabelsDialog"/>

<it:setproperty component="PrintLabels" property="LabelName" value="$DateElement/@name"/>

<ctt:Task ID="Print $DateElement/@name Labels" Category="Abstraction"

Iterative="False" Optional="False">

<it:bindcomponent component="PrintLabels"/>

<ctt:SubTasks>

<ctt:Task ID="Modify Print View" Category="Abstraction"

Iterative="True" Optional="False">

<ctt:TemporalOperator> Disabling </ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="Display Page Preview" Category="System"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Enabling</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnShowLabels">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Modify Label Preview" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Suspend-Resume</ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="View Previous Page" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnPrevPage">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="View Next Page" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnNextPage">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Modify Page Layout" Category="Interaction"

Iterative="False" Optional="False">

141

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<ctt:SubTasks>

<ctt:Task ID="Select Labels" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Enabling</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnLabelSelectionChanged">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Modify Label Status" Category="Interaction"

Iterative="False" Optional="False">

<ctt:SubTasks>

<ctt:Task ID="Mark Label As Missing" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnLabelMissingClick">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Mark Label As Not Missing" Category="Interaction"

Iterative="False" Optional="False">

<it:bindevent component="PrintLabels" event="OnLabelNoMisssingClicked">

</it:bindevent>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

<ctt:Task ID="Modify # Labels / $DataElement/@name" Category="Interaction"

Iterative="False" Optional="False">

<ctt:SubTasks>

<ctt:Task ID="Increase Labels / $DataElement/@name" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnIncreaseLabelsClick">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Decrease Labels / $DataElement/@name" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnDecreaseLabelsClick">

</it:bindevent>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

<ctt:Task ID="Setup Printer" Category="Abstraction"

Iterative="False" Optional="True">

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

<ctt:Task ID="End Print Labels Dialog" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:SubTasks>

142

<ctt:Task ID="Cancel Printing" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Choice</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnCancel">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Accept Printing" Category="Abstraction"

Iterative="False" Optional="False">

<ctt:SubTasks>

<ctt:Task ID="Print" Category="Interaction"

Iterative="False" Optional="False">

<ctt:TemporalOperator>Enabling</ctt:TemporalOperator>

<it:bindevent component="PrintLabels" event="OnPrint">

</it:bindevent>

</ctt:Task>

<ctt:Task ID="Send Pages To Printer" Category="System"

Iterative="False" Optional="False">

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</ctt:SubTasks>

</ctt:Task>

</it:template>

143

