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Since 1980 worldwide obesity has doubled in incidence to 52 % of peo-

ple being overweight or obese. Obesity causes various comorbidities such

as cardiovascular diseases, type II diabetes, dyslipidemia and several cancer

types, making it one of the biggest challenges in worldwide health care sys-

tems. It is well known that obesity is highly heritable by either monogenetic

causes or multifactorial interactions of different genes that superimpose on

environmental factors and behavior. To answer questions in understanding

mechanisms of obesity and/or associated metabolic pathways, mouse models

have been a powerful tool. Several approaches in characterizing genes in-

volved in obesity development through mouse engineering have been imple-

mented, with the Cre/loxP system emerging as one of the most informative

and widespread techniques. Using this approach, promoter-dependent tem-

poral and tissue-specific regulated recombination can be achieved by Tamox-

ifen administration. To investigate effects of Tamoxifen on adipocyte biology

in vivo, we characterized 12 weeks old male C57BL/6NTac mice after Tamox-

ifen treatment. We found that Tamoxifen treatment caused transient body

composition changes, increased HbA1c, triglyceride and free fatty acid serum

concentrations as well as smaller adipocytes in combination with browning

of subcutaneous adipose tissue. Therefore, we suggest considering these ef-

fects when using Tamoxifen as a tool to induce conditional transgenic mouse

models and to treat control mice in parallel. Another methodology used to

identify genes involved in obesity related traits is QTL mapping in combina-

tion with congenic and subcongenic strains of mice or rats. One candidate

gene that was previously identified on rat chromosome 4 is replication initia-
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tor 1 (Repin1 ). This gene was first described as a 60 kDa zinc finger protein

involved in replication activation of the Chinese hamster dihydrofolate reduc-

tase (dhfr) gene. Moreover, a triplet repeat (TTT) in the 3’UTR is associated

with facets of the metabolic syndrome, including body weight, serum insulin,

cholesterol and triglyceride levels. In vitro studies in 3T3-L1 cells revealed

that Repin1 regulates adipocyte size, glucose transport and lipid metabolism.

In this thesis functional analyses of Repin1 were performed using different

Repin1 deficient mouse models. In the first study we generated a whole body

Repin1 deficient db/db double knockout mouse (Rep1−/−x db/db) and sys-

tematically characterized the consequences of Repin1 deficiency. Our study

provided evidence that loss of Repin1 in db/db mice improves insulin sensi-

tivity and reduces chronic hyperglycemia most likely by reducing fat mass

and adipose tissue inflammation. We next generated a liver-specific Repin1

knockout mouse (LRep1−/−) and could show that loss of Repin1 in liver leads

to reduced body weight gain in combination with lower fat mass. Liver spe-

cific Repin1 deficient mice also show lower triglyceride content in the liver,

improved insulin sensitivity and altered gene expression of genes involved

in lipid and glucose metabolism. Finally, we inactivated the Repin1 gene in

adipose tissue (iARep−/−) at an age of four weeks using Tamoxifen-inducible

gene targeting strategies on a background of C57BL/6NTac mice. Mice lack-

ing Repin1 in adipose tissue showed reduced body weight gain, decreased

fat mass with smaller adipocytes, improved insulin sensitivity, lower LDL-,

HDL- and total cholesterol serum concentrations and reduced expression of

genes involved in lipid metabolism (Cd36 and Lcn2 ). In conclusion, the the-

sis presented here provides novel insights into Repin1 function. Moreover,

the data clearly indicate that Repin1 plays a role in insulin sensitivity and

lipid metabolism by regulating key genes involved in those pathways.
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Summary

During recent decades obesity has developed into one of the world’s great-

est health public challenges, contributing to the development of secondary

metabolic conditions such as cardiovascular diseases, type II diabetes melli-

tus, dyslipidemia and several types of cancer. Obesity is characterized as an

excess of adipose tissue and arises from the combination of increased food in-

take and a lack of physical activity. Multiple factors can contribute and influ-

ence obesity development on an individual level, such as genetic background,

environment, behavior and/or lifestyle. Twin, adoption and family studies

have established that obesity is highly heritable. There are two genetic forms

of obesity: monogenic and polygenic. Monogenic obesity in humans is very

rare and has been characterized for only ten genes so far (e.g. leptin). In gen-

eral, obesity is a result of the interaction of several genes acting on a specific

obesogenic background. To understand factors that contribute to obesity,

animal models have been a powerful tool. Mice have become the most pop-

ular model to address questions in understanding obesity mechanisms, due

to several advantages such as their small body size, low cost, ease of mainte-

nance and straightforwardness to breed in captivity. Also, a short gestation

period of about 19 to 20 days contributed to their establishment as the animal

model of choice. Early discoveries made in obesity research on animal models

derived from spontaneous mutations such as those found in the ob/ob and

db/db mice which possess a mutation in leptin or the leptin receptor gene,

respectively. Mutagenic chemicals and or exposure of animals to radiation

sped up the arbitrary nature of spontaneous mutational events. To overcome

randomness of those created mutations, methodologies to create transgenic

mice have been successively implemented. A widespread technique, not only

in obesity research, is the Cre/loxP system with its ability to knockout genes

either in a specific tissue and/or a time-specific manner. The system is based

on recombination events after breeding a Cre recombinase mouse strain with

another mouse strain expressing a target gene, flanked with Cre recombinase

recognition (loxP) sites. Temporal control of the recombination event is af-

forded by Tamoxifen administration to mice, due to binding of Tamoxifen
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to a specific estrogen receptor linked to a Cre recombinase. When iden-

tifying potential target genes involved in obesity mechanisms, quantitative

trait locus (QTL) mapping is a preferred approach to determine areas in the

genome which affect phenotype. QTLs are produced by breeding two differ-

ent strains of a certain animal model, which differ in the trait of interest.

Since, QTLs contain hundreds of possible target genes, parts of a certain

genomic region will then be placed on the genome of a recipient strain to

create congenic and subcongenic strains. This approach narrows down the

number of potential target genes. One potential target gene, called replica-

tion initiator 1 (Repin1), has been identified using QTL technology followed

by the production of congenic and subcongenic rat strains. Subcongenic rat

strains BB.4S and BB.4W, where a segment on chromosome 4 from either

SHR (Spontaneous Hypertensive Rat) or WOKW (Wistar Ottawa Karlsburg

RT1u) rats was crossed on a BB/OK (BioBreeding/OttawaKarlsburg) back-

ground, developed obesity and dyslipidemia compared with their parental

controls. Initially, Repin1 was discovered as a replication initiation region

protein with a mass of 60 kDa involved in replication activation of the Chi-

nese hamster dihydrofolate reductase (dhfr) gene. Later on it was identified

as a polydactyl zinc finger protein of a Cys2-His2 type. Preliminary studies

could show an influence of a triplet repeat (TTT) size in the 3’UTR of the

Repin1 gene on body weight, serum triglyceride and cholesterol levels. Sub-

sequent studies in Repin1 downregulated 3T3-L1 cells revealed influences on

cell size, lipid and glucose transport compared to controls. These data indi-

cate an important role for Repin1 in the regulation of adipose tissue function,

glucose and lipid metabolism.

Therefore, the aims and hypothesis of the thesis presented here were

to characterize the functional role of Repin1, specifically in adipose tissue.

Based on preliminary findings, I hypothesized an influence of Repin1 deple-

tion in liver and adipose tissue on body weight, lipid and glucose metabolism

using specific knockout mice, as well as in double knockout animals of Repin1

and the leptin receptor. Previous studies could show an influence of estro-

gen levels on obesity related traits. Therefore, I additionally hypothesized

an influence of Tamoxifen itself, as a selective estrogen receptor modula-
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tor, on adipocyte biology in terms of energy expenditure, lipid and glucose

metabolism.

In the first publication [Chapter 2], we tested the hypothesis that Ta-

moxifen administration causes changes in adipose tissue biology in vivo.

Therefore, 1mg Tamoxifen (solved in 50 µl Miglyol) was administered for

5 consecutive days to 12 weeks old male C57BL/6NTac mice, whereas con-

trol mice were treated with vehicle substance (50 µl Miglyol). Both groups

were characterized in terms of body composition, energy homeostasis, glucose

and lipid metabolism up to an age of 18 weeks. In this study we could show

that Tamoxifen treatment leads to an altered body composition of fat and

lean mass, while body weight was maintained. More detailed investigations

of adipose tissue revealed smaller adipocyte size in subcutaneous depots in

Tamoxifen treated animals compared to controls, as a result of there be-

ing more beige/brite adipocytes (characterized by higher Ucp1 expression).

Also, we were able to show that Tamoxifen treatment leads increased HbA1c,

triglyceride and free fatty acid serum concentrations. Our data from this

study clearly shows influences of Tamoxifen treatment on adipocyte biology

in vivo, which need to be considered when using Tamoxifen as a tool to induce

conditional transgenic mouse models. Also, Tamoxifen treatment and char-

acterization of wildtype mice should always be done to control for tamoxifen

administration effects.

In Chapter 3, we tested if whole body Repin1 deletion in diabetes

prone db/db mice improves glucose metabolism. Double knockout mice

(Rep1−/−x db/db) were compared to db/db controls and systematically char-

acterized with state of the art methods. Repin1 deficient db/db mice gained

significantly less body weight compared to controls, which was based on lower

fat mass. Insulin sensitivity was improved in Rep1−/−x db/db mice, reflected

by lower glucose infusion rate in clamp studies and HbA1c values. Further

investigations on adipose tissue revealed a reduced adipose tissue inflamma-

tion area. Our study provides evidence that loss of Repin1 in db/db mice

mitigates the pathogenesis of adipose tissue inflammation, insulin resistance

and subsequent impairment of glucose homeostasis.

To elucidate the role of Repin1 in lipid metabolism in vivo [Chapter 4],
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we generated a liver-specific Repin1 knockout mouse (LRep1−/−) and sys-

tematically characterized the consequences of Repin1 deficiency in the liver

on body weight, glucose and lipid metabolism, liver lipid patterns, and pro-

tein/mRNA expression. Mice with hepatic deletion of Repin1 displayed sig-

nificantly less body weight gain starting at week 28. These differences were

based on lower fat mass and may have contributed to lower hepatic tri-

glyceride content and improved whole body insulin sensitivity in LRep1−/−

mice. Also, we could show altered gene/protein expression of genes/proteins

involved in lipid and glucose metabolism, such as Cd36, Pparg, Glut2, Akt

phosphorylation, lipocalin2, Vamp4, and Snap23. Our findings indicate that

Repin1 plays a role in insulin sensitivity and lipid metabolism by regulating

key genes of glucose and lipid metabolism.

Encouraged by the findings summarized above, in Chapter 5 we inacti-

vated the Repin1 gene in adipose tissue (iARep−/−) at an age of four weeks

using Tamoxifen-inducible gene targeting strategies on the background of

C57BL/6NTac mice. Adipose tissue specific Repin1 knockout led to a leaner

phenotype with lower fat mass in both subcutaneous and epigonadal adi-

pose tissue. Both fat depots were characterized by similar cell numbers,

but smaller adipocytes. Interestingly, serum lipid parameters such as LDL-,

HDL- and total cholesterol were significantly decreased in adipose tissue de-

ficient mice compared to controls. Conditional Repin1 inactivation resulted

in improved insulin sensitivity and glucose tolerance. Expression of poten-

tial Repin1 target genes Cd36 and Lcn2 was significantly reduced in mice

lacking Repin1 in adipose tissue compared to control mice. Furthermore, we

measured glycerol release in differentiated human primary adipocytes derived

from subcutaneous adipose tissue in vitro and could show increased glycerol

release in cells with REPIN1 knockdown compared to control cells. In con-

clusion, we could show that deficiency of Repin1 in adipose tissue causes

alterations in adipose tissue morphology and function, which may underlay

lower body weight and improved parameters of insulin sensitivity, glucose

and lipid metabolism.

In summary, the work presented here significant extends knowledge of

the functional role of Repin1 in liver and adipose tissue. According to pre-
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liminary in vitro studies of Repin1 in 3T3-L1 cell lines, the results presented

in this thesis support the hypothesis that Repin1 is involved in lipid and

glucose metabolism. In all the studies presented here, Repin1 deficiency was

associated with reduced body weight gain, driven predominantly by lower fat

mass. Also, all three presented models showed improved insulin sensitivity

compared to their control groups. Potential target genes of Repin1 showed

altered expression levels, in particular the long chain fatty acid transporter

Cd36. Additionally, this thesis provides a better understanding of the tem-

poral Cre/loxP knockout system using Tamoxifen as a trigger substance. In

line with previous studies showing an effect of endogenous estrogen signal-

ing, Tamoxifen acting as a selective estrogen receptor modulator influenced

adipocyte biology in vivo. Therefore, data presented in this thesis suggests

controlling for the effects of tamoxifen administration by treating control

animals in a similar fashion.
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Zusammenfassung

Innerhalb der letzten Jahre hat sich Adipositas zu eines der größten Prob-

leme im Gesundheitswesen entwickelt, welches zur Entwicklung sekundärer

metabolischer Krankheiten, wie kardiovaskuläre Krankheiten, Typ II Dia-

betes, Dyslipidämie und verschiedene Typen von Krebs, beiträgt. Adiposi-

tas, charakterisiert durch einen Überschuss an Fettgewebe, entsteht durch

eine Kombination aus erhöhter Nahrungsaufnahme und einem Mangel an

physischer Aktivität. Mehrere Faktoren, wie der genetische Hintergrund,

Umwelt, Verhalten und/oder Lebensstil, können zur Entwicklung von Adi-

positas beitragen und diese beeinflussen. Zwillings-, Adoptions- und Fami-

lienstudien zeigten eine hohe Vererbbarkeit von Adipositas auf. Adipositas

wird in zwei genetische Formen unterteilt, in eine monogenetische und eine

polygenetische. Die monogenetische Adipositas ist bei Menschen sehr sel-

ten und wurde bisher nur in zehn Genen beschrieben (zum Beispiel Lep-

tin). Generell ist Adipositas das Resultat aus dem Zusammenspiel ver-

schiedener Gene, die auf einen spezifischen zur Adipositas neigenden Hin-

tergrund wirken. Um Adipositas beeinflussende Faktoren zu untersuchen,

stellten sich Tiermodelle als ein leistungsfähiges Werkzeug heraus. Dabei

haben sich Mäuse zu eines der beliebtesten Modelle, um die Mechanismen

der Adipositas zu verstehen, auf Grund ihrer verschiedenen Vorteile, wie

ihrer kleinen Körpergröße, der geringen Kosten, ihrer leichten Pflege und der

unkomplizierten Zucht in Gefangenschaft, entwickelt. Eine kurze Tragzeit

von 19 bis 20 Tagen trug ebenfalls zur Wahl als beliebtes Tiermodell bei.

Die frühsten Entdeckungen im Gebiet der Adipositasforschung beruhen auf

spontanen Mutationen, welche beispielsweise in ob/ob und db/db Mäusen

gefunden wurden, die eine Mutation im Leptin Gen beziehungsweise im Lep-

tinrezeptor Gen aufweisen. Der Einsatz mutagener Chemikalien oder die

radioaktive Bestrahlung von Tieren haben den willkürlichen Prozess spon-

taner Mutationen beschleunigt. Um die Beliebigkeit der erzeugten Muta-

tionen zu überwinden wurden Methoden zur Entwicklung transgener Mäuse

entwickelt. Eine nicht nur in der Adipositasforschung beliebte Methode zur

Erzeugung transgener Tiere, ist das Cre/loxP System mit der Möglichkeit
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Gene nicht nur gewebsspezifisch sondern auch zeitspezifisch auszuschalten.

Das System basiert auf der Verpaarung einer Cre-Rekombinase exprimieren-

den Mauslinie mit einer zweiten Mauslinie deren Zielgen mit einer Cre-

Rekombinase Erkennungssequenz (loxP) flankiert ist. Die zeitliche Kontrolle

der Rekombination erfolgt über eine Tamoxifen Injektion der Mäuse, wobei

Tamoxifen spezifisch an einen Cre-Rekombinase gekoppelten Östrogenrezep-

tor bindet. Um potentielle Gene zu identifizieren, welche an Mechanismen

der Adipositas beteiligt sind, ist die Kartierung sogenannter QTLs (Re-

gion eines quantitativen Merkmals – quantitative trait locus) eine bevorzugte

Methode, um Bereiche im Genom zu finden, die einen bestimmten Phäno-

typ beeinflussen. QTLs werden durch Verpaarung eines bestimmten Tier-

modells zweier unterschiedlicher Linien, die sich nur in einem spezifischen

Merkmal unterscheiden, erzeugt. Weil QTLs immer noch hunderte ver-

schiedene mögliche Kandidatengene enthalten, werden Teile der genomischen

Sequenz auf ein anderes Genom einer Empfängerlinie platziert und kongene

und subkongene Linien erzeugt. Mit Hilfe dieses Verfahrens wird die Anzahl

möglicher Kandidatengene reduziert. Ein potentielles Kandidatengen na-

mens replication initiator 1 (Repin1 ) wurde mit Hilfe von QTL Kartierung

und anschließender Erzeugung kongener und subkongener Rattenlinien iden-

tifiziert. Die subkongenen Rattenlinien BB.4S und BB.4W, bei denen ein

Segment des Chromosoms 4 von entweder SHR (Spontaneous Hypertensive

Rat) oder WOKW (Wistar Ottawa Karlsburg RT1u) auf BB/OK (BioBreed-

ing/OttawaKarlsburg) Ratten gekreuzt wurde, entwickelten eine Adipositas

und Dyslipidämie im Vergleich zu ihren elterlichen Kontrollen. Zunächst

wurde Repin1 als Replikationsinitationsprotein mit einer Masse von 60 kDa,

welches in die Aktivierung der Replikation des Dihydrofolatreduktasegens

(dhfr) im Chinesischen Streifenhamster beteiligt ist, beschrieben. Später

wurde es als polydaktyles Cys2-His2 Zinkfingerprotein identifiziert. Voraus-

gehende Studien konnten einen Einfluss der Triplet-Wiederholung (TTT)

Länge im 3’UTR des Repin1 Gens auf Körpergewicht, Serum-Triglyceride

und Cholesterin Level feststellen. Anschließende Studien mit Repin1 herun-

terregulierten 3T3-L1 Zellen zeigten im Vergleich zu Kontrollen einen Ein-

fluss auf Zellgröße, Fett- und Glucosestoffwechsel. Diese Daten implizieren
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eine wichtige Rolle von Repin1 in der Regulation von Fettgewebsfunktionen,

Glucose- und Fettstoffwechsel.

Daher sind die Ziele und Hypothesen der hier präsentierten Promotions-

arbeit die funktionale Rolle von Repin1 spezifisch im Fettgewebe zu charak-

terisieren. Auf vorhergehenden Studien basierend stellte ich die Hypothese

auf, dass eine Deletion von Repin1 in der Leber und im Fettgewebe das

Körpergewicht, den Fett- und Glucosestoffwechsel unter Verwendung spe-

zifischer Knockout-Mäuse, als auch in Doppelknockout-Tieren von Repin1

und dem Leptinrezeptor, beeinflusst. Vorangegangene Studien konnten einen

Einfluss des Östrogenspiegels auf Adipositas bezogene Eigenschaften zeigen.

Deshalb stellte ich die Hypothese auf, dass Tamoxifen, als selektiven Östro-

genrezeptor Modulator, die Adipozytenbiologie in Beziehung auf den En-

ergiehaushalt, Fett- und Glucosestoffwechsel beeinflusst.

In der ersten Publikation [Kapitel 2] überprüften wir die Hypothese,

ob die Tamoxifengabe Änderungen in der Adipozytenbiologie in vivo verur-

sacht. Daher wurde 1 mg Tamoxifen (gelöst in 50 µl Miglyol) für 5 aufeinan-

derfolgende Tage 12 Wochen alten männlichen C57BL/6NTac Mäusen verab-

reicht, während die Kontrolltiere nur die Trägersubstanz (50 µl Miglyol) beka-

men. Beide Gruppen wurden in Beziehung auf Energiehaushalt, Glucose-

und Fettstoffwechsel bis zu ihrer 18. Lebenswoche charakterisiert. In dieser

Studie konnten wir zeigen, dass die Tamoxifenbehandlung zu einer veränder-

ten Körperzusammensetzung von Fett- und Magermasse führt, während das

Körpergewicht unverändert blieb. Detailliertere Untersuchungen des Fettge-

webes zeigten kleinere Adipozytengrößen in subkutanen Fettdepots in Ta-

moxifen behandelten Tieren im Vergleich zu Kontrolltieren resultierend aus

brauneren Adipozyten (bestimmt durch höhere Ucp1 Expression). Des Wei-

teren konnten wir zeigen, dass die Tamoxifenbehandlung zu erhöhten HbA1c,

Triglycerid und freien Fettsäure Konzentrationen im Serum führt. Unsere

Daten dieser Studie zeigen eindeutig einen Einfluss einer Tamoxifenbehand-

lung auf die Adipozytenbiologie in vivo, was bei der Verwendung von Ta-

moxifen als Mittel zur Induktion konditioneller Knockout-Modelle berück-

sichtigt werden sollte. Des Weiteren sollte Tamoxifenbehandlung und die

Charakterisierung wildtypischer Mäuse zur Kontrolle von Effekten auf die
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Tamoxifengabe immer erfolgen.

InKapitel 3 untersuchten wir, ob eine Ganzkörperdeletion von Repin1 in

der diabetesanfälligen ob/ob Maus den Glucosestoffwechsel verbessert. Die

Doppelknockout Mäuse (Rep1−/−x db/db) wurden mit Hilfe aktueller Metho-

den chrakterisiet und mit db/db Mäusen als Kontrolle verglichen. Repin1

defiziente db/db Mäuse erreichten, basierend auf geringerer Fettmasse, sig-

nifikant weniger Körpermasse im Vergleich zu den Kontrollen. Die Insulin-

sensitivität war in Rep1−/−x db/db Mäusen verbessert, was sich in einer

geringeren Glucoseinfusionsrate in Clamp Studien und in HbA1c Konzen-

trationen widerspiegelte. Weitere Untersuchungen des Fettgewebes zeigten

ein geringes Ausmaß an Fettgewebsinflammation. Unsere Studie liefert den

Beweis, dass der Verlust von Repin1 in db/db Mäusen die Pathogenese der

Fettgewebsinflammation, Insulinresistenz und nachfolgende Verschlechterung

des Glucosehaushaltes lindert.

Um die Rolle von Repin1 im Fettstoffwechsel in vivo aufzuklären [Kapi-

tel 4], generierten wir leberspezifische Repin1 Knockout-Mäuse (LRep1−/−)

und charakterisierten systematisch die Konsequenzen des Repin1 Verlustes

in der Leber auf das Körpergewicht, Glucose- und Fettstoffwechsel, Leber-

fettspiegel sowie Protein/mRNA Expression. Mäuse mit einer hepatischen

Repin1 Deletion zeigten ab Woche 28 eine signifikant geringere Körperge-

wichtszunahme. Diese Unterschiede basieren auf einer geringeren Fettmasse

und trugen wahrscheinlich zu dem geringeren hepatischen Triglyceridgehalt,

der verbesserten Ganzkörperinsulinsensitivität in LRep1−/− Mäusen bei. Des

Weiteren konnten wir veränderte Gen-/Proteinexpressionen von Genen/Pro-

tein, wie Cd36, Pparg, Glut2, Akt Phosphorylierung, lipocalin2, Vamp4,

und Snap23, die am Fett- und Glucosestoffwechsel beteiligt sind, zeigen. Un-

sere Ergebnisse deuten auf einen Einfluss von Repin1 auf die Insulinsensi-

tivität und den Fettstoffwechsel durch die Regulierung von Schlüsselgenen

im Glucose- und Fettstoffwechsel hin.

Ermutigt durch die oben zusammengefassten Ergebnisse, inaktivierten

wir in Kapitel 5 das Repin1 Gen im Fettgewebe (iARep−/−) ab einem Alter

von vier Wochen unter Verwendung der tamoxifeninduzierten Gen-Knockout

Strategien bei C57BL/6NTac Mäusen. Der fettgewebsspezifische Repin1
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Knockout führte zu einem schlankeren Phänotyp mit geringeren Fettmassen

im subkutanen und epigonadalen Fettgewebe. Beide Fettdepots waren durch

gleiche Zellzahlen, aber kleinere Adipozyten, gekennzeichnet. Interessanter-

weise waren die Serum Lipide, wie LDL-, HDL- und Gesamtcholesterin, in

Fettgewebsknockout Mäusen verglichen mit den Kontrollen signifikant ver-

ringert. Konditionelle Repin1-Inaktivierung führte zu einer verbesserten

Insulinsensitivität und Glucosetoleranz. Die Expression möglicher Repin1

Zielgene, wie Cd36 and Lcn2, war signifikant reduziert in Mäusen ohne

Repin1 Expression im Fettgewebe im Vergleich zu Kontrollmäusen. Außer-

dem bestimmten wir die Glycerolabgabe in vitro in differenzierten humanen

primären Adipozyten, welche aus subkutanem Fettgewebe stammten, und

konnten eine erhöhte Glycerolabgabe der REPIN1 herunterregulierten Zellen

im Vergleich zu den Kontrollzellen zeigen. Schließlich konnten wir zeigen,

dass ein Verlust von Repin1 im Fettgewebe zu Veränderungen, auf Grund

von geringerem Körpergewicht und verbesserten Parametern der Insulinsen-

sitivität, des Glucose- und Fettstoffwechsels, in der Fettgewebsmorphologie

und -funktion führt.

Zusammenfassend trägt die hier vorliegende Arbeit dazu bei das Wissen

über die funktionelle Rolle von Repin1 in der Leber und im Fettgewebe zu

erweitern. Gemäß vorangegangenen in vitro Studien von Repin1 an 3T3-L1

Zellen konnte in der hier vorliegenden Promotionsarbeit die Hypothese, dass

Repin1 in den Fett- und Glucosestoffwechsel involviert ist, bestätigt wer-

den. In allen hier aufgezeigten Studien, konnte ein Zusammenhang zwi-

schen Repin1 Defizienz und geringerem Körpergewicht, vorwiegend durch

geringere Fettmasse gesteuert, gezeigt werden. Des Weiteren, zeigten alle

drei hier vorgestellten Modelle eine verbesserte Insulinsensitivität im Ver-

gleich zu ihren Kontrollgruppen. Mögliche Repin1 Zielgene, besonders der

Transporter langkettiger Fettsäuren Cd36, wiesen veränderte Expression-

slevel auf. Zusätzlich liefert die Promotionsarbeit ein besseres Verständ-

nis, des unter Verwendung von Tamoxifen gesteuerten, temporalen Cre/loxP

Knockot-Systems. Im Einklang mit vorangegangenen Studien, welche Ef-

fekte von endogener Östrogensignalisierung zeigen konnten, beeinflusste Ta-

moxifen, als selektiver Östrogenrezeptor Modulator, die Adipozytenbiologie
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in vivo. Daher sprechen die hier präsentierten Daten für eine Kontrolle der

Tamoxifeneffekte durch die Gleichbehandlung der Kontrolltiere.
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Introduction

1.1 Obesity

Obesity is defined as a nutritional disorder and metabolic disease, where

patients massively increase body weight due to excess body fat to the extent

that it may have pathological impact, such as cardiovascular diseases, type

II diabetes mellitus, dyslipidemia and several types of cancer [1].

In 2014 the World Health Organization (WHO) reported that worldwide

obesity had doubled since 1980 and that over 1.9 billion adults, aged 18 years

and older, were overweight and that 600 million of those were obese. This

corresponds to a value of 39% of people being overweight and 13% being

obese. During this time period, obesity and its comorbidities killed more

people than malnutrition and underweight [2]. A study published in 2012

estimated that overweight and obesity caused 3.4 million deaths globally in

the year 2010 [3], [4] making it to one of the biggest challenges in worldwide

health care systems. In another study data on body mass index (BMI) was

collated from 200 countries from between 1975 to 2014 [5]. It was calculated

that mean BMI had increased during that time period from 21.7 kg/m2 to

24.2 kg/m2 in men and from 22.2 kg/m2 to 24.4 kg/m2 in women [5]. It

was also shown in a reanalysis of 1,698 population-based studies, if post

2000 trends continue, global obesity prevalence will reach 18% in men and

surpass 21% in women by 2025 [5] stressing the importance of prevention

and intervention of this disease.

The WHO classified obesity in three different categories according to

BMI, which is defined as the body mass in kg divided by the square of the

body height in m. Thus, a BMI of 30-34.9 kg/m2 is class I obesity, 35-

39.9 kg/m2 class II obesity and above 40 kg/m2 class III obesity [2].

Despite the prevalent usage of BMI, the risk of developing obesity-related

diseases such as cardiovascular disease is more influenced by body fat dis-

tribution pattern. One simple and effective means of determining body fat
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distribution is the measurement of waist circumference. Intraabdominal fat

depots which cause the characteristic apple shape are strongly associated

with the development of metabolic syndrome or type II diabetes mellitus.

In contrast, the gluteo-femoral fat depot found in the legs which cause the

characteristic pear shape, is related to lower health risks [6], [7].

The main causes for developing obesity is a combination of increased

food intake and a lack of physical activity, which leads to an elevated energy

balance [8]. Genetic factors, physiological and psychiatric illnesses have an

impact and can cause obesity [9] but they do not adequately explain the

worldwide massive increase in its incidence in recent decades. Sociocultural

factors such as income inequality, fast food and advertising, influence eating

behavior and appears to be the main cause. Overall, obesity emerges from a

complex interaction between energy balance, genetics and environment [9].

1.2 Adipose Tissue

Adipose tissue is a loose connective tissue composed mainly of adipocytes.

Additionally, it contains the stromal-vascular fraction (SVF), which includes

preadipocytes, fibroblasts, vascular endothelial cells and immune cells such as

adipose tissue macrophages [10]. Originally it was described as an inert tissue

for storage of energy in form of lipids [11]. Over the last decades, several

experimental data concerning the biology and biochemistry of adipose tissue

showed that it is a metabolically dynamic and complex organ synthesizing

various molecules, most notably leptin, that regulate metabolic homeostasis

[12], [13], [14].

Two types of adipose tissues are known in mammals, white adipose tissue

(WAT), which basically stores energy, and brown adipose tissue (BAT), which

produces heat by non-shivering thermogenesis [15].

WAT consists of relatively large adipocytes (100 µm) and are character-

ized by a single large lipid droplet (univacular) and only a small number of

mitochondria. There are several WAT depots that have been characterized,

but main ones are subcutaneous (scAT) and visceral adipose tissue (visAT).

While scAT is located beneath the skin and in gluteal-femoral regions, visAT
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is located in the intra-peritoneum and is connected to the digestive system

via the portal vein to the liver [16], [17], [18].

Brown adipocytes are generally smaller than adipocytes in WAT and have

numerous cytoplasmic lipid droplets of different size (multilocular). They

also have more mitochondria compared to WAT adipocytes that release heat

by uncoupled respiration [19]. BAT was thought to be limited to infant

humans and hibernating mammals [20]. Recent studies could show presence

of BAT and its recruitment in adult humans following cold exposure in the

chest and neck regions [21], [22], [23]. Several studies in animals and humans

could further show that brown or so called beige or brite adipocytes arise

in various WAT depots in response to cold [24]. Adipocytes of classical

BAT derive from Myf5-positive stem cells whereas adipocytes of WAT derive

from Myf5-negative stem cells [24], [25]. It remains controversial whether

beige/brite adipocytes arise from transdifferentiation of white adipocytes or

whether they have their own distinct lineage (e.g. Sma-positive stem cells)

[24], [25].

In obesity research mice are the most commonly used model, but in adi-

pose tissue distribution they have important differences compared to humans.

To investigate visAT in mouse models, epigonadal adipose tissue (epiAT) is

commonly used which humans lack, and mice have almost no omental fat

depots which is prominent in humans [25]. Classical BAT is located in mice

in the interscapular region, whereas in adult humans it is localized mainly in

the superaclavicular region and more resembles beige or brite adipose tissue

in terms of its gene expression profile [24].

1.3 Genetics of Obesity

Obesity is basically the result of a maladjusted energy balance, which is

influenced by various non-genetic and genetic factors. Hence, it can be de-

scribed as the outcome of an adverse obesogenic environment, working on a

susceptibility genotype. However, there are specific features which effectively

protect against obesity, possibly explaining why about one third of the popu-

lation remains lean [26]. Even if the prevalence of obesity increased just over
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the last 30 years, it is well believed that genetics has a major influence on

obesity. Lifestyle and environment changed acting in an obesogenic manner

against an evolutionary background, which could be maladaptive to this new

behavior [27].

Family, twin and adoption studies have shown that obesity is highly heri-

table and the risk to develop an obese phenotype increases when one of the

relatives is obese. The heritability of obesity ranges from 16 to 80% depend-

ing on the obesity determination parameter, like BMI, waist circumference or

body fat [28]. Patterns of heritability show that it is more than twice as likely

to get obesity when both parents are obese compared to lean parents [29].

Studies on monozygotic and dizygotic veteran twin pairs could show that

there are high heritability values for BMI and fat mass [27], [30], [31]. Fur-

ther, body corpulence and BMI of adopted children correlates more strongly

with parameters of their biological compared to their adoptive parents [32].

Also, different prevalence rates in various ethnic populations could prove a ge-

netic component for obesity, e.g. populations of Caucasian and Asian people

show a prevalence of about 35% whereas the prevalence of obesity of popu-

lations among Pima Indians is about 50% [33]. However, the precise genetic

influence on obesity remains elusive since population substructure, economic

disadvantages or access to medical care have an impact on developing obesity

as well, although it is still evident that genetic factors play a role on devel-

oping an obese phenotype. There are two forms of obesity, a monogenetic

and a polygenetic [34]. Monogenetic forms of obesity in humans are rare and

very severe, generally starting in early childhood [35]. They result from an

alteration of a single gene and to date there are more than 200 single-gene mu-

tations found in only ten genes [36], [37]. For example, mutations in human

genes coding for leptin (LEP), leptin-receptor (LEPR), proopiomelanocortin

(POMC) and melanocortin-4 receptor (MC4R) have been associated with

early-onset obesity [38], [39], [40]. The monogenetic disorder in the leptin

gene was first discovered in 1994 by extensive positional cloning experiments

[12] in ob/ob mice which were spontaneously obese and developed hyperin-

sulinemic and hyperglycemic phenotype [41]. The leptin protein is mainly

produced and secreted by white adipocytes and acts as part of the signaling
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pathway controlling food intake and the sensation of hunger in the central

nervous system [42]. Several other studies found that some obese patients

show undetectable leptin serum concentrations caused by either a frameshift

mutation which produces a truncated protein that is not secreted or a mis-

sense mutation which results in low level leptin serum concentrations [43],

[44], [45]. Treatment of those patients with recombinant leptin leads to a

normal phenotype [46]. In 1965 a second spontaneously occurring mutation

causing obesity and a similar phenotype was found in mice at the Jackson

Laboratories and named db for diabetes [47]. Subsequent studies identify-

ing the product of this gene characterized it as a cytokine-receptor, binding

leptin predominantly in the hypothalamic neurons regulating fat metabolism

[48], [49]. A splice site mutation in the exon 16 leads to a truncated receptor

lacking both the transmembrane and the intercellular domains [50]. Further

studies revealed a monogenetic interaction of genes involved in the leptin-

melanocortin pathway, such as POMC and MC4R with obesity [34]. The

protein encoded by MC4R is a member of the melanocortin receptor family

and interacts with MSH hormones and is mediated by G proteins [51]. It

strongly contributes to food intake and energy expenditure regulation [52],

[53]. Mutations in the MC4R gene leads to non-functional receptors causing

severe early-onset obesity and represents the most common cause (1-6%) for

the obese phenotype [40], [54], [55], [56].

Polygenic or common obesity is controlled by two or more genes at differ-

ent loci on different chromosomes [37]. Those polygenic gene variants vary

from one individual to the next and usually have small influence on body

weight [57]. Obesity is a result of the interaction of several of these poly-

genic variants superimposed on an obesogenic environment to determine the

phenotype [58]. Interindividual heterogeneity is most likely the reason why

one specific set of polygenes leads to obesity in one individual while another

individual stays lean. For this reason, the study of polygenic obesity is very

complex. To study polygenic obesity genomic deoxyribonucleic acid (DNA)

is analyzed in terms of variation, such as single-nucleotide polymorphism

(SNPs) or microsatellites, within or near candidate genes. There are several

technologies for analysis of polygenetic traits including linkage studies, can-
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didate gene association studies and the most commonly used genome wide

association studies (GWAS). GWAS started in 2005 and up to date there

have been six waves of discoveries for BMI [59], [60], [61], [62], [63]. The first

gene identified by a GWAS which associated with obesity was the FTO gene

[59]. A polymorphism was found in the first intron which strongly associated

with BMI, with a difference of 3 kg between homozygous individuals of risk

and protective alleles. These findings have been replicated and confirmed by

several groups in different populations [64], [65], [66]. Until now five follow-

ing GWAS have identified more than 50 genetic loci with at least one obesity

related trait. But still GWAS could explain just 1-4% of variances of BMI

compared to 40-70% of the estimated heritability. One main problems of

GWAS is the failure to detect false negatives, loci that are associated with

traits whose effect sizes are too small. Also, most GWAS were performed in

samples of Caucasian adults, probably missing many variances and neglect-

ing the true development of obesity. Despite being a relatively new field,

epigenetic regulation of gene expression might have potential to explain in-

dividual differences in obesity risk [67], as it could affect gene function but

not DNA sequence [68].

1.4 Animal Models in Obesity

To understand the factors that contribute to obesity and regulate energy ex-

penditure, lipid and glucose metabolism, animal models have been a powerful

tool. Several different models have been used, including rats, non-human pri-

mates, dogs and seasonal models, such as hamsters or voles, but mice remain

one of the most popular models to address questions in understanding obesity

mechanisms.

Mice were the obvious choice for genetic experimentation in the 1930s,

because they were readily available from the fancy mouse collectors of the

day [69]. Mice and humans share about 99% of their genes [70] and most

physiological and pathological features, such as diabetes, cancer, anemia,

osteoporosis, neurological disorders and obesity. Of course, other mammals

also share these diseases, but mice are small, cheap, easy to maintain and
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straightforward to breed in captivity. Also, mice have short gestation periods

of about 19 to 20 days and only 20 generations of inbreeding is required to

create genetically identical and homozygous mice at all loci [71], [72].

To study the physiological and genetic basis of obesity, different types of

models have been employed. The first models possessed spontaneous single

gene mutations, the most famous examples being ob/ob and db/db mice, men-

tioned already in the section genes of obesity. Also, the Zucker (fa/fa) obese

rat is a classic case for spontaneous single gene mutation, with a mutation

in the leptin receptor [73]. To speed up the arbitrary nature of spontaneous

mutational events leading to a loss of function in critical genes, mutagenic

chemicals or exposing animals to radiation was adopted. However, with this

approach only the growth hormone receptor SMA-1 mutation producing an-

imals of small body size but elevated adiposity, showed some relevance for

obesity research [74]. Nevertheless, spontaneous single gene mutations or

artificially induced mutations in animals are very random and genes with no

or only minor effects are very unlikely to be discovered [75].

The ability to disrupt or over-express specific genes from the germline of

animals has dramatically improved the study of gene function. Today there

are hundreds of genes cited, that when mutated or expressed as transgenes in

mice, result in phenotypes affecting body weight and obesity. These geneti-

cally modified animal models led to a significant expansion in our understand-

ing of molecular mechanisms of obesity. In addition, advanced techniques to

knockout select genes only in specific tissues and at specific time-points have

further contributed to this understanding [76]. For example, to elucidate the

insulin signaling pathway, the insulin receptor was disrupted specifically in

different tissues, like muscle, liver or fat [77], [78], [79]. Thus, the fat-specific

insulin receptor knockout mouse, the FIRKO mouse, revealed that insulin

signaling in adipocytes is critical for the development of obesity [79].

1.4.1 Cre loxP System

Conventional knockout strategies manipulated either embryonic stem cells or

fertilized mice eggs using homologous recombination to alter genes in their
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original location. A major problem associated with the conventional knock-

out system is that the knockout may lead to premature embryonic death

preventing the study of its effects in adults. Also, compensatory changes

during the period of development could be problematic to examine the func-

tion of a certain gene. For example, neuropeptide Y (NPY) is one of the most

potent stimulators of feeding behavior [80], but when NPY was knocked out,

mice showed no abnormal phenotype [81],[82].

The Cre/loxP system is a tool to knockout genes either in a specific tissue

and/or at a specific time-point, which allows to investigate gene functions

in adolescents. This system requires two different transgenic mouse lines,

one expressing a Cre recombinase and another which has Cre recombinase

recognition (loxP) sites flanking the gene of interest [83], [84]. This system is

part of the bacteriophage P1 viral life cycle, which plays a crucial role for the

phage genome replication in bacterial host chromosomes by mediating site-

specific recombination [85]. The Cre recombinase catalyzes recombination

between the two loxP sites, which consist of two palindromic 13 bp separated

by an 8 bp spacer region [86], that results in excision of DNA placed between

the two loxP sites [87].

Because Cre recombinase is not naturally expressed it has to be driven

by a particular promotor, either tissue-specific or time-dependent, allowing

spatial and temporal control of recombination.

To generate temporal control of recombination, a mutated ligand binding

domain (LBD) of the human estrogen receptor (ER) is linked to the Cre re-

combinase [88], [89]. This Cre-ER recombinase requires binding of a ligand to

be activated. The mutation of the LBD abolishes binding of naturally present

estrogen to the ER, while retaining affinity towards 4-hydroxytamoxifen, one

of the main metabolites of Tamoxifen [90]. Hence, intraperitoneal injection

of Tamoxifen is a standard procedure to trigger the recombination event in

mouse lines expressing Cre-ER recombinases.
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1.4.2 Tamoxifen

Tamoxifen is a nonsteroidal antiestrogen compound discovered in 1962 [91],

[92]. It is a selective estrogen receptor modulator (SERM), activating the

estrogen receptor in some tissues by acting as an agonist, while inhibiting

the receptor in other tissues by acting as an antagonist. Today, Tamox-

ifen has two important applications. On one side, it is a widely used drug

for chemotherapy to treat patients with metastatic ER-positive tumors. On

the other side, it serves as a triggering compound in genetic engineering to

activate the Cre-loxP system [93], [94], [95]. Tamoxifen is a prodrug with

relatively little affinity to the target protein, the estrogen receptor, therefore

it needs to be activated by liver cytochrome P450 enzymes, undergoing ex-

tensive oxidation. Endoxifen and 4-hydroxytamoxifen are the most potent

metabolites, which have a 100-fold higher affinity with the ER than Tamox-

ifen itself [93], [96].

1.4.3 Estrogen pathway

Adipose Tissue is a source of estrogen and contributes to the circulating pool

of this hormone [97]. Also, the estrogen receptor (ER) occurs in adipocytes,

thus completing the estrogen signaling pathway in white adipose tissue [98],

[99]. It has been widely proven that estrogen has an influence on energy

metabolism, adipose tissue distribution, inflammation and glucose homeosta-

sis [100]. Further studies could show that a lack of estrogens is associated

with obesity pointing out the influence of estrogens on adipocyte biology

[101]. This explains why female mice are less likely to develop obesity on a

high fat diet than males [102].

Today, two different forms of ER are known, the estrogen receptor α

(ERα), encoded by the gene ESR1 located on chromosome 6 and the estro-

gen receptor β (ERβ), encoded by the gene ESR2 on chromosome 14 [103],

[104]. They are ligand-activated transcription factors, which form homod-

imers (αα , ββ) or heterodimers (αβ), to mediate gene expression. While

ERa has a partial agonist/antagonist action, ERβ is an inhibitor with a pure

antagonist action [105], [106]. This different behavior was shown for both
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the natural 17-β estradiol and Tamoxifen [106].

17-β estradiol is the strongest sex steroid hormone and it is mainly biosyn-

thesized in the ovaries from cholesterol, but also adipose tissue contributes

to its production with conversion of testosterone to estradiol [97].

There are two different signal transduction pathways known so far, a ge-

nomic and a non-genomic mechanism, each involving different components.

The genomic mechanism involves estrogen receptors located in either the cy-

toplasm or directly in the nucleus. Because estrogen is a lipophilic molecule,

it is able to diffuse through the cell membrane of the target cells and interact

with cytosolic estrogen receptors [107]. Ligand receptor interaction breaks

binding with associated heat shock proteins which allows translocation in

the nucleus [108]. Translocation of the hormone receptor complex is followed

by homo- and heterodimerization between the receptors to bind specific se-

quences of DNA [109]. Finally, this complex will either activate or inhibit

transcription of several genes. The non-genomic mechanism involves mem-

brane associated ER and G-protein coupled ER, which induces intracellular

signaling pathways like calcium mobilization, kinase activation (PKA, PKC,

MAPK) and nitric oxide production [110], [104], [111].

1.5 Identification of target genes protecting

against obesity using QTL mapping

To identify target genes protecting against obesity several methodologies are

possible as discussed in the section genetics of obesity. For monogenetic

traits, positional cloning is an adequate method, as done for the identifica-

tion of the leptin gene in ob/ob mice [12]. However, obesity is usually caused

by many genes (polygenic), thus quantitative trait locus (QTL) mapping is a

preferred approach to determine areas in the genome which affect phenotypes

like obesity and diabetes. QTL mapping is a method for mapping genes un-

derlying complex quantitative traits by using genetic linkage maps in a cross

between two mouse strains [112]. The obtained locus contains hundreds of

genes, where one or more influence the target trait. To produce a QTL,
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one crosses two inbred strains, which differ in the trait of interest, followed

by either intercross of the first filial generation (F1) or backcross to one of

the parental strains to create the second filial generation (F2) with differ-

ent genotypes: totaling three after intercrossing and two after backcrossing.

Markers, such as SNPs or microsatellites, all over the genome are used for

genotyping to identify which of the parental strains contribute the allele.

Finally, regression analysis of phenotype-genotype is performed to map the

QTL on the genome [113], [114].

Using the QTL mapping approach, many naturally occurring alleles have

been shown to influence obesity in mice, such as a cross of glucose intolerant

and insulin resistant KK mice to BALB/c mice which identified two loci

contributing to impaired glucose metabolism and three loci to triglyceride

levels [115]. Further, in BSB mice QTLs for other obesity related traits

such as adiposity, body weight, plasma cholesterol and hepatic lipase activity

have been identified [116], [117]. Also, backcrosses using wild mice, like Mus

musculus castaneus captured from the Philipines, to inbred C57BL/6JJcl

could reveal new QTLs correlating with obesity. The identified QTL was

associated with increased body weight and length, despite the fact that wild

mice have smaller body size [118], [119]. Another QTL obtained in those

mice was linked to decreased abdominal white fat weight and prevents obesity

under standard and high fat diet [119], [120].

One of the problems associated with using QTL mapping approach how-

ever, is that it is not easy to pinpoint causative genes underlying QTLs,

especially QTLs with small phenotypic effects on traits as most of the QTLs

have small effects [121].

Following QTL mapping, congenic and subcongenic strains are made to

isolate and fine map the identified loci. They are produced by breeding two

different strains so that a certain genomic region from the donor strain is

placed on the genome of a recipient strain. To subdivide the congenic region,

subcongenic strains can be made until the gene of interest is located within

a region containing very few genes. For example, congenic and subcongenic

rat strains revealed new genes in a QTL on chromosome 10 which are linked

to body fat mass, preadipocyte number and adipocyte size [122].
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1.6 Repin1

To identify discrete genetic factors contributing to complex quantitative

traits, such as body weight, diabetes or lipid metabolism, the inbred strains

Spontaneously Hypertensive (SHR) and Wistar Ottawa Karlsburg RT1u

(WOKW) rats, who develop a polygenic and complete metabolic syndrome

with obesity, hyperinsulinemia, dyslipidemia, impaired glucose tolerance and

hypertension, were crossed and backcrossed onto diabetes-prone BioBreed-

ing/Ottawa Karlsburg (BB/OK) rats and finally phenotyped and genotyped

[123], [124]. Both mentioned studies could produce congenic rats in which ei-

ther SHR or WOKW rats served as donors for a chromosome 4 segment,

which was associated with cholesterol and phospholipid phenotypes, and

crossed on BB/OK background. Those newly produced congenic rat strains,

termed BB.4S and BB.4W, developed obesity and dyslipidemia compared

with their parental strain BB/OK. Also, BB/OK strains developed type I

diabetes with a frequency of 86%, whereas the congenic strains BB.4S and

BB.4W did not [125], [126]. Further analysis of genes located on this chro-

mosome 4 locus, revealed one potential candidate gene, replication initiator 1

(Repin1 ), which might be responsible for observed phenotypes. Gene expres-

sion profiling of 92 genes located on either chromosome 4 or genes involved

in obesity, insulin resistance and other facets of metabolic syndrome could

show only significantly different expression of Repin1 in epigonadal and sub-

cutaneous adipose tissue [127].

Repin1 was initially discovered as replication initiation region protein

(RIP60) with a mass of 60 kDa in a study investigating DNA binding pro-

teins involved in replication activation of the Chinese hamster dihydrofolate

reductase gene (dhfr) [128]. The protein of Repin1 binds to two ATT-rich

sites in oriβ, a short region 3’ to the dhfr gene, acting as an enhancer of DNA

bending during initiation of DNA synthesis [129]. Further characterization of

DNA binding and bending properties revealed first structural insight into Re-

pin1/RIP60 and classified it as polydactyl zinc finger protein of a Cys2-His2

type [130].

Initial studies establishing and characterizing Repin1 as candidate gene
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for obesity and metabolic syndrome involved investigations on gene structure

and in vitro experiments on 3T3-L1 cells [131], [132]. Genetic variation in

the Repin1 gene, in particular a coding region SNP (C/T 449) and a triplet

repeat (TTT) in the 3’UTR is associated with facets of the metabolic syn-

drome, including body weight, serum insulin, leptin, triglyceride and choles-

terol levels in rats [131]. Further, it could be shown in vitro in 3T3-L1 cells

that Repin1 regulates adipocyte size and glucose transport. Small interfering

RNA (siRNA) mediated knockdown of Repin1 led to altered Cd36 expres-

sion, reduced palmitate uptake and changes in gene expression involved in

lipid droplet formation such as Vamp4 and Snap23 [132]. Also, it could

been shown that Repin1 is ubiquitously expressed, but is enriched in liver

and adipose tissue indicating a role in glucose and lipid metabolism [132].

Preliminary studies on human gene expression of REPIN1 indicate as-

sociations with body fat and adipocyte size in visceral and subcutaneous

adipose tissue [132]. Also, sequencing of human REPIN1 gene revealed a

12 bp deletion within the coding region (rs3832490) and found associations

with decreased body fat mass, fasting plasma glucose, and lower maximum

adipocyte size in patients homozygous for the deletion compared to non-

carriers [unpublished].

These data indicate an important role for Repin1 in the regulation of adi-

pose tissue function, insulin sensitivity, lipid- and glucose metabolism point-

ing it out as potential and interesting candidate gene for obesity research.

1.6.1 Zinc finger proteins

Zinc finger proteins are the largest transcription factor family in mammals

serving a wide variety of biological functions, such as DNA recognition, RNA

packaging, transcription activation, regulation of apoptosis, protein folding

and assembly and lipid binding [133], [134]. They all share the requirement

for at least one zinc ion to stabilize their secondary structure. The zinc ion

is bound to two conserved Cys and His residues, which form the zinc finger

motif, consisting of an α-helix and an antiparallel β-sheet forming a hairpin

structure, the so called finger. One zinc finger protein contains one or more
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zinc finger motif(s), which bind to the major groove of DNA [135], [136].

The first recognized zinc finger protein was the transcriptional factor IIIA

(TFIIIA) in Xenopus laevis in immute oocytes, which activated transcription

of 5SRNA by binding of its DNA control region [137], [138].

Past investigations discovered that zinc finger motif proteins play a reg-

ulatory role in adipogenesis in particular in adipocyte determination. For

example Zfp423 promotes adipocyte commitment as well as Zfp467, while

suppressing osteoblast differentiation [139], [140]. Another study could show

that ZNF395 promotes adipogenesis via coordination with PPARγ. Ablation

of ZNF395 leads to reduced adipocyte number, whereas co-transfection with

PPARγ increased adipocyte size [141]. They also play a role in regulation of

brown adipogenesis without affecting white adipogenesis, such as PRDM16

[142], [143], [144].

1.6.2 Lipid metabolism and insulin action on adipose

tissue

Adipose tissue plays a central role in regulating lipid metabolism, glucose

homeostasis and whole body energy expenditure and therefore exerts an im-

pact on whole body metabolism. It is no longer considered to be an inert

tissue that stores energy in the form of triglycerides [145]. Today adipose

tissue is well known as an endocrine organ that produces and secretes numer-

ous hormones, which modulate a range of metabolic pathways, such as leptin

which controls nutritional intake or TNF-α which controls insulin sensitivity

and inflammatory processes [12], [146], [147], [148].

The ability to accumulate and provide energy when necessary makes adi-

pose tissue an important buffering system for lipid energy balance, in par-

ticular fatty acids, which are a very efficient energy fuel. The highly re-

duced hydrocarbon tail can be readily oxidized to produce large quantities of

adenosine triphosphate (ATP) [149]. Fat accumulation is determined by the

balance between fat synthesis (lipogenesis) and fat breakdown (lipolysis).

Lipogenesis is the synthesis of fatty acids and happens predominantly

in adipose tissue, but it also happens in the liver and muscle. Fatty acids
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serve as energy reserves stored in adipocytes as triglycerides. This process

is stimulated by a high carbohydrate diet and it is inhibited by polyunsat-

urated fatty acids and fasting. Stimulation of lipogenesis leads to elevated

plasma triglyceride levels, whereas inhibition is related with a decrease in

plasma glucose and an increase in plasma free fatty acids (FFA) [150]. More-

over, hormones like angiotensin contribute to stimulation and adipokines like

leptin to inhibition. This process encompasses de novo fatty acid synthesis

from acetyl-coenzyme A (acetyl-CoA) and triglyceride biosynthesis. Glucose

catabolism generates acetyl-CoA and stimulates pancreatic insulin release.

As a result, insulin stimulates glucose uptake in adipocytes and activates

glycolytic and lipogenic enzymes, such as sterol regulatory element-binding

protein 1 (SREBP1) that controls the expression of genes for lipogenesis [151],

[152]. However, de novo lipogenesis is very low under normal conditions in

WAT compared to liver and BAT [153], [154]. Under normal conditions,

triglycerides are transported in blood vessels with the help of lipoproteins,

chylomicrons and very low-density lipoprotein (VLDL), to target organs such

as liver and adipose tissue. Lipoprotein lipase (LPL) hydrolyzes one fatty

acid from circulating triglycerides and facilitates the entry of one fatty acid

into the adipocyte [155], [156], [157]. Finally, diacylglycerol acyltransferase

(DGAT) catalyzes triglyceride synthesis from uptaken free fatty acids and

glycerol, provided from glucose [158], [159]. Insulin, as a predominant stimu-

lus, promotes fatty acid uptake through multiple mechanisms including acti-

vation of LPL, induction of translocation of fatty acid transport protein and

upregulation of related gene expression in adipocytes [160], [161], [162]. The

capacity of how much lipid can be stored in adipose tissue is a main factor

of insulin resistance and ectopic lipid infiltration into other tissues, like liver

and muscle [157].

Lipolysis describes the breakdown of triglycerides, which are destined for

hydrolysis to FFAs and glycerol in adipose tissue [163], [164] [165]. Released

fatty acids bind to albumin and are carried to other tissues, such as liver and

muscle for β-oxidation and glycerol is shuttled back to liver for oxidation or

glucogenesis [166]. This process is stimulated by metabolic stress, like fast-

ing or prolonged exercise, when the body needs more energy [167]. Glucagon
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and epinephrine contributes to stimulation of lipolysis [150], whereas insulin

inhibits lipolysis [149]. As already mentioned, lipolysis is the breakdown

of tri-, di- and monoacylglycerides into individual fatty acids. During fast-

ing periods, decreased levels of insulin result in suppression of lipogenesis

and activation of lipolysis. Moreover, elevated glucagon levels activate the

protein kinase A (PKA) pathway, which also stimulates lipolysis. Activa-

tion is also achieved via binding of catecholamine to β-adrenoreceptor [164].

PKA polyphosphorylates lipid droplet-associated proteins, such as perilipin

and translocate hormone-sensitive lipase (HSL) to lipid droplets [168], [169],

[170]. Adipocyte triglyceride lipase (ATGL) and HSL are responsible for

conversion of triglycerides to diglycerides and hydrolysis of diglycerides to

monoglycerides [171], [172]. The role of lipolytic enzymes ATGL and HSL

in obesity was shown in several studies, where global deficiency of ATGL

leads to impaired lipolysis, severe defects in BAT thermogenesis and mild

obesity [173]. Adipose tissue specific knockout of ATGL showing decreased

lipolysis and fat mass, but improved hepatic insulin sensitivity, confirmed

these findings [174]. Deficiency of HSL leads to decreased lipolysis, but no

other strong effects, suggesting a compensatory mechanism [175]. Obesity-

induced fatty acid secretion of adipocytes and transport to other organs is

a main cause of insulin resistance. Hence, it has been considered to inhibit

lipolysis to improve insulin sensitivity [176]. On the other hand, inhibition

of lipogenesis protects from diet-induce obesity and insulin resistance [177],

suggesting that a balance between lipogenesis and lipolysis is important for

maintaining systemic energy homeostasis and insulin sensitivity [178].

Insulin resistance is a condition where the effects of insulin on glucose

uptake, metabolism and storage are compromised. In obesity insulin resis-

tance is manifested by decreased insulin-stimulated glucose transport and

metabolism in adipocytes and skeletal muscle and impaired suppression of

hepatic glucose output [179]. Sensitivity of insulin can be stimulated by

several adipokines, like leptin [180] and adiponectin [181], whereas insulin

resistance can be induced by resistin [182] and TNF-α. Insulin is a regulator

of many aspects of adipocyte biology, which includes control of metabolism

of lipids, carbohydrates and proteins. Its role on metabolism is analogous
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to that explained for lipid metabolism, promoting anabolism and inhibiting

catabolism. In lipid metabolism, insulin upregulates LPL for fatty acid up-

take and stimulates gene expression of lipogenic enzymes, such as acetyl-CoA

carboxylase (ACC) and fatty acid synthase (FAS). Insulin also stimulates

PDE5 which catalyzes the breakdown of cyclic nucleotides. In this way, LPL

activity and thus lipolysis is reduced [183].

1.7 Aims and Hypothesis

The work presented in this thesis aims to characterize the functional role of

Repin1 [Chapter 3 and 4], specifically in adipose tissue [Chapter 5]. Repin1

was identified as the most potential candidate gene for obesity, mapping

to a QTL of congenic and subcongenic rat strains influencing body weight,

serum lipid and insulin levels. Preliminary in vitro studies on 3T3-L1 cells

confirmed a correlation of Repin1 expression and a changed lipid and glucose

metabolism. Therefore, I hypothesized in this thesis an influence of Repin1

depletion on body weight, lipid and glucose homeostasis in liver [Chapter 4]

and adipose tissue [Chapter 5] specific knockout mice, as well as in double

knockout animals of Repin1 and leptin receptor [Chapter 3]. Hence, loss

of Repin1 expression should lead to leaner phenotype, to improved glucose

homeostasis and lipid metabolism.

Additionally, this work was devoted to analyze the influence of Tamoxifen

on adipocyte biology in vivo [Chapter 2]. Tamoxifen is used to trigger the

activity of Cre-recombinase to create gene knockouts in adolescent animals.

Because, Tamoxifen is a selective modulator of the estrogen receptor and pre-

vious studies showed an influence of estrogen levels influencing obesity related

traits, I hypothesized an influence of Tamoxifen itself to adipocyte biology

in terms of energy expenditure, lipid metabolism and glucose homeostasis.
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2.1 Abstract

Tamoxifen is a selective estrogen receptor (ER) modulator which is widely

used to generate inducible conditional transgenic mouse models. Activation

of ER signaling plays an important role in the regulation of adipose tis-

sue (AT) metabolism. We therefore tested the hypothesis that tamoxifen

administration causes changes in AT biology in vivo. 12 weeks old male

C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle

(n = 18) for 5 consecutive days. Tamoxifen treatment effects on body com-

position, energy homeostasis, parameters of AT biology, glucose and lipid

metabolism were investigated up to an age of 18 weeks.

We found that tamoxifen treatment causes: I) significantly increased

HbA1c, triglyceride and free fatty acid serum concentrations (p < 0.01), II)

browning of subcutaneous AT and increased UCP-1 expression, III) increased

AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte

size distribution, and V) transient body composition changes.

Tamoxifen may induce changes in body composition, whole body glu-

cose and lipid metabolism and has significant effects on AT biology, which

need to be considered when using Tamoxifen as a tool to induce conditional

transgenic mouse models. Our data further suggest that tamoxifen-treated

wildtype mice should be characterized in parallel to experimental transgenic

models to control for tamoxifen administration effects.

2.2 Introduction

Conditional transgenic mouse models provide a powerful tool for functional

analyses of genes expressed preferentially in a particular tissue. Efficient si-

lencing of a specific gene can be achieved by the CreER-loxP recombination

technology, which allows for a temporally and tissue-specifically (promoter

dependent) regulated recombination induced by tamoxifen administration [1].

Tamoxifen is a selective estrogen receptor (ER) modulator, which may affect

whole body metabolism, but also adipose tissue (AT) biology. In ovariec-

tomized rats, tamoxifen mimicked the effects of estradiol and caused signifi-
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cant changes in food intake, body weight and composition [2].

Although expression of the CreER tamoxifen-induced system (CreER(T)2)

in adipocytes does not seem to affect AT biology itself [3], [4], tamoxifen may

contribute to the regulation of various AT processes. Therefore, we tested

the hypothesis that tamoxifen administration causes changes in parameters of

AT biology, whole body glucose and lipid metabolism in male C57BL/6NTac

mice.

2.3 Material and methods

2.3.1 Animals

Animal experiments followed the ‘Principles of laboratory animal care’ (NIH

publication no. 85–23, revised 1985) as well as specific national laws approved

by the local authorities of the state of Saxony, Germany as recommended

by the responsible local animal ethics review board (Regierungspräsidium

Leipzig, TVV21 23/12, Germany). Twenty 11 weeks old C57BL/6NTac male

mice were obtained from Taconic Laboratories (Taconic Europe, Denmark)

and randomly assigned to either tamoxifen (n = 18) or vehicle (Miglyol,

n = 18) administration groups. Tamoxifen (SigmaeAldrich; #T5648-1G, St.

Louis, MO, USA) was dissolved in Miglyol (Fagron, #700282-0001, Rotter-

dam, NL) at a concentration of 20 mg/ml. At an age of 12 weeks, 1 mg

tamoxifen or 50 µl Miglyol was administered intraperitoneally for five con-

secutive days, changing the injection site daily. All mice were housed in

pathogen-free facilities in groups of three to five at 22 ± 2 ◦C on a 12-h

light/dark cycle. All animals had free access to water and were fed with

standard chow (Sniff GmbH, Soest, Germany).

2.3.2 Phenotypic characterization

Mice were studied from 10 up to an age of 18 weeks. Body weight and

food intake were recorded daily; naso-anal length and rectal body tempera-

ture (TH-5, Thermalert Monitoring Thermometer, Clifton, NJ, USA) were
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measured at the end at 18 weeks of age (n = 10 per experimental group).

Intraperitoneal insulin tolerance tests (ITTs) were performed at the age of 11

and 16 weeks as described previously [5]. Whole body composition (fat mass,

lean mass, water) was determined in awake mice by using NMR technology

with EchoMRI700
TM

instrument (Houston, TX, USA) at 11, 13, 15 and 17

weeks of age. Indirect calorimetry was assessed by a Calorimetry Module

(TSE Systems, Bad Homburg, Germany) at an age of 16 weeks as previously

described [5].

Mice were sacrificed at the age of 18 weeks by an overdose of isofluran

(Baxter, Unterschleißheim, Germany). Liver, brown (BAT), subcutaneous

(SC) and epigonadal (EPI) adipose tissue were immediately removed and

weighed.

2.3.3 Analytical procedures

Blood glucose values were determined from whole venous blood samples using

a glucose monitor (FreeStyle, Abbott GmbH, Ludwigshafen, Germany). In-

sulin, leptin and adiponectin serum concentrations were measured by ELISA

(mInsulin/Leptin ELISA; CrystalChem Inc, Downers Grove, IL., Adiponectin

ELISA; AdipoGen Inc, Incheon, Korea). Serum lipid profile and HbA1c

level were measured by an automated analyzer (COBAS8000, Roche, Basel,

Switzerland).

2.3.4 Adipocyte size and AT histology

Adipocytes were isolated from (EPI) and (SC) fat pads by 1 mg/ml collage-

nase digestion and adipocyte size distribution was determined in 200 ml sus-

pension in a Coulter Counter (Multisizer III; Beckman Coulter, Krefeld, Ger-

many) as described [5]. Biopsies of SC and EPI AT were fixed in 10% buffered

formalin and imbedded in paraffin. Multiple sections were obtained from EPI

and SC fat pads and analyzed systematically with respect to adipocyte size

and number. The sections were stained with hematoxylin/eosin and UCP-1

(1:200, Abcam, ab10983, Cambridge, UK) immunohistochemistry was per-

formed as previously described [5].
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2.3.5 mRNA expression

Total RNA was isolated from SC and EPI AT and cDNA was subsequently

amplified as described [5]. Customized primers (Biomers, Ulm, Germany)

were used for the detection of Esr1, Ucp1, Ki67, 18Sr and L19r mRNA

(Table 1). mRNA expression was measured in a fluorescence temperature

cycler (ABI PRISM7500, Applied Biosystems, Darmstadt, Germany) and

calculated relative to 18S or L19 rRNA.

2.3.6 Western blot analyses

SC and EPI AT was removed and homogenized with tissue-mill homogenizer

(MM400Retsch GmbH, Haan, Germany) in sucrose buffer as previously de-

scribed [5] with antibodies raised against Estrogen Receptor alpha (ERα,

1:500, Abcam, ab32063, Cambridge, UK) and Uncoupling protein 1 (UCP1,

1:200, ab10983, Cambridge, UK). D-glyceraldehyde-3-phosphate dehydroge-

nase antibody (GAPDH, 1:3.000; Research Diagnostics, Flanders, Nether-

lands) served as loading control.

2.3.7 Statistical analyses

Data are given as means ± SEM. Data sets were analyzed for statistical

significance using a two-tailed unpaired t test or ANOVA. P values less than

< 0.05 were considered significant.

2.4 Results

2.4.1 Tamoxifen administration transiently affects body

composition

During the entire study course, tamoxifen administration did not affect body

weight dynamics, food intake, energy expenditure (mean oxygen consump-

tion), spontaneous activity (Fig.1A-D), CO2 production, respiratory quo-

tient, water intake (data not shown). However, tamoxifen led to an acute
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decrease in body fat mass 1 week after initiation of the treatment, which

converted into a significantly higher relative body fat mass 5 weeks after the

treatment (Fig. 1E) with reciprocal effects on lean body mass (Fig. 1F).

In contrast, there were no significant body composition changes in vehicle

treated controls (Fig. 1E and F). At 18 weeks, there was only a trend for

higher relative organ weights of both subcutaneous (SC) and epigonadal AT

of mice treated with tamoxifen (Fig. 2A and B).

2.4.2 Tamoxifen administration induces browning and

adipocyte proliferation in subcutaneous AT

In an automated adipocyte size analysis, we found that tamoxifen adminis-

tration led to a bimodal adipocyte distribution curve (Fig. 2C). Analysis of

histological AT slides confirmed a significant reduction of mean adipocyte size

in SC AT (Table 2) and the appearance of multilocular and mitochondria-

rich adipocytes. The two adipocyte size peaks may therefore represent dis-

tinct subclasses of adipocytes.We then tested the hypothesis that tamoxifen

may induce browning of SC AT. Indeed, positive UCP-1 immunostaining in

AT (SC > epigonadal) of tamoxifen treated mice, but not in controls sug-

gests a change of a subgroup of adipocytes into a more brown-like phenotype

(Fig. 2D). At the mRNA level, tamoxifen treated mice displayed significantly

higher (in SC AT) Ucp-1 expression 6 weeks after tamoxifen administration

(Fig. 2E), which could be confirmed at least as a tendency for UCP-1 protein

(Fig. 2E).

Moreover, as a marker for increased proliferation, we found significantly

higher Ki67 expression in SC AT of mice treated with tamoxifen as compared

to controls (Fig. 2F).

Tamoxifen effects on AT biology may be caused by alterations in ER

expression. Supporting this hypothesis, we found higher Estrogen Receptor-α

protein expression in tamoxifen treated compared to control mice (Fig. 2G).
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2.4.3 Tamoxifen administration induces changes in glu-

cose and lipid metabolism

6 weeks after tamoxifen administration, we found a significantly higher HbA1c

in tamoxifen compared to vehicle treated mice (Fig. 2H). This significant dif-

ference could not be explained by group differences in insulin sensitivity as

determined by ITTs at 16 weeks (data not shown), adiponectin or insulin

serum concentrations at 18 weeks (Table 2). In addition, tamoxifen admin-

istration causes significantly higher serum triglyceride and free fatty acid

concentrations (Fig. 2I and J) at 18 weeks. In contrast, total cholesterol,

HDL- and LDL-cholesterol were not different between tamoxifen and vehicle

treated mice (Table 2).
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Figure 2.1: Effects of tamoxifen on body composition and energy expenditure. (A) Body
weight change and (B) food intake were indistinguishable between Tamoxifen (Tam)
treated mice (N = 10) and controls (Con) (N = 10) over the entire study period. (C)
Mean oxygen consumption (VO2) in tamoxifen (Tam) treated (N = 4) and control mice
(N = 4) at an age of 17 weeks. (D) Spontaneous activity was estimated as sit up of
the mice on the z-axis and depicted as means over an observation period of overall 72 h.
Whole body fat mass (E) and lean mass (F) was determined in awake mice by using NMR
technology (EchoMRI700, Medical Systems, Houston, TX, USA) in control (N = 15) and
tamoxifen-treated mice (N = 15) at 11, 13, 15 and 17 weeks of age. Data are given as
means ± SEM. *, p < 0.05; **, p < 0.01).
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Figure 2.2: Effects of tamoxifen on adipose tissue biology and parameters of glucose and
lipid metabolism. Relative weight of epigonadal (A) and subcutaneous (B) adipose tis-
sue (AT) are presented relative to total body weight from control (Con; N = 16) and
tamoxifen treated (Tam; N = 16) mice. (C) Subcutaneous cell size (scAT) distribution of
adipocytes measured in a Coulter Counter (Multisizer III; Beckman Coulter, Krefeld, Ger-
many). 6 weeks after initiation of tamoxifen administration (red), adipocyte size distribu-
tion changes towards a bimodal curve and smaller mean adipocyte diameters as compared
to controls (green). The two peaks of the adipocyte size distribution curve in tamoxifen
treated mice may represent distinct cell types (beige/brite versus white adipocytes).
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Figure 2.2: (Previous page.) (D) Representative images (original magnification x200)
of UCP-1 immunohistochemistry (positive staining of the UCP-1 protein with DAB as
chromogen in brown) of epigonadal (epiAT) and subcutaneous (scAT) adipose tissue 5 mm
paraffin sections of control mice (left panels) and tamoxifen treated mice (right panels) at
an age of 18 weeks. SC adipose tissue of tamoxifen treated mice displays strongly positive
UCP-1 staining (supporting a browning effect of tamoxifen), whereas control mice in both
fat depots and epigonadal tissue of tamoxifen treated mice were UCP-1 negative. (E)
Ucp-1 mRNA analyses revealed a significantly higher expression in scAT of tamoxifen
treated mice compared to controls, whereas in epiAT there was only a non-significant
trend for higher Ucp-1 expression in tamoxifen treated mice compared to controls (n = 6
per treatment group). Representative Western blots for UCP-1 (compared to GAPDH)
of subcutaneous (sc) and epigonadal (epi) adipose tissue of control (Con) and tamoxifen
treated (Tam) mice. (F) Expression of proliferation markerKi67 was significantly higher in
scAT of tamoxifen treated (Tam; N = 6) mice compared to controls (Con; N = 6), whereas
in epiAT no significant differences could be observed. (G) Representative Western blots for
ERα compared to GAPDH of epigonadal adipose tissue of control (Con) and tamoxifen
treated (Tam) mice. Tamoxifen administration caused significantly higher (H) HbA1c,
(I) triglyceride, and (J) free fatty acids serum concentrations at 18 weeks compared to
controls (n = 18). Data are given as means ± SEM. (*, p < 0.05; ns, non-significant).
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2.1: Primer sequences used for mRNA detection.

Gene Forward Backward Acc. no

Ki67 TGAAGTCAAAGAGCAAGAGGTATGA TTCAAGTCCCCAAAGCCTGG AC 000029

Ucp1 ACTGCCACACCTCCAGTCATT TTGTCATCTACGGGCACAAAG AC 000030.1

Esr1 TCTCTGGGCGACATTCTTCT GCTTTGGTGTGAAGGGTCAT AC 000032.1

L19 GGAAAAAGAAGGTCTGGTTGGA TGCTGCTGTTCCTGTTTTC NC 000077.6
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Table 2.2: Charecterization of treatment groups. Circulating parameters of lipid and
glucose metabolism as well as parameters of adipose tissue biology at an age of 18 weeks
(N = 18). FFA, free fatty acids, epiAT, epigonadal adipose tissue, scAT, subcutaneous
adipose tissue. Data are given as means ± SEM. Data sets were analyzed for statistical
significance using a two-tailed unpaired t test (*p-value < 0.05; **p-value < 0.001)

Parameter Controls Tamoxifen p-value

Triglycerides [mmol/l] 0.94 ± 0.02 1.13 ± 0.05 **
Total cholesterol [mmol/l] 2.42 ± 0.10 2.35 ± 0.20 ns
HDL-cholesterol [mmol/l] 2.20 ± 0.10 2.06 ± 0.18 ns
LDL-cholesterol [mmol/l] 0.27 ± 0.02 0.30 ± 0.04 ns
FFA [mmol/l] 1.01 ± 0.05 1.25 ± 0.07 *
Leptin [ng/ml] 42.9 ± 8.28 36.5 ± 5.73 ns
Adiponectin [mg/ml] 68.5 ± 3.67 64.9 ± 4.22 ns
Insulin [mg/l] 1.03 ± 0.16 1.10 ± 0.11 ns
HbA1c [%] 4.36 ± 0.03 4.47 ± 0.02 **
Relative liver weight [%] 4.85 ± 0.19 4.65 ± 0.16 ns
Relative BAT weight [%] 0.37 ± 0.03 0.33 ± 0.06 ns
Mean cell size scAT [µm] 71.3 ± 1.89 62.9 ± 2.82 *
Mean cell size epiAT [µm] 84.8 ± 4.62 88.9 ± 4.11 ns
Adipocytes/mg scat (n) 341 ± 37 357 ± 50 ns
Adipocytes/mg epiAT (n) 337 ± 21 445 ± 56 ns
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2.5 Discussion

Tamoxifen has been widely used to activate Cre-recombinase that spatiotem-

porally controls target gene expression in animal models. Recently, it has

been demonstrated that tamoxifen itself may affect adipose tissue accumula-

tion and function by inducing reactive oxygen species production, apoptosis

and autophagy [6]. We confirm the observed reduction in fat mass [6], which

was transient and followed by an over-compensation resulting in increased fat

mass. The higher percentage of fat mass in Tam treated animals compared

to controls is consistent with previous research works, which suggest a neg-

ative impact of Tamoxifen on body composition, translating into increased

fat content in women who undergo this treatment [7], [8].

In addition, we identified previously unrecognized effects of tamoxifen on

browning of subcutaneous AT, adipocyte proliferation, but also tamoxifen-

associated changes in glucose and lipid metabolism. Together with the no-

tion, that tamoxifen may induce apoptosis in AT followed by a recovery phase

[6], additional changes in AT biology have to be considered which may affect

whole body glucose and lipid homeostasis even after normalization of AT

function. To check if cell proliferation is influenced we performed gene ex-

pression analysis of proliferation marker Ki67 [9]. Expression levels of Ki67

were significantly increased in subcutaneous AT of Tam treated animals com-

pared to controls. This finding suggests that Tamoxifen injection promotes

cellular division in subcutaneous AT, which could be another evidence of

brown adipocyte proliferation.

We could confirm that Tamoxifen induced up-regulation of ERα which

was obtained by previous studies on the reproductive system: Tam treatment

was associated with up-regulation of ERα in seminal vesicles of neonatal male

rats [10] and in the uterus and vagina of neonatal and ovariectomized adult

mice [11]. These results suggest that Tamoxifen up-regulates ERα expression

by increasing promoter activity of the ERα gene (Ers1) at the transcriptional

level [12].

Furthermore, Tam treated animals showed increased serum levels of trigly-

cerides and free fatty acids compared to control animals. Serum HDL, LDL
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and total cholesterol levels were comparable between the two groups, in spite

of what was shown by previous investigations [13], [14]. Higher levels of

serum triglycerides and free fatty acids might be a direct consequence of the

conversion from white to beige adipocytes, because as known from litera-

ture lipid droplets of brown and beige adipocytes are smaller and scattered

throughout. An important limitation of our study is that data presented

herein only reflect the time up to 6 weeks after tamoxifen administration

and long-term effects have not been evaluated.

Taken together, the observed effects of tamoxifen on AT biology and cir-

culating parameters of glucose and lipid metabolism may confound the func-

tional study of target genes in adipose tissue. Therefore, we propose that

experiments using the CreER tamoxifen-induced system to generate trans-

genic mice should include appropriate tamoxifen-treated wildtype controls.
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3.1 Abstract

Replication initiator 1 (Repin1) is a zinc finger protein playing a role in in-

sulin sensitivity, body fat mass and lipid metabolism by regulating the expres-

sion key genes of glucose and lipid metabolism. Here, we tested the hypoth-

esis that introgression of a Repin1 deletion into db/db mice improves glucose

metabolism in vivo. We generated a whole body Repin1 deficient db/db dou-

ble knockout mouse (Rep1−/−x db/db) and systematically characterized the

consequences of Repin1 deficiency on insulin sensitivity, glucose and lipid

metabolism parameters and fat mass. Hyperinsulinemic-euglycemic clamp

studies revealed significantly improved insulin sensitivity in Rep1−/−x db/db

mice, which are also characterized by lower HbA1c, lower body fat mass and

reduced adipose tissue (AT) inflammation area. Our study provides evidence

that loss of Repin1 in db/db mice improves insulin sensitivity and reduces

chronic hyperglycemia most likely by reducing fat mass and AT inflamma-

tion.

3.2 Introduction

Replication initiator 1 (Repin1) is a polydactyl zinc finger protein organized

in three clusters with a mass of 60 kDa [1], [2], [3]. The gene is located in

humans on chromosome 7, in mice on chromosome 6 and on chromosome

4 in rats [4]. Repin1 was first described as an origin specific DNA binding

protein, which acts as an enhancer of DNA bending of the Chinese hamster

dihydrofolate (dhfr) gene due to replication. It binds to two ATT-rich sites

in oriβ, a short region 3’ to the dhfr gene [1], [2]. As the case for many other

zinc finger proteins, the cellular localization and function of Repin1 remains

elusive.

Recently, we demonstrated that replication initiator 1 (Repin1) plays a

role in the modulation of insulin sensitivity, fat accumulation, glucose and

lipid metabolism by regulating the expression of key molecules involved in

these processes [5], [6], [7]. Moreover, REPIN1 mRNA expression in human

adipose tissue is significantly associated with adipocyte size and parameters
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of glucose metabolism [7]. To further investigate the role of Repin1 in glu-

cose homeostasis, we generated a Repin1 deficient db/db knockout mouse

model Rep1−/−x db/db and systematically characterized the consequences

of Repin1 deficiency on insulin sensitivity, glucose and lipid metabolism pa-

rameters and fat mass.

3.3 Material and methods

3.3.1 Animals

All animal studies were approved by the local authorities of the state of

Saxony, Germany as recommended by the responsible local animal ethics

review board (Landesregierung Leipzig, TVV21/14, T01/13, Germany). All

mice were housed in pathogen-free facilities in groups of three to five at

22 ± 2 ◦C on a 12-h light/dark cycle in our animal facility at the University of

Leipzig. Animals were fed a standard chow diet and had ad libitum access to

water at all times and food was only withdrawn if required for an experiment.

3.3.2 Generation of whole body Repin1 (Rep1−/−) de-

ficiency in db/db knockout mice

The Repin1 gene was inactivated using conditional gene targeting strategies

as previously described [5]. Mice with loxP -flanked Rep1 allele (Rep1f lox/f lox)

were crossed with mice expressing a Cre-recombinase gene under the tran-

scriptional control of a human cytomegalovirus (CMV) minimal promoter

(B6.C-Tg(CMVcre)1Cgn/J; stock#006054 from Jackson Laboratory).

Rep1−/− mice were crossed with db/+ mice (BKS.Cg-m+/+Lepr db/Bom/

Tac; #0709F3, Taconic) to generated double knockout mice (Rep1−/−x db/db).

Genotyping was performed by PCR using genomic DNA isolated from the tail

tip. Genotyping PCR was performed as previously described [5]. Knockdown

efficiency was determined as by RT-PCR and Western Blot as previously de-

scribed [5].
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3.3.3 Phenotypic characterization

Eight male and female mice of each genotype (Rep1−/−x db/db and control

db/db littermates) were studied from the age of 6 up to 20 weeks. Body weight

was recorded weekly; whole body composition (Echo Medical Systems, Hous-

ton, TX, USA) was measured once at the end of 20 weeks. At an age of 20

weeks organs (liver, epigonadal, subcutaneous AT) were weighed and relative

organ mass was calculated, blood was taken for measuring HbA1c levels, and

serum was collected for measurements of free fatty acids (FFA), total choles-

terol, triglycerides, HDL-cholesterol, insulin, c-peptide, leptin, adiponectin

and monocyte chemotactic protein (Mcp1) as previously described [5].

3.3.4 Hyperinsulinemic-euglycemic clamp studies

In a subgroup of 6 animals per genotype, hyperinsulinemiceuglycemic clamps

were performed as described previously at an age of 20 weeks [8], [9]. Briefly,

catheters were implanted in the left jugular vein and clamps started after an

overnight fast. A 120 min hyperinsulinemic-euglycemic clamp was conducted

with a continuous infusion of human insulin at a rate of 60 mU/kg/min. In-

sulin is infused at a constant rate resulting in a drop in blood glucose. To

maintain blood glucose at a constant level, exogenous glucose (D20%) is in-

fused into the circulation. Variable glucose infusion rate (GIR) is determined

by measuring blood glucose at brief intervals throughout the experiment and

adjusting the GIR accordingly. GIR was calculated as mg/kg/min.

3.3.5 Histology and immunohistochemistry

For evaluation of AT inflammation subcutaneous AT and visceral AT were

fixed, paraffin embedded, sectioned and HE stained as described before [10].

Immunohistochemical staining of F4/80 was performed. Antigen retrieval

in citrate buffer (pH 6.0) was applied using a microwave and sections were

incubated with anti-F4/80 (1:200; Abcam; ab6640) overnight. Next day,

after buffer rinses, appropriate biotin-coupled secondary antibody (1:200;

Vector- Laboratories, Wertheim-Bettingen, Germany) was applied for 2 h
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at RT. Binding of the primary antibody was visualized using an avidinebi-

otin (ABC) kit (Vector-Laboratories) with DAB as chromogen according to

the manufacturer’s instructions. For analysis of crown-like structure (CLS)

density, five images of visceral AT were taken from each mouse at a 200-

fold magnification. Number of CLS and number of adipocytes were counted

blinded to the investigator. CLS density is presented as the ratio of CLS per

100 adipocytes. In addition, the area of inflammatory infiltrates identified

in HE stained sections was measured and related to entire tissue area using

ImageJ software v. 1.47 [11].

3.3.6 Statistical analysis

Data are given as means ± SD. Data sets were analyzed for statistical signif-

icance using a students t-test. P values < 0.05 were considered significant.

3.4 Results

3.4.1 Generation of whole body deletion of Repin1 in

db/db mice (Rep1−/−x db/db)

In order to generate whole body deletion of Repin1 in db/db mice, db/+ mice

homozygous for the loxP-flanked Rep1 allele (Rep1f lox/f lox) were crossed

with mice expressing a Cre-recombinase gene under the transcriptional con-

trol of a human cytomegalovirus (CMV) minimal promoter. Efficiency and

specificity of the Repin1 knockout were examined in tissue from db/db and

Rep1−/−x db/db by qPCR and Western blot analyses (Fig. 1a-b). Western

blot and qPCR analysis confirmed a reduced Repin1 expression by ∼70-80%

(Fig. 1a).
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3.4.2 Growth, fat mass and tissue mass of double knock-

outs (Rep1−/−x db/db)

Compared with db/db, Repin1 deficient db/db mice gained significantly less

body weight starting at 8 weeks of age up to an age of 20 weeks (Fig. 1c-d).

At an age of 20 weeks, Rep1−/−x db/db mice have a ∼10% lower (p < 0.05)

body fat mass compared to db/db mice (Fig. 1e). Repin1 deficiency did not

have a significant influence on body length, relative liver weight (data not

shown) and daily food intake (Fig. 1f).

3.4.3 Repin1 deficiency improves insulin sensitivity

Hyperinsulinemic-euglycemic clamp studies revealed significantly higher

whole body insulin sensitivity in Rep1−/−x db/db compared to db/db mice

(Fig. 1h). At the steady state, glucose infusion rate was ∼20% higher in

Repin1 deficient db/db mice (Fig. 1h). Moreover C-peptide and blood glu-

cose levels were significantly reduced in Rep1−/−x db/db compared to db/db

(Table 1). Compared to db/db mice, Rep1−/−x db/db have significantly

lower HbA1c levels (Fig. 1g). Noteworthy, circulating parameters of lipid

metabolism as well as leptin and adiponectin serum concentrations were not

affected by the reduction of Repin1 expression in db/db mice (Table 1).

3.4.4 Repin1 deficiency causes reduced inflammatory

infiltrates in AT

We detected inflammatory infiltrates, mainly consisting of polymorphonu-

clear neutrophils, in AT of all db/db mice, whereas inflammatory infiltrates

were almost absent in Rep1−/−x db/db mice (Fig. 1k-l). However, density

of crown like structures, mainly consisting of macrophages, was similar in

Rep1−/−x db/db compared to control mice (Fig. 1i-j). Interestingly, circu-

lating Mcp1 levels were significantly reduced in Rep1−/−x db/db compared

to db/db mice (Table 1).
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Figure 3.1: Phenotype of Repin1 deficient db/db mice. (a) Knockdown efficiency on
Repin1 mRNA level in different tissues of Rep1−/−x db/db mice (N = 8) and db/db
controls (N = 8). (b) Representative Repin1 protein level (c, d) Growth phenotype of
Rep1−/−x db/db mice (N = 8) and db/db littermate controls (N = 8) up to an age
of 20 weeks was determined. Rep1−/−x db/db mice are significant lighter at an age of
16 weeks (a, male) and 8 weeks (b, female) up to an age of 20 weeks.
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Figure 3.1: (Previous page.) (e) Whole body fat mass was determined in awake male
mice by using nuclear magnetic resonance technology with EchoMRI700 instrument (Echo
Medical Systems, Houston, TX, USA) in control db/db and Rep1−/−x db/db mice at
20 weeks of age. Data are presented as percentage of total body fat from body weight.
Results are expressed as means ± SE from at least 4 animals per genotype and time
point. (f) Food intake was not affected at an age of 16 weeks. The daily food intake
was calculated as the average intake of chow over a period of one week. Results are
expressed as means ± SE from at least 4 male animals per genotype. (g) Significant lower
HbA1c (%) levels in male Rep1−/−x db/db mice (N = 8) compared to controls (N = 8)
at an age of 20 weeks. Results are expressed as means ± SE. (h) Glucose infusion rate
(GIR) during a hyperinsulinemic-euglycemic clamp was increased in male Rep1−/−x db/db
mice (N = 6) and db/db littermate controls (N = 6) at an age of 20 weeks. GIR was
calculated as mg/kg/min. Results are expressed as means ± SE. (i,j) Histological images of
representative epigonadal AT slights and quantification (k,l) of crown like structures (CLS)
areas and macrophages (F4-80antibody) from male db/db and Rep1−/−x db/db mice at
an age of 20 weeks. For analysis of CLS density, five images of visceral AT were taken
from each mouse at a 200-fold magnification. Number of CLS and number of adipocytes
were counted blinded to the investigator. CLS density is presented as the ratio of CLS
per 100 adipocytes. Area of inflammatory infiltrates identified in HE stained sections
was measured and related to entire tissue area. The different degrees of significance was
indicated as follows in the graphs-*P < 0.05; **P < 0.01; ***P < 0.001. All results are
expressed as means ± SE.

Table 3.1: Phenotype of Repin1 deficient db/db male mice at an age of 20 weeks. Signifi-
cant different at p < 0.05 level, results indicate mean ± SD.

db/db Rep1−/−x db/db
N = 8 N = 8

Triglyceride [mmol/l] 2.8 ± 1.0 1.9 ± 1.1
Total cholesterol [mmol/l] 4.7 ± 1.3 5.7 ± 1.1
HDL-cholesterol [mmol/l] 3.7 ± 0.9 3.8 ± 1.4
FFA [mmol/l] 2.8 ± 0.7 2.4 ± 0.8
Blood glucose [mmol/l] 20.1 ± 4.2 13.1 ± 8.0*
Fasting blood glucose [mmol/l] 15.2 ± 4.8 9.4 ± 4.9*
Adiponectin [ng/ml] 36 ± 13 33 ± 6
Insulin [µg/l] 4.9 ± 2.6 4.8 ± 2.7
C-peptid [nM] 5.5 ± 0.2 4.8 ± 0.6*
Leptin [ng/ml] 68 ± 24 75 ± 25
Mcp1 [pg/ml] 416 ± 92 274 ± 85*
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3.5 Discussion

We demonstrate that Repin1 deletion significantly improves insulin sensitiv-

ity and chronic hyperglycemia in db/db mice. These beneficial effects of re-

duced Repin1 are most likely mediated by reduced fat mass and significantly

lower inflammatory infiltrates areas in AT of Rep1−/−x db/db compared to

db/db mice. Chronic inflammation of AT as well as chronic circulating in-

flammation [12] has been shown to play a crucial role in the development

of obesity-associated insulin resistance [13]. Neutrophils secrete several pro-

teases, one of which is neutrophil elastase, which can promote inflammatory

responses in several disease models [14]. Furthermore reduced circulating

levels of Mcp1 may contribute to beneficial effects. One possibility is that

absence of Repin1 generates signals that restricts against AT inflammation.

Taken together, our findings indicate that alterations in Repin1 expression

may contribute the pathogenesis of AT inflammation, insulin resistance and

subsequent impairment of glucose homeostasis.
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4.1 Abstract

Replication initiator 1 (Repin1) is a zinc finger protein highly expressed in

liver and adipose tissue and maps within a quantitative trait locus (QTL)

for body weight and triglyceride (TG) levels in the rat. The QTL has fur-

ther been supported as a susceptibility locus for dyslipidemia and related

metabolic disorders in congenic and subcongenic rat strains. Here, we elu-

cidated the role of Repin1 in lipid metabolism in vivo. We generated a

liver-specific Repin1 knockout mouse (LRep1−/−) and systematically char-

acterized the consequences of Repin1 deficiency in the liver on body weight,

glucose and lipid metabolism, liver lipid patterns, and protein/mRNA ex-

pression. Hyperinsulinemic-euglycemic clamp studies revealed significantly

improved wholebody insulin sensitivity in LRep1−/− mice, which may be

due to significantly lower TG content in the liver. Repin1 deficiency causes

significant changes in potential downstream target molecules including Cd36,

Pparγ, Glut2 protein, Akt phosphorylation, and lipocalin2, Vamp4, and

Snap23 mRNA expression. Mice with hepatic deletion of Repin1 display

secondary changes in adipose tissue function, which may be mediated by al-

tered hepatic expression of lipocalin2 or chemerin. Our findings indicate that

Repin1 plays a role in insulin sensitivity and lipid metabolism by regulating

key genes of glucose and lipid metabolism.

4.2 Introduction

Previously, we identified a quantitative trait locus (QTL) for body weight,

serum fasting insulin, and triglycerides (TGs) on rat chromosome 4 [1], [2],

[3]. Replication initiator 1 (Repin1) emerged as a potential positional candi-

date gene within the QTL region considering associations of metabolic alter-

ations in rats with a single nucleotide polymorphism (449C/T) in the Repin1

coding region and with the size of a triplet repeat in the 3’-untranslated region

of the Repin1 gene [4]. Repin1 was initially discovered as replication initi-

ation region protein 60 kDa (RIP60) in a study investigating DNA binding

proteins involved in replication activation of the Chinese hamster dihydrofo-
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late reductase gene (dhfr) [5]. Repin1 binds to two ATT-rich sites in orib,

a short region 39 to the dhfr gene, acting as an enhancer of DNA bending

during initiation of DNA synthesis [6], [7]. Plasmid replication assays demon-

strated only weak replication enhancing activity, and thus Repin1 may act

as an accessory factor in origin recognition prior to the assembly of preini-

tiation complexes [8]. After it was first cloned in 2000, characterization of

DNA binding and bending properties revealed the first structural insight into

Repin1/RIP60 function as a polydactyl zinc finger protein of the Cys2-His2

type [8].

Repin1 is ubiquitously expressed with the highest expression levels in

adipose tissue and the liver [4]. Moreover, hepatic expression levels of Repin1

are significantly associated with genotype and serum lipid profiles of different

rat strains [4]. Recently, we showed that Repin1 plays a role in the regulation

of lipid accumulation in 3T3-L1 adipocytes as knockdown of Repin1 by small

interfering RNA (siRNA) resulted in reduced palmitate uptake and altered

mRNA expression of fatty acid transporter Cd36 and genes involved in lipid

droplet formation (Vamp4 and Snap23 ), adipogenesis, and glucose transport

[9]. A balance between storage and release of lipids by adipose tissue is

essential for maintenance of normal energy homeostasis and prevention of

ectopic lipid accumulation in peripheral tissues, such as liver, pancreas, or

skeletal muscle [10].

Based on our previous findings, we hypothesize that Repin1 is involved

in glucose homeostasis and hepatic lipid storage and may contribute to alter-

ations in glucose homeostasis and lipid metabolism associated with obesity.

We therefore tested the in vivo consequences of Repin1 gene disruption in

mice with a liver-restricted, Cre-loxP -mediated Repin1 deletion (LRep1−/−).

4.3 Research Design and Methods

4.3.1 Animal Studies

All animal studies were approved by the local authorities of the state of

Saxony, Germany, and of Mecklenburg-West Pomerania, Germany, as rec-
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ommended by the responsible local animal ethics review board (Regierungs-

präsidium Leipzig, TVV20/08, T02/13, TVV15/14, and Rostock LALLF

M-V/TSD /7221.3-1.1-099/12, Germany). All mice were housed in pathogen-

free facilities in groups of three to five at 22 ± 2 ◦C on a 12-h light/dark cycle.

Animals were bred and kept in the animal laboratories at the University of

Leipzig and were fed a standard chow diet (Altromin GmbH, Lage, Ger-

many). A subgroup of eight LRep1−/− and eight wild-type (WT) mice were

kept on a high-fat diet (HFD) containing 55.2% of calories from fat (C1057;

Altromin). Animals had ad libitum access to water at all times, and food

was only withdrawn if required for an experiment.

4.3.2 Generation of LRep1−/− Mice

The Repin1 gene in the liver was inactivated using conditional gene-targeting

strategies. Floxed LRep1−/− mice were generated by Artemis Pharmaceuti-

cals (Köln, Germany). Exon 2 was flanked by loxP sites, and two positive

selection markers were used in order to increase corecombination frequency

of both loxP sites (Fig. 1A). The selection markers are flanked by frt (Neo)

or F3 sites (Puro). The conditional knockout (KO) occurs after in vivo Flp-

mediated removal of selection markers and constitutive KO by Cre-mediated

deletion of exon 2. The deletion of exon 2 resulted in loss of function by

removing the complete open reading frame.

4.3.3 Vector Construction ET (SIS17)

Mouse genomic fragments were ET subcloned using RP23 BAC library and

recloned into the basic targeting vector harboring the indicated features.

Mice homozygous for the loxP-flanked Rep1 allele (Rep1f lox/f lox) were crossed

with mice expressing a Cre recombinase under control of the albumin (Alb)

promoter (C57BL/6-TgN(AlbCre) 21Mgn, stock 003574; The Jackson Lab-

oratory). In the liver, Cre recombinase mediates the deletion of all floxed

alleles. LRep1 mice were on C57BL/6N background.
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4.3.4 Molecular Characterization and Genotyping of

LRep1AlbCre Mice

Genotyping was performed by PCR using genomic DNA isolated from the tail

tip. Genomic DNA was prepared by using the DNeasy Kit (Qiagen, Hilden,

Germany). The following two primer pairs were used to genotype LRep1 loxP

sites: 5’-CCCAACACTGATTACAGATCC-’3 (forward) and 5’-GTGGGA

TCAGATAGAACTTAGC-’3 (reverse) as well as the AlbCre recombinase

5’-GCGGTCTGGCAGTAAAAACTATC-’3 (forward) and 5’-GTGAAACAG

CATTGCTGTCACTT-’3 (reverse). PCR was performed for 35 cycles of

95 ◦C (loxP sites) or 94 ◦C (AlbCre), 60 ◦C (30 s, loxP sites), or 51 ◦C (60 s,

AlbCre) and 72 ◦C (60 s each) using the Fermentas DreamTaq Polymerase

(Fermentas GmbH, St. Leon-Rot, Germany) and a Peltier Thermal Cycler

PTC-200 (Bio-Rad, Hercules, CA). DNA from WT mice produced a 292-bp

band, and a 484-bp band was detected in LRep1AlbCre lox mice.

4.3.5 Phenotypic Characterization

Twelve male mice of each genotype (LRep1−/− and control litter-

mates [Rep1f lox/f lox, Rep1f lox/+, and WT]) were studied from the age of

6 weeks up to 40 weeks. Body weight was recorded weekly, and body length

(naso-anal length) was measured once at an age of 32 weeks (n = 10 per

genotype).

Intraperitoneal glucose tolerance tests (GTTs) and insulin tolerance tests

(ITTs) were performed in males at the age of 12, 24, and 40 weeks as de-

scribed previously [11]. In brief, GTT was performed after an overnight fast

of 14 h by injecting 2 g glucose per kg body weight into LRep1−/− and lit-

termate controls. Blood samples for glucose measurements were taken at

different time points after 0, 15, 30, 60, and 120 min as described previously

[11].

ITT was performed in random-fed animals by injecting 0.75 units/kg

body weight human regular insulin (40 units Insuman Rapid; Sanofi, Frank-

furt/Main, Germany). Glucose levels were determined in blood collected
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from tail tip immediately before and 15, 30, and 60 min after the intraperi-

toneal injection.

Indirect calorimetry was assessed by a calorimetry module (CaloSys V2.1;

TSE Systems, Bad Homburg, Germany) at an age of 30 weeks. After 2 h of

acclimatization, mean oxygen consumption (VO2) as well as spontaneous ac-

tivity (XYZ cage movement) and ability to run on a treadmill were recorded

for 72 h. At an age of 16 weeks, a subgroup of 20 (n = 10 per genotype) mice

underwent a food intake measurement over a time period of 1 week. The

daily food intake was calculated as the average intake of chow within the

time stated. Rectal body temperature was measured at an age of 32 weeks.

Wholebody composition (fat mass, lean mass, and total body water) was de-

termined in awake mice by using nuclear magnetic resonance technology with

EchoMRI-700 instrument (Echo Medical Systems, Houston, TX) in control

and LRep1−/− mice at 3, 8, 16, 24, and 80 weeks of age. At least four an-

imals per genotype and time point were measured. Data were analyzed by

the manufacturer’s software.

Mice were killed at the age of 32 weeks by an overdose of anesthetic

(isoflurane; Baxter, Unterschleißheim, Germany). Liver, heart, brain, lung,

spleen, pancreas, kidney, muscle, and subcutaneous (SC) and epigonadal

adipose tissue (Epi) were immediately removed. The organs (liver, brown

adipose tissue [BAT], and Epi) were weighed, and organ mass was related to

whole-body mass to obtain relative organ weights.

4.3.6 Analytical Procedures

Blood glucose values were determined from wholeâ“venous blood samples

using an automated glucose monitor (FreeStyle Mini; Abbott GmbH, Lud-

wigshafen, Germany). Insulin, leptin, and adiponectin serum concentrations

were measured by ELISA using mouse standards according to the manu-

facturer’s guidelines (Mouse/Rat Insulin ELISA and Mouse Leptin ELISA;

Crystal Chem Inc., Downers Grove, IL; and Mouse Adiponectin ELISA;

Adipogen International, Incheon, Korea). Serum concentrations of alanine

aminotransferase (ALT), aspartate aminotransferase (AST), Alb, free fatty
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acids (FFAs), TGs, LDL cholesterol, and HDL cholesterol were analyzed

by an automatic chemical analyzer in our Institute of Laboratory Medicine

and Clinical Chemistry. Serum glycerol concentration was measured using

Adipolysis Assay Kit (Merck Millipore, Billerica, MA) in male LRep1−/−

and controls at an age of 30 weeks.

4.3.7 Hyperinsulinemic-Euglycemic Clamp Studies

Catheters were implanted in the left jugular vein and hyperinsulinemic-

euglycemic clamps of six males of each genotype were performed at the age

of 20 weeks. Clamp was performed as described previously [12], [13], [14].

4.3.8 Liver Lipidomics

Lipids were extracted from mouse hepatocytes using the Folch et al. [15]

protocol with minor modification [16]. Molecular lipid species were identi-

fied and quantified using LipidXplorer software [17] developed by MPI CBG

(Dresden, Germany). Species were quantified by comparing the intensities of

their peaks to peaks of spiked internal standards; lipid quantities determined

in individual samples were normalized by the total protein content deter-

mined by Bradford assay. Cholesterol was quantified as previously described

[18].

4.3.9 RNA Isolation and Quantitative Real-Time PCR

Analysis

RNA isolation and quantitative real-time PCR were performed as previously

described [11]. mRNA expression of genes listed in Supplementary Table 3

was determined. Specific mRNA expression was calculated relative to 18s

RNA, which was used as an internal control due to its resistance to glucose-

dependent regulation [19].



Chapter 4 79

4.3.10 In Vivo Lipogenese in Liver, In Vivo VLDL

TG Production, and Fat Load Test

In vivo lipogenesis was performed as previously described in detail [20], [21].

To measure hepatic TG production rate, mice were intraperitoneally injected

with Poloxamer 407 (p407; Sigma-Aldrich) in saline ∼4 h into the light cy-

cle, and plasma TG was measured over a 4 h period as described elsewhere

[22]. At an age of 16 weeks, after an overnight fast, 200 mL olive oil was

administrated by intragastic gavage feeding tube. Blood samples were taken

by submandibular bleeding at 0, 1, 2, 3, and 4 h after fat load for TG mea-

surements. Eight male mice per genotype were studied.

4.3.11 Ex Vivo Glucose Transport, Ex Vivo Lipolysis,

and Palmitate Uptake Into Adipocytes

The determination of glucose transport, lipolysis, palmitate uptake, and

adipocyte size distribution was performed as previously described [9], [23].

4.3.12 Western Blot Analysis

For Western blot analysis, tissues were removed and homogenized in homoge-

nization buffer with tissue-mill homogenizer (MM 400; Retsch GmbH, Haan,

Germany), proteins were isolated using standard techniques, and Western

blot analysis was performed with antibodies raised against Repin1 (N-20,

1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA), Pparγ (1:100, #351540;

Antikörper Online), Irs1 and pIrs1 (1:1,000; Cell Signaling Technology), Akt

and pAkt (1:1,000; Cell Signaling Technology), Glut2 (1:200, ab85715, Ab-

cam, Cambridge, U.K.), Pparγ (1:1,000; Cell Signaling Technology), ACC

(1:1,000; Cell Signaling Technology), lipocalin2 (Lcn2) (1:1,000; Abcam),

Cd36 (1:500; Antibodies Online), and GAPDH antibody (1:3,000; Research

Diagnostics, Flanders, Netherlands) as loading control. For Cd36 protein

detection, supernatant was centrifuged at 100,000g for 45 min at 4 ◦C. To

get the membrane and cytosol fractions, the pellet was suspended in ice-cold

sucrose buffer and taken to Cd36 analysis in Western blot.
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4.3.13 Insulin Signaling

Mice were anesthetized by intraperitoneal injection, and adequacy of the

anesthesia was ensured by loss of pedal reflexes. The abdominal cavity of

the mice was opened, and 125 µL samples containing 5 units regular human

insulin diluted in 0.9% saline were injected into the vena cava inferior. Sham

injections were performed with 125 µL of 0.9% saline. Samples of liver tissue

were harvested 10 min after injection, respectively, and proteins (Akt, pAkt,

Irs1, and pIrs1) were extracted from tissues for Western blot analysis.

4.3.14 Liver Affymetrix GeneChip Analysis

RNA from liver samples of three male WT and three male LRep1−/− mice

was used for microarray RNA analysis. Analysis of RNA integrity and RNA

concentration as well as probe synthesis, hybridization, and scanning was

performed as previously described [24].

4.3.15 Histology and Immunohistochemistry

Histology and immunohistochemistry were performed as previously described

[23], [25].

4.3.16 Statistical Analysis

Data are given as means ± SE. Data sets were analyzed for statistical signif-

icance using a two-tailed unpaired Student t test or Mann-Whitney U test.

P values < 0.05 were considered significant.

4.4 Results

4.4.1 Generation of LRep1−/− Mice

In order to generate LRep1−/− mice, mice homozygous for the loxP -flanked

Rep1 allele (Rep1f lox/f lox) were crossed with mice expressing the Cre re-

combinase under control of the liver-specific Alb promoter. The targeting
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strategy is shown in Fig. 1A. LRep1−/− mice obtained with the expected

Mendelian frequency were fertile. Efficiency and specificity of the Repin1

KO were examined in tissue lysates from control and LRep1 mice by West-

ern blot analyses (Fig. 1B and C). Western blot analysis of liver lysates

from LRep1−/− mice confirmed reduced Repin expression by ∼85% in livers

(Fig. 1C). Since the Cre recombinase is only active in hepatocytes, and since

hepatocytes make up ∼85% of the total number of cells in the liver, it is

likely that the minimal Repin1 protein in LRep1−/− mice is derived from

vascular endothelial cells, Kupffer cells, and other nonparenchymal cells. Im-

munohistochemistry of Repin1 in the liver was performed to test whether

nonparenchymal cells are responsible for the remaining Repin1 expression in

LRep1−/− mice. The immunohistochemical images of the liver of LRep1−/−

mice demonstrate the absence of Repin1 in hepatocytes but positive Re-

pin1 staining for endothelial cells, Kupffer cells, and hepatic stellate cells

(Fig. 1D). In contrast, hepatocellular cytoplasm of WT mice showed posi-

tive staining for Repin1 (Fig. 1D). Repin1 expression in all other tissues was

indistinguishable between LRep1−/− and control littermates (Fig. 1B).

4.4.2 Growth, Tissue Mass, and Energy Expenditure

of LRep1−/− Mice

LRep1−/− mice had normal body weight compared with control littermates

(Rep1f lox/f lox, LRep1−/+, andWT) up to an age of 28 weeks when LRep1−/−

mice become significantly leaner with significantly less total body fat content

up to an age of 40 weeks (Fig. 1E and F). This may be due to significantly

higher VO2 consumption and spontaneously higher activity (z-axis day) in

LRep1−/− mice (Fig. 1G-I). Homozygous deficiency of Repin1 had no signif-

icant influence on body length (Supplementary Fig. 4A), daily food intake

(Supplementary Fig. 4B), or relative tissue weights of livers (WT, 5.2%;

LRep12/2, 5.3%).
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4.4.3 Repin1 Deficiency in Liver Improves Insulin Sen-

sitivity

To further investigate the role of Repin1 on glucose homeostasis, we charac-

terized the physiological consequences of reduced liver Repin1 expression on

insulin action and glucose metabolism. Hyperinsulinemic-euglycemic clamp

studies revealed significantly higher whole-body insulin sensitivity in

LRep1−/− compared with control mice (Fig. 2A). At the steady state, glucose

infusion rate (GIR) was ∼60% higher in LRep1−/− compared with control

mice (Fig. 2A). LRep1−/− mice showed a higher rate of hepatic glucose pro-

duction during the basal period as compared with control animals (Fig. 2B),

whereas insulin suppressed hepatic glucose production significantly better in

LRep1−/− (-98%) compared with control mice (-51%) (Fig. 2C). Circulat-

ing insulin concentrations achieved in the steady state of the clamp were

not significantly different between WT (9.1 ± 1.4 ng/mL) and LRep1−/−

(8.3 ± 1.6 ng/mL) mice.

In addition, we monitored blood glucose, insulin, as well as adiponectin

serum concentrations (Table 1) and performed serial GTTs and ITTs over an

age range from 12 to 40 weeks (Fig. 2D and E and Supplementary Fig. 4C

and D). Independent of age, intraperitoneal GTTs revealed normal glucose

tolerance in LRep1−/− mice (Fig. 2D). At an age of 24 weeks, LRep1−/−

mice showed significantly improved insulin sensitivity compared with controls

(Fig. 2E), which was even more pronounced at a higher age (Fig. 2F-H).

Significantly lower HbA1c level confirmed the long-term glucose metabolism

in LRep1−/− compared with control mice (Fig. 2I). Moreover, insulin secre-

tion in response to the intraperitoneal glucose load in 40-week-old LRep1−/−

mice showed an improved insulin secretion response to glucose reflected by a

higher insulin peak at 15 min and a faster decline in insulin serum concen-

trations than in controls (Fig. 2G).

Taken together, reduced Repin1 expression in liver results in improved

whole-body insulin sensitivity, subsequently contributing to better glycemic

control in LRep1−/− mice.
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4.4.4 Repin1 Affects Insulin Signaling in the Liver

We further sought to investigate the consequences of disrupted Repin1 in

the liver and improved insulin sensitivity by analyzing key insulin signaling

molecules in livers of LRep1−/− and control mice after insulin stimulation.

Supporting a role of Repin1 in the regulation of hepatic insulin sensitiv-

ity at the molecular level, we find a significant upregulation of phosphory-

lated Akt and Pparγ expression in LRep1−/− compared with control mice

(Fig. 3A). These molecular changes may underlie significantly higher Glut2

expression (Fig. 3A), which may explain higher basal glucose uptake in

the hyperinsulinemic-euglycemic clamp in LRep1−/− compared with control

mice.

4.4.5 Liver-Specific Repin1 Deficiency Leads to Dys-

lipidemia, Altered Liver Lipid Transport/Storage,

and Liver Lipidomic Profile

To determine the physiological consequences of reduced liver tissue Repin1

expression, we monitored total serum cholesterol, TG serum concentrations,

FFA, and liver function tests such as circulating serum ALT, AST, glutamate

dehydrogenase (GLDH), and Alb concentrations. Fasted TGs and FFAs

were significantly higher in LRep1−/− mice at an age of 32 weeks (Table 1).

ALT, AST, and Alb were not affected by Repin1 KO, suggesting that lack of

Repin1 has no adverse effect on liver function (Table 1). Also hematoxylin-

eosin (H-E) staining of control and LRep1−/− mice showed normal hepatic

architecture without signs of hepatocyte injury (Fig. 3D and Supplementary

Figs. 2 and 3).

Liver lipidomics analyses revealed significantly lower liver content triacyl-

glycerides (TAGs) in LRep1−/− compared with control mice (Table 2). The

amount of TAGs in liver was significantly decreased in LRep1−/− mice by

∼40% compared with controls (Table 2 and Fig. 3C). Hepatic cholesterol

and cholesterolester were unchanged (Table 2). Lower lipid accumulation in

the liver of LRep1−/− mice may at least in part explain improved whole-body
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insulin sensitivity in these mice.

To identify potential mechanisms underlying reduced TG storage in the

liver and elevated circulating TGs and FFAs in LRep1−/− mice, we exam-

ined hepatic expression of fatty acid transporters Cd36, Fatp1, Fatp2, Fatp4,

and carnitine palmitoyltransferase 1 (Ctp1 ) as the first component and rate-

limiting step in β-oxidation and Cpt2 (Supplementary Table 3). We per-

formed in vivo VLDL production assays, in vivo lipogenesis, and oral fat

load tests. Injection of p407 resulted in a linear increase in serum TG con-

centration without significant differences between both experimental groups,

which suggests no influence of hepatic VLDL synthesis on altered lipid con-

tent in LRep1−/− mice (Fig. 3G). Further, to investigate de novo lipogenesis,

we injected mice both with tritiated water and [U-14C]-glucose (Fig. 3J).

Total rate of hepatic fatty acid synthesis was comparable between controls

and LRep1−/− mice, and the incorporation of [U-14C]-glucose into de novo

fatty acids was similar as well (Fig. 3I and J). Expression of a key lipogenic

enzyme, ACC (pACC), was not changed in livers of LRep1−/− mice com-

pared with littermate controls (Fig. 3K). Cd36 was significantly reduced in

LRep1−/− mice by ∼50% at both protein and mRNA levels (Fig. 3E and

F).

4.4.6 LRep1−/− Mice Are Protected Against Develop-

ment of HFD-Induced Adipocyte Hypertrophy

In a subgroup of eight animals of each genotype, we performed an HFD

study starting at 6 weeks of age until 16 weeks of age. Weight gain after

HFD was not different between all groups (Fig. 4A). Relative liver weight

was slightly reduced in LRep1−/− mice compared with controls (data not

shown). Also ALT and AST as well as Alb levels did not differ among geno-

types (data not shown), and Epi mass was comparable between LRep1−/−

and control mice (data not shown). Despite indistinguishable relative adipose

tissue mass, LRep1−/− mice showed decreased maximal adipocyte diameters

compared with controls in response to HFD (Fig. 4B-F). Maximal epigo-

nadal adipocyte diameter is significantly larger in controls compared with
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LRep1−/− mice (Fig. 4E and F). Adipocyte frequency size distribution con-

firmed these findings (Fig. 4C and D). These differences are more pronounced

in epigonadal than in SC fat. To elucidate in more detail adipocyte func-

tion, we analyzed glucose uptake and glycerol release in isolated adipocytes.

Here, we detected a significant elevated glucose uptake and glycerol release

under basal conditions in SC adipocytes of LRep1−/− mice (Fig. 4I and J).

Insulin-stimulated glucose uptake was comparable between the experimental

groups (Fig. 4J). To elucidate in more detail elevated basal glycerol release,

we performed gene expression analysis in adipose tissue. Here, we detected

an elevation of all lipolysis enzymes (Lpl, Atgl, and Hsl) in SC adipose tis-

sue in LRep1−/− mice (Supplementary Table 5), indicating enhanced lipol-

ysis. Taken together, LRep1−/− mice were protected against HFD-induced

adipocyte hypertrophy.

4.4.7 Target Genes of Repin1

To identify Repin1-regulated target genes, we measured mRNA expression in

the liver of LRep1−/− and control mice using a microarray approach. Lcn2,

also known as neutrophil gelatinase-associated lipocalin, was the strongest

regulated gene in response to reduced Repin1 expression (Supplementary

Table 2). We further found reduced levels of clathrin-coated vesicle trans-

port protein (ap3m2), vesicle-associated membrane proteins, oxidative stress

genes such as metallothein1 (Mt1 ) and 2 (Mt2 ), as well as LDL receptor

(Ldlr) and Rarres 2 (chemerin). Exocytosis factor titin, mitochondrial pro-

tein Letm2, and kallikrein inhibitor (serpinA4-ps1) were expressed higher

in livers of LRep1−/− mice (Supplementary Table 2). In addition to these

genes, we detected a number of Repin1-regulated genes including various bi-

ological processes and molecular functions (Supplementary Tables 1 and 2).

We could confirm the expression microarray data for Lcn2 and chemerin in

a bigger liver tissue cohort (see Supplementary Table 4). Circulating Lcn2

concentrations and liver Lcn2 expressions were lower in LRep1−/− compared

with littermate control mice (P = 0.2 serum; P = 0.06 liver protein) (Sup-

plementary Fig. 5).
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4.4.8 Altered Expression of Genes Involved in Accu-

mulation of Cytosolic Lipids and Lipid Droplet

Fusion in Liver

Array mRNA expression changes together with the results of the hepatic

lipidomic screen indicated an alteration in lipid droplet fusion and formation.

We therefore investigated mRNA levels of proteins involved in the fusion

process of lipid droplets in more detail. Vesicle-associated membrane protein

4 (Vamp4 ) and synaptosomal-associated protein, 23 kDa (Snap23 ), were

significantly decreased in livers of Repin1-deficient mice. Vamp4 was reduced

by 80% and Snap23 by ∼40% in LRep1−/− (Supplementary Table 3).

4.4.9 Model for the Role of Repin1 in Insulin Sensi-

tivity

We propose the following model of how liver-restricted knockdown of Re-

pin1 may cause the observed phenotype (Fig. 5). Hepatic Repin1 deficiency

causes improved liver and whole-body insulin sensitivity most likely through

transcriptional regulation of genes involved in insulin signaling (Pparγ and

Akt), glucose transport (Glut2 ), lipid uptake (Cd36 ), and lipid droplet for-

mation (Vamp4 and Snap23 ). These changes result in less body weight

gain with aging, higher energy expenditure, and reduced liver fat accumu-

lation in LRep1−/− compared with controls. Lower liver lipid content may

be primarily caused by significantly reduced Cd36 expression in LRep1−/−

mice. Improved whole-body insulin sensitivity of LRep1−/− mice is likely a

consequence of reduced liver fat, decreased hepatic glucose production, and

eventually lower expression of hepatokines such as Lcn2, which are associated

with insulin resistance.
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Figure 4.1: Targeting strategy and assessment of Repin1 recombination and Repin1 ex-
pression. A: Schematic representation of the loxP-flanked Repin1 allele before and after
recombination (Cre expression). The KO allele is shown below the floxed allele, indicating
the deletion of exon 2 in the event of recombination of the Repin1 gene. B: Western
blot analysis showing the expression of Repin1 and GAPDH as loading control of liver,
lung, heart, brain, pancreas, kidney, spleen, skeletal muscle, BAT, SC, and Epi of control
and LRep1−/− mice. C: Knockdown efficiency in liver from WT (controls), heterozygous
(LRep1+/−), and homozygous (LRep1−/−) mice.
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Figure 4.1: (Previous page.) D: Representative images (original magnification x 200)
of Repin1 immunohistochemistry (positive staining of the Repin1 protein with DAB as
chromogen in brown, arrows) of liver tissue (5-µm paraffin sections) of WT control (left)
and LRep1−/− mice (right) at an age of 12 weeks. E: Growth phenotype of LRep1−/− mice
(n = 12) and controls (n = 12) up to an age of 40 weeks was determined. LRep1−/− mice
are significant lighter at an age of 28 weeks up to an age of 40 weeks. F: Whole-body fat
mass was determined in awake mice by using nuclear magnetic resonance technology with
EchoMRI-700 instrument (Echo Medical Systems, Houston, TX) in control and LRep1−/−

mice at 3, 8, 16, 24, and 80 weeks of age. Data are presented as percentage of total body
fat from body weight. Results are expressed as means ± SE from at least four animals
per genotype and time point. G: VO2 measured by indirect calorimetry in a calorimetry
module (CaloSys V2.1, TSE Systems, Bad Homburg, Germany) at an age of 30 weeks.
After 2 h of acclimatization, VO2 was recorded from LRep1−/− (n = 10) and control mice
(n = 8) over a period of 72 h (P = 0.0008). Results are expressed as means ± SE. H:
Spontaneous activity (counts) measured as cage movement (XYZ axis) was determined
over 72 h. Data represent means of counts from LRep1−/− (n = 10) and control mice
(n = 8) of 12 h. I: Mean running distance (km) of LRep1−/− (n = 10) mice compared
with control (n = 8) animals over a period of 72 h at an age of 30 weeks. Results are
expressed as means ± SE. The different degrees of significance are indicated as follows in
the graphs: *P < 0.05; **P < 0.01.
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Figure 4.2: Insulin sensitivity, glucose metabolism, and effects in mice with liver-specific
Repin1 deficiency. A: GIR during a hyperinsulinemiceuglycemic clamp was increased in
LRep1−/− mice (n = 8) compared with control mice (n = 6) at an age of 20 weeks. Ex-
periments started after an overnight fast. A 120-min hyperinsulinemic-euglycemic clamp
was conducted with a continuous infusion of human insulin at a rate of 20 mU/kg/min.
Insulin is infused at a constant rate, resulting in a drop in blood glucose. To maintain
blood glucose at a constant level, exogenous glucose (D20%) is infused into the circula-
tion. Variable GIR is determined by measuring blood glucose at brief intervals throughout
the experiment and adjusting the GIR accordingly. GIR was calculated as mg/kg/min.
Results are expressed as means ± SE.
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Figure 4.2: (Previous page.) B: Basal hepatic glucose production (HPG) during the clamp
in LRep1−/− mice is upregulated compared with littermate controls (n = 8). Hepatic
glucose production (mg x kg−1 x min−1) was calculated as the difference between the
rate of glucose appearance and GIR. Results are expressed as means ± SE from at least
six animals per genotype. C: Percentage suppression of hepatic glucose production by
insulin (Ins) during the clamp in control (n = 6) and LRep1−/− mice (n = 8). Results are
expressed as means ± SE from at least six animals per genotype. D: Intraperitoneal GTTs
performed on 12 h-fasted 24-week-old control (n = 12) and LRep1−/− mice (n = 12) on a
chow diet. LRep1−/− mice have normal glucose tolerance. E: ITT of LRep1−/− showed
improved insulin sensitivity at an age of 24 weeks. ITTs were performed in a fed state.
Results are expressed as means ± SE from 12 animals per genotype. F: GTT in LRep1−/−

mice compared with control animals at an age of 30 weeks (per genotype eight animals). G:
Insulin levels measured during GTT at an age of 40 weeks in male LRep1−/− mice. H: ITT
in 40-week-old control animals and LRep1−/− mice indicating a significant improvement
in insulin sensitivity of LRep1−/− mice. Results are expressed as means ± SE from six
animals per genotype. I: Significantly lower HbA1c (%) levels in LRep1−/− mice (n = 8)
compared with controls (n = 8) at an age of 40 weeks. The different degrees of significance
are indicated as follows in the graphs: *P < 0.05; **P < 0.01.
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Figure 4.3: Insulin signaling, VLDL TG production, and hepatic de novo lipogenese in liv-
ers of LRep1−/− mice. A: Upregulated insulin pathway protein expression measurements
with quantification by Western blot analysis (B) in livers of LRep1−/− (n = 5) and control
(n = 5) animals after injection of 5 units regular insulin into the vena cava inferior. C: Rep-
resentative images of hepatic tissue fat staining of liver section using sudan-black staining
indicates less fat storage in LRep1−/− mice compared with control animals. D: Represen-
tative images of hepatic tissue for H-E staining of WT and LRep1−/− mice showing no
morphological changes in livers of LRep1−/− mice. Reduction of Cd36 mRNA expression
(E) and representative Cd36 protein expression (F) and analysis in livers of LRep1−/−

mice (n = 5) compared with controls (n = 5) at an age of 32 weeks. GAPDH protein
served as loading control. Results are expressed as means ± SE.
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Figure 4.3: (Previous page.) G: Determination of VLDL TG production rates after p407
intraperitonal treatment and serum samples were taken over a period of 4 h and assay
for TGs in LRep1−/− (black) and control (gray) littermates (n = 4 per genotype). H:
Fat load test after oral application of 200 mL olive oil in LRep1−/− (black) and control
(gray) littermates (n = 6 per genotype). Rates of 14C (I) and 3H2O (J) incorporation
into liver fatty acids in fed state. n = 6 per genotype. K: ACC and phosphorylated
ACC (pACC) protein expression analysis with representative images in livers of control
(n = 5) and LRep1−/− mice (n = 5). GAPDH protein served as loading control. Western
blot analysis results are expressed as means ± SE. The different degrees of significance
(Student t test with Welch correction) are indicated as follows in the graphs: *P < 0.05;
**P < 0.01.
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Figure 4.4: Effects of a 10-week HFD on fat accumulation and glucose metabolism in
LRep1−/− mice. A: Under HFD conditions, LRep1−/− mice (n = 8) show identical
growth compared with controls (n = 8). B: No hypertrophy of visceral adipocytes in
LRep1−/− compared with control mice. Maximal adipocyte size measured with multisizer
(Beckman Coulter) after 48-h osmium fixation. Data represent means ± SE of eight mice
per genotype. C and D: Frequency of adipocyte size distribution after adipocyte isolation
and osmium fixation measured with multisizer under chow and HFD conditions indicating
a shift in adipocyte size distribution under high-fat feeding conditions. E and F: H-E
staining of white adipose tissue (epigonadal) adipocytes after feeding standard chow or
HFD from LRep1−/− mice. Original magnification X20. Adipocyte size is increased after
HFD in control mice only.
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Figure 4.4: (Previous page.) G: ITT in 16-week-old control animals and LRep1−/− mice
indicating a significant improvement in insulin sensitivity of LRep1−/− mice under HFD
conditions. Results are expressed as means ± SE from six animals per genotype. H: GTT
in 16-week-old control animals and LRep1−/− male mice under HFD conditions. Results
are expressed as means ± SE from six animals per genotype. Lipolysis (I) and [U-14C]-
glucose uptake (J) in isolated adipocytes from SC fat depots of LRep1−/− and control
mice. I: Lipolysis measured as basal glycerol release assayed over 20 min as an indicator of
lipolysis. Results are expressed as nmol of glycerol released per cell in a 20-min period. J:
Insulin-stimulated [U-14C]-glucose uptake in isolated adipocytes after 20-min incubation
in the absence (basal) or presence of 100 nmol/L insulin. Insulin stimulation is presented
as n-fold change relative to basal from four animals per genotype. Significant differences
between the groups are indicated: *P < 0.05; **P < 0.01. Values are means ± SE.



Chapter 4 95

Figure 4.5: Model for the phenotype resulting from hepatic Repin1 deletion. Hepatic
Repin1 deficiency leads to expression changes of genes involved in insulin signaling, glucose
transport, lipid uptake, and lipid droplet formation. Lower liver lipid content may have
caused significantly reduced Cd36 expression and the inability of the liver to take up
plasma lipids normally. Reduced liver lipid content leads to improved whole-body insulin
sensitivity.
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Table 4.1: Serum concentrations of parameters of lipid metabolism, glucose homeostasis,
and liver function at an age of 32 weeks (n = 12 per group). All values were obtained
after a 14-h overnight fast except for FFA and glycerol levels, which were tested in the fed
state (n = 6 per genotype). Significantly different data appear in boldface. *Significantly
different between WT and LRep1−/− mice at P < 0.05. **Significantly different between
WT and LRep1−/− mice at P < 0.01.

WT LRep1−/−

Serum lipids

TGs [mmol/l] 1.51 ± 0.34 1.83 ± 0.40*

Cholesterol [mmol/l] 2.44 ± 0.27 2.42 ± 0.28

HDL cholesterol [mmol/l] 1.96 ± 0.16 1.95 ± 0.26

LDL cholesterol [mmol/l] 0.18 ± 0.06 0.14 ± 0.07

FFA [mmol/l], fasted 1.50 ± 0.20 1.68 ± 0.20**

FFA [mmol/l], fed 1.41 ± 0.37 1.33 ± 0.26

Glycerol [nmol/ml], fed 3,184 ± 400 3,020 ± 471

Glucosehomeostasis

Insulin [ng/ml] 0.15 ± 0.22 0.17 ± 0.23

Adiponectin [µg/ml] 77 ± 25 71 ± 17

Leptin [ng/ml] 139 ± 90 156 ± 50

Fasting glucose [mmol/l] 4.9 ± 1.3 4.9 ± 1.5

Nonfasting glucose [mmol/l] 6.6 ± 0.6 6.7 ± 0.8

Liver function

ALT [µkat/l] 0.68 ± 0.19 0.86 ± 0.12

AST [µkat/l] 3.86 ± 1.57 5.49 ± 1.15

GLDH [units/l] 60.9 ± 3.5 57.1 ± 2.7

Serum Alb [g/l] 36.80 ± 0.39 36.13 ± 1.55
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Table 4.2: Liver lipid profile analysis of male WT and LRep1−/− mice at age 32 weeks.
Significantly different data appear in boldface. *Significant difference between WT and
LRep1−/− mice at 0.05 level.

Parameter [pmol/mg] WT (n = 5) LRep1−/− (n = 6)

TAG 22.1 ± 5.3 13.8 ± 2.0*

Diacylglyceride 6.0 ± 2.1 7.0 ± 4.2

Cholesterolester 3.5 ± 1.6 2.4 ± 0.7

Cholesterol 24.8 ± 4.3 26.8 ± 2.8
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4.5 Discussion

Our data provide the first in vivo evidence that Repin1 deletion in liver leads

to lower body weight, reduced hepatic steatosis, increased energy expenditure

and physical activity, and improved insulin sensitivity both at the organ and

whole-body level. Lower body weight in LRep1−/− compared with control

mice may be due to several mechanisms. LRep1−/− mice are characterized

by higher VO2 consumption and, at least in one dimension, higher spon-

taneous activity with unaltered food intake compared with WT mice. We

tested the hypothesis that the increased energy expenditure in LRep1−/−

compared with WT mice is a result of increased BAT mass or activity. Since

mean body temperature, relative and absolute BAT mass, as well as expres-

sion of BAT marker genes in white adipose tissue are not different between

LRep1−/− and control mice, we exclude an effect of liver Repin1 deficiency

on BAT or browning of white adipose tissue. Taken together, increased en-

ergy expenditure and activity of LRep1−/− mice contribute to lower body

weight.

Importantly, deletion of Repin1 in liver does not cause an increase in in-

flammatory marker genes or immune cell infiltration into livers of LRep1−/−

mice. Moreover, AST, ALT, and GLDH serum concentrations were not sig-

nificantly different between WT and LRep1−/− mice, excluding a hepatotoxic

effect of Repin1 deletion.

Reduced liver fat is most likely due to significant changes in the expres-

sion of Repin1 target genes such as Cd36 and fatty acid binding proteins

(FABPs). In the context of these (beneficial) metabolic consequences of re-

duced liver-specific Repin1 expression, elevated circulating TGs and FFAs

in LRep1−/− mice seem to be contradictory to the phenotype. We therefore

propose a model (Fig. 5) of how these changes in circulating lipids may be the

result of changes in expression of key molecules in fatty acid uptake, trans-

port, and lipid droplet formation in the liver. Elevated TGs and FFAs are

most likely due to decreased hepatic lipid uptake capacity as a result of lower

Cd36 expression in LRep1−/− mice. In addition to reduced Cd36 expression,

several mechanisms may contribute to the observed reduction in TG storage
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in LRep1−/− mice. Both de novo lipogenesis and VLDL production were

not significantly different between LRep1−/− and control mice, suggesting

that these processes do not cause reduced TG storage in livers of LRep1−/−

mice. Moreover, we did not find differences in [14C]palmitate oxidation or the

expression of key enzymes of β-oxidation between the genotypes, suggesting

that Repin1 KO in liver does not significantly affect fatty acid oxidation in

liver. Key gene expressions of TG synthesis (Fasn, Scd1, and Scd2 ) were not

altered by Repin1 deletion in liver. However, since we did not directly assess

TG synthesis in hepatocytes, we cannot exclude that this mechanism may

contribute to reduced TG storage in livers of LRep1−/− mice. In accordance

with altered liver lipid transporter expression, we detected lower concentra-

tions of TAGs in the liver of LRep1−/− mice. These in vivo results strongly

support our previous data on siRNA-mediated Repin1 knockdown in 3T3-

L1 cells, which caused significantly reduced mRNA expression of fatty acid

transporter Cd36 and lipid droplet genes (Snap23 and Vamp4 ) in 3T3-L1

cells [9]. Moreover, the circulating lipid profile of LRep1−/− mice closely

reflects that of CD36 KO mice, which are also characterized by elevated

fasting FFAs and triacylglycerol, as well as cholesterol serum concentrations

[26]. Interestingly, both LRep1−/− and CD36 KO mice are protected against

impaired glucose homeostasis, despite these alterations in lipid metabolism

[26]. Therefore, Repin1 deficiency in the liver provides a model to dissect the

effects of liver fat accumulation from those of increased circulating lipids on

whole-body insulin sensitivity. The insulin-sensitive phenotype of LRep1−/−

mice further suggests that hepatic steatosis may represent a crucial mecha-

nism in the development of insulin resistance independently of the increased

circulating FFAs and TGs. Noteworthy, in mice with liver-specific insulin re-

sistance due to a targeted disruption of the hepatic insulin receptor (LIRKO

mice), circulating TGs and FFAs are ∼40-50% lower compared with controls

[27]. This opposite phenotype further suggests that improved insulin sensi-

tivity in the liver of LRep1−/− mice is the primary effect of reduced Repin1

expression and changes in circulating lipids are secondary to that.

Kennedy et al. [28] demonstrated that adipose tissue from Cd36 KO

mice was more insulin sensitive and had lower levels of inflammatory markers
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(i.e., IFN-γ and MCP-1) as compared with WT mice.

By several measures, we found beneficial effects of Repin1 deletion in liver

on insulin sensitivity both under chow- and HFD-fed conditions. Notewor-

thy, insulin secretion dynamic in 40-week-old LRep1−/− mice suggests that

Repin1 KO in the liver may cause secondary changes in islets that are in line

with the observed improvements in whole-body insulin sensitivity. Whether

the insulin secretion profile of LRep1−/− mice is due to improved insulin

sensitivity or the result of a hepatic factor directly affecting islets needs to

be explored in subsequent studies. Improved insulin sensitivity in LRep1−/−

mice could be the result of improved activation of the insulin signaling cas-

cade (e.g., Akt phosphorylation), increased Pparγ expression, lower liver fat

content mediated by reduced expression of fatty acid transport proteins in

LRep1−/− mice, lower total body fat content, and lower expression of insulin

resistance-associated hepatokines (e.g., Lcn2 and chemerin).

With regard to the latter mechanism, mRNA expression array identified

Lcn2 as the strongest potential candidate. Elevated Lcn2 serum concentra-

tions are associated with obesity, dyslipidemia, and insulin resistance [29].

In livers of the LRep1−/− mice, we detected a 60-fold reduction of Lcn2

mRNA level and reduced liver protein levels (P = 0.06) compared with con-

trols. There was a trend for lower circulating Lcn2 in LRep1−/− mice. Lcn2,

also known as neutrophil gelatinase-associated lipocalin, is a lipocalin sub-

family member and has been recently identified as an adipose tissue-derived

cytokine [30]. Lcn2 is an extracellular lipocalin and has structural similar-

ity with FABPs, and both are members of the multigene family of up and

down β-barrel proteins [31]. Both intracellular FABPs and the extracellular

lipocalins have a clearly defined β-barrel motif that forms either an interior

cavity (FABP) or a deep pit (lipocalin) that constitutes the lipid binding

domain [31]. Because of the unique structure, the lipocalins function as

efficient transporters for a number of different hydrophobic ligands in ex-

tracellular milieus, including a variety of retinoids, fatty acids, biliverdin,

pheromones, porphyrins, odorants, steroids, and iron [32]. In vitro, it was

shown that exogenous Lcn2 promotes insulin resistance in cultured hepato-

cytes [33]. It is likely that Lcn2 as retinoic acid could potentially be involved
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in or mediate lipid storage effects in both liver and adipose tissue. Moreover,

reduced Lcn2 in LRep1−/− mice may contribute to the observed alterations

in adipose tissue with a higher number of smaller adipocytes in LRep1−/−

compared with control mice upon HFD. Liver Repin1 deficiency leads to sec-

ondary changes in adipose tissue with a reduction in adipocyte size under

HFD in homozygous LRep1−/− mice, indicating a protection against hy-

pertrophy of adipocytes. However, since we did not biopsy adipose tissue

during HFD, we do not provide direct evidence for increased adipogenesis in

LRep1−/− mice. Protection of LRep1−/− mice against adipocyte hypertro-

phy could contribute to significantly better insulin sensitivity as measured

by ITT after 10 weeks of HFD.

Our previous in vitro studies demonstrated that Repin1 expression in-

creases during adipogenesis and that RNA interference-based Repin1 down-

regulation in mature adipocytes significantly reduces adipocyte size [9]. We

found significant correlations between Repin1 mRNA expression and total

body fat mass as well as adipocyte size in human paired visceral and SC

adipose tissue, suggesting a potential role for Repin1 in the regulation of

adipocyte size [9]. However, it is not clear how a lack of Repin1 in liver

might influence adipocyte size. One possibility is that absence of Repin1

in liver generates signals that either restrict adipocyte lipid load or increase

adipogenesis. For the latter mechanism, we consider reduced Lcn2 expression

in livers of LRep1−/− mice as a candidate molecule.

This hypothesis is supported by data that Lcn2 deficiency protects mice

from developing aging- and obesity-induced insulin resistance by modulat-

ing insulin resistance factors in adipose tissue [34]. Lcn2-disrupted mice

are partly protected from HFD-induced insulin resistance. In this context,

it has been shown that other members of the lipocalin family, in partic-

ular lipocalintype prostaglandin D synthase, may impair the adipogenesis

program [35]. Although we do not have direct evidence for increased adi-

pogenesis in LRep1−/− mice, we speculate that changes in adipose tissue

morphology may be due to reduced Lcn2 levels with subsequent disinhibi-

tion of adipogenesis.

In contrast to our observation marked Lcn2 deficiency leads to enlarged
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adipocytes and improved adipose tissue function, which has been related

to reduced inflammation in adipose tissue of these mice [34]. We cannot

exclude that changes in adipose tissue of LRep1−/− mice are at least in part

mediated by reduced inflammatory activation in adipose tissue. In addition,

reduced chemerin expression may lead to smaller adipocyte size. Indirect

evidence from insulin-sensitive obese individuals supports the hypothesis that

lower circulating chemerin (in insulinsensitive, healthy obese) is associated

with smaller adipocyte size [36]. Whether additional mediators contribute

to the specific response to HFD in adipose tissue of LRep1−/− mice should

be further studied. Adipocyte-specific insulin sensitivity was not altered in

LRep1−/− mice. Hepatocyte-derived factors may have further contributed to

increased lipolysis in adipocytes of LRep1−/− mice, which has been suggested

by higher basal glycerol release and higher expression of key lipolysis enzymes

(Hsl, Atgl, and Lpl) in LRep1−/− adipocytes.

To further elucidate potential mechanisms for improved liver insulin sen-

sitivity and reduced liver fat content in LRep1−/− mice, we performed a

hepatic lipidomics screen as well as mRNA expression array analysis in liver

samples. The liver lipidomics data demonstrate that Repin1 modulates the

overall profile of liver lipid species. Here, the main finding of the screen was

that hepatic deletion of Repin1 had a significant effect on TAG amount in

livers, suggesting altered lipid storage in liver. Thus, reduced liver lipid stor-

age ability could explain significantly higher serum TG levels in LRep1−/−

mice. Since LRep1−/− hepatocytes did not undergo typical ballooning un-

der HFD conditions, we examined whether genes involved in lipid droplet

fusion as well as lipid transport proteins are regulated by Repin1 deficiency.

We detected significantly reduced levels of Vamp4 and Snap23 in livers of

Repin1-deficient mice, suggesting a disturbance in lipid vesicle formation

and hepatic lipid upload. Boström et al. [37] demonstrated that Snap23 and

Vamp4 are functional in the fusion between lipid droplets and are essential for

the growth of lipid droplets. Our results are in accordance with our previous

finding that downregulation of Repin1 in 3T3-L1 adipocytes by siRNA leads

to significantly reduced lipid droplet size [9]. In parallel to the mRNA ex-

pression data in the liver of Repin1-deficient mice, we found reduced Snap23
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and Vamp4 expression in 3T3-L1 cells upon downregulation of Repin1 [9].

Knockdown of VAMP4 and SNAP23 has been recently shown to decrease the

rate of lipid droplet fusion and the size of the lipid droplets [33]. Notewor-

thy, decreased VAMP4 and SNAP23 gene expression in response to Repin1

knockdown seems to be specific, since other lipid droplet proteins, including

perilipin and syntaxin5, were not regulated by Repin1 [9].

In conclusion, we provide a model of how Repin1 may, through regulation

of gene expression, lead to lower body weight, improved liver and whole-body

insulin sensitivity, and alterations in lipid metabolism. We propose that

hepatic Repin1 deficiency primarily leads to improved insulin sensitivity and

reduced liver fat content with secondary changes in serum lipid profile due

to alterations in hepatic lipid transport. Furthermore, hepatic deletion of

Repin1 causes altered expression of molecules, including Lcn2 and chemerin,

which may contribute to reduced adipocyte size in response to HFD, which

may subsequently further contribute to beneficial effects on whole-body in-

sulin sensitivity in LRep1−/− mice.

Our findings indicate that Repin1 contributes to insulin sensitivity and

glucose and lipid metabolism by regulating the expression of key molecules of

these processes. Therefore, alterations in Repin1 expression may contribute

to the pathogenesis of insulin resistance and dyslipidemia and subsequent

impairment of glucose homeostasis.
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4.11 Supplementary Data

Figure 4.6: Supplementary Table 1. Results of functional annotation tool using Database
for Annotation, Visualization and Integrated Discovery (DAVID). For data analysis probe
set fluorescence intensities were extracted for approximately 39,000 transcripts with com-
plete Mouse Genome coverage and were scaled in order to normalize data for inter-
array comparison using MAS 5.0 software according to instructions of the manufacturer
(Affymetrix, Santa Clara, CA, USA).
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Figure 4.7: Supplementary Table 2. Regulated genes identified by liver Affymetrix
GeneChip analysis. *liver expression has been validate by qPCR in 10 animals per geno-
type
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Figure 4.8: Supplementary Table 3. Relative gene expression in liver (N=12 per group)
at an age of 32 weeks. *significant different between Controls (WT) and LRep1−/− mice
at * 0.05, ** 0.01 and ***0.001 level
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Figure 4.9: Supplementary Table 4. Genexpression analysis in adipose tissue fat depots,
epigonadal (EPI) and subcutaneous (SC) of control and LRep1−/− mice.
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Figure 4.10: Supplementary Figure 1. Representative images (original magnification x200)
of Repin1 immunohistochemistry (positive staining of the Repin1 protein with DAB as
chromogen in brown, arrows) of liver tissue of wild-type mice (left) and LRep1−/− mice
(right). Please note the cytoplasmic staining of hepatocytes for Repin1 in wild-type mice,
whereas in livers of LRep1−/− mice exclusively non-parenchymal cells are Repin1-positive.
Sections were stained with hematoxylin and eosin (HE) for routine examination. For im-
munohistochemical staining of Repin1 sections of liver tissue were incubated with primary
antibody overnight at 4 ◦C (polyclonal anti-Repin1, 1:500, Abcam, Cambridge, UK),
followed by horseradish-peroxidase (HRP)-conjugated rabbit anti-mouse immunoglobin
(1:100, Dako Cytomation, Hamburg, Germany) as secondary antibody. Sites of peroxidase-
binding were detected by 3,3’-diaminobenzidine (Dako).
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Figure 4.11: Supplementary Figure 2. Representative images of hepatic tissue for F4/80
antigen immunostaining of wild-type (left) and LRep1−/− mice (right) (original magnifi-
cation x200, upper panel; x400, lower panel) (positive staining of the F4/80 extracellular
membrane protein with permanent red as chromogen in red). To evaluate the cellular
inflammatory response, the numbers of resident liver macrophages were analyzed using
the F4/80 antigen (1:10; Serotec, Oxford, UK). Overnight incubation (4 ◦C) with the
first antibody (polyclonal rat anti-F4/80) was followed by conjugated mouse anti-rat im-
munoglobulin (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA). The sites of
alkaline phosphatase binding were detected using the chromogen permanent red (Dako).
The sections were counterstained with hemalaun and analyzed with a light microscope
(Olympus BX51, Hamburg, Germany).
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Figure 4.12: Supplementary Figure 3. Representative images of hepatic tissue for CAE-
staining of wild-type (left) and LRep1−/− mice (right) (original magnification x200, upper
panel; x400, lower panel) (CAE-positive cells are in red-brown) showing no increased in-
filtration of inflammatory cells to the liver of LRep1−/− mice. Sections were stained with
hematoxylin and eosin (HE) for routine examination and with naphthol AS-D chloroac-
etate esterase (CAE) for detection of liver tissue-infiltrating leukocytes.



Chapter 4 118

Figure 4.13: Supplementary Figure 4. Body length (A) and food intake (B) as well as
ipGTT (C) and ipITT (D) in control and LRep1−/− mice. A) Body length (naso-anal
length) was measured once at week 32 (per genotype 10 animals). Results are expressed as
means ± SE from 10 animals per genotype. B) At an age of 16 weeks, in a subgroup of 20
(10 LRep1−/− and 10 controls) underwent a food intake measurement over a time period
of 1 week. The daily food intake was calculated as the average intake of chow within
the time stated. Results are expressed as means ± SE from 10 animals per genotype. C)
GTTs performed on 12-h-fasted 12-week old male wild-type (control) and LRep1−/− mice.
Results are expressed as means ± SE from 10 animals per genotype. D) ITTs on random
fed 12-week-old male wild-type (control) and LRep1−/− mic. Results are expressed as
means ± SE from 10 animals per genotype. (E) Rectal body temperature measures of
32-week old male wild-type (control) and LRep1−/− mice. (F) Relative brown adipose
tissue weight (BAT) from 6 animals per genotype. Results are expressed as means ± SE.
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Figure 4.14: Supplementary Figure 5. Lipocalin 2 measurements (A) Serum concentration
measured with ELISA (RD Systems) in male LRep1−/− mice and controls at an age of
32 weeks (8 animals per genotype). (B) Representative Lcn2 protein expression in liver
lysates and quantification in male LRep1−/− mice and controls using western blot analysis
(5 animals per genotype). Data are given as mean ± SE.

Figure 4.15: Supplementary Figure 6. Ex-vivo-[14C]-acetate loading assay. Mouse
adipocytes were isolated and purified immediately after sacrifice as described. 50 µl of
cell suspension were seeded in 96 well plates in a 5% CO2 incubator at 37 ◦C in the pres-
ence of 10 µM -[14C]-acetate and left for 4 hours. The cells were disrupted by a standard
lysis buffer containing 50 mM TRIS, 1% Triton X-100. The lipid soluble TAG was ex-
tracted by addition of 200 µl heptane and -[14C]-incorporation was measured by liquid
scintillation. (A) [14C]-acetate load into SC adipocytes and (B) epigonadal adipocytes.
Data represents DPM per cell as mean ± SE from 6 animals per experimental group.
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5.1 Abstract

Background/Objectives:

Replication initiator 1 (Repin1) gene encodes for a zinc-finger protein

and has been implicated in the regulation of adipocyte cell size and glucose

transport in vitro. Here, we investigate the consequences of reduced adipose

tissue (AT) Repin1 expression in vivo.

Subjects/Methods:

We have inactivated the Repin1 gene in adipose tissue (iARep−/−) at an

age of four weeks using tamoxifen-inducible gene targeting strategies on the

background of C57BL/6NTac mice. Furthermore, we differentiated human

primary adipocytes derived from subcutaneous AT in vitro and knocked down

REPIN1 using siRNA technique to measure glycerol release.

Results:

Conditional Repin1 inactivation results in decreased AT mass, smaller

adipocytes in both, subcutaneous and epigonadal AT compared to controls.

Compared to controls, iARep−/− mice were more insulin sensitive, had better

glucose tolerance and lower LDL-, HDL- and total cholesterol. Significantly

lower AT expression of the Repin1 target genes Cd36 and Lcn2 may con-

tribute to the phenotype of iARep−/− mice. Knockdown of REPIN1 in

human in vitro differentiated adipocytes revealed an increased glycerol re-

lease.

Conclusion:

In conclusion, deficiency of Repin1 in AT causes alterations in AT mor-

phology and function, which may underlay lower body weight and improved

parameters of insulin sensitivity, glucose and lipid metabolism.

5.2 Introduction

Replication initiator 1 (Repin1) is a polydactyl zinc finger protein organized

in three clusters with a mass of 60 kDa [1], [2], [3]. The gene maps on human

chromosome 7, in mice on chromosome 6 and on chromosome 4 in rats [4].
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Repin1 was first described as an origin specific DNA binding protein, which

acts as an enhancer of DNA bending of the Chinese hamster dihydrofolate

reductase (dhfr) gene due to replication. It binds to two ATT-rich sites in

oriβ, a short region 3’ to the dhfr gene [2], [3]. As for many other zinc finger

proteins, the cellular localization and function of Repin1 remains elusive.

Previous studies showed that Repin1 maps to a quantitative trait locus

(QTL) associated with obesity and elevated triglyceride levels in congenic

and subcongenic rat strains [5], establishing Repin1 as candidate gene for

obesity and the metabolic syndrome. In line with these studies, genetic

variation in the Repin1 gene, in particular a coding region SNP (C/T 449)

and a triplet repeat (TTT) in the 3’UTR is associated with facets of the

metabolic syndrome, including body weight, serum insulin, leptin, triglyc-

eride and cholesterol levels in rats [4].

Repin1 is ubiquitously expressed, but is enriched in liver and adipose

tissue (AT) indicating a role in glucose and lipid metabolism. Own in vitro

studies in 3T3-L1 cells revealed that Repin1 regulates adipocyte size and

glucose transport [6]. Small interfering RNA (siRNA) mediated knockdown

of Repin1 led to altered Cd36 expression, reduced palmitate uptake and

changes in gene expression involved in lipid droplet formation such as Vamp4

and Snap23 [6]. We have demonstrated that hepatocyte specific Repin1

knockout mice exhibit significantly improved whole-body insulin sensitivity

and changes in downstream targets such as Cd36, Pparγ, Glut2, Akt and

lipocalin. Repin1 deficiency in the liver also leads to lower body weight and

body fat compared to littermate controls [7].

In an attempt to rescue the deteriorated glucose metabolism in db/db

mice, we have demonstrated that whole body Repin1 deficient db/db double

knockout mice (Rep1−/− x db/db) are more insulin sensitive, have reduced

chronic hyperglycemia and lower AT mass and infiltration compared to the

pure db/db mice [8].

Taken together, these data indicate an important role for Repin1 in the

regulation of AT function, insulin sensitivity, lipid and glucose metabolism.

Since AT is one of the major organs of Repin1 expression, we generated

inducible adipocyte specific Repin1 knockout mice to further investigate the
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function of Repin1 in AT. We induced lower Repin1 expression by tamoxifen

at an age of four weeks to avoid any potential developmental effects caused

by an earlier (aP2-mediated) disruption of the Repin1 gene.

5.3 Materials and Methods

5.3.1 Animal Care and Research diets

All animal studies were approved by the local authorities of the state of Sax-

ony, Germany as recommended by the responsible local animal ethics review

board (Landesdirektion Leipzig, TVV21/13, T01/13, T08/16, Germany). All

mice were housed in pathogen-free facilities in groups of three to five mice at

22 ± 2 ◦C on a 12-h light/dark cycle. Animals were bred in laboratories at

University of Leipzig and were fed a standard chow diet (Sniff Spezialdiäten,

Soest, Germany). All animals had ad libitum access to food and water at all

times, except for experiments where a fasting state was required. Fasted ex-

perimental animals were euthanized at 34 weeks of age for tissue and serum

collection for further analysis.

5.3.2 Generation and Genotyping of iARep−/− Mice

Generation of Repin1 floxed mice have been previously described [9]. Repin1

expression was reduced specifically in AT using Cre recombinase-mediated

excision of loxP -flanked (’floxed’) gene sequences. Mice homozygous for

floxed alleles of Repin1 (Repin1 loxP /loxP ) were interbred with mice express-

ing Cre recombinase under control of the Adipoq promoter (Adipoq-Cre+/−

mice) [10]. Repin1 deficiency was achieved by activating Cre recombinase

by intraperitoneal injection of tamoxifen (1 mg per day in five consecutive

days) in four weeks old animals. Control animals were also treated with ta-

moxifen. Animals were maintained on C57BL/6NTac background. All mice

were genotyped by isolation of DNA from ear stamp using DNA extraction

kit DNeasy (Qiagen, Hilden, Germany). PCR was performed with follow-

ing two primer pairs: loxP sites: 5’-CCCAACACTGATTACAGATCC-3’
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(forward) and 5’-GTGGGATCAGATAGAACTTAGC-3’ (reverse) and Cre:

5’-TGGTGCATCTGAAGACACTACA-3’ (forward) 5’-TGCTGTTGGAT

GGTCTTCACAG-3’ (reverse) and ran in 35 cycles under following con-

ditions: 95 ◦C-15 min, denaturation 95 ◦C-30 sec, annealing 56 ◦C-30 sec

(loxP -sites) 60 ◦C -30 sec (Repin1), elongation 72 ◦C-10 min, 72 ◦C-10 min us-

ing Fermentas DreamTaq Polymerase (FastStart PCR Master Roche, Basel,

CH; dNTP Mix 10 mM ThermoFisher Scientific, Cambridge, MA, USA;

Primer biomers.net, Ulm, Germany) and Peltier Thermal Cycler PTC-200

(Bio-Rad, Hercules, CA, USA). Control mice showed a 292-bp band whereas

iARep−/− mice produced a 484-bp loxP band.

5.3.3 Phenotypic Characterization

All experimental procedures were conducted using male mice. In this study

13 mice were obtained and compared to 13 control littermates [Rep1f lox/f lox,

Rep1f lox/+, Cre+ and WT]. Because these different control genotypes are not

significantly different in the key parameters of our study, we studied them

together as controls. Body weight was measured weekly starting at 5 until

34 weeks of age. Food intake was evaluated for a period of one week at an age

of 30 weeks and calculated as average of daily food consumption. Whole body

composition (fat mass and lean mass) was determined in awake mice by us-

ing nuclear magnetic resonance technology with EchoMRI700TM instrument

(Echo Medical Systems, Houston, TX, USA) at an age of 10 and 20 weeks.

Body length (naso-anal length) and rectal body temperature was measured

at the end of observation period at an age of 34 weeks (TH-5 Thermalert

Monitoring Thermometer Physitemp, Clifton, NJ, USA). Intraperitoneal in-

sulin tolerance tests (i.p. ITTs) and glucose tolerance tests (i.p. GTTs)

were performed at the age of 14 and 24 weeks as previously described [11].

At an age of 30 weeks, four mice of each genotype were housed for 72 h in

metabolic chambers (CaloSys V2.1, TSE Systems, Bad Homburg, Germany)

to measure indirect calorimetry (mean oxygen consumption (VO2) as well as

spontaneous activity (XYZ cage movement) and ability to run on a tread-

mill). Analyses and calculations for energy expenditure were performed as
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previously described [12].

Mice were euthanized at the age of 34 weeks by an overdose of anesthetic

(Isofluran, Baxter, Unterschleißheim, Germany). Liver, brown (BAT), sub-

cutaneous (scAT) and epigonadal adipose tissue (epiAT) were immediately

removed. Liver, BAT, scAT and epiAT were weighed and organ mass relative

to body weight was calculated. Other organs like heart, lung, brain, kidney,

spleen, pancreas and muscle were removed and stored at -80◦C for further

investigations.

5.3.4 Analytical Procedures

Blood glucose was determined in whole venous blood samples using an auto-

mated glucose monitor (FreeStyle mini, Abbott GmbH, Ludwigshafen, Ger-

many). Insulin, leptin and adiponectin serum concentrations and hepatic

triglycerides were measured by ELISAs using mouse standards according to

the manufacturers’ guidelines (Insulin/Leptin ELISA; CrystalChem. Inc,

Downers Grove, IL; Mouse Adiponectin ELISA; AdipoGen Inc, Incheon, Ko-

rea; LabAssay Triglyceride, Wako Pure Chemicals industries Ltd., Osaka,

Japan). Serum concentrations of free fatty acids (FFA), triglycerides, total

cholesterol, low density lipoprotein- (LDL), high density lipoprotein- (HDL)

cholesterol and HbA1c were analyzed by an automatic chemical analyzer in

our Institute of Laboratory Medicine and Clinical Chemistry.

5.3.5 Adipocyte Isolation and Size Distribution

Adipocytes were isolated from epigonadal (epiAT) and subcutaneous (scAT)

fat pads by 1 mg/ml collagenase digestion. To assess cell size distribution,

200 µl aliquots of adipocytes were fixed with osmic acid, incubated for 48 h

at 37 ◦C and counted in a Coulter Counter (Multisizer III; Beckman Coulter,

Krefeld, Germany) as described elsewhere [13]. In addition, adipocyte size

and distribution in epiAT and scAT was determined on paraffin sections. HE

staining of AT was performed following standard procedures. Adipocyte size

was quantified as described previously [14].
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5.3.6 RNA Isolation and Quantitative Real-Time PCR

Analysis

RNA isolation and quantitative real-time PCR were performed as previously

described [11]. mRNA expression of genes listed in Supplementary Table 1

was determined. Specific mRNA expression was calculated relative to 18S or

L19 RNA, which were chosen as an internal controls due to their resistance

to glucose-dependent regulation.

5.3.7 Western Blot Analysis

For Western blot analysis, tissues were removed and homogenized in su-

crose buffer with tissue-mill homogenizer (MM 400; Retsch GmbH, Haan,

Germany). Proteins were isolated using standard techniques and Western

blot analysis was performed with antibodies raised against Repin1 (1:1 000;

Abcam; Cambridge, UK), Cd36 (1:1 000; RD Systems; Minneapolis, USA),

Lipocalin2 (Lcn2) (1:1 000; Abcam) and Gapdh antibody (1:3 000; Research

Diagnostics; Flanders, Netherlands) as loading control.

5.3.8 Cell culture

Human in vitro differentiated primary adipocytes were isolated from scWAT

obtained from subjects undergoing plastic surgery for non-malignant condi-

tions. Adipocyte precursor cells were isolated, cultured and differentiated

to adipocytes using described protocols [15]. Cells were transfected using

HiPerfect (Invitrogen, Life Technologies Corporation) and siRNA (Dharma-

con, Thermo Fisher Scientific). Glycerol release into the media 48 h after

transfection was used to measure lipolysis as described in detail previously

[16].

5.3.9 Statistical Analysis

Prism 6.0 software (GraphPad Software) was used to assess statistical signifi-

cance. Data are given as means ± SE. Data sets were analyzed for statistical
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significance using a two-tailed unpaired Student’s t test or Mann-Whitney U

test. P values < 0.05 were considered significant.

5.4 Results

5.4.1 Generation of iARep−/− Mice

To create AT specific Repin1 knockout mice, we crossed mice carrying the

loxP -flanked Repin1 allele with mice expressing the Cre recombinase under

control of the adipocyte specific Adipoq promoter. Cre recombinase was ac-

tivated by tamoxifen injection of four weeks old animals. Transgenic animals

were fertile and did not and display any differences in reproduction rate

and litter size compared with control litter mates. Knockout efficiency was

confirmed by qPCR demonstrating ∼80% to ∼85% knockdown of Repin1

expression in scAT and epiAT (Fig. 1A). Western Blot analysis confirmed

that Repin1 knockout only appeared in AT and did not affect other tissues

(Fig. 1B).

5.4.2 Growth, Organ weights, Food Intake and Energy

Expenditure of iARep−/− mice

iARep−/− mice have significantly lower body weight compared to littermate

controls from week six up to week 34 (Fig. 1C) and lower body fat mass

(Tab. 1). Daily food intake was indistinguishable between iARep−/− and

control mice (Fig. 1D, Tab. 1). Relative epiAT and scAT weights are

∼50% lower in iARep−/− compared to control mice (Fig. 1F). Although

relative liver mass is significantly higher in iARep−/− mice, there is no ev-

idence for higher liver fat content (Tab. 1). iARep−/− mice have signifi-

cantly smaller adipocytes in both fat depots compared to control animals

(Fig. 1H-J, Tab. 1). Adipocyte size distribution analyses in both AT regions

revealed a left shift of the curves with a reduction in the number of larger

adipocytes in iARep−/− mice (Fig. 1I). Circulating leptin and adiponectin

are significantly lower in iARep−/− mice compared to controls (Fig. 2 G,
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Tab. 1). Studies on whole body energy metabolism revealed that carbon

dioxide production (Fig. 1E) and oxygen consumption (Fig. 1E) were signif-

icantly elevated in iARep−/− compared to control animals, most likely con-

tributing to leaner phenotype, whereas spontaneous activity is not affected

in iARep−/− (Fig. 1E).

5.4.3 Repin1 deficiency in AT improves insulin sensi-

tivity

To investigate the influence of Repin1 depletion in AT on glucose homeosta-

sis, we performed GTTs and ITTs at an age of 14 and 24 weeks. At an age of

14 weeks, insulin sensitivity was not affected in iARep−/− mice compared to

controls (data not shown), whereas at an age of 24 weeks iARep−/− showed

an increased insulin sensitivity compared to control mice (Fig. 2A). Intraperi-

toneal GTTs revealed improved glucose tolerance at an age of 24 weeks in

iARep−/− mice compared to controls (Fig. 2B). HbA1c levels are significantly

lower in iARep−/− mice compared to controls (Tab. 1). It is noteworthy that

fasted blood glucose and insulin serum concentrations did not show signifi-

cant differences between the genotypes (Tab. 1).

5.4.4 Deficiency of Repin1 in AT or knockdown in hu-

man in vitro differentiated adipocytes leads to

altered Lipid Metabolism

To determine the consequences of reduced Repin1 expression in AT on lipid

metabolism, we assessed total serum HDL-, LDL- and total cholesterol,

triglycerides and FFA concentrations. All lipid parameter showed decreased

serum concentrations in iARep−/− mice compared to controls, but only total

cholesterol, HDL- and LDL-cholesterol were significantly decreased (Tab. 1).

Liver histology revealed significantly elevated relative liver weights in

iARep−/− mice compared to controls (Tab. 1), but HE staining (Fig. 1K)

and hepatic triglyceride measurements (Tab. 1) did not show significant

differences between the genotypes.



Chapter 5 130

Furthermore, we isolated human adipocytes from scAT and differenti-

ated them in vitro to knockdown REPIN1 using siRNA to check differential

glycerol release of those cells. Adipocytes of REPIN1 knockdown show signif-

icantly higher glycerol release compared to control cells (Fig. 1L), suggesting

that reduced Repin1 expression in adipocytes causes increased basal lipolysis.

5.4.5 Target Genes of Repin1

Previous in vitro studies of Repin1 knockdown in 3T3-L1 cells and in vivo

studies of a liver-specific Repin1 knockout mouse suggested fatty acid trans-

porter Cd36 and the cytokine Lcn2 as Repin1 target genes. Indeed, Cd36

and Lcn2 expression is significantly lower in both AT depots in iARep-/- mice

compared to controls. Cd36 expression levels were ∼20% reduced (Fig. 3A),

whereas Lcn2 expression levels were ∼80% reduced in both fat depots (Fig.

3B). To validate these findings on the protein level, we also performed West-

ern Blot and could confirm a downregulation of ∼20-30% in epiAT and scAT

of Cd36 and Lcn2 in iARep−/− compared to controls (Fig. 3C-D).
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Figure 5.1: Repin1 expression, body composition, adipocyte characterization and energy
expenditure in iARep−/− and control mice. A: Knockdown efficiency in epiAT and scAT
from control and iARep−/− mice (N=14) showing a reduction of Repin1 expression on
mRNA level of ∼80% in adipose tissue in knockout animals compared to controls (N=14).
B: Western Blot analysis in adipose tissue (scAT, epiAT and BAT), pancreas, heart, muscle
and kidney showing Repin1 protein expression and Gapdh expression as loading control.
iARep−/− mice showing reduced Repin1 expression in adipose tissue compared to control
animals, but similar protein expression of Repin1 in other tissues. C: Body weight gain
up to an age of 34 weeks of Repin1 deficient mice (N=14) compared to controls (N=12).
iARep−/− mice are significant lighter at an age of 6 weeks up to an age of 34 weeks.
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Figure 5.1: (Previous page.) D: Food intake was measured in week 30 for a period of one
week and calculated to an average consumption of 24 h. Body temperature was measured
at the end of observation period in week 34. Food intake and body temperature show
no significant differences between iARep−/− mice and controls. E: Mean oxygen con-
sumption (VO2) was measured by indirect calorimetry in a Calorimetry Module (CaloSys
V2.1, TSE Systems, Bad Homburg, Germany) at an age of 17 weeks. After two hours of
acclimatization, mean carbon dioxide production (VCO2) was recorded from iARep−/−

(N=4) and control mice (N=4) over a period of 72 hours. Data reveals significant higher
VCO2 in iARep−/− compared to control mice day and night. Spontaneous activity is
considered as sit up of the mice on the z-axis and depicted as means over an observation
period of overall 72 hours and reveals no significant differences between the two observed
groups. F: Relative epiAT and scAT weight was measured in week 34 after scarification
and calculated relative to total body weight. Repin1 deficient mice (N=8) in adipose tis-
sue showing ∼40-50% reduced relative epiAT and scAT mass compared to control mice
(N=8).
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Figure 5.1: (Previous page.) G: Adiponectin serum concentration was measured after
sacrification in week 34 using ELISA technique (AdipoGen Inc, Incheon, Korea). Serum
concentrations of adiponectin was significantly reduced in iARep−/− (N=10) compared to
control mice (N=10). Leptin serum concentration was measured after scarification in week
34 using ELISA technique (CrystalChem Inc, Downers Grove, IL). Mice lacking Repin1 in
adipose tissue (N=10) show significant reduced serum concentrations of leptin compared to
controls (N=10). H: Distribution of Adipocyte diameter in scAT and epiAT was measured
after HE staining and subsequent evaluation using cellSens Software (Olympus, Hamburg
Germany). Adipocyte diameter distribution shows a broader spectrum in a higher range
in control mice, whereas iARep−/− mice show a tighter spectrum in a lower range in scAT
and epiAT. I: Adipocyte diameter was measured after HE staining using cellSens Software.
In both adipose tissue depots (scAT and epiAT) iARep−/− mice showed a significant re-
duction of adipocyte diameter of ∼25-40% compared to controls. J: Represantive images
(HE staining; original magnification X10) of scAT and epiAT of control mice and Repin1
adipose tissue specific deficient mice. K: Represantive images (HE staining; original mag-
nification X20) of liver of control and iARep−/− mice. L: Glycerol release was performed
in vitro on human differentiated adipocytes from scAT, either treated with scrambled
(controls) or REPIN1 siRNA (Repin1 KD). Knockdown of REPIN1 leads to an significant
increase of glycerol release compared to control cells. Data are given as means ± SEM.
Data sets were analyzed for statistical significance using a two-tailed unpaired t test or
ANOVA (*p-value <0.05; ** p-value <0.01; ***p-value <0.001).
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Figure 5.2: Insulin Sensitivity, glucose tolerance and circulating adipokines. A: Intraperi-
toneal ITT was performed in fed state at week 24. iARep−/− (N=13) compared to control
mice (N=11) showed improved insulin sensitivity. B: Intraperitoneal GTT was performed
in 12 h fasted 24 week old mice. Glucose tolerance was significantly improved in Repin1
deficient adipose tissue specific knockout animals (N=13) compared to controls (N=11).
E: Circulating insulin concentration was determined in 34 weeks old mice using ELISA
technique (CrystalChem Inc, Downers Grove, IL) and evaluation revealed no significant
differences between the two observed groups (each group N=11). Data are given as means
± SEM. Data sets were analyzed for statistical significance using a two-tailed unpaired
t test or ANOVA (*p-value <0.05; ** p-value <0.01; ***p-value <0.001).
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Figure 5.3: Gene and protein expression of Cd36 and Lcn2. A: Expression of Cd36 mRNA
in epiAT and scAT normalized to the housekeeping gene L19. Cd36 expression levels were
∼20% significantly reduced in iARep−/− mice (N=8) compared to littermate controls
(N=8). B: Expression of Lcn2 mRNA in epiAT and scAT normalized to the housekeeping
gene L19. Mice lacking Repin1 in adipose tissue (N=8) show ∼80% significant reduction of
Lcn2 mRNA expression in both fat depots compared to control mice (N=8). C: Western
Blot analysis of Cd36 protein expression in epiAT and scAT relative to housekeeping
protein Gapdh. Protein expression of Cd36 was ∼25% significantly downregulated in
iARep−/− mice (N=4) compared to littermate controls (N=4) in scAT, whereas downre-
gulation in epiAT is not significant. D: Western Blot analysis of Lcn2 protein expression in
epiAT and scAT relative to housekeeping protein Gapdh. Expression of Lcn2 was ∼20-30%
significantly lower in mice lacking Repin1 in adipose tissue (N=4) compared to controls
(N=4) in both fat depots. Data are given as means ± SEM. Gene expression data were
analyzed using 2(-Delta Delta C(T)) method. Protein expression data are given in relation
to housekeeping protein (Gapdh). Data sets were analyzed for statistical significance using
a two-tailed unpaired t test (*p-value <0.05; ** p-value <0.01).



Chapter 5 136

Table 5.1: Serum concentrations of parameters of glucose homeostasis and lipid
metabolism. Phenotypical and histological parameters of body composition and adipocyte
size. All values were obtained in week 34 after sacrifice, except for 0-values of GTTs and
ITTs. Data are given as means ± SE. Significant different data appear in boldface and
were considered as *p <0.05, **p <0.01 and ***p <0.001.

Parameter Controls iARep−/− p-value

Phenotyping

Relative liver weight (%) 3.531 ± 0.067, n=8 3.873 ± 0.120, n=8 0.0298*

Hepatic triglycerides (mg/mg tissue) 10.68 ± 0.450, n=8 8.62 ± 1.411, n=8 0.1853

Relative hepatic triglycerides

(mg x total liver mass/BW) 0.323 ± 0.015, n=8 0.249 ± 0.046, n=8 0.1471

Body length (cm) 10.24 ± 0.078, n=8 10.03 ± 0.075, n=13 0.0936

Body temp (◦C) 35.20 ± 0.208, n=8 35.77 ± 0.372, n=13 0.5105

Glucose homeostasis

Insulin (ng/ml) 0,316 ± 0.058, n=11 0.232 ± 0.049, n=11 0.3736

HbA1c (%) 4.531 ± 0.028, n=8 4.225 ± 0.078, n=13 0.0009***

Fasted blood glucose (mmol/l) 6.700 ± 0.384, n=8 6.154 ± 0.402, n=13 0.3635

ITT 0-value week 14 (mmol/l) 7.482 ± 0.253, n=11 7.877 ± 0.140, n=13 0.1686

ITT 0-value week 24 (mmol/l) 8.873 ± 0.299, n=11 7.038 ± 0.316, n=13 0.0004***

GTT 0-value week 14 (mmol/l) 5.636 ± 0.278, n=11 4.954 ± 0.206, n=13 0.0570

GTT 0-value week 24 (mmol/l) 4.982 ± 0.271, n=11 4.562 ± 0.212, n=13 0.2285

Characterization adipose

tissue

Relative epi weight (%) 5.438 ± 0.347, n=8 3.110 ± 0.365, n=8 0.0006***

Relative sc weight (%) 2.915 ± 0.192, n=8 1.635 ± 0,174, n=8 0.0006***

Sc mean (µm) 151.2 ± 3.009, n=8 132.1 ± 4.989, n=13 0.0152*

Epi mean (µm) 149.8 ± 1.099, n=8 134.4 ± 2.784, n=13 0.0004***

Sc max (µm) 232.1 ± 3.330, n=8 221.4 ± 3.618, n=13 0.0920

Epi max (µm) 217.7 ± 2.626, n=8 217.5 ± 2.526, n=13 0.9018

Adiponectin (µg/ml) 73.13 ± 6.424, n=10 56.44 ± 2.359, n=10 0.0172*

Leptin (ng/ml) 12.04 ± 2.175, n=9 4.345 ± 0.775, n=13 0.0033**
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Table 5.1: (Previous page.)

Parameter Controls iARep−/− p-value

Serum lipids

Triglyceride (mmol/l) 1.255 ± 0.041, n=10 1.166 ± 0.078, n=13 0.3673

Cholesterol (mmol/l) 2.750 ± 0.165, n=10 2.283 ± 0.067, n=13 0.0079**

HDL-cholesterol (mmol/l) 2.426 ± 0.092, n=9 1.933 ± 0.069, n=13 0.0004***

LDL-cholesterol (mmol/l) 0.388 ± 0.084, n=10 0.216 ± 0.013, n=13 0.0073**

FFA (mmol/l) 1.255 ± 0.065, n=10 1.118 ± 0.056, n=13 0.1703

Energy expenditure

Distance day (km/12h) 0.455 ± 0.335, n=2 0.524 ± 0.138, n=7 0.9999

Distance night (km/12h) 2.560 ± 0.350, n=2 2.624 ± 0.399, n=7 0.9999

RER day 0.680 ± 0.032, n=4 0.798 ± 0.022, n=8 0.0182*

RER night 0.720 ± 0.033, n=4 0.851 ± 0.031, n=8 0.0424*

Water intake (ml/72h) 5.545 ± 0.894, n=4 10.65 ± 1.581, n=8 0.0485

Food intake (g/72h) 5.983 ± 1.087, n=4 8.184 ± 1.116, n=7 0.2182

VO2 day (ml/h/kg) 2287 ± 110.7, n=4 2825 ± 141.6, n=8 0.0283*

VO2 night (ml/h/kg) 2882 ± 186.8, n=4 3497 ± 215.1, n=8 0.1051

VCO2 day (ml/h/kg) 1551 ± 48.20, n=4 2250 ± 109.2, n=8 0.0081**

VCO2 night (ml/h/kg) 2083 ± 113.2, n=4 2944 ± 208.9, n=8 0.0485*
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5.5 Discussion

We show here that adipocyte-specific Repin1 deletion results in leanness,

smaller adipocytes and an improved whole body insulin sensitivity in vivo.

We propose that these beneficial effects of reduced Repin1 maybe medi-

ated by significant changes in key molecules linking glucose and lipid metabo-

lism such as Cd36 and lipocalin, but also through increased basal lipolysis in

adipocytes.

Repin1 is ubiquitously expressed with highest expression levels in liver

and AT. Repin1 has been implicated as an important regulator of adipocyte

cell size and glucose transport into 3T3L1 adipocytes in vitro. Moreover,

Repin1 mRNA expression was shown to be associated with adipocyte size in

humans [6], [17]. Therefore, Repin1 has been suggested as a candidate gene

for obesity and its related metabolic disorders. However, the physiological

role of the Repin1 signaling in AT in vivo has not been systematically studied.

We therefore created mice lacking the Repin1 gene in AT (iARep−/−) using

conditional and inducible gene targeting strategies (Adipoq-Cre+/− mice).

To specifically target adipose tissue, we used transgenic mice that express

the Cre recombinase cDNA under the control of the Adiponectin promoter

[10]. Induction of the knockout was performed by administration of tamox-

ifen. Tamoxifen has been shown to alter body composition with a lower fat

mass one week after treatment and significant higher fat mass five weeks after

treatment with tamoxifen [13]. Upon these tamoxifen-related fat mass dy-

namics, glucose homeostasis and lipid profile showed also significant changes

in tamoxifen treated animals as well as browning effects in scAT with higher

Ucp1 expression [13]. To overcome the known problem that tamoxifen per

se may influence - at least transiently - the metabolic and AT phenotype, we

treated all animals (controls and iARep−/−) with tamoxifen. Furthermore,

as tamoxifen is washed out within eight weeks [18], all detailed phenotyping

was performed at least ten weeks after tamoxifen treatment.

iARep−/− mice were viable and fertile and did not exhibit perinatal

growth retardation. However, starting from the age of six weeks and onwards,

iARep−/− mice display a slower body weight gain compared to control mice.
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This effect is most likely the result of higher energy expenditure compared to

controls (Fig. 1C E). Several mechanisms could explain this, e.g. increased

BAT activity/beige differentiation, alterations in adipokine secretion, which

may contribute to this phenotype and/or unrecognized Repin1 target genes

regulating energy metabolism. Higher energy expenditure in iARep−/− mice

could be due to higher BAT activity, since previous studies recognized BAT

as a regulator of

whole-body energy expenditure in humans and small rodents [19], [20].

We hypothesized that higher energy expenditure in iARep−/− could be due

to higher BAT mass or activity. We therefore compared iARep−/− and con-

trol mice according to their relative and absolute BAT mass and histological

signatures of brite/beige adipocytes in white AT depots. Importantly, we

did not find any sign of increased BAT activity, mass or britening/beigening

of WAT in iARep−/− mice. Mean core body temperature and BAT mass

was indistinguishable between iARep−/− and control mice. Reduced body

weight in iARep−/− mice is mainly driven by lower body fat mass. In vitro

studies of downregulation of Repin1 in 3T3-L1 cells [6] and in vivo studies

of hepatic Repin1 deficiency [7] revealed a correlation of Repin1 expression

with cell and lipid droplet size. Further histological analyses identified signif-

icant differences in lipid droplet size, with reduced mean adipocyte size and

a left-shift from more larger towards more smaller adipocytes in iARep−/−

compared to control mice. We did not observe any significant differences in

food intake or physical activity in iARep−/− mice suggesting that the attenu-

ated circulating levels of leptin in iARep−/− mice do not cause hyperphagia.

Interestingly, both AT and liver exhibit lower relative organ weights than

other organs, including heart, kidney, skeletal muscle, and spleen, which are

decreased in size proportionally to the lower body weight of iARep−/− mice

supporting the close correlations between (predominatly visceral) fat stores

and liver steatosis.

However circulating metabolism parameters were significantly lower in

iARep−/− compared to control mice. Previous studies on siRNA-mediated

Repin1 knockdown in 3T3-L1 cells [6] and hepatic Repin1 deficient mice

[7] could demonstrate a relation of Repin1 deficiency and reduced mRNA
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expression of fatty acid transporter Cd36. In this study we could also confirm

a correlation between Repin1 deficiency in AT and decreased Cd36 expression

in epiAT and scAT. Interestingly, Cd36 deficient mice are characterized by

improved insulin sensitivity in AT [21] a phenotype which is also reflected in

iARep1−/− mice. A previous study on whole body Repin1 deficient db/db

double knockout mice could already show a correlation of Repin1 deficiency

and improved insulin sensitivity [8]. Rep1−/− x db/db mice show significantly

improved insulin sensitivity and chronic hyperglycemia, which is most likely

derived by reduced fat mass and lower inflammatory infiltrates in AT [8].

However, mice lacking Repin1 in AT do not reflect all characteristics of Cd36

knockout mice, in particular the latter model shows increased circulating

lipids [22], indicating that impaired Cd36-mediated fatty acid transport can

be compensated by other lipid transport mechanisms or that the remaining

Cd36 is sufficient to protect against dyslipidemia in iARep−/− mice. Fatty

acid uptake and storage into the liver might be one possible explanation,

because liver weights were significantly increased while still showing normal

phenotypes and no signs of NAFLD. siRNA-mediated REPIN1 knockdown

in human in vitro differentiated adipocytes revealed significantly increased

glycerol release compared to control cells indicating an increased lipolysis

mediated by deficiency of Repin1. Therefore increased basal lipolysis may

contribute to smaller adipocytes observed in iARep−/− mice.

Based on those results, we propose that Repin1, as a zinc-finger protein

[3], is one of the regulators of transcription of Cd36. Former studies showed

that zinc finger proteins, like PRDM16, regulate expression of genes involved

in obesity by stimulating brown fat selective gene expression, while suppress-

ing white fat selective gene expression [23], [24]. As proposed in a previous

study of hepatic Repin1 deficient mice, improved insulin sensitivity could be

attributed to an improved activation of the insulin signaling cascade, lower

total body fat, lower fatty acid transport protein and/or lower expression

of insulin resistance associated cytokines like Lcn2 or chemerin [7]. The cy-

tokine Lcn2 was already significantly reduced on mRNA and protein level in

mice lacking Repin1 in liver [7]. Here, we extend these findings showing that

Lcn2 is about 80% lower in epiAT and scAT in iARep−/− compared to con-
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trol mice. Previous studies revealed that higher Lcn2 serum concentrations

are associated with obesity [25] and that Lcn2 derives also from AT [26]. In

vitro studies in hepatocytes showed that exogenous Lcn2 promotes insulin

resistance [27] and that Lcn2 deficient mice are protected against obesity in-

duced insulin restistance [28]. These data together with the insulin sensitive

phenotype and the significantly lower Lcn2 levels in iARep-/- mice prompt us

to propose that improved insulin sensitivity in iARep−/− mice could at least

in part be mediated by lower Lcn2 serum concentrations. This hypothesis

fits well into the concept, that improving adipose tissue function may have

beneficial metabolic effects at the whole body level [27].

In conclusion, we show that a deficiency of Repin1 in AT leads to a leaner

phenotype, improves insulin sensitivity, glucose and lipid metabolism as well

as smaller adipocytes most likely mediated through effects on its target genes

Cd36, Lcn2 and increased basal lipolysis.
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Hiermit erkläre ich, Nico Hesselbarth geboren am 29.11.1984 in Leipzig,

dass die vorliegende Arbeit selbstständig und ohne unzulässige Hilfe oder
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