
 
    A COMPREHENSIVE STUDY ON THE ROLE OF HORMONES, SEED COAT 
AND GENES DURING THE GERMINATION OF CANOLA (BRASSICA NAPUS) 
SEED UNDER ADVERSE ENVIRONMENTAL CONDITIONS   
 

 
 
 
 
 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Plant Sciences 

University of Saskatchewan 

Saskatoon 

By 

WENTAO ZHANG 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright Wentao Zhang, August, 2008. All rights reserved. 
 
 
 
                                                    

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226128136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 i

 
Permission to Use 

           In presenting this thesis in partial fulfillment of the requirements for a 

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries 

of this University may make it freely available for inspection. I further agree that 

permission for copying of this thesis in any manner, in whole or in part, for scholarly 

purposes may be granted by the professor or professors who supervised my thesis 

work or, in their absence, by the Head of the Department or the Dean of the College 

in which my thesis work was done. It is understood that any copying or publication 

or use of this thesis or parts thereof for financial gain shall not be allowed without my 

written permission. It is also understood that due recognition shall be given to me 

and to the University of Saskatchewan in any scholarly use which may be made of 

any material in my thesis. 

           Requests for permission to copy or to make other use of material in this thesis 

in whole or part should be addressed to: 

       

        Head of the Department of Plant Sciences 

        51 Campus Drive 

        University of Saskatchewan 

        Saskatoon, Saskatchewan S7N 5A8 

 

 

 

 



 

 ii

ABSTRACT 

           Seed vigor, although not well understood, is a key critical component for yield and 

is in part due to a well establishment and vigorous stand of canola (Brassica napus) 

seedling under less than ideal conditions in Western Canada. My objective was to 

determine what constitutes vigor by studying the response of a black seed line and a 

yellow seed line imbibed at 8 ºC in either water,  saline or osmotic solutions,  abscisic 

acid (ABA), ABA biosynthesis inhibitor, gibberellin (GA4+7), inhibitor of GA 

biosynthesis and a germination promoter, fusicoccin. Also tested was the effect of seed 

coat (testa) on seed germination rate and percent germination. Previous studies have 

established that seed vigor is in part hormonal controlled and genetically controlled. In 

our study, gene expression was investigated by using transcriptome analysis and 

hormonal analysis was used to quantitate the changes in hormones and their metabolites 

during germination.        

           Both the black and the yellow canola seed lines were very sensitive to increasing 

concentrations of saline and osmotic solutions; however, at the same osmotic potential, 

osmotic solutions were more inhibitory. The yellow seed line was more sensitive to these 

conditions than the black seed line. As expected, ABA delayed seed germination, 

whereas GA4+7 enhanced seed germination and GA4+7 partially overcame the inhibitory 

effect of ABA. The seed coat was a major factor affecting the germination rate of the 

yellow seed line; however, GA4+7 overcame the inhibitory effect of the seed coat, 

whereas ABA exacerbated it. Fusicoccin was more stimulatory to germination than 

GA4+7; however, unlike GA4+7, it was unable to overcome the inhibitory effect of 

paclobutrazol, a GA biosynthesis inhibitor. Fluridone, an ABA biosynthesis inhibitor, 
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was unable to overcome the inhibitory effects of a saline solution suggesting that the 

inhibitory effect was not due to elevated ABA levels. Ethylene, a stimulator of 

germination, did not appear to be involved in the germination of these two lines. 

Controlled deterioration at 35 ºC, 85% RH was either partially or completely overcome 

by exogenous GA4+7. This study demonstrates that the role of hormones, salinity and seed 

coat on the germination of canola seed under low temperature enviromental conditions.       

           During germination, ABA declined while GA4 increased. Higher ABA was found 

in un-germinated seeds compared to germinated seeds. GA4+7 was lower in seeds imbibed 

in the saline solution compared to seeds imbibed in water. Un-germinated seeds imbibed 

in ABA had lower GA4+7 compared to un-germinated seeds imbibed in water; however, 

the contents of GA4+7 were similar for germinated seeds imbibed in either water or ABA. 

Phaseic acid (PA) and dihydrophaseic acid (DPA) increased in seeds imbibed in either 

water, the saline solution or ABA, while they decreased in seeds imbibed in GA4+7.  In 

addition, we found that ABA inhibited GA4 biosynthesis, whereas, GA had no effect on 

ABA biosynthesis, but altered the ABA catabolic pathway.  

           Gene expression profiles revealed that there are significant differences between 

un-germinated and germinated seeds. Seeds imbibed in water, GA4+7, a saline solution or 

ABA had different gene profiles. LEA genes, hormone-related genes, hydrolase-related 

genes and specific seed germination-related genes were identified and their expression 

profiles were finely associated with seed germination performance.  
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1. Introduction 
 

           The seed is a critical stage in the plant life history in that it protects the plant from 

unfavorable conditions as well as its role as a dispersal unit of the next generation 

(Bentsink and Koornneef, 2002). Seed germination begins when quiescent dry seeds 

uptake water and is completed when the radicle penetrates the seed coat (testa) (Bewley, 

1997a; Gallardo et al., 2001; Gallardo et al., 2002). Environmental factors such as light, 

water, temperatures and stressful conditions can affect the germination rate and percent 

of seed germination (Bewley, 1997a; Bentsink and Koornneef, 2002). The environment 

during seed development and maturation has a profound effect on the viability and vigor 

of seeds. Numerous studies have focused on the regulatory roles of hormones, proteins 

and genes on the control of seed germination; however, there are limited data on canola 

(Brassica napus) seed germination. 

           Seed vigor is the major factor affecting germination, seedling emergence, stand 

establishment, weed competition, carbon fixation, quality and final yield especially for 

small seeded crops, such as canola. Environmental constraints during seed development 

(embryogenesis) restrict and impair development and consequently affect seed 

germination and seedling emergence. Since all seeds do not develop at the same time on 

the plant, a population of seeds is exposed to different constraints. This partially explains 

why subsequent time to complete germination follows a sigmoid distribution that can 

range from 1 day to several months. 

           Canola, a small seeded oil crop, currently ranks number two in total acreage and 

contributes 2 to 2.6 billion dollars annually to the total revenue for Canada. However, 

adverse environmental spring conditions often delay germination and seedling emergence 
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by one to two weeks. Since germination and emergence are dependent on seed rerserves, 

it is a race against time for seedlings to emerge and accumulate energy from 

photosynthesis. Cool spring soil temperatures delay germination and emergence resulting 

in microbial and flea beetle attack, decreased seedling vigor, delayed maturity, and 

decreased yield. To conserve energy and moisture, and to reduce erosion, producers are 

switching to conservation tillage practices which are proving to be very successful. The 

downside to this practice is that soil temperatures are 2 to 5 ºC cooler than tilled soils. 

When maturity is delayed, the plant flowers and develops seed during the hottest and 

driest period of the growing season. Temperatures higher than 27 ºC results in flower 

abortion and reduced pod and seed set, therefore reducing seed yield and oil content 

(Morrison 1993; Angadi et al., 2000). Kirkland and Johnson (2000) observed canola 

sown in the fall prior to freeze-up flowered and matured two to three weeks earlier than 

canola sown in spring. Yields were 38% higher and oil content was 2% higher for fall 

sown canola versus spring sown canola (Gusta et al., 2004). Fall sown canola seeds were 

larger, had higher seed weight, and were dark in colour indicating the seeds were fully 

mature. Due to environmental constraints, spring sown seeds are brown in colour, small, 

have a low seed weight and often lack vigor. A delay in maturity from slow and poor 

spring establishment can result in reduced yield and unmarketable green seed due to fall 

frosts. The Canola Council of Canada has identified low seed vigor as a major factor 

limiting both stand establishment and yield in western Canada. 
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           Low soil temperatures and salinity are considered to be major factors limiting seed 

germination, emergence, and stand establishment of canola in western Canada. It has 

long been established that the fertilizer and its site of application have a dramatic effect 

on seed germination and stand establishment (Ukrainetz, 1974; Rostad et al., 1995). 

While information about the control of seed germination has greatly increased, 

knowledge about the response of hormones and genes for seeds germinated under abiotic 

stress conditions is minimal.  An understanding of the regulatory roles of hormones and 

genes on seed germination could be used to predict germination response and may be 

used by plant breeders to select superior genotype.     

Hypothesis 

           Seed germination and germination rate are a function of gene regulation which is 

controlled in part by environmental factors and phytohormones.       

Objectives 

Physiology 

           To assess the role of a saline solution, osmoticum, hormones and their 

biosynthesis inhibitors, seed coat (or testa) and controlled deterioration (CD) on the 

germination of canola seed at 8 ºC. 

Hormone Dynamics 

           To analyze changes in endogenous phytohormone profiles and determine their role 

in canola seed germination.  
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Genes Associated with Germination    

           By genomic (microarray) analysis to identify genes which are associated with 

canola seed germination at low temperature in the presence of exogenous hormones, and 

a saline solution.  
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2. Literature Review 

2.1 Seed Development   

           Seed development or formation is important in that it determines seed vigor which 

affects subsequent seed germination and stand establishment (Mohamed et al., 1985; 

Sanhewe and Ellis, 1996). Genes that affect seed size, dormancy and germination, have 

been reviewed by Nonogaki (2006). Seed development is divided into two phases: early 

embryogenesis and maturation (Braybrook et al., 2006). In the earlier embryogenesis 

stage, the heart shape seed embryo is formed and thereafter, the seed enters the seed 

maturation stage (Goldberg et al., 1994). During this stage, storage reserves are 

accumulated and also most seeds acquire desiccation tolerance (Kermode, 1997; Vertucci 

and Farrant, 1997).  Seeds with desiccation tolerance are called orthodox seeds and can 

be dried and stored over time, while, seeds without desiccation tolerance are called 

recalcitrant seeds and can not be stored in a dry stage (Vertucci and Farrant, 1997). 

2.1.1 Early Seed Embryogenesis 

           Early embryogenesis initiates from double fertilization and ends with the heart 

stage (Chaudhury et al., 2001). One sperm cell fuses with the egg cell and the second 

sperm cell fuses with the central cell, leading to the formation of a diploid zygote and a 

triploid endosperm respectively in the embryo sac (Goldberg et al., 1994; Ohad et al., 

1996; Berger, 1999). At this stage, the basic body plan, formation of apical-basal and 

radial pattern is established (Jürgens et al., 1991; Laux and Jürgens, 1997). The apical –

basal pattern is arranged along the axis with the alignment of shoot meristem, cotyledons, 

hypocotyls, roots and root meristem from top to bottom (Jürgens et al, 1991). The radial 

pattern is characterized by a concentric arrangement of the primary tissues: central 
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conductive tissue, peripheral epidermis and underneath ground tissue (Laux and Jürgens, 

1997).  

           The body plan set up during early embryogenesis is very important in that it 

determines the future development of seedlings; however, the controlling mechanisms 

underlying this pattern formation are poorly understood. Most of the knowledge about 

pattern formation comes from the study of Arabidopsis mutants. Mutation in the 

GNOM/EMB30 (GN) gene affects the apical-basal polarity of embryo and mutation in the 

GURKE (GK) gene has a specific effect on the development of apical domain (Laux and 

Jürgens, 1997). Four genes, WUSCHEL (WUS), ZWILLE (ZIL), Shoot Meristemless 

(STM) and AINTEGUMENTA (ANT) are suggested to function in shoot meristem 

organization and defects in these genes result in an abnormal organization of the shoot 

meristem (Laux and Jürgens, 1997; Jürgens, 2001). Three genes MONOPTEROS (MP), 

BODENLOS (BDL) and AUXIN RESISTANT 6 (AXR6) are required for the proper 

development of the root meristem (Jürgens, 2001). Abnormal radial pattern formation is 

displayed by mutations in the following genes: PINOCCHIO (PIO), SCRECROW (SCR) 

and WOODEN LEG (WOL), indicating regulatory roles of these genes in the 

establishment of radial pattern (Laux and Jürgens, 1997). Studies on early embryogenesis 

have been greatly improved by analyzing these specific mutant phenotypes (Laux and 

Jürgens, 1997). However, molecular studies have yet to define or resolve how these genes 

control the body plan. Further molecular studies should provide an insight on the function 

of these genes and will also facilitate testing the genetic models of cell interactions.                        

2.1.2 Endosperm Development 
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           Endosperm development is another important event during early embryogenesis. 

Endosperm development is classically dived into four stages: syncytical, cellularization, 

differentiation and death (Berger, 1999; Chaudhury et al., 2001). The main function of 

the endosperm is for storage accumulation in monocots as well as the control of nutrients 

to the embryo in dicots (Olsen, 1998; Hirner et al., 1998). However, studies on carrot 

seeds revealed that the endosperm controls embryogenesis (Van Hengel et al., 1998). 

Moreover, mutant studies in Oryza sativa and Zea mays indicated that the embryo and 

endosperm regulate the development of each other (Hong et al., 1996; Opsahi-Ferstad et 

al., 1997). Therefore, the function of the endosperm is more complicated than previously 

thought. 

           Information about the regulation of endosperm development is enhanced by the 

identification of the fertilization- independent seed (fis) class mutants which affect 

endosperm development (Chaudhury et al., 2001). The FIS/MEDEA (MEA) and the  FIS/ 

FIE  fis class genes display a gametophytic maternal-effect and mutants produce abortive 

seeds  (Ohad et al., 1996; Chaudhury et al., 1997; Grossniklaus,1998, 2001; Luo et al., 

1999). In Arabidopsis, the MEDEA (MEA) gene encodes a SET [Su(var)3-9, Enhancer-

of-zeste, Trithorax] -domain,  polycomb group (PcG) protein, homologous to the 

Enhancer of zeste [E(z)] in Drosophila (Grossniklaus et al., 1998). Mutation of the MEA 

gene results in the formation of an endosperm in the absence of fertilization and extends 

endosperm nucleation after fertilization (Kiyosue et al., 1999). Genetic studies 

characterized MEA as an imprinting gene that displays parent –of-origin-dependent 

effects specifically on the endosperm. FIE was identified as a gene involved in the 

repression of endosperm development by inhibiting transcriptional genes required for 
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central cell nucleus replication until fertilization occurs (Ohad et al., 1996, 1999). The 

product encoded by the FIE gene is homologous to extra sex combs (esc), WD motif – 

containing ploycomb proteins in Drosophila and mammals (Ohad et al., 1999). Two 

mechanisms were proposed to explain the effects of the FIE gene on repression of 

endosperm development. The first mechanism suggests that endosperm development is 

triggered by the activation of the FIE protein which is required in advance of the 

initiation of fertilization (Ohad et al., 1996). A mutation of FIE produces an active FIE 

which initiates endosperm development without fertilization (Ohad et al., 1996). The 

second mechanism suggests that fertilization inactivates the FIE protein which prevents 

endosperm development. Mutation of FIE abolishes the requirement of fertilization for 

endosperm development (Ohad et al., 1996). FIS2, another gene associated with 

prevention of endosperm development before fertilization, was characterized to encode a 

Zn-finger protein that acts as a transcriptional regulator (Luo et al., 1999; Grossniklaus et 

al., 2001). Sequence affinities between MEA and FIE and a similar function of MEA, FIE 

and FIS2 on endosperm development indicate these proteins may form a complex that 

regulates seed development (Grossniklaus et al., 2001). A yeast two-hybrid experiment 

revealed that MEA and FIE interact directly; however, no direct interaction of FIS2 

occurs with FIE or MEA (Luo et al., 2000). A MEA and FIE complex with a 600kDa 

molecular weight was identified to be associated with seed development in Arabidopsis. 

Another protein   MULTI-COPY SUPPRESSOR OF IRA1 (MSI1) is also a component 

of this complex (Kohler et al., 2003). Similar to MEA, FIE and FIS2, MSI1 is also an 

imprinting gene with parent-origin-effects on seed development. Seed abortion will occur 

if any of the above mutant alleles is present in its mother plant (Kohler and Makarevich, 
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2006). This maternal effect on seed endosperm development is postulated to be 

controlled by DNA methylation (Adams et al., 2000; Kohler and Makarevich, 2006).  

2.1.3 Seed Maturation 

           Following embryogenesis, cell division of the embryo is arrested and seed 

development enters the maturation stage (Vicente-Carbajosa and Carbonero, 2005). Seed 

maturation is the quiescent process in the plant life cycle which is suggested to be an 

evolutionary mechanism to circumvent adverse conditions until the environment is 

favorable to disperse the next generation (Wobus and Webber, 1999; Vicente-Carbajosa 

and Carbonero, 2005; Braybrook et al., 2006). Seed maturation can be divided into three 

phases: early, mid and late maturation (Vicente-Carbajosa and Carbonero, 2005). During 

early and mid maturation, storage proteins accumulate. During the late maturation stage, 

LEA (Late Embryogenesis Abundant) proteins, and metabolites in the form of 

carbohydrates and lipids, accumulate (Baud et al., 2002; Vicente-Carbajosa and 

Carbonero, 2005). Also, during this process, desiccation tolerance and seed dormancy are 

initiated (Vicente-Carbajosa and Carbonero, 2005)   

           Information on the regulation of these processes at the molecular levels comes 

from studies on Arabidopsis, grain legumes and cereals (primarily maize) (Wobus and 

Weber, 1999). Mutations and transcriptome analysis has provided important information 

on the controlling mechanisms of seed maturation.  Mutation studies revealed that four 

genes: FUSCA3 (FUS3), ABSCISIC ACID INSENSITIVE3 (ABI3), LEAFY 

COTYLEDON1 (LEC1), and LEC2 play crucial roles in seed maturation (Fischer et al., 

1998; To et al., 2006). Excluding LEC1, which encodes the CBF like transcription 

factors, the other three genes encode plant-specific B3 domain transcription factors 
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(Lotan et al., 1998; Giraudat et al., 1992; Luerssen et al., 1998; Stone et al., 2001). Based 

on phenotypes, fus, lec1 and lec2 are characterized as LEC group due to their effect on 

cotyledon development, while, abi3 displays distinct phenotypes such as the absence of 

chlorophyll degradation and reduced sensitivity to ABA (Vicente-Carbajosa and 

Carbonero, 2005; To et al., 2006).  ABI3, FUS3 and LEC2 induce specific seed 

maturation genes. The B3 conserved domain in these three transcription factors suggests 

a similar regulatory mechanism on specific seed maturation genes. These three 

transcription factors bind directly to the seed maturation-specific genes RY motif and 

activate their expression, except for ABI3 which also has an ABA responsive element 

(Reidt et al., 2000; Kroj et al., 2003; Finkelstein et al., 2002). LEC1 is homologous to the 

HAP3 subunits of CBF class transcription factors and activates a specific group of genes 

required for normal Arabidopsis seed development (Lotan et al., 1998). In addition, 

LEC1 also plays an important role in early embryogenesis (Lotan et al., 1998).  

           Studies from a single mutation event of FUS3, LEC and ABI3 and the additive 

effects of double mutations indicate these three genes work in parallel pathways (To et 

al., 2006). Ectopic expression studies of LEC1 revealed that LEC1 regulates seed storage 

proteins (SSPs) via the induction of ABI3 and FUS3 (Kagaya et al., 2005). Recently, 

analysis of single, double and triple maturation mutants of LEC1, FUS3, ABI3 and LEC3 

provided more details about the interaction of these four genes and established a network 

of local and redundant regulation of these four genes on Arabidopsis seed maturation (To 

et al., 2006).   

2.2 Seed Dormancy  

2.2.1 Seed Dormancy 
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           Seed dormancy is a very complex, controversial and poorly understood field in 

seed biology (Bewley, 1997a; Finch-Savage and Leubner-Metzger, 2006).  Dormancy 

can be defined simply as a seed trait that blocks the germination of viable seeds under 

favorable conditions (Bewley, 1997a). However, this definition does not accurately 

describe this character and some researchers have developed more elaborate theories to 

define dormancy (Vleeshouwers et al., 1995). Generally, seed dormancy is considered to 

be an adaptive trait (Foley, 2001). Through this adaptation, seed germination occurs 

when conditions are suitable for both the germination and subsequent establishment of 

seedlings (Finch-Savage and Leubner-Metzger, 2006; Finch-Savage et al., 2007). The 

degree of seed dormancy is variable in different species and is also controlled by both 

genetic and environmental factors (Li and Foley, 1997). Due to its importance in seed 

germination, it is necessary to study the induction and release of dormancy during seed 

development and seed germination (Vleeshouwers et al., 1995).   

           Seed dormancy can be divided into primary dormancy and secondary dormancy 

based on the dormancy state (Foley, 2001). Primary dormancy is established during seed 

development, specifically at a later stage of seed development. Non-dormant seeds 

incubated under adverse conditions may be induced into secondary dormancy (Bewley, 

1997a; Gubler et al., 2005; Cadman et al., 2006). Seed dormancy can be classified as seed 

coat-imposed dormancy and embryo dormancy due to the different location of constraints 

on germination (Bewley, 1997a; Foley, 2001). By physiological classification, seed 

dormancy can be categorized into five groups: physiological dormancy (PD), 

morphological dormancy (MD), morphophysiological dormancy (MPD), physical 
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dormancy (PY) and combinational dormancy (PY+PD) (Baskin and Baskin, 1998, 2004; 

Finch-Savage et al., 2006).  

2.2.2. Dormancy Induction and Release 

           Primary dormancy is established during seed maturation to suppress vivipary on 

the mother plant (Karssen et al., 1983; Hilhorst et al., 1995; Thompson et al., 2000; 

Kucera et al., 2005). ABA is speculated to be the major regulator of seed dormancy 

induction and maintenance (Koornneef et al., 2002; Finch-Savage and Leubner-Metzger, 

2006). Studies on Arabidopsis revealed two peaks of ABA accumulation during seed 

development (Finkelstein et al., 2002). The first peak, which is of maternal origin, 

precedes the maturation stage and functions to prevent premature germination at the end 

of early embryogenesis (Karssen et al., 1983; Finkelstein et al., 2002). During the 

maturation stage, a second peak of ABA accumulation occurs in the embryo to induce 

seed dormancy (Karssen et al., 1983; Finkelstein et al., 2002). Arabidopsis mutants for 

ABA biosynthesis and reciprocal crosses with the wild type have provided important 

clues that ABA regulates the induction of seed dormancy (Karssen et al., 1983). Genetic 

studies on Arabidopsis and cereals revealed several QTLs which affect dormancy 

(Bentsink and Koornneef, 2002). From QTL analysis, a gene DOG1 was identified in 

Arabidopsis that is thought to be involved in seed dormancy; however, its function is still 

unknown (Bentsink et al., 2006).  

           Several factors such as after ripening, light, temperature and certain chemicals are 

suggested to be involved in the breaking of seed dormancy (Finch-Savage and Leubner-

Metzger, 2006; Finch-Savage et al., 2007) After ripening, a period of dry storage from a 

few weeks to several months relieves seed dormancy (Finch-Savage et al., 2007).  
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Several mechanisms are proposed to explain dormancy release by after ripening. These 

include fluctuating temperatures a reduction in ABA accumulation and sensitivity, a loss 

of light and a nitrate requirement (Finch-Savage and Leubner-Metzger, 2006). Recently, 

studies in tobacco and Arabidopsis seeds revealed several molecular mechanisms for the 

after-ripening function on dormancy release (Leubner-Metzger, 2003; Bove et al., 2005; 

Finch-Savage et al., 2007; Cadman et al., 2006). In tobacco, it has been shown that the 

expression of several genes are initiated during after ripening (Leubner-Metzger, 2003; 

Bove et al., 2005). Transcript analysis of Arabidopsis provided evidence that a gene 

program switch occurs during after ripening (Finch-Savage et al., 2007; Cadman et al., 

2006). The effect of light on seed dormancy has been demonstrated in lettuce, tomato and 

Arabidopsis (Shinomura, 1997; Yamauchi et al., 2004) and is thought to be mediated by 

the reversible conversion between red (R) light which enhances germination and far red 

light (FR) which inhibits seed germination (Shinomura et al., 1995, 1996). This reaction 

is dependent on phytochromes, which represent a family of photoreceptors. Five 

phytochrome genes phA-phE are well characterized from studies on Arabidopsis mutants. 

Among these five genes, phA stimulates seed germination photo-irreversible after seeds 

are irradiated with a low fluency of light, whereas, phB is photo-reversible and 

responsible for the well know R/FR reaction on seed germination (Shinomura, 1997). 

Temperature, especially temperatures less than 10 ºC, is another crucial factor that 

releases seed dormancy. Low temperature incubation (called stratification) can relieve 

dormancy and promote germination of Arabidopsis seeds (Yamauchi et al., 2004). 

Molecular studies on the mechanism of light and low temperatures on dormancy release 

indicate that these two factors are integrated in part to promote seed germination by 
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increasing gibberellin (GA) biosynthesis or sensitivity to GA (Yamauchi et al., 2004; 

Finch-Savage et al., 2007). Both low temperatures and light interact to alleviate the 

repressive activity of two transcription factors, Spatula (SPT) and a phytochrome-

interacting-factor-like5 (PIL5) (Penfield et al., 2005). However, the interaction between 

these transcription factors and GA biosynthesis is not very clear. Moreover, in some 

studies, GA is proposed to be a germination stimulator and not involved in the release of 

dormancy (Bewley, 1997a). 

           Certain chemicals such as nitrite and GAs have been suggested to be involved in 

dormancy release (Bethke, et al., 2006, 2007; Alboresi et al., 2005; Thomas, 1989). GAs 

are well known for their effects on seed germination; however, it is not known if GAs act 

as a dormancy releaser or germination stimulator. The role of GAs on germination will be 

discussed in a later section. Studies on the effect of nitrite on seed dormancy release 

suggest that nitrite may act as a signal and not act as a nutrient (Alboresi et al., 2005). 

This same study also suggests that nitrite interacts with GA and ABA to regulate 

dormancy release (Alboresi et al., 2005). Recently, researchers have discovered that nitric 

oxide (NO) acts as signal molecule involved in seed dormancy release and the effect of 

sodium nitroprusside, cyanide, nitrite and nitrate on seed dormancy is due to their release 

of nitric oxide (Bethke, et al., 2006, 2007).            

 2.3 Hormone Involved in Seed Germination 

           Plant hormones are defined as small molecular weight compounds that act as 

chemical messengers at low concentrations (Crozier et al., 2002). To date, mainly six 

groups of hormones including abscisic acid (ABA), gibberellins (GAs), ethylene, auxins, 

cytokinins and brassinosteroids (BRs) have been well characterized and proposed to play 
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crucial roles in plant development (Kucera et al., 2005). Among these hormones, ABA 

and GA are best known for their role in seed germination.  

 2.3.1 ABA and GA Effects on Seed Germination 

           It is well established that ABA is involved in dormancy and inhibits seed 

germination, while GA promotes seed germination (Bewley, 1997a; Kucera et al., 2005). 

The role of ABA and GA on seed germination is supported by either exogenous 

applications or genetic studies, primarily, via GA and ABA mutants (Karssen et al., 1983, 

1989; Nambara et al., 1991; Hilhorst and Karssen, 1992; Debeaujon and Koornneef, 

2000; Clerkx et al., 2003). Through the study of Arabidopsis mutants, the roles of GA 

and ABA in the control of seed transition from dormancy to germination were elucidated 

(Debeaujon and Koornneef, 2000; Parcy et al., 1994; Peng and Harberd, 2002). Several 

ABA biosynthetic mutants (aba) in Arabidopsis have reduced seed dormancy, as do 

ABA-insensitive mutants (abi) (Debeaujon and Koornneef, 2000; Clerkx et al., 2003). 

Conversely, intact seeds from mutants unable to produce GA in Arabidopsis (ga1-3) fail 

to break seed coat imposed dormancy and do not complete germination unless supplied 

with exogenous GA (Debeaujon and Koornneef, 2000). De novo GA and ABA 

biosynthesis during imbibition is demonstrated by the following studies: paclobutrazol, 

an inhibitor of GA synthesis, inhibits seed germination, in contrast to the enhanced effect 

of fluridone or norflurazon, which are ABA biosynthesis inhibitors (Le Page-Degivry and 

Garello, 1992; Debeaujon and Koornneef, 2000). GA stimulates germination in seeds 

where dormancy or quiescence is imposed by a wide variety of mechanisms such as 

incomplete embryo development, mechanically resistant seed coats, presence of 

germination inhibitors, and factors relating to the physiological competence of the 
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embryo axis (Peng and Harberd, 2002). In seeds, two different mechanisms have been 

proposed to explain the role of endogenous GA in the control of germination. The first 

one describes the induction of expression of genes encoding enzymes that hydrolyze the 

endosperm. This tissue confers part of the mechanical resistance to radicle protrusion, as 

demonstrated in tomato (Groot and Karssen, 1987), tobacco (Leubner-Metzger et al., 

1996), and barley (Schuurink et al., 1992). The second mechanism consists of a direct 

stimulation effect on the growth potential of the embryo, as suggested for Arabidopsis 

(Debeaujon and Koornneef, 2000). ABA has been suggested to induce a dormant state 

during the later phase of seed maturation, which is overcome by GA (Debeaujon and 

Koornneef, 2000).  

2.3.2. Metabolism of ABA and GA 

           The concentrations of ABA and GA are in a constant flux due to their metabolism. 

For example, in Arabidopsis seeds, following imbibition, ABA declines rapidly in non- 

dormant seeds just precceding germination, while, in dormant seeds, ABA transiently 

declines and then increases to the level observed in non-imbibed dormant seeds (Ali-

Rachedi et al., 2004). In addition, following the release of dormancy, ABA in dormant 

seeds displays a similar pattern as observed in non-dormant seeds (Ali-Rachedi et al., 

2004). A similar correlation between the level of ABA and seed germination ability was 

also observed in barley (Jacobsen et al., 2002). These studies indicate that changes in 

ABA following imbibition play an important role in the release of seed dormancy and 

subsequent germination. Molecular studies of genes involved in ABA biosynthesis and 

catabolism provide evidence how ABA is regulated.  9-cis Epoxycarotenoid dioxygenase 

(NCED) is a key enzyme controlling ABA biosynthesis (Schwartz et al., 2003; Lefebvre 
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et al., 2006). This enzyme (VP14) was first identified in maize and subsequently, 

homologous genes were identified in Arabidopsis, bean and avocado (Tan et al., 1997; 

Qin and Zeevaart, 1999; Chernys and Zeevaart, 2000; Iuchi et al., 2000, 2001). Nine 

genes related to NCED were identified in Arabidopsis (Schwartz et al., 2003). NCED3 

functions mainly in stress responses; however, NCED6 and NCED9 which are 

exclusively expressed in dormant seeds, are the major genes for ABA synthesis (Lefebvre 

et al., 2006). Increased seed dormancy was observed in transgenic seeds overexpressing 

NCED genes (Thompson et al., 2000; Qin and Zeevaart, 2002). Several ABA catabolic 

pathways have been identified and categorized into two groups based on either 

hydroxylation (including 7´, 8´ and 9´ hydroxylation) or conjugation (Nambara and 

Marion-Poll, 2005; Zhou et al., 2004). 7´ hydroxylation converts ABA to 7´ OH-ABA, 8´ 

hydroxylation produces phaseic acid (PA) which is then converted to the stable form, 

dehydrophaseic acid (DPA). The conjugation pathway forms the ABA-glucose ester 

(ABA-GE) which is the irreversible product of ABA catabolism (Nambara and Marion-

Poll, 2005). 8´ hydroxylation is proposed to be the predominant pathway for the Brassica 

species (Zhou et al., 2004). Microarray analysis in Arabidopsis revealed four genes 

encoding 8´ hydroxylase: CYP707A1-4 (Kushiro et al., 2004). From functional analysis, 

CYP707A2 is considered to be the major gene involved in the rapid decline of ABA 

during seed imbibition and dormancy release ( Kushiro et al., 2004; Okamoto et al., 2006; 

Millar et al., 2006). In addition, expression analysis also revealed that CYP707A1and 2 

function in seed development and CYP707A1 and 4 play important roles in post-

germination growth (Okamoto et al., 2006). Although 8´ hydroxylation is important for 

seed germination, other pathways may also play important roles under certain conditions. 
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For example, in the etr Arabidopsis mutant, ABA-GE is suggested to be associated with 

seed germination capacity (Chiwocha et al., 2005). 

           In contrast to the inhibitory effect of ABA on seed germination, GA is a positive 

regulator in seed germination. In Arabidopsis, GA4 rapidly increases prior to radicle 

protrusion, indicating its role in the late stage of seed germination (Ogawa et al., 2003). 

Gene expression studies revealed that several GA biosynthesis genes such as ent-kaurene 

oxidase (AtKO1), GA 20-oxidase (AtGA20ox3), and GA 3-oxidase1 (AtGA3ox1) are up-

regulated during imbibition. AtGA3ox2, another GA 3-oxidase gene is highly associated 

with the last step for the production of bioactive GA4 (Ogawa et al., 2003). A low 

temperature exposure (stratification) that overcomes seed dormancy and enhances seed 

germination increases the level of GA4.  AtGA3ox1 is thought to be the gene responsible 

for this change, whereas, AtGA3ox2 controls the biosynthesis of GA during the 

imbibition process (Yamauchi et al., 2004). These results indicate genes encoding GA 3-

oxidases have distinct roles in GA controlled plant development (Ogawa et al., 2003; 

Yamauchi et al., 2004). Gibberellin 2-oxidases transform bioactive GAs into non-active 

forms. Among seven genes encoding gibberellin 2-oxidases, only AtGA2ox2 is associated 

with GA inactivation during germination (Yamacuhi et al., 2007). AtGA2ox2 mutant 

seeds have a high level of GA4 which overcome the inhibitory effect of FR light on dark 

imbibed seed (Shinomura et al., 1996; Yamauchi et al., 2007). Isolation and 

characterization of genes involved in GA biosynthesis and catabolism, has led to a better 

understanding of how environmental conditions regulate endogenous GA levels.   
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2.3.3. Interaction between GA and ABA on Seed Germination 

           As described earlier, seed germination, in part, is regulated by the ratio of ABA to 

GA, which is finely adjusted by their anabolic and catabolic pathways (Koornneef et al., 

1982, 1984; Seo et al., 2006). Recent studies provide some evidence about the direct 

interaction between these two hormones. For example, in barley, a reduction in ABA 

precedes GA accumulation, indicating an inhibitory effect of ABA on GA biosynthesis 

(Jacobsen et al., 2002). In sorghum, ABA inhibits the expression of the GA 20-oxidase 

gene, which encodes the enzyme involved in the oxidation pathway of GA biosynthesis 

(Pérez-Flores et al., 2003). In aba2-2 mutant seeds, GA levels and genes related to GA 

biosynthesis or up-regulated by GA are enhanced compared to wild type seeds (Seo et al., 

2006). In cyp707a2-1 mutant seeds, all of these events are inhibited due to the elevated 

level of endogenous ABA (Seo et al., 2006). Based on the above results, we can propose 

that the suppressive effect of ABA on seed germination is, in part, via the inhibition of 

GA biosynthesis. Thermoinhibition studies of lettuce seeds revealed that high 

temperatures inhibit lettuce seed germination by the induction of ABA accumulation, 

whereas, exogenous GA overcomes this ABA imposed thermoinhibition by enhancing 

ABA catabolism (Gonai et al., 2004). This observation suggests that GA directly affects 

ABA accumulation by affecting the catabolism of ABA.  

 2.3.4 ABA and GA Signal Transduction 

           Environmental factors affect seed germination via interaction between ABA and 

GA; however, how seeds perceive these environmental cues and how they are transmitted 

is still obscure. The best known components of the GA signal transduction are a group of 

DELLA proteins that act as the negative regulators of the GA response (Wen and Chang, 
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2002; Lee et al., 2002). In Arabidopsis, five DELLA proteins, RGA (Repressor of GA1-

3), GAI (GA-insensitive), RGL1 (RGA-like 1), RGL2, RGL3 were identified (Wen and 

Chang, 2002; Lee et al., 2002; Tyler et al., 2004). Functional analysis suggests that RGA, 

GAI and RGL1 are involved in vegetative growth, whereas RGL2, when combined with 

RGL1 is responsible for the GA response in seed germination (Wen and Chang, 2002; 

Lee et al., 2002; Tyler, et al., 2004).  Recently, a positive gene in GA signaling 

transduction was isolated from a recessive GA-insensitive Arabidopsis dwarf mutant 

sleepy1 (Steber et al., 1998; McGinnis et al., 2003). Gene function analysis revealed that 

SLEEPY1 (SLY1) encodes an F-box subunit of SCF E3 ubiquitin ligase (McGinnis et al., 

2003).  RGA2 is degraded in the ga1-3 mutant after GA treatment; however, high levels 

are found in the sleepy1 mutant and are unaffected by GA treatment, demonstrating the 

requirement of SCFslp1 for the degradation of RGL2 (Lee et al., 2002; Tyler, et al., 2004).  

Studies with ga1-3 suggest that the disappearance of RGL2 is necessary for seed 

germination; however, high RGL2 levels are recorded in germinated sly1 mutant seeds 

(Lee et al., 2002; Tyler, et al., 2004; Ariizumi and Steber, 2007). These results show that 

degradation of RGL2 is not a prerequisite for sly1 mutant seed germination. It is possible, 

in the sly1 mutant, germination is achieved by inactivation of the RGL2 protein and not 

via degradation (Ariizumi and Steber, 2007).       

           Although there is considerable knowledge on GA signaling, elucidation as to how 

GA is perceived and its receptors are unknown. An unknown protein Os GID1, which is 

homologous to hormone –sensitive lipase in mammals was isolated from a GA 

insensitive dwarf mutant in rice (Ueguchi-Tanaka, et al., 2005). It is postulated that 

OsGID1 is a soluble receptor of GA signaling in rice (Ueguchi-Tanaka, et al., 2005, 
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2007).  In Arabidopsis, three genes homologous to rice OsGID1 were discovered by 

screening the database (Nakajima et al., 2006).  Products of these genes have similar 

biochemical and physiological characters as OsGID1, which suggests that products of 

these three genes are putative GA receptors in Arabidopsis (Nakajima et al., 2006). 

           As discussed above, ABA is an important hormone in the regulation of seed 

dormancy, germination, plant growth and development. In addition, ABA is also 

involved in plant acclimation to several abiotic stresses such as low temperatures, 

drought and salinity (Finkelstein et al., 2002). Several genetic studies have provided 

evidence as to how ABA is involved in seed dormancy and germination. Five ABA 

insensitive loci ABAI1-5 were identified by screening mutant seeds which germinated 

when exposed to ABA concentrations that were inhibitory to the wild type (Finkelstein 

and Somerville, 1990; Finkelstein, 1994; Leung and Giraudat, 1998). ABAI1 and ABI2 

genes encode proteins homologous to serine/threonine phosphatase 2Cs (PP2Cs) (Gosti, 

et al., 1999; Leung et al., 1997; Leung and Giraudat 1998), while, ABAI3, ABI4 and 

ABA4 encode transcription factors (Leung and Giraudat, 1998). The abi1 and abi2 

mutants are pleiotropic in that ABA sensitivity is affected in both seed and vegetative 

tissue (Gosti et al., 1999).  It is not known unequivocally if ABI1 and ABI2 are involved 

in ABA signal transduction or if they are positive or negative regulators of ABA 

signaling (Leung et al., 1997; Sheen, 1998; Gosti et al., 1999). Over expression of ABI1 

in maize protoplast indicated that ABI1 is a negative regulator of ABA signaling (Sheen, 

1998).  The hyper ABA sensitivity of the intragenic revertants of ABI1 and ABI2 further 

suggested that ABI1 and ABI2 act as negative regulators (Gosti et al., 1999; Merlot et al., 

2001). Based on these results, two models were proposed to explain ABI1/ABI2 function 
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in ABA signal transduction. The first is based on a physiological response. ABA 

activates the enzyme activity of ABI1/ABI2 which inhibits ABA signal transduction. The 

second model suggests that ABA represses the catalytic activity of ABI1/ABI2 (Gosti, et 

al., 1999; Merlot et al., 2001). However, neither of the above models is consistent with 

the findings that ABA increases the activity of PP2Cs and overexpression of ABI1 can 

not block ABA signal transduction (Merlot et al., 2001; Wu et al., 2003). Studies with 

ABA hypersensitive germination mutants identified another two PP2C proteins, AGH1-1 

andAGH-3-1, which also act as negative regulators in ABA signal transduction 

(Nishimura et al., 2007; Yoshida et al., 2006). Expression analysis revealed that AGH1-1 

and AGH3-1 may interact together for ABA signaling in seed development and 

germination (Nishimura et al., 2007; Yoshida et al., 2006). RNA metabolism is also 

suggested to be involved in ABA signal transduction. The ABA hypersensitive loci 

ABH1, SAD1, HYL1 and AHG2 encode components associated with RNA metabolism 

(Hugouvieux et al., 2001; Lu and Fedoroff, 2000; Nishimura et al., 2005; Xiong et al., 

2001).  

           ABI3, ABI4 and ABI5 encode the B3-, AP2- and bZip-domain transcription factors, 

respectively and regulate the effect of ABA on seed maturation, dormancy and 

germination (Finkelstein and Lynch, 2000a; Finkelstein, 1998; Giraudat et al., 1992; 

Lopez-Molina and Chua, 2000).  ABI3 is involved in the expression of LEA genes which 

are essential for the acquisition of desiccation tolerance (McCourt, 1999; Parcy et al., 

1994). Over-expression of the ABI3 gene does not show the expected enhancement of 

ABA sensitivity (Bonetta and McCourt, 1999). This indicates that ABI3 would be a 

factor for the implementation of signaling, rather than an integral component of ABA 
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signaling (McCourt, 1999). ABI5 is involved in an ABA-dependent growth arrest 

checkpoint to protect seed from drought during germination (Lopez-Molina et al., 2001). 

Further studies show that ABI3 acts upstream of ABI5 to regulate the re-induction of LEA 

genes to arrest embryo in a quiescent situation (Lopez-Molina et al., 2002). ABI4 is 

thought to be involved in a combinational signaling network with ABI3 and ABI 5 to 

mediate specific seed ABA signal transduction (Finkelstein et al., 2002; Soderman et al., 

2000). Moreover, ABI4 determines the sensitivity of lipid breakdown to exogenous ABA 

in embryo (Quesada et al., 2000; Huijser et al., 2000; Penfield, et al., 2006). 

           ABA is involved in protein modification, transcription regulation and RNA 

metabolism; however, how ABA is perceived by the cell is still elusive. Although 

previous studies found several putative ABA receptors, they have not been verified 

(Finkelstein et al., 2002). Recently, a RNA binding protein FCA was isolated from barley 

with anti-idiotypic antibodies (Razem et al., 2006). This protein has a high affinity with 

ABA and interacts with ABA during the transition to flowering (Razem et al., 2006). 

This evidence suggests that FCA is an ABA intracellular receptor involved in RNA 

metabolism and flowering time control (Razem et al., 2006; Schroeder and Kuhn et al., 

2006). A second important discovery suggests that a G-couple protein, GCR2, is an 

extracellular ABA receptor on the plasma membrane in Arabidopsis (Grill and 

Christmann, 2007; Liu et al., 2007). Physiological, biochemical and molecular studies 

support the concept that GCR2 is a receptor specifically binding to natural occurring 

ABA to control stomatal closure, seed germination and seed growth (Liu et al., 2007). 

The above results suggest that there are several ABA perception sites in plants. 

2.4 Seed Germination Restricted by Testa 
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           Seed coat conferred dormancy is an important factor that influences seed 

germination. The seed coat or testa is a multifunctional maternal origin organ which 

contributes to the embryo development and protection of seeds against adverse 

conditions. (Debeaujon et al., 2000). The seed coat delays seed germination because it 

restricts water and /or oxygen uptake or provides mechanical resistance to radicle 

protrusion (Debeaujon et al., 2000; Bentsink and Koornneef, 2002). The physical 

properties of the seed coat partially determine its effect on seed germination (Debeaujon 

et al., 2000). 

           Seed coat imposed dormancy is wide spread and common in both non 

endospermic and endospermic seeds. In non-endospermic species such as Arabidopsis, 

the seed coat and the aleurone layer (single outer layer of endosperm) act together to 

inhibit seed germination; however, in endospermic seeds as tomato and tobacco, both the 

testa and endosperm are involved (Debeaujon et al., 2000; Debeaujon and Koornneef, 

2000; Bewley, 1997b; Leubner-Metzger, 2002; Kucera et al., 2005). Seed coat imposed 

dormancy is postulated to involve both GA and ABA (Debeaujon and Koornneef, 2000). 

Transparent testa (tt) mutant studies in Arabidopsis along with GA and ABA deficient 

mutants, indicated that GA is required to stimulate the growth potential of the embryo 

which is inhibited by ABA (Debeaujon and Koornneef, 2000). Arabidopsis testa mutants 

display low seed dormancy and functional analysis revealed that these mutants affect 

pigment accumulation (Debeaujon et al., 2000). Therefore, it is plausible that pigments 

change the physical properties of the testa or act as germination inhibitors (Debeaujon et 

al., 2000; Debeaujon and Koornneef, 2000; Nonogaki, 2006). Some seeds during 

germination display two events: seed coat rupture and endosperm rupture (Liu et al., 
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2005; Müller et al., 2006). The endosperm is the living tissue and is triploid. Besides its 

nutritive function during seed germination, it also exerts a physical constraint to radicle 

protrusion. In addition, there is considerable evidence that ABA and GA exert important 

roles in endosperm imposed dormancy. In tobacco seeds, β -1, 3 glucanase (β-Glu) is 

induced in the micropylar endosperm in response to GA and is responsible for endosperm 

rupture (Petruzzelli et al., 2003). Transformation studies provided direct evidence that β-

Glu promotes endosperm rupture and ABA is inhibitory to its action (Leubner-Metzger 

and Meins, 2000). It is hypothesized that β-Glu hydrolyzes the cell wall in the micropylar 

endosperm which facilitates seed germination (Wu et al., 2000; Leubner-Metzger, 2003). 

In addition, other cell wall weakening enzymes such as glucanase and endomannase 

which are located in the endosperm are also regulated by GA and ABA (Liu et al., 2005).  

 In Arabidopsis, the aleurone layer is a restrictive force for radicle emergence (Liu et al., 

2005; Müller et al., 2006). NCED6, a gene involved in ABA synthesis and GA3ox2, a GA 

synthesis gene are expressed exclusively in this aleurone layer, further indicating roles of 

ABA and GA on endosperm imposed dormancy (Lefebvre et al., 2006; Ogawa et al., 

2003).  

2.5 The Roles of Sugars and Lipids in Seed Germination 

           Carbohydrates produced from photosynthesis serve as an energy source and 

essential molecules for plant development (Rolland et al., 2002; Dekkers et al., 2004). 

Recently, it has been demonstrated that sugars acts as signal molecules to regulate genes 

that play pivotal roles in the plant´s life cycle (Rolland et al., 2002). For example, 

mannose inhibits Arabidopsis seed germination at a concentration that is not due to an 

osmotic effect (Pego et al., 1999). Glucose analogs and a hexokinase (HXK) inhibitor 
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revealed that the HXK pathway is involved in the mannose-mediated inhibition through 

energy depletion (Pego et al., 1999). Glucose can overcome the inhibition of mannose 

and can reverse the inhibitory effect of ABA of seed germination (Pego et al., 1999; 

Garciarrubio et al., 1997). The effect of glucose on ABA inhibition on seed germination 

was first interpreted to be related to a nutritional effect; however, recent evidence 

suggests that glucose releases ABA inhibition (Finkelstein and Lynch, 2000b; 

Garciarrubio et al., 1997). High concentrations of glucose inhibit seed germination by 

accumulating higher ABA levels. Interestingly, recent studies demonstrated that low 

concentrations of glucose delay Arabidopsis seed germination under non-stressful 

conditions, in contrast to its stimulatory effects under stressful conditions (Dekkers et al., 

2004). Studies by Price et al. (2003) suggested that glucose delays seed germination by 

retarding the catabolism of ABA. Yuan and Wysocka-Diller (2006) reported that glucose 

inhibits seed germination by activating the ABA signaling pathway and at the same time 

inactivating the GA signaling pathway via the up-regulation of ABI3 and RGL2 genes, 

respectively. 

           In addition to sugar, lipids are another important group of metabolites that affect 

germination and seedling establishment. Lipids are converted to sugars by β-oxidation 

and the glyoxylate cycle (Baker et al., 2006). β-oxidation converts lipids to acyl-CoA, the 

initial substrate of  the glyoxylate cycle, while, glyoxylate produces sugars using acyl-

CoA as a  substrate (Baker et al., 2006). The cts mutant was first identified as a locus 

which positively regulates germination (Russell et al., 2000; Footitt et al., 2006). CTS 

was identified as an ABA transporter responsible for the transport of acyl-CoA to the 

peroxisome for the initiation of germination (Footitt et al., 2002). These results indicate 
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that β-oxidation is essential for germination process prior to radicle emergence (Russell et 

al., 2000; Footitt et al., 2002, 2006). Transcriptome analysis of a cts mutant demonstrated 

that the second phase of seed germination is inhibited because specific genes related to 

GA and flavonoid biosynthesis were down-regulated (Carrera et al., 2007). Malate and 

isocitrate synthases are two unique enzymes in the glyoxylate cycle. Mutant analysis of 

these two genes indicated that glyoxylate is not essential for germination, but is involved 

in seedling establishment under unfavorable conditions (Cornah et al., 2004; Eastmond et 

al., 2000). However, citrate synthase (CSY) is required for seed germination 

(Pracharoenwattana et al., 2005).  The above results demonstrate that lipid mobilization is 

essential for seed germination and seedling establishment. 

2.6 The Use of Proteomic and Transcriptomic Approach to Study Germination 

           Gene expression patterns via proteomic and transcriptomic analysis aid in the 

identification of genes involved in germination. Over 74 novel proteins were identified 

prior to radicle emergence in imbibed Arabidopsis seeds (Gallardo et al., 2001). Studies 

on wild type and GA deficient mutants demonstrated several proteins involved in 

mobilization of stored reserves, cell cycle activity and facilitating radicle emergence are 

enhanced by GA (Gallardo et al., 2002). Transcriptome analysis also verified the role of 

GA at the gene level (Ogawa et al., 2003; Yamauchi et al., 2004).  Proteomic analysis of 

an Arabidopsis CVi accession which displays dormancy revealed a group of proteins 

involved in dormancy release. In addition, the inhibitory effect of ABA on seed 

germination is associated with proteolysis of proteins which are required for seed 

germination (Chibani et al., 2006).  Priming improves seed germination and synchrony, 

meanwhile it decreases seed longevity (Heydekker, 1973; Bruggink et al., 1999; Soeda et 
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al., 2005). Transcriptome analysis revealed the positive effect of priming on seed 

germination is due to its initiation of the seed germination program, whereas the negative 

effect is the loss of stress related proteins (Soeda et al., 2005).  

           Since its first discovery in mature dry cotton seeds (Dure and Waters, 1965), 

stored or long lived RNAs are found in almost all plant seed species. Stored RNAs are 

thought to play crucial roles in seed maturation and subsequent seed germination. 

Transcriptome analysis of stored RNAs in dry Arabidopsis seeds revealed that some of 

the stored RNAs contain the ARBRE motif (Nakabayashi et al., 2005).  Previous studies 

based on metabolic inhibitors cycloheximide and actinomycin D suggested that early 

seed germination is depended on these stored RNAs for protein synthesis and de novo 

transcription is not necessary (Dure and Waters, 1965; Waters and Dure, 1966; 

Raghavan, 2000). In a further investigation, Rajjou et al. (2004) provided evidence that 

the germination potential is determined by stored RNAs and neosynthesis RNA improves 

the rate and uniformity of germination and seedling establishment.    

           Among these studies, a specific group of genes coding LEA proteins were found 

to play important roles in seed maturation and germination (Rajjou et al., 2004; 

Nakabayashi et al., 2005; Soeda et al., 2005). LEA proteins are a group of very 

hydrophilic proteins that are boiling stable (Galau et al., 1986). LEA proteins accumulate 

to high levels in the mid-to-late stages of seed maturation and disappear or decline 

following germination (Delseny et al., 2001; Grelet et al. 2005). LEA proteins are 

suggested to have a general protective role in desiccation tolerance during drying and are 

also important for seed germination under stressful conditions such as drought, low 

temperatures and salinity (Close, 1996; Swire-Clark and Marcotte, 1999; Xu et al., 1996). 
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Though their role in these conditions is not known, LEA proteins may act as 

cryoprotectants or in combination with sugars to form a glass state to prevent protein 

aggregation (Bravo et al., 2003; Wolkers et al., 2001; Goyal et al., 2005). Recent studies 

in pea reveal that a LEA mitochondrial protein coat and protect the inner membrane from 

desiccation (Tolleter et al., 2007). In spite of a large number of studies on the role of LEA 

proteins, their protective function is still unknown. In an in vitro experiment, a LEA 

protein from pea, maintained the activity of fumarase during the desiccation (Grelet et al., 

2005). Primed seeds dried slowly have a longer longevity than primed fast dried seed 

(Soeda et al., 2005). A LEA gene RAB18 was identified in the slow dried seed which was 

eventually degraded during subsequent seed germination and osmopriming (Soeda et al., 

2005). It is conceivable that during slow drying, primed seeds are able to respnd to the 

gradual increase in water potential and synthesize protective LEA proteins (Soeda et al., 

2005). Studies on LEA proteins may provide us with new insights related to seed 

longevity and the ability of seeds to germinate under adverse environmental conditions.  
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3. The effect of salinity, ABA, GA, ethylene and seed coat on the 
germination of a black seed line and a yellow seed line of canola at 8ºC  
  
Abstract 

           Due to the cool spring in western Canada, seed quality is a key critical component 

to produce well established and vigorous seedlings.  It has long been established that 

phytohormones regulate seed germination: abscisic acid inhibits germination whereas 

gibberellins enhance germination. We investigated the effects of ABA, GA, ethylene and 

inhibitors of these phytohormones alone or in combination on the germination rate of a 

black and a yellow seed canola (Brassica napus) imbibed at 8ºC. The effects of either 

saline solutions, osmotic solutions, fusicoccin or seed coat on the germination of canola 

seeds imbibed at 8ºC were also investigated. The two canola seed lines were very 

sensitive to increasing concentration of saline solutions; however, iso-osmotic solutions 

that reduced water potential were more inhibitory. The yellow seed line was more 

sensitive to these conditions than the black seed line. The seed coat (testa) was a major 

factor affecting the germination rate of the yellow seed line; however, GA4+7 overcome 

the inhibitory effect of the seed coat, whereas ABA exacerbated it. Fusicoccin was more 

stimulatory to germination than GA4+7;  however, unlike GA4+7, it was unable to 

overcome the inhibitory effect of paclobutrazol, a GA biosynthesis inhibitor. Fluridone, 

an ABA biosynthesis inhibitor, was unable to overcome the inhibitory effects of a saline 

solution suggesting that the inhibitory effect was not due to elevated ABA. Ethylene, a 

stimulator of germination did not appear to be involved in the germination of these two 

lines. Controlled deterioration at 35ºC, 85% RH could be either partially or completely 

overcome by exogenous GA4+7. This study demonstrates the role of hormones, salinity 



 

 31

and seed coat on the germination of canola seeds under less than ideal environmental 

conditions.      

3.1 Introduction 

           Seed quality, a measure of seedling vigor, has been identified as a key critical 

component for the production of well-established canola (Brassica napus) seedlings 

under less than the ideal environment and soil conditions in western Canada. Seed 

germination is initiated by water imbibition that results in the enhancement of key 

enzymes involved in the catabolism of seed storage reserves. These events are under the 

control of the genetic make–up of the seed but more importantly by the soil conditions, 

the environment and seed quality (Gusta et al., 2004). Low soil temperatures, the lack of 

available soil moisture and salinity delay and reduce canola seedling emergence. In 

western Canada, it has long been established that applied fertilizer can dramatically 

reduce canola seed germination, particularly when the seed bed is relatively dry 

(Ukrainetz, 1974; Rostad et al., 1995).  

           It is well established that phytohormones are involved in seed germination 

particularly gibberellins (GAs) and abscisic acid (ABA) (Koornneef et al., 1982, 2002; 

Bewley and Black, 1994; Bewley, 1997; Finkelstein et al., 2002; Kucera et al., 2005). 

Ethylene promotes seed germination in a wide range of species (Ketring, 1997; Gianinetti 

et al., 2007). The use of ethylene inhibitors such as aminoethoxy vinyl glycine (AVG) 

has verified in some species that ethylene affects both percent of germination (Machabée 

and Saini, 1991; Calvo et al., 2004) and the germination rate (Gorecki et al., 1991). 

However, not all species respond to ethylene or the promotive effects are not very 

significant (Matilla, 2000). Both GA and ethylene promote endosperm rupture; however, 
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only GA promotes testa rupture (Groot and Karssen, 1987; Leubner-Metzger et al., 

1995). In tobacco seeds, ABA delays endosperm rupture but does not affect testa rupture 

both of which can act as a major physical barrier to embryo enlargement and radicle 

emergence (Bewley and Black, 1994; Leubner-Metzger et al., 1995). There is substantial 

evidence on the antagonism between ABA and GA; however, only recently, it has been 

verified that GA can directly counteract the effect of ABA (Kucera et al., 2005). 

           In recent years, it has been shown that ABA modulates gene expression in 

response to dehydration, low temperature and salinity (Zhu, 2001; Shinozaki et al., 2003). 

Microarray-based analysis in response to ABA and osmotic stress have been done in 

numerous plants such as Arabidopsis (Seki et al., 2001), rice (Lin et al., 2003; Kawasaki 

et al., 2001), maize (Wang et al., 2002) and barley (Ozturk et al., 2002). Zhu (2001) 

reported that plants respond differently to salinity, Polyethylene glycol (PEG), 

dehydration and ABA. Buchanan et al. (2005) measured genome wide changes in gene 

expression in sorghum exposed to salinity, osmotic stress and ABA. The results 

demonstrated the existence of a complex gene regulatory network that differently 

modulates gene expression in a tissue and kinetic-specific manner in response to ABA, 

salinity and water deficit. Although there was an overlap in gene expression there were 

distinct responses to each of the stresses.       

           ABA is considered to be a key abiotic stress hormone (Zeevaart and Creelman, 

1988). Canola seeds primed with ABA germinated earlier and showed a higher final 

percentage germination than un-primed seed, particularly under salt and osmotic stresses 

at low temperatures (Zheng et al., 1994; Gao et al., 1999). In contrast to priming, pre-
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soaking wheat seeds in GA3 increased the germination potential at moderate levels of 

salinity; however, ABA did not (Radi et al., 2001).  

           The response of canola seed to accelerated aging has been suggested to be a means 

of evaluating seed vigor (Elliot 2002, Patent 20040241635). Results from our laboratory 

indicate that GA can partially overcome the effects of accelerated aging, suggesting 

accelerated aging may impair GA biosynthesis (Gusta, unpublished data). 

           In this study we investigated the effects of salinity, osmoticum, ABA, GA, 

ethylene and inhibitors of these phytohormones on the germination of two lines of canola 

(Brassica napus) seeds (black line N89-53; yellow line, YN01-429) at 8ºC. N89-53 is a 

parental component in the pedigree of YN01-429; however, breeders prefer for YN01-

429 due to its hiher oil and protein contents. In addition, the effect of ABA and GA on 

testa break-down was also determined. Finally, the effect of GA on accelerated aging was 

determined. 

3.2 Materials and Methods  

 3.2.1 Seed Source 

           A black seed genotype (N89-53) and a yellow seed genotype (YN01-429) were 

obtained from Dr. G. Rakow, Agriculture and Agri-Food Canada, Saskatoon, SK, 

Canada. All seeds were from the same year, 2003, and the same research station. 

Germination of all seeds at 23ºC was 97% or better and was regarded as high quality 

seed. 

3.2.2 Germination Test 

           Germination analysis was carried out at 8ºC in a 9-cm Petri dish with three layers 

of Whatman no. 1 filter paper moistened with 4.5 mL of either distilled water or test 
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solutions. All of the experiments were done in 4 replications in a completely random 

design with 100 seeds per dish. 8°C was chosen as a representative soil temperature for 

Saskatchewan spring conditions. A seed was regarded as germinated when the radicle 

protruded the seed coat (testa).  

3.2.3 Test Solutions   

 Saline solutions: K2HPO4-KH2PO4, pH 7.0:  

           A stock saline solution was made by adding 61.5 mL 1 M K2HPO4 to 38.5 mL  

1 M KH2PO4 then diluted with 700 mL, 1.15 L and 2.40 L of distilled water respectively 

to make 120 mM, 80 mM and 40 mM saline solutions with a pH of 7.0.  The osmotic 

potentials of these solutions are -0.85, -0.45 and -0.251 MPa, respectively.  

Osmotic solutions:  

           Polyethylene glycol (PEG) 8000 (Sigma) was dissolved in water to make 12% 

(w/v), 15% (w/v), 20% (w/v) solutions that had the same osmotic potential as 40 mM, 80 

mM and 120 mM saline solutions respectively. Osmotic potentials were determined with 

a vapor pressure osmometer (WESCOR, 550) as described in the manufacturer’s 

instructions.  The osmotic potentials of these solutions are -0.251, -0.45 and -0.85 MPa, 

respectively.  

  GA4+7 solutions:  

           GA4+7 (Sigma-Aldrich),  14.8 mg, was dissolved initially in 400 μL of  95% 

ethanol and  was added dropwise during stirring to 39.6 mL of distilled water to make a 1 

mM stock solution. A 25 μM GA4+7 solution (optimal concentration was detemined 

according to Gusta unpublished data) was made by diluting this stock solution. 

Abscisic acid solutions:  
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           ABA (S-abscisic acid, a generous gift from Toray Chemical, Japan), 10.6 mg, 

were dissolved initially in 400 μL of 95% ethanol and was added dropwise during stirring 

to 39.6 mL of distilled water to make a 1 mM stock solution. A 50 μM ABA (optimal 

concentration was detemined according to Gusta unpublished data) or a mixture of 25 μM 

GA4+7 and 50 μM ABA solutions were made by diluting the ABA and GA4+7 stock 

solutions. 

Fusicoccin (FC) solutions: 

           Fusicoccin (FC) (Sigma-Aldrich), 27.23 mg, were dissolved initially in 400 μL of 

95% ethanol and was added dropwise during stirring to 39.6 mL of distilled water to 

make a 1 mM stock solution. A 10 μM FC (optimal concentration was detemined 

according to Gusta unpublished data), or a mixture of  10 μM FC and 50 μM ABA or a 

mixture of 10 μM FC and 50 μM paclobutrazol solutions were made by diluting either  

FC, or the  FC and ABA, or the FC and paclobutrazol stock solutions. 

Paclobutrazol solution: 

           Paclobutrazol (Sigma-Aldrich), 11.75 mg, were dissolved initially into 400 μL of 

DMSO and was added dropwise during stirring to 1.9996 mL of distilled water to make a 

200 mM stock solution. A 50 μM paclobutrazol solution (optimal concentration was 

detemined according to Gusta unpublished data) was made by diluting the stock solution. 

Fluridone solution: 

           Fluridone (Sigma-Aldrich), 11.17 mg, were dissolved initially into 400 μL of 

DMSO and was added dropwise during stirring to 1.9996 L of distilled water to make a 

200 mM stock solution. A 50 μM fluridone solution (optimal concentration was 
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detemined according to Gusta unpublished data)   was made by diluting the stock 

solution. 

Aminoethoxy vinyl glycine (AVG) solutions: 

           AVG (Sigma-Aldrich) was dissolved in distilled water to make a 1mM stock 

solution. 10, 25 and 50 μM AVG solutions were made by diluting the stock solution.         

3.2.4 Controlled deterioration (CD) test 

           Seeds were held at 35°C, 85% RH for 0, 1, 2 and 3 weeks. Subsequent seed 

germination tests were carried out at 8ºC in  9-cm Petri dishes with three layers of 

Whatman no. 1 filter paper moistened with 4.5 mL of either distilled water or a 25 μM 

GA4+7 solution. 

3.2.5 Data Analysis 

           Data analysis was performed with SAS (SAS Institute Inc., 9.1, 2002-2002) by 

using the repeated measurement with mixed model (P<0.05). 

   3.3 Results 

           The influence of the K2HPO4-KH2PO4 saline solutions and osmotic potentials 

generated by PEG on the germination of both of the canola genotypes is presented in 

Figure 3.1. In water at 8 ºC, the black seed line (Fig. 3.1.a) germinated faster than the 

yellow seed line (Fig. 3.1.b) (P=0.008). The saline and PEG solutions inhibited the 

germination of the yellow seed genotype to a greater extent than the black seed line (40 

mM saline solution: P=0.0169; 12% PEG: P=0.009). After 7 days imbibition in the 40 

mM saline solution, approximately 55% of the yellow seed line germinated, compared to 

75% for the black seed line. Increasing the concentration of the saline solution to 80 mM 
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reduced the germination percentage after 7days to 45% and 25%, respectively for the 

black and yellow seed genotypes. 

           During the first 5 days, the black seed line had a higher germination percentage 

when imbibed in 40 mM saline solution compared to 12% PEG (P=0.001); however, after 

7 days, the germination percentages were equivalent. At higher concentrations of saline 

solutions, PEG solutions were more inhibitory than saline solutions at comparable 

osmotic potentials. In comparing the two seed lines, the yellow seed line appears to be 

more sensitive to both saline and PEG solutions. For example, there was no difference in 

germination percentage after 7 days for the 40 mM saline solution and 12% PEG solution 

for the black seed line, whereas 15% of the yellow seed line germinated in the 12% PEG 

solution versus 50% in the 40 mM saline solution. There was a small difference in 

germination percentage for the two seed lines imbibed in 120 mM saline solution: 10% of 

the black seed line germinated versus 0% for the yellow seed line. Neither the black nor  

the yellow seed line germinated in 25% PEG.  
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  Figure 3.1. Influence of KH2PO4-K2HPO4 (saline solutions), pH 7.0 and PEG 8000 (osmoticum) on the 
germination of canola seeds at 8 °C. a. B. napus N89-53; b. B. napus YN01-429.  
40 mM saline solution is iso-osmotic to 12% PEG, similarly, 80 mM saline solution to 18% PEG and 120 
mM saline solution to 25% PEG. Values are means ± s.e. of four replicates. 
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           The effect of GA, ABA, alone or in a combination on the germination of both lines 

with the seed coat on and removed is depicted in Figures 3.2 and 3.3. For seeds imbibed 

in water, the seed coat had no influence on the total number of seeds that germinated after 

7 days, although the germination for the black seed line was higher compared to the 

yellow seed line. The time for 50% germination (T50) in water for the black seed line was 

4 days versus 6 days for the yellow seed line. If seed coat was removed, the germination 

was enhanced, especially for the yellow seed line. For example, if the seed coat was 

removed, after 4 days, 85% of the yellow seed line germinated compared to the 45% for 

the black seed line (P=0.006). In the case of the yellow seed line, only 15% of the seeds 

germinated after 4 days compared to 50% if the seed coat was removed (P=0.0032). GA 

enhanced the germination of both lines if the seed coat was not removed (black seed line: 

P=0.0356; yellow seed line: P=0.0004). The effect of GA on seed germination was less 

pronounced if the seed coat was removed, especially for the black seed line. ABA 

influenced the germination more if the seed coat was present (black seed line: P<0.0001; 

yellow seed line: P<0.0001); however, the total number of seeds that germinated was 

basically unaffected. The addition of GA4+7 partially overcame the inhibitory effect of 

ABA. The T50 for the yellow seed line treated with a combination of ABA and GA4+7 was 

1.5 days shorter compared to ABA alone if the seed coat was not removed versus 0.9 

days if it was removed. The difference for the black seed line was smaller: 1.2 days 

versus 0.6 days. Fusicoccin (FC), a diterpene glucoside, is more active than GA in 

stimulating the germination of both lettuce and wheat seeds (Lado et al., 1974; Marre, 

1979; Ballio et al., 1981). In addition, FC almost completely removed the inhibitory 

effect of ABA whereas GA was only partially effective. In this study, FC was more 
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effective than GA in stimulating germination of the two canola seed lines (black seed 

line: P=0.0012; yellow seed line: P<0.0001) (Figure 3.2 compared to Figure 3.4). As 

shown by Lado et al. (1974), FC completely overcame the inhibitory effect of ABA 

(black seed line: P=0.384; yellow seed line: P=0.467), whereas, GA did not (black seed 

line: P=0.003; yellow seed line: P=0.0018) (Figure 3.2 compared to Figure 3.4). GA 

appears to play a significant role in the later stages of germination by promoting seed 

coat rupture (Hilhorst and Karssen, 1992).  Paclobutrazol (PAC), a specific GA 

biosynthesis inhibitor retards radicle protrusion which suggested that seed coat rupture is 

affected (Karssen et al., 1989). PAC at 50 μM completely inhibited the germination of 

both lines (P<0.0001) (Figure 3.5); however, the addition of GA4+7, completely overcame 

the inhibitory effect of PAC (black seed line: P=0.7842; yellow seed line: P=0.8668). FC 

only had a marginal effect on overcoming the inhibitory effect of PAC, suggesting its 

promotive effects is at a different site from GA. Fluridone (FLU), prevents the 

biosynthesis of ABA by inhibiting the production of a carotenoid which is a precursor for 

ABA synthesis (Bartels and Waston, 1978). Fluridone at 50 μM did not overcome the 

inhibitory effect of 80 mM saline solution (black seed line: P=0.6754; yellow seed line: 

P=0.5431) suggesting that ABA is not involved in the inhibitory effect of the saline 

solution.  
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Figure 3.2. Effect of GA, ABA alone and a combination of GA and ABA and seed coat on the germination 
of B. napus N89-53 seeds imbibed at 8 °C in either 25 µM GA4+7, 50 μM ABA or a mixture of 25 µM 
GA4+7  and 50 μM ABA. a. B. napus N89-53 with seed coat; b. B. napus N89-53 seed coat removed. 
Values are means ± s.e. of four replicates. 
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Figure 3.3. Effect of GA, ABA alone and combination of GA and ABA and seed coat on the germination 
of B. napus YN01-429 seeds imbibed at 8 °C in either 25 µM GA4+7, 50 μM ABA or a mixture of 25 µM 
and GA4+750 μM ABA. a. B. napus YN01-429 with seed coat; b. B. napus YN01-429 seed coat removed. 
Values are means ± s.e. of four replicates. 
 
 



 

 41

a

Time (days)
1 2 3 4 5 6 7 8 9

G
er

m
in

at
io

n 
(%

)

0

20

40

60

80

100

Water
FC
ABA
FC+ABA

b

Time (days)

1 2 3 4 5 6 7 8 9

G
er

m
in

at
io

n 
(%

)

0

20

40

60

80

100

Water
FC
ABA
FC+ABA

 
Figure 3.4. Effect of fusicoccin (FC) on the germination of canola seeds imbibed at 8 °C in either 10 µM 
FC, 50 µM ABA or a combination of 10 µM FC and 50 µM ABA. a. B. napus N89-53; b. B. napus YN01-
429. Values are means ± s.e. of four replicates. 
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Figure 3.5. Effect of paclobutrazol (PAC) on the germination of canola seeds imbibed at 8 °C in either 50 
µM PAC, 25 µM GA4+7, a combination of 25 µM and GA4+750 µM PAC or a combination of 50 µM PAC 
and 10μM FC. a. B. napus N89-53; b. B. napus YN01-429. Values are means ± s.e. of four replicates. 
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Figure 3.6.  Effect of fluridone (FLU) on the germination of canola seeds imbibed at 8 °C in either 50 µM 
FLU, 80 mM saline solution or a combination of 80 mM saline solution and 50 µM FLU. a. B. napus N89-
53; b. B. napus YN01-429. Values are means ± s.e. of four replicates. 
 
 
           Ethylene has been implicated in the promotion of germination by overcoming the 

inhibitory effect of ABA (Kucera et al., 2005). The ethylene inhibitor AVG had no effect 

at the concentrations tested on both lines of canola seed (at 50 μM concentration, black 

seed line: P=0.4075; yellow seed line: P=0.5466) (Figure 3.7).  

           Controlled deterioration has been suggested as a method of evaluating seed lots for 

seed vigor (Elliot 2002, Patent 20040241635). As shown in Figure 3.8, controlled 

deterioration at 35ºC and a relative humidity of 85% resulted in decreased germination to 

less than 50% after 2 weeks. However, the addition of GA4+7 to seeds subjected to two 

weeks of controlled deterioration completely restored the total number of germinated 

seeds, albeit the germination rate was reduced. Although seed germination rate was 

reduced (P=0.0023), the seed were still viable but impaired their germination potential. 

The addition of GA4+7 only partially overcame the effect of seeds subjected to three 

weeks of controlled deterioration (P=0.0085).        
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Figure 3.7. Effect of Aminoethoxyvinylglycine (AVG) on the germination of canola seeds imbibed at 8 °C 
in either 10 µM, 25µM or 50 µM AVG. a. B. napus N89-53; b. B. napus YN01-429. Values are means ± 
s.e. of four replicates. 
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Figure 3.8. Controlled deterioration (CD) at 35 °C, 85% RH for 0, 1, 2 and 3 weeks of canola seed N89-53.  
Subsequent germination at 8 °C in the presence of either water or 25μM GA4+7. Values are means ± s.e. 
of four replicates. 
 
 
3.4 Discussion 
 
           A black seed canola line N89-53 and a yellow seed canola line YN01-429 were 

evaluated for both percent germination and germination rate at 8ºC when imbibed in 
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either water, GA4+7, ABA, a saline solution, an osmotic solution, or inhibitors of GA, 

ABA or ethylene. There has been considerable interest in yellow seed canola due to its 

higher oil, proteins and fibre content compared to the black seed line (Rakow, personal 

communication; Burbulis et al., 2005). We established in this study that black seed canola 

line exhibits higher seed vigor at 8ºC than the yellow seed line although both lines were 

grown at the same location and the same year. Studies have demonstrated that the 

environment during seed maturation has a profound effect on seed vigor (Gusta et al., 

2004; Rajjou et al., 2004; Kucera et al., 2005). A saline solution of KH2PO4 –K2HPO4 

and an osmotic solution of PEG reduced the germination rate and the total number of 

seeds; however, solutions of PEG at the same osmotic potential as the saline solution 

were more inhibitory. Zheng et al. (1994) reported low soil temperatures in combination 

with low water potentials generated by either PEG or saline solutions reduced and 

delayed the germination of canola. In addition, they found that at -0.3 MPa, saline 

solution, NaCl, inhibited germination more than PEG. Katembe et al. (1998) working 

with halophyte seeds of Atriplex species (Chenopodiaceae) also found that NaCl 

solutions were more inhibitory than iso-osmotic PEG solutions. However, in cowpea and 

wheat, the results were the opposite (Murillo-Amador et al., 2002; Almansouri, et al., 

2001). In our studies, the germination of Brassica napus seed was more sensitive to PEG 

solutions than saline solutions, indicating water uptake is critical.  PEG8000 is a non-

penetrating solution that restricts water uptake, while ions which can be taken up into the 

germplasm can either inhibit metabolism or reduce the cell water potential.  This may 

explain why, at the same osmotic potential as the saline solution, PEG was more 

inhibitory. 



 

 45

           The antagonism between GA and ABA in regard to germination is well 

established (Karssen et al., 1983; Karssen, 1995; Bewley, 1997; Leubner-Metzger, 2002; 

Kucera et al., 2005). GA appears to be promotive in the later stages of germination by 

controlling proteins involved in radicle protrusion and seed coat rupture (Hilhorst and 

Karssen, 1992; Yamaguchi et al., 1998). There is also evidence that GA is involved in 

cell cycle activity in the early stage of germination (Liu et al., 1994; Gallardo et al., 

2002). GA is also suggested to counteract the effect of ABA by promoting ABA 

degradation (Kucera et al., 2005).  Ethylene counteracts ABA effects and promotes 

endosperm rupture, but does not affect seed coat rupture,   whereas ABA inhibits both the 

endosperm and seed coat rupture (Kucera et al., 2005). As shown in both Figures 3.2 and 

3.3, GA had a significant effect on the germination rate of both seed lines imbibed at 8 

ºC. There was approximately a one day difference in the T50 for the black seed line and a 

two day difference for the yellow seed line compared to their control respetively. If the 

seed coat was removed, the difference in T50 was either small or not significantly 

different. The seed coat is a major barrier to radicle protrusion for many seeds (Kermode, 

2005), therefore it is not too surprising in canola that the seed coat is also a major barrier 

for the protrusion of the radicle. What is surprising is the large difference between the 

two lines. Therefore, it may be possible for the breeders to select lines which the testa is 

not a major barrier at 8 ºC. These results also demonstrate the effect of temperature on the 

breakdown of seed coat. Under field conditions where moisture is often limiting, this 

difference in time to seed coat rupture can have a profound effect on seedling 

establishment.  
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           As expected, ABA inhibited seed germination, but not the percentage of 

germinable seeds. The yellow seed line was more sensitive to ABA than the black seed 

line (T50 8 days versus a T50 6 days respectively). The difference in T50 was partially 

attributed to the presence of the seed coat. If the seed coat was removed, the T50 was 

reduced by approximately 1.5 days. For both lines, if GA was added in combination with 

ABA, the inhibitory effect of ABA was partially overcome irrespective if the seed coat 

was present. These results suggest that ABA is involved in seed coat rupture as 

demonstrated by Kucera et al. (2005).  

           Previous studies revealed that FC is more effective than GA in overcoming the 

inhibitory effect of ABA (Lado et al., 1974). FC can mimic IAA and benzyladenine 

effetcs by enhancing and stimulating cell enlargement (Cleland, 1976, 1994). Although 

ABA exerts many effects, one thought is that it inhibits germination by preventing the 

embryo from entering and completing the growth phase, but how it prevents radicle 

elongation is not clear (van den Wijngaard et al., 2005). These authors suggested that FC 

stimulates radicle growth by up-regulating an osmo-pump protein which affects the 

activity of K+ permeable ion channels in the plasma membrane. In our study, FC 

completely overcame the inhibitory effect of ABA, suggesting those two compounds may 

be acting at a similar receptor site, but different from the GA site. GA only partially 

overcame ABA inhibition (Figures 3.2 and 3.3); and as shown in Figure 3.5, the GA 

inhibitor PAC completely inhibited the germination of both lines; however GA 

completely overcame this inhibitory effect, FC had only a marginal effect on PAC 

inhibition. The finding that GA4+7 completely overcame PAC inhibition suggests that 

GA4+7 is a major bioactive gibberellin for canola seed germination.  
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           The ABA inhibitor, FLU had no effect on the germination of seeds imbibed in the 

saline solution. Numerous studies have demonstrated increased concentrations of salinity 

induce a proportional increase in ABA in plants (Munns and Sharp, 1993; Cramer and 

Quarrie, 2002; Sharp and LeNoble, 2002) including Brassica species (He and Cramer, 

1996). FLU has been demonstrated to decrease ABA levels in lettuce seeds subjected to 

supraoptimal temperatures (Yoshioka et al., 1998; Gonai et al., 2004).  These authors also 

suggested that maintenance of high ABA levels induced by high temperatures inhibits 

lettuce seed germination. In tomato seeds, low temperatures and salinity have been 

demonstrated to elevate ABA and this could in part be the cause of reduced seed 

germination (Fellner and Sawhney, 2001).  These results provide evidence that this 

phenomenon also occurs in the seed germination process. However, our results do not 

provide any evidence of this in canola seeds. This suggests that the inhibitory effect of 

the saline solution is not due to elevated levels of ABA or maybe FLU is not an effective 

inhibitor on ABA biosynthesis in canola. 

           Although ethylene is broadly implicated in promoting seed germination 

(Kepczynski and Kepczynska, 1997) and is antagonistic to ABA (Kucera et al., 2005), 

AVG, an ethylene biosynthesis inhibitor had no effect on the germination of either canola 

seed line. The reason for this is not known. Ethylene is known to be produced during 

canola seed germination (Penrose and Glick, 2001; however, it may not be essential for 

germination or AVG was ineffective in this study. 

           Resistance to accelerated ageing or controlled deterioration has been suggested by 

Elias and Copeland (2001) to be a method to assess canola seed quality. The mechanism 

by which high temperatures and high humidity reduce seed germination is not known. 
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Priming overcomes the inhibitory effects of NaCl and PEG solutions on canola 

germination (Gao et al., 2002). In this study, GA4+7 completely restored germination to 

100% for seeds subjected to two weeks of controlled deterioration at 35 ºC with a RH of 

85%. The germination rate however, was reduced compared to the control (T50 5.5 days 

versus 3.5 days, respectively). The stimulation of germination by GA4+7 was greatly 

reduced in seeds subjected to three weeks of controlled deterioration. Therefore it appears 

that at the early stages of controlled deterioration, GA is either limiting or its reception 

sites are impaired.  

  3.5 Conclusion 

           Significant differences in the germination rate of canola seeds can be attributed to 

the seed coat. This difference may not be detected at warm temperatures; however, at 

cool temperatures, the breakdown rate of the seed coat is significant. Salinity and reduced 

water potential dramatically reduce the germination rate and percent of germinable seeds. 

Genotype difference can readily be selected following the procedure described in this 

study. It has been demonstrated previously that ABA and GA affect germination. We 

provide evidence that there is a strong interaction between ABA and GA4+7 on seed 

germination, especially at cool temperatures. There were little or no differences due to 

phytohormones or environmental constraints such as salinity at 23ºC (Gusta unpublished 

data) in contrast to profound differences observed at 8ºC. This suggests that seed vigor 

tests should be conducted at cool temperatures rather than warm temperatures.  Seed 

longevity appears to be partially controlled by GA, suggesting it is potential to select for 

this trait. 

           



 

 49

     4. Profile of plant hormones during the seed germination of     
         Brassica napus 
 
Abstract 
    
           Abscisic acid (ABA) and gibberellins (GAs) are the two major hormones that 

regulate seed germination in response to internal and external factors. In our study, we 

investigated hormone profiles in canola (Brassica napus) seeds that were  25%, 50 % and 

75 % germinated and their un-germinated counterparts imbibed at 8ºC in either water, 

GA4+7 , a saline solution or ABA, respectively. With germination, ABA levels declined 

while GA4 levels increased. Higher ABA levels appeared in un-germinated seeds 

compared to germinated seeds. GA4+7 levels were lower in seeds imbibed in the saline 

solution compared to seeds imbibed in water. Un-germinated seeds imbibed in ABA had 

lower GA4+7 levels compared to un-germinated seeds imbibed in water; however, the 

levels of GA4+7 were similar for germinated seeds imbibed in either water or ABA. PA 

and DPA increased in seeds imbibed in either water, the saline solution or ABA, while 

they decreased in seeds imbibed in GA4+7.  In addition, we found that ABA inhibited GA4 

biosynthesis, whereas, GA had no effect on ABA biosynthesis, but altered the ABA 

catabolism pathway. Information from our studies strongly supports the concept that the 

balance of hormones is a major factor controlling germination. 

 
4.1 Introduction 
 
           Seed germination is an important process in the life history of plants and its 

completion sets in motion the growth of the seedling (Millar et al., 2006). Seed 

germination begins when a quiescent seed uptakes water and is completed with the 

elongation and emergence of the radicle in a turgor driven process (Bassel et al., 2004). 
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Germination is a very complex physiological process which is controlled by a range of 

developmental and external cues. Genetic and physiological studies have shown the 

important role played by plant hormones in regulating seed germination (Karssen et al., 

1989; Jacobsen et al., 2002; Koornneef et al., 2002). 

           Studies on the genetic control of seed germination have mainly centered on 

hormone biosynthesis and hormone-responsive mutants. Through these studies, abscisic 

acid (ABA) and gibberellins (GAs) have been demonstrated to play an important role in 

the control of seed dormancy and germination. For example, in gibberellin deficient 

Arabidopsis and tomato mutants, the full germination response required the application of 

GA to the medium (Koornneef and Van Der Veen, 1980; Groot and Karssen et al., 1987). 

ABA-deficient (aba) as well as ABA-insensitive (abi) mutants of Arabidopsis exhibit 

reduced seed dormancy (Koornneef et al., 1982; Karsen et al., 1983; Jacobsen et al., 

2002; Debeaujon and Koornneef, 2000; Koornneef et al., 1984), while exogenous ABA 

or over-production of ABA delay seed germination or enhance seed dormancy (Frey et 

al., 1999; Thompson et al., 2000; Lindgren et al., 2003; Nambara and Marion-Poll, 2003). 

Previous studies proposed that ABA induces and maintains seed dormancy (Nambara and 

Marion-Poll, 2003; Kucera et al., 2005), whereas GA, which is antagonistic to the effect 

of ABA, releases seed dormancy and promotes seed germination (Debeaujon and 

Koornneef, 2000; Ogawa et al., 2003; Yamauchi et al., 2004; Kucera et al., 2005). The 

stimulatory role of GAs on small-seeded plants such as tomato and Arabidopsis may be 

explained by at least two different mechanisms. First, GAs induce certain hydrolytic 

enzymes to overcome the mechanical resistance imposed by the endosperm and seed coat 

(Debeaujon and Koornneef, 2000). For example, several cell wall loosing genes which 
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encode β-1, 3 glucanase and endo-β-mannanase, are GA-inducible and are consistently 

associated with germination (Leubner-Metzger, 2002; Koornneef et al., 2002; Wu et al., 

2001; Wu and Bradford, 2003; Nonogaki et al., 2000). Second, GAs increase the growth 

potential of the embryo as indicated in Arabidopsis (Karssen and Lacka, 1986; 

Debeaujon and Koornneef, 2000).    

           Previous studies indicated that GA-mediated developmental processes are 

regulated in part by changing the cellular concentration of bioactive GAs (Yamauchi et 

al., 2004). In barley and Arabidopsis seeds, GA increases during germination (Karssen et 

al., 1989; Ogawa et al., 2003; Yamauchi et al., 2004). Recent studies have shown that 

breaking dormancy by after–ripening, stratification, dark and smoke are strongly 

correlated with a decrease of ABA in seeds (Gubler et al., 2005). In addition, dormant 

cultivars of wheat and barley contained more ABA than non-dormant cultivars (Goldbach 

and Michael, 1976; Walker-Simmons and Sesing, 1990). However, some studies 

suggested that seed germination is determined by the concentration of ABA in imbibed 

seeds, and not by the concentration in dry seeds (Millar et al., 2006). For example, in 

dormant and non-dormant Arabidopsis seeds or embryos of barley, germination ability 

was highly correlated with the changing pattern of ABA upon imbibition (Ali-Rachedi et 

al., 2004; Millar et al., 2006). Hormone levels were shown to be strongly influenced by 

various endogenous and external signals (Ogawa et al., 2003; Yamauchi et al., 2004; Ali-

Rachedi et al., 2004; Millar et al., 2006). Besides hormone levels, hormone sensitivity 

also plays an important role in seed germination. In Arabidopsis, seed germination in 

response to light and low temperature stimuli was identified to be due to enhanced GA 

sensitivity, not the amount of GA (Derkx et al., 1994).  
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           The endogenous level of a given plant hormone is controlled by biosynthesis and 

catabolism. De novo GA and ABA biosynthesis during imbibition was demonstrated by 

the following observations: an inhibitor of GA biosynthesis, paclobutrazol, inhibits seed 

germination, which contrasts with the enhanced effects of fluridone or norflurazon, which 

are ABA biosynthesis inhibitors (Le Page-Degivry and Garello, 1992; Debeaujon and 

Koornneef 2000). Molecular studies indicated that two genes (NCED6 and 9) belonging 

to the Arabidopsis 9-cis-epoxycarotenoid dioxygenase (AtNCED) family are the major 

genes responsible for ABA synthesis during Arabidopsis seed development and 

germination (Tan et al., 2003; Lefebvre et al., 2006). At the same time, ABA 8′-

hydroxylase, the key enzyme in ABA catabolism was found to be indispensable for 

proper control of seed dormancy and germination (Millar et al., 2006).  Gene expression 

studies revealed that several GA biosynthesis genes such as ent-kaurene oxidase (AtkO1), 

GA 20-oxidase , GA 3-oxidase1 (AtGA30x1) and GA 3-oxidase2 (AtGA3ox2) are 

upregulated during seed imbibition and are involved in the  GA control of seed 

germination (Perez-Flores et al., 2003; Ogawa et al., 2003; Yamauchi et al., 2004). 

Gibberellin 2-oxidase (AtGA2ox2) is responsible for the deactivation of bioactive GAs 

(Yamacuhi et al., 2007). The precise control on the expression of these genes indicates 

that fine-tuning of hormone levels is an important signal for plant responses to the 

environmental factors. Therefore, studying the hormone profiles is an invaluable tool for 

investigating the role played by plant hormones during seed germination. 

           Low temperatures and salinity are considered to be important stress factors 

limiting seed germination, emergence, and stand establishment, particularly for canola 

(Brassica napus), a small seeded crop. While information on the roles of hormones on the 
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process of seed germination has greatly increased, knowledge on their roles in seeds 

subjected to abiotic stress conditions is minimal.    

           In this study, we profiled by HPLC-ESI/MS/MS ABA, ABA metabolites, 

gibberellins, auxins and cytokinins during germination of canola seeds (cv. black seed 

line, N89-53) imbibed at 8°C in either water, 25 μM GA4+7, a 80 mM buffered saline 

solution of  K2HPO4-K2HPO4 (pH 7.0) or 50 μM ABA , when 25%, 50%, and 75% of  

the seeds were considered to have germinated and also the counter parts of the un-

germinated seeds (75%, 50% and 25%).  

4.2 Materials and Methods   
 
4.2.1 Pant material and seed germination: 
   
           Brassica napus seeds, a black seed genotype N89-53 which was obtained from Dr. 

G. Rakow, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, were imbibed  at 

8°C in either water, 25 µM GA4+7, a buffered saline solution (80 mM K2HPO4-KH2PO4,  

pH 7.0) or 50 μM S(+) ABA in the absence of light. All of the experiments were 

replicated 4 times in Petri dishes with 100 seeds per dish imbibed on filter paper with 5 

mL of the above solutions.  

           Both germinated (25%, 50% and 75%) and un-germinated seeds (75%, 50% and 

25%) were collected for hormonal analysis.  

4.2.2 Extraction of plant hormones and metabolites 

           The extraction procedure was as described in Chiwocha et al. (2003) except that 

80% isopropanol acidified with 1% glacial acetic acid was used as the extraction solution. 

The extraction for each sample was replicated three times. 
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4.2.3 Analysis of endogenous plant hormones and metabolites by HPLC-ESI/MS/MS 

           The following plant hormones and their metabolites were profiled for each 

collection: i) ABA and metabolites – ABA, phaseic acid (PA), dihydrophaseic acid 

(DPA), 7′-hydroxy ABA (7′-OH ABA), neo-phaseic acid (neo-PA) and ABA glucose 

ester (ABAGE),  ii)  gibberellins (GA1, GA3, GA4 and GA7, iii)auxins – indole-3-acetic 

acid (IAA) and indole-3-aspartate (IAAsp), and iiii) cytokinins – isopentenyladenine 

(2iP), isopentenyladenosine (IPA), zeatin (Z), zeatin riboside (ZR), dihydrozeatin (DHZ), 

dihydrozeatin riboside (DHZR) and zeatin-O-glucoside (Z-O-Glu). The precursor- to 

product-ion transitions and the procedure used for quantification of endogenous plant 

hormones and metabolites using the deuterium-labeled analogue of each compound as its 

internal standard were as described previously in Chiwocha et al. (2003, 2005). Each 

sample was injected and analyzed in triplicate by HPLC-ESI/MS/ms.  

4.3 Results 
 
4.3.1 Germination response of Brasicca napus seeds at 8 °C employing various 
incubation media: 
 
           Brassica napus seeds were imbibed at 8 °C in either water, 25 μM GA4+7 (GA), a 

80 mM saline solution or 50 μM ABA in the absence of light. Compared to seeds 

imbibed in water, GA stimulated seed germination, whereas the saline solution or ABA 

inhibited seed germination (Figure 4.1). 
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Figure 4.1. Germination profiles of Brassica napus (N89-53) imbibed  at 8°C in either water, 25μM GA4+7, 
a 80 mM saline solution or 50 μM ABA in the absence of light. Germination was scored as radicle 
emergence.  Values are means ± s.e. of four replicates. 
 
4.3.2 Hormone profiles during germination 

 
           Both germinated and un-germinated seeds were collected at 25%, 50% and 75% 

germination for hormonal analysis. Hormone profiles during or after germination were 

differentiated by this method. The role of exogenous GA4+7, the saline solution or ABA 

on seed germination was also investigated. The differences among the endogenous 

hormones and their metabolites at the different stages of germination are presented.  

4.3.2.1 ABA  
 
           Changes in the levels of ABA at 25%, 50% and 75% germination and their un-

germinated counterparts are shown in Figure 4.2. It was not possible to determine ABA 

levels in seeds imbibed in exogenous ABA. However, it was possible to measure the 

ABA metabolites which will be discussed later (Figures 4.3 and 4.4). The level of ABA 

in dry seeds was 70 ng g-1 DW which in all cases decreased to less than 26 ng g-1 DW in 

germinated seed (Figure 4.2). A greater decrease was observed in seeds imbibed in the 

saline solution (20 ng g-1 DW or less) compared to the 26 ng g-1 DW for GA imbibed 
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seeds (Figure 4.2). In all the treatments, there was little or no change in the levels of ABA 

as germination proceeded. ABA levels also decreased in the un-germinated seeds but not 

to the extent as observed in the germinated seeds. For example, for 75% un-germinated 

seeds, the concentration of ABA was approximately 35 ng g-1 DW compared to 26 ng g-1 

DW for 25% germinated seeds imbibed in water (Figure 4.2). Surprisingly, the ABA 

concentration in 75% un-germinated GA imbibed seeds was similar to the level observed 

in seeds imbibed in the saline solution. In all the treatments, the level of ABA was higher 

in the 25% un-germinated seed which was the slowest to germinate. The 50% stage is 

considered to have the highest rate of germination and this is reflected by the levels of 

ABA.         

4.3.2.2 ABA metabolites 

           It appeared that ABA-GE was the main ABA metabolite stored in dry seeds 

(Figures 4.3 and 4.4). This was followed by DPA which was nearly half of the 

concentration as ABA-GE, then 7´ OH-ABA and finally PA. The levels of ABA-GE 

remained relatively constant over time in both the germinated and un-germinated seeds 

imbibed in water (Figure 4.3a). In contrast, there was an approximately a 40% increase in 

ABA-GE for seeds imbibed in GA4+7, suggesting it is the major ABA catabolite (Figure 

4.3b).  DPA increased in seeds imbibed in water; however, it increased more in 

germinated seeds compared to un-germinated seeds (Figure 4.3a). In the presence of 

GA4+7, DPA decreased in un-germinated seeds and was not detectable in germinated 

seeds (Figure 4.3b), suggesting a different pathway of ABA catabolism. There was a 

slight decrease in 7`OH-ABA in both germinated and un-geminated seeds imbibed in 

either water or GA, whereas, PA increased slightly (Figure 4.3).  
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           Changes in ABA-GE in saline solution treated seeds were similar to those 

observed for both germinated and un-germinated seeds imbibed in water (Figure 4.4a). 

The increase in DPA for saline solution treated un-germinated seeds was similar to un-

germinated seeds imbibed in water; however, there was 35% decrease in the germinated 

seeds compared to a 38% increase in the water imbibed geminated seeds (Figures 4.3a 

and 4.4a). The concentration of 7´OH-ABA in the saline solution treated seeds was 

similar to the germinated water and GA imbibed seeds and the water imbibed un-

germinated seeds. In contrast to the water and GA treated seeds and the saline solution 

treated un-germinated seeds, there was a major increase in PA in the germinated saline 

solution treated seeds (Figure 4.4a). In one of the three ABA catabolytic pathways, ABA 

is catabolized first to PA and then DPA (Harrison and Walton, 1975). It appears that 

salinity affects the conversion PA to DPA. Although ABA-GE was the major ABA 

catabolite in germinated GA treated seeds, DPA was the major catabolite in germinated 

ABA treated seeds (Figures 4.3b and 4.4b). DPA increased from 120 ng g-1 DW in dry 

seeds to 155 ng g-1 DW in ABA imbibed seeds at 25%  germination, and to over 400 ng 

g-1 DW in seeds at 50% and 75% germination. ABA-GE also increased in both 

germinated and un-germinated seeds imbibed in ABA; however its increase was not as 

large as observed for DPA (Figure 4.4b).    
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Figure 4.2.  Changes in ABA in both germinated and un-germinated seeds imbibed at 8°C in either water, 
a saline solution or GA4+7 in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% 
germination and also their un-germinated counterparts at the same intervals.  a. Un-germinated; b. 
Germinated. Values are means ± s.e. of three replicates. 
  
 



 

 59

a

Un-germinated
100 75 50 25

C
on

ce
nt

ra
tio

n 
(n

g 
g-1

 D
W

)

0

20

40

60

80

100

120

140

160

180

200

PA
DPA
7`OH-ABA
ABA-GE

Germinated
0 25 50 75

0

20

40

60

80

100

120

140

160

180

200 Un-germinated

100 75 50 25
0

20

40

60

80

100

120

140

160

180

200

Germinated
0 25 50 75

0

20

40

60

80

100

120

140

160

180

200

b

 

Figure 4.3. Changes in ABA metabolites in both germinated and un-germinated seeds imbibed at 8°C in 
either water or GA4+7 in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% germination 
and also their un-germinated counterparts at the same intervals. a. Water; b. GA4+7. Values are means ± 
s.e. of three replicates. 
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 Figure 4.4. Changes in ABA metabolites in both germinated and un-germinated seeds imbibed at 8°C in 
either the saline solution or ABA in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% 
germination and also their un-germinated counterparts at the same intervals. a. Saline solution; b. ABA. 
Values are means ± s.e. of three replicates. 
 
4.3.2.3 Gibberellins 

           GA3 was not detected in dry seeds (Figure 4.5), but at 25% germination, GA3 

increased to approximately 50 ng g-1 DW in seeds imbibed in water (Figure 4.5). At 50% 

50%, 409.5; 75%, 416.5



 

 61

germination, GA3 decreased to approximately 35 ng g-1 DW and then increased to 60 ng 

g-1 DW at 75% germination (Figure 4.5). There was a significant increase in GA3 in the 

75% un-germinated seeds imbibed in water, but then GA3 decreased from 27 ng g-1 DW 

and remained constant at 15 ng g-1 DW in the 50% and 25 % un-germinated seeds (Figure 

4.5). Trace amounts of GA4 (4 ng g-1 DW) were detected in dry seeds which increased to 

18 ng g-1 DW when 25% of the water imbibed seeds germinated and remained relatively 

constant thereafter (Figure 4.5). The level of GA4 in un-germinated seeds was similar to 

what was observed in germinated seeds imbibed in water at all stages of germination 

(Figure 4.5). In contrast to the increase in GA3 for seeds imbibed in water, there was no 

increase in GA3 in seeds imbibed in either GA4+7 (data not shown), the saline solution or 

ABA (Figure 4.6). The increase in GA4 was less in seeds imbibed in the saline solution as 

compared to seeds imbibed in water (Figure 4.6a). There was a two fold decrease in GA4 

in seeds after 75% germination. A similar pattern was observed in un-germinated seeds as 

was observed for seeds imbibed in water, except the increase in GA4 was approximately 

47% less (Figure 4.6a). In ABA treated germinated seeds, the increase in GA4 was 

similar to what was observed in water treated germinated seeds (Figure 4.6b). GA4 

increased in ABA imbibed 75% un-germinated seeds, almost to the level observed in 

water treated un-germinated seed (Figure 4.6b). Thereafter, GA4 decreased and decreased 

50% in 25% un-germinated seeds (Figure 4.6b). GA1 and GA7 were not detected in our 

study.          
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Figure 4.5. Changes in gibberellins in both germinated and un-germinated seeds imbibed at 8°C in water in 
the absence of light. Seeds were collected at 0%, 25%, 50% and 75% germination and also their un-
germinated counterparts at the same intervals. Values are means ± s.e. of three replicates. 
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Figure 4.6. Changes in gibberellins in both germinated and un-germinated seeds imbibed at 8°C in either 
the saline solution or ABA in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% 
germination and also their un-germinated counterparts at the same intervals.  a. Saline solution; b. ABA. 
Values are means ± s.e. of three replicates. 

 
4.3.2.4 Auxins  

           There was a significant increase in IAA at all stages of germination in water; 

however, IAA increased more in un-germinated seeds (Figure 4.7a). IAAsp levels 

remained constant at all stages (Figure 4.7a). In contrast to water imbibed seeds, there 



 

 64

were little or no changes in either IAA or IAAsp in seeds imbibed in either GA4+7, the 

saline solution or ABA (Figures 4.7b and 4.8).   
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Figure 4.7. Changes in auxins in both germinated and un-germinated seeds imbibed at 8°C in either water 
or GA4+7 in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% germination and also their 
un-germinated counterparts at the same intervals. a. Water; b. GA4+7. Values are means ± s.e. of three 
replicates. 
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Figure 4.8. Changes in auxins in both germinated and un-germinated seeds imbibed at 8°C in either the 
saline solution or ABA in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% 
germination and also their un-germinated counterparts at the same intervals. a. Saline solution; b. ABA. 
Values are means ± s.e. of three replicates. 
 
4.3.2.5 Cytokinins  

           ZR, iPA and DhZR were detected in either germinated or un-germinated seeds in 

all treatments except seeds imbibed in ABA (Figures 4.9 and 4.10). DhZR increased 

markedly in seeds imbibed in water, but was not detected in seeds imbibed in GA4+7 

(Figure 4.9). Compared to dry seeds, iPA increased in seeds imbibed in either water or 

GA4+7 (Figure 4.9). The largest increase was observed in seeds imbibed in water at 75% 
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of germination. For seeds imbibed in the saline solution, ZR remained at the same level 

as in the dry seeds (Figure 4.10). The levels of DhZR increased in both germinated and 

un-germinated seeds imbibed in the saline solution; however, iPA was not detected in 

either (Figure 4.10).  
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Figure 4.9. Changes in cytokinins in both germinated and un-germinated seeds imbibed at 8°C in either 
water or GA4+7 in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% germination and 
also their un-germinated counterparts at the same intervals. a. Water; b. GA4+7. Values are means ± s.e. 
of three replicates. 
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Figure 4.10. Changes in cytokinins in both germinated and un-germinated seeds imbibed at 8°C in either 
the saline solution or ABA in the absence of light. Seeds were collected at 0%, 25%, 50% and 75% 
germination and also their un-germinated counterparts at the same intervals. a. Saline solution; b. ABA. 
Values are means ± s.e. of three replicates. 
 
4.4 Discussion 

           Compared to water, seeds germinate slightly faster in the presence of GA4+7 and 

slower when imbibed in either the saline solution or ABA (Figure 4.1). This different 

germination pattern is thought to be controlled by endogenous hormones such as GA or 

ABA. To elucidate how hormones control germination, we profiled changes in ABA and 

its metabolites, gibberellins (GA3 and GA4), auxins (IAA and IAAsp) and cytokinins 
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(ZR, dhZR and iPA) in both germinated seeds and un-germinated seeds at different stages 

of germination.  In addition, we added exogenous GA4+7, ABA or a saline solution to the 

seeds to determine what effect they had on the hormones. Profiles of ABA and its 

metabolites for seed imbibed in GA4+7 and profiles of gibberellins for seeds imbibed in 

ABA will be discussed in details in the section of interaction between GA and ABA.  

4.4.1 ABA and its metabolism 
   
           ABA is a negative regulator in the control of seed germination (Finch-Savage & 

Leubner-Metzger, 2006).  ABA levels in seeds are regulated by anabolism and 

catabolism (Okamoto et al., 2006). In our study, ABA levels  decreased in all cases upon 

imbibition, irrespective of the treatments (Figure 4.2) which is consistent with the pattern 

of ABA changes observed in Arabidopsis (Ali-Rachedi et al., 2004 ) and  barley ( Millar 

et al., 2006). Moreover, our results reveal that un-germinated seeds contained higher 

ABA levels than germinated seeds in all the treatments. These results indicate that a 

decline in ABA is required for the initiation of germination and there is a threshold level 

controlling seed germination. Seeds imbibed in the saline solution germinated slower 

than seeds imbibed in water (Figure4.1). Compared to un-germinated seeds imbibed in 

water, ABA levels were higher in un-germinated seeds imbibed in the saline solution; 

however, they were slightly lower in germinated seeds imbibed in the saline solution. 

This suggests that the delay in germination for seeds imbibed in the saline solution may 

be a function of time required for the catabolism of ABA at 8ºC below the threshold 

level. This concept is supported by previous studies which demonstrated that there is a 

threshold level for ABA inhibition of germination (Millar et al., 2006). Higher ABA 

levels observed in un-germinated seeds imbibed in the saline solution may be the result of 
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induced ABA de novo synthesis or the delayed rate of ABA catabolism. Previous studies 

in lettuce (Yoshioka et al., 1998; Gonai et al., 2004), tomato (Fellner and Sawhney, 2001) 

demonstrated that delayed seed germination under stressful conditions is partially due to 

induced ABA de novo synthesis. However, fluridone, an ABA inhibitor (Yoshioka et al., 

1998), had no effect on the germination of seeds imbibed in the saline solution as 

described in the current study (Zhang and Gusta unpublished data).  The higher ABA 

levels observed in our study may be attributed to the rate of ABA catabolism which is 

inhibited by the saline solution rather than de novo ABA synthesis. Previous studies in 

either Arabidopsis (Ali-Rachedi et al., 2004), lettuce (Toyomasu et al., 1994) or barley 

(Millar et al., 2006) demonstrated a correlation between ABA levels in imbibed seeds and 

seed germinability. In our study, the lowest level of ABA was found in 50% un-

germinated seeds followed by an increase in 25% un-germinated seeds. Seeds at 50% 

germination have the highest germination rate, while seeds at 75% germination have the 

slowest germination rate. These results provide evidence to support the concept that 

endogenous ABA concentration is associated with seed germinability.  

           Previous studies have established that ABA is catabolized through two major 

oxidation pathways: 8΄- hydroxylation to PA and then to DPA and 7΄- hydroxylation to 

7΄OH-ABA (Uknes and Ho, 1984; Cutler and Krochko, 1999) or a conjugation pathway 

to ABA-GE (Zhou et al., 2004). In Arabidopsis, molecular studies with CYP707A1 and 

CYP707A2 genes which encode two key enzymes in the ABA 8`hydroxylase pathway 

revealed that the 8´ hydroxylation pathway is the major pathway involved in ABA 

controlled germination (Kushiro et al., 2004; Okamoto et al., 2006; Millar et al., 2006). In 

our study, both PA and DPA increased in seeds imbibed in water as expected with the 



 

 70

observed reduction in ABA (Figure 4.3; however, 7΄OH-ABA levels did not vary 

significantly in un-germinated seeds and slightly decreased in germinated seeds (Figure 

4.3). ABA-GE also remained relatively constant in seeds imbibed in water although it 

was the major ABA catabolite in dry seeds. These results indicates that the 8` 

hydroxylation is the preferred pathway for ABA catabolism in canola seeds imbibed in 

water at 8 ºC which is consistent with previous studies. For germinated seeds imbibed in 

the saline solution, PA was higher compared to water imbibed germinated seeds, while 

DPA decreased which is in contrast to the increase observed in germinated seeds imbibed 

in water (Figure 4.4). These results indicate the conversion of PA to DPA in seeds is 

affected by the saline solution. For seeds imbibed in ABA, DPA was significantly 

enhanced compared to water imbibed seeds. This observation is consistent with the 

concept that ABA, itself, can activate its 8´ hydroxylation catabolic pathway (Uknes and 

Ho, 1984; Cutler and Krochko, 1999; Qin and Zeevaart, 2002). In our study, we found 

that ABA-GE was also greatly enhanced in seeds imbibed in ABA. It appears that the 

ABA-GE conjugation pathway is also activated via exogenous ABA. This is different 

from previous studies in plants which have shown that only the 8` hydroxylation is 

activated (Uknes and Ho, 1984; Cutler and Krochko, 1999; Qin and Zeevaart, 2002).         

4.4.2 Gibberellins 

           GAs have been shown to be required for germination from studies on GA-

deficient mutants (Koornneef and Van Der Veen, 1980; Groot and Karssen, 1987) and 

GA biosynthesis inhibitors (Karssen et al., 1989; Nambara et al., 1991). GA4, a bioactive 

gibberellin increases in imbibed seeds indicating GA4 is essential for seed germination. 

GA4 may be a major bioactive gibberellin for canola seed germination at 8ºC. This 
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finding is consistent with studies on Arabidopsis which also demonstrated the essential 

role of GA4 in seed germination (Ogawa et al., 2003; Yamauchi et al., 2004). GA4 was 

lower in seeds imbibed in the saline solution compared to seeds imbibed in water. After 

75% of the seeds germinated in the saline solution, the 25% un-germinated seeds had the 

lowest GA4 (Figure 4.6). These results indicates that salinity delayed seed germination is 

partially induced by its inhibitory effect on GA4 biosynthesis. In combination with the 

ABA profiles for seeds imbibed in the saline solution, we propose that the saline solution 

inhibits seed germination by reducing the ABA catabolism as well as GA biosynthesis.  

 4.4.3 GA and ABA interaction 

           The antagonistic roles of GA and ABA in controlling germination can occur 

through a direct or an indirect interaction or both. Direct actions include the interaction 

between their metabolism, while indirect roles would be the opposite effect of GA and 

ABA on genes that regulate seed germination. There is a great deal of evidence to support 

the indirect action of GA and ABA on seed germination. GA and ABA have opposite 

effects on genes encoding for endo-β-mannanase, β-1.3 glucanase, α-amylase and 

expansin (Leubner-Metzger et al., 1996; Leubner-Metzger, 2002; Koornneef et al., 2002; 

Wu et al., 2001; Wu and Bradford, 2003; Chen & Bradford, 2000). In Arabidopsis, this 

indirect action of GA and ABA was also shown in the expression of several ABRE-

containing genes (Ogawa et al., 2003). However, there is less evidence to support the 

direct antagonism of ABA and GA.    

           GA3 improves seed germination by reducing ABA levels in lettuce (Toyomasu et 

al., 1994; Gonai et al., 2004), whereas, in Arabidopsis, exogenous GA4 had no effect on 
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the endogenous ABA (Ogawa et al., 2003). In our study, GA4+7 imbibed seeds had a 

higher level of ABA than seeds imbibed in water which rules out the  

 possibility that GA affects ABA biosynthesis. Although, GA4+7 had no effect on ABA 

biosynthesis, we did observe that GA4+7 affected the ABA catabolic pathway compared 

to water imbibed seeds. In water imbibed seeds, ABA was degraded to DPA, whereas, in 

GA4+7 imbibed seeds, ABA was catabolized to ABA-GE. This finding indicates that GA 

alters ABA catabolism and changes it from the major 8´ hydroxylation pathway to the 

ABA-GE conjugation pathway. ABA-GE is assumed to be an irreversible inactive 

metabolite of ABA (Cutler and Krochko, 1999), although some research has suggested 

that it can be hydrolyzed to ABA (Sauter et al., 2002). In Arabidopsis and lettuce seeds, 

the ABA-GE conjugation pathway has been proposed to be the major pathway for ABA 

degradation (Chiwocha et al., 2003, 2005). From our studies, we found that this pathway 

is activated in seeds imbibed in either GA4+7 or ABA, whereas the 8´ hydroxylation is the 

preferred pathway.            

           In barley, it has been proposed that GA biosynthesis is inhibited by ABA 

(Jacobsen et al., 2002; however, no direct evidence was obtained to support this 

hypothesis. We observed that GA4 levels were lower in un-germinated seeds imbibed in 

ABA than un-germinated seeds imbibed in water (Figure 4.6). This observation supports 

the hypothesis that ABA has an inhibitory effect on GA biosynthesis. Although lower 

level of GA4 was detected in un-germinated seeds imbibed in ABA compared to water, 

GA4 levels in germinated seeds imbibed in ABA and water were nearly identical (Figure 

4.6). Based on these results, we postulate that seeds overcome exogenous ABA by 

accumulating GA4. This ABA dependent GA requirement was also shown in an 
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Arabidopsis mutant (Debeaujon and Koornneef, 2000). Since ABA inhibits GA4 

biosynthesis, a longer imbibition time is required to attain the required level of GA to 

stimulate germination. Therefore, this may be one mechanism whereby ABA inhibits 

seed germination. In sorghum, the inhibitory effect of ABA on the expression of GA 20-

oxidase gene, the crucial gene in GA biosynthesis, also support this antagonistic role of 

ABA on GA biosynthesis (Gonai et al., 2004).  

4.4.4 Auxins and cytokinins  

           Auxin plays a major role in controlling cell elongation in isolated stem and 

coleoptile; however, there is no direct evidence that it is involved in seed germination. 

Only recently, a study in Arabidopsis revealed that several auxin biosynthesis genes and 

genes encoding auxin carrier proteins are regulated by exogenous GA4 during seed 

germination (Ogawa et al., 2003).  In addition, IAA level changes during seed 

germination were also reported in lettuce (Chiwocha et al., 2003), Arabidopsis and its etr 

mutant (Chiwocha et al., 2005). However, our study did not show a consistent 

involvement of auxins in canola seed germination. A similar conclusion was reached for 

the involvement of cytokinins. We detected ZR, DhZR and iPA during seed germination, 

but no association could be reached regarding their roles in germination.  

 4.5 Conclusion 
      
           The major hormones in controlling Brassica napus seed germination are ABA and 

GA, whereas, auxins and cytokinins had little or no effects. Reduced ABA levels and 

increased GA4 contents are required for canola seed to germinate at 8ºC; however, the 

ratio between these two hormones may be more important. Although ABA declined in 

imbibed seeds in all treatments, the catabolic pathways responsible for this decline are 
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different. ABA inhibited GA4 biosynthesis, whereas, GA had no effect on ABA 

biosynthesis; however, GA alters the ABA catabolic pathway. Both ABA catabolism and 

GA biosynthesis are reduced by salinity.    
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5. Transcriptome analysis of canola seed germination at 8ºC 
    
Abstract 

      Gene expression profiles for both un-germinated and germinated canola seeds 

imbibed at 8ºC in the presence of exogenous hormones and a saline solution were 

analyzed by microarray analysis. Transcriptome analysis revealed that there are 

significant differences between un-germinated and germinated seeds. Seeds with different 

treatments are also differentiated by their gene profiles. LEA genes, hormone-related 

genes, hydrolase-related genes and specific seed germination-related genes were 

identified and their expression profiles are finely associated with seed germination 

performance.  

    
5.1 Introduction  

           Higher plants reproduce primarily via seeds which are adapted to seasonal 

climates and germinate under less than ideal conditions. The vigour of seeds for 

economic crops is extremely important in that seeds are the starting materials for crop 

production and they also determine the rate and uniformity of emergence, emergence 

under suboptimal conditions, weed competition and yield (Gusta et al., 2004).  Seed 

germination initiates when dry seeds imbibe water and ends when the radicle penetrates 

the seed coat (or testa) (Bewley, 1997a). However, seed germination is never a 

synchronized event. This classic germination pattern of seeds is described by a sigmoid 

curve that can range from 1 day to several months. Most plants, over an extended period 

of time, do not mature uniformly and are exposed to different degrees of salinity, heat, 

cold and drought. This results in differences in vigour, dormancy and the ability to 

tolerate abiotic stresses during storage and germination. In the late few years, there have 
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been many transcriptomic studies to elucidate what controls seed vigor; however, this has 

still remained elusive. 

           Hormones are well known to be involved in seed germination (Bewley and Black, 

1994; Bentsink and Koornneef, 2002). ABA and GA are proposed to play antagonistic 

roles in the control of seed germination (Karssen et al., 1983, 1989; Hilhorst and Karssen, 

1992; Kucera et al., 2005). ABA induces seed dormancy and inhibits seed germination, 

whereas GA breaks seed dormancy and promotes seed germination (Hilhorst and 

Karssen, 1992; Kucera et al., 2005). ABA and GA mutants in Arabidopsis, tomato and 

tobacco have proven particular valuable in providing insights on the antagonistic effect of 

ABA and GA on seed germination (Karssen et al., 1983, 1989; Nambara et al., 1991; 

Hilhorst and Karssen, 1992; Debeaujon and Koornneef, 2000; Clerkx et al., 2003). 

Molecular studies on ABA metabolism in germinating Arabidopsis seeds found that 

enzymes of the NCED family (major NCED3 and 6) (Schwartz et al., 2003; Lefebvre et 

al., 2006) which are responsible for ABA synthesis, and enzymes of the CYP707A family 

(major CYP707A1 and 2) (Kushiro et al., 2004; Okamoto et al., 2006; Millar et al., 2006) 

which are responsible for ABA catabolism are involved in seed germination. In 

elucidating the role of GA on seed germination, GA 3-oxidases 1 and 2 (Ogawa et al., 

2003; Yamauchi et al., 2004), two key enzymes in GA biosynthesis and a GA 2-oxidase 

(Yamauchi et al., 2007), an enzyme involved in GA degradation, are crucial.  

           Recently, transcriptomic and proteomic studies have provided evidence that gene 

and protein expression patterns are switched as seeds start to germinate (Gallardo et al., 

2001, 2002; Finch-Savage et al., 2007). From these studies, LEA proteins, hydrolases, 

kinases and hormone related genes were found to be involved in seed germination 
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(Gallardo et al., 2001, 2002; Soeda et al., 2005). Soeda et al. (2005) reported that gene 

expression, especially abiotic stress related genes that appear in seed maturation, 

osmopriming and germination, can be used to predict the progress of seed germination as 

well as the stress tolerance of seeds. From other studies, hydrolases such as endo-β-1, 3-

glucanase, endo- β-mannanase are proposed to stimulate seed germination by weakening 

the cell wall to facilitate radicle protrusion (Wu et al., 2001; Leubner-Metzer, 2003; 

Petruzzelli et al., 2003). Rajjou et al. (2004) examined the effect of α-amanitin, a 

transcription inhibitor that targets RNA polymerase Ⅱ, on the germination of non-

dormant Arabidopsis seeds and revealed that stored RNAs in dry seeds determine seed 

germination potential, while neosynthesized RNAs affect the rate of germination.   

           Low soil temperatures and salinity are considered to be major factors limiting seed 

germination, emergence, and stand establishment of canola in western Canada. Recently, 

it has been established that fertilizer and its site of application have a dramatic effect on 

seed germination and stand establishment. While information about the control of seed 

germination has greatly increased, knowledge about the response of genes and proteins 

for seeds germinated under abiotic stress conditions is minimal.  An understanding of 

regulatory roles of genes and proteins on seed germination could be used to predict the 

seed germination and used by plant breeders to select superior genotypes.     

           In this report, we analyzed gene expression profiles in canola seeds (Brassica 

napus) imbibed at 8ºC in either water, GA4+7, a saline solution generated by a mixture of 

KH2PO4-K2HPO4 or ABA. Profiles of transcriptome in seeds imbibed in these treatments 

provide important information on how seed germination is controlled under adverse 

conditions.   
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5.2 Materials and Methods 

5.2.1 Plant material and seed germination 

           Canola seeds (Brassica napus), a black seed genotype(N89-53) which was 

obtained from Dr. G. Rakow, Agriculture and Agri-Food Canada, Saskatoon, SK, 

Canada, were imbibed  at 8°C in either  in water , 25 µM GA4+7, a buffered  saline 

solution (80 mM K2HPO4-KH2PO4,  pH 7.0) or 50 μM S(+) ABA in the absence of light.  

All of the experiments were replicated 4 times in a completely random design in Petri 

dishes with 100 seeds per dish imbibed on filter paper with 5 mL of the above solutions. 

8°C was chosen as a representative soil temperature for Saskatchewan spring conditions. 

           When the treated seeds reached 50% germination, both the germinated and un-

germinated seeds were collected respectively for microarray analysis.  

5.2.2 Microarray analysis 

5.2.2.1. RNA extraction 

           RNA was extracted by the lithium chloride (LiCl) method developed by Vicient 

and Delseny (1999). Seeds were finely ground in a mortar and pestle with liquid nitrogen 

and were suspended in 8 M LiCl to precipitate RNA on ice overnight at 4ºC.  After 

centrifuging at 13,000g through a QiaShredder (Qiagen) column, the pellet was dissolved 

in the solubilization buffer (0.5% (w/v) SDS, 100 mM NaCl, 25 mM EDTA, 10 mM 

Tris–HCl, pH 7.6, 2% (v/v) β-mercaptoethanol). The extraction was treated twice with an 

equal volume of phenol and once with an equal volume of phenol: chloroform: isoamyl 

alcohol (25:24:1). The supernatant was precipitated with an equal volume of 4 M LiCl on 

ice overnight at 4ºC. After centrifuging at 13,000g for 30 min, the pellet was washed with 

1 mL of 75% ethanol and dissolved in 40 μL of DEPC-water.  DNA was removed from 
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the RNA by the DNAse kit (United Bioinformatic Inc.) as described by the 

manufacturer’s instructions.  

 5.2.2.2 RNA amplification (aRNA) and labeling  

           RNA samples were converted to cDNA and amplified by the Ambion’s 

AminoAllyl MessageAmp II aRNA amplification kit  and labeled and purified by  the 

CyDye Post-labeling reactive dye pack (Amersham Bioscience) according to the 

manufacturer’s instructions.  

5.2.2.3 Pre-hybridization and washing 

           Brassica napus 15 K cDNA microarray slides with 15,000 ESTs were obtained 

from Dr. Andrew Sharpe, Agriculture and Agri-Food Canada, Saskatoon, SK. Slides 

were incubated in the pre-hybridization buffer (5× SSC, 0.1% (v/v) SDS, 0.1 mg/mL 

BSA) for 45 min at 37ºC. Pre-hybridized slides were washed three times by 0.1× SSC 

and dried by centrifugation at1,000g for 2 min.  

5.2.2.4 Hybridization and post-hybridization washing 

           The mixture of 11 μL labeled aRNA and 47 μL hybridization buffer (25% 

formamide, 5x SSC, 0.1% SDS and 0.1 mg/mL sonicated salmon) was denatured at 95°C 

for 3 min. The hybridization buffer was applied to the slides at 37 ºC for 12-16 hour. 

After hybridization, each slide was washed with by 2× SSC/0.1% SDS once at 37°C for 7 

min, twice with 1× SSC at room temperature for 2 min, and then twice with 1× SSC at 

room temperature for 1 min. Slides were dried by centrifugation at1,000g for 2 min. 

5.2.2.5 Data analysis and quantification 

           Hybridized slides were scanned by a ScanArray 4000 laser scanner at a resolution 

of 10 μm. The image analysis and signal quantification were done with Quantarray (GSI 
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Lumonics, Oxnard, CA, USA). Signals showing a signal value <50 in both Cy3 and Cy5 

channels were eliminated from the analysis. Data storage, preliminary data processing, 

and Lowess normalization were performed with the Bioarray Software Environment 

(BASE).  Further analysis was done by GeneSpring GX (Silicon Genetics). Gene 

expression with a difference greater than 2.5 fold compared to the control were selected. 

Two replicates were done for each seed sample.    

5.2.2.6 Northern blot Analysis 

           Probes were obtained by RT-PCR with the following primers:F:5´-GTTGCGGC- 

TCGGCTCCAGTT-3´; R: 5´-GGCAAGTCCCAGTCCCAGAAAAGA-3´ for Isocitrate 

lyase (IL);  F:-5´GGCGGCTCAGATTCCCATAAG-3´; R: 5´-TCTCCGTCCAGCT- 

 CCACTCCATAC-3´ for Malate synthase (MS). Fragments of two LEA genes were 

isolated by the degenerate primers: F: 5´-GTCGACGARTACGGYAACCC-3´; R: 5´- 

CCRGGMAGYTTCTCYTTRCT-3´ as described by Porcel et al. (2005) for D1400; Y: 

5´-CCGATGCATACTGACG-ANWANGGNAAY-3´; K: 5´-TATGATGTCCAGG- 

CAGCTTCTCYTTDAT-3´ (Saavedra et al., 2006) for D2600. PCR condition: 94ºC, 3 

min; 94ºC, 30 Sec; 50 ºC, 1 min; 72 ºC, 1 min;  30 cycle; 72ºC 15 min, keep at 4ºC.    

           Total RNA (20 μg) was loaded for each sample and northern blot analysis was 

done as described by Gao et al. (1999). RNA transferred Hybond-N (Amersham) nylon- 

membranes were pre-hybridized in 1%(v/v) SDS, 2× Denhardt’s solution, 50% deionized 

formamide and 50 μg/mL of sonicated herring sperm DNA for 4–6 h at 42ºC. Membranes 

were hybridized in 10% dextran sulfate, 1% (v/v) SDS, 2× Denhardt’s solution, 50% 

deionized formamide and probes labeled by the 32P-dCTP with the Random Primers 
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Labeling System Kit (Invitrogen) for 12-16 hours at 42 ºC.  Membranes were washed and 

developed as described by Gao et al. (1999). 

5.3 Results 
 
5.3.1 Germination response of Brasicca napus seeds at 8 °C imbibed in either water, 

GA4+7, a saline solution or ABA 

           The germination result for Brassica napus seeds imbibed at 8 °C in either water, 

25 μM GA4+7, 80 mM saline solution or 50 μM ABA in the absence of light is shown in 

Figure 5.1. Compared to water, GA stimulated seed germination, whereas ABA and the 

saline solution were inhibitory (Figure 5.1). GA4+7 only marginally increased the 

germination rate compared to water (T50 3.5 days), whereas, both ABA (T50 5.5 days) and 

the saline solution (T50 6.6 days) significantly delayed seed germination.  
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Figure 5.1. Germination profiles of Brassica napus N89-53 seeds  imbibed in either water, 25 μM GA4+7, a 
80 mM saline solution or 50 μM ABA at 8°C in the absence of light Germination was scored as radicle 
emergence.  Values are means ± s.e. of three replicates. 
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5.3.2 Gene expression analysis 

           Gene expression was done at 50 percent germination for all treatments. Un-

germinated and germinated seed were analyzed separately for each of the following 

treatments: water, GA4+7, a saline solution and ABA (listed in Table 5.1.).  

Table 5.1. Seed treatments and physiological states 
      Treatments                    Physiological states 

 
WN 
WG 
GN 
GG 
SN 
SG 
AN 
AG 

 

 
Water, 50% un-germinated seeds  
Water , 50% germinated seeds 
GA4+7, 50% un-germinated seeds 
GA4+7,  50% germinated seeds 
a saline solution, 50% un-germinated seeds  
a saline solution, 50% germinated seeds  
ABA, 50% un-germinated seeds 
ABA, 50% germinated seeds 

 
5.3.3 Principle component analysis (PCA) of gene expression analysis for seeds 

imbibed in either water, GA4+7, a saline solution or ABA 

              Principle component analysis was used to analyze the gene expression profiles 

of un-germinated and germinated seeds for all treatments. On the X-axis, GG, WG, GN, 

WN and SG grouped together, indicating similarity, whereas SN and AG grouped 

together and AN was in a group by itself (Figure 5.2). All of germinated seeds grouped 

separately from un-germinated seeds as presented with the Y-axis. In comparing 

germinated seeds to un-germinated seeds, the expression profiles of GG and GN were the 

closest followed by WG and WN which was more similar than SG and SN. The 

expression profiles of AG and AN were the least similar.  The hierarchical clustering of 

genes with expression differences greater than 2.5 fold compared to dry seeds is shown in 

Figure 5.3. There were distinct differences in gene expression for the treatments and 

between germinated and un-germinated seeds. Gene expression was very similar in both 

germinated and un-germinated seeds imbibe in either water or GA4+7, whereas the greater 
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differences between the germinated and un-germinated seeds were observed in seeds 

imbibed in either the saline solution or ABA. These results are well consistent with PCA 

analysis.      

               

     
Figure 5.2. Principle component analysis of gene expression for un-germinated and germinated seeds 
imbibed in either water, GA4+7, a saline solution or ABA. WN: un-germinated seeds imbibed in water; WG: 
germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: germinated seeds 
imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: germinated seeds imbibed 
in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: germinated seeds imbibed in ABA 
    

 
                          AG GG  WG SG GN WN  AN SN   
 

     

    
                         AG SG  WG  GG GN WN SN AN  

Figure 5.3.  Hierarchical clustering of genes with expression differences greater than 2.5 fold compared to 
dry seeds. Blue color represent genes down regulated; red color, represent genes up-regulated; black colour, 
represent no expression differences compared to dry seeds. WN: un-germinated seeds imbibed in water; 
WG: germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: germinated 
seeds imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: germinated seeds 

GG 
WG 

SG 

AG

GN 
WN 

SN

AN
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imbibed in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: germinated seeds imbibed 
in ABA. 
 

5.3.4 Changes in gene expression between un-germinated and germinated seeds 

           The hierarchical clustering of genes with expression differences greater than 2.5 

fold between germinated and un-germinated seeds is shown in Figure 5.4. There were 

clear differences between germinated and un-germinated seeds for all treatments. As 

expected, there were a large increase in both the number and degree of expression of 

genes during germination. The greater differences occurred in seeds imbibed in either the 

saline solution or ABA (Figures 5.4 and 5.5). For seeds imbibed in GA4+7, 262 genes 

were differentially expressed between germinated and un-germinated seeds, 398 for seeds 

imbibed in water, 723 for seeds imbibed in the saline solution and 1008 for seeds imbibed 

in ABA (Figure 5.5). Major genes differentially expressed were selected and grouped into 

four groups as displayed in Tables 5.2, 5.3, 5.4 and 5.5. These four groups were LEA and 

stress-related, hormone-related, hydrolase-related and specific seed germination-related 

genes.    
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                          AG GG  SG  WG AN  GN WN  SN   
  

 
c 

 
                           AG  GG  WG  SG  GN  WN    SN  AN   
 

 
d 

 
                        AG  GG  WG  GN WN   SG   SN   AN   
 

 
                    Lower  higher                                                
                                                                       Expression intensity 
 
            
Figure 5.4. Hierarchical clustering of genes with expression differences greater than 2.5 fold between un 
germinated and geminated seeds imbibed in either water, GA4+7,  a saline solution or ABA. WN: un-
germinated seeds imbibed in water; WG: germinated seeds imbibed in water; GN: un-germinated seeds 
imbibed in GA4+7; GG: germinated seeds imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline 
solution; SG: germinated seeds imbibed in the saline solution; AN: un-germinated seeds imbibed in ABA; 
AG: germinated seeds imbibed in ABA. a. Water; b. GA4+7; c. a saline solution; d. ABA. 
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a 
 

 

b 
 

 
c 
 

 

Figure 5.5. Venn diagrams for genes that differ in 
expression greater than 2.5 fold between germinated and 
un-geminated seeds imbibed in either water, GA4+7, a 
saline solution or ABA. WN: un-germinated seeds 
imbibed in water; WG: germinated seeds imbibed in 
water; GN: un-germinated seeds imbibed in GA4+7; GG: 
germinated seeds imbibed in GA4+7; SN: un-germinated 
seeds imbibed in the saline solution; SG: germinated seeds 
imbibed in the saline solution; AN: un-germinated seeds 
imbibed in ABA; AG: germinated seeds imbibed in ABA. 
WG> < WN 2.5: water; GG > < GN2.5: GA4+7; SG > < 
SN2.5: a saline solution; AG > < AN2.5: ABA. 

 
 
 
Table 5.2. Putative genes with expression differences greater than 2.5 fold between  
                  germinated and un-germinated seeds imbibed in water. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
 
 
Group  
    1 
 
 
 
 

BN10961 
BN16767 
BN19370 
BN19387 
BN20144 
BN20349 
BN20598 
BN20688 
BN20893 
BN24859 
BN25166 

LEA group 1 domain-containing protein similarity to DS11 
LEA protein, putative similar to Lea14-A {Gossypium hirsutum} 
glycine-rich protein / late embryogenesis abundant protein (M17)  
late embryogenesis abundant protein (M10) / LEA protein M10  
putative / LEA protein, similar to LEA 76 {Brassica napus} 
LEA domain-containing, low similarity to Desiccation-related protein 
LEA domain-containing protein, low similarity to D-29  
LEA protein, nearly identical to LEA protein in group 3(ECP63) 
LEA domain-containing, low similar to 51 kDa seed maturation protein  
LEA group 1 domain-containing protein  
LEA domain-containing, low similarity to embryogenic abundant gene  

0.011 
0.004 
0.017 
0.004 
0.010 
0.002 
0.007 
0.019 
0.016 
0.013 
0.004 

87 78

417

33

156 29

122

WG > < WN 2.5 GG > < GN 2.5

SG > < SN 2.5

14090
all genes

77 79

797

38

166 28

117

WG><WN 2.5 GG >< GN 2.5

AG >< AN 2.5

13710
all genes

68 243

622

47

52 203

231

WG > < WN 2.5 SG > < SN 2.5

AG > < AN 2.5

13546

all genes
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Group  
    1 
 

BN26527 
BN10431 
BN11240 
BN11528 
BN20125 
BN23186 
BN12067 
BN12218 
BN15778 
BN19033 
BN20755 
BN24919 
BN12279 
BN13968 
BN14537 
BN19962 
BN14817 
BN15189 
BN25006 
 

putative / LEA protein, putative similar to LEA protein in group 3 
dehydrin (RAB18), nearly identical to Dehydrin Rab18  
identical to dehydration-induced protein (ERD15)  
senescence/dehydration-associated protein-related (ERD7) 
dehydrin family protein   
similar to drought-induced mRNA 
putative similar to temperature stress-induced lipocalin  
ABA-responsive protein-related, similar to cold-induced protein kin1  
dormancy/auxin associated family protein  
phosphatidylethanolamine-binding, similar to cold-regulated protein  
ABA-responsive protein (HVA22b), identical to AtHVA22b  
stress-responsive protein,related to Desiccation-responsive protein 29B 
plant defensin-fusion protein, putative (PDF1.2c)  
plant defensin protein, putative (PDF1.2a)  
plant defensin-fusion protein, putative (PDF1.2b)  
plant defensin-fusion protein, putative (PDF1.4)  
17.6 kDa class II heat shock protein (HSP17.6-CII)  
DNAJ heat shock N-terminal domain-containing, similarity to HSP40  
identical to heat shock protein 101 (HSP101) 

0.006 
0.004 
0.205 
0.122 
0.007 
0.364 
0.064 
0.063 
0.012 
0.011 
0.019 
0.005 
0.015 
0.044 
0.040 
0.010 
0.007 
0.209 
0.011 
 

Group   
    2 
 

BN15701 
BN26772 

GDSL-motif lipase/hydrolase protein, similar to early nodulin ENOD8 
glycosyl hydrolase family 1 protein contains 

0.395 
0.165 

Group  
    3 
 

BN20519 
BN20885 

gibberellin-regulated protein 3 precursor (GASA3) 
gibberellin-regulated protein 2  precursor (GASA2) 

0.023 
0.011 

 
 
 
Group  
    4 
 
 

BN11682 
BN12371 
BN15670 
BN16242 
BN18693 
BN24369 
BN25156 
BN26343 

Similar to cytochrome P450 from [Catharanthus roseus] 
protein phosphatase 2C, putative / PP2C from [Lotus japonicus] 
putative similar to cytochrome P450 from [Catharanthus roseus] 
protein phosphatase 2C, putative / PP2C from [Arabidopsis thaliana] 
bZIP transcription factor (OBF4), identical to ocs-element binding factor  
putative similar to Cytochrome P450 91A1  
similar to ABA-responsive element binding protein 1 (AREB1) bZIP  
protein phosphatase 2C, putative / PP2C EC 3.1.3.16 
 

0.345 
0.165 
0.180 
0.204 
0.254 
0.019 
0.121 
0.046 

 
 
Group  
    5 
 

BN10327 
BN10217 
BN11426 
BN11835 
BN12729 
BN15343 
BN14158 

LEA family protein, similar to ethylene-responsive LEA-like protein 
identical to Dehydrin ERD14 {Arabidopsis thaliana} 
dehydrin family protein  
stress-induced protein (KIN2) / cold-responsive protein (COR6.6) 
identical to Dehydration-responsive protein RD22 precursor 
cold-acclimation protein, putative (FL3-5A3)  
related to Wound-induced protein 1 {Solanum tuberosum} 
 

0.120 
13.467 
3.622 
8.426 
2.999 
6.167 
3.068 

 
 
 
 
Group  
    6 
 
 
 
 
 
 
 

BN10737 
BN13810 
BN15161 
BN16742 
BN16895 
BN19666 
BN19799 
BN20118 
BN20681 
BN21244 
BN21616 
BN22148 
BN22579 

glycosyl hydrolase family 1 / beta-glucosidase, putative (BG1) 
glycosyl hydrolase family 1 protein  
glycosyl hydrolase family 3 protein 
glycosyl hydrolase family 1 protein  
beta-galactosidase, putative / lactase 
glycosyl hydrolase family 17, similar to elicitor inducible chitinase  
alpha-xylosidase (XYL1) identical to alpha-xylosidase precursor  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL1  
expansin family protein (EXPL2)  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3  
beta-galactosidase, putative / lactase [Lycopersicon esculentum] 
glycosyl hydrolase family 17, similar to endo-1,3-beta-glucosidase  
GDSL-motif /hydrolase family, low similarity to family II lipaseEXL1  

3.526 
6.896 
23.897 
15.276 
9.282 
3.468 
17.276 
50.419 
4.496 
3.234 
15.223 
7.024 
5.476 
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Group  
    6 

BN23747 
BN23885 
BN26760 
BN27626 

proline-rich extensin-like family protein  
glycosyl hydrolase family 35 protein, similar to beta-galactosidases 
chitinase, putative similar to basic endochitinase CHB4 precursor 
glycosyl hydrolase family 1 protein / beta-glucosidase, putative (BG1) 
 

15.594 
5.895 
5.287 
7.333 

Group  
    7 
 

BN11763 
BN22163 
BN24370 

Gibberellin-regulated protein 4 precursor GASA4 
similar to auxin-responsive GH3 product [Glycine max]  
2OG-Fe(II) oxygenase family, low similarity to gibberellin 20-oxidase 
 

10.101 
3.618 
28.635 

 
 
 
Group  
    8 

BN10224 
BN10387 
BN17421 
BN22218 
BN22648 
BN24616 
BN24871 
BN26349 

plasma membrane intrinsic protein 2B (PIP2B) / aquaporin PIP2.2   
plasma membrane intrinsic protein 1B (PIP1B) / aquaporin PIP1.2   
cytochrome P450 71B28, putative (CYP71B28)  
identical to cDNA putative myb transcription factor (At5g49330)  
cell division control protein 
cytochrome P450, putative 
bZIP transcription factor family protein  
cytochrome P450 71B22, putative (CYP71B22) 

4.929 
5.602 
3.912 
4.180 
2.509 
2.796 
4.686 
2.679 
 

 Four specific groups of genes, with expression differences greater than 2.5 fold between germinated 
and un-germinated seeds imbibed in water. Group 1-4: down regulated in germinated seeds; Group 
5-8: up-regulated in germinated seeds.  
  Group1: LEA and stress related genes; Group 2: hydrolase related genes; Group 3: Hormone 
related genes; Group 4: specific seed germination related genes. 
Group 5: LEA genes, stress related; Group 6: hydrolase related; Group 7: Hormone related; Group 
8: specific seed germination related genes. Relative ratio= samples/control (dry seeds).    
 
Table 5.3. Putative genes with expression differences greater than 2.5 fold between  
                  germinated and un-germinated seeds imbibed in GA4+7. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
 
 
 
Group  
    1 
 
 
 
 
 
 
 

BN10961 
BN20144 
BN20349 
BN20688 
BN20893 
BN24859 
BN25166 
BN10431 
BN11240 
BN11528 
BN12218 
BN20755 
BN13114 
BN17923 
BN11007 

LEA group 1 domain-containing protein similarity to DS11 
putative / LEA protein, similar to LEA 76 {Brassica napus} 
LEA domain-containing, low similarity to Desiccation-related protein 
LEA protein, nearly identical to LEA protein in group 3(ECP63) 
LEA domain-contain, low similarity to 51 kDa seed maturation protein  
LEA group 1 domain-containing protein  
LEA domain-contain, low similarity to embryogenic abundant protein 
dehydrin (RAB18), nearly identical to Dehydrin Rab18  
identical to dehydration-induced protein ERD15  
senescence/dehydration-associated protein-related (ERD7) 
ABA-responsive protein-related, similar to ABA-inducible protein 
ABA-responsive protein (HVA22b), identical to AtHVA22b 
31.2 kDa small heat shock family protein(hsp20) 
putative similar to wound induced protein [Lycopersicon esculentum]  
related to wound-responsive protein-tomato (fragment) 

0.022 
0.021 
0.006 
0.032 
0.030 
0.034 
0.009 
0.009 
0.257 
0.113 
0.143 
0.038 
0.248 
0.264 
0.048 
 

Group   
    2 
 

BN12525 glycosyl hydrolase family 1 protein 0.352 
 

Group  
    3 
 

BN20885 Gibberellin-regulated protein 2 precursor (GASA2) 0.026 

Group  
    4 
 

BN11682 
BN15670 
BN16242 

similar to cytochrome P450 from [Catharanthus roseus] 
putative similar cytochrome P450 to from [Catharanthus roseus] 
protein phosphatase 2C, putative / PP2C from [Arabidopsis thaliana] 

0.254 
0.171 
0.274 
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Group  
    4 
 

BN25156 
BN26343 

similar to ABA-responsive element binding protein 1 (AREB1) (bZip) 
protein phosphatase 2C, putative / PP2C (EC 3.1.3.16) 

0.114 
0.044 
 

 
 
Group  
    5 
 

BN10327 
BN10217 
BN12729 
BN15343 
BN18389 
BN14158 

LEA family protein, similar to ethylene-responsive LEA-like protein 
dehydrin (ERD14) {Arabidopsis thaliana} 
identical to Dehydration-responsive protein RD22 precursor 
cold-acclimation protein, putative (FL3-5A3)  
Hydrophobic RCI2B, Low temperature and salt responsive LTI6B 
related to Wound-induced protein 1 {Solanum tuberosum} 

3.015 
8.683 
3.376 
3.328 
3.124 
2.616 
 

 
 
 
 
Group  
    6 

BN15161 
BN16742 
BN20118 
BN21244 
BN22148 
BN23747 
BN23885 
BN24266 
BN24511 
BN25419 
BN26760 
BN27626 

glycosyl hydrolase family 3 protein 
glycosyl hydrolase family 1 protein 
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL1  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3  
glycosyl hydrolase family 17, similar to endo-1,3-beta-glucosidase 
proline-rich extensin-like family protein  
glycosyl hydrolase family 35 protein, similar to beta-galactosidase  
similar to basic endochitinase CHB4 precursor from [Brassica napus] 
GDSL-motif lipase/hydrolase family protein similar to Enod8.1  
glycoside hydrolase family 28/polygalacturonase (pectinase) family   
chitinase, putative similar to basic endochitinase CHB4 precursor 
glycosyl hydrolase family 1 protein / beta-glucosidase, putative (BG1) 

13.482 
8.789 
23.939 
7.426 
8.235 
23.048 
5.126 
3.816 
3.030 
15.087 
3.283 
4.546 
 

Group  
    7 
 

BN11763 
BN22163 
BN22657 
BN24370 

Gibberellin-regulated protein 4 precursor GASA4  
similar to auxin-responsive GH3 product [Glycine max]  
auxin-responsive protein / indoleacetic acid-induced protein 4 (IAA4) 
2OG-Fe(II) oxygenase family, low similarity to gibberellin 20-oxidase 

6.822 
2.501 
17.791 
17.707 
 

 
 
 
Group  
    8 

BN10224 
BN10387 
BN22218 
BN22648 
BN24616 
BN24871 
BN26349 

plasma membrane intrinsic protein 2B (PIP2B) / aquaporin PIP2.2  
plasma membrane intrinsic protein 1B (PIP1B) / aquaporin PIP1.2  
identical to cDNA putative myb transcription factor (At5g49330)  
cell division control protein 
cytochrome P450, putative 
bZIP transcription factor family protein 
cytochrome P450 71B22, putative (CYP71B22) 

3.388 
3.198 
2.767 
3.473 
2.542 
3.507 
3.057 
 

 Four specific groups of genes as described in table 5.2 with expression differences greater than 2.5 
fold between germinated and un-germinated seeds imbibed in GA4+7. 
 
 
Table 5.4. Putative genes with expression differences greater than 2.5 fold between  
                  germinated and un-germinated seeds imbibed in a saline solution. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
 
 
Group  
    1 
 
 
 
 

BN20598 
BN24859 
BN25166 
BN26527 
BN10431 
BN16472 
BN20009 
BN24919 
BN26935 
BN20902 
BN17923 

LEA domain-containing protein, low similarity to D-29  
LEA group 1 domain-containing protein  
LEA domain-containing, low similarity to embryogenic abundant gene  
putative /LEA protein, putative similar to LEA protein in group 3 
dehydrin (RAB18), nearly identical to Dehydrin Rab18  
early-responsive to dehydration stress protein (ERD4)  
similarity to drought-induced mRNA, Di19 [Arabidopsis thaliana] 
stress-responsive protein-related to Desiccation-responsive protein 29B 
DRE-binding protein (DREB2B), identical to DREB2B 
25.3 kDa small heat shock protein, chloroplast precursor (HSP25.3-P)  
putative similar to wound induced protein [Lycopersicon esculentum]  

0.034 
0.200 
0.036 
0.050 
0.016 
0.128 
0.299 
0.033 
0.049 
0.040 
0.299 
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Group  
    1 
 
 
 

BN19511 
BN19962 
BN24959 

universal stress protein (USP) family protein similar to ER6 protein  
plant defensin-fusion protein, putative (PDF1.4)  
universal stress protein (USP) family protein 

0.024 
0.030 
0.043 
 
 

 
Group   
    2 

BN15448 
BN18205 
BN18758 
BN24651 

GDSL-motif /hydrolase family, similar to myrosinase-associated protein  
glycosyl hydrolase family 14 protein, similar to beta-amylase enzyme  
hydrolase, low similarity to monoglyceride lipase from [Homo sapiens]  
hydrolase, alpha/beta fold family protein 
 

0.239 
0.309 
0.181 
0.380 
 

 
Group  
    3 
 

BN12888 
BN20519 
BN20885 
BN25600 
BN27085 

zeaxanthin epoxidase (ZEP) (ABA1), identical to  AtABA1 
Gibberellin-regulated protein 3 precursor (GASA3) 
Gibberellin-regulated protein 2 precursor (GASA2) 
auxin-responsive protein, putative auxin-inducible SAUR gene 
identical to ethylene receptor 1 (ETR1) 
 

0.229 
0.070 
0.042 
0.389 
0.298 

 
 
 
 
 
Group  
    4 
 
 

BN10846 
BN12371 
BN14671 
BN16242 
BN16341 
BN18693 
BN18945 
BN19210 
BN21817 
BN22460 
BN24618 
BN25156 
BN25763 
BN26682 

AP2 domain-containing transcription factor, putative EREBP-3 homolog  
protein phosphatase 2C, putative / PP2C [Lotus japonicus] 
similarity to WRKY-type DNA-binding transcription factor protein  
protein phosphatase 2C, putative / PP2C from  [Arabidopsis thaliana] 
putative similar to AP2 domain containing protein RAP2.1  
bZIP transcription factor (OBF4), identical to ocs-element binding factor 
golden2-like transcription factor (GLK1)  
bZIP family transcription factor, similar to bZIP transcription factor  
myb family transcription factor 
myb family transcription factor  
identical to cytochrome P450 71B20 
similar to ABA-responsive element binding protein 1 (AREB1)  
protein phosphatase 2C / PP2C, abscisic acid-insensitive 2 (ABI2) 
similar to Cytochrome P450 90C1 (ROTUNDIFOLIA3) 
 

0.080 
0.205 
0.063 
0.246 
0.047 
0.341 
0.066 
0.061 
0.151 
0.246 
0.282 
0.239 
0.311 
0.099 

 
 
 
 
 
Group  
    5 
 

BN10195 
BN10217 
BN10905 
BN10936 
BN11835 
BN11999 
BN12729 
BN13096 
BN13804 
BN14158 
BN17226 
BN18389 
BN21684 

identical to dehydrin COR47 (Cold-induced COR47 protein)  
identical to  Dehydrin ERD14 {Arabidopsis thaliana} 
similar to early-responsive to dehydration stress ERD3 protein  
putative strong similarity to Heat shock protein 81-2 (HSP81-2)  
stress-induced protein (KIN2) / cold-responsive protein (COR6.6)  
similar to DnaJ homolog subfamily B member 11 precursor  
identical to Dehydration-responsive protein RD22 precursor  
putative strong similarity to Heat shock protein 81-2 (HSP81-2)  
similar to early-responsive to dehydration stress ERD3 protein 
related to Wound-induced protein 1 {Solanum tuberosum} 
plant defensin-fusion protein, putative (PDF2.1)  
Hydrophobic RCI2B, Low temperature and salt responsive LTI6B 
similar to early-responsive to dehydration stress ERD3 protein 
 

3.165 
14.497 
10.184 
3.081 
6.796 
3.521 
7.184 
3.227 
3.518 
3.826 
6.485 
3.908 
3.532 

 
 
 
 
Group  
    6 

BN13433 
BN13445 
BN16604 
BN16784 
BN16811 
BN16895 
BN20118 
BN22148 
BN26760 

chitinase-like protein 1 (CTL1), similar to class I chitinase 
glycosyl hydrolase family 17, similar to beta-1,3-glucanase precursor 
GDSL-motif lipase/hydrolase family, similar to lipase 
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3  
GDSL-motif lipase/hydrolase family protein  
putative similar to beta-galactosidase precursor   
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL1  
 glycosyl hydrolase family 17, similar to endo-1,3-beta-glucosidase,  
chitinase, putative similar to basic endochitinase CHB4 precursor 

5.355 
7.816 
21.196 
17.840 
16.459 
26.368 
42.321 
17.478 
19.790 
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Group  
    7 
 
 

BN11763 
BN12316 
BN14737 
BN19321 
BN22163 
BN22657 
BN22844 
BN24370 

Gibberellin-regulated protein 4 precursor GASA4 
1-aminocyclopropane-1-carboxylate synthase / ACC synthase 
auxin-responsive / indoleacetic acid-induced protein 16 (IAA16)  
similarity to amino-cyclopropane-carboxylic acid oxidase (ACC ox2)  
similar to auxin-responsive GH3 product [Glycine max]  
auxin-responsive protein / indoleacetic acid-induced protein 4 (IAA4) 
similar to Gibberellin-regulated protein 1 precursor  
2OG-Fe(II) oxygenase family, low similarity to gibberellin 20-oxidase 

11.574 
2.744 
8.196 
4.463 
3.067 
29.344 
10.779 
36.637 
 

 
 
 
Group  
    8 

BN10224 
BN10387 
BN11437 
BN15095 
BN14194 
BN15837 
BN22648 
BN23743 
BN24871 
BN27674 

plasma membrane intrinsic protein 2B (PIP2B) / aquaporin PIP2.2  
plasma membrane intrinsic protein 1B (PIP1B) / aquaporin PIP1.2  
plasma membrane intrinsic protein 2C (PIP2C) / aquaporin PIP2.3  
plasma membrane intrinsic protein 2A (PIP2A) / aquaporin PIP2.1  
myb family transcription factor  
myb family transcription factor  
cell division control protein 
identical to b-Zip DNA binding protein 
 bZIP transcription factor family protein 
 protein phosphatase 2C/PP2C, abscisic acid-insensitive 1 (ABI1) 

7.403 
4.913 
6.369 
2.702 
4.089 
3.226 
2.360 
4.624 
3.671 
3.223 
 

 Four specific groups of genes as described in table 5.2 with expression differences greater than 2.5 
fold between germinated and un-germinated seeds imbibed in the saline solution. 
 
 
Table 5.5.  Putative genes with expression differences greater than 2.5 fold between  
                   germinated and un-germinated seeds imbibed in the ABA. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
 
 
 
 
Group  
    1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

BN10961 
BN16767 
BN20144 
BN24859 
BN24993 
BN25011 
BN25166 
BN20009 
BN20125 
BN20755 
BN26935 
BN12619 
BN17568 
BN17923 
BN19511 
BN19962 
BN24959 
BN10667 
BN11376 
BN14817 
BN15062 
BN15189 
BN15627 
BN17514 
BN19713 
BN23457 
BN25006 

LEA group 1 domain-containing protein low similarity toDS11 
LEA protein, putative similar to Lea14-A {Gossypium hirsutum} 
putative / LEA protein, similar to LEA 76 {Brassica napus} 
LEA group 1 domain-containing protein  
expressed protein very low similarity to LEA protein [Cicer arietinum]  
LEA group 1 domain-containing protein  
LEA domain-containing, low similarity to embryogenic abundant gene  
similarity to drought-induced mRNA, Di19 [Arabidopsis thaliana]  
dehydrin family protein  
ABA-responsive protein (HVA22b), identical to AtHVA22b 
DRE-binding protein (DREB2B), identical to DREB2B 
universal stress protein (USP) family protein 
USP family protein,similar to ethylene-responsive ER6 protein 
putative similar to wound induced protein [Lycopersicon esculentum]  
universal stress protein (USP) family protein similar to ER6 protein  
plant defensin-fusion protein, putative (PDF1.4)  
universal stress protein (USP) family protein 
DNAJ heat shock N-terminal domain-containing proteins 
putative similar to heat shock protein hsp70 from [Pisum sativum] 
17.6 kDa class II heat shock protein (HSP17.6-CII)  
DNAJ heat shock N-terminal domain-containing protein 
DNAJ heat shock N-terminal domain-containing, similarity to HSP40 
DNAJ heat shock family (Heat shock 40 kDa protein 1 homolog)  
identical to heat shock protein 70 
similar to DNAJ heat shock N-terminal domain-containing CAJ1 protein  
cold-shock DNA-binding family protein 
identical to heat shock protein 101 (HSP101) 

0.308 
0.043 
0.356 
0.375 
0.076 
0.244 
0.090 
0.263 
0.211 
0.366 
0.054 
0.336 
0.103 
0.308 
0.047 
0.034 
0.088 
0.086 
0.034 
0.034 
0.308 
0.241 
0.019 
0.072 
0.338 
0.380 
0.038 
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 BN27679 similarity to DNAJ heat shock N-terminal domain-containing protein J2 0.372 
 

Group   
    2 
 

BN15448 
BN24587 
BN27593 

GDSL-motif /hydrolase family, similar to myrosinase-associated protein  
glycosyl hydrolase family 17, similar to inducible chitinase Nt-SubE76 
glycosyl hydrolase family 1 protein  

0.392 
0.228 
0.112 
 

 
 
Group  
    3 
 

BN12888 
BN15727 
BN20519 
BN20885 
BN22832 
BN27085 

zeaxanthin epoxidase (ZEP) (ABA1), identical to AtABA1 
identical to Ethylene responsive element binding factor 2 (AtERF2)  
Gibberellin-regulated protein 3 precursor (GASA3) 
Gibberellin-regulated protein 2 precursor (GASA2) 
auxin-responsive family, similar to auxin-induced protein AIR12 
identical to ethylene receptor 1 (ETR1) 

0.392 
0.335 
0.163 
0.151 
0.325 
0.290 
 

 
 
 
 
 
 
 
Group  
    4 
 
 

BN10178 
BN12371 
BN14671 
BN15670 
BN16341 
BN17285 
BN18567 
BN18693 
BN21037 
BN21176 
BN21817 
BN22460 
BN24369 
BN24555 
BN24618 
BN26343 
BN26536 
BN26682 

similar to AP2 domain-containing protein RAP2.3 (RAP2.3)  
protein phosphatase 2C, putative / PP2C [Lotus japonicus] 
similarity to WRKY-type DNA-binding transcription factor protein  
putative similar to cytochrome P450 
putative similar to AP2 domain containing protein RAP2.1  
similarity to WRKY-type DNA-binding transcription factor protein 
Identical to Cytochrome P450 71B23  
bZIP transcription factor (OBF4), identical to ocs-element binding factor  
putative similar to cytochrome P450 89A2  
similar to AP2 domain-containing transcription factor TINY  
myb family transcription factor  
myb family transcription factor 
putative similar to Cytochrome P450 91A1 [Arabidopsis thaliana] 
identical to Cytochrome P450 71B5  
identical to cytochrome P450 71B20  
protein phosphatase 2C, putative / PP2C (EC 3.1.3.16)  
germin-like protein, putative similar to germin -like protein GLP6 
similar to Cytochrome P450 90C1 (ROTUNDIFOLIA3) 

0.154 
0.268 
0.070 
0.249 
0.077 
0.073 
0.363 
0.220 
0.153 
0.224 
0.214 
0.269 
0.086 
0.110 
0.212 
0.091 
0.116 
0.349 
 

 
 
 
 
 
 
 
Group  
    5 
 
 
 
 
 
 
 
 

BN10327 
BN10195 
BN10217 
BN10637 
BN10936 
BN11426 
BN11835 
BN12729 
BN13804 
BN13942 
BN13977 
BN15067 
BN15343 
BN17214 
BN18389 
BN21684 

LEA family protein, similar to ethylene-responsive LEA-like protein 
identical to dehydrin COR47 (Cold-induced COR47 protein)  
identical to Dehydrin (ERD14)   {Arabidopsis thaliana} 
universal stress protein (USP) ,similar to early nodulin ENOD18 
identical to dehydrin ERD10, Low-temperature-induced protein LTI45  
dehydrin family protein  
stress-induced protein (KIN2) / cold-responsive protein (COR6.6)   
identical to Dehydration-responsive protein RD22 precursor    
similar to early-responsive to dehydration stress ERD3 protein 
similar to early-responsive to dehydration stress protein (ERD3)  
stress-inducible protein, similar to sti (stress inducible protein)  
universal stress protein (USP) family protein similar to ER6 
cold-acclimation protein, putative (FL3-5A3)  
LTI65 / desiccation-responsive protein 29B (RD29B)  
Hydrophobic RCI2B, Low temperature and salt responsive LTI6B  
similar to early-responsive to dehydration stress ERD3 protein 

4.580 
12.173 
21.644 
16.395 
14.411 
7.050 
35.472 
4.126 
3.139 
2.928 
3.199 
23.802 
21.380 
3.829 
10.714 
4.581 
 

 
 
Group  
    6 
 
 
 

BN10737 
BN13433 
BN15161 
BN15790 
BN16604 
BN16742 
BN16784 

glycosyl hydrolase family 1  / beta-glucosidase, putative (BG1)  
chitinase-like protein 1 (CTL1), similar to class I chitinase  
glycosyl hydrolase family 3 protein 
epoxide hydrolase, similar to epoxide hydrolase (Solanum tuberosum) 
GDSL-motif lipase/hydrolase family protein, similar to lipase  
glycosyl hydrolase family 1 protein  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3  

13.761 
8.790 
18.719 
4.008 
28.220 
18.999 
15.726 
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Group  
    6 

BN16811 
BN16883 
BN18214 
BN18721 
BN19126 
BN19596 
BN19799 
BN19871 
BN20118 
BN21355 
BN21616 
BN22754 
BN23747 
BN24266 
BN24468 
BN25325 
BN26760 
BN27052 
BN27626 

GDSL-motif lipase/hydrolase family protein  
GDSL-motif lipase, putative similar to lipase [Arabidopsis thaliana]  
glycosyl hydrolase family 3 protein 
GDSL-motif lipase/hydrolase family, similar to early nodulin ENOD8 
Cell wall invertase identical to beta-fructofuranosidase 
glycoside hydrolase28/ polygalacturonase (pectinase) family protein  
alpha-xylosidase (XYL1) identical to alpha-xylosidase precursor  
glycosyl hydrolase family 1 protein contains  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL1  
putative similar to endo-beta-1,4-glucanase from [Fragaria x ananassa]  
putative similar to beta-galactosidase [Lycopersicon esculentum]  
GDSL-motif /hydrolase family protein low similarity to APG precursor  
proline-rich extensin-like protein 
similar to basic endochitinase CHB4 precursor from [Brassica napus] 
glycosyl hydrolase family 1 protein  
putative similar to beta-galactosidase precursor 
chitinase, putative similar to basic endochitinase CHB4 precursor  
alpha-glucosidase 1 (AGLU1), identical to alpha-glucosidase 1   
glycosyl hydrolase family 1 protein / beta-glucosidase, putative (BG1) 
 

22.501 
3.127 
15.243 
7.193 
12.483 
12.487 
34.445 
25.697 
55.563 
7.318 
41.351 
5.658 
45.568 
4.468 
3.614 
5.422 
10.841 
18.333 
33.496 

 
 
 
 
Group  
    7 
 

BN10799 
BN11763 
BN12534 
BN13131 
BN14737 
BN16638 
BN16876 
BN19321 
BN22163 
BN22844 
BN23039 
BN23715 
BN24370 
BN25755 

calcium-binding RD20 protein induced by ABA during dehydration  
Gibberellin-regulated protein 4 precursor GASA4 
auxin-responsive protein / indoleacetic acid-induced protein 2 (IAA2) 
similar to auxin-responsive GH3 product  
auxin-responsive / indoleacetic acid-induced protein 16 (IAA16)  
nearly identical to ACC oxidase (ACC ox1)  from [Brassica oleracea] 
putative (PIN3), similar to auxin transport protein 
similarity to amino-cyclopropane-carboxylic acid oxidase (ACC ox2)  
similar to auxin-responsive GH3 product [Glycine max]  
Gibberellin-regulated protein 1 precursor GASA 1  
identical to ethylene response sensor (ERS) 
similar to ACC oxidase [Sorghum bicolor] 
2OG-Fe(II) oxygenase family, low similarity to gibberellin 20-oxidase  
transcriptional factor B3 family protein / auxin-responsive factor 
 

7.552 
7.579 
4.048 
16.249 
13.809 
36.953 
7.011 
20.294 
3.757 
19.070 
16.457 
32.570 
26.135 
2.686 

 
 
 
 
 
 
Group  
    8 

BN10224 
BN10387 
BN11437 
BN15095 
BN17472 
BN20259 
BN11644 
BN11645 
BN12117 
BN12157 
BN12746 
BN13436 
BN22351 
BN22648 
BN23743 
BN24406 
BN24871 
BN27674 

plasma membrane intrinsic protein 2B (PIP2B) / aquaporin PIP2.2  
plasma membrane intrinsic protein 1B (PIP1B) / aquaporin PIP1.2  
plasma membrane intrinsic protein 2C (PIP2C) / aquaporin PIP2.3  
plasma membrane intrinsic protein 2A (PIP2A) / aquaporin PIP2.1  
aquaporin, putative similar to plasma membrane aquaporin 2b  
plasma membrane intrinsic protein 1C (PIP1C) / aquaporin PIP1.3  
AP2 domain-containing transcription factor RVA2 
AP2 domain-containing transcription factor, 
GER3, identical to germin-like protein subfamily 3 member 3 
AP2 domain-containing transcription factor, putative similar to RAV1  
raffinose synthase / seed imbibition protein, putative (din10)  
luminal binding protein 1 (BiP-1) (BP1) 
bZIP protein 
cell division control protein 
identical to bZIPDNA binding transcription factor family protein 
similar to myb-related transcription activator 
bZIP transcription factor family protein  
protein phosphatase 2C/ PP2C,  abscisic acid-insensitive 1 (ABI1) 

4.663 
5.831 
5.300 
3.659 
27.049 
7.027 
7.854 
5.965 
4.450 
3.953 
14.525 
13.644 
2.758 
3.155 
3.263 
4.384 
4.303 
2.816 
 

 Four specific groups of genes as described in table 5.2 with expression  differences greater than 2.5 
fold between germinated and un-germinated seeds imbibed in ABA. 
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5.3.5 A Comparison of gene expression in un-germinated seeds imbibed in either     

water, GA4+7, the saline solution or ABA  

           Compared to water imbibed un-germinated seeds, 49 genes were differentially 

expressed in un-germinated seeds imbibed in GA4+7, 582 for un-germinated seeds 

imbibed in saline solution and 1320 for un-germinated seeds imbibed in ABA (Figure 

5.6). There were less differences in these gene expression for the treatments in 

germinated seeds (Figure 5.7). There were smaller difference between water and GA4+7 

treated seeds compared to seeds imbibed in the saline solution or ABA (Figure 5.7). Four 

groups of genes as LEA and stress-related, hormone related, hydrolase-related and 

specific seed germination-related genes were presented in Tables 5.6, 5.7, 5.8 and 5.9.         

                                                

                                          
 
Figure 5.6. Venn diagrams for genes that differ in expression greater than 2.5 fold between un-germinated 
seeds imbibed in water and the treatments exerted. GN > < WN: seeds imbibed in GA4+7; WN > < SN: 
seeds imbibed in a saline solution; WN > < AN: seeds imbibe in ABA.  WN: un-germinated seeds imbibed 
in water; WG: germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: 
germinated seeds imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: 
germinated seeds imbibed in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: 
germinated seeds imbibed in ABA. 
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                AG  GG  WG   SG   SN    GN  WN AN        
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                      AG   GG  GN  WN  WG  SG  SN   AN 

c 
 
 

 
                     AG  GG   WG  SG    GN   WN SN   AN   

 
 
Figure 5.7.  Hierarchical clustering of genes with 
expression differences greater than 2.5 fold between 
un-germinated seeds imbibed in water and 
treatments exerted.  a. seeds imbibed in GA4+7 ; b. 
seeds imbibed in a saline solution; c. seeds imbibed 
in ABA. WN: un-germinated seeds imbibed in 
water; WG: germinated seeds imbibed in water; 
GN: un-germinated seeds imbibed in GA4+7; GG: 
germinated seeds imbibed in GA4+7; SN: un-
germinated seeds imbibed in the saline solution; 
SG: germinated seeds imbibed in the saline 
solution; AN: un-germinated seeds imbibed in 
ABA; AG: germinated seeds imbibed in ABA. 
 
 

                 
                    Lower  higher                                               
                                                                       Expression intensity 
 
 
 
  
Table 5.6. Putative genes with expression differences greater than 2.5 fold between un-    
                  germinated seeds imbibed in water and GA4+7. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
Group  
    1 
 
 
 
 

BN19370 
BN19387 
BN10459 
BN11063 
BN11528 
BN11573 
BN12279 
BN14537 

identical to late-embryogenesis abundant M17 protein  
late embryogenesis abundant protein (M10) / LEA protein M10  
related to wound inducive gene [Nicotiana tabacum] 
DNAJ heat shock protein, similar to heat shock 40 kDa protein 1 
senescence/dehydration-associated protein-related (ERD7) 
identical to dnaJ heat shock protein J11  
plant defensin-fusion protein, putative (PDF1.2c)  
plant defensin-fusion protein, putative (PDF1.2b)  

0.099 
0.061 
0.358 
0.381 
0.300 
0.393 
0.151 
0.124 
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Group  
    1 
 
 
 
 
 

BN15778 
BN17428 
BN18222 
BN19341 
BN19962 
BN20738 
BN21069 
BN22615 
BN23509 

dormancy/auxin associated family protein  
plant defensin-fusion protein, putative (PDF2.2)  
cold-shock DNA-binding family protein  
wound-responsive protein-related, weak similarity to KED  
plant defensin-fusion protein, putative (PDF1.4)  
identical to 18.2 kDa class I heat shock protein (HSP 18.2)  
DNAJ heat shock N-terminal domain-contain, low similarity to AHM1  
heat shock protein 100, putative / HSP100, 
universal stress protein , low similarity to early nodulin ENOD18 
 

0.074 
0.361 
0.300 
0.395 
0.056 
0.028 
0.381 
0.370 
0.356 

 
Group   
    2 
 

BN19506 
BN20407 
BN26721 
BN26772 

xyloglucan:xyloglucosyl transferase / xyloglucan endotransglycosylase  
glycosyl hydrolase family 38 protein similar to alpha-mannosidase  
glycoside hydrolase family 2 protein low similarity to mannosidase  
Similar to glycosyl hydrolase family 1, Cyanogenic Beta-Glucosidase 
 

0.390 
0.371 
0.384 
0.124 

Group  
    3 
 

N/A N/A N/A  

 
 
Group  
    4 
 
 

BN12189 
BN15063 
BN15915 
BN19766 
BN22460 
BN25156 
 

protein phosphatase 2C family protein / PP2C family protein  
identical to Arabidopsis germin-like protein subfamily 2 member 1  
myb family transcription factor (GLK2)  
identical to 12S seed storage protein (CRA1)  
myb transcription factor contains myb-like DNA-binding domain 
similar to ABA-responsive element binding protein 1 (AREB1) bZIP  
 

0.393 
0.345 
0.351 
0.010 
0.352 
.364 
0.330 

Group  
    5 
 

BN12731 
 

dehydration-responsive protein (RD22)  
 

2.815 
 

 
Group  
    6 

BN14129 
BN16895 
BN19799 
BN20681 
BN23761 

Expansin, putative (EXP5), identical to expansin At-EXP5  
beta-galactosidase, putative / lactase 
alpha-xylosidase (XYL1) identical to alpha-xylosidase precursor  
expansin family protein (EXPL2)  
expansin, putative (EXP4) similar to alpha-expansin 6 precursor 
 

7.647 
12.139 
8.570 
2.929 
6.698 

Group  
    7 
 

N/A N/A  N/A 
 
 

 
Group  
    8 

BN12157 
BN15911 
BN21442 
BN22991 
BN25946 

AP2 domain-containing transcription factor, putative similar to RAV1 
myb family transcription factor (MYB30) identical to myb-like protein  
myb family transcription factor  
RNA recognition motif (RRM)-containing protein 
myb family transcription factor (KAN1) 
 

2.583 
10.287 
3.575 
11.339 
3.726 
 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down regulated; 
Group 5-8: up-regulated. 
 
Table 5.7. Putative genes depressed by both a saline solution and ABA in un- 
                  germinated seeds as compared to water imbibed un-germinated seeds  
                  (with expression differences greater than 2.5 fold).   
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

Group  
    1 
 
 

BN10961 
BN16767 
BN19387 
BN20144 

LEA group 1 domain-containing protein similarity to DS11 
LEA protein, putative similar to Lea14-A {Gossypium hirsutum} 
late embryogenesis abundant protein (M10) / LEA protein M10 
putative / LEA protein, similar to LEA 76 {Brassica napus} 

0.144 
0.024 
0.061 
0.119 
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Group  
    1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BN20349 
BN20598 
BN20688 
BN20893 
BN24859 
BN25011 
BN26527 
BN10431 
BN10667 
BN11007 
BN11376 
BN11635 
BN12279 
BN12981 
BN13289 
BN13427 
BN13968 
BN14450 
BN14537 
BN14817 
BN14863 
BN15452 
BN15627 
BN15648 
BN15854 
BN16309 
BN16590 
BN17057 
BN17508 
BN17568 
BN18222 
BN19511 
BN19515 
BN19962 
BN20010 
BN20125 
BN20755 
BN20902 
BN21105 
BN21650 
BN23037 
BN23346 
BN24367 
BN24377 
BN24919 
BN24925 
BN24937 
BN24959 
BN24975 
BN25006 
BN26033 

LEA domain-containing, low similarity to desiccation-related protein  
LEA domain-containing protein, low similarity to D-29  
LEA protein, nearly identical to LEA protein in group 3(ECP63) 
LEA domain-containing, low similar to 51 kDa seed maturation protein  
LEA group 1 domain-containing protein 
LEA group 1 domain-containing protein  
putative / LEA protein, putative similar to LEA protein in group 3 
dehydrin (RAB18), nearly identical to Dehydrin Rab18  
DNAJ heat shock N-terminal domain-containing protein 
related to wound-induced protein - tomato (fragment) 
putative similar to heat shock protein hsp70 from [Pisum sativum] 
17.6 kDa class I small heat shock protein (HSP17.6B-CI) 
plant defensin-fusion protein, putative PDF1.2c  
universal stress protein (USP) family protein similar to ER6 protein  
nearly identical to stress enhanced protein 2 ( SEP2) 
CCAAT-binding transcription factor (CBF-B/NF-YA) family protein  
 plant defensin protein, putative (PDF1.2a)  
 identical to heat shock transcription factor 4 (HSF4) 
 plant defensin-fusion protein, putative (PDF1.2b) 
 identical to 17.6 kDa class II heat shock protein  
identical to dormancy-associated protein DRM1 
 identical to 17.4 kDa class I heat shock protein  (HSP17.4-CI) 
DNAJ heat shock family (Heat shock 40 kDa protein 1 homolog)  
identical to 17.6 kDa class I heat shock protein (HSP 17.6)  
plant defensin-fusion protein, putative (PDF2.3) 
weak similarity to HSF 1 (Heat shock transcription factor 1) (HSTF 1)  
similar to early-responsive to dehydration stress ERD3 protein 
similar to 17.5 kDa class I heat shock protein HSP17.8-CI 
 23.5 kDa mitochondrial small heat shock protein (HSP23.5-M)  
similar to stress related ethylene-responsive ER6 protein 
cold-shock DNA-binding family protein 
universal stress protein (USP) family protein, similar to ER6 protein  
HSF-type DNA-binding domain transcription factor 
plant defensin-fusion protein, putative (PDF1.4)  
similarity to drought-induced mRNA, Di19 [Arabidopsis thaliana]  
dehydrin family protein  
ABA-responsive protein (HVA22b), identical to AtHVA22b 
identical to small heat shock protein, chloroplast precursor HSP25.3-P  
DRE-binding protein (DREB2A) identical to DREB2A 
DNAJ heat shock N-terminal domain-contain low similar to AHM1  
HSF-type DNA-binding domain transcription factor  
identical to heat shock transcription factor 6 (HSF6)  
stress-responsive, similar to ethylene-inducible protein HEVER  
responsive to desiccation, strong similarity to RD2 protein  
stress-responsive protein-related to Desiccation-responsive protein 29B 
23.6 kDa mitochondrial small heat shock protein (HSP23.6-M)  
endomembrane-localized small heat shock protein HSP22.0-ER 
 universal stress protein (USP) family protein  
cold-shock DNA-binding family protein / glycine-rich protein (GRP2)  
identical to heat shock protein 101 HSP101 
nearly identical to cold-regulated gene cor15b [Arabidopsis thaliana] 
 

0.045 
0.031 
0.112 
0.206 
0.12 
0.067 
0.06 
0.033 
0.027 
0.221 
0.018 
0.027 
0.151 
0.043 
0.172 
0.107 
0.116 
0.255 
0.124 
0.019 
0.385 
0.011 
0.01 
0.017 
0.271 
0.374 
0.362 
0.022 
0.045 
0.101 
0.357 
0.017 
0.343 
0.056 
0.367 
0.046 
0.191 
0.025 
0.041 
0.288 
0.379 
0.032 
0.337 
0.24 
0.032 
0.009 
0.018 
0.031 
0.298 
0.032 
0.02 

Group  
    2 

BN11832 
BN27593 

epoxide hydrolase, putative similar to epoxide hydrolase 
glycosyl hydrolase family 1 protein contains 

0.399 
0.068 
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Group  
    3 

BN11120 
BN12535 
BN12888 
BN14718 
BN15727 
BN16195 
BN20519 
BN20885 
BN22832 
BN27085 

expressed protein similar to auxin down-regulated protein ARG10  
auxin-responsive protein / indoleacetic acid-induced protein 2 (IAA2) 
 zeaxanthin epoxidase (ZEP) (ABA1), identical to  AtABA1 
ent-kaurene synthase / ent-kaurene synthase B (KS) (GA2)  
identical to Ethylene responsive element binding factor 2 (AtERF2)  
identical to ethylene-insensitive3 (EIN3)  
identical to Gibberellin-regulated protein 3 precursor GASA 3 
identical to Gibberellin-regulated protein 2 precursor GASA 2 
auxin-responsive family, similar to auxin-induced protein AIR12 
identical to  ethylene receptor 1 (ETR1) 
 

0.043 
0.259 
0.224 
0.31 
0.245 
0.341 
0.095 
0.099 
0.361 
0.366 

 
 
 
 
 
 
 
 
 
 
 
 
 
Group 
   4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BN10790 
BN10953 
BN11525 
BN11595 
BN12119 
BN14274 
BN14671 
BN16341 
BN17285 
BN18053 
BN18567 
BN19210 
BN19268 
BN19650 
BN19745 
BN19766 
BN21037 
BN21176 
BN21509 
BN21523 
BN21817 
BN22223 
BN22958 
BN24369 
BN24618 
BN26310 
BN26431 
BN26453 
BN26536 
BN26545 
BN27443 

myb family DNA binding domain transcription factor  
transcriptional factor B3 family protein  
 putative similar to AP2 domain transcription factor 
cytochrome P450, putative similar to from [Catharanthus roseus] 
identical to germin-like protein subfamily 3 member 3  
similar to myb-related transcription factor (MYB15) 
similarity to WRKY-type DNA-binding transcription factor protein  
putative similar to AP2 domain containing protein RAP2.1  
similarity to WRKY-type DNA-binding transcription factor protein 
ABA-responsive element-binding protein 2 (AREB2), bZIP 
Identical to Cytochrome P450 71B23  
bZIP family transcription factor, similar to bZIP transcription factor  
putative (CYP71B19), identical to cytochrome P450 71B19 
strong similarity to Cuciferin CRU1 precursor  
WRKY family DNA -binding domain transcription factor  
Identical to 12S seed storage protein (CRA1)  
putative similar to cytochrome P450 89A2  
similar to AP2 domain-containing transcription factor TINY  
cytochrome P450 family protein  
cytochrome P450, putative Similar to cytochrome P450 91A1 
myb family transcription factor  
identical to bZIP transcription factor (TGA1)  
cytochrome P450 family protein similar to Cytochrome P450 91A1  
putative similar to Cytochrome P450 91A1 [Arabidopsis thaliana] 
identical to cytochrome P450 71B20  
protein phosphatase 2C-related / PP2C-related protein phosphatase 2C 
Putative similar to  cytochrome P450 
similar to putative WRKY family DNA-binding protein  
germin-like protein, putative similar to germin -like protein GLP6 
bZIP transcription factor family protein 
putative (CYP71B14), identical to cytochrome P450 71B14 
 

0.269 
0.377 
0.312 
0.375 
0.399 
0.262 
0.055 
0.078 
0.079 
0.288 
0.332 
0.031 
0.314 
0.016 
0.377 
0.01 
0.159 
0.115 
0.354 
0.159 
0.178 
0.325 
0.35 
0.05 
0.235 
0.347 
0.29 
0.303 
0.083 
0.317 
0.368 

 
 
Group  
    5 
 
 
 

BN13405 
BN11999 
BN14680 
BN17203 
BN17226 
BN17923 
BN21920 
BN22737 

LEA3 family similar to several small proteins (~100 aa) 
similar to DnaJ homolog subfamily B member 11 precursor  
similarity to Heat shock 70 kDa protein, mitochondrial precursor  
putative strong similar to heat shock protein 70 [Arabidopsis thaliana]  
plant defensin-fusion protein, putative (PDF2.1) 
related to wound induced protein [Lycopersicon esculentum]  
zinc finger (B-box type) family / salt tolerance-like protein (STH) 
26.5 kDa class P-related heat shock protein (HSP26.5-P) 

22.021 
2.885 
3.006 
2.843 
4.405 
3.528 
4.687 
10.258 
 

 
Group  
    6 
 

BN13433 
BN13522 
BN16604 
BN19084 

chitinase-like protein 1 (CTL1), similar to class I chitinase 
GDSL-motif lipase/hydrolase family, similar to family II lipases EXL3  
GDSL-motif lipase/hydrolase family protein, similar to lipase 
putative similar to expansin 6 (EXP6) 

3.544 
18.358 
20.203 
22.075 
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Group  
    6 

BN19596 
BN19666 
BN20239 
BN22610 
BN22862 
BN23907 
BN24511 
BN25419 
BN25466 
BN25913 

glycoside hydrolase 28/pectinase family protein  
glycosyl hydrolase family 17, similar to elicitor inducible chitinase  
identical to endo-1,4-beta-glucanase  
glycoside hydrolase 28/pectinase family protein  
similar to expansin, putative EXP15  
expansin, putative (EXP14) similar to alpha-expansin 3  
GDSL-motif lipase/hydrolase family protein similar to Enod8.1 
glycoside hydrolase family 28/polygalacturonase (pectinase) family   
glycosyl hydrolase family 18 protein  
glycosyl hydrolase family 17 protein, similar to beta-1,3-glucanase 
 

3.697 
2.916 
5.404 
2.692 
2.939 
5.35 
3.144 
11.718 
2.916 
2.908 

Group  
    7 
 
 

BN12316 
BN14737 
BN19321 

1-aminocyclopropane-1-carboxylate synthase / ACC synthase 
auxin-responsive / indoleacetic acid-induced protein 16 (IAA16)  
putative / ACC oxidase, putative Strong similarity to ACC ox2 

6.866 
9.527 
2.832 

 
 
 
Group  
    8 

BN11287 
BN11437 
BN11645 
BN11710 
BN13436 
BN13453 
BN14593 
BN19599 
BN19889 
BN20043 
BN23109 
BN23743 

transcription factor S-II (TFIIS) domain-containing protein 
plasma membrane intrinsic protein 2C (PIP2C) / aquaporin PIP2.3  
similar to AP2 domain DNA-binding protein RAV2  
transduction family protein / WD-40 repeat family protein 
luminal binding protein 1 (BiP-1) (BP1)  
similar to luminal binding protein 2 (BiP-2) (BP2)   
similar to protein phosphatase-2C; PP2C 
elongation factor family protein 
myb familyDNA-binding domain transcription factor  
WRKY family transcription factor 
cytochrome P450, putative similar to cytochrome P450  
identical to bZIPDNA binding transcription factor family protein 

3.156 
3.372 
2.85 
3.735 
16.807 
21.756 
2.575 
2.409 
11.703 
3.034 
21.363 
3.37 
 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited by both a saline solution and ABA; Group 5-8: Up-
regulated genes for seeds imbibed in water were inhibited by both a saline solution and ABA.  
 
Table 5.8. Putative genes depressed only by a saline solution in un-germinated seeds  
                  as compared to water imbibed un-germinated seeds (with expression   
                 differences greater than 2.5 fold).   
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
Group  
    1 
 
 
 
 

BN10330 
BN14899 
BN15530 
BN15778 
BN15820 
BN17351 
BN17515 
 

identical to salt-tolerance zinc finger protein STZG 
17.4 kDa class III heat shock protein (HSP17.4-CIII) 
identical to Heat shock cognate 70 kDa protein 3 (Hsc70.3) 
dormancy/auxin associated family protein  
identical to heat shock factor protein 7 (HSF7)  
CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B 
identical to heat shock protein 70 [Arabidopsis thaliana] 

0.21 
0.016 
0.364 
0.064 
0.072 
0.31 
0.372 

Group  
    2 

BN24587 
BN25665 

glycosyl hydrolase family 17, similar to inducible chitinase Nt-SubE76 
glycoside hydrolase family 19 protein, similar to chitinase 
 

0.108 
0.12 

Group  
    3 

BN20138 identical to auxin transport protein (BIG) 
 
 

0.359 

 
Group 
   4 
 

BN15039 
BN15391 
BN15587 
BN15670 

putative similar to 9-cis-epoxycarotenoid dioxygenase  
myb family DNA-binding domain transcription factor  
identical to Cytochrome P450 98A3  
cytochrome P450, similar to GB:Q05047 from [Catharanthus roseus] 

0.013 
0.378 
0.181 
0.377 
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Group 
   4 
 
 
 

BN17301 
BN18656 
BN21157 
BN24855 
BN25763 
BN26892 

AP2 domain-containing transcription factor family protein  
myb family transcription factor identical to transforming protein (myb) 
Identical to  AP2 domain-containing protein RAP2.10 (RAP2.10)  
protein phosphatase 2C, putative / PP2C, putative 
protein phosphatase 2C / PP2C, abscisic acid-insensitive 2 (ABI2) 
bZIP transcription factor HBP-1b homolog 

0.392 
0.354 
0.038 
0.39 
0.284 
0.391 
 

Group  
    5 
 

BN13096 
BN17349 

putative strong similarity to Heat shock protein 81-2 (HSP81-2)  
DNAJ heat shock N-terminal domain-containing protein 

2.91 
11.327 

 
Group  
    6 
 
 

BN15790 
BN18310 
BN19352 
BN23255 

epoxide hydrolase, similar to epoxide hydrolase (Solanum tuberosum) 
glycosyl hydrolase family 3 protein, beta-xylosidase 
glycosyl hydrolase family 9, similar to endo-1,4-beta glucanase 
glycosyl hydrolase family protein 17, similar to beta-1,3-glucanase 

2.593 
4.349 
2.732 
5.481 

Group  
    7 
 

BN26906 gibberellin response modulator / gibberellin-responsive modulator 3.077 

Group  
    8 

BN10231 
BN19934 
BN25448 
BN27135 

myb family transcription factor (KAN2)  
major intrinsic family protein / MIP family protein 
myb family  DNA-binding domain ,transcription factor  
AP2 domain-containing transcription factor 
 

3.364 
7.567 
5.632 
3.100 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited only by a saline solution; Group 5-8: Up-regulated genes 
for seeds imbibed in water were inhibited only by a saline solution. 
 
Table 5.9. Putative genes depressed only by ABA in un-germinated seeds as compared   
                 to water imbibed un-germinated seeds (with expression differences greater     
                 than 2.5 fold).   
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
 
 
 
Group  
    1 
 
 
 
 

BN25166 
BN10635 
BN12218 
BN12619 
BN13104 
BN13977 
BN15358 
BN15976 
BN16472 
BN16483 
BN18166 
BN19370 
BN19713 
BN26219 
BN26827 

LEA domain-containing, similarity to embryogenic abundant  protein 
universal stress protein (USP),  similar to early nodulin ENOD18  
ABA-responsive protein-related, similar to cold-induced protein kin1 
universal stress protein (USP) family protein  
putative strong similarity to Heat shock protein 81-2 (HSP81-2)  
stress-inducible protein, similar to sti (stress inducible protein)  
similar to Auxin-repressed, stress-related 12.5 kDa protein  
similarity to mitochondrial small heat shock protein  
early-responsive to dehydration stress protein (ERD4)  
DNAJ heat shock N-terminal domain-containing, CAJ1 protein  
heat shock transcription factor family protein 
identical to late-embryogenesis abundant M17 protein 
similar to DNAJ heat shock N-terminal domain-containing CAJ1 protein 
15.7 kDa class I-related small heat shock protein-like (HSP15.7-CI)  
DNAJ heat shock N-terminal domain-containing protein 
 

0.068 
0.182 
0.302 
0.243 
0.173 
0.321 
0.141 
0.105 
0.214 
0.229 
0.038 
0.099 
0.355 
0.22 
0.351 

Group  
    2 

BN18205 
BN19885 
BN25665 

glycosyl hydrolase family 14 protein, similar to beta-amylase enzyme 
glycosyl hydrolase family 1 protein 
glycoside hydrolase family 19 protein, similar to chitinase 
 

0.362 
0.204 
0.12 

Group  
    3 

BN15039 
BN15777 
BN21637 

putative similar to 9-cis-epoxycarotenoid dioxygenase  
dormancy/auxin associated family protein 
IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3) 

0.013 
0.064 
0.318 
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Group 
   4 
 
 
 
 
 

BN10332 
BN14203 
BN15980 
BN17118 
BN17160 
BN24555 
BN26343 
BN26682 

AP2 domain-containing transcription factor, putative 
myb family transcription factor  
myb family transcription factor  
cytochrome P450, putative similar to P450 monooxygenase 
myb family transcription factor  
Identical to Cytochrome P450 71B5 
protein phosphatase 2C, putative / PP2C 
similar to Cytochrome P450 90C1 (ROTUNDIFOLIA3) 
 

0.384 
0.236 
0.319 
0.053 
0.256 
0.082 
0.134 
0.328 
 

 
 
 
 
Group  
    5 
 

BN10217 
BN13804 
BN14084 
BN17766 
BN18224 
BN19318 
BN20254 
BN21684 
BN23477 
BN23491 
BN23651 

identical to Dehydrin ERD14 {Arabidopsis thaliana} 
similar to early-responsive to dehydration stress ERD3 protein 
identical to Heat shock cognate 70 kDa protein 1 (Hsc70.1)  
universal stress protein (USP) / early nodulin ENOD18 family protein  
cold-shock DNA-binding family protein 
similar to early-responsive to dehydration stress ERD3 protein  
low similarity to ERD4 protein (early-responsive to dehydration stress) 
similar to early-responsive to dehydration stress ERD3 protein  
related  to wound-induced basic protein  
similar to 18.0 kDa class I heat shock protein [Daucus carota] 
similar to early-responsive to dehydration stress ERD3 protein 
 

5.278 
2.556 
5.83 
6.721 
4.723 
8.346 
2.843 
2.512 
2.711 
4.969 
2.827 

 
 
 
 
Group  
    6 
 
 
 
 
 
 
 

BN11639 
BN16591 
BN16784 
BN18214 
BN18878 
BN18997 
BN19799 
BN19871 
BN20118 
BN20878 
BN22296 
BN22669 
BN23157 
BN24119 
BN24150 

expansin, putative (EXP1) identical to expansin (At-EXP1)  
glycosyl hydrolase family 3 protein  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3  
glycosyl hydrolase family 3 protein 
expansin, putative (EXP8) similar to expansin 2 
glycosyl hydrolase family protein 17, similar to beta-1,3-glucanase 
alpha-xylosidase (XYL1) identical to alpha-xylosidase precursor  
glycosyl hydrolase family 1 protein  
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL1  
similar to Glucan endo-1,3-beta-glucosidase precursor  
expansin, putative (EXP10) similar to expansin At-EXP1 
glycosyl hydrolase family 3 protein similar to beta-xylosidase 
similar to elicitor inducible chitinase Nt-SubE76 
beta-expansin (EXPB3), similar to soybean pollen allergen (cim1) 
glycoside hydrolase family 28 protein / pectinase family protein 
 

40.258 
2.994 
8.369 
14.508 
5.576 
7.456 
17.839 
28.134 
7.089 
6.39 
11.15 
20.609 
4.551 
10.271 
3.907 

 
 
 
Group  
    7 
 
 
 
 
 
 

BN11763 
BN16638 
BN16876 
BN17322 
BN21238 
BN21365 
BN22844 
BN23039 
BN23715 
BN26977 

similar to Gibberellin-regulated protein 4 precursor GASA4;  
nearly identical to ACC oxidase (ACC ox1)  from [Brassica oleracea] 
putative (PIN3), similar to auxin transport protein 
auxin-responsive AUX/IAA family protein similar to IAA18  
auxin-responsive family, similar to auxin-induced protein X10A5 
gibberellin response modulator (RGA1)  
similar to Gibberellin-regulated protein 1 precursor 
identical to ethylene response sensor (ERS)  
similar to ACC oxidase [Sorghum bicolor] 
transcription factor MONOPTEROS (MP) / auxin-responsive IAA24 
 

3.092 
14.484 
3.787 
14.4 
17.534 
4.317 
9.614 
30.134 
25.503 
7.456 

 
 
 
Group  
    8 
 
 
 

BN10224 
BN10387 
BN12746 
BN14121 
BN15088 
BN20259 
BN20556 
BN23412 

plasma membrane intrinsic protein 2B (PIP2B) / aquaporin PIP2.2  
plasma membrane intrinsic protein 1B (PIP1B) / aquaporin PIP1.2  
raffinose synthase family / seed imbibition protein, putative (din10)  
AP2 domain-containing transcription factor RAP2.4  
bZIP transcription factor family protein 
plasma membrane intrinsic protein 1C (PIP1C) / aquaporin PIP1.3 
cytochrome P450, putative 
protein phosphatase 2C-related / PP2C-related  

5.336 
3.753 
39.926 
2.509 
3.098 
6.242 
13.57 
10.585 
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Group  
    8 
 

BN24406 
BN25051 
BN25316 

similar to myb-related transcription activator 
putative similar to Cytochrome P450  
fertilization-independent endosperm protein (FIE) 

3.908 
4.137 
2.515 
 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited only by the ABA; Group 5-8: Up-regulated genes for seeds 
imbibed in water were inhibited only by the ABA. 
 
5.3.6 A Comparison of gene expression in germinated seeds imbibed in either water, 

GA4+7, a saline solution or ABA.  

           Genes with differentiation in expression greater than 2.5 fold between germinated 

seeds imbibed in either water, GA4+7, a saline solution or ABA are shown in Figures 5.8 

and 5.9. Compared to water imbibed germinated seeds, 131 genes were differentially 

expressed in GA treated germinated seeds, 272 for the saline solution and 641 for ABA 

(Figures 5.8 and 5.9.). For all the above three group genes, biggest difference occurred in 

SN and AN seeds, in which genes up- or down- regulated after dry seed imbibition were 

greatly affected compared to un-germinated seeds imbibed in water; however, after 

germination, this difference decreased (Figure 5.9). LEA and stress-related, hormone- 

related, hydrolase related and transcription factors and specific seed germination-related 

genes are selected and listed in Tables 5.10, 5.11, 5.12 and 5.13.         

                                   
 
Figure 5.8. Venn diagrams for genes with differentiation in expression greater than 2.5 between 
germinated seeds imbibed in water and the treatments exerted. GG > < WG: GA4+7; WG > < SG: a saline 
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solution; WG > < AG: ABA. WN: un-germinated seeds imbibed in water; WG: germinated seeds imbibed 
in water; GN: un-germinated seeds imbibed in GA4+7; GG: germinated seeds imbibed in GA4+7; SN: un-
germinated seeds imbibed in the saline solution; SG: germinated seeds imbibed in the saline solution; AN: 
un-germinated seeds imbibed in ABA; AG: germinated seeds imbibed in ABA. 
 
 
 
a 
 

 
                 AG  SG  WG GG  AN GN WN  SN        

b 
 

 
                       AG  AN  SG   SN   GG    GN  WN    WG  

c 
 

 
                       AG  AN   GG WG  GN   WN  SG   SN     

 
 
Figure 5.9. Hierarchical clustering of genes with 
expression greater than 2.5 fold between germinated 
seeds imbibed in water and treatments exerted.  a. 
seeds imbibed in GA4+7 ; b. seeds imbibed in a 
saline solution; c. seeds imbibed in ABA. WN: un-
germinated seeds imbibed in water; WG: 
germinated seeds imbibed in water; GN: un-
germinated seeds imbibed in GA4+7; GG: 
germinated seeds imbibed in GA4+7; SN: un-
germinated seeds imbibed in the saline solution; 
SG: germinated seeds imbibed in the saline 
solution; AN: un-germinated seeds imbibed in 
ABA; AG: germinated seeds imbibed in ABA. 
 
 

 
                           Lower higher                                         
                                                                                   Expression intensity 
 
Table 5.10. Putative genes with expression differences greater than 2.5 fold between    
                    germinated seeds imbibed in water and GA4+7. 
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
Group  
    1 
 
 
 

BN11528 
BN11573 
BN12638 
BN12979 
BN13114 
BN18119 

senescence/dehydration-associated protein-related (ERD7)  
identical to dnaJ heat shock protein J11 
putative similar to cold acclimation WCOR413-like protein  
universal stress protein (USP) family protein similar to ER6 protein  
1.2 kDa small heat shock family protein / hsp20 family protein  
similar to early-responsive to dehydration stress ERD3 protein  

0.223 
0.286 
0.270 
0.352 
0.248 
0.354 
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BN18222 
BN21069 

cold-shock DNA-binding family protein  
heat shock N-terminal domain-containing, low similarity to AHM1 

0.385 
0.371 

Group   
    2 
 

BN12525 
BN16608 
BN24268 

glycosyl hydrolase family 1 protein 
glycosyl hydrolase family 1 protein, .identical to beta-glucosidase 
chitinase, putative similar to basic endochitinase CHB4 precursor 
 

0.352 
0.394 
0.353 

Group  
    3 

BN24622 similar to auxin-responsive GH3 product [Glycine max] 0.108 

 
Group  
    4 
 
 
 
 

BN15915 
BN17825 
BN18317 
BN18507 
BN18756 
BN26280 
 

myb family transcription factor (GLK2)  
myb family transcription factor similar to MybSt1  
protein phosphatase 2C, putative / PP2C 
protein phosphatase 2C, similar to protein phosphatase type 2C  
identical to germin-like protein subfamily 3 member 1  
myb DNA-binding domain family transcription factor  

0.338 
0.327 
0.386 
0.322 
0.309 
0.374 

Group  
    5 
 

BN10053 
BN18389 

similar to early-responsive to dehydration stress ERD3 protein  
Hydrophobic RCI2B, Low temperature and salt responsive LTI6B 
 

2.686 
3.124 
 

 
Group  
    6 

BN14129 
BN23761 
BN24150 
BN24266 

Expansin, putative (EXP5), identical to expansin At-EXP5 
putative (EXP4) similar to alpha-expansin 6 precursor  
glycoside hydrolase family 28/ pectinase family protein 
chitinase, putative similar to basic endochitinase CHB4 precursor 

5.400 
4.031 
3.906 
3.816 
 

Group  
    7 
 

BN22657 
BN25519 

auxin-responsive protein / indoleacetic acid-induced protein 4 (IAA4) 
identical to auxin transport protein EIR1  
 

7.249 
3.486 
 

 
Group  
    8 

BN15911 
BN16235 
BN17150 
BN20382 
BN20392 
BN21442 

myb family transcription factor (MYB30) identical to myb-like protein  
similar to seed storage protein opaque-2(bZIP family) 
identical to Floral homeotic protein APETALA2 
phosphatase PP2A-3 catalytic subunit (PP2A3) 
phosphatase 2A (PP2A) regulatory subunit B 
myb family transcription factor 
 

25.895 
2.551 
4.318 
2.779 
3.676 
3.730 
 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down regulated; 
Group 5-8: up-regulated. 
 
Table 5.11. Putative genes depressed by both a saline solution and ABA in germinated   
                 seeds as compared to water imbibed germinated seeds (with expression  
                 differences greater than 2.5 fold).                         
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
 
Group  
    1 
 
 
 
 
 
 
 
 

BN10961 
BN16767 
BN20144 
BN20349 
BN20598 
BN20688 
BN20893 
BN24859 
BN25011 
BN25166 
BN26527 
BN10431 
BN11007 

LEA group 1 domain-containing protein similarity to DS11 
LEA protein, putative similar to Lea14-A {Gossypium hirsutum} 
putative / LEA protein, similar to LEA 76 {Brassica napus} 
LEA domain-containing, low similarity to Desiccation-related protein 
LEA domain-containing protein, low similarity to D-29  
LEA protein, nearly identical to LEA protein in group 3(ECP63) 
LEA domain-containing, low similar to 51 kDa seed maturation protein  
LEA group 1 domain-containing protein 
LEA group 1 domain-containing protein  
LEA domain-containing protein low similarity to embryogenic gene  
putative / LEA protein, putative similar to LEA protein in group 3 
dehydrin (RAB18), nearly identical to Dehydrin Rab18  
related to wound-induced protein - tomato (fragment) 

0.011 
0.004 
0.01 
0.002 
0.007 
0.019 
0.016 
0.013 
0.03 
0.004 
0.006 
0.004 
0.045 
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Goup 
     1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BN11240 
BN11376 
BN11635 
BN12218 
BN12279 
BN14450 
BN14537 
BN14817 
BN14863 
BN15452 
BN15627 
BN15648 
BN15778 
BN15854 
BN17057 
BN17171 
BN17392 
BN19511 
BN19515 
BN20125 
BN20755 
BN21105 
BN24367 
BN24377 
BN24919 
BN24925 
BN24959 
BN25006 
BN26033 
BN26365 
BN27428 
 

identical to dehydration-induced protein ERD15  
putative similar to heat shock protein hsp70 from [Pisum sativum] 
17.6 kDa class I small heat shock protein (HSP17.6B-CI)  
ABA-responsive protein-related, similar to cold-induced protein kin1 
plant defensin-fusion protein, putative (PDF1.2c) 
identical to heat shock transcription factor 4 (HSF4)  
putative (PDF1.2b) plant defensin protein family member 
identical to 17.6 kDa class II heat shock protein (HSP17.6-CII) 
identical to dormancy-associated protein, putative (DRM1)  
identical to 17.4 kDa class I heat shock protein (HSP17.4-CI) 
DNAJ heat shock family (Heat shock 40 kDa protein 1 homolog)  
identical to 17.6 kDa class I heat shock protein (HSP 17.6)  
dormancy/auxin associated family protein  
plant defensin-fusion protein, putative (PDF2.3) 
similar to 17.5 kDa class I heat shock protein (HSP17.8-CI) 
low-temperature-responsive LTI78/desiccation-responsive RD29A 
dormancy/auxin associated protein-related 
universal stress protein (USP) family protein, similar to ER6 protein 
HSF-type DNA-binding domain transcription factor 
dehydrin family protein  
ABA-responsive protein (HVA22b), identical to AtHVA22b   
DRE-binding protein (DREB2A) identical to DREB2A 
stress-responsive, similar to ethylene-inducible protein HEVER  
responsive to desiccation, strong similarity to RD2 protein  
stress-responsive protein-related to Desiccation-responsive protein 29B 
23.6 kDa mitochondrial small heat shock protein (HSP23.6-M)  
universal stress protein (USP) family protein  
identical to heat shock protein 101 (HSP101) 
nearly identical to cold-regulated gene cor15b [Arabidopsis thaliana]  
DnaJ homolog subfamily B member 10  
Identical to  DRE-binding protein (DREB2A) 
 

0.205 
0.011 
0.015 
0.063 
0.015 
0.356 
0.04 
0.007 
0.201 
0.011 
0.007 
0.011 
0.012 
0.35 
0.015 
0.329 
0.359 
0.017 
0.191 
0.007 
0.019 
0.031 
0.301 
0.32 
0.005 
0.005 
0.01 
0.011 
0.01 
0.377 
0.02 

Group  
    2 

BN15701 
BN25665 

GDSL-motif lipase/hydrolase protein, similar to early nodulin ENOD8 
glycoside hydrolase family 19 protein similar to chitinase 

0.395 
0.282 
 

Group  
    3 

BN15907 
BN20519 
BN20885 

putative similar to ethylene-responsive transcriptional coactivator 
identical to Gibberellin-regulated protein 3 precursor  
identical to Gibberellin-regulated protein 2 precursor 

0.292 
0.023 
0.011 
 

 
 
 
 
 
Group 
   4 
 
 
 
 
 
 
 
 
 

BN11525 
BN11595 
BN11682 
BN12119 
BN15257 
BN15698 
BN19210 
BN19268 
BN19650 
BN21104 
BN21176 
BN21509 
BN22802 
BN24369 
BN25239 
BN26431 

putative similar to AP2 domain transcription factor 
cytochrome P450, putative similar to from [Catharanthus roseus] 
similar to cytochrome P450 from [Catharanthus roseus] 
identical to germin-like protein subfamily 3 member 3  
cytochrome P450, putative 
cytochrome P450 
bZIP family transcription factor, similar to bZIP transcription factor  
putative (CYP71B19), identical to cytochrome P450 71B19  
strong similarity to Cuciferin CRU1 precursor  
identical to basic leucine zipper transcription factor (BZIP12)  
similar to AP2 domain-containing transcription factor TINY  
cytochrome P450 family protein  
cytochrome P450 family protein, similar to cytochrome P450 72A1  
putative similar to Cytochrome P450 91A1 [Arabidopsis thaliana] 
phosphatase 2C, putative / PP2C 
Putative similar to  cytochrome P450 

0.269 
0.312 
0.345 
0.371 
0.046 
0.286 
0.023 
0.108 
0.002 
0.284 
0.062 
0.383 
0.362 
0.019 
0.308 
0.318 
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BN26453 
BN27443 

similar to putative WRKY family DNA-binding protein  
putative (CYP71B14), identical to cytochrome P450 71B14 
 

0.301 
0.298 

 
Group  
    5 
 

BN14680 
BN16613 
BN17203 
BN21920 
BN22737 

strong similarity to Heat shock 70 kDa , mitochondrial precursor  
nearly identical to heat shock protein hsp81.4  
putative strong similar to heat shock protein 70 [Arabidopsis thaliana]  
zinc finger (B-box type) family / salt tolerance-like protein (STH) 
26.5 kDa class P-related heat shock protein (HSP26.5-P) 
 

2.6 
2.69 
2.709 
4.687 
3.237 

 
 
 
 
 
 
Group  
    6 

BN13810 
BN19084 
BN19666 
BN20239 
BN21244 
BN21616 
BN22579 
BN22610 
BN23885 
BN23907 
BN24511 
BN25419 
BN25913 

glycosyl hydrolase family 1 protein 
putative similar to expansin 6 (EXP6) 
glycosyl hydrolase family 17, similar to elicitor inducible chitinase  
identical to endo-1,4-beta-glucanase 
GDSL-motif lipase/hydrolase family, similar to family II lipase EXL3 
beta-galactosidase, putative similar to beta-galactosidase 
GDSL-motif hydrolase family, low similarity to family II lipase EXL1  
glycoside hydrolase family 28 protein / pectinase family protein  
glycosyl hydrolase family 35 protein similar to beta-galactosidase  
expansin, putative (EXP14) similar to alpha-expansin 3  
GDSL-motif lipase/hydrolase family protein similar to Enod8.1  
glycoside hydrolase family 28/polygalacturonase (pectinase) family   
glycosyl hydrolase family 17 protein, similar to beta-1,3-glucanase 

6.896 
14.563 
3.468 
4.072 
3.234 
15.223 
5.476 
2.574 
5.895 
3.343 
3.57 
12.701 
3.085 
 

Group  
    7 
 

BN16411 
BN24700 

auxin-responsive / indoleacetic acid-induced protein 17 (IAA17) 
auxin-responsive / indoleacetic acid-induced protein 13 (IAA13) 

3.274 
2.964 

 
 
 
Group  
    8 

BN11287 
BN11710 
BN17421 
BN19599 
BN19889 
BN20043 
BN21990 
BN22218 
BN22991 
BN25316 

transcription factor S-II (TFIIS) domain-containing protein 
transduction family protein / WD-40 repeat family protein 
identical to cytochrome P450 71B28, putative (CYP71B28)  
elongation factor family protein 
myb family transcription factor  
WRKY family transcription factor 
bZIP transcription factor family protein 
myb family transcription factor  
RNA recognition motif (RRM)-containing protein 
fertilization-independent endosperm protein (FIE) 
 

3.626 
4.511 
3.912 
3.735 
7.376 
3.105 
4.967 
4.180 
7.962 
2.710 

 Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited by both a saline solution and ABA; Group 5-8: Up-
regulated genes for seeds imbibed in water were inhibited by both a saline solution and ABA. 
 
Table 5.12. Putative genes depressed only by a saline solution in germinated seeds as  
                    compared to water imbibed germinated seeds (with expression differences   
                    greater than 2.5 fold).   
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
Group  
    1 
 
 
 
 
 

BN19370 
BN19387 
BN11573 
BN13968 
BN14899 
BN15189 
BN17568 
BN18222 
BN19713 

identical to late-embryogenesis abundant M17 protein  
late embryogenesis abundant protein (M10) / LEA protein M10 
identical to dnaJ heat shock protein J11  
putative (PDF1.2a) plant defensin protein family member 
17.4 kDa class III heat shock protein (HSP17.4-CIII)  
low similarity to 40 kDa heat shock chaperone protein (HSP40)  
similar to ethylene-responsive ER6 protein 
cold-shock DNA-binding family protein  
DNAJ heat shock N-terminal domain-containing protein  

0.017 
0.004 
0.394 
0.044 
0.019 
0.209 
0.058 
0.247 
0.285 
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BN19962 
BN23037 
BN23186 
BN23509 
BN24993 
BN26469 

putative (PDF1.4) plant defensin protein family member 
HSF-type DNA-binding domain transcription factor  
similar to drought-induced mRNA, Di19 
universal stress protein (USP), similar to early nodulin ENOD18  
expressed protein very low similarity to LEA protein  
defense protein-related weak similarity to RPM1-interacting protein 4 

0.01 
0.355 
0.364 
0.288 
0.042 
0.201 
 

Group  
    2 

BN18357 
BN19885 
BN26772 
BN27593 

hydrolase, alpha/beta fold family protein  
glycosyl hydrolase family 1 protein contains 
glycosyl hydrolase family 1 protein contains 
glycosyl hydrolase family 1 protein 
 

0.03 
0.064 
0.165 
0.272 

Group  
    3 

BN15727 
BN21637 
BN22832 

identical to Ethylene responsive element binding factor 2 (AtERF2)  
IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3) 
auxin-responsive family, similar to auxin-induced protein AIR12 

0.225 
0.255 
0.32 
 

 
 
 
Group 
   4 
 
 
 
 

BN15391 
BN15670 
BN18118 
BN18567 
BN18656 
BN19766 
BN22958 
BN26536 
BN26545 

myb family DNA-binding domain transcription factor  
cytochrome P450 
myb family transcription factor  
Identical to Cytochrome P450 71B23  
myb family transcription factor identical to transforming protein (myb) 
identical to 12S seed storage protein (CRA1)  
cytochrome P450 family protein, similar to Cytochrome P450 91A1 
germin-like protein, putative similar to germin -like protein GLP6 
 bZIP transcription factor family protein 

0.373 
0.363 
0.357 
0.365 
0.257 
0.002 
0.368 
0.05 
0.189 
 

Group  
    5 
 

N/A N/A N/A 

Group  
    6 
 

BN15161 glycosyl hydrolase family 3 protein 23.897 
 
 

Group  
    7 
 

N/A 
 
 

N/A N/A 

Group  
    8 

BN14593 
BN16022 
BN19934 
BN24459 
BN24616 

similar to protein phosphatase-2C; PP2C  
myb family transcription factor 
major intrinsic family protein / MIP family protein 
WRKY family transcription factor  
cytochrome P450, putative 

3.012 
2.783 
7.072 
3.361 
2.796 
 

Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited by a saline solution and ABA; Group 5-8: Up-regulated 
genes for seeds imbibed in water were inhibited only by a saline solution. 
 
 
Table 5.13. Putative genes depressed only by ABA in germinated seeds as compared   
                    to water imbibed germinated seeds (with expression differences greater than   
                    2.5 fold).   
 
Groups 

 
Clone ID 

 
Gene  Names 

Relative 
Ratio 

 
 
Group  
    1 

BN19387 
BN10459 
BN10635 
BN10668 

late embryogenesis abundant protein (M10) / LEA protein M10  
similar to wound inducive gene 
universal stress protein (USP), similar to early nodulin ENOD18  
similar to Chaperone protein dnaJ Erysipelothrix rhusiopathiae 

0.004 
0.21 
0.093 
0.034 
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BN12619 
BN12981 
BN13289 
BN14532 
BN16309 
BN16590 
BN19962 
BN21650 
BN26219 

universal stress protein (USP) family protein  
universal stress protein (USP) family protein similar to ER6 protein  
nearly identical to stress enhanced protein 2 ( SEP2) 
DNAJ heat shock N-terminal domain-containing DnaJ protein Tid-1  
weak similarity to HSF 1 (Heat shock transcription factor 1) (HSTF 1)  
similar to early-responsive to dehydration stress ERD3 protein  
putative (PDF1.4) plant defensin protein family member 
DNAJ heat shock N-terminal domain-containing AHM1 protein  
15.7 kDa class I-related small heat shock protein-like (HSP15.7-CI) 

0.088 
0.035 
0.121 
0.362 
0.235 
0.384 
0.01 
0.26 
0.341 
 

Group  
    2 

BN18758 
BN21637 
BN26438 

hydrolase, low similarity to monoglyceride lipase from [Homo sapiens]  
identical to IAA-Ala hydrolase (IAR3) [Arabidopsis thaliana]  
GDSL-motif lipase/hydrolase family protein similar to lipase 
 

0.133 
0.255 
0.269 

Group  
    3 

BN12888 
BN15358 
BN24622 

zeaxanthin epoxidase (ZEP) (ABA1), identical to  AtABA1 
similar to Auxin-repressed 12.5 kDa protein 
similar to auxin-responsive GH3 product 

0.125 
0.131 
0.344 
 

 
 
 
Group 
   4 
 
 
 
 

BN10790 
BN10953 
BN13703 
BN16242 
BN17160 
BN22940 
BN22954 
BN25156 
BN25763 
BN26682 

myb family DNA binding domain transcription factor  
transcriptional factor B3 family protein  
protein phosphatase 2C, putative / PP2C 
protein phosphatase 2C, putative / PP2C from [Arabidopsis thaliana] 
myb family transcription factor 
WRKY family transcription factor  
protein phosphatase 2C P2C-HA / PP2C P2C-HA  
similar to ABA-responsive element binding protein 1 (AREB1) bZIP  
protein phosphatase 2C / PP2C, abscisic acid-insensitive 2 (ABI2) 
similar to Cytochrome P450 90C1 (ROTUNDIFOLIA3) 

0.307 
0.343 
0.376 
0.204 
0.255 
0.381 
0.193 
0.121 
0.22 
0.215 
 

 
 
Group  
    5 
 

BN13405 
BN11999 
BN13096 
BN14084 
BN18224 
BN23491 
BN23651 

LEA3 family protein similar to several small proteins (~100 aa) 
similar to DnaJ homolog subfamily B member 11 precursor  
putative strong similarity to Heat shock protein 81-2 (HSP81-2)  
identical to Heat shock cognate 70 kDa protein 1 (Hsc70.1)  
cold-shock DNA-binding family protein  
similar to 18.0 kDa class I heat shock protein [Daucus carota] 
similar to early-responsive to dehydration stress ERD3 protein 

17.471 
3.892 
3.169 
10.212 
2.578 
3.63 
2.52 
 

 
 
Group  
    6 
 
 
 
 
 
 
 

BN14925 
BN15630 
BN16591 
BN18878 
BN18997 
BN20681 
BN20878 
BN21978 
BN22148 
BN23157 
BN26929 

beta-1,3-glucanase (BG3) almost identical to beta-1,3-glucanase  
alpha-glucosidase, putative similar to alpha-glucosidase 
glycosyl hydrolase family 3 protein 
expansin, putative (EXP8) similar to expansin 2  
glycosyl hydrolase family protein 17, similar to beta-1,3-glucanase  
expansin family protein (EXPL2)  
similar to Glucan endo-1,3-beta-glucosidase precursor  
GDSL-motif lipase/hydrolase family protein  
similar to glucan endo-1,3-beta-glucosidase 
similar to elicitor inducible chitinase Nt-SubE76  
GDSL-motif lipase/hydrolase family, similar to family II lipases EXL3 

4.048 
2.963 
2.836 
4.696 
2.926 
4.496 
4.124 
3.262 
7.024 
3.302 
42.281 
 

Group  
    7 
 
 

BN21238 
BN21365 
BN26977 

auxin-responsive family, similar to auxin-induced protein X10A5 
gibberellin response modulator (RGA1)   
transcription factor MONOPTEROS (MP) / auxin-responsive IAA24 

3.367 
2.659 
2.57 

Group  
    8 

BN14121 
BN14194 

AP2 domain-containing transcription factor RAP2.4 
myb family transcription factor  

2.57 
3.232 
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Group  
    8 

BN15837 
BN23109 

myb family transcription factor  
cytochrome P450, putative similar to cytochrome P450 

2.929 
17.74 
 

Four specific group genes as described in table 5.2 were selected. Group 1-4: Down-regulated genes 
for seeds imbibed in water were inhibited only by ABA; Group 5-8: Up-regulated genes for seeds 
imbibed in water were inhibited only by ABA. 
 
5.3.7 Genes, as described in Table 5.2, specifically up-regulated by either a saline 

solution or ABA     

           Compared to the water imbibed seeds as described in Table 5.2, we also found some 

genes up-regulated more in seeds imbibed in either the saline solution or ABA. Genes 

and expression profiles are displayed in Tables 5.14, 5.15 and Figures 5.10 and 5.11. We 

assumed that these genes were involved in overcoming the inhibitory effects generated by 

either the saline solution or ABA.   

Table 5.14. Genes specifically up-regulated in seeds imbibed in a saline solution.  
Colne ID                                Gene name 
BN12534    
BN13944    
BN18296    
BN20099    
BN20385    
BN22148    
BN22657    
BN25050    
BN25697    
BN26349    
BN27674     

auxin-responsive protein / indoleacetic acid-induced protein 2 (IAA2)  
early-responsive to dehydration stress protein (ERD3) identical to ERD3 protein  
early-responsive to dehydration stress (ERD6) / sugar transporter family protein  
expansin family protein (EXPR3) identical to Expansin-related protein 3 precursor 
AP2 domain-containing transcription factor RAP2.7 (RAP2.7)  
glycosyl hydrolase family 17 protein similar to glucan endo-1,3-beta-glucosidase 
auxin-responsive/ indoleacetic acid-induced protein 4 (IAA4) / auxin-induced protein  
cytochrome P450, putative similar to Cytochrome  
transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-related  
putative (CYP71B22) Identical to cytochrome P450 71B22 
protein phosphatase 2C ABI1 / PP2C ABI1 / abscisic acid-insensitive 1 (ABI1) 
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Figure 5.10. Compared to seeds imbibed in water, genes specifically up-regulated in seeds imbibed in the 
saline solution. a. un-germinated seeds; b. germinated seeds. WN: un-germinated seeds imbibed in water; 
WG: germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: germinated 
seeds imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: germinated seeds 
imbibed in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: germinated seeds imbibed 
in ABA. 
 
 
Table 5.15. Genes specifically up-regulated in seeds imbibed in ABA.  
Colne ID                                                  Gene name  
BN10195    
BN10235   
BN10799    
BN10936   
BN11835    
BN12218    
BN12534   
BN15343   
BN17214   
BN17472    
BN18296   
BN18389    
BN18532   
BN23484    
BN25697   
BN26221    
BN26349    
BN26593   
BN26681 

dehydrin (COR47) identical to dehydrin COR47 (Cold-induced COR47 protein)    
superoxide dismutase [Cu-Zn], chloroplast (SODCP) /       
calcium-binding RD20 protein (RD20) induced by abscisic acid during dehydration   
identical to dehydrin ERD10 (Low-temperature-induced protein LTI45)     
stress-responsive protein (KIN2) / cold-responsive protein (COR6.6)   
ABA-responsive protein-related similar to ABA-inducible protein     
auxin-responsive protein / indoleacetic acid-induced protein 2 (IAA2)   
putative (FL3-5A3) similar to cold acclimation WCOR413-like protein    
low-temperature-responsive 65 kD (LTI65) / desiccation-responsive 29B (RD29B)    
aquaporin, putative similar to plasma membrane aquaporin 2b      
early-responsive to dehydration stress (ERD6) / sugar transporter family protein   
hydrophobic protein (RCI2B) / low temperature and salt responsive protein (LTI6B) 
cytochrome P450 84A1 (CYP84A1) / ferulate-5-hydroxylase (FAH1)    
identical to WRKY transcription factor 31 (WRKY31)     
transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-related   
myb family transcription factor (MYB47)       
putative (CYP71B22) Identical to cytochrome P450 71B22      
putative (CYP71A16) Identical to Cytochrome P450 71A16  
cytochrome P450 family, similar to Cytochrome P450 90C1 (ROTUNDIFOLIA3) 
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Figure 5.11. Compared to seeds imbibed in water, genes specifically up-regulated in seeds imbibed in 
ABA. a. un-germinated seeds;  b. germinated seeds. WN: un-germinated seeds imbibed in water; WG: 
germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: germinated seeds 
imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: germinated seeds imbibed 
in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: germinated seeds imbibed in ABA. 
 
5.3.8 Northern blot analysis:  
 
           Fragments of two new LEA genes (D1400 and D2600), isocitrate lyase (IS) and 

malate synthase (MS) genes from canola were cloned and their expression were analyzed 

by northern blot analysis. 

 RT-PCR results of D1400 and D2600  

           Based on the conserve motif of LEA genes, we designed two pairs of degenerate 

primers and isolated two new LEA gene fragments from canola seed.  
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          a. 

            

b. 

 
 
 

      
Figure 5.12. RT-PCR results for two new LEA genes. a. Quantitative RNA samples (1μg). 1-3 are the 
RNA from dry seeds and seeds imbibed in water and ABA, respectively. b. RT-PCR results using these two 
degenerate primers. 1: marker; 2-4 (first set primer): dry seeds, seeds imbibed in water and ABA, 
respectively; 5: Control; 6-7 (second set primer): dry seeds, seeds imbibe in water and ABA respectively. 
      
           Gene fragments (as arrows indicate in Figure 5.12 b) revealed by these two 

primers which had different expression in dry seeds and seeds imbibed in water and ABA 

respectively, were cloned.  First band, D1400 has 400 bp and is homologous the 

Arabidopsis RAB18 gene; the second band, D2 600 which has 478 bp is closely to the 

Brassica napus dehydrin gene.  

Northern blot analysis of IS, MS, D1400 and D2600 gene expression 

           Expression of these four genes in both germinated (WG, GG, SG and AG) and un-

germinated (WN, GN, SN, AN) seeds at 50% germination imbibed in water (WN and 

WG), GA4+7 (GN, GG), the saline solution (SN, SG) and ABA (AN, AG) at 8°C is shown 

in Figure 5.13. 

              

 3     2    1     8   7    6   5    4    3   2    1  
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Figure 5.13.  Expression analysis of  genes IS, MS, D1400 and D2600.  WN: un-germinated seeds imbibed 
in water; WG: germinated seeds imbibed in water; GN: un-germinated seeds imbibed in GA4+7; GG: 
germinated seeds imbibed in GA4+7; SN: un-germinated seeds imbibed in the saline solution; SG: 
germinated seeds imbibed in the saline solution; AN: un-germinated seeds imbibed in ABA; AG: 
germinated seeds imbibed in ABA 
 
                            
           These results suggest that IL and the two LEA genes (D1400, D2600) are 

associated with seed germination, specially, D2 600. The expression of MS was not 

affected by any of the treatments. 

Gene expression profiles of D1400 and D2600 during seed imbibition 
      

          
 

             
 

         
 
               

              
 
Figure 5.14. Gene expression profiles of  D1400 and D2 600 for seeds imbibed in water at 8 ºC. Lane 1: dry 
seeds; Lane 2-9: un-germinated sees imbibed in water for 4, 8, 12,  24,  36, 48,  60 and 72 hours, 
respectively; Lane 10: germinated seeds imbibed in water for 72 hours.    
a. D1400; b. D2600. 
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          D1400 declined but was still present at 24h of imbibition, whereas, D2600 degraded 

much slower over the 72h period for seeds imbibed at 8 ºC in water. Higher level of 

D2600 was still present after 72 h in un-germinated seeds. These results indicate that 

D2600 is closely associated with seed germination.  

Gene expression of D2600 in seeds from four canola lines that differ in germination at 

8ºC 

Table 5.16: Germination responses of four seed lines that differ in germination   
                    Potential. 
   Lines Germination%, 5d, 8°C, water Germination (%), 5d, 8°C, in saline solution 

   A        96.0           51.5 
   B        99.0           94.8 
   E        85.3           12.8 
   K        94.3           14.3 
 

Northern blot analysis 

 
 A    B    E    K  A   B     E    K A  B    E   K A    B     E    K A   B    E      K 
   Dry seeds    1 day      2 day      4 day      6 day 

 
 

 
 
Figure 5.15. D2600 expression in four seed lines imbibed at 8°C in either water or 80 mM saline solution 
for 1, 2 4 and 6 days.  a. Water; b. 80 mM saline solution. 
 
           From the above results, we found that D2600 expression was associated with seed 

germination at 8 ºC. Good germination performance lines had lower expression of this 

gene and poor performance lines had higher expression.  

 

a 
 
 
b 

28S and 18S rRNA for a 
 
 
28S and 18S rRNA for b 
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5.4 Discussion 

 5.4.1 Gene expression profiles at different physiological states of germination 

           Previous studies have established that seed germination potential is controlled by 

stored mRNA in dry seeds, while the rate of germination is controlled by changes of gene 

expression initiated upon imbibition (Holdsworth et al., 2008; Bentsink and Koornneef, 

2002; Rajjou et al., 2004). However, it is not clear how the environment controls or 

regulates seed germination in these studies. In addition, our understanding of this process 

primarily comes from studies on Arabidopsis. In this study, we investigated the effect of 

GA4+7, saline solution and ABA on gene expression in both germinated and un-

germinated canola seeds, which is an important crop in western Canada and is also 

closely related to Arabidopsis. 

           When seeds reached 50% germination, gene expression profiles of germinated and 

un-germinated seeds for all treatments were analyzed by principle component analysis 

(PCA). The PCA analysis separated the eight seed samples into different groups based on 

the similarity of their gene expression pattern. This gene expression pattern classification 

was consistence with the seed germination performance displayed in Figure 5.1. The gene 

expression profiles for seeds imbibed in water and GA4+7 were similar, whereas, this 

similarity for seeds imbibed in either the saline solution or ABA which delayed the rate 

of germination decreased. There were less differences between germinated and un-

germinated seeds imbibed in either water or GA4+7 as compared to seeds imbibed in 

either the saline solution or ABA by PCA analysis.  Results from the gene hierarchical 

clustering also verified these differences. All the results suggested that gene expression 

profiles in seeds are involved in seed germination.                                                                                              
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           Gene expression patterns between germinated and un-germinated seeds for each 

treatment were selected and clustered for all treatments. Based on the similarity of the 

gene expression, un-germinated seeds could be separated into two groups: WN, GN and 

AN, SN. Gene expression pattern was similar within groups; however, obvious 

differences occurred between groups. In germinated seeds, the differences between 

groups were greatly reduced in the four treatments. Although there were clear differences 

in gene expression between un-germinated and germinated seeds, the least differences 

were observed in seeds imbibed in water and GA and highest for seeds imbibed in either 

the saline solution or ABA. These results suggest certain genes are up-regulated and 

down-regulated earlier in water or GA imbibed seeds compared to the saline solution or 

ABA treated seeds. The gene expression pattern between un-germinated and germinated 

seeds indicates that specific genes are strongly associated with seed germination 

performance.   

           The gene expression profiles of seeds imbibed in either ABA or the saline solution 

was very similar indicating some common regulation. A comparison of gene expression 

for seeds imbibed in the saline solution and ABA revealed several differences, suggesting 

different mechanism of germination inhibition. 

           To investigate this specific gene expression program, we picked four major group 

genes: LEA and stress related, hormone related; hydrolase related; and specific seed 

germination related genes. 

5.4.2 LEA and stressed related genes 

           Late embryogenesis abundant (LEA) proteins characterized by a strong degree of 

hydrophilicity and boiling stable are synthesized in late stages of seed maturation (dry 
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down stage) and disappear during germination (Ingram and Bartels, 1996; Cuming, 

1999). These proteins were proposed to play protective roles in seed desiccation process 

(Ingram and Bartels, 1996; Cuming, 1999). Although LEA proteins are important to 

protect dry seeds, their function in seed germination is unclear.  In our studies, we found 

LEA genes displayed different expression pattern depending upon the treatment. One 

group of LEA transcripts decreased in all treatments whether the seeds germinated or not. 

This group of LEA genes may only function in the seed maturation process and have no 

function in seed germination. In comparing imbibed un-germinated seeds to germinated 

seeds, one group of LEA transcripts were down-regulated more in germinated seeds.  

This suggests that down-regulation of these LEA genes is required for the seed to 

germinate. Another group of LEA genes, although down-regulated compared to dry 

seeds, had higher expression levels in SN and AN seeds than WN seeds. Seeds imbibed 

in water germinate faster than seeds imbibed in either the saline solution or ABA 

therefore, expression of these LEA genes appears to be negatively associated with 

germination. We also demonstrated that fast germination canola lines have lower level of 

a specific LEA transcript than the slow germination lines which suggests these transcripts 

are degraded faster in good germination lines or they are somehow involved in 

germination.  However, several studies revealed LEA genes were positively associated 

with germination of seeds subjected to stressful conditions, which is somewhat 

contradictory to our conclusions (Soeda et al., 2005). We can hypothesize that down-

regulation of specific LEA genes is required for the initiation of seed germination and the 

rate of this degradation dictates the seed germination rate; however, down-regulation of 

LEA genes reduce seed vigour to adverse conditions. The poor germination rate of 
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primed seeds versus un-primed seeds subjected to controlled deterioration or accelerated 

aging may be in part due to the down regulation of LEA genes (Soeda et al., 2005).  

Rajjou et al. (2006) found that salicylic acid stimulated Arabidopsis seed germination 

under salt conditions, whereas, under optimal conditions, seed germination was inhibited. 

Proteomic analysis also revealed there were higher levels of LEA proteins in salicylic 

acid imbibed seeds compared to water imbibed seeds. Higher levels of LEA proteins 

were also observed in seeds treated with α-amanitin, an inhibitor targeting RNA 

polymerase Ⅱ (Rajjou et al., 2004). After imbibition, higher levels of LEA proteins were 

observed in dormant Arabidopsis seeds compared to non-dormant seeds as well as in 

ABA treated non-dormant seeds compared to control seeds (Chibani et al., 2006).  From 

the above results, we propose that during seed germination, certain LEA genes may be 

involved in controlling germination rate. In the early stage of Arabidopsis germination, 

seed can recapitulate its maturation program if water becomes limiting to protect seeds 

from this stress (Lopez-Molina et al., 2001, 2002). Therefore, during seed germination, 

re-induction of some LEA genes which express at seed maturation stage would be a 

protective mechanism for seeds to deal with adverse conditions. From above results, it 

appears that certain LEA genes play a role in seed maturation program; however, certain 

LEA transcripts may also affect seed germination.    

           In addition to the LEA genes, some stress-related genes were up-regulated during 

imbibition and had higher expression in germinated seeds than un-germinated seeds. For 

example, Bn10217, a gene homologous to ERD14 (early response to dehydration) 

(Alsheikh et al., 2003) was highly expressed in WG, GG, SG and AG seed compared to 

their un-germinated seeds (WN, GN, SN and AN) respectively. This group of genes may 
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be required for the seed to germinate at low temperature. BN 10195, homologous to 

dehydrin COR47 (Yamaguchi-Shinozaki and Shinozaki, 2006), was only up-regulated in 

ABA or the saline solution imbibed seeds, suggesting a role for this group of genes may 

be involved in stress.  

           ERD6 (early response to dehydration) is induced in by cold and dehydration stress 

in Arabidopsis (Kiyosue et al., 1998); however, this gene was only up-regulated in SN 

and AN seeds. Possibly, ERD6 inhibits germination of seeds exposed to stress. Higher 

levels of ABA generally indicate plants are exposed to a stress (Leung and Giraudat, 

1998). Therefore, ERD6 may prevent germination when environmental conditions are 

adverse.  Bn15343, homologous to the cold acclimation gene WCOR413 which is 

induced by low temperatures (Breton et al., 2003), was up-regulated in all the imbibed 

seeds. The highest level of expression was observed in AN and AG seeds. These results 

suggest that BN15343 is also induced by low temperatures in seeds and ABA had an 

additive effect on its expression. WCOR413 has been proposed to enhance freezing 

tolerance in Arabidopsis and cereal plants by stablizing the bilayer plasma membrane or 

acting in the stress signal transduction pathway (Breton et al., 2003). This gene may also 

have a similar role for seed germination at low temperatures. BN12218, homologous to 

ABA inducible genes, was only induced in seeds imbibed in ABA and down-regulated in 

other seeds, indicating this gene may be involved in ABA signal transduction. Compared 

to water imbibed seeds, other genes involved in ABA signal transduction such as RD20, 

ERD10, COR and RD29B (Yamaguchi-Shinozaki and Shinozaki, 2006), were also up-

regulated in seeds imbibed in ABA. ABA, a stress hormone, has been proposed to 

activate the plant resistant machine to enhance the abiotic stress tolerance (Nambara and 
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Marion-Poll, 2005). Zheng et al. (1994) reported that canola seed primed with ABA had a 

more rapid and uniform germination rate compared to seeds primed with water. In our 

results, these stressed related genes up-regulated by ABA may be involved in enhancing 

seed germination by ABA priming. 

 5.4.3 Hormone related genes 

           GA and ABA are proposed to be the two major hormones in controlling seed 

germination: GA stimulates seed germination and ABA inhibits seed germination 

(Kucera et al., 2005).  Studies on the metabolism of GA and ABA revealed that the 

anabolism and catabolism of GA and ABA, which are controlled by distinct pathways 

affect seed germination (Hedden and Kamiya, 1997; Nambara and Marion-Poll, 2005). 

The ability of exogenous GA to completely restore germination of GA deficient mutants 

or a GA inhibitor, paclobutrazol revealed GA synthesis is required for germination 

(Koornneef and van der Veen, 1980; Groot and Karssen, 1987; Karssen et al., 1989; 

Nambara et al., 1991). In Arabidopsis, the GA biosynthesis pathway is divided into three 

stages in which GA 20-oxidase is involved into the last stage (Lange, 1998; Pérez-Flores 

et al, 2003). A gene BN24370, homologous to gibberellin 20-oxidase gene, was identified 

to be up-regulated more in germinated seeds as compared to un-germinated seeds for all 

treatments. The expression pattern of GA 20-oxidase gene is consistent with the results 

found in Arabidopsis where GA was mainly involved in the later stage of seed 

germination (Ogawa et al., 2003; Yamauchi et al., 2004).  

           Zeaxanthin epoxidase (ZEP/ABA1) gene which is involved in ABA synthesis 

(Koornneef et al., 1982; Nambara and Marison-Poll, 2005) was down-regulated more in 

SG and AG seeds compared to their un-germinated counterparts, while no difference was 
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detected in WG and GG seeds compared to WN and GN seeds. ZEP/ABA1 expression 

was higher in SN and AN seeds compare to WN seeds, while in WG and SG seeds, it was 

equivalent in expression. For AG seeds, its expression was still higher than in WG seeds. 

Mutations of ZEP have been shown to reduce seed dormancy (Koornneef et al., 1982; 

Nambara and Marison-Poll, 2005).  Over-expression of NpZEP in Nicotiana 

plumbaginifolia delayed seed germination which in part is attributed to a higher level of 

ABA (Frey et al., 1999). Toh et al. (2008) reported that the inhibitory effect of high 

temperatures on Arabidopsis seed germination is associated with reduced down-

regulation of ZEP/ABA1. The expression pattern of ZEP/ABA1 in our studies clearly 

indicate that down-regulation of this gene is associated with seed germination. 

           In our studies, ethylene related genes are also involved in the seed germination. 

Ethylene has been proposed to promote seed germination in some species (Kepczynski 

and Kepczynska, 1997; Matilla, 2000; Kucera et al., 2005). ACC, the precursor of 

ethylene is produced by ACC synthases and then ACC is oxidized to ethylene by ACC 

oxidases (Barry et al., 1996; Bouquin et al., 1997; Oetiker et al., 1997). In studies on 

chick pea seed germination, ACC oxidase was up-regulated just before the emergence of 

the radicle (Petruzzelli et al., 2000, 2003). From our results, a putative ACC oxidase 

gene, ACCox2 and an ACC synthase gene were up-regulated more in SG and AG seeds, 

whereas in SN and AN seeds, the transcripts of these two genes were at same levels as 

dry seeds. These two genes were up-regulated similarly in both germinated and un-

germinated seeds imbibed in either water or GA4+7. The levels of expression of ACCox2 

and ACC synthase gene in SN and AN seeds were lower compared to WN seeds; 

however, the levels of expression were similar in WG, GG, SG and AG seeds. This 
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suggests that up-regulation of ACCox2 and ACC synthase gene plays a role in the 

germination of canola seeds at 8ºC. We also found another ACC oxdiase gene, ACCox1, 

which was only inhibited in AN seeds, whereas it was up-regulated similarly in WN, 

WG, GN, GG, SN, SG and AG seeds compared to dry seeds. Possible, ACCox1 is 

involved in ABA inhibited seed germination. In addition, results from the above studies 

provide evidence that ethylene and ABA play an antagonistic role in the seed germination 

as has been suggested previously (Kucera et al., 2005).  

5.4.4 Hydrolase related genes 

           Hydrolases and other cell wall proteins including endo-β-1, 3-glucanase, chitinase, 

endo-β-mannanase and expansin, are involved in weakening the cell walls or seed coat 

(testa) to facilitate radicle emergence (Ikuma and Thiman, 1963; Wu et al., 2001; 

Nonogaki et al., 2000; Chen and Bradford, 2000; Dubreucq et al., 2000). We observed 

during imbibition, hydrolase genes were up-regulated more in geminated seeds than in 

un-germinated seeds, especially for ABA treated seeds which had the largest number of 

the hyrolase genes differently expressed in AG versus AN seeds. Gibberellin has been 

proposed to stimulate seed germination by inducing hydrolase related genes to lower the 

mechanical resistance of the seed coat (Debeaujon and Koornneef, 2000; Leubner-

Metzger, 2003). An expansin gene, At-EXP5 was specifically induced in GA imbibed 

seeds compared to water imbibed seeds. Also, an expansin gene, LeEXP4 which is GA 

inducible, was found to be involved in seed germination process by weakening the 

endosperm in tomato (Chen and Bradford, 2000). Compared to WN seeds, BN13433, a 

chitinase-like protein 1 (CTL1) gene, was not up-regulated in SN and AN seeds, whereas, 

similar levels of expression occurred in WG, GG, SG and AG seeds. In tomato, chitinase 
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accumulates just before radicle emergence and is not affected by exogenous ABA (Wu et 

al., 2001). In Arabidopsis, a CTL1 gene is involved in the heat, salt and drought tolerance 

of seedling (Kwon et al., 2007). In our study, up-regulation of CTL1 gene did not occur 

in SN and AN seeds, but in WN and GN seeds, which suggests it may be involved in 

enhancing seed germination rate and is required for the late phase of seed germination. A 

hydrolase gene,  endo-β-1,4 glucanase gene was up-regulated in both un-germinated and 

germinated seeds imbibed in  either water or GA; however, the level of transcripts was 

depressed in seeds imbibed in either the saline solution or ABA. This group of genes may 

be not essential, but can enhance the seed germination rate.  

5.4.5 Specific genes related to seed germination 

           Included in this group, are specific transcription factors, phosphatases, aquaporins 

which demonstrated differential expression patterns depending on the seed treatments.  

           Studies on ABA insensitive mutants abi1-1 and abi1-2 which were able to 

germinate in the presence of ABA which was inhibitory to wild type seeds (Koornneef et 

al., 1984) revealed that ABI1 and ABI2 encoded two type of 2C phosphatases (PP2Cs) 

(Leung et al. 1994, 1997; Rodriguez et al. 1998).  The abi1-2 mutation is dominant and 

ABI1 type PP2Cs play negative roles in ABA signal responses (Leung and Giraudat et 

al., 1998; Sheen, 1998; Beaudoin et al., 2000; Schweighofer et al., 2004). However, over-

expression and microinjection of ABI1 did not block ABA signal transduction (Wu et al., 

2003). We observed that ABI1 was up-regulated only in SG and AG seeds. ABI1 may be 

involved in overcoming the inhibitory effect of the saline solution and ABA. Similar 

results were obtained by Leung et al. (1997) studying the effect of ABA and sorbitol on 
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the germination of Arabidopsis. Unfortunately the role of ABI1 in ABA signaling, is still 

unclear, which made it difficult to interpret its role in seed germination.  

           As stated earlier, germination is initiated during imbibition and is considered 

complete when the radicle penetrates the seed coat or testa (Bewley and Black 1994, 

Bewley 1997a). To enable radicle protrusion, water uptake and cell wall weakening play 

important roles in this process (Bewley, 1997b; Koornneef et al., 2002; Manz et al., 

2005). Water uptake is characterized as a triphasic process with a rapid initial water 

uptake (driven by physical forces) followed a plateau phase (associated with the 

resumption of metabolism) and then, with the occurrence of another increase in water 

uptake (mainly associated with the radicle protrusion) (Bewley, 1997a). Studies on water 

uptake by nuclear magnetic resonance (NMR) spectroscopy revealed that water 

distribution is under precise control which is involved in seed germination (Krishnan et 

al., 2004; Manz et al, 2005). Molecular studies have been shown that aquaporins play 

important roles in the water uptake and transport in plants (Maurel et al., 2001). Gao et al. 

(1999) reported that induced expression of aquaporins in the primed seeds was involved 

in the enhancement of seed germination under stress conditions. Based on studies of 

Arabidopsis seed germination, it was proposed that aquaporins are mainly responsible for 

the third phase of water uptake (Wiligen et al., 2006). Our results demonstrate that genes 

encoding for aquaporins, plasma membrane intrinsic proteins (PIP) are involved in canola 

seed germination. BN10224 (aquaporin PIP2B) and BN10387 (aquaporin PIP1B) genes 

were only up-regulated in germinated seeds irrespective of the treatments, but not in un-

germinated seeds. It appears that these genes act as housekeeping genes and are involved 

in the third phase of water uptake. In contrast, Bn11437, a third  aquaporin (PIP2C) gene 
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was up-regulated in both germinated and un-germinated seeds imbibed in water and GA; 

however, it was only up-regulated in germinated seeds imbibed in the saline solution and 

ABA. Possibly, BN11437, may also be involved in the water uptake of the first two 

phases; however, it was inhibited by the saline solution or ABA in these phases. A fourth 

aquaporins gene, BN20259 (PIP1C) was up-regulated in both germinated and un-

germinated seeds irrespective of treatments except in ABA treated un-germinated seeds. 

PIP1C may have a similar role as PIP2C; however, ABA specifically inhibits its up-

regulation to function in the water uptake of the first two phases. A fifth aquaporin gene, 

BN15059 (PIP2A) was only up-regulated in germinated seeds imbibed in either the saline 

solution or ABA but not in water or GA treated seeds.BN15059 may specifically be 

involved in overcoming the inhibition imposed under stress conditions. A sixth aquaporin 

gene, BN17472, similar to plasma membrane aquaporin 2b, was only up-regulated in 

germinated seeds imbibed in ABA, indicating that this gene was ABA specific. As stated 

above, ABA has been proposed to inhibit phase III water uptake which was essential for 

the completion of seed germination (Schopfer and Plachy, 1984; Leubner-Metzger et al., 

1995), the differential expression of aquaporin genes in both germinated and un-

germinated seeds imbibed either in ABA or the saline solution suggests a much broader 

role of aquaporins in germination than previously considered. 

  5.5 Conclusion 

           There were differences in gene expression pattern between germinated and un-

geminated seeds. Gene expression for un-geminated seeds imbibed in water and GA was 

very similar, in contrast to seeds imbibed in either the saline solution or ABA. Gene 

expression for germinated seeds was very similar for seed imbibed in either water, GA or 
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the saline solution compared to seeds imbibed in ABA. While, there were differences in 

gene expression in germinated seeds due to the treatments, these differences were not as 

great as compared to their un-germinated counterparts. LEA and stress related genes, 

hydrolase genes, hormone related genes and some specific seed germination related genes 

were identified and their expression profiles indicated their roles in the seed germination.   
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6. General Discussion 

           Low soil temperatures and salinity are considered to be major factors limiting 

canola seed germination, emergence, and stand establishment in Western Canada. While 

information about the control of seed germination has greatly increased, knowledge about 

the response of hormones and genes involved under abiotic stress conditions is minimal.  

In order to understand the regulatory roles of hormones and genes on canola seed 

germination at low temperature, we analyzed the effects of salinity, osmoticum, seed coat 

(or testa) and exogenous hormones on germination. In addition, we investigated the role 

of hormones and genes in canola seeds imbibed at 8 ºC by using HPLC-ESI/MS/MS and 

microarray analysis methods, respectively.  

           Salinity and reduced water potential dramatically reduced the germination rate and 

percent of germinable seeds. However, the germination of Brasicca napus seeds was 

more sensitive to PEG solutions than saline solutions at the same osmotic potential. There 

has been considerable interest in yellow seed canola due to its higher oil, proteins and 

fibre content compared to the black seed line (Rakow, personal communication; Burbulis 

et al., 2005). In our studies, we established that the black seed canola line exhibited 

higher seed vigor at 8 ºC than the yellow seed line although both lines were obtained 

from the same location and harvested at the same year. The seed coat has been shown to 

be a major barrier to radicle protrusion for many seeds (Debeaujon et al., 2000; Bewley, 

1997b; Leubner-Metzger, 2002; Kucera et al., 2005).  In our study, the seed coat 

restricted seed germination at low temperature and this inhibitory effect was more 

apparent in the yellow seed line. It has been well established that hormones play 

important roles in seed germination (Kucera et al., 2005). In our study, GA4+7 stimulated 
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seed germination and ABA inhibited seed germination at low temperature. Ethylene is 

broadly implicated in promoting seed germination and is antagonistic to ABA 

(Kepczynski and Kepczynska, 1997). However, when AVG, an ethylene inhibitor was 

applied, seed germination was not affected, indicating ethylene may not be essential for 

canola seed germination or AVG was not effective in this study. Numerous studies have 

demonstrated increased concentrations of salinity induce a proportional increase in ABA 

in plants (Munns and Sharp, 1993; Cramer and Quarrie, 2002; Sharp and LeNoble, 2002) 

including Brassica species (He and Cramer, 1996). Our result suggests that the inhibitory 

effect of the saline solution is not due to elevated levels of ABA or perhaps the ABA 

inhibitor, fluridone was not an effective inhibitor on ABA biosynthesis in canola seed. In 

our study, fusicoccin (FC) completely overcame the inhibitory effect of ABA, while GA 

only partially overcame ABA inhibition, suggesting those two compounds may be acting 

at a similar receptor site, but different from the GA site. The inhibitor GA biosynthesis, 

PAC, completely inhibited the germination of both lines; however, GA completely 

overcame this inhibitory effect, FC had only a marginal effect on PAC inhibition. The 

finding that GA4+7 completely overcame PAC inhibition suggests that GA4+7 is a major 

bioactive gibberellin for canola seed germination and its effect is different from FC. The 

stimulation of germination by GA4+7 was greatly reduced in seeds subjected to three 

weeks of controlled deterioration. Therefore it appears that at the early stages of 

controlled deterioration, GA is either limiting or its reception sites are impaired.  

           It is well known that hormones play important roles in seed germination (Karssen 

et al., 1983, 1989; Nambara et al., 1991; Hilhorst and Karssen, 1992; Debeaujon and 

Koornneef, 2000; Clerkx et al., 2003; Kucera et al., 2005).  Previous studies have shown 
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that seed germination potential may be regulated by ABA levels, GA levels or the ratio 

between them (Jacobsen et al., 2002; Ali-Rachedi et al., 2004; Ogawa et al., 2003; 

Yamauchi et al., 2004). Our physiological studies also support this concept. To further 

investigate hormonal roles on seed germination,  we profiled by HPLC-ESI/MS/MS 

ABA, ABA metabolites, gibberellins, auxins and cytokinins during germination of canola 

seeds (cv. N89-53) imbibed at 8 °C in either water, GA4+7, a buffered saline solution  or 

50 μM ABA in both germinated seeds and un-germinated seeds at different stages of 

germination. In our study, reduced ABA levels and increased GA4 contents were 

observed in seeds that germinated at 8 ºC irrespective of the treatment. This result 

indicates that these two hormones are involved in canola seed germination at low 

temperature. Higher ABA levels were detected in un-germinated seeds compared to 

germinated seeds in all the treatments, indicating there is a threshold level of ABA 

controlling seed germination. Although ABA level declined in imbibed seeds, the 

catabolic pathways varied with the treatments. Changes in ABA metabolites as PA, DPA, 

7´OH-ABA and ABA-GE revealed that the 8` hydroxylation is the preferred pathway for 

ABA catabolism in canola seeds imbibed in water at 8 ºC. Higher PA with lower DPA in 

germinated seeds imbibed in the saline solution indicates that conversion of PA to DPA 

in seeds is affected by the saline solution. Both ABA-GE and DPA dramatically 

increased in seeds imbibed in ABA, indicating ABA itself can activate its catabolic 

pathway. GA4 was lower in seeds imbibed in the saline solution compared to seeds 

imbibed in water.  This results indicates that the salinity delayed seed germination is 

partially induced by its inhibitory effect on GA4 biosynthesis. Our studies also provide 

evidence that there is interaction between GA and ABA in seed germination.  ABA 
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inhibited GA4 biosynthesis, whereas, GA had no effect on ABA biosynthesis; however, 

GA alters the ABA catabolic pathway. 

           Gene expression patterns via proteomic and transcriptomic analysis aid in the 

identification of genes involved in germination (Soeda et al., 2005; Nakabayashi et al., 

2005; Gallardo et al., 2001, 2002).  Profiles of gene expression in canola seeds imbibed at 

8 ºC in either water, GA4+7, a saline solution or ABA were identified by microarray 

analysis. PCA and gene hierarchical clustering revealed that there were significant 

differences in gene expression pattern between germinated and un-geminated seeds. Gene 

expression patterns for un-geminated seeds imbibed in water and GA were very similar, 

in contrast to seeds imbibed in either the saline solution or ABA. Gene expression for 

geminated seeds was very similar for seed imbibed in either water, GA or the saline 

solution compared to seeds imbibed in ABA. While, there were differences in gene 

expression in germinated seeds due to the treatments, these differences were not as great 

as compared to their un-germinated counterparts. LEA and stress related genes, hydrolase 

genes, hormone-related genes and some specific seed germination related genes were 

identified and their expression pattern varied with the treatment. The relationship 

between gene expression and seed germination stages indicates important roles of these 

genes in seed germination.     

           In summary, mechanisms of seed germination and their response to stressful 

condition were revealed by our physiological, hormonal and transcriptomic studies on 

canola seed germination. Information from these studies could be used to predict seed 

germination and may be used by plant breeders to select superior genotype. 
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