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II Abbreviations 

%     per cent 

®     ‘registered trademark’ 

*     stop codon 

x g     relative centrifugal force 

A     alanine 

aa     amino acid 

ADV     adefovir 

ag     antigen 

ALT     alanine aminotransferase 

anti-HBe    anti-hepatitis B envelope 

anti-HBs    anti-hepatitis B surface  

aqua dest    aqua destillata (distilled water) 

BCP     basal core promoter 

BHQ     black hole quencher 

bp     base pairs 

C     cysteine 

°C     degree Celsius 

cccDNA    covalently closed circular DNA 

CP     crossing point 

cp     copies 

D     aspartic acid 

DNA     deoxyribonucleic acid  

ddNTP     dideoxynucleotide triphosphate 

dNTP     deoxynucleotide triphosphate 

DR     direct repeat sequence 

DTT     dithiothreitol 

E     glutamic acid 

E. coli     Escherichia coli 

EDTA     ethylendiaminetetraacetic acid 

et al.     lat. ‘et alii’ (and others) 
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Enh     enhancer 

ER     endoplasmatic reticulum 

ETV     entecavir 

F     forward 

FAM      6-carboxyfluorescein 

fl      full-length  

FRET     fluorescence resonance energy transfer  

g     grams 

G     glycine 

GT     genotype 

h     hour(s) 

H2O     water 

HBV     hepatitis B virus 

HBcAg     hepatitis B virus core antigen 

HBeAg     hepatitis B virus envelope antigen 

HBsAg     hepatitis B virus surface antigen 

HCC     hepatocellular carcinoma 

I     isoleucine 

INF     interferon 

IU     international units 

k     kilo 

kb     kilo base 

LAM     lamivudine 

LdT     telbivudine 

L     leucine 

L     liter 

LB     lysogeny broth 

LOD     lower limit of detection 

log10     decadal logarithm 

µ     micro (10-6) 

m     milli (10-3) 
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M methionine  

M     molar (mol/L) 

min     minute(s) 

mg     milligrams  

mRNA     messenger ribonucleic acid 

n     nano (10-9) 

N     asparagine 

NA     nucleos(t)ide analogue 

NaCL     sodium chloride 

NaOH     sodium hydroxide 

NGS     next generation sequencing 

nm     nanometer 

nt     nucleotide 

ORF     open reading frame 

p     p - value 

P     polymerase protein 

pat ID     patient identification 

PCR     polymerase chain reaction 

peg-INF-a    pegylated interferon alpha  

pgRNA    pre-genomic RNA 

pol     polymerase gene 

poly(A)     polyadenylation  

R     reverse 

RACE     rapid amplification of cDNA ends  

rc     relaxed circular 

RNA     ribonucleic acid 

rpm     rounds per minute 

rt     reverse transciptase 

RT buffer    Reverse Transcriptase buffer 

qPCR     real-time polymerase chain reaction 

s     surface 
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S     serine 

sec     second(s) 

SDS     sodium dodecyl sulfate 

S.O.C.     super optimal broth with catabolite repression 

T     threonine 

TAMRA    tetramethylrhodamine 

TBE     TRIS-borate-EDTA 

TDF     tenofovir disoproxil fumarate 

tr      truncated 

TRIS     Tris(hydroxymethyl)aminomethane 

U     units 

UDPS     ultra-deep pyrosequencing 

UV     ultraviolet 

V     valine 

Vox     Volvox aureus 

Y tyrosine  

YMDD tyrosine - methionine -  aspartic acid - aspartic 
acid 

WT     wild type 
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1 Introduction 

Chronic infections with the hepatitis B virus (HBV) rank among the most 

frequent infectious diseases with an estimated number of 240 million infected people 

worldwide (Lozano 2012, WHO 2015). Every year, more than 650,000 people die of 

HBV related complications including liver cirrhosis and hepatocellular carcinoma 

(HCC). Nucleoside and nucleotide analog polymerase inhibitors, which are used for 

antiviral treatment in a majority of chronically HBV infected patients, reduce the risk 

of liver disease progression but do not represent a curative treatment approach. 

Treatment with nucleos(t)ide analogues (NAs) might thus be life-long and a safe 

monitoring of the treatment response and a probable disease progression is 

mandatory.  

Sequencing of serum HBV DNA is a standard technique for the genotyping of 

the HBV genome in patients with chronic HBV infection at diagnosis and for the 

detection of potential resistant HBV variants during antiviral treatment. In most 

patients treated with potent NAs, the HBV DNA declines to undetectable levels within 

12 to 24 months and sequence analysis becomes impossible. Interestingly, several 

studies reported that even after the decline of HBV DNA to undetectable levels during 

antiviral treatment, serum HBV RNA remains measurable in some patients. Based on 

this observation, we aimed at studying whether the sequencing of serum HBV RNA 

might represent a novel method to analyze the HBV genome when the HBV DNA had 

become unavailable under NA treatment. We further wanted to assess if this method 

might be applicable for the monitoring of the evolution of resistance associated HBV 

variants during long-term antiviral treatment, which occur in the reverse transcriptase 

(rt) region of the HBV polymerase (pol) gene, and which may also be associated with 

changes in the overlapping gene of the HBV surface (s) protein. 
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1.1 HBV 

1.1.1 Classification 

HBV belongs to the Hepadnaviridae, a family of small enveloped, double-

stranded DNA viruses, which are hepatotropic and exhibit a species specificity. 

Hepadnaviridae are transmitted by bodily fluids and can cause acute and chronic 

infections in mammals (Orthohepadnaviridae) and birds (Avihepadnaviridae) (Lee 

1997, Glebe 2013). A crucial step in the replication cycle of Hepadnaviridae is the 

reverse transcription of the viral RNA into DNA (Summers 1982). The viral RNA- 

dependent DNA polymerase lacks a proofreading activity. Therefore, nucleotide (nt) 

exchanges often occur during replication. As a result, the HBV pool in the infected 

hosts is composed of different HBV variants, the quasispecies (Burda 2001, Locarnini 

2003, Kaya 2007). Based on a genomic homology of minimum 8% of these variants 

(Okamoto 1988), for HBV, 10 genotypes (A-J) have been distinguished so far. For the 

most common genotypes, the geographic distribution shows predominance for 

genotype A in Northern Europe and the USA, Genotype D in Middle and Southern 

Europe, genotypes B and C in Asia and genotype E in Africa (Kaya 2007, Zhang 

2016). 

1.1.2 HBV virion structure and genomic organization 

HBV virions, the ‘Dane particles’ (Dane 1970), have a diameter of 42-44 

nanometers (nm). They contain an outer envelope, which consists of lipoproteins and 

HBV surface proteins (HBsAg). The envelope encloses the nucleocapsid, which is 

composed of HBV core proteins (HBcAg) and covers the HBV DNA (Dryden 2006, 

Glebe 2013). The HBV DNA has a size of 3 to 3.3 kilo base pairs (kbp) and is partially 

double-stranded. The complete minus and the incomplete plus strand overlap at the 

5’ end of the HBV genome (Figure 1). In HBV virions, the HBV DNA exists in a relaxed 

circular (rc) form. After the incorporation of the HBV DNA into the nucleus of the hosts’ 
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hepatocytes, the plus strand is completed and the covalently closed circular DNA 

(cccDNA) is being formed. The cccDNA represents the matrices for the transcription 

of HBV messenger (m) RNAs and the pre-genomic (pg) RNA. The HBV genome 

organization is complex as it includes four overlapping open reading frames (ORFs) 

and encodes for seven proteins. The transcription of the HBV RNAs initiates at the 

core, preS1, preS2 and X promoters producing four mRNAs of 3.5, 2.4, 2.1 and 0.7 

kb sizes, respectively (Seeger 2000, Ganem 2004, Glebe 2013, Tong 2016). All ORFs 

use one common polyadenylation (A) signal at the 3’ end of the HBV genome (Figure 

1) for the polyadenylation of the different RNA transcripts (Nassal 2015). 

1.1.3 HBV proteins 

The core promoter regulates the transcription of the 3.5 kb long pre-core 

mRNA and the pgRNA. From the pgRNA, the viral RNA-dependent DNA polymerase, 

the polymerase (P) protein, and the structural core proteins are translated. The core 

proteins form the nucleocapsid. Detected in serum samples, the presence of anti-HBc 

antibodies proves a past infection with HBV. 

The P protein catalyzes the reverse transcription of the pgRNA into HBV DNA 

during the viral replication cycle (Glebe 2013, Tong 2016). It is composed of three 

catalytic domains - the terminal protein, the rt and the RNaseH - and a highly variable 

spacer region (Radziwill 1990, Tong 2016). As described in the following chapters, 

resistance mutations to antiviral treatment are located in the functional important 

domain of the rt region. The polymerase ORF spans almost the entire HBV genome 

and completely overlaps with the preS/S ORF (Figure 1). Therefore, mutations in both 

ORFs can cause mutual nucleotide exchanges (Torresi 2002, Locarnini 2010). 

The preCore/Core ORF encodes the pre-core protein, which is translated from 

the pre-core mRNA. The pre-core is the only post-translational processed HBV 

protein. After the translation, the envelope (e) antigen (HBeAg) is cleaved from the 
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pre-core protein and secreted from the hepatocytes. The function of the HBeAg for 

the viral replication is still elusive, but it presumably exhibits immunomodulatory 

effects and contributes to the chronification of HBV infection (Milich 2003, Chen 

2004). HBeAg is considered to be a surrogate serum marker for the activity of the 

viral replication. The discrimination of patients with positive or negative serum HBeAg 

has important clinical implications for the treatment and management of HBV 

infections (EASL 2012).  

Three HBsAgs of different sizes are translated from the 2.4 and 2.1 kb long 

HBV mRNAs. The 2.4 kb mRNA encodes the large HBs protein and the 2.1 kb mRNA 

the middle and small HBs proteins. All surface proteins share a common C-terminal 

domain (Figure 1). The surface proteins are in a distinct proportion part of the viral 

envelope. Their function is the modulation of the virus entry to the hepatocytes as well 

as the virion assembly and release (Bruss 1991, Glebe 2013). HBsAg is a serological 

marker for the presence of HBV infection and its persistence for at least 6 months is 

defining for a chronic HBV infection (Nguyen 2009, EASL 2012). HBsAg triggers the 

anti-HBsAg production and is a component of the HBV vaccine. Several immune 

escape mutations and further s gene variants have been identified and were 

previously shown to reduce anti-HBs binding properties (Tong 2016). 

The X ORF encodes the HBx protein, which is translated from the 0.7 kb long 

HBx mRNA. The HBx protein supposedly has a regulatory function within the viral 

replication (Bouchard 2004, Belloni 2009) and maintenance of the infection (Lucifora 

2011). It further might play a role in HCC development by interacting with cell 

proliferation enhancing promoters (Kekulé 1993, Bouchard 2004, Geng 2015).  
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Figure 1: Organization of the HBV genome 
The HBV DNA is a circular, partially double-stranded DNA molecule with 3 to 3.3 kbp in length. 

The complete minus (-) and incomplete plus (+) strands (black inner circles) overlap at the 3’ 

end. The HBV genome is organized in four ORFs: polymerase (yellow), preS1/preS2/S (blue), 

preC/Core (green) and X (red). From the cccDNA, four sub-genomic mRNAs of 3.5, 2.4, 2.1, 

and 0.7 kb sizes and the 3.5 kb long pgRNA are transcribed (outer black circles). All mRNAs 

share a common poly(A) (AAAA) signal at the 3’ end. Enh = Enhancer; DR = direct repeat 

sequence; P = polymerase protein. (Adopted from Gish et al. 2015) 
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1.1.4 HBV replication cycle  

 After the endosomal incorporation of the HBV virions into the hepatocytes, the 

HBV nucleocapsid is released into the cytoplasma and translocated to the nucleus 

(Figure 2). Here, the cccDNA is formed (Beck 2007, Nassal 2015) and persists in the 

form of mini-chromosomes during chronic infection (Newbold 1995, Bock 2001). The 

cccDNA serves as template for the transcription of the sub-genomic and genomic 

HBV RNAs (Beck 2007), which were described in chapters 1.1.2 and 1.1.3. For the 

generation of new virions during the viral replication, the pgRNA is packaged with the 

P protein into an immature core complex in the cytosol and there reverse transcribed 

into HBV DNA (Summers 1982). The reverse transcription of the pgRNA starts at the 

5’ end of the minus strand that is covalently linked to the viral polymerase at a stem-

loop formation, the epsilon signal (Beck 2007, Glebe 2013, Nassal 2015). During the 

synthesis of the minus and subsequent plus stand, the RNA template is degraded by 

the RNAse H and the encapsidation is completed (Beck 2007, Glebe 2013). As 

illustrated in Figure 2, the newly generated HBV nucleocapsids are either enveloped 

and secreted from the hepatocytes, representing the infective HBV virions, or re-

translocated into the nucleus, where they provide templates for the sustainment of the 

cccDNA pool (Urban 2010, Glebe 2013, Tong 2016). 
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Figure 2: HBV replication cycle in the hepatocytes 
A) After the entry of the HBV virions (upper left), the nucleocapsids (pentagons) are 

translocated to the nucleus and the HBV rcDNA is released; B) In the nucleus, the cccDNA is 

formed and serves as template for the transcription of the sub-genomic mRNAs (blue) and the 

pgRNA (green); C) From the mRNAs, the viral surface and envelope proteins are translated 

and secreted (HBsAg and HBeAg); D) The pgRNA serves as template for the HBV DNA 

synthesis via reverse transcription. In the cytosol, the minus (-) and plus (+) strands are 

synthesized during the encapsidation. It has been proposed that pgRNA might further be 

encapsidated and secreted in virion like particles without prior reverse transcription (Wang 

2015); E) The HBV DNA containing nucleocapsids either are enveloped in the endoplasmatic 

reticulum (ER) and secreted or re-translocated to the nucleus to sustain the cccDNA pool. 

(Modified after Zoulim et al. 2009)
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1.2 Chronic HBV infection  

1.2.1 Epidemiology  

Worldwide, around 240 million people are carriers of HBsAg with the highest 

prevalence in the endemic regions of the sub-Saharan Africa and Asia (WHO 2015). 

In the Western countries, the implementation of the HBV vaccination significantly 

reduced HBV infection rates. In the German population, the prevalence of HBsAg 

carriers was estimated to be below 1% in the year 2014 (RKI 2015). About 5% of the 

infected adults and up to 90% of the infected children develop a chronic HBV infection. 

HBV promotes the development of liver fibrosis, cirrhosis and HCC, which are the 

major complications of chronic HBV infection and occur in 20 - 30% of all adult cases 

(WHO 2015). Compared to HBsAg negative individuals, the lifetime risk of HBsAg 

carriers to develop HCC is rated with a 15- to 20- fold increase (El-Serag 2012). It is 

estimated, that about 650,000 deaths per year worldwide relate to the long-term 

consequences of chronic HBV infection (RKI 2015, WHO 2015).  

1.2.2 Natural course of chronic HBV infection 

The natural history of chronic HBV infection is divided into five phases, which 

do not necessarily occur in sequential order (McMahon 2009, EASL 2012, Gish 2015). 

The ‘immune tolerant phase’ is characterized by a high viral replication activity with 

measurable HBeAg and high serum HBV DNA levels. The aminotransferases are 

commonly not elevated in this state of infection, because HBV itself is not considered 

cytopathic (Chisari 1995) and liver damage caused by the immunological response is 

low (EASL 2012, Gish 2015). The phase of ‘immune clearance’ is characterized by 

ineffective viral clearance and persistent necroinflammation that is indicated by a 

decrease of the serum HBV DNA levels, increased aminotransferases and a progress 

of liver fibrosis (Ganem 2004, Gish 2015). Most chronic HBV infected patients remain 

HBeAg positive. However, in some patients HBeAg negativity caused by the loss of 
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HBeAg and preCore/Core mutations is observed (Chu 2003), resulting in the ‘HBeAg 

negative chronic HBV infection’. In the ‘non-replicative’ phase, the HBV DNA levels 

decrease to low levels (<2,000 IU/mL). The normalization of the aminotransferases 

further reflects the immunological control of the infection in this state (EASL 2012). 

Only in a minority of patients, HBsAg loss and seroconversion to anti-HBsAg, the 

‘HBsAg negative/occult chronic HBV infection’, occurs (EASL 2012). Serum HBV 

DNA is low or undetectable in this state of infection but remains measurable in liver 

cells and reactivation of the HBV infection is possible (EASL 2012, Gish 2015). 

1.3 Treatment of chronic HBV infection with nucleos(t)ide analogues 

1.3.1 Nucleos(t)ide analogues  

Besides the immunomodulatory drugs interferon (INF) and pegylated INF 

alpha (peg-INF-a), five NAs are approved for the antiviral treatment of chronic HBV 

infection. NAs are commonly well-tolerated and applied for treatment in the majority 

of patients. Pharmacologically, polymerase inhibitors are divided into two structural 

classes, the nucleoside analogues lamivudine (LAM), telbivudine (LdT) and entecavir 

(ETV) and the nucleotide analogues adefovir (ADV) and tenofovir (TDF) (EASL 2012). 

NAs compete with the natural nucleotide substrates and lead to the termination of the 

HBV DNA chain elongation when incorporated into the nascent strand. By blocking 

the HBV RNA- dependent DNA polymerase in the cytosol, NAs inhibit the reverse 

transcription of the HBV RNA into HBV DNA and thus the viral replication (Zoulim 

2009, DeClercq 2010, Menéndez-Arias 2014).  

1.3.2 Treatment goals 

The major goal in the treatment of chronic HBV infection is to prevent the 

progression of the disease to liver fibrosis, cirrhosis and HCC with its related 

complications and risk of death (EASL 2012, Terrault 2016). HBV DNA levels > 104 
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copies (cp)/mL were identified as independent risk factor for the progression of liver 

disease and associated with a 3- fold higher risk of HCC development in a large 

Taiwanese study cohort (Chen 2006). This points out the importance to achieve a 

virological response to antiviral treatment, which is defined by undetectable HBV DNA 

measured with sensitive polymerase chain reaction (PCR) assays (for definition of 

terms see table 1). The measurement of serum HBV DNA levels with PCR is 

recommended at first diagnosis and every 3 to 6 months during follow-up, because 

serum HBV DNA level elevation normally precedes an increase of the transaminases, 

which indicate the damage of liver cells. A re-increase of serum HBV DNA (virological 

breakthrough) during antiviral treatment with NAs is further an indicator for a possible 

resistance development of HBV. The normalization of the alanine aminotransferases 

(ALT) during treatment (biochemical response) signals the regression of liver 

damage. HBeAg and HBsAg seroconversion (serological response) occur commonly 

late during NA treatment and indicate a sustained response to treatment (EASL 

2012).  

Table 1: Definition of terms for treatment response during antiviral treatment 
according to the EASL practical guidelines 2012 

Term  Definition 

Primary non-response < 1 log10 IU/mL decrease of serum HBV DNA levels from 
baseline at 3 months of therapy 

Virological response Undetectable serum HBV DNA (sensitive PCR assay) 

Partial virological response Decrease of > log10 IU/mL but detectable serum HBV DNA 
after at least 6 months of treatment 

Virological breakthrough Increase of serum HBV DNA > log10 IU/mL compared to the 
lowest value of serum HBV DNA during treatment 

Biochemical response Normalization of ALT levels 

Serological response  HBeAg loss and seroconversion to anti-HBe in HBeAg 
positive patients; HBsAg loss and development of anti-HBs in 
all patients 

IU/mL = International Unit/milliliter; PCR = polymerase chain reaction; ALT = alanine 
aminotransferase. (Adopted from EASL 2012) 
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1.3.3 Response to nucleos(t)ide analogue treatment 

Treatment with NAs reduces the risks of HBV related complications, but 

cannot eradicate the chronic HBV infection due to the persistence of HBV cccDNA in 

the nucleus of infected cells (Figure 2; Werle-Lapostolle 2004, EASL 2012). 

Therefore, and because of the low rates of serologic response, which allows a 

cessation of NA treatment, life-long treatment is necessary for most patients. The 

currently licensed NAs show strong differences in the antiviral potency and the risk of 

resistance development. After 12 months of antiviral treatment, response rates in 

HBeAg positive (Figure 3A) and HBeAg negative patients (Figure 3B) are high, 

especially for the recommended first-line NAs ETV and TDF. In HBeAg positive 

patients, anti-HBeAg seroconversion was found in 12 to 22% of patients after 1 year 

of treatment (Figure 3C). However, serologic responses are rare, and especially 

HBsAg loss or seroconversion occur only in few HBeAg positive (Figure 3D) and 

almost never in HBeAg negative patients (data not shown) (EASL 2012). 

Because of the good response rates and the low rates of resistance to antiviral 

therapy (see chapter 1.4), ETV and TDF are recommended first-line for the treatment 

of chronic HBV infection (EASL 2012, Terrault 2016). Long-term follow-up studies 

reported that serum HBV DNA levels were undetectable in 94% of HBeAg positive 

patients after 5 years of ETV treatment (Chang 2010). For TDF treatment, long-term 

response over 8 years was demonstrated in >99% of patients (Marcellin 2014), also 

in special populations like patients with high viral loads at baseline (Gordon 2013) and 

patients with failure to prior antiviral therapy with NAs (Fung 2014, van Bömmel 2010). 

HBeAg seroconversion and HBsAg loss were observed in 31% and 5% of patients 

after 2 years of ETV treatment, respectively (Chang 2010). After 7 years of TDF 

treatment, HBeAg and HBsAg loss occurred in 54.5 % and 11.8% of patients, 

respectively (Buti 2014). 
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Future cornerstones for the treatment of chronic HBV infection are the 

establishment of predictive markers for a sustained treatment response and the 

implementation of monitoring regimens, which might allow a safe discontinuation of 

NA treatment. 

	

 

 

Figure 3: Response to 12 months treatment with nucleos(t)ide analogues  
Percentages (%) of patients (numbers above bars) with a suppression of serum HBV DNA to 

levels < 60 – 80 IU/mL in HBeAg positive (A) and HBeAg negative (B) patients; C) Rates of 

HBeAg seroconversion in HBeAg positive patients during antiviral treatment; D) Rates of 

HBsAg loss in HBeAg positive patients after 12 months of treatment with NAs. Of note, the 

data shown in this figure were not derived from head-to-head studies. (Adopted from EASL 

guidelines 2012)  

1.3.4 Treatment with nucleos(t)ide analogues and liver disease 

A sustained virological response during NA treatment was shown to prevent 

from liver disease progression (Vlachogiannakos 2013, Wu 2014, Papatheodoridis 

2015). In cirrhotic and non-cirrhotic patients, the risk of HCC development was 
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reduced by about 30% and 80%, respectively (Papatheodoridis 2015). Progressed 

liver disease in the state of fibrosis and cirrhosis, which is considered as a pre-

malignant condition, was in part reversed by NA treatment (Marcellin 2013). After 

achievement of a sustained virological response during NA treatment, the risk for 

HCC development however remains increased and the monitoring for HCC 

development is mandatory in all patients. A study by Cho et al. compared the 

cumulative incidence rates between patients with inactive chronic HBV infection - 

defined by HBeAg negativity and undetectable serum HBV DNA levels - and patients 

with active HBV infection treated with NAs (Cho 2014). In non-cirrhotic patients, the 

patient group with complete virological response during antiviral treatment had a 

significantly higher risk for HCC development compared to the group of inactive 

carriers, with cumulative incidence rates of 2.3% versus 0.3% at year 1 and 7.2% 

versus 0.8% after 5 years (Cho 2014). The authors assumed that a more effective 

and intact immune response with lower necroinflammation in the patient group with 

inactive HBV infection might explain this observation. It also seems conceivable that 

genomic alterations and chromosomal instabilities, which occur during early stages 

of the infection before the beginning of antiviral treatment, might predispose to 

malignant transformation. Furthermore, the oncogenic potential of several HBV 

variants in the s gene, which were found to emerge during NA treatment, was 

discussed in the context of HCC development (Lai 2008, Lai 2009, Lee 2012, Huang 

2014, Li 2016) and will be further described in chapter 1.4.3. 

1.4 Evolution of HBV variants during antiviral treatment 

1.4.1 HBV resistance mutations in the pol gene 

The HBV RNA- dependent DNA polymerase is error prone due to a leak of 

proofreading activity. Therefore, all HBV variants that are replication competent can 

arise in an infected individual, and these HBV variants represent the HBV 
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quasispecies (Burda 2001, Locarnini 2003, Kaya 2007). Antiviral treatment with NAs 

puts selection pressure on the HBV, which promotes the selection of different HBV 

variants with resistance to the applied drug, a major complication during NA 

treatment. For the first generation polymerase inhibitor LAM, the resistant variants 

rtM204V/I, which are located in the highly conserved YMDD motif in the rt region of 

the pol gene, were identified and extensively studied. The mutated HBV variants 

replicate less efficiently. Therefore, they commonly co-occur with compensatory 

mutations at positions rtL80V/I, rtL180M and rtV173L, which are increasing the 

replication fitness of the virus (Pallier 2006, Zoulim 2009, Warner 2014). Resistance 

to ADV treatment was associated with the rtN236T mutation and resistance to LAM 

and ADV with the rtA181T/V substitutions. For EVT resistance, multiple mutations on 

the base of pre-existing resistance against LAM (rtL180M + rtM204V/I) are required, 

namely mutations at the positions rtI169T, rtV173L and rtM250V or at codons rtT184G 

and rtS202I/G (Zoulim 2009, Warner 2014). For TDF, resistance to a mutation at 

position 194 (rtA194T) was described in a HIV-HBV co-infected patient (Sheldon 

2005) but could not be confirmed in vitro (Delaney 2006) and did not occur in vivo 

after 8 years of follow-up (Marcellin 2014). The susceptibility to TDF thus might be 

reduced in the presence of the rtN236T mutation (van Bömmel 2010), which is 

discussed in the following chapter. Table 2 gives an overview of known resistance 

mutations to the five approved polymerase inhibitors according to the EASL practical 

guidelines of 2012 (EASL 2012). Figure 4 shows the location of these mutations in 

the rt region of the pol gene.  
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Table 2: Primary resistance mutations to treatment with nucleos(t)ide analogues 
located in the rt region of the HBV pol gene 

Resistance mutations, rt region LAM LdT ETV ADV TDF 

M204I R R I I S 

M204V R S I I S 

L180M + M204V R R I I S 

N236T S S S R I 

A181T/V I S S R S 

L180M + M204V/I ± I169T ± V173L ± M250V R R R S S 

L180M + M204V/I ± T184G ± S202I/G R R R S S 

S = sensitive; I = intermediate; R = resistant; LAM = lamivudine, LdT = telbivudine, ETV = entecavir, ADV 
= adefovir, TDF = tenpfovir. (Modified after EASL 2012) 

	

Figure 4: Location of resistance mutations to nucleos(t)ides analogues in the 
HBV pol gene 
The grey bar is a scheme of the P protein consisting of the terminal protein, the spacer, the 

pol gene with the included rt region and the RNAseH. The numbers indicate the starting and 

end points of the amino acids (aa). The pol is composed of 7 subdomains (A to G). In the 

subdomain C, the highly conserved YMDD motif is located. Below, all confirmed resistance 

mutations to NA treatment are listed. (Adopted from Zoulim et al. 2009) 
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1.4.2 Resistance rates to treatment with nucleos(t)ide analogues 

Because resistance to antiviral treatment with the first generation NAs LAM, 

LdT and ADV occurs frequently, the polymerase inhibitors ETV and TDF with higher 

resistance barriers are recommended for first-line treatment (Zoulim 2009, WHO 

2015, EASL 2012). After 5 years of LAM and ADV treatment, HBV resistance was 

observed in around 70% and 29% of patients, respectively (EASL 2012, Zoulim 2009). 

For LdT, 17% of patients developed resistance to treatment after 2 years (EASL 2012, 

Zoulim 2009). In contrast, ETV resistance was found only in around 1.2% after 5 years 

of follow-up in treatment naïve patients (Tenney 2009). For TDF treatment, no 

resistance mutations have been reported after 8 years in a long-term follow-up study 

(Marcellin 2014). An overview of the cumulative resistance rates to NA treatment is 

given in table 3.  

In NA pre-treated patients, cross-resistance can occur, which is defined as 

resistance of HBV to a NA without prior exposure (Zoulim 2009). The presence of 

HBV mutations at positions rtM204V/I ± rtL180M, which confer resistance to LAM and 

LdT, led to increased resistance rates up to 51% after 5 years of ETV treatment 

(Zoulim 2009, EASL 2012). During ADV treatment, resistance mutations at positions 

rtN236T and rtA181V/T occurred more frequently in patients harboring LAM resistant 

HBV variants and were estimated with up to 20% after 1 year (Lee 2006, EASL 2012). 

No cross-resistance of TDF to LAM resistant HBV variants was found so far (van 

Bömmel 2006, Zoulim 2009), which makes the treatment with TDF the first choice in 

patients who had developed resistance to LAM treatment (EASL 2012, Terrault 2016). 

In the presence of the ADV resistant HBV variant rtN236T, a 3- to 4- fold decrease of 

the susceptibility to TDF treatment was found in vitro (Delaney 2006). Also in vivo, 

van Bömmel et al. reported that the probability to achieve undetectable serum HBV 

DNA levels was around 50% lower in patients with ADV resistant HBV variants during 
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TDF treatment (median duration 23 months). A virologic breakthrough that indicated 

resistance to TDF treatment however was not observed (van Bömmel 2010). In 

concordance, Kitrinos et al. found no resistance to TDF treatment after 288 weeks of 

observation irrespective of the presence of HBV resistance variants (Kitrinos 2014). 

The authors further reported that during long-term treatment with TDF, a suppression 

of serum HBV DNA to undetectable levels was achieved in all patients after week 240 

(Kitrinos 2014).  

Table 3: Cumulative rates of HBV resistance to antiviral treatment with nucleos(t)ide 
analogues 

Nucleos(t)ide analogue 1st year 
(%) 

2nd year 
(%) 

3rd year 
(%) 

4th year 
(%) 

5th year 
(%) 

LAM 24 38 49 67 70 

LdT (HBeAg positive) 4 17 - - - 

LdT (HBeAg negative) 2.7 8.6 - - - 

ADV (naïve) 0 3 11 18 29 

ADV (LAM resistant) Up to 20%     

ETV (naïve) 0.2 0.5 1.2 1.2 1.2 

ETV (LAM resistant) 6 15 36 46 51 

TDF 0 0 0 0 0 

LAM = lamivudine, LdT = telbivudine, ADV = adefovir, ETV = entecavir, TDF = tenofovir. (Adopted from 
EASL 2012 and Zoulim 2009) 

1.4.3 HBV variants in the s gene  

HBsAg variants naturally occur during the HBV replication as part of the 

genetic HBV diversity. Because the HBV genome is organized in overlapping ORFs, 

mutations in the pol and preS/S gene can cause mutual nucleotide exchanges, which 

also can become selected during NA treatment (Table 4) (Torresi 2002). In the context 

of acquired LAM resistance, the HBsAg variants sE164D/rtV173L, sI195M/rt204V and 

sW196S/rtM204I were associated with a reduced binding to anti-HBs antibodies as a 

result of changes in the protein structure (Torresi 2002) and a lower infectivity in vitro 
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(Billioud 2012). The relevance of these HBV variants in the context of a possible 

immune-escape to HBV vaccination - as assumed for exchanges in the ‘a’ 

determinant in the HBsAg (Pollicino 2014) - is still under discussion. Besides point 

mutations, several HBsAg stop (*) mutations were described to arise in the natural 

course of the infection (Kazim 2006) and also during NA treatment. Some of them 

were suspected to promote the progression of liver disease and HCC pathogenesis 

(Lai 2008, Lai 2009, Lee 2012, Huang 2014, Li 2016), which will be discussed below.  

The LAM and ADV resistant variant rtA181T causes a stop codon at position 

s172 (sW172*) that results in a truncation of 55 amino acids at the C terminus of the 

HBsAg (Warner 2008). Warner et al. demonstrated that the secretion of the truncated 

protein was defective, led to the retention of the concurrent expressed wild type (WT) 

and reduced quantitative HBsAg and HBV DNA levels (Warner 2008). The authors 

assumed that a virological breakthrough and possible disease progression could thus 

remain undetected (Warner 2008). Indeed, Lai et al. found the rtA181T/sW172* 

mutation in a treatment naïve HBsAg carrier who had developed HCC and was 

HBsAg negative at the time point of HCC diagnosis (Lai 2008). The authors related 

the mutation to the transactivation of cell growth enhancing promoters and thus 

assumed a possible contribution to the pathogenesis of HCC (Lai 2008). Further 

preS/S stop mutations with and without mutual nucleotide exchange in the pol gene 

(s15*, sL21*, sW163*, sL216*, rtG165S/sW156*, rtV191I/sW182* and 

rtM204I/W196*) were described in serum and tissue samples of chronic HBV patients 

who had developed HCC, which suggests a potential role in the pathogenesis (Lai 

2009, Lee 2012, Huang 2014). Lee et al. found the rtV191I/sW182* variant with a 

frequency of 26.5% in serum samples of chronic HBV infected patients in a Korean 

cohort (n = 292). The occurrence was significantly higher in patients with HCC or liver 

cirrhosis compared to those with chronic HBV infection or carrier status only (31.8% 
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versus 17.2%, p = .01; Lee 2012). Interestingly, Lai et al. reported that the detected 

HBsAg stop mutations s15*, sL21*, sW163*, L216*, rtG165S/sW156*, 

rtA181T/sW172* and rtM204I/sW196* in their study were exclusively found in 7 out of 

8 HCC patients who had received LAM treatment but not in the treatment naïve control 

group with HCC (Lai 2009). Also in a large meta-analysis, the rates of HCC 

development were significantly higher in patients with LAM resistance 

(Papatheodoridis 2010), which - taken together - suggests the possibility of the 

selection of potential oncogenic variants during antiviral treatment with NAs. 

Experimentally, the sL21*, rtG165S/sW156* and rtA181T/sW172* mutations were 

related to the transactivation of oncogene promoters and an increased tumorigenicity 

could be demonstrated in nude mice (Lai 2008, Lai 2009). For the rtV191I/sW182* 

mutation, in vitro data showed that the translated truncated protein affected the G1/S 

checkpoint through down-regulation of p53 and p21, thus enhancing cell growth in 

NIH-3T3 cells (Lee 2012). A better understanding of the mechanisms of HCC 

development that occurs during antiviral treatment and of the evolution of HBV 

variants, which might contribute to liver disease progression, is an important issue to 

improve surveillance strategies for patients at increased risk.  

Table 4: HBV resistance mutations in the rt region and corresponding exchanges in 
the s gene and HBsAg stop mutations 

drug  HBV variant, rt region HBV variant, s gene 

LAM M204V I195M 
LAM M204I W196S/L/* 
LAM L180M no change 
LAM V173L E164D 
LAM L80V/I no change 

LAM + ADV A181T W172L/F/* 
LAM + ADV A181V L173F 

ADV N236T no change 
 no change 216* 
 V191I W182* 
 S78T C69* 
 V208 W199L/* 

LAM = lamivudine, ADV = adefovir. (Adopted from Zoulim 2009) 



1 Introduction 

29 

1.5 HBV RNA in serum of chronically infected patients 

1.5.1 HBV RNA molecules 

As described in chapter 1.1.2, the polyadenylation of all transcribed HBV 

mRNAs matures at a common poly(A) signal at the 3’ ends. In liver biopsies of patients 

with HBV related HCC, Hilger et al. located the poly(A) signal for the full-length (fl) 

transcripts to position nt1789 (TATAAA) upstream of the HBx gene (Hilger 1991). 

Furthermore, an internal poly(A) signal at position nt1661 (CATAAA) was identified, 

which led to a truncation at the 3’ end and the production of truncated (tr) RNAs (Hilger 

1991, Schutz 1996). In serum samples of patients with chronic HBV infection, both 

HBV mRNAs were detectable with different methods that used primers binding at the 

poly(A) tail at the 3’ end of the HBV genome (Su 2001, van Bömmel 2015). Only 

recently, two studies further discriminated the serum HBV RNA molecules with 

specific primers that targeted the 5’ end of the HBV genome and showed that the 

detected HBV RNA was mostly pre-genomic (Jansen 2015, Wang 2016). 

1.5.2 HBV RNA packaging and release  

With the observation that HBV RNA was measurable in serum samples of 

chronically HBV infected patients, the question arised, in which condition the HBV 

RNA is packaged and released from the hepatocytes. Former studies of the HBV 

replication cycle did not include HBV RNA packaging in their replication model 

because the formation of the HBV envelope during the virion generation was linked 

to the HBV DNA synthesis and the subsequent degradation of the pgRNA (Wai 1996, 

Gerelsaikhan 1996). Studies that are more recent however demonstrated that also 

HBV DNA free nucleocapsids were enveloped and secreted, suggesting that 

alternative ways of virion generation might be present during the HBV replication 

(Ning 2011, Luckenbaugh 2015). For the HBV RNA, Jansen et al. showed that HBV 

RNA remained stably detectable in serum samples after RNAse treatment, which 
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suggested its persistence in an enveloped form (Jansen 2015). The authors further 

showed that HBV RNA was not detectable after anti-HBs immunoprecipitation of 

patient plasma but increased 100- fold after removal of the envelope and subsequent 

anti-HBc precipitation. This demonstrated that the HBV RNA, similar to HVB DNA, 

might be packaged into nucleocapsids and enveloped (Jansen 2015, Wang 2016). In 

line, Rokuhara et al. and Wang et al. found serum HBV RNA in the same sucrose 

density gradient fraction as HBV DNA and HBcAg (Rokuhara 2006, Wang 2016). 

Because HBV RNA transcription from the cccDNA is not affected by antiviral 

treatment with polymerase inhibitors (Doong 1991), it was suggested that high loads 

of serum HBV RNA was a result of the disrupted DNA elongation within NA treatment 

(Huang 2010). However, serum HBV RNA has also been detectable before the 

initiation of NA treatment and corresponded well to HBV DNA loads (Rokuhara 2006, 

Jansen 2015). Assuming that serum HBV RNA is composed of encapsidated, 

enveloped and pgRNA containing virions, Wang et al. proposed a model in which the 

formation of pgRNA virions represented an additional process in the HBV replication 

cycle (Wang 2016). It seems conceivable that pgRNA virions become the dominant 

fraction in serum when the synthesis of HBV DNA virions is inhibited during antiviral 

treatment with NAs, which was demonstrated in transgenic mice treated with ETV 

(Wang 2016). This also suits the observation, that serum HBV RNA remained 

persistently measurable at high levels after the decline of HBV DNA to undetectable 

levels (Rokuhara 2006, Hatakeyama 2007, Huang 2010, van Bömmel 2015, Jansen 

2015, Wang 2016). In concordance, treatment with INF, which also inhibits the 

transcription of the HBV RNA from the HBV cccDNA (Belloni 2012), induced a more 

pronounced decrease of serum HBV RNA compared to NA treatment (Huang 2010, 

Jansen 2015). 



1 Introduction 

31 

1.5.3 HBV RNA as serum marker 

 Independently of other established serum markers, lower serum HBV RNA 

levels at the beginning of NA treatment associated with shorter intervals to virological 

response, which underlines that serum HBV RNA levels might directly reflect the viral 

replication activity (Huang 2015, Jansen 2015). Correspondently, one study reported 

that high serum HBV RNA levels at the beginning of LAM treatment increased the risk 

for the emergence of HBV resistant variants (Hatakeyama 2007), which might be due 

to higher mutational rates within a more active viral replication. A more rapid decline 

of serum HBV RNA was observed in HBeAg negative patients compared to HBeAg 

positive patients (van Bömmel 2015, Jansen 2015) and predicted HBeAg 

seroconversion during NA treatment (van Bömmel 2015). Wang et al. further showed, 

that among 33 patients with undetectable serum HBV DNA during NA treatment, a 

viral rebound at week 24 after the cessation of NA treatment occurred significantly 

more often in patients with detectable serum HBV RNA at the time point of 

discontinuation (Wang 2016).  

1.6 Aim of the study  

The genome of HBV can be assessed by sequence analysis of HBV DNA in 

serum. However, this approach is limited by the fast decrease of HBV DNA during 

treatment with potent NAs. HBV RNA, in contrast, was shown to persist in serum of 

some HBV infected individuals receiving NA treatment. There is further evidence that 

HBV RNA in serum is mainly composed of HBV pgRNA.  

The aim of this work was to investigate whether sequencing of serum HBV 

RNA might allow assessing the HBV genome at time points, at which serum HBV 

DNA became undetectable during NA treatment. First, we aimed at establishing a 

method for the sequencing of serum HBV RNA. We analyzed serum HBV DNA 

derived sequences at the beginning of TDF treatment in patients who had a high 
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probability to harbor known HBV resistance variants and s gene variants due to prior 

antiviral treatment. We considered those HBV variants as an individual genetic 

‘footprint’ of the underlying cccDNA quasispecies in every patient. We analyzed, for 

each patient, if these individual quasispecies patterns were present on serum HBV 

RNA basis, which would be a proof for the common origin of serum HBV DNA and 

serum HBV RNA.  

We then applied this method to observe the evolution of HBV variants during 

treatment with TDF, a potent inhibitor of the HBV replication. We wanted to find out, 

if changes in the rt region of HBV, which were previously associated with resistance 

development to NA treatment, might be lost or acquired during long-term treatment 

with TDF. We further analyzed the occurrence and courses of HBV s gene variants 

during TDF treatment, which were discussed in the context of HCC development.   
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2 Materials and methods 

2.1 Materials 

2.1.1 Chemicals 

Agar-agar SERVA, Heidelberg, Germany 

Agarose SERVA, Heidelberg, Germany 

Ampicillin Roth, Karlsruhe, Germany 

Aqua ad injectabilia Braun, Melsungen, Germany 

Boric acid Sigma-Aldrich, Steinheim, Germany 

Bromophenol blue Sigma-Aldrich, Steinheim, Germany 

EDTA SERVA, Heidelberg, Germany 

Ethanol J.T. Baker, Deventer, NL 

Ethidium bromide Roth, Karlsruhe, Germany 

Isopropanol J.T. Baker, Deventer, NL 

Kanamycin Roth, Karlsruhe, Germany 

NaCl Roth, Karlsruhe, Germany 

NaOH Roth, Karlsruhe, Germany 

RNase-free water Qiagen, Venlo, NL 

SDS SERVA, Heidelberg, Germany 

Sodium acetate buffer solution 3M Sigma-Aldrich, Steinheim, Germany 

Sucrose Roth, Karlsruhe, Germany 

TRIS base Roth, Karlsruhe, Germany 

Tryptone Roth, Karlsruhe, Germany 

X-gal Roth, Karlsruhe, Germany 

Yeast extract Roth, Karlsruhe, Germany 

2.1.2 Devices 

Alpha Imager Hp Alpha Innotech, Kasendorf, Germany 

Biofuge pico (Rotor: HERAEUS #3325) Heraeus Instruments, Hanau, Germany 

Biometra TI 1 Biometra, Göttingen, Germany 

Plate centrifuge 5430R (Rotor: A-2-

MTP) 

Eppendorf, Hamburg, Germany 

Centrifuge 5417R (Rotor: F45-30-11) Eppendorf, Hamburg, Germany 
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CO2 incubator Heraeus Instruments, Hanau, Germany 

C25KC incubator shaker New Brunswick Scientific, Edison, NJ, 

USA 

Electrophoresis power supply EPS 

3501XL 

Amersham Pharmacia Biotech, 

Uppsala, Sweden 

Pipettes Eppendorf, Hamburg, Germany 

Pipettes Gilson, Middleton, WI, USA 

Gel chambers PeqLab Biotechnology, Erlangen, 

Germany 

Herasafe KS18 Thermo Scientific, Schwerte, Germany 

Herasafe KS12 Thermo Scientific, Schwerte, Germany 

Microwave Pro II 1400 Panasonic, Osaka, Japan 

Mono - mixer Sarstedt, Nümbrecht, Germany 

MS 1 minishaker IKA, Staufen im Breisgau, Germany 

Pipetus - akku Hirschmann, Eberstadt, Germany 

Thermomixer compact Eppendorf, Hamburg, Germany 

2.1.3 Laboratory materials 

Adhesive clear PCR seal Biozym Scientific, Oldendorf, Germany 

Biosphere filter tips Sarstedt, Nümbrecht, Germany 

Eppendorf tubes Eppendorf, Hamburg, Germany 

Falcon tubes (10 mL, 50 mL) Greiner, Frickenhausen, Germany 

Gloves Peha soft nitril Hartmann, Heidenheim, Germany 

Light Cycler 480 Multiwell plates, white Roche Diagnostics, Mannheim, 

Germany 

PCR 96 multiwell plates Sarstedt, Nümbrecht, Germany 

Serum pipette tips  Sarstedt, Nümbrecht, Germany 

Single tubes (200 µL) Greiner bio-one, Kremsmünster, Austria 

2.1.4 Cycler 

Flex Cycler  Analytik Jena, Jena, Germany 

Gradient Cycler PTC-200  MJ Research, Reno, NV, USA 
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LightCycler® 480 II Roche Diagnostics, Mannheim, 

Germany 

Thermal Cycler 2720 Applied Biosystems, Darmstadt, 

Germany 

2.1.5 Kits 

Kit Manufacturer Catalogue 
number 

Big Dye v3.1 Terminator Cycle 
Sequencing Kit 

Applied Biosystems, 
Darmstadt, Germany 

4336921 

Big Dye v3.1 Terminator Cycle 
Sequencing Kit  

Applied Biosystems, 
Darmstadt, Germany 

4336921 

DNA ladder 100 bp Promega, Madison, WI, USA G8291 

DNeasy Blood and Tissue Kit Qiagen, Hilden, Germany 69506 
dNTP Mix, PCR grade  Invitrogen, Carlsbad, CA, 

USA 

18427-013 

LightCycler® 480 Probes Master Roche Diagnostics, 
Mannheim, Germany 

04887301001 

QIAfilter Plasmid Midi and Maxi 

Kit 

Qiagen, Venlo, NL 12262L 

RNase OUT Ribonuclease 
Inhibitor  

Invitrogen, Carlsbad, CA, 
USA 

10777-019 

SuperScript® III Reverse 
Transcriptase  

Invitrogen, Carlsbad, CA, 
USA 

18080044 

TOPO® TA Cloning® Kit TOP10 
(pCR®II-TOPO®) 

Invitrogen, Carlsbad, CA, 
USA 

K4600-01 

Taq PCR Master Mix Kit (1,000 
U) 

Qiagen, Hilden, Germany 201445 

Zymo Clean Gel DNA Recovery 
Kit 

Zymo Research, Freiburg, 
Germany 

D4002 
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2.1.6 Buffers and solutions 

10 x TBE buffer 

108 g TRIS base 
55 g boric acid 

40 mL EDTA solution (0.5 M, pH 8.0) 
ad 1 L aqua dest 

EDTA solution (0.5 M, pH 8.0) 

7.3 g EDTA 
2.40 g NaOH 

ad 200 mL aqua dest 

DNA loading dye 

4.0 g sucrose 
400 µL EDTA solution (0.5 M, pH 8.0) 

500 µL 10% SDS 
5 mg bromophenol blue 

ad 10 mL aqua dest 

LB medium 

5.0 g tryptone 
2.5 g yeast extract 

5.0 g NaCl 
ad 500 mL aqua dest 

LB agar 

5.0 g tryptone 
2.5 g yeast extract 

5.0 g NaCl  
7.5 g agar-agar 

ad 500 mL aqua dest 

2.1.7 Primers  

         TIB Molbiol (Berlin, Germany) provided all primers. The starting position is 

numbered from the Eco RI restriction site within the HBV genome. 
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Table 5: Sequencing primers 

Primers Sequences 5’à 3’ Methods 

B2808a-F GCC TCA TTT TGT GGG TCA CCA TA  1
st 

PCR 
B2808b-F GCC TCA TTT TGC GGG TCA CCA TA  1

st 
PCR 

B1417a-R ACG TCC CGC GAA GGA TCC AGT TG  1
st 

PCR 
B1417b-R ACG TCC CGC GCA GGA TCC AGT TG  1

st 
PCR 

B1056a-R CAT TAA AGC AGG ATA ACC ACA TTG  1
st 

PCR 
B1056b-R CAT TAA AGC AGG ATA TCC ACA TTG  1

st 
PCR 

B1056c-R CAT TAA GGC AGG ATA ACC ACA TTG  1
st 

PCR 
B1056d-R CAT TAA GGC AGG GTA ACC ACA TTG  1

st 
PCR 

B0840a-R AGG GTT TAA ATG TAT ACC CAA AGA CA  2
nd 

PCR; Sequencing 
B0840b-R AGG GTT TAA ATG TAT ACC CAG AGA CA  2

nd 
PCR; Sequencing 

B0840c-R AGG GTT CAA ATG TAT ACC CAA AGA CA  2
nd 

PCR; Sequencing 

B660a-F GTT TCT CCT GGC TCA GTT TAC TAG  1
st 

/ 2
nd 

PCR; Sequencing 
B660b-F GTT TCT CTT GGC TCA GTT TAC TAG  1

st 
/ 2

nd 
PCR; Sequencing 

B1281a-R GAG TTC CGC AGT ATG GAT CGG  2
nd 

PCR; Sequencing 

B3077a-F TGG GGT GGA GCC CTC AGG CTC A  2
nd 

PCR; Sequencing 
B3077b-F TGG GGT GGA GCC CTC AGG CAC A  2

nd 
PCR; Sequencing 

B0401a-R ATA TGA TAA AAC GCC GCA GAC AC  1
st 

/ 2
nd 

PCR; Sequencing 
B0401b-R AGA TGA TAA AAC GCC GCA GAC AC 1

st 
/ 2

nd 
PCR; Sequencing 

B0321a-F CAA CCT CCA ATC ACT CAC CAA C 1
st 

/ 2
nd 

PCR; Sequencing 
B0321b-F AAA TCT CCA GTC ACT CAC CAA C 1

st 
/ 2

nd 
PCR; Sequencing 

B0321c-F CAA CCT CCA ATC ACT CAC CAA T 1
st 

/ 2
nd 

PCR; Sequencing 

Table 6: Primers for the quantification of serum HBV DNA 

Primers Sequences 5’à 3’ Methods 

s gene   

HBV-Taq1 CAA CCT CCA ATC ACT CAC CAA C  qPCR 
HBV-Taq2 ATA TGA TAA AAC GCC GCA GAC AC  qPCR 
B0349-Probe FAM-TCC TCC AAY TTG TCC TGG YTA TCG 

CT-BHQ1  
qPCR; probe 

 core   

HB-2256F TGG TYT CTT TYG GAG TGT GGA T  qPCR 
HB-2337R GTY TCC GGA AGT GTT GAT ARG ATA GG  qPCR 
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HB-2279F-Probe FAM-CGC ACT CCT CCH GCH TAT AGA 
CCA CCA A–BHQ1  

qPCR; probe 

 Vox standard   

Vox-F ACA ACA TGC TGT TTC CAC TGG A qPCR 
Vox-R AAG GTC CCC GGC CTG AA qPCR 
Vox-Probe FAM–TCC GGC GAC GGC AGC AGC–

TAMRA 
qPCR; probe 

Table 7: Primers for the reverse transcription and quantification of serum HBV RNA 

Primers Sequences 5’à 3’ Methods 

HBV trRNA   

x-RACE short a GAG ACT CGA CTC CAC AAC CA  (dT)
17

 GC 
TGG TGA ACA GAC  

Reverse 
transcription 

x-RACE short b GAG ACT CGA CTC CAC AAC CA  (dT)
17

 GC 
TGG TGC GCA GAC 

Reverse 
transcription 

B1577a-F GTG TGC ACT TCG CTT CAC CTC qPCR 

Anchored short GAG ACT CGA CTC CAC AAC CA qPCR 

Probe B 1599a-
FAM 

FAM-CAC GTC GCA TGG AGA CCA CCG 
TGA ACG C–BHQ1 

qPCR; probe 

Probe B 1599b-
FAM 

FAM-CAC GTT GCA TGG AGA CCA CCG 
TGA ACG C–BHQ1 

qPCR; probe 

HBV flRNA   

3’RACE-long ACC ACG CTA TCG CTA CTC AC (dT)
17

 GW 
AGC TC 

Reverse 
transcription 

HBV-x-long CAA CTT TTT CAC CTC TGC CTA  qPCR 
Anchored long ACC ACG CTA TCG CTA CTC AC qPCR 
HBV-x-long FAM FAM-CAT GTC CYA CTG TTC AAG CCT CCA 

AG-BHQ1  
qPCR; probe 

Table 8: Standard plasmids used for the absolute quantification with qPCR 

Plasmids Constructs 

s gene  pCRII-HBV-2808-1623  
core pCRII-HBV-1381-2951 
HBV trRNA pMA–T-HBV-1577-x-RACE-short-991 (nt1577 - nt1810);  

ID construct: 12ABEHLP, Life Technologies, Carlsbad, CA, USA 
HBV flRNA pCRII-HBV-1577-x-RACE-long-991 (nt1577-nt1935) 
Vox pCRII-volvox-F-R 
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2.1.8 Data analysis 

• Analysis of HBV sequences: Chromas Lite 2.01, Technelysium Pty Ltd  

• Alignment and analysis of HBV sequences: CLC Main Workbench Version 

6.8.3, CLC bio 

• Analysis of HBV sequences (Translation to aa sequences, PileUps): HUSAR 

(http://genome.inet.dkfz-heidelberg.de/husar/hs_home.html)  

• Genotyping of HBV sequences: HepSEQ-Research Database 

(http://www.hepseq.org)  

• Source for HBV reference genomes: National Center for Biotechnology 

Information (http://www.ncbi.nlm.nih.gov/nuccore)	

• Analysis of HBV variants: HBV Seq tool of the HIV Drug Resistance Database, 

Stanford University  

(http//hivdb.stanford.edu/HBV/HBVseq/development/HBVseq.html)  

• Analysis of the HBV deletion: BLAST (Basic Local Alignment Search Tool; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

• Data analysis: Microsoft Excel (versions 2010 and 2013) 

• Figures: Microsoft Power Point (versions 2010 and 2013) 

2.2 Methods 

2.2.1 Patient set and sample selection 

We aimed at assessing the value of the sequencing of HBV DNA and HBV 

RNA as a method for the monitoring of the development of HBV variants during 

antiviral treatment. Therefore, we composed our study cohort of patients likely of 

having acquired HBV resistance during previous treatment with NAs. For this reason, 

a prerequisite for inclusion in this study was a previously confirmed viral breakthrough 

defined as re-increase of serum HBV DNA > 1 log10 as suggested by the current 
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treatment guideline (EASL 2012), which occurred during NA treatment that preceded 

TDF treatment. Furthermore, at least four consecutive serum samples stored at 

−20°C representing the beginning and time points around months 6, 12 and 24 of 

TDF treatment had to be available. To observe the evolution of HBV variants during 

long-term treatment with TDF also serum samples at later time points were included.  

2.2.2 Extraction of nucleic acids from serum samples 

Total nucleic acids were extracted from 200 µL serum using the DNeasy Blood 

and Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions 

and obtained in 100 µL elution buffer. The nucleic acid isolation was performed for 

each serum sample, a positive and a negative control. In addition, the Vox standard 

plasmid (Table 8), which served as internal control for the extraction efficacy, was 

measured for every sample. The isolated nucleic acids were either used immediately 

for further analysis or stored at -80°C. 

2.2.3 Reverse transcription of HBV RNA 

The reverse transcription of HBV RNA was performed using the SuperScript® 

III Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA, USA). In a first step, 10 µL of 

the isolated nucleic acids were incubated at 65°C for 5 minutes in the presence of 2.5 

µM rapid amplification of cDNA ends (RACE) primers for trRNA and flRNA each 

(Table 7) and 0.5 mM dNTPs and immediately transferred on ice. In a second step, 

RNase Inhibitor (2 U/µL), RT buffer, 0,1 M DTT (5 mM) and the reverse transcriptase 

(10 U/µL) were added to the reaction mix and incubated at 50°C for 60 minutes, 

followed by an inhibition step of 15 minutes at 70°C, and finally cooled down. The 

reverse transcription for each sample was carried out in single tubes on the Gradient 

Cycler PTC-200 (MJ Research, Reno, NV, USA). The reaction mix and cycling 

conditions are given in Tables 9 and 10, respectively. The cDNA was immediately 

used for further analysis or stored at -20°C.  
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Table 9: Reaction mix of the reverse transcription 

Reagents Volume (µL)  Final concentration  

dNTP (10 mM) 1.0 0.5 mM 
RACE primer short/long (25 µM) 2.0 2.5 µM 

HBV nucleic acids 10.0  

5 x RT buffer 4.0  
DTT 0.1 M 1.0 5.0 mM 

RNase inhibitor (40 U/µL) 1.0 2 U/µL 
RT Super Script III (200 U/µL) 1.0 10 U/µL 

Total volume  20.0  

Table 10: Conditions of the reverse transcription 

2.2.4 Quantification of serum HBV DNA and HBV RNA by real-time PCR 

2.2.4.1 Real-time PCR 

           For the absolute quantification of the HBV DNA and reverse transcribed HBV 

RNA, in-house quantitative real-time PCRs (qPCRs) as described in the following 

chapters were performed. qPCR is a method to determine quantitatively the 

concentration of nucleic acids based on PCR. During the amplification, a fluorescent 

signal emitted by either unspecific fluorescent dyes or specific probes is detected at 

the respective wavelength (Arya 2005). In our study, we used TaqMan hydrolysis 

probes designed to detect the region of interest for the qPCR reaction. Hydrolysis 

probes consist of a reporter fluorophore at the 5’ end and a quencher at the 3’ end. 

The quencher molecule quenches the fluorescence signal, which is emitted by the 

Condition Cycles Temperature (°C) Time (h:min:sec) 

Preincubation 1 65 00:05:00 
Cooling forever 4 forever 

Reverse transcription 1 50 60:00:00 
Enzyme inactivation 1 70 00:15:00 

Cooling forever 4 forever 
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excited 5’ end fluorophore through fluorescence resonance energy transfer (FRET). 

After annealing to a region located between the forward and reverse PCR 

amplification primers, the probes are cleaved by the 5’-3’exonuclease activity of the 

polymerase during the elongation (Holland 1991), and the reporter fluorophore is 

released. Thus, the fluorescence signal is no longer quenched by the quencher 

fluorophore and becomes detectable at a defined wavelength. Our probes were 

labelled with 6-carboxyfluorescein (FAM) at the 5’ end and with tetramethylrhodamine 

(TAMRA) or black hole quencher (BHQ) at the 3’ end (Table 7).  

             The qPCRs were all carried out on a Light Cycler® 480 II (Roche Diagnostics, 

Mannheim, Germany) system. The wavelengths of excitation and detection were 465 

and 510 nm, respectively. For the absolute quantification of the HBV DNA and cDNA 

we used the second derivative maximum method and calculated the copy value for 

each reaction. Within this method, for each sample, the crossing point (CP) that 

represents the number of PCR cycles during the amplification, at which the 

fluorescence signal becomes detectable, is determined (Pfaffl 2001). The CP is then 

compared to a standard curve, which was calculated by serial dilutions of known 

nucleic acid concentrations of cloned standard plasmids (Table 8) ranging from 106 

to 101 cp per reaction (Figure 5).  

           The determined HBV DNA and cDNA quantities represented the serum levels 

per reaction and were multiplied with the respective dilution factors of the 

transformation in the unit cp/mL serum as described below. Furthermore, for each 

assay the lower limit of detection (LOD) was previously determined. The LOD defines 

the lowest copy level, which is distinguishable from blank samples in 95% of all cases 

and is experimentally determined by measuring the quantities of serial dilution 

samples of known DNA and cDNA concentrations. 
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Figure 5: Standard curves of the HBV trRNA assay for the absolute 
quantification of HBV serum levels on a Light Cycler® 480 II 
The amplification curves represent known concentrations of a cloned plasmid representing 

quantities between 106 and 101 cp per reaction. The standard curve is calculated based on 

the determined crossing points (CPs), which each represent the required PCR cycles for the 

detection of a fluorescence signal. It indicates the lineal correlation between the CP values 

and the decadal logarithm of the standard concentrations.  

2.2.4.2 Quantification of serum HBV DNA 

For the HBV DNA quantification, two regions of the HBV genome, the HBV s 

gene and the core region, were separately targeted by qPCR. In a third reaction, we 

determined the efficiency of the nucleic acids isolation by the quantification of the Vox 

plasmid. The reaction mixes consisted of 10 µL LightCycler® 480 Probes Master 

(Roche Diagnostics, Mannheim, Germany), 300 nM forward and reverse primers and 

150 nM TaqMan probes. 5 µL of the previous isolated HBV DNA were added to a total 

reaction volume of 20 µl. The reaction mix and cycling conditions for the quantitative 
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PCR on the LightCycler® 480 II (Roche Diagnostics, Mannheim, Germany) are given 

in tables 11 and 12, respectively.  

Table 11: Quantification of the serum HBV DNA 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 3.5  
LightCycler® 480 Probes Master 10.0  

Forward primer 10 µM 0.6 300 nM 
Reverse primer 10 µM 0.6 300 nM 

Probe 10 µM 0.3 150 nM 
Template 5.0  

Total volume 20.0  

Table 12: Cycling conditions of the qPCR on the Light Cycler® 480 II 

Cycling step Cycles Temperature (°C) Time (h:min:sec) 

Activation 1 95 00:05:00 
Amplification 50   
Denaturation  95 00:00:05 

Annealing and 
elongation 

 60 00:00:20 

Cooling 1 40 00:00:10 
 

To obtain the unit cp/mL serum, the determined quantities of each reaction 

were multiplied by the factor 100. The multiplication factor was calculated considering 

the dilution factor of the HBV DNA extraction, which was 1:5 because 200 µL instead 

of 1 mL serum was used for the nucleic acid isolation, and the dilution factor of the 

qPCR reaction, which was 1:20 because of 100 µL eluted nucleic acids 5 µL were 

added to the reaction. For the HBV DNA assays, the determined LOD was 400 cp/mL 

serum. Values below 100 cp/mL serum were defined as negative. To include values 

between 100 and 400 cp/mL serum for further analysis, we regarded these values as 

positive and assigned them to a quantity of 250 cp/mL serum. We performed all 
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reactions in duplicates and applied the negative control from the extraction step for 

each system. A HBV DNA positive patient sample from the extraction step served as 

positive control. 

2.2.4.3 Quantification of serum HBV trRNA and HBV flRNA 

The quantification of the HBV fl and trRNAs was based on a recently described 

specific qPCR technique (van Bömmel 2015). As described in chapter 2.2.3, the HBV 

RNA was reversely transcribed into cDNA using RACE primers. RACE primers 

contain an oligo(dT) sequence that binds to poly(A) tails of RNAs (Frohmann 1988). 

To detect only the HBV specific RNA, the primers in our study further contained a 

short sequence complementary to the viral sequence that targeted the standard 

poly(A) (flRNA) and the internal poly(A) signal (trRNA) as described by Hilger et al. 

(Hilger 1991). Furthermore, the primers consisted of artificial anchored sequences, 

which were the target sequences of the primers used for the qPCR, which allowed a 

selective quantification of the reverse transcribed HBV RNA without the need of 

DNase digestion (Figure 6) (van Bömmel 2015).  

The reaction mix of the qPCR for the HBV trRNA consisted of 10 µL 

LightCycler® 480 Probes Master (Roche Diagnostics, Mannheim, Germany), 900 nM 

of the complementary forward and reverse primers and 75 nM TaqMan probe. To a 

final volume of 20 µL, 2 µL of the reverse transcribed RNA was added (Table 13). The 

reaction mix of the qPCR for the HBV flRNA consisted of 10 µL LightCycler® 480 

Probes Master (Roche Diagnostics, Mannheim, Germany), 500 nM of complementary 

forward and reverse primers and 150 nM TaqMan probe. 2 µL of the reverse 

transcribed RNA was added to a final volume of 20 µL (Table 14). The qPCRs for 

HBV trRNA and flRNA were carried out on the LightCycler® 480 II (Roche Diagnostics, 

Mannheim, Germany) system as described in Table 12.  
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Figure 6: Principle of the specific qPCR for the quantification of serum HBV 
trRNA and HBV flRNA 

The HBV full-length (fl) and truncated (tr) RNAs mature at the standard poly(A) signal and the 

internal signal upstream the HBx (A). During reverse transcription, oligo-(dT) RACE primers 

bind to the poly(A) tails at the 3’ end with a specific complementary viral sequence for the 

detection of the HBV flRNA and trRNA (B). The reverse transcribed HBV RNAs contain an 

artificial anchored sequence (dashed line HBV trRNA, solid line HBV flRNA), which is targeted 

during the qPCR (C). (Adopted from Hilger et al 1991) 

Table 13: Quantification of the serum HBV trRNA 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 4.25  

LightCycler® 480 Probes Master 10.0  
Primer anchored-short 10 µM 1.8 900 nM 

Primer 1577 a-F 10 µM 1.8 900 nM 
Probe 1599 ab-FAM 10 µM 0.15 75 nM 

Template cDNA 2.0  

Total volume 20.0  
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Table 14: Quantification of the serum HBV flRNA 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 5.7  
LightCycler® 480 Probes Master 10.0  

Primer anchored-long 10 µM 1.0 500 nM 
Primer HBV-x-long 10 µM 1.0 500 nM 

Probe HBV-x-long-FAM 10 µM 0.3 150 nM 
Template cDNA 2.0  

Total volume 20.0  

 

The determined quantities for HBV trRNA and HBV flRNA per reaction were 

multiplied with the factor 500. This factor was calculated considering the dilution 

factors of the HBV DNA extraction (1:5) as described above, the reverse transcription, 

for which 10 µL of the nucleic acids eluted in 100 µL were applied (1:10) and the 

qPCR reaction, for which 2 µL cDNA was added to a volume of 20 µL reaction mix 

(1:10). The previously determined LODs were 5,500 and 3,000 cp/mL serum for the 

HBV trRNA and flRNA, respectively. We considered values below 500 cp/mL serum 

as negative in both assays. To include values below the LODs, for HBV flRNA 

quantities between 3,000 and 500 cp/mL serum were assigned to a level of 1,750 

cp/mL serum and for HBV trRNA quantities between 5,500 and 500 cp/mL serum to 

a level of 3,000 cp/mL serum. All reactions were performed in duplicates and the 

respective negative controls applied. A HBV RNA positive patient sample served as 

positive control. 

2.2.5 Sequencing of serum HBV DNA and HBV RNA  

2.2.5.1 Primer design 

Using semi-nested PCRs of three overlapping fragments, we amplified the 

entire rt region of 1032 nt size (position nt130 - nt1161) that is located within the HBV 

pol gene followed by Sanger sequencing of the purified PCR products. With this 
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sequencing strategy, we included the small s gene of 681 nt size (position nt155 – 

nt835) that overlaps with the rt region (Figure 7). We designed the primers to target 

conserved regions in the HBV genome and included the most common HBV 

genotypes. For variable positions, respective primer sequences were designed (Table 

5) and added to the PCR reaction in an equimolar relation. 	

 

Figure 7: Location of the sequencing primers in the rt region of the HBV genome	
The PCR was performed in 3 overlapping fragments of around 500 bp spanning the entire rt 

region (light grey) of the pol gene (grey) and the s gene (dark grey). Arrows indicate the 

direction of the elongation and numbers the first nt of the amplified region after the ECO RI 

restriction site of the HBV genome. 

2.2.5.2 Amplification by PCR 

The amplification of HBV DNA and cDNA was carried out by optimized PCR 

reactions with a semi-nested PCR to achieve higher yields of the PCR product. 

According to the determined quantitative copy levels by qPCR, HBV DNA was used 

as template for sequence analysis with serum levels between 500 to 1,000 cp/mL. In 

serum samples with HBV DNA < 500 cp/mL and detectable HBV RNA, the reversely 

transcribed HBV RNA was used as template for the amplification and subsequent 

sequencing. The semi-nested PCR consisted of two PCR rounds. In the 1st PCR, a 

reaction mix with a final volume of 25 µL containing 12,5 µL LightCycler® 480 Probes 

Master (Roche Diagnostics, Mannheim, Germany) and 200 nM of forward and reverse 
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primers (Table 5) was prepared for the three overlapping fragments, each in single 

tubes or 96 well plates. 5 µL of isolated HBV DNA or 2 µL of the reverse transcribed 

HBV RNA were added to each reaction (Table 15). The amplification was carried out 

on a Gradient Cycler PTC-200 (MJ Research, Reno, NV, USA) or Thermal Cycler 

2720 (Applied Biosystems, Darmstadt, Germany) for single tubes or plates, 

respectively. The cycling conditions are given in Table 16.  

Table 15: Reaction mix of the 1st PCR for HBV DNA and cDNA amplification 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 6.5/9.5  
LightCycler® 480 Probes Master 12.5  

Forward primer 10 µM 0.5 200 nM 
Reverse primer 10 µM 0.5 200 nM 
Template DNA/cDNA 5.0/2.0  

Total volume 25.0  

Table 16: Cycling conditions for the 1st PCR for HBV DNA and cDNA amplification 

Cycling step Cycles Temperature (°C) Time (h:min:sec) 

Preincubation 1 95 00:05:00 

Amplification 40   
Denaturation  95 00:00:30 

Annealing  60 - 55 00:00:30 
Elongation  72 00:01:00 

Final elongation 1 72 00:07:00 
Cooling forever 10 forever 

In the 2nd PCR, 2 µL of the obtained amplification products for each fragment 

were added to 12.5 µL LightCycler® 480 Probes Master (Roche Diagnostics, 

Mannheim, Germany) and 200 nM of the correspondent forward and reverse primers 
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(Table 17). The amplification temperatures were equal to the first PCR with an 

annealing temperature of 55°C for all fragments (Table 16).  

Table 17: Reaction mix 2nd PCR for HBV DNA and cDNA amplification 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 9.5  
LightCycler® 480 Probes Master 12.5  

Forward primer 10 µM 0.5 200 nM 
Reverse primer 10 µM 0.5 200 nM 

Product of 1st PCR 2.0  

Total volume 25.0  

 

2.2.5.3 Purification of amplification products 

The amplified HBV DNA and cDNA fragments were analyzed by gel 

electrophoresis on a 1% agarose gel, which separates DNA fragments based on their 

size. The gel was prepared by dissolving agarose (SERVA, Heidelberg, Germany) in 

1xTBE buffer. The obtained amplification products were mixed with DNA loading 

buffer in a relation of 5:1 and applied to the gel. For the visualization of the PCR 

amplification product, 0.05 µL/mL ethidium bromide, which intercalates into DNA, was 

applied to the gel. A 100 bp DNA marker (Promega, Madison, WI, USA) was used to 

estimate the sizes of the obtained fragments. The electrophoresis run was performed 

at a constant voltage of 110 Volt for 45 minutes. The amplification fragments were 

exposed to ultraviolet (UV) light on an Alpha Imager (Alpha Innotech, Kasendorf, 

Germany) for detection, sliced out from the gel with a scalpel and extracted using the 

Zymo Clean Gel DNA Recovery Kit (Zymo Research, Freiburg, Germany) following 

the manufacturer’s instructions. The purified products were eluted in 10 µL H2O and 

stored at -20° C. 
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2.2.5.4 Sanger sequencing of PCR fragments 

          Sanger sequencing is a method to determine the bp sequence of DNA 

molecules based on the termination of the chain elongation during the PCR 

amplification. Sanger and colleagues first described the method in 1977 (Sanger 

1977). During the amplification in either the forward or reverse direction of single 

strand DNA molecules, the incorporation of 2’-3’-dideoxynucleotide triphosphates 

(ddNTPs) instead of deoxynucleotide triphosphates (dNTPs) leads to the termination 

of the chain elongation of the nascent strand. In ddNTPs the 3’-OH group, which is 

necessary for the formation of phosphodiester bonds between the nucleotides is 

absent and the chain elongation is thus interrupted. A Sanger sequencing reaction 

commonly contains DNA primer, DNA polymerase, dNTPs and ddNTPs, which are 

labeled with radioisotopes, chemiluminescence or fluorescent dyes for the later 

detection of the nucleotides (Franc 2002). In our study, we used a fluorescence dye, 

the Big Dye v3.1 Terminator Cycle Sequencing Kit (Applied Biosystems, Darmstadt, 

Germany). We performed Sanger sequencing for each fragment in the forward and 

reverse direction. In a final volume of 10 µL, 1 to 2 µL of the purified PCR template 

was added to a reaction mix consisting of 1,000 nM forward or reverse primer, 1 µL 

Big Dye v3.1 Terminator Kit and 1 µL of the provided sequencing buffer (Applied 

Biosystems, Darmstadt, Germany) (Table 18). The reaction was carried out on the 

Flex Cycler (Analytik Jena, Jena, Germany) for single tubes or the 2720 Thermal 

Cycle (Applied Biosystems, Darmstadt, Germany) for the 96 well plates with 24 cycles 

of denaturation at 96°C for 30 seconds, annealing for 15 seconds at 59°C and 

elongation at 60°C for 4 minutes (Table 19). 	
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Table 18: Reaction mix for the sequencing reaction 

Reagents Volume (µL)  Final concentration 

H2O PCR-grade 6.0  
Buffer 5x 1.0  

BigDye® Terminator v3.1 Cycle 
Sequencing Kit  

1.0  

Primer 10µM 1.0 1,000 nM 
Purified PCR product 1.0  

Total 10.0  

	

Table 19: Cycling conditions of the sequencing reaction 

Cycling step Cycles Temperature (°C) Time (h:min:sec) 

Amplification 24   

Denaturation  96 00:00:30 
Annealing  59 00:00:15 
Elongation  60 00:04:00 

Cooling forever 4 forever 

 

The amplification products were precipitated with 96% ethanol and 75 mM 

sodium acetate and centrifuged at 13,000 rpm (16,060 x g) for 15 minutes (single 

tubes) or 4,680 rpm (2,204 x g) for 30 minutes (plates) after an incubation step of 15 

minutes. The supernatant was discharged and the remaining pellet washed with 70% 

ethanol. After a short centrifuge step of 5 to 10 minutes (16,060 x g), the supernatant 

was cautiously removed. The amplification product was further processed at the IZKF 

(Interdisziplinäres Zentrum für Klinische Forschung) core unit at the University of 

Leipzig. The remaining pellet was dissolved in 0.1 mM EDTA solution and read out 

using the Sequencing Analysis v5.4. 
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2.2.6 Quantification of serum HBsAg and HBeAg 

          Quantitative HBsAg levels and the presence of HBeAg at baseline were 

measured with immunosorbent assays on the Abbott Architect platform (ARCHITECT, 

Abbott Architect, Abbott Diagnostics GmbH, Wiesbaden, Germany). The HBsAg 

qualitative detection limit was 0.5 - 250.0 IU/mL. For HBeAg, the signal to cut - off 

values of 1,000 IU/mL were considered reactive. 

2.2.7 Cloning of HBV variants 

           To confirm single nucleotide exchanges, which were only detectable in either 

the forward or reverse direction of the sequences, the respective region of interest 

was cloned into a pCR™®II-TOPO® vector using the TOPO® TA Cloning® Kit 

TOP10 (Invitrogen, Carlsbad, CA, USA) and products analyzed by direct sequencing. 

The PCR was carried out using the Taq PCR Master Mix Kit (Qiagen, Hilden, 

Germany) to construct a single ‘a’ overlap at the 3’ end for the subsequent ligation of 

the insert into the vector. The reaction mix for the PCR and cycling conditions are 

given in Tables 20 and 21, respectively. 

Table 20: Reaction mix for the cloning PCR 

Reagents Volume (µL) Final concentration 

Taq PCR Master mix 12.5  
Primer Forward 10 µM 2.0 800 nM 
Primer Reverse 10 µM 2.0 800 nM 

H2O PCR-grade 3.5  
Template 5.0  

Total 25.0  
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Table 21: Cycling conditions of the cloning PCR 

Cycling step Cycles Temperature (°C) Time (h:min:sec) 

Preincubation 1 95 00:05:00 

Amplification 40   
Denaturation  95 00:00:30 

Annealing  55 00:01:00 
Elongation  72 00:02:00 

Final elongation 1 72 00:07:00 
Cooling forever 10 forever 

           The PCR product was visualized on an agarose gel (chapter 2.2.5.3) and 

purified using the Zymo Clean Gel DNA Recovery Kit (Zymo Research, Freiburg, 

Germany). Following the manufacturer’s instructions, the PCR product was cloned 

into the TOPO TA Cloning® vector as described in Table 22. The reaction was gently 

mixed and incubated at room temperature for 5 minutes. On ice, 2 µL of the reaction 

were added to TOP10 chemically competent E. coli cells and incubated for 5 minutes. 

The cells were heat-shocked for 45 seconds at 42°C and immediately transferred on 

ice. 250 µL of room temperature S.O.C. medium provided by the TOPO TA Cloning® 

Kit was added and the mix horizontally shaken with 200 rpm at 37°C for 1 hour. 50 

µL of each transformation was spread on a pre-warmed LB plate. The LB plates 

contained 25 µg/mL Kanamycin and 50 μg/mL ampicillin and 40 mg/mL x-gal for the 

color selection. The plates were incubated at 37°C for 8 to 12 hours.  

Table 22: TOPO® TA cloning® reaction 

Reagents Volume (µL) 

H2O 3.0  
Salt solution 1.0  

TOPO TA Cloning® vector 1.0  
PCR product 1.0  

Total volume 6.0  
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            Around 10 colonies were picked and each added to 50 µL LB medium mixed 

with 1 µL/mL ampicillin and 2.5 µL/mL kanamycin and gently shaken at 37°C for 1 

hour. For the inoculation of each colony, 10 µL of the mix was added to a single falcon 

tube (15 mL) containing 3 mL LB medium mixed with ampicillin and kanamycin and 

incubated at 200 rpm at 37°C over night. The preparation of the bacterial suspension 

was performed using the QIAfilter Plasmid Midi and Maxi Kit (Qiagen, Venlo, NL) 

following the manufacturer’s instructions and eluted in 50 µL H2O. The sequencing of 

the cloning products was carried out as described in chapter 2.2.5. 	

2.2.8 Data analysis 

2.2.8.1 Serum HBV DNA and HBV RNA quantities 

All values of the HBV DNA and cDNA determined by qPCR were measured in 

duplicates. For further analysis, the mean values of the duplicates were used and 

transferred to log10. HBV s gene and HBV core derived values did not significantly 

differ, therefore, only the core values were used for further analysis. The mean copy 

levels and standard variations of the HBV DNA and HBV RNA were calculated at 

baseline and during follow-up at months 6, 12, 18 and 24 with Microsoft Excel 

(Versions 2010 and 2013) and depicted in box plots. Missing values for those time 

points were linear interpolated. The linear correlation between the HBV DNA, HBV 

trRNA and HBV flRNA was calculated using Excel regression analysis tool for the 

Pearson’s correlation coefficient (r) and the p value. We chose a significance level < 

.05 for the p value.  

2.2.8.2 Analysis of HBV DNA and HBV RNA sequences  

Sequences were analyzed using the bioinformatics programs Chromas Lite 

(Version 2.01) and CLC Main workbench (Version 6.8.3). With CLC Main workbench, 

the obtained forward and reverse sequences of the three fragments were aligned 
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(Figure 8). Double peak variants were considered as true if they were present in one 

sequence and covered the entire peak or if present in the forward and reverse 

sequence and covered at least 50% of the peak’s height. Peaks with lower height had 

to be present also in follow-up sequences. Single peaked nucleotide exchanges were 

considered true if present in the forward and reverse sequences. Single nucleotide 

exchanges only present in the forward or reverse sequence were cloned as described 

in chapter 2.2.7 and considered as true if present in 50% of the analyzed clones.  

The entire rt region was analyzed using the HepSEQ-Research Database 

System (http://www.hepseq.org) for genotyping and a reference genome determined 

for each sequence. The sequences of the reference genomes were obtained with the 

respective GenBank annotation (Table 23) using the National Center for 

Biotechnology Information (NCBI) Nucleotide platform 

(http://www.ncbi.nlm.nih.gov/nuccore).  

Table 23: HBV reference genomes 

HBV genotype GenBank annotation 

A V00866.1 
A X70185.1 
A X51970.1 
B AB073827.1 
D AB073827    
D AF151735.1 
D X65257.1 
D X51970.1 
D X65257.1 
D X85254.1 
E x75657 

 

Using the bioinformatics tool HUSAR (http://genome.dkfz-

heidelberg.de/husar/), we translated the nucleotide sequences into the amino acid 

sequences and compared them to the respective reference genomes using the PileUp 

tool that allows the alignment of nucleotide and amino acid sequences (Figure 9). 	
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Figure 8: Alignment of HBV sequences using CLC Main Workbench 
Alignment of the forward and reverse sequence of a PCR fragment spanning from nt321 to 

nt840 using CLC Main Workbench. The detail focuses on the highly conserved YMDD 

(TATATGGATGAT; nt736 to nt747) motif in the rt region of the pol gene, which here represents 

a wild type sequence.  

 

201                                            250 
00_AB073827_hbv_rt  FSYMDDVVLG AKSVQHLESL YAAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  00_HBV-S-504A_rt  FSYVDDVVLG AKSVQHLESL YTAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  00_HBV-S-504B_rt  FSYVDDVVLG AKSVQHLESL YTAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  06_HBV-S-854A_rt  FSYMDDVVLG AKSVQHLESL YTAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  06_HBV-S-854B_rt  FSYVDDVVLG AKSVQHLESL YAAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  12_HBV-S-529A_rt  FSYMDDVVLG AKSVQHLESL YTAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  12_HBV-S-529B_rt  FSYVDDVVLG AKSVQHLESL YAAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  25_HBV-S-557A_rt  FSYMDDVVLG AKSVQHLESL YTAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
  25_HBV-S-557B_rt  FSYVDDVVLG AKSVQHLESL YAAVTNFLLS LGIHLNPHKT KRWGYSLNFM  
 

Figure 9: Comparison of sequences during follow-up with PileUp 
PileUp of one patient using the HUSAR platform of the amino acid (aa) sequences (aa201 to 

aa 250) in follow-up samples from month 0 to 25 of TDF treatment. The detail includes the 

YMDD motif in the rt region (aa203 to aa206). The upper line indicates the reference HBV 

genome, which was previously determined. Different variants were called ‘A’ and ‘B’. The 

mutation rtM204V is present in all samples.  
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The sequences were checked for known primary resistance mutations in the 

rt region and for s gene variants and stop codons before and during antiviral 

treatment. We assessed HBV variants described to be associated with primary 

resistance against LAM (rtM204V/I), ADV (rtN236T) and both NAs (rtA181V/T) as well 

as the compensatory mutations rtL80V, rtV173L and rtL180M (Zoulim 2009). Within 

the s gene, we determined the presence of the variants sE164D and sI195M, which 

occur combined with the overlapping rt gene variants rtV173L and rtM204V, 

respectively, and the variants sW196S/L, which are caused by the overlapping variant 

rtM204I. We also assessed variants between positions s90 – s170, defined as ‘a’ 

determinant, the major target of anti-HBs (Pollicino 2014), and the occurrence of stop 

codons (*). 
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3 Results 

3.1 Composition of the patient set 

A total of 68 patients receiving mono therapy with TDF 300 mg/day, and 3 

patients receiving a combination therapy of TDF and LAM 100 mg/day as second or 

third line treatment after failure to LAM and ADV were identified. The treatment was 

conducted at the outpatient clinics of the University Hospitals Charité, Berlin, and 

Leipzig, and in a large Gastroenterological Center in Herne, Germany, between 2002 

and 2013. All participants had given written informed consent for the participation in 

the study. Of these patients, we included 25 patients with follow-up serum samples 

available in our study, of which 24 received TDF as monotherapy and 1 patient a 

combination with LAM. For 4 patients, serum samples at the beginning of TDF 

treatment were not available but represented months 1 (n = 2), 2 (n = 1) and 3 (n = 

1). We excluded these patients from the quantitative analysis of serum HBV DNA and 

serum HBV RNA at baseline, but included them for the assessment of HBV variants 

during antiviral treatment. Of 25 patients, 21 were HBeAg positive at baseline (Table 

24).  

3.2 Quantification of HBV DNA and HBV RNA in serum samples  

In total, 156 samples representing time points around months 0, 6, 12, 24 and 

further available serum samples representing later time points during TDF treatment 

were retrospectively analyzed. The mean duration of follow-up was 45.2 ± 16.8 (21 - 

82) months. We screened all samples for the presence of serum HBV DNA, HBV 

trRNA and HBV flRNA. The HBV DNA and HBV flRNA serum levels could be 

determined in all samples. In 1 patient (pat ID 1-15), the quantification of serum HBV 

trRNA failed and the sequencing of the primer-binding site in the HBx region revealed 

a high variability of nucleotides in this patient.  
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Table 24: Patients characteristics at the beginning of treatment with TDF 

Parameters Values 

Male/female, n 19/6 

Age, years* 44.6 ± 12.6 (25 - 70) 

HBeAg positive, n 21 

HBV DNA, log10 cp/mL* 6.3 ± 1.6 (9.5 – 3.3) 

HBV trRNA, log10 cp/mL* 5.8 ± 1.4 (8.7 – 3.9) 

HBV flRNA, log10 cp/mL* 5.6 ± 1.4 (7.9 -3.4) 

HBsAg, IU/mL* 3.9 ± 0.6 (6.6 - 4.9) 

ALT, IU/mL* 136 ± 324 (23 - 1,523) 

Duration of follow-up, months* 45.2  ± 16.8 (21 - 82) 

HBV genotype, n  

     A 4  

     B 21) 

     D 191) 

     E 1 

Preceding antiviral treatment 

LAM, n 4 

ADV, n 1 

LAM and  ADV, n 20 

* mean ± standard deviation (range); 1) one patient had mixed genotypes B and D. ALT = 
alanine aminotransferase; cp/mL = copies per milliliters; IU/mL = international units per 
milliliters; n = number of patients; flRNA = full-length RNA; trRNA = truncated RNA;  

3.2.1 Quantitative courses of serum HBV DNA 

At baseline, the mean serum level for the HBV DNA was 6.2 ± 1.5 (9.5 – 3.1) 

log10 cp/mL. During antiviral treatment with TDF, the HBV DNA serum levels persisted 

detectable above the LOD (400 cp/mL) for a mean duration of 9.7 ± 10.6 (0 - 38) 

months in all patients. In 1 patient, the serum HBV DNA level decreased > 1 log10 
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during the first months of TDF treatment but persisted > 400cp/mL until the end of 

follow-up at month 37 (pat ID 1-66; Figure 17L). In another patient, the HBV DNA 

became detectable at high levels at month 17, after a previous decline to undetectable 

levels, but re-decreased during further follow-up (pat ID 1-37; Figure 16J).  

3.2.2 Quantitative courses of serum HBV flRNA and HBV trRNA 

The quantitative levels of serum HBV flRNA and trRNA at baseline were 5.6 ± 

1.4 (3.4 – 7.9) log10 cp/mL and 5.8 ± 1.4 (3.9 – 8.7) log10 cp/mL, respectively. The 

linear correlation between the HBV DNA and HBV RNA serum levels at baseline was 

calculated with the Pearson’s correlation coefficient (Figure 10) and showed a 

significant correlation for the serum HBV DNA with HBV trRNA (r = 0.83; p < .001) 

and HBV flRNA (r = 0.65; p < .05). 

 

Figure 10: Correlation of serum levels of HBV DNA with HBV trRNA and HBV 
flRNA at baseline 
The Scatter plots depict the linear correlation between HBV DNA serum levels and HBV trRNA 

(left) and HBV flRNA (right) at baseline. r = Pearson’s correlation coefficient; p = p - value.  

 

Serum HBV flRNA and trRNA levels persisted above the LODs of 3,000 and 

5,500 cp/mL for mean durations of 33.4 ± 18.1 (0 - 76) and 25.1 ± 20.7 (0 - 76) months, 

respectively. In 9 patients (pat IDs 1-34, 1-60, 1-25, 1-37, 1-12, 1-15, 1-02, 7-02, 7-

09), serum HBV flRNA and HBV trRNA decreased to levels < 500 cp/mL during follow-

up . In 4 of those patients (pat IDs 1-15, 1-25, 1-37, 7-09), the HBV flRNA and trRNA 
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was undetectable in follow-up serum samples after the decline of the HBV DNA. 3 of 

these patients (pat IDs 1-25, 1-37, 7-09) were HBeAg negative. In patients with 

persistent HBV RNA, the mean durations of HBV flRNA and trRNA levels > 500 cp/mL 

were 34.1 ± 21.0 (0 - 76) and 31.4 ± 19.7 (0 - 76) months, respectively. Figure 11 

shows exemplary the quantification curves of serum HBV DNA, HBV flRNA and HBV 

trRNA of 1 patient (pat ID 1-76) with persistence of the HBV RNA after the decline of 

the HBV DNA.  

A) HBV DNA 

 

B) HBV trRNA 
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C) HBV flRNA 

 

Figure 11: Quantification of HBV DNA and HBV RNA by qPCR – Example of 1 
patient (pat ID 1-76) 
Amplification curves of the HBV DNA (A), HBV trRNA(B) and HBV flRNA (C) in follow-up 

samples of 1 patient. The brown curves represent the standard curves. The red curves indicate 

the samples and the green lines the negative samples and negative controls. While the serum 

HBV DNA decreased during TDF treatment to undetectable levels (A), HBV trRNA (B) and 

HBV flRNA (C) remained measurable until the end of follow-up. 

The quantitative courses in the entire cohort of the mean HBV DNA, HBV 

flRNA and HBV trRNA serum levels at baseline and at months 6, 12, 18 and 24 of 

antiviral treatment depicted in box plots are shown in figure 12. 
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Figure 12: Quantitative courses of serum HBV DNA and HBV RNA during 
antiviral treatment with TDF in the entire cohort 
Median serum levels of HBV DNA (light grey), HBV trRNA (grey) and HBV flRNA (dark grey) 

at baseline and during follow-up of TDF treatment. The boxes represent the 0.25 and 0.75 

quartiles, the solid lines in the boxes the median. The numbers above whiskers indicate the 

number of results included. The dashed lines represent the respective lower limits of detection 

for HBV DNA (light grey), HBV flRNA (dark grey) and trRNA (grey).  

3.3 Sequencing of HBV DNA and HBV RNA  

3.3.1 Method 

The main purpose of our study was to establish the sequencing of serum HBV 

RNA as a method for genotyping of HBV variants after HBV DNA serum levels 

became undetectable during antiviral treatment. We used a semi-nested PCR for the 

amplification of the HBV DNA (Figure 13) and HBV RNA (Figure 14) to achieve higher 

yields of the PCR amplification products and to reach a more sensitive PCR. Thus for 

a successful PCR amplification, copy levels of around 500 to 1,000 cp/mL were 

required. An annealing temperature of 55 °C was chosen for the semi-nested PCRs 

(chapter 2.2.5.2) except for the nt2808 and nt401 primers, for which annealing 
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temperatures at 60 °C and 58 °C in the first amplification step appeared to detect 

more specific amplification products determined by a gradient PCR. 	

 

Figure 13: Semi-nested PCRs of the HBV DNA in 1 patient (pat ID 1-21)	
Amplification products of around 700 bp sizes from the 1st PCR (A) and around 500 bp sizes 

of the 2nd PCR (B). In each PCR round, 3 fragments were amplified with primers spanning 

from nt2808 to nt401 (I), nt321 to nt1056 (II) and nt660 to nt1417 (III) in the 1st PCR, and from 

nt3077 to nt401 (IV), nt321 to nt840 (V) and nt660 to nt1281 (VI) in the 2nd PCR. Lane 1 in 

each PCR picture indicates the 100 bp size marker. Lanes 2 to 5 represent follow-up serum 

samples of the patient at months 0, 6, 12 and 26. The respective quantities are given in Table 

25. Lanes 6 show the negative controls. Quantities < 1,000 cp/mL (lanes 4,5) were not 

sufficient to obtain an amplification product for the sequence analysis after the semi-nested 

PCR (B). In fragment IV, unspecific amplification products of 500 bp sizes were present before 

the optimization of the PCR conditions.  

Table 25: Serum levels of HBV DNA and HBV flRNA at baseline and during follow-
up in 1 patient (pat ID 1-21) 

months HBV DNA cp/mL PCR - lanes 

0 1,49E+07 2 
6 3,26E+03 3 

12 6,01E+02 4 
26 0,00E+00 5 

A

B

1      2          3      4         5     6 1      2          3      4         5     6

1      2          3      4         5     6 1      2          3      4         5     6 1      2          3      4         5     6

500 bp

1,000 bp

500 bp

1,000 bp

I II III

IV V VI

lane

lane 1      2          3      4         5     6
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Figure 14: Semi-nested PCRs of the HBV RNA in follow-up samples of 2 patients 
(pat IDs 1-21, 1-10) 
Amplification products of around 700 bp sizes from the 1st PCR (A) and around 500 bp sizes 

of the 2nd PCR (B). In each PCR round, 3 fragments were amplified using primers as described 

in figure 13. In each PCR picture, lanes 1 and 2 represent the amplification products at months 

12 and 26, respectively, during follow-up in patient 1-21. As shown in figure 13, at these time 

points, amplification products could not be obtained based on HBV DNA in this patient. For 

another patient (pat ID 1-10), the PCR amplification products were obtained at months 13 

(lanes 3) and 25 (lanes 4) during TDF treatment. The respective serum levels are given in 

Table 27. Lanes 6 and 12 indicate the 100 bp size markers, lanes 5 the negative controls.  

Table 26: Serum levels of HBV flRNA in follow-up samples of 2 patients  

pat ID months HBV flRNA cp/mL PCR – lanes 

1-21 12 3,60 E+04 1 
1-21 26 1,68 E+03 2 
1-10 13 6,60E+05 3 
1-10 25 7,60E+04 4 

 

 

A

B

1           2           3      4          5     6         1            2 3 4          5           6           1           2           3            4        5

500 bp

1,000 bp

500 bp

1,000 bp

lane

lane

1           2           3      4          5           6         1            2 3 4           5           6           1           2           3         4       5

I II III

IV V VI
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3.3.2 Follow-up with sequencing of HBV DNA and HBV RNA 

Out of 156 serum samples, the sequencing of the HBV DNA or cDNA could 

be performed for 61 and 68 probes, respectively. For 27 serum samples, the 

sequence analysis was not available due to low serum levels of the HBV DNA and 

HBV RNA.  

In the baseline serum samples, sequence analysis based on HBV DNA was 

possible for all patients (Figure 15). During follow-up, 3 HBeAg negative patients (pat 

IDs 7-09, 1-37, 1-25) and 1 HBeAg positive patient (pat ID 1-60) had low serum levels 

of HBV DNA and HBV RNA, therefore, sequence analysis was only available at 

baseline but not in the sequential samples (Figure 15). In 17 out of the remaining 21 

patients with available genotyping during follow-up, sequence analysis based on HBV 

DNA became unavailable after a mean duration of 6.0 ± 4.5 (0 - 13) months. The HBV 

DNA derived sequences thus mainly represented early time points during antiviral 

treatment with TDF. After the decline of the HBV DNA, sequence analysis of the 

reverse transcribed HBV RNA was possible for an additional mean duration of 33.9 ± 

12.7 (16 - 65) months. In 4 patients (pat IDs 7-02, 1-66, 1-02, 1-15), sequence 

analysis based on HBV DNA remained available for a longer mean duration of 35.3 ± 

4.6 (30 - 38) months. In these patients, sequencing of HBV DNA became transiently 

unavailable at single time points during follow-up whilst sequencing of HBV RNA was 

still possible (Figure 15).  

3.3.3 Genotyping of baseline samples 

For HBV genotyping of all baseline serum samples, the HepSEQ-Research 

Database was used. The distribution of the genotypes was A in 4 patients, B in 1 

patient, D in 18 patients and E in 1 patient. In 1 patient, a combination of the 

genotypes B and D were found (Table 24, pat ID 1-15; Figure 15). This was also the 
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patient, in which the quantification of the trRNA failed due to the high variability of the 

primer-binding site in the HBx gene region. 	

 

Figure 15: Durations of follow-up of HBV variants by sequencing HBV DNA and 
HBV RNA 
Durations of follow-up during TDF treatment in months (x-axis) by sequence analysis based 

on HBV DNA (black) and HBV RNA (blue) for each patient (ID; on the left). The white bar 

indicates that no sequence was available. In 4 patients (pat IDs 7-09, 1-37, 1-25, 1-60), 

sequences were only available at baseline and not during follow-up. The HBeAg status at 

baseline (+ positive; - negative) and the HBV genotypes (GT) are given on the left.  

3.4 Evolution of HBV variants in the rt region  

3.4.1 HBV resistance mutations in the rt region at baseline 

 We analyzed the occurrence of HBV mutations in the rt region of the pol gene, 

which confer to primary resistance to treatment with LAM (codon rt204), ADV (codon 

rt236) or both (codon rt181) as well as compensatory mutations at codons rt80, rt173 

and rt180 at the beginning of treatment with TDF or the first sample available in all 
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patients. In total, 14 out of 25 patients harbored one or a combination of HBV 

mutations associated with primary resistance to LAM (n = 8) or ADV (n = 6). In 4 

patients (pat IDs 1-66, 1-02, 7-02, 7-09), the ADV resistant HBV variant N236T was 

combined with a A181V/T mutation that confers to ADV and LAM resistance. 1 patient 

(pat ID 1-12) harbored a sole compensatory mutation at codon rt80 (rtL80V) at the 

beginning of TDF treatment. In 10 patients, no HBV mutations associated with 

resistance to antiviral treatment with NAs were detected at baseline (Table 27).  

Table 27: Resistance mutations in the rt region at baseline 

pat ID pre-treatment 
aa 

rt80 
aa 

rt173 
aa 

rt180 
aa 

rt181 
aa 

rt204 
aa 

rt236 

resistance mutation 

1-10 LAM L V>L L>M A M>I/V N 
1-19 LAM L>V V L A M>I N 
1-21 LAM L V>L L>M A M>V N 
1-44 LAM L>V V L>M A M>I N 
1-24 LAM + ADV L V L>M A M>V N 
1-58 LAM + ADV L V>L L>M A M>I/V N 
1-63 LAM + ADV L>V V L A M>I N 
1-68 LAM + ADV L>I V L A M>I N 
1-12 LAM + ADV L>V V L A M N 
1-15 LAM + ADV L V L A M N>T 
1-32 LAM + ADV L V L A M N>T 
1-66 LAM + ADV L V L A>V M N>T 
1-02 LAM + ADV L V L A>V M N>T 
7-02 LAM + ADV L V L A>T M N>T 
7-09 LAM + ADV L V L A>V M N>T 

no resistance mutation 

1-25 LAM + ADV L V L A M N 
1-34 LAM + ADV L V L A M N 
1-37 LAM + ADV L V L A M N 
1-54 LAM + ADV L V L A M N 
1-65 LAM + ADV L V L A M N 
1-76 LAM + ADV L V L A M N 
1-60 LAM + ADV L V L A M N 
1-61 ADV L V L A M N 
1-11 LAM + ADV L V L A M N 
1-13 LAM + ADV L V L A M N 

aa = amino acid; LAM = lamivudine, ADV = adefovir. 
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Of 24 patients who had received pre-treatment with LAM as monotherapy (n 

= 4) or in addition with ADV (n = 20), 8 patients had a HBV mutation at codon rt204 

(Table 27). 4 patients (pat IDs 1-19, 1-44, 1-63, 1-68) showed a rtM204I mutation, of 

which 3 patients (pat IDs 1-19, 1-63, 1-68) had a compensatory mutation at codon 

rt80 (2 patients rtL80V and 1 patient rtL80I), and 1 patient (1-44) a combination of 

additional rtL80V and rtL180M mutations. 2 patients (pat IDs 1-21, 1-24) showed a 

rtM204V mutation, both combined with a rtL180M mutation, of which 1 patient 

harbored an additional rtL173V substitution. In 2 patients (pat IDs 1-10, 1-58), a 

combination of the rtM204V, rtM204I, rtL180M and rtL173V mutations were 

detectable at baseline (Table 27). 4 patients (pat IDs 1-66, 1-02, 7-02, 7-09) who were 

pre-treated with LAM and ADV had a rtA181V/T mutation, which confers to LAM and 

ADV resistance. In all these patients, a rtN236T substitution that is associated with 

ADV resistance, was also detectable (Table 27). This mutation was found in 2 

additional patients (pat ID 1-15, 1-32) but not combined with other mutations in these 

cases. 1 patient (pat ID 1-61) pre-treated with ADV mono therapy had no known 

primary resistance mutation at baseline (Table 27).	

3.4.2 HBV resistance mutations in the rt region during antiviral treatment 

  We assessed the evolution of HBV resistance variants in the rt region during 

antiviral treatment in all patients. The courses of 10 patients with no resistance 

mutations at baseline are illustrated in figure 16 (Figure 16A - 16J). The courses of 

the evolution of HBV variants in patients with resistance to prior antiviral treatment 

are given in figure 17 (Figure 17A - 17O).  

Of 10 patients with no HBV resistance mutations detectable at baseline 

(Figures 16), sequential sequence analysis based on HBV DNA or HBV RNA was 

available for 7 patients (Figures 16A - 16D, 16F, 16G, 16H). Only 1 of these patients 

(pat ID 1-61; Figure 16F) had a rtA181T mutation during follow-up, which was 



3 Results 

71 

transiently detectable on HBV DNA basis at month 5. In 1 HBeAg positive patient (pat 

ID 1-60; Figure 16E) and 2 HBeAg negative patients (pat ID 1-25; Figure 16I, pat ID 

1-37; Figure 16J), no follow-up based on sequencing of the HBV RNA was available 

due to the rapid decline of the serum HBV RNA copy levels.  

In 14 out of 15 patients with resistance mutations at baseline (Figure 17), 

follow-up serum samples could be used for observing the evolution of these variants 

during antiviral treatment with TDF. In 1 HBeAg negative patient (pat ID 7-09; Figure 

17O) harboring a rtA181V and rtN236T mutation, no sequences based on HBV RNA 

sequencing were available during follow-up. In 13 patients with follow-up sequences 

available, the resistance mutations detected at baseline based on HBV DNA were 

present on HBV RNA during follow-up and persisted over long durations in most 

patients. Only in 1 patient (pat ID 1-19; Figure 17 D), a rtM204I + rtL80V mutation 

occurred at baseline but was not detectable in sequential HBV DNA and HBV RNA 

samples. In 3 patients (pat ID 1-12; Figure 17B, pat ID 1-15; Figure 17C, pat ID 1-63; 

Figure 17J) additional resistance mutations, which were not detected on HBV DNA 

basis, were found by sequence analysis of HBV RNA at positions rtM204V and 

rtL180M and rtV173L. 
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Figure 16: Evolution of HBV variants in patients with no HBV resistance 
mutations at baseline during TDF treatment  
Figures 16A to 16J show the quantitative courses of serum HBV DNA (solid line, light grey), 

serum HBV trRNA (dashed line, black) and serum HBV flRNA (solid line, black) during antiviral 

treatment in 8 HBeAg positive (16A - 16H) and 2 HBeAg negative patients (16I, 16J) with no 

HBV resistance mutations at baseline. The respective patient IDs are given in the upper right 

corner of each figure. The y-axis represents the log10 of the serum levels in cp/mL, the x-axis 

the duration of TDF treatment in months. The dashed black line in each figure indicates the 

limit between 500 and 1,000 cp/mL for a successful sequencing. Below the quantitative curves, 

the HBV variants in the rt region and the s gene are given. Grey indicates HBV DNA derived 

sequences and black HBV RNA derived sequences. WT = wild type; N.A. = no sequence 

available. * = stop mutation. 
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Figure 17: Evolution of HBV variants in patients with HBV resistance mutations 
at baseline during treatment with TDF 
Figures 17A to 17O show the quantitative courses of serum HBV DNA (solid line, light grey), 

serum HBV trRNA (dashed line, black) and serum HBV flRNA (solid line, black) during antiviral 

treatment in 13 HBeAg positive (17A -17M) and 2 HBeAg negative patients (17N, 17O) with 

HBV resistance mutations at baseline. The respective patient IDs are given in the upper right 

corner of each figure. The y-axis represents the serum levels of HBV DNA and RNA (cp/mL), 

the x-axis the duration of TDF treatment in months. The dashed black line indicates the limit 

between 500 and 1,000 cp/mL for a successful sequencing. Below the quantitative curves, the 

HBV variants in the rt region and the s gene are given. Grey indicates HBV DNA derived and 

black HBV RNA derived sequences. WT = wild type; N.A. = no sequence available. * = stop 

mutation. 

   HBV DNA        HBV flRNA        HBV trRNA 
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3.5 HBV variants in the s gene  

3.5.1 HBV s gene variants at baseline 

We screened all sequences for the presence of s gene variants associated 

with changes in the rt region of the pol gene, which were sE164D/rtV173L, 

sI195M/rtM204V, sW196S/L/rtV204I and sW172L/rtA181T and for stop mutations. In 

13 patients (Table 28) none of the assessed amino acid exchanges within the s gene 

were found at the beginning of TDF treatment. In 8 LAM resistant patients, s gene 

variants at positions s196 and s195 that associate with the rtM204I/V mutations were 

present at the initiation of TDF treatment (Table 28). The sE164D/rtV173L mutation 

was present in 2 patients (pat IDs 1-10, 1-58) and 1 rtV173L mutated patient (pat ID 

1-21) had a sE164G substitution at this position. The s172L/rtA181T mutation was 

detected in 1 patient (pat ID 7-02). At baseline, stop codons in the s gene were present 

in 4 patients (pat IDs 1-11, 1-13, 1-58, 1-76), of whom 1 patient (pat ID 1-58) had a 

LAM resistance associated variant within the rt gene (Table 28).  

In 1 patient with no HBV resistance mutation at baseline (pat ID 1-12), a stop 

codon at position s122* was found, which was produced by a deletion of 27 

nucleotides between nt336 to nt364 in the s gene (Figure 18). The deletion resulted 

in a deletion of 9 amino acids from s113 to s121 and was located in the ‘a’ determinant 

of the s gene (Figure 18). 
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Table 28: HBV variants in the s gene at baseline 

pat ID 
 

aa  
s196 

aa  
s195 

aa  
s164 

aa  
s172 

aa  
s199 

aa  
s182 

aa  
s69 

aa  
s216 

1-10 W > L I>M E>D W W W W L 
1-11 W I E W W W W>* L 
1-12 W I E W W W W L 
1-13 W I E W W W W L>* 
1-15 W I E W W W W L 
1-19 W>S I E W W W W L 
1-21 W I>M E>G W W W>L W L 
1-24 W I>M E W W W W L 
1-25 W I E W W W W L 
1-32 W I E W W W W L 
1-34 W I E W W W W L 
1-37 W I E W W W W L 
1-44 W>L I E W W W W L 
1-54 W I E W W W W L 
1-58 W>* I>M E>D W W>* W W L 
1-61 W I E W W W W L 
1-63 W > L I E W W W W L 
1-65 W I E W W W W L 
1-68 W > L I E W W W W L 
1-76 W I E W W W>* W L 
1-60 W I E W W W W L 
1-66 W I E W W W W L 
1-02 W I E W W W W L 
7-02 W I E W>L W W W L 
7-09 W I E W W W W L 

aa = amino acid  
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Query  1     ATGGAGAACATCACATCAGGATTCCTAGGACCCCTGCTCGTGTTACAGGCGGGGTTTTTC  60 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1     ATGGAGAACATCACATCAGGATTCCTAGGACCCCTGCTCGTGTTACAGGCGGGGTTTTTC  60 
 
Query  61    TTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAAT  120 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  61    TTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAAT  120 
 
Query  121   TTTCTAGGGGGAACTACCGTGTGTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCAC  180 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  121   TTTCTAGGGGGAACTACCGTGTGTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCAC  180 
 
Query  181   TCACCAACCTCCTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTT  240 
             |||||||||||||||||||||||||| |||||||||||||||||||||||||||| |||| 
Sbjct  181   TCACCAACCTCCTGTCCTCCAACTTGACCTGGTTATCGCTGGATGTGTCTGCGGCATTTT  240 
       aa 90 
Query  241   ATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTAT  300 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  241   ATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTAT  300 
 
Query  301   CAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGGA--T---------------------  337 
             ||||||||||||||||||||||| ||||||||||||  |                      
Sbjct  301   CAAGGTATGTTGCCCGTTTGTCCACTAATTCCAGGACCTTCAACTACCAGCACGGGACCA  360 
 
Query  338   ----GAACCTGCACGACTCCTGCTCAAGGAACCTCTATGAATCCCTCCTGTTGCTGTACC  393 
                 ||||||||||||||||||||||||||||||||||| |||||||||||||||||||| 
Sbjct  361   TGCAGAACCTGCACGACTCCTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACC  420 
 
Query  394   AAACCTTCGGACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAA  453 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  421   AAACCTTCGGACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAA  480 
       aa 170 
Query  454   TTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTACTAGTGCCATTTGTT  513 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  481   TTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTACTAGTGCCATTTGTT  540 
            YMDD motif 
Query  514   CAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTAT  573 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  541   CAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTAT  600 
 
Query  574   TGGGGGCCAAGTCTGTACAGCATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTT  633 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  601   TGGGGGCCAAGTCTGTACAGCATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTT  660 
 
Query  634   TGTCTTTGGGTATACATTTAA 
             ||||||||||||||||||||| 
 
Sbjct  661   TGTCTTTGGGTATACATTTAA 
 

 

Figure 18: Deletion in the ‘a’ determinant of the HBV s gene in patient 1-12 
Alignment of the baseline HBV DNA s gene sequence that harbors a deletion in the ‘a’ 

determinant between nt336 and nt364 (grey) compared to a WT sequence. The ‘a’ determinant 

is located between amino acid (aa) 90 and aa170 (green). The YMDD motif in the rt region is 

indicated in yellow.  
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3.5.2 HBV s gene variants during antiviral treatment  

S gene variants with associated primary resistance mutations at positions 

sI195M/rtM204V, sI196S/L/rtM204I, and sW172L/rtA181T were found in 9 patients at 

baseline. Concordantly with the HBV resistance mutations, these variants remained 

detectable in HBV RNA derived sequences in 8 patients during follow-up (pat ID 1-

10; Figure 17A, pat ID 1-15; Figure 17C, pat ID 1-24; Figure 17F, pat ID 1-44; Figure 

17H, pat ID 1-58; Figure 17I, pat ID 1-63; Figure 17J, pat ID 1-68; Figure 17K, pat ID 

1-21; Figure 17M) and disappeared early at month 6 only in 1 patient (pat ID 1-19; 

Figure 17D). Stop codons in the s gene, which were present at baseline, could be 

followed for a mean duration of 32.3 ± 17.8 (10 - 50) months on HBV RNA basis after 

HBV DNA had become undetectable (pat ID 1-11; Figure 16A, pat ID 1-13; Figure 

16B, pat ID 1-76; Figure 16H, pat ID 1-58; Figure 17I). The deletion in the ‘a’ 

determinant (pat ID 1-12), that produced a sL122*, was present during follow-up in 

HBV RNA derived sequences until month 41 (Figure 16D). At month 53, Sanger 

sequencing detected only the non-deleted HBV variant (Figure 19). However, cloning 

of this region at this specific time point revealed the presence of the deleted HBV in 

all clones analyzed (n = 11). At months 6 and 42, sequencing of the HBV RNA further 

revealed additional s gene stop mutations at codon sC69* in this patient (pat ID 1-12; 

Figure 16D). This mutation was also found based on HBV RNA sequencing at month 

12 in 1 patient (pat ID 1-19; Figure 17D). Stop mutations that occurred during follow-

up were also detected based on HBV DNA. In 1 patient (pat ID 1-61; Figure 16F) with 

a transient rtA181T mutation at month 5, associated stop mutations at positions 

sW172 and sW182 were found during follow-up. Another patient (pat ID 7-02; Figure 

17N) showed s gene stop mutations at positions W172 and C69 at month 27 based 

on HBV DNA sequencing.  
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101                                                150 
       af151735_sag  QGMLPVCPLI PGSSTTSTGP CRTCTTPAQG TSMYPSCCCT KPSEGNCTCI  
00_hbv-s-00470a_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
00_hbv-s-00470b_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
05_hbv-s-01372a_sag  QGMWPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
05_hbv-s-01372b_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI 
11_hbv-s-00493a_sag  QGMWPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
11_hbv-s-00493b_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
24_hbv-s-00522a_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KTSDGNCTCI  
24_hbv-s-00522b_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
36_hbv-s-00544a_sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
36_hbv-s-00544b_sag  QGMLPVCPLI PG........ .*TCTTPAQG TFMNPSCCCT KPSDGNCTCI  
41_hbv-s-00693_ sag  QGMLPVCPLI PG........ .*TCTTPAQG TSMNPSCCCT KPSDGNCTCI  
53_hbv-s-00662a_sag  QGMLPVCPLI PGPSTTSTGP CRTCTTPAQG TSMYPSCCCT KPSDGNCTCI  
53_hbv-s-00662b_sag  QGMLPVCPLI PGPSTTSTGP CRTCTTPAQG TSMYPSCCCT KPSDGNCTCI  
 

Figure 19: PileUp of the amino acid sequences of patient 1-12 with a deletion in 
the HBV s gene 
PileUp of the amino acid sequences generated with HUSAR of patient 1-12 with a deletion in 

the ‘a’ determinant of the s gene. The deletion caused a stop codon at position sL122. The 

deletion was detectable at baseline in the HBV DNA derived sequence and during follow-up 

based on HBV RNA until month 41. The upper sequence (af151735) represents the reference 

HBV genome. 
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4 Discussion 

4.1 Patient cohort 

We composed our set of chronic HBV infected patients with failure to prior 

antiviral treatment with LAM (n = 4), ADV (n = 1) or both drugs (n = 20), which were 

assumed to be at increased risk for the development of rt and s gene variants under 

the selection pressure of highly potent polymerase inhibitors. We further focused on 

HBeAg positive patients (n = 21) because, based on previous reports, we concluded 

that the persistence of serum HBV RNA might be prolonged compared to HBeAg 

negative patients (van Bömmel 2015). HBsAg quantities at baseline and the 

quantitative HBsAg courses during follow-up were no selection criteria for our patient 

set because no association with serum HBV RNA levels was found in earlier reports 

(van Bömmel 2015). Consistentently, HBsAg levels in our set persisted in most 

patients (n = 22) during follow-up also after the decline of the HBV DNA and 

irrespecitive of HBV RNA levels. Only 1 patient showed loss of the HBsAg (pat ID 1-

60) and for 2 patients (pat ID 7-02, 7-09) the information on follow-up was not 

available. We did not pre-select patients according to HBV genotypes because 

treatment response to NAs was not associated with the HBV genotype (Wiegand 

2008). The included genotypes were A, B, D and E, of which D was most common (n 

= 19) reflecting the pre-dominance of patients from Central and Southern European 

countries in our cohort. 

4.2 Quantification of serum HBV DNA, HBV flRNA and HBV trRNA 

Multiple groups - using different methods for the detection- had previously 

described the presence of serum HBV RNA (Köck 1996, Rokuhara 2006, Jansen 

2015, Wang 2016, Hatakeyama 2007, Huang 2010, Su 2001, Zhang 2004, van 

Bömmel 2015). Some groups used DNAse digestion before the reverse transcription 

of the HBV RNA to amplify only the reverse transcribed HBV cDNA (Rokuhara 2006, 
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Jansen 2015, Wang 2016). A limitation of this approach is a possible insufficient 

DNAse digestion and the RNA degradation during the DNA digestion. Another 

approach was the calculation of serum HBV RNA levels by subtracting serum HBV 

DNA levels in samples without previous reverse transcription from HBV DNA and HBV 

RNA serum levels after reverse transcription (Hatakeyama 2007, Huang 2010). Su et 

al. used anchored oligo(dT) primers for the selective RNA amplification and performed 

Southern blots to visualize the HBV RNA quantities, which however does not allow 

the absolute quantification of the serum HBV RNA (Su 2001, Zhang 2004).  

The method we applied for the quantification of serum HBV RNA in our study 

targeted two poly(A) sites in the HBx region using specific RACE primers. A major 

advantage of this method is that DNAse digestion is not needed, because the applied 

RACE primers were designed to specifically detect the viral mRNAs. Within this 

method it however was not completely excluded, that the primer sequence 

complementary to the viral genome also annealed to HBV DNA strands. This was 

especially of concern for the ‘x-RACE short’ primer, because the complementary 

primer sequence for the binding to the viral genome was composed of 20 nucleotides, 

thus exceeding the oligo(dT)17 tail in length (Table 5). Because in this study the qPCR 

based quantification of the HBV RNA served primarily as a screening method to 

determine HBV RNA serum levels sufficient for sequencing, we considered this not 

as a major restriction.  

4.3 Quantitative courses of serum HBV DNA, HBV flRNA and HBV trRNA 

All patients in our set had detectable serum HBV DNA, serum HBV trRNA and 

serum HBV flRNA at baseline. As demonstrated previously (van Bömmel 2015), the 

correlation of these serum markers at baseline was significant (Figure 10).  

During TDF treatment, a decline of serum HBV DNA levels was observed in 

all patients and a virological response achieved in the majority. Interestingly, in 6 
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patients with ADV resistance at baseline conferring to positions rtN236T and 

rtA181T/V, the duration to suppressed HBV DNA serum levels < 400 cp/mL was 

prolonged (mean 24.5 ± 21.2 (1 – 56) months) and was not achieved in 2 patients 

until the end of follow-up at months 23 and 38 (pat IDs 1-32, 1-66). In contrast, the 

mean duration of serum HBV DNA persistence > 400 cp/mL in patients with LAM 

resistant HBV variants or no resistance variants was 7.6 ± 9.1 (0 – 34) months. This 

observation stands in line with studies that described a reduced susceptibility of TDF 

in the presence of ADV resistant HBV variants (Delaney 2006, van Bömmel 2010). In 

2 patients with HBV DNA persistence it is however thinkable that a suppression of the 

HBV DNA < 400 cp/mL occured after the end of follow-up, because a complete 

virological response at later time points was observed in most ADV resistant patients 

(Kitrinos 2014). 

During follow-up, serum HBV RNA persisted in 21 out of 25 patients after the 

decline of serum HBV DNA, which has been reported earlier (Rokuhara 2006, Jansen 

2015, Wang 2016, Hatakeyama 2007, Huang 2010, Su 2001, Zhang 2004, van 

Bömmel 2015). Strikingly, 3 out of 4 patients who showed an early decline of serum 

HBV RNA during follow-up were HBeAg negative at baseline, which is in concordance 

with previous reports (van Bömmel 2015, Jansen 2015). Van Bömmel et al. reported 

a more rapid decline of the HBV trRNA and HBV flRNA at months 3 and 6 during 

antiviral treatment in HBeAg negative patients and demonstrated that the decrease 

of serum HBV RNA at these time points during antiviral treatment predicted HBeAg 

seroconversion in HBeAg positive patients (van Bömmel 2015). Concordantly in our 

cohort, 1 HBeAg positive patient (pat ID 1-60; Figure 17 E) with HBeAg loss during 

antiviral treatment also showed a rapid decrease of serum HBV RNA. HBeAg 

negativity and HBeAg seroconversion indicate the immunological control of the HBV 

infection, and were earlier associated with low HBV DNA loads and a good prognosis. 
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In some HBeAg negative cases however, high viral loads and progressive liver 

disease was observed. This led to the identification of specific mutations in the pre-

core region (G1896A) and the basal core promoter (BCP; A1762T/G1764A), which 

suppressed HBeAg expression but actually enhanced the genome replication 

(Baumert 1996, Jammeh 2008, Kao 2003, Tong 2016). Also in HBeAg negative 

patients with effective viral suppression during antiviral treatment, the rates of HCC 

development were estimated with around 2.8% after 5 years (Papatheodoridis 2015). 

BCP mutations associated with a higher risk of HCC development (Kao 2003) and, 

independently of the HBeAg status, with HBV related liver cirrhosis (Tseng 2015). 

Assuming that pgRNA transcription might be enhanced in patients harboring pre-core 

and BCP mutations (Baumert 1996, Jammeh 2008), it would be interesting to 

investigate whether serum HBV RNA is persistent in those patients. In HBeAg 

negative patients and HBeAg seroconverters with persistent serum HBV RNA during 

NA treatment, serum HBV RNA sequencing might be a promising tool to study the 

presence of pre-core and BCP mutations in these patients. In our cohort, only in 1 

HBeAg negative patient (pat ID 1-21; Figure 17M) serum HBV RNA persisted 

measurable after the decline of serum HBV DNA at month 12, but the information on 

pre-core and BCP mutations was not available  

4.4 Sequencing of serum HBV RNA as novel method for HBV genome 
analysis 

In this study, we were the first to demonstrate the sequence analysis of HBV 

RNA from serum of chronically HBV infected individuals as method to observe the 

HBV genome during NA treatment when serum HBV DNA sequencing became 

impossible. For this, the extracted HBV RNA was reversely transcribed using specific 

RACE primers for two HBV RNA species, the HBV flRNA and trRNA, and then 
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analyzed by Sanger sequencing for mutations in the rt region and the overlapping s 

gene. 

Although we could not completely exclude the possibility of HBV DNA and 

HBV RNA co-amplification with the applied primers in the reverse transcription step 

(chapter 4.2), we assumed a high specificity of the detected HBV RNA because also 

in samples with undetectable HBV DNA, sequencing was possible after the reverse 

transcription of the HBV RNA (Figures 13 and 14). We further mostly used samples 

with low or undetectable HBV DNA (< 500 – 1,000 cp/mL) determined by qPCR for 

the sequencing of the HBV RNA, which made the co-amplification of HBV DNA and 

HBV RNA molecules during the PCR amplification unlikely. Only in 3 out of the 68 

cDNA derived sequences, HBV DNA levels were > 1,000cp/mL determined by 

sensitive qPCR but not applicable for sequence analysis based on HBV DNA at this 

time point. In these samples with marginal HBV DNA, there is a probability of HBV 

DNA and HBV cDNA co-amplification during the PCR based amplification, which 

should be taken to account if a strict comparative analysis of HBV DNA and HBV RNA 

derived sequences at a single time point is pursued.  

With the here performed reverse transcription of the HBV RNA using RACE 

primers, the poly(A) signals for the flRNA and trRNA transcripts located upstream the 

HBx region (Hilger 1991) were targeted (van Bömmel 2015). Because all HBV 

mRNAs mature at these poly(A) sites, this primer system allowed the reverse 

transcription of all HBV RNA transcripts (Figure 1). Our sequencing system spanned 

around two thirds of the HBV genome including the entire rt and preS1/preS2 region. 

Although the applied sequencing system did not embrace the entire pgRNA, it is likely 

that the detected HBV RNA sequences in our study were pre-genomic, considering 

the data presented by Jansen et al. and Wang et al. who showed that the pgRNA 
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represented the dominant molecule in HBV RNA positive samples (Jansen 2015, 

Wang 2016). 

Sequencing of the HBV DNA is widely used for the genotyping of the HBV 

genome at diagnosis and for the detection of HBV resistance variants during antiviral 

treatment when a virological breakthrough had occurred. For a successful analysis, 

HBV DNA levels of 500 – 1,000 cp/mL are commonly required (Valsamakis 2007), a 

sensitivity we could reach with our semi-nested PCR system for the HBV DNA. Below 

this limit, the analysis of the HBV genome in serum samples is commonly not possible 

with Sanger sequencing. The here described method of reverse transcribed serum 

HBV RNA sequencing might overcome this limitation. We demonstrated that 

sequence analysis based on reverse transcribed HBV RNA was possible for a mean 

duration of 33.9 ± 12.7 (16 - 65) months during follow-up, thus exceeding the duration 

of HBV DNA sequencing, which was possible only for a mean of 6.0 ± 4.5 (0-13) 

months (Figure 15). Resistance variants found on HBV DNA basis were also present 

in most of the HBV cDNA derived sequences, which underlines the homology 

between HBV DNA and HBV RNA derived sequences. The homologies between 

serum HBV DNA and serum HBV RNA derived sequences were further investigated 

in cooperation with the Max-Planck-Institute for Informatics (Saarbrücken, Germany) 

by calculating the variability of nucleotide exchanges in the rt region (Beggel 2014). 

The preliminary data for 20 patients shows similar median values of nucleotide 

exchanges between serum HBV DNA and serum HBV RNA derived sequences 

(Supplementary Figure 1). This suggests that the diversity of the quasispecies 

represented by serum HBV RNA sequencing might well reflect the serum HBV DNA 

derived sequences, which however should be researched more comprehensively. 

It was not possible to reveal whether HBV resistance variants become 

detectable by serum HBV RNA sequencing before a virological breakthrough occurs. 
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This was, because no patient in our set developed resistance to TDF after long-term 

treatment up to 76 months, which is in line with the literature (Marcellin 2014). 1 

patient had a re-increase of the HBV DNA at month 17 (pat ID 1-37), which we 

assumed was due to non-adherence to the antiviral treatment at this time point. 

Sequencing of serum HBV DNA and serum HBV RNA was not possible in this HBeAg 

negative patient before and after. To answer the question at what time points HBV 

resistance mutations are detectable by serum HBV RNA sequencing, the 

retrospective analysis of patient samples with known resistance during treatment with 

LAM, ADV or ETV would be a suitable approach. Especially for patients receiving the 

first-line NA ETV, for which resistance was found in around 1.2% of treatment naïve 

patients after 5 years (Tenney 2009), the sequencing of serum HBV RNA might be a 

helpful tool to early detect HBV resistant variants.  

A general limitation of the chosen Sanger sequencing approach was that only 

dominant HBV variants, representing around 20% of all variants, were detectable. 

Thus, minor HBV resistance variants, which might arise during antiviral treatment, 

were probably missed and a detailed characterization of the quasispecies diversity 

was limited. On the other hand, it is questionable whether such minor species play a 

role in the course of the disease or not. It was further not possible to discriminate, 

whether mutations detected at different positions were present in the same or in 

different sequences (Chevalier 2012, Rodriguez-Frias 2013, Lowe 2016). For the 

detection of minor HBV subclones and a more detailed observation of the HBV 

quasispecies, sequencing techniques like next generation sequencing (NGS) might 

provide a more sensitive approach. The main challenges of these techniques are 

higher error rates, the identification of true insertions and deletions as well as data 

processing and analysis (Chevalier 2012, Rodriguez-Frias 2013). Besides, NGS is 

more cost intensive and the clinical significance of the detected minor resistance HBV 
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variants is elusive (Margeridon-Thermet 2009, Lowe 2016). However, sequencing of 

reverse transcribed serum HBV RNA with more sensitive techniques might provide 

deeper insights into the evolution of the HBV quasispecies during antiviral treatment, 

and should be further investigated.  

4.5 Evolution of HBV variants in the rt region 

HBV DNA derived sequences could be obtained at baseline for all patients 

and mainly at early time points during follow-up, whereas HBV RNA based sequences 

represented mostly later time points. At baseline, 15 out of 25 patients harbored at 

least one of the known resistance mutations conferring to the prior antiviral treatment 

with LAM and/or ADV. In concordance with the literature, HBV variants associated 

with TDF resistance were not observed at baseline or during follow-up (Marcellin 

2014), based on HBV DNA and HBV RNA sequencing. 10 patients showed no primary 

resistance HBV mutations at baseline although a virological breakthrough had 

occurred during prior antiviral treatment (Table 27). Besides the confirmed and 

extensively studied primary and compensatory resistance mutations, many other HBV 

variants with suspected resistance to polymerase inhibitors have been described, 

among them the substitutions rtS78T, rtV207M/I, rtL229M and rtM309K (Cento 2013). 

In our cohort, in 5 patients with no known resistance mutations at baseline the 

substitutions rtS78T (n = 1), V207M/I (n = 1) and rtM309K (n = 3) could be detected, 

but the impact of these variants on treatment failure - also in our cohort - is elusive. 

As described in chapter 4.3, it is also possible that minor HBV resistant clones were 

not detected because of the limited sensitivity of the Sanger sequencing approach. In 

a study by Margeridon-Thermet et al., ultra-deep pyrosequencing (UDPS) revealed 

the presence of LAM resistant HBV variants in serum samples, which were not 

detected by Sanger sequencing, but the clinical relevance of these minor variants 

remained unclear (Margeridon-Thermet 2013).  
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In 13 patients with resistance mutations at baseline, the same variants 

persisted on HBV RNA basis for a median duration of 20.5 (3 - 39) months after the 

HBV DNA had become undetectable. The persistence of LAM resistance variants 

after the discontinuation of LAM treatment was previously reported and assigned to 

the slow emergence of resistance in HBV compared to other chronic viruses 

(Margeridon-Thermet 2013). In our cohort, excluding the 1 patient with TDF + LAM 

co-treatment (pat ID 1-66), LAM and ADV resistant variants could be followed for a 

mean duration of 26.5 ± 15.8 (0 - 50) months during TDF treatment, mostly in HBV 

RNA derived sequences. Because the information on the exact time point to prior NA 

treatment discontinuation was not available, the persistence of these HBV variants 

might have been even longer. In 1 patient treated with TDF + LAM the rtN236T + 

rtA181V mutations were detectable at baseline (pat ID 1-66; Figure 17L). The LAM 

resistance mutation rtA181V remained detectable until the end of follow-up at month 

38 in serum HBV RNA derived sequences. The rtN236T mutation instead was present 

until month 10 after the discontinuation of ADV treatment but disappeared during 

follow-up.  

In 3 patients (pat ID 1-12; Figure 17B; pat ID 1-15; 17C, pat ID 1-63; 17J), 

additional resistance mutations at positions rtM204V, rtL180M and rtV173L were 

found during follow-up. It is likely that this reflects variations in the compositions of 

dominant HBV clones within the quasispecies rather than newly acquired mutations. 

The comparative cloning analysis of 1 patient (pat ID 1-15), whose course of 

mutations is shown in Figure 17C, indeed revealed pre-dominance of HBV clones 

harboring the rtN236T at baseline (based on HVB DNA) and the rtM204V + rtL180M 

mutations at months 25 (based on HBV RNA). Because we demonstrated that 

sequences derived from serum HBV RNA show a high homology to those sequences 
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derived from serum HBV DNA we assumed that serum HBV DNA and serum HBV 

RNA have the same origin fom the HBV cccDNA.  

4.6 Evolution of HBV stop mutations in the s gene  

Stop codons in the s gene, including the stop mutation caused by the deletion 

in the ‘a’ determinant, were present in 5 patients at baseline. Interestingly, 4 of those 

patients (pat ID 1-11; Figure 16A, pat ID 1-13; Figure 16B; pat ID 1-54; Figure 16 D; 

pat ID 1-76; Figure 16 H) did not harbor any of the assessed s gene variants 

associated with resistance to NA treatment. The stop codons remained stably 

detectable during TDF treatment for a mean duration of 37 ± 19.4 (12 - 65) months. 

The sC69*/rtS78T mutation, which was found in 4 patients (pat IDs 1-11, 1-54, 1-19, 

7-02) in our cohort, was described to arise in the natural course of HBV infection 

(Saha 2014). The variant was further associated with failure to ADV treatment even 

in the absence of known ADV resistance mutations (Cento 2013). In our set, the 

sC69*/rtS78T mutation was found in 1 patient (pat ID 1-11¸ Figure 16A) at baseline 

and during follow-up based on HBV RNA sequencing. This patient was pre-treated 

with LAM and ADV and harbored none of the assessed resistance mutations. The 

mutation was additionally found only during TDF treatment based on serum HBV DNA 

sequencing in 1 patient (pat ID 7-02; Figure 17N) at month 30.  The variant further 

appeared in 2 patients at month 11 (pat ID 1-19; Figure 17D) and at months 6 and 41 

(pat ID 1-54; Figure 16D) based on serum HBV RNA sequencing during TDF 

treatment. Of note, 1 patient (pat ID 1-19; Figure 17D) with emergence of the 

rtS78T/sC69* mutation in our set was treatment naïve for ADV, thus the mutation was 

either a natural HBV variant or became selected during TDF treatment. In 1 patient, 

the sC69* mutation was combined with the sL122* stop mutation (pat ID 1-54; Figure 

16D), which was a result of a deletion in the ‘a’ determinant, a region assumed to be 

the dominant immunological target of polyclonal antibodies (Pollicino 2014). Both 
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mutations might affect the formation of the ‘a’ determinant by causing N-terminal 

truncations, thus impairing HBsAg antibody binding properties. Both variants were 

further located to a region, in which 3’ truncations caused by deletions and stop 

mutations were suspected to generate proteins that act as transcriptional activators 

(Lauer 1992). In 3 additional patients, the HBsAg stop mutations sL216* (pat ID 1-13; 

Figure 17B), rtV191I/ sW182* (pat ID 1-76; Figure 16H) and a combination of the 

rtM204V/ sW196* and rtV208I/ sW199* substitutions (pat ID 1-58; Figure 17I) were 

found at baseline and persisted on HBV RNA basis after the decline of serum HBV 

DNA. In 1 patient (pat ID 1-13; Figure 16B), serum HBV RNA based sequencing 

revealed the appearance of the stop mutations rtV191I/sW182* at month 39. In none 

of the patients harboring s gene stop codons, a drop of HBsAg quantities as indicator 

for a secretory defect, was observed. Because of the small number of patients with 

stop codons in this study, we could not determine whether the presence of those 

influenced serum HBV DNA levels (Pollicino 2012). Because all patients were pre-

treated, we further could not determine whether the detected HBsAg stop mutations 

were already present before or acquired during NA treatment, which was a limitation 

for the observation of the natural course of HBV s gene variants during TDF treatment. 

We also could not associate the presence of these variants, which all were discussed 

in the pathogenesis of HCC development, with the clinical outcome of our cohort 

because the clinical data of the follow-up was not available. For a better 

understanding of the evolution of these variants during antiviral treatment, and their 

possible influence on disease progression, future studies should prospectively 

determine the status of s gene variants before and during NA treatment.  

4.7 Conclusion  

In summary, this study demonstrates for the first time that the sequencing of 

reverse transcribed HBV RNA from patient serum is possible and that it is a suitable 
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method to assess the evolution of HBV variants during antiviral treatment, especially 

in the group of HBeAg positive patients. In this study, we provided insights into the 

evolution of HBV variants that circulated in the serum of chronically HBV infected 

patients during treatment with TDF. In patients achieving a strong suppression of HBV 

DNA during treatment with TDF, resistance associated HBV variants acquired during 

previous NA treatments seem to persist for long periods. This was the case for 

variants with resistance against ADV, which have a possible cross-resistance to TDF, 

but most interestingly also for those associated with resistance against LAM, which 

should be no longer under selection pressure during TDF treatment. This persistence 

without selection pressure indicates a high conservation of those variants in the 

cccDNA of the infected individuals. Moreover, the long period of persistence of those 

variants also sheds light on the half-life time of HBV cccDNA, which is probably long. 

Further studies are needed to investigate this observation more in detail. For a more 

precise study of the quasispecies, sequencing approaches with higher sensitivity 

using reverse transcribed HBV RNA (for example NGS) might overcome the currently 

limited sensitivity of the Sanger sequencing approach. Despite this methodological 

restriction, sequencing of serum HBV RNA represents an interesting tool to study the 

composition of HBV variants during antiviral treatment and should be further 

investigated for clinical applications. Besides the detection of resistance associated 

HBV variants, the detection of s gene HBV variants, that associated with an increased 

risk for HCC development, might be one of the most interesting applications of the 

here presented method of serum HBV RNA sequencing and should be researched in 

future projects.
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The genome of hepatitis B virus (HBV) can be assessed by sequence analysis 

of HBV DNA in serum. In most chronic HBV infected patients treated with potent 

nucleos(t)ide analogues (NAs) this approach however is limited by the fast decrease 

of serum HBV DNA during NA treatment. In contrast, HBV RNA was shown to persist 

in serum of some HBV infected individuals receiving NA treatment.  

In this study, we established the sequencing of serum HBV RNA as a method 

for the monitoring of HBV variants during NA treatment after the decrease of serum 

HBV DNA to undetectable levels. Using this approach, we studied the evolution of 
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HBV variants in follow-up serum samples (n=156) of 25 patients treated with the 

potent polymerase inhibitor tenofovir (TDF) as second or third-line treatment. 

In our cohort, specific reverse transcribed full-length and truncated HBV RNA 

remained detectable with real-time PCR for long periods in most serum samples, also 

after the decline of HBV DNA during treatment with TDF. The HBV genome could be 

analyzed based on serum HBV DNA sequencing in 61 serum samples for a mean 

duration of 6.0 ± 4.5 (0 – 13) months. After this, sequencing of reverse transcribed 

serum HBV RNA allowed the analysis of the HBV genome for an additional mean 

duration of 33.9 ± 12.7 (16 - 65) months in 68 serum samples.  

The comparison of serum HBV DNA and serum HBV RNA derived sequences 

showed a high homology. In most patients, acquired HBV resistance variants in the 

reverse transcriptase (rt) region of the polymerase gene were detectable on HBV DNA 

and HBV RNA basis. Serum HBV RNA sequencing further revealed a long 

persistence of these variants during TDF treatment (mean duration of 26.5 ± 15.8 (0 

– 50) months), which indicates a high conservation in the cccDNA of the infected 

individuals. Also HBV stop mutations in the small surface (s) gene, which were 

discussed in the pathogenesis of hepatocellular carcinoma (HCC), were present at 

baseline in 5 patients and remained detectable on HBV RNA basis during follow-up.   

In this study, we demonstrated that sequencing of reverse transcribed HBV 

RNA from patient serum is a suitable method to assess HBV variants during NA 

treatment. We further provided insights into the evolution of HBV variants during 

strong suppression of the viral replication with the polymerase inhibitor TDF. Future 

studies should investigate more comprehensively the clinical application of the here 

presented method of serum HBV RNA sequencing for the early detection of resistant 

HBV variants during NA treatment and the observation of HBV s gene variants related 

to HCC development.  
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