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Abstract 

              Bromegrass species (Bromus) can produce high forage yields under the short 

growing season of western Canada and have excellent nutritive value. Smooth bromegrass 

(Bromus inermis Leyss.) and meadow bromegrass (Bromus riparius Rehm.) are the most 

commonly cultivated bromegrass species. Hybrid bromegrass (B. riparius X B. inermis) was 

developed in Canada by hybridizing smooth and meadow bromegrass. Regrowth potential differs 

among these three bromegrass species, but the morphological and physiological basis for these 

differences is unclear. Regrowth characteristics of three bromegrass species following 

defoliation to 5cm at the vegetative and stem elongation stages of growth were studied in the 

field and greenhouse. Above-and below-ground dry matter production, leaf area index (LAI) 

development, individual leaf area expansion, leaf-to-stem ratio, photosynthetic rate, tiller and 

axillary bud development, etiolated regrowth, and nitrogen concentration in stem bases were 

evaluated.  

              Regrowth was similar among the three species when defoliated at the vegetative 

stage. Meadow bromegrass consistently produced more (P≤0.05) above-and below-ground dry 

matter than smooth bromegrass following defoliation at the stem elongation stage, while that of 

hybrid bromegrass was generally intermediate to the other two species. Individual leaf 

photosynthetic rates did not differ among the three species. Individual leaf area expansion rate 

was faster (P≤0.05) in smooth bromegrass than meadow and hybrid bromegrass. LAI of the three 

bromegrass species increased linearly with days of regrowth (r2≥0.88, P≤0.05), and the increase 

was greatest in meadow bromegrass, intermediate in hybrid bromegrass, and least in smooth 

bromegrass in all stages of defoliation. Similarly, the leaf-to-stem ratio was highest in meadow 

bromegrass, intermediate in hybrid bromegrass, and lowest in smooth bromegrass following all 

defoliations. 
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              Defoliation at the vegetative stage had no effect (P≥0.05) on tiller development 

relative to the undefoliated treatment, whereas tiller development was negatively affected by 

defoliation at the stem elongation stage. After 60 days of regrowth, final tiller density was 

greatest in meadow bromegrass, intermediate in hybrid bromegrass, and least in smooth 

bromegrass in the field. A lower proportion of tillers in meadow bromegrass reached the 

reproductive stage compared to the other two species. The final tiller density following 

defoliation was similar among species in the greenhouse. Total buds tiller-1 and elongated buds 

tiller-1 were similar (P≥0.05) among three species following defoliation at each growth stage; 

however, defoliation at stem elongation stage visually delayed bud development. Etiolated 

regrowth was greater in meadow and hybrid bromegrass (P≤0.05) than smooth bromegrass 10 

days after defoliation, but was similar thereafter. Concentration of N in stem bases was similar 

among species, but decreased with advancing maturity.  

              Rapid regrowth of meadow bromegrass appears to be associated with more tillers, 

rapid remobilization of organic reserves during early regrowth, and allocation of more biomass 

to leaf tissue than to stems compared to the other two bromegrasses. Variation in regrowth 

among the species was not associated with expansion of individual leaf area, photosynthetic 

rates, total organic reserve remobilization, or nitrogen concentration in stem bases. Based on 

these characteristics, meadow bromegrass is the most suitable species for grazing, and smooth 

bromegrass the least suitable. 
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1.0 Introduction 

 
              Canadian cattle numbers reached 15.2 million in 2008, 72% of which were in the 

provinces of Alberta, Saskatchewan, and Manitoba (CanFax Research Service 2008). This 

increasing number of cattle increases the demand for, and cost of, feed. As feeding costs are the 

greatest expenditure in a cattle operation, lowering the feed cost has a major impact on the 

financial success of operations. Perennial forages are attractive to many producers because 

perennial forages require fewer inputs, and reduce greenhouse gas (GHG) emissions more than 

annual cropping systems (Adler et al. 2007). In Saskatchewan, the area seeded to tame hay 

increased 44% between 2000 and 2008 (Saskatchewan Ministry of Agriculture 2008). Among 

the many cultivated perennial forage species, bromegrasses (Bromus) are valuable and widely 

cultivated for hay and pasture production. Cultivated bromegrass species can produce high 

forage yield under the short growing season of western Canada and have excellent nutritive value 

(Ferdinandez and Coulman 2001). Smooth bromegrass (Bromus inermis Leyss.) and meadow 

bromegrass (Bromus riparius Rehm.) are the most commonly cultivated bromegrass species. In 

recent years, hybrid bromegrass (B. riparius X B. inermis) cultivars were developed by 

hybridizing smooth and meadow bromegrass (Coulman 2004).  

              Smooth bromegrass is important hay in much of the temperate zone of North 

America (Vogel et al. 1996), and it is also used for grazing in drier regions of western Canada. 

Smooth bromegrass was one of the few cool-season grasses to survive the drought of the 1930s, 

and it has been cultivated widely since then (Casler et al. 2000). Smooth bromegrass also 
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tolerates alkaline condition, and extreme temperature variation (Miller 1984); however, it is not 

tolerant of frequent defoliation (Casler et al. 1998). The value of smooth bromegrass for pasture 

is also limited by poor seasonal distribution of its yield (Pearen and Baron 1996).  

              Meadow bromegrass was introduced to Canada in 1980. This grass has become 

popular in western Canada for pasture and rotational grazing systems in the Dark Brown, Black 

and Gray Wooded soil zones and in the Brown soil zone under irrigation (Knowles et al. 1993). 

In comparison to smooth bromegrass, this species offers increased regrowth potential and has 

more uniform seasonal production, particularly in late summer in western Canada (Knowles et al. 

1993). Meadow bromegrass also showed greater potential than smooth bromegrass for early 

spring grazing in Saskatchewan as determined by an etiolated growth study (Lardner et al. 2003). 

Its uniform seasonal production and better frost resistance of leaves makes meadow bromegrass 

suitable for grazing until mid-October (Knowles et al. 1993). In addition, regrowth of meadow 

brome-alfalfa (Medicago sativa L.) mixtures can be used for swath grazing during the winter in 

western Canada (McCartney 2005). Hybrid bromegrass has shown potential as a dual purpose 

grass that can be used as hay in spring and as pasture in the summer and fall (Coulman and 

Knowles 1995).            

              Regrowth potential differs among the three bromegrass species (Knowles et al. 1993; 

Coulman 2004), but the morphological and physiological basis for these differences is unclear. 

Regrowth following defoliation is a complex process and is dependent upon biotic and abiotic 

factors including response of individual species, phenological stage of growth, the intensity, 

frequency and duration of defoliation, and environmental condition (Jameson 1963). Knowledge 

of regrowth traits is critical to sustainable utilization of perennial forage swards. An 

understanding of regrowth traits can help producers determine the optimum timing of grazing 
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and can extend the grazing period or increase years of sward use to reduce feed cost. It may also 

assist forage breeders in selecting superior lines with improved regrowth or persistence under 

grazing. 

              The physiology of growth of smooth bromegrass has been extensively studied 

(Paulsen and Smith 1969; Engel et al. 1987; Ferdinandez and Coulman 2001; Brueland et al. 

2003). For meadow and hybrid bromegrasses that have been more recently introduced, studies on 

growth are limited. A comparative study of these three bromegrass species would provide a 

better understanding of the morphological and physiological differences that influence growth.  

              The objectives of this study were to: 1) determine leaf area index, and above- and 

below-ground dry matter production of three bromegrass species following defoliation at 

different stages of growth; 2) determine the etiolated growth and stem base nitrogen 

concentration of three bromegrass species following defoliation at different developmental stages; 

3) determine tiller and axillary bud development of three bromegrass species following 

defoliation at different developmental stages; and 4) compare leaf expansion rate, leaf-to-stem 

ratio and photosynthetic rate of the three bromegrass species following defoliation. 

              The hypothesis tested in this study was that meadow bromegrass has superior 

regrowth ability compared to hybrid and smooth bromegrasses following defoliation because of 

differences in physiological and morphological characters.   
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2.0 Literature Review  

 
2.1 Bromegrass species 

2.1.1 Origin and characteristics 

 
                   Meadow bromegrass (Bromus riparius Rehm.) a perennial, cool-season grass, is 

native to southeastern Europe (Tzvelev 1976). It was introduced to western Canada in the early 

1980s (Knowles et al. 1993). Meadow bromegrass is decaploid (2n = 10x = 70), and its genomic 

formula is unknown (Armstrong 1990). It has short rhizomes, and its rate of spread is slower 

than smooth bromegrass (Bromus inermis Leyss.). Meadow bromegrass produces many basal 

leaves that are narrower than those of smooth bromegrass and leaves are pubescent, particularly 

on the margin of leaves. The inflorescence of meadow bromegrass is an erect, open panicle. The 

florets of meadow bromegrass are wind-pollinated, and lemmas have awns. Seeds of meadow 

bromegrass are larger than smooth bromegrass and weigh 5-6g per 1,000 seeds. The plant can 

grow up to 1.2m at maturity (Knowles et al. 1993). 

              Smooth bromegrass is also a perennial, cool-season grass, which is native to Europe 

and northern Asia (Miller 1984). It was introduced to North America in 1884, but was not widely 

cultivated until the drought of the 1930s. Cultivated smooth bromegrass is an auto-allo-octoploid 

with 2n = 8x = 56 and its genomic formula is AAAAB1B1B2B2 (Armstrong 1991). The leaves 

of smooth bromegrass are broader than meadow bromegrass (Miller 1984). Smooth bromegrass 

distributes leaves evenly along the stem, and its tillers can grow to more than 1m at maturity. 
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Smooth bromegrass develops longer rhizomes than meadow bromegrass (Vogel et al. 1996). The 

inflorescence is an open panicle, which becomes purplish brown at maturity. The lemmas are 

awnless or have very short awns. Seeds of smooth bromegrass weigh 3-4g per 1,000 seeds 

(Knowles et al. 1993). 

              Hybrid populations (B. riparius X B. inermis) of bromegrass were developed in 

Canada by crossing meadow bromegrass with smooth bromegrass. An F1 hybrid (2n = 9x) 

population had 63 chromosomes. The chromosome number varied from 2n = 56-70 in the F2 

progeny (Armstrong 1990). Hybrid bromegrass produces both upper and basal leaves, and the 

leaves have pubescence, which is similar to meadow bromegrass. The leaves of hybrid 

bromegrass are broader than meadow bromegrass leaves, but narrower than those of smooth 

bromegrass. Hybrid bromegrass has higher tiller density than smooth bromegrass with a reduced 

creeping habit (Ferdinandez and Coulman 2000). Knowles was the first hybrid bromegrass 

cultivar, and released in 2000 (Coulman 2004). 

 
2.1.3 Adaptation  

 
              Meadow bromegrass is adapted to cooler and moister areas than smooth bromegrass. 

These areas include the Black and Gray Wooded soil zones and areas of Dark Brown soil zone, 

which have relatively higher moisture (Knowles et al. 1993). It is less winter hardy than smooth 

bromegrass, but leaves of meadow bromegrass have better frost resistance than smooth 

bromegrass (Limin and Fowler 1987). Meadow bromegrass is also less tolerant to salinity and 

drought than smooth bromegrass (Knowles et al. 1993). It is resistant to brown-leaf-spot disease, 

which is caused by Pyrenophora bromi (Died.) Drechs. (Berg et al. 1986). This disease causes 

severe economic losses in smooth bromegrass stands (Knowles et al. 1993); however, meadow 

bromegrass is susceptible to head smut caused by Ustilago bullata Berk. (Gossen and Turnbull 

5 



 

1995). Head smut can reduce seedling establishment and cause losses in seed and forage 

production. 

              Smooth bromegrass is adapted to a wide range of soil texture from sandy loam to 

well-drained silt loam or clay loam (Casler and Carlson 1995). It is seeded widely in Dark 

Brown and Black soil zones of western Canada (Looman 1983). Smooth bromegrass tolerates 

alkaline conditions, drought, and extreme temperature variation (Miller 1984). Two major 

ecotypes, southern and northern, of smooth bromegrass make it adapted to most of the temperate 

regions of North America. The majority of smooth bromegrass cultivars used in western Canada 

belong to the northern or intermediate ecotypes (Miller 1984). Smooth bromegrass stands are 

vulnerable to brown-leaf-spot diseases, but are not infected by head smut. 

              The hybrid bromegrass, cultivar Knowles, was evaluated over 25 station-years in 

Canadian provinces and was best adapted to drier areas of the Canadian prairies (Coulman 2004). 

It is susceptible to brown-leaf-spot disease (Ferdinandez and Coulman 2000).   

 
2.1.4 Major uses   

 
              Meadow bromegrass is well adapted to grazing, but it is also sometimes used for hay 

production in the western Canada (Knowles and Baron 1990; Knowles et al.1993). It regrows 

faster than smooth bromegrass after defoliation (Knowles et al.1993; Jensen et al. 2001; 

McCaughey and Simons 1996; Van Esbroeck et al. 1995), particularly under frequent defoliation 

in the Black or Gray Wooded soils of Canadian prairies (Knowles et al. 1993; McCaughey and 

Simons 1996). Under irrigation and frequent (six cut) harvesting in northern Utah, meadow 

bromegrass produced more total dry matter than smooth bromegrass (Jensen et al. 2001). 

Meadow bromegrass showed greater potential for early spring grazing than smooth bromegrass 

in Saskatchewan (Lardner et al. 2003). Its uniform seasonal production and leaf frost resistance 
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makes meadow bromegrass suitable for grazing until mid-October (Knowles et al. 1993). When 

meadow bromegrass was used in a mixture with alfalfa, the yield distribution was more uniform 

than smooth brome-alfalfa mixtures, and the yield of meadow brome-alfalfa mixtures equaled or 

exceeded smooth brome-alfalfa mixtures under frequent harvesting systems (Pearen and Baron 

1996). Meadow bromegrass, however, yielded less than smooth bromegrass in a simulated 

grazing trial under drier conditions in the Dark Brown soil zone (Knowles et al. 1993).  

              Smooth bromegrass is used primarily for hay. It is most productive under infrequent 

cutting, relatively high cutting heights, and high N fertilizer (Casler and Carlson 1995). Hay 

yields of smooth bromegrass are greater than meadow and hybrid bromegrass (Knowles et al. 

1993; Ferdinandez and Coulman 2000; Coulman 2004). In addition, the tall and upright tiller 

growth of smooth bromegrass is suitable for hay harvesting. Smooth bromegrass is also widely 

used for grazing in drier areas of western Canada, because it can be established easily and has 

relatively high yield and persistence (McCartney and Bittman 1994; Looman 1983). 

              Hybrid bromegrass has shown potential as a dual purpose grass that can be used as a 

hay crop in spring and as a pasture crop in the summer and fall (Coulman and Knowles 1995). 

Hay yield of hybrid bromegrass is greater than meadow bromegrass, but lower than smooth 

bromegrass (Coulman 2004). Regrowth of hybrid bromegrass is greater than smooth bromegrass, 

but slightly less than or similar to meadow bromegrass (Coulman 2004). More animal grazing 

days were observed on a hybrid bromegrass pasture than meadow and smooth bromegrass 

pastures in the Black soil zone of Saskatchewan (Thompson et al. 2003).   

 
2.1.5 Forage quality of regrowth 

 
              Cultivated bromegrass species have high nutritive value (Carlson and Newell 1985; 

Knowles et al. 1993). Meadow bromegrass has slightly lower protein and higher fiber 
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constituents than smooth bromegrass in regowth, but in vitro digestibility is similar (Knowles et 

al. 1993). Initial rejection by cattle sometimes occurs in a meadow bromegrass pasture because 

of the hairy nature of its leaves (Knowles et al. 1993). Regrowth of meadow bromgrass mainly 

consists of leaf material, while regrowth of smooth bromegrass and an experimental hybrid 

bromegrass population has more stem production (Baron et al. 2000). Animal weight gains are 

similar between smooth and meadow bromegrass during the summer, but they are greater for 

meadow bromegrass in fall grazing (Knowles et al. 1993). Higher beef production ha-1 was 

reported in a hybrid bromegrass pasture than in smooth and meadow bromegrass pastures 

(Thompson et al. 2003).  

 
2.2 Effects of defoliation on grasses 

2.2.1 Above-ground production 

 
              Removal of plant tissues affects a variety of morphological and physiological 

characteristics in plants. Reduction of above-ground production has been reported in almost all 

clipping experiments, and the magnitude of reduction was closely associated with frequency, 

duration, intensity, time of defoliation and response of individual species (Branson 1956; 

Jameson 1963; Paulsen and Smith 1969; Buwai and Trlica 1977; Mclean and Wikeem 1985; 

Gold and Caldwell 1989; Turner et al. 2006). Furthermore, responses are likely to change across 

climates, soil type, soil water content, and soil fertility (Jameson 1963). 

              Plants can regain their vigor and competitive ability if an adequate amount of time is 

provided between defoliation events (Buwai and Trlica 1977). In the Aspen-Boreal ecosystem, 

smooth bromegrass dry matter yield was greater if plants were clipped every four weeks than 

every two weeks (Donkor et al. 2002). Increasing defoliation frequency reduces herbage yields 

and dry matter accumulation in many grass species because of depletion of total non-structural 
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carbon storage or decreased leaf area for photosynthesis (Reed and Dwyer 1971; Buwai and 

Trlica 1977; McLean and Wikeem 1985; Turner et al. 2006). The reduction of herbage yield is 

more severe when plants are defoliated at a heavy intensity (90% of the current year’s growth 

removal) than moderate intensity (60% of growth removal) during the same developmental stage 

(Buwai and Trlica 1977). Reduced plant injury occurred in rough fescue (Festuca scabrella Torr.) 

when plants were defoliated to 10 or 15cm stubble height compared to 5cm (McLean and 

Wikeem 1985).  

              Developmental morphology of a perennial grass can be divided into four primary 

growth stages: vegetative, stem elongation, reproductive, and seed development and ripening 

(Moore and Moser 1995). Differences in availability of meristems for plant growth following 

defoliation cause differences in regrowth among growth stages (Briske 1986). Generally, growth 

occurs most rapidly from intercalary meristems, followed by newly developed leaf primordia, 

and least rapidly from axillary buds (Cook and Stoddart 1953; Hyder 1972; Briske 1986). When 

clipped before the end of vegetative growth, regrowth is greater and plant injury is less in many 

grasses (Cook 1971; McLean and Wikeem 1985; Brueland et al. 2003; Olson and Richards 

1988b); however, plants defoliated after stem elongation or at a more mature developmental 

stage exhibit little regrowth (McCarty and Price 1942; Trlica and Cook 1971).  

              Numerous physiological and morphological differences exist among species in 

response to defoliation, and those variations potentially affect regrowth and the period of time 

required to resume yield and vigor (Trlica et al. 1977). Buwai and Trlica (1977) stated that 

defoliation reduced total non-structural carbon of western wheatgrass (Agropyron smithii Rydb.) 

while the total non-structural carbon of blue grama (Bouteloua gracilis Willd.) was not affected 

by defoliation. Caldwell et al. (1981) and Richards and Caldwell (1985) reported that wheatgrass 
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(Agropyron) species with many similar phenological and physiological traits differed markedly 

in their ability to produce new tillers following defoliation. Rough fescue and parry oat grass 

(Danthonia parryi Scribn.) produced most forage when cut at a 5cm stubble height with one, two 

or four cuts in the first year. In the third year, rough fescue produced the greatest yield under a 

single cut, while parry oat grass produced the most yield in two cuts at heights of 10 and 15cm 

(Willms 1991).  

              Though reduction of above-ground production is common in clipping or mowing 

studies, a number of studies have indicated that above-ground dry matter accumulation may be 

stimulated by animal grazing (McNaughton 1979; Dyer 1975; Hilbert et al. 1981). They 

proposed that maximum plant productivity occurs under grazing at an optimal intensity rather 

than in ungrazed vegetation. The positive effect of grazing on plant productivity has been 

referred to as herbivore optimization, which is illustrated by the herbivore optimization curve 

(Hilbert et al. 1981).The grazing animal usually selects particular plant parts rather than 

harvesting the whole plant as in clipping (McNaughton 1979). A variety of observed 

mechanisms may account for this increased production by grazing, which include increased 

photosynthetic rates in remaining leaves (Detling and Painter 1983), greater resource allocation 

to shoot regrowth (Ryle and Powell 1975), increased tillering from removal of apical dominance 

(Youngner 1972) or opening of the canopy to allow an increase of light penetration (Laude 1972), 

conservation of soil moisture by reducing leaf transpiration area (McNaughton 1979), an 

improved nutrient status in residual tissue, and promotion of growth by hormones in animal 

saliva (Dyer 1980). 

               
2.2.3 Leaf area development 
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              Rapid production of a new leaves immediately after defoliation is considered a 

critical trait in response to defoliation, because it allows the plant to assimilate carbohydrates to 

meet the need of future growth and respiration (Caldwell et al. 1981; McNaughton et al. 1983; 

Briske 1986). Leaf size, number of leaves per tiller, and tiller density determines the canopy leaf 

area index (LAI) (Lemaire and Chapman 1996; Lemaire and Agnusdei 2000). Tiller density is 

considered a key factor for the re-establishment of canopy leaf area following defoliation in 

many grass species (Caldwell et al. 1981; Van Esbroeck et al. 1995); however, appearance and 

expansion of leaves following defoliation is also important for leaf area establishment (Davies 

1988), and depends on the growth stage and available meristems for regrowth (Briske 1991).  

              Formation of a leaf primordium begins by rapid cell division in the outermost cell 

layers of the apical dome, the dermatogen and hypodermis, giving rise to a microscopically 

visible protuberance (Langer 1972).  In vegetative growth, leaf tissues are produced sequentially 

from leaf primordia, as a chain of phytomers at the level of the individual tiller. Following 

defoliation at the vegetative stage, rapid leaf development will occur from leaf intercalary 

meristems, located in narrow zones at the bases of the blade and sheath (Langer 1972), and leaf 

primordia which remain in the basal position of the tiller (Hyder 1972). After defoliation at the 

stem elongation stage or after flowering, new tillers from axillary buds become the most 

important source for canopy leaf area development (Olson and Richards 1988b; Richards et al. 

1988). Van Esbroeck et al. (1995) reported that leaf area index (LAI) development of smooth 

bromegrass is more limited by tiller density than in meadow bromegrass and an experimental 

hybrid bromegrass population during regrowth in fall.      

              Leaf appearance and elongation are strongly affected by temperature (Wilhelm and 

McMaster 1995) and are often expressed in units of thermal time such as growing-degree-days 

11 



 

(GDD) (Ford 1982). The threshold temperature for leaf appearance of most C3 species is 3-5 °C 

(Lemaire and Agnusdei 2000). For a given species, a more or less constant leaf appearance 

interval can be calculated in terms of GDD (Cruz and Boval 2000). Frank et al. (1985) studied 

phyllochron (time interval for leaf appearance) of four temperate grass species and found GDD 

required to achieve a given phyllochron is different among species and among clones within 

species. Thus, variation of phyllochron among species indicates the different potential for leaf 

area establishment through individual leaf expansion and appearance. Besides temperature 

effects, water stress tends to lengthen the leaf appearance in perennial ryegrass (Lolium perenne 

L.) (Volaire et al. 1998), and N and P nutrition increases leaf elongation rate (Gastal et al. 1992).  

              
2.2.4 Net photosynthesis  

 
              Photosynthesis is the process of converting light energy to chemical energy and 

storing it in the bonds of sugar. In a C3 species, the process of photosynthesis primarily takes 

place in leaves, specifically in chloroplasts of mesophyll cells. Photosynthetic rates of leaves is 

related to chlorophyll content, stomatal conductivity, and leaf photosynthetic N-use-efficiency 

(the rate of photosynthesis per unit of leaf N); therefore, photosynthetic rates of leaves vary 

among species (Pons and Westbeek 2004). 

              For a given species, defoliation alters the age structure of leaves within the plant 

canopy and modifies plant photosynthetic capacity (Briske 1991). Leaves of defoliated plants 

may have higher photosynthetic rates than relatively older foliage on undefoliated plants 

(Caldwell et al.1981; Wallace et al. 1984), because plant leaves generally exhibit maximum 

photosynthetic rates at the time of full expansion, and decline thereafter (Caldwell 1984). 

              An increase in photosynthetic rates of foliage after partial defoliation has been 

reported as a mechanism to compensate for defoliation (McNaughton 1979). Following partial 
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defoliation, the rate of photosynthesis declined immediately in the remaining undamaged leaves 

followed by an increase, or less rapid decline with age than the photosynthetic rate in similar 

leaves from undefoliated plants (Gifford and Marshall 1973; Detling and Painter 1983; Nowak 

and Caldwell 1984). This photosynthetic rate enhancement has been attributed to increased leaf 

stomatal conductance in the remaining leaves of the defoliated plant (Gifford and Marshall 1973) 

or increased N-use-efficiency in leaves (Caldwell et al. 1981; Wallace et al. 1984).  In addition, 

increasing light penetration to the shaded leaves following partial defoliation also plays a role in 

increase of photosynthesis (McNaughton et al. 1983).  

              Enhanced photosynthetic rates have been observed in numerous studies (Gifford and 

Marshall 1973; Detling and Painter 1983; Nowak and Caldwell 1984), but gross photosynthesis 

of the sward is a function of total leaf area and photosynthetic rates of individual leaves (Briske 

1991). Brougham (1958) suggested that each species has a critical LAI, and gross photosynthesis 

of a grass sward may be more closely related to LAI rather than photosynthetic rates of 

individual leaves. Parsons et al. (1983) reported that gross photosynthesis of the sward was 

greater in a sward of perennial ryegrass with high LAI than a sward with lower LAI.   

                   
2.2.4 Tiller development 

 
              Tillers arise from axillary buds, rudimentary apical meristems that form in the deeper 

(sub-hypodermal) layers of the apex during the early development of leaf primordia (Langer 

1972; Jewiss 1972). Following a juvenile period of development, primary tillers are potentially 

capable of initiating secondary tillers from their own axillary buds at the stem bases (Briske 

1991). Further development of these buds can produce a hierarchy of tillers that are connected by 

a complex system of vascular tissue (Langer 1972). Tiller recruitment in temperate, perennial 

grasses is most prevalent in the spring and fall, yielding two tiller generations annually (Butler 
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and Briske 1988).  Tiller development following defoliation, however, is unique for each grass 

species. Caldwell et al. (1981) and Richards and Caldwell (1985) reported that wheatgrasses 

(Agropyron) with similar phenology and physiological traits differed markedly in their ability to 

produce new tillers following defoliation. In smooth bromegrass, tillering ceased at the stem 

elongation stage, and did not resume again until anthesis stage unless apical dominance was 

removed by defoliation (Eastin et al. 1964).  

              Tiller initiation from the axillary bud is a complex biochemical process under control 

of hormonal, environmental and nutritional factors (Langer 1972). Activation of axillary buds 

usually occurs after tiller flowering or senescence, or in response to defoliation during internode 

elongation in many grasses (Branson 1953; Paulsen and Smith 1969; Jewiss 1972; Olson and 

Richards 1988a). Traditionally, the concept of apical dominance was used to explain tiller 

initiation in perennial grasses (Murphy and Briske 1992). Apical dominance refers to the control 

exerted by the apical portion of the shoot, which includes the apical meristem and young leaves, 

on axillary bud growth following bud formation (Cline 1991). Five major hypotheses of apical 

dominance had been advanced for dicots; however, a hormonal mechanism was more widely 

accepted in grasses (Murphy and Briske 1992). The hormonal hypothesis indicated that auxin 

transported down the stem from the apical meristem blocks cytokinin synthesis or utilization in 

axillary buds, thereby inhibiting growth (Phillips 1975). Murphy and Briske (1992) in their 

review indicated that hormones other than auxin and cytokinin such as abscisic acid (ABA), 

gibberellins (GA) and ethylene may be involved in apical dominance.  

              The nutrition hypothesis is based on the concept of resource-sink relationship in 

which apical dominance is maintained by the internal competition among buds for nutrients 

(Gregory and Veale 1957). While the nutrient requirements of the existing shoot meristems 
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exceed the supply rate, lateral bud inhibition is maintained by nutrient deprivation. Once the 

nutrient supply rate exceeds the demand rate of existing meristems, the increased nutrient 

concentration in the shoot stimulates lateral bud outgrowth (Gregory and Veale 1957). Apical 

decapitation removes the metabolic sink, thereby allowing resources to be redirected to lateral 

bud outgrowth, an alternative interpretation to apical dominance (Gregory and Veale 1957). 

Briske and Derner (1998) found inconsistencies with each mechanism and concluded that 

searching for a sole regulatory mechanism for buds regulation may have limited success. 

Tomlinson and O’Connor (2004) developed an integrated model for bud release considering 

hormonal, nutritional control and grass photosensitivity to red-far-red light ratio. They concluded 

that hormonal control (auxin: cytokinin ratio) is determined by red-far-red light ratio (auxin 

production and export from shoot) and soil N (cytokinin production). 

              Though it was generally believed that tillers were initiated in response to removal of 

apical meristems after internode elongation in many grasses, tillering can occur in response to 

defoliation even if apical meristems have not been removed (Butler and Briske 1988). Selective 

removal of apical meristems, while leaves remain intact, does not stimulate tiller initiation in 

temperate grasses (Richards et al. 1988). Other studies have indicated that tiller initiation was 

suppressed by defoliation due to the senescence of tillers after apical removal and a lower 

amount of energy for bud growth (Branson 1956; Ellison 1960; Jameson 1963). Jameson (1963) 

suggested that differences in plant response to defoliation are perhaps not due to removal of the 

apex, but instead are related to plant vigor or number of vegetative stems.  Murphy and Briske 

(1992) suggested that defoliation may simply alter the timing of tiller initiation rather than 

increase the total number of tillers during the long-term.  
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              In general, following defoliation in early spring before internode elongation, existing 

tillers continue to elongate to ensure tiller density (Jewiss 1972), and new tillers can also arise 

from axillary buds (Paulsen and Smith 1969). When defoliation occurs during or immediately 

after internode elongation, apical meristems are often removed (Hyder 1972; Jewiss 1972), and 

tiller development comes from axillary buds (Carlson and Newell 1985). Slow activity of 

axillary buds at the stage of internode elongation usually results in slow tiller development in 

many grasses (Paulsen and Smith 1968; Langer et al. 1964; Olson and Richards 1988a).                                      

              Several environmental factors influence tiller initiation. In cool-season grasses, the 

optimum temperature for tillering is relatively low and varies among species (Langer 1972). 

High temperatures inhibit tillering because of high respiration rates and lower soluble 

carbohydrate concentrations in the plant (Langer 1972). The ability of grasses to produce tillers 

is also sensitive to changes in light intensity. Tiller density increases with increasing light 

intensity (Langer 1972; Ashmun and Pitelka 1984). Greater soil moisture availability increases 

tillering in late spring and summer (Cook et al.1958). Tiller production is generally enhanced by 

increasing the supply of N, P, and K, with N generally considered to be the most important 

nutrient (Langer et al.1964; Shaver et al. 1986).    

               
2.2.5 Organic reserves and regrowth 

 
             Vast quantities of carbon (C) and nitrogen (N) reserves accumulate in specialized 

storage organs of plants (Volenec 2007). Carbohydrate reserves are important for winter 

survival, early spring growth initiation and regrowth after defoliation when photosynthetic 

production is inadequate (Brown and Blaser 1965; White 1973).  

             The terms “total available carbohydrate”, “total non-structural carbohydrates” and 

“water soluble carbohydrate” have been used to describe the carbohydrate reserves in many 
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studies (Weinmann 1948; Smith 1969; Turner et al. 2006).   Non-structural carbohydrates 

include reducing sugars (glucose and fructose), non-reducing sugars (sucrose and fructosans), 

and starches (White 1973). Predominant carbohydrate reserves stored by temperate grasses are 

fructosans and sucrose (Weinmann 1948; Okajima and Smith 1964), which are stored in stem 

bases, stolons, rhizomes and corms (Baker and Garwood 1961; Reynolds and Smith 1962). Non-

structural carbohydrates in the roots of grasses are likely not used directly in regrowth following 

defoliation (Marshall and Sagar 1965); however, a more recent study of prairie grass (Bromus 

willdenowii Kunth.) suggests that this species is reliant on root carbon reserves in addition to 

stubble reserves to meet energy needs before leaf area establishment (Turner et al. 2007). 

              Seasonal carbohydrate cycles are related to developmental stages of growth. In many 

temperate grasses, the lowest amount of carbohydrates occurs after early spring growth initiation, 

and the maximum level is reached at anthesis or seed-shattering (Reynolds and Smith 1962; 

Eastin et al. 1964; Trlica and Cook 1972; Menke and Trlica 1981). The magnitude of seasonal 

fluctuation of carbonhydrate reserves was related to variation of temperature, soil moisture and 

soil nutrients (White 1973).         

              Reduced plant carbohydrate reserves following defoliation have been associated with 

carbon translocation to regrowing tissues and respiration (Reynold and Smith 1962; Davidson 

and Milthorpe 1966b; White 1973; Trlica and Cook 1971, 1972; Buwai and Trlica 1977; 

Gonzalez et al. 1989). Steady-state 13C labeling was used to investigate the use of remobilized 

and currently assimilated C into the leaf and root growth zones of perennial ryegrass after a 

single defoliation. It was estimated that 50% of the carbon was derived from remobilization 

during the first three days of regrowth, falling to 10% after five days (De Visser et al. 1997). In 

another study on perennial ryegrass, Donaghy and Fulkerson (1997) estimated that 
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remobilization of stored carbohydrate contributed 33% and current assimilation 66% to regrowth 

after defoliation. Several other studies have examined the contribution of carbohydrate reserves 

to regrowth (May 1960; Caldwell et al. 1981; Davidson and Milthorpe 1966; Richards and 

Caldwell 1985), and concluded that carbohydrate reserves were important for only a few days of 

regrowth immediately after a severe defoliation. 

              N reserves are also an important fraction of plant organic reserves and are essential to 

regrowth (Ourry et al. 1994; Dilz 1966). A 15N study showed that a significant amount of N was 

remobilized during regrowth in annual soft chess grass (Bromus mollis L.) and perennial ryegrass 

(Phillips et al. 1983; Ourry et al. 1988, 1990). N was remobilized from roots and stubbles to 

growing leaves following a single defoliation with the majority of N coming from stubble (Ourry 

et al. 1988). After two weeks of regrowth, 40-60% of N in regrowing leaves of perennial 

ryegrass came from remobilization (Ourry et al. 1990). Amino N seems to be the most readily 

available form of N (Ourry et al. 1988), and protein N is the largest storage form of N (Ourry et 

al. 1988); however, other studies questioned the significance of N remobilization and suggested 

that N uptake by roots was more important than remobilization from roots in supplying N to 

shoot regrowth of some grasses (Thornton and Millard 1996). The degree to which N 

remobilization contributes to regrowth can depend on internal concentration and external supply 

(Skinner et al. 1999).  

               
2.2.6 Root growth and biomass 

 
              Below-ground development of grasses is often suppressed by shoot defoliation 

(Weaver and Zink 1946; Jameson 1963). The magnitude of root biomass reduction was much 

greater than reduction in herbage yield in rough fescue after defoliation of only 20 % (12.5cm 

stubble height) of above-ground growth in greenhouse conditions (Johnston 1961). Deterioration 
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of roots following clipping was most rapid near the root tips where root apical meristems and 

elongation zones are located (Jameson 1963). Root elongation may cease within 24 hours 

following a severe defoliation (Crider 1955; Ryle and Powell 1975). Reduction in the number of 

roots initiated and elongated became progressively more severe with increasing frequency and 

intensity of defoliation (Crider 1955; Evans 1973).  

 
2.2.7 Resource allocation 

 
              In grasses, resource allocation is changed by defoliation. For example, in barley 

(Hordeum vulgare L.), the relative proportion of photosynthetic carbon allocated to roots 

decreased following defoliation, and the proportion of carbohydrate allocation to regrowing 

shoots increased (Ryle and Powell 1975). The sequence of priority for allocation of water soluble 

carbon following defoliation was in order of leaf growth, roots and tiller formation and 

development in prairie grass (Turner et al. 2007). In perennial ryegrass, the first priority 

following defoliation was to grow new leaf material to restore photosynthetic capacity, while the 

second and third priorities were to replenish water soluble carbon reserves of stem bases and to 

initiate new tillers, respectively (Donaghy and Fulkerson 1998).  

              In addition, greater resource allocation to shoot development following defoliation 

was reported for more rapidly regrowing species compared to slow-growing species (Caldwell et 

al. 1981; Richards 1984). For example, defoliation-tolerant crested wheatgrass (Agropyron 

desertorum Schult.) allocated more C to shoot than root systems when defoliated, whereas 

defoliation sensitive bluebunch wheatgrass (Agropyron spicatum Scribn.) continued to allocate 

more C to the root system. Guitian and Bardgett (2000) found similar responses for red fescue 

(Festuca rubra L.) and crested dog’s tail grass (Cynosurus cristatus L.) and defoliation-sensitive 

sweet vernalgrass (Anthoxanthum odoratum L.).  
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3.0 Common Methodology and Meteorological Data 

 
3.1 Plant materials 

 
              Three bromegrass species were used in this study including meadow bromegrass cv. 

Fleet, smooth bromegrass cv. Carlton, and hybrid bromegrass cv. Knowles. All three cultivars 

were developed at the Saskatoon Research Centre of Agriculture and Agri-Food Canada (AAFC).  

Fleet, released in 1987, was selected for seed production, reduced awn development, and reduced 

seed shattering, and further selections were carried out based on ploidy, growth habit, and floret 

fertility (Alderson and Sharp 1995). Carlton, a northern ecotype, was released in 1961, and was 

selected for high forage and seed yields, and resistance to brown-leaf-spot disease (Alderson and 

Sharp 1995). Hybrid bromegrass, cv. Knowles, was released in 2000. It was selected from hybrid 

populations generated by crossing meadow bromegrass (cv. Fleet and cv. Paddock) and smooth 

bromegrass (cv. Signal). Several generations of recurrent selection were conducted for increased 

vigor, improved floret fertility, good regrowth, and reduced creep (Coulman 2004).

 
3.2 Field plot location and experimental design  

 
              Field plots were located at the AAFC Research Farm (52007' N, 106038' W) in 

Saskatoon, Saskatchewan. Field studies were conducted during the summers of 2006 and 2007 in 

two trials consisting of meadow, smooth, and hybrid bromegrasses, which were established in 

2004 and 2006, respectively. The soil was a Dark Brown Chernozem (Head 1979). Each trial 
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was established in a four replicate, randomized-complete-block-design with each plot consisting 

of four, 6m long rows, spaced 30cm apart and seeded at a rate of 100 seeds m-1.   

               
3.3 Meteorological data and growing-degree-day determinations 

 
              Rainfall was recorded for the months of April, May, June and July in both years (Fig 

3.1). Rainfall during the experiments was 225 mm in 2006 and 147.5 mm in 2007 (Fig 3.1). 

Total cumulative growing-degree-days (GDD) were 1,786 in 2006 and 1,704 in 2007 (Fig 3.2).  

Mean daily temperature exceeded the base temperature (0°C) for five consecutive days on 4 

April 2006 and 12 April 2007. Field studies were completed 2 August 2006 and 27 July 2007. 

Thus, these were the starting and ending dates for measurement of GDD, which were calculated 

according to equation 3.1 (Frank and Hofmann 1989): 

 

 
  GDD = ∑ (daily maximum temperature + daily minimum temperature) / 2         (3.1)   
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Figure 3.1 Monthly rainfall received during the studies in 2006 and 2007
and the long-term average (1970-2000) at Saskatoon, Saskatchewan. 
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Figure 3.2 Cumulative growing-degree-days (GDD) during the field

studies in 2006 and 2007 and the long-term average (1970-2000) at 
Saskatoon, Saskatchewan. 
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4.0 Above-and Below-Ground Biomass Production and Leaf Area Index of Three 
Bromegrass (Bromus) Species in Response to Defoliation at Different Developmental Stages   

 
Abstract   Bromegrasses (Bromus) are cultivated for pasture and hay in western Canada. The 

objective of this study was to determine above-and below-ground biomass and leaf area index 

(LAI) of meadow bromegrass (Bromus riparius Rehm.), smooth bromegrass (Bromus inermis 

Leyss.) and hybrid bromegrass (B. riparius X B. inermis) after defoliation. The study was 

conducted in 2006 and 2007 in Saskatoon (52007' N, 106038' W), Saskatchewan on a Dark 

Brown Chernozem soil. Plants were clipped to a 5cm height at the vegetative and stem 

elongation stages of growth, and an undefoliated control was included. Regrowth was similar 

(521 g m-2) among the three species when defoliated at the vegetative stage, but meadow and 

hybrid bromegrass produced 42% greater regrowth than smooth bromegrass following 

defoliation at the stem elongation stage. Compared to undefoliated plants, below-ground biomass 

was reduced 38% following defoliation. Meadow and hybrid bromegrass produced similar (4863 

g m-3) below-ground biomass, which was 40% greater than smooth bromegrass (2923 g m-3). 

LAI of all three bromegrasses increased linearly with days of regrowth (r2≥0.88), and LAI was 

greatest in meadow bromegrass (4.0, 3.3), intermediate in hybrid bromegrass (3.6, 2.7), and least 

in smooth bromegrass (3.1, 2.2) following defoliation at the vegetative and stem elongation 

stages, respectively. Smooth bromegrass is sensitive to defoliation at the stem elongation stage, 

thus, higher defoliation height is necessary at this growth stage.  
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4.1 Introduction  

   
              Meadow bromegrass (Bromus riparius Rehm.) is recognized for its rapid regrowth 

after defoliation and is mainly used for pasture (Knowles et al. 1993). Smooth bromegrass 

(Bromus inermis Leyss.) is generally considered to be best of the bromegrasses for hay 

production (Casler and Carlson 1995) because of its uniform leaf arrangement, upright tillering 

and greater dry matter yield. The hybrid bromegrass (B. riparius X B. inermis) cultivar Knowles 

was recently developed by hybridizing of smooth and meadow bromegrass (Coulman 2004), and 

has potential for both hay or pasture use. Variation in regrowth of these three species in the fall 

or after frequent defoliation has been reported (Knowles et al. 1993; Van Esbroeck et al. 1995; 

Baron et al. 2000); however, little information is available concerning regrowth and canopy LAI 

development following defoliation at different stages of growth in these bromegrass species. 

              The developmental stage of growth at defoliation influences the regrowth dry matter 

accumulation in cool-season grasses because of differences in available meristems (Cook 1971; 

Olson and Richards 1988b; Brueland et al. 2003). Generally, regrowth occurs most rapidly from 

intercalary meristems, followed by newly developed leaf primordia, and least rapidly from 

axillary buds (Cook and Stoddart 1953; Hyder 1972; Briske 1986); however, available meristems 

after defoliation may vary among species because of species differences in the number of non-

elongated tillers and axillary buds.  

              Defoliation usually causes an immediate reduction of root growth (Crider 1955; 

Davidson and Milthorpe 1966), which in turn restricts water and nutrient uptake from the soil 

(Clement et al. 1978). Depression of root production by clipping is common (Weaver and Zink 

1946; Ellison 1960) with the magnitude of reduction varying among species (Weaver and Zink 

1946).  Grasses with rapid shoot regrowth appear to reduce root growth following defoliation 
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more than species with slow regrowth because relatively more resources are allocated to shoot 

regrowth (Richards 1984).  

              Rapid replacement of leaf area following defoliation is critical to achieve a positive 

carbon balance to support further plant development (Davies 1988). Leaf area is determined by 

leaf size, leaves tiller-1, and tiller density in grasses (Lemaire and Chapman 1996). In fall 

regrowth, leaves tiller-1 and leaf area tiller-1 were greater in smooth bromegrass than meadow 

bromegrass, while an experimental hybrid bromegrass population was similar to smooth 

bromegrass (Van Esbroeck et al.1995). Leaf appearance rate tiller-1 following grazing was also 

higher in smooth bromegrass than meadow bromegrass (Lardner et al. 2003). Smooth 

bromegrass has greater LAI than meadow and hybrid bromegrass in undefoliated swards 

(Ferdinandez and Coulman 2000); however, smooth bromegrass LAI development in the fall was 

slower than the other two bromegrasses because of fewer tillers (Van Esbroeck et al. 1995).        

              This study was designed to test the hypothesis that meadow bromegrass has greater 

above-and below-ground biomass than smooth bromegrass and hybrid bromegrass following 

defoliation at various developmental stages, and it also increases leaf area index (LAI) more 

rapidly after defoliation. The objective of this study was to determine above-and below-ground 

biomass and LAI following defoliation at the vegetative and stem elongation stages of three 

bromegrass species. 

 
4.2 Materials and methods 

4.2.1 Data collection            

4.2.1.1 Above-ground biomass  
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Above-ground biomass was determined in two 15 x 20cm quadrats randomly placed over rows in 

each plot after defoliation to 5cm at the vegetative (first leaf collared) and stem elongation 

(second node visible) stages (Moore and Moser 1995). Undefoliated controls were included in 

each plot. In each year, regrowth was harvested after a similar number of GDD had accumulated 

following each developmental stage of defoliation (Table 4.1).  Above-ground biomass was also 

harvested in quadrats in the undefoliated controls. Harvested biomass was dried at 60°C for 48h 

and weighed.        

Table 4.1. Date of defoliation for above-ground biomass and the corresponding cumulative growing-
degree-days (GDD) between defoliation and measurement for three bromegrasses during the summers 
of 2006 and 2007 at Saskatoon, Saskatchewan.  

                                                              Date of defoliation                    Date of measurement                    GDD   (°C) 
 
                                                              2006             2007                       2006          2007                       2006         2007            
 
Vegetative stage    

          all three bromegrasses              10 May          9 May                     1 Aug        13 Jul                      1465           964   
  
Stem elongation stage                                                   

          meadow bromegrass                 19 May        25 May                    28 Jul         24 Jul                      1271         1049           

          smooth bromegrass                   22 May        31 May                     1 Aug        27 Jul                      1304         1045 

          hybrid bromegrass                    22 May        26 May                     1 Aug        24 Jul                      1304         1041 
 
 
4.2.1.2 Below-ground biomass  

       
The treatments for below-ground biomass determinations were the same as for above-ground 

biomass, except that an additional defoliation at a reproductive stage (inflorescence emerged) 

was included. Soil cores were collected with an 8cm diameter soil corer to a depth of 20cm after 

46d of regrowth (30d of regrowth for the reproductive stage defoliation) from the defoliated plots 

and undefoliated control. Soil cores were soaked in warm water for 2-3d and then placed on 

three layers of mesh screens of 5, 1, 0.5mm diameter, which were placed over a pail, and washed 
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with water under high pressure. Roots that remained on the three screens were collected and 

combined. Washed samples were dried in the oven at 80°C for 48h and weighed.  

   
4.2.1.3 Leaf area index  

 
Two 1m long parallel rows from each plot were defoliated to a 5cm stubble height at the 

vegetative or stem elongation stage, and then allowed to regrow for 43-46d depending on the 

number of GDD that had accumulated following defoliation (Table 4.2). Two undefoliated 

controls in each plot were also selected for the leaf area index (LAI) measurement. LAI was 

indirectly determined using the LAI-2000 plant canopy analyzer (Li-Cor, Inc. Nebraska, USA) at 

15, 28 and 46d (43d for smooth bromegrass and 45d for hybrid bromegrass in 2007) after 

defoliation. An opaque mask was used to reduce the field of view to 45o to reduce measurement 

error. All LAI measurements were obtained between 1500h-1800h to avoid direct sun. One 

above-canopy reading (A) and four below-canopy readings (B) along diagonal transects between 

the rows were made and repeated for one complete LAI measurement. Two values were recorded 

for each treatment plot. A direct estimate of LAI was also made in the undefoliated swards of the 

three bromegrass species to estimate actual leaf area (see Appendix B). The actual LAI and LAI-

2000 estimations showed a similar ranking for the three species. 
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Table 4.2. Date of defoliation of three bromegrass species at the vegetative and stem elongation stages 
and corresponding cumulative growing-degree-days (GDD) at the final of three leaf area index (LAI) 
measurements.   

                                    
                                   Date of defoliation                                     Total GDD  (46d†)     

   
                                                                2006                  2007                                   2006                 2007                                  
 
Vegetative stage 

             all three bromegrasses            11 May               15 May                                 708                  684         
                                                           
Stem elongation stage  

              meadow bromegrass              19 May                24 May                                 761                  758 

              smooth  bromegrass               23 May                31 May                                 784                  7701

              hybrid   bromegrass               23 May               26 May                                 784                  7712

   †Number of growth days following defoliation. 
   1Final LAI was determined at 43 days. 
    2Final LAI was determined at 45 days. 
 
 
4.2.2 Statistical analysis 

 
              Data were analyzed as a split plot in a randomized-complete-block-design (RCBD) 

with 4 replications using SAS.9.1.3 Proc Mixed model (SAS Institute Inc. 2003) to determine the 

effects of species, defoliation, and their interaction on above-and below-ground biomass. Species, 

defoliation, and their interaction were considered fixed effects, and year, block and block x 

species were considered as random effects in the model. The two sub-samples of above-ground 

biomass and LAI from each plot were averaged, and means were used in the analysis. Values of 

above-and below-ground biomass were further compared among species in each defoliation 

treatment. Below-ground biomass was also compared for different defoliation treatments within 

the same species. When analysis of variance (ANOVA) indicated significant differences 

(P≤0.05), means were separated using the least square means comparison. Regression analysis 

for LAI on days after defoliation was conducted in each species for the different defoliation 

treatments.   
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4.3 Results  

4.3.1 Above-ground biomass  

 
              The species (P=0.21) main effect and the species x developmental stage of 

defoliation (P=0.27) interaction effect on above-ground biomass were not significant, but 

developmental stage of defoliation had a significant effect (P<0.01). Overall, regrowth after 

defoliation was 64% less than that of the undefoliated control, and regrowth was 46% greater 

when defoliated at the vegetative stage than at the stem elongation stage.  

              Above-ground biomass was further compared among species at each defoliation 

stage (Table 4.3). With no defoliation, hybrid bromegrass produced 14% greater biomass than 

meadow and smooth bromegrass, but meadow bromegrass and smooth bromegrass did not differ.  

Regrowth was not different among the three species when defoliated at the vegetative stage, 

averaging 521 g m-2. Following defoliation at the stem elongation stage, meadow and hybrid 

bromegrass produced 42% greater regrowth than smooth bromegrass, but no difference was 

found between meadow bromegrass and hybrid bromegrass. 

  Table 4.3. Above-ground biomass (g m-2) of three bromegrass species after 60 days of growth in 
undefoliated control or following defoliation to 5cm in a field study conducted in 2006 and 2007 at 
Saskatoon, Saskatchewan. 

                     Defoliation treatment 
 
Species                    Undefoliated control      Defoliated at vegetative stage      Defoliated at stem elongation  
 
 
                                        ------------------------------------   g m-2  ----------------------------------------- 

meadow bromegrass            1039   bz                               557  a                                            324  a         
smooth   bromegrass            1072   b                                493  a                                            217  b        
hybrid    bromegrass           1224   a                                  5
                                                                                           

 12  a                                            295  a        

P                                               0.03                                     0.48                                              0.01                             
SEMy                                           203                                       85                                                 74                            

    z Means within a column with the same letter (a-b) are not significantly different (P≤0.05). 
y Standard error of the mean. 
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4.3.2 Below-ground biomass  

 
              Species (P<0.01) and developmental stage of defoliation (P<0.01) affected below-

ground biomass, but the interaction between these two factors (P=0.90) was not significant. 

Overall, meadow bromegrass had the greatest below-ground biomass, whereas smooth 

bromegrass had the least. Undefoliated plants produced 38% more below-ground biomass than 

defoliated plants, but below-ground biomass did not differ among the defoliation treatments.   

              Data were further analyzed for each defoliation treatment to compare the below-

ground biomass among species (Table 4.4). Meadow bromegrass produced 30% more below-

ground biomass than smooth bromegrass in the undefoliated control and was 40-51% greater 

after defoliation. Below-ground biomass of meadow bromegrass was similar to hybrid 

bromegrass except meadow bromegrass produced 28% more below-ground biomass when 

defoliated at the stem elongation stage. Below-ground biomass of hybrid bromegrass was 29 and 

36% greater than smooth bromegrass following defoliation at the stem elongation and 

reproductive stages, respectively. Compared to undefoliated plants, the percent reduction of 

below-ground biomass was greater in smooth bromegrass after defoliation than meadow and 

hybrid bromegrasses, ranging from 44-51% (Table 4.4). The reduction of below-ground biomass 

compared to undefoliated plants was similar between meadow and hybrid bromegrass except the 

reduction was less in meadow bromegrass when defoliated at the stem elongation stage.  
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Table 4.4. Below-ground biomass (g m-3) of three bromegrass species after 60 days growth in an 
undefoliated control or following defoliation to 5cm in a field study conducted in 2006 and 2007 at 
Saskatoon, Saskatchewan. 
                                                                            Defoliation treatment 
 
Species                        Undefoliated   Defoliated at            Defoliated at                   Defoliated at 
                                    control             vegetative stage       stem elongation stage     reproductive stage    P        SEM 
                                              ----------------------------------  g m-3 ------------------------------------ 
meadow bromegrass   7980  aZ  Ex      4560  a   F (-43)‡      5650  a  F  (-29)          6300 a  EF  (-21)    0.006     660 
smooth bromegrass     5610  b   E        2740  b   F (-51)        2870  c  F  (-49)           3160 b     F  (-44)    0.002     450 
h
 

ybrid bromegrass      6430  ab E        3660  ab F (-43)        4050  b F  (-37)           4960 a     F  (-23)    0.001     950 

P                                  0.03                   0.01                          <0.01                           <0.01                             
SEMy                            600                   720                             510                              700                            
Z Means within a column with the same lower case letter (a-c) are not significantly different (P≤0.05). 
x Means within a row with the same upper case letter (E-F) are not significantly different (P≤0.05). 
y SEM= standard error of the mean. 
‡  Percentage of reduction in below-ground biomass compared to undefoliated control.  

 
 

4.3.3 Leaf area index (LAI)    

 
              The LAI of meadow bromegrass increased linearly with time in the undefoliated 

treatment; however, the linear models to predict LAI from days of growth for smooth 

bromegrass and hybrid bromegrass were not significant (P≥0.05), because less rapid 

development of LAI occurred between Days 28 and 46 than between Days 15 and 28 for both 

species. The LAI reached 4.2, 4.3 and 4.1 in meadow, smooth and hybrid bromegrasses, 

respectively, after 46 days growth of the undefoliated treatment. Following defoliation at the 

vegetative or stem elongation stages, all three bromegrasses increased LAI in a linear fashion 

(Fig. 4.3b-c). After 46 days of regrowth, maximum LAI of 4.0, 3.1 and 3.6 were reached in 

meadow, smooth, and hybrid bromegrasses, respectively, after defoliation at the vegetative stage, 

and 3.3, 2.2 and 2.7, respectively, after defoliation at the stem elongation stage.                     
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Figure 4.3 Regression analyses of leaf area 
index (LAI) for three bromegrass species on 
days of growth in undefoliated treatment or 
following defoliation to 5 cm at the vegetative 
or stem elongation stages in a field study 
conducted in 2006 and 2007 at Saskatoon, 
Saskatchewan. Each point is a mean of 8 
replications. 

     

4.4 Discussion 

 
              In the present study, regrowth after defoliation at the vegetative stage was similar 

among the three bromegrasses. Smooth bromegrass, however, produced significantly less 

regrowth than meadow and hybrid bromegrass following defoliation at the stem elongation stage. 

32 



 

Van Esbroeck et al. (1995) and Baron et al. (2000) also reported less regrowth of smooth 

bromegrass than meadow bromegrass and an experimental hybrid bromegrass population 

following defoliation at the reproductive stage. Thus, difference in regrowth among the three 

species may only occur when defoliated after stem elongation.  Differences in the number of 

unelongated tillers after the stem elongation stage may provide an explanation for the variation in 

regrowth among these species. Meadow bromegrass has a greater number of unelongated tillers 

than smooth bromegrass when defoliated after stem elongation (Knowles et al. 1993). Hybrid 

bromegrass was intermediate for this trait (see Chapter 5).  Elongated tillers die after a severe 

defoliation (Davies 1976), and regrowth following defoliation is from existing vegetative tillers 

or basal axillary buds. Regrowth of existing vegetative tillers is a relatively faster process 

compared to growth of axillary buds (Cook and Stoddart 1953; Hyder 1972; Briske 1986). 

Bonesmo (2000) also reported that the percentage of non-elongated tillers is positively related to 

daily maximum regrowth rate in meadow fescue (Festuca pratensis Huds.) and timothy (Phleum 

pratense L.) following defoliation at different developmental stages.   

              Meadow bromegrass produced more below-ground biomass than smooth bromegrass 

after defoliation, and hybrid bromegrass was intermediate for this trait. Thus, meadow 

bromegrass maintains relatively more roots, while producing large amounts of above-ground 

regrowth. Mapfumo et al. (2002) stated that meadow bromegrass produced greater root dry 

matter than smooth bromegrass under low intensity grazing, but root dry matter was similar 

under medium or high intensity grazing. Plants with a large root system or high root proliferation 

rates can occupy greater soil volumes and gather a greater share of soil resources (Caldwell et al. 

1987). The higher below-ground biomass in meadow bromegrass suggests that this species can 

access greater amounts of soil nutrients than smooth bromerass after defoliation. Richards (1984) 
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reported that Agropyron species with rapid regrowth appeared to reduce root growth following 

defoliation more than species with slow regrowth because they allocated relatively more 

resources to shoot regrowth. Defoliation reduced below-ground biomass of the three 

bromegrasses compared to undefoliated plants, but the magnitude of the reduction relative to 

undefoliated plants was greatest in smooth bromegrass. Reduction in root growth and 

productivity are considered to be detrimental to the survival and competitive ability of defoliated 

plants (Crider 1955; Jameson 1963). This greater reduction of below-ground biomass in smooth 

bromegrass likely reduced its recovery potential after defoliation. 

              Rapid production of a new canopy after defoliation is considered a critical trait in 

recovery from defoliation because plants rapidly re-establish a positive carbon balance from 

photosynthesis (Caldwell et al. 1981; McNaughton et al. 1983; Briske 1986). In the present study, 

meadow bromegrass had the greatest LAI, and smooth bromegrass had the lowest LAI following 

defoliation. Van Esbroeck et al. (1995) found that LAI was greater for meadow bromegrass and 

an experimental hybrid bromegrass population than for smooth bromegrass in fall regrowth. 

They suggested that low tiller density was the key factor limiting the LAI development of 

smooth bromegrass at this stage. In the present study, tiller density was also lower in smooth 

bromegrass (see Chapter 5).               

             The linear model did not fit to predict LAI development of smooth bromegrass and 

hybrid bromegrass in the undefoliated control. Senescence of lower leaves noticed in 

undefoliated plants of smooth bromegrass and hybrid bromegrass, which could partially explain 

the lower LAI in later growth. Development of LAI for the three bromegrasses was more rapid 

following defoliation at the vegetative compared to stem elongation stage. Following defoliation 

at the vegetative stage, rapid leaf development typically occurs from leaf intercalary meristems 
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(Langer 1972) and leaf primordia, which remain in the basal position of the tiller (Hyder1972). 

After defoliation at the stem elongation stage, new tillers from axillary buds become the most 

important source for canopy leaf area development (Olson and Richards 1988b; Richards et al. 

1988), but axillary bud development is slower than growth of intercalary meristems.               

              In summary, the hypothesis that meadow bromegrass has greater above-and below-

ground regrowth biomass than the other two species is rejected. Meadow bromegrass, however, 

did produce greater above-ground biomass than smooth bromegrass when defoliated at the stem 

elongation stage and more below-ground biomass than smooth bromegrass following all stages 

of defoliations. Above-and below-ground biomass of hybrid bromegrass was similar to meadow 

bromegrass. The hypothesis that LAI development was more rapid in meadow bromegrass than 

the other two bromegrasses is accepted. 

 
4.5 Grazing management implications 

 
              In Saskatchewan, initial grazing of smooth bromegrass is recommended after mid-

May (Harrison and Romo 1994). On the basis of the present study, all three bromegrasses can be 

grazed before mid-May in a year of above-average precipitation and average GDD, but at least 

30-46 day rest period is required for leaf area reestablishment before a second grazing. If grazing 

is initiated after stem elongation, normally in June, meadow and hybrid bromegrass can produce 

more regrowth than smooth bromegrass. The length of the rest period for grazing after stem 

elongation should be more than that after the vegetative stage to establish a similar leaf area. 

Smooth bromegrass is relatively slower in developing leaf area after defoliation. Therefore, a 

higher defoliation height is recommended to provide resources to re-establish leaf area. Root 

development of the three species is negatively affected by grazing at any time of growth.       
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5.0 Tiller Density and Axillary Bud Development of Three Bromegrass (Bromus) Species in 
Response to Defoliation  

 

Abstract  Three bromegrass (Bromus) species used in western Canada have variable capacity to 

regrow following defoliation. Tiller development following defoliation is considered a key factor 

for regrowth. The objective of this study was to determine tiller and axillary bud number of 

meadow bromegrass (Bromus riparius Rehm.), smooth bromegrass (Bromus inermis Leyss.), and 

hybrid bromegrass (B. riparius X B. inermis) following defoliation at the vegetative and stem 

elongation stages in field and greenhouse environments. The field study was conducted in 2006 

and 2007 in Saskatoon, Saskatchewan (52007' N, 106038' W). Sods of the three species were 

removed from the field in early November of each year for the greenhouse study. Plants were 

clipped to 5cm height at the vegetative and stem elongation stages; an undefoliated control was 

also included. In the field study, tiller density was greatest in meadow bromegrass (2107, 1320 

tillers m-2), intermediate in hybrid bromegrass (1547, 840 tillers m-2) and least in smooth 

bromegrass (1093, 520 tillers m-2) following defoliation at the vegetative and stem elongation 

stages, respectively. In the undefoliated control, 15% fewer tillers of meadow bromegrass 

reached the reproductive stage compared to the other two bromegrasses. In the greenhouse, tiller 

densities were similar among species after defoliation. Regardless of growth environment, final 

tiller density after defoliation at the vegetative stage was similar to the undefoliated control, 

whereas tiller density was reduced by 35% following defoliation at the stem elongation stage. In 

the undefoliated control, total buds tiller-1 and elongated buds tiller-1 were greater in meadow 
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(7.1 and 1.8 buds tiller-1) and hybrid bromegrass (7.2 and 1.6 buds tiller-1) than smooth 

bromegrass (6 and 1.1 buds tiller-1), but no species differences were detected among species 

following defoliation. Buds on regrowing tillers were visually smaller following defoliation at 

the stem elongation stage compared to the undefoliated control. The key factors underlying the 

rapid regrowth of meadow bromegrass were that a greater production of its tillers remained 

vegetative and it had a greater density of tillers than the other two bromegrasses. 

 
5.1 Introduction 

 
              Bromegrasses are widely cultivated in western Canada. Meadow bromegrass 

(Bromus riparius Rehm.) is mainly used for pasture, and smooth bromegrass (Bromus inermis 

Leyss.) is generally used for hay (Knowles et al. 1993).  The hybrid bromegrass (B. riparius X B. 

inermis) cultivar Knowles was developed by hybridizing smooth and meadow bromegrass 

(Coulman 2004), and it has potential for both hay and pasture use. The three species have 

variable regrowth potential following defoliation (Knowles et al. 1993; Coulman 2004).  Tiller 

development following defoliation may be important in differences in regrowth because the 

growth of grasses depends on the size and number of tillers (Laude et al. 1968).  

              Tiller development following defoliation is unique for each grass species. 

Bromegrasses vary in tillering after defoliation at the reproductive stage (Van Esbroeck et al. 

1995). Caldwell et al. (1981) and Richards and Caldwell (1985) reported that wheatgrasses 

(Agropyron) with similar phenology and physiological traits differed markedly in their ability to 

produce new tillers following defoliation. Tillering of grasses is regulated by a number of factors 

such as hormones, nutritional competition, and photosensitivity to the red to far-red light ratio 

(Cline 1991; Murphy and Briske 1992; Tomlinson and O’Connor 2004). The apical portion of 

the shoot, which includes the apical meristem and young leaves, exerts hormonal or nutritional 
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control on axillary bud growth following bud formation (Gregory and Veale 1957; Cline 1991). 

This control is always released after removing the apex (Paulsen and Smith 1969; Olson and 

Richards 1988b).   

              The developmental stage at the time of defoliation can affect tiller development in 

grasses because it is related to removal of apical meristems and activity of axillary buds 

(Branson 1953; Jewiss 1972; Paulsen and Smith 1969). If tillers are defoliated before internode 

elongation, tiller development is dependent upon regrowth from existing tillers and axillary buds 

(Jewiss 1972; Paulsen and Smith 1968); however, the majority of tillers develop from axillary 

buds following defoliation at the stem elongation stage in most cool-season grasses (Hyder 1972; 

Jewiss 1972). In addition, numerous environmental variables exert influences on tiller initiation 

after defoliation (Langer 1972). High temperatures inhibit tillering because of high respiration 

rates and lower soluble carbohydrate availability in plants (Langer 1972). Tiller density of cool-

season grasses increases with light intensity (Langer 1972; Ashmun and Pitelka 1984), 

availability of soil moisture (Cook et al.1958) and soil nutrients (Langer 1972; Shaver et al. 

1986). Thus, tiller development may vary under different environments. 

               A series of experiments were conducted with meadow, smooth, and hybrid 

bromegrasses under field and greenhouse environments to determine: 1) tiller development of the 

three bromegrasses following defoliation at two developmental stages; 2) the number of axillary 

buds, and; 3) the percentage of tillers reaching the reproductive stage in an undefoliated control. 

It was hypothesized that meadow bromegrass produces more axillary buds and tillers, and fewer 

reproductive tillers than smooth and hybrid bromegrasses following defoliation. 

 

38 



 

5.2 Materials and methods 

5.2.1 Experimental design and treatments 

5.2.1.1 Field experiment 

 
              The two variables examined in this experiment were three species (meadow, smooth, 

and hybrid bromegrass) and three defoliation treatments (defoliated at the vegetative stage; 

defoliated at stem elongation stage, and an undefoliated control).  The experimental design was a 

split-plot with species arranged in the main plots, and defoliation treatments applied to sub-plots. 

Each treatment was replicated four times.  Defoliation height was 5 cm above ground level.  

    
5.2.1.2 Greenhouse experiment 

 
              Sods of the three bromegrass species were transferred to the greenhouse from the 

field in early November of 2006 and 2007 to assess of tiller density and axillary bud 

development. Sods were planted in 20cm pots using a soil mix that contains peat moss, medium 

grade vermiculite, Scott’s “Osmocote Plus” fertilizer (16-8-12), and trace elements. Light was 

provided by high intensity sodium lamps with a day length of 16h at 21°C and a night period of 

8h at 16°C. Sods were watered periodically when the soil surface became dry. 

              The experiment was a 3 X 4 factorial arrangement in a randomized-complete-block-

design with treatment combinations of three bromegrass species (meadow, smooth and hybrid 

bromegrass) and four defoliation treatments (single defoliation at the vegetative stage; single 

defoliation at the stem elongation stage; defoliated at the vegetative stage and again after two 

weeks; and an undefoliated control). Each treatment was replicated four times. Defoliation height 

was 5cm above ground level. 
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5.2.2 Data collection  

5.2.2.1 Tiller densities  

 
              The number of tillers in the field was recorded in two 15 x 20cm quadrats randomly 

placed over rows in each plot before all tillers were defoliated at the vegetative (first leaf collared) 

and stem elongation stages (second node visible) (Moore and Moser 1995). In each year, tiller 

numbers were recorded again after a similar number of GDD had accumulated following each 

defoliation (Table 5.1). Undefoliated controls were included in all plots. In the greenhouse, the 

number of initial tillers was counted in each pot before the experiment began and again after 60 

days of growth (1260 GDD).      

              Two 15 x 20cm areas were randomly sampled from each field plot in undefoliated 

stands of the three bromegrass species on 23 June 2006 and 15 June 2007. Reproductive and 

non-reproductive tillers were counted, and the percentage of reproductive tillers was calculated. 

In the greenhouse, reproductive and non-reproductive tillers were counted for undefoliated plants.          

          Table 5.1. Dates of defoliation and measurement of tiller density of three bromegrasses defoliated 
at two stages of growth, and the corresponding growing-degree-days (GDD) between defoliation 
and measurement in a field study conducted in 2006 and 2007 at Saskatoon, Saskatchewan. 
                                                
                                                   Date of defoliation             Date of measurement                   GDD (°C )   
 

                                          2006             2007                 2006             2007                   2006          2007            
   
Vegetative stage    

         all three bromegrasses    10 May           9 May              1 Aug            13 Jul                 1465            964    
 
Stem elongation stage                                                  

         meadow bromegrass       19 May         25 May              28 Jul             24 Jul                 1271          1049          

         smooth  bromegrass        22 May         31 May              1 Aug             27 Jul                 1304          1045 

         hybrid   bromegrass        22 May         26 May              1 Aug             24 Jul                 1304          1041 
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5.2.2.2 Axillary buds 

              After counting the final numbers of tillers in the greenhouse, stem bases of each 

species were removed and soaked in water before washing with water under high pressure. 

Twenty tillers were randomly selected from the washed samples for each treatment. The existing 

and elongating numbers of axillary buds tiller -1 were counted under microscope. Photographs of 

axillary buds were taken under a 2x power microscope.      

  
5.2.3 Statistical analysis 

 
              Analysis of variance (ANOVA) was used to determine the effects of species and 

defoliation treatments on tiller density, axillary bud number, and the percentage of reproductive 

tillers.  In the field study, data were analyzed as a split plot arrangement in a RCBD using 

SAS.9.1.3 Proc Mixed Model (SAS Institute Inc. 2003). Species, developmental stage of 

defoliation and their interactions were considered fixed effects and year, block, and block x 

species were considered as random effects in the model. The two sub-samples of tiller densities 

were averaged within each plot and means were used in the analysis. For the greenhouse study, 

data were analyzed as a two-way factorial arrangement using SAS 9.1.3 Proc Mixed Model (SAS 

Institute Inc. 2003). Species, developmental stage of defoliation, and their interaction were 

considered as fixed effects and block (replication), and year (repetition) were considered as 

random effects in the model. The final tiller density was adjusted using Analysis of Covariance 

to eliminate the effects of initial tiller differences. Data were further analyzed within each factor 

by performing Proc Mixed as a one-way ANOVA. The means were separated using least square 

means comparisons. The percentage of reproductive tillers was transformed using arcsine-
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square-root transformation prior to statistical analysis, and then back-transformed for 

presentation.  

         
5.3 Results  

5.3.1 Tiller density  

5.3.1.1 Field experiment 

 
              For the field study, species (P<0.01) and stage of defoliation (P=0.02) effects on tiller 

density were significant, but the interaction of these factors was not significant (P=0.13). Overall, 

tiller density was the greatest for meadow bromegrass, intermediate for hybrid bromegrass and 

least for smooth bromegrass (Table 5.2). Defoliation at the stem elongation stage reduced tiller 

density an average of 35%, but defoliation at the vegetative stage had no effect on tiller density 

compared to the undefoliated control.     

              In the undefoliated control, final tiller densities of meadow, smooth, and hybrid 

bromegrasses increased by 79, 29 and 59%, respectively, from the initial counts (Table 5.2). 

Similarly, final tiller densities of the three bromegrasses increased from the initial counts 

following defoliation at the vegetative stage with the highest percent increase (95%) in meadow 

bromegrass compared to 14% in smooth and 57% in hybrid bromegrass. The final tiller density 

was reduced in all species following defoliation at the stem elongation stage with the lowest 

decrease in meadow bromegrass (-15%) and the greatest decrease in smooth bromegrass (-51%). 
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         Table 5.2. Tiller density of three bromegrass species after two months of growth in the field for 
undefoliated control or following defoliation to 5 cm at two stages of growth in 2006 and 2007 at 
Saskatoon, Saskatchewan. 

                         Defoliation treatment 
 
     Species                  Undefoliated control      Defoliated at vegetative stage     Defoliated at stem elongation  
        

                 ------------------------------- Tillers m-2------------------------------------- 
 

                                   Initial     Final      %‡           Initial      Final        %             Initial      Final        % 

meadow bromegrass  1120a    2000 az  + 79          1080a      2107a    + 95            1547a     1320a     - 15 
smooth bromegrass      933  b  1200 c   + 29            960a      1093c    + 14            1053c       520c     - 51 
hybrid bromegrass     1013ab  1520 b  + 50            987a      1547b    + 57            1307b       840b     - 36  
                                                                                
P                                 <0.01    <0.01                        0.42       <0.01                       <0.01       <0.01     
SEMy                           193        222                         213            74                           212           57 

  z Means within a column with the same lower case letter (a-c) are not significantly different (P≤0.05).  
   y Standard error of the mean. 

      ‡ Percentage of tiller increase (positive value) or decrease (negative value) compared to initial tiller count. 
 

5.3.1.2 Greenhouse experiment 

 
              Stage of defoliation had a significant (P=0.05) effect on tiller density, but species 

(P=0.18) and the interaction of species by stage of defoliation (P=0.82) had no significant effect 

on tiller density. Overall, tiller density was reduced 39 and 42%, respectively, following 

defoliation at the stem elongation stage or defoliated two times at the vegetative stage compared 

to the undefoliated treatment; tiller densities were not affected by defoliation at the vegetative 

stage (Table 5.3).   

              Tiller density was compared among the species in each defoliation treatment (Table 

5.3). The initial number of tillers had a significant effect on the final tiller count, and this was 

adjusted using analysis of covariance. The final tiller density was not significantly different 

among the three species within the same defoliation treatment. Similar to tiller development in 

the field, final tiller numbers of meadow, smooth, and hybrid bromegrass increased from initial 

counts in the undefoliated control and after defoliation at the vegetative stage. The final tiller 
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density was reduced in all three species following defoliation at the stem elongation stage and 

after being defoliated two times. In contrast to the responses in the field, the percentage increase 

in tiller density was greater for smooth bromegrass after defoliation at the vegetative stage, but 

the percent decrease in tiller density was less for smooth bromegrass after defoliation at the stem 

elongation stage compared to the other two species. 

Table 5.3. Tiller density of three bromegrass species after two months of growth in greenhouse in 
undefoliated control or following defoliation to 5cm height at different stages of growth. Data are from 
two trials conducted in 2006 and 2007.   

                          Defoliation treatment 
 
                              Undefoliated              Defoliated at                   Defoliated at                Defoliated twice at 
Species                    control                       vegetative stage               stem elongation           vegetative stage  
        

                                 --------------------------------------     Tillers m-2    --------------------------------------------- 
                                    Initial   Final y   %‡      Initial    Final    %         Initial    Final    %        Initial    Final      % 

meadow bromegrass  5696a    6500a   +32      5588a   6067a  +28       5542a    3833a  -20        5708a   3633a   -29 
smooth bromegrass    2842c   5367a   +59      3054c   5500a  +42       3300b   3500a  -  8        3688c   3500a   -17 
hybrid bromegrass     3925b   5800a   +44      4554b   5533a  +25       4088b    3467a  -15        4888b   3200a   -34 
                                                  
P                                <0.01      0.12                 <0.01    0.40                <0.01      0.54                   0.01      0.43 
SEM                             400       312                  380        287                   352        950                   359       585 

Y Final tiller number in the table was adjusted by analysis of covariance. 
z Means within a column with the same lower case letter (a-c) are not significantly different (P≤0.05). 
‡  Percentage of tiller increased (positive value) or decreased (negative value) compared to initial tiller count. The percentage was   

calculated using final tiller density before adjusting by analysis of covariance.  

 

 
5.3.2 Axillary buds  

 
              Axillary buds are located in rows on opposite sides of the stem bases. These axillary 

buds exhibited a size gradient along the stem; the uppermost buds were the largest and the basal 

buds the smallest (Fig 5.4 and Fig 5.6). Most new tillers originated from buds located at the mid-

to upper positions of tiller bases (Fig 5.2 and Fig 5.10). Bud size did not differ visually among 

three species. Bud size was visually smaller on regrowing tillers when defoliated at stem 

elongation or after being defoliated two times (Fig 5.5 and Fig 5.6). 
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                Total buds tiller-1 and elongated buds tiller-1 were significantly greater in meadow 

and hybrid bromegrass than smooth bromegrass in the undefoliated control (Table 5.4); however, 

species did not differ for these traits following defoliation.     

Table 5.4. Total number of axillary buds and elongating tillers of three bromegrass species after two 
months of growth in greenhouse in undefoliated control or following defoliation to 5cm height at different 
stages of growth. Data are from two trials conducted in 2006 and 2007. 
                                                                                    
                                                                                           Defoliation treatment 
                    
                    Undefoliated              Defoliated  at                 Defoliated at              Defoliated  twice at          
       Species                    control                      vegetative stage              elongation stage         vegetative stage  
                                    
                         
                         

                ----------------------------------------------buds tiller -1----------------------------------------- 

                                       Total     Elongated     Total    Elongated      Total     Elongated         Total       Elongated   
  meadow bromegrass     7.1 az       1.8 a           6.9 a       1.6 a            5.5 a       0.5 a                6.0 a         0.5  a       
  smooth bromegrass       6.0 b        1.1 b           6.3 a       1.3 a            5.8 a       0.6 a                5.5 a         0.6 a               
  hybrid  bromegrass       7.2 a      1.6 a         6.7 a       1.2 a            5.3 a        0.5 a                6.3 a          0.3 a                    
                                                                            
  P                                    0.01         0.03            0.30        0.16             0.46         0.62                 0.14          0.15 
  SEMy                                 0.7            0.2             0.6          0.2               0.4          0.3                   0.5            0.3        
  z Means within a column with the same lower case letter (a-b) are not significantly different (P≤0.05). 
   y Standard error of the mean.  
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Figure 5.2 Axillary bud development of 
meadow bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the vegetative stage (1=parent 
tiller； 2= elongating bud；3= visible bud). 

Figure 5.1 Axillary bud development of 
meadow bromegrass in undefoliated plant after 
two months of growth in the greenhouse 
(1=parent tiller； 2= elongating bud；3= 
visible bud). *Photo amplified two times. 

 

 

              

             Bud location       
      Bud location        

Figure 5.3 Axillary bud development of 
meadow bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the stem elongation stage. 

Figure 5.4 Axillary bud development of 
meadow bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the vegetative stage and an 
additional defoliation two weeks later. 
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Figure 5.5 Axillary bud development of 
smooth bromegrass in undefoliated plant after 
two months of growth in the greenhouse 
(1=parent tiller； 2= grown out bud；3= 
visible bud). *Photo amplified two times. 

Figure 5.6 Axillary bud development of 
smooth bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the vegetative stage 
(1=parent tiller； 3= visible bud). 
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Figure 5.7 Axillary bud development of 
smooth bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the stem elongation stage. 

Figure 5.8 Axillary bud development of 
smooth bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the vegetative stage and an 
additional defoliation two weeks later. 
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 Figure 5.9 Axillary bud development of hybrid 

bromegrass in undefoliated plant after two 
months of growth in the greenhouse (1=parent 
tiller； 3= visible bud). *Photo amplified two 
times. 

Figure 5.10 Axillary bud development of 
hybrid bromegrass after two months regrowth 
in the greenhouse following defoliation at the 
vegetative stage (1=parent tiller； 2= 
elongating bud；3= visible bud). 
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Figure 5.11 Axillary bud development of 
hybrid bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the stem elongation stage. 

Figure 5.12 Axillary bud development of 
hybrid bromegrass after two months of 
regrowth in the greenhouse following 
defoliation at the vegetative stage and an 
additional defoliation two weeks later. 
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5.3.3 Reproductive tiller development for undefoliated control plants 

 
              Percentages of tillers reaching the reproductive stage significantly differed among 

species (P<0.01) in the field. A lower percentage of tillers reached the reproductive stage in 

meadow bromegrass (64%) than smooth (82%) and hybrid bromegrass (77%). In the greenhouse, 

a lower percentage of tillers reached the reproductive stage compared to the field, and the 

percentages were similar among the three bromegrass species (P=0.39).                   

 

                    Table 5.5. Percentages of tillers (%) producing inflorescences in undefoliated swards of 
meadow, smooth, and hybrid bromegrasses in the field and greenhouse in Saskatoon, 
Saskatchewan. 
                                                                                    
                                                               Growth environment 
                       
                    Field                                    Greenhouse 
                                                           

  meadow bromegrass                 64  bz                                      50 a 
  smooth bromegrass                   82  a                                       57 a                              
  hybrid bromegrass                    77  a                                       54 a 

                                                                                                 
P                                              <0.01                                              0.40                                       
SEMy                                                0.3                                          0.7           

                        z Means within a column with the same lower case letter (a-b) are not significantly different (P≤0.05). 
                                 y Standard error of the mean. 
                          ‡ Data are from two experiments conducted in 2006 and 2007. 
 
               
5.4 Discussion 

 
              In the present study, tiller density was the highest for meadow bromegrass, 

intermediate for hybrid bromegrass, and lowest for smooth bromegrass following defoliation at 

the vegetative and stem elongation stages in the field. Van Esbroeck et al. (1995) reported higher 

tiller densities in meadow bromegrass and an experimental hybrid bromegrass population than 

smooth bromegrass after defoliation in the fall. When undefoliated, meadow bromegrass also had 

higher tiller density than smooth bromegrass (Ferdinandez and Coulman 2000). The difference in 

49 



 

tiller densities may be a key factor causing variation of regrowth among these three 

bromegrasses. Tiller development, however, is a complex process under the control of abiotic 

and biotic factors (Langer 1972). The abiotic environment was similar for the three bromegrasses 

in this study; thus, genetic or hormonal control likely played a role in tiller development for these 

three bromegrasses.              

              Existing tillers can continue to grow if defoliated before internode elongation 

because apical meristems are not removed (Jewiss 1972). Elevation of apical meristems during 

stem elongation makes grasses increasingly vulnerable to defoliation (Brown 1982), and loss of 

the apical meristem after defoliation causes tiller senescence in grasses (Davies 1976). In the 

present study, final tiller density increased from the initial count following defoliation at the 

vegetative stage, likely because of continued growth of defoliated tillers. The percentage increase 

in smooth bromegrass in the field study (14%) was much lower than hybrid (57%) and meadow 

bromegrass (95%).  This suggests that fewer new tillers were initiated in smooth bromegrass; 

however, this could not be verified as axillary bud formation and elongation were not measured 

on field-grown plants.  Following defoliation at the stem elongation stage, final tiller density was 

reduced in the three bromegrasses because defoliation caused senescence of elongated tillers. 

The reduction in density in the field study was greatest in smooth bromegrass, likely because of 

its higher percentage of elongated tillers. Early regrowth after defoliation at more mature growth 

stages depends on the size and the number of unelongated tillers (Jewiss and Powell 1966).  

              In contrast to the field study, final tiller densities following defoliation did not differ 

among the three bromegrasses in the greenhouse. Tiller development in the greenhouse was 

likely affected by plant preparation (see Appendix B) and growing conditions that were different 

from the field. Cutting done to prepare plants caused slower tiller growth or even senescence of 

50 



 

some tillers in meadow bromegrass, but this was not observed in smooth bromegrass (see 

Appendix B). In addition, the initial number of tillers in meadow bromegrass was greater than 

smooth bromegrass, and growth may have been restricted by limited nutrients and lower light 

intensity in the greenhouse. Resource competition affects tillering, and tiller development is 

stimulated by high nutrient concentration (Langer 1972; Shaver et al. 1986; McIntyre 2001) and 

high light intensity (Langer 1972; Ashmun and Pitelka 1984). Hyder (1972) suggested that 

rhizomes of grasses always terminate in the development of tillers after defoliation. Smooth 

bromegrass produces rhizomes, whereas meadow bromegrass and hybrid bromegrass have a 

more caespitose growth form with short rhizomes. Consequently, rhizomes of smooth 

bromegrass could produce more tillers after defoliation, but rhizome spread was limited by pot 

wall in the greenhouse. This may have increased the numbers of tillers of smooth bromegrass per 

unit area in the pot. Some or all of these factors may have delayed or slowed tiller development 

in meadow bromegrass compared to smooth bromegrass in the greenhouse. In the present study, 

the greenhouse was used to provide a greater control of temperature and soil moisture than could 

be achieved in the field. Variation introduced during plant material preparation (see Appendix B) 

suggests that it was inappropriate to conduct this type of study in the greenhouse.  

              In the greenhouse study, increases in tiller numbers were not as variable among the 

species as in the field, likely because the total and elongated axillary buds did not vary among 

the three species. In a previous study, buds tiller-1 of two wheatgrass species with different tiller 

development were also similar after defoliation (Mueller and Richards 1986). Non-elongated 

buds remain viable throughout the growing season in wheatgrass species (Mueller and Richards 

1986), and longevity of buds often exceeds that of their parent tillers (Hendrickson and Briske 

1997). Elongation of basal buds into tillers depends on interactions of overall plant vigor, 
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development stage, soil nutrients, carbohydrate reserves, and environmental conditions in 

addition to hormonal regulation (Paulsen and Smith 1969; Langer 1972; Ashmun and Pitelka 

1984; Shaver et al. 1986; Murphy and Briske 1992).  

              In the present study, defoliation at stem elongation or defoliation two times during 

vegetative growth visually reduced bud size compared to undefoliated tillers. Tiller initiation 

from basal buds was also suppressed by defoliation in other grasses (Branson 1956; Ellison 

1960; Jameson 1963). Bud growth was restricted by carbohydrate availability (Fletcher and Dale 

1974; Blake and Tchapinski 1986). Carbohydrate concentrations are lower in bromegrass at the 

early stem elongation stage (Paulsen and Smith 1969), and carbon assimilation is also less after 

defoliation at this stage because of slower leaf area development (see Chapter 4), all of which 

may reduce bud size after defoliation at the stem elongation stage.  

              In summary, meadow bromegrass had a higher tiller density with a lower percentage 

of tillers reaching the reproductive stage compared to the other two species. In greenhouse 

studies, buds tiller -1 and elongated buds tiller-1 were similar among the species. Therefore, the 

hypothesis that meadow bromegrass has higher tiller density was accepted, but that it has higher 

buds tiller -1 was rejected. A greater percentage of tillers remaining vegetative was a key factor 

for more rapid tiller development in meadow bromegrass following defoliation at the stem 

elongation stage.  

 
5.5 Grazing management implication    

           
              Meadow bromegrass produces more rapid regrowth than the other two species 

because of its higher tiller density and greater percentage of unelongated tillers. Consequently, 

this species should be the bromegrass of choice for grazing. Hybrid bromegrass is intermediate 

for these traits; therefore, it would be better for grazing than smooth bromegrass. Grazing at the 
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vegetative stage before internode elongation does not effect tiller density of the bromegrasses, 

and regrowth following defoliation at this stage is relatively rapid. Tiller densities of the 

bromegrasses decrease if grazed after stem elongation.
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6.0  A Comparative Study of Etiolated Growth and Stem Base N Concentration of Three 
Bromegrass (Bromus) Species after Defoliation at Different Developmental Stages  

 
Abstract  Bromegrass species used in western Canada have a variable capacity to regrow 

following defoliation. Remobilization of organic reserves after defoliation may be important for 

regrowth of these grasses. A field study was conducted in 2006 and 2007 in Saskatoon, 

Saskatchewan to determine etiolated regrowth, N concentration in stem bases, and regrowth of 

meadow bromegrass (Bromus riparius Rehm.), smooth bromegrass (Bromus inermis Leyss.) and 

hybrid bromegrass (B. riparius X B. inermis) after defoliation to ground level at the vegetative, 

stem elongation, and reproductive stages. End-of-season etiolated growth was also determined. 

Etiolated regrowth of meadow bromegrass (56, 31 g m-2) and hybrid bromegrass (59, 12 g m-2) in 

the field was 29 and 84% greater than smooth bromegrass (41, 3 g m-2) 10 days after defoliation 

at the vegetative and stem elongation stages, respectively. Meadow bromegrass produced 31% 

more etiolated growth than hybrid bromegrass following defoliation at the stem elongation stage. 

Meadow and hybrid bromegrass produced 54% more etiolated growth than smooth bromegrass 

at the end of season. Etiolated regrowth was similar among species when defoliated at the 

reproductive stage, averaging 62 g m-2. When defoliated at more advanced developmental stages, 

the regrowth of these three species was more dependent on stored organic reserves with the 

dependence of smooth bromegrass on the reserves greater than the other two species. Nitrogen 

concentration in the stem base decreased with the advancing maturity, but it was similar among 

species. Meadow and hybrid bromegrass more rapidly utilized organic reserves to produce 
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regrowth than smooth bromegrass. If meadow and hybrid bromegrass are grazed, they can more 

rapidly re-establish shoot tissue than smooth bromegrass using stored reserves.  

 
6.1 Introduction 

 
              Defoliation of plants removes leaf area, disrupting the photosynthetic capacity of 

plant. The energy source for regrowth of grasses immediately following defoliation is 

carbohydrate reserves in the stem bases (Reynolds and Smith 1962; Smith 1969). These reserves 

are predominantly non-structural carbohydrates, but also include nitrogenous compounds (White 

1973). 

              The importance of N reserves for plant regrowth has been controversial for years. 

Stored nitrogenous compounds are considered important for regrowth in perennial ryegrass 

(Lolium perenne L.) (Ourry et al. 1988, 1989, 1990) because they are used in respiration, but 

these reserves are not alternately stored and utilized like carbohydrate reserves (White 1973). 

Some studies suggested that N required for regrowth of wheatgrasses (Agropyron) and cocksfoot 

(Dactylis glomerata L.) was supplied by uptake from the soil rather than stored reserves 

(Caldwell et al. 1981; Turner et al. 2006).  

              Even though the reserves are essential to plant vigor and recovery after defoliation 

(Busso et al. 1990), differences in regrowth among species are not related to the total carbon 

reserve or non-structural carbohydrate concentrations in the stem bases (Jameson 1963; Richards 

and Caldwell 1985). Similarly, differences in regrowth of smooth bromegrass cultivars could not 

be explained by the concentrations of carbohydrates (Paulsen and Smith 1969). Methodological 

errors in quantification of carbohydrate reserves or the possible contribution from other 

compounds such as nitrogenous constituents (Richards and Caldwell 1985) may affect the 

correlation between the quantity of carbohydrate reserves and regrowth. 
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              The ability of a plant to rapidly remobilize stored reserves for synthesis of new 

above-ground tissues may also be an important indicator of regrowth potential. The etiolated 

growth technique (McKendrick and Sharp 1970) can be used to estimate the capacity to mobilize 

stored reserves for new above-ground tissues in the absence of photosynthesis (Richards and 

Caldwell 1985). The hypothesis tested in the present study is that meadow bromegrass more 

rapidly uses organic reserves to produce etiolated regrowth and this species has greater N 

concentration in the stem bases than hybrid and smooth bromegrass. The objectives of this study 

were to determine etiolated regrowth and N concentration in the stem bases of meadow, smooth, 

and hybrid bromegrasses at the vegetative, stem elongation, and reproductive stages, and also at 

the end of the growing season.    

 
6.2 Data collection  

6.2.1 Etiolated regrowth and regrowth in light 

 
              Etiolated regrowth was measured to estimate the amount of available organic 

reserves in plants and how rapidly these reserves were utilized. Regrowth in light was used to 

estimate photosynthetic assimilation and remobilization of organic reserve. The percentage of 

contribution from organic reserves to shoot growth was estimated by dividing etiolated regrowth 

by regrowth in light. Two 0.60m length of rows in each plot of the three bromegrasses were 

defoliated to ground level at the vegetative (first leaf collared), stem elongation (second node 

visible) and reproductive (inflorescence emerged) stages (Moore and Moser 1995). At each stage, 

one of the defoliated rows was covered by a light-excluding plastic box (41x27x18cm) to 

determine the etiolated regrowth in darkness. The inside walls of the boxes were covered with 

aluminum foil to ensure total darkness. A shovel was driven into the soil on the outside border of 

the box to a 20cm depth to cut rhizomes running to or from the soil area under the box. Etiolated 
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regrowth was determined by harvesting standing crop in a fixed 15 x 20cm central area of the 

boxes 5, 10, 30, and 46d after defoliation. For defoliation at the reproductive stage, etiolated 

growth was harvested 5, 10 and 30d after defoliation. The uncovered defoliated areas were used 

to determine the amount of regrowth in light. All plants in the 15 x 20cm areas were clipped to 

ground level after 46d to determine regrowth in light at each stage (30d after defoliation at the 

reproductive stage). Within each defoliation treatment, there were similar numbers of 

accumulated growing-degree-days (GDD) when the final cutting was taken (Table 6.1). 

Harvested samples were dried in an oven at 60°C for 48h and weighed.  

Table 6.1.  Date of defoliation for regrowth of three bromegrasses and the corresponding total growing-
degree-days (GDD) between defoliation and dry matter determinations in the field study in 2006 and 
2007 at Saskatoon, Saskatchewan. 

                                                        
                                                          Date of defoliation            Date of dry matter determination           GDD (°C) 

 
 Developmental stage                          2006            2007                     2006           2007                       2006         2007                    
 Vegetative stage  (46d† )     
             all three bromegrasses           8 May         12 May                 23 Jun         27 Jun                    676            632    
 Stem elongation stage (46d )                                              
             meadow bromegrass            19 May         25 May                   4 Jul          10 Jul                     760            750                    
             smooth  bromegrass             22 May         31 May                    7 Jul          16 Jul                     789            791 
             hybrid   bromegrass             22 May         26 May                    7 Jul          11 Jul                     789            756    
Reproductive stage (30d )    
             meadow bromegrass            12 Jun          16 Jun                   13 Jul          17 Jul                     608            564                    
             smooth  bromegrass             23 Jun          24 Jun                   22 Jul          23 Jul                     616            576 
             hybrid   bromegrass             18 Jun          17 Jun                  18 Jul          17 Jul                      614            550                     

 † Number of growth day following defoliation. 
 

6.2.4.2 Etiolated regrowth at the end of the growing season  

 
              Etiolated regrowth was also determined for plant cores (4cm radius) collected in late 

October 2006 and 2007 from the same bromegrass trials. This measurement was taken to 

determine the amount of available organic reserves accumulated before winter. The plots were 

clipped to 5cm in mid-August before taking soil cores. Twenty cores for each species were 

collected in late October, cut to a uniform 12cm depth, and then placed in 12.5cm (diameter) 
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pots. Soil mix that contains peat moss, medium grade vermiculite, Scott’s “Osmocote Plus” 

fertilizer (16-8-12), and trace elements was added to fill the pots.  Pots were arranged in a growth 

chamber in a randomized-complete-block-design with four blocks. Sods were watered 

periodically when the soil surface became dry. Temperatures in the chamber were 21°C (16h) 

and 16°C (8h) without any light. Etiolated growth was harvested 5, 10, and 30d after placement 

in the growth chamber.  No additional growth occurred after 30d; therefore, no further 

determinations of etiolated growth were made.  

 
6.2.4.3 N concentration in stem bases 

 
              Twenty random samples of tillers were taken from each field plot at the vegetative, 

stem elongation, and reproductive, and also at seed maturity (Moore and Moser 1995) in 2006 

and 2007. Stem bases (3cm in length) at each growth stage were gently washed with cold water 

to remove soil. The washed stem bases were placed in a paper bag, and dried at 60°C in a forced-

air oven for 48h. The dried stem bases were bulked by species before grinding in a Wiley Mill 

through a 1-mm mesh screen and stored in airtight plastic bags.  N concentration in the stem 

bases of the three species was determined using a Leco FP 428 Nitrogen Analyzer (Leco 

Corporation, USA).   

 
6.2.5 Statistical analysis 

 
              Analysis of variance (ANOVA) (SAS Institute Inc. 2003) was used to compare 

etiolated growth and regrowth among species at each growth stage. Etiolated growth at the end 

of season was compared within each sampling date. End-of-season etiolated growth was also 

compared across sampling dates considering date as a fixed effect. When ANOVA indicated 
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significant differences among species (P≤0.05), the means were separated using least square 

means comparison. The percent N concentration was transformed using arcsine-square-root 

transformation prior to statistical analysis (Zar 1984), and data were analyzed using years as 

replications. Data were back-transformed for presentation. 

 
6.3 Results 

6.3.1 Etiolated regrowth in the field 

 
              Meadow and hybrid bromegrass produced similar amounts of etiolated regrowth 

following defoliation at the vegetative stage, averaging 33 and 57 g m-2 after 5 or 10 days, 

respectively (Table 6.2). Smooth bromegrass produced 31% less etiolated regrowth than meadow 

and hybrid bromegrass at the vegetative stage. When defoliation occurred at the stem elongation 

stage, cumulative etiolated regrowth was greatest in meadow bromegrass, intermediate in hybrid 

bromegrass and least in smooth bromegrass after 5 and 10 days (Table 6.2). By 30 days and 

thereafter, however, etiolated regrowth was similar among the three species for any defoliation at 

any growth stage. Cumulative etiolated regrowth did not differ among three species defoliated at 

the reproductive stage (Table 6.2).     
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                Table 6.2. Cumulative etiolated regrowth of three bromegrasses after defoliation at different 
developmental stages in a field study conducted in 2006 and 2007 at Saskatoon, Saskatchewan. 
                                                                                    Days after defoliation   
                                                    
Developmental stage                        5                         10                       30                         46        

                                            
                                         --------------------------------- g m-2 ----------------------------- 

Vegetative  
         meadow bromegrass              31 aZ                   56 a                      94 a                      97 a 
         smooth bromegrass                22 b                     41 b                     82 a                      92 a     
          hybrid bromegrass                 35 a                     59 a                                                                                                                                     98 a                    102 a    
          P                                            0.01                     0.03                    0.22                     0.47        
          SEMy                                       7                        19                        39                         40                       
Stem elongation  
         meadow bromegrass             17 a                      31 a                      78 a                      93 a 
         smooth bromegrass                  1c                        3 c                     56 a                       77 a  
         hybrid bromegrass                   7 b                     12 b                                                                                                                                      63 a                       68 a   
         P                                            <0.01                 <0.01                     0.10                     0.11  
         SEM                                          2                         4                          9                         15 
 
Reproductive  
         meadow bromegrass              22 a                     35 a                      65 a                       - 
         smooth bromegrass                21 a                     32 a                     60 a                        -    
         hybrid bromegrass                                                                         22 a                     30 a                      62 a                        -    
         P                                            0.99                     0.61                     0.86 
         SEM                                        4                          4                          7 

                  z Means within a column at each developmental stage with the same letter (a-c) were not significantly different 
(P≤0.05). 

                                             y Standard error of the mean. 
 
6.3.2 Etiolated regrowth at end of the growing season  

 
              The species x day interaction had no significant effect (P=0.24) on end-of-season 

etiolated regrowth, indicating species response was the same across sampling dates. Etiolated 

regrowth differed among species (P<0.01). Meadow and hybrid bromegrass had more 

cumulative etiolated regrowth than smooth bromegrass at all dates, but meadow and hybrid 

bromegrass did not differ (Table 6.3).  
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                 Table 6.3. Cumulative etiolated regrowth for field cores placed in pots in a growth chamber for 
three bromegrass species sampled at the end of October 2006 and 2007. 

                 Days after defoliation 
 
   Species                               5                          10                     30            
                                             
                                             --------------------------  g m-2  ----------------------- 
 
    meadow bromegrass          92 az                           152 a                     210 a           
    smooth bromegrass            36 b                              62 b                       96 b            

hybrid bromegrass              90 a                            140 a                     190 a      
 

    P                                        <0.01                           <0.01                   <0.01 
    SEMy                                  48                                 58                         84       

                      z Means within a column with the same letter (a-b) were not significantly different (P≤0.05). 
                             y Standard error of the mean. 

 
 

6.3.3 Regrowth in light 

 
              Regrowth dry matter in light did not vary significantly (P≥0.05) among the three 

bromegrass species after defoliation at the vegetative stage (Table 6.4). Cumulative etiolated 

regrowth was 12, 9, and 10 % of regrowth in light for meadow, smooth, and hybrid bromegrasses, 

respectively.      

              Meadow bromegrass and hybrid bromegrass produced significantly more dry matter 

in light than smooth bromegrass after defoliation at the stem elongation and reproductive stages 

(Table 6.5). Cumulative etiolated regrowth was 21, 44, and 33 % of the regrowth in light for 

meadow, smooth, and hybrid bromegrass, respectively, when defoliated at the stem elongation 

stage. When defoliated at the reproductive stage, cumulative etiolated regrowth was 19, 42, and 

25% of that of regrowth in light for meadow, smooth, and hybrid bromegrasses, respectively.  
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Table 6.4. Etiolated regrowth and regrowth in light of three bromegrasses after 46days (30days for the 
reproductive stage) of growth in the field following defoliation to ground level at three stages in 2006 and 
2007 at Saskatoon, Saskatchewan. 

                                                                                              
Developmental stage          meadow bromegrass       smooth bromegrass      hybrid bromegrass       P          SEM y
 
                                                         ----------------------------    g m-2   ------------------------- 
V
 

egetative  

    regrowth in light                      799 a                            1003   a                     1007  a                     0.03         127 
 
 
   etiolated regrowth                      97 (12%‡)                      92 (9%)                   102 (10%) 

S
 

tem elongation  

    regrowth in light                      633 az                             247   b                      498   a                   <0.01         148 
 
 
   etiolated regrowth                      93 (15%)                        77 (32%)                  68 (14%) 

R
 

eproductive  

    regrowth in light                      334 a                              143   b                      250   a                   <0.01           51 
    etiolated regrowth                      65 (19%)                        59 (42%)                  62 (25%) 

Z Means within a row with the same lower case letter (a-b) are not significantly different (P≥0.05). 
 y Standard error of the mean. 
‡ Percentage of etiolated regrowth to total regrowth dry matter. 

 

6.3.4 N concentration in stem bases  

 
              N concentration in the stem bases was similar among species (P=0.78), and the 

species x developmental stage interaction was not significant (P=0.97); however, N 

concentration in stem bases of the three bromegrasses was reduced significantly (P<0.01) with 

advancing plant maturity until the reproductive stage of growth (Fig. 6.3).  
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Figure 6.3 N concentrations in stem bases (% of dry matter) of three bromegrass species at different 
developmental stages in the field studies of 2006 and 2007 in Saskatoon, Saskatchewan. Bars are means + 
SE. Means with the same lower case letter (a-c) are not significantly different (P≤0.05). 

 
 

6.4 Discussion 

 
              Etiolated regrowth varied among the three bromegrasses for up to 10 days after 

defoliation at the vegetative and stem elongation stages, and up to 30 days at the end of season. 

Meadow and hybrid bromegrass had greater etiolated regrowth than smooth bromegrass. In a 

previous study, etiolated growth in early spring was also greater in meadow bromegrass than 

smooth bromegrass for up to 30 days (Lardner et al. 2003). More etiolated regrowth for meadow 

and hybrid bromegrasses in the early growth suggests that these species were able to more 

rapidly access reserves to synthesize new growth following defoliation. Faster development of 

above-ground tissue using stored reserves would allow these species to rapidly re-establish 

photosynthetic area following defoliation, and in turn reduce the dependence on stored reserves. 
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In addition, more cumulative etiolated regrowth of meadow and hybrid bromegrasses than 

smooth bromegrass at the end of the season suggests meadow and hybrid bromegrasses also 

accumulate more organic reserves before winter. 

              Fructosan is the primary carbohydrate in smooth bromegrass, and the fructosan 

concentration in the stem bases declined from the vegetative stage, was lowest at the stem 

elongation stage, and gradually reached its highest amount at the reproductive stage (Reynolds 

and Smith 1962; Paulsen and Smith 1968). Richards and Caldwell (1985) reported that 

meristematic limitations for the reallocation of stored resources appeared more important than 

the amount of stored or assimilated energy in wheatgrass species. Lack of meristems for 

regrowth, particularly in smooth and hybrid bromegrass, may explain why etiolated regrowth 

was initially poor at the stem elongation stage. The large increase in etiolated growth after 30 

days suggests that carbohydrates may not have been limiting. Regrowth following defoliation at 

the reproductive stage occurred under high temperatures and decreasing rainfall 30 days after 

defoliation, which may explain why total etiolated regrowth was less than that at the vegetative 

stage.   

              Meadow and hybrid bromegrasses produced about twofold greater etiolated regrowth 

in the growth chamber than the field, while etiolated regrowth of smooth bromegrass was similar 

in the two studies. In many temperate grass species, the lowest amount of carbohydrates occurs 

after early spring growth initiation, and the maximum level is reached after seed-shattering in fall 

(Reynolds and Smith 1962; Menke and Trlica 1981). The differences in the two former species 

may indicate a much higher storage of reserves prior to winter than growing season. The same 

may be true for smooth bromegrass; however, this species develops a deep root system (Gist and 

Smith 1948) and may store organic material in the deeper root zones, which would not be 
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assessed in our study because roots were cut to 12 cm for the growth chamber study. The 

environmental conditions under which the etiolated growth occurred were quite different 

between the field and growth chamber. Consistent watering of plants in the growth chamber may 

have ensured a more complete use of water soluble carbohydrates for etiolated growth.  

              Contribution of stored carbon reserves to shoot regrowth and respiration was much 

lower than the contribution of photosynthetic assimilation in several cool-season grasses 

(Davidson and Milthorpe 1966; Richards and Caldwell 1985; Donaghy and Fulkerson 1997). In 

our study, cumulative etiolated regrowth was only 12, 9 and 10% of the regrowth in light for 

meadow, smooth and hybrid bromegrass, respectively, following defoliation at the vegetative 

stage after 46 days. This suggests that most of the regrowth at this growth stage was derived 

from photosynthesis. Cumulative etiolated growth was a higher percentage of regrowth in light 

after defoliation at the stem elongation and reproductive stages, with the percentage highest for 

smooth bromegrass (44 and 42%, respectively). When defoliated at these more advanced 

developmental stages, regrowth appears to be more dependent on stored organic reserves, likely 

because of a greater amount of photosynthetic area is removed after stems have elongated than 

when they are vegetative (see Chapter 4). Relative to the other two bromegrasses, smooth 

bromegrass relied more on organic reserves after defoliation at later developmental stages; 

however, the regrowth of smooth bromegrass was less.  

              In the present study, N concentration in the stem base declined from the vegetative to 

reproductive stages of growth, and the three bromegrass species had similar N concentrations in 

stem bases at all growth stages. N concentrations in the storage organs of smooth bromegrass 

were greatest in young plants and then declined until the plant headed (Paulsen and Smith 1969). 

Even though there is evidence that nitrogen is remobilized from stubble to growing leaves 

65 



 

following defoliation in cool-season grasses (Phillips et al. 1983; Ourry et al. 1988, 1990), N 

content is relatively small compared to stored carbohydrates reserves (White 1973). Once 

enough carbohydrate reserves are available for respiration, plants are able to take up the required 

N from soil. The amount of N required for regrowth in wheatgrass and cocksfoot was apparently 

supplied by soil uptake rather than stored reserves (Caldwell et al. 1981; Turner et al. 2006). In 

the present study, meadow bromegrass maintains relatively larger below-ground biomass than 

smooth bromegrass after defoliation (see Chapter 4), which indicated a larger root volume and 

surface area in meadow bromegrass. Plants with a large root system or high root proliferation 

rates can occupy greater soil volumes and gather a greater share of soil resources (Caldwell et al. 

1987). Larger below-ground biomass of meadow bromegrass suggests a greater soil N uptake of 

meadow bromegrass.    

              In summary, the hypothesis that meadow bromegrass can more rapidly use stored 

reserves to produce etiolated growth than the other two bromegrasses is supported in our study. 

The hypothesis that N concentration in the stem bases of meadow bromegrass was the greater 

than the other two bromegrass species is rejected. Etiolated regrowth was the greatest in meadow 

bromegrass, intermediate in hybrid bromegrass and least in smooth bromegrass, but this 

difference occurred only in the initial phase of growth. N concentrations in the stem bases were 

similar among species at all stages of defoliation, and it is probably not a major factor affecting 

regrowth in these three bromegrass species.  

 
6.5 Grazing management implication 

     
              Organic reserves in the stem bases of bromegrasses is important for recovery of 

growth after defoliation when photosynthetic production is inadequate. If meadow and hybrid 

bromegrass are grazed at the vegetative or stem elongation stages, they can more rapidly re-
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establish shoot tissue than smooth bromegrass in the early phase of regrowth. Therefore, in 

intensive rotational grazing systems, meadow and hybrid bromegrass would be superior to 

smooth bromegrass because of more rapid initial regrowth.  
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7.0 Effect of Defoliation on Leaf Expansion and Net Photosynthesis of Three Bromegrass 
(Bromus) Species  

 
Abstract   Achieving a positive carbon balance after defoliation of plants is necessary for further 

growth and development. Morphological and physiological traits related to carbon assimilation 

are important to achieve a positive carbon balance. The objective of this study was to determine 

expansion of leaves, leaf-to-stem ratios, and above-ground biomass of meadow bromegrass 

(Bromus riparius Rehm.), smooth bromegrass (Bromus inermis Leyss.) and hybrid bromegrass 

(B. riparius X B. inermis) after defoliation at various growth stages and to determine the leaf 

photosynthetic rates.  Plants of the three bromegrass species were removed from the field and 

planted in 20cm pots in a greenhouse. Plants were clipped to a 5cm height at the vegetative and 

stem elongation stages, or they were defoliated at the vegetative stage and again after 14 days. 

Meadow bromegrass produced 18-22% more regrowth than smooth bromegrass following 

defoliation at different stages, and 17% more regrowth than hybrid bromegrass when defoliated 

at the stem elongation stage. The leaf-to-stem ratio in regrowth of meadow bromegrass was more 

than twofold greater than that of smooth bromegrass, and about 1.4 times greater than that of 

hybrid bromegrass. The leaf-to-stem ratio in hybrid bromegrass was about 1.7 times greater than 

smooth bromegrass. Smooth bromegrass, however, expanded individual leaf area 1.5 times faster 

than meadow bromegrass and hybrid bromegrass. Photosynthetic rates were not different among 

the three bromegrasses, averaging 3.29µmol m-2s-1. More rapid regrowth of meadow bromegrass 

compared to smooth bromegrass and hybrid bromegrass was not related to expansion of its 
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individual leaf area and photosynthetic rate. A higher leaf-to-stem ratio in meadow bromegrass is 

likely an advantage for rapid carbon assimilation following defoliation.  

 
7.1 Introduction  

 
              Bromegrass species are widely cultivated in western Canada. Meadow bromegrass 

(Bromus riparius Rehm.) is mainly used for pasture, while smooth bromegrass (Bromus inermis 

Leyss.) is generally for hay production (Knowles et al. 1993).  The hybrid bromegrass (B. 

riparius X B. inermis) cultivar Knowles, which has potential for hay and pasture, was developed 

by hybridizing smooth and meadow bromegrass (Coulman 2004). The three species have 

variable regrowth potential following defoliation (Knowles et al. 1993; Coulman 2004).    

              It has been well established that defoliation reduces carbohydrate reserves in grasses 

(Reynolds and Smith 1962; Davidson and Milthorpe 1966; White 1973; Trlica and Cook 1971, 

1972). Rapid carbon assimilation following defoliation is necessary to achieve a positive carbon 

balance for further growth and development. Photosynthetic rate and factors contributing to leaf 

area development should be considered in assessing the photosynthetic capacity of plants. 

Meadow bromegrass has narrow, pubescent leaves (Knowles et al. 1993) whereas smooth 

bromegrass has broader, glabrous leaves (Vogel et al.1996).  The leaf pubescence of the hybrid 

bromegrass more closely resembles that of meadow bromegrass (Ferdinandez and Coulman 

2000). Pubescence on the leaf surface modifies energy balance of the leaves by reducing light 

penetration to chloroplasts (Liakopoulos et al. 2006), which in turn reduces photosynthetic rate 

because of decreased light absorption (Ehleringer et al. 1976). Moreover, leaves of meadow 

bromegrass have less protein than the other two bromegrasses (Ferdinandez and Coulman 2001). 

In C3 species, RuBP carboxylase-oxygenase, an enzyme used in the Calvin cycle to catalyze the 

first major step of carbon fixation, represents approximately 20-60% of total soluble protein in 
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the leaves (Maurice et al. 1979). Thus, morphological and physiological differences in the leaves 

may cause differences in photosynthetic rates among the bromegrass species. In addition, other 

cool-season grasses have enhanced or a slower decline of photosynthetic rate in fully expanded 

leaves of undamaged tillers following a partial defoliation (Gifford and Marshall 1973; Detling 

and Painter 1983). Partial defoliation of bromegrass swards is common under grazing, and more 

rapid regrowth of meadow bromegrass may be associated with enhanced photosynthetic rate in 

the leaves of remaining tillers following partial defoliation. 

              Meadow bromegrass has greater LAI than smooth bromegrass during regrowth in 

late summer, but leaves tiller-1 and leaf area tiller-1 are greater in smooth bromegrass than 

meadow bromegrass, and an experimental hybrid bromegrass population is similar to smooth 

bromegrass (Van Esbroeck et al. 1995). Leaf appearance rate tiller-1 after grazing is also greater 

in smooth bromegrass than meadow bromegrass after grazing (Lardner et al. 2002). Expansion of 

individual leaf area may also contribute to total LAI development.   

              The hypotheses of this study were: 1) meadow bromegrass has lower photosynthetic 

rates than smooth and hybrid bromegrass in undefoliated conditions, but the photosynthetic rates 

of meadow bromegrass are greater following partial defoliation and; 2) meadow bromegrass has 

a greater rate of individual leaf area expansion than smooth and hybrid bromegrass. The 

objectives of this study were to determine: 1) leaf area expansion rate, leaf-to-stem ratios and 

above-ground biomass following defoliation at different stages of development, and 2) net 

photosynthesis of the three bromegrass species in an undefoliated control and after partial 

defoliation. 
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7. 2 Materials and methods 

7.2.1 Experimental design  

 
              Sods of the three bromegrass species were transferred from the field in early 

November of 2006 and 2007. Sods were planted in 20cm (diameter) pots using soil mix that 

contained peat moss, medium grade vermiculite, Scott’s “Osmocote Plus” fertilizer (16-8-12) 

and trace elements. The experiment was a 3 X 4 factorial arrangement in a randomized-

complete-block-design with treatment combinations of three bromegrass species and four 

defoliation treatments (single defoliation to 5cm at the vegetative stage; single defoliation to 5cm 

at the stem elongation stage; defoliation to 5cm at the vegetative stage and again two weeks later; 

and an undefoliated control). Each treatment was replicated four times. Sods were watered 

periodically when the soil surface became dry. Light was provided by high intensity sodium 

lamps with a day length of 16h at 21°C and night period of 8h at 16°C. 

              Additional sods of the three bromegrass were transferred from the field to the 

greenhouse in early spring of 2007 and 2008 to measure photosynthetic rate. Growth conditions 

and watering regime were identical to the above experiment. The experiment was a 2 x 3 

factorial in a randomized-compete-block-design with treatment combinations of three 

bromegrass species and two defoliation regimes (defoliated at the vegetative stage to remove 

80% of tillers and an undefoliated control). Each treatment was replicated four times. 

 
7.2.2 Data collection 

7.2.2.1 Leaf area expansion 

 
              At the 2-3 leaf stage, 20 individual tillers from each of the three species were 

randomly selected and marked with rings near the centre of pots of the undefoliated control and 
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the single defoliation at vegetative stage. Newly emerging leaves (4th and 5th leaves) of the 

defoliated and undefoliated tillers were marked using a permanent marker on the first day, and 

again 5 days later, and expanded leaf area day -1 (cm2day -1) was calculated. 

     
7.2.2.2 Leaf-to-stem ratio and above-ground biomass 

 
              To determine above-ground biomass and calculate leaf-to-stem ratio, all plants were 

harvested after 60 days. Fifteen tillers were randomly selected from each pot for leaf-to-stem 

ratio determinations. All samples were placed in separate paper bags, dried in a forced air oven at 

60°C for 48h, and then weighed. The leaf-to-stem ratio was calculated from dry weights of the 

leaves and stems (including the leaf sheath). 

 
7.2.2.3 Net photosynthesis  

 
              Measurements of net photosynthesis were performed on 4 partially defoliated and 4 

undefoliated plants from each of the three bromegrass species. Partial defoliation was done by 

clipping to 5cm at the 3-4 leaf stage to remove 80% of the tillers in each pot, leaving the 

remaining 20% of tillers undefoliated.  Leaf gas exchange measurements were taken on the 

uppermost fully expanded leaf of two remaining undefoliated portions of tillers in the defoliated 

plants. Six gas exchange measurements were taken on the same leaf blade every other day for 6 

days using a LI-6200 Photosynthesis Measurement System (LI-COR, Inc.). The same 

measurements of photosynthetic rates were taken on undefoliated plants.  

              Measurements were taken between 1130h and 1330h to attempt to minimize 

variation of light intensity. A leaf blade was held horizontally in the leaf chamber during the 30-

second measurement period. The area of the leaf blade enclosed in the chamber was determined 

72 



 

at the end of the experiment, and photosynthetic rate was calculated. Leaf chamber CO2 

concentration was near 335 ppm, and leaf temperatures were 23-25°C during the measurements. 

Relative humidity in the air ranged from 35-40%. The K test is an assurance test to verify that 

the LI-6200 system is working properly; if so, the K value will range between 1-1.5. The K test 

was conducted before each measurement, and values ranged from 1.19 to 1.35.  Light intensity 

was highly variable during the measurements (Table 7.1). 

 Table 7.1. Light intensity (µmol m-2s-1) during the six days of measurement of gas exchange rate.  
                                          Day 1              Day 3                Day 5               Day 7               Day 9              Day 11 

Trial one 895 510 128 107 572 927 
Trial two 244 167 269 254 253 155 

            Means  570 339 199 181 413 541  
 

7.2.3 Statistical Analysis         

 
              Data from the two repetitions (year) of the experiment were analyzed as a two-way 

factorial (three bromegrass species and four defoliation treatments) in a randomized-complete-

block-design. Analysis of variance (ANOVA) of expanded areas of fourth and fifth leaves, 

above-ground biomass and the leaf-to-stem ratio of the three bromegrass species was conducted 

using SAS 9.1.3 Proc Mixed Model (SAS Institute Inc. 2003). When ANOVA indicated 

significant differences (P≤0.05), the means were separated using least square means comparison.   

              The two measurements of photosynthetic rate were averaged for each treatment 

before data were averaged across the two experimental replications (year). Data were analyzed as 

a repeated measurement in a randomized-complete-block-design using the Proc Mixed Model of 

SAS (SAS Institute Inc. 2003). Bromegrass species, defoliation, and their interactions were 

considered fixed effects, block was considered a random effect, and measurement day was 
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treated as a repeated measure in the model. When ANOVA indicated significant differences 

(P≤0.05), the means were separated using least square means comparison.   

 
7.3 Results  

7.3.1 Leaf area expansion 

 
              Leaf area expansion of fourth and fifth leaves of individual tillers were significantly 

different among species (both P<0.01), but leaf area expansion was not affected by defoliation 

(P=0.89, P=0.23) or the species x defoliation interaction (P=0.78, P=0.71). Data were further 

analyzed with a one-way ANOVA (Table 7.2). Smooth bromegrass increased the surface area of 

fourth and fifth leaves 1.5 times faster than meadow or hybrid bromegrass (Table 7.2), but there 

was no difference between meadow bromegrass and hybrid bromegrass. 

          Table 7.2. Leaf area expansion of fourth and fifth leaves of three bromegrass species at the 
vegetative stage. 

                                                                      Leaf area expansion       

Bromegrass species             4th leaf lamina                                       5th leaf lamina     
                                                                   
                                           ---------------------------- cm2 day-1  -------------------------                  
meadow bromegrass              0.89  bz                                                      0.89  b 
smooth bromegrass                1.27  a                                                       1.51  a 
h
 

ybrid bromegrass                  0.99  b                                                       1.01  b 

P                                           <0.01                                                         <0.01 
SEMy                                      0.17                                                           0.09 

              z Means within a column with the same letter (a-b) are not significantly different (P≤0.05). 
                     y Standard error of the mean. 
 

7.3.2 Above-ground biomass  

 
                   Above-ground biomass differed significantly among species (P<0.01) and defoliation 

treatments (P<0.01), but the interaction of species x defoliation was not significant (P=0.37). 

Above-ground biomass was further compared among species at each defoliation (Table 7.3). 
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With no defoliation, meadow bromegrass produced 23% greater above-ground biomass than 

hybrid bromegrass, but above-ground biomass was similar between meadow and smooth 

bromegrass, and between smooth bromegrass and hybrid bromegrass (Table 7.3). Meadow 

bromegrass produced 18-22% more regrowth than smooth bromegrass after all defoliations, but 

the regrowth of meadow bromegrass was not significantly different from hybrid bromegrass 

except after the stem elongation stage. Regrowth of smooth and hybrid bromegrass did not differ 

significantly among all defoliation treatments, averaging 590 g m-2.  

Table 7.3. Above-ground biomass of three bromegrass species after 60 days (1260GDD) growth in a 
greenhouse in an undefoliated control or following defoliation to 5cm at different developmental stages. 
Data are from two experiments conducted in 2006 and 2007. 
                                   Undefoliated          Defoliated at                  Defoliated at            Defoliated at vegetative 
   Species                       control                   vegetative stage             stem elongation        stage + two weeks later  
        

                             --------------------------------------------g m-2------------------------------------------- 
meadow bromegrass         1239 az                 937 a                        663 a                         517 a 
smooth bromegrass         1127 ab                 775 b                        561 b                         404 b 
hybrid bromegrass          954    b                 822 ab                        551 b                         425 ab 
 
P   0.05 0.04 0.04 0.05 
SEM y   79          85      86       99  

 z Means within a column at each developmental stage with the same letter (a-b) are not significantly different (P≤0.05). 
 y Standard error of the mean. 

 

7.3.3 Leaf-to-stem ratio 

 
              The species (P<0.01) and defoliation (P<0.01), and the species and defoliation 

interactions (P<0.01) had significant effects on the leaf-to-stem ratio. Data were subjected to 

additional analysis by using a one-way ANOVA to examine the interaction effect of species and 

defoliation treatments (Table 7.4). When not defoliated, leaf-to-stem ratios did not differ among 

the three bromegrass species, averaging 0.72 (Table 7.4). The leaf-to-stem ratio of smooth 

bromegrass was at least 46% less than meadow bromegrass after defoliation, and at least 30% 

less than hybrid bromegrass after defoliation at the stem elongation and defoliated two times. 
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Meadow bromegrass also had a higher leaf-to-stem ratio than hybrid bromegrass at all 

defoliation except when defoliated at the vegetative stage. 

     Table 7.4. Leaf-to-stem ratio of three bromegrass species after two months growth in a greenhouse in 
an undefoliated control or following defoliation to 5cm at different developmental stages. Data are 
from two experiments conducted in 2006 and 2007. 
                         Treatment 

 Defoliation                         Species                                                    Leaf-to-stem ratio 

 Undefoliated control           
                                           meadow bromegrass                                     0.87      def z
                                           smooth bromegrass                                       0.62          f   
                                           hybrid bromegrass                                        0.68        ef                                
 Single defoliation at the vegetative stage 
                                           meadow bromegrass                                     1.55     c    
                                           smooth bromegrass                                       0.85       def 
                                           hybrid bromegrass                                        1.17     cde                                          
Single defoliation at the stem elongation stage 
                                           meadow bromegrass                                     2.82 a 
                                           smooth bromegrass                                       1.19     cde 
                                           hybrid bromegrass                                         2.22   b 
Defoliated at the vegetative stage + two weeks later     
                                           meadow bromegrass                                     3.34 a                     
                                           smooth bromegrass                                       1.29     cd 
 
 
                                          hybrid bromegrass                                        2.15    b 

P                                                                                                             <0.01 
SEMy                                                                                                          0.23 

        z Means within a column with the same letter (a-f) are not significantly different (P≤0.05). 
            y Standard error of the mean. 

 
    

7.3.4 Net photosynthesis 

 
              Day of measurement had a significant (P<0.01) effect on net photosynthesis of 

individual leaves, but species, defoliation, and the defoliation x species interaction did not have a 

significant affect (P≥0.05) on net photosynthesis for the three bromegrass species. Differences in 

net photosynthesis among the measurement days may be associated with variation in light 

intensity. The three bromegrass species exhibited similar net photosynthesis, averaging 3.29µmol 

m-2s-1 (Fig 7.1). In addition, net photosynthesis of individual leaves in partially defoliated and 

undefoliated control plants was not significantly (P≥0.05) different.  

76 



 

 

Time (days)

1 3 5 7 9 11

N
et

 P
ho

to
sy

nt
he

si
s 

(u
m

ol
m

-2
s-1

)

0

2

4

6 meadow bromegrass
smooth bromegrass
hybrid bromegrass

Undefoliated control 

Time (days after defoliation)

1 3 5 7 9 11

N
et

 P
ho

to
sy

nt
he

si
s 

(u
m

ol
m

-2
s-1

)
0

2

4

6 meadow bromegrass
smooth bromegrass
hybrid bromegrass

Partially defoliated at the vegetative stage

 
 

Figure 7.1. Net photosynthesis of three bromegrass species in undefoliated or after partial defoliation at 
the vegetative stage in a greenhouse. Data are means of two experimental replications and each point 
represents means of eight readings. Bars are means ± SE. 

 

7.4 Discussion 

 
              Rapid leaf area establishment is a desirable trait for regrowth in grasses (Caldwell et 

al. 1981; Briske 1986). Meadow bromegrass had a more rapid leaf area index (LAI) development 

than smooth and hybrid bromegrass following defoliation (see Chapter 4). In the present study, 

smooth bromegrass increased the surface area of individual leaves more rapidly than meadow 

and hybrid bromegrass. Thus, rapid reestablishment of leaf area in meadow bromegrass in 

contrast to the other two bromegrasses did not arise from faster expansion of individual leaves. 

In other studies, leaf appearance rate tiller-1, which is constant for a given species in relation to 

growing-degree-days (Cruz and Boval 2000), was greater in smooth bromegrass than meadow 
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bromegrass (Lardner et al. 2002). Smooth bromegrass and an experimental hybrid bromegrass 

population also had greater leaf area tiller-1 and number of leaves tiller-1 than meadow 

bromegrass during regrowth (Van Esbroeck et al. 1995). Tiller density following defoliation, 

however, was greater in meadow bromegrass (see Chapter 5), and this high tiller density 

compensated for lower individual leaf area. Van Esbroeck et al. (1995) also reported that 

meadow bromegrass compensated for a relatively small leaf area tiller-1 with rapid tiller 

development and high specific leaf weight.  

              In the present study, meadow bromegrass had a greater leaf-to-stem ratio and greater 

regrowth yield than smooth and hybrid bromegrass, implying greater leaf mass, although this 

trait was not directly measured. Regrowth of smooth bromegrass and an experimental hybrid 

bromegrass population usually consisted of elongated tillers, and smooth bromegrass stem mass 

was more than twofold greater than meadow bromegrass in fall regrowth (Baron et al. 2000). 

Because the leaf blade is the most efficient site for photosynthesis during regrowth (Caldwell 

1984), more leaves would increase the potential of photosynthetic assimilation of meadow 

bromegrass compared to the other two species. In other studies, grasses with rapid regrowth also 

produced more leaves than sheaths and stems (Detling and Painter 1983; Caldwell et al. 1981). 

This finding suggests that a higher leaf-to-stem ratio is an important trait for the rapid regrowth 

of grasses.  

              Leaf pubescence in desert species reduces the absorption of photosynthetically active 

radiation more than closely related, non-pubescent species, which dramatically reduced the leaf 

photosynthetic rate (Ehleringer et al. 1976). In the present study, photosynthetic rate of 

individual leaves was similar among the three bromegrasses, regardless of leaf pubescence. Even 

though reflection of radiation is one of the consequences of leaf pubescence (Ehleringer et al. 
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1976; Yang et al. 2008), this function is more apparent under conditions of high temperature or 

excessive light intensity (Ehlering et al. 1976; Liakopoulos et al. 2006). In our study, light 

intensity ranged from 180 to 570 µmol m-2s-1, which is much lower than the light saturation point 

(approx.1,700 µmol m-2s-1) of C3 grasses. In addition, temperatures during the study were 

suitable for photosynthesis of C3 species, ranging from 23-25°C. Therefore, light penetration was 

probably not altered by leaf pubescence for these three bromegrass species.  In the present study, 

the photosynthetic rates ranged 2.5-4.3µmol m-2s-1, which were lower than for other cool-season 

grasses reported in the literature. For example, the photosynthetic rate of leaf blades in 

wheatgrass species ranged from 10-20µmol m-2s-1 at a saturating light intensity (Nowak and 

Caldwell 1984). Beside favoral leaf temperature, CO2 level (near 335 ppm) and relative humidity 

(35-40%) were in the optimum range for leaf photosynthesis of cool-season grasses in this study. 

Therefore, lower light intensity was likely the factor that caused lower photosynthetic rate in this 

study.   

              In C3 species, chloroplast proteins account for about 75% of total leaf N (Chapin et al. 

1987). Caldwell et al. (1981) reported that more rapid growth of crested wheatgrass (Agropyron 

desertorum Schult.) than bluebunch wheatgrass (Agropyron spicatum Scribn.) was partially 

attributed to a lower requirement of N per unit area of photosynthetic tissues. Meadow 

bromegrass has lower N concentrations in the leaves during regrowth than the other two 

bromegrass species (Baron et al. 2000), which may imply a lower requirement of N to produce 

leaf tissue.  

              When a large portion of the foliage was removed by defoliation, the photosynthetic 

rate in remaining non-defoliated leaves in grasses increased or declined less rapidly with age 

than those of undefoliated plants (Gifford and Marshall 1973; Detling and Painter 1983). This 
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enhanced photosynthetic rate has been attributed to increased mesophyll and stomatal 

conductance in the remaining leaves of the defoliated plant (Gifford and Marshall 1973). This 

enhanced stomatal conductance may be partially explained by more water being available for 

defoliated compared to undefoliated plants (Wraith et al. 1987). In the present study, the 

photosynthetic rate of individual leaves in remaining tillers was similar among the three 

bromegrasses in the undefoliated control and after partial defoliation. The three bromegrass 

species were provided adequate soil water during the study. Consequently, soil water availability 

was not limited in either of our defoliation treatments.  

              Gross photosynthesis in grasses is largely determined by sward leaf area, being 

higher in swards with higher leaf area (Parsons et al. 1983). Greater regrowth of meadow 

bromegrass than the other two bromegrasses also appears to be related to greater leaf area, rather 

than enhanced photosynthesis after defoliation. This response is consistent with findings of 

McNaughton (1974) and Detling and Painter (1983) who reported that greater cumulative shoot 

biomass of grasses results from differences in canopy area rather than variation in net 

photosynthesis of leaves. 

              In summary, the two hypotheses tested are rejected. Meadow bromegrass did not 

differ in photosynthetic rate from the other two species, and its individual leaf area expansion 

rate was less than that of smooth bromegrass and equal to hybrid bromegrass. The leaf-to-stem 

ratio was greatest in meadow bromegrass and least in smooth bromegrass following defoliation, 

suggesting a greater leaf mass in meadow bromegrass.  

 
7.5 Grazing management implications 

 
               Regrowth of meadow bromegrass contains more leaves than stems, whereas 

regrowth of smooth bromegrass has more stem material than leaves, and hybrid bromegrass was 
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intermediate for this trait. The higher leaf-to-stem ratio of meadow bromegrass likely indicates a 

higher forage quality during regrowth, which is important for grazing.  
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8.0 General Discussion and Conclusions 

 
                   These studies were designed to provide information on regrowth characteristics of 

three bromegrasses that are widely used in western Canada for hay or pasture. Meadow and 

smooth bromegrass are native to Eurasian steppes, where grasses co-evolved with large 

herbivores. During this co-evolution, grasses developed biological characteristics that helped the 

plants withstand and recover from heavy defoliation. The hypothesis tested in this study was that 

meadow bromegrass has superior regrowth ability compared to hybrid and smooth bromegrasses 

following defoliation because of differences in physiological and morphological characters.       

                   In the present study, regrowth was tested in the field and greenhouse under 

defoliation at the vegetative and stem elongation stages. With the exception of defoliation at the 

vegetative stage in the field, meadow bromegrass produced greater regrowth than smooth 

bromegrass in these two growth environments. Regrowth of hybrid bromegrass was intermediate 

to smooth and meadow bromegrass. Meadow bromegrass regrows more rapidly than smooth 

bromegrass and an experimental hybrid bromegrass population in late summer or following 

frequent defoliation (Knowles et al. 1993; Van Esbroeck et al. 1995; Baron et al. 2000). Hybrid 

bromegrass has many individual characteristics similar, or intermediate to parental species 

(Ferdinandez and Coulman 2000), which are associated with the breeding objectives for the 

development of individual cultivars (Coulman 2004). Characteristics that are the intermediate to 

the parental species may also explain intermediate regrowth of hybrid bromegrass relative to the 

other two bromegrasses following defoliation.  
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                   Paulsen and Smith (1969) found that smooth bromegrass produces the most yield if 

plants are defoliated when vegetative and after a recovery period. In the present study, the three 

bromegrass species produced more regrowth in the field and greenhouse following defoliation at 

the vegetative stage compared to the stem elongation stage. Regrowth takes place from the 

elongation of intercalary meristems at the base of existing leaf blades, sheaths, and stem 

internodes after defoliation at the vegetative stage, while the majority of regrowth comes from 

axillary buds after defoliation at stem elongation stage (Hyder 1972; Briske 1986). Generally, 

growth occurs faster from intercalary meristems than from the axillary buds (Cook and Stoddart 

1953; Hyder 1972; Briske 1986). Harrison and Romo (1994) suggested that regrowth in smooth 

bromegrass was not related to a particular growth stage, but rather depends on growing 

conditions. Environmental conditions following defoliation play an important role in the 

regrowth of grasses, with temperature and precipitation the main factors (Davidson and 

Milthorpe 1965). Total GDD during the study years of 2006 and 2007 was higher than the long-

term average, with 1704, 1786, and1589 accumulated GDD, respectively. Rainfall from April to 

June during the study was 26% greater than the long-term average. Therefore, environmental 

conditions were favorable for regrowth of bromegrasses during the study.    

              Photosynthetic capacity is known to vary among species (Hikosaka and Shigeno 

2009) because of differences in leaf chlorophyll content, stomatal and mesophyll conductance, 

and leaf photosynthetic N-use efficiency (Field and Mooney 1986; Pons and Westbeek 2004). In 

the present study, the photosynthetic rate per leaf area was not different among the three 

bromegrass species (see Chapter 7). In wheatgrasses (Agropyron), species with rapid regrowth 

invested less N per unit leaf area than species with slow regrowth (Caldwell et al. 1981). 

Meadow bromegrass has lower leaf N concentrations in the leaves during regrowth than the other 
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two bromegrass species (Baron et al. 2000), which may imply a lower N requirement to produce 

photosynthetic tissue in meadow bromegrass.  

              An increase in photosynthetic rates of foliage after partial defoliation has been 

reported as a mechanism to compensate for defoliation (McNaughton 1979). Following partial 

defoliation, the rate of photosynthesis declines immediately in the remaining undamaged leaves 

followed by an increase, or less rapid decline with age than the photosynthetic rate in similar 

leaves from undefoliated plants (Gifford and Marshall 1973; Detling and Painter 1983; Nowak 

and Caldwell 1984).  In the present study, partial defoliation had no effect on photosynthetic 

rates in the remaining leaves of undefoliated tillers for all bromegrasses (see Chapter 7), likely 

due to ideal soil water and temperature conditions in the greenhouse.  

              Morphological characters, rather than variation in photosynthesis, may play a role in 

the carbon assimilation after defoliation. In the present study, meadow bromegrass established 

leaf area most rapidly, while hybrid bromegrass was intermediate and smooth bromegrass was 

the slowest following defoliation at the vegetative and stem elongation stages (see Chapter 4). In 

addition, the leaf-to-stem ratio was highest in meadow bromegrass, intermediate in hybrid 

bromegrass, and lowest in smooth bromegrass (see Chapter 7). The ability to re-establish canopy 

leaf area is considered the most important characteristic of grasses with rapid regrowth (Caldwell 

et al. 1981; McNaughton et al. 1983; Briske 1986; Davies 1988). In contrast to canopy leaf area 

development, the expansion rate of individual leaves was greater in smooth bromegrass than 

meadow and hybrid bromegrass (see Chapter 7). Similarly, a greater leaf appearance rate tiller-1 

and leaf area tiller-1 in smooth and hybrid bromegrass than in meadow bromegrass were reported 

in other studies (Lardner et al. 2002; Van Esbroeck et al. 1995).  
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              In a sward of bromegrass, tiller density was a key factor that determined leaf area 

development during regrowth (Van Esbroeck et al. 1995; Baron et al. 2000). In the present study, 

the final tiller density in the field was the greatest in meadow bromegrass, intermediate in hybrid 

bromegrass, and least in smooth bromegrass regardless of developmental stage of defoliation 

(see Chapter 5). Percent tiller number increase from the initial counts was the highest in meadow 

bromegrass (95%), intermediate in hybrid (57%), and least in smooth bromegrass (14% ) 

following defoliation at the vegetative stage, indicating a greater tiller production in meadow 

bromgrass. Even though tiller density reduced in all three bromegrass species following 

defoliation at the stem elongation stage, this reduction was less in meadow bromegrass than the 

other two species (see Chapter 5).     

              No significant differences in buds tiller -1 or elongated buds tiller-1 were detected 

among the three species following defoliation at various stages in greenhouse. Elongation of 

basal buds into tillers depends on interactions of overall plant vigor, developmental stage, soil 

nutrients, carbohydrate reserves, environmental conditions, and hormonal regulation (Paulsen 

and Smith 1969; Langer 1972; Ashmun and Pitelka 1984; Shaver et al. 1986; Murphy and Briske 

1992). In the greenhouse study, removal of plants from the field and preparation for potting 

caused slower tiller growth or even senescence of some tillers in meadow bromegrass, but this 

was not observed in smooth bromegrass (see Appendix B). In addition, temperatures and light 

intensity, which are known to affect tiller initiation, differed between the greenhouse and field 

environments. Thus, elongation of buds into tillers in the greenhouse may not be indicative of 

tiller responses in the field. A greater number of tillers in a given time period after defoliation at 

the vegetative stage for meadow bromegrass (see Chapter 5) suggests that more tillers were 

produced from basal buds in meadow bromegrass in the field. 
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              The carbon required for shoot regrowth immediately after severe defoliation must 

come from organic reserves in the stem bases of grasses (Reynolds and Smith 1962; Trlica and 

Cook 1972). For several grasses, the top priority for allocation of stored reserves following 

defoliation is to produce new leaf material to restore photosynthetic capacity (Donaghy and 

Fulkerson 1998; Turner et al. 2007). The efficiency of utilizing organic reserves rather than the 

total concentration of reserves is important to shoot regrowth after defoliation (Richards and 

Caldwell 1985). The efficiency of utilizing reserves depends on the activity of basal axillary 

buds and carbohydrate reserves in smooth bromegrass (Reynolds and Smith 1962). In the present 

study, meadow bromegrass more rapidly remobilized stored reserves to synthesize new shoot 

tissue than the other two species immediately after defoliation, while the total amount of shoot 

tissue produced from reserves was similar among the three species after defoliation (see Chapter 

6). The efficiency of utilizing reserves for hybrid bromegrass was lower or similar to meadow 

bromegrass following defoliation at different developmental stages, but was greater than that for 

smooth bromegrass (see Chapter 6).  Therefore, efficient utilization of reserves in the initial 

phase of regrowth could contribute to more rapid leaf establishment (see Chapter 4) immediately 

after defoliation, and contribute to the superior regrowth of meadow bromegrass.  

              Steady-state 13C labeling was used to investigate the use of remobilized and currently 

assimilated C for leaf and root growth in perennial ryegrass after defoliation. It was estimated 

that 50% of the carbon was derived from remobilization during the first three days of regrowth, 

falling to 10% after five days (De Visser et al. 1997). Donaghy and Fulkerson (1997) estimated 

that remobilization of stored carbohydrate contributed 33%, and current assimilation contributed 

66% to regrowth after defoliation. In the present study, it is assumed that the amount of etiolated 

regrowth represents the maximum possible contribution of organic reserves to normal regrowth 
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in light. Etiolated regrowth ranged from 10-35% of regrowth in light, which suggests 65-90 % of 

the C came from photosynthetic assimilation, depending upon the particular developmental stage 

at the time of defoliation. The dependence of smooth bromegrass on stored reserves was greater 

than that for the other two bromegrass species (see Chapter 6), which may be related to less 

residual leaf area or slower development of leaf area following defoliation (see Chapter 4). Even 

though organic reserves are necessary for the initial phase of shoot growth after defoliation, 

prolonged dependence on reserves could potentially restrict regrowth of smooth bromegrass 

because the majority of C needed for regrowth several days after defoliation is derived from 

photosynthesis rather than stored reserves (Donaghy and Fulkerson 1997; Richards and Caldwell 

1985).  This greater dependence on reserves could negatively affect regrowth of smooth 

bromegrass.  

              N reserves are also an important fraction of total organic reserves and are essential 

for regrowth (Ourry et al. 1994; Dilz 1966). A 15N study showed that a significant amount of N 

was remobilized during regrowth in grasses (Phillips et al. 1983; Ourry et al. 1988, 1990). 

Production of vegetative storage proteins (VSPs) is an example of such N compounds 

(Tranbarger et al. 1991). In the present study, N concentrations in the stem bases were similar 

among the three species (see Chapter 6), likely indicating that nitrogen reserves are not a major 

factor contributing to variation in regrowth among bromegrasses. In addition, plant roots can 

uptake nitrate and ammonium nitrogen from the soil, which is regulated by the physiological 

status of the plant and external N concentration (Imsande and Touraine 1994). N required for 

regrowth of wheatgrasses and cocksfoot is apparently supplied by soil uptake rather than from 

reserves (Caldwell et al. 1981; Turner et al. 2006).                           
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              Severe shoot defoliation often suppresses root development of grasses, which affects 

water and nutrient uptake (Weaver and Zink 1946; Jameson 1963). Water and N uptake by plants 

are determined by root distribution and uptake ability of roots (Gastal and Durand 2000). The 

magnitude of the reduction of root biomass following defoliation was much greater than the 

reduction in herbage yield in grasses (Johnston 1961). Roots deterioration following clipping 

was most rapid near the root tips, where root apical meristems and elongation zones are located 

(Jameson 1963). Root elongation may cease within 24h following a severe defoliation (Crider 

1955; Ryle and Powell 1975). Reduction in the number of roots initiated and elongated became 

progressively more severe with increasing frequency and intensity of defoliation (Crider 1955; 

Evans 1973). In the present study, below-ground biomass was greatest in meadow bromegrass, 

intermediate in hybrid bromegrass, and least in smooth bromegrass (see Chapter 4). Greater 

below-ground biomass in meadow bromegrass suggests a more developed root system that can 

access soil water and nutrients more efficiently during the regrowth compared to the other two 

species. In addition, defoliation reduced below-ground biomass of the three bromegrasses 

compared to undefoliated plants, but the magnitude of the reduction relative to undefoliated 

plants was greatest in smooth bromegrass (see Chapter 4). Reduction in root growth and 

productivity are considered to be detrimental to the survival and competitive ability of defoliated 

plants (Crider 1955; Jameson 1963). This greater reduction of below-ground biomass in smooth 

bromegrass likely reduced its recovery potential after defoliation.  

                   On the basis of this study, all three bromegrass species can be grazed at the 

vegetative stage about mid-May in Saskatchewan. Grazing at the vegetative stage will allow 

livestock early access to high quality forage. Compared to the anthesis stage, bromegrasses have 

20% more CP (crude protein) and 18-20% less NDF (neutral detergent fiber) and ADF (acid 
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detergent fiber) at the vegetative stage (Ferdinandez and Coulman 2001). If bromegrasses are 

grazed at the stem elongation stage in early June in Saskatchewan, meadow bromegrass and 

hybrid bromegrass would be the best alternatives. Smooth bromegrass develops leaf area 

relatively slowly after defoliation at this stage, and its regrowth is less than the other two species. 

If smooth bromegrass is grazed, a higher defoliation height is recommended to increase residual 

leaf area to allow more photosynthesis after grazing. In an intensive rotational grazing system, 

meadow bromegrass can rapidly use organic reserves to re-establish the leaf area, and also 

develops relatively larger root than the other two species. In addition, meadow bromegrass has 

more residual leaf area after defoliation because of its basal leaf habit.  An adequate rest period, 

however, is required after defoliation at any stage for persistence and productivity of the three 

bromegrass species. When defoliated at the stem elongation stage, the rest period should be 

longer than that at the vegetative stage. 

                    Thus, the hypothesis that meadow bromegrass has greater regrowth ability compared 

to hybrid and smooth bromegrasses following defoliation because of differences in physiological 

and morphological characters is accepted. The rapid regrowth of meadow bromegrass following 

defoliation is attributed to several factors:  1) production and maintenance of a higher tiller 

density; 2) a higher percentage of tillers remaining in the vegetative stage; 3) rapid LAI 

development and a higher leaf-to-stem ratio; 4) rapid utilization of organic reserves following 

defoliation and; 5) relatively greater below-ground biomass. Characteristics that are not 

associated with rapid regrowth of meadow bromegrass are: 1) photosynthetic rate; 2) nitrogen 

concentration in the stem bases; 3) total organic reserves and; 4) individual leaf area expansion.  
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Appendix A    Regrowth of Two-and Five-Year-Old Stands of Meadow Bromegrass with 
Varying Percentages of Reproductive Tillers 

 

 1. Introduction              

               Previous research (Ferdinandez 1999) and the present study demonstrated that the 

percentages of tillers reaching the reproductive stage were different among the three bromegrass 

species, and a high percentage was assumed to be negatively related to the regrowth of the three 

species. As a result, an additional experiment was conducted to test if regrowth varies following 

defoliation in stands of meadow bromegrass with different percentages of tillers reaching the 

reproductive stage. We tested the hypothesis that a lower percentage of reproductive tillers will 

be associated with more rapid regrowth. The objective of this study was to determine if 

percentage of reproductive tillers was associated with regrowth yield of meadow bromegrass 

stands.  

 
2. Materials and Methods 

 
                   Sods of Fleet meadow bromegrass (Bromus riparius Rehman.) from two different 

ages of stands (2 and 5 years) were removed from the field in early May 2007. Sods were planted 

in 20cm pots and placed in the greenhouse. Our assumption was that there would be a lower 

percentage of reproductive tillers in the older stand of meadow bromegrass based on the findings 

of Loeppky (1999).   
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                  The experiment was a 2 x 3 x 2 factorial randomized-complete-block-design (RCBD) 

with treatment combinations of two stand ages (two and five-year-old), three defoliation 

treatments (undefoliated control; defoliation to 5 cm at the vegetative or stem elongation stage) 

and two soil nutrient levels (with or without 1g pot-1 Plant-Prod® 28-14-14 fertilizer). Fertilizer 

was applied as a solution once at the vegetative stage. Each treatment was replicated four times, 

and sods were watered when surface became dry. In the greenhouse, light was provided by high 

intensity sodium lamps with a day length of 16h at 21°C and a night period of 8h at 16°C.         

                   Number of tillers was determined in each pot before the experiment began, and again 

20 days after the defoliation. Above-ground biomass was also determined for each treatment. 

The percentage of reproductive tillers was determined in the undefoliated pots on the same day 

as the defoliation.  

              Data were analyzed as a three-way factorial arrangement (stand age X defoliation X 

soil nutrient) in a randomized-complete-block-design using SAS 9.1.3 Proc Mixed Model (SAS 

Institute Inc. 2003) to compare regrowth yield and final tiller density of the two meadow 

bromegrass stands. When ANOVA indicated significant differences (P≤0.05), means were 

separated using least square means comparison. 

 
3. Results  

    
                   The percentage of tillers reaching the reproductive stage was 42 and 50% in two-

year-old stands with or without fertilizer, respectively, compared to 18 and 14% in the five-year-

old stand with or without fertilizer, respectively.                             

                   The ANOVA indicated that fertilizer did not affect tiller density; therefore, fertilizer 

was not considered in the analysis. Final tiller density did not differ between the two stand ages 
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following defoliation (Table A1). The majority of tillers in the five-year-old stand remained 

unelongated and continued their growth after defoliation at the stem elongation stage. The two-

year-old stand had a greater reduction in tiller number because of the higher percentage of tillers 

reaching the reproductive stage (elongated tillers), and these tillers died following defoliation. 

After defoliation at the vegetative stage or stem elongation stage, final tiller density in the two-

year old stand was reduced from an initial tiller density of 19% for both defoliations, while final 

tiller density in the five-year-old stand decreased 5 and 1 % from the initial count, respectively.  

 
 
Table A1. Tiller density changes of two-year- or five-year-old meadow bromegrass stands after 20 days 
(420GDD)§ growth in a greenhouse in an undefoliated plant or plants defoliated to 5cm at either the 
vegetative or stem elongation stages.   

                                
                                     Undefoliated                           Defoliated at                                 Defoliated at                    
   Age of stand                   control                                   vegetative stage                             stem elongation               
        

                                    -------------------------------Tiller m-2------------------------------------- 
                             Initial         Final           % y                Initial          Final            %               Initial           Final        %    
Two year         3500    3866 a Z +10 3500 2833 -19 3967 2733 -19
Five year         2567  3000 b +17 2633 2500 - 5 2767 2700 -1 

P  
 

<0.01   0.37   0.95  
SEM     213   206    206   

 § GDD= Growing-degree-days. SEM=standard error of the mean; 
  z Means within a column with the same lower case letter are not significantly different (P≤0.05).  
  y % represents percentage increase (positive value) or decrease (negative value) in numbers of tillers compared to initial tiller 

count.  
 

 
                   Stand age (P=0.002), defoliation (P<0.01) and age x defoliation (P<0.01) effects on 

above-ground biomass were significant; however, fertilizer (P=0.13) and its interaction with 

stand age and defoliation were not significant. The age x defoliation interaction effect was 

further analyzed (Table A2). More above-ground biomass was produced by undefoliated plants 

in the two-year-old stand compared to the five-year-old stand. Defoliated plants in two-year- and 

five-year-old stands did not differ in above-ground biomass. 
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                        Because the five-year-old stand had a lower percentage of reproductive tillers, it was 

expected that it would produce more regrowth than the two-year-old stand following defoliation; 

however, tillers were smaller and less vigorous than those in the two-year-old stand. Also, 

considerable residue accumulated on the surface of the five-year-old stand, which could reduce 

sod aeration and tiller development. Removal of crop residue was previous shown to increase 

tiller density in meadow bromgrass (Loeppky and Coulman 2001).  

 

     Table A2. Above-ground biomass of two-year- or five-year-old meadow bromegrass stands after 20 
days growth in the greenhouse in an undefoliated or following defoliation to 5cm at either the 
vegetative or stem elongation stage.          
                                                                         
Defoliation treatment                            Age of stand                                         Dry matter  (g m-2)   
Undefoliated control                                      2                                                       746  a z                            
                               
                              

                                        5                                                       499  b      

Defoliated at vegetative stage                        2                                                       180  c                          
                                             
                                             

                            5                                                       190  c     

Defoliated at stem elongation stage               2                                                       180  c 
5                                                      219  c    
 

P value                                                                                                                   <0.001  
SEM y                                                                                                                        28           

        z Means within a column with the same lower case letter are not significantly different (P≤0.05).  
        y SEM=standard error of the mean; 
 
 
4. Summary and conclusions 
 
         
                   In the present study, the percentage of tillers reaching the reproductive stage greatly 

differed between two ages of meadow bromegrass stands; however, final tiller density and 

regrowth yield were similar between stands. The percentage reduction of tiller density with 

defoliation was lower in five- than two-year-old stands, which could indicate less impact of 

defoliation in the five-year-old stand. Greater initial tiller density and larger tillers for plants in 

the two-year-old stand may have given the two-year-old stand an advantage in regrowth, even 

with a higher percentage of elongating tillers. Although the different percentages of reproductive 
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tiller development in these stands provided the opportunity to study the importance of this on 

regrowth in meadow bromegrass, differential stand age introduced an additional variable, which 

probably confounded the results. Thus, no conclusion could be drawn.                     
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Appendix B    Comparison of Methodology for Measuring Grass Growth Characteristics in the 
Greenhouse and Field 

 
 

1. LAI-2000 leaf area measurement and direct leaf area measurement 

 
       Leaf area index (LAI) is one of the most important parameters for assessing the 

establishment of canopy leaf area. LAI has been calculated as the projected area (one side) of 

foliage per unit of ground surface (Asner el al. 2007).  A direct estimate of LAI can be obtained 

by harvesting the total leaf biomass in a given area and calculating specific leaf area (Arias 

2007). Alternatively, an indirect method of determining LAI is often preferred because such 

estimates can be completed more rapidly and accurately (Chen et al. 1997). The LAI-2000 

plant canopy analyzer is one of the most commonly used optical instruments for the indirect 

measurement of LAI.  LAI is estimated by measuring the amount of diffuse radiation that 

infiltrates the canopy during the LAI-2000 reading, which estimates a plant canopy index that 

includes projected stems, inflorescences and leaves (Bolstad and Gower 1990). Therefore, the 

LAI reading determined by the LAI-2000 should be higher than a direct measurement of LAI, 

which includes only leaves. 

       In the present study, a direct estimate of leaf area was made in the undefoliated 

swards of the three bromegrass species at the reproductive stage to estimate actual leaf area and 

was compared to the estimate made by the LAI-2000 (Table B1). In the actual LAI 

measurement, eight 10 x 30 cm areas were sampled for each bromegrass species. All leaf 
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blades of harvested tillers were separated from the stems for each sample. Direct leaf area was 

measured on sub-samples of 50 leaves using LI-3100C Area Meter (Li-Cor, Inc. Nebraska, 

USA), then specific leaf area (cm2 g-1) (SLA) was calculated according to its dry weight. Actual 

LAI of sample was calculated from the sample dry weight multiplied by SLA. The actual LAI 

and LAI-2000 estimation showed a similar ranking of the three bromegrasses, being highest in 

smooth bromegrass and lowest in hybrid bromegrass. The actual LAI was lower than LAI-2000 

estimates as the latter included all aboveground parts. The LAI-2000 estimates showed the 

same ranking of the species as actual LAI determinations, which was adequate for the present 

study. 

 

                         Table B1. Actual leaf area index (LAI) of undefoliated stands of three bromegrass  
                      species in the field.  

                                                        
                                        Replication      meadow      smooth      hybrid 
   

1 1.88 1.23 1.20 
2 1.56 2.00 1.86 
3 1.89 1.80 1.56 
4 1.30 2.20 1.66 

                                           Means 1.66 1.81 1.57 
          LAI-2000 analyzer reading 4.24 4.32 4.06  

               * Tillers were sampled from 0.3m2 area for each replication. 
 

2. Plant material preparation  

 
                   In the present study, a few different experimental units and environments were used 

to estimate tiller density and yield responses to defoliation. In the field study, randomly selected 

15 x 20cm fixed quadrats were used. For the greenhouse study in 2005, individual tillers were 

used to determine tiller development in response to defoliation. Sods of meadow, smooth and 

hybrid bromegrass were removed from the field in mid-October 2005. Then tillers at the 2-3 leaf 
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stages were separated and planted individually in root trainers using a soil mix that contained 

peat moss, medium grade vermiculite, Scott’s “Osmocote Plus” fertilizer (16-8-12) and trace 

elements. Tiller separation to prepare plants for the experiment disturbed tiller growth of 

meadow bromegrass more than smooth bromegrass. Because of high tiller mortality and slow 

growth in meadow bromegrass, the experimental unit was changed in the subsequent greenhouse 

experiments from individual tillers to a sod of tillers which would be more representative of field 

growth; however, even in sods, sward cutting to prepare plants for the experiment disturbed 

meadow bromegrass more than smooth bromegrass, and caused slow tiller growth or even 

caused some tillers to senescence at the edges of pots. In addition, for smooth bromegrass 

(species with long rhizomes), spread of rhizomes was limited by the edge of the pot in the 

greenhouse, which probably could not represent field growth. 

                   In summary, examination of the effect of defoliation on growth in the greenhouse 

allowed a more constant control of temperature and soil water than in the field; however, the 

disturbances caused by removing plants from the field and restricted growth in greenhouse pots 

limited the usefulness of our greenhouse study. 
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Appendix C 

 
 

 

Table C1. Below-ground biomass production of three bromegrass species after 60 days 
(1260GDD) growth in the greenhouse in undefoliated control or following defoliation to 
5 cm at different developmental stages. Data are from two experiments conducted in 
2006 and 2007.  
                   Undefoliated           Defoliated at                         Defoliated at                Defoliated at 
Species         control                  vegetative stage                    stem elongation    vegetative stage + two weeks 
        

--------------------------------------------g m-3------------------------------------------- 
meadow   18480 ay              14149 ab                    10554 bc                   7168 c 
smooth  16799 a              10949 b                      8356 b                   5617 b
hybrid  17882 a               12280 b                      7840 b                   7480 b
     
P     0.93                0.26                       0.28     0.39 
SEMz  3748 2500 1589  1267  

 z SEM=standard error of the mean; GDD= Growing-degree-days;  
 y Means within a row with the same lower case letter are not significantly different (P≤0.05). 
  

 

 

 

 

 

 

 

 

 

 

111 



 

 
 
Table C2. Below-ground dry matter of three bromegrass species in an undefoliated 
control and after 46 days etiolated growth in the field during the summers of 2006 and 
2007 at Saskatoon, Saskatchewan. 
                       Undefoliated            Vegetative             Stem elongation      Reproductive    
 Species          control                      stage                        stage                      stage                P                 SEM   
                            ------------------------------------ g m-3 ---------------------------------- 
    meadow       7980 az Ex               3580 a F                   2720   F                3320   F          <0.01             450    
    smooth        5610 b   E                1780 c F                   2280   F                2630   F          <0.01             420 

h
 
ybrid          6430 ab E                2720 b F                   2730   F                2770   F          <0.01             610   

P                   0.03                         <0.01                       0.64                       0.47 
SEM              600                          323                          182                        208 

 Z Means within a column with the same lower case letter (a-c) are not significantly different (P≤0.05). 
 x Means within a row with the same upper case letter (E-F) are not significantly different (P≤0.05). 
 y  SEM=standard error of the mean. 
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