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Abstract

Particle Image Velocimetry (PIV) is a powerful technique to measure the velocity
at many points in a flow simultaneously by performing correlation analysis on images
of particles being transported by the flow. These images are acquired by illuminating
the flow with two light pulses so that each particle appears once on each image.
The spatial resolution is an important parameter of this measuring system since it
determines its ability to resolve features of interest in the flow. The super-resolution
technique maximises the spatial resolution by augmenting the PIV analysis with a
second pass that identifies specific particles and measures the distance between them.

The accuracy of the procedure depends on both the success with which the proper
pairings are identified and the accuracy with which their centre-to-centre distance
can be measured. This study presents an analysis of both the systematic uncertainty
and random uncertainty associated with this process. The uncertainty is analysed
as a function of several key parameters that define the quality of the image. The
uncertainty analysis is performed by preparing 4000 member ensembles of simulated
images with specific setpoints of each parameter.

It is shown that the systematic uncertainty is negligible compared to the random
uncertainty for all conditions tested. Also, the image contrast and the selection of
a threshold for the particle search are the most critical parameters influencing both
success rate and uncertainty. It is also shown that high image intensities still yield
accurate results. The search radius used by the super-resolution algorithm is shown
to be a critical parameter also. By increasing the search radius, the success rate can
be increased although this is accompanied by an increase in random uncertainty.
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Chapter 1

Introduction

1.1 General

Particle image velocimetry (PIV) is a non-intrusive optical technique for measuring

the velocity field in a fluid flow [1], [2]. PIV yields a large number of measurements

of velocity on a plane in the flow. In dual-frame, cross-correlation PIV, a seeded flow

is illuminated twice with laser light sheets and the images are captured on separate

frames by a charge coupled device (CCD) camera. The images are divided into

interrogation areas of equal size. Digital image cross-correlation of corresponding

interrogation areas on the images is used to obtain the mean velocity of all particles

within the interrogation area. The spatial resolution of a PIV technique can be defined

as the number of velocity vectors that it yields for an interrogation area. Cross-

correlation particle image velocimetry yields one velocity vector per interrogation

area. It has a spatial resolution of one.

Any PIV technique which increases the spatial resolution above one can be termed

super-resolution particle image velocimetry (SPIV). One way of implementing SPIV

1



is as a two stage algorithm. In the first stage, cross-correlation PIV is used to find

the mean velocity vector for each interrogation area. In the second stage, a particle

tracking algorithm (PTA) uses the mean velocity vector as an initial guess to track

individual particles in the interrogation area and measure their velocities.

1.2 Objective

Physical quantities cannot be measured with absolute certainty. Repeated measure-

ments of a variable tend to give values which differ among themselves and from the

true value. Measurement error is the difference between the measured value and the

true value. As the true value is rarely known the measurement error must be esti-

mated. Measurement uncertainty is the estimate of error. It is an assessment of the

degree to which a measurement is representative of the true value.

The objective of this work is to determine the measurement uncertainty

of a particle tracking algorithm developed for super-resolution particle im-

age velocimetry. The measurement uncertainty of the particle tracking algorithm

is an assessment of how representative its velocity measurement is of the true velocity.

Determining the measurement uncertainty involves the following steps. An ensemble

of artificial dual-frame PIV images is generated for a known flow field. Each pair con-

tains a test particle whose location is known a priori. The tracking algorithm is used

to measure the velocity of the test particle on each pair. The difference between the

known velocity of the test particle and its velocity computed by the particle tracking

algorithm is calculated. This is the measurement error. Statistical analysis of the
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sample of measurement errors obtained from the ensemble of dual-frame PIV images

gives the measurement uncertainty.

1.3 Scope

As briefly introduced above, super-resolution PIV is a two-step process that first per-

forms a conventional, correlation-based analysis on corresponding interrogation areas

of PIV image pairs and then uses a particle tracking algorithm (PTA) to identify

specific particles. This thesis is only concerned with the measurement uncertainty

of the particle tracking stage of the super-resolution particle image velocimetry algo-

rithm. Therefore PIV information which is free of uncertainty is used in this thesis.

The uncertainty analysis of the particle tracking algorithm to be described later in

the thesis requires that simulated images be generated. The velocity field used to

generate these simulated images is a simple shear flow. A wide variety of velocity

fields are possible, but a simple shear flow allows the influence of velocity magnitude,

direction, and velocity gradient to be investigated.

1.4 Organisation of the Thesis

In Chapter 2 background information relevant to the thesis is presented. This in-

cludes a description of conventional, correlation-based PIV, a discussion of particle

tracking and the super-resolution approach, and a presentation of uncertainty analy-

sis concepts. In Chapter 3 the techniques used to perform the uncertainty analysis are
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presented. This includes a description of the algorithm used to generate simulated

images, a description of the particle tracking algorithm studied in this thesis, and

an explanation of uncertainty analysis. The results of the uncertainty analysis are

presented in Chapter 4. The conclusions and recommendations from the study are

presented in Chapter 5.
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Chapter 2

Background

2.1 Particle Image Velocimetry

Figure 2.1 is a schematic diagram of a PIV system. Light from a pulsed Nd-YAG

laser is formed into a thin sheet to illuminate a flow seeded with tracer particles.

The laser is pulsed twice. The separation time between the two pulses is known

accurately. In dual-frame cross-correlation PIV, a CCD camera captures the images

of the illuminated particles from the two pulses on separate frames. The displacement

of particles in the time between illuminations is determined by appropriate analysis

of these two images. The x and y velocity components are obtained by dividing the

corresponding displacements by the separation time.
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Laser light

Image plane

Light sheet

Light sheet optics

Flow direction

Figure 2.1: Schematic diagram of a system for particle image velocimetry.

2.2 PIV System

Laser Light Source

The light source for PIV is usually a Q-switched, pulsed Nd-YAG laser. It produces

an intense beam of light having an approximately Gaussian intensity distribution and

a duration as short as 8ns when operated in TEM00 mode.

Transverse electro-magnetic (TEM) modes describe electric field variation within

a cross-section of a laser beam. Transverse modes are labelled TEMmn where m,

n are integers. Figure 2.2 shows beam cross sections for several transverse modes.

The TEMmn mode has m nodes or zeroes in the x direction and n nodes in the y

direction. The intensity profile of the TEM00 mode is in the top, left corner. For a
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TEM21 TEM31 TEM43 TEM53

TEM11 TEM40

TEM00 TEM10 TEM20 TEM30

Figure 2.2: Beam profiles for different laser modes. Adapted from Fox [3]. The
Gaussian intensity distribution of the TEM00 mode is the one in the top, left corner.

field propogating in the z direction, the x, y dependence of the field is

Emn(x, y) = E0Hm

(√
2x

w

)
Hn

(√
2y

w

)
exp

(
−x

2 + y2

w2

)
. (2.1)

Hm and Hn are mathematical functions called Hermite polynomials [4]. The TEM00

mode has a Gaussian radial distribution:

E00(x, y) = E0 exp

(
−x

2 + y2

w2

)
, (2.2)

where r is the radial distance from the center of the beam and the parameter w

determines the size of the beam. The TEM00 has the least divergence and can be

focussed to the smallest size of all modes.
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Light Sheet Optics

The laser beam is formed into a light sheet by an optical arrangement consisting

of a cylindrical plano-concave lens and a spherical double-convex lens. The optical

arrangement is illustrated in Figure 2.3. A cylindrical lens magnifies only in one

plane. Figure 2.4 illustrates the refraction of a light beam through a cylindrical

lens. The role of the spherical lens is to control the thickness of the light sheet.

Typically, the spherical lens has quite a long focal length (250–1000 mm). As the

beam passes through the spherical lens it converges to a finite thickness waist at

a distance away from the lens equal to its focal length. This is typically the region

where PIV measurements are made. The cylindrical lens typically has a much shorter

focal length (12-50 mm) and causes relatively rapid beam expansion in one direction.

Seeding Particles

A body immersed in a fluid is called positively buoyant, neutrally buoyant, or nega-

tively buoyant depending on whether the weight of the fluid displaced is greater than,

equal to, or less than the weight of the body. Positively bouyant particles float in a

flow, negatively bouyant particles settle to the bottom, and neutrally bouyant parti-

cles follow the flow. For a body to be neutrally buoyant its density should be equal

to the density of the fluid it is immersed in. Since seeding particles should follow the

flow faithfully, neutrally buoyant, spherical seeding particles are used in PIV work.

In practice the density of a seeding particle can differ from the density of the fluid.

The acceleration due to gravity then introduces a velocity which is proportional to
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Figure 2.3: The optical arrangement for producing a laser light sheet for particle
image velocimetry. (a) Top-view. (b) Front-view.
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Cylindrical lens
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Figure 2.4: The refraction of a light beam through a cylindrical lens.

the square of the particle diameter Dp. Inertia forces in accelerating flows cause the

particle velocity to lag behind the fluid velocity with a velocity difference propor-

tional to the square of the particle diameter [5], [6]. Since the velocity differences

are directly proportinal to the square of the particle diameters, particles which have

smaller diameters follow the flow more accurately.

The scattering of light without change in the wavelength of the incident light

is called elastic scattering. Elastic scattering of light from spherical particles which

have diameters matching the wavelength of the incident light is described by the

generalised Lorenz-Mie theory [7], and is called Mie scattering. In Mie scattering, the

average intensity of the scattered light is directly proportional to the square of the

particle diameters. Large particles scatter more light and are more visible on a PIV

photograph. As the diameter of a particle increases its scattering efficiency increases

while its velocity fidelity decreases. Seeding particle diameters are choosen to strike
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a balance between the contradicting requirements for high scattering efficiency and

high velocity fidelity. Seeding particles used in PIV have diameters in the range

1 − 10µm [6],[8]. Aerosols, suspensions of liquid or solid particles in air, are often

used for seeding gas flows. Examples of seeding particles used for PIV in liquid flows

are hollow glass spheres and polysterene spheres. Examples of seeding particles for

gas flows are aerosols of olive oil or corn oil. Melling [6], Stanislas and Monier [9],

and Meyers [10] discuss seeding particles for PIV in detail.

Image Recording Device

In dual-frame cross-correlation PIV, the images from the two laser pulses are recorded

on separate frames using a CCD camera. A CCD camera sensor consists of a very

large number of light sensitive cells or pixels, each capable of producing an electric

charge proportional to the amount of light falling on it. The pixels are arranged in a

two-dimensional array called an area array and facilitate the capture of single image

with a single exposure. The resolution of a CCD camera is the total number of pixels

which make up the light sensitive area of the camera sensor. CCD cameras having

a resolution of 4.2 million pixels ( TSI PowerView Model 630049/630050 ) are now

available for PIV applications.

11



2.3 PIV Image Analysis

Digital Image

An analog image is a continous function I(x, y) of two spatial coordinates (x, y). A

discrete image is obtained from an analog image by spatial sampling. Consider the

image in Figure 2.5. The image is sampled by dividing it into an M × N matrix of

picture elements or pixels. The intensity

I(m,n) m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1

assigned to the pixel at location (m,n) is the average value of the function I(x, y) over

the area of the pixel. The set of possible values of I(m,n) is continuous. If I(m,n) is

restricted to a finite set of values, the discrete signal is said to be amplitude quantised.

Amplitude quantisation is usually done by rounding I(m,n) to the nearest integer.

A discrete, amplitude-quantised image is called a digital image. A greyscale digital

image is a matrix of pixels, each having a specific intensity. The number of distinct

intensity levels is 2B where B is the number of bits in the binary representation of

the intensity level. There are 256 intensity levels for 8-bit greyscale images. Intensity

level 255 represents white and zero represents black.
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Figure 2.5: An illustration of a sampling grid superimposed on an analog image.
An analog image is converted to a digital image by spatial sampling and amplitude
quantisation.

Convolution and Correlation

The convolution G(m,n) of the image I (m,n) with the image J (m,n) is defined as

G(m,n) = I (m,n) ∗ J (m,n) =
M−1∑
k=0

N−1∑
l=0

I (m,n) J (k −m, l − n)

for k, l = 0,±1,±2, . . . (2.3)

The image J (k −m, l − n) is called the spatial convolution mask, the convolution

filter, or the convolution kernel. The pixel values of J (m,n) are called the kernel

values. The asterisk (∗) is used to denote the convolution operation.
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The cross-correlation C (m,n) between the images I (m,n) and J (m,n) is defined as

C(m,n) = I(m,n) ? J(m,n) =
M−1∑
k=0

N−1∑
l=0

I(m,n)J(m− k, n− l)

for k, l = 0,±1,±2, . . . (2.4)

The pentagram or the five-pointed star (?) is used to denote the cross-correlation

operation. Equation 2.4 can be written as

C(m,n) = I(m,n) ? J(m,n) =
M−1∑
k=0

N−1∑
l=0

I(m,n)J (−(k −m),−(l − n)). (2.5)

PIV image analysis involves finding the mean displacement of the particle images

that are in the interrogation area. This is an image registration problem. Image

registration is the procedure of aligning multiple images of the same scene. The

image to which the other images are compared is called the base image. The images

which are to be aligned to the base image are called input images or templates. The

aim of image registration is to find the position which best aligns an input image to

a base image. A survey of image registration techniques is given in Brown [11].

The sum of squared differences (SSD) and cross correlation are widely used, and

related, techniques for image registration. The sum of squared deviation is a measure

of the dissimilarity between two images. It measures the square of the Euclidean

distance between the intensities of aligned pixels at each value of the shift between

the two images [12]. Let I(m,n) and J(m,n) be M ×N images. The sum of squared
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difference between the images I(m,n) and J(m,n) is defined as

SSD(k, l) =
M−1∑
m=0

N−1∑
n=0

(I (m,n)− J (m− k, n− l))2 for k, l = 0,±1,±2, . . . (2.6)

The right-hand side of Equation 2.6 can be written as follows.

M−1∑
m=0

N−1∑
n=0

(I (m,n)− J (m− k, n− l))2

=
M−1∑
m=0

N−1∑
n=0

I(m,n)2 − 2I(m,n)J(m− k, n− l)− J(m− k, n− l)2

=
M−1∑
m=0

N−1∑
n=0

I(m,n)2 − 2
M−1∑
m=0

N−1∑
n=0

I(m,n)J(m− k, n− l)−
M−1∑
m=0

N−1∑
n=0

J(m− k, n− l)2.

(2.7)

The sum of squared difference has a minimum value when the images I(m,n) and

J(m,n) are aligned. This occurs when the second term in the expansion has its

maximum value, that is, when

M−1∑
m=0

N−1∑
n=0

I(m,n)J(m− k, n− l) (2.8)

has a maximum value. Equation 2.8 is the cross correlation C(m,n) between the

images I (m,n) and J (m,n) ( see Equation 2.4 ). The cross correlation varies when

there are changes in illumination across the input images. Consider the case where

two input images having the same image pattern are being compared to a base image.

If one of the images has a higher illumination intensity, it will produce a higher value
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of cross-correlation at any value of the shift between the base image and the input

images. To avoid this problem, the normalised cross correlation — or the cross-

correlation coefficient — is often used as the similarity metric. It is defined as

CN (m,n) =

M−1∑
m=0

N−1∑
n=0

(
I(m,n)− µI(m,n)

) (
J (n− k, n− l)− µJ(m,n)

)
σI(m,n)σJ(m,n)

for l, k = ±1,±2, . . . (2.9)

The correlation coefficient measures the cross-correlation between images on an ab-

solute scale which has a range [−1, 1]. Instead of the pattern of intensity values, it is

the pattern of deviations from the mean, in multiples of the standard deviation which

are now being cross-correlated. A correlation coefficient of 1 indicates maximum

alignment and −1 indicates minimum alignment [12].

Figure 2.6 is a schematic illustration of a pair of dual-frame cross-correlation PIV

photographs dilineated into interrogation areas for cross-correlation analysis. The

particles within each interrogation area form a pattern. Since the time interval be-

tween the laser pulses is very short, particles in an interrogation area are assumed

to maintain their relative alignment from the first to the second photograph. Under

this assumption the extraction of the mean velocity of the particles within an inter-

rogation is an image registration problem. The registration of the interrogation areas

is done by finding the cross-correlation between them. The shift in pixels required

to align an interrogation area on the second photograph with the corresponding in-

terrogation area on the first photograph is the displacement of the particle images in
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  (a) (b)

A A

Figure 2.6: (a) First PIV image. (b) Second PIV image. The two PIV images
are delineated into interrogation areas of equal size ( the grid in the figure ). Cross-
correlation between corresponding interrogation areas of the images is employed to
determine the mean velocity of the particles within that interrogation area.
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Figure 2.7: The cross-correlation function between two interrogation areas. The
displacement of the peak in the discrete cross-correlation function C(m,n) from the
origin of the cross -correlation plane is the mean displacement of the particles in the
interrogatin area.

the time between the laser pulses. The pixel shift at which the interrogation areas

are best aligned is indicated by the highest correlation peak in the cross-correlation

plane (the maximum value of the cross-correlation function). The displacement of the

highest correlation peak from the origin gives the mean displacement of the particles

in the time between the laser pulses. Dividing the displacement by the known time

between the laser pulses gives the mean velocity of the particles in pixels per pulse.

The graph of the discrete cross-correlation between two interrogation areas in shown

in Figure 2.7. Carrying out the analysis for all interrogation areas in the PIV photo-

graph yields the flow velocity vector field in the plane of the laser light sheet. Figure

2.8 is a schematic diagram of a velocity vector field obtained by PIV analysis. The

computation of the cross-correlation between two images in the spatial domain re-
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Figure 2.8: Velocity vector field obtained by cross-correlation.
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quires significant computational resources. Cross-correlation can be performed much

faster in the spatial frequency domain using Fourier transform techniques.

Fourier Transform Techniques

Let I (m,n) be an M × N digital image. The forward discrete Fourier transform

(DFT) of I (m,n) is defined as

F{I(m,n)} = I(ωx, ωy) =
1

MN

M−1∑
m=0

N−1∑
n=0

I(m,n)e−2πj(ωxn/M+ωym/N) (2.10)

where ωx and ωy are spatial frequency variables in the x and y directions respectively

and j =
√
−1. The inverse discrete Fourier transform is defined as

F−1 (F{I(m,n)}) =
M−1∑
ωx=0

N−1∑
ωy=0

I(ωx, ωy)e
2πj(ωxn/M+ωym/N). (2.11)

Cyclic Convolution Theorem

Theorem 2.3.1 (Cyclic Convolution) The discrete Fourier transform of the con-

volution of I (m,n) with J (m,n) is the product of their discrete Fourier transforms.

F {G (m,n)} = F {I (m,n)} · F {J (m,n)} . (2.12)
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Convolution in the spatial domain is equivalent to multiplication in the frequency

domain. From Equation 2.12,

F−1 (F {I (m,n)} · F {J (m,n)}) = F−1 (F {G (m,n)}) = I (m,n) ∗ J (m,n) .

(2.13)

According to Equation 2.13, the convolution of an image with another can be obtained

by multiplying their Fourier transforms and finding the inverse Fourier transform of

the product. The proof of the cyclic convolution theorem is given in [13]. Cyclic con-

volution is also called circular convolution. Compare the right most term in Equation

2.5 to the right most term in Equation 2.3. The image J(k−m,n−l) in the expression

for convolution is J(−(k−m),−(l−n)) in the expression for cross correlation rotated

180 degrees. The cross correlation between I(m,n) and J(m,n) is equivalent to the

convolution of I(m,n) and J(−m,−n). This means that the convolution theorem

can be used to compute the cross-correlation between I(m,n) and J(m,n) in the

frequency domain.

Cyclic Cross-correlation Theorem

Let I (m,n) and J (m,n) be M × N images. Let C (m,n) be the cross correlation

between the images I (m,n) and J (m,n).

Theorem 2.3.2 (Cyclic cross-correlation) The discrete Fourier transform of the

correlation of I (m,n) with J (m,n) is the product of the discrete Fourier transform
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of I(m,n) and the complex conjugate of the discrete Fourier transform of J(m,n).

F {G (m,n)} = F {I (m,n)} · F∗ {J (m,n)} . (2.14)

From Equation 2.14,

F−1 (F {I (m,n)} · F∗ {J (m,n)}) = F−1 (F {G (m,n)}) = I (m,n) ∗ J (m,n) .

(2.15)

The cross-correlation theorem provides an alternate formula for calculating the cross

correlation between the images I(m,n) and J(m,n) in the frequency domain. In prac-

tice, the Fourier transforms required by this approach can be very rapidly calculated

using the Fast Fourier Transform (FFT).

Sub Pixel Interpolation

In PIV image analysis, the distance between the peak in the discrete cross-correlation

function C(m,n) and the origin of the cross-correlation plane is the mean displace-

ment of the particle images in an interrogation area. Since C(m,n) is a discrete

function, the location of the cross-correlation peak is available only at spatial in-

crements equal to the pixel size. The cross-correlation peak can be located with an

accuracy of less than one pixel by sub-pixel interpolation (also termed sub-pixel image

registration in the computer vision literature). Sub-pixel interpolation involves fitting

a function, usually Gaussian or parabolic, to the discrete cross-correlation function

near the peak and finding the location of the maximum in that function.
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2.4 Particle Tracking

Correlation particle image velocimetry and particle tracking velocimetry belong to a

family of techniques referred to as pulsed light velocimetry. The distinction between

the two techniques is based upon the particle image density in the recorded images

(see the review article by Adrian [1]). Particle tracking is a relatively old technique.

In the early days of pulsed light velocimetry, very low particle densities were used so

that the identity of individual particles in multiple exposures was clear. This made

particle tracking relatively easy because the task was restricted to finding the parti-

cle centroid. There was no confusion over which particle images belonged to which

particle. It was recognised, however, that low particle image density lead to low res-

olution of the velocity field. Therefore, higher particle loadings became common and

correlation-based techniques (as described in 2.1) were developed that did not need

to identify individual particles. This, coupled with the simultaneous development of

digital imaging techniques, lead to rapid development in PIV techniques in the 1990s.

Recently, particle tracking algorithms have been incorporated into super-resolution

particle image velocimetry algorithms. Here a PIV analysis stage precedes the parti-

cle tracking and provides the particle tracking algorithm with an anticipated location

for the second particle image. The next section reviews several implementations of

this concept.
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2.5 Super-resolution PIV Literature

Keane et al. [14] coined the term super-resolution PIV. They make the point that the

resolution of a particle tracking technique is ultimately determined by the lesser of

mean spacing between particles and the distance traveled by particles between laser

light pulses. They reported successfully increasing the spatial resolution by a factor

of 2.5 for a specific turbulent flow over that achieved by conventional PIV analysis.

Their work was performed in the context of double-exposed PIV photographs using

auto-correlation analysis techniques whereas this thesis focuses on cross-correlation

techniques applied to single-exposed digital images. Their algorithm differs slightly

from the one proposed in this thesis in that a successful pair identification is only

recognised if a single particle image falls in the search region. They also performed a

Monte-Carlo simulation to assess their technique but they used a rather small sample

size (300) in their study. Their assessment was restricted to the success rate of the

algorithm an did not talk about the uncertainty in the successful measurements.

Guezennec et al. [15] describe an analysis technique that appears to be the earliest

implementation of the super-resolution concept. They assessed both the success rate

and standard deviation of the technique by analysing simulated images, but used

small samples (50 images). They identified the most important parameter to be

the ability to distinguish between the particles and the background (i.e. the image

contrast) and, as a result, the most important algorithm parameter as the threshold.

Keane & Adrian [16] performed a Monte-Carlo simulation of double-exposed PIV

photographs. Their main aims were to assess the effects of in-plane velocity gradi-
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ents and pair loss due to out-of-plane velocity gradients. They found that a bias was

introduced that favoured the high velocity regions of the interrogation area. Their

simulated images had no background noise, assumed constant diameter particle im-

ages, and used a low particle concentration so that there would be very little chance

of particle overlap. In [17] they generalised their approach to multiple pulse systems

with similar results.

Cowen & Monismith [18] describe essentially the super-resolution technique but

call it the hybrid particle tracking velocimetry technique in reference to the fact

that it uses a PIV stage as a preconditioner and a PTV stage which attempts to

track individual particles. They are specifically interested in measuring turbulence

statistics. So they avoid the usual final step of re-interpolating the random velocity

measurements that result from the PTA and calculate the turbulence statistics on a

regular grid directly from the randomly positioned velocity measurements.

Rehm & Clemens [19] also describe a hybrid algorithm that is another imple-

mentation of the super-resolution concept. They claim that improvements to the

technique have been made that allow it to recognise and account for overlapping

particle images. They also tested the method with simulated images and applied

the technique to turbulent flows and observed a factor of six increase in resolution

over conventional PIV. Their technique focussed on double-exposed images where the

problem of particle overlap is more pronounced.

In [20], Hart describes a correlation based super-resolution PIV technique. Other

super-resolution PIV techniques use a particle tracking stage to produce velocity

measurements at a scale smaller than that of the interrogation areas used for the
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primary correlation analysis. The correlation based super-resolution technique de-

scribed in [20] employs recursive correlation analysis on progressively smaller regions

to produce velocity measurements at these scales.

2.5.1 Summary

The super-resolution literature contains a number of variations on the technique.

However, the essential features are very similar. This thesis will address the need to

measure the uncertainty in the technique consistent with international standards [21],

[22]. In addition it will establish these uncertainties as functions of a larger number

of parameters than are available in the literature.

2.6 Measurement Uncertainty

A measurement result must be reported with a statement of the measurement un-

certainty. Measurement uncertainty characterises the dispersion of values that can

reasonably be attributed to the measurand. It is an estimate of the limits of the mea-

surement error about the best value of the measurand and is usually expressed at the

95% confidence level. When repeated measurements are made, the best value is taken

as the mean of the measurements. This chapter explains the procedure for calculating

and reporting measurement uncertainty. The calculation of measurement uncertainty

involves statistical analysis. A description of the mathematical background for this

chapter is given in Appendix A.
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2.6.1 Terminology

Measurement is the procedure of determining the value of a measurable physical

quantity. It involves the entity being measured (measurand), the entity to which

quantitative comparisons are made (reference), and the means of comparing the

measurand with the reference to render judgement (comparator). The result of

the measurement is reported with a statement of the quality and reliability of

that value.

Metrology is the science of measurement. It is concerned with establishing, repro-

ducing, conserving, and transferring units of measurements and their standards.

Standardisation is minimisation of metrological diversity. International standardi-

sation is acheived by conforming to the International System of Units (SI) [23].

The SI definition of the appropriate unit is the ultimate standard for a mea-

surement result. SI is rational, coherent and comprehensive. The seven base

units [23] of SI cover all disciplines.

Realisation is the process, experiment or artifact by which definitions of SI base

units are made incarnate.

Primary Standards are the methods and associated instrumentation used to realise

SI base units. They are of the highest metrological quality. A primary standard

is the starting point for accurate measurement of a quantity as its value, the

primary value is accepted without reference to any other standard of the same

quantity.
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Reference transfer standard
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Process instruments

Figure 2.9: Calibration Pyramid

Transfer Standards A hierarchy of facilities, procedures, and instruments termed

the calibration pyramid transfers primary values to measuring instruments. Fig-

ure 2.9 illustrates the calibration pyramid. Transfer standards are the instru-

ments used to make the transfer. Reference transfer standards are standards of

the highest metrological quality at a given location or organisation. If frequent

comparisons are made against a national standard it will loose accuracy. Refer-

ence transfer standards which are calibrated against the national standard are

placed at several locations to prevent this. Working transfer standards are used

for routine calibration and checking of measuring instruments.

Calibration is the set of operations that establish, under specified conditions, the

relationship between values of quantities indicated by a measuring instrument

or measuring system, or values represented by a material measure or a reference

material and the corresponding values realised by standards [24].
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Figure 2.10: Thermometer Calibration Curve

Calibration curve A calibration curve calibrates a measuring instrument which has

a response over a range of values. An instrument is calibrated to reduce sys-

tematic errors (see Sections 2.6.2 and 2.6.2 ) over the response range. The

instrument is used to make measurements on reference standards which have

known values, at several points in the response range. The calibration curve for

the instrument is a linear least squares fit to the scatter plot of measured values

vs. reference values. A calibration curve maps a measured value to the correct

value. For example, Figure2.10 is a scatter plot of the temperature measured

with a thermometer against the corresponding reference temperature. The cal-

ibration curve of the thermometer is the linear least squares fit to the scatter

plot. It is the line shown in the graph.

Traceability is the property of the result of a measurement or the value of a standard

29



whereby it can be related to stated references, usually national or international

standards, through an unbroken chain of comparisons all having stated uncer-

tainties [24].

2.6.2 Measurement Error

Total Measurement Error

It is rare in metrology to report the value of a measurand on the basis of a single

measurement. Usually a number of measurements are made and the best value is

reported. Frequently, the mean of the sample values is taken as the best value.

Consider a sequence of n measurements of a variable X. Let xtrue be the true value

of the variable and xi be the ith measured value. The total measurement error in the

ith measurement of X is

δxi
= xi − xtrue. (2.16)

The total measurement error δxi
is the sum of a fixed component βxi

termed the

systematic error and a random component εxi
termed the random error.

δxi
= βxi

+ εxi
. (2.17)
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Systematic Error

The systematic error has a constant value βx for all n measurements:

βxi
= βx ∀ i, i = 1 . . . n. (2.18)

It is defined as the difference between the true value of the measurand and the mean

value µx of the n measurements:

βx = µx − xtrue. (2.19)

It is the error that remains after all possible calibration corrections have been made.

Calibration of measuring instruments is intended to eliminate or reduce the systematic

error. All systematic errors cannot be eliminated. The systematic error of the primary

standard will be retained.

Random Error

The random error εxi
scatters the measurements about the mean value. The random

error εxi
is different for each i. Figure 2.11 illustrates the measurement errors for the

ith and i+ 1th measurements. As n→∞ a histogram of the measurements tends to

approach a normal curve (Figure 2.12).
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Figure 2.11: The figure shows the total measurement error in two successive mea-
surements of a variable X. The total measurement error in the ith measurement is
made up of a fixed component called the bias error δi and a random component called
the random error εi.
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Figure 2.12: Histogram of n measurements of the variable X as n → ∞. The
difference between the mean value µX of the n measurements and the true value Xtrue

is the bias error β.
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2.6.3 Measurement Uncertainty

The true value of the measurand xtrue is seldom known. This precludes calculation the

total measurement error δxi
from Equation 2.16. Therefore, δxi

has to be estimated.

The measurement uncertainty is the estimate of the limits of the measurement error.

It is reported as a confidence interval about the best value of X (usually the mean of

the n measurements) at some level of confidence C%. The International Standards

Organisation (ISO) recommends using the 95% confidence level. The random uncer-

tainty is the estimate of the limits of the random error. The systematic uncertainty

is the estimate of the limits of the systematic error.

Random Uncertainty

In Section 2.6.2 it was mentioned that a histogram of the sequence of n measurements

of a random variable X tends to approach a normal curve as n → ∞. That is,

the meausurements tend to be normally distributed. A sequence of measurements

X1, X2 . . . Xn of X form a random sample drawn from a normal distribution. If it

were possible to take an infinite number of measurements then the best value of

the measurand reported would be the population mean µx. When n 6= ∞ the best

value reported is the sample mean X̄. In this case the population mean µX is being

estimated by the sample mean X̄. The 95% confidence interval for the population

mean µx about the sample mean X̄ is given by Equation A.31:

P

(
X̄ − t0.025,ν

S√
n
≤ µ ≤ X̄ + t0.025,ν

S√
n

)
= 0.95.
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The random uncertainty PX̄ is defined as the 95% confidence limit about the sample

mean X̄ by Coleman and Steele [25].

PX̄ = t0.025,ν
S√
n

= t0.025,νSX̄ , (2.20)

The number of degrees of freedom ν = n− 1. As n approaches infinity the t distribu-

tion approaches the normal distribution, and t0.025,ν approaches 1.96 ≈ 2. This value

is used in Equation A.17, the confidence interval for the mean of a normal population

distribution, and in Equation A.21, the large sample confidence interval. Often in

scientific and engineering experiments, the sample sizes are large enough to consider

tα,ν in Equation 2.20 constant at the approximately Gaussian value of two.

After performing Monte Carlo simulations to determine the number of measure-

ments required to consider the sample size large, Coleman and Steele [25] recommend

that the t critical value be used for n < 10. The approximately Gaussian value 2

can be used for n ≥ 10. The approximate 95% confidence estimate of the random

uncertainty of a variable about the sample mean is

PX̄ = t0.025,ν
S√
n

n < 10. (2.21)

PX̄ = 2
S√
n

n ≥ 10. (2.22)
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Figure 2.13: The ANSI/ASME standard [22] and the AIAA standard [26] (by the
standards subcommittee, AIAA-GTTC) define the systematic uncertainty B as an
estimated value of the limits of the true value of the systematic error β at the 95%
confidence level. This is illustrated in the figure. This confidence interval for the
systematic uncertainty means that 95% of the time the magnitude of the systematic
error β is equal to or less than B.
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Systematic Uncertainty

In obtaining the random uncertainty, there are n sample observations to compute a

statistic (e.g., the standard deviation). In calculating the systematic contribution to

the uncertainty, there is only a single constant measurement of the systematic error.

The true value of the systematic error can be calculated only if Xtrue is known. But

Xtrue is usually not known. The ANSI/ASME standard [22] and the AIAA standard

[26] (by the standards subcommittee, AIAA-GTTC) define the systematic uncertainty

B as an estimated value of the limits of the true value of the systematic error β at

the 95% confidence level. This is illustrated in Figure 2.13. This confidence interval

for the systematic uncertainty means that 95% of the time the magnitude of the

systematic error β is equal to or less than B.

|β| ≤ B (2.23)

To estimate the magnitude of the systematic error, it is assumed that the systematic

error for a given case is a single realisation from a parent population of systematic

errors having some statistical distribution. If the distribution is assumed to be normal

with standard deviation Sβ, the interval

±B = ±2Sβ (2.24)

will include approximately 95% of all systematic errors that can be realised from the

parent population.
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2.6.4 Combined Standard Uncertainty

The systematic and random uncertainties are combined to produce the combined ran-

dom uncertainty uc. The ISO Guide to the expression of uncertainty in measurement

(GUM) [21] methodology specifies that the combined standard uncertainty uc should

be obtained by adding the variances for the systematic and random errors. The

standard deviation for the systematic error is obtained from Equation 2.24.

SB =
B

2
(2.25)

If the confidence interval is specified about the sample mean X̄, the estimated stan-

dard deviation for the random error is obtained from 2.20.

S =
S√
n
. (2.26)

By definition, the variance is the square of the standard deviation. Equation 2.25 and

Equation 2.26 give the variances for the systematic and random errors. The combined

standard uncertainty is

u2
c = S2

B + S2
X̄ . (2.27)

The Central Limit Theorem implies that the distribution of the total error δ for a

measured variable should approach the normal distribution. The combined standard

uncertainty uc can be considered as the standard deviation of this total error distri-

bution.
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2.6.5 Overall Uncertainty

The overall uncertainty of a measured variable X is the interval around its best value

where Xtrue is expected to be, at given confidence level. The overall uncertainty is

calculated by combining the systematic uncertainty and the random uncertainty. The

ISO Guide advises a coverage factor k to specify a confidence level with the combined

standard uncertainty of a variable.

U% = kuc (2.28)

where U% is the overall uncertainty at a particular confidence level. Xtrue will be

within the ±U limit. Because the distribution of the total errors is normal, the ISO

Guide recommends using the t distribution, and therefore the t critical values for the

coverage factor:

U% = t%uc. (2.29)

At the 95% confidence level

U95 = t0.025,νuc. (2.30)

The number of degrees of freedom ν in Equation 2.30 is approximately given by the

Welch-Satterthwaite formula:

ν =

(
S2

B + S2
X̄

)2
S4

B

νSB

+
S4

X̄

νSX̄

(2.31)
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where νSB
and νSX̄

are respectively the degrees of freedom associated with SB and

SX̄ . The estimate of νSB
recommended by the ISO Guide is

νSB
=

1

2

(
∆B

B

)−2

(2.32)

where ∆B is the relative uncertainty of B. For sample size n,

νSX̄
= n− 1. (2.33)

2.6.6 Large Sample Overall Uncertainty

In most engineering problems ν is large enough to consider the values in Equation

2.29 constant for a given confidence level. Coleman and Steele [25] state that the

large sample approximation can be used for ν ≥ 9. At the 95% confidence level, the

constant t critical value is

t0.025,ν = 2. (2.34)

Using this value in Equation 2.30,

U95 = 2uc =

√
(2SB)2 + (2SX̄)2 (2.35)

From Equation 2.24

2SB = B,
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the systematic uncertainty. From Equation 2.22, when n ≥ 10

2SX̄ = 2
S√
n

= PX̄ ,

the random uncertainty. The overall uncertainty about the sample mean for large

sample sizes is

U95 =
√
B2 + P 2

X̄
. (2.36)

This work reports the overall uncertainty U95 (Equation 2.36) in velocity measure-

ments made by the particle tracking algorithm. The systematic error and random

uncertainty can equivalently be calculated from a sample of total measurement errors.

This is explained next. Consider a sequence of n measurements of a variable X. Let

xtrue be the true value of the variable and xi be the ith measured value. Let µx and sx

be the mean and standard deviation of the n measurements. The total measurement

error in the ith measurement of X is

δxi
= xi − xtrue.

When a constant value is subtracted from each element of a sample, the sample mean

is reduced by that constant value, while the sample standard deviation remains the

same. In the equation for the total measurement error above, xtrue is a constant.

Therefore the mean of the n measurement errors is

µδx = µx − xtrue. (2.37)
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The mean of the sample of total measurement errors, µx − xtrue, is the systematic

error βx (see Equation 2.19) in the n measurements. The standard deviation of the

n measurement errors is sδx = sx, the standard deviation of the measurements. The

systematic uncertainty is 2sx/
√
n. In this thesis the systematic error and random

uncertainty are calculated from the sample of total measurement errors.
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Chapter 3

Measurement of PTA Uncertainty

This chapter begins with a description of the particle tracking algorithm implemented

in this thesis. It then describes the simulation that was done to measure the uncer-

tainty in the particle tracking algorithm. This process involves both generating sim-

ulated images and analysing these images to yield an assessment of the uncertainty.

3.1 Details of the Current PTA

The super-resolution PIV technique augments the correlation PIV analysis with a

second pass that attempts to track specific particles in the flow. The particle tracking

algorithm measures flow velocity in several steps. Individual particles are identified on

both images. The location of each particle image is calculated as its intensity weighted

centroid. Paired particle images are identified and the displacements between pair

members are calculated. The velocity of a particle is assigned to the midpoint of the
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Figure 3.1: Schematic representation of portion of a PIV photograph. Particle
images are groups of pixels above a specified threshold. Pixels above the threshold are
highlighted. The letters will be referred to in the description of the PTA.

line joining the centroids of its images. An optional final step is the interpolation of

the randomly placed velocity vectors onto a regular grid.

3.1.1 Particle Identification

Figure 3.1 shows a schematic representation of a portion of a PIV photograph. A

particle image is a group of adjacent pixels whose intensities are above a specified

threshold It. The threshold influences the number and size of identified particles.

Therefore, it is a critical algorithm parameter and its effect on the uncertainty of the

super-resolution technique is investigated in this thesis.

Identifying particle images computationally is not trivial. Every pixel is assigned

a particle identification number (PIN), that is used to identify which particle each
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pixel belongs to. Initially, every pixel is assigned a PIN of −1. Let leftpin and

lowerpin denote the PIN of the left and lower neighbour of a pixel respectively. The

image is scanned from the bottom left corner to the top right corner in a row wise

fashion and each pixel above the specified threshold has its PIN set depending upon

the PIN of its left and lower neighbour. During this process, only the pixels below

and to the left of the current pixel can potentially have their particle identification

numbers set to something other than −1. For a pixel in the left most column of the

image leftpin is taken as −1. For a pixel in the lowest row lowerpin is taken as

−1. The PIN is set according to the following rules:

1. lowerpin < 0 and leftpin < 0. The PIN of both the left and lower neighbour

is less than 0. In this case a new particle appears to have been found. The PIN

for this pixel is set to the next available integer, starting at 0. In Figure 3.1, rule 1

applies to the pixels labelled A, D, K, T, and U.

2. lowerpin ≥ 0 or leftpin ≥ 0. The PIN of either the left neighbour or the

lower neighbour is non-negative. In this case, the current pixel is given the same PIN

as its non-negative neighbour. In Figure 3.1 rule 2 applies to pixels B, C, H, L, M,

N, Q, and X.

3. lowerpin = leftpin 6= −1. Both the left and the lower neighbours have the

same non-negative PIN. The current pixel is given this PIN.

4. lowerpin ≥ 0 and leftpin ≥ 0 but lowerpin 6= leftpin. The left and

lower neighbours have different non-negative PINs. Since the current pixel connects

its left and lower neighbours and they have previously been identified as belonging

to different particles this causes problems. The PIN of the current pixel is set to
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Figure 3.2: Particle identification numbers for each pixel after one scan of the image.

min[leftpin, lowerpin], the minimum of the two. In Figure 3.1 rule 4 applies at

pixels E and V.

Figure 3.2 shows the PIN for each pixel after one scan of the image. Next, con-

tiguous pixels are renumbered to have the same PIN. A flag array maintains a record

of which pixels need to be renumbered in order that all pixels of a particle have the

same PIN. Figure 3.3 shows the photograph after renumbering of pixels. All parti-

cles have been identified. The final step is to eliminate missing particle numbers that

arise from the renumbering procedure. Figure 3.4 shows the photograph after missing

particles numbers have been eliminated.

The threshold It determines whether overlapping particle images can be distin-

guished. Overlapped images which have a common boundary where pixel intensities

are below the threshold are distinguishable. Otherwise they are considered to be a
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Figure 3.3: Example photograph after renumbering contiguous pixels.
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Figure 3.4: Example photograph after particle identification.
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single particle. This is a limitation of the particle identification algorithm.

3.1.2 Particle Location

The x and y coordinates of the centres of identified particles are calculated as the

intensity-weighted averages of pixels having the same PINs:

x̄ =

n∑
i=1

Iixi

n∑
i=1

Ii

(3.1)

ȳ =

n∑
i=1

Iiyi

n∑
i=1

Ii

(3.2)

where Ii is the intensity of the ith pixel constituting the particle, (xi, yi) is the location

of the centre of the ith pixel, (x̄, ȳ) is the location of the particle spot and n is the

number of pixels constituting the particle. The location of each particle is saved and

the search for particle pairs is carried out.

3.1.3 Pair Identification

The mean velocity obtained by cross-correlation PIV is assigned to the centre of the

corresponding interrogation area. The velocity at the location of each identified parti-

cle in the first image is required for the pair search. This is obtained by interpolation

from the PIV results as explained in the next section.
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Interpolation of Velocity to Particle Location

Figure 3.5 shows a PIV image divided into equal sized interrogation areas. An inter-

polation grid is formed by horizontal and vertical dotted lines through the centres of

the interrogation areas. The centres of adjacent interrogation areas form the corners

of square interpolation regions on the grid. Consider the interpolation region shown

shaded in Figure 3.5 with corners A(xA, yA), B(xB, yB), C(xC , yC) and D(xD, yD).

The velocity u(x, y) of a particle located at (x, y) inside ABCD is interpolated from

the corner velocities using the equation

u = α+ βx+ γy + δxy. (3.3)

The coefficients α, β, γ, and δ are:

α =
uAxByC − uBxAyC − uCxByA + uDxAyA

∆x∆y
(3.4)

β =
−uAyC + uByC + uCyA − uDyA

∆x∆y
(3.5)

γ =
−uAxB + uBxA + uCxB − uDxA

∆x∆y
(3.6)

δ =
uA − uB − uC + uD

∆x∆y
(3.7)

where uA, uB, uC , and uD are the velocity at the corners of ABCD and ∆x and ∆y

are the dimensions of the interpolation region (see Figure 3.5). The coefficients are
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obtained by solving the system

uA = α+ βxA + γyA + δxAyA, (3.8a)

uB = α+ βxB + γyB + δxByB, (3.8b)

uC = α+ βxC + γyC + δxCyC , and (3.8c)

uD = α+ βxD + γyD + δxDyD. (3.8d)

The details are given in Appendix E. System 3.8a – 3.8d results when Equation 3.3

is applied at the corners of ABCD. Similarly, Equation 3.3 is used to obtain v(x, y)

at any location inside ABCD. The interpolation coefficients in this case are:

α =
vAxByC − vBxAyC − vCxByA + vDxAyA

∆x∆y
, (3.9)

β =
−vAyC + vByC + vCyA − vDyA

∆x∆y
, (3.10)

γ =
−vAxB + vBxA + vCxB − vDxA

∆x∆y
, and (3.11)

δ =
vA − vB − vC + vD

∆x∆y
. (3.12)

Particles located near the borders of the image do not lie in interpolation areas where

the velocity at the four corners is available. The velocity at such locations is extrap-

olated from the nearest interpolation region using Equation 3.3. This extrapolation

technique is not important to this study since all test particles are placed in the

central interpolation region where extrapolation is not necessary.
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Figure 3.5: Schematic of the interrogation areas and interpolation grid. The solid
lines represent the interrogation areas for the PIV stage of the analysis. The interpo-
lation region is shown shaded.
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Pair Search

Figure 3.6 illustrates the pair search procedure. The interpolation region in which

each particle on the first photograph is situated is determined. The velocity com-

ponents u(x, y) and v(x, y) at this location is interpolated from the coarse grid PIV

results using Equation 3.3. An estimate of the expected location on the second pho-

tograph where the pair is likely to be is made using the interpolated velocity. The

distance from the expected location E(xe, ye) to every particle within the specified

search radius rs is calculated. The particle closest to the expected location E(xe, ye)

and within the search radius is taken to be the matching particle. A particle iden-

tified as a member of a pair cannot be a member of another pair. Therefore, this

particle is eliminated from the list of particles on the second image. If no particles

lie within the search radius, the search was unsuccessful and the next particle in the

list is considered.

The procedure is repeated until all particles in the first image have been consid-

ered. Each pair of particles found is added to a list of pairs. For each pair, the x and

y distances between the particles are calculated to yield the velocity in pixels/pulse.

This velocity is considered to be a measurement of the velocity at a location midway

between the two particles.

3.1.4 Velocity Interpolation to Regular Grid

Irregularly spaced velocity data obtained by particle tracking is typically interpolated

onto a regular grid. The interpolation of the randomly placed velocity vectors onto a
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Figure 3.6: Schematic diagram of the pair search. Particle 2b, within the specified
search radius and nearest the expected location is taken as the pair to particle 1b.

regular grid, and errors in the interpolation procedure do not form part of this study.

The method described by Spedding and Rignot [27] is the interpolation scheme used

here. The value of an interpolation function F (x, y) is computed at every node (x, y)

of a regular grid from the weighted sum of k known data points, fk.

F (x, y) =

n∑
k=1

wk (x, y) fk

n∑
k=1

wk (x, y)
. (3.13)

All velocity data points fk which are within a 50 pixel radius from the regular grid

node is used to calculate the value at the node. The weighting function wk = f(dk)

is a function of the distance

dk =

√
(xk − x)2 + (yk − y)2 (3.14)
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of the known data points (xk, yk) from the node (x, y). A Gaussian weighting function

given by

wk = f(dk) = e−(dk/Rw)2 (3.15)

is used. Rw is the width of the Gaussian function, i.e the radial distance where the

function wk falls to a value of 0.3678 from its central value of one. For this study

Rw = 10. If there are no data points within the 50 pixel radius, the velocity at

the regular grid node is set to 0. Once u(x, y) and v(x, y) are interpolated onto the

regular grid, a quantity of interest, e.g., the vorticity ωz can be computed using finite

differences.

3.2 Artificial PIV Images

This section describes the generation of artificial 8-bit, 256×256 pixel greyscale image

pairs to simulate dual-frame PIV images of a simple shear flow. Images of illuminated

particles are referred to as particle images or particle spots. Generating a pair of dual-

frame PIV images involves modelling the flow, initialising the background, placing

spurious particles, placing the test particle, and placing the paired particles.

1. Modelling the flow: A mathematical model of the flow velocity field is chosen.

This model will allow the exact velocity at any point in the flow to be determined,

allowing an assessment of the error in the image processing procedure to be made.

2. Initialising the background: Background noise is assumed to be Gaussian. Both

images are initialised with a background having a Gaussian intensity distribution with

a specified mean and standard deviation.
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3. Placing spurious particles: A specified number of spurious or unpaired particles

are placed on both images at random locations. These particles simulate the effect of

motion normal to the light sheet.

4. Placing the test particle: An image of the test particle is placed inside the

interpolation region on the first PIV image. Its pair is placed on the second image at

a location determined by the mathematical description of the flow field.

5. Placing paired particles: A number of paired particles ( particles other than the

test particle that appear on both the first image and the second image ) are placed.

For each pair, the first particle image is placed at a random location on the first

image. The location of its pair on the second image is determined by the velocity

field.

3.2.1 Simulated Velocity Field

Velocity gradients are responsible for rotations in a flow. The measurement un-

certainty of the tracking algorithm in the presence of velocity gradients should be

ascertained prior to velocimetry in rotational flows. Therefore, a simple shear flow

with a constant velocity gradient ∂u/∂y was simulated.

Consider the two-dimensional incompressible velocity field

u = a+ by (3.16a)

v = c+ dx (3.16b)

where u is the x component of the velocity, v is the y component of the velocity and
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b = du/dy, d = dv/dx are constant velocity gradients.

In this work it is assumed that the particles have been suitably selected so that

they follow the flow. E rrors due to particle dynamics are assumed to be negligible

compared to errors in the image processing. Pathlines x(t) and y(t) can be obtained

by solving the following system of ordinary differential equations corresponding to

Equations 3.16a and 3.16b.

dx/dt = a+ by (3.17a)

dy/dt = c+ dx (3.17b)

The Maple computer algebra system gives the following solutions:

x(t) =

(
bc+ a

√
bd+ bdx0 + b

√
bdy0

)
e
√

dbt

2bd
− c

d

−

(
ad− c

√
bd− d

√
bdx0 + bdy0

)
e−

√
dbt
√
db

2d2b

(3.18a)

y(t) =

(
ad− c

√
bd− d

√
bdx0 + bdy0

)
e−

√
bdt

2bd
− a

b

+

(
bc+ a

√
bd+ bdx0 + b

√
bdy0

)
e
√

bdt
√
bd

2b2d

(3.18b)

where x0 and y0 are initial conditions representing the position x(0) and y(0).
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Equations 3.18a and 3.18b can be written as

x(t) =
(c+ x0d) cosh

(√
bdt
)
− c

d

+
(a/b+ y0) sinh

(√
bdt
)√

bd

d

(3.19a)

y(t) =
(a+ y0b) cosh

(√
bdt
)
− a

b

+
(c/d+ x0) sinh

(√
bdt
)√

bd

b

(3.19b)

When b = 0 in Equation 3.18b or d = 0 in Equation 3.18a care must be taken to

properly evaluate the limits. For all images generated in this thesis d = 0. Taking

the limit as d→ 0 gives the following expressions for x(t) and y(t):

x(t) =
cbt2

2
+ x0 + (a+ by0) t. (3.20a)

y(t) = y0 + ct. (3.20b)

The streamfunction ψ(x, y) for the shear flow is (see Appendix B)

ψ(x, y) = ay +
by2

2
− cx− dx2

2
. (3.21)

The flow can be visualised by plotting lines of constant ψ, the streamlines. Figure

3.7 is a streamline plot for a = b = c = d = 1. A streamline plot for the base case
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Figure 3.7: Streamline plot for ψ(x, y) with a = b = c = d = 1

conditions a = 8, b = 0.05, c = 2, d = 0 is given in Figure 3.8. For steady flows such

as this, streamlines and pathlines are identical.

3.2.2 Background Noise

When background noise is absent, the particle images should be silhouetted against

a perfectly black background on a PIV image. In practice, the background is not

perfectly black as there is always some inexpungible noise. This may be shot noise

associated with the CCD array or noise due to light sources other than the particles

of interest. Examples of extraneous light sources are room lights and computer mon-

itors. A more significant stray light source in practice is laser light reflected off of
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Figure 3.8: Streamline plot for ψ(x, y) with a = 8, b = 0.05, c = 2, d = 0

various surfaces of the apparatus. This light illuminates particles which are not in

the light sheet and they will appear out of focus on the image plane. Background

noise is simulated by initialising the images with a Gaussian intensity distribution

using Equation 3.22.

Ib = ZσIb
+ µIb

(3.22)

Ib is the background intensity, µIb
is the mean background intensity and σIb

is the

standard deviation of the background intensity. A Gaussian random number genera-

tor generates a standard normal random variable Z at each pixel location. Any value

of Ib less than zero is set to zero and any value greater than 255 is set to 255. The

base case value of the mean background intensity was 120 (see Table 4.2). Because
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the mean background intensity influences particle image identification the effect of

varying µIb
on the PTA performance was studied.

3.2.3 Particle Images

Particle Image Intensity Profile

The intensity profile I(r) of a particle image is assumed to be Gaussian:

I(r) = I0e
−(r/Rp)2 (3.23)

where I0 is the intensity at the particle centre, I(r) is the intensity at radial distance

r from the spot centre and Rp is the radial distance at which the intensity is 0.3768I0.

All seeding particles do not have the same diameter. The diameters are likely to be

normally distributed. To consider the variation in seeding particle diameters, particle

image diameters are drawn from a normally distributed population with mean µD

and standard deviation σD:

Dp = ZσD + µD. (3.24)

The central intensity I0 of the particle image is a function of particle position

within the light sheet and the efficiency with which the particle scatters the incident

light. Figure 3.9 shows the volume in the flow illuminated by the light sheet. The

light sheet is centred at z = 0. For a light sheet with a Gaussian profile along the z
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Figure 3.9: Light sheet intensity profile. Adapted from Markus Raffel et. al. [5].

60



coordinate axis, the central intensity I0 is [5]

I0 = qe−8z2/∆z2
0 , (3.25)

where q is the efficiency with which the particle scatters light and ∆z0 is the thickness

of the light sheet between the e−2 waist points. Equation 3.25 implies that even if

particles of the same diameter were to be illuminated in the light sheet, a particle

closer to the centre of the light sheet would register on the PIV photograph with

a greater intensity. This is simulated by drawing I0 from a normally distributed

population with a specified mean µI0 and standard deviation σI0 :

I0 = ZσI0 + µI0 (3.26)

The performance of the PTA as the parameter µI0 was varied was studied. The base

case value of µI0 is 120 (see Table 4.2). The central intensity affects image contrast

from the background. Therefore, it affects the performance of the PTA.

Particle Image Generation

To generate a particle image (1) a location is selected for the image, (2) pixels con-

stituting the image are identified and, (3) the intensity of each pixel in the image is

set. Figure 3.10 shows a spot on a PIV image. The xOy coordinate system has its

origin at the bottom, left corner. The x′O′y′ coordinate system has its origin at the

centre of the particle. In both, unit length is the length of a pixel. To place an image

at a random location, a random number generator is called twice to obtain two uni-
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form deviates (real random numbers which have equal probability of being anywhere

between 0 and 1). They are multiplied by 255 to obtain real random numbers xp and

yp in the range [0, 255]. The spot centre is (xp, yp).

The radius of the particle image Rp is the distance from its centre to where the

intensity falls to 0.3768I0.

I(Rp) = 0.3768I0. (3.27)

The central intensity I0 is drawn from a normal distribution (Equation 3.26). Equa-

tion 3.24 is used to determine the spot diameter Dp. Since Dp is normally distributed,

the radius

Rp = Dp/2 (3.28)

is also normally distributed. The intensity is adjusted according to the Gaussian

profile only for pixels which fall inside a radius r = RI=1 from the centre such that

I(RI=1) = 1. In x′O′y′ coordinates ( Figure 3.10 ), Equation 3.23 is

I(x′, y′) = I0e
−(x′2+y′2)/R2

p . (3.29)

The level curve I(x′, y′) = 1 of Equation 3.29 on the x′y′ plane is circular. Substituting

I(RI=1) = 1 in Equation 3.23 gives

1

I0
= e−(RI=1/Rp)2 . (3.30)

From Equation 3.30

RI=1 = Rp

√
ln I0. (3.31)
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Figure 3.10: Schematic diagram of a single particle image on an artificial PIV
image.

Two pixels were added to RI=1 to ensure that all pixels affected by the particle are

considered. Intensities are adjusted for pixels which fall within a square region centred

on the centre of the particle image, with side length

Ra = 2×Rp

√
ln I0 + 2. (3.32)

In the corners of the square region the intensity I due to the particle will be less than

one.
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The pixel intensity is set to a brightness level which is the maximum of the value

calculated from Equation 3.29, and the background intensity. Equation 3.23 shows

that the intensity of a particle image subsides continously with distance from its

central value I0. However, pixels constituting the spot can only assume an integer

value in the range [0, 255]. Each pixel is set to the average value of the intensity

function (Equation 3.29) over its area. Physically, this corresponds to the fact that

the output of a single element of a CCD array (pixel) is determined by the total light

which is incident upon it.

The average value of a function f(x, y) of two variables defined on a closed rect-

angle R = [a,b]× [c,d] = {(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d} is

f̄(x, y) =
1

A(R)

∫∫
R

f(x, y)dA. (3.33)

A(R) is the area of the rectangle R. Figure 3.11 shows a single particle image on

a PIV image. Coordinate system xOy has origin O at the bottom, left corner of

the image. Coordinate system x′O′y′ has origin O′ at the particle image centre. Unit

length is the length of a pixel in both xOy and x′O′y′ coordinates. The particle image

is represented in xOy coordinates by the rectangle

S = [i, j]× [k, l]. (3.34)

with left, right, bottom and top edges i, j, k and l respectively. Let

P = [e, f ]× [g, h] (3.35)
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Figure 3.11: Calculating the average intensity over a pixel. The figure is an enlarged
view of the shaded area of Figure 3.10.
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be a rectangular region representing a single pixel in x′O′y′ coordinates. The left,

right, bottom and top edges of P in x′O′y′ coordinates are respectively e, f , g and

h. The edges of S in xOy coordinates are used to calculate the edges of P in x′O′y′

coordinates. Formula 3.33 is applied to the intensity function Equation 3.23 to get

the average value of the intensity over the area of the pixel.

Ī(x, y) =
1

A(P)

∫∫
P

I (x′, y′) dA (3.36)

Substituting for I(x, y) using Equation 3.29,

Ī(x′, y′) =
1

A(P)

∫ j

i

∫ l

k

I0e
−(x′2+y′2/R2). (3.37)

A (P) is the area of the pixel. Equation 3.37 evaluates to (see Appendix C)

Ī(x′, y′) =
I0R

2π

4
(erfm− erf n) (erf o− erf p) , (3.38)

where m = i/R, n = j/R, o = k/R, and p = l/R. If Iave is less than 0, it is taken

as 0. If it is greater than 255, it taken as 255. Iave is compared with the background

intensity already set for the pixel P. Pixel P is set to the maximum value of the

two. Every pixel within the region where the intensity is adjusted has its intensity

calculated and set similarly to place the spot representing a particle image.
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Figure 3.12: The particle tracking algorithm places the velocity of a particle at the
midpoint of the line joining the centroids of its images. In Figure 3.12 an interrogation
area on the first image is superimposed on the corresponding area on the second image.
The two images of the test particle are also shown. The location midway between the
two images of the test particle is the test location (xt, yt).

Placing Particle Images

The PTA places the velocity of a particle at the midpoint of the line joining the

centroids (See Section 3.1.3) of the two particles identified as its images. In Figure

3.12 an interrogation area on the first image is superimposed on the corresponding

area on the second image. The two images of the test particle are also shown. The

location midway between these two images is the test location (xt, yt).

To use SPIV over a range of fluid velocities, its measurement uncertainty over
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Figure 3.13: Schematic diagram of the interrogation areas (solid lines) and the
interpolation grid (dashed lines).

this range must be known as a function of the velocity itself. All velocities in this

thesis will be expressed in units of pixels/pulse. Therefore, velocity and particle

displacement are synonymous. Table 4.2 gives the base case value of |∆ ~D| along with

the range investigated.

Figure 3.13 represents the first PIV photograph. As the first step in placing

the images of the test particle, a random test location (xt, yt) is chosen inside the

interpolation region (96 ≤ x ≤ 160, 96 ≤ y ≤ 160). A test location inside the central

interpolation region ensures that the velocity at the test location can be interpolated

from the corners of the interpolation region during the pair search. It is important that

this location be randomly chosen so that statistics based on the ensemble accurately
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represent those for real images where the particle locations are random.

Even though the location of the test particle is random, the velocity at the test

location must remain constant for all the image pairs in the ensemble. In Equation

3.16a,

u = a+ by,

a is the velocity at the bottom edge of the image. The value of a is calculated from

a = ut − byt. (3.39)

where ut is the desired u velocity of the test particle and yt is the randomly chosen

position of the test particle. If this value of a is used in Equation 3.16a, the velocity

at the test location will remain constant at any desired set point ut. Once the test

location has been obtained, the location of the first image (xt1, yt1) is obtained by

substituting t = −1/2 in Equations 3.20a and 3.20b:

xt1 =
cb

8
+ xt −

1

2
(a+ byt) (3.40a)

yt1 = yt −
c

2
(3.40b)

The location of the second image of the test particle (xt2, yt2) is obtained by substi-
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tuting t = 1/2 in Equations 3.20a and 3.20b:

xt2 =
cb

8
+ xt +

1

2
(a+ byt) (3.41a)

yt2 = yt +
c

2
(3.41b)

The test particle images are placed at (xt1, yt1) and (xt2, yt2) as explained in Section

3.2.3.

Paired particles are particles which have been illuminated twice. To place the

first image of a paired particle a random location (x1, y1) is generated inside the first

photograph ( see Section 3.2.3 ). The location of the second image x2, y2 is obtained

by substituting t = 1 in Equations 3.19a and 3.19b. The images are placed at x1, y1

and x2, y2 as explained in Section 3.2.3.

A specified number of spurious particles are placed on each photograph at random

locations. Spurious particles may be present on a PIV photograph due to an out-

of-plane velocity component. An out-of-plane component may carry particles which

were in the light sheet during the first pulse of the laser out of it by the time the

laser pulses a second time. The first image of such particles will have no pair image

corresponding to the second pulse. The reverse may also occur. Large numbers of

spurious particles can cause inaccurate tracking. Therefore, the number of spurious

particles Ns was a parameter studied in this thesis. To place a spurious particle on a

photograph a random location (xs, ys) is obtained as described in Section 3.2.3 and

a particle image is placed at (xs, ys) as described in Section 3.2.3. Figure 3.14 shows

the first and second artificial PIV images. The images have been generated with all
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(a)

(b)

Figure 3.14: (a) First artificial PIV image. (b) Second artificial PIV image. All
parameters are at default values. The greyscale has been inverted for clarity.
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parameters set to the default values.

3.3 Measurement of Uncertainty

Section 3.1 described the particle tracking algorithm. Section 2.6 explained measure-

ment uncertainty. Section 3.2 described the generation of artificial dual-frame PIV

images. A sample of measurements of the measured variable is required to calculate

the measurement uncertainty. The measured variable in this thesis is the error in the

velocity measurement. Therefore, a sample of velocity measurement errors is needed.

This section describes the procedure for sampling the measurement error.

3.3.1 Overview of the Procedure

The procedure for obtaining a single measurement of the error is outlined in this

section. It is repeated to obtain a sample of size ne, the sample size. As explained

in Section 3.2.3, artificial PIV images include the images of a test particle of known

velocity. If the test pair is correctly identified by the PTA the velocity of the test

particle can be measured. The measurement error is the difference between the known

velocity of the test particle and its measured velocity. Since velocity is a vector, the

error in measurement can be in the magnitude or the direction. The magnitude error

is the difference between the magnitude of the exact velocity and the magnitude of

the measured velocity. The direction error is the difference between the direction of

the exact velocity and the direction of the measured velocity.
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3.3.2 Identifying the Test Particle

During the pair search (Section 3.1.3) each pair found is added to a list of pairs. The

locations of the members of a pair uniquely identify the pair. One way to identify the

test particle is to see if the known exact locations of the test particle images exist as a

pair in the list of pairs. However, this approach may not succeed in detecting the test

particle because the exact locations of the images of the test particle need not match

with the locations of any of the pairs in the list. There can be several reasons for

this. The choice of the threshold intensity for segmentation can result in the exclusion

of pixels of a test particle image. Inclusion of background pixels in the image can

also occur. As the particle image location is calculated as the intensity barycentre

(Section 3.1.2), pixel inclusion or exclusion will change the calculated location. If

there are particle images overlapping, the test particle image location will be that of

the composite spot. For these reasons the following rule is used to determine which

pair in the list, if any, represents the test particle.

Rule for Identifying the Test Particle

Consider the first image of a pair. The location (Section 3.1.2) of each identified

particle is stored during particle identification. The distance between the known exact

location of the first image and the location of each identified particle is calculated.

The particle closest to the exact location is taken as the test particle. The same

procedure is used to identify the test particle on the second image. These two are the

test pair. If they exist as a pair in the list of pairs the algorithm has been successful

in finding the test particle and will proceed to calculating the measurement error.
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3.3.3 Exact and Measured Velocities

Exact Velocity of Test Particle

The exact velocity Vt of the test particle is an input parameter to the algorithm

which generates the artificial PIV images. The base case velocity is the exact velocity

Vt of the test particle when investigating the effect of all parameters other than the

velocity magnitude and the velocity direction. The base case x and y components of

the velocity of the test particle are ut = 8 pixels/pulse and vt = 2 pixels/pulse. The

magnitude of the base case test particle velocity is (see Table 4.2)

Vt =
√
u2

t + v2
t =

√
82 + 22 = 8.246 pixels/pulse. (3.42)

The direction of the base case test particle velocity is

θt = tan−1

(
vt

ut

)
= tan−1

(
2

8

)
= 14.03 degrees. (3.43)

The velocity at the test particle location (xt, yt) is set to any desired value as follows.

The velocity field for the simulated images is given by Equations 3.16a and 3.16b.

Since for this study the velocity gradient d = ∂v/∂x = 0, the velocity field is

u = a+ by. (3.44a)

v = c. (3.44b)
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To set a velocity ut at the test location, the value of the constant a is calculated from

Equation 3.39. Substituting this value of a in Equation 3.44a gives the x component

of the test particle velocity at the test location as

u = (ut − byt) + byt = ut. (3.45)

At all locations in the flow velocity field the vertical component of the velocity is

constant at a value of c pixels/pulse. The vertical component of the velocity at the

location of the test particle is vt = c pixels/pulse. For the base case c = 2.

When the velocity magnitude is the varied parameter, the velocity direction, which

is also a parameter under study, should remain at the base case value of 14.03◦. Let ud

be any desired velocity magnitude at the test particle location. Then the horizontal

and vertical components of the velocity of the test particle, ut and vt, are calculated

as

ut = ud cos 14.03 and (3.46a)

vt = ud sin 14.03. (3.46b)

When the velocity direction is the varied parameter, the velocity magnitude should

remain at the base case value of 8.246 pixels/pulse. Let θd be any desired velocity

direction at the test particle location. Then the horizontal and vertical components
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of the velocity of the test particle, ut and vt, are calculated as

ut = 8.246 cos θd and (3.47a)

vt = 8.346 sin θd. (3.47b)

Measured Velocity of the Test Particle

The measured displacements are calculated from the locations of the pair identified

as the test pair by the PTA (Section 3.3.2). Let (xm1, ym1) and (xm2, ym2) be the

locations of the first and second test particle images. The component in the direction

of the unit vector i of the displacement in one pulse of the laser is

∆xm = xm2 − xm1. (3.48)

The component in the direction of the unit vector j of the displacement in one pulse

of the laser is

∆ym = ym2 − ym1. (3.49)

Equation 3.48 is the measured x component of the velocity um in pixels/pulse. Equa-

tion 3.49 is the measured y component of the velocity vm. The measured velocity of

the test particle is

Vm = umi + vmj. (3.50)
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The magnitude of the measured velocity is

Vm =
√
u2

m + v2
m (3.51)

and the direction is

θm = tan−1

(
vm

um

)
. (3.52)

3.3.4 Velocity Measurement Error

The magnitude error δV is the difference between the magnitudes of the measured and

exact velocities.

δV = Vm − Vt. (3.53)

The direction error δθ is the difference between the directions of the measured and

exact velocities.

δθ = θm − θt. (3.54)

3.3.5 The Sample Size

Equations 3.53 and 3.54 give the magnitude and direction errors. For either, the

measurement uncertainty is calculated using Equation 2.36. To calculate the sys-

tematic uncertainty B and the random uncertainty P in Equation 2.36, a sample of

measurement errors is generated at each level of the input parameters. PIV images

are generated and analysed until a sample of size ne is obtained. The sample size
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Figure 3.15: Ensemble size versus velocity magnitude uncertainty with all parame-
ters at base case values.

should be large enough to yield converged statistics. That is, any statistic calculated

from a sample of size ne should yield essentially the same value for any sample of

that size. To determine ne, five samples were generated with all parameters at the

base case values (Table 4.2, p. 82). This was done for sample sizes ranging from 2

to 64000. The systematic uncertainty and the random uncertainty in the velocity

magnitude were calculated for all five samples at each sample size. Figure 3.15 shows

the results. Appreciable scatter is noticeable in the uncertainties at small ensemble

sizes. At an ensemble size of one thousand the uncertainties have both converged.

Based upon this result, an ensemble size of 4000 was selected.
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3.3.6 Success Rate

In order to generate a sample of measurement errors of size ne, the simulation program

may have to analyse more than ne pairs of PIV images. This is because the test

particle might not be identified for all pairs of PIV images. If the test particle is not

identified for a pair of PIV images, a measurement of the test particle velocity, and

consequently the measurement error are not available for that image pair. Let na

be the number of PIV image pairs analysed to obtain a sample of ne measurement

errors. The success rate is defined as

Success rate =
ne

na

. (3.55)
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Chapter 4

Results and Discussion

In this thesis, the effects of nine parameters on the success rate and the uncertainty

in velocity measurement of a particle tracking algorithm were examined. The system-

atic and random uncertainties in velocity magnitude and direction are presented sep-

arately to facilitate a comparison of their relative magnitudes. This chapter presents

the results of the study.

4.1 Fixed Parameters

To reduce the complexity of the study, four parameters were assigned fixed values.

They are the mean diameter of the particles µD, the standard deviation of the particle

diameters σD, the standard deviation of the particle central intensities σI0 , and the

standard deviation of the background pixel intensities σIb
. Table 4.1 lists the fixed

parameters and their values.
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Table 4.1: Fixed parameters in the uncertainty analysis of the particle tracking
algorithm.

Fixed Parameter Value
µD 3 pixels
σD 0.25 pixels
σIb

5
σI0 20

In addition, recall that this study focuses on the particle tracking algorithm (PTA)

of the super-resolution PIV technique. Therefore, the velocity field available to the

PTA, which would normally be produced by a cross-correlation PIV algorithm, is

assumed to be exact.

4.2 Dependent and Independent Variables

This study considers five dependent variables, the success rate, the systematic uncer-

tainty in the velocity magnitude, the random uncertainty in the velocity magnitude,

the systematic uncertainty in the velocity direction, and the random uncertainty in

the velocity direction. Each of these are studied as functions of nine parameters or

independent variables. These nine parameters can be divided into three categories,

four that are related to image quality (the number of paired particles Np, the number

of spurious particles Ns, the mean particle intensity µI0 , and the mean background

intensity µIb
), two that are related to PTA settings (the segmentation threshold in-

tensity It and the search radius rs), and three that are related to the velocity field (the

velocity direction θ, the velocity magnitude V in pixels per pulse, and the velocity

81



Table 4.2: Base case and range of the nine independent variables (parameters)
studied.

Parameter Minimum Base case Maximum
Ns (-) 0 10 40
Np (-) 10 20 150
µI0 (-) 90 200 250
µIb

(-) 90 120 150
It (-) 20 80 180
rs (pixels) 0.1 2 4
θ (degrees) 0 14.03 45
V (pixels) 4 8.246 16
∂u/∂y(1/pulse) 0 0.05 0.25

gradient ∂u/∂y). Table 4.2 shows the minimum value, base case value, and maxi-

mum value of the nine independent variables (parameters). The effect of a parameter

on a dependent variable was studied by varying its value from the minimum to the

maximum value while holding all other parameters constant at their base case values.

Before studying the influence of each of these parameters, the performance of the

base case must be established. Table 4.3 shows the success rate and uncertainties

achieved with the base case parameter settings. At the base case settings, the sys-

tematic uncertainties are clearly very low compared to the random uncertainties and

the success rate is very high. It is clear that the algorithm performs quite well under

these rather favourable conditions. The remainder of this chapter will investigate how

changes in the parameters can degrade the PTA algorithm performance from those

established for the base case.
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Table 4.3: PTA performance for the case when all parameters are at their base case
values.

Dependent Variable Base Case Value

Success Rate 98.5%

Magnitude Systematic Uncertainty 0.0090 pixels

Magnitude Random Uncertainty 0.56 pixels

Direction Systematic Uncertainty 0.019 degrees

Direction Random Uncertainty 4.0 degrees

4.3 Effect of the Number of Paired Particles

Figure 4.1a shows the effect of the number of paired particles Np on the success rate.

The success rate is 0.98 for 10 pairs/interrogation area and drops to 0.83 when Np

increases to 150. However, more pairs will be identified when the success rate is 0.83

and Np = 150 than when the success rate is 0.98 and Np = 10. The spatial resolu-

tion is ultimately determined by the number of image pairs that can be successfully

identified. Since the correlation stage of the algorithm produces one measurement of

velocity per interrogation area, any number of pairs greater than this identified by

the PTA will increase the resolution. The spatial resolution has thus increased at

Np = 150 even though the success rate has fallen. It must be remembered that this

study does not consider uncertainties in the correlation algorithm. At high particle

loads, the uncertainty in the correlation algorithm will increase. A coupled uncer-

tainty analysis of the correlation stage and the tracking stage would be valuable to

determine the point at which the increased uncertainty in the correlation stage over-

comes the benefit of the increased resolution provided by the tracking stage. This
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study indicates that even when the image density is increased well beyond that nor-

mally recommended for PIV, good pair identification (i.e. increased resolution) is

possible.

When Np increases, the particle image density increases. Image density is the

concentration of particle images per unit area on a PIV image. Increased image den-

sity can result in composite particle images. These are images of proximate particles

overlapping to form a single particle image. If one or both of the test particle images

are involved, their apparent locations (intensity barycentres) will be shifted signifi-

cantly. A shift in the location of the test particle images can potentially bring other

particle images closer to the expected location of the test particle on the second PIV

image. This will affect which particle image on the second PIV image gets selected

as the pair to the test particle. If the wrong particle gets selected, the success rate

will drop.

Particle image overlap can also shift the locations of particles which would have

been inside the search radius, outside of it. In this case, the search for the test pair

will fail because no pair can be found. This will also decrease the success rate.

The effect of the number of pairs on the magnitude uncertainty is shown in Figure

4.1b. The systematic uncertainty in magnitude is negligible over the range of values

of Np. The random uncertainty is dominant and increases as Np increases. The

direction uncertainty, plotted on the second axis in Figure 4.1, shows a similar pattern.

The systematic uncertainty is negligible, while the random uncertainty exhibits an

almost linear increase as Np is increased. These results can also be explained by the

increasing likelihood of particle image overlap as Np increases. Because the positions
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Figure 4.1: (a) Effect of the number of pairs on the success rate. (b) Effect of the
number of pairs on the magnitude and direction uncertainties.
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of the particle images are random, no systematic uncertainty is introduced.

4.4 Effect of Spurious Particles

Increasing the number of spurious particles Ns also increases the image density. The

mechanisms that are active when Np is increased will be active in this case also.

Images of spurious particles can overlap with images of other particles. If particle

image overlap shifts the location of the test particle, spurious particles can be closer

to the trial location within the search radius. Overlap with a spurious particle may

carry the centroid of the pair beyond the search radius. If there are no other particles

within the search radius, no pair will be identified. This too would lead to a reduced

success rate.

A spurious particle can get identified as the first test particle image if it is closer

to the actual location of the first test particle image. This may occur if overlap has

shifted the image of the test particle. As the spurious particle does not have a pair, it

is possible that no particle will be detected within the search radius during the pair

search procedure. The search will then fail. The behavior of the success rate and

the uncertainties is similar to that when Np is increased. The success rate, shown

in Figure 4.2a, exhibits a small linear decrease. The systematic uncertainties in the

velocity magnitude and velocity direction, shown in Figure 4.2b, are both negligible.

The random uncertainties dominate, and they increase almost linearly with increasing

Ns, as shown in Figure 4.2b.
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Figure 4.2: (a) Effect of the number of spurious particles on the success rate. (b)
Effect of the number of spurious particles on the magnitude and direction uncertain-
ties.
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4.5 Effect of the Mean Particle Central Intensity

Figure 4.3a shows the effect of the mean particle intensity µI0 on the success rate.

The success rate increases sharply from 0.28 when I0 is 90 to 0.98 when I0 is 150

and remains constant for I0 > 150. The base value of the mean background intensity

µIb
is 10. The standard deviation of the mean background intensity σIb

is fixed at

5. At these values there is little noise present above the base case segmentation

threshold It of 80. The increase in success rate with µI0 is due to better visibility

of the particles above the segmentation threshold. The standard deviation of the

particle intensity distribution σI0 is 20. When the mean particle intensity µI0 is

100, the probability that I0 of both test particle images is greater than or equal to

80 is 0.71. This is considerably higher than the success rate for I0 = 100 which is

about 0.47. However, it must be remembered that no pixels making up the particle

image will have intensities as high as I0 since the actual intensity assigned to a pixel

constituting the particle image is calculated by integrating the Gaussian intensity

distribution over the area of the pixel. Because the particles are quite small (µD = 3,

σD = 0.25) actual pixel intensities will be considerably less than I0. The higher the

mean particle central intensity, the higher the probability that the test particle images

are above the threshold, and the higher their chances of being identified. An increase

in the success rate with increasing µI0 is expected.

Figure 4.3b shows that systematic uncertainty in magnitude is present only at

mean particle intensities near the threshold. The systematic uncertainty in the di-

rection is negligible. The random uncertainties are high when the mean particle
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Figure 4.3: (a) Effect of the mean particle central intensity on the success rate. (b)
Effect of the mean particle central intensity on the magnitude and direction uncer-
tainties.
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intensities are near the segmentation threshold. The random uncertainty in magni-

tude is 2.36 pixels when µI0 is 90. It falls to 0.49 when µI0 is 150 and thereafter shows

only a slight increase. The random uncertainty in the direction is 13.17 when µI0 is

90, falls to 3.43 when µI0 is 150, and thereafter shows only a slight increase. When

the particle intensity is near the threshold, the particle will be represented by very

few pixels and the uncertainty in its location will increase.

4.6 Effect of the Mean Background Intensity

Figure 4.4a shows the effect of the mean background intensity µIb
on the success rate.

The success rate is constant at 0.98 as the mean background intensity increases from

zero to 60. The success rate begins to decrease when µIb
is 70, and falls abruptly

when µIb
equals 80. This behavior can be explained as follows. The particle tracking

algorithm considers noise above the threshold to be particles. Since the PTA cannot

distinguish between noise above the threshold and particles, significant noise above

the segmentation threshold will degrade its performance. This explains the sharp

drop in the success rate as µIb
increases to 80.

The standard deviation of the mean background intensity is fixed at σIb
= 5. The

probability that Ib exceeds the base case threshold intensity of 80 when µIb
is 70 is

0.022. This probability is 0.15 when µIb
is 75, and 0.5 when µIb

is 80. Noise begins

to appear above the segmentation threshold when µIb
is 70, increases when µIb

is 75,

and becomes significant when µIb
is 80.

Figure 4.4b shows the effect of the mean background intensity on the magnitude
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and velocity uncertainties. The random uncertainty in magnitude is almost constant

at a value of 0.59 pixels until µIb
is 70, becomes 0.80 when µIb

is 75 and increases

sharply to 1.79 as µIb
increases to 80. The direction uncertainty is 4.17 pixels when

µIb
is 70, 5.44 pixels when µIb

is 75 and increases sharply to 12.18 pixels when µIb

is 80. The mean background noise is an important parameter because it sets limits

on possible values of the threshold intensity. A high mean background noise forces

the use of a high value of the threshold. When the intensity of the background noise

reaches that of particle pixels, the threshold value needed to exclude background noise

will begin to exclude particles. This degrades the ability of the PTA to identify and

correctly locate particles and results in lower success rates and higher uncertainties.

4.7 Effect of the Threshold Intensity

The threshold intensity It is a parameter of the particle tracking algorithm. The effect

of the threshold value on the success rate is shown in Figure 4.5a. The success rate

is 0.85 when It is 20. The success rate increases to 0.99 when It increases to 100, is

0.98 when It is 120, and falls sharply thereafter to 0.23 when It increases to 180. The

initial increase in the success rate is due to the progressive exclusion of background

noise having intensities greater than the threshold value. When all background noise

has been excluded the success rate is steady until It is 120. The drop in success rate

when the threshold is increased further is due to the exclusion of particle pixels. The

dramatic drop in the success rate as the threshold approaches 180, close to the base

value of the mean particle intensity of 200, strongly indicates this.
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Figure 4.4: (a) Effect of the mean background intensity on the success rate. (b)
Effect of the mean background intensity on the magnitude and direction uncertainties.
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Figure 4.5: (a) Effect of the threshold intensity on the success rate. (b) Effect of
the threshold intensity on the magnitude and direction uncertainties.
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The choice of threshold affects the particle tracking algorithm as follows. If the

threshold value is set close to the mean background intensity, the PTA identifies some

background noise pixels as particles. This will degrade the performance of the PTA.

If the contrast is low the threshold value must be close to the mean particle intensity

to exclude background noise. This will result in the exclusion of some particle pixels

and degrade the performance of the tracking algorithm. Contrast is the amount of

greyscale differentiation between features on an image. There are many metrics of

contrast. The Weber contrast, the Michelson contrast, the root-mean-square contrast,

and local band-limited contrast are some [28]. In this discussion, contrast can be

characterised by the difference between the mean particle central intensity and the

mean background intensity (µI0 − µIb
). When the contrast is high, a low threshold

value can be used. This increases the success rate since more particles are accurately

located. The effect of the difference between the mean particle intensity and the

threshold value (µI0 − It) on the success rate is shown in Figure4.7. As long as the

mean background intensity µIb
is low, it makes little difference whether µIb

− It is

varied by fixing the mean background intensity or by fixing the threshold value. This

suggests that it is the difference µIb
− It which is important, and not the absolute

values of either µIb
or It.

The effect of the threshold intensity on the magnitude and direction uncertainties

is shown in Figure 4.5b. The systematic uncertainties of the velocity magnitude and

direction are negligible. The random uncertainty is preponderant in both cases. The

random uncertainties in both magnitude and direction decrease where the success rate

increases. This can be attributed to accurate identification and location of the test
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pair due to exclusion of background noise. Subsequently, the random uncertainties

increase where the success rate decreases. The exclusion of particle pixels, the cause

of the decreased success rate in this range, is the possible reason for the increased

uncertainty.

4.8 Effect of the Search Radius

The search radius rs is a parameter of the particle tracking algorithm. The effect of

the search radius on the success rate is shown in Figure 4.7a. The success rate is 0.97

when the search radius is four pixels. It is constant at a value close to 0.99 as the

search radius decreases to two pixels. The success rate decreases thereafter. It begins

to drops sharply at a search radius of 0.5 and is 0.39 when the search radius is 0.1
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pixels.

This behavior can be explained as follows. During the pair search procedure,

the particle closest to the estimated location of the second particle image is selected

to form the pair. A very small search radius may exclude all particle images near

the estimated location and will decrease the success rate. In fact, the success rate

must approach zero as the search radius approaches zero. Increasing the search radius

increases the success rate since the chances of finding the correct particle image inside

the search circle increases.

The effect of the search radius on the magnitude and direction uncertainties is

shown in Figure 4.7b. The systematic uncertainty in the velocity magnitude is negli-

gible although some uncertainty is present at higher values of the search radius. The

systematic uncertainty in the velocity direction is negligible. The random uncertainty

in magnitude is 0.08 pixels when rs is 0.1 pixels. It increases to 0.62 pixels when rs

is four pixels. The random uncertainty in direction is 0.46 degrees when the search

radius is 0.1 pixels. It increases to 4.60 degrees when rs is four pixels.

The smaller random uncertainties at lower values of the search radius can be

explained as follows. The range of possible error measurements is limited by the

search radius since particle locations which fall outside of the search radius will never

be identified as pairs. Since the range of possible error measurements is restricted

at small search radii, the standard deviation is also reduced. Increasing the search

radius increases the success rate, but also increases the uncertainty.
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Figure 4.7: (a) Effect of the search radius on the success rate. (b) Effect of the
search radius on the magnitude and direction uncertainties.
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4.9 Effect of the Velocity Gradient

The effect of the velocity gradient ∂u/∂y on the success rate is shown in Figure 4.8a.

The velocity gradient does not have much effect on the success rate. The success

rate is almost constant at 0.98 as the velocity gradient increases from zero to 0.25.

The velocity interpolation from the coarse grid PIV results to the location of the first

particle image during the pair search is exact for the velocity field investigated in

this thesis (see Section 3.1.3). Since the interpolation is exact and independent of the

velocity gradient, the success rate will not be influenced by the velocity gradient. The

effect of the velocity gradient on the uncertainties in velocity magnitude and direction

is shown in Figure 4.8b. The systematic uncertainties in magnitude and direction are

both negligible. The random uncertainties in magnitude and direction do not seem

to be affected much by the velocity gradient. The velocity gradient might have a

significant effect on the success rate and uncertainties if real PIV coarse grid results

are used. This has not been investigated.

4.10 Effect of the Velocity Magnitude

The influence of velocity magnitude was investigated by varying the velocity mag-

nitude V as the angle of the velocity vector was held constant. The effect of the

velocity magnitude on the success rate is shown in Figure 4.9a. The success rate is

almost constant at 0.98 as V decreases from 16 to four. The effect of the velocity

magnitude on the uncertainties in the velocity magnitude and direction is shown in

Figure 4.9b. The systematic uncertainties in the magnitude and direction are negligi-
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Figure 4.8: (a) Effect of the velocity gradient on the success rate. (b) Effect of the
velocity gradient on the magnitude and direction uncertainties.
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ble. The random uncertainty in the magnitude remains constant as V decreases from

16 to four. There is a steady increase in the random uncertainty in the direction as V

decreases. This is probably an effect of equation 3.52 used to calculate the direction

of the measured velocity. At smaller displacements, shifts in the locations of the test

particle images result in large variations of the velocity direction from the true value.

The errors and uncertainties are correspondingly greater.

4.11 Effect of the Velocity Direction

The effect of the velocity direction θ on the success rate is shown in Figure 4.10a.

The velocity direction has no effect on the success rate which is almost constant at

0.98. This is because the estimated location of the pair particle is obtained from an

exact velocity interpolation ( see Section 3.1.3 ). The effect of the velocity direction

on the uncertainties in velocity magnitude and direction is shown in Figure 4.10b.

The systematic uncertainties in the magnitude and direction are both negligible. The

random uncertainties in magnitude and direction are both almost constant as the

direction of the velocity vector is varied. This indicates that they are independent

of the direction of the velocity vector. Again, this is because of the exact velocity

interpolation to the location of the first test particle image.
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Figure 4.9: (a) Effect of the velocity magnitude on the success rate. (b) Effect of
the velocity magnitude on the magnitude and direction uncertainties.
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Figure 4.10: (a) Effect of the direction of the velocity vector on the success rate.
(b) Effect of the direction of the velocity vector on the magnitude and direction un-
certainties.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In this study, the measurement uncertainty of a particle tracking algorithm was char-

acterised for a range of image, algorithm, and flow field parameters. The results of

this study can be summarised as follows.

• There is essentially no systematic uncertainty in the technique. The random

uncertainty dominates.

• Particle concentrations can be much larger than that normally recommended

for correlation–based PIV, without increasing the uncertainty appreciably. The

recommended value of the image density (number of pairs) for correlation–based

PIV is 20. Even when the image density is increased to 150 there is only a 15.5%

decrease in the success rate.
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• From the discussion in Section 4.7 it can be said that the success rate with

which the particles can be identified is strongly influenced by the contrast.

Higher success rates ensue at higher contrasts.

• Where the background noise is high and the contrast is low, selection of an

optimal threshold is critical in ensuring high success rates.

• While the random uncertainties are low at small values of the search radius, the

success rate is also low at these ranges. There is an opportunity to trade-off

spatial resolution (success rate) with uncertainty.

5.2 Recommendations

The uncertainty analysis done in this study is limited because only the measurement

uncertainty of the particle tracking stage of the super–resolution algorithm was ex-

amined. Rather than using the velocity field determined by a cross–correlation PIV

algorithm, the exact velocities at the centres of interrogation areas are calculated

from the velocity field equations. These exact velocities are used in the velocity in-

terpolation to the location of the first test particle image (see Section 3.1.3). This

excludes measurement uncertainty from the correlation–PIV stage. To determine the

measurement uncertainty of the super–resolution algorithm, a study must be done

using cross–correlation PIV results.

The performance of the tracking algorithm was investigated only for a simple

shear flow. Other velocity fields should be simulated to give a more representative
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indication of the performance. A coupled study with the correlation stage should be

done for these flows also.

This study has not taken into account the effect of possible interactions among the

independent variables. When there is interaction among two variables, the effect of a

particular value of one interacting variable will depend on the value of the other vari-

able. It is reasonable to conjecture interactions among, for example, the background

intensity and the particle central intensity in this study. There can be interactions

among more than two variables. Design of experiments (DOE) [29] offers a rigorous

method for studying the effect of interactions among independent variables. A de-

signed study should be carried out to identify the effect of parameters interactions on

the measurement uncertainty.
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Appendix A

Review of Mathematics

This appendix gives a review of the mathematics needed for developing the expression

for the overall measurement uncertainty.

A.1 Probability Theory Terminology

Experiment An experiment is a well defined procedure which generates outcomes.

The set of all possible outcomes of the experiment is called the sample space of

the experiment and is denoted by S.

Event A subset of outcomes in the sample space S of an experiment is called an

event. A simple event consists of exactly one outcome. A compound event

consists of more than one outcome.

Random variable A random variable is a rule that associates a number with each

outcome in the sample space S of an experiment. X(s) = x indicates that the
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random variable X associates the number x with the outcome s. A continuous

random variable can assume an infinite number of values within an interval. A

discrete random variable can assume a finite number of values from a discrete

set.

Population A population consists of the entire collection of individuals or measure-

ments for which information is needed.

Sample A sample is an available subset of the population.

A random variable is denoted by an upper case Roman letter, for example, X. The

observed value of the random variable is denoted by the corresponding lower case

Roman letter, for example, x.

A.2 Probability Density Function

The probability density function of a continuous random variable is a function f(x)

such that, for any two numbers a and b, a < b, the probability that X takes on a

value in the interval [a, b] is given by

P (a ≤ x ≤ b) =

∫ b

a

f(x)dx. (A.1)

In Figure A.1, the area under the graph of the probability density function f(x)

between a and b is the probability that the random variable takes on a value in the

interval [a, b].
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Figure A.1: Probability Density Function

A.3 Cumulative Distribution Function

The cumulative distribution function F (x) for a continuous random variable X gives

the probability that the random variable is less than or equal to x for every number

x.

F (x) = P (X ≤ x) =

x∫
−∞

f (y) dy. (A.2)

F (x) is the area under the graph of the probability density function to the left of the

number x on the x axis. If X is a random variable with probability density function

f(x) and cumulative distribution function F (x), the probability that X takes on a

value in the interval [a, b] is

P (a ≤ x ≤ b) = F (b)− F (a) . (A.3)
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Figure A.2: Normal probability density function

A.4 Normal Probability Distribution

A continuous random variable X, assuming all real values in the range (−∞,∞) is

said to have a normal distribution with parameters µ and σ if it has the probability

density function

f (x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,−∞ < x <∞, (A.4)

where µ is the mean, and σ is the standard deviation of the distribution. The standard

deviation σ is the distance from the mean to the inflection points of the curve. Figure

A.2 shows the graph of a normal probability distribution with µ = 0 and σ = 25. The
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normal probability distribution function has a symmetric, bell shaped curve centred

at the mean. For a normally distributed random variable

P (a ≤ x ≤ b) =

b∫
a

1√
2πσ

e−
(x−µ)2

2σ2 dx. (A.5)

A.5 Standard Normal Distribution

A standard normal distribution is a normal distribution with parameters µ = 0 and

σ = 1. The random variable Z which has a standard normal distribution is called a

standard normal random variable. The probability density function for the standard

normal random variable is

f (z; 0, 1) =
1√
2πσ

e−
z2

2 ,−∞ < z <∞. (A.6)

Equation A.6 is obtained by substituting µ = 0 and σ = 1 in Equation A.5. The

cumulative distribution function for the standard normal random variable is

P (Z ≤ z) = φ (z) =

z∫
−∞

f (y; 0, 1)dy. (A.7)

It is the area under the graph of the standard normal curve to the left of z on the

abscissa.
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A.6 Computing Probabilities

Equation A.5 cannot be evaluated using standard integration methods. It is evaluated

numerically for µ = 0 and σ = 1 for a number of values of a and b. Devore [30] gives a

table of standard normal curve areas. If a random variable X is normally distributed

with mean µ and standard deviation σ, then

Z =
X − µ

σ
(A.8)

is a standard normal random variable. A normal random variable can be standardised

and the probabilities computed using standard normal curve area tables.

A.7 Random Sample

A collection of n random variables X1, X2, . . . Xn is a random sample if the Xi
′s

are independently and identically distributed. That is, the Xi
′s are independent

random variables and every Xi has the same probability distribution. When sampling

with replacement, or when sampling from an infinite conceptual population, these

conditions are exactly satisfied. When sampling from a finite population without

replacement the conditions are approximately satisfied.
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A.8 Sample Mean

Let X1, X2, . . . Xn be a random sample. The random variable

X̄ =
1

n

n∑
i=1

Xi (A.9)

is called the sample mean. Since the X ′
is are random variables X̄ is also a random

variable.

A.9 Linear Combinations

The random variable

Y = a1X1 + · · ·+ anXn =
n∑

i=1

aiXi (A.10)

is called a linear combination of the n random variables X1, X2, ..., Xn. The ai are

numerical constants. The expected value of a linear combination of random variables

is a linear combination of the expected values, irrespective of whether the X ′
is are

independent or not.

E (a1X1 + · · ·+ anXn) = a1E (X1) + a2E (X2) + · · · anE (Xn) . (A.11)
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When the X ′
is are independent, the variance of the linear combination of random

variables is

V (a1X1 + · · ·+ anXn) = a2
1σ

2
1 + a2

2σ
2
2 + · · · a2

nσ
2
n =

n∑
i=1

a2
i .V (Xi) (A.12)

where V (Xi) = σ2
i is the variance of Xi. If X1, X2, ..., Xn are independent normal

random variables, any linear combination

Y = a1X1 + a2X2 · · · anXn (A.13)

has a normal distribution with mean

µY =
n∑

i=1

aiµi

and variance

σ2
Y =

n∑
i=1

a2
iσ

2
i .

Additionally if X1, X2 . . . Xn is a random sample from a normal distribution (each Xi

has the same normal distribution with mean µ and variance σ2), then X̄ is normally

distributed with mean µ and variance σ2/n.
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A.10 Central Limit Theorem

Theorem A.10.1 (Central Limit) If the sample size n is sufficiently large, the

sample mean X̄ of a random sample X1, X2, . . . Xn from a distribution with mean µ

and variance σ2 has an approximately normal distribution with mean µX̄ = µ and

variance σ2
X̄

= σ2/n.

As the sample size gets larger, the approximation gets better. The Central Limit

Theorem requires only the assumption of a random sample. The distribution need

not be normal. It can be used with confidence for n > 30.

A.11 Parameter and Statistic

Parameter A parameter is a numerical characteristic of a population, for example,

the population mean µ or the population variance σ2. A parameter has a fixed

value characteristic of the probability distribution modelling the population.

Statistic A statistic is any function of the random variables constituting one or

more samples, which does not depend on the values of any unknown parameter

of the population. It is a numerical characteristic of a sample, for example, the

sample mean X̄ or the sample variance S2. The calculated value of a statistic

varies from sample to sample, a process termed statistical variation or statistical

fluctuation.
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A.12 Parameter Estimation

Parameter estimation is the procedure of inferring the value of a parameter by a

value calculated from sample data. Point estimation and interval estimation are two

parameter estimation procedures. The estimates are called, respectively, the point

estimate and the interval estimate.

A.12.1 Point Estimation

Point Estimator The point estimate of a parameter is the single number that can

be regarded as its most likely value. A point estimate is obtained by selecting

a suitable statistic called the point estimator and computing its value from the

sample data. For example, the sample mean X̄ is a point estimator of the

population mean µ.

Point Estimate A point estimate is the value of a point estimator calculated from

the sample data. In the example above the calculated value of the sample mean

x̄ is the point estimate of µ.

The point estimator of a parameter is a random variable until its value is calculated

from the sample data. Upper-case letters with a circumflex are used to denote point

estimators, for example, Θ̂. Point estimates, which are the calculated values, are

denoted by the corresponding lower case letters with a circumflex, for example, θ̂.
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A.12.2 Interval Estimation

A point estimate generally approximates the value of the parameter being estimated.

There is no indication of the precision of the point estimate. An interval estimate

gives an indication of the precision of a point estimate by specifying a range of values

within which the parameter is expected to lie. An interval estimate is specified by

reporting the standard error or by specifying a confidence interval.

A.13 Standard Error

The standard error of a point estimator is its standard deviation. The ISO Guide to

the Expression of Uncertainty in Measurement (GUM)[21] uses the term standard

uncertainty instead of standard error.

A.14 Confidence Interval

A confidence interval is an interval estimate with an associated probability level. The

probability level, the confidence level, is usually specified as a percentage (for example,

a 95% confidence level). A confidence interval specifies a set of plausible values of

the estimated parameter. Consider the case where random samples are repeatedly

taken from a given population. Let Θ̂ be the point estimator of a parameter Θ. If

the 95% confidence interval about the point estimate θ̂ is calculated for each sample,

95% of the confidence intervals will contain Θ. The upper and lower bounds of

a confidence interval are called confidence limits. In the next three sections 95%
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confidence intervals are developed for the population mean µ for three different cases.

A.15 95% Confidence Intervals for µ

Let X1, X2, . . . Xn be a random sample drawn from a population with mean µ and

standard deviation σ. Consider the case where µ is estimated by the sample mean X̄.

A confidence interval about x̄ specifies a set of values which is expected to include

µ. Situations where the sample mean x̄ is the point estimator of the population

mean µ are often encountered. The determination of the value of a measurand by

repeated measurements is an example. The overall measurement uncertainty UX̄ is,

by definition, the absolute value of the 95% confidence limits. The 95% confidence

interval centred at x̄ is (x̄− Ux̄, x̄+ Ux̄).

A.15.1 Normal Population with Known σ

Let Z be a standard normal random variable. Then

P (−1.96 ≤ Z ≤ 1.96) = φ (1.96)− φ (−1.96) = 0.95 (A.14)

This result is calculated using standard normal curve area tables ( see Devore [30] ).

Let X1, X2 . . . Xn be a random sample from a normal distribution with mean µ and

standard deviation σ. Then the sample mean X̄ is normally distributed with mean
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µ and standard deviation σ/n (See Section A.9). Therefore

Z =

(
X̄ − µ

)
σ/
√
n

(A.15)

is a standard normal random variable and

P

(
−1.96 ≤

(
X̄ − µ

)
σ/
√
n

≤ 1.96

)
= 0.95. (A.16)

This can be expressed as

P

(
X̄ − 1.96

σ√
n
≤ µ ≤ X̄ + 1.96

σ√
n

)
= 0.95. (A.17)

According to Equation A.17, the probability that the random interval

(
X̄ − 1.96

σ√
n
, X̄ + 1.96

σ√
n

)

includes the true value of µ is 0.95. By convention, X̄ refers to the sample mean

prior to observation of the X ′
is. The observed value of the sample mean is x̄. If X̄ is

replaced in Equation A.17 by the calculated value of the sample mean x̄, then

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95 (A.18)

is a confidence interval for µ.
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Interpreting a Confidence Interval

Consider that the population mean µ of a normally distributed population is being

estimated by the sample mean X̄. If a sample is drawn from the population and

the sample mean is calculated, 95 times out of 100, the confidence interval, Equation

A.18, will include the population mean µ.

A.15.2 Large Sample Confidence Interval

In the development of the confidence interval Equation A.18 it is assumed that the

population distribution is normal and that the population standard deviation σ is

known. If these assumptions are not valid, the large sample confidence interval can

be used to specify a confidence interval, if the sample size n is large enough to use the

Central Limit Theorem. According to the Central Limit Theorem, if X1, X2 . . . Xn

is a random sample drawn from a population with mean µ and standard deviation

σ, the sample mean X̄ has approximately a normal distribution, provided that the

sample size n is large. The sample need not be drawn from a population which is

normally distributed. The random variable

Z =

(
X̄ − µ

)
σ/
√
n

(A.19)

has approximately a standard normal distribution. Therfore

P

(
−1.96 ≤

(
X̄ − µ

)
σ/
√
n

≤ 1.96

)
= 0.95. (A.20)
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From Equation A.20, the large sample confidence interval about the sample mean at

approximately 95% is

P

(
X̄ − 1.96

σ√
n
≤ µ ≤ X̄ + 1.96

σ√
n

)
= 0.95 (A.21)

The second assumption in developing Equation A.18, that the population standard

deviation σ is known, is often not valid. This is because the population mean µ is

usually known before the population standard deviation. Instead of σ, if the sample

standard deviation

S =


n∑

i=1

(xi − x̄)2

n− 1


1
2

(A.22)

is used, not much variability is added to the standardized normal random variable

Z =

(
X̄ − µ

)
S/
√
n

(A.23)

if n is large. This is because the computed value s will approximate σ closely. The

new Z also has approximately a normal distribution. The large sample confidence

interval about the sample mean at the 95% level is then

P

(
X̄ − 1.96

s√
n
≤ µ ≤ X̄ + 1.96

s√
n

)
= 0.95. (A.24)
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A.15.3 Small Sample Size

In developing the large sample confidence interval it is assumed that the sample size

n is large enough to apply the Central Limit Theorem. The confidence interval given

by Equation A.24 can then be used irrespective of the distribution from which the

sample is obtained. When n is not large enough to use the Central Limit Theorem,

an assumption is made about the population distribution and a confidence interval

suited for the assumed population distribution is developed. For example, a Gamma

distribution or a Weibull distribution may be assumed for the population to develop

a confidence interval for the population mean µ. The normal distribution frequently

models a population. So it is common to develop a confidence interval for the popu-

lation mean assuming a normal population distribution.

LetX1, X2 . . . Xn be a random sample from a normal distribution. The sample size

n is not large enough to use the Central Limit Theorem. The mean µ and standard

deviation σ are not known. For the large sample case, the standardised variable

Z =
X̄ − µ

S/
√
n

was taken to have an approximately normal distribution. When n is not large enough,

the sample standard deviation S, which is a randomly varying quantity from sample

to sample, is no longer likely to be close to σ. The randomness in Z arises both from

the numerator and the denominator. Z will therefore have a probability distribution

more spread out than a standard normal distribution, called a Student’s t distribution.

For a random sample of size n, taken from a normal distribution with mean µ, the
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random variable

T =

(
X̄ − µ

)
S/
√
n

(A.25)

has a Student’s t distribution with n− 1 degrees of freedom. The notation T for the

standardised variable denotes the t distribution.

A.16 The t Distribution

A parameter called the number of degrees of freedom ν which takes positive integer

values characterises the t distribution. Each value of ν gives a different t distribution.

The probability density function curve for ν degrees of freedom is denoted by tν . The

probabililty density function of the t distribution with ν degrees of freedom is

f (t, ν) =
Γ
(

ν+1
2

)
√
νπ.Γ

(
ν
2

) ( 1

1 + t2

ν

) ν+1
2

(A.26)

where Γ (x) is the Gamma function. The Gamma function is defined as

Γ (z) =

∞∫
0

tz−1e−tdt. (A.27)

Figure A.3 shows a t distribution with six degrees of freedom. The tν curve is bell

shaped, centred at 0, and more spread out than the standard normal curve. The

spread decreases as ν increases, and as ν → ∞, the sequence of curves approaches

the standard normal curve. If n is the sample size, the number of degrees of freedom

for the random variable T in Equation A.25 is n − 1, because though S is based on
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- ta,n ta,n t

f(t,n)

Figure A.4: Critical value tα,ν of the Student’s t distribution. The critical value tα,ν

is the number on the t axis for which the area under the tν curve to the right of tα,ν

is α. By symmetry, the area under the tν curve to the left of −tα,ν is also α.

n deviations, only n− 1 are freely determined.

A.16.1 t Critical Value

The t critical value tα,ν is the number on the t axis for which the area under the tν

curve to the right of tα,ν is α. See Figure A.4. By symmetry, the area under the tν

curve to the left of −tα,ν is also α. Appendix Table A.5, Devore [30], gives tα,ν for

certain values of α and ν.
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A.17 Confidence Interval for Mean

For the t distribution with ν degrees of freedom, the area under the tν curve between

−tα,ν and tα,ν is 1− 2α. See Figure A.4. Therefore

P (−tα,ν ≤ T ≤ tα,ν) = 1− 2α (A.28)

Substituting for T from Equation A.25,

P

(
−tα,ν ≤

(
X̄ − µ

)
S/
√
n

≤ tα,ν

)
= 1− 2α (A.29)

For the 95% confidence interval 1− 2α = 0.95, α = 0.025, and

P

(
−t0.025,ν ≤

(
X̄ − µ

)
S/
√
n

≤ t0.025,ν

)
= 0.95. (A.30)

The 95% confidence interval for the population mean µ is

P

(
X̄ − t0.025,ν .

S√
n
≤ µ ≤ X̄ + t0.025,ν .

S√
n

)
= 0.95. (A.31)
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Appendix B

Streamlines of the Shear Flow

B.1 Vector Fields

Let E be a set in R3. A function F which assigns a three dimensional vector F(x, y, z)

to each point (x, y, z) is called a vector field on R3. The three dimensional vector

F(x, y, z) can be written in terms of its component functions P , Q, R.

F(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k

= 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉
(B.1)

where P , Q and R are scalar functions of three variables.
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B.1.1 Curl of a Vector Field on R3

The curl of a vector field F on R3 is defined to be

∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

= curlF

(B.2)

B.1.2 Fluid Flow Velocity Vector Field on R3

For steady motion of a fluid in Cartesian three dimensional space R3,

V(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k (B.3)

is called a flow velocity vector field if V assigns a velocity vector to each point (x, y, z).

At a location x, y, z in the flow field, fluid particles tend to rotate about the axis that

points in the direction of the vector curl V. The flow velocity field is said to be

irrotational when the vorticity

ζ = curlV =

(
∂w

∂y
− ∂v

∂z

)
i +

(
∂u

∂z
− ∂w

∂x

)
j +

(
∂v

∂x
− ∂u

∂y

)
k = 0 (B.4)
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B.2 Two Dimensional Flow Field

When one of the component functions of the velocity field Equation B.3 is small in

comparison to the other two, it can be neglected. The flow is then two-dimensional.

When w is small compared to the other two component functions u and v, and the

flow is in the xy plane Equation B.3 becomes

V(x, y) = u(x, y)i + v(x, y)j (B.5)

For a two-dimensional flow u and v are not functions of z. Therefore in Equation

B.4, ∂u/∂z and ∂v/∂z are zero. By definition, w is zero for a two-dimensional flow.

Thus the condition for irrotationality of the two-dimensional flow is

(
∂v

∂x
− ∂u

∂y

)
= 0 (B.6)

B.3 Stream Function, Streamlines

For steady, incompressible, plane, two-dimensional flow, the continuity equation is

∂u

∂x
+
∂v

∂y
= 0 (B.7)
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The velocity components u and v can be specified in terms of a function ψ(x, y) of

two variables such that

u =
∂ψ

∂y
(B.8a)

v = −∂ψ
∂x

(B.8b)

The function ψ(x, y) of two variables is called the stream function [31].

Lines of constant ψ are called streamlines. They are everywhere tangent to the

velocity vectors in a flow field. If the stream function ψ(x, y) is known, then the flow

may be visualised by plotting the streamlines.

B.4 Pathlines

Pathlines are lines traced out by a given particles as they flow from one point to

another. For a steady flow, streamlines and pathlines are the same.

B.5 Streamlines for the Simple Shear Flow

Consider the steady, simple shear flow given by Equations 3.16a and 3.16b. They are

reproduced below:
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u =
∂ψ

∂y
= a+ by (B.9)

v = −∂ψ
∂x

= c+ dx (B.10)

The streamfunction for this flow can derived making use of Equations B.8a and B.8b

as follows. Integrating Equation B.9 with respect to y gives

ψ = ay +
by2

2
+ g(x) (B.11)

where g(x) is a function of x. Differentiating Equation B.11 with respect to x gives

∂ψ

∂x
= g′(x) (B.12)

or,

−∂ψ
∂x

= −g′(x) (B.13)

Comparing Equations B.13 and B.10,

g′(x) = −c− dx (B.14)

Integrating Equation B.14 with respect to x gives

g(x) = −cx− dx2

2
+K (B.15)
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where K can be any constant. Setting K to zero and substituting this value of g(x)

in Equation B.11 will give the stream function for the simple shear flow as

ψ(x, y) = ay +
by2

2
− cx− dx2

2
(B.16)

Every constant value of ψ(x, y) gives a streamline in the flow velocity field. Im-

posing condition B.6 on the simple shear flow equations 3.16a and 3.16b gives

d− c = 0 (B.17)

or

d = c (B.18)

The flow is irrotational when the velocity gradients in the x and y directions are either

both zero or both equal.
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Appendix C

Calculating Pixel Intensity

C.1 Fubini’s Theorem

Fubini’s theorem states:

Theorem C.1.1 Let f(x, y) be continous on the rectangle R = [a,b] × [c,d] =

{(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d}. Then,

∫∫
R

f (x, y) dA =

∫ b

a

∫ d

c

f (x, y) dydx. (C.1)

When f(x, y) can be factored as the product of a function only of x and only of

y, then [32]

∫∫
R

f (x, y) dA =

∫ d

c

∫ b

a

g(x)h(y)dxdy =

∫ b

a

g(x)dx

∫ d

c

h(y)dy. (C.2)
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C.2 Average Pixel Intensity

The average intensity over pixel P = [e, f ]× [g, h] of Figure 3.11 is given by (see page

66)

Iave =
1

A(P)

∫∫
P

I (x, y) dA =
1

A(P)

∫ j

i

∫ l

k

I0e
−

(
x2+y2

R2

)
. (C.3)

The sides of the pixel are of unit length. Therefore

A (P) = 1. (C.4)

Substitute A (P) = 1 into Equation C.3. I(x, y) can be split into a function of x only

and y only. Therefore

Iave = I0

∫ j

i

e
−

(
x2

R2

)
dx.

∫ l

k

e
−

(
y2

R2

)
dy. (C.5)

Equation C.5 is evaluated using the following result from Appendix D:

∫ t

s

e−x2

dx =

√
π

2
(erf t− erf s) . (C.6)

Multiplying and dividiing Equation C.5 by R2,

Iave = I0R
2

∫ j

i

e
−

(
x2

R2

)
dx

R
.

∫ l

k

e
−

(
y2

R2

)
dy

R
. (C.7)
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Let

x/R = ξ (C.8a)

and y/R = ζ (C.8b)

Then

dx/R = dξ (C.8c)

and dy/R = dζ. (C.8d)

When x = i, ξ = i/R and when x = j, ξ = j/R. When y = k, ζ = k/R and when

y = l, ζ = l/R. The new limits of integration are m = i/R, n = j/R, o = k/R and

p = l/R. Substitute Equations C.8a to C.8d into Equation C.7. Then

Iave = I0R
2

∫ n

m

e−ξ2

dξ.

∫ p

o

e−ζ2

dζ. (C.9)

Now using Result C.6, the average intensity over the area of the pixel P is

Iave =
I0R

2π

4
(erfm− erf n) (erf o− erf p) . (C.10)
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Appendix D

Derivation of Result C.6

The following result is demonstrated in this appendix.

Result D.0.1 ∫ t

s

e−x2

dx =

√
π

2
(erf t− erf s) . (D.1)

where erf w is defined as

erf w =
2√
π

w∫
0

e−x2

dx. (D.2)

To show that the right side and left side of Result D.0.1 evaluates to the same ex-

pression, the Maclaurin series expansion of e−x2
is needed.

Result D.0.2 The Maclaurin series of a function f(x) is given by

f(x) =
∞∑

n=0

fn(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 + . . . (D.3)
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The Maclaurin series of f(x) = e−x2
is

e−x2

= 1− x2

1!
+
x4

2!
− x6

3!
+ . . . =

∞∑
n=0

(−1)nx
2n

n!
(D.4)

Equation D.4 converges for all x. Replace e−x2
by its Maclaurin series in Equation

D.2 and carry out term by term integration to evaluate erf w.

erf w =
2√
π

w∫
0

e−x2

dx

=
2√
π

w∫
0

(
1− x2

1!
+
x4

2!
− x6

3!
+ . . .+ (−1)nx

2n

n!
+ . . .

)
dx (D.5)

=
2√
π

[
C + x− x3

3.1!
+

x5

5.2!
− x7

7.3!
+ . . .+ (−1)n x2n+1

(2n+ 1)n!
+ . . .

]w

0

(D.6)

=
2√
π

[
w − w3

3.1!
+

w5

5.2!
− w7

7.3!
+ . . .+ (−1)n w2n+1

(2n+ 1)n!
+ . . .

]
(D.7)

In Equation D.6, C is a constant of integration. From Equation D.7,

√
π

2
erf w =

[
w − w3

3.1!
+

w5

5.2!
− w7

7.3!
+ . . .+ (−1)n w2n+1

(2n+ 1)n!
+ . . .

]
(D.8)
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The right side of Equation D.1 evaluates to

√
π

2
(erf t− erf s) =

[
t− t3

3.1!
+

t5

5.2!
− t7

7.3!
+ . . .+ (−1)n w2n+1

(2n+ 1)n!
+ . . .

]
−
[
s− s3

3.1!
+

s5

5.2!
− s7

7.3!
+ . . .+ (−1)n s2n+1

(2n+ 1)n!
+ . . .

] (D.9)

The left side of Equation D.1,
∫ t

s
e−x2

dx, is evaluated by replacing e−x2
by its Maclau-

rin series and carrying out term by term integration.

∫ t

s

e−x2

dx =

∫ t

s

(
1− x2

1!
+
x4

2!
− x6

3!
+ . . .+ (−1)nx

2n

n!
+ . . .

)
dx (D.10)

=

[
C + x− x3

3.1!
+

x5

5.2!
− x7

7.3!
+ . . .+ (−1)n x2n+1

(2n+ 1)n!
+ . . .

]t

s

(D.11)

=

[
t− t3

3.1!
+

t5

5.2!
− t7

7.3!
+ . . .+ (−1)n t2n+1

(2n+ 1)n!
+ . . .

]
−
[
s− s3

3.1!
+

s5

5.2!
− s7

7.3!
+ . . .+ (−1)n s2n+1

(2n+ 1)n!
+ . . .

] (D.12)

Equation D.9 equals Equation D.12. Equation D.1 is proved.
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Appendix E

Interpolation Coefficients

The interpolation coefficients α, β, γ, δ ( Equations 3.4 – 3.5 ) are obtained by solving

the system of Equations 3.8a – 3.8d :

uA = α+ βxA + γyA + δxAyA

uB = α+ βxB + γyB + δxByB

uC = α+ βxC + γyC + δxCyC

uD = α+ βxD + γyD + δxDyD
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From Figure 3.5,

xA = xC (E.1)

yA = yB (E.2)

xB = xD = (xA + ∆x) and (E.3)

yC = yD = (yA + ∆y) (E.4)

(E.5)

Substituting these values into the Equations 3.8a – 3.8d gives

uA = α+ βxA + γyA + δxAyA (E.6)

uB = α+ β(xA + ∆x) + γyA + δ(xA + ∆x)yA (E.7)

uC = α+ βxA + γ(yA + ∆y) + δxA(yA + ∆y) (E.8)

uD = α+ β(xA + ∆x) + γ(yA + ∆y) + δ(xA + ∆x)(yA + ∆y) (E.9)

The system of equations E.6 – E.9 was solved using the Mupad computer algebra

144



system. The solutions are:

α = (uA(xA + ∆x)(yA + ∆y)− uBxA(yA + ∆y)− uC(xA + ∆x)yA

+ uDxAyA)/(∆x∆y)

(E.10)

β = (−uA(yA + ∆y) + uB(yA + ∆y) + uCyA − uDyA)/(∆x∆y) (E.11)

γ = (−uA(xA + ∆x) + uBxA + uC(xA + ∆x)− uDxA)/(∆x∆y) (E.12)

δ = (uA − uB − uC + uD)/(∆x∆y). (E.13)

Substituting (xA + ∆x) = xB and (yA + ∆y) = xC into Equations E.10 – E.12 gives

the interpolation coefficients.

α =
uAxByC − uBxAyC − uCxByA + uDxAyA

∆x∆y
(E.14)

β =
−uAyC + uByC + uCyA − uDyA

∆x∆y
(E.15)

γ =
−uAxB + uBxA + uCxB − uDxA

∆x∆y
(E.16)

δ =
uA − uB − uC + uD

∆x∆y
. (E.17)
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